File No. S360-30

Form

IM Systems Reference Library

IBM System/360

Operating System

Queued Telecommunications Access Method
Message Control Program)

This publication contains specifications on the use of
the Queued Telecommunications Access Method (QTAM) and
the IBM System/360 Operating System to support telecom-
munications applications. Information in this publica-
tion will facilitate the construction of a CTANM message
control program by the problem programmer. Complete
descriptions of QTAM macro instructions are included.

For detailed information on the services provided by
QTAM to support a message processing program, refer to
IBM System/360 Operating System: QOTAM Message Process-—
ing Program Services, Form C30-2003.

C30-2005-2

0s

FACE

PRE

Thi

s publication contains information about

use of the facilities of the Queued Tele-
communications Access Method (CTAM) to con-

str
at
pan
ing

uct a message control program to support

elecommunications application. A com-

ion publication, IBM System/360 Operat-
System: QTAM Message Processing Pro-

gra

m Services, Form C30-2003, provides

inf
ces
add

pro
duc

IBM

ormation about constructing message pro-
sing programs that may be required in
ition to the message control program.

The reader should be familiar with the

gramming concepts and terminology intro-
ed in the following publications:

System/360 Operating System:

Introduction, Form C28-6534

Concepts and Facilities, Form C28-6535

Job Control Language, Form C28-6539

Assembler Langquage, Form C28-65104

Supervisor and Data Management Services,

Form C28-6646

Supervisor and Data Management Macro-

Instructions,

Form C28-66u47

The reader should also be familiar with

those of the following publications that
apply to equipment in his system

con

Dir

figuration:

ect Access Storage Devices:

IBM System/360 Component Description:

2314 Direct Access Storage Facility and

2844 Auxiliary Storage Contrcl, Form

A26-3599

IEM System/360 Component Descriptions:

Third

This publication corresponds to OS Release 17.
of, and renders obsolete, Form €30-2005-1 and associated Technical News-
letters.

vious

text are indicated by a vertical line to the left of the change; in the

2841 Storage Control,

Edition, November 1968

It is a major revision

Changes not documented in Technical Newsletters to the pre-

edition are indicated in the following manner: changes to the

case of a page which contains all new information, a bullet (e) is
placed next to the page number; similarly, changed or added illustra-

tions

significant changes or additions to the specifications contained in this
publication are continually being made.
connection with the use of IBM egquipment, check the latest SRL Newslet-

are denoted by a bullet tc the left of the caption.

ter for revisions or contact the local IBM branch office.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back cf this publication for reader's com-

ments.

If the form has been removed, comments may be addressed to IBM

Corporation, Programming Documentation, P.0. Box 12275, Research Tri-

angle

Park, North Carolina, 27709.

g? Copyright International Business Machines Corporation 1966, 1967,
1%68

When using this publication in

2302 Disk Storage Models 3 and 4,
2311 Disk Storage Drive, Model 1,
2321 Data Cell Drive,

2303 Drum Storage,

Form A26-5988

Telecommunications Control Units:

IBM 2701 Data Adapter Unit, Principles
of Operation, Form A22-6864

IBM System/360 Component Description:
IBM 2702 Transmission Control, Form
A22-68U46

IBM System/360 Component Description:
IBM 2703 Transmission Control, Form
A27-2703

Terminal Equipment:

IBM 1030 Data Collection System, Form
A24-3018

IBM 1050 Data Communication System:
Principles of Operation, Form A24-3474

IBM 1060 Data Communication System, Form
A24-3034

IBM Systen/360 Component Description:
IBM 2260 Display Station, IBM 2848 Dis-
play Control, Form A27-2700

IBM 2740 Communications Terminal, Form
A24-3403

Model 20 Functional Characteristics,
Form A26-5847

Users lacking a background in data com-~

munications concepts should read:

Data Communications Primer, Form
Cc20-1668

IBM System/360 Introduction to Tele-
processing, Formr C30-2007

INTRODUCTION
Terminal Types Supported o e e e e e
Machine and Device Requirements . .
General Requirements and Capabilities
Operating System Considerations . .
Macro Instruction Formats

OTAM-CONTROLLED TELECOMMUNICATIONS

SYSTEMS: CONCEPTS AND TERMINOLOGY .
Telecommunications Networks
Message Control . . .« « « + ¢ & o .
Message Processing . « « « « o o = =

OS QTAM CONCEPTS AND FACILITIES . .
General Concepts « . « « ¢ . ¢ o o .
The Operating Environment
QTAM Facilities . . . « e e e e
Data Set Definition and Controcl
Information
Message Formats . . « <« o« o 2 o+ & &
Message Flow Within the System . .
Calls From the Computer to
2740 Model 2 v ¢ 4 v 4 o e . . .
Management of Switched Lines
Calls From the Computer to a
Terminal on a Switched Line . . .
Calls From the Computer to a
Switched IBM 1050
Calls From the Computer to a TWX
Terminal
Calls From a Switched Termlnal
COmMPULer . « o« o ¢ o« o o s o o« = =
Relative Priority of Receiving Versus
Sending Operations
Switched Networks « .
Management of WTTA Lines
System Generation Considerations . .
Preparing and Entering
Telecommunications Jobs . . u . . .

TELECOMMUNICATIONS APPLICATIONS . .
Message Control Applications
Message Switching
Data Collection . . . &« ¢« & .« o
Message Processing Applications . .
Processing Collected Data
Inquiry Processing « . « « w « o«
QTAM System Modification

MESSAGE CONTROL PROGRAM
Parameter Registers
Data Set Definition
Direct Access Message Queues Data S
Communication Line Group Data Sets
Message Log Data Set . « « « « + .
Checkpoint Data Set
Data Set Definition Macro
Instructions . . . ¢ o « ¢ &« & o .

DCB Macro Instruction

Control Information « . . .

Terminal Table « & « &
Single Terminal Entry

an IBM

to the

et

. ®

CVOWOodd

Group Code Enrtry . . « « <« » .
Distribution List Entry . . .
Process Progranm Entry . . .

Terminal Table (TERMTBL) Macro
Instruction . « . ¢ ¢ o o o =
Terminal Table Optional Field
(OPTION) Macro Instruction . .
Terminal Table
Instruction
Terminal Table
Instruction . . . & ¢ ¢ o o o
Terminal Table
Macro Instruction .« ¢« « o o« =

Example -- Terminal Table
Definition « « 2 o w ¢ o o =
Polling Lists . . . -

Polling List Deflnltlon (POLL)
Macro Instruction
Buffer Definition and Use . . .
Buffer Request BlcCkS .+ & o =
Buffers . . ¢ @ ¢ @ ¢ o o o
BUFFER Macro Instruction . . .
Data Set Initialization and
Activation .« « « o« ¢ 4 o o o o =
OPEN Macro Instruction . . . =
ENDREADY Macro Instruction
Line Procedure Specification (LPS)
Components of the LPS
Delimiter Macro Instructions . .
Functional Macro Instructions .
The Scan Pointer
Error Handling Functional Macro
Instructions .« . o ¢ o &« o o o =

List (DLIST) Macro

Prccess (PROCESS)

CONTENTS

4y
45
45

4o

Entry (TERM) Macro

47

50

- e

Arrangement of LPS Macro Instruction

Descriptions . . « « u « « o o

Delimiter Macro Instruction

Descriptions . « o « « « « . e
End Receive (ENDRCV) Macro
Instruction . . “ o o o o o
End Send (ENDSEND) Macro
Instruction . - . ¢ o o« & o o

- e e

66

- e ©

66

. o e

66

- o e

Line Procedure Specification Start

(LPSTART) Macro Instruction .
Post Receive (POSTRCV) Macro

Instruction . . . - . . .
Post Send (POSTSEND) Macro
Instruction c o o =
Receive Header (RCVHDR) Macro
Instruction . . e o o » -
Receive Segment (RCVSEG) Macro
Instruction o o

Send Headerx (SENDHDR) Macro
Instruction . <« « « « « « = =
Send Segment (SENDSEG) Macro
Instruction . « o « o o 4 o
Functional Macro Instruction
Descriptions . . . - -
Halt Receive (BREAKOFF) Macro
Instruction . « « o o « o =
Cancel Message (CANCELM) Macro
Instruction . « « 2 o o « o =
COUNTER Macro Instruction . .

- « o 68
69
69
69
70
70
70
70
70

71
71

Date Stamp (DATESTMP) Macro Operator Control Facility . . « « « <« 103
Instruction .« . ¢ ¢ ¢ ¢ o ¢ o o o . 12 Copy Error Counters . . “ - o ~ 103
DIRECT Macro Instruction . . « . . . 72 Copy Terminal Table Entry o = = <104
End-of-Address (EOA) Macro Change Terminal Table Fntry104
INStruction . .« o« o « « o o w o <« o 13 Intercept MESSAgeS o o w © o « » « «104
Hardware Error Checking 73 Interval StOP « ¢ o = © = =« o « = 105
End-of-Block (EOB) Macro Release MeSSAJeS « « o = o = « =~ « 105
Instruction . ¢ ¢ ¢ ¢ ¢ 4 4 o o o o U Stop Lin€e « o o ¢ = « « « o o« « &« 2105
End-of-Block and Line Correction Start Line . ¢ &« < 2 « « =« = = » - 2106
(EOBLC) Macro Imstruction 75 Switch Primary Terminal -~ .106
Error Message (ERRMSG) Macro Invalid Operator Control Messages .106
Instruction . . ¢« + < ¢« o o « « « «» 15 Error Recovery Procedure€s . « « o o - 107
Intercept (INTERCPT) Macro Operator Awareness MesSsageS . « « - . .108

Instruction . . | Checkpointing and Restarting the
Logging (LOGSEG) Macro Instruction . 78 Message Control Program . « o - o 109

Message Mode (MODE) Macro Checkpointing the Message Control
Instruction w = o - 18 Program . « o o « - - o » « =109
Message Type (MSGTYPE) Macrc Allocating Space on the DASD s o » <109
Instruction . . . « o - - - - 80 Defining the Checkpoint Data Set . .110
Operator Control (OPCTL) Macro Opening and Closing the Checkpoint
Instruction < . . < . . 81 Data Set . ¢ v o ¢ o o « » e = « 2110
PAUSE Macro Instructien 82 Restarting the Message Control

Polliing Limit (POLLIMIT) Macro Program o« « « o« = « o » o « o =« o « 2110
Instruction . . & ¢« o ¢ « « o « « » 84 System Design Considerations111
REROUTE Macro Instruction 84 Dial Line Considerations « «- - - . .111
Routing (ROUTE) Macro Instruction . 85 Deactivating the Telecommunications
Sequence In (SEQIN) Macro System . . . e o e e o e w s s 8 e o =111
Instruction . . . « « e« o « « « < 86 CLOSE Macro Instruction 112

Sequence Qut (SEQOUT) Macro

Instruction . . ¢ & ¢ « « « « o o« « 86 APPENDIX A: DATA AND CONTROL FORMATS

SKIP Macro Instruction 87 USED BY QTAM .+ 4 <« © « o w o =« o o = = 113

SOURCE Macro Instruction 87

Time Stamp (TIMESTMP) Macro APPENDIX B: SUMMARIES OF QTAM MACRO

Instruction . . . ¢« ¢« « « « « « . - 88 INSTRUCTIONS ¢ « o o « o o o = o o « o «122

Translate (TRANS) Macro Instruction 88

WRU Macro Instruction . . . e « « 90 APPENDIX C: CONTROL CARD SEQUENCES FOR
Modifying WTTA Translation Tables . « 90 TELECOMMUNICATIONS JOBS 4 o o o o o « 2127

RCVEIAT2 and RCVEZSC3 Macro

Instructions . . . - e e « « o 90 APPENDIX D: QTAM REGISTER USAGE . » « 129
SENDITA2 and SENDZSC3 Macro Register 1 -- QTAM Parameter
Instructions « . ¢ o« « ¢ 4 « « o . o 91 Register . o ¢ ¢ ¢ ¢« ¢ ¢« o & o o = 4129
Including a User-Written Subroutine Register 2 -- QTAM Parameter
Within the LPS v . « ¢ o o o « o « « « 92 Register . ¢ ¢ o ¢ ¢ ¢« v o o o o « 129
Methods of Including the Subroutine . 92 Register 4 -- LCB Address Register .129
The SCAN Subroutine « « « . . 93 Register 5 -- Scan Pointer Register 129
Register 6 -- Buffer Address
NETWORK CONTROL FACILITIES . o « » « - - 98 Register « v« v o o o o o o o =« = o <129
Examining and Modifiying the Register 7 -- LPS Routine Base
Telecommunications System - . 98 RegisSter « o o o o o o o o o o « « 2129
Activating a Stopped Line 98 Register 8 -- Terminal Table
Start Line (STARTLN) Macro Source Entry « o « o « o o o o o o 129
Instruction . . . e e e o <« =« « 98 Register 11 -- End-of-Segment
Examining and Modlfylng the Terminal Address Register . o o o v o o « o 4129
Table 99 Register 14 -- Return Register for
Copy Termlnal Table Entry (COPYT) First-Level Routines . < . . « «. . .129
Macro Instruction . . e o = « - 99
Change Terminal Table Entry APPENDIX E: SUMMARY OF OPERATOR

(CHAGT) Macro Instruction 99 CONTROL MESSAGES . o « u o = o o o o =« 2130
Examining and Modifying Polling Lists 100

Copy Polling List (COPYP) Macro APPENDIX F: FORMAT AND SUMMARY OF

Instruction . . . - e s« o =« 2100 MACRO INSTRUCTIONS o 4 @ o o « o o » » o131

Change Polling LlSt (CHNGP) Macro

Instruction . . &« + &+ « ¢« o &« « « 2101 APPENDIX G: QTAM TERMINAL CODES135
Examining Queue Control Blocks101 QTAM Character Set and Code

Copy Queue Control Block (COPYQ) Correspondence Chart . « « o « w « » « 2135
Macro Instruction101 Arrangement of Chart135
Terminal Character Sets . o « o - 135

QTAM SERVICE FACILITIES . . « « -« . « .103 Transmission CodeS « = « « w « « = 2135

Representation of Characters
Bit Patterns . . «
Nonequivalent Characters . .
Substitutions
General Notes
Control Characters
Terminal Code Translation Chart

APPENDIX H: EXCHANGING MESSAGES
BETWEEN IBM AND NON-IBM TERMINALS
End-of-Address . . « < « o

. -

Carriage Return, Line Feed, Ne

Line, and End-of-Block . . .
End-of-Transmission and WRU
End-of-Message,

End-of-Transmission, and WRU
WITA TerminalsS . o « « « « o

for

e =

o

-

.136
.136
.136
-.137
.138
-148

.153
.153
.153
.154

.154

APPENDIX I: QTAM CHECKPOINT DATA RECORD 156

APPENDIX J: RETURN CODES FOR MACRO
INSTRUCTIONS USED TO MODIFY AND
EXAMINE SYSTEM @« « o o« o o o« o o o =
APPENDIX K: DISK QUEUING RULES . . .
APPENDIX L: QTAM SAMPLE PROGRAM A .
APPENDIX M: QTAM SAMPLE PROGRAM B .
APPENDIX N: ON-LINE TERMINAL TESTING
Format of Test Request Messages .
Types of Tests Available
Terminal Test Rules . v o -« o « »
APPENDIX O: CPU USAGE METER CONTROL
GLOSSARY +« 4 o o o o o o a2 2 2 o « =

INDEX =« « o w o o o ¢ a2 = @ a o = =

o

.157
-.158
-159
~162
~166
-166
-168
-169
<171
<174

-175

FIGURES

Figure 1. Line and Station
Configuration: Nonswitched Network
Figure 2. Line and Station
Configuration: Switched Network .
Figure 3. Sample Format for an
Incoming Message c e e s e o o =
Figure 4. Sample Format for an
outgoing Message e e e e e e e
Figure 5. (CTAM Message Flow
(Part 1 of 2) . & ¢ 4 v ¢ o o « @
Figure 6. Keyword Operands for
the Direct Access Message Queues
DCB Macro Instruction
Figure 7. Keyword Operands for
the Checkpoint DCB Macro
Instruction . . « ¢ & ¢ 4 o 4 .
Figure 8. Keyword Operands for
the Communications Line Group DCB
Macro Instruction (Part 1 of 6) .
Figure 9. Addressing and Polling
Characters for the TERM Macro
Instruction o . .
Figure 10. Example: Coding
Sequence for Creation of a
Terminal Table “ + e e e a o e =
Figure 11. Aids in Specifying
BRBs and Buffers « e e e e s e s
Figure 12. Line Procedure
Specification Macro Instructions
Figure 13. Scan Pointer Movement
Figure 14. Communication Line
Error Halfword (Part 1 of 2) . .
Figure 15. Line Address ASCII and
EBCDIC Equivalents for IBM 2260 .
Figure 16. Use of MSGTYPE Macro
Instruction in an LPS . . « & . .
Figure 17. 1Idle Characters . . .
Figure 18. Names of Code
Translation Tables Provided by
OTAM e ® s o o - o 4« = o o o = @

13
14
20
21

22

36

36

37

49

51
56

63
65

67
80

82

91

Figure 19. Register Assignments
Figure 20. Activation of a
User-Written Subrcutine through
MODE e o o e e s e o e @ o e e e
Figure 21. Activation of a
Closed, User-Written Subroutine
Independent of MODE e e o e s e
Figure 22. Inclusion of an Open,
User-Written Subrcutine in the LPS
Figure 23. Use of SCAN by a
User-Written Subrcutine Activated
DY MODE « o o o o o o o o 2 = o =
Figure 24. Format of Queue
Control Block (QCB) e e s e e o e
Figure 25. Terminal Table Entry
Formats (Part 1 of 5) <« .
Figure 26. Example of the
Terminal Table « o o e e o e e
Figure 27. Polling List Formats
Figure 28, Auto Poll Polling List
Format 5 » e © e e o o o o o o e
Figure 29. Formats of Filled
Buffers . .« o o ¢ ¢ 2 ¢ 4 o e e
Figure 30. Sumrmary of Data Set
Definition, Initialization, and
Deactivation Macro Instructions .
Figure 31. Summary of Control
Information Macro Instruction . .
Figure 32. Summary of Line
rrocedure Specification Functional
Macro Instructions (Part 1 of 2)
Figure 33. Surmary of Line
Procedure Specification Delimiter
Macro Instructions e o o e o e
Figure 34. Summary of Macro
Instructions Used to Examine and
Modify the Telecommunications
System Status o « o 2 o ¢ 4 o w .
Figure 35. Sumrmary of Operator
Control MeSSagesS . = « « o o o = =
Figure 36. EOA and EOT Characters
and Sequences . . o « o ¢ o © o

. 94

- 95

. 96

96

. 97
.102
.113

.118
.119

.120

.121

2122

.123

124

.126

126

130

155

In the IBM System/360 Operating System, an
access method is a procedure for transfer-
ring data between main storage and an
input/output device. A variety of access
methods is available to the user of the
operating system (0S). One of these, the
Queued Telecommunications Access Method
(QTAM), controls data transfer between main
storage and remote terminals connected to
an IBM 2701, 2702 or 2703 control unit that
is attached to the multiplexer channel.

QTAM is a generalized input/output con-
trol system that extends the techniques of
data management to the telecommunications
environment. Data sets accessed by the
problem programmer are queues of messages
coming in from, or going out to, remote
terminals via communication lines. Even
though the time and order of the arrival
and departure of messages to and from the
Central Processing Unit (CPU) are unpre-
dictable, the programmer can handle the
messages as if they were sequentially
organized.

Unlike other commonly used access
methods, QTAM furnishes more than just the
mechanics for input/output operations. In
addition to the standard GET/PUT macro
instruction support for message processing
programs, QTAM provides a high-level, flex-
ible message control language. QTAM-
supplied macro instructions can be used to
construct a complete message control pro-
gram that controls the flow of message
traffic from one remote terminal to another
(message switching application), and
between remote terminals and any message
processing programs (message processing
applications). An installation-oriented
message control program can thus be written
in a shorter time than was previously
possible.

A QTAM message control program is
generated from a number of assembler macro
instructions coded by the programmer.
Although the assembler macro-generator is
used, the process followed is similar to
that used by a high-level compiler. A QTAM
message control program is open-ended. The
user can include functions not provided
through the QTAM language by employing 0S
control program macro instructicns, and
assembler language instructions and macro
instructions.

A message control program is completely
device dependent, with all communication
lines and terminals identified to the sys-
tem. Through data set definition and

INTRODUCTION

control-information macro instructions; the
user specifies his equipment configuration
and the areas in main storage (buffers)
required for his applications. These
macros generate the tables and lists of
control information that define the
environment of the system for the QTAM
logic. Buffers are one of the primary
resources in the telecommunications system.
The number and size of the buffers required
for an application are specified by the
user. The buffers are allocated to a com-
mon buffer pool from which QTAM automatic-
ally and dynamically obtains them in accor-
dance with immediate requirements.

QTAM logic modules are also provided for
many procedural functions, such as message
code translating, routing of messages, and
error checking. By selecting the appropri-
ate macro instructions, the user specifies
which QTAM logic modules are to be incorpo-
rated into his message control program. In
this way, the system can be tailored to the
exact requirements of the applications
being supported.

The message processing program services
of QTAM enable a programmer to process mes-
sages from a telecommunications network
with the same easy-to-use macro instruc-
tions that he uses for his local input/
output devices. When a QTAM message con-
trol program performs the input/output
operations, a device-independent message
processing program can be written. The
applications programmer is shielded from
the time and device-dependent aspects of
the telecommunications environment.

This publication is devoted primarily to
the QTAM facilities provided for the con-
struction of a message control program.
Message processing programs are discussed
in general terms and cnly when necessary to
give a complete picture of a QTAM-
controlled telecommunications system. For
detailed information on message processing
programs and the services QTAM provides in
supporting them, refer to IBM System/360
Operating System: QTAM Message Processing
Program Services.

TERMINAL TYPES SUPPORTED

0S QTAM supports the following types of
terminals attached to a System/360 multi-
plexer channel through a telecommuni-
cations control unit (IBM 2701 Data Adapter

Introduction 7

Unit or 2702 or 2703 Transmission Control
Unit):

e IBM 1030 Data Collection System on a
nonswitched network (1031,1033 only).

e IBM 1050 Data Communication System on a
switched network or a nonswitched
network.

e IBM 1060 Data Communication System on a
nonswitched network.

e IBM 2260-2848 Display Complex (remote)
on a nonswitched network (2701 only)
(1053 is not supported when attached to

a 28u8).
e IBM 2740 Communications Terminal on a
nonswitched network -- four types:
Type I: Basic 2740
Type III: Basic 2740 with Station
Control
Type 1IV: Basic 2740 with Station Con-

trol and Checking

Type VI: Basic 2740 with Checking
e IBM 2740 Communications Terminal on a

switched network -- four types:

Type II1: Basic 2740

Type V: Basic 2740 with Transmit
Control and Checking

Type VII: Basic 2740 with Checking

Type VIII: Basic 2740 with Transmit

Control.

e IBM 2740 Model 2 Communication Terminal
on a nonswitched network when equipped
with Station Control, with cr without
Checking, with or without Buffer
Receive.

¢ ATET 83B3 Selective Calling Stations on
a nonswitched network.

® Western Union Plan 1152 Outstations on
a nonswitched network.

e Common Carrier (8-level code) TWX Sta-
tions on a switched network (for
example, ATET Model 33 or 35 Teletype-
writer Terminal, dial service)

e World Trade telegraph terminals (WTTA
terminals) on a nonswitched network,
attached through a 2701, 2702, or 2703
that contains a World Trade Telegraph
Adapter.

Note: Throughout this publication, "World
Trade telegraph (WTTA) terminal" refers to
a terminal as defined on page 28, connected
through a 2701, 2702 or 2703 Transmission
Control Unit that incorporates a World
Trade Telegraph Adapter. A "World Trade
(WTTA) line" is a line connected in the
same manner to a World Trade terminal.

MACHINE AND DEVICE REQUIREMENTS

A QTAM message control program can be coded
to operate in a minimum size partition of
main storage (for estimates of core storage
required for QTAM functions, see the publi-
cation IBM System/360 Operating System:
Storage Estimates, Form C28-6551.) Message
queues may be maintained on multiple
volumes on either 2311 direct access
storage devices, or on 2314 direct access
storage devices. The only additions to the
minimum requirements of the IBM System/360
Operating System are:

e All telecommunications terminals must
be attached to an IBM 2701 Data Adapter
Unit or a 2702 or 2703 Transmission
Control. They cannot be attached
directly to a channel.

e All IBM 2701, 2702,1 and 2703 control
units operating under QTAM control must
be attached to the System/360 via the
multiplexer channel.

e The hardware timer feature must be pre-
sent. At system generation time, the
user must specify that the timer facil-
ities are to be included.

» The 1033 output station requires the
insertion of three idle characters
(hexadecimal 'DF DF DF') prior to each
character transmitted to it. The user
may insert them either in his LPS or in
a message processing task.

e No device may be cperated in burst mode
on the multiplexer channel concurrently
with QTAM operaticn.

e A1l switched lines that are to allow
computer-initiated transmissions must
have the Auto Call feature, that is:

IBM 1050 on a switched line network,
IBM 2740 Type II,V,VII, and VIII on a
switched network,

Common carrier (8-level code) TWX sta-
tion on a switched network.

¢ The user must understand that the high
rate of data transfer between the CPU
and the 2260 display station can cause
the display screen to fill up several
times before the terminal operator has
had time to read the initial display.
Also, a message being entered from a

1A switch on the CE panel on a 2702 can be
used to place a given line in CE mode for
equipment checking. Care must be taken to
insure that no lines are in CE mode when
using QTAM since no ending status would be
returned to a SIO command.

2260 display station may be destroyed
if a message being sent from another
terminal comes in before his unit has
been polled and the message sent.

The following additional features may be
required if certain optional functions pro-
vided by QTAM are desired:

e The line correction feature on IBM 1050
terminals, if automatic retry of mes-
sages from a card reader or tape reader
is desired when @ transmission error
occurs.,

¢ The automatic polling feature (Auto
Poll) on the IBM 2703 Transmission Con-
trol Unit, if automatic polling of the
following terminal types (attached to
the multiplexer channel through a 2703)
is desired:

IBM 1030.

IBM 1050.

IBM 1060.

IBM 2740 with Station Controcl.

IBM 2740 with Station Control
and Checking.

The Auto Poll feature is standard on
the 2703 Transmission Control.

GENERAL REQUIREMENTS AND CAPABILITIES

To construct a telecommunications system
that will operate under control of QTAM (in
the operating system environment) the user
mast write:

1. A message control program,
2. Any message processing programs
required by his application.

A telecommunications control system
created through the use of the QTAM message
control language can:

¢ Establish contact and control message
traffic between computer and remote
terminals.

¢ Dynamically allocate main storage for
buffering.

e Perform editing of incoming and outgo-
ing messages (i.e., code translation,
insertion of new fields in message
headers).

s Forward messages to destination ter-
minals and message processing programs.

¢ Take corrective action and provide spe-
cial handling for messages containing
errors.

¢ Maintain statistical information about
message traffic.

CPERATING SYSTEM CONSIDERATIONS

QTAM is designed to operate in either
Option 2 (Multiprogramming With a Fizxed
Number of Tasks) or Option 4 (Multiprogram-
ming With a Variable Number of Tasks) of
the IBM System/360 Operating System. Dis-
cussions in this publication assume that
Option 2 is being used; however, all infor-
mation applies equally to Option 4.

Under Option 2, it is suggested that the
message control program reside in partition
0, while any message processing programs
are in lower priority partitions. 1In
Option 4, it is suggested that the message
control program be the highest priority job
in the system.

MACRO INSTRUCTION FORMATS

A coding format illustration accompanies
each macro instruction description in this
publication. The illustrations indicate
which operands must be coded exactly as
shown, which are variable, which are
required, which are optional, etc. The
following system of representation is used
to describe the macro instruction operands.

1. Both positional and keyword operands
are described by a 3-part structure.
Positional operands are described by a
lowercase name fcllowed by a hyphen
and a value mnemonic or a coded value.

Example: termname-chars. The lower-
case name, termname, is merely a con-
venient reference to the operand and,
along with the hyphen and value mne-
monic, is never coded by the program—
mer. The programmer replaces the
positional operand in his coding by an
allowable expression defined by the
value mnemonic.

For keyword operands, the 3-part
structure consists of the keyword,
followed by an equal sign (both of
which must be coded as shown), fol-
lowed by a value mnemonic or coded
value that describes what to code on
the right side of the equal sign.
Keyword operands are coded with
separating commas.
Example: CALL=integer
2. Coded values are written in the format
description as uppercase characters

Introduction 9

10

and must be coded exactly as shown in
the format.

Value mnemonics are written as lower-—
case characters in the format descrip-
tions and indicate how an operand is
to be coded by the programmer. The
value mnemonics used in this publica-
tion are:
symbol Any symbol that the assem-
bler accepts in the name
field of an instruction.
relexp A relocatable expression
(acceptable as an A-type or
V-type address constant by
the assembler).

addx Any indexed (implied or
explicit) or nonindexed
(implied or explicit)
address (acceptable as an
operand in the RX type
assembler instruction).

One of the coded values
defined as allowable by the
individual macro
instruction.

code

absexp Any absolute expression as

defined by the

assembler: self-defining

terms (decimal, hexadeci-

mal, binary, character),
length attributes, absolute
symbols, paired relocatable
terms in the same CSECT, and
arithmetic conbinations of
absolute terms.

integer A decimal self-defining

term.

chars A character string (the
framing characters, C' ',

' are not coded unless specif-
ically indicated in the
individual macro instruction
description).

text Same as chars.

Concatenated hexadecimal

digits (the framing charac-

ters, X" ', are not coded
by the programmer unless
specifically indicated in
the individual macro
instruction description).

hexchars

4.

(r) Register notation. This
notaticn specifies, by an
absolute expression enclosed
in parentheses, any register
2-12. It also allows the
programmer to load the spec-
ified register with the
appropriate value at execu-
tion time. Certain macro
instructions also permit use
of registers 0 and 1 by spe-
cifying (0) or (1). The 0
or 1 within parentheses must
be coded.

{ }. [1 Braces or brackets are used
to define grouping of the alternate
forms of an operand.

When braces { } are used, the user
must code one of the choices - in the
following exanple, T or L.

Example: qgtype - {T}
L

When brackets are used, the user may
code any of the choices shown. If he
omits the operand, the underlined
choice is assumed by the system.

Example: |CPRI=R
CPRI=E
CPRI=S

Brackets containing only one form of
an operand indicate an optional
operand.

Example: [nnl

«-- Ellipsis (three periods) indi-
cates that the operand can be coded
one or more times.

Parentheses and commas must be coded
where indicated. No commas should
appear after the last operand coded by
the programmer. Descriptive symbols
are not to be coded by the programmer.

CONCEPTS AND TERMINOLOGY

QTAM-CONTROLLED TELECOMMUNICATIONS SYSTEMS:

This section describes the characteristics
and operating concepts of a computer-based,
OTAM-controlled telecommunicaticns system:
what it is, how its parts are connected,
how communication proceeds, and how control
is maintained. A number of terms that are
used throughout the publication are
defined. For ease of reference, many of
these terms also appear in the glossary of
this publication.

Telecommunications systems vary consi-
derably from one another in terms of the
uses to which they are put, the component
parts of which they consist, the nature of
the message traffic accommodated, the means
of controlling the system, etc. Many of
the techniques and terms explained are
characteristic of telecommunications sys-
tems, either specifically or in general.
Certain definitions may be at a slight
variance with the reader's previous
experience. This arises because, over the
years, technical literature has contributed
a number of conflicting or ambiguous
definitions and because it is desirable to
make certain generalizations to avoid a
level of detail inappropriate to the needs
of the QTAM programmer. Therefcre, the
techniques and terms explained in the fol-
lowing discussion should be understood as
applying specifically to a computer-based
telecommunications system that operates
under the control of the QTAM facility of
the IBM System/360 Operating System.

A telecommunications system (or network)
consists of a number of input, output, or
combined input/output devices, usually in
geographically dispersed locations, con-
nected by one or more communications lines.
A telecommunications system operating under
0S QTAM may be specifically defined as a
network of terminals connected to a central
computer by one or more half-duplex com-
munication lines. (A half-duplex line is a
line over which data can flow in either
direction, but in only one direction at a
time.)

In communications terminology, the fol-
lowing terms are used to represent the
medium that connects the physical com-
ponents of a system: communication line,
data link, data path, circuit, and channel.
In this publication the term communication
line (or line) is used to refer to any
medium, whether it is a telegraph circuit,
a telephone circuit, a private circuit,
etc.

A terminal is the unit or units of
equipment that accepts keyed or punched
data as input for sending to the computer
and/or produces printed, punched, or visu-
ally displayed data as output received from
the computer. All messages from one termi-
nal to another pass through the computer.
In addition, the computer can receive and
originate messages for the terminals.

A terminal consists of a control unit

and one or more input/output devices. Each
such device is called a component. Each

input and output device is considered a
separate component, regardless of whether
they are physically combined. For example,
an IBM 1050 is referred to as a terminal;
its constituent devices, or components,
include the IBM 1053 Printer, the 1054
Paper-Tape Reader, the keyboard section of
the 1052 Printer-Keyboard, the printer sec-
tion of the 1052 Printer-Keyboard, etc.

Terminal is used as a general term to
represent the equipment at the remote loca-
tion. Component is used, where necessary,
to distinguish between the individual
devices and the terminal as a whole. §Sta-
tion is used to represent the remote loca-
tion at which a terminal is situated.

Terminals in a telecommunications system
operating under OS QTAM control are usually
separated from the computer by a distance
sufficient to require common-carrier facil-
ities and transmission techniques in order
to accomplish communication with the com-
puter. The system, however, may include
terminals on the same premises as the com-
puter, attached to it by local cables.
Regardless of the location of the terminal,
all supported terminals are classified as
"remote" since they must be attached to the
computer channel via a Telecommunications
Control Unit (TCU). The TCU may be an IBM
2701 Data Adapter Unit, or a 2702 or 2703
Transmission Control Unit. OS QTAM does
not support "local" terminals that are
directly connected to a System/360 channel.

Each remote terwinal and TCU is con-
nected to the communications line by a type
of data set, modem (modulator/demodulator),
line adapter, subset, etc., depending on
the kind of communication line and type of
terminal involved. (Terminals connected to
the TCU by local cables do not require data
sets.) The precise functions of these
units vary, but the overall purpose is the
same: to provide an electrical interface
between terminal and line. This publica-~
tion uses the more common term data set to

Telecommunications Concepts and Terminology 11

represent any of these units (not to be
confused with a program data set). The
programmer need not concern himself with
these data sets. They are mentioned only
to provide a complete picture of the line
and terminal configuration.

In this publication, computer is used as
a general term for the equiprent and pro-
grams at the central processing location
(CPU, TCU, etc.), when reference to a spe-
cific unit of equipment or programming is
not necessary.

TELECOMMUNICATIONS NETWORKS

A telecommunications system may consist of
a nonswitched network, a switched network,
or a combination of the two.

A nonswitched network consists of a num-
ber of private (or leased) lines that con-
nect the computer to one or .nmore remote
terminals. The computer and the terminals
are physically connected; that is, the cir-
cuits making up the communications lines
are continuously established for predeter-
mined time pericds during which data trans-
mission may proceed between the computer
and the terminals. Under certain condi-
tions in this type of system, the computer
can send messages to more than one terminal
on the same line at the same time. The
lines that comprise a nonswitched network
are known variously as private, leased, or
dedicated lines. These lines usually are
furnished by a common carrier on a contract
basis, between specified locations for a
continuous period or regularly recurring
periods at stated hours, for the exclusive
use of one customer. See Figure 1.

A switched network consists c¢f a number
of remote terminals with which the computer
can communicate. The computer and the sev-
eral terminals are connected by access
lines to the common-carrier exchanges serv-
ing their respective locations. A complete
and continuous data path is established
between computer and terminal only for .the
period of time in which transmission takes
place. The connection is established by
dialing the telephone number of the unit
(either terminal or CPU) at the other end.
In this type of system, communication can
be established between the computer and
only one terminal at a time on each line.

12

In this case, line refers to a discrete
data path between the telecommunications
control unit and the common-carrier
exchange. The service provided by the com-
mon carrier is typically on a time-used
basis. See Figure 2.

In a nonswitched network, the physical
circuit connections determine which ter-
minals are associated with each line into
the computer. 1In a switched network, the
user specifies which terminals can commun-
icate with the computer over each line.

Some communication networks have charac-
teristics typical of both switched and non-
switched networks:¢ In this publication,
the term switched network refers to any
network in which a direct physical connec-
tion between computer and terminal must be
established by dialing in order for data
transmission to occur. The term non-
switched network refers to a network in
which the communication lines linking com-
puter and terminals are continuously estab-
lished, thus requiring no dialing.

MESSAGE CONTROL

The QTAM message control facilities accom-
plish efficient, systematic supervision of
message traffic. In some respects, the
functions performed by QTAM message control
procedures parallel those performed in
telecommunications systems that are not
computer-oriented.

This section provides a general descrip-
tion of telecommunications systems followed
by a discussion of the main functions per-
formed in a computer-based system operated
under QTAM control. Subsequent sections of
this publication explain how these func-
tions are implemented.

Generally, in any telecommunications
system, contact between terminals must be
established before a message is sent. 1In
some systems, terminals attempting to send
a message contend with one another for use
of the line. The first terminal to initi-
ate contact on a line that is not currently
in use seizes the line and prevents its use
by other terminals until it has concluded
its message transmission. A system
operated in this manner is called a conten-
tion system.

r——"-" A r—— 1 r———-—"-"- 1
| | [[i I
: | | } | :
: Terminal Terminal = Terminal }
| | | I | |
| | | ! | [
b e e] | J Jd
Station Station Station
Fr——————-) F— === g
I [| |
e S
| Terminal Terminal |
| |
| | I]
I | | |
. Jd | I]
Station Station
——————— - B e 1
I | I |
- N
: Terminal DS Terminal |
|
I | | I
| | | I
b | L _ d
Station Dedicated Lines Station
r-—-—_ ——————— -
""" [oe] [o5] [o] ;
|
| Telecommunications . :
| Control Unit |
' |
;) ‘ |
| Multiplexer Channel] Terminal |
R S i |
| |
| |
| |
| cPU
| —1 Terminal |
| |
[|
DS = Data Set I :
e e e e]

Central Processing Location

Figure 1. Line and Station Configuration: Nonswitched Network

Telecommunications Concepts and Terminology 13

r l r A r——"~"~"~"7=77 7
| ! [| | |
! : : | | :
[|) | [

]
|| Terminal _.'A_c.c:ei‘ X X Ac.c = H Terminal : X Ac.cess Terminal | !
| Line Line | Line :
| | < v | | 7 i |
L ' AN VoL i/ L]

_______ J \ oo S
Station \ \ Station / Station
\ \ /
r"_—___—j \\ \ / r———>">=>- |
] | |
: ! \ \ /] I
! lAccess . \ \ / AccessI :
! Terminal - | X \ \ / X - Terminal !
! Line \ \ / Line |
: | N \ 7/ | 1
| ~ \ / / | |
| 1 ~ \ \ / y I 1
e e e e o — o J N \ p L e - - a
Station N N v\ / Station
AT / 7
Fom - 1 ~MNY 7 et 1
! | RN/ l |
i N /7
' ! A\ l l
: Access Access Line |
| Terminal E m | X == — = — - X DS Terminal |
| ine ' |
1 | ,
]] |
| | | |
L e e - L - - - J
Station A L Station
ccess | Lines
T " "[Ahel Rel Rl "~~~ ~"77-°—°7 T
! ps| [os] [bs |
! f
! Telecommunications | |
: Control Unit :
|
|
i TT |
I Multiplexer Channel — Temminal :
N S i |
| |
| I
1 |
| |
! |
: CPU w—st Terminal |
|
|
|
: I
DS = Data Set | :
X = Common - carrier exchange L o o o o oo B

Central Processing Location

Figure 2. Line and Station Configuration:

In other systems, one of the terminals
is specified as the control station. This
terminal initiates all contacts for all
other terminals on the line, using a proce-
dure known as polling. Polling is a flex-
ible, systematic, centrally controlled

14

Switched Network

method of permitting terminals on a multi-
terminal line to transmit without contend-
ing for use of the line. The control sta-
tion periodically contacts the other ter-
minals and invites them to send any mes-
sages they have ready. In addition, the

control station itself may elect to send a
message. A system operated in this manner
is called a polling system.

Polling is accomplished by sending one
or more polling addresses on the line, each
of which consists of one or more polling
characters. Typically, two characters are
used; the first selects the terminal, the
second selects the specific component of
that terminal. The terminal identified by
these characters then sends a response to
the control station - a positive response
if it has a message to send, a negative
response if it does not. The control sta-
tion may poll a number of terminals and
components in turn until one is found that
has a message ready.

Similarly, when the control station ter-
minal (or any other terminal) has a message
to send, it transmits one or more address-
ing or call-directing characters on the
line. As in polling, two characters are
usually used: the first selects the termi-
nal, the second selects the component. The
terminal identified by these characters
returns a response. A positive response is
returned if the terminal is able to accept
the message; a negative response is
returned if the terminal cannot accept the
message.

A QTAM-controlled telecommunications
system is basically a polling system in
which the computer acts as the control sta-
tion (although certain types of the IBM
2740 Communication Terminal employ techni-
ques similar to those used by a contention
system). Moreover, it is a centralized
system in that terminals send their mes-
sages to the computer instead of to other
terminals. The computer then relays the
messages to the appropriate destination
terminals (or to a message processing
program) .

With minor variations, the polling and
addressing functions are performed in both
switched and nonswitched systems.

In a switched network, the line connec-
tion must be completed between computer and
terminal before message transmission can
proceed. The connection may be established
by either the computer or a terminal.

In order to establish the connection,
the computer dials the telephone number of
the terminal. (The user provides QTAM with
the telephone number of each terminal in
the switched network.) The connection is
established when the terminal responds.

The function performed by the ccmputer in
this case is known as calling. Polling or

addressing may then take place. Ordinari-
ly, the computer calls a terminal only to
address the terminal (to send it a mes-
sage), rather than to poll it (to solicit
messages).

When a terminal is to establish the con-
nection, the operator at the terminal dials
the telephone number of one of the compu-
ter's access lines. The connection is
established when the computer responds.

The function performed by the computer, in
this case, is known as answering. Polling
or addressing may then take place.
Ordinarily, a terminal calls the computer
only when the terminal is to be polled for
a message it has ready for the computer or
another terminal. Regardless of whether
the computer or the terminal establishes
the line connection, message flow from the
terminal to the computer is achieved by
polling the terminal. Message flow from
the computer to a terminal is achieved by
addressing the terminal.

Although terminals are permitted to call
the computer at any time, the computer, in
order to fulfill its function as control
station, must be able to accept or reject
incoming calls. Therefore, the computer
performs a function known as enabling the
line, which is the process of conditioning
the telecommunications control unit to
accept incoming calls on a line. The user
determines which lines are to be enabled,
at a given moment, and which are not. If a
terminal calls in on a line that is cur-
rently enabled and that is not in contact
with another terminal, the line connection
is completed and message transmission (pre-
ceded by polling or addressing) can occur.
If a terminal calls in on a line that is
enabled but is occupied with another termi-
nal, the calling terminal receives a busy
signal, and contact is not established. 1If
a terminal calls in on a line that is not
currently enabled, the TCU cannot answer
the call. Ringing continues until the
operator hangs up. In either of the latter
two cases, the terminal must wait and call
again later.

In a nonswitched network, the line con-
nections between computer and terminals are
continuously established; hence, the call-
ing, answering, and enabling functions are
not required. Only the computer can initi-
ate contact with remote terminals (except
for Tyves I, II, VI, and VII of IBM 2740
Communications Terminals, which can bid for
the computer's attention). Even in this
instance, however, QTAM must previously
have issued a command that permits the TCU
to resvond to a bid from the 2740.

Telecommunications Concepts and Terminology 15

MESSAGE PROCESSING

Message processing is the most variable of
all telecommunications functions. The
nature of each user's processing routines
depends on the individual application.

QTAM provides macro instructions en-

abling the user's problem program to obtain
messages queued for processing and to place

16

response messages on destination queues.
These macro instructicns, GET and PUT,
together with associated OPEN and CLOSE
macros, are presented in the publication
Operating System QTAM Message Processing
Program_ Services. QTAM also provides a set
of macro instructions for examining and
modifying control information used by the
access method. These macros are presented
in a later section of this publication and
in the above publication.

v

GENERAL CONCEPTS

The function of programs constituting sup-
port for a telecommunications system is to
systematically and efficiently control the
flow of data in a computer-based telecon-
munications system, and to perform concur-
rently any required processing cf the data.
Data enters the system randomly in the form
of message blocks from terminals and/or
from programs that generate messages. The
messages entered at the terminals consist
of two principal parts: the message head-
er, containing only control information,
and the message text or data. Data is
ultimately delivered to one or more ter-
minals and/or programs that process
messages.

For a number of reasons, the support is
logically divided into two categories:

1. Programming required to identify the
telecommunications system to the IBM
System/360 Operating System, to estab-
lish the line control disciplines
required for the various types of ter-
minals and modes of connection, and to
control the routing of messages in
accordance with the user's
requirements.

2. Programming required to process the
contents of the messages.

The first category is implemented by rou-
tines collectively known as the message
control program, which is primarily con-
cerned with the message header. The second
category is implemented by one or more mes-
sage processing programs, which are pri-
marily concerned with the message text or
data.

The paramount reason for dividing tele-
communications support into these two types
of programs is that message flow in the
system is random and proceeds at relatively
slow speeds (owing to the operating speeds
of the terminals) while the messages, once
delivered to the computer, can be processed
at computer speeds. To fully utilize the
computing system capabilities, message
traffic must proceed asynchronously with
message processing. Another reason for
having separate message control and message
processing programs is that while many
device-dependent considerations govern the
design of a message control program, they
do not affect the design of a message pro-
cessing program. The programmer writing a

OS_QOTAM CONCEPTS AND FACILITIES

message processing program need know only
the format of the messages and the charac-
teristics of the data they contain to be
able to proceed with the program design.

A message control program serves as an
intermediary between the remote terminals
and any message processing programs. The
device-dependent input/output operations
are performed by QTAM routines that support
the message control program, and are based
on the terminal and line configuration of
the user's system as specified in the
operands of QTAM macro instructions. To
provide maximum efficiency, QTAM uses the
operating technique of placing messages on
queues on a direct access storage device
(DASD), when necessary, and subsequently
retrieving these messages for processing.

The message control program can perform
limited processing of the message, in addi-
tion to that performed by a message pro-
cessing program. Some of these processing
operations may be required in order for the
message control program to perform its
function; for example, scanning the header
to determine routing information, and mes-
sage code translating. Other optional pro-
cessing operations are provided by QTAM as
a convenience to the user. For example,
the message control program can insert the
time of day in message headers, obviating
the need for a message processing routine
to do this.

Every telecommunications system operated
under OTAM requires one and only one mes-
sage control program. Depending on the ap-
plication, one or more message processing
programs may be required, or none at all
(except that a message processing program
is always necessary tc¢ deactivate the tele-
communications system). An example of an
application requiring no concurrently run-
ning message processing program is a
message-switching application. The sole
function of its telecommunications support
is to receive messages from terminals and
forward them unaltered (except for such
processing as the message control program
may perform) to one or more terminals.

A telecommunications system may include
several different terminal types, and both
line types (switched and nonswitched). For
each combination of line and terminal type,
the user must specify a sequence of QTAM
message control macro instructions. In
general, a separate sequence must be writ-
ten for each communications line group. A
communications line group consists of one

0S QTAM Concepts and Facilities 17

or more communication lines of the same
type, over which the same type of terminal
can communicate with the computer. Each

tions is called a line procedure specifica-

(TSequence of message control macro instruc-

tion (LPS); the several LPSs collectively
constitute the heart of the message control
program.

Example: Assume that a telecommunications
system is to consist of four nonswitched
lines to which IBM 1050 terminals are con-
nected, one switched line over which con-
tact with IBM 1050s can be made, three non-
switched lines to which IBM 2260s are con-
nected, and two switched lines over which
contact with TWX terminals can be made.

The system would then have four line
groups:

1. A nonswitched 1050 group.
2. A switched 1050 group.
3. A nonswitched 2260 group.
4. A switched TWX group.

A separate LPS would be required for each
group.

Each LPS consists of user-selected macro
instructions in two groups: a ‘'receive
group, ' which defines the routines required
to operate on messages coming in from any
line in the line group, and a 'send group,'
which defines routines required to operate
on messages going out to any line in the
line group.

THE OPERATING ENVIRONMENT

When QTAM is operating under supervision of
Option 2 (Multiprogramming with a Fixed
Number of Tasks) of the System/360 Operat-
ing System, the message control program and
each of the message processing programs are
executed as separate jobs. The message
control program must be executed as the
highest-priority job and hence must be
loaded into partition 0. The message pro-
cessing programs may be located in any of
the remaining partitions. If the message
control job and the message processing jobs
do not require the use of all available
partitions, the remaining partitions may be
used for batch processing jobs. The batch
job(s) should be loaded into the lowest-
priority partition(s).

QTAM FACILITIES

The QTAM facilities include a ccmprehensive
set of input/output, message control,
translating, and editing routines that

18

relieve the programmer of the detailed and
specialized programming usually required in
writing a message control program for a
telecommunications system. Macro instruc-
tions are provided that allow the program-
mexr to assemble and linkage edit these rou-
tines into an integral message control pro-
gram designed to meet the exact require-
ments of an installation.

The primary capabilities of the telecom-
munication programs that can be created
through the use of QTAM macro instructions
are:

¢ Polling terminals.

* Receiving messages from terminals.
¢ Addressing terminals.

e Sending messages to terminals.

e Dynamically allocating main storage for
buffering.

s Performing message editing functions
for incoming messages such as: trans-
lating from the appropriate transmis-
sion code to extended binary coded
decimal interchange code (EBCDIC);
inserting time-received and date-
received information in the header;
recording (logging) the message on a
secondary storage medium such as mag-
netic tape; and maintaining a count of
the number of messages received from
each terminal.

* Routing messages to appropriate gueues,
determined by either the destination
code specified in the header of the
message, or the source from which the
message entered the system.

¢ Queuing messages on a direct access
storage device.

¢ Initiating corrective action when an
error or unusual condition is detected.

¢ Intercepting transmission of messages
in error.

e Cancelling messages containing errors.
® Rerouting messages.
e Transmitting error messages.

e Routing messages with erroneous header
information to a special queue.

¢ Providing message data, in the work
unit specified (message, message seg-
ment, or record), to a message process-
ing program.

e Placing response messages generated by
message processing programs on gueues
for subsequent transmission.

* Retrieving messages already queued for
transmission to terminals.

e Performing message editing functions
for outgoing messages such as: placing
time-sent and date-sent information in
the header, placing an output sequence
number in the header, logging the out-
going message on a secondary storage
device, maintaining a count of the num-
ber of messages sent to each terminal,
and translating the message from EBCDIC
code to the appropriate transmission
code.

e Checkpointing QTAM message control pro-
gram for subsequent restart after sys-
tem interruption.

e Providing operator control to system
communication through a telecommunica-
tions system control terminal.

IiBM 1030, 1050, 1060, 2740, and 2260-

(? [? Providing on-line terminal testing for
»
2848 remote terminals.

DATA SET DEFINITION AND CONTROIL INFORMATION

A data control block must be defined for
each data set referred to by the message
control and message processing programs.
This is accomplished by means of DCB macro
instructions. A DCB macro instruction must
be provided for each of the following types
of QTAM data sets:

e Each communication line group (message
control program).

e Direct access message queues (message
control program).

e Checkpoint (message control program).

¢ Each main storage process queue (mes-
sage processing program).

e Main storage destination queue (message
processing program).

Similarly, an appropriate DCB macro
instruction must be provided for each mes-
sage log data set used by the message con-
trol program. The actual DCB used is a
function of the storage medium used for the
message log.

The data control blocks in a message
control program serve as logical connectors
between the message control program and the
associated line group, DASD message queues,
and message log data sets. (These data
sets are explained in detail in later sec-
tions of this publication.) The data con-

trol blocks defined in a message processing
program are not associated with data sets
themselves. They are used to provide con-
trol information to QTAM for the transfer
of data to and from a message processing
program. The main storage process and
destination queues are the principal can-
nectors between a message control program
and a message processing program.

In addition to the data set definitions,
the user must supply control information in
the form of macro instructions that are
used by the message ccntrol program to con-
trol the sending and receiving of messages.
The control informaticn consists of:

e The name and address of each terminal,
along with related information such as
any special distribution lists for
sending a message to more than one
terminal.

e The name of each DASD process queue
associated with a message processing
program to which incoming messages are
to be sent.

e A polling list for each line that indi-
cates the order in which the terminals
are to be polled.

e The size and number of main storage
buffers that are to be used for mes-
sages being sent to and from the ter-
minals. In order to compensate for the
differences in the rates of information
flow, QTAM automatically and dynamical-
ly uses available buffers in accordance
with immediate needs.

MESSAGE FORMATS

A message usually consists of two parts:
header and text. The message header con-
tains control information for the message
such as:

1. One or more destination codes.

2. The code name for the originating
terminal.

3. The number of .the message relative to
the numbers of previous messages
received from that terminal (input
sequence number) .

4. A message-type indicator.

5. Various other fields containing con-
trol data.

Operations on the fields in the header are
a primary function of the LPS-defined rou-
tines in the message control program. The
length and format of the header and the
information it contains depends solely on
the requirements of the application ‘and the
user's preferences. The length may be a
few characters or many characters. 1In some
instances, it is possible to omit headers

0S QTAM Concepts and Facilities 19

entirely. Generally, however, some kind of
header is provided. The text portion of a
message consists of the information of con-
cern to the party ultimately receiving the
message. This party can be either a termi-
nal, or a program that processes the text
(message processing program).

The format of the message header dic-
tates the arrangement of the message con-
trol program to a great extent. For this
reason, the control characters used and the
sequence of the fields within the header
must be predetermined so that the message
control program for the telecommunications
system can be properly coded.

The destination code in the message
header identifies the terminal or process-
ing program to which the message is to be
routed. The message-type indicator can be
used to identify a header that is to be
processed in a special manner. By insert-
ing certain macro instructions in the mes-
sage control program, the user can insert
in the header such data as the date and
time the message is received, the date and
time it is sent, and the number of the mes-
sage in relation to other messages sent to
a particular terminal (output sequence
number) .

Depending on the type of work unit (mes-
sage, segment, or record) with which he is
dealing, the user must specify appropriate
characters for control purposes.

e A message is that unit of text that is
terminated by an end-of-transmission
(EOT) character.

e A segment is that portion of a message
contained in a single buffer, the size
of which is specified by the user.

e A record is that portion of a message
terminated by any of the following
characters: end-of-block (EOB), end-
of-text (ETX), carriage-return (CR),
line-feed (LF), or new-line (NL).

e A message block is that portion of the
message terminated by EOB.

There are many possible variations for
the format of a message header. The sample

Byte: 0 1 2 3 45 6 7 8 9

formats shown in Figures 3 and 4 are
included simply for illustrative purposes.

The format shown in Figure 3 could be
used in a message switching application.
Byte 0 contains a machine end-of-address
(EOA) character. When the message is
transmitted, this character signals the end
of nonrecorded machine control characters
(such as addressing characters and the
machine EOA itself) and the beginning of
data characters. The 192 in bytes 1
through 3 is the input Sequence number.
Bytes 5 through 7 contain the code for the
terminal that originated the message.

Bytes 9 through 11 and 13 through 15 con-
tain destination codes specifying the ter-
minals to which the message is to be sent.
In this example, the semicolon in byte 16
has been designated by the user as the pro-
gram EOA character. Since some of the mes-
sages in this application contain multiple
destination codes, this control character
must follow the last destination code.
Bytes 17 and 18 contain characters specify-
ing the priority of the message. The
remaining portion of the message is text
and is followed by the EOT character.

After the message control program has
operated on the message header and before
the message header is transmitted to the
destination terminals, the format of the
message could be as shown in Figure 4.
When the message comes into main storage,
the message control program inserts time-
received and date-received information in
the header. The time-received information
in bytes 18 through 25 indicates that the
message was received at 11 hours, 30
minutes, and 45 seconds of the date speci-
fied in bytes 27 through 32, which is
November 5, 1966. Insertion of this infor-
mation moves the priority data to bytes 33
and 34. The message is then queued by
priority on the direct access storage
device. When the message reenters main
storage prior to transmission to the
destination terminals, the message control
program places the output sequence number
in bytes 36, 37, and 38 of the header. The
original text and the EOT character follow
the output sequence number.

OTAM, with its complete set of header-
processing routines and associated macro
instructions, allows the user to indicate

10 11 12 13 14 15 16 17 18

#1192 ClH I NfY|C PiHII

* 11

TEXT

—Qm

Figure 3.

20 .

Sample Format for an Incoming Message

Byte: 0 1 2 3 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25
111912 CIlH|! NlY|C PIH|I|; 1T{1}.]/3l0)./4]5
] B)
26 27 28 29 30 31 32 33 34 35 36 37 38
E
616 .31019|*]|1 0813 Text o
[B T

Figure Uu.

the header-processing functions he wants
performed by including the appropriate
macro instructions in the message control
program. In addition to those described
briefly in this section, there are many
other functions available such as the
detection of incorrect or invalid informa-
tion in the header fields. These functions
and the relationship of the message header
format to the design of the message control
program are discussed in detail later in
this puplication.

MESSAGE FLOW WITHIN THE SYSTEM

This section describes the flow of a mes-
sage through a system operating under OS
QOTAM, from the receipt of the message at
the computer to its transmission to a
destination terminal. Figure 5 illustrates
this message flow.

The input message is prepared at a
remote terminal. Messages may be of vari-
able length and consist of two parts:
header and text. When polled, the source
terminal sends the message to the computer
via a communication line. In Figure 5,
step 1 shows the message passing through an
IBM 2701, 2702, or 2703 control unit and
the multiplexer channel, and filling avail-
able buffers from the QTAM buffer pool.

The
in the message control program. OTAM
inserts control information (known as a
prefix) in the first portion of each buf-
fer. The first 32 bytes of a buffer con-
taining a message header are set aside for
a header prefix generated by QTAM. This
buffer must contain the entire header and
may also contain text data. The characters
transmitted by the remote terminal begin
filling the buffer in byte 33. The first
22 bytes of a buffer containing text data
only are set aside for a text prefix
generated by QTAM. Message data begins
filiing the buffer in byte 23.

Sample Format for an Outgoing Message

The user can transmit single-segment or
multisegment messages. (A message segment
is the amount of message data that occupies
one buffer.) In single-segment messages,
the entire message is contained within one
buffer. In multisegment messages, more
than one buffer is needed for a message.

In all but the last buffer for a multi-
segment message, the segment containing a
header is shorter than a segment containing
text only. This is because the header pre-
fix generated by QTAM is ten bytes longer
than the text prefix. In each buffer con-
taining intermediate text, the segments are
the same size. In the last buffer for a
multisegment message, the message segment
can be any length equal to or less than the
buffer length minus 22.

The buffers shown in Figure 5 are each
80 bytes in length. The first input buffer
thus accommodates a message segment of 48
characters; 20 constitute the header por-
tion of the message and 28 constitute the
text portion. 1In the second input buffer,
the message segment is 58 characters; all
of which are text data. The third and last
input buffer contains the remaining charac-
ters in the message. Because the input
message is 150 characters, the message seg-
ment size for this buffer is 4u.

As soon as a buffer is filled with the
first segment of a message, the receive
group portion of the line procedure speci-
fication (LPS) performs such user-selected
functions as: code ccnversion, logging,
updating of message counts, incorporation
of time-received and date-received informa-
tion, and input-sequence-number checking.
The first three functions can also be per-
formed for text segments. In Figure 5, the
user has specified that messages to be
handled by a message processing program
must have six characters of time-received
information incorporated into the message
header. The header information is shifted
in the buffer the amount that was specified
in the LPSTART macro operand for time,
date, or sequence number so that the addi-
tional information may be inserted in the
correct field (see Step 2).

0S QTAM Concepts and Facilities 21

]

In performing its function, the LPS instructions; the operations are performed
scans and processes header fields in accor- in the buffer containing the message
dance with the order indicated by the rela- segment.
tive positions of the individual LPS macro

Message Control Program

(Buffer Pool)
e e e e e — e 4
: ! Receive Group
1 First Input Buffer ! of LPS
TIT T TR T T T T 11,
Header ol 8| B
Prefix Header Text
32 Bytes Bytes 1-6 :
reserved g
= I I 4 70 G [|
£ [
§, Second Input Buffer !
0; |1—r| 11[1:’ FTTTTTTTTTTTTITTT
E Message Characters 15 |4 Text' 9 0
: Tl Prefix Text 6
® N '
8 Text Header : 22 Bytes 1
€ Third Input Buffer !
I}]l TTTTITTTT]] TTTTT
w
Text 0 5
Prefix |7 Text 0
' 1
' 22 Bytes :
Multiplexor) M
Channel e it -
Telecommunications
Control Unit
U U U SO
Send Group :
of LPS : First Output Buffer
TTTTT R TTTT T b
Header 6(7 8| <
Prefix Header Text
|
= 32 Bytes |
£ Second Output Buffer |
g 4|l||l||||r—[|li||]
@ 8 y
= Text 9 0
$ TTT7 T 4 Prefix Text 6
E 1{23|4| Message Characters [1] 1 e | =~
£ 122 Bytes
% N 3] v | 228y
&g <] 1 Third Output Buffer
o Header Text TR
= Text 0 2
Prefix |7 Text g
[}
: 22 Bytes :
I |
mmmmm e e - — 4
(Buffer Pool)

Figure 5. QTAM Message Flow (Part 1 of 2)

22

DASD Message Queues

Message Control Program

(Buffer Pool)

TTT T T [JTT VT T
Header 22 4
Prefix Header 8|7 Text 8
—_— !
I 32 Bytes 1
i |
[T -
) i
1 §
| |
Header T TT1T12[2 I TTTTTTTTTTTTITTT
Prefix 617 Text Text |4)
Header Prefix {9 0 Message Processing Program
Text [
24 Bytes | {
1 i
Text ! !
. TTTTTIT71I
Prefix Text 5
Prefix 7 Text s
1
22 Bytes :
LY AN A AL L LR | [(< [O S -
Prefix Work Area
N\
M TTT I T T T I TTTTTTT7
14 Bytes S Process Queue GET/PUT
Prefix Message Characters
DASD Process Queue MS Destination Queve
2N
________________ ~ 4 Bytes
DASD Destination Queuve 1
1]
Header 1711711122 i
Prefix 87 Text PTTTTRRITTTTT
Header
248 Header o7 Text 8
tes .
Y —_— :
|
Text d TTTTTTT llll
Prefix {9 4 TTTT] 1
Text M o
&
|
|
1 1
Text V2020 INSRx | [e e m e et e e e e - o 4
Prefix |
|| PUT

14 Bytes

(Buffer Pool)

Figure 5. (Part 2 of 2)

QTAM Message Flow

After performing these functions, the
receive group of the LPS routes the prefix
(minus the first eight bytes1) and the seg-

iThe first eight bytes of a header or text
prefix contain control inforrmation used
only in main storage buffer handling.
Therefore these bytes are not placed on the
direct access device.

ment to one of two types of gueues: DASD
destination queunes or DASD proceSs gqueues.

Each DASD destination gueue contains
message segments that are to be transmitted
via a certain line, or message segments
that are to be transmitted to a certain
terminal. A DASD process queue contains
message segments that are to be routed to a
message processing prcgram.

OS QTAM Concepts and Facilities 23

The receive group of the LPS can check
the validity of the name of the originating
terminal and the destination code before
routing the message to a DASD process queue
or to a DASD destination queue. Each type
of queue is maintained on a direct access
storage device, and all such queues are
regarded as one data set, the DASD message
queues data set.

Each DASD process queue is associated
with a message processing program. Mes-
sages requiring text processing should be
routed to the DASD process queue associated
with the message processing program that
processes that type of message. The user
controls this routing either via the mes-
sage header (the destination code is the
name of the DASD process queue) or by LPS
macro instructions that direct messages of
a particular type to a particular queue.

In Figure 5, step 2 shows the LPS routing a
message to a DASD process queue. The
receive group of the LPS can place messages
that do not require text processing (e.g.,
switched messages) directly on the appro-

priate DASD de€s ation queues.

For each DASD process queue, QTAM main-
tains a corresponding queue in main
storage. Each main storage (MS) process
queue is maintained in buffers from the
OTAM buffer pool defined in the message
control program. The number of buffers
allocated to a MS process queue is speci-
fied in a data control block defined in the
same message processing program. After the
data control block for the MS process queue
has been opened by the message processing
program, a QTAM routine autoratically
passes the message segment from the DASD
process queue to a buffer in the MS process
queue (see step 3). In moving the prefix
and segment to the buffer, the eight bytes
that were deleted when the prefix and seg-
ment were placed on the DASD process gqueue
are restored, so that the prefix length is
again 32 (header prefix) or 22 (text
prefix).

Each time the message processing program
gains control and issues a GET (step 4),
OTAM passes message data from the MS pro-
cess queue to a user-specified work area in
the message processing program. Message
data is provided in the work unit specified
by the user in the data control block. The
work unit may be a complete ressage, a mes-
sage segment, or a record. Before moving
the message data to the work area, QTAM
strips the header and text prefixes from
the message segments, and places a U-byte
prefix in the first four bytes cf the work
area. This prefix indicates the size and
type of work unit on which the processing
program is to operate. After receiving the
message data, the message processing pro-

24

gram processes it as required by the
application.

A message processing program generating
a response message must define and open a
data control block (DCB) governing message
transfer before attempting to place the
message on a DASD destination queue. This
data control block contains information
needed by QTAM to establish an MS destina-
tion queue. When a PUT macro instruction
is issued by a message processing program
(step 5), QOTAM moves the message data from
the user-specified work area into this MS
destination queue. The header or text pre-
fixes are attached to the message segments
in the buffer areas that make up the MS
destination queue. As the message data
fills the buffers, QTAM inserts chaining
addresses and other necessary control
information into the prefix fields. The
response message generated by a message
processing program can be of any size (the
one shown in Figure 5 is 120 characters).

After the header or text prefixes have
been added in the MS destination queue,
OTAM places the segment into the appropri-
ate DASD destination queue on the DASD mes-
sage queues data set (step 6).

QTAM retrieves message segments from the
DASD destination queues on a first-in
first-out (FIFO) basis within priority
groups. The message segments are brought
in from the direct access device and placed
in available buffers (step 7). The send
group of the LPS then performs such user-
selected functions as: converting the code
of the message to the transmission code of
the terminal, incorporating time-sent and
date-sent information in the header, mes-

sage logging, and updating of message

counts. These operations are performed in
the buffers that receive the message seg-
ments from the direct access device. QTAM
then strips the header and text prefixes
from the message segments and transmits the
message to the appropriate terminal (step
8).

The header and text prefixes described
in this section are generated automatically
and used by QOTAM routines. No programming
considerations are required by the user for
the manipulation of the buffers and their
prefixes as messages flow through the
system.

A QTAM-provided macro instruction allows
the user to retrieve messages from a gqueue
on the DASD message queues data set. When
this macro instruction is used to retrieve
the segment containing the message header
of a multisegment nessage, the user can
access the chain-address field in the head-
er or text prefix to retrieve succeeding
segments of the message. The formats of

the header and text prefixes are shown in
Appendix A.

Calls From the Computer to an IBM 2740
Model 2

The IBM 2740 Model 2 is a single message
block terminal. If the checking feature is
installed, the terminal expects to receive
an EOB at the end of the message block
transmission. The terminal then sends a
positive response to the Transmission Con-
trol Unit and resets the terminal buffer
address register to zero. The terminal
then expects to receive an EOT, which
initiates printing. Therefore, if a multi-
block message is sent to the terminal, only
the last block is printed and no error con-
dition is returned.

If a message sent to the IBM 2740 Model
2 exceeds the size of the terminal buffer,
the terminal returns an EOT response indi-
cating a buffer overflow condition. The
transmitted message is not printed at the
terminal and an error message indicating
Unit Exception appears on the IBM 1052
Printer-Keyboard.,or at the operator control
terminal. The error halfword for the line
has the "should not occur" bit set on.

In order to avoid the situation in which
the terminal is addressed during printing
of a previous message, a time delay is
entered at the end of a message transmitted
to an IBM 2740 Model 2. The length of the
delay depends on the buffer size of the
terminal: the delay is 8 seconds for a
120-character buffer, 15 seconds for a 220-
character buffer, and 30 seconds for a 440+
character buffer. Messages sent during the
delay are transmitted to the terminal at
the expiration of the delay.

MANAGEMENT OF SWITCHED LINES

Insofar as possible, QTAM management of
switched lines parallels the management of
nonswitched lines. A number of differences
should be understood, however.

In a switched network, terminals are not
attached to the computer by specific lines.
Rather a line connection between the com-
puter and a terminal is established over
any available access line included in the
line group. An available line is a line
over which message traffic is not currently
in progress.

The management of switched lines by QTAM
allows all current message traffic (both

from CPU to terminal and from terminal to
CPU) to be transmitted during one call.
That is, once a line connection is estab-
lished by either party, all messages queued
for sending to the terminal are sent, and
the terminal is allowed to send to the com-
puter all messages it may have ready. The
priority scheme implemented for switched
lines is similar to the sending priority
later described for nonswitched lines.

That is, each time a message is received
from a terminal, any messages on the
destination queue for the terminal are.sent
before accepting another message from the
terminal. This is true regardless of
whether the line connection is caused by a
computer initiated call or by a terminal
initiated call. The primary reason for
handling switched lines in this manner
(rather than requiring separate calls for
incoming and outgoing messages) is in the
interest of economy since the rates for a
switched network are frequently on a per
call basis.

CALLS FROM THE COMPUTER TO A TERMINAL ON A
SWITCHED LINE

The Auto Call feature is required for com-
puter initiated calls to a terminal on a
switched network. This discussion assumes
that this feature is included and that
computer-initiated calls are desired.

When messages appear on a destination
queue for any type of terminal on a
switched network, the computer first deter-
mines if the destination terminal is con-
nected. If the terminal is connected, the
message is scheduled for transmission using
the existing connecticn. If the terminal
is not connected, the computer attempts to
find an available access line starting with
the relative line defined in the terminal
table entry for that terminal. If that
access line is busy and additional lines
are defined in the line group, the computer
attempts to initiate the call using one of
those lines whose relative line number is
greater than that defined for the terminal.
If all the defined lines are busy, the
attempt to call the terminal is deferred
until a line becomes available. When an
available access line is found, the com-
puter disables the line and dials the ter-
minal using the dial digits specified in
the terminal table entry. If the dialing
procedure is completed successfully and if
the terminal is ready to receive, the
queued messages are sent. (If the dialing
procedure is not completed or if the com-
puter receives a negative response to ad-
dressing, the messages are not sent unless
the user includes INTERCPT and RELEASEM
macro instructions to cause later sending

0S QTAM Concepts and Facilities 25

o5

of the messages. See the descriptions of
these macro instructions.)

After all messages are sent to the ter-
minal, the computer turns the line around
and accepts any incoming messages the ter-
minal may be ready to send. If more mes-
sages arrive on the destination queue for
the terminal while the computer is accept-
ing an incoming message, those messages are
sent to the terminal before another message
is accepted from the terminal. When the
last incoming message is received and no
more messages appear on the destination
queue, the computer breaks the line connec-
tion. It then reenables the line, making
that line available again.

Calls From the Computer to a Switched IBM
1050

After the computer establishes contact with
an IBM 1050 on a switched line, QTAM sends
the addressing characters specified in the
terminal table entry for that terminal.
When the terminal returns a positive
response, QTAM sends all the messages in
the queue for that terminal. QTAM then
sends the polling characters specified in
the polling list for that line and accepts
an incoming message from the terminal if it
has one ready.

By turning the line around in this man-
ner, QTAM allows the terminal to send dur-
ing this connection all messages it may
have ready. After each incoming message
terminated by an EOT (not to be confused
with the EOT in a null message, which is
described below), QTAM sends any other mes-
sages that may have arrived on the destina-
tion queue for the terminal and then polls
the terminal again. The procedure of
accepting a message from the terminal and
then sending any messages that arrive on
the destination queue continues until:

1. The computer receives a negative
response to the poll; or

2. The terminal sends a null message.
That is, a single EOT is sent follow-
ing the positive response to the poll.

QTAM recognizes either of these as an
indication that the terminal has sent its
last message (or has no message to send).
Note that one terminal is being repeatedly
polled instead of a list of terminals being
polled in turn.

After all incoming messages have been
received from the terminal, QTAM makes a
final check to determine if more messages
have arrived on the destination queue for

26

the terminal. If so, the procedures for
sending the messages and then polling the
terminal for incoming messages are repeated
during this line connection. When no
further messages have arrived on the
destination queue, QTAM breaks the line
connection and reenables the line for its
next use.

Calls From the Computer to a TWX Terminal

After the computer establishes contact with
a TWX terminal by dialing its telephone
number, the terminal sends its identifica-
tion sequence. QTAM checks this sequence
against the sequence specified in the ter-
minal table entry for the terminal. If
they do not match, QTAM sets the "message
not sent" bit (bit 12) in the error half-
word for the line to indicate an addressing
error, and breaks the line connection to
the terminal (evidently, a wrong number was
reached).

If the two sequences do match, QTAM
sends all messages currently on the
destination queue for that terminal, then
sends the CPU identification sequence
(defined in the polling list for that line)
to the terminal. The terminal then sends
to the computer any messages it may have
ready. Each of these messages should end
with a transmitter off (X-off) character.
Each time a message terminated by this
character is received, any further messages
that have arrived on the destination queue
for the terminal are sent. After these
messages are sent (or if no further mes-
sages have arrived on the destination
queue) , QTAM again sends the CPU identifi-
cation sequence and receives another mes-
sage from the terminal. When the terminal
has sent its last message, it should send
an X-off character in response to the CPU
identification sequence. When this
character is the only character received
from the terminal after sending the CPU
identification sequence, QTAM recognizes it
as an indication that the terminal has no
more messages to send. QTAM then makes a
final check to determine if more messages
have arrived on the destination queue for
the terminal. If so, the procedures for
sending these messages and then accepting
incoming messages are repeated during this
line connection. If the X-off character is
not sent when there are no messages to
send, the terminal will time-out. It is
therefore recommended that no error mes-
sages be sent for a time-out indication,
because this will cause a repoll, time-out,
and message sequence to be continually
repeated. When no further messages have
arrived on the destination queue, QTAM
breaks the connection and reenables the
line for its next use.

Th

¥*

N

RESTRICTION: There is a possibility that
some message on the destination queue for a
TWX terminal will not be sent if the line
connection between the computer and the
terminal is terminated by the computer. To
avoid this possibility, an EOT (or any
other character that causes the connection
to be broken prematurely) should not be
sent by the terminal nor appear in a mes~
sage being sent to the TWX terminal.

CALLS FROM A SWITCHED TERMINAL TO THE
COMPUTER

When QTAM is not sending messages to or
receiving messages from a switched terminal
over a particular access line, that line is
enabled to permit switched terminals to
call the computer. A terminal that wishes
to send a message causes a line connection
to be established by dialing the computer
over an enabled line. After answering the
call, QTAM receives the first incoming mes-
sage from the terminal and then sends any
messages on the destination queue for the
terminal. From this point, the transmis-
sion of further messages between the termi-
nal and the CPU proceed in the same
sequence described for computer-initiated
calls. When the terminal indicates that it
has no more messages, and no further mes-
sages appear on the destination queue for
the terminal, QTAM breaks the line connec-
tion and reenables the line.

Except that the first message is sent by
the terminal, the receiving and sending
procedures for a call initiated from either
an IBM 1050, IBM 2740, or a TWX terminal
are identical to those described in Calls
from the Computer to a Switched Terminal.

RELATIVE PRIORITY OF RECEIVING VERSUS
SENDING OPERATIONS

Message traffic can proceed in only one
direction at a time over each of the half-
duplex lines that comprise a QTAM-
controlied telecommunications network.

The user has the option of specifying,
for each line group made up of nonswitched
lines, one of three relative priorities of
receiving versus sending operations on each
line in the group. He may specify that
receiving has priority over sending, the
two have equal priority, or sending has
priority over receiving. The significance
of each of these options is as follows.

If receiving has priority over sending,
polling of terminals and receipt of incom-

ing message traffic proceed continuously
except during the user-specified polling
interval at the end of each polling pass.
A polling pass is one complete cycle
through a single polling list. Outgoing
messages, (if any are present on the
destination queue for the terminal or
line), are sent only during this interval,
and only until the interval expires. Upon
expiration of the interval, outgoing mes-
sage transmission ends after the current
message is sent, regardless of whether any
messages still remain queued. Polling and
incoming message transmission then resume.
It is important to note that if no polling
interval is specified, outgoing message
transmission cannot occur. Assuming that
the user specifies a polling interval, he
must also make it long enough to accommo-
date any expected density of outgoing mes-
sage traffic. In other words, too short an
interval will cause outgoing messages to
"back up" on the destination queue for that
terminal or line.

If receiving and sending have equal
priority, polling and incoming message
traffic proceed continuously until all ter-
minals on the line have been polled (i.e.,
until the end of one polling pass). Then
outgoing messages (if any are present on
the destination queue for the terminal or
line) are sent. Once outgoing message
transmission begins, it continues until all
messages on the queue have been sent,
regardless of whether the user has speci-
fied a polling interval. When the destina-
tion queue is depleted, polling and incom-
ing message traffic resume. Note that, in
contrast to the case where receiving has
priority, outgoing message transmission
occurs whether or not a polling interval is
specified and regardless of the length of
the interval.

If sending has priority over receiving,
outgoing messages (if any are present on
the destination queue) are sent:

1. Each time a negative response or time-
out to polling is received from a
terminal.

2. Each time an EOT is received from a
terminal, indicating that a complete
message has been sent.

Once outgoing message transmission begins,
it continues until all messages on the
queue have been sent. Note that when send-
ing has priority, outgoing transmission can
occur after each terminal is polled, rather
than only after a complete polling pass.

The significance of these options dif-
fers for those lines polled under control
of the Auto Poll feature. For such lines,
if receiving has priority over sending,

0S QTAM Concepts and Facilities 27

messages can not be sent to a terminal over
that line. These lines are for input only.
If sending and receiving have equal priori-
ty, the significance is the same as for
nonswitched lines except that the polling
interval may not be specified. If sending
has priority over receiving, outgoing mes-
sages (if any are present on the destina-
tion queue) are sent:

1. Each time a message ending in an EOT
is received by a terminal, or

2. At the end of the polling list.

SWITCHED NETWORKS

Switched networks do not employ the same
scheme of receiving-sending priorities as
the nonswitched networks. Terminals are
not attached to specific lines in the com-
puter. The computer establishes a line
connection with a terminal over any avail-
able access line. An available line is a
line over which message traffic is not cur-
rently in progress, even though the line is
enabled to receive incoming calls. When
messages appear on the destination queue
for a terminal, the computer finds an
available line, disables it, dials the ter-
minal, and sends the gqueued messages. The
computer then polls the terminal (or sends
the CPU's identification sequence for TWX
terminals) for any incoming ressages that
may be ready; the terminal is repolled
after each message. When the last message
is received (i.e., after a negative
response to polling or an EOT), the com-
puter breaks the line connection. It then
reenables the line, making that line avail-
able again.

When a terminal has a message to send,
it dials the computer over an enabled line.
The computer then performs the same action
as it does after it dials the terminal and
sends the queued messages: it repeatedly
polls the terminal until a negative
response to polling or an EOT is received.
Then, it breaks the line connection and
reenables the line.

MANAGEMENT OF WTTA LINES

The name World Trade telegraph terminal
(WTTA terminal) refers to any of various
European teletypewriters using a start-stop
5-level code with two shifts (letters shift
and figures shift) to transfer data over
leased point-to-point telegraph lines
(referred to as WI'TA lines) at 50, 75, or
100 baud (bits per second). The codes used

28

are either the International Telegraph
Alphabet No. 2 (referred to as ITA2) or the
Figure Protected Code ZSC3 (referred to as
ZsC3). These two codes are illustrated in
Appendix G.

WTTA lines operate in a contention sys-
tem. The message control program is always
ready to handle messages from WTTA ter-
minals since, as soon as traffic ceases, a
Read operation is initiated so that the
line is prepared to receive the next mes-
sage. Therefore, only one WTITA terminal
can be connected to a given WITA line.

A message sent to a WITA terminal (out-
put message) or sent by a WITA terminal
(input message) must always start with
twelve LTRS characters. For an input mes-
sage, these twelve characters are sent by
the terminal operator, but they do not
enter main storage. For an output message,
they are automatically sent by QTAM.

Normally, the motor of a WTTA terminal
is off and the first LTRS character sent or
received by the terminal starts the motor.
The motor needs 1.5 seconds to reach nomi-
nal speed. During this interval, the ter-
minal cannot correctly send or receive a
character. The motor stops when no
character has been transmitted during a
period of from 10 to 30 seconds. The ter-
minal is said to be operating in Motor-off
nmode. Optionally, the terminal can be
equipped with a heavy-duty motor which is
never switched off; in this case, the ter-
minal is said to be operating in Motor-On
mode.

When a WTITA terminal is operating in
Motor-off mode, the MONDLY operand of the
DCB macro instruction (refer to the section
DCB Macro Instruction) enables the user to
specify the number of Mark characters cor-
responding to the 1.5-second interval men-
tioned above. When QTAM builds a Write
channel program, it recognizes the motor
mode of the terminal (motor-on or motor-
off) and generates a LTRS character (that
can be followed by a user-specified number
of Mark characters) that precedes the data
to be sent over the WTTA line.

Most WTTA terminals can be equipped with
another optional feature called the Auto-
matic Answerback unit. This feature
enables a string of up to 20 identification
characters, generated by a mechanical drum,
to be sent over the WTITA line by either
pressing the IAM key of the terminal or
receiving the character FIGS D (combination
no. 4 in figures shift). For terminals
connected to a 2703 ccntrol unit, the
character string must be a multiple of four
significant characters (i.e., excluding
FIGS and LTRS).

The user can specify that receiving has
priority over sending, that sending has
priority over receiving, or that the two
have equal priority. If receiving has
priority over sending, (or if the two have
equal priority), and if there is no traffic
over the line, the corresponding Prepare
command is interrupted and an output mes-
sage is sent to the WTTA terminal. If an
input message is being received, the output
message will be sent only after an EOT
character has been received or after a
time-out has occurred. If sending has
priority over receiving, the same procedure
is followed, except when an input message
is being received; in this case, the output
message will be sent as soon as an EOM or
EOT character is received or a time-out
occurs.

if the first character of an input mes-
sage is received at the same time as the
computer sends a character to the terminal,
contention occurs and is resolved as
follows:

1. If contention occurs during the 1.5
second interval required by the termi-
nal to reach nominal speed, the termi-
nal is given priority.

2. If contention occurs on a significant
character of an output ressage, the
computer is given priority.

Either the CPU or the WTTA terminal can
ask for the identification sequence of the
other. When an identification exchange is
performed, the CPU sends its identification
sequence to the terminal (IAM=YES must be
specified in the DCB macro instruction),
and the terminal sends its identification
sequence to the CPU (WRU=YES must be speci-
fied in the DCB macro instruction). An
identification exchange can be performed
during either:

1. Receiving operations, each time the
terminal operator sends the WRU signal
to the CPU; or

2. Sending operations, at the beginning
of an output message (if the WRU macro
instruction is in the Send Header sub-
group of the LPS) or at the end of an
output message (if the WRU macro
instruction is in the End Send sub-
group of the LPS).

When the CPU receives the terminal identi-
fication sequence, QTAM compares this
sequence with that specified in the TERM
macro instruction (refer to the section on
the TERM Macro Instruction).

SYSTEM GENERATION CONSIDERATIONS

To incorporate QTAM facilities into an
operating system, the user must perform an
operating system generation, as explained
in the System Generation publication, Form
C28-6554.

In his system generation macro instruc-
tions, the user specifies the line and ter-
minal configuration of the telecommunica-
tions system being supported, and any
optional features regquired. In addition,
he specifies QTAM as an option in the
ACSMETH operand of the DATAMGT macro
instruction. Specifying QTAM causes:

1. Modules for the SYS1.TELCMLIB library
to be moved from the SYS1l.MODLIB
library (SYS1.TELCMLIB must be a pre-
allocated data set).

2. Get, Put, Open, Close, and QTAM Imple-
mentation modules to be transferred
from the SYS1.MODLIB library to the
generated SYS1.SVCLIB.

3. The QTAM control program (consisting
of the sVC 65 (Qwait) and SVC 67
(Opost) module and associated rou-
tines) to be incorporated into the
Supervisor Nucleus.

In each IODEVICE macro instruction that
represents a line adapter for a switched
line, the FEATURE operand must specify:

1. AUTOCALL (if the line is to be used
for CPU-initiated transmission).

2. AUTOANSR (if the line is to be used
for terminal-initiated transmission).

3. AUTOCALL and AUTOANSR (if the 1line is
to be used for either terminal- or
CPU~-initiated transmission).

If the message control program includes the
DATESTMP,TIMESTMP, polling interval, or
checkpoint/restart facilities, the SUPRVSOR
macro must include the TIMER=INTERVAL
operand.

PREPARING AND ENTERING TELECOMMUNICATIONS
JOBS

The message control program and each mes-
sage processing program must be assembled
separately, using the operating system
macro facilities. Each resulting object
program must then be linkage edited, using
the SYS1.TELCMLIB library as the SYSLIB for
inclusion of the macro-introduced routines.
The load modules may be placed on any
library such as the SYS1.JOBLIB library.

0OS QTAM Concepts and Facilities 29

In order to execute a telecommunications
system containing processing programs, the
message control job should first be loaded
into the highest priority partition. The
message processing jobs should then be
loaded into any of the other partitions.

30

The organization of a message control
program and the job control cards required
for executing the job are illustrated in
Appendix C of this publication. Similar
information for message processing programs
is provided in the publication QTAM Message
Processing Program Services.

A telecommunications system operating under
0S QTAM can be designed for a wide variety
of applications including message switch-
ing, data collection, collected data pro-
cessing, inquiry processing, and system
modification. Each of these is described
briefly below.

MESSAGE CONTRCL APPLICATIONS

Two applications particularly suited to
handling by a message control program are
message switching and data collection.

MESSAGE SWITCHING

Message switching can be accomplished
entirely within the message control program
except that a message processing program
must be loaded and initiated to terminate
the execution of the message control
program.

In a message switching application,
remote terminals transmit messages to the
central processing unit, which relays the
messages to one or more other remote ter-
minals. The application does nct prevent a
remote terminal from sending a message to
be processed. QTAM places these messages
on a DASD process queue for handling by a
message processing program (either concur-
rently or at a later time).

When an incoming message is to be
switched, the LPS section of the message
control program routes the message to the
DASD destination queue for the terminal to
‘which the message is to be forwarded. If
desired, the LPS can place information such
as the time and date of receipt in the mes-
sage header. Validating the codes of the
originating and destination terminals and
checking the input sequence number in the
header can also be performed. Before a
message is transmitted to its destination,
the LPS can record in the header the date
and time the message is sent, and the num-
ber of the message in relation to other
messages sent to that terminal. The LPS
can also log the segments sequentially on a
storage device for subsequent reference by
the user with a different access method.

TELECOMMUNICATIONS APPLICATIONS

DATA COLLECTION

Data collection, like message switching,

can be accomplished entirely within the
message control program except that a mes—jﬁ
sage processing program must be loaded and
initiated to terminate the execution of the
message control program.

In a data collection application, remote
terminals send data in the form of messages
to the CPU. The messages are accumulated
and stored by the computer, and subsequent-
ly processed as a batch.

The message control program can accumu-
late data in two ways:

1. It stores the data on DASD process
queues.

2. It stores the data on any secondary
storage medium.

If the first method is used, the mes-
sages can be obtained at any time (immedi-
ately or later) by a message processing
program (see Processing Collected Data).
The messages are routed to DASD process
queues in the same manner as any other mes-
sages that have a wessage processing pro-
gram as their destination. The messages
remain on these DASD process queues until
the activation of a message processing pro-
gram that issues a series of GET macro
instructions to obtain and process the
messages.

In the second method, the LOGSEG macro
instruction in the LPS section of the mes-
sage control program causes the segments to
be recorded sequentially on a secondary
storage device selected by the user. An
access method other than QTAM must be used
to retrieve the messages for processing.

MESSAGE PROCESSING APPLICATIONS

A wide variety of telecommunications appli-
cations can be processed by a message pro-
cessing program. Two of these applications
are:

1. Processing collected data.

2. Ingquiry processing.

Telecommunications Applications 31

PROCESSING COLLECTED DATA

The processing of collected data is the
second part of a 2-step application; the
first step is the actual collection of the
data by a message control program (see the
preceding section, Data Collection).

If messages are collected on a DASD pro-
cess queue, they remain on the queue until
a message processing program issues GET
macro instructions to obtain and process
them. The message processing program that
processes the collected data can either:

1. Operate concurrently with the collec-
tion of the data by the message con-
trol program, oOr

2. Be loaded and initiated at a later
time (for example, to process data at
the end of the day after all message
traffic has ceased).

In the latter case, if the user wishes
to have QTAM retrieve the messages from the
DASD process queue, the message control
program must remain operational. If ter-
mination of the message control program is
desired so that its partition is available
for another program, the message processing
program must implement another access
method to perform the input coperations.

If the data is collected on a user-
selected secondary storage device by a
LOGSEG macro instruction, the data must be
obtained for processing by an access method
other than QTAM.

INQUIRY PROCESSING

An inquiry application involves receiving
messages from remote terminals (performed
by the message control program), processing
the data contained in the messages (per-
formed by the message processing program),
and sending replies to the originating ter-
minals (message control program). The
routine(s) called by the message processing
program to process the messages need not
reside in main storage. For example, in an
inquiry processing application that
requires processing of many different types
of inquiries, it may not be economical to

32

have all of the required processing rou-
tines in main storage. The message pro-
cessing program can contain an analysis
routine that determines the type of message
and causes the routine required to process
it to be loaded from a library.

An optional feature of the inquiry ap-
plication is operation in a conversational
mode. In this mode, a terminal transmit-
ting a message into the system is held on
the line by the message control program
until the message processing program
generates a response message for transmis-
sion back to the inquiring terminal. The
response message is transmitted immediate-
ly. Conversational mcde is specified
through the CONVERSE operand of the MODE
macro instruction in the LPS section of the
message control program. Another optional
function particularly suited for a high
volume inquiry application is specified by
the EXPEDITE operand cf the PROCESS macro
instruction in the message control program.
The EXPEDITE operand causes messages to be
routed directly to the main storage process
queue associated with the message process-
ing program, bypassing the normal intermed-
iate step of placing the messages on a DASD
process queue. Both of these optional
functions decrease the time required to
return an answer to the inquiring terminal.

OTAM SYSTEM MODIFICATION

There are three methods for transferring
input control messages to a message pro-
cessing task to modify the system. This
allows the message processing task to
initiate QTAM control functioms.

1. A dedicated terminal on the site of
the computer mray be reserved for this

purpose.

2. A dedicated partition may be reserved
whose function is to issue WTOR, await
operator messages, and then issue QTAM
control macros.

3. A message processing task may be used
to periodically process messages,
request an interrupt at a specified
time, and then "poll" the console
operator for control messages with a
WTOR.

In every QTAM-controlled telecommunications
system, there must be one message control
program. It is executed as the highest-
priority job.

Message control includes those functions
that:

1. Govern the flow of messages between
the computer and remote terminals.

2. Prepare the messages for processing
and route them to their destinations
(other terminals or message processing
programs) .

3. Provide the user with statistical
information relating to message
traffic.

4. Provide the user with copies of mes-
sages received from or sent to remote
terminals.

The message control program includes
both device handling and message handling
routines of QTAM. Messages arriving at the
computer from terminals are coded in the
transmission code of the particular termi-
nal type. QTAM provides facilities to con-
vert these transmission codes to the
extended binary-coded decimal interchange
code (EBCDIC), which simplifies message
analysis. Similarly, messages being sent
from the computer to a terminal are con-
verted from EBCDIC to the transmission code
of the terminal.

Messages received from terminals can be
routed to one or more destinations. QTAM
routines check the validity of the destina-
tion codes and place messages in DASD
queues according to their destinations.
From these DASD queues, the messages are
usually sent to ‘their destinations on a
first-in first-out basis. However, a mes-
sage priority scheme may be included to
expedite the handling of selected messages.
Priority processing of messages is particu-
larly useful in an application such as
inquiry processing, which requires rapid
response to inquiries.

To construct his message control pro-
gram, the user must select, place in order,
and assemble macro instructions provided by
QTAM. There are four major sections in the
message control program and each can be
wholly defined by OTAM macro instructions.
The four major sections, in the order in
which they will be discussed, are:

MESSAGE CONTROL PROGRAM

1. Data Set Definition.

2. Control Information.

3. Data Set Initialization and
Activation.

4. Line Procedure Specification.

Data set definition and control informa-
tion macro instructions generate the
tables, lists, and buffer areas needed in
the system. Initialization and activation
macro instructions ready the system for
operation.

The line procedure specification (LPS)
section is the heart of the message control
program. It is here that the user speci-
fies, through LPS macro instructions, the
manner in which he wishes message traffic
in his system to be handled. The LPS macro
instructions establish the linkage to QTAM
routines that perform the message code
translating, editing, error checking, log-
ging, and routing functions. The parame-
ters used by these routines originate
either in the message header or in the LPS
macro instructions supplied by the user.
The information specified in the data set
definition and control information sections
is also used by the LPS routines in per-
forming their functions. There must be one
LPS for each communication line group that
requires different message handling
functions.

Note: The user must insure that the
operating system subrcutine error trace
scheme can function. This may be done by
making a SAVE macro the first instruction
in the message control program and in each
message processing program. For detailed
information, see the IBM Systemn/360 Operat-
ing System: Superviscr and Data Management
Services publication, Form C28-6646.

PARAMETER REGISTERS

QTAM control routines use general registers
1 and 2 as parameter registers, in contrast
to the general operating system practice of
using ré€gisters 0.and 1 as parameter
registers.

Message Control Program 33

DATA SET DEFINITION

A data set definition macro instruction
must be specified for each data set
referred to by the message control program.
Four types of data sets are normally used:

e Direct access message queues data set.
e Checkpoint data set.

e Communication line group data sets.

¢ Message log data set.

DIRECT ACCESS MESSAGE QUEUES DATA SET

One direct access message queues data set
is required. Message segments awaiting
transmission to destination terminals, and
message segments awaiting processing by a
message processing program are placed on
queues on a direct access storage device
(DASD). To establish these queues (called
DASD destination queues and DASD process
queues, respectively), one DCB macro
instruction must be issued to define the
data control block for the message queues
data set.

The DASD data set must first be allo-
cated and then preformatted by writing
dummy records on the entire data set. The
records must have a fixed length equal to
the size of a buffer minus 8 (as defined by
the BUFFER macro instruction). This for-
matting process is necessary only once when
the disk is initialized, not each time the
message control job is executed. The
direct access method (DAM) or sequential
access method (SAM) may be used to format
this volume. The characteristics of this
data set are:

* Sequential organization. .

e Fixed length records (record format =
F).

¢ Unblocked records.

¢ No secondary track allocation.

The DD statement associated with the
direct access message queues data set must
allot space for these queues on the direct
access device used. The space allotted
must accommodate any messages that go
through the LPS, including messages placed
on the queues by ROUTE, DIRECT, ERRMSG, and
REROUTE macro instructions. The space
allotted must also hold any ressages placed
on the queues by a message processing pro-
gram issuing a PUT.

COMMUNICATION LINE GROUP DATA SETS

A communication line group data set con-
sists of messages transmitted via communi-

34

cation lines. One or more data sets of
this type are required. The user must
specify one DCB macro instruction to define
a data control block for each lin€ group in
the system. A line group can consist of
any number of lines that have the following
common characteristics:

e All lines in the group are either
switched or nonswitched.

e Association with the same type of ter-
minal devices (e.g., all the lines con-
nect IBM 1050s to the system, or all
the lines connect IBM 1030s to the sys-
tem). Each type cf IBM 2740 (types I
through VIII) is considered a separate
terminal type.

e Requirement for the same number of buf-
fers to be requested in advance for
each transmission of data from a termi-
nal to the computer.

e Operation under the same relative
priority specification.

e Use of the same polling interval.

e All lines in the group either do or do
not use Auto Poll.

Two additional requirements are:

1. The relative position of the device
access area in a terminal table entry
must be the same for all terminal
table entries associated with the
lines in the line group (see the sec-
tion on The Terminal Table).

2. No line within the line group can be
defined as part of another line group.

MESSAGE LOG DATA SET

A message log data set consists of messages
that are stored and maintained sequentially
on secondary storage for accounting pur-
poses. Message logs can be produced as a
by-product of normal message handling. For
each message log required, the user must
specify the appropriate DCB macro instruc-
tion. The specific DCB used depends on the
secondary storage redium employed; magnetic
tape is the medium generally used.

In the DCB defining the log data set,
the user should specify:

¢ DSORG=PS to indicate a sequential
access method.

e MACRF=(PM) to indicate the PUT macro
with move mode.

e RECFM=V to indicate variable records.
e BFTEK=S to indicate simple buffering.

Note: RECFM=V is restricted. The user
must save and restore the first word of the
buffer if V is to be used. It is better to
use F or FB.

Information for supplying other required
parameters for the DCB may be found in the
QSAM DCB section of the IBM System/360
Operating System: Supervisor and Data
Management Macro Imnstructions publication,
Form C28-6647.

The entire contents of the huffers
beginning with byte 8 (MSEGSZE) will be
recorded in the log device. (In addition
to the buffer contents, the log device
needs 4 bytes for the access method doing
the logging. Thus, the buffer size speci-
fied in the log DCB should be 4 bytes less
than the QTAM buffer size.) Appendix A
illustrates the fields of both header seg-
ments and text segments. The QTAM message
control program employs the Queued Sequen-
tial Access Method (QSAM) to record mes~
sages on the log.

CHECKPOINT DATA SET

A checkpoint data set consists of check-
point records that are maintained and
stored on a direct access storage device
(DASD). A DCB macro instruction must be
issued to define the data control block for
the checkpoint data set. The DD statement
associated with the checkpoint data set
must allot space for these records on the
direct access device used.

In the DCB defining the checkpoint data
set, the user must specify:

® DSORG=CQ
® MACRF=(G,P)
e DDNAME=TPCHKPNT

DATA SET DEFINITION MACRO INSTRUCTIONS

DCB Macro Instruction

One DCB macro instruction must be specified
for the DASD message queues data set, the
checkpoint data set, and for each communi-
cation line group data set. At assembly

time, DCB causes the allocation of main
storage for a data control block. Parame-
ters based on the keyword operands speci-
fied in the macro instruction are included
in the data control block. This macro
generates no executable code.

-T
Operation|Operand
N

ame

}
| keyword operands
1

N
dcb DCB

o e g iin
e e e
|
e

dcb

the name of the macro instruction; it
is also the name of the data control
block generated by the expansion of
the macro instruction. The name must
be specified and may be from one to
eight nonblank characters. The first
character must be numeric.

keyword operands
the operands that can be included.
The operands are written with separat-
ing commas. Operands for each type of
data set are described in Figures 6,
7, and 8.

When a parameter can be provided by an
alternate source, one or more symbols
appear opposite the operand associated
with that parameter. When there is no
alternate source (i.e., the parameter
must be specified by the operand), no
symbol is shown. The symbols have the
following meanings:

Meaning

The value of the operand can
be provided at execution time
by the Data Definition (DD)
card for the data set.

Symibol
DD

PP The value of the operand can
be provided by the user's
problem program any time
before the data control block
exit at Open time.

OE The value of the operand can
be provided by the problem
program any time up to and
including the data control
block exit at Open time.

CE The value of the operand can
be provided by the problem
program any time up to and
including the data control
block exit at Close time.

Message Control Program 35

r T T 1
|Keyword |Alternate| |
|Operand | source | Value Description]
b ¢ $ 1
| DSORG=CQ] | ¢ |
| | | identifies the data set organization as that of the

| | | direct access message queue or the checkpoint for a mes-|
| | | sage control program (Note 1). 1
L 1 1 J
T T T 1
|MACRF=(G, P) | | 6,P) i
| | | specifies that access to the queue is to be gained with |
| | | the GET and PUT macro instructions (Note 1). |
¢ t 1 {
| (DDNAME=ddname] | PP | ddname |
| | | the name that appears in the DD statement associated |
| | | with the direct access message queues data control blockj
| | | (The name may not be TPCHKPNT) (Note 2).

b L S {
|Note 1: If this operand is omitted, the telecommunications job, when executed, is |
| terminated. |
|Note 2: If this operand is omitted, and the value is not provided through the alter- |
|nate source, the telecommunications job, when executed, is terminated. |
L - ———— 3
Figure 6. Keyword Operands for the Direct Access Message Queues DCB Macro Instruction

r T T - 1
| Keyword | Alternatel| |
|Operand | Source | Value Description |
} + 1 — - 4
| DSORG=CQ | | o |
| | | identifies the data set organization as that of either

| | | the direct access message queue or the checkpoint for a |
| | | message control program. |
F } $--- .
MACRF=(G,P)		(G,P)
		specifies that access to the records is to be gained
		with the GET and PUT macro instructions.
; - ¥ 4 - - -—- .		
DDNAME=		TPCHKPNT i
TPCHKPNT		is the name that appears in the DD statement associated
		with the data control block and that distinguishes the
		checkpoint DCB from the DASD message queues DCB.

L 4 1 ——— 4

Figure 7.

36

Keyword Operands for the Checkpoint DCB Macro Instructiocn

—

T
eyword |Alternate
perand | Source

o

Value Description

DSORG=CX

CX
identifies the data set organization as that of a
communication line group (Note 1).

MACRF=(G, P)

(G,P)
specifies that access to the line group is to be
gained with a queued access methcd (Note 1).

[DDNAME=ddname]

d
]

ddname
the name that appears in the DD statement associated
with the data control block (Note 2).

CPOLL=(relexp; s=-.)

I e e e e e e ——————————————————————————— e ——————
b e e e e e e e e e e —————— e ——————————————————— e ——

relexp,

is the name of the polling list for the first line in
the line group. There must be one value (a polling
list name) in the sublist for each line in the line
group. Each polling list name must be identical to
the name specified in the POLL macro instruction used
to define the list for that line. If a line is used
for output only, the name of a pclling list with no
terminal entries must be specified. Any number of
output-only lines may refer to this name (Note 1).

1
I
|
4
1
[
|
|
4
1
I
|
I
4
1
|
I
|
J
1
|
I
|
|
|
|

Example: Assume this statement is used at system
generation to define the communication lines:

UNITNAME UNIT=(021,022,024,025)
NAME=GROUPONE

(The line addresses must be specified in ascending
order.) Assume also the CPOLL parameter is written

CPOLL= (POLL1, OUTPUT2, POLL3, OUTPUTY)

then POLL1 corresponds to the communication line with
relative line number 1, OUTPUT2 corresponds to the
communication line with relative line number 2 and so
on. Either of the two following schemes may be used
to assign relative line numbers to the lines in the

1. //ddname DD UNIT=(GROUPONE,1)

The relative line numbers are assigned to the
lines in the same order as they appear in the
UNIT keyword parameter in the above UNITNAME
macro instruction. The "1" in the DD statement
indicates that only the first line is to be allo-
cated. 1In this scheme, the first line in the
UNITNAME sublist, line 021, will be polled
according to the polling list labeled POLL1. 1If
"2" is specified, then the first two lines, 021
and 022, are allocated and if 4 is stated, all
four lines are allocated and will be polled
according to the corresponding lists in the CPCLL
statement.

|1If this operand is omitted, the
|2If this operand is omitted, and

T e e ot o e i ek kot e i) e e A i . e T it e St S i i e e S o e o s e e o e e Y= s e e s e e e e e o e e s

telecommunications job, when executed, is terminated.
no value is provided through an alternate source, the

| telecommunications job, when executed, is terminated.

L

|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
[
: |
line group. :
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
1

Figure 8. Keyword Operands for the Communications Line Group DCB Macro Instruction

(Part 1 of o)

Message Control Program 37

T
Keyword JAlternate
Operand | Source

Value Description

r
|
|
'f
|
|
I
|
[
{
|
|
|
|
|
|
I
I
|
!
!
|
|
|
!
I
|
I
|
|
|
I
I
I
I
|
|
I
|
[
|
|
|
I
|
|
|
!
I
|
I
|
[
|
|
L

e e e e e e —————————————————————————————————

b e e e e e e ——————————_———————————————————————]

2. //ddname DD UNIT=024
7/ DD UNIT=022
/7 DD UNIT=021
7/ DD UNIT=025

In this scheme, the relative line numbers are
assigned to the lines in the order they appear
in the concatenated DD statements and all
specified lines are allocated to the job. The
first line specified, line 024, will have
relative line number 1, and will be polled
according to the polling list labeled POLL1.
Note that the lines need not be in ascending
order, and that any line can be dynamically
allocated by itself, or in any combination.

If the following statements were used,

//ddname DD UNIT=024
// DD UNIT=025

then lines 024 and 025 would be the only ones
polled and would be polled according to the
polling lists labeled POLL1 and OUTPUT2. The
UNITNAME macro instruction is not used to
determine the relative line number in this
case.

QTAM allows for the capability to search for
the most economical dial or WATS line. QTAM
begins at the beginning of a dial list and
searches upward until it finds a non-busy WATS or
dial line.

———— — — ——— —— — — — — —— — — — —— — ——— V— —— — d— — ———— — — —— o, St s, s, e oo eurd

By placing WATS lines in the dial list such
that the lowest area coverage lines are first, and]
increasing area coverage lines following, with |
ordinary dial lines last, QTAM will now search for|
the most economical line possible. For those mes-|
sages destined for locations beyond a given WATS .
area coverage, QTAM may now be told where in the
list to begin its search. This same technique in
telling QTAM where to start in the list can be
used to avoid saturating the shorter range WATS
lines.

busy, would requeue the message and await dial-in
from a given terminal before transmission. Cur-
rent QTAM overcomes this restriction and elimi-
nates the necessity for queue "priming" in order

|
I
|
|
I
|
Previously, QTAM upon finding all dial lines |
I
|
|
[
to initiate transmission of these messages. |

J

Figure 8. Keyword Operands for
(Part 2 of 6)

38

the Communication Line Group DCB Macro Instruction

T
Keyword |Alternate|

Operand | Source Value Description
4

OE, DD absexp
is the number of buffers to be requested for each
transmission of data from the terminal to the com-]
puter. The requests are made well in advance of |
the message transmission, and actual assignment of]|
all buffers after the first is made as they are |
needed. The "absexp" should be equal to or great-|
er than 2, and must not be greater than 255 or the|
number of buffers specified in the BUFFER macro |
instruction, which ever is less. The primary fac-|
tors to be considered in determining the value of |
"absexp" are: the line speed, the size of the |
buffer pool as compared with the average number of|
buffers that are active at any one time, the size |
of each buffer as compared with the average size |
of a transmitted message, and the total system |
loading. If no value is provided either through |
the DCB macro instruction or an alternate source, |
or if a value of less than 2 is specified, 2 is |
assumed. |
The following method of calculating BUFRQ for each|

line group may be used. Assume that the slowest- |

|
|
|
I
|
|
|
|
I

1

|

I

— 1

BUFRQ=absexp |
[BUFRQ=2] |

speed lines in the system have a value of omne.
Assign to each of the remaining line groups in the
system a value whose ratio to one is the same as
the ratio of that line group's speed to the slow-
est line group's speed. The value of the BUFRQ
operand for each line group is equal to the calcu-
lated value plus one.

Example:

e Line Group A has the slowest lines, 60 charac-—|
ters per second (cps). Its value is therefore|
1. BUFRQ= 1 + 1 = 2, |

e Line Group B has 120-cps lines; therefore, its
value is 120 divided by 60 or 2. BUFRQ for
this line group is therefore 2 + 1 = 3.

}
|
I
I
|
|
I
I
|
|
|
|
|
I
I
|
|
|
I
|
|
|
|
|
I
|
I
|
I
|
|

¢ Line Group C has 150-cps lines; 150 divided by
60 and rounded off is 3. BUFRQ = 3 + 1 = 4,

I
|
|
|
|
|
|
* Line Group D has 180-cps lines; 180 divided by|
60 is 3. BUFRQ = 3 + 1 = 4, |
-— 1
|

|

|

|

|

I

|

|

|

|

|

CE, DD absexp
the polling interval (that is, the number of
seconds of intentional delay between passes
through a polling list) for the lines in this line
group. After all the terminals in a polling list
for a given line have been polled (beginning to
end), a delay equal to the number of seconds spec-
ified in this operand occurs before polling is
restarted at the beginning of the list. The
"absexp" must not be greater than 255. If this
operand is omitted, INTVI=0 is assumed. This
operand must be omitted if the line group consists|
of switched lines, WTTA lines, or if the Auto Poll]

feature is used. |
d

[1NTVL=absexp]

|
I
t
|
|
|
|
|
|
|
!
I
|
|
|
|
[
|
!
|
|
|
I
I
|
|
I
|
!
|
|
|
!
|
I
|
|
|
!
!
|
|
|
|
|
|
[
b
I
| [INTVL=0
|

|

|

|

|

I

I

[

|

|

|

|

L

b e e e e e e e e e e e e —————————— e

|
I
|
!
[
[
!
I
I
|
I
|
|
+
I
I
|
I
I
|
|
|
I
|
!
I
I
I
4

Figure 8. Keyword Operands for the Communication Line Group DCB Macro Instruction
(Part 3 of 6)

Message Control Program 39

of

T
Keyword |Alternate
Operand | Source
. 4

Value Description

CPRI=R
CPRI=E
CPRI=S

OE, DD R, E, or S
indicates the relative priority to be given to
sending and receiving operations, as follows:

R-- Receiving has priority over sending. An output
message is sent on a given line only during a
polling interval.

E-- Receiving and sending have equal priority. After
each full polling sequence on a given line, all
output messages queued for that line are
transmitted.

S-- Sending has priority over receiving. For non-
switched lines after QTAM polls a terminal on a
line, the line is made available for outgoing mes-
sages, and the next terminal is polled only when
there are no output messages in the queue for that
line. For Auto Poll lines, the line is made
available for outgoing messages after a message
ending in an EOT is received by a terminal on the
line, or when the end of the polling list is
reached. If this operand is omitted, and no value
is provided through an alternate source, CPRI=S is
assumed. CPRI=S must be specified for IBM 2740
Communications Terminals, Types I and VI. If the
line group includes IBM 2740 Model 2 terminals,
CPRI=S must be specified.

For WTTA lines, the relative priority is as
follows:

R or E--
output messages are sent when there is no traffic
over the line, after an EOT character has been
received, or after a time-out has occurred.

S-- output messages are sent when there is no traffic
over the line, after an EOT or EOM character has
been received, or after a time-out has occurred.

This operand must be omitted if this line group
consists of switched lines.

ACLOC parameter deleted.

CLPS= relexp relexp
the symbolic address of the line procedure speci-
fication for the line group represented by this
DCB macro. It must be identical to the name spec-
ified in the name field of the LPSTART macro

instruction.

%

[EXLST= relexp] relexp
is the symbolic address of the exit list (see the
IBM System/360 Operating System: Supervisor and

Data Management Services publication).

L———-—-.-Ib——_—-—-—-Ji-—-dl—————-—————————————-——_—_—-————.—-—————_—-———-—-———_——_db——d

[o e e e iR e . | o s G e, Y i e, e S s T e A A St sy e S0 i e s e e S v o s o o . S st . e . i St AR . s . e S et
oo e i o s s . et e s st s et St e . e, A . . Sl R S S (R SR A S o S S, S S S . St S i S A . S S . S S e et S S S e B s St

|
|
|
|
|
|
n
|
|
|
|
|
l
1
|
|
|
|
|
1
|
|
u
|
|
|
|
|
|
|
|
|
|
|
|
1
|
!
|
|
+
i
|
|
|
!
s
5
|
|
|
!

Figure 8. Keyword Operands for the Communication Line Group DCB Macro Instruction
(Part 4 of 6)

40

T T
Keyword |Alternate|
Operand | Source | Value Description

____+_

-

— ——

This operand the threshold values to be used in
determining excessive number cf errors (both tem-
porary and permanent) for a specified number of
transmissions for each line of this line group.

THRESH= (absexp, ,
absexp,,absexps,
absexpy)

THRESH=(255,10,

5,5)

1
|
|
i
|
[
|
I
I
I
absexp, |
is the threshold value for the number of transmis-|
sions; less than or equal to 255. If the number |

of transmissions on any line in this line group |
reaches this threshold before any of the error |
counters reach their thresholds, the four thresh- |
0ld counters for this line will be added to the |
four cumulative counters for this line and the |
threshold counters will be reset. |

I

|

I

|

I

|

|

|

absexp,
is the number of contention situations on WTTA
lines or the threshold value for the number of
data checks on other lines; the value specified
must be less than or equal to 255. If the number
of data checks on any line in this line group
reaches this threshold before the number of trans-
missions reaches its threshold value, a message isj|
provided, (to the 1052 system console or the tele-|
communication system control terminal if the OPCTL|
macro instruction is included), the four threshold|
counters for this line are added to the four cumu-|
lative counters for this line and the threshold
counters will be reset.

absexps
is the threshold value for the number of interven-
tion required errors less than or equal to 255.
Same action is taken as in description of absexp,
above.

absexp
is the threshold value for the number of time-outs
(except text time-outs) less than or equal to 255.
Same action is taken as in description of absexp.
above.

|
|
|
|
I
|
|
!
|
I
|
|
|
|
If this operand is omitted, the threshold values |
255,10,5,5 will be assumed. |
i

I

|

|

I

|

1

I

|

I

[

I

J

specifies that WITA terminals are to be used and
causes a U-byte field to be generated in the DCB
(DCB+16). This field contains information on IAM
and WRU feature, EOM and EOT, and the number of
pad characters to be used.

[DEVD=WT]

MON=NO YES

[MON=YES]
specifies that each terminal in the line group is
equipped with the Motor-On feature. If this

operand is omitted, MON=NO is assumed.

o e e e e e e i s i e s o s e S e e e . e e e . S S o S S . S o . P . St i e, W . . st . st s S . P e . e, it e

|
1
1
|
1
|
|
|
|
!
|
|
!
|
|
|
|
!
|
1
|
n
!
|
!
x
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
i

[o e . o G e o e i S S e i S e o . i T S St e S S — — — — — — d————8, " it Pl S st bt s, St i, et st S s S s i e st T it i it et

Figure 8. Keyword operands for the Communications Line Group DCB Macro Instruction
(Part S5 of 6)

Message Control Program 41

Keyword
Operand

Alternat
Source

e

—

Value Description

MONDLY=integer
MONDLY=15

integer
specifies the number of Mark characters corre-
sponding to a 1.5-second interval when the termi-
nal is not equipped with the Motor-On feature.
MONDLY=10 corresponds to 50-baud service, MONDLY=
15 corresponds to 75-baud service, and MONDLY=20
corresponds to 100-baud service. When this
operand is omitted or exceeds 20, MONDLY=15 is
assumed.

IAM=YES
IAM=NO

<
=
[47]

indicates that the terminal can ask for the com-
puter identification sequence by sending FIGS D.
If this operand is omitted, IAM=NO is assumed.

WRU=YES
WRU=NO

]
o]
]

specifies that by sending FIGS D, either the com-
puter or the terminal can ask for the identifica-
tion sequence of the other. When WRU=YES is spec-
ified, IAM=YES is assumed. If this operand is
omitted, WRU=NO is assumed.

EOM=WRU
EOM=X'hh'
EOM=X"'hhlF"

EOT=2EO0OM
EOT=X'hhlF"

This operand identifies the end of a message.

=
=
c

specifies that the WRU signal (FIGS D) is the end-
of-message signal. FIGS x is set as FIGS D in the
adapter (see Note 1.).

X'hh'
specifies that FIGS x is used as the EOM signal.
hh is the hexadecimal representation of FIGS x set
in the adapter (see Note 1.).

X'hhlF*
specifies that FIGS y LTRS is used as the EOM
signal, where hh is the hexadecimal representation
of FIGS y set in the adapter (See Note 1).

WRU is assumed if this operand is omitted.

2EOM
specifies that two consecutive EOM signals will be
recognized by QTAM as end-of-transmission, except
when IAM=YES and EOM=WRU are specified.

X'hhlF’'
specifies that FIGS y LTRS is used as the EOT
signal (see Note 1), and consequently, EOM=X'hhlF'
cannot be used for the EOM signal.

Note: A time-out is also recognized as EOT.

[o et o e i . e i e i o = o e et . T i . i S et i i e S i . i S St et T S s e, e, S i et S, o, . e S, QR i i e, e . D . . i, W et e, =y

e e e e e e e e s e e i e e e e e e e e e s e e e e e e e . . . e e e e e o o e s o e e e e e s o

Note 1: In the above description of the EOM and
EOT operands, x and y are the values assigned by
the user and set in the adapter at the time of
installation of the equipment.

)_._.__._—.4,__—_.._._.___.__.-.__.z__.___.___—___.—.___.____._.0...___...___.0..._._...._.0._.____._..___..;._
b s s e i s s s . et o ot e TS . . . s Sttt sais 10O et . e, S e, M . T i — e, i, o e ot vt e st i, e . e, e, . e, i, T, . s, e s e —— . a— . a— . . et el as e oal

Figure 8. Keyword Operands for the Communications Line Group DCB Macro Instruction
(Part 6 of 6).

42

Examples:

1. A DCB macro instruction that defines
the parameters of a data control block
representing a direct access message
queues data set (Figure 6):

r 1 T h]
|Name |Operation|Operand |
L } 4 4
v T T - t
| QUEUE | DCB | DDNAME=DASDMSGQ, |
| | | DSORG=CQ, MACRF=(G, P) |
L L L J

2. A DCB macro instruction that defines
the parameters of a data control block
representing a communication line
group data set (Figure 8):

r T T 1
| Name | Operation|Operand |
" t i
GRP1	DCB	DDNAME=LNGROUP1,DSORG=CX,
		CPOLL~ (POLLINE1, POLLINE2),
		MACRF= (G, P) , BUFRQ=3,
		CPRI=E,CLPS=LPS1
L L 1 Jd

3. A DCB macro instruction that defines
the parameters of a data control block
representing a checkpoint data set
(Figure 7):

T]

Name |Operation|Operand
L 1

C

T T
KRES | DCB | DDNAME=TPCHKPNT, DSORG=CQ,

| | MACRF= (G, P)
1 L

[e e oy sy
T Ep——

CONTROL INFORMATION

In constructing the message control program
for his telecommunications system, the user
must provide certain control information.
This data includes:

e A terminal table that contains all of
the terminal codes (polling and ad-
dressing characters or dial informa-
tion) as well as complete information
about the terminals connected to the
system. '

e A polling list for each communication
line that specifies the sequence in
which terminals on the line are to be
polled.

o Buffer specifications that define the
maximum number of buffers for the QTAM
buffer pool and the size of the message
segments used in the system.

The IBM-provided lcgic that supports the
message contrxol program uses this control
information in performing the message-
handling functions specified by the user.
Macro instructions are provided that allow
the user to define the terminal table,
polling lists, and buffer areas in accor-
dance with the requirements of his
application.

TERMINAL TABLE

A telecommunications system using QTAM
requires one terminal table. At assembly
time, control information macro instruc-
tions are used to produce a terminal table
tailored to the user's device configura-
tions and options desired. The terminal
table consists of a table control field
defining the length of the table, and
blocks of information about each terminal.
Each such block is called a terminal table
entry. The four types of entries are:
single terminal, group code, distribution
list, and process program. Each type of
entry is described in the following para-
graphs. (Refer to Appendix A for diagram).

The size, structure, and contents of the
terminal table are based on information
provided by the user through the TERMTBL,
OPTION, TERM, DLIST, and PROCESS macro
instructions. TERMTBL is specified once
and defines the limits of the table. TERM
creates a single terminal or group code
entry in the terminal table. OPTION names
and allocates storage for any optional
subfield(s) to be included in the user area
of a terminal table entry. The optional
subfield(s) can contain information needed
to perform various optional functions pro-
vided by QTAM (subsequently discussed) or
the user. The initial contents of each
subfield are specified by the TERM macro
instruction that defines the entry. DLIST
defines a distribution list entry, and
PROCESS creates a process program entry.
Each entry in the terminal table begins on
a fullword boundary.

All alphabetic infcrmation in the termi-
nal table is assembled as uppercase
characters.

QTAM provides a DSECT that enables the
user to refer symbolically to the various
terminal table fields (as explained under
the TERMTBL macro instruction description).
All DSECTs are supplied on a private macro

library and must be included in the message

control program by the user.

e

Message Control Program 43—

Single Terminal Entry

The terminal table must contain a single
terminal entry for each terminal that can
only send, only receive, or both send and
receive messages (except for a terminal in
a group code entry, discussed in the fol-
lowing text). If a terminal component is
individually polled or addressed, the com-
ponent must have a separate single terminal
entry.

Each single terminal entry contains a
‘minimum of seven fields. The names of the
first six fields are provided in a private
dummy section, which can be included by
specifying TERMTBLD. No parameters are
required in this macro. The first five
fields in each entry are of standard length
and are described as follows:

Field Description

TNTRYSZE Size of the entry.

TQCBADDR Address of the queue control
block for the DASD destination
queue associated with the
terminal.

TSEQUIN Sequence number for messages
incoming from this terminal.

TSEQOUT Sequence number for messages
outgoing to this terminal.

TSTATUS Status information indicating

whether messages to the termi-
nal are to be suppressed,
whether messages can be sent
to the terminal, and whether
messages can be received from
the terminal.

The sixth field (TERMID), containing the
name assigned to the terminal by the user,
appears in each single terminal entry.

This name can also appear in the source or
destination code field of the message head-
er. The length of this field is the same
in each entry and is based on information
provided by the user. If the number of
characters in each terminal name varies,
the numper of bytes in this field is equiv-
alent to the number of characters in the
longest terminal name. The user must spec-
ify this number in the TERMTBL macro
instruction. If the number of characters
in each terminal name does not vary, the
number of bytes in this field is equivalent
to the fixed number of characters. The
TERMID field length can be a maximum of
eight bytes.

Inclusion of the seventh field is

optional. This field, called the user
area, can contain one or more optional sub-

ug

fields. The name, length, and boundary
alignment of each such subfield, if any,
are specified by an OPTION macro instruc-
tion. The data content of the subfields is
specified by TERM macros. Optional macro
instructions such as COUNTER, DIRECT,
ERRMSG, INTERCPT, POLLIMIT, and REROUTE
introduce routines that either obtain
information from or place information into
these subfields in order to perform their
functions. The user can also store infor-
mation in this area. Each single terminal
and each group code entry associated with
the same line group must contain the same
optional subfields.

The eighth field, called the device
access area, 1is required. This area con-
tains the polling and/or addressing charac-
ters for the terminal and, if it is a
switched terminal, its telephone number and
the number of dial digits. For WITA ter-
minals, this area contains the terminal
identification sequence. The size of the
area depends on the requirements for the
particular device. This field immediately
follows the TERMID field if no optional
subfields are included in the user area.

If optional subfields are included, the
device access field follows the last sub-
field. The total size of the terminal name
area, optional user area, and device access
area must not exceed 252 bytes.

The TERM macro instruction provides the
initial contents for all fields in the
single terminal entry. Detailed informa-
tion on this entry is contained in
Appendix A.

Group Code Entry

The terminal name in a group code entry
represents a prespecified group of ter-
minals on a line with special equipment
that provides the group code feature. The
feature permits simultaneous transmission
of a message to a group of terminals
through the specification of a single set
of uniqgue address characters. Several com-
binations of prespecified terminals can be
grouped for this purpcse. Each group has a
group terminal name and a corresponding
group code entry in the terminal table.

A group code entry is identical in
structure with the single terminal entry.
However, three fields are either not used
or used in a different manner. QTAM incre-
ments the sequence number for outgoing mes-
sages (TSEQOUT field) by one when the group
is simultaneously sent a message. If any
terminal in the group is also represented
by a single terminal entry, the output
sequence number for that entry is not
changed. ‘

The sequence number for incoming mes-
sages (TSEQUIN field in the single terminal
entry) is not applicable to the group code
entry because the terminal group cannot
collectively send a message to the system.
For the same reason, there are no polling
characters in the device access area of the
group code entry. The total size of the
terminal name area, optional user area, and
device access area cannot exceed 252 bytes.

The TERM macro instruction provides the
initial contents for all fields in the
group code entry. Detailed information on
this entry can be found in Appendix A.

Distribution List Entry

A distribution list entry contains a list
of addresses.of single terminal entries.
These addresses are grouped under the list
name. When a message contains the list
name as a destination code, QTAM sends the
message via separate transmissions to all
terminals indicated by the list. Each ter-
minal on the list must have a corresponding
single terminal entry in the terminal
table.

Each distribution list entry contains
five active fields and the list area. The
first four active fields in each entry are
of standard length. A description of the
five active fields follows:

Field Description

TNTRYSZE Size of the entry.

TDSTRQCB Address of the queue control
block for the distribution
list queue.

TLISTKEY An access key to the start of
the list of addresses.

Status information. This
field functions in the same
way as the corresponding field
for a single terminal entry
with the following exception:
the "receive" bit in this
field is never used because
terminals in the list cannot
collectively send a message to
the system.

TSTATUS

TERMID Contains the distribution list
name. This name serves the
same purpose as the terminal
name in a single terminal
entry and is subject to the

same* restrictions.

The list of addresses of single terminal
entries follows the fifth active field.
This list contains, in each of its sub-
fields (reladdr through reladdrp), a rela-
tive address that locates the corresponding
single terminal entry in the terminal
table. These addresses are relative to the
base address of the table. The high-order
bit of the last subfield is 1, indicating
the end of the distribution list entry.

The total size of the distribution list
name area and the list area cannot exceed
243 bytes.

The DLIST macro instruction provides the
initial contents for all fields in the dis-
tribution list entry.

Process Program Entry

The terminal table must include one process
program entry for each DASD process queue.
A DASD process gueue contains those message
segments that are to be routed to a message
processing program.

The structure of this entry is the same
as that of the single terminal entry, with
the following exceptions:

1. The TSEQUIN field used in the single
terminal entry is not used for the
process program entry.

2. The "receive" bit in the TSTATUS field
is not used for the process program
entry.

3. The TERMID field in the process pro-
gram entry contains the name of a DASD
process queue rather than a terminal
name.

4. There is no opticnal area or device
access area in the process program
entry.

The PROCESS macro instruction provides
the initial contents for all fields in the
process program entry. Detailed informa-
tion on this entry can be found in Appendix
A.

Terminal Table (TERMTBL) Macro Instruction

The TERMTBL macro instruction causes a
table control field to be created for the
terminal table and defines the length of
the table. Two private DSECTs exist that
provide for symbolic reference to control
fields used by QTAM. One private DSECT,
TERMTBLD, provides names for the fields in
each terminal table entry. The other priv-
ate DSECT, LCBD, supplies names for the

Message Control Program 45

fields in a line control block (LCB).
maintains an LCB for each communication
line attached to the system; each LCB con-
tains control information about the line
with which it is associated.

OTAM

One TERMTBL macro instruction is
required, and it must precede all other
macro instructions used in creating the
terminal table.

L T . T 1
|Name |Operation|Operand |
. + {
] | TERMTBL |entry [, (n)1[,OPCTL=charsl]|
| | | {,CPINTV=integer] |
| | | [, CKPART=int eger] |
L 1 1 . J

entry
the name of the last entry in the ter-
minal table.

(n)
the number of characters in the long-
est terminal name. This operand is
not necessary if the lengths of alil
terminal names are the same. The
maximum number of characters is eight
since "symbol" in the TERM macro has a
maximum of eight.

OPCTL=chars
specifies the label on the OPCTL macro
instruction.

If this operand is included, the error
diagnostic messages are sent to the
telecommunications control terminal.
If this operand is not included, the
error diagnostic messages will be sent
to the system console.

If this operand is included, the OPCTL
macro instruction must also be
specified.

CPINTV=integer .
the number of 15 second intervals
between checkpoints; "integer" must be
a value from 1 to 60. Each integer
represents 15 seconds.

CKPART=integer
the number of partitions that must
issue a CKREQ macro before a check-
point will be taken (see discussion of
CKREQ macro in IBM System/360 Operat-
ing System: QOTBM Message Processing
Program Services). This number may
range from one to fifteen. If CPINTV
is also stated, the CPINTV value will
take precedence.

Note: The name field must be left blank.
TERMTBL is the name generated fcr the ter-
minal table by the macro instruction
expansion.

46

Texrminal Table Optional Field (OPTION)
Macro Instruction

At assembly time, the OPTION macro instruc-
tion names and allocates a specified amount
of main storage in selected single terminal
and group code entries in the terminal
table. The storage allocated constitutes
the optional-area field of the entries.

One OPTION macro instruction is required
for each optional-area subfield desired.
The order of the subfields within the
optional area is determined by the order of
the OPTION macro instructions.

Data values inserted into each optional-
area subfield are specified by the "opdata"
operands of the TERM macro instruction that
creates the entry.

The OPTION macro instruction(s), if
used, must immediately follow the TERMTBL
macro instruction. The relative order of
the specified subfields must correspond to
the order in which the contents for the
subfields are specified in the TERM macro
instructions.

Six LPS macro instructions link to IBM-
provided routines that use fields allocated
by OPTION macros in performing their func-
tions. These optional LPS macros are
COUNTER, DIRECT, ERRMSG, INTERCPT,
POLLIMIT, and REROUTE. The functions pro-
vided by these macro instructions are dis-
cussed under the individual macro instruc-
tion descriptions. User-written routines
can also store information in a subfield
defined by an OPTION macro. QTAM defines a
dummy control section for the option field
in the message control program for symbolic
references to the OPTION fields.

For switched lines and for lines polled
with the Auto Poll feature, a SOURCE macro
instruction must appear in the LPS preced-
ing any references to fields specified by
OPTION macros. Reference must not be made
to the fields for source errors.

13 T L)
| Name |Operation]Operand
L d L

b s cnde e sud

r T T :
| subfield|OPTION | typelength
L 1 1

subfield
the name of the optional-area
subfield.

typelength
the type and length of the subfield in
the standard assembler language format
(e.g., H, CL8, AL3). When the sub-
field is used in conjunction with the
DIRECT, ERRMSG, or REROUTE macro
instruction, CLn must be specified

where n equals or exceeds the longest
name of any terminal table entry. If
used in conjuction with the COUNTER
macro instruction, "typelength" should
be specified as H since COUNTER
requires a halfword field aligned on a
halfword boundary to perform its func-
tion. INTERCPT and POLLIMIT require
3-byte and 1-byte fields, respective-
ly. ©No boundary alignment is
required, however, a type D (double-
word) constant may not be used.

Example: The following is an example of
the use of the TERMTBL and OPTION macro
instructions:

r T TTTT 1
| Name |Operation|Operand |
L 4 4 Jd
r Ll T 1
| |TERMTBL |KCHI |
| | [I
|POLLMT |OPTION |FL1 I
[| | |
|COUNT |OPTION |H]
| | | !
|ALTNTERM|OPTION |CLU4 |
I I | I
| INTERCPT | OPTION |XL3 |
L 1 i 4

TERMTBL defines KCHI as the terminal
name in the last entry in the terminal
table. The OPTION macro instructions
allocate a 9-byte optional area for single
terminal and group code entries in the ter-
minal table. The optional area consists of
four supbfields:

¢ POLLMT contains one byte for decimal
data to be used by the POLLIMIT macro.

® COUNT contains a halfword for decimal
data to be used by the COUNTER macro.

¢ ALTNTERM contains four bytes for a
character string to be used by the
DIRECT macro.

e INTERCPT contains three bytes for an
address to be used by the INTERCPT
macro.

The halfword specification for the COUNT
subfield causes the Assembler to perform
boundary alignment. In this case, no ad-
justment is necessary because the COUNT
subfield already begins on a halfword
boundary.

Terminal Table Entry (TIERM) Macro
Instruction

The TERM macro instruction causes a termi-
nal name and associated terminal informa-

tion to be included as an entry in the ter-
minal table. If a single terminal or com-
ponent is involved, TERM produces a single
terminal entry. If a group of terminals
having the group code feature is involved,
TERM produces a group code entry.

One TERM macro instruction is required
for:

1. Each terminal (bcth switched and non-
switched) that can send, receive, or
send and receive messages.

2. Each group of nonswitched terminals
equipped with the group code feature.

Terminals can only receive messages under
the group code feature; they cannot send
them. Each terminal in the group that can
also send messages must be represented by a
single terminal entry.

All TERM macros must be grouped togeth-
er. If messages are to be queued by line
rather than by termrinal, the individual
TERM macros must be grouped by relative
line number within this TERM coding
section.

T T

| Oper-| Operand
|ation|
iR 1l

Name

1
|
|
T i LB L}
symbol |TERM |qgtype,dcb,rln |
] | [,adchars]) |

] | {(opdata,...)1} |
| {[.CALL=integer7 [, ID=hexchars] |
[|ly CALL=NONE i
I | 120 1
| [l¢ BUFSIZE= 220 |
l 1 440 |
1 J

[e e it e o et . s, B et S e

symbol
the terminal name containing one to
eight nonblank characters; it must be
specified. This name can also appear
in the source or destination code
field of a message header.

qtype .)
specifies the type of message queuing.

"T" specifies that outgoing messages
are to be queued by terminal; that is,
all messages for a given terminal are
sent before any messages for other
terminals are sent. (This is econom-
ically advantageous when the destina-
tion terminal is on a switched line.)
The highest-priority message for the
given terminal is sent first. "T"
must be specified for switched ter-
minals, and may be specified for non-
switched terminals.,

Message Control Program U7

dcb

rln

"L" specifies that outgoing messages
are to be queued by communication
line; messages for all terminals on
the line are sent on a first-in first-
out basis within priority groups. If
"L" is specified, all TERM macros for
each line must be grouped together.
"L"must be specified for terminals
using the Auto Poll feature.

the name of the data control block for
the line group in which the terminal
is included.

the relative line number, within the
group, of the access line over which
the computer and the terminal communi-
cate. For a switched terminal, any
value up to the total number of lines
in the group may be specified. When
the computer calls a terminal, it
attempts to make the call using the
line whose relative number is speci-
fied. If that line is unavailable,
the next highest numbered line is
examined, and so on until a free line
is found. If all remaining lines in
the line group are unavailable, the
remote terminal is not dialed at this
time.

adchars

the addressing and/or polling charac-
ters for the terminal. The TERM macro
expansion places these characters in
the device access area of the terminal
table entry. Refer to Figure 9 for
the number and kind of characters to
be specified for each type of terminal
and line. The characters are speci-
fied by writing the hexadecimal equiv-
alent of the appropriate transmission
code representation. In most systems
the polling and addressing characters
for the IBM 2260-2848 will be written
just as they are given to the user by
the customer engineer. This operand
must be omitted for TWX and WTTA ter-
minals, and for IBM 2740 terminals,
types I, 1I, V, VI, VII and VIII. 1Its
omission must be indicated by a comma.
No polling characters are specified
for a switched 1050 terminal. If
polling is required for a switched
1050 terminal, the polling characters
are specified in a POLL macro
instruction.

Examples:

1.

48

If the addressing and polling charac-
ters for a nonswitched IBM 1050 are R9
and RO, "adchars" is written D213D215
(D213 and D215 are the hexadecimal
equivalents of the transmission code
representation of R9 and RO).

If the polling characters of a non-
switched IBM 1050 that is only to be
polled (not addressed) are KO,
"adchars" is written as xxxxC515,
where "xxxx" represents the hexadeci-
mal equivalent of any two characters
(£il1l characters). These two charac-
ters will be ignored.

If the addressing and polling charac-
ters of a nonswitched IBM 1030 that is
to be polled and addressed are K and
L, "adchars" is written as 45xx8601
where "xx" represents the hexadecimal
equivalent of any character (fill
character). This character will be
ignored.

If the same IBM 1030 is to be
addressed only, "adchars" would be
written as CS.

opdata

CALL

the actual data to be inserted into
the optional-area subfield(s) of the
terminal table entry for this termi-
nal. This operand allows flexibility
because data can be specified for dif-
ferent subfields depending on the
optional functions required for mes-
sages sent to or received from the
terminal. However, all entries repre-
senting terminals included in the same
line group must have data specified
for the same optional subfields.
(Figure 10 shows an example of data
specified for different subfields in
entries not associated with the same
line group.) The maximum length and
type of data specified for each sub-
field must correspond to the length
and type specified by the OPTION macro
instruction that allocates the addi-
tional storage required for the sub-
field. A comma is used to:

1. Delimit the data for each
subfield.

2. Indicate that no data is speci-
fied for an intermediate
subfield.

The user must specify either data or a
comma for each subfield specified by
an OPTION macro. The framing charac-
ters (X or C) and quotes are not
coded.

is the telephone number of the termi-
nal. This operand must be specified
for switched terminals only. .NONE
must be specified if the line(s) over
which contact with the terminal is to
be established does not have the Auto
Call feature. NONE must be specified
for WTTA terminals.

ID=hexchars

the TWX terminal identification
sequence for the TWX terminal repre-
sented by the terminal table entry
created by this TERM macro instruc-
tion. This operand is specified only
when the computer is to call TWX ter-
minals. It is specified by writing
the hexadecimal equivalent of the 8-
level TWX code for the following
characters:

CRLF I I . -« . In CR LF X-on

where CR represents Carriage Return,
LF represents Line Feed, X-on repre-
sents Transmitter On, and I; Is ...

In is a sequence of characters identi-
fying the TWX terminal. When tlie com-
puter calls the terminal, the terminal
automatically sends an identification
sequence.

For WTTA terminals, this operand is
specified only when WRU=YES is speci-
fied in the DCB for the line. This
operand is specified by writing the
hexidecimal equivalent of the 5-level
code used by the terminal. The termi-
nal sends its identification sequence

each time the terminal sends the WRU
signal. After the computer has
received the identification sequence
of a TWX or WTTA terminal, QTAM com-
pares the sequence with the seguence
specified by this operand, as a check
that the intended terminal has in fact
been reached. BAn equal compare per-
mits message transmission to proceed.
An unequal corpare is treated as an
addressing error; the message is not
sent.

BUFSIZE

specifies the size of the buffer on
the IBM 2740 Model 2 terminal. If
this operand is cmitted, QTAM assumes
that the terminal is not an IBM 2740
Model 2. If an invalid buffer size is
specified, BUFSIZE=440 is assumed.

Examples:
TWXONE TERM

T,bCcB1,1,.,(1,0),
CALL=5108287317,ID=B15193... (etc)

TTYA TERM T,DCBA,1, (0), CALL=NONE, ID=

02080C04 ... (etc)

|Note 1:

12260s attached to a 2848 is desired.

| Note 2:

r L 3 T 1
|Terminal Type |Line Type | Specify: |
L T 4 i
[3 T T
| | |AAPP (if polling and addressing |
|IBM 1050, 1060, | | are required; for a 2260-2848 AA=PP)
2260-2848	Nonswitched	
ATET 83B3		££PP (if only polling is required) (See Note 1).
WU 115A		,
		AA (if only addressing is required)
i 1 4 ,l		
L) T T		
		afPs (if polling and addressing are required)
{IBM 1030,		
2740 types	Nonswitched]	i
] III and IV		££fPS (if only polling is required)
	(2 (if only addressing is required)	
L i 1 4		
v T L) 1		
IBM 2740, types	Nonswitched	No polling or addressing characters are to be specified.
I and VI		
t + 1 {		
IBM. 1050	Switched	2A (if addressing is required) (See Ncte 2).
L 1 i ,‘		
v T T		
IBM 2740, types	Switched	No polling or addressing characters
11, Vv, VII, VIII		are to be specified]
L L L — .'		
8		
Legend:		
A = one addressing character		
P = one polling character		
f = one fill character i		
S = one space character		
I		
I		
J

|ins truction.
L

The second "P" must be specified as hexadecimal FF if a general poll of all

If polling is required, the polling characters are specified in a POLL macro

Figure 9.

Addressing and Polling Characters for the TERM Macro Instruction

Message Control Program 49

Here, the extra comma following the rela-
tive line number indicates omission of the
addressing and polling characters (which
are not required for a TWX terminal).

Terminal Table List (DLIST) Macro
Instruction

The DLIST macro instruction causes the name
of a list of terminals, relative terminal
table addresses of the entries for the ter-
minals on the list, and associated informa-
tion on the list to be included as an entry
in the terminal table. The list of termi-
nals is called a distribution list, and the
entry produced is a distribution list
entry.

One DLIST macro instruction must be pro-
vided for each such distribution list to be
created. Terminals can only receive mes-
sages through the distribution list trans-
mission method {(they cannot send messages).

[3) T
|[Name |Operation|Operand
[N i i

b s s e s

L3 T T
llsymbol[DLIST | (entry;,...)
t 4 L

symbol
the name of the list. This must be
specified, and may be from one to
eight nonblank characters.

entryz ...
the names of the terminals that are to
be in the distribution list.

Restriction: A name representing another
distribution list must not be included as
an operand of the DLIST macro instruction.
All names in the list must be defined by
either a TERM or a PROCESS macro instruc-
tion. However, no terminal table entry
defined by a PROCESS macro specifying the
EXPEDITE operand can be included in a dis-
tribution list.

Terminal Table Process (PROCESS) Macro
Instruction

The PROCESS macro instruction causes the
name and associated information of a DASD
process queue to be included as an entry in
the terminal table. The entry produced is
a process program entry. It differs from
other terminal table entries in that it
does not have an optional area or device
access area, and the TSEQUIN field is not

50

used. A message processing program, like a
terminal, can be a destination for a mes-
sage. However, unlike a terminal, the pro-
cessing program is not associated with a
communication line and does not need ad-
dressing and polling characters.

One PROCESS macro instruction must be
included& for each DASD process queue.

The EXPEDITE operand permits the user to
speed the processing cf messages by the
message processing program associated with
the process program entry. This function
is valuable for an application such as
inquiry processing, where rapid response to
inquiries is required.

v w T
|Name JOperation|Operand
L 4 4

R T

L) ()) T
| symbol| PROCESS | [EXPEDITE]
L L 1

symbol
the name of the process program entry
in the terminal table. The name must
be specified, and must be the same as
the DDNAME specified in the MS process
queue DCB macro instruction defined in
a message processing program. The
name can contain from one to eight
nonblank characters.

EXPEDITE
specifies that message segments are to
be routed directly to the message pro-
cessing program's MS process queue,
thus bypassing the normal intermediate
step of placing them on a DASD process
queue. EXPEDITE should not be speci-
fied if multisegment messages are
expected, because segments from dif-
ferent messages may be intermixed as
they are delivered to the queue. If
EXPEDITE is specified, the MS process
queue DCB must specify RECFM=S (see
the 0S QTAM Message Processing Program
Services publication. The RETRIEVE
macro instruction cannot be used to
retrieve messages from a process gueue
when the EXPEDITE operand is used.
Also, the CANCELM, EOA, EOBLC, ERRMSG,
and REROUTE macrcs cannot be used for
any message whose destination is a
processing program queue identified by
a terminal table entry defined by
PROCESS EXPEDITE.

Example -- Terminal Table Definition

Figure 10 shows a coding sequence used to
create a terminal table. The terminals are

T L] T . T 1
| No. | Name | Operation | Operand]
L -4 4 4 —— 4
v T L) T 1
|1 | | TERMTBL | CPU |
! | I [|
| 2 | COUNT | OPTION | FL2 |
I | I I [
| 3 { LIMIT | OPTION | FL1]
| | | [I
| 4 | DEST | OPTION | cL3 |
| I | | !
| 5 | NYC | TERM | L,GROUP1,1,E407E4OD, (0, 8, BOW) |
| I | I I
| 6 | BOS | TERM | L,GROUP1,1,E207E20D, (0, 3,NYC) |
| ! | | |
1 7 | WAS | TERM | L.,GROUP1,2,E407E40D, (0,1,NYC) |
| | | | |
| 8 | PHI | TERM | L,GROUP2,1,E407EY4OD, (0, ,NYC) |
I | I I I
19 | PIT | TERM | L,GROUP3,1,E407E40D, (0) |
| | | I |
| 10 | RAL | TERM | L,GROUPY4,1,E407E40D |
I [| I I
| 11 | BOW | DLIST | (BOS,WAS) |
| I | I I
| 12 | CPU | PROCESS | |
L L L 1 4
Figure 10. Example: Coding Sequence for Creation of a Terminal Table

IBM 1059s attached to the computer by non-
switched lines.

Instruction 1 (TERMTBL): Identifies the
last entry in the terminal table. Omission
of the second operand indicates that all
terminal names are of equal length.

Instructions 2 through 4% (OPTION): Define
the names and sizes of three optional-area
subfields used for functions specified by
the COUNTER, POLLIMIT, and DIRECT macro
instructions, respectively (refer to the
section Line Procedure Specifications for a
detailed discussion of the functions per-
formed by these macro instructions). The
single terminal entries in which these sub-
fields are included and used depends. on
whether the optional functions are speci-
fied in the LPS that handles the line group
associated with the entry.

Instructions 5 through 10 (TERM): Define
the single terminal entries for the termi-
nals in four line groups. The operands of
each TERM macro instruction provide infor-
mation for the fields of the respective
entries. In this example, outgoing mes-
sages are queued by line; therefore, the
first operand is an L in each case.

The second operand of each TERM speci-
.fies the name of the data control block for
the line group in which the terminal is
included. In this case, there are four

line groups (therefore, four data control
blocks).

The third operand of each TERM is the
relative line number cf the line to which
the terminal is attached. The user estab-
lishes the relative line number of each
line at system generation via the IODEVICE
macro. In the line group associated with
the data control block named GROUP1l, the
New York and Boston terminals are attached
to one line (relative line number 1) and
the Washington terminal is attached to
another line (relative line number 2).
Since the messages are queued by line, the
individual TERM macro instructions must be
grouped by relative line number. For
example, it would be incorrect if the TERM
macro instructions in this line group were
in the order NYC, WAS, BOS.

The fourth operand of each TERM contains
the addressing and polling characters for
the terminal. These characters are speci-
fied in the hexadecimal equivalent of the
transmission code. In instruction 5, E407
is the hexadecimal equivalent of B3 and
E40D is the hexadecimal equivalent of B6 in
IBM 1050 code. B3 constitutes the address-
ing characters; for IBM 1050s, the first
addressing character identifies the termi-
nal, and the second identifies the com-
ponent (the number 3 indicates the com-
ponent addressed is a card punch). B6 con-
stitutes the polling characters (6 is the
identification of a card reader). Transla-
tion of the addressing-polling character
representations in instruction 6 is A3A6;

Message Control Program 51

translations of instructions 7 through 10
are all B3B6. If all these terminals were
on the same line, and all were to be
addressed or polled individually, a unique
set of addressing and polling characters
would have to be assigned to each terminal.

The fifth operand of each TERM contains
the data to be inserted in the subfields
defined by the OPTION macro instructions.
Instructions 5 through 7 specify data for
all three optional subfields because the
LPS that operates on messages for this line
group (GROUP1) includes the COUNTER,
POLLIMIT, and DIRECT macro instructions.
COUNTER uses the COUNT subfield to keep a
count of all messages received by the New
York, Boston, and Washington terminals,
respectively. The count is set initially
to zero in all entries.

POLLIMIT uses the value in the LIMIT
subfield to restrict the number of messages
that can be sent by a terminal during one
polling pass; the New York (NYC), Boston
(BOS), and Washington (WAS) terminals can
send a maximum of 8, 3, and 1 messages,
respectively, during each polling pass.

The DIRECT macro instruction uses the name
specified in the DEST subfield to determine
where to send the messages originated by
each terminal. All messages sent by the
New York terminal are directed to the Bos-
ton and Washington terminals because the
distribution list entry, BOW, is specified.
Messages sent by the Boston and Washington
terminals are directed to the New York
terminal.

Instruction 8 specifies data for only
the COUNT and DEST subfields; a POLLIMIT
macro instruction requiring information
from the LIMIT subfield is not included in
the LPS that operates on messages for this
line group (GROUP2). It should be noted
that an additional comma is required to
specify that no data is inserted in the
LIMIT subfield. Instruction 9 specifies
data only for the COUNT subfield because
neither the POLLIMIT nor DIRECT macro
instruction is in the LPS for the line
group (GROUP3). 1In this case, no addition-
al commas are required because no subfield
following the COUNT subfield is used.
Storage is not allocated for the LIMIT and
DEST subfields in the terminal table entry
for the Pittsburgh (PIT) terrinal.
Instruction 10 does not specify data for
any of the optional subfields since none of
the optional functions are specified in the
LPS for the line group (GROUP4). No
storage is allocated for the optional-area
field in the entry for the Raleigh (RAL)
terminal.

Instruction 11 (DLIST): Creates a distri-
bution list entry in the terrminal table.
When BOW (the name of the list) is found as

52

a destination code in a message header, or
in the DEST subfield of the terminal send-
ing the message, the message is routed to
the Boston and Washington terminals.

Instruction 12 (PROCESS): Creates a pro-
cess program entry in the terminal table.
When CPU is specified as the destination

code for a message, the message is routed
to the message processjing program repre-

sented by this process program entry.

POLLING LISTS

Polling is a centrally controlled method of
permitting each terminal on a multi-
terminal nonswitched line to send messages
without contending for use of the line.
QTAM contacts the terminals in the order
established by a user-specified polling
list. The polling list consists of control
information followed by a series of point-
ers to those terminal table entries repre-
senting terminals to be polled. In opera-
tion, QTAM steps through the pointers one
by one. For each pointer QTAM finds the
polling address in the indicated terminal
table entry and sends that address on the
line. As each terminal recognizes its
unique address,; it either sends a message
if one is ready for transmission, or it
sends a negative response if no message is
ready. It should be noted that for a sys-
tem without the Auto Poll feature, the
negative response is handled by the QTAM
system, thus requiring CPU time.

After a message is received from a ter-
minal, the same terminal is again polled,
and it again sends a message if one is
ready. This process is repeated until the
terminal has no more messages to send or
until the user-established polling 1limit
for that terminal is reached, whichever
occurs first. (The POLLIMIT macro instruc-
tion is used to set the limit.)

Each time a negative response is
received by the computer or the polling
limit is reached, QTAM repeats the polling
process using the next pointer in the list.
This operation is repeated until the termi-
nal represented by the last pointer in the
polling list has sent a negative response
or has sent its last message. When this
occurs, the polling process is rescheduled,
starting at the beginning of the list. If
the user has specified a polling interval
in the DCB macro instruction for the line
group, the next pass through the polling
list is deferred for the time specified.

A polling list must be specified for
each line in the system. In defining a
list for a nonswitched line, the user may

enter terminal names as many times as he
wants to, and in any order. A list can
include terminals on one line only. 1If a
line is used for output only, the user must
specify a polling list with no terminal
entries.

The polling process has a different
meaning for switched lines. For non-
switched lines, the computer generally
initiates contact with the terminals.
However, for switched lines, the terminal
normally initiates the contact. The poll-
ing function in this case consists only of
sending the polling address to the terminal
that initiates the contact. The terminal
responds by sending one or more messages.
The polling address is sent by the computer
after each message is received. The poll-
ing list for a switched line does not con-
tain pointers to terminal table entries.
Rather, it contains a single polling
address (except for switched IBM 2740 and
TWX terminals) in addition to control
information. When a terminal dials the
telephone number associated with the line
represented by this polling list, QTAM
sends the polling address on the line.

In the case of TWX terminals, the poll-
ing function consists of sending a charac-
ter sequence on the line rather than a
polling address. Otherwise, the polling
function is identical. 1In the case of
switched IBM 2740s (types 1I, V, VII, and
VIII), the polling list is specified as
pollname POLL FFFF. Incoming message
transmission begins when the computer an-
swers a call from the terminal.

For WTTA terminals, the polling function
is not used because the message control
program is always ready to receive input
messages. However, the polling list con-
tains the computer identification sequence
to be sent to a WITA terminal each time an
identification exchange is performed.

The polling process has a different
meaning for Auto Poll lines. Instead of
causing a CPU interruption on receiving a
negative response, as the regular poll
does, the hardware itself initiates polling
of the next terminal in the polling 1list.
The polling list for an Auto Poll line does
not contain pointers to terminal table
entries. Rather, it contains (after open
DASD time) a series of polling characters
and index characters in addition to control
information. When a message is read into a
buffer, the index character, associated
with the polling characters of the respond-
ing terminal, replaces the machine EOA
character as the first data character in
the header. (This index may be used to
identify the responding terminal.)

To use QTAM more efficiently, the pro-
grammer should be aware of the processing
done by QTAM in polling. To poll -a termi-
nal or line, QTAM forms a ring of buffer
request blocks (for BRBs see section Buffer
Definition and Use) with one associated
buffer for each terminal in the polling
list. There are three times when this ring
is broken down by QTAM.

1. On a negative response if sending has
priority over receiving and there is a
message to send. The ring is then
rebuilt to send an outgoing message.

2. At the end of a message transmission
to free the buffers and the line for
another transmission.

3. At the end of a polling list to wait
for the interval of time delay.

Since this manipulation of the BRBs
requires additional CPU time, the user must
adjust the polling list to suit his appli-
cation. To increase the performance, the
user may change the interval of time delay
at certain periods of the day. Refer to
Appendix O for an example of this
capability.

The POLL macro instruction is used to
define polling lists for both switched and
nonswitched lines. QTAM also provides rou-
tines for examining and modifying polling
lists. The macro instructions for imple-
menting these routines are described in the
section Examining and Modifying the Tele-
communications System. The structure of
polling lists is shown in Appendix A.

Polling List Definition {(POLL) Macro

Instruction

POLL generates a polling list for a specif-
ic line attached to the telecommunications
control unit (TCU). For a nonswitched
line, it defines the order in which termi-
nals on the line.are to be polled. For a
switched line, it specifies the polling
address or identification sequence to be
sent to any terminal that calls the com-
puter on the line represented by the list.
One POLL macro instruction must be written
for each switched and each nonswitched line
in the system.

r T L] 1
| Name |Operation]Operand |
' il 4 "
T T T
| pollname| POLL }{ (entry,...) ‘ |
| | I\ (.AuTOPOL= {1}]2 |
| | 1 2} I
| | Izpolladdr S |
I | |\nid I
L L 1 J
Message Control Program 53

pollname

the name of the polling list to be
created for the line. The name must
be specified and must be identical
with a name specified in the sublist
of the CPOLL keyword operand in the
DCB macro instruction for the line
group. In addition, the pclling list
defined must be the list for the line
indicated by the relative position of
the name in the CPOLL sublist.

entry, ...

the names of the terminals on a non-
switched line or on an Auto Poll line
in the order in which the terminals
are to be polled. All the terminals
specified must be on the same line.
Each name specified must be the name
of a TERM macro instruction defining a
single terminal entry. If the line is
used for output only, the entry
operands must be omitted. This
operand is to be specified only for
nonswitched lines and Auto Poll lines.
This operand must be enclosed in
parentheses even if only one terminal
name is specified. This operand must
be omitted for WTTA lines.

polladdr

nid

54

the polling address to be sent to any
switched IBM terminal that dials the
computer on the line represented by
this polling list. All such terminals
that can dial the computer on this
line must recognize the same polling
address. This operand must be speci-
fied in the hexadecimal representation
of the transmission code appropriate
to the type of terminal on this line.
This operand is to be specified only
for switched lines on which IBM termi-
nals can dial the computer. For a
line on which an IBM 2740, type II, V,
VII, or VIII can call the computer, an
operand of FFFF must be specified. If
the line is used for output only, this
operand must be omitted.

the number of characters in the iden-
tification sequence of the computer to
be sent to any TWX terminal that dials
the computer on the line represented
by this polling list, followed by the
characters themselves. Both must be
written as one continuous character
string in hexadecimal notation. The
ID characters must be written in hexa-
decimal notation of 8-level TWX code.
This operand is to be specified only
for switched lines on which TWX termi-
nals can call the computer. If the
line is used for output only, this
operand must be omitted.

For WTTA lines, nid is the number of
characters of the computer identifica-
tion sequence, followed by the charac-
ters themselves. Both must be written
as one continuous character string in
hexadecimal notation, that is, the
number of characters is in hexadecimal
notation, and the characters them-
selves are in the hexadecimal repre-
sentation of the 5-level code used by
the terminal.

AUT OPOL
Specifies that the terminals are on an
Auto Poll line.

"1" specifies that the terminals are
IBM 1030 terminals. From 1 to 123 of
these terminals may be specified for
one line.

"2" specifies that the terminals are
either IBM 1050, 1060, 2740 Type III,
or 2740 Type IV terminals. From 1 to
82 of these terminals may be specified
for one line.

Example: The following POLL macro instruc-
tions create the required polling lists for
two nonswitched input lines, one non-
switched output line, one switched line on
which IBM 1050s can dial the computer, two
switched lines on which TWX terminals can
dial the computer, one line polled using
the Auto Poll feature, and one nonswitched
WTTA line.

[—1 T T 1
] [|Name |Operation]|Operand |
F—+ + + 1
|1.|{POLLINE1|POLL | (CHI, BOS) |
|2. | POLLINE2|POLL | (NYC, PHI, NYC,WAS) |
|3. | OUTLINE3}POLL | [
| 4. | POLLINEY4] POLL |E215 |
{ 5. | POLLINES | POLL | OCB150FF72A3EBS24 |
1 |] | BD2B15088 |
| 6. | POLLINE6 | POLL]03884DCY [
|7. | POLLINE7]|POLL | (NYC, PHI,NYC,WAS), |
1 1 | JAUTOPOL=2 |
| 8. | POLLINES]|POLL]08020830352D38122D |
|1 | |0208 -]
L AL 1 1 J

These macro instructions create polling
lists used to:

1. Poll the Chicago and Boston terminals
in that order.

2. Poll the New York, Philadelphia, New
York, and Washington terminals in that
order.

3. Represent the output-only line.

4. Poll an IBM 1050 whose polling address
is A0 (E215 is the 1050 transmission

code representation of A0, in hexadec-
imal notation).

5. Send the computer's identification
sequence, preceded and followed by
control characters, to any TWX termi-
nal that calls the computer on this
line. The operand for the next POLL
macro is the transmission code repre-
sentation of CR LF DELETE N E W A R K
CR LF X-on, in hexadecimal notation.
The X-on character will turn on the
tape transmitter of the calling TWX.

6. Send a "turnaround" sequence to any
answering TWX that the CPU has dialed
to turn on the tape transmitter of the
TWX. The operand of this POLL macro
instruction is the transmission code
representation of X-on 2 X-off, in
hexadecimal format.

7. Auto Poll the terminals NYC, PHI, NYC,
WAS in that order. Associate the
index characters 1, 2, 3, and 4 with
their terminal entries.

8. Send the computer identification
sequence (preceded and followed by
control characters) to any WTTA termi-
nal with which an identification
exchange is to be performed. The
operand for this POLL macrc instruc-
tion is the device code representation
of:

100CRLF 36 0-50CRLF

in hexadecimal notation.

\BUFFER DEFINITION AND USEj

The user must specify the size and number
of the main storage areas required by QTAM
for input and output buffering. This
information is specified by including one,
and only one, BUFFER macro instruction in
the message control program. These main
storage areas collectively form a buffer
pool that is allocated to and used dynamic-
ally by QTAM to handle the transfer of mes-
sage segments from and to all communication
lines, direct access queuing devices, and
processing queues.

All buffers in the buffer pocl have the
same length. Since the entire header por-
tion of a message must fit in the buffer
that receives the first message segment,
the length specified must be equal to or
greater than the size of the message header
used, plus 32 (the size of the header pre-
fix generated and used by QTAM routines).

Buffer request blocks (BRBs) are QTAM
control blocks used tc dynamically request
buffers prior to their actual allocation
from the buffer pool. The user should
determine the number of BRBs required by
the QTAM system.

Management of data buffers for incoming
and outgoing messages is an important fac-
tor in running a QTAM system at optimal
efficiency. There are three factors that a
programmer must consider in weighing the
balance between tire and main storage.

1. The user must specify the correct
number of buffers to assure no loss of
or undue delay of data.

2. The user must select the size of the
buffer to accommodate his message.

3. The user must decide on the number of
BRBs needed for a reliable system.

Figure 11 is provided to aid in deciding
the effect of these factors. The figure
shows the advantages in specifying more or
less of the quantity with other considera-
tions equal.

Buffer Request Blocks

The number of BRBs required in the system
is a function of a number of variable fac-
tors. The most important factor is the
number of lines that are to be polled at
the same time. The user should initially
specify a value that represents the maximum
number of BRBs that cculd be in use. If
the user. has specified a reasonable value
in the BUFRQ operand of the DCB macro
instruction for each communication line
group, the maximum number of BRBs he may
need to specify in the BUFFER macro
instruction may be calculated as follows:

e For each line group, multiply the num-
ber of buffers specified in the BUFRQ
operand by the number of lines in the
group; add the prcducts obtained for
each line group. To this figure, add
the number of buffers specified in the
BUFRQ operand of each concurrently used
MS process queue.

e To this figure, add one buffer for each
concurrently used MS destination queue
defined by message processing programs.
The sum is the maximum number of BRBs

required.
Example: Assume three line groups, GPONE,

GPTWO, and GPTHREE, consisting of five,
twelve, and eight lines, respectively. The
BUFRQ operands of GPONE, GPTWO, and GPTHREE

Message Control Program 55

QUANTITY

] LB 3
| | ADVANTAGES |
; + {
| larger buffers] 1. Requires fewer buffers for a message, resulting in less |
	manipulation of the buffers by QTAM.
	2. Decreases the probability of losing data, since there is
	less chance of missing a program controlled interrupt.
i	3. Makes better use of disk tracks if buffers are filled.
	I
	4. Decreases the disk time, since there are fewer disk
	accesses.
t } 1	
smaller buffers	1. Requires a shorter amount of time to £ill up buffers. This
	results in more dynamic use of main storage, and hence main
	storage is not tied up unprofitably.
{	2« Increases likelihood of filling the entire buffer, therefore
	making better use of main storage. If a message does not
	fill up the buffer (as in larger buffers), main storage is
	~ wasted.
t + 1	
more buffers	1. Decreases the chance of losing data of incoming messages.
	2. Assures that outgoing messages are not delayed because they
i are waiting for a buffer.	
	3. Allows more CPU time for other tasks.
L 4

t + : 1
| fewer buffers | 1. Uses main storage more efficiently. No more buffers than |
| | the amount needed for incoming and outgoing messages are |
| | used, thus speeding throughput and saving main storage.

L R 4
v T - B]
more BRBs per line	1. Reduces the chance of losing data due to a missed program
	controlled interrupt.
	2. Saves main storage if inactivity allows fewer buffers than
i BRBs to be specified.	
L L d	
T 1) 1	
less BRBs per line	1. Saves buffers. Since there are as many buffers used at one
	time, when transmitting or receiving on a line, as there are
	BRBs assigned to the line; buffers are nct unnecessarily
] tied up. (Only one buffer per line is assigned during	
! polling.)	
L 4 - ¥]
Figure 11. Aids in Specifying BRBs and Buffers

specify 3, 3, and 5, respectively. Also
assume that there is one message processing
program that defines one MS process queue
with BUFRQ=1, and one MS destination queue.
The maximum number of BRBs to be specified
in the BUFFER macro instruction is calcu-
lated as (3x5) + (3x12) + (5x8)

+ 1+ 1= 93,

The value calculated using the above
formula represents the maximum number of
BRBs that could be needed at one time. 1In
actual operation, the greatest number
required at one time would be somewhat
lower, and the user may wish to specify a
lesser value.

An exception arises when all the lines
consist of dial lines or lines polled with

56

the Auto Poll feature. 1In these cases the
value derived above is the actual value
that should be specified. In other cases
experience within the operating environment
of a particular application can best demon-
strate the practicality of specifying a
lesser number of BRBs.

Buffers

The number of buffers specified must be
equal to or greater than the number
required at any one time. If the number of
buffers needed to acccmmodate message
traffic at any time exceeds the number of
buffers available, loss of message data can
occur. Therefore, the user should specify

a sufficient number of buffers in the
BUFFER macro instruction to prevent this
problem from arising under any expected
operating conditions.

Because the actual number of buffers
that will be in use at any particular
moment depends on several variable factors,
the user should initially specify a value
that represents the maximum number that
could be in use.

This maximum value is related to the
number of lines and the number of BRBs by
the following formula:

Number of buffers = L + f(BRB - L)

where L = number of lines

BRB number of BRBs

]

f a factor with a value of

between 0 and 1.

For small systems with few lines, the fac-
tor f approaches one. For larger systems a
value of 0.5 might be adequate. Experience
within the operating environment of a par-
ticular application can best demonstrate
the appropriate value.

Example: In the previous example there

were 25 lines and 93 BRBs. A reasonable
number of buffers for most applications

would be

number of buffers = 25 + 0.5(93 - 25)
= 59.

BUFFER Macro Instruction

BUFFER specifies the main storage buffer
areas required by QTAM. The buffers are
allocated to QTAM as a block of main
storage called the buffer pool. This macro
instruction produces no executable code.

T T
Name | Operation|Operand
% 4.
|
i

BUFFER

[e oy e
AP SAg——

]
|nnn,length(, mmm] [, BRB]
L

nnn
the number of buffers to be reserved
(see the sample calculation in the
preceding example).

length

the length, in bytes, of each buffer.
All buffers in the buffer pool have
the same length. The length specified
must equal or exceed the length of the
longest message header used in the
system (including any fields inserted

by the LPS), plus 32 (the size of the
QTAM-generated header prefix). The
length of the message segment size
used in the system is based on the
buffer length. The minimum buffer
length is .56 bytes (80 bytes if the
Operator Control Facility is included)
and the maximum is 278 bytes. The
minimum does not include bytes
reserved by the LPSTART macro for
fields to be inserted into the header.
For instance, if 7 bytes were reserved
by LPSTART for the date, then the
minimum buffer size would be 63 rather
than 56. Length should be defined so
that each buffer starts on a fullword
boundary. The length of the records
in the DASD message queues should be 8
bytes less than the size specified in
this parameter.

the number of channel command words
QTAM must generate for sending the
idle characters specified by the PAUSE
macro instructions in the LPS sections
of the message control program. The
number of CCWs required depends on a
number of variables whose cumulative
effect changes during system operation
(The principal factors are the number
of appearances in messages of each
control character that requires inser-
tion of characters, and the number of
lines over which outgoing messages are
being sent at the moment.) Because
determining the actual number of CCWs
that could be needed at any given
moment is impractical, the user should
initially specify a "worst-case"
value, (i.e., a value representing the
maximum number of CCWs that could be
required under any operating condi-
tion). This value may be calculated
as follows:

mmm = 2(L3(I;) +Ly(I3) + <we Lp(Ip))
where L = the number of lines in
the line group and I = the
expected number of appearances of
control characters per outgoing
message buffer for which inser-
tion of idle characters is
required; L(I) to be calculated
for each of the line groups 1
through n.

Example: Assume that the LPS for the first
line group includes PAUSE macro instruc-
tions that cause insertion of idle charac-
ters each time a NL (new line) or an HT
(horizontal tab) character is encountered
in an outgoing message buffer. Also assume
that the expected number of appearances of
these control characters is two, for the NL
character, and six, for the HT character.
I; is therefore 2 + 6 = 8. 1If the line
group consists of five lines, L;(I;) equals

Message Control Program 57

5(8). If the system includes two other
line groups for which L(I), calculated
similarly, equals 3(6) and 7(5), then mmm =
2(5(8) + 3(6) + 7(5)) = 186.

In most applications this "worst-case"
value will considerably exceed the actual
number of CCWs required. Therefore, the
user may reduce the value during system
testing. If this operand is omitted, zero
is assumed.

BRB=integer
the number of buffer request blocks
(BRBs) to be reserved. (See the
sample calculation in a previous
example.) This number must be greaterx
than or equal to the number of buffers
specified. If this operand is omitted
or the number specified is less than
the number of buffers, the number of
BRBs is set equal to the number of

buffers.
Example: Assume a system in which:
1. 59 buffers of 100 bytes each are
required.

2. The number of CCWs required for inser-
tion of idle characters is calculated
as in the preceding examnple.

3. The number of BRBs required is 93.

The BUFFER macro instruction would then be
written:

BUFFER 59,100,186,BRB=93

DATA SET INITIALIZATION AND ACTIVATION

The data set initijialization and activation
section of the message control program
begins with an OPEN macro instruction and
ends with the ENDREADY macro instruction.
Within the message control program, this
section must precede the LPS section. When
the instructions in this section have been
executed, the system is ready toc handle
message traffic.

The OPEN macro instruction completes the
initialization for and activation, K of the
DASD message queues data set, communication
line group data set, message-log data set,
and checkpoint data set. The data sets
used by the message control program can be
opened by separate OPEN macro instructioms,
or they can all be opened with one OPEN.
Regardless of which method is used, the
user must open the DASD message queues data
set before any other data set used by QTAM.
If the checkpoint option is used, the
checkpoint data set must be opened after

58

the DASD message queues data set and before
the line group data set. Opening a line
group data set causes all lines in the line
group to be prepared for operation; the
lines are activated automatically for mes-
sage reception.

Activation of a line group data set can
be deferred through use of the IDLE operand
in the OPEN macro instruction. The purpose
of such a deferral is to facilitate activa-
tion of particular lines in a line group.
This is accomplished by the STARTLN macro
instruction (see the section Examining and
Modifying the Telecommunications System).

There can be a 30-second delay for each
OPEN macro instruction for line not opened
idle. During Open time, QTAM must issue
commands to prepare the lines for opera-
tion. If the interrupt indicating the line
is initialized has not been received, QTAM
waits 30 seconds for completion. If the
commands have not completed after 30
seconds, the following message is written
to the console.’

IEC80GI ENDING STATUS NOT RECEIVED FROM
LINE XXX - LINE UNAVAILABLE

Opening multiple data sets with one OPEN
macro instruction may avoid the 30-second
delay.

The ENDREADY macro instruction must be
the last instruction in the initialization
and activation section. When ENDREADY has
been executed, the system is ready to
handle message traffic. The expansion of
this macro instruction causes a branch to
the IBM-provided logic that supports the
message control program. The first message
procured can be either a message coming in
from a terminal, or a message being sent to
a terminal by a message processing program.
When the first message is procured, control
is returned to the LPS section of the mes-
sage control program for handling of the
message.

" Once the LPS is initially entered via
the expansion of the ENDREADY macro
instruction, execution in the message con-
trol program is restricted to the LPS sec-
tion; that is, the LPS is continually reen-
tered to handle messages entering and leav-
ing the computer as long as the message
control program is active.

The STARTLN, COPYP, CHNGP, COPYT, CHNGT,
and COPYQ macro instructions may be used in
the initialization and activation section
of the message control program. This is
useful if the user wishes to modify the
status of his system at the time the mes-
sage control program is initiated. For
example, a COPYT macro instruction can be
issued to record the system status prior to

opening the telecommunications line groups.
If the above macro instructions are used in
this section, they must precede the
ENDREADY macro instruction. Generally,
however, these macros are employed in
another program so that the status of the
system can be dynamically examined and
modified as needed. The section Examining
and Modifying the Telecommunications System
contains a detailed discussion of the
macros that may be issued in a message con-
trol program. Those which may be issued in
a message processing program are described
in the publication 0S QTAM Message Pro-
cessing Program Services.

OPEN Macro Instruction

OPEN is used in the message control program
to complete initialization and activation
of the message-log, line group and DASD
message queues data sets. All of these
data sets can be opened separately or with
one OPEN. However, the user must open the
DASD message queues data set before any
other data set used by QTAM. The operands
of the OPEN macro instruction specify the
names of the data control blocks for the
data sets. A sublist for each data control
block name specified is used to:

1. Specify the nature of the data set
(input, output, or both).

2. specify whether or not activation is
to be deferred for communication line
groups.

If the data control block for a line
group is specified, the OPEN routine com-
pletes the initialization of all lines in
the line group and automatically activates
the lines for message transmission, unless
the IDLE operand is specified in the sub-
list. If in the OPEN for a nonswitched
line group, the user specifies INPUT or
INOUT, but does not specify IDLE, the Open
routine initiates polling on those lines in
the group that have an active polling list
with terminal entries. If in the OPEN for
a switched line group the user specifies
INPUT or INOUT, but does not specify IDLE,
the Open routine issues commands to enable
each line in the line group.

If IDLE is specified, all of the lines,
or particular lines in the line group, can
be subsequently activated by one or more
STARTLN macro instructions. The user can
also inhibit polling or enabling of a line
by changing the second byte of the polling
list for that line to zero (this deacti-
vates the polling list) before issuing the
OPEN for the line group, but after issuing
the OPEN for the direct access message

queues. (See the CHNGP macro instruction
description in the section Examining and
Modifying the Telecommunications System.)

If this OPEN specifies a message-log
data control block, the QTAM routines are
brought into the system and prepared for
placement of messages on the logging
device. OUTPUT must be specified as the
first operand in the sublist for the
message~-log data control block name.

r T T 1
| Name !Op 10perand J

- 3 _ . }
| symbol | OPEN| INPUT : i
I | 1 O\ dcb,, [¢ | OUTPUT|(,IDLE])1,f|
| !] INOUT eeed|
|]] ¢ MF=L] |
! | | #MF=(E, listname) |
L IR 1 J

symbol
either the name cf the first instruc-
tion generated by the OPEN or the name
of a parameter list created by OPEN.
If the MF=L operand is specified, sym-
bol must be included; it becomes the
name of the parameter list. If no MF
operand is specified, or the MF=(E,
listname) operand is specified, symbol
is optional. If included, it becomes
the name of the first instruction
generated by OPEN.

dcby
the address of the data control block
to be opened. If register notation is
used, the register designated must
contain the address of the data con-
trol block.

INPUT
specifies an input data set. If
neither INPUT, OUTPUT, nor INOUT is
specified, INPUT is assumed. Polling
begins on all lines having an active
polling list with terminal entries
provided: (1) the data set being
opened is for a nonswitched line
group, (2) the INPUT (or INOUT)
operand is specified (or INPUT is
assumed), and (3) the IDLE operand is
omitted. If the data set being opened
is for a switched line group, and con-
ditions 2 and 3 apply, then all lines
in the line group are enabled.

OUTPUT
specifies an output data set. TIf the
data set being opened is for a non-
switched line grcup and OUTPUT is
specified, the CPOLL operand of the
DCB macro for the line group refers to
a polling list with no terminal
entries. OUTPUT only cannot be speci-
fied for switched line groups.

Message Control Program 59

INOUT

" IDLE

MF=L

60

specifies a data set that can be used
for both input and output. If a line
group data set is being opened,some of
the lines can be used for input and
others for output, simultaneously.

For nonswitched line groups: If an
entry in the CPOLL operand sublist in
the DCB macro for the line group
points to a polling list with terminal
entries, the line is a polled input
line; polling begins if the polling
list is active and the IDLE operand is
not specified in the OPEN macro. If
an entry in the CPOLL operand sublist
in the DCB points to a polling list
with no terminal entries, the line is
an output-only line.

For switched line groups: If an entry
in the CPOLL operand sublist in the
DCB macro for the line group points to
a polling list that contains a polling
address (or CPU‘ identification for
TWX), the line is an input line; it is
enabled if the polling list is active
and the IDLE operand is not specified
in the OPEN macro. If an entry in the
CPOLL operand sublist in the DCB
points to a polling list without a
polling address, the line is an output
line.

pertains only to line group data sets.
If the IDLE operand is included, the
line group data set is initialized but
the lines remain inactive until acti-
vated by a STARTLN macro instruction.
If IDLE is omitted, all lines in the
group are automatically activated when
the OPEN is executed.

Note: If neither INOUT nor IDLE is
specified for a particular data set,
and a subsequent data control block
address is specified in the sublist,
two commas must appear between the two
specified data control block
addresses.

causes creation of a parameter list
based on the OPEN operands. No
executable code is generated. The
user must specify this form of the
OPEN with his program constants. The
parameters in the list are not used
until the problem program issues an
OPEN (or CLOSE) macro with an MF=(E,
listname) operand referring to the
list (see example below). The name
specified in the name field of the
OPEN macro becomes the name assigned
to the parameter list.

MF=(E, listname)
causes execution of the Open routine,
using the parameter list referred to
by listname. This list was created by
a macro having the MF=L operand speci-
fied, as previously described. Param-
eters specified through a macro having
MF=(E, listname) operand override
corresponding parameters in the list.
An OPEN macro with the MF=(E,listname)
operand can also refer to a parameter
list created by a CLOSE macro with an
MF=L operand.

Examples: An OPEN macro instruction that
could be used in the message control pro-
gram is:

w T
Name|Op |Operand
4 1 .

T T
| OPEN | (QUEUE, , GROUPONE, (INOUT, IDLE),

i | MSGLOG, (QUTPUT))
i 1

r
|
L
v
I
|
i

R S——

In this example, QUEUE is the name of the
direct access message queues data set,
GROUPONE is the name of a line group data
set, and MSGLOG is the name of the message-
log data set. If the user wished to use
the MF=L form, the macro would be written:

r T T 1
|Name|Op |Operand |
L 1 1 J
LB Ll L) 1
| OLST| OPEN} (QUEUE, , GROUPONE, (INOUT, IDLE), |
l | | MSGLOG, (OUTPUT)), MF=L |
L L L J

The user would place the above macro among
his definition statements so the parameter
list would be produced among the constants.
The following macro, placed in the data set
initialization section, could be used to
‘activate the data sets:

r L .
|Name|Op |Operand
PN 3

v
| | OPEN| (QUEUE, , GROUPONE, (INOUT, IDLE)
| [| MSGLOG, (OUTPUT)) , MF= (E, OLST)

L

L L

b e e e e

ENDREADY Macro Instruction

The data set initialization and activa-
tion section must be ended by an ENDREADY
macro instruction. ENDREADY is essentially
a type of wait instruction. The event
awaited is the procurement of the first
message. Only one ENDREADY macro can be
included, and it must be the last in the
group of data set initialization and acti-
vation instructions.

Name

L
Operation|Operand
4
E

NDREADY

[e e om
o en s o
e e b o

- —

LINE PROCEDURE SPECIFICATION (LPS)

The procedure to be followed by a message
control program in operating upon messages
being received from or sent to remote ter-
minals is defined by one or more user-
written sequences of QTAM macro instruc-
tions. Each sequence is called a line pro-
cedure specification (LPS). The user must
prepare an LPS for each communication line
group in the system. However, more than
one line group may use the same LPS if they
all require identical message control
procedures.

The purpose of the LPS is to define
macro-introduced routines that:

1. Examine and process control informa-
tion in message headers.

2. Perform functions necessary to prepare
message segments for processing by
message processing programs, or for
forwarding to destination terminals.

Preparing an LPS consists of selecting cer-
tain of the QTAM macro instructions
described in this chapter and writing them
in a particular sequence, according to the
requirements of the installation and of the
line group. In preparing an LPS, the user
must carefully analyze such considerations
as the formats of message headers passing
through the line group, the type of termi-
nal and type of line (switched or non-
switched) in the line group, and the pro-
cessing requirements for various types of
messages (if messages having different
handling requirements are directed to the
same LPS).

Two major types of macro instructions
are used in the LPS: functional macro
instructions and delimiter macro instruc-
tions. In general, the functional macro
instructions perform the specific opera-
tions required on messages directed to the
LPS. Delimiter macro instructions classify
and identify sequences of functional macro
instructions and direct control to the
appropriate sequence, according to whether
the message segment is incoming or outgo-
ing, and whether it is a header segment or
a text segment.

COMPONENTS OF THE LPS

The LPS is divided into two major groups of
macro instructions: the Receive group,
which handles incomring messages; and the
Send group, which handles outgoing mes-
sages. In the coding of the LPS, the
Receive group must precede the Send group.
Each of the major groups is further divided
into three coding subgroups. The Receive
Segment and Send Segment subgroups contain
macro instructions concerned with all por-
tions (both header and text) of incoming
and outgoing messages, respectively. The
Receive Header and Send Header subgroups
contain macro instructions concerned only
with the headers of incoming and outgoing
messages. Macro instructions in the End
Receive and End Send subgroups perform
error-handling procedures for incoming and
outgoing messages.

The Receive Header and Receive Segment
subgroups may each be used more than once
within the Receive group. Similarly, the
Send Header and Send Segment subgroups may
be used more than once within the Send
group. For example, an application might
require that different operations be per-
formed for several different types of mes-
sages directed to the same LPS; each of the
message types could require a different
header format. In such a case, there could
be a separate Receive Header subgroup to
process the header of each message type.
The user can include in his header formats
a special message-type character for each
type of message. The MSGTYPE functional
macro instruction can be used to examine
the message-type character and direct con-
trol to the appropriate Receive Header
subgroup.

The sequence of the Receive Header and
Receive Segment subgroups within the
Receive group, and the sequence of the Send
Header and Send Segment subgroups within
the Send group, may depend on which func-
tional macro instructions are specified
within the subgroups. For example, assume
that the TIMESTMP rmacro is included in the
Receive Header subgroup, and that the TRANS
macro is included in the Receive Segment
subgroup. The TIMESTMP macro enters the
time of day into the message header in
EBCDIC form, and the TRANS macro translates
all message segments from transmission code
into EBCDIC. It is evident that the EBCDIC
time information must be inserted after the
header has been translated to EBCDIC, not
before. The translate routine must there-
fore be executed before TIMESTMP; hence,
the Receive Segment subgroup, which con-
tains the TRANS macro, must be executed
before the Receive Header subgroup.]

Message Control Program 61

————

The End Receive and End Send subgroups
may each be used only once and, if used,
must be the last sections within the
Receive and Send groups, respectively.

If only the IBM-provided macro instruc-
tions and associated macro-introduced rou-
tines are used in coding an LPS, the
Receive Header subgroup is mandatory. The
user may omit any other subgroup if it is
not. required for a particular application.
For example, the Receive Segment and Send
Segment subgroups may be omitted in a mes-
sage switching application if all terminals
involved use the same transmission code
(that is, translation of the message text
is not required) and none of the other
functions that require translation are
desired. Any or all coding subgroups may
be omitted if the user prefers to write his
own routines for the functions he requires.
An LPS must contain, as a minimum, the
LPSTART, POSTRCV, and POSTSEND delimiter
macro instructions to provide the linkage
between the LPS and the IBM-provided logic
that supports the message control program.

Figure 12 shows the various coding sub-
groups that can be included in an LPS, the
delimiter macro instructions associated
with each subgroup, and the functional
macro instructions (in alphabetical order)
that can be used in each subgroup.

DELIMITER MACRO INSTRUCTIONS

Delimiter macro instructions group the
functional macro instructions into the
various subgroups. They also perform
initialization and control functions within
the LPS.

The LPSTART macro instruction identifies
the beginning of the LPS and must be the
first instruction in every LPS. The code
generated by the expansion of LPSTART
determines whether the message segment en-
tering the LPS is incoming or outgoing and
directs the segment to the Receive group or
the Send group accordingly. In an applica-
tion that directs multisegment messages to
the LPS, it is necessary that the function-
al macro instructions in the header-
processing subgroups be executed only where
the message segment being handled contains
the message header. The expansions of the
RCVHDR and SENDHDR delimiter macro instruc-
tions cause the header-processing subgroups
to be bypassed when a message segment con-
tains text only.

POSTRCV and POSTSEND identify the ends
of the receive group and the Send group,
respectively. These delimiters, along with
LPSTART, must appear in every LPS. Each of

62

the remaining delimiters is required only
if the user chooses tc include in the LPS
the coding subgroup associated with that

delimiter.

FUNCTIONAL MACRO INSTRUCTIONS

Functional macro instructions perform the
specific operations required on message
segments. These functions include:

* Message editing (code translation and
insertion of time of day, current date,
and message sequence numbers in message
headers).

e Checking validity of source and
destination codes in message headers.

¢ Routing messages to specified
destinations.

¢ Maintaining logs of messages on an
auxiliary storage device.

¢ Checking for errors in message trans-
mission and taking corrective action.

Functional macro instructions that per-
form operations related to an entire mes-
sage segment may appear at any point within
the coding subgroup in which they are used.
All functional macro instructions in the
Receive Segment, Send Segment, End Receive,
and End Send subgroups are included in this
category. The majority of the functional
macro instructions in the Receive Header
and send Header subgroups perform functions
that concern a specific header field.

Macro instructions of this type involve
either:

1. Use of a QTAM scanning routine to
determine the contents of a specific
header field (e.g., SEQIN and SOURCE);

2. Insertion of a new field in the mes-
sage header (e.g., TIMESTMP and
SEQOUT); or

3. Making a decision at some point during
header processing (e.g., MODE and
MSGTYPE)

These macro instructions must appear in a
specific sequence dependent on the format
of the message headers.

In planning a format for message head-
ers, the user may arrange the various head-
er fields in any desired order. Macro
instructions involving scanning, insertion
of a field, or making a decision must be in
the same relative order as the correspond-
ing message header fields on which they
operate. Figure 12 indicates the function-
al macro instructions that must be
sequenced in this ranner.

r S B o 1
| RECEIVE MACRO-INSTRUCTIONS | | SEND MACRO-INSTRUCTIONS |
b= T T —4-—f— T T]
|Coding |] | | Coding]]
|Subgroup | Delimiter | Functional | | Subgroup | Delimiter | Functional |
b t + S + --—- -1
| | LPSTART® | | | SENDHDR | COUNTERG |
b + -+ —————q ! | DATESTMPZ |
| | RCVSEG | | send i | LOGSEG]
|Receive | | BREAKOFF | | Header ! | MODE?2]
| | | COUNTER | | X' MsGTYPE2 |
| Segment | | LOGSEG | 1 | | SEQOUTZ2]
| | | TRANS | | | SKIP2]
t + + s | | TIMESTMP2 |
| | RCVHDR I | l | TRANS |
I | | COUNTER 11 | | WRU]
| | | DATESTMP, | | -—+ . i
| i | DIRECT 11 | SENDSEG |]
[| | EOAZ | | send | | COUNTER]
| | | LOGSEG | | Segment | | LOGSEG]
|Receive | | MODEZ2 I] | PAUSE]
| Header | | MSGTYPE2 (| | | TRANS 1
| | | OPCTL= [| ! |
| I | POLLIMIT | } + + 4
|] | ROUTE= 11 | ENDSEND | i
| | | SEQIN2 [| | EOB |
| | | SEQOUT2 P] | EOBLC]
| | | SKIP2 | | End i | ERRMSG 1
| | | SOURCE?2 | | send { | INTERCPT |
| | | TIMESTMPZ | | | | REROUTE]
| | | TRANS | | | WRU]
(R 4 4 1 1 4 L 4
i T T T T 1 1 4
| | ENDRCV | | | | POSTSEND?® |]
| | | CANCELM I |]]
|End | | EOB [| |]
|Receive | | EOBLC | | | i 1
| | | ERRMSG I | |]
| | | POLLIMIT . |]]
| | | REROUTE | 1 I | 1
t + + i 1 | | |
| | POSTRCV 1 | |] |]]
lf 1 1 L 1 —_—d <ll
|tRequired delimiter macro instruction.]
| 2Functional macro instruction must be in the same relative order as]
| the corresponding message-header field on which it operates. |
L 3

Figure 12.

Note: The entire header of each message
must be contained within the buffer that
receives the first segment of the message
(see the BUFFER macro instruction descrip-
tion). In addition, headers of messages
that contain end-of-block characters must
not extend past the first end-of-block
character in the message. In no case may
the header exceed 256 bytes in length.

Some functional macro instructions that
use the scanning routine provide the option
of specifying the length of the header
field to be scanned (e.g., ROUTE and
SOURCE). If the user does not specify the
length, the field is assumed to be of vari-
able length and must end with a blank char-
acter. No blank character may appear
within the field because it will be mis-

Line Procedure Specification Macro Instructions

taken for the end-of-field delimiter. If
the field length is specified, the field to
be scanned need not end with a blank char-
acter, and may contain embedded blanks,
which will be skipped.

THE SCAN POINTER

In QTAM, general register 5 is used as the
scan pointer register, maintaining a point-
er to the current field in the message
header. From the user's standpoint, this
pointer is his key to QTAM. Through the
use of QTAM macro instructions, the user
manipulates this pointer, examines fields
in the header, and makes decisions based on

Message Control Program 63

the contents of these fields. 1In designing
a QTAM message control program, the user
must be constantly aware of the header
field about to be processed.

QTAM macro instructions perform many
varying functions from verifying sequence
information to placing messages on destina-
tion queues. The user can design a simple
message switching application using QTAM
macro instructions only, and no user code
(see Appendix L). More sophisticated ap-
plications may require that the user use
the scan pointer in his routines.

There are basically two types of LPS
macro instructions that cause the scan
pointer to be moved. Examples can be found
in Figure 13.

A. Certain macros move the scan pointer
along until a user-specified character
sequence is found (SKIP X'15'). After
these macro instructions have com-
pleted, the scan pointer is positioned
to the last character in the sequence.

B. Other macro instructions mcve the scan
pointer a certain number of charac-
ters. There are three ways this num-
ber is determined.

1. Certain macro instructions have a
fixed count of characters
(DATESTMP) or an assumed count to
be used if no other count is sup-
plied (TIMESTMP). When this type
of macro instruction is completed,
the scan pointer points to the
last character to satisfy the
count. Any blank characters
encountered are skipped over.

2. With certain macro instructions,
the user may specify a number of
nonblank characters to be consid-
ered as the next field (ROUTE 3).
When these macro instructions are
completed, the scan pointer is
positioned to the last character
that satisfies the count. The
user may send in RA L, and the
field is still considered RAL.
The scan pointer points to the L.

3. With some macro instructions, the
field may be variable in length
(SOURCE). In this situation, the
field length is not specified by
the user. The scan pointer is
moved forward past any blanks that
might precede the field. The
field is then scanned for a blank
delimiter. When these macro
instructions have executed, the
scan pointer points to the blank
delimiter which follows the field.

6u

When a message is first received for
processing by the receive portion of the
LPS, the space reserved by the LPSTART
macro instruction for expansion has been
filled with idle characters (X'17°'). The
scan pointer is positioned to the last of
these idle characters. If no idle charac-
ters are specified in the LPSTART macro
instruction, the scan pointer points to the
last byte of the header prefix.

After the receive section of the LPS is
completed, the positicn of the scan pointer
is saved in the MSPTR field of the header
prefix, and the message is placed on the
queue for its destination. When the mes-
sage comes off the destination queue to go
through the send portion of the LPS, the
scan pointer is restored to its former
position, pointing to the last character of
the last field processed. Additional sta-
tus information may be inserted into the
header before the message is finally
transmitted.

A message processing program may gener-
ate a response message containing idle
characters before the header fields. When
this message is retrieved from the destina-
tion queue for transmission to the termi-
nal, the scan pointer points to the last of
these idle characters. If no idle charac-
ters are in the message, the scan pointer
points to the last character in the header
prefix. Macro instructions in the SENDHDR
section of the LPS will bypass these idle
characters in scanning for the beginning of
the header field.

The user may use the scan pointer in his
own routines to perform header analysis not
provided by QTAM. However, he must take
the responsibility of positioning the scan
pointer to its proper position before
executing the next QTAM macro instruction.

ERRCR HANDLING FUNCTIONAL MACRO
INSTRUCTIONS

Four functional macro instructions
(CANCELM, INTERCPT, REROUTE, and

ERRMSG), called error macro instructions,
permit the user to test for conditions for
which he wishes appropriate action to be
taken. These macro instructions are used
in conijunction with the error halfword for
the communication line involved. The error
halfword consists of sixteen bits, and is
located at LCB+40 (dec) or at regl+40
(dec). Each bit (except unused bits) indi-
cates the presence (when 1) or absence
(when 0) of a specific error or condition
that has affected or may affect successful
transmission of a wessage. The meaning of
each of the bits is explained in Figure 14.

Before DATESTMP is issued:

Message Header

Message Message
Prefix 17 V17 |17 |17 |17 }17 fi7 | 7B 15| A T L R A L Text
[} 4) 4
Position of Scan Pointer is at:

(@) After LPSTART and RCVHDR have been issued.

@ After SKIP X'15' has been issued.

@ After SOURCE has been issued.

@ After ROUTE 3 has been issued.

After DATESTMP is issued:

Message Message
Prefix 7Bl AT L R 1AL 618 21410 Text

make room for the date.

The DATESTMP macro instruction causes the
header contents to be shifted 9 spaces left to
The date is inserted
and the scan pointer is positioned at @ .

®Figure 13. Scan Pointer Movement

The user specifies a halfword bit con-
figuration (called a mask) in each error-
handling macro instruction used. Upon com-
pletion of transmission of each message (or
each block of a message), the mask is com-
pared to the error halfword. 1If a 1 is
detected in any bit position of both the
mask and the error halfword, the function
specified by the macro instruction is per-
formed. A 0 is specified in a mask bit
position when the error or condition repre-
sented by the corresponding position in the
error halfword is to be ignored.

The user may cause the function speci-
fied by the macro instruction tc be per-
formed unconditionally (that is, for ali
messages or message blocks) by specifying a
mask consisting entirely of zeros.

The user must analyze the requirements
of his application to determine which
errors or conditions must be detected and
which can reasonably be ignored without
degrading the performance of his system.
The four error-handling macro instructions
provide varying methods by which corrective
or control functions can be initiated when
an error has been detected.

The ERRMSG macro instruction is used to
send an appropriate message to a designated
destination when any error specified by the
mask has occurred. For example, if an in-

valid destination code is detected during
receipt of a message, the ERRMSG macro
instruction could be used to send a message
to the originating terminal stating the
nature of the error and requesting that the
message be corrected and sent again. The
INTERCPT macro instruction suppresses the
sending of messages to a terminal when any
error specified by the mask has been
detected; it is normally used to withhold
transmission to a terminal that has become
inoperative. The section on Functional
Macro Instruction Descriptions contains
detailed discussions c¢f these and the other
error-handling macro instructions.

The user must be very careful in testing
the bits in the error halfword. Each cir-
cumstance is special and there are no gen-
eral rules on when to test a certain bit.
Take the case where a user wishes to inter-
cept all messages to a terminal when a con-
trol mode time-out occurs at that terminal.
(A control mode time-out occurs when more
than the maximum allowable time elapses
between polling or addressing of a termi-
nal, and receipt of a response from that
terminal.) A mask of X'40u48*' in the
INTERCPT macro instruction will assure that
the message in error and all following mes-
sages to that terminal will be intercepted.
Also, the user would like to be notified
when this error occurs at the terminal. A
mask of X'4048* in the ERRMSG .macro

Message Control Program 65

instruction will cause the specified error
message to be sent whenever any message for
that terminal is intercepted as a result of
the time-out error. The generation of the
error message will continue for each mes-
sage intercepted until the problem at the
terminal is corrected or until a RELEASEM
is issued for that terminal.

The user might not wish to be notified
every time a message for that terminal is
intercepted after the first one. A mask of
X*0048°' in the ERRMSG macro instruction
would cause the error message to be sent
only after the first message for that ter-
minal is intercepted after the time-out.

In contrast to IBM terminal, the TWX
33/35 terminal normally times out when
there are no messages to send instead of
sending a negative response. It is recom-
mended that the user not send an error mes-
sage to a TWX terminal for a time-out indi-
cation, because this causes the repoll,
time-out, and‘'message sequence to be con-
tinually repeated.

This is only an example of a particular
case, but it shows the difference in per-
formance with different bits tested.

Note: It is particularly important to
specify some action to be taken in the
évent that a message sent to a terminal is
not received by the terminal owing to line
or terminal failure. If no action is
taken, there is no record of which messages
have been lost because of such failure.

ARRANGEMENT OF LPS MACRO INSTRUCTION
DESCRIPTIONS

There are two major types of LPS macro
instructions:

1. Delimiter macro instructions.
2. Functional macro instructions.

Because the decision as to which macro
instructions should be included in an LPS
and how they should be sequenced depends
greatly on the particular application, no
attempt is made to discuss the macro
instructions in any logical order. The
macro instruction descriptions are arranged
alphabetically by major type for easy
reference.

Note: The user is cautioned against
transferring control between macro instruc-
tions within the LPS. A user-written
branch to a macro instruction may require
that the user also perform functions (such
as register saving and restoring) normally

66

provided by the IBM-supplied coding. Since
user-written branches are the exception
rather than the rule, the name fields in
the macro instruction formats for the LPS
macro instructions (with the exception of
LPSTART) have been omitted.

It is recommended that the user not
include comments on macro definition state-

‘ments because they may be interpreted as

operands.

DELIMITER MACRO INSTRUCTION DESCRIPTIONS

LPS delimiter macro instructions are used
to group the functional macro instructions
into the various coding subgroups. They
also provide initialization and control
functions within the LPS.

End Receive (ENDRCV) Macro Instruction

ENDRCV identifies the beginning of the End
Receive coding subgroup of the LPS. The
functions specified in this subgroup are
performed after an entire message has been
received by the corputer.

If EOB or EOBIC is specified, the func-
tional macro instructions preceding the EOB
or EOBLC in this subgroup will be performed
for each message block; the functional
macro instructions following the EOB or
EOBLC will be performed only after the
entire message has been received. (See the
descriptions of the EOB and EOBLC macro
instructions.)

If the End Receive subgroup is used, it
must begin with the ENDRCV macro instruc-
tion. It must be the last subgroup in the
Receive group and can be used only once in
the LPS. No operand is required.

v L)
|Operation|Operand
L 1

-
R Y

L3
|ENDRCV |
L

-

End Send (ENDSEND) Macro Instruction

ENDSEND identifies the beginning of the End
Send subgroup of the LPS. The functional
macro instructions included in this sub-
group are executed after an entire message
has been sent by the computer, or after a
message block has been sent if EOB or ECBLC
is included as the last macro instruction
in the subgroup. (See the descriptions of
the EOB and EOBLC macro instructions.)

Header Analysis Byte

Line Control Byte

Invalid
Destination
Code

Terminal
Inoperative

Sequence
Number
High

Sequence
Number

Low

Incomplete
| Message
Header

Invalid
Source
Code

Transmission| Time -Out
Error Exceeded

Breakoff |Imsufficient | Message

Error Buffers Not Sent |

(For
QTAM
Use)

0

1

2

3

4 5

6

7 8 9

Bit

0

!
|
|
|
|
|
|
!
|
|
|
|
|
|
|
!
|
|
!
|
|
!
|
!
|
|
!
|
|
|
|
1
|
|
|
|
|
l
|
|
|
|
|
!
|
|
|
|
|
|
|
!
!

Function and Explanation

Invalid destination code.

The ROUTE macro instruction found a destination
code in the message header for which there is no corresponding destination

name in the terminal table.

placed on the dead-letter queue.

Appendix K.)

Terminal inoperative.

The message for the invalid destination is

that destination is off (i.e., a zero bit).

Sequence number high.

terminal.
number may appear in more than one message.

expected sequence number is not changed.

Sequence number low.

appear in more than one message.

sequence number is not changed.

Not used.

Incomplete header.

This bit is not available to the user.

(For explanation of dead-letter queue, see
If a CANCELM macro instruction is given for this error condi-
tion, the message is cancelled for any destinations whose codes follow the
invalid one in the message header, as well as for the invalid destination.

The message was not sent to its destination because
the "send" bit (bit 6 of the TSTATUS field) in the terrxinal table entry for

The SEQIN routine found a message sequence number
higher than the expected number for the next message originating from that

If the message is not cancelled by the user, the same sequence
When this error is detected, the

The SEQIN routine found a message sequence number lower
than the expected number for the next message originating from that terminal.
If the message is not cancelled by the user, the same sequence number may
When this error is detected, the expected’

The incoming message header did not terminate within the

first message segment (or prior to the first end-of-block character).

Invalid source code.

incoming message header contained a code that:
name of the terminal that was connected to the computer
line, or (2) did not correspond to any terminal name in

The Source routine found that the

(applicable only to switched terminals).

Should not occur.

not listed.

Transmission error.

vertical redundancy check, time-out,

sending of a message.

bit 12 will also be on.

Time-out exceeded.

If not, bit 12 will be off.

source field in the
(1) did not correspond to the
over a nonswitched
the terminal table

Error Recovery Procedures have detected an error that is

Any error in transmission, such as a longitudinal or
intervention required, or unsuccessful
identification exchange over WITA lines, occurred during the receiving or
If the error occurred during polling or addressing,

The maximum allowable time interval between reception of
successive characters of a message, or between polling/addressing of a termi-

nal or component and receipt of a response from the terminal has been

exceeded, indicating possible terminal or line failure.
occurred during polling or addressing, bit 12 will also be on.

12 will be off. This bit will be on whenever a time-out or intervention

required error has occurred.

If the error

If not,

bit

o o e o e o — — —— i — —— ——— —— — — — — t— — — o, — — {—— —— — . 2. S, A G o S S S S . S~ — o— — s . i, s, . e

Figure 14.

Communication Line Error Halfword (Part 1 of 2)

Message Control Program 67

was caused by the control unit.

14 and 15 For internal use by QTAM.

The QTAM buffer assignment routine was unable to pro-

If the bit is off, the terminal is in text

Error Recovery Procedures have detected an error that

I

| Bit Function and Explanation

|

| 10 Breakoff error. The BREAKOFF routine found an incoming message whose length
| exceeded the maximum allowable length, or one in which all of the characters
| in one of the buffers containing the message were identical (indicating line
| trouble).

|

| 11 Insufficient buffers.

| vide buffers for an incoming message.

| tion may be corrected by requesting the originating terminal to resend the

| message. Frequent occurrences of this condition require that QTAM be rede-
| fined with a larger number of buffers.

|

| 12 Message not sent. This bit is set when a remote terminal is polled and does
1 not receive a response, when a remote terminal is addressed and does not send
| a positive response, or when there has been an unsuccessful identification

| exchange at the beginning of an output message on WITA lines.

| instances a control mode error has occurred such as time-out or intervention
| required (bit 9 is also set).

| mode. Therefore, if an error bit other than bit 12 was set, the error

| occurred during actual message transmission.

| cessful identification exchange has occurred on WI'TA lines.

| test this bit (LCBERRST + 1 = X'08') before his error handling macros to

| avoid handling control mode errors by the error macros.

|

| 13 Control Unit Failure.

!

|

|

L

Infrequent occurrences of this condi-

In these three

If bit 8 is also set, an unsuc-
The user may

e s ot S . s — c— —— — —— — — ——— —————— {—— — — — —— — v ot it o g}

Figure 14.

If the End Send subgroup is included, it
must begin with the ENDSEND macro instruc-
tion. It must be the last subgroup in the
Send group and can be used only once in the
LPS. No operand is required.

If EOB or EOBLC is specified, the func-
tional macro instructions preceding the EOB
or EOBLC in this subgroup will be performed
for each message block; the functional
macro instructions following the EOB or
EOBLC will be performed only after the
entire message has been sent.

r T
}|Operation|Operand
I8 4

r T
|ENDSEND |
L 4 -

| SRR Shp——

Line Procedure Specification Start
(LPSTART) Macro Instruction

The LPSTART macro instruction provides an
initialization procedure for the LPS.
LPSTART is required and must be the first
macro instruction in every LPS.

The code generated by the expansion of

this macro instruction makes a test to
determine whether the message segment en-

68

Communication Line Error BHalfword (Part 2 of 2)

tering the LPS is incoming or outgoing, and
directs the segment tc the Receive group or
the Send group, accordingly.

r 1 T 1
| Name |Operation] Operand |
b ¢ — {
| lpsname | LPSTART | [nn,] |
| | | TERM=(termcodes <) |
]] |[,INTRCPT={YES}] |
I | | No |
L 1 _— 4
lpsname

the total name of the macro instruc-
tion; it is required. It must be the
same as lpsname specified in the CLPS
keyword operand cf the DCB macro
instruction for the line group.

nn
the total number of bytes to be
reserved in the message header in the
first buffer of each input message for
insertion of time-of-day, current-
date, and output-sequence-number
information and insertion of the ECA
for the 1152 or 83B3 terminals if they
are used for output. (see TIMESTMP,
DATESTMP, and SEQOUT macro instruction
descriptions and the section Exchang-
ing Messages Between IBM and non-IBM
Terminals). If this operand is
omitted, no space is reserved. The

number of bytes reserved must be
included in the calculation of the
buffer size (see BUFFER macro instruc-
tion description).

TERM
this parameter must be included in
each LPSTART macro instruction.

Value description:
(termcodey ;...)
is the identifying code for the types
of terminals for which terminal tests
will be provided. The following
values can be included in the sublist:

1. 1030 specifies IBM 1030
terminals.

2. 1050 specifies IBM 1050
terminals.

3. 1060 specifies IBM 1060
terminals.

4. 2848 specifies IBM 2848 control
units (associated with remote IBM
2260 terminals).

5. 2740 specifies IBM 2740

6. 83B3 specifies ATET 83B3 selec-
tive calling stationms.

7. 115A specifies Western Union Plan
115A outstations.

8. TWX specifies common carrier TWX
stations.

9. WTTA specifies World Trade tele-
graph terminals

Note: On-line terminal tests will not be
made on Teletype terminals (numbers 6, 7,
8, and 9 above), but they must be specified
if that terminal type is included in this
LPS.

INTRCPT=YES
this operand must be specified if the
INTERCPT or RELEASEM macros are used
in the LPS, or’'if the operator control
function is to intercept or release a
terminal that uses this LPS.

INTRCPT=NO

if INTRCPT=NO is specified, or if this

operand is omitted, the Release and

Intercept facilities must not be used.
Note: If the user wishes to use the
intercept-release function in conjunction
with checkpoint-restart, then an additional
parameter must be included in the user’'s
LPSTART macro defining the name of the
intercept OPTION field in the TERM entries.

Post Receive (POSTRCV) Macro Instruction

POSTRCV identifies the end of the instruc-
tion sequence that processes incoming mes-
sages, that is, instructions in the Receive
Segment, Receive Header, and End Receive
coding subgroups.

One POSTRCV macro instruction is
required in each LPS, and it must be the
last instruction in the Receive group. No
operand is required.

I T
|Operation]Operand
1

e

| POSTRCV
L

o e

Post Send (POSTSEND) Macro Instruction

POSTSEND identifies the end of the instruc-
tion sequence that processes outgoing mes-

sages, that is, instructions in the Send
Header, Send Segment, and End Send coding
subgroups.

One POSTSEND is required in each LPS,
and it must be the last instruction in the
Send group. No operand is required.

] T
|Operation]Operand
1 1

4

r
|POSTSEND |
L

b e mdun i ad

-

Receive Header (RCVHDR) Macro Instruction

RCVHDR identifies the beginning of the
Receive Header subgroup, which contains
instructions concerned only with the header
portions of incoming messages. The
instructions generated by the expansion of
this macro instruction test whether the
message segment being operated on contains
the message header or text only. If the
segment contains text only, the functional
macro instructions in the Receive Header
subgroup are bypassed; if the segment con-
tains the message header, the instructions
in the Receive Header subgroup are
executed.

If the Receive Header subgroup is
included in the LPS, it must begin with the
RCVHDR macro instruction. No operand is
required.

Message Control Program 69

r L)
|Operation |Operand
L

b e e e

o e s

b
| RCVHDR
l -

Receive Segment (RCVSEG) Macro Instruction

RCVSEG identifies the beginning of the
Receive Segment subgroup, which contains
instructions concerned with both header and
text portions of incoming messages. -

If the Receive Segment subgroup is
included in the LPS, it must begin with the
RCVSEG macro instruction. No operand is
required.

r T
|Operation |Operand
i iR

SRR Sp—— |

3 L)
|RCVSEG |
L L

Send Header (SENDHDR) Macro Instruction

SENDHDR identifies the beginning of the
Send Header subgroup, which contains
instructions that process only header por-
tions of outgoing messages. The code
generated by the expansion of this macro
instruction includes instructions that test
whether the message segment being operated
on contains the message header or text
only. The functional macro instructions in
the Send Header subgroup are executed if
the segment contains the message header;
they are bypassed if the segment contains
text only.

The user must be sure that the proper
EOA sequence is to be transmitted with the
message. A discussion of the EOA sequences
for different terminals can be found in
Appendix H.

If the Send Header subgroup is included
in the LPS, it must begin with the SENDHDR
macro instruction. No operand is required.

r T
|Operation |Operand
t

e s s

fr— =

v
| SENDHDR
L

70

Send _Segment (SENDSEG) Macro_ Instruction

SENDSEG identifies the begirining of the
Send Segment subgroup, which contains
instructions concerned with both header and
text portions of outgoing messages.

If the Send Segment subgroup is included
in the LPS, it must begin with the SENDSEG
macro instruction. Nc operand is required.

L) T
|Operation |Operand
L 4

1) 1
|SENDSEG |
L

L O

-

FUNCTIONAL MACRO INSTRUCTION DESCRIPTIONS

LPS functional macro instructions perform
specific operations concerned with message
segments. The appropriate functional macro
instructions must be selected and properly
sequenced to satisfy the specific handling
requirements of messages directed to the
LPS.

Halt Receive (BREAKOFF) Macro Instruction

BREAKOFF is used to specify a maximum
length for each incoming message. If the
message exceeds the maximum length, recep-
tion of the message is terminated and an
error flag is set in bit ten of the error
halfword for the line. This macro instruc-
tion also checks if the input buffer is
filled with identical characters. If it
is, the same action is taken as described
above. (A long sequence of identical char-
acters is usually an indication of terminal
malfunction.)

Use of BREAKOFF is optional. If used,
it must appear within the Receive Segment
coding subgroup.

BREAKOFF can be used only for messages
from 115A and 83B3 Teletype terminals.

r T
|Operation]Operand
L 1

N s

T T
||BREAKOFF |nnnnn
L 4

nnnnn
the maximum number of characters for
each message. The maximum value of
"nnnnn" is 32767.

Cancel Message (CANCELM) Macro Instruction

CANCELM is an error-handling macro instruc-
tion that causes immediate cancellation of
a message if any of the errors specified by
the mask has been detected. Cancellation
means that the message is not sent to the
destination(s) specified in the message
header (handled by the ROUTE macro), or by
the DIRECT macro. If CANCELM is used to
test for an invalid destination code and
the error has occurred, the message is can-
celled for the invalid destination and for
any destinations whose codes follow the in-
valid one in the message header. If a mes-
sage is cancelled, any subsequent EOB or
EOBLC in the subgroup that handled the mes-
sage will have no effect.

If a message is not sent to its intended
destination due to cancellation, it is
important that some action be taken to
notify a termimnal operator or to perform
some other corrective action. If no action
is taken, there is no record of which mes-
sages have been lost because of cancella-
tion. The ERRMSG macro instruction can be
used to send a message to a terminal noti-
fying its operator of the error; or the
REROUTE macro instruction can be used to
send the message in error to a selected
terminal (see the descriptions of these
macros). CANCELM must precede an ERRMSG or
REROUTE macro instruction used to test for
the same error condition in the End Receive
subgroup. CANCELM cannot be used to cancel
messages for a PROCESS EXPEDITE queue or
multisegment messages in initiate mode
(since cancelled messages must be recalled
from the DASD destination queue).

The meaning of the bits in the error
halfword tested is shown in Figure 14.

Use of CANCELM is optional. If used, it
must appear within the End Receive subgroup
of the LPS. It should not be placed after
an ERRMSG or REROUTE macro instruction.
Since all errors requiring message cancel-
lation can be specified in the same error
mask, only one CANCELM macro instruction is
needed in the End Receive subgroup.

[k]
|Operation |Operand
L 4

b s ks s ed

r T
| CANCELM |mask
L i

mask
the hexadecimal representation of the
bit configuration used to test the
error halfword for the communication
line involved. The framing X and
gquotes must be coded.

COUNTER Macro Instruction

COUNTER enables the user to maintain four
types of count:

1. Incoming message segments from each
originating terminal if EOBs are not
used in the message; incoming message
segments plus message blocks if EOBs
are used in the message.

2. Incoming messages from each origina-
ting terminal.

3. outgoing message segments for each
destination terminal.

4. Outgoing messages for each destination
terminal or terminal component that
has a single terminal entry in the
terminal table.

The position of the COUNTER macro
instruction within the LPS determines which
of the four types of count will be main-
tained. COUNTER must appear in the Receive
Segment subgroup to count incoming message
segments, in the Receive Header subgroup to
count incoming messages, in the Send Seg-
ment subgroup to count outgoing message
segments, and in the Send Header subgroup
to count outgoing messages. Any one or all
four counts can be maintained by including
the COUNTER macro instruction in the appro-
priate subgroups; within each subgroup, it
may appear at any point.

For each COUNTER macro instruction

issued, the user must define, by means of

one OPTION macro .instruction, a halfword
field for each entry in the terminal table
defined by a TERM macro instruction. This
provides space for maintaining the
messages-per-terminal or message segments-—
per-terminal count. The number of COUNTER
macro instructions used in the LPS, and the
number of OPTION macrc instructions for the
count fields must each correspond to the
number of counts being maintained. See the
OPTION macro instruction description.

Use of COUNTER is cptional. If it is
used in the Receive Header or Receive Seg-
ment subgroup and the terminals for which
it maintains counts are on a switched line,
COUNTER must be preceded by a SOURCE macro
instruction. If COUNTER is to be used to
count segments over a switched line, there
must be two Receive Segment subgroups in
that LPS, one before the Receive Header
subgroup containing the required SOURCE
macro, and one following it. The first
Receive Segment subgrcup will translate the
message segment and the second will count
the segments.

Message Control Program 71

Note: If COUNTER is used to record incom-
ing messages from a line group to which IBM
2260s are attached, all segments received
from the various 2260s during a general
poll are counted as one message.

r T
|Operation |Operand
R 1 .

|
i
e e s —

1) T
|COUNTER |field
L L

field
the name of a halfword field in the
user's area of each single terminal
entry in the terminal table, as
defined by an OPTION macro instruc-
tion. The field contains a binary
count up to a maximum of 32,767. When
the maximum count has been reached,
the count is reset to 1 for the next
message or segment counted. The user
may access the field at any time to
determine and/or reset the count.

Date Stamp (DATESTMP) Macro Instruction

DATESTMP causes insertion of the date in
the message header. DATESTMP can be
included for incoming messages, outgoing
messages, or both. The date is expressed
as byy.ddd, where b is a blank, yy is the
year, and ddd is the day of the year (for
example, b67.289).

No operand is necessary in this macro
instruction because the date field has a
fixed length of seven. When DATESTMP is
specified, the user must include the lengih
of the inserted field (seven bytes) in hi
calculation of the value of the operand in
the LPSTART macro instruction (see the
LPSTART macro instruction description).

Ulse of DATESTMP is optional. Tf used,
it must appear in the Receive Header or
Send Header subgroup. 1ts position within
the subgroup must correspond to the rela-
tive position within the header of the
field in which the current date is to be
inserted.

r T
[Operation |Operand
b +

r T
|DATESTMP |
L

e e s e o

-

DIRECT Macro Instruction

DIRECT causes a message to be queued for
the destination specified by the operand.
Any destination for which there is an entry

72

in the terminal table may be specified.
DIRECT may be used in place of ROUTE when
message headers do not contain destination
codes. Either DIRECT or ROUTE must be
specified to handle message routing; both
cannot be used. Only one DIRECT macro may
be used for each Receive Header subgroup or
for each message type used within one
Receive Header subgroup.

DIRECT may be used only within the
Receive Header subgroup. If DIRECT is
used, EOA must not be specified.

Note: If the TERM macro instruction speci-
fies that the IBM 2260-2848 complex is to
be polled using the general poll feature,
the DIRECT macro instruction must be used
to send incoming messages to a message pro-
cessing program. The processing program
must then analyze the message, which con-
sists of segments from different 2260s, and
place each segment on the proper DASD
destination or process queue.

— T
Operation |Operand
lp Lp

]
| {=CLn'dest*
subfield

T
| DIRECT
| |

L L

b s e ol e o

dest
the destination code, which may be the
name of any entry in the terminal
table. "n" must be egqual to or great-
er than the longest such name appear-
ing in the terminal table; or "n" may
be 8 (the maximum allowable length).
"n" may be omitted if this destination
name is the same length as the longest
destination name.

subfield
the name of an optional subfield in
the terminal table entry for the orig-
inating terminal. This subfield con-
tains the name of the terminal to
which the message is to be sent. The
name of the subfield specified by this
overand must be the same as the name
assigned to the subfield by an OPTION
macro instruction. The contents of
the subfield are specified by the TERM
macro instruction that defines the
terminal table entry for the origina-
‘ting terminal (see the OPTION and TERM
macro instruction descriptions). If
the originating terminal is on a
switched line, and the user wishes to
use this operand, DIRECT must be pre-
ceded by the SOURCE macro instruction.

End-of -Address (EOA) Macro Instruction

EOA is required if the user wishes to pro-
vide multiple routing of incoming messages.
The instructions generated by this macro
instruction determine the end of the list
of destination codes in the message header.
The character specified by the EOA macro
instruction must appear in the header of
each message after the last destination
code, regardless of the number of destina-
tion codes in the header.

When used, this macro instruction must
immediately follow the ROUTE macro instruc-

tion. EOA is not used if DIRECT is
specified.
Restriction: EOA must not be used for any

message whose destination is a processing
program queue identified by a PROCESS
EXPEDITs<-defined EXPEDITE terminal table
entry. Messages to a PROCESS EXPEDITE
gueue may not be routed to more than one
processing program station.

r T
|Operation |Operand
1 +

[}
b e o e ol

v T
| EOA | eoca
L i

eoa
the EOA character that must appear in
the message header after the last
destination code. If the destination
codes all have the same length, and
the optional operand in the ROUTE
macro instruction is specified, no
blank is required between the last
code and the EOA character. Other-
wise, a blank must separate the two.
Any nonblank character may be speci-
fied as the EOA character. The EOA
character may be specified either as
the character itself, or as the hexa-
decimal equivalent of the character.
The framing C or X and guotes must be
coded.

Examples: In an EOA macro instruction that
specifies a # to be used as an EOA charac-
ter, the # may be written either as the
character itself, or in hexadecimal repre-
sentation of the EBCDIC equivalent of that
character:

r T
|Operation |Operand |
b 1

1
[crar | @
|x' 78" | (2)
L

b
| EOA
|EOA
L

Hardware Error Checking

Two QTAM macro instructions are provided to
support the hardware error-checking and
retry capabilities available with IBM ter-
minals. The design of these macros, EOB
and EOBLC, permits the use of any of the
following hardware functions.

1. LRC/VRC checking only (e.g., 1060 ter-
minals) - Checking is provided, but no
automatic (hardware) retry of errors.

2. LRC/VRC checking with automatic line
correction (e.g., 1050) - Checking and
retry of error is provided, but manual
intervention is required after a per-
manent error is established.

3. LRC/VRC checking with automatic line
correction and release (e.g., 1050) -
Checking and retry of errors is pro-
vided without manual intervention
after a permanent error.

In the case of basic terminals (e.g.,
2740 Type I or Type III), neither the ECB
or EOBLC capability is to be used. EOBLC
capability is to be used.

In case 1 above, the EOB macro is
required following the ENDRCV and ENDSEND
macros of the corresponding LPS. For read
operations, a positive response will be
returned to the terminal after a block has
been successfully read; no response will be
returned after the read was unsuccessful.
OTAM will assume that the message is com-
pleted and re-poll for the next message.
For write operations, QTAM will transmit
the next block of a message following a
successful one. It will consider an unsuc-
cessful block as the termination of the
message.

Manual intervention is required to reset
the terminal upon occurrence of errors.

In case 2 above, the EOBLC macro is
required in place of the EOB. 1Its only
functional difference from the EOB support
is in handling of unsuccessful message
blocks. Message blocks causing an error
are retried twice before they are consid-
ered unsuccessful and the message is ter-
minated. Retries are for both read and
write operations. Manual intervention is
required to reset the terminal upon occur-
rence of errors. In read operations, the
operator must set his terminal to transmit
the next segment of the message, or EOT,
before starting his next message.

Case 3 above differs from case 2 in one
instance only. The remote terminal will,
without any manual intervention, continue
to transmit the rerainder of the message.

Message Control Program 73

OTAM will continue to receive and process
the remainder of the message.

In both cases 2 and 3, transmission of a
message from the CPU will terminate after
the second retry of an unsuccessful block.
Also, error indications for unsuccessful
blocks in input transmissions will be saved
in the error halfword. Error indications
for a specific block are available in the
error halfword during the LPS processing of
that block (prior to the EOBLC macro state-
ment); error indications for all blocks in
the transmission are available in the error
halfword during LPS processing following
receipt of EOT (following the EOBLC macro
statement) .

End-of-Block (EOB) Macro Instruction

An LRC check is performed each time an end-
of-block (EOB) or end-of-text (ETX) charac-
ter is encountered in message text. The
check is made by the data adapter at the
central processing location for incoming
messages, and by the terminal control unit
for outgoing messages. The EOR causes a
positive response to be sent to the source
of the message, if the data was received
correctly. If the 2740 Model 2 is equipped
with the checking feature, the transmission
of EOB is a hardware function. According-
ly, the EOB or EOBLC macro instruction must
be issued in the End Receive and End Send
sections of the LPS.

The EOB macro must normally be speci-
fied, in both the End Receive and End Send
subgroups of each LPS that handles messages
to and from an IBM 1030, 1050, 1060, 2260,
or 2740 types IV through VII. The EOB
macro (or EOBLC macro, as subsequently
explained) must be specified for a 2260-
2848 for which general polls are to be per-
formed. It may be omitted only if all mes-
sages are one block long and if possible
errors are to be ignored (both conditions
are required). Either the EOBLC or the EOB
macro instruction must be specified in both
the End Receive and the End Send subgroups
of each LPS that handles messages for an
IBM 2740 Model 2 terminal.

This macro instruction is used only for
the terminal types just cited. In the case
of the IBM 1050, 2260, and 2740 (types IV
through VII), the EOBLC macro instruction
(subsequently discussed) may be specified
instead of the EOB macro.

For Incoming Messages: The EOB macro
causes a positive response to be sent to
the terminal if the message data was
correctly received. This permits the ter-

T4

minal to send another message block. If
the data was incorrectly received, no
response is sent; reception of the message
is terminated. The terminal must resend
the message block when contact with the
computer is reestablished (by polling or
dialing). Either the EOBLC or the EOB
macro instruction must be specified in both
the End Receive and the End Send subgroups
of each LPS that handles messages for an
IBM 2740 Model 2 terminal.

For Outgoing Messages: The EOB macro
causes an EOB (or ETX), followed by an LRC
character, to be sent to the terminal when
an EOB (or ETX) character is encountered in
message text. If the terminal receives the
message data correctly, it returns a posi-
tive response. Upon recognizing this
response, the computer sends the next mes-
sage block. If the terminal receives the
data in error, it returns a negative
response. Upon receiving this response the
computer terminates transmission of the
message.

If the EOB macro is not specified, the
first EOB (or ETX) character encountered in
incoming or ocutgoing message text is
treated as an end-of-transmission {(EOT)
character, precluding transmission of any
subsequent blocks of that message.

Restriction: EOA must not be used for any
message whose destination is a processing
program queue identified by a terminal
table entry defined by PROCESS EXPEDITE.
Messages to a PROCESS EXPEDITE queue may
not be routed to another terminal or pro-
cessing program.

Note: Error-handling macros should not
precede the EOB macro because if the speci-
fied error condition occurs, the EOB macro
will not be executed. The EOB character
will be treated as an EOT, and the source
terminal will not receive a response to the
EOB-LRC sequence.

Within the coding subgroup in which the
EOB macro appears, all functional macro
instructions that precede the EOB macro are
executed for all message blocks. All func-
tional macros that follow the EOB macro are
executed only at the end of the message (an
EOB is treated as an end of message if a
transmission error occurred during trans-
mission of the block).

) L]
|Operation]Operand
1 L

e e b e

b
| EOB
L

-

End-of-Block and Line Correction (EOBLC)
Macro Instruction

EOBLC is an optional macro instruction used
only for:

1. An IBM 1050 with automatic line
correction feature.

2. An IBM 2260-28u8.

3. An IBM 2740 equipped with the checking
feature (types IV through VII).

4. An IBM 1030 - on read operations, the
EOBLC macro must be followed by a
CANCELM macro specifying data check.

5. An IBM 1060 - on read operations only,
the EOBLC macro must be followed by a
CANCELM macro specifying data check.

EOBLC performs the same function and is
used in the same manner as the EOB macro.
In addition, it returns a negative response
to the message source if the data was in-
correctly received, permitting the source
to resend the erroneous message block. If
the 2740 Model 2 is equipped with the
checking feature, the transmission of EOB
is a hardware function. Accordingly, the
FOB or EOBLC macro instruction must be
issued in the End Receive and End Send sec-
tions of the LPS.

For Incoming Messages:

1. For an IBM 1050 not equipped with the
line correction feature, resending is
accomplished by rekeying the message
block in error, or by repositioning
the paper tape or card containing the
erroneous block.

2. For an IBM 2740, resending is accom-
plished by rekeying the message block
in error.

3. For an IBM 2260, the terminal automat-
ically resends the message block.

4. For an IBM 1050 equipped with the line
correction feature:

a. If the erroneous message block
originated from the paper tape
reader or card reader, the device
automatically repositions the tape
or card and resends the block.

b. If the erroneous message block
originated from the keyboard, the
operator rekeys the message block.

For Outgoing Messages: For any of the
above terminal types, the computer automat-
ically resends the erroneous message block.

If EOBLC is specified, any message block
whose transmission resulted in an error is
retransmitted a maximum of two times. If
the error persists after the second retry,
an error flag is set in the error halfword
for the line (see Figure 1#).

Restriction: EOBLC must not be used for
any message to a PROCESS EXPEDITE queue oOr
multisegment messages in initiate mode.

i k]
Operation |Operand
L p 1 p

e . et e)

1
| EOBLC
L

—

Error Message (ERRMSG) Macro Instruction

ERRMSG causes a user-written error message
to be sent to a designated terminal when
one of the errors specified by the error
mask has occurred.

By means of the ERRMSG macro, the user
specifies:

1. The bit configuration of the mask used
to test the error halfword.

2. The destination to which the error
message is to be sent.

3. The text that is to comprise the error
message.

The meaning of the bits in the error
halfword tested is shown in Figure 14. The
error message includes the text written by
the user and, optionally, the header of the
message in error. The user specifies that
the header is to precede the text by writ-
ing a period as the first character of the
text. The length of the complete error
message cannot exceed one segment (that is,
one buffer).

Unless the MSGTYPE macro instruction is
used to distinguish between different mes-
sage types, the format of the header for an
error message must be identical with the
header format used for other outgoing mes-
sages. If the MSGTYPE macro instruction is
used for this purpose, the formats of the
respective message headers for the two
types may differ after the message-type
character. In either case, the correct EOA
character for the destination terminal must
be included.

If the ERRMSG macro does not specify
that the message header is to be included
with the error text, no LPS macros that
refer to fields in the header may be used
in the Send Header subgroup that is to pro-

Message Control Program 75

cess the error message, without some modi-
fication by the user.

For an ERRMSG macro that does not speci-
fy inclusion of the header of the message
in error, it is assumed that the user will
place the machine EOA character or sequence
in the first character position of the
error text (for the 2260 STX is used).

This is required by the terminal to receive
the error message regardless of which LPS
macros are to process the error message.
The scan pointer register, register 5, will
thus be pointing to the first character of
the message in error; this character will
be the EOA character (or the first charac-
ter of the EOA sequence). If the user
chooses to have a DATESTMP, TIMESTMP, or
SEQOUT macro operate on a message in error
that does not contain the header of the
erroneous message, he must first set the
scan pointer register to point to the first
character following the machine EOA. This
may be done by incrementing the register by
the number of characters comprising the EOA
sequence.

If the incoming sequence number is in-
valid, and an exror message is to be sent,
ERRMSG will scan the error message. If the
special character $§ is encountered, the
correct input sequence number is moved into
the four bytes following the $, and the $
is overlayed with a blank. If a second §
is found before the end of the error mes-
sage, the invalid sequence number is moved
into the four bytes following the $, and
this second $§ is also overlayed with a
blank. If this function is not desired, do
not use the character § in the error mes-
sage for invalid input sequence number.
unconditional mask (X'0000') may not be
used in this instance. If the message with
invalid sequence number was sent from a
terminal on a switched line, and this func-
tion is desired, the SOURCE nmacro instruc-
tion must be used in the Receive Header
subgroup of this LPS. This function does
not pertain to PROCESS EXPEDITE queues.

An

The CANCELM macro instruction should be
used prior to the ERRMSG macro instruction
if the message is to be cancelled.

This macro instruction, if used, must
appear within the End Receive and/or End
Send subgroup of the LPS; it can appear
more than once in either subgroup.

Restriction: ERRMSG must not be used for
any message whose destination is a process-
ing program queue identified by a PROCESS
EXPEDITE terminal table entry.

76

1) v A
{Operation iOperand }
r T

| ERRMSG | mask, |
| | (=CLn* dest" |
|] <subfield ’ i
|] (SOURCE |
] | f=C'message" |
| | \Imsgchar |
L L i o e d
mask

the hexadecimal representation of the
bit configuration used to test the
error halfword.

dest
the destination code for the terminal
to which the error message is sent; it
may be the name cf any entry in the
terminal table except a distribution
list entry. "n" must be equal to or
greater than the longest such name
appearing in the terminal table. The
maximum value for "n" is 8. "n" may
be omitted if this destination name is
the same length as the longest
destination name.

subfield
the name of a terminal table optional
subfield that is associated with the
name of the terminal from which the
message in error originated. The
error message is sent to the destina-
tion whose name appears in the option-
al field.

SOURCE
specifies that the error message is to
be sent to the terminal from which the
message in error originated. For
switched or Auto Poll lines, SOURCE
may not be used if this ERRMSG macro
is used for an illegal source code
error (that is, if the mask contains a
1 in bit position 6).

message
the actual text of the error message.

msgchar
the address of the first character of
the error message text; it must be in
the same CSECT as the macro

instruction.
Example: sShown in the following chart is

an ERRMSG macro instruction used in the End
Receive subgroup of an LPS to test for in-
valid destination codes or erroneous
sequence numbers. The first operand is the
hexadecimal representation of the configu-
ration (1011000000000000) of the mask that
tests bits 0, 2, and 3 of the error half-
word. The second operand indicates that
the error message is to be sent to the ter-
minal from which the message in error orig-

inated. The third operand is the address
of the first character of the error message
text.

-

T T
|Operation iOperand |

- . -1
| ERRMSG | X*B000"', SOURCE,ERMSG023 |
L 1 d
Example: Shown in the following chart is

an ERRMSG macro instruction used in the End
Send subgroup of an LPS to test for trans-
mission errors in outgoing messages. The
first operand is the hexadecimal represen-
tation of the bit configuration
(0000000100000000) of the mask that tests
bit 8 of the error halfword. The second
operand is the name of the terminal to
which the message in error is to be sent
(all error messages are sent to the same
terminal regardless of which destination
terminal was to have received the erroneous
message). The third operand is the text of
the error message. The period as the first
character causes the header of the message
in error, if there is a header for that
message, to precede the text. (A polling
error is an example of a message in error
that has no header. 1In this case the head-
er cannot be included in the error
message.)

In general, if the error nessage is to
be sent to an IBM terminal, it may end with
an end-of-block character.

] T 1
lOperation loperand }
U 1 1
| ERRMSG [X*0080*',=CL8"'NYCSUPVR", |
| |=C*'.TRANSM ERROR' |
L L 4

Intercept (INTERCPT) Macro Instruction

INTERCPT causes the suppression of all mes-
sage transmission to a terminal when any of
the errors specified by the mask has been
detected. The untransmitted messages
remain on the DASD destination queue for
that terminal. If the INTERCPT macro
instruction is to be used, the user must
specify a 3-byte subfield named INTERCPT in
the optional user area of the terminal
table. (See the OPTION macro instruction
description.) For each terminal for which
message transmission is suppressed:

1. The disk address of the first inter-
cepted message header is placed in the
INTERCPT subfield reserved in the
entry representing that terminal.

2. The intercept bit in the TSTATUS byte
of that entry is set to 1.

3. The send bit in the TSTATUS byte for
that entry is set to 0.

No further messages are sent to the
affected terminal until the user resets the
intercept and send bits. This may be done
by a message processing program using the
RELEASEM or CHNGT macro instruction or by
issuing a RELEASEM or CHNGT operator con-
trol message. If RELEASEM is used, all
suppressed messages (those on the destina-
tion gqueue) are sent, as are any new mes-
sages. If CHNGT is used, only the new mes-
sages (those placed on the destination
queue after CHNGT has been issued) are
sent. In the latter case, the suppressed
messages remain on the destination queue,
and cannot be sent unless the user obtains
them by a RETRIEVE macro instruction and
reissues a PUT for each of them. The mean-
ings of the bits in the error halfword
tested are shown in Figure 1t.

The INTERCPT macro instruction is used
to permit messages on a line that were not
transmitted to be sent at a later time.
Note that after the first message has been
intercepted for any ccndition specified,
the send bit in the terminal table for the
terminal will be turned off. Therefore,
all subsequent messages for that destina-
tion will not be sent, but will be flagged
as "terminal inoperative" in the error
halfword. These subsequent messages will
not be intercepted unless the error mask
for the error halfword has terminal
inoperative specified. If the terminal is
equipped with the Buffer Receive option,
the user must specify the INTERCPT macro
instruction in the End Send section of the
LIPS with a mask including the 'message not
sent' bit. This is necessary because the
terminal may be addressed while a message
is being entered at the terminal, resulting
in a negative response to addressing. If
this happens, the terminal bell rings and
the attention light is turned on. The
intercepted message may be released by
sending a message to a message processing
program to issue a RELEASEM macro instruc-
tion or by use of the Operator Control
RELEASEM function. Refer to the RELEASEM
macro description, noting particularly the
necessity for a priming message.

If the user ever wishes to issue an
INTERCPT operator control message, he must
specify the INTERCPT macro instruction in
the ENDSEND portion of the LPS. The mask
in this macro must specify "terminal
inoperative" (i.e., the mask must be at
least a hexadecimal 4000).

The use of INTERCPT is optional. If the
macro instruction is not used, messages
that were unable to be transmitted are con-
sidered as transmitted, even though they
did not reach their destination. If used,

Message Control Program 77

it must appear in the End Send subgroup of
the LPS.

r T
|Operation |Operand
1 1

time-of-day informaticn. (The logging
effected by LOGSEG is in addition to the
queuing procedure of QTAM.) Use of LOGSEG
is optional.

e

r T r H 1
I|INTERCPT | mask |Operation]Operand i
: : ; { {
[| LOGSEG | deb |
mask L 1 J
the hexadecimal representation of the
bit configuration used to test the dcb

error halfword for the communication
line involved.

Logging (LOGSEG) Macro Instruction

LOGSEG enables the user to log message seg-
ments (place them on an output device as a
record of message traffic carried by the
line group). The user may maintain any or
all of four types of logs by appropriate
placement of LOGSEG within the LPS. The
four types of logs, and the corresponding
coding subgroup in which LOGSEG must
appear, are:

1. Incoming headers only (Receive
Header).

2. All incoming segments if EOBs are not
used in the message; incoming segments
plus message blocks if EOBs are used
in the message (Receive Segment).

3. Outgoing headers only (Send Header).

4. All outgoing segments (Send Segment).

If all segments of messages are logged,
they are logged in the sequence in which
they are received or sent. Therefore, seg-
ments of different messages are intermixed
on the log, not grouped together as indi-
vidual messages. The last 24 bytes of a
QTAM header prefix, preceded by 4 bytes of
information used by the access method doing
the logging, are recorded on the logging
device. These bytes precede the header
portion (and text portion, if any) of the
first segment of a message. The last 14
bytes of a QTAM text prefix, preceded by 4
bytes of information used by the access
method doing the logging, are recorded on
the logging device. These bytes precede
the text portion of a text message segment.

LOGSEG may appear at any point in the
subgroup in which it is used. However,
results of any alteration of segments by
functional macro instructions preceding
LOGSEG will appear in the logged segment.
For example, if LOGSEG is preceded by
TIMESTMP, all logged headers will contain
time-of-day information. If TIMESTMP fol-
lows LOGSEG, headers will be logged without

the

78

the name of the data control block for
the message log data set. If register
notation is used, (1) specifies that
the address of the data control block
is in parameter register 1. The
address must be loaded into register 1
prior to executicn of this macro
instruction.

Message Mode (MODE) Macro Instruction

MODE causes execution of a designated func-
tion, either unconditionally (the desig-
nated function is performed for all mes-
sages handled by this portion of the LPS)
or conditionally (if the next nonblank
character of the message header is the same
as a character designated by the MODE macro
instruction).

In the second case, if the characters
are not the same, control returns to the
next instruction in the LPS, and the scan
pointer is reset to its position prior to
the comparison.

MODE can cause the execution of any of
four IBM-provided functions, or a user-
written routine. The functions provided by
IBM are discussed in the following operand
descriptions.

The message priority scheme implemented
by the MODE macro instruction with the
PRIORITY operand is designed to permit a
message from one of a group of lines send-
ing to a common destination to be sent
ahead of the other messages in the queue
for that destination. The priority routine
compares the relative priority indicators
of the last message sent from each line
originating messages for the common
destination. The highest-priority message
is sent first, followed by the other mes-
sages, in order according to their priori-
ties, and then non-priority messages for
the line. The priority conferred on a mes-
sage is valid only if that message is the
last message to be sent from that source
line., If more than one message from the

line is currently being handled by QTAM,
only the message that arrived last can have
valid priority.

Example: Assume that lines A, B, and C are

all sending messages to line D.

Originating Arrival of Incoming Messages

Line Time —t
nom & &
B B, @2 @3
c C, @3

Messages sent with priority are circled:
the priority is indicated by superscript.
Assume that by time "t", seven messages
have arrived on the destination queue for
line D in the order: A, B, A C; A; By Cy,.
Since messages A, Bp, and C, are the last
messages received from their respective
originating lines, only they will have
priority. Thus, because priority message
A5 arrived on the destination queue before
priority message A, (previously placed on
the queue) was sent to D, message A, loses
its assigned priority and is sent on a
first-in-first-out basis like all other
non-priority messages. If at time "t",
message C, is sent, and a new priority mes-
sage By arrives on the queue before message
B, is sent, B, loses its priority status to
Bs. ASsuming no more messages arrive on
the queue before all the priority messages
are sent, the remaining messages on the
gueue are sent in the order: Bs Aj A; B,

Use of MODE is optional. If used, it
must appear in the Receive Header or Send
Header subgroup of the LPS. It may be used
more than once in either subgroup. Its
position within the subgroup must corre-
spond to the point during header processing
at which the function designated by its
operand is to be performed.

The PRIORITY, CONVERSE, and INITIATE
operands of the MODE macro instruction can-
not be specified with the IBM 2740 Model 2.

Operation Cperand

PRIORITY
CONVERSE
INITIATE
MOD2260

userfunc

[,condcharl

[,WRT60=codel

o e e it it et st St s, s W . st
S
w}
tx
o e s e e e o e s e . s]
b e s e — — o —— — ol —iad

PRIORITY
causes scanning cf the header to lo-
cate the next nonblank character.
This character is the priority value
of the incoming message. It must be a
letter or a digit. The priority
sequence is A,...2,0...9 (9 is highest
priority).

If MODE designates a specific charac-
ter by means of the second operand,
scanning of the header for a priority
character occurs only when the charac-
ter designated in the second operand
is found. If no specific character is
designated, scanning always occurs,
and all messages must have a priority
character as the next nonblank
character.

CONVERSE
causes the line, on which the origina-
ting terminal is located, to be placed
in conversational mode. The line is
held open until an entire message from
that terminal has been received by a
message processing program and that
program has sent a response message to
the same terminal. During this time,
no incoming messages can be sent by
any other terrinal on the line, and
outgoing messages that have been
queued for sending to any terminal on
the line will not be sent. The line
will remain in ccnversational mode
until a negative response is received
from the terminal or until the termi-
nal is allowed to time-out. If the
message was sent from a terminal that
was polled using the RAuto Poll facili-
ty, that terminal will remain in con-
versational mode until the first reply
is received from the message process-
ing program. The second operand can
be specified for conditional use of
CONVERSE. Conversational mode will
not be established with process queues
that are not open.

INITIATE
causes segments cf a message to be
sent from a destination queue to the
destination as soon as they are placed
on the queue (normally, segments are
not sent to the destination until the
complete message has accumulated on
the queue). If a message has multiple
destination codes specified in the
header, the INITIATE function is per-
formed only for the first destination.
Sending to the remaining destinations
will occur only after the complete
message has been placed on the
destination queue. Messages contain-
ing an EOB character in initiate mode
may not be sent to a terminal attached
to a 2701 Data Adapter Unit. The

Message Control Program 79

second operand can be specified for
conditional use of INITIATE.

MOD2260
causes QTAM to modify the Write opera-
tion for IBM 2260s. The specific
change is indicated by the WRT60 key-
word operand of this macro. MOD2260
may be specified only when the mode
macro is included in the Send Header
LPS subgroup. If this operand is not
supplied, a Write DC (Display Control)
function will be executed.

user func
the name of a routine provided by the
user to perform a desired function.
The routine must be in rain storage
and in the same control section that
contains the LPS section of the mes-
sage control program. (See the sec-
tion entitled Including a User-Written
Subroutine Within the LPS.)

condchar
a character that, if found in the
header before another nonblank charac-
ter, causes execution of the function
specified by the first operand.
"condchar" can be any single nonblank
character. If this second operand is
omitted, the function is performed
unconditionally for all messages. The
character may be specified either as
the character itself, or as the hexa-
decimal equivalent.

WRT60
specifies the type of modification to
be made to the Write operation for the
2260.

WRT60=1 Causes erasure of the 2260
screen before the next segment is
displayed.

WRT60=2 Causes a Write line address
operation for the 2260. The user must
specify the line address character as
the first character of the header of
the message to be written out.

The user may cause the line address to
be inserted by:

1. Writing assembly language
instructions to perform this in
his LPS.

2. Writing assembly language .
instructions to perform this in
his message processing task.

3. Using the PAUSE macro.

The EBCDIC and ASCII-8 equivalents of
each line address are given in Figure 15.

80

This operand must be specified if and
only if the MOD2260 operand is specified.

r T T 1
| Line | Ascri-8 | EBCDIC |
| | Equivalent | Equivalent]
| Number | (Hex) | (Hex) |
1 1 i 9
i T v

] 1 | 50] FO |
| 2] 51 | F1 I
] 3] 52] F2 |
} 4 | 53] F3 |
| 5 i 54 1 Fu]
| 6 } 55] F5 |
| 7 } 56] F6 |
| 8 | 57 i F7 I
| 9] 58] F8 |
| 10 | 59 | F9 |
] 11 | SA] 7A]
| 12] 5B] 5E]
L L1 4 J
Figure 15. Line Address ASCII and EBCDIC

Equivalents for IBM 2260

Message Type (MSGTYPE) Macro Instruction

MSGTYPE enables the user to categorize
incoming and outgoing messages into two or
more message types, each of which he wishes
to process in a different manner. A
MNSGTYPE macro instruction encountered dur-
ing processing of a message header causes
the next nonblank character in the header
to be compared with a character specified
by the operand of the MSGTYPE macro
instruction. If the two characters are
identical, the instructions between this
MSGTYPE macro and the next MSGTYPE macro orxr
the next delimiter macro instruction are
executed. If the two characters are not
identical, the instructions between the
MSGTYPE macro performing the test and the
next MSGTYPE macro or delimiter are not
executed, The scan pcinter is reset to its
position prior to the comparison. Instruc-
tions between a MSGTYPE macro instruction
with no operand and the next delimiter are
executed for messages that do not contain a
message-type character. The scan pointer
is not advanced in this case. These
instructions are bypassed if the message
was previously handled by a MSGTYPE macro
instruction with a message-type character
operand.

Use of MSGTYPE is optional. Any number
of MSGTYPE macro instructions may be used
within a subgroup, prcvided that they all
examine the same position in the header for
a message-type character. Only one posi-
tion in a header per Receive Header sub-
group may contain a message-type character.
NSGTYPE macro instructions may be used only
within the Receive Header and Send Header
subgroups.

T
|Operation| Operand

[typechar]

. o
O

L

v
'lMSGTYPE

L

typechar
the message-type code. It may be any
single nonblank character. If this
operand is omitted (i.e., a blank is
specified), the group of macro
instructions that immediately follows
this MSGTYPE macro instruction will
process any message not handled by a
preceding MSGTYPE macro instruction
with a nonblank character cperand. If
a MSGTYPE macro with a blank operand
is used, it must be the last of the
series of MSGTYPE macros. The
message-type character may be speci-
fied either as the character itself,
or as the hexadecimal equivalent of
the character.

Example: The beginning of a Line Procedure

Specification section using MSGTYPE macro
instructions is shown in Figure 16.

Operator Control (OPCTL) Macro Instruction

The user may find it advisable to examine
control information used by QTAM and to
make necessary changes from an external
source. QTAM provides an operator control
facility to perform this function from a
terminal, in addition to the macro instruc-
tions described previously.

Operator control is specified by includ-
ing an OPCTL macro instruction in the
RCVHDR section of the LPS for the line
group which contains the teélecommunications
control terminal. A local 1050 or a 2740
with station control and checking must be
provided for this function.

Each operator control message is treated
as a header segment and the complete mes-
sage, including EOB and EOT characters,
must fit in one buffer. If the data as
transmitted from the terminal overflows the
buffer, the message will be returned to the
originating terminal, indicating an error.
If the data to be sent to the terminal
overflows the buffer, the excessive data
will not be transmitted.

If the operator control facility is
being used, receiving must have priority
over sending on the line containing the
telecommunications control terminals. If,
however, the control terminals are being
polled using the Auto Poll facility, then
equal priority must be specified. With
large systems that will have a great deal

of message traffic going to the control
terminal, equal priority may make it
extremely hard to enter a message from that
terminal. Once a polling pass has been
completed, all messages to that terminal
will be sent. This may keep the terminal
permanently busy, not allowing any messages
to be sent in. If this situation is con-
ceivable, then the responsibility should be
split between the control terminal and the
alternate. One terminal should be used
solely to receive messages and the other
solely to send them. If the control termi-
nals are not being polled using the Auto
Poll facility, then receive priority must
be specified and there will be no problem
in getting the messages into the system.

Note: Only one OPCTL macro may be issued
in the message control program. The scan’
pointer must be positioned to the character
before the control message identifier char-
acters in the message header before issuing
the OPCTL macro.

telecommunications control termi-
nal is to be polled using the Auto Poll
facility, then the SOURCE macro instruction
must precede the OPCTL macro instruction.

If the

r T ! N T 1

Name Operation]Operand
L 4 P 1 p N]
13 L3 T 1
|name | OPCTL | CTLMSG=mSgname, |
] 1 | TERM=termname |
|] | [, ALTERM=termname] |
] | | |
] |][.INTRCPT={YES}] |
| | | NO |
L L L |
name

the name of the macro instruction. It
must be the same as the OPCTL speci-
fied in the TERMTBL macro instruction.

| CTLMSG=msgname

msgname
is the control message name iden-
tifier, containing one to eight
nonblank characters; it must be
specified. This name identifies
a message as a QTAM control
message.

TERM=t ermname

termname
is the name of the telecommunica-
tions system control terminal as
it appears in the TERM entry for
this terminal. This terminal may
be a nonswitched 1050 or non-
switched 2740 with Station
Control.

Message Control Program 81

r T T T - 1
| Name | Operation |Operand | Comments |
¢ t ¢ t {
| LPS1T | LPSTART 115, TERM=(1050) |Reserve 15 bytes in header |
T 1 oo 1
| | RCVSEG | |Delimiter i
¥ t t + {
| | TRANS |RCVET1 |Macro instruction executed for all segments |
L 4 4

r T 1 - T T {
| | RCVHDR | |Delimiter |
L 4 I i r
r 1 T T 1
	SEQIN	4	_
	SOURCE	3	Macro instructions executed for all header segments
	DATESTMP		
	TIMESTMP	8 ({	
	COUNTER	MSGIN	Count number of incoming messages [
e = —— 1			
{ MSGTYPE	C'A"	Test for type A messages	
8 I 1+ 1 J			
v T T T 1			
	-		Macro instructions executed for all type A messages
	-		I
	DIRECT	=CL8'CHI"	
L 4 [l R - J			
v 1 T Ll 1			
	MSGTYPE jc*B*	Test for type B messages	
[4 4 +

r T T T "
| | - | |Macro instructions executed for all type B messages |
| | DIRECT |=CL8'NYC"'] |
b + t 3= -
| | MSGTYPE | |Test for all other message types |
L i i 1 4
r L T T 1
| | DIRECT |=CL8*'PROCESSQ"* {Macro instruction executed for all other message |
| | | | types I
e t {
| | ENDRCV | |Delimiter |
L 4 4 4 3
13 T) T 1
	-		.
	-		Remaining macro instructions of LPS
	-		
L 4 1 i 3
Figure 16. Use of MSGTIYPE Macro Instruction in an LPS

IALTERM=termname

termname

INTRCPT

82

if specified, is the name of an
alternate telecommunications sys-
tem control terminal as it
appears in the TERM entry for
that terminal. Control messages
may be entered fronm this terminal
or the primary. This terminal
may be a nonswitched 1050 or non-
switched 2740 with Station
Control.

Restriction: Messages from this
terminal must be processed by the
same LPS that includes the OPCTL
macro instruction.

INTRCPT=YES must be specified if
INTERCPT or RELEASEM operator
control messages are to be
accepted from the telecommunica-
tions control terminal. In addi-

tion, there must be a 3-byte
OPTION field labeled INTERCPT
defined for the terminal table
entries.

If INTRCPT=NO is specified, or if
this operand is omitted, INTERCPT
and RELEASEM operator control
messages will not be accepted.

Example:

r T v
| Name |Operation]Operand
[41 3

1
|
r 1 T i
| OPCTLNME | OPCTL | CTLMSG=QCTL, TERM=LOCAL|
L i L 4

PAUSE Macro Instructicn

PAUSE causes automatic transmission of a
user-specified sequence of characters on
the communication line each time the LPS
section containing the PAUSE encounters a

user-specified character in the message
segment currently being sent. The inserted
characters are not placed in the outgoing
message segment as contained in main
storage. Rather, they become part of the
segment as received at the terminal. To
illustrate: If a message segment contain-
ing the characters

ABCDEF*GHI*ABCD*MNOPQ*RSTU* *ABC

is handled by an LPS in which a PAUSE macro
specifies insertion of the characters XY
each time an asterisk is encountered, the
segment as contained in main stcrage
remains unchanged, but as received by the
destination terminal becomes

ABCDEF*XYGHI*XYABCD*XYMNOPQ
*XYRSTU*XY*XYABC

This facility has two main uses:

1. It permits the user to effectively
modify outgoing message headers by
inserting extra characters. The need
for this arises when message headers
received from certain terminal types
are to be sent to other terminal
types. In certain instances, extra
control characters must be sent on the
line during transmission of the head-
er, in order for the message to be
received properly.

2. It permits sending of nonprinting idle
characters over the communication
line, where necessary to prevent loss
of message data.

Characters in outgoing messages are sent
continuously, even while the terminal
device receiving the message is performing
a mechanical positioning operation that
interferes with correct recording of the
incoming characters. For example, some
terminal printers require more time for the
carriage return operation than is available
between printing of successive message
characters; characters are printed during
the carriage return movement.

To avoid partial loss of a message from
this cause, one or more nonprinting charac-
ters must be inserted into the message
after each device control character (such
as carriage return) that performs an opera-
tion otherwise resulting in loss of message
characters. These nonprinting characters
are referred to as idle characters,
although the specific character to be used
depends on the type of terminal that
receives the message. The idle characters
used by each type of device are shown in
Figure 17.

The PAUSE macro can be used to cause
insertion of idle characters each time a

designated device control character appears
in the message. (Device control characters
can be inserted by a user-provided subrou-
tine or by the terrinal that originates the
message.) The specific control characters
for which insertion is required, and the
number of idle characters required for
each, vary among terminal device types.

For these requirements, see the reference
manuals for the various terminal types.

The PAUSE macro instruction specifies:

1. The character that is to cause
insertion.

2. The number of character sequences to
be inserted.

3. The transmission code bit configura-
tion of the characters to be inserted.

A separate PAUSE macro instruction must
be specified for each control character for
which insertion is required.

PAUSE cannot be used to cause the EOB
character to be transmitted.

PAUSE, if used, must appear within the
Send Header or Send Segment subgroups.

r T
|Operation|Operand
L 1

A S |

r h)
I]PAUSE | ctlchar, insertchar
L i

ctlchar
the actual transmission code bit con-
figuration of the character for which
insertion is required if TRANS pre-
cedes PAUSE, and the EBCDIC code bit
configuration if PAUSE precedes TRANS.
It must be written in hexadecimal
notation. This cannot be the EOB
character.

insertchar
the actual
figuration

transmission code bit con-
of the character (or char-
acters) to be inserted. It must be
written in hexadecimal notation, in
the form nX'hexchars', where "n" is
the number of character sequences to
be inserted. (For example, 5X'E2E4’'
specifies that the sequence AB [in
1050 codel is to be sent five times.)

Example: A PAUSE macro instruction to
cause insertion of six idle characters into
an outgoing message tc an IBM 1050 each
time a new line (NL) character is detected
in that message by the message control pro-
gram (5B and 5E are hexadecimal equivalents
of 1050 transmission code new line and idle
characters, respectively):

Message Control Program 83

et |

r T
|Operation|Operand
[N L

b
| PAUSE
L

R

T
|X'5B*,6X"5E"
L

-

|Terminal Type Idle Character and Code

-

|
|IBM 1050, 2740 |Idle (5E) or delete (7F)

T
|
t
|IBM 1030, 1060 |Idle (5E)
[
|
| I
|ATET 33, 35 |
I

e e e ot e s e i b . s}

| (TWX) Rubout (FF)

|

|ATET 83B3, | Figures shift (1B)

|WO 115A Jor letters shift (1F)

| | :

WITTA	Figures shift (1B or 3B),
	Letters shift (1F or 3F),
	oxr Mark (DF)
L L J
Figure 17. Idle Characters

Polling Limit (POLLIMIT) Macro Instruction

POLLIMIT is an optional macro instruction
specifying a maximum number of messages to
be accepted from a nonswitched terminal
during one polling pass. When this 1limit
is reached, the next terminal is polled.
If no polling limit is set (that is, the
POLLIMIT macro instruction is not used),
each terminal is polled until it has no
more messages to send during that polling
pass.

The POLLIMIT macro instruction has no
effect when used with a switched line, and
is not applicable to WTTA lines.

If used, POLLIMIT must appear at some
point within the Receive Header or End
Receive subgroup. '

Note: For an IBM 2260, the LPS must
include POLLIMIT, a macro that specifies a
polling limit of 1.

r T 1

IOperationl Operand |

—— 3

T 1

|POLLIMIT | (nnn |

] | \subfield |

L L J
nnn

the maximum number of messages the
user wishes to allow for each terminal
in the line group. This option may be
used only when the number cf consecu-
tive polls is to be the same for all
terminals in the communication line
group. The maximum value of "nnn" is

84

255. Leading zeros may not be speci-
fied in this operand.

subfield
the name of an optional subfield in a
terminal table entry. It must be the
same as the name assigned to the sub-
field by an OPTION macro instruction.
This subfield contains the limit of
consecutive polls to be allowed for
the originating terminal, as specified
by a TERM macro instruction. This
method of specifying the polling limit
allows a different limit to be set for
each terminal.

RERQUTE Macro Instruction

REROUTE causes a message to be queued for
an alternate destination (in addition to
the destinations specified by the message
header) when any of the errors specified by
the mask has been detected.

The meaning of the bits in the error
halfword tested is shcwn in Figure 14.

If the destinations specified bv the
message header are switched terminals, the
SOURCE macro instruction must appear in the
LPS prior to REROUTE, in order for the
"subfield" operand to be specified. A dis-
tribution list entry cannot be specified as
the alternate destination.

Use of REROUTE is optional. If used, it
must appear in the End Receive or End Send
subgroup.

Restriction: REROUTE must not be used for
any message whose destination is a process-
ing program queue identified by a PROCESS
EXPEDITE terminal table entry.

r T - 1
|Operation| Operand |
b 1 1
|REROUTE | mask, |
I | !
i | (=CLn'dest’ |
| | { subfield !
| | | SOURCE |
L L 1
mask

the hexadecimal representation of the
bit configuration used to test the
error halfword in the line control
block (LCB).

dest
the destination code for the alternate
destination. The code may be the name
of any entry that appears in the ter-

minal table. If this option is
selected, all messages from any line
in the line group with errors detected
by REROUTE are sent to the same
destination. "n" must be equal to or
greater than the longest destination
name appearing in the terminal table;
the maximum value for "n" is 8.

subfield
the name of an optional subfield in
the terminal table that contains the
name of the alternate destination.
The name must be the same as the name
assigned to the subfield by an OPTION
macro instruction. If this option is
selected, the alternate destination is
the terminal specified in the option
field of either

1. the terminal table entry for the
originating terminal, if REROUTE
is used in the ENDRCV section of
the LPS, or

2. the terminal table entry for the
destination terminal, if REROUTE
is used in the ENDSEND section of
the LPS.

For example,
destinations
OPTION field
If a message

in Figure 10, alternate

are specified in the third

in the terminal table entries.
was received from WAS and

REROUTE DEST

was coded in the ENDRCV portion of the LPS,
then the message would be sent to NYC also.

SOURCE
specifies that the error message con-
taining the error is to be sent to the
terminal from which it originated (in
addition to the destinations specified
by the message header).

Routing (ROUTE) Macro Instructicn

ROUTE causes scanning of the destination
code field in the header of each incoming
message. If the destination code is valid,
ROUTE causes the message to be queued for
the specified destinations. If an invalid
destination code (i.e., one not appearing
~in the terminal table) is detected:

1. Bit 0 of the error halfword for the
line containing the originating termi-
nal is set to 1.

2. The message is placed on the dead-
letter queue. (The dead-letter queue
is generated by QTAM on the direct
access device.)

If further processing of messages placed
on the dead-letter queue is required, a
REROUTE or ERRMSG macro instruction must be
specified in the End Receive subgroup to
notify a terminal operator of the destina-
tion error.

Messages may be routed to multiple
destinations in any of three ways:

1. More than one destination code may be
included in the message header. It is
not necessary to indicate in the head-
er the number of destination codes
included. When this method of routing
to multiple terminals is used, the
user must:

a. Include an end-of-address (EOA)
character after the last destina-
tion code in the header of each
incoming message (see EOA macro).

b. Specify an EOA macro instruction
immediately following ROUTE in the
LPS.

2. The message header may contain a
single destination code that identi-
fies a distribution list entry in the
terminal table. Each destination in
the distribution list receives the
message.

3. Where special machine features are
available, "group code" transmission
may be used. Under this method,
unique address characters cause the
sending of single messages simul-
taneously to a prespecified group of
terminals on the same line.

Either the ROUTE or the DIRECT macro
instruction must be specified to handle
message routing. Both cannot be used for
the same message type. Only one ROUTE
macro may be used for each LPS or for each
message type used within one LPS (see the
MSGTYPE macro instruction description).
ROUTE may be used only within the Receive
Header subgroup.

Note: If the POLL macro instruction speci-
fies that the IBM 2260-2848 complex is to
be polled using the general poll feature,
the DIRECT macro instruction must be used.
ROUTE cannot be specified.

r T
|Operation] Operand
L 1

T T
| | ROUTE |
L

[n]

b e ey s

n
the number of characters in each
destination code in the message head-
er. "n" is specified only if the user

Message Control Program 85

chooses to make all destination codes
the same length. The maximum value of
"n" is 8. If this operand is omitted,
destination codes are assumed to have
varying lengths and a blank is
required:

1. After a single destination code.

2. Between multiple destination
codes.

3. Between the last destination code
and the EOA character.

If "n" is specified, the blanks are
not required.

Sequence In (SEQIN) Macro Instruction

SEQIN causes scanning of the input sequence
number field in the header of each incoming
message. If the sequence nurmber is not one
higher than the sequence number of the last
message received from the sending terminal,
an error flag is set in bit 2 or bit 3
(depending on whether the number is high or
low) of the error halfword for the line.

The first message from a terminal must
contain the same input sequence number as
the TSEQUIN field of the terminal table
entry for that terminal. QTAM initially
sets TSEQUIN to 1. The user may at any
time reset (by means of the STOPLN and
CHNGT macro instructions) the contents of
TSEQUIN. If TSEQUIN is reset before the
maximum number (9999) is reached, the next
incoming message must have the same number
as TSEQUIN. If TSEQUIN is not reset before
the maximum number is reached, the next
incoming message after 9999 must be num-
bered 0000.

In general, SEQIN causes the input
sequence number field in the terminal table
entry to be incremented for each message
having a correct input sequence number in
the header. 1If, however, CANCELM causes a
message in error to be cancelled, or if an
EOBLC macro causes retransmission of the
first block of a message, the input
sequence number is not incremented. In the
latter case, the number is incremented when
the first block is successfully
retransmitted.

Use of SEQIN is optional. For switched
terminals, the SEQIN macro instruction, if
used, must be preceded by a SOURCE macro
instruction. SECIN may be used only within
the Receive Header subgroup. Its position
must correspond to the position of the
sequence number field relative to other
header fields.

86

w
Operation| Operand
4

o e

[nl

[

1SEQIN

ey

_
S

the number of character positions in
the header field for the input-message
sequence number. The maximum value of
"n" is 4. If this operand is omitted,
a variable-length field is assumed.

In this case, the input-message
sequence number must be followed by a
blank used as a field delimiter. The
value "n" does not include any blanks
preceding or following the sequence
number digits.

Sequence Out (SEQOUT) Macro Instruction

SEQOUT is used to place an output sequence
number in the header of each outgoing mes-
sage. The LPS maintains a separate
sequence count for each terminal and each
terminal group (where group code addressing
is used). Each message for the terminal or
terminal group is given a sequence number
one greater than that of the preceding mes-
sage for the same terminal or group.

A message in error rerouted via a
REROUTE macro or resent by the EOBLC macro
retains the output sequence number origi-
nally placed in it by the LPS.

Use of SEQOUT is optional. If used, it
may appear within the Receive Header or
Send Header subgroup. Its position must
correspond to the relative position, within
the header, of the field into which the
sequence number is inserted.

If SEQOUT is used in the RCVHDR section
of the LPS, it must appear following a
ROUTE or DIRECT macro specifying a process
queue. If SEQOUT is used with either the
time stamp or date stamp facility, SEQOUT
must be specified after the TIMESTMP and/or
DATESTMP macro instructions. When used in
the RCVHDR section, all incoming header
segments routed to a message processing
program will be assigned an output sequence
number. This sequence number is two bytes
long and will be inserted wherever the scan
pointer is pointing when SEQOUT is issued.
By inserting the output sequence number in
messages Sent to queues for message pro-
cessing programs, the capability is
included to allow these programs to check
for lost messages. For example, if there
are three message processing programs. in a
telecommunications system, three separate
counters will be kept, one for messages for
each processing program queue. If message

processing program A receives the message
with output sequence number 4, followed by
the message with output sequence 6, then
that program has the capability to tell
that message 5 is missing. The message
control will not check this field in any
way. However, this sequence number must be
removed by the processing program before
the message is put to a terminal destina-
tion. Otherwise, invalid characters may
appear in a message header.

When SEQOUT is specified, the user
includes the value of "n" in his calcula-
tion of the operand value of the LPSTART
macro instruction (see the LPSTART macro
instruction description).

skipchars
designates the number of nonblank
characters to be skipped, or the actu-
al characters in the sequence that is
to terminate the skip operation. The
number of characters to be skipped is
specified as "n", and cannot exceed
the number of characters remaining in
the header. The character sequence
may be specified as the characters
themselves or as the hexadecimal
equivalent. The sequence may be 1 to
8 nonblank characters. The framing C
or X and quotes must be coded.

Example: A SKIP macro instruction to cause
skipping of five characters:

r T D | B T 1
|Operation| Operand | |Operation] Operand]
% t i omes i
| SEQOUT | [nl | | SKIP] 5 [
L L d L —— J
n Example: A SKIP macro instruction to skip

the number of characters to be
inserted in the header for the output
sequence number. The first character
is always a blank. Therefore "n" must
be specified as the number of
sequence-number digits plus 1. The
maximum value of "n" is 5 (that is,
the maximum field size is five charac-
ters, allowing for a seguence number
range between 0001 and 9999). Wwhen
the last available sequence number
(99, 999, or 9999) has been issued to
a message, the numbering cycle is
repeated. The next message is num-
bered 0000.

SKIP Macro Instruction

SKIP causes skipping of either a designated
number of nonblank characters, or all char-
acters up to and including a designated
sequence of characters. The sequence may
consist of 1 to 8 nonblank characters.

This permits the user to skip fields in the
message header during processing. One SKIP
macro instruction is specified for each
field to be skipped. SKIP macro instruc-
tions must appear among other functional
macro instructions in the samre rélative
order as fields to be skipped appear among
other header fields.

Use of SKIP is optional. It may be used
only within the Receive Header and Send
Header subgroups.

r T 1
|Operation| Operand |
b $-==- — !
v llSKIP ! skipchars !

characters up to and including #= may spec-
ify the characters themselves, or the hexa-
decimal representation of the characters.

r . T - k]
|Operation| Operand |
1 4 —— 4
i L] A
| SKIP | C*#="* | (D
| SKIP] X*"7B7E®])
L 1 3

SOURCE Macro Instruction

The SOURCE macro instruction causes scan-
ning of the source terminal code field in
the header of each incoming message to
determine if the source code is valid. The
validity check performed varies, depending
on whether the source terminal is on a non-
switched or a switched line.

If the source terminal is on a non-
switched line, SOURCE verifies that the
header contains the symbolic name of the
same terminal that was invited to send a
message (that is, the source code field in
the header is compared with the name of the
terminal table entry for the terminal that
was polled). If the names are not equal,
an error flag is set in bit 6 of the error
halfword for the line. (See Figure 14.)

If the source terminal is on a switched
line or an Auto Poll line, SOURCE can only
verify that the source code field in the
header contains a valid name (the name of
an entry in the terminal table, but not
necessarily the name of the entry for the
terminal that was polled). If a name that
does not appear in the terminal table is

Message Control Program 87

©

detected, an error flag is set in bit 6 of
the error halfword.

Use of SOURCE is required if:

1. It is desired to transmit messages
queued for a switched terminal when-
ever that terminal initiates contact
with the CPU. This capability
requires no new connection.

2. It is desired to use the SOURCE
operand in an ERRMSG macro instruction
in an LPS for switched lines.

3. The SEQIN or COUNTER macro instruction
is used in the Receive Group of the
LPS for switched terminals or for ter-
minals on an Auto Poll line, or

4. The DIRECT, ERRMSG, POLLIMIT, or
REROUTE macro instruction containing
the "subfield" operand is used in the
Receive Group of the LPS for switched
terminals or for terminals on an Auto
Poll 1line.

In either case, SOURCE must precede
the above macros in the LPS.

5. The Auto Poll facility or switched
line groups are used and the TRMAD
parameter is used in the DCB for the
main storage process queue in the mes-
sage processing program. The use of
SOURCE 1is required to get the symbolic
name of the source terminal. When a
GET is executed to get a record from
the MS process queue, this source name
is placed at the address specified in
TRMAD. (See the discussion of the DCB
for Main Storage Process Queue in the
QTAM Message Processing Program Ser-
vices publication.)

6. The terminal does not have the Auto
Answer facility or CALL=NONE in the
TERM macro.

SOURCE may be used only within the
Receive Header subgroup. Its position
within the subgroup must correspond to the
position of the source terminal code field
relative to other header fields.

r T - 1
|Operation| Operand |
L 4 4
v v 1
|SOURCE | [n] [
L L _— 4
n

the number of characters in the source
terminal code field of the message
header. The maximum value of "n" is
8. If this operand is omitted, a
field of variable length is assumed.

88

In this case, the source terminal code
must be followed by a blank used as a
field delimiter.

Time Stamp (TIMESTMP) Macro Instruction

TIMESTMP causes insertion of the time of
day into the header portion of a message.
This function can be specified for incoming
messages, outgoing messages, or both. The
time is expressed in the form bhh.mm.ss,
where b is a blank, hh is the hours, mm the
minutes, and ss the seconds. Nine charac-
ter positions are required for the complete
time information. However, the user may
provide a shortened form (for example, omit
the seconds) by reserving fewer than nine
positions in the message header.

Use of TIMESTMP is optional. If used,
it must appear in the Receive Header or
Send Header subgroup. Its position within
the subgroup must correspond to the rela-
tive position, within the header, of the
field into which the time of day is
inserted.

When TIMESTMP is specified, the user
includes the value of "n" in his calcula-
tion of the value of the operand of the
LPSTART macro instruction (see the LPSTART
macro instruction description).

TIMESTMP may be used only
the

Restriction:
when the operating system includes
timer capability (option 6A).

r T
|Operation| Operand
L 1

b e s e el

8 v
'ITIMESTMP In
L 1

n
the number of characters of time-of-
day information to be inserted in the
header portion of each message. The
maximum value of "n" is 9, and the
value specified reflects the presence
of the leading blank in the time
information.

Translate (TRANS) Macro Instruction

TRANS causes the characters of an incoming
or outgoing message to be translated from
one code to another. Incoming messages
from a terminal are translated from the
transmission code for that terminal type to
EBCDIC. Outgoing messages are translated
from EBCDIC to the transmission code for
that terminal type. Translation is done

character for character. TRANS specifies
the transmission code from which or into
which the message is to be translated.

TRANS is normally required in an LPS.
TRANS may be used in the Receive Header
and/or Send Header subgroups to translate
only the headers of incoming and outgoing
messages, respectively (message switching
to same terminal type). TRANS may be used
in the Receive Segment and/or Send Segment
subgroups to translate all segments includ-
ing header segments, of incoming and outgo-
ing messages, respectively (inquiry pro-
cessing and collection of data that is to
be processed at a later time).

TRANS must not be used in the Receive
Header subgroup if EOB or EOBLC is used in
the End Receive subgroup. Similarly, TRANS
must not be used in the Send Header sub-
group if EOB or EOBLC is used in the End
send subgroup.

TRANS is not required in a message
switching application in which no analysis
of the header is required of QTAM, provided
that:

1. The originating and the destination
terminals are of the same type.

2. The DIRECT macro, rather than the
ROUTE macro, is used to send messages
to destination terminals.

Code translation is normally accom-
plished through tables provided by QTAM,
although the user may prepare and use his
own tables, if desired. For each terminal
type, OTAM provides two tables: one to
translate from transmission code to EBCDIC,
and one to translate from EBCDIC to trans-—
mission code.

All of the characters in the character
sets of each of the types of terminals ca-
pable of communicating with the System/360
CPU can be represented within the computer.
However, some characters valid for one type
of terminal device may not be valid for
another type of terminal device. In a mes-
sage switching application in which mes-
sages are exchanged between dissimilar ter-
minal devices, the user should either:

1. Avoid placing in the message any char-
acters that are not recognized by the
destination terminal.

2. Employ a user-written translation
table that converts such characters to
other characters that are acceptable
to the destination terminal.

The character sets of the IBM 1050 and
IBM 2740 contain lowercase as well as
uppercase alphabetic characters. When mes-

sages from an IBM 1050 or 2740 are sent to
terminal devices or processing programs
that do not recognize codes for lowercase
characters, the user should either:

1. Use only the uppercase form of alpha-
betic characters.

2. Employ the RCVF1050 (or RCVF2740)
translation table (or the user's equi-
valent). The RCVF1050 and RCVF2740
tables translate each incoming lower-
case letter to the EBCDIC representa-
tion of that letter's uppercase equi-
valent. Messages sent by an IBM 1050
or 2740 may contain lowercase and
uppercase letters. However, messages
received by an IBM 1050 or 2740 from a
device or a processing program incap-
able of sending lowercase characters
will contain only the uppercase form
of alphabetic characters.

Note: All terminal table entry names are
assembled into the terminal table as upper-
case EBCDIC characters. In order for
source and destination code information in
message headers to be recognized by the LPS
as valid, such information must also appear
to the LPS in uppercase EBCDIC form. For
this reason, source and destination codes
entered into message headers at an IBM 1050
or 2740 must be entered in uppercase form,
if the RCVE1050 or RCVE2740 translate
tables are used. They may be entered in
uppercase or lowercase, if the RCVF1050 and
RCVF2740 tables are used.

There are two types of TWX terminals
that may be used with QTAM. The first type
will accept parity data from the CPU. For
this type of TWX, the SENDT2 translation
table is provided. The second type will
accept only nonparity data from the CPU
(the parity bit must be 1 in all charac-
ters). The SENDT3 translation table is
provided for translation of data sent to
these TWX terminals. The user may wish to
have both types of TWX terminals in the
same line group, in which case he must pro-
vide both the SENDT2 and SENDT3 forms of
the TRANS macro in the same ILPS. It is the
user's responsibility to execute the appro-
priate TRANS macro and branch around the
inappropriate one, depending upon the type
of TWX terminal he is sending the message
to. QTAM will not perform this function.

The SEND2260 translate table converts
lowercase alphabetic characters to upper-
case so that the terminal receives only
uppercase characters.

13 m
|Operation| Operand
L 3

Ll
| table

i

e o olion e smd

LB
| !L TRANS

Message Control Program 89

For WTTA terminals, two codes can be
used with QTAM: International Telegraph
Alphabet no. 2 (ITA2), and Figure Protected
Code 2ZsC3 (Zzsc3). Four translation tables
are provided (two per 5-level code used).
The user can modify these tables by using
the four WITA macro instructions RCVEITAZ,
RCVEZSC3, SENDITA2, and SENDZSC3.

table
the name of the code translation
table. Names of tables provided by
QTAM are given in Figure 1§.

Example: A TRANS macro instruction to
translate messages sent from an IBM 1030 to
the computer:

r T 1
Operation| Operand

P P
: + {
| TRANS | RCVE1030 |
[L ——
Example: A TRANS macro instruction to

translate messages from the computer to an
ATET 83B3 terminal:

MODIFYING WTTA TRANSLATION TABLES

Because the International Telegraph Alpha-
bet No. 2 and the Figure Protected Code
7ZSC3 vary with countries, tables RCVEIAT2,
RCVEZSC3, SENDITA2, and SENDZSC3 may not
fit a particular application. Therefore,
four macro instructions are provided to
modify these tables, when necessary, and
thus produce new tables (WTTA translation
tables) which can be used by the TRANS
macro instruction. These four macro
instructions are applicable to WITA termi-
nals only. They have the same names as the
translation tables mentioned above, and
they can be placed anywhere in the message
control program.

RCVEIAT2 and RCVEZSC3 Macro Instructions

¥ T . T 1
| Name |Operation |Operand |
r X T 1 b + + 1
|Operation|Operand |] symbol |RCVEITA2 | {Fx=hexchar, }...
L I —— L 1 1 : 4
v T "
TRANS SENDT1
! ! !
T T . T |
| Name |Operation |Operand |
1 4 R
i
|
J

WRU Macro Instruction

To request an identification exchange dur-
ing transmission of an output message, a
WRU macro instruction must be written in
the Send Header and/or the End Send sub-
groups of the LPS. If the identification
sent by the terminal is not the same as
that specified by the ID parameter in the
corresponding TERM macro instruction, the
transmission error bit (bit 8) and the
message-not-sent bit (bit 12) of the error
halfword are set as follows:

e Bit 8 is always set on.

e Bit 12 is set on only when an identifi-
cation exchange has been requested by a
WRU macro instruction written in the
Send Header subgroup of the LPS.

The WRU macro instruction requires no
operands and is effective provided either
WRU=YES or IAM=YES is specified in the
corresponding DCB macro instruction.

B L)
|Operation|Operand
L 1

R

b
| WRU
L

b —

90

L 3 T 1
symbol RCVEZSC3 {Fx=hexchar, }...
L y L L

where:

symbol
is the name of the translation table
used in the TRANS macro instruction.

RCVEITA2
specifies that table RCVEITA2 is to be
modified and assembled.

RCVEZSC3
specifies a modification to the table
concerned.

Fx=hexchar
"F" means figure shift.

"x" is the nurber of the code combina-
tion to be translated.

"hexchar" is the hexadecimal represen-
tation of this character in EBCDIC.
The permissible values of "x" are:

For RCVEITA2: 1, 2, 3, 6, 7, 8, 10
through 14, 19, 24, 26, and 32.

For RCVEZSc3: 1, 5, 8, 9,
15, 17 through 20, 22, 24,

11, 12, 14,
26, and 32.

r w) T H
| Table Name | Type of Conversion | Type of Terminal i
b 1 § - 1
For incoming	
messages:	i
RCVE1030	1030 code to EBCDIC] IBM 1030
RCVE1050	1050 code to EBCDIC] IBM 1050
RCVF1050	1050 code to EBCDIC (converts 1 IBM 1050
	lowercase alphabetic 1
	characters to uppercase)]
RCVE1060	1060 code to EBCDIC § IBM 1060
RCVE2260	2260 code to EBCDIC] IBM 2260]
I RCVE2740	2740 code to EBCDIC BCD code
{ RCVF2740	2740 code to EBCDIC
	only] 1IBM 2740
	(converts lowercase 1
	alphabetic characters to 1
	uppercase) i
RCVET1	5-level (Baudot) code to 1 AT&T 83B3, WU 115A
I	EBCDIC]
RCVET2	8-level TWX code to EBCDIC
RCVEITA2	5-level International Telegraph
	Alphabet No. 2 to EBCDIC
RCVEZSC3	S5-LEVEL Figure Protected Code
	2ZsC3 to EBCDIC
I + —- - 4	
For outgoing	1
messages:	1
SEND1030	EBCDIC to 1030 code
SEND1050	EBCDIC to 1050 code] 1IBM 1050
SEND1060	EBCDIC to 1060 code
SEND2260	EBCDIC to 2260 code] IBM 2260
SEND2740	EBCDIC to 2740 code ! 1IBM 2740 I
SENDT1	EBCDIC to 5-level (Baudot)
	code
SENDT2	EBCDIC to 8-level TWX code
SENDT3 '	EBCDIC to 8-level TWX cdde 1 ATET 33/35 TWX (nonparity)]
SENDITA2	EBCDIC to 5-level International
	Telegraph Alphabet No. 2
SENDzSC3	EBCDIC to 5-level Figure Pro-
i | tected Code %ZSC3 | |
t N L J
Figure 18. Names of Code Translation Tables Provided by QTAM
Example: If a terminal operates in 5-bit r T T 1
International Telegraph Alphabet No. 2, | Name |]Operation |Operand |
combination no. 6 in figure shift repre- } 4 + i
senting the % character does not exist in] symbol | SENDZSC3 | {Xyy=Fxy,}eua |
table RCVEITA2. The user must create the L L 4 4
required WTTA translation table (TBL) by
writing: where:

TBL RCVEITA2 F6=6C symbol

where 6C
of the %

is the hexadecimal representation
character in EBCDIC.

SENDITA2 and SENDZSC3 Macro Instructions

r L) T
| Name |Operation |Operand
i 4 4

L) L) T
{symbol | SENDITA2 | {Xyy=Fx,}...
L L 4

e e s .

is the name of the translation table
used in the TRANS macro instruction.

SENDITA2
specifies that table SENDITA2 is to be
modified and assembled.

SENDZSC3
specifies that table SENDZSC3 is to be
modified and assembled.

Xyy=Fx
Specifies a modification to the table
concerned.

Message Control Program 91

"X" is coded as shown.

"yy" is the hexidecimal representation
in EBCDIC of the character to be
translated.

"F" means figure shift.

"x" is the number of the code combina-
tion to be translated.

The permissible values of "yy" are:

2A, 3F, 4A through 50, 5A through 61,
6A through 6F, 7A through 7F.

Example: If a terminal operates in 5-bit
International Telegraph Alphabet No. 2 and
if the user wishes to assign the hexadeci-
mal value X'6C' (% character in EBCDIC) to
combination no. 6 in figure shift (% char-
acter to be sent by the terminal), the
required WTTA translation table (TBL) will
be produced by writing:

TBL SENDITA2 X6C=F6

In the same way, the user can decide that
the asterisk character (X'5C' in EBCDIC) is
to be sent as a % character. The required
WITTA translation table (TBL) will be pro-
duced by writing:

TBL SENDITA2 X5C=F6

And if the user decides that both the % and
the asterisk characters (X'6C' and X'5C' in
EBCDIC, are to be sent as a % character, he
will write:

TBL SENDITA2 XoC=F6,X5C=F6

Note: One of these four macro instructions
can be used to create several translation
tables in the same program, provided that
these tables are given different names.
This enables several terminals, using the
same codes but with differences in their
graphic arrangements, to operate in the
same installation.

INCLUDING A USER-WRITTEN SUBROUTINE WITHIN
THE LPS

OTAM provides for the serial execution of a
user-written subroutine within an LPS line
group routine. The user-written code can
be included as either an open or closed
subroutine.

There are several reasons why the user
might include such a subroutine. There may
be no IBM-provided LPS subroutine to pro-
cess particular information he wishes
included in his message headers. Or, he

92

may wish to expand the scope of an IBM-
provided LPS subroutine (for example, to
execute error correction routines after the
ERRMSG macro generated subroutine indicates
an error). A third case might be process-
ing a header field in a manner entirely
different from the way the IBM-provided LPS
subroutine handles fields of this type. An
example of this is inserting a date in a
format different from the one used by the
DATESTMP macro generated subroutine.

Issuance of a Supervisor WAIT or STIMER
macro instruction from the user-written
subroutine halts all processing of LPS
macro instructions. They, therefore,
should either not be used in the user-
written subroutine, or be used with extreme
care.

METHODS OF INCLUDING THE SUBROUTINE

There are three ways c¢f including a user-
written subroutine in the LPS:

1. As a closed subroutine activated by
the MODE macro instruction.

2. As a closed subroutine independent of
the MODE macro instruction.

3. As an open, or in-line, subroutine

In all three cases, the user can employ
the SCAN second level subroutine to locate
the desired portion of the message header.

In writing open or closed subroutines,
the user may find useful the information on
QTAM register assignments contained in
Appendix D.

Figure 19 indicates which registers are
available and which are not available to
user-written subroutines. A register des-
ignated as available is one that need not
have its original contents restored by the
user-written subroutine prior to the return
to the LPS. Therefore, in the "Subroutine
Activated by MODE" column, registers
required for linkage are listed as "not
available." In the LPS section, the con-
tents of the registers available to the
user are not preserved by the QTAM macro
instructions.

ACTIVATION OF A CLOSED SUBROUTINE THROUGH
MODE: The MODE macro instruction can be
used to provide the necessary linkages for
a user-written subroutine, and to activate
the subroutine. The method of coding this
macro instruction is described under the
MODE macro instruction description.

If MODE is used, register 1 must be the
base register for the closed subroutine; a
USING statement referencing this register
should be included in the subroutine. MODE
uses register 14 to return from the user-
written subroutine to the next statement in
the LPS. The last instruction in the user-
written subroutine must be a branch to 4
plus the contents of register 14.

If the user executes a non-QTAM macro
instruction in the routine activated by
MODE, it is possible that the contents of
registers 0, 1, 14, and 15 might be
destroyed upon return from that macro
instruction. The user is therefore advised
to save and to restore these registers as
needed.

If messages from two or more communica-
tion lines are being processed simul-
taneously by an LPS from which a user rou-
tine is activated, the user routine need be
serially reusable only on a segment basis.

Figure 20 shows control flow between an
LPS containing the MODE macro instruction
and the user-written subroutine activated
by MODE.

INDEPENDENT ACTIVATION OF A CLOSED SUBRQOU-
TINE: If the user elects to activate a
closed subroutine without using MODE, he
must provide his own linkages; the linkage
restrictions described under Activation of
a Closed Subroutine through MODE are not
applicaonle. Figure 21 shows control flow
between an LPS and a closed user-written
subroutine not activated by MODE.

USING_AN OPEN SUBROUTINE: The user can
include his subroutine as an open, or in-
line, subroutine. No linkage restrictions
are imposed. Figure 22 illustrates this
method of program modification.

THE SCAN SUBRCUTINE

The user-written subroutine can take advan-
tage of the SCAN facility to locate a por-
tion of the message header. SCAN is avail-
able to the user as a second level subrou-
tine; that is, the user-written routine can
transfer control to the SCAN subroutine.

The following instructions effect the
transfer:

r T . T T 1
| Name |Operation|Operand |Comments }
L i 1 1 3
r L T T 1
] | L 115,4(0,7) |Get address

] | | | of SCAN |
] |] | subroutine |
] | BALR 13,15 | Branch and |
| |]]1ink to SCAN |
[P 1 1

The size of the field to be located by SCAN
must be contained in a halfword; register
14 must point to this halfword to enable
the SCAN subroutine tc obtain the field
size specification. The size may be from
one to eight characters. If the user-
written subroutine is activated through the
MODE macro instruction, register 14 is set
to point to a halfword indicating a field
size of 1. If the user changes the con-
tents of register 14 (that is, has register
14 point to a halfword containing a dif-
ferent size specification), he must restore
the original contents of register 14 before
returning from his subroutine. This is
necessary because under MODE register 14
also provides the return linkage to the
LPS.

Figure 23 shows control flow between an
LPS containing the MODE macro instruction,
a closed user-written subroutine activated
by MODE, and the LPS SCAN subroutine
branched to by the user-written code.

If the user-written subroutine is em-
ploying SCAN and is nct entered through the
MODE instruction, the user must set a field
size pointer in register 14. In this case,
the previous contents of register 14 need
not be preserved.

The SCAN subroutine operates on either a
fixed-length or a variable-length field
format. In the case cf fixed-length
fields, the size indicated by the halfword
referred to by register 14 can be from one
to eight; this value indicates the extent
of the scan. To determine the starting
point of the field to be scanned, SCAN
searches for the first nonblank character.
From this point, SCAN moves the number of
characters specified by the field length
halfword into a work area whose address is
contained in register 2. Any blanks within
the field are skipped and not counted in
the field length. Register 5 points to the
last character in the field at the termina-
tion of the fixed-length scan.

Message Control Program 93

r T T 1
| | |Available to Subroutine]
| i |Not Activated by MODE -—1]
I | 1]
[- - 1 V|
| | |[Available to Subroutine]]
| | |Activated by MODE -—] |
| I |
b--—1+ . Fmmm e A
|No. | Function {Initialized By |] |
[4 4 4 ']
13 T . 1 1

| 0 |Parameter Register | | Yes |Yes|
| | | |]]
| 1 |Parameter Register, |Mode Subroutine |No |Yes]|
| |Mode Subroutine Base Register | | |]
| | | | |
| 2 |Scan Work Word Address Register|Scan Subroutine | Yes |Yes]
P [B
3	Return Register (Second level)	BALR Instruction	Yes	Yes]
		I		
4	LCB Address Register	startup Subroutine,	No	[No
		Send Scheduler		i
[I	
5	Scan Pointer Register	Sstartup Subroutine	[No	[No
I	l	I]		
6	Buffer Address Register	OWAIT Subroutine	[No	No
	I I			
7	LPS Routine Base Register	Startup Subroutine	No	No
[-]		
8	Terminal Table Source Entry	Startup Subroutine	No	No
	Register			
b _	Lo			
9	Work Register		Yes	Yes]
		I		
110	Work Register		Yes	Yes]
I	I			
11	End of Segment Address Register	Startup Subroutine	No	No
I		I		
12	Scan Increment Register	Scan Subroutine	Yes	Yes]
I	P			
13	Reserved for Save Area Address		No	No]
I I	I			
14	Return Register (First level)	BALR Instruction	[No	Yes]
		I I !		
15	Subroutine Base Register	BALR Instruction	Yes	Yes]
L L R L S |

Figure 19. Register Assignments

9y

[)

(Data Set Initialization Macro Instructions)
[]
L[]
*

Identifies the beginning

LPS1 LPSTART N .
of the line group routine

*

(Other LPS Macro Instructions)
L]
L]
L]

MODE USERRTN —

— (Next LPS Macro Instructions)
[]
*
[]

— USERRTN BALR 1,0
USING *1
(First Executable Instruction in the User - Written Subroutine)
L]
L]
L]
B 4(0,14) Branch back to LPS

END

Figure 20. Activation of a User-Written Subroutine through MODE

Message Control Program 95

[]
L]
.
(Data Set Initialization Macro Instructions)
[]
[)
[]

Identifies the beginning

LPS1 LPSTART € r
o of the line group routine
[]
L]
(Other LPS Macro Instructions)
L]
L]
L
BAL 14 ,USERRTN —
~ (Next LPS Macro Instructions)
L]
L]
L]
—# USERRTN BALR 1,0
USING *,1
(Other executable Instructions in the User - Written Subroutine)
L]
[]
L]
BR 14
END
Figure 21. Activation of a Closed, User-Written Subroutine Independent of MODE
[]
L[]
[]
(Data Set Initialization Macro Instructions)
L]
L]
L]
LPS1 LPSTART Identifies the beginning of the line group subroutine
L]
[]
L]
(Other LPS Macro Instructions)
L]
®
L]
USERRTN (First Instruction in the User -Written Subroutine)
L]
L]
L]
(Last Instruction in the User -Written Subroutine)
L[]
L]
L[]
(Other LPS Macro Instructions)
L[]
L J
L]
Figure 22. Inclusion of an Open, User-Written Subroutine in the LPS

96

LPS1 LPSTART

(Other LPS Macro Instructions)
L]

L]
L]
MODE USERRTN
» (Next LPS Macro Instructions)
[]

(Data Set Initialization Macro Instructions)

Identifies the beginning
o of the line group routine

L"USERRTN

BALR 1,0
USING *1
(First Executable Instruction in User -Written Subroutine)
[]
. Get address of Scan
° subroutine Branch
L 15,4(0,7) gnd link to SCAN

+ TECKSCAN (First Instruction of

BALR 3,15

SCAN Subroutine)
L)

BR 3
END

= (Next Instruction in User - Written Subroutine)
L]

B 4(0,14)
END

Figure 23.

If the field size in the halfword
referred to by register 14 is FFFF (hexa-
decimal), SCAN operates on a variable-
length field format. SCAN searches for the
start of the next field; the start of a
field occurs at the next nonblank charac-
texr. From this point, SCAN begins moving
characters into a work area whose address
is contained in register 2. The movement
of characters terminates either with the
character immediately preceding the next
blank, or with the eighth character in the
field, whichever comes first. (Intervening
blanks terminate the scan, causing an error
that is not recorded.) At the termination

Use of SCAN by a User-Written Subroutine Activated by MODE

of the scan, register 5 points to either
the blank character fcllowing the field or
to the eighth character in the field,
depending on which came first.

CONSIDERATIONS FOR REGISTER ASSIGNMENT:

The SCAN subroutine uses and destroys reg-
isters 2, 5, 9. 10, and 12. The user must
specify registers 3 and 15 in the Branch
and Link instruction to the SCAN subrou-
tine. SCAN uses register 3 for return to
the user's routine. A USING statement in
SCAN defines register 15 as the base
register.

Message Control Program 97

NETWORK CONTROL FACILITIES

EXAMINING AND MODIFIYING THE
TELECOMMUNICATIONS SYSTEM

Examination and modification of the status
of the telecommunications system is prin-
cipally done in the message processing pro-
gram. For a complete discussion refer to
the QTAM Message Processing Program Ser-—
vices publication.

Macro instructions are provided by QTAM
to examine and modify the status of the
system at the time the message control pro-
gram initiates and activates the system.
Execution of these macro instructions must
occur between that of the OPEN and ENDREADY
macro instructions.

Macro instructions that may be used to
examine and modify the status of a system
enable the user to: .

e Activate a stopped line s(STARTLN macro

instruction).

¢ Add the four threshold counters for a
line to the four cumulative counters
for that line, examine the cumulative
counters, and reset the threshold
counters (COPYC macro instruction).

* Examine and modify the terminal table
entries (COPYT and CHNGT macro
instructions).

e Examine queue control blocks for DASD
destination and process queues (COPYQ
macro instruction). When these macro
instructions are used in the LPS, QTAM
ensures that register 13 contains the
address of an 18-word save area.

ACTIVATING A STOPPED LINE

QOTAM provides means of activating a stopped
line through the STARTLN macro instruction.

Start Line (STARTLN) Macro Instruction

STARTLN can be used to:

1. Allow message transmission to resume
on a particular line in a communica-
tion line group.

2. Allow message transmission to resume
on all lines in a communication line

98

group. The user must have previously
opened the line group in the message
control program.

If a line is deactivated by a STOPLN
macro instruction issued in the message
processing program, or if the line was
opened idle, STARTLN must be issued before
message transmission on that particular
line can resume.

In all the preceding cases, if polling
is used, the presence of an active polling
list is a prerequisite for message trans-
mission. (An active polling list is one in
which the second byte of the list is a non
zero character -- this character is ini-
tialized as a 1 and can be changed by the
CHNGP macro instruction.) If STARTLN is
used, polling or enabling of input lines
begins after the execution of that macro
instruction. 1Initial polling or enabling
of input lines in a line group begins when
the line group is opened in the message
control program. If activation of a line
group was deferred by inclusion of the IDLE
operand in the OPEN macro for the line
group, a STARTLN macrc¢ must be issued to
activate the lines.

An attempt to initiate input/output
operations on a line with a control unit
that is not operational will result in the
following sequence of system error
messages:

IEC804I CONTROL UNIT NOT OPERATIONAL
IEC804A REPLY CONT OR POST

If CONT is replied, the operation will be
retried. If the action taken is not suc-
cessful, the series of messages will be
issued again. If POST is replied, the line
will be ignored until a STARTLN macro is
issued to that line, or a STARTLN control
message for that line is sent. If the con-
trol unit is still not operational, the
entire sequence will be repeated. As with
any WTOR message, the control program is in
the wait state until the reply is received.

r T R} 1
| Name |Operation]Operand |
| B il 1 d
¥ T T 1
| [symbol] |STARTLN | termname, {rln} |
] |] ALL I
L L 1 4
symbol

the name of the macro instruction.

termname
the name of any terminal in the line
group, but not necessarily the name of
a terminal on the line being started.
If register notation is used, the
register must contain the address of
the data control block for the line
group. It cannot contain the terminal
name. If an invalid terminal name is
specified, an error code of hex '20°,
right-adjusted, is set in register 15.
If the DCB for the line group has not
been opened, an error code of hex '01°
is set in register 15. In either
case, the STARTLN has no effect.

rln

line group, of the line to be reacti-
vated. If register notation is used,
the general register specified must
contain the relative line number in
binary form. If an invalid relative
line number is specified, a hexadeci-
mal code of '08', right-adjusted, is
set in register 15.

ALL
specifies that all lines in the line
group are to be activated.

If no errors were detected in the STARTLN
macro, register 15 contains all zeros.

EXAMINING AND MODIFYING THE TERMINAL TABLE

QTAM provides macro instructions that
enable the user to examine and to change
dynamically the control information con-
tained in a terminal table entry.

The COPYT macro instruction causes the
contents of a specified terminal table
entry to be copied into a work area. This
macro instruction can be used in conjunc-
tion with the CHNGT macro instruction,
which substitutes a new terminal table
entry for a superseded one. The user
issues a COPYT, examines the information,
changes it if necessary, and issues a
CHNGT.

The user can also change terminal table
information via a RELEASEM macro instruc-
tion issued in the message processing
program.

Copy Terminal Table Entry (COPYT) Macro
Instruction

COPYT moves the information contained in a
specified terminal table entry into a des-
ignated work area. The terminal table
entry can be either a single terminal,
group code, distribution 1list, or process

r T -
| | symbol]|COPYT I
L L

program entry. Formats for each of these
entries are shown in Appendix A.

r T T
| Name |Operation]Operand
| 1 1

T
termname,workarea

R e

1

symbol
the name of the macro instruction.

termname
the name of the terminal whose termi-
nal table entry is to be copied. If
register notation is used, the general
register designated must contain the
address of a location containing the
name of the terminal. The terminal
whose address is in the register must
be padded with blanks to the length of
the maximum size TERM entry in the
terminal table. If an invalid termi-
nal name is specified, no data move-
ment takes place; the routine linked
by the COPYT macro instruction returns
an error code of hex '20' right-

adjusted, in register 15. If no error
is detected, register 15 contains
Zero.

workarea

the address of the area into which the
information is placed. The first byte
of the work area receives the first
byte of data from the terminal table
entry. The maximum size of the work
area is 252 bytes (the maximum size of
a terminal table entry). If register
notation is used, the general register
designated must contain the address of
the work area.

Change Terminal Table Entry {(CHNGT)
Instruction

Macro

CHNGT moves the information for a terminal
table entry from a designated work area to
the terminal table area allocated for that
entry. In order to change the entire con-
tents, including TSEQUIN and TSEQOUT, the
user must precede the CHNGT macro with a
STOPLN macro for the line on which the
affected terminal is located. A STOPLN
macro should be issued before a COPYT-CHNGT
sequence so that the fields of the terminal
table are not changed between the time the
entry is copied and the time it is changed.

CHNGT is normally preceded by the COPYT
macro instruction and instructions to
examine and modify the contents of the
copied terminal table entry. The user must
be certain that the new terminal table
entry contains all the information required

Network Control Facilities 99

for proper execution of QTAM. The format
of the terminal table entries and the
information contained in each field are
contained in Appendix A.

T T T - 1
| Name |Operation|Operand |
IR 4 (] 4
v T T 1
| {symboll | CHNGT | termname,workarea |
L 1 1 J
symbol

the name of the macro instruction.

termname
the name of the terminal whose termi-
nal table entry is to be replaced. It
must be the same as a name that
appears in the name field of a TERM,
PROCESS, or DLIST macro instruction.
If register notation is used, the
address of a location containing the
name must be in the general register
designated. The terminal name whose
address is in register nust be padded
with blanks to the length of the maxi-
mum size TERM entry in the terminal
table.

If an invalid name is specified, the
routine generated by CHNGT returns an
error code of hex '20', right-
adjusted, in register 15. QTAM subse-
quently disregards the new terminal
taple entry and continues to use the
old.

workarea
the address of the area from which the
information is moved. If register
notation is used, the general register
specified must contain the address of
the work area. If the new entry does
not equal the size of the old entry,
no data movement: takes place. An
error code of hex '10' is returned in
register 15, and QTAM continues to use
the old entry.

If no errors were detected in the CHNGT
macro, register 15 contains all zeros.

EXAMINING AND MODIFYING POLLING LISTS

QOTAM provides macro instructions that
enable the user to examine and modify the
contents of the polling list for a line.

The COPYP macro instruction causes the
contents of a specified polling list to be
copied into a work area. This macro
instruction can be used in conjunction with
the CHNGP macro instruction, which can sub-
stitute a new polling list for a superseded
one (the new list must be the same size as
the 0ld one). The user issues a COPYP,

100

examines the information, changes it if
necessary, and issues a CHNGP. CHNGP can
also be used to stop or restart polling of
the terminals on a line.

Copy Polling List (COPYP) Macro Instruction

COPYP causes the polling list for a speci-
fied line to be copied into a user-
designated work area. The format of the
polling list is shown in Appendix A.

r T T

| Name | Oper-| Operand
| |ation|

b D

| [(symbol]l | COPYP| termname,rln,workarea
L L L

R Y]

symbol
the name of the macro instruction.

termname

the name of any terminal in the line
group, but not necessarily the name of
a terminal in the polling list being
copied. If register notation is used,
the register must contain the address
of the data control block for the line
group. It cannot contain the terminal
name.

If an invalid terminal name is speci-
fied, an error code of hex *20°,
right-adjusted, is set in register 15.
If the DCB for. the line group has not
been opened, an error code of hex *'01*
is set in register 15. 1In either
case, the COPYP has no effect.

rln
the relative line number, within the
line group, of the line whose polling
list is to be copied. If register
notation is used, the user previously
must have placed the relative line
number (in binary form) in the general
register designated. If the rln spec-
ified is invalid, a hexadecimal code
of *08', right-adjusted, will be set
in register 15.

workarea
the address of the work area into
which the polling list is to be
copied. The first byte of the work
area receives the first byte of data
in the polling list. The size of the
area necessary can be determined from
the polling list format shown in
Appendix A. If register notationm is
used, the general register specified
must contain the address of the work
area.

If no errors were detected in the COPYP
macro, register 15 contains all zeros.

Change Polling List (CHNGP) Macro
Instruction

CHNGP can either:

1. Place a new polling list in the poll-
ing list area for a specified line.

2. Change the status of a polling list
for a specified line.

r T T 1
| Name | Oper- |Operand |
| |ation | |
L i 1 J
13) T T 1
| Isymboll |CHNGP | termname,rln, |
| | | (workarea |
| | |{=co° !
| I [{=c'1°® I
L 1 1 J
symbol

the name of the macro instruction.

termname

the name of any terminal in the line
group, but not necessarily the name of
a terminal in the polling list that is
being changed. If register notation
is used, the register must contain the
address of the data control block for
the line group. It cannot contain the
terminal name.

If an invalid terminal name is speci-
fied, an error code of hex '20°',
right-adjusted, is set in register 15.
If the DCB for the line group has not
been opened, an error code of hex '01°'
is set in register 15. 1In either
case, the CHNGP has no effect.

rin
the relative line number, within the
line group, of the line whose polling
list is to be modified. If register
notation is used, the user previously
must have placed the relative line
number (in binary form) in the general
register specified. TIf the relative
line number is invalid (the line group
has no such line number) an error code
of hex '08', right-adjusted, is set in
register 15.

workarea
the address of the area that contains
the new polling list. The first byte
of the polling list area receives the
first byte of data in the work area.
takes place. An error code of hex
'10' is set in register 15. QTAM sub-
sequently disregards the new polling
list and continues to use the old.

=C'Q"
causes the second byte of the polling
list be changed to a zero. This
results in the deactivation of the
polling list. Nc further messages are
received until the list is
reactivated.

=C'1"
causes the second byte of the polling
list to be changed to a one. This
results in the activation of the poll-
ing list. QT2M begins polling the
terminals on the line and accepting
incoming messages.

If no errors were detected in the CHNGP
macro, register 15 contains all zeros.

EXAMINING QUEUE CONTROL BLOCKS

Each terminal table entry defined by a TERM
or PROCESS macro instruction contains the
address of the queue control block (QCB)
for the DASD destination or DASD process
queue on which outgoing messages to the
destinations are placed. OQTAM uses the QCB
for:

1. Placing each message on its appropri-
ate DASD queue.

2. Maintaining information on the status
of the queue.

The COPYQ macro instruction enables the
user to examine a QCB to ascertain the sta-
tus of the DASD destination or DASD process
queue associated with the QCB.

Figure 24 shows the contents and rela-
tive displacement of each field in the QCB
that is of interest tc¢ the user. After
issuing a COPYQ macro instruction to copy
the QCB into a user-specified work area,
the user can determine the contents of the
fields from which he needs information.
For example, the user can determine the
number of messages in the queue, or can use
the address of the queue on the disk to
retrieve a message (see the RETRIEVE macro
instruction descripticn).

Copy Queue Control Blcck (COPYQ) Macro
Instruction

COPYQ places the contents of a QCB into a
specified work area. The user indicates
the QOCB desired by specifying the name of a
terminal or the name c¢f a DASD process
queue. If the name of a terminal is speci-
fied, COPYQ places into the work area the

Network Ccntrol Facilities 101

T 1
| 0 123 4 15 |
| r L] T - 1 |
. |QFAC | | |
. L 4 L ¥] |
| I
| 16 17 18 19 20 21 22 23 24 25 29 30 31 |
I R} T T R) 1 l
| |QRLN|QDCB | QSIZE | QNASEG | | OBACK | |
' L 4. i 1 4 d l
| I
|Legend: |
| I
[QFAC _ . '
| the relative record address of the next message to be read from this DASD queue; |
| that is, the next message to be processed or transmitted. |
| ' |
| QRLN |
| the relative line number of the line associated with this gqueue. (Field used only|
| for a DASD destination queue.) |
| |
| ODCB |
] the address of the data ccntrol block associated with this QCB. (Field used only |
{ for a DASD destination queue.) |
| |
|QSIZE |
{ the number of complete messages on this queue. |
| I
| ONASEG |
{ the relative record address on the DASD message queue data set where the header |
| segment of the next message for this queue will be placed.
I I
|QBACK |
| the relative record address of the last message placed on this DASD queue. |
_— . J
Figure 24. Format of Queue Control Block (QCB)

OCB for the DASD destination queue asso-

ciated with that terminal.

If the name of

a DASD process queue is specified, the QCB
for the DASD process gueue is placed into

the work area.

In both cases, the entire

contents of the 32-byte QCB are provided.
However, certain fields are used internally
by QTAM routines and are not of interest to
the user (see Figure 24).

Name

T T
|Operation| Operand
H

I | {symbol] |COPYQ
L 4

+

| termname,workarea

e s ol o ol

-

symbol

the name of the macro instruction.

termname

102

theé name of the terminal or DASD pro-
cess queue whose associated QCB is to
be copied. Only the name of a single
terminal or process program terminal

table entry can be specified, that is,

the name specified in a TERM or PRO-
I1f specified,

CESS macro instruction.

no data movement takes place. If

register notation is used, the address
of a location containing the name must
be in the designated general register.
The terminal name whose address is in

the register must be padded with

blanks to the length of the maximum

size TERM entry in the terminal table.
If an invalid termname is specified, a

hexadecimal code of '20', right-
adjusted, is set in register 15.
workarea

the address of the area into which the

contents of the QCB are placed.

of the QCB).

area.

If no errors were detected in the COPYQ
macro, register 15 contains all zeros.

The
area must be 32 bytes long (the size
If register notation is
used, the general register specified
must contain the address of the work

This section describes the following ser-
vices that QTAM provides to aid the user in
network control, error recovery, operator
awareness, system failure and system
closedown:

e Operator Control Facility

e Error Recovery Procedures

e Operator Awareness Messages

¢ Checkpoint/Restart Facility

¢ Deactivating the Telecommunications
System

OPERATOR CONTROL FACILITY

This section outlines the contrcl messages
that may be entered from the primary or
alternate control terminal, and the func-
tions they serve. For these messages to be
considered control messages, the OPCTL
macro must appear in the Receive Header
portion of the LPS for messages from this
type terminal, and the identifier charac-
ters must be the first in the header.

With Operator Control, the user has the
capability of selecting one terminal in the
system as the telecommunications control
terminal, and another as the alternate con-
trol terminal. Each of these control ter-
minals must be nonswitched and may be eith-
er a 1050 or 2740 with station control.
Messages received from either of these ter-
minals, with the designated identifier
characters, will be considered control
messages.

Control messages may be sent, in order
to dynamically:

e Copy the cumulative error counters
(CoPYC).

* Copy a particular terminal table entry
(COPYT) .

e Insert the given data into a given ter-
minal table entry (CHNGT).

e Intercept messages to a given terminal
(INTERCPT) .

e Release intercepted messages for a
given terminal (RELEASEM).

OTAM SERVICE FACILITIES

¢ Stop message transmission on a line for
two minutes, then resume transmission
on that line (INTREL).

e Start a line {(STARTLN).
e Stop a line (STOPLN).

e Switch the primary and alternate con-
trol terminals (SWITCH).

The operator control capability provides
dynamic investigation and modification of
the control information used by QTAM. Many
of these same capabilities are available
with the system modification macros. With
operator control, only the terminals desig-
nated as primary or alternate control ter-
minals are afforded the use of all the fol-
lowing functions. (Fcr further discussion
of system modification macros, see the sec-
tion on Examining and Modifying the Tele-
communications System.)

It should be noted that blank characters

must follow all fields in the header of all
operator control messages.

Copy Error Counters

COPYC causes the four threshold counters of
the line specified to be added to the four
cumulative counters fcr that line and the
result to be printed on the primary or
alternate telecommunications system termi-
nal originating the request. Threshold
counters are reset. The information is
printed in hexadecimal format.

b e sl

r
|msgname COPYC termname
L

mSgname
is the sequence cf characters speci-
fied in the CTLMSG parameter of the
OPCTL macro instruction.

termname
is the name of a terminal on the line
desired. This may not be the name of
a DLIST or PROCESS entry in the termi-
nal table. If a DLIST or PROCESS
entry is specified, the message will
be returned to the originating termi-
nal, indicating an error.

Note: The message will be returned to the

originating terminal if the line is not
open.

QTAM Service Facilities 103

Copy Terminal Table Entry

COPYT causes the terminal table entry spec-
ified (starting at the TSEQUIN field) to be
printed on the telecommunications system
control (or alternate) terminal originating
the request. The information is printed in
hexadecimal format. Only the data that
will fit into one buffer will be
transmitted.

An LPS that inserts time, date, and
sequence information into the message head-
er leaves little room in the buffer for
text information. A terminal table entry,
after conversion to printable hexadecimal
format, may require more roor than is left
in the buffer. For this reason the user
should be aware that a separate LPS, which
does no header manipulation, may be used
for the operator control terminals.

T
|msgname COPYT termname
L .

e e e

msgname
is the sequence of control characters
specified in the CTLMSG parameter of
the OPCTL macro instruction.

termname

is the name of the terminal whose
entry is to be copied.

Change Terminal Table Entry

CHNGT causes the data in the text portion
of the message to replace the entry in the
terminal table for the terminal specified.
The data must be entered in hexadecimal
format.

r :
|msgname CHNGT termname data
L

——

msgname
is the series of control characters
specified in the CTLMSG parameter of
the OPCTL macro instruction.

termname
is the name of the terminal whose
entry is to be changed.

data
is the information in hexadecimal for-
mat to replace the terminal takle
entry. The data will be placed in the
terminal table entry beginning with
the TSEQUIN field. Valid characters
for this data are 0 - 9 and A - F. If
an invalid character is specified in
this field or if there is an odd num-
ber of data characters, the message,

104

up to and including the termname, will
be returned to the originating termi-
nal, indicating an error in the data
sent.

Intercept Messages

INTERCPT causes the suppression of all mes-
sage transmission to the terminal specified
by termname. The untransmitted messages
remain on the DASD destination queue for
that terminal.

1
|msgname INTERCPT termname
L

s e

msgname
is the series of control characters
specified in the CTLMSG parameter of
the OPCTL macro instruction.

termname
is the name of the terminal whose mes-
sages are to be intercepted. This may
not be the name of DLIST or PROCESS
entry in the terminal table. If a
DLIST or PROCESS entry is specified,
the message will be returned to the
originating terminal, indicating an
error.

If the INTERCPT control message is to be
used, the user must specify a 3-byte area
of the terminal table (see OPTION macro
instruction description). For each termi-
nal for which message transmission is
suppressed:

1. The relative reccrd number of the
header of the first suppressed message
is placed in the INTERCPT optional
field of the entry representing that
terminal.

2. The intercept bit in the TSTATUS byte
of the entry is set to 1.

3. The send bit in the TSTATUS byte for
that entry is set to 0.

No further messages are sent to the
effected terminal until the user resets the
intercept and send bits. This may be done
by sending a RELEASEM or CHNGT control mes-
sage. If RELEASEM is used, all suppressed
messages (those on ‘the destination queue)
are sent, as are any new messages. If
CHNGT is used, only the new messages (those
placed on the destination queue after CHNGT
has been issued) are sent. In the latter
case, the suppressed messages remain on the
destination queue, and cannot be sent
unless the user obtains them by a RETRIEVE
macro instruction and reissues a PUT for
each of them.

If the user ever wishes to issue an
INTERCPT operator control message, he must
specify the INTERCPT macro instruction in
the ENDSEND portion of the LPS. The mask
in this macro must specify "terminal
inoperative" (i.e., the mask must be at
least a hexadecimal 4000). If the INTRCPT
parameter is not specified in the OPCTL
macro, this message will be returned to the
originating terminal, indicating an error.

Interval Stop

INTREL causes the interruption of all mes-
sage transmission on the line containing
the terminal specified. The function is
the same as for STOPLN except that all
transmission on the designated line is
halted for two minutes following the recep-
tion of this message. After the two
minutes of no transmission the line is
started again and message transmission
resumes until an irrecoverable error
occurs. When an irrecoverable error does
occur, message transmission is stopped for
another two minute interval. If no irre-
coverable error occurs, message transmis-
sion continues normally. INTREL will con-
tinue until a STARTLN control message is
received or until a STARTLN macro is
encountered.

r
|msgname INTREL termname
L

b e

msgname
is the series of control characters
specified in the CTLMSG parameter of
the OPCTL macro instruction.

termname
is the name of any terminal on the
line to be effected by this interrup-
tion of message transmission. This
may not be the name of a DLIST or
PROCESS entry in the terminal table.
If a DLIST or PROCESS entry is speci-
fied, the message will be returned to
the originating terminal, indicating
an error.

Release Messages

RELEASEM causes intercepted messages for a
terminal to be released. This is achieved
by setting to zero the intercept bit in the
TSTATUS byte in the terminal table entry
for the specified terminal.

It should be noted that messages for
this terminal that were intercepted and
later released will not be transmitted
immediately. The queue of messages for

this terminal must be "primed" by having
another message put on that queue. The
presence of this message on the queue
causes QTAM to attempt to contact the ter-
minal. If the terminal is free, the mes-
sages on the queue are transmitted by
priority. 1If the terminal is busy, the
messages will not be transmitted at that
time.

If RELEASEM operator control messages
are to be accepted from the telecommunica-
tions control terminals, the INTRCPT=YES
operand must be coded in the OPCTL macro
instruction and a 3-byte OPTION field
labeled INTERCPT must be defined for the
terminal table entries.

r
| msgname RELEASEM termname
L

b e

msgname
is the series of control characters
specified in the CTLMSG parameter of
the OPCTL macro.

termname _
is the name of the terminal whose mes-
sages are to be released. Messages
for this terminal must have been pre-
viously intercepted by having an
INTERCPT macro for this terminal in
the LPS, or by issuing an INTERCPT
operator control message for this
terminal.

Note: If INTRCPT=YES is not specified in
the OPTCL macro instruction and a RELEASEM
operator control message is received, the
message will be returned to the originating
terminal, indicating an error.

Stop Line

The STOPLN control message removes a com-
munication line, or lines, from active use.
Operations on the designated line or lines
are stopped.

e s o

r
| msgname STOPLN termname [ALL]
]

msgname
is the series of control characters
specified in the CTLMSG parameter of
the OPCTL macro.

termname
is the name of a terminal on the line
to be stopped. If all the lines in
the line group are to be stopped, this
may be the name of any terminal in
that line group. This field may not
be the name of a DLIST or PROCESS

QTAM Service Facilities 105

entry in the terminal table, or the
name of the source terminal. If any
of these is specified, the message
will be returned to the originating
terminal, indicating an error.

It must be remembered that the control
terminal or alternate terminal cannot
be stopped by a message from itself.
There would be no way of restarting
the terminal.

ALL
specifies that all the lines in a line
group are to be stopped. The line
group is determined by the termname.
If this operand is omitted, only the
line containing the terminal mentioned
in termname will be stopped.

If the DCB for the line involved has not
been opened, the message will be returned
to the griginating terminal, indicating an
error.

Start Line

STARTLN can be used to:

1. Allow message transmission to resume
on a particular line in a communica-
tion line group.

2. Allow message transmission to resume
on all lines in a communication line
group.

The user must have previously opened the
line group in the message control program.
If the DCB is not open, the message will be
returned to the originating terminal, indi-
cating an error.

If a line is deactivated by a STOPLN
control message, STARTLN must be issued
before message transmission on that partic-
ular line can resume. This control message
will also reset the Interval Stcop (INTREL)
condition.

r
|msgname STARTLN termname (ALL]
L

e

msSgname
is the series of characters specified
in the CTLMSG parameter of the OPCTL
macro.

termname
is the name of the terminal on the
line to be started. If all lines in a
line group are to be started, then
this may be any terminal in that line
group. This may not be the name of a
DLIST or PROCESS entry. If a LIST or

106

-CHNGP macro instructicn.)

PROCESS entry is specified, the mes-
sage will be returned to the originat-
ing terminal, indicating an error.

ALL
when used, this signifies that all the
lines in the line group are to be
started. If omitted, only the line
with the terminal specified by terxrm-
name will be started.

In all of the above cases, if polling is
used, the presence of an active polling
list is a prerequisite for message trans-
mission. (An active polling list is one in
which the second byte of the list is a non-
zero character -- this character is ini-
tialized as a one and can be changed by the
If STARTLN is
used, polling of input lines begins after
the execution of that control message.

Switch Primary Terminal

SWITCH causes the alternate telecommunica-
tions control terminal to receive error
messages. If the alternate terminal is
presently set to receive error messages,
this message causes the primary terminal to
receive messages.

If no alternate terminal has been speci-
fied in the OPCTL macro instruction, the
message will be returned to the originating
terminal, indicating an error.

r 1
| msgname SWITCH
L

msgname
is the series of characters specified
in the CTLMSG parameter of the OPCTL
macro instruction.

Invalid Operator Control Messages

It must be noted that the console commands
are completely analogcus to the message
processing macros of the same name, and can
therefore be nullified by later occurrence
of the macros. For instance, if the opera-
tor issues a STOPLN and the message pro-
cessing program encounters a STARTLN, the
line will be started.

In addition to the situations mentioned
in the discussions of the individual con-
trol messages, the control message will be
returned to the originating terminal
whenever:

1. The input message is longer than one
buffer, including EOB and EOT
characters.

2. The operation cannot be identified.
3. The terminal name is invalid.

If an operator has his message returned
immediately, he should first check the
termname for validity, and then check the
operation name he has specified. After
this, he may check the length of the mes-
sage against the length of the buffer.
Next, he should check the discussion of the
control message he has just sent for indi-
vidual circumstances that might cause the
message to be returned.

Example: Assume that the user wishes to
stop all lines in a particular line group.
TERM1 is the name of a terminal on a line
in the line group to be stopped. CTL are
the control characters for an operator con-
trol message. The lines in the line group
can be stopped by issuing

NCTL STOPLN TERM1 ALL EE

L (o]0
BT

N
L

is the New Line character
E
(0]
B

is the End-of-Block character
E
(@]
T

is the End-of-Transmission character

Blank characters must follow all fields
in the header, including the last.

If the terminal that issued the message
is on the line or in the line group to be
stopped, the message will be returned to
that terminal, indicating an error. This
is to protect the user from permanently
stopping the line that his control terminal
is on.

ERROR_RECOVERY PROCEDURES

The error recovery procedures are a compre-
hensive set of routines for dealing with
all kinds of input/output errors that may
occur within the telecommunications system.

When an I/0 error occurs, the error
recovery procedures examine the sense bits

and CSW status bits tc determine which type
of error has occurred. Depending upon the
type of error, the following functions may
be performed:

1. the failing action is retried two
times, and on the third occurrence of
the error an operator message is
provided;

2. an operator message is immediately
provided;

3. the type of failing action is recorded
in a threshold counter, statistical
data recorder, or outboard recorder,
depending upon the type of error;

4. a combination of 1, 2, and 3, depend-
ing upon the type of error detected.

Note: If the error is counted in a thresh-
0ld counter, it is counted every time that
it occurs, including both of the retry
attempts. Messages tc the operator are
normally sent to the 1052 system console.
However, if the OPCTL operand is specified
in the TERMTBL macro instruction, the mes-
sages are sent to the telecommunications
control terminal. For further information,
refer to the section on the TERMTBL macro
instruction and the section on Operator
Control.

Eight counters are provided for each
line in the system: four threshold count-
ers and four cumulative counters. Each
cumulative counter corresponds to one of
the threshold counters.

The threshold counters keep a count of
the number of (1) transmissions, (2) data
checks, (3) intervention required errors,
and (4) nontext time-cuts.

Whenever one of the three error thresh-
old counters (but not the transmission
threshold counter) reaches a specified
threshold value, the following action is
performed:

e each threshold counter is added to the
corresponding cumulative counter;

® a message is provided to the operator
showing the value in each threshold
counter at this time; and

e the threshold counters are reset to
zZero.

Whenever the transmissions threshold
counter reaches its threshold value, the
cumulative counters are incremented and the
threshold counters are reset to zero, but
no message is provided.)

QTAM Service Facilities 107

The threshold values represent the num-
ber of three types of errors considered
excessive within a certain number of total
transmissions. These values are specified
in the THRESH operand of the DCB macro
instruction for the line group in which the
line is located. The threshold value for
any of the four threshold counters must not
be more than 255. However, the threshold
values specified for any of the three error
counters should be enough less than that
specified for the number of transmissions
to allow an error message to be provided.
If the THRESH operand is omitted from the
DCB for the line group, the following
values are assumed:

Number of transmissions = 255
Number of data checks = 10

Number of intervention required errors
= §

Number 'of nontext time-outs = 5

OPERATOR AWARENESS MESSAGES

This section describes those messages sent
by QTAM to notify the user of error condi-
tions that could affect normal operations.
These messages will be written on the sys-
tem. console unless the operator control
facility is included and the OPCTL operand
is coded in the TERMTBL macro instruction.
In this case, these messages (except for
the message identification number) will be
sent to the telecommunications control
terminal.

The following message results when a
permanent or irrecoverable I/0 error has
occurred on the line:

IEAQ00I I/0 ERR,aaa,bb,cccc,ddee, ffgghhhh

aaa
is the line address in hexadecimal
format.

bb :
is the command code as specified in
the failing channel program in hexa-
decimal format.

ccece
is the status bytes of the channel
status word (CSW) as specified in the
input/output block (IOB) in hexadeci-
mal format.

aa
is the first sense byte as specified
in the input/output block (IOB) in
hexadecimal format.

108

ee
is the sense information resulting
from the issuance of a diagnostic
write/read, writes/break, or read/skip
sequence if it resulted in a unit
check (in hexadecimal format).

f£
is the TP Op code as specified in the
failing CCW in the channel program (in
hexadecimal format).

99
always zero.

hhhh
is the terminal ID (polling or ad-
dressing characters) in hexadecimal
format. If only one polling character
is used it will be left-justified in
this field. If this is a dial line,
this field is the last four digits.

The following message results when the
system detects excessive temporary errors
as determined by the line error threshold
counters:

IEC8011I THRESHOLD aaa TRANS=bbb DC=ccc
IR=ddd TO=eee

THRESHOLD
jidentifies this as an error threshold
message.

aaa
is the line address in hexadecimal
format.

TRANS=bbb

bbb is the nurber of transmissions
attempted up to the time an error
threshold was reached. This informa-
tion is in decimal format.

DC=ccc
ccc is the number of data checks that
occurred, in decimal format, in the
past bbb transmissions.

IR=d4dd
ddd is the number of intervention
required errors that occurred, in
decimal format, in the past bbb
transmissions.

TO=eee
eee is the number of nontext time-out
errors that occurred, in decimal for-
mat, in the past bbb transmissions.

CHECKPOINTING AND RESTARTING THE MESSAGE
CONTROL PROGRAM

QOTAM provides the facility for writing
checkpoint recoxrds on a data set under con-
ditions specified by the user. Checkpoint
records contain the information necessary
to record the status of the queues and of
the telecommunications network. Restart
provides the facility of restoring the
queues and the network to its status just
prior to the last checkpoint record taken.
These facilities enable the user to rees-
tablish the system if a system failure
should occur, without loss of messages
already entered in the system.

CHECKPOINTING THE MESSAGE CONTROL PROGRAM

The user may specify that checkpoint rec-
ords are to be taken either at specified
intervals of time or at desired points in
one or more message processing programs.

Checkpoint causes records to be written
as specified on a checkpoint data set main-
tained on a direct access storage device.
Specifically, the checkpoint records
include the polling lists, the terminal
table, disk pointers, and status informa-
tion associated with each gueue, and disk
pointers and status information associated
with each line. Note that the data in the
buffers is not included in the checkpoint
record. The format of the checkpoint rec-
ords is shown in Appendix I. Two such
checkpoint records are maintained in the
checkpoint data set along with a pointer to
the most recent record. At user specified
intervals a new checkpoint record is writ-
ten over the oldest existing record and the
pointer is updated to reflect the most
recent record. Should a system failure
occur during checkpoint itself, restart may
still be accomplished using the alternate
checkpoint record.

Checkpointing is initiated by:

1. Allocating space on the DASD for the
checkpoint data set.

2. Defining the checkpoint data set.

3. Opening and closing the checkpoint
data set.

4. Either using the CPINTV keyword
operand in the TERMTBL macro instruc-
tion (if checkpoint records are to be
taken at specified intervals of time)
or using the CKPART operand in the
TERMTBL macro instruction (if the rec-
ords are to be taken at certain points

in the processing programs). If the
CKPART operand is used, the CKREQ
macro instruction must be issued in
each processing program to be used in
determining when to take the check-
point records (see the publication IBM
the publicationIBM Systen/360 Operat-
ing System: OTAM Message Processing
Program Services.

Note: If checkpointing is specified at
time intervals (CPINTV operand in the
TERMTBL macro instruction), no additional
instructions are necessary in the process-
ing programs (i.e. checkpointing is inde-
pendent of the processing programs).

Restart allows the user to re-establish
the queues and the telecommunications net-
work to its status just prior to the last
checkpoint.

Allocating Space on the DASD

The checkpoint data set should be main-
tained on a permanently resident DASD.
Space must be allocated on the DASD the
first time the data set is used. The num-
ber of tracks required may be calculated
from the formula:

T=0288 + 2(S.+ 11N, + 1UN,,+11N +S,,+ g, +
ceset S Yl/ 3625

Where:

T = Number of tracks; must be

rounded to the next high-
er integer.

S; = Size in bytes of the ter-
ninal table.

Npa = Number of destination
queues.

Neo = Number of process queues.

N, = Number of lines.

SpatS, 2%e.«+S,n = Sum of the sizes of the

polling lists.
For example:
Consider a telecomrunications system con-
sisting of nonswitched IBM 1050s in the
following configuration:

3 lines with 3 terminals each, queued by
line

2 lines with 2 terminals each, queued by
terminal

1 processing entry in the terminal table
All terminal names are 5 characters. No

optional fields are used in the terminal
table.

QTAM Service Facilities 109

From Appendix A, the terminal table size is
S, = 248. There is one destination queue
for each line queued by line, one destina-
tion queue for each terminal queued by ter-
minal and one process queue. Thus N,,=7
and N,,=1. For the 5 lines, N _=5.

From the polling list formats in Appendix
A, three lines have polling lists of 12
bytes each and two lines have polling lists
of 10 bytes each. Thus S, ,+S; a%.. .S, =56

Therefore T = [288 + 2(248 + 11(7) + 14(1)
+ 11(5) +56)1/ 3625 = .33

A value of T = 1 must then be used in SPACE
allocation.

A DD card is used to allocate space for the
checkpoint data set. The name of the DD
statement must be TPCHKPNT. Secondary
space allocation is not used in the TRK
parameter.

A typical DD card used for initial alloca-
tion is:

//TPCHKPNT DD DSNAME=CPDS, UNIT=SYSDA,

7/ VOLUME=SER=111111,
Vo4 SPACE= (TRK, (1)),
/7 DISP= (NEW,KEEP)

A typical DD card used for the same check-
point data set after initial allocation is:

//TPCHKPNT DD DSNAME=CPDS ,UNIT=SYSDA,

DISP=OLD

Defining the Checkpoint Data Set

The checkpoint data set must be specified
by a DCB macro instruction. The format of
this instruction is found in a previous
section entitled Data Set Definition. The
DCB macro instruction will be written as
follows:

DCB DSORG=CQ,MACRF=(G,P),
DDNAME=TCHKPNT

Opening and Closing the Checkpoint Data Set

The checkpoint data set must be opened
after the DASD message queues data set and
before the communication line group data
sets. The checkpoint data set must be
closed after the communication line group
data sets and before the DASD message
queues data set.

110

RESTARTING THE MESSAGE CONTROL PROGRAM

When operating with the checkpoint/ restart
option, the user may restart the message
control program at any time. Restart rees-
tablishes the queues and the telecommunica-
tions network to the status it had just
prior to the most recent checkpoint.
Restart is accomplished by reloading the
program after changing the DISP parameter
in the DD card for the checkpoint data set
to a DISP=0LD. The checkpoint data set is
then examined. If this data set had been
properly closed, normal operation takes
place; no special action is necessary for
normal startup. If this data set had not
been properly closed, a restart operation
is performed. If space is being allocated
for a new checkpoint data set (i.e.,
DISP=(NEW,KEEP) on the DD card) a new star-
tup is assumed and no restart is possible.

Restart of the message control program
will normally require no more than five
minutes longer than a regular start.
Incoming activity on nonswitched lines that
does not contain normal EOB (or ETX) or EOT
characters may delay restart.

If an abend occurs and the user does not
wish to restart, but merely to startup, he
must scratch the checkpoint data set.

After the restart procedure has been ac-
complished, the terminals should be noti-
fied of the delay and instructed to re-
transmit messages that might have been sent
during this interval. This leads to the
possibility that a message may be dupli-
cated on the message gueue.

At restart time, QTAM has available for
each terminal the input sequence number of
the last message successfully received,
processed by the LPS, and placed on the
message queue. Messages received after the
restart will have their input sequence num-
ber checked against the last valid input
sequence number from the last checkpoint
record. If the sequence number is valid,
processing proceeds as normal. If the
sequence number is invalid, the message
control program should take action to noti-
fy the operator of the terminal that that
message has already been received and pro-
cessed by the LPS (see ERRMSG macro
instruction discussion).

For example, if, at the last checkpoint,
the input sequence number of the last mes-
sage successfully received and processed by
the LPS for terminal Z is 25, and after the
restart terminal Z resends message 24, the
operator should be notified that this mes-
sage has already been processed by the LPS.
If he would also resend message 25, he

would receive a sirnilar notification. When

message 26 is sent, processing of messages
from this terminal proceeds as if there had
never been an interruption.

SYSTEM DESIGN CONSIDERATIONS

Checkpoint does not terminate incoming
activity at the CPU before taking the
checkpoint record. Some of the messages
checkpointed will therefore be partially
received. These partially received mes-
sages as well as the messages received
after checkpoint time must be retransmitted
by the user after restart.

Messages on the DASD at restart that
have not been completely sent to their re-
spective terminals or process queues will
be sent starting with the header segment
whether or not the header segment had been
sent before the checkpoint.

Lines in initiate or conversational mode
at checkpoint time will be in normal mode
upon restart.

Lines stopped at checkpoint time will
remain stopped upon restart.

Dial Line Considerations

If a line group has more than one dial
line, there must be at least one TERM entry
in the terminal table for every line in the
line group. That is, there must be an
entry for each line in the line group each
specifying a different relative line num-
ber. These may be dummy entries specifying
the DCB and relative line nurmber. If this
is not done, checkpoint/restart will not
function properly.

DEACTIVATING THE TELECOMMUNICATIONS SYSTEM

In order to terminate operation of the
telecommunications system, the communica-
tion line group, checkpoint, and direct
access message queues data sets must be
closed. Before they may be closed, all
message traffic in the syster must cease.
To accomplish this, the user issues a
CLOSEMC macro instruction in a user-written
termination routine which is contained in a
processing program. CLOSEMC controls and
monitors line activity and checks the sta-
tus of all data sets opened in the message
processing programs. When all data sets
opened in the message processing programs
are closed, and line activity has ceased,

the routine returns control to the user to

permit him to close the line group and mes-
sage queues data sets. Deactivation of the
system proceeds in the following manner.

When the system is to be deactivated, a
CLOSEMC macro instruction must be issued in
a program other than the message control
program. A recommended procedure is to
send a special message to a process queue
from which a message processing program
containing a user-written termination rou-
tine may obtain the message.

Note: The CLOSEMC macro instruction may
not be issued in the message control pro-
gram under any circumstances.

This termination rcutine should do the
following:

1. Be sure all other message processing
programs and all their QTAM data sets
are closed.

2. 1Issue the CLOSEMC macro instruction
(only one CLOSEMC is required to deac-
tivate the entire system).

3. Close the MS destination and MS pro-
cess queues data sets and any other
data sets opened in that message pro-
cessing program. If the processing
program does not regquire a main
storage queue data set, a dummy one
must be supplied and opened. When
this data set is closed, the message
processing program requests the mes-
sage control program to close down.

4, Issue a RETURN macro instruction in
order to end the message processing
job.

When the QTAM termination routine that
is called by the CLOSEMC macro is entered,
the following action occurs. Outgoing mes-
sage traffic continues on any lines that
are not currently receiving messages.
Meanwhile, incoming message traffic on each
line is limited to the message currently
being received over that line. When the
last block of the current message is
received, no more incoming messages are
accepted (i.e., the line is not repolled or
reenabled). As each such line becomes
free, any outgoing messages that have been
queued for that line are sent. In this
manner, incoming message traffic declines
to nothing, while outgoing message traffic
continues until all messages have been
sent.

QTAM Service Facilities 111

The QTAM termination routine monitors
the closing of the QTAM data sets opened in
the message processing programs. When it
finds that all of these data sets have been
closed, and all outgoing message traffic
has ended, the routine issues a STOPLN
macro instruction for each line in the sys-
tem. When all lines have been stopped,
control returns to the first instruction
following the ENDREADY macro instruction in
the message control program. This instruc-
tion must begin a user-written routine (or
branch to a routine) that deactivates the
message control program. This deactivation
routine must issue CLOSE macro instructions
for each of the data sets opened in the
message control program (i.e., the line
group, checkpoint, and direct access mes-
sage queues data sets).

The last QTAM data set to be closed must
be the direct access message queues data
set. This is important, because closing
this data set constitutes deactivation of
the telecommunications systen. After the
message queues data set has been closed, no
further references can be made to queues,
control blocks, terminal table, polling
lists, etc.

The deactivation routine should end with
a RETURN macro instruction in order to end
the message control job. Each cof the mes-
sage processing programs should also end
with a RETURN,

112

CLOSE Macro Instructicn

CLOSE is used in the message control pro-
gram to deactivate any message log data
set, communication line groups data sets,
checkpoint data set, and DASD message
queues data set the user has included in
the telecommunications system.

If used, this macrc instruction must
appear in a section of code following
ENDREADY or be branched to from instruc-
tions following ENDREADY.

T v kB 1
| Name |Operation] Operand |
k 1 + 1
| (symbol1|CLOSE | {dcbisel... |
L " L J
symbol

the name of the macro instruction.

dcb
specifies the symbolic address of the
data control block for the data sets
being closed. All message control
data sets can be closed with one CLOSE
macro instruction by including the
addresses of their data control blocks
as operands. If register notation is
used, the addresses of the data con-
trol blocks must have been loaded pre-
viously into the general registers
specified.

APPENDIX A: DATA AND CONTROL FORMATS USED BY QOTAM

le—————— 243 Bytes Maximum ——————+

l=-8 Bytes Maximum -e
Entry Type 0 1 2 3 4 5 6 7 8 "

55 xl
User Direct Access
Area

4 bt Area
—if 4 3+

?::'gnlienol TNTRYSZE| TQCBADDR TSEQUIN TSEQOUT | TSTATUS TERMID Offset

n
K

it

TSTATUS TERMID Offset | User | Direet Access

é;(eu Area
s 5

Group TNTRYSZE| TQCBADDR
Code

f
I
i
TSTATUS TERMID

e
7’

Esf”b””°" TNTRYSZE| TDSTRQCB
1

reladdr reladdr

41
X

I
IF

TSEQOUT § TSTATUS TERMID

Process Terminal List Portion

Program TNTRYSZE| TQCBADODR

* Unused Field of One Byte

¥ L) L]

L3

| Value |

| Provided |Value |Initial
orm | By: |Range |Value

. e 4 4

— ansn. and)

¥
| | |
| |start |Field
Field Name|Function |Location} Length
4 L

- T T T
TNTRYSZE |All entry types: [byte 0 |1 byte macro |10-252{--
| Specifies entry size (in|
bytes) and provides |
access to the next high-

|er terminal table entry.

B
binary
number

3 bytes }binary racro

TQCBADDR |Single-terminal, group
address

|code, process program
entries: Contains the
address of the QCB for
the queue on which ocut-
going messages are
placed. Using this
address identification,
the queuing routine
places each message on
|its appropriate queue.

TDSTRQCB Distribution List
entries: Same function

|
|
|
|
]
I
|
I
I
I
I
|
I
|
|
| 3 bytes
|

as for TQCBADDR, except |
|
|
|
I
|
|
|
I
I
|
|
I
|
|
|
I
|

binary
address

macro

that this address iden-
| tifies the QCB for a
queue on which outgoing
|messages for a distribu-
|tion list are placed.

— — it o, S s, Ao, Wit S S T . T S S mereres S S . oS, Y, WS et S0t e, St

o
t
Y-}
0
(o]
A¥=]
[y

byte 4 2 bytes

3
B
=2

binary
count

TSEQUIN {Single-terminal entries:
Stores and maintains a

sequence number for
incoming messages from
the terminal represented
|by this entry. The

| SEQIN macro instruction
uses this value as a
check against the

| sequence number appear-
|ing in the incoming mes- |
| sage header. | |
4 4. 1

T
|
|
|

+
|
|
|
|
|
|
!
|
|
|
|
|
|
{
|
]
|
|
|
I
|
]
|
|
|
I
I
|
|
I
!
|
[
|
1
I
]
|
I
i &

o e e v v v s . e . . S S . . S, S, S S St B S, S S Sl S S e —— i S St Wit Qi S e S i]
e i e e e i o i s . o . . S . " i o e P S S S o (o S S— . S S, S e St i e o S avmre o by S

[e e e s S v . S S — T A S o 2 S S . S oot . S — — _— f— — — —— o o S A S S e S s
o s o e e ot A . et et W e, e WY et S e, ST T S ot e W e W e L e i e T Wi e W et WD et S e

= .

Figuré 25. Terminal Table Entry Formats (Part 1 of 5)

Appendix A 113

ield Name|Function
4

T
I

Start

T

|
|Field

w
{
I

Location|Length |Form
1 1

T
| Value
| Provided

| By
L

=T

Value |Initial
Range |Value
1o

= | o

SEQOUT

TLISTKEY

TSTATUS

e e e e P e e e e e i i ———

|group code addressing.

]

|Single-terminal, grcup
|code, process program
|entries: Provides and
|maintains a sequence

| number for outgoing mes-
| sages to the destina-

| tions represented by

| this entry. SEQOUT
|obtains the current

| value from TSEQOUT and
|places it in the outgo-
| ing message header. The
| sequence number is
|incremented by 1 each
| time the number is
|placed in a message.
|a terminal is repre-
| sented by both a single
| terminal entry and a
|group code entry, only

| the TSEQOUT field in the
|group code entry is

| incremented when a mes-
| sage is transmitted via

-
Hh
e e e et . e . e i . . ot o i . . i St e e, e, i . . . e

.

|[Distribution list entry
|Contains the starting

| address of the termi-
|nal list portion of this|
|entry, relative to the |
|address of byte 0 of thej
|entry. The terminal |
|list portion consists of|
| subfields reladdr,,...

| reladdry.

|

|All entry types:

| Indicates various

| communication condi-

| tions associated with

| the terminal(s) rep-

| resented by this entry.

|
|Bits 0 through 3: Not
|used at present.

I
|
I
|
I
|
|
|
|
I
|
I
| I
|
|
|
|
|
|
|
|
|
i

|Bit 4: Interval stop
|bit; initially set to O.
|Will remain 0 for pro-
|cess or list entries.
|This bit is set to 1
|when this line is in

| INTREL mode. It is
|reset to 0 when a.

| STARTLN is issued for
| that line.

L

byte 6

byte 6

byte 8

+

|2 bytes

1 byte

1 byte

e o e, i S S s R o S A Syits, B S o . (it Sot (i . W T—— —— " ———— — Y o r— G — — — — — T i . St Sl S S T . s Sk (o it S, e s, S . i

k)
|binary
]count

e o — —— — o o . TS . G St P D M il e S S S S ol S

|binary
|rela-
|tive
|address

binary
status

[s oo S et e st ot e e B et S W St o S Bt BoPS S Mt e St e et S e

+

| QTAM

macrxo

macro

I
I
|
|
|
|
|
|
|
|
I
|
|
|
|
I
|
|
!
|
I
I
|
I
I
|
I
|
|
|
|
|
[
|
!
|
|
|
|
I
!
|
|
|
|
|
|
[
|
|
!
I
|
|
|

b
0-9999{1

- see
specif-
ic bits

|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
!
l
|
|
|
|
l
|
|
|
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|

[}
L}
Ty NP

o e i o e e o et et e e o e e e et e i, i st i S ek o i Sl S e et Sl . e S e e, g . i e, S e A, st e et ek S et e e, St it e st e 2. et

Figure 25. Terminal Table Enﬁry Formats (Part 2 of 5)

114

T T
|

I
Start |Field
Location]|Length
1

3
g

Field Name|Function
}

L) T
| Value |
|Provided |Value |Initial
| By: |Range |Value

[l

1

|Bit 5: Intercept bit;
|initially set to 0.

| This bit is set to 1
|upon issuing of an

| INTERCPT macro instruc-
|tion to indicate that a
|message on the queue was|
|not transmitted. It may|
|be reset to 0 by a CHNGT|
|or RELEASEM macro
|instruction when trans-
|mission can be resumed.

T
|
|
|
%
I
I
!
|
I
I

I

|IBit 6: Send bit; ini-
|tially set to 1. This
|bit is set to 0 upon
|issuing of an INTERCPT
|indicating that messages
|on the queue for the
|destination are withheld
| from transmission. It
|may be reset to 1 by a

| CHGNT or RELEASEM macro
| instruction when trans-
|mission can be resumed.

|

|Bit 7: Receive bit;
|initially set to 1 to
|indicate that the termi-
|nal represented by this
|entry is being polled.
|It may be set to 0 to

| prevent polling of the
|terminal. Setting to 0
|or 1 is achieved by

| means of the CHGNT macro|
|{instruction. Note: Bit|
|7 is not applicable to, |
jand is not used by, |
|group code, distributioni
|list and process program|
|entries.

—....._.._.—.—-—————n-————-.—————————-—-——-—_———————-;-———H——a_-‘p_—-—d

I

TERMID |All entry types: Con-
| tains the name of the
| terminal that this
|entry represents, in the
|form of a terminal code
| (or code for the

|
|byte 9
|
|
|
[
|
| process program) . |
|
!
[
|
|
L

1 to 8 JEBCDIC

bytes {char-
|acters
| (upper
| case)

|This code is the

| same code that can
|appear in the source or
|destination code field
|of the message header.
L

= e e o i o i S e S e Ao S S i S S e e S e S e, S . s S = e TS S e et S i, S o . i, S S, e S, . s St i e e i, S S, . S, e, S . e, .y

frn e e e o . T . . . A S . T i A i T " S o S T — — — — —— — T —— — . S i S Yol S —— S . A S S e S . A o, . . S e e S s,]

1
|
|
|
a
|
‘.

User

o e i e et . i e e e S i o o i e e o St S St . S B et e A S S A it e S e SRR . T . S R S e S o B o i e et e 7t e e
P—_————————-————_————————a———_—————————‘————_——_————-__————_-
oo e e et o o i S e S e St i S~ e . st S e, S e S e S s, e S e e e e S et e e, S s I e S, st e S i s S et e S, e, e e et e i
Do e o S s S—— A — — — — T — — p— A, roa WO — T — S p— — T p— S—a S— — T g S i, WO S o s WA, s S, S e, Tt S e, TS e S g Vo g, . ermane, il . e, .

Figure 25. Terminal Table Entry Formats (Part 3 of 5)

Appendix A 115

ield Name|Function
1

T

T
|

I
|Start
| Location| Length
} 1

T

|
|Field

Form | By:
1

T
|Value
| Provided

|
Value JInitial
Range |Value

1

ol m

ffset

User area

Device
access
area

[e e e o it e e T i et S i S e S e S, i St ot e i St i S S e Sl St S St S, o, S o — A —— — et e, o e A, D i SO e e A, s, e S it i e)

L

|Dial Terminal: Offset

| from the beginning of

| the entry to the code

| for the number of dial
jdigits.

|Nondial Terminal: Off-
|set from the beginning |
|of the entry to the
|device access field.

|Single-terminal and

|group _code entries: Con-|Note 1)

|tains such data as the
|particular application
|may require, e.g. alter-|
|nate destination codes, |
|polling limit parameters|
|and diagnostic informa- |
|tion. The user area |
|consists of a contiguous|
|series of subfields |
fwhose form, length, and |
jcontents are specified |
!
I
|
|
|

| by means of OPTION and
| TERM (see the descrip-
|tions of these macroc
|instructions).

|
|Single-terminal and
|group code entries:
| Nonswitched lines -

|Contains the polling and|ing user|of all
|area

|addressing characters
| for the terminal(s) rep-|
| resented by this entry.

| These characters are

| specified by the "ad-
|dressing" operand of the
| TERM macro instruction.

I

I

|

|

|
[I
| Switched lines - The |
| first byte contains the |
|number of dial digits; |
| the next bytes contain |
|the dial digits. These |
|are specified in the i
| operand of the TERM |
|macro instruction. The |
| following bytes contain |
| the addressing charac- |
|ters as specified in the|

| TERM macro instruction. |
L a L

T Ll
|Immedi- |1 byte
jately
|follow-
|ing
| TERMID

(see

| Immedi-
|lately
| follow- |length

integer |

|
1
I
|
|
|
|
!
|
]
1
1
|
]

| Cumula~
| tive
|1length
|of all

| sub-

| fields
|in entry

]As spec-|User
]ified by|
1OPTION |
]macros

Trans- User
mission

code

| Camula-
| tive

|

‘ [
] |

] |

] |

| |

| |

] I

| |

1 |

! |

] [

| |

| |

]]

| |

] |

| |

] |

| sub- l |
| fields | |
[in entry] |
] |

] |

| |

] |

] |

| |

1 |

] |

1 |

] |

] |

1 |

]]

|]

] |

} |

! !

e et o i e et dam S T S — o S0t v — w—

1)
1 binary|macro

[e it e . ot st . o e A s o, I bt e, S s it S, B, i, . S, S, A st . T s S it S S e S S — — i S, S, S . e, S S, o S . S . s, S . s e s 10}
i ot o i et S i i i i S i G P YT " e ot i S o s i B . st ot Y e, R i S S . S Wt S, s S St S i S g S i et oo . et st e s e, . .

[e o o o G et e i it A e B S et S o e s e . - et e e S s sl S i S s e s, S e, S s e s s e SO S o s S e e e, e i et e o

Figure 25.

116

Terminal Table Entry Formats (Part 4 of 5)

L} Ll
| value
| Provided

| By:

T L3 T
I I

— v

Value]Initial
Range {Value
1l

3
g

r
| |

| | |start |Field
|Field Name|Function |Location|Length
L [} 4

v

-

1 T
|TWX terminal - the first|
|byte contains the number|
|of dial digits, and the |
|next bytes contain the |
|dial digits, followed by|
|a byte containing the
|number of ID characters.
| Next are the ID charac-
| ters that were specified
|in the operand of the |
| TERM macro instruction, |
| followed by a number of
| reserved bytes equal to
| the number of ID
|characters. |

|

|

|

|

|

|

|

|

|

|

|

|

{

|

|

| | _

) |WTTA terminals - the

	first byte contains zerxo
	and the next byte con-
	tains the number of ID
	characters followed by
	the characters them-
	selves, followed by a
	number of reserved bytes
	equal to the number of
	ID characters.

|

[

|

|

|

|

|

|

|

|

|

}

|

|

L

ol o, SO G G A S, SO Gt SRS e, WA S oD s SO Tt S el WO WAL S Wit . et W, et Bl S vt Wirent]

2 bytes |Binary User
per |rela-
subfieldjtive

Jaddress

reladdr |Distribution list entr- |Immedi-
|ies, Contains the add- |ately
| ress of a single-termin-|follow-
|al entry relative to the|ing
|address of the terminal |TERMID
|table (i.e., TERMTBL). |subfield
|A halfword of zero fol-

!
|lows the last "reladdr"™ |
|in the distribution |
|1list, indicating the end|
|of that 1list. |
- i

et e et T e YVt S ——

b e e e e e e e e i e s e e e e e s e e i . . e e . S e, " e, P, . . e e s . s]
o it e o et s e s v o c—— ——. c— —————— —— o, Wl e AT et ST S e SO i, S s s B st Mo oS W e ke ot WD

b o

Note 1: Start location immediately follows the TERMID subfield. Symbolic references
may be made to the optional subfields named by OPTION macro instructions.

e e e s e i e e . S e . o S—— —— —— — T — ——— — " —— {7t Pt o— o s St . St v oot s . i, .

Figure 25. Terminal Table Entry Formats (Part 5 of 5)

Appendix A 117

Offset toFirst
Polling Character

or Number of Optional
TQCBADDR TSEQOUT Dial Digits User Area Device Access Area
Names of Entry ALTDEST
Fields Enclosed TNTRYSZE TSEQUIN TSTATUS TERMID

By Heavy Lines

'

Y

Address of OPCTL MACRO-

|
|
|
I
|
|
|
Address of Last Entry — |
|
|

Checkpoi i Number of Number of
eckpoint Interva —* Size of TERMID Fields POLLIMIT Dial Digits ID Characters
I Reserved f
TERMTBL 1°| 79068 '3 Addresﬁ of Imple- I Dial Digits ID Characters ISSGC"‘;’" aroer
. mentation Module | g P
{Location 57872)—ml 58400 8] N
TWX {Jl48] 67208 | 65 | 50 Joooooonifs o s Z7IN Y C 10[5]83715 [6[B1518DB15189]
e 3] 67240 | 84 | 79]00000011|N Y C 27[NYP R OC S s|is|s5(37291 |8 9| 3
Switched Hexnotation
36| 27272 | 51 | 40]0000001H{P H ¥ 27|NiY C tofs{51092 [CT]
32| 67304 | 30 | 18 Joooooo1yp i T T 27|N Y C 6| D 1D6 T_ :\Aessf?ges
or theso
32| 67336 | 37 | 37 |ooooooti|w A S 27|N'Y C 6| E TES Device Address " tarminals
Single 32| 6738 | 71 | ¢8 Joooooon|c ¢ © 27N YP ROCS sfizJk 9ko are queved
Terminal 32| 67400 [21 [19 Toooooonifm 1 L W 27|C' G o 6L 1L6 by terminal
Entries Non 32| 67432 8 | 8 [oo00001|O M A Frikel<Xe] 6 M 1 M6
Switched 32| 67464 1 1 |o0000000{S T L 27|C'G O YN INe | o ____
32| 67464 | 32 [27 Joooooon1frR 1 ¢ H 27INIY PR OC s s|i2frR 9RO Messages
32| 67496 6 | 5 Jooooo1|N O:R F 27|R 1'CH S 156 for these
32| 67496 | 12 [10 [oooocon] A T L 27[R 1 CH w1 iT6 terminals ,
32| 67496 | 11 P10 Jooooocori|s I R 27[R 1. CH sju 1Us E;el?::ue
32| 67496 4§ 2 locoooo11N E W O 27|R 1'C H §|v ive |\ o ___._
Group Code Entry P (28| 67528 4 |ooooootolE A's T D 1V 27 z 1]
Process Program Entry);6' 67560 1 15 |00000010]N Y P R O C S §
Distribution List Entry 28] 67592 18] Joooosorola L L DI v HQ 38 | 158 [278 [0]o]
N— —
Fullword Boundary — Unused Field of One Byte "reloddr” Subfields End of Terminal Table
TDSTRQCB TLISTKEY (Terminal List Portion of Entry) (Next Location is 58426)
Field Field

Bytes: (0,1,2,3,4 5 67 8 910111213 14/1516,17,18,19,20 21 |22,23 24 25,26 27,28,29 30,31 32 33 34,35 36,3738, 39 40,41,42,43 44 45,

®Figure 26. Example of the Terminal Table

118

Polling List for Nonswitched Lines:

0 1 2 3 n n+l n+2 n+3

[N

Size Status Pointer 1 Pointer n Null

s €
27

TNV
Onmitted for Output-only Lines.

Polling List for Switched IBM 1050:

Size Status Null PC PC

Onmitted for Output-only Lines

Polling List for TWX (AT&T 33/35) Lines:

Size Status Null Computer ID Sequence

Omitted for Output-only Lines
Polling list for WTTA lines:

Size Status Null m Computer ID Sequence

LEGEND:
Size: Indicates total length of polling list.

Status: Indicates current status of the polling list: if nonzero, the list is active (the line can be
polled [nonswitched line] or enabled [switched line]). The status byte is initialized to X '01"
(active) when the POLL macro instruction is assembled .

Poinfer] through Poini'ern : Represent the addresses, relative to the terminal table eddress, of the first
byte of the terminal table eniries associated with this list.

Null: Identifies the end of the polling list (nonswitched lines) or identifies the list as being for a
switched line. Null is a full byte of binary zeros.

PC: Is a polling character to be sent to an IBM 1050 terminal that calls the computer on the line
represented by this polling list.

Computer ID Sequence: Is the sequence of characters to be sent to any TWX terminal that calls the
computer on the line represented by this polling list or to be sent to a WTTA
terminal during an identification exchange.

m: Is the number of characters in the computer ID sequence.

®Figure 27. Polling List Formats

Appendix A 119

Polling List for Auto Poll Lines after open DASD time.

120

0 1 2 3 4
SIZE | STATUS [TE [AE [PS {PC | I PGy [1y PC_ |1 X'FE! Offset
o| © n|'n
LEGEND

SIZE: Indicates length of polling list.

STATUS: Indicates current status of polling list: If nonzero, the list is active (the
line can be polled). The status byte is initialized to X'01' (active) when
the POLL macro instruction is assembled.

TE: Total entries in the list.

AE: Same value as in TE.

A PS Bits 0-2 = 010 for IBM 1030
= 011 for IBM 1050, 1060, 2740 Types Il or IV
3-7 = 10000.

PC: Polling characters (one for IBM 1030, two for 1BM 1050, 1060, 2740 Types
M or I¥).

B Index character associated with preceeding polling characters (The POLL macro
generates 1 for I, 2 for 11, and n + 1 for I,.)

X'FE*: Scan stop byte used to find the end of the list.

Offset: A two=byte field used to find the heading of the list from the end of the list.

Figure 28. Auto Poll Polling List Format

First 8 bytes are not placed Relative offset of entry from the first entry in the terminal table
on direct access queue

VN

0 1 2 3 4 5 6 7 8 9 10}11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26127 28 29 30 31

. I * Message Next Previous Next Destin -
A(iﬁ:ss At:t;::ss Szuer;e Address Segment Header Header ation
FQUEUE MSQLINK TTSKEY on DASD Link Link Link Key
) . MSLCB MSLINK MSHEAD MSDLINK TTDKEY
T L] ¥ ¥ 4 4 N
Key FKEY Buffer Segment MSTATUS ** 1
Scheduler Size Stored Scan Pointer MSPTR -' Message Sequence Number (IN) MSNUMIN
Priority MSEGSZE Set to the last character of Message Sequence Number (OUT) MSNUMOUT— |
0 MSPRI 31 last processed field in header

HEADER TEXT (Optional
|HDSTRT (Optional)

Format of Buffer containing Header

First 8 bytes are not placed
on direct access queue

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

. * Message Next Message
A?Ji:ss : A;::ss S;:r;:e Address Segment Header
on DASD Link Link
‘ FQUEUE . MSQLINK TTSKEY MSLCB MSUNK | MSHEAD l
¥ T ¥ ¥
Key FKEY. Buffer Segment MSTATUS **
Scheduler Size

Priority MSEGSZE

TEXT
Format of Buffer containing Text
* or the address of the LCB associated with this buffer.
** Significance of the bits in the MSTATUS bytes is as follows:
Bit Position Bit Name Meaning
0 CANCEL 0 = Send or process message
1 =Do not send or process message
1 REROUTE 0 = Original copy of header
1 = Duplicate copy of header
2 EOB 0 = No EOB is present in any buffer position except the last

1 = An EOB is present in some buffer position other than the last
(Presence or lack of an EOB in the last position does not affect setting of bit)

3 SRVCD 0 = Message was not previously serviced
1 = Message was previously serviced
Note: "Serviced" is set to indicate that a message header has been read from the disk before being transmitted
to a terminal or before being handled by a message processing task .

4 TRUNC Not used by QTAM.

5 PRIORITY O = Message sent without priority
1 = Message sent with priority

6-7 SEGTYP 00 = Header segment (Not last segment)
01 =Text segment (Not last segment)

10 = Header segment (Last segment)
11 =Text segment (Last segment)

Figure 29. Formats of Filled Buffers

Appendix A 121

APPENDIX B: SUMMARIES OF QTAM MACRO INSTRUCTIONS

r T T 1
| Name | Operation | Operand i
L 41 i 3
T . T T h]
| [(symboll | CLOSE | (dcbyys3Cbagygas-? |
F : 1 1
| dcb | I |
| (DASD message queues) | DCB | keyword operands]
b + 3 1
| dcb , | [|
| (checkpoint) | DCB | keyword operands |
|8 4 1 4
LD T T 1
| dcb | DCB | keyword operands |
| (line group) | | |
k + 1 i
| dcb | DCB | keyword operands |
| (message log) | | |
i 4 "

T T
| ENDREADY | |
1 1 3
Ll Ll 1
' I | INPUT |
| ([symboll | OPEN | ({dcb,, [(|OoUTPUT|[,IDLE])], }...)]
] i | INOUT I
| | | |
| | | ¢ MF=L |
I I | [/MF=(E,listname) I
L L L J

Figure 30. sSummary of Data Set Definition, Initialization, and Deactivation Macro
Instructions

122

T T T T R 1
| | | | Function of Macro Instruction: |
| I [5 i
| | | | Buffer Assignment 1l
| | | b - ——— 11|
| | | | Polling List Definition —-————-- a4 11
| | I k- allll
| Name | Operation|Operand | Terminal Table Definition --q ||][]]|
| | | | v vy
k } 1 L ————y =444
] | | [
| | BUFFER |nnn, length 1 11

| | | [, mmm] I A
| I | [, BRB] I I
F + + e
|symbol |DLIST |entry e 1| |
L 1 1 L i I)
v . T L) 0T T=T
|subfield|OPTION | typelength Jex] |

L i 1 — [PSRR: [N N R

; | i ——f-—4-+-1
| pollname | POLL | ((entrys,...) [,AUTOPOL:{l}] 1 111
| | | 2 I
| | |)polladdr T el |
| | | (nid [
L 1 —— L 4 i I N |
r T T T T 11
|symbol |PROCESS | [EXPEDITE] le |

F + ' ———f 4~
r T T

|symbol |TERM | gqtype,dcb,rln 1 11

| | | [,adchars] [, (opdata,...)] e t 1 1|
| | | [+ CALL=integer [, ID=hexchars] T 111
[1 |[,CALL=NONE] I
b + + i et S S
| |TERMTBL |entry [, (n)] |
| | | [, OPCTL=chars] [,CPINTV=integer]l 2] |

I i | [,CKPART=integer] [
IL AL L R 1L J.
|*OPTION must directly follow TERMTBL macro instruction. |
| 2TERMTBL must be the first of the macro instructions used to create a |
| terminal table. |
L |

e Figure 31.

Summary of Control Information Macro Instruction

Appendix B 123

o e Ty o e e e e e e d.:il ‘‘‘‘]J_l lllll — —
BmZAnEZA “ “ . . . P e
W|.l|||l.|c|||Illull.l.l!lﬂnllil“ll.|-|||.|..|-I._IILIIIIlluu!lllll.-‘]!!ll!llllﬂll-.i1
nmzZzZAanmAm “ L] (] “ . .
W WI:III!IIIIIIIJIII\I"«.]I!.I..“I llllllll o e v e e o S T > o T— —— T3 T——— —— — — -
n nEZANEAEAY “ (] “ [
R v e e e e e !I‘nvwal..«llli]lll!dl“llllﬂulduu“]ulll.l||||||||I lllllllll s — e
HBZAmxo > | [| ° ° .
> } }
m Wll.llli...l.llll..“l lllllll lnllu.. lllllll B T ——. et N ———
..n. xroOo>EHAMm . . “
| m T S —— I e o s o T i i i e s e e S i e S e e P o S -
I I MOD>POLUMAO . . °
U] e e e s s e s e S e o s G e St o e s . e e e e e — -
N
(]
n
ved
g
o
~
0]
[a]
(]
<
+
]
=
©
0
=1
¢]
o
+)
9] L)
a o]
N]
3 :
=] + [=}
0 03 8)
——
- —P—. TR - - o)
0 3 LIRS [— (o]
(1] + Y4 o e 0
= [Re] QD o] > EMA 0 1]
[T 08B0 0 M HFUNEHOL O
A e Teo 4% SEE22 S
B] =} Leo] [~ - E O OPHNM X
0] g M =~ - Q A - o M HZHQO &
o % S n @ OB ®© 9] e u AQ KOoO=ZOoWm -
+ o7] =] © ~ [} [o}] = o} U AUMHEI
m o [=] E W ~— O & S £ © N
o e e e e e e e —— s e e e e e e ——— e e e s e e e o S e e i e s s e e e e e e it S et e
F -y
=]
[e} fxy y H
o N 5 M = [+N
+ O Jd1 B HIHM] Q [&]
] M g B {10 Q] [
] Q 22 =®|i1H) = [)]]
3 S35 51 s8iEld £ g 5
@] M U 0O AIA H M MA] o =
- S, T S — .

Summary of Line Procedure Specification Functional Macro Instructions

(Part

1 0of 2)

® Figure 32.

124

1||I:Ililxll:lial:lluillll
L]
e e e e e B Dt T S ——
L]
e S S P
®
T T T ey ——
[] [)
T S —
[] ® [4
Tl‘ll‘llllo‘l‘ll!ll‘l‘llullll'l
)
e - H PPN
G ~r— -
£oEdo o 0o
TEMMHZ |9 O~
S0 Vm— O TR
an+vF 0 - [O
[0} m: g ~5 SHY&
E MM . T a49D
v oo - -~ 0390
s OPEx v o 0T wuon
=i 0 HE s S~
6} 2 m -z e] Lol -~
] =] 16} aQ N
& HE -~ - [=l=] n
> UFHw—— + an]
» U = E
o e e e e — e S ———————S—————
: S
> [= - jam)
55 a2 2
0] Ay Y @) =
= (o] [A 24
e s o S — - —— ———— ——— — —— — — —

P T T p——

Bl Ll pep—

P e T] ———

—— — s — . o— —

skipchars

Pn e e — U o w—

—— e ——— ——

i SO —

Restrictions governing usage are explained in individual macro
instruction descriptions.

Note:

ot S

Appendix B 125

of 2)

Summary of Line Procedure Specification Functional Macrc¢ Instructions
2

(Part

®Figure 32.

¥ T L] T t
| Name | Operation | Operand { Restrictions l
L L 4 1 {
v T L} T
| | ENDRCV | | |
|,__ KN 1 L §
T R v A}
| | ENDSEND | |]
b t } o ——- , i
symbol	LPSTART	[nn,]	Required delimiter; must be the first
]	TERM=	macro instruction in an LPS.	
		(termname; 4 ««<)	
	IrINTRCPT={YES}		
		NO	
t + + 1 4			
	POSTRCV		Required delimiter; must immediately
			follow the last of the sequence of macro
]	instructions that handle incoming 1	
			messages. Only one POSTRCV may appear
{ ! l lin an LPs. }
- T T T 1
| | POSTSEND | |Required delimiter; must immediately I
| | | | follow the last of the sequence of macro |
| | | | instructions that handle outgoing mes- |
| | | |sages. Only one POSTSEND may appear in |
l ! l lan LPS. 'J
T T L 1 1
| | RCVHDR |] 1
L 4 1 1 — 4
v T T T 1
| | RCVSEG | | |
F=—= + + + 4
| | SENDHDR | | |
t + + + i
| | SENDSEG | | |
L— 1 1 uR q

Figure 33.

Summary of Line Procedure Specification Delimiter Macro Instructions

Notes:

. Line activation/deactivation.

1
2. Access to terminal table, polling list, or DASD queue status contents.
3

. Telecommunications system status modification.

r T T : H H
| Name | Operation]| Operand | Notes

; + + t 1
| [symboll | CHGNP | termname, rin, workarea | 3

| | | =c* o | |
| | I =Cc'i’ | I
L 4 1 i {
r T T T

| [symboll | CHNGT i termname, workarea | 3 |
b ¥ 3 + !
| [symboll | COPYT | termname,workarea | 2 |
[N 1 1 R L]
v T 1) 1
| [symboll | COPYP] termname,workarea | 2]
b + ¢ ¢ {
{ {symboll | STARTLN | termname,{rln} | 1 i
| | I ALL | |
L L L L *
v

| I
| I
| I
| |
| !
L 4
F

igure 34.

126

Summary of Macro Instructions Used to Examine and Modify the Telecom-
munications System Status

APPENDIX C: CONTROL CARD SEQUENCES FOR TELECOMMUNICATIONS JOBS

Assembling Message Control and Message Processing Programs

A typical control card sequence for assembling a message control or
message processing program:

r
| //ASSEMBLY JOB MSGLEVEL=1
| //STEP1 EXEC ASMFC
//SYSIN DD *

Source Deck

/*

., S U ———

Linkage Editing Message Control and Message Processing Programs

A typical control card sequence for linkage editing a message con-
trol .or message processing program:

r
| //LINKEDIT JOB MSGLEVEL=1

|//STEP1 EXEC PGM=LINKEDIT, PARM="'XREF,LET,LIST®

| //SYSPRINT DD SYSOUT=A

| 7/SYSUT1 DD DSNAME=SY¥S1.U,SPACE=(TRK, (30,10)) ,UNIT=2311
| 7/SYSLMOD DD DSNAME=SYS1.JOBLIB, DISP=0OLD

|//SYSLIB DD DSNAME=SYS1.TELCMLIB,DISP=0LD

|//SYSLIN DD *

Assembled Deck

NAME MCONTROL For message control program
/%
(or)
NAME PROCTEST(R) For message processing program
/%

R —————

e S =

Executing Message Control and Message Processing Jobs

A typical control card sequence for executing a message control job:

r

1
| //MSGCNTRL JOB MSGLEVEL=1

1

|
|//JOBLIB DD DSNAME=SY¥S1.JOBLIB, DISP=0LD |
| //STEP1 EXEC PGM=MCONTROL |
| //SYSQUEUE DD DSNAME=FDISD, UNIT=2311, VOLUME=SER=222222, |
|77 DISP=0LD,DCB=(, BLKSIZE=8U4) |
| //DLINE DD UNIT=031 1050 DIAL LINE |
| //BLINE DD UNIT=032 1060 LINE |
|//XLINE DD UNIT=033 TWX LINE |
| //WLINE DD UNIT=034 WU 115A LINE I
| //LINES DD UNIT=041 1050 LINE |
| //SYSPRINT DD SYSOUT=A |
| //SYSABEND DD UNIT=2400, LABEL=(,NL) i
|/* I
L J

Appendix C 127

A typical IODEVICE macro instruction for system generation cf QTAM:

Macro Operands
IODEVICE UNIT=115A,ADDRESS=034,

ADAPTER=TELE1l, SETADDR=2

Subparameter Explanation

UNIT=115A Western Union Polling
Station

ADDRESS=034 IODEVICE is a communica-

tion line (line 034)
ADAPTER=TELE1l Telegraph adapter (Type I)
SETADDR=2 Set Address (SAD) command
2 specified for 115A

Formatting the Direct Access Storage Device for Buffer-Sized Records
The following program can be used to format the disk for the message
queues data set. In this particular case, the records will be 112
bytes long to accommodate buffers of 120 bytes.

WRITEMSG CSECT

SAVE (14,12)
BALR 2,0
USING *,2
ST 13,SSS+4
LA 13,S8ss
OPEN (DCB, (OUTPUT))
WRITE WRITE DECB, SF, DCB, AREA
ST 15,SAVE
CHECK DECB
L 15, SAVE
CL 15,EIGHT
BE CLOSE
B WRITE
CLOSE CLOSE (DCB)
L 13,SSS+4
RETURN (14,12)
SAVE DS P
DCB DCB DSORG=PS, MACRF= (WL), DDNAME=MSGQUE,
RECFM=F, DEVD=DA
AREA DC 300c*
SSS DS 18F
EIGHT DC F'8*
END WRITEMSG

Once this program is assembled and linkage edited, it shculd be run
with the following job control language to format the disk:

//MSGCNTRL JOB MSGLEVEL=1
//J0OBLIB DD DSNAME=SYS1.J0BLIB,UNIT=2311,DISP=0OLD

//STEP1 EXEC PGM=WRITEMSG

//MSGQUE DD DSNAME=FDISD, UNIT=2311, SPACE=(TRK, (25)),
V4 VOLUME=SER=111111, DISP=(NEW, CATLG),

7/ DCB=(,BLKSIZE=112)

//SYSPRINT DD SYSOUT=A

128

Certain of the registers used by QTAM may
be of value to the user who writes open or
closed subroutines to be included in an
LPS. The usage of each of these registers
is explained in this appendix. For further
information see the section Methods of
Including the Subroutine.

Register 1 -- OTAM Parameter Register
Register 2 -- OTAM Parameter Register
Register 4 -- LCB Address Register

Register 4 contains the address of the line
control block for the line over which the
current message was received (input LPS
processing) or sent (output LPS
processing).

Register 5 -- Scan Pointer Register

Register 5 points to the last character of
the last header field scanned, or to the
first blank character following that field.

1. Register 5 contains the address of the
last character of the field if the
operand of the last macro that
referred to the field either does not
permit any variation in the length of
the field (e.g., MSGTYPE C'A'), or
specifies explicitly the length of the
field (e.g., SOURCE 6).

2. Register 5 contains the address of the
first blank character that follows the
field if the operand of the last macro
that referred to the field does not
explicitly specify the length of the
field (e.g., SOURCE I[blank operandl).

Register 6 -- Buffer Address Register

Register 6 contains the address of the buf-
fer currently being processed by the LPS.
'If the buffer contains a header segment,

APPENDIX D: QOTAM REGISTER USAGE

the first data character in the header is
located 32 bytes beyond the buffer address.
If the buffer contains a text segment, the
first data character is located 22 bytes
beyond the buffer address. Both offsets
are relative to register 6 as the base
register.

Register 7 -- LPS Routine Base Register

Register 7 contains the address of the
beginning of the LPS currently being
executed (i.e., points to the LPSTART macro
expansion).

Register 8 -- Terminal Table Source Entry

In the Receive portion of the LPS, register
8 contains the address of the TERM entry
for the terminal from which the currently
processed message was received. 1In the
Send portion of the LPS, register 8 con-
tains the address of the TERM entry for the
terminal to which the currently processed
message is to be sent.

Register 11 -- End-of-Segment Address

Register

Register 11 contains the address of the
last character positicn in the buffer cur-
rently being read intc or out of.

Register 14 -~ Return Register for
First-Level Routines

Register 14 contains:

1. The address of the parameter list for
the preceding macro instruction (fol-
lowing the BALR instruction).

2. The address of the next instruction

following the macro instruction, if
that macro has nc parameter list.

Appendix D 129

APPENDIX E: SUMMARY OF OPERATOR CONTROL MESSAGES

WRITTEN AS

i?A?SI\;LgDEL OPERANDS B?gc Ei 2::r w/s
CHNGT termname X

data 1 x
COPYC* termname X
COPYT* termnome X
INTERCPT termname X
INTREL termname X
RELEASEM termname X
STARTLN termname X

ALL X
STOPLN fermname X

ALL X
SWITCH (no operands)

* A response message is returned to the operator control terminal.

Note: The Control Message ID (ctlmsg) is the same for all operator
control messages.

®Figure 35. Summary of Operator Control Messages

130

APPENDIX F: FORMAT AND SUMMARY OF MACRO INSTRUCTIONS

A format illustration accompanies each macro instruction description in
this publication. The illustrations indicate which operands must be
coded exactly as shown, which are required, which are variable, etc.
The conventions stated to describe the operands are as follows:

1. Keyword operands are described either as the single word that must
be coded as shown or by a three-part structure that consists of the
keyword operand, followed by an equal sign (both of which must be
coded), followed by a value mnemonic or a coded value.

Examples: a. ALL
b. TYPE=PQ

2. Positional operands are described by a lowercase name that is mere-
ly a convenient reference to the operand and is never coded by the
programmer. The programmer replaces the positional operand by an
allowable expression. Expressions allowed are indicated at the
left of the fold-out page. The chart shows what expressions are
allowed for each operand.

3. Uppercase letters and punctuation marks (except as described in
these conventions) represent information that must be coded exactly
as shown.

4. Lowercase letters and terms represent information that must be sup-
plied by the programmer. More specifically, "n" indicates a decim-
al number, "nn" a decimal number with at most two digits, "nnn"
with at most three digits, etc.

5. An ellipsis (a comma followed by three periods) indicates that a
variable number of items may be included.

6. Options contained within braces represent alternatives,
one of which rmust be chosen.

7. [] Information contained within brackets represents options,
one of which may be included depending on the require-
ments of the program.

8. A Underlined elements represent an assumed value in
B8 the event a parameter is omitted.
C

Appendix F .131@

Abbreviations

DEC DIG

REGISTER

RX type

REL EXP

ABS EXP

CHAR

HEX CHAR

W/S

®132

Abbreviations used in Foldout Chart

Meaning

Any deciral digits, up to the value indicated in the
associated macro instruction description.

A general register, always coded within parentheses,
as follows:

(2-12)-one of general registers 2 through 12, previously

loaded with the right-adjusted value or address
indicated in the macro instruction description. The
unused high-order bits must be set to zero. The
register may be designated literally or
symbolically.

(1) -general register 1, previously loaded as indicated

above. The register can be designated only as (1).

Any address that is valid in the RX form of instruc-
tion (e.g., LA) may be designated.

A relocatable expression (acceptable as an A-type or
V-type address constant by the assembler).

An absolute expression as defined by the assembler:
self-defining terms (decimal, hexadecimal, binary,
character), length attributes, absolute symbols,
paired relocatable terms in the same CSECT, and
arithmetic combinations of absolute terms.

A character string (the framing characters, Cc' ¢,
are not coded unless specifically indicated in the
individual macro instruction description).

Hexdecimal characters. An X in this column indi-
cates that no framing characters and gquotes are
coded. PAn F in this column indicates that framing
characters and quotes are coded.

Written as shown.

WRITTEN AS WRITTEN AS WRITTEN AS WRITTEN AS
Register Register Register Register
Dec[(2- RX | Rel | Abs Hex MACRO Decf (2- RX | Rel | Abs Hex MACRO Dec| (2- RX | Rel 1 Abs Hex MACRO Decf (2- RX | Rel | Abs Hex
Dig|12) [(1) | Type| Exp | Exp [Char| Char| W/S INSTRUCTION| OPERANDS Dig|12) | (1) [Type | Exp | Exp | Char| Char [W/S INSTRUCTION | OPERANDS Dig [12)| (1) | Type| Exp | Exp | Char | Char | W/s INSTRUCTION | OPERANDS Dig|12)|(1) [Type| Exp | Exp | Char| Char | W/s
F | F DIRECT dest X OPEN dcb X X TERM qtype Refer to Macro Description
subfield INPUT X deb X
DLIST entry OUTPUT X rln | X
DTFQT all operands Refer to Macro Description INOUT X adchars X
EQA eoa F F IDLE X opdata Refer to Macro Description
ERRMSG mask F MF=L X CALL= Refer to Macro Description
F dest X MF= Refer to Macro Description iD= X
X X subfield X listname X TERMTBL entry X
X SOURCE X OPTION typelength X n X
X X message F PAUSE ctlchar F OPCTL= X
X msgchar X insertchar R CPINTV= X
X INTERCPT mask F POLL entry X CKPART X
X X LOGSEG deb X X AUTOPOL= Refer to Macro Description TIMESTMP n X
X X LPSTART nn X polladdr X TRANS table Refer to Macro Description
X X TERM= X nid X WTTA
MACROS Refer to Macro Descriptions
X % MODE PRIORITY X POLLIMIT nnn X .
% CONVERSE X subfield X
X X INITIATE X PROCESS Refer to Macro Description
X X MOD2260 X REROUTE mask F
X X userfunc X dest F
X X condchar F F subfield X
X X WRTé0=code Refer to Macro Description SOURCE X
X MSGTYPE typechar F F ROUTE n X
OPCTL CTLMSG= X SEQIN n X
TERM= X SEQOUT n X
ALTERM= X SKIP skipchrs X F F
INTRCPT= Refer to Macro Description SOURCE n X
STARTLN termname X X
rln XX
B ALL X

Appendix F 133e

This appendix contains charts that define
the character sets and transmission code
bit patterns used by the various terminals
supported by QTAM. Charts are also pro-
vided that facilitate reading the terminal
code found in storage.

QTAM CHARACTER SET AND CODE CORRESPONDENCE
CHART

This chart shows the character set and bit
patterns for the Extended Binary Coded
Decimal Interchange Code (EBCDIC), and the
character sets and transmission code bit
patterns for each of the terminal types
supported by ©OS CTAM.

The chart may be used to determine the
bit patterns, as contained in main storage
bytes, for each of the various characters
sent or received by a specific terminal
type; and to determine the relationships,
as established by the arrangement of the
IBM-provided translate tables, among the
character sets for the various terminal
types.

For convenience in referring to particu-
lar chart locations, the chart's columns
and rows are given reference numbers. Com-
bined, these numbers enable reference to a
particular chart location; e.g., location
21717, the intersection of row 21 and
column 17, contains NL.

Arrangement of Chart

The chart contains a group of three columns
for the EBCDIC character set and a group
for each of the various terminal character
sets. Within the EBCDIC group, column 3
contains the 256 bit patterns comprising
the code. For those bit patterns to which
characters are currently assigned, the
characters appear in column 1 (graphics)
and column 2 (line controls and device con-
trols). (All currently assigned characters
are shown, regardless of whether they are
in the character sets of any of the termi-
nal types represented in the remainder of
the chart.)

Each of the remaining groups (columns 4
through 34) contains the characters com-
prising the character set of a specific
terminal type, along with the transmission

APPENDIX G: QTAM TERMINAL CODES

code bit patterns. Cclumn 34 repeats the
EBCDIC code presented in column 3, for ease
of reference.

In the EBCDIC group, the bit patterns
and characters are arranged in collating
sequence from hexadecimal 00 to hexadecimal
FF. In the remainder of the chart, the
locations of bit patterns and characters
are determined by the arrangement of the
translate tables.

Terminal Character Sets

This chart shows only the characters com-
prising the commonly used character set
options. The options represented in the
chart are:

Terminal Option

IBM 1030 Standard and "H" options
IBM 1050 System/360 option

IBM 1060 Standard option

IBM 2260 Standard option

IBM 2740 System/360 option

ATET 83B3 "A" and "C" options

W U 115A "A" and "C" optiomns

ATET TWX Standard option

WITA Standard option

IBM 1030 graphics and ATET 83B3/WU 115A
graphics that differ for the respective
options are indicated in the chart by S and
H, and A and C, respectively. Graphics not
so marked are the same in both optioms.

Transmission Codes

The notations in the code columns of the
chart for the various terminal types repre-
sent the System/360 byte bit pattern equiv-
alents of the applicable transmission

codes. The applicable transmission codes
are:

Terminal Code

IBM 1030 Perforated tape and transmis-

sion code

Appendix G 135e

IBM 1050 Perforated tape and transmis-

sion code

IBM 1060 Perforated tape and transmis-
sion code

IBM 2260 IBM 2260 transmission code

IBM 2740 Perforated tape and transmis-
sion code (BCD code)

ATET 83B3 5-level Baudot code

W U 115A 5-level Baudot code

ATET TWX 8-level TWX code

WTTA 5-level ITA2 code

5-level ZSC3 code

Representation of Characters and Bit
Patterns

Appearance of a character and its asso-
ciated bit pattern in a character set sig-
nifies that the appropriate IBM-provided
translate tables effect either incoming
translation (i.e., translation of that
character to the corresponding EBCDIC char-
acter), or outgoing translation (i.e.,
translation of the corresponding EBCDIC
character to that character), or both. How
the bit pattern appears indicates which of
these cases applies:

1. Where the hexadecimal representation of
the bit pattern appears in brackets,
only incoming translation is performed.

2. Where the bit pattern is enclosed in
parentheses, only outgoing translation
is performed.

3. Wwhere the bit pattern is not enclosed
by brackets or parentheses, both incom-
ing and outgoing translation are
performed.

Because each unique bit pattern for a ter-
minal character can be represented only
once in an "incoming" translate table, the
character associated with the bit pattern
can be translated to only one EBCDIC char-
acter. The converse is not true, however;
any one transmission code bit pattern can
be placed any number of times within an
"outgoing" translate table. Therefore, any
number of EBCDIC characters can be trans-
lated to the terminal character represented
by that bit pattern.

Appearance of two bit patterns opposite
a single character signifies that the char-
acter has both an upper-case and a lower-
case bit pattern, and that both forms of

0136

the character are translated to the same
EBCDIC character.

Example: The bit pattern of the NL charac-
ter appears in location 21/9. Both the
lower- and upper-case bit patterns of this
character are translated to the EBCDIC NL
character when they appear in an incoming
message. When an EBCDIC NL character
appears in an outgoing messadge, QTAM trans-
lates it to the lower-case form of the NL
character.

Where more than one EBCDIC character
requires translation to the same character
in a terminal character set, the terminal
character appears an equivalent number of
times in the column (e.g., locations 0/23,
6723, 7723, 26/23, and 50/23 all contain
the LTRS character).

Where a character appears in both the
graphics and the controls columns for a
terminal type, its function depends on
whether it is sent when the line is in con-
trol mode or in text mode. Depending on
the type of terminal and the mode, the
character may perform a control function,
print as a graphic, or both. For details,
see the reference manuals for each of the
various terminals.

Nonequivalent Characters

Designing the system to accommodate termi-
nal types having different character sets
and control functions has resulted in sev-
eral instances where dissimilar characters
have been "equated" in translate tables.
This accounts for the appearance in certain
rows of this chart of non-equivalent char-
acters, for example, in rows 3, 38, and 50.

In other instances, the same or similar
functions have different names among the
various terminal types; for example, HT and
Tab in row 5 are equivalent, as are DEL and
Rubout in row 7.

In a few instances, terminals using the
same transmission code have different mean-
ings assigned to the identical bit pattern;
for example, bit pattern 79 in the trans-
mission code has the meaning PF for an IBM
1050, and Subtract for an IBM 1060.

Substitutions

Where blank positions appear in the termi-
nal character set portion of the chart,
there is no equivalent character for the
EBCDIC character or bit pattern at the left

of the chart. Where these blanks appear,
the SUB character is to be assumed (they
were omitted to make the chart more read-
~able). That is, in each translate table
that handles incoming messages, each posi-
tion representing an invalid transmission
code bit pattern (that is, one not used by
a character in the terminal's character
set) contains the EBCDIC code (3F) for the
SUB character. 1In each translate table
that handles outgoing messages,

1. each position that represents an in-
valid EBCDIC bit pattern (a pattern to
which no EBCDIC character has been
assigned), and

2. each position that represents a bit
pattern for a character having no
equivalent in the destination ter-
minal's character set

contains the transmission code bit pattern
for a substitute graphic. For the IBM
1050, 2260, and 2740, and the ATET 83R3 and
WU 115A, this substitute character is a
colon (:). For the IBM 1030 and 1060, and
the ATET TWX, it is a slash (/).

General Notes

1. Standard abbreviations are used to
represent the control characters. The
full names of the characters are
given. For descriptions of these
characters, see the reference manuals
for the various terminals.

2. "Circle" characters (B, D, etc.)
in the chart are alternate names for
the characters after which they
appear.

3. Notes pertaining to specific charac-
ters or bit patterns are indicated by
superscript numerals next to the char-
acter or bit pattern. The notes fol-
low, and indicate the chart locations
to which they apply.

4. Most of the characters in the S and H
character set options (1030) and in
the A and C character set options
(83B3, 115A) are identical. Where
they differ between the options, the
translate tables favor the S option
and the A option, as illustrated in
the chart. If messages from an H
option 1030 are sent only to another H

option 1030, the translate table may
be used as is, and similarly, for the
83B3/115A, with respect to the C
option. If messages from terminals
with the H or C cption are to be
exchanged with other terminal types,
the user may wish to modify the
tables.

5. Some TWX terminals send even-parity
transmission-code bit patterns; others
send nonparity bit patterns. All bit
patterns sent by nonparity machines
have a '1' in the low-order bit posi-
tion (that is, the position that
serves as the parity bit in even pari-
ty machines). The RCVTWX translate
table translates either a non-parity
or an even parity bit pattern to the
EBCDIC bit pattern for the correspond-
ing character. For those characters
whose even parity and nonparity bit
patterns are identical, a single bit
pattern appears in column 30 of the
chart. For example, a single pattern,
X'c3', appears in location 195/30.

For those characters whose even parity
and nonparity bit patterns differ by
the setting of the low-order bit, two
bit patterns appear, as for example,
in location 193/30. Where two bit
patterns appear, the one enclosed in
brackets ([1) is the nonparity bit
pattern. The brackets indicate that
the nonparity bit pattermns are only
received from TWX terminals. In out-
going message transmission, the
SNDTWXE translate table sends even
parity bit patterns, while the SNDTWXO
translate table sends nonparity bit
patterns.

Notes:

iteft bracket translates to EBCDIC hex 79;
no EBCDIC character has been assigned to
this bit pattern (location 121/3, 121/28).

2No graphic prints in the A character set
option (location 90/22).

3Backslash translates to EBCDIC hex El1; no
EBCDIC character has been assigned to this
bit pattern (locations 225/3, 225/28).

4TBM 1031 sends the numeric 0 as a hex 20;
1033 receives the numeric 0 as a hex 15
(location 240/4).

SRight bracket translates to EBCDIC hex 49;

no EBCDIC character has been assigned to
this bit pattern (locations 73/3, 73/28).

Appendix G 137e

Control Characters

IACK

®

BEL

BS

BYP

CAN
ccC

CR

pc1
pC2
DCY
DEL
DLE
DS
EM
ENQ
EOA
EOB
EOC
EOFC
- EOM
EOT
ETB
ETX
FF
FIGS
| Fs
HT

IIFS

138

Positive Acknowledgement
End-of-block
(same as EOB)

Bell

Backspace
Bypass

End-of-transmission
(same as EOT)

Cancel

Cursor control

Carriage (carrier) return

Machine end-of-address
(same as EOA)

Device controls

Delete

Data link escape
Digit select

End of medium
Enquiry

End-of -address
End-of-block

End of card

End of first card
End-of-message
End-of-transmission
End-transmission block
End-of-text

Forms feed

Figures shift

(EBCDIC hex 22) field
Horizontal tabulate

Interchange file separator

IGs
IL

IRS
IUS
LC

LF
LF-CR
LTRS

MZ

NAK

NL

PF
PN
PRE
Pz
RES
RM

lRS

SI
SM
SMI
SO
SOH
SMM
S0S

SP

SUB
SYN

Tab

Interchange group separator

Idle

Interchange record separator
Interchange unit separator
Lower-case shift

Line feed

Line feed-carriage return
Letters shift

Minus zero

Negative response to polling,
addressing, or LRC/VRC

Negative acknowledgement
New line

Null

Punch off

Punch on

Prefix

Plus zerc

Restore

Record mark

Reader stop
Start-of-address
Shift in

Set mode

Start Manual Input
Shift out
Start-of-header
Start-manual-message
Start-of-significance
Space

Start-of-text
Substitute
Synchroncus idle

Tabulate (horizontal)

|TM

TpAuxOff
TpAuxOn
uc

VT

Tape mark

Tape auxiliary off
Tape auxiliary on
Upper-case shift

Vertical tabulate

X-0Off

X-On

*Who Are You?"
Transrwitter off
Transmitter on

Positive response to polling,
addressing, or LRC/VRC

Appendix G 139

140

IBM 2260 1BM 2740 AT&T 83B3 AT&T TW)
EBCDIC 1BM 1030 IBM 1050 IBM 1060 2260 053 W U 115A
Character Character Character Character Character s Character Character . Character Character
Graphic Control Graphic | Control Graphic | Control Graphic | Control Graphic | Control Graphic | Control . Graphic | Control . Graphic trol | .| Graphic [Control
Ref. 1 2 4 5 7 8 10 " 13 14 16 17 19 20 . 22 2 * - 25 26
0 NUL Pad IL IL 1L 52 LTRS : Rubout
1 SOH ; ® SOH SOH ® | 6y *
2 STX s w= |ECA(D) # EOA(D®)] EOAD®) STX - STX # eoA@®) | a8 o
3 ETX EOB(®) EOB(®) EOB(®) ETX ETX : EOB®) | <3 - CR
4 PF PF Subtr . TpAuxOff
5 HT HT Tab Tab HT i ! HT
6 LC Pad Dwnshft IL Dwnshft LTRS .
7 DEL EOC DEL DEL DEL o DEL o LTRS Rubout
8 ’ :
0 ¢
10 SMM Start MI |
11 VI > : - VT
12 FF . - FF
13 CR R NL NL NL CR CR
14 so - 3 : SO
15 Sl E . S
16 DLE o
17 DC1 i X-On
18 DC2
19 ™
20 RES *
21 NL CR V] NL NL NL LF LF
22 BS BS
23 IL L IL LTRS Rubout
24 CAN CAN
25 EM
26 . [] Check
27 CUl
28 IFS
29 IGS
30 IRS
31 1US o
2 DS -
33 SOs P
34 FS
35
36 BYP o
37 LF LF LF - LF LF LF
38 ETB (EOB) }: EoB(®) £0B(®) ETX ETX . EOB CR CR
39 ESC (PRE) -
40 o :
41 .
42 SM
43 cu2
44
45 ENQ WRU
46 ACK ACK ACK
47 BEL c' Bell Bell
48
49
50 SYN Pad IL IL L LTRS Rubout
51
52 PN PN TpAuxOn
53 RS RS
54 uc Upshift Upshft FIGS
55 EOT EOT(©) EOH(©) EOT(©) EOT (©) EOT(©) eoT(©) # EOT
56
57
58
59 CuU3
60 DC4 X-Off
61 NAK NAK NAK
62
63 SUB : : / :
64 3 33 P P SP Sp P P
65 '
66
67
68
69
70
71

| 0 IBM 1060 1BV 2260 IBM 2740
BM 1 M1 1
03 IBM 1050 2260 1053
Character Character Character Character - K L Character L Jaan Character
Graphic | Control Graphic | Control Graphic | Control Graphic | Control | | Graphic | Control | ‘ raphic | Control
4 5 7 8 10 il 13 14 fioas 16 17 - 19 20
Pad i / ‘ IL
‘. ® SOH | SOH , ®
s’ w= |E0A(D) # ECA(D) SIX f STX ‘ # eoA(®)
EOB(®) EOB(®) ETX ETX . EOB(®)
PF b
HT Tab ‘ HT
Pad Dwnshft 5 Dwnshft
EOC DEL DEL . DEL
> Start MI | ¢
e
LF-CR NL NL - NLE NL
BYP : . .
RES L -
RES
LF-CR NL 4 NL NL NL
BS BS
Pad IL IL
CAN
[] Check "
BYP .
LF LF LF LF
EoB(®) EOB EOB(®) ETX ETX EOB
PRE
ACK ACK
Pad IL I IL
PN
RS
Upshift Upshft
EOT(O) EOT(EOT(©) EOT (©)| EOT(©) eoT(©)
NAK NAK
SP SP SP 33 SP SP

AT&T 83 B3
W U 115A

Character

Graphic
22

trol
23

LTRS

CR

LTRS
LTRS

CR

LF

LTRS

c!

LF
CR

Bell

LTRS

FIGS

SP

AT&T TWX

WTTA (1TA2)

WTTA (Z5C3)

EBCDIC

Graphic
25

Character

Control
26

Rubout

CR

ToAuxOFf
HT

Rubout

FF
CR
50
S|

X-On

LF

Rubout

Character

{Graphic

Control

Choracter

[Graphic

Control

31

32

LTRS

CR

LTRS
LTRS

CR

CR LF
LTRS

LF
CR

WRU

Bell

LF
LF

Code
(Hex)

34

Ref.

VONOO AlWN —O

SR 2 3R]

38
39

Bell

Q

ss sl

Rubout

TpAuxOn

EOT

LTRS

SP

FIGS
LTRS

SP

Appe&indix

141 @

Ref.

EBCDIC

IBM 1030

Character

Character

Graphic Control

Graphic

Control

1 2

5

@ EOFC

o —+~A|. o

L I EAR

101
103

104
105
106
107

EOM

108
109
110
11

oV 8N

12
13
114
115

116
n7
118
119

120
121
122
123

EQCA

124
125
126
127

EOA(D) | Xi

128
129
130
131

132
133
134
135

136
137
138
139

=Sk 0 alooa

-zlpmmojlow >

140
141
142
143

IBM 1050
Character
Graphic | Control
7 8
¢ ®
<
(
+
|
&
!
$
) .
5 ®
- ®
/
%
— ®
>
?
¥ ECAD) |
@
" EOA (O}
a
b
c .
d
e
f
g -

IBM 1060
Character
Grophic | Control
10 1
®
¥
$
- ®
/
’
EOA(D)
Add
A
B
C
D
E
F
G
H
|

1BM

2260

2260
Character
Graphic | Control
13 14
<
(
+
|
&
$
*
)
i
i
/
- EOM
r
%
>
?
¥
A
B
C
D
E
F
G
H
|

Graph
16

go|— + ~AJ.

*

~

‘OVI o - N

-@ oo

_IQmmdﬁw>

1053
Character
ic Control
17

1BM 2740
Character
Graphic | Control
19 20
e

<

(

+

|

&

!

$

*

)
= @
- [}
/

4 @
%
— ®
>

?
#__|eoa @)
@ foa @)
a

b

c

d

e
f

g

i

AT&T 8383
W U 113A

Character

Graphic
22

alcl/2

a2 cl/4
$

) V4
A«
§ 3/8

Ars ,(3'7/8

a? c5/8

K o1/8

Control
23

CR

cBell

- Ij@OmmOo O® >

AT&T TW
Character
Graphic Control
25 26
5
]
<
(
+
T pr———
&
!
s e ————
*
)
i
/
14
%
pas
>
?
—
I
[
#
@
1
A
B
C
D
E
F
G
H
1

IBM 1030
Character
Graphic | Control
4 5
@ EoFC
& ¥
$
- ®
/
2 ®
st =) EOAD)
@ n'
A
8
C
D
E
F
G
H 5
I . =
S

1BM 1050 IBM 1060
Character ‘ Character
Graphic | Control Graphic | Control
7 8 10 n
¢ ® | ®
(o
+ 5
{ i
& '“ +
1
$ $
*
)
A
- T ®
/ /
&
4 y
%
—_ ®
>
?
EOA(D) 4 EOA(D)
@ Add
1]
" EOA (D)
a X A
b e B
c 67 C
d 3)
e " E
f B F
g £ G
h B { H
i i |
! B

IBM 2260 \
2260 1053 BM 2740
Character Choracter Character
Graphic | Control Graphic | Control Graphic | Control
13 14 16 17 19 20
tle
< < <
(((
+ + +
| | |
& & &
1
$ $ $
* * *
)))
-4 = = ®
Z - - ®
/ / /
- EOM !
. . . ®
% % %
— —_ — ®
> > >
2 2 ?)
¥ # # oA (®)
@ @ oA (@)
L} 1
A A a
B B b
C C c
D D d
E E e
F F f
G G g
H
| | i

AT&T 8383
W U 13A

Character

Graphic
22

Al c1/2

a2 cl/4
$

R4
o C3/!'3

Control
23

As .C‘7/ 8

A? 5/8

i cl/8

—z{pmmolonw»

CR

¢ Bell

AT&T TWX

Character

Graphic
25

po| = + ~ A .

R RY R

~» V4 &8~

~ %

—TjOTMmMOlO® >

Control
26

WTTA (ITA2)
Character
Graphic Control

28 29

(

+

)

/

’

?
A

8

C

D

E

F

G

H

i

WTTA (Z5C3) EBCDIC
Character Code
Graphic | Control (Hex)
31 32 e Ref.
48 72
49 73
4A 74
N 4B 75
4C 76
(4D 77
+ 4€ 78
4F 79
& 50 80
51 81
52 82
53 83
54 84
55 85
56 86
57 87
58 88
59 89
5A 90
5B 91
5C 92
) 5D 93
SE 94
SF 95
- 60 9%
/ 8 97
62 98
63 99
64 100
65 10t
66 102
67 103
68 104
69 105
6A 106
I3 6B 107
6C 108
éD 109
&E 110
? &F i
70 112
71 113
72 114
73 115
74 116
75 17
76 118
77 119
78 120
79 121
. 7A 122
78 123
7C 124
7D 125
_ 7E 126
B 7F 127
80 128
A 81 129
B 82 130
C 83 131
D 84 132
E 85 133
F 86 134
S 87 135
H 88 136
1 89 137
8A 138
8 139
8C 140
8D 141
8E 142
8F 143
Appendix G 143 e

Ref.

EBCDIC

IBM 1030

IBM 1050

1BM 1060

Character

Character

Character

Graphic | Control

Graphic | Control

1 2

4 5

— -

Graphic | Control
7 8

— g —

Character

~a|vosg

S0 |vo 33

Graphic Control
10 n

2 POPO0ZT|rR-

-

167

168
169
170
171

NxIx £ <c

N<|xg<c|=w

-

172
173
174
175

176

N |x £ <c

PZ

PZ

—z|logmmo|law>

—z|lgmmo|la=»

—z]lommo|la=>

MZ

Q0ZZrRx-

N<|xs<cl|aew

Restore

—zlpgmmo|lao®r

Message

vO0ZZ|rR-

IBM 2260
2260 1053
Character Character
Graphic Control Graphic Control

13 14 16 17
J J

K K

L L

M M

N N

[¢] [¢]

P P

Q Q

R R

S S

T T

u U

\ v

w w

X X

Y Y

z z

A A

B 8

c c

D D

E E

F F

G G

H H

I]

J J

K K

L L

M M

N N

(o] (o]

4 p

I1BM 2740

Character

Graphic Control

19

—_——

~afvosg3

Nx |x g <c

~rlgmmoln=>»

TOZX|TA-

20

Graphic Control

22

TOlP0ZZ|mR-

N<Ixsg<claw

AT&T 8383
W U 115A

Character

23

TIIQTMMOIO® >

vQZZ|r R

AT&T TWX

Character

Graphic [Control_

25

mplmrozzZrx-

N<|xs<c|law

—x[@TMMO|O®>

26

POZZ|TR-

IBM

2260

2260

Character

1BM 1030 IBM 1050 IBM 1060
Character Character Character
Graphic | Control Graphic | Control Graphic | Control
4 5 7 8 10 n
J i J
K k K
L 1 L
M m M
N n N
(o] ° (o]
P P P
Q q Q
R r R
S s S
T t T
U 1} u
v v v
w w w
X x X
Y y Y
z z r4
PZ Restore
A A A
B B B
e c c
D D D
E 3 E
F F F
G G G
H H H
1 I I
MZ Message
J J J
K K K
L L L
M M M
N N N
o] [e] (o]
4 P P

Graphic
13

N<|xs<c|aw

—I{@TMMOU|O® >

Control

14

1053

Character

Graphic
16

=OIPO0ZZ| AR

N<|xg<c|aw

“X|@TMMO|O® >

vOZZ|r AR

Control
17

1BM 2740
Character
Graphic Control
19 20

i

k

|

m

n

o

p

q

r

s

t

v

v

w

x

Y

z

A

B

C

D

E

F

G

H

1

J

K

L

M

N

[e]

P

AT&T 8383
W U 115A
Character
Graphic Control

22 23
J

K

L

M

N

o

P

Q

R

S

T

U

v

w

X

Y

A

A

B

C

D

E

F

G

H

|

J

K

L

M

N

o

P

AT&T TWX
Character
Graphic Control
25 26
J
K
L
M
N
(o]
P
Q
R
S
T
U
\'
w
X
Y
z
A
B
C
D
E
F
G
H
|
J
K
L
M
N
[¢]
P

i

Character

Graphic
28

N<|xs<c|aw

—I|QTMMODIN® >

WTTA (ITA2)

Control
29

Character

Graphic

POIPOZE[r xR

N<Ixs<c|aw

-zlpmmo|low>

WTTA (Z5C3)

Control
32

EBCDIC
Code
(Hex)
34 Ref.
90 144
N 145
92 146
93 147
94 148
95 149
96 150
97 151
98 152
99 153
9A 154
98 155
9C 156
9D 157
9E 158
9F 159
AD 160
Al 161
A2 162
A3 163
Ad 164
A5 165
Ab 166
A7 167
A8 168
A9 169
AA 170
AB 171
AC 172
AD 173
AE 174
AF 175
B8O 176
B1 177
B2 178
B3 179
B4 180
85 181
Bé 182
B7 183
B8 184
B9 185
BA 186
BB 187
BC 188
BD 189
BE 190
BF 191
co 192
C1 193
c2 194
Cc3 195
Cc4 196
Cc5 197
Ccé 198
Cc7 199
cs 200
Cc9 201
CA 202
CB 203
cc 204
cD 205
CE 206
CF 207
DO 208
Dt 209
D2 210
D3 211
D4 212
D5 213
D6 214
D7 215

Appendix G 145

Ref.

EBCDIC

Character

Character

1BM 1030

Graphic

Control

1

2

216
217
218
219

ol

220
221

223

224
225
226

228

N<lIxg<c|=n

249

welNe O LalwNn -~ O

Graphic
4

N<|xs<c|-w

4

Control
5

252

0
1
2
3
4
5
6
7
8
9

1BM 1050

IBM 1060

1BM

2260

Character
Graphic | Control

7 8

N<|xXg<c|aw

VOOINO G B[WN = O

Character

Graphic
10

N<Ixs<c|[aw

VOINO L A|wNN~O

Control
n

2260

Character

Graphic
13

N<|xs<claw

Controf
14

VWONOCULAlwON—-O

1053

Character

Graphic
16

N<|xs<c|aw

wolNCuLAlWN —~ O

Control
17

IBM 2740

Character | Character Ji

Graphic] Control Graphic

19 20 22

AT&T 8383
W U I15A

Control
23

N<|xg<c|mw
N<[xg<c|-w

VOINOOL AWN — O
OV OINOU BJWN —~ O

AT&T TWX

Character
Graphic Control
25 26

N<|Xg<cl|Hn/

volvoualwn ~o

18M 1030

Character

Graphic | Control

4

ol]

N<|xs<c|=w

5

VOINOULAJWN ~O

3

IBM 1050
Character
Graphic | Control
7 8
Q
R
RM

S

T

u

\

w

X

Y

z

0

1

2

3

2

5

é

7

8

9

IBM 1060
Character
Graphic | Control
10 n

Q
R
S
T
V]
\
w
X
Y
z
0
1
2
3
4
5
6
7
8
9

1BM 2260

2260

Character

Graphic

Control

13

14

N<|[xg<c|aew =0

VOINO O AlWN — O

1053
Character
Graphic | Control

16, 17
Q

R

S

T

V]

\

w

X

Y

z

0

1

2

3

)

5

6

7

8

9

Char

Graphic

19

N<IXgs<c|=w [)

VoINOLAlWN —~ O

1BM 2740

cter
Control
20

AT&T 8383
W U NSA
Character
Graphic | Control
22 23
Q
R
s ;
T §
] :
v e
w N
X
Y
Y4
0 T
1 4
2 s
3
7}
S i
s :
7
8
9
J:

AT&T TWX

Character
Graphic Control
25 26

0

N<[|X g <c|~v/,

volNe G alwN ~o

WTTA (ITA2)

Character
Graphic Control

28 29

N<|xs<clHw)

VOINCOU AlLON—=O

WTTA (ZSC3)
Character

Graphic | Control

31

32 L

0

N<|xg<clhew

VR[NV AW —O

EBCDIC

Code

(Hex
34 Ref.
D8 216

- D9 217
DA 218
DB 219
DC 220
DD 221
DE 222
DF 223
E0 224
El 225
£2 226
E3 227
E4 228
E5 229
E6 230
E7 231
E8 232
E9 233
EA 234
EB 2335
EC 236
ED 237
EE 238
EF 239
FO 240
F1 241
F2 242
F3 243
F4 244
F5 245
Fé 246
7 247
F8 248
[249
FA 250
B 251
FC 252
FD 253
FE 254
£F- 255
Appendix G 1u47e

TERMINAL CODE TRANSLATION CHART

This chart may be used in reading the ter-
minal code found in dumps of stcrage. The
hexadecimal representation of the terminal
code, as found in a dump, is shown at the
side of each section of the chart. Beneath
the terminal type is found the desired
character to which the terminal code trans-
lates; also shown is the EBCDIC transla-
tion. The programmer must determine if the
hexadecimal code in main storage represents
EBCDIC (translated) or terminal code
(untranslated).

Example: In order to translate

1601E4CC A5011515 150201CA B1E70190

® 148

as found in a dump, the characters are
first separated into pairs:

16 01 Eu4 cc AS 01 15 15

15 02 01 cA B1 E7 01 90
If the terminal is an IBM 1050, the chart
shows that the characters in storage
translate to

EOA SP B OSSP 0O

01 SPNYC SP *

so that the message entered at the terminal
was, in part,

BOS 0001 NYC *

$/360| EBCDIC 18M 1030 | IBM 1050
Byte
(Hex)
Gr cH |Gr Ctl |Gr Ctl
00 NUL
(] SOH sP sp
02 STX |1 1
03 ETX
04 PF |2 2
05 HT
06 Lc
07 DEL | 3 3
08 4 4
09
0A SMM
0B vr |5 5
oc FF
0D R |6 6
OF SO |7 7
OF]
10 DLE | 8 8
1 DCl
12 DC2
13 ™ |9 9
14 RES
15 NL |0 0
16 BS |# EOA|# EOA
17 L
18 CAN
19 EM PN
1A cc RS
1B [T}
1c IFS Upshift
1D 1GS
1€ IRS
1F Us EOT EOT
20 Ds | @ .: @
21 SOS
22 FS
23 / /
24 BYP
25 LF S s
26 ETB(EOB)| T t
27 ESC(PRE)
28
29 U v
2A SM v v
28 U2
2c w w
2D ENQ
2E ACK
2F BEL | X x
30
31 Y Yy
32 SYN| Z z
33
34 PN RM
35 RS
36 uc
37 EOT | @ ’
38 BYP
39
3A
38 cus LF LF
3C DC4
3D NAK EOB EOB
3E PRE
3F suB

IBM 1060

1BM 2260 R
- 1BM. 2740
2260 1053
Gr Cth | Gr Ctl {Gr Ctl
SOH SP
STX STX | 1
ETX ETX
EOT EOT | 2
ACK ACK
3
4
| NL NL
5
é
7
8
9
NAK NAK]| 0
EOA
CAN
Upshift
EOT
@
/
s
t
v
v
w
x
Yy
z
- ®
LF
£OB |

AT&T 8383
WU 115A AT&T TWX

WTTA

1TA2

ZsC3

Gr (]

Gr Ctl |Gr

Ctl

S/360
Byte
(Hex)

$/360
Byte
(Hex)

EBCDIC

IBM 1030

1BM 1050

Gr ctl

Gr [«]]

Gr Ctl

CR

CR

8828

SP

SP

TZx

TZx

SP

SR8

4
42
43

SP

-]

LF

Q= r

Q>r

LF

47

X

<Nvo-—

<O w-—

SR8R |82 S88

49

48

Rl

z=

T

W ONM

®ONmMm

4
4D
4E
o

-_—t—~A

o~

50
51
52
53

[

0

“CEP |XTM<n

FIGS

CEP XM

FIGS

54
55
56
57

MZ

xpC

LTRS

RpC

LTRS

58
59
5A
58

o —

LF-CR

RES

NL

EOT

CR

CR

5C
5D
5E
5F

Jnv#

BS
IL

Lol o4

SP

~

SP

TpAuxOff
TpAuxOff

LF

& -

(=N

LF

o ®

I e

il ©@ o

Bel!

EOM

FF

w

WRU

w

WRU

RAVA I

o"ﬂ

o -

o Bell
FIGS

FIGS

.®torc

AN

LTRS

LTRS

EOA

HT

7C
7D
7E
7F

EOC DEL

1BM 1060

IBM 2260 R
IBM 2740
2260 1053
Gr Ctl|Gr Ctl |Gr
SP SP -
= EOM | !
| Check| * .
i
$ $
% % k
& & |
L] L]
((
)) m
* * n
+ +
’ 4 (]
/ / P
0 0
1 1 q
2 2 v
3 3
4 4
5 5
[6
7 7 $
8 8
9 9
< <
> >
? ?

AT&T 8383
A X
WU T15A WL&L?X

WTTA

1TA2

Z5C3

Gr

Ctl |Gr

cil

/360
Byte
(Hex)

TpAuxOn
TpAuxOn

LF
LF

oo | <<

78
79
7A
78

7C
7D
7€
7F

Appendix G

iu9e

IBM 2260 R AT&T 8383 WITTA 1BM 2260 R ATAT 8383 WTTA
s/360] EBCDIC | I1BM 1030 | I1BM 1050 | IBM 1060 IBM 2740 AT&T TWX /360 S/360] EBCDIC IBM 1030 | 1BM 1050 | 18M 1060 IBM 2740 AT&T TWX 5/360
Byte 2260 1053 WU 115A 1TA2 75C3 (Byte Byte 2260 1053 WU 115A iTA2 25C3 |[Byte
(Hex) {Hex) (Hex) ; - (Hex)
Gr Gl | Gr cH|Gr Gr cH|Gr cHiGr ctl Gr clcr cH|Gr (o] Gr crl|Gr ctl|Gr cH Gr cHl|Gr cHlGr ctl Gr cHiGr cHlcr ctl
80 80 o PZ . ® . ® co
8l |a SP 81 Ccl A Ci
82 |b = = A 82 c|s c2
83 | ¢ A 83 cG|c J J c3
84 | d < < 1 84 c4|D c4
85 | e ! 85 G |E K K c5
86 | f 86 c6 | F L L cs
87 | g ; ; 87 < le c7
88 | h : : X=On 88 cs | H cs
89 | i X~On 89 co | M M X-Off ce
8A 8A CA N N CA
8B % % Q 8B cB cB
8C 8C cc o o] cc
8D ' ! 1 8D CcD PStart MI | ¢ cD
8E > > 8E CE CE
8F 8F CF P P CF
9% * » HT % DO Mz Do
91 | HT 91 Dt |J Q Q \4 DI
2 | k 92 D2 | K R R D2
93 | 1 ((| 93 D3 | L D3
o4 |'m 94 D4 | M D4
% | n))) 95 D5 | N D5
9% | o " *« EOA 96 D6 | O Dé
97 | p 97 p7 | P ! ! D7
9% | q 98 D8 | Q RES D8
9 |r 99 D9 | R D9
9A Y 9A DA DA
98 Y 98 DB NL DB
9C Upsh Upshift 9 9C DC DC
9D 9 9D DD BS DD
9E 9E DE 18 DE
9F 9F DF Pad DF
A0 ¢ ¢ WRU A0 E0 RM @ @ EO
Al A A WRU Al El + + Bell El
A2 | s B B A2 E2|s A A (7]
A3 | ¢t ? c c ? E A3 B3 |T E3
Adlu D D A4 E4 |U B B E4
A5 | v S E E S % A5 B v E5
A6 | w T F F T Ab B |w €6
A7 | x G G A7 7 | x C c £7
A8 |y H H A8 B |Y D 8
A9 |z u | | u A9 | e9lz E9
AA v J J v U AA EA EA
AB K K U AB EB E E B
AC w L L w 5 AC EC EC
AD M M 5 AD ED F F ED
AE N N AE EE G G EE
AF X o o X AF EF EF
BO P P BO FO{o H H FO
B1 Y Q Q Y CR Bl Fl |1] F1
B2 z R R z M B2 2 |2 F2
B3 s s M B3 F3 |3 I 1 F3
B4 T T - B4 F4 | 4 F4
B5 u u - BS 5|5 F5
B6 v v B6 F6 | 6 - ® - F6
B7 | w w | B7 7|7 F7
B8 BYP X X B8 8 |8 F8
B9 Y Y B9 TH K7 PF F9
BA z z BA FA Tab [FA
BB LF LF] BB FB FB
BC BC FC Dwnshft - - FC
8D EOB EOB = 8D FD] FD
BE PRE BE FE 1 | FE
BF - - BF FF _—~ DEL Rubout FF

Appendix G 151e

APPENDIX H:

EXCHANGING MESSAGES BETWEEN IBM AND NON-IBM TERMINALS

Certain line and device control functions
are implemented differently for IBM termi-
nals and non-IBM terminals. Generally, no
difficulties arise when messages are
exchanged between IBM terminals of the same
or different types, or between non-IBM ter-
minals of the same type. For applications
in which messages are to be exchanged
between non-IBM terminals of dissimilar
types, or between IBM and non-IBM termi-
nals, the user should be aware of the con-
siderations explained below, and plan his
message headers accordingly. 1In some
cases, it will be necessary to edit certain
characters or character sequences out of
incoming messages and edit certain charac-
ters or sequences into outgoing messages.
The functions concerned are: carriage
return, new line, line feed, end of
address, end of block, end of transmission,
and 'who are you?' (the latter function
applies to TWX and WTTA terminals).

End~-of -Address

All QTAM-supported IBM terminals employ a
single machine end-of-address (EOA) charac-
ter, known as a (for 2260 start-of-text
(STX) character). Of the non-IBM termi-
nals, the 83B3 represents EOA by the
sequence CR LF LTRS; the 115A represents
EOA by a single space character; and the
TWX and WITA terminals have no EOA
sequence.

If messages are to be switched from a
non-IBM terminal to an IBM terminal, the
user must edit out the received EOA charac-
ter or sequence and insert the proper
sequence for the receiving terminal.

Figure 36 provides the code representations
for the EOAs for each terminal type.

Western Union 115A terminals require
that an EOA (space) be the first character
in the header. ATET 83B3 terminals require
an EOA (CR LF LTRS) as the first three
characters in the header. The QTAM user
cannot have idle characters in his message
header preceding the EOA. He may ensure
this by moving the EOA into the buffer
beginning with byte 32. Space for the £OA
should be included in the bytes resefved in
the message header by the LPSTART macro
instruction. If TIMESTAMP,DATESTAMP or
SEQOUT is specified, it should precede the
movement of the EOA into the header.

For all IBM terwinals except the 2740
Types I and VI, there may be two EOAs (two
STXs for 2260) as the first two characters
transmitted to the terminal. The first one
is sent by the access method that sends the
message to the terrinal, while the second
appears in core as the first character in
the buffer (following idle characters spec-
ified in the LPSTART macro instruction).
This second EOA was sent by the terminal as
the first character in the message.

The EOA character transmitted by the
access method will perform its normal func-
tion of putting the terminal in text mode,
but the second EOA will print as a text
mode character at the beginning. of the mes-
sage. The user may wish to insert the fol-
lowing code to delete this character before
transmitting the message:

CLI 1(5),X*7B*' IS THIS EOA CHARACTER

BNE NO NO IT IS NOT

MVI 1(5),X"17' YES, REPLACE WITH IDLE

LA 5,1(0,9) INCREMENT SCAN POINTER
NO .

This problem should not exist for mes-
sages generated by a message processing
program. In this situation, the access
method will transmit the required EOA
sequence prior to writing the characters
from the buffer; no other EOA should be
present.

Carriage Return, Line Feed, New Line, and

End-of-Block

For non-IBM terminals, the carriage return
and line feed functions are performed by
two separate characters, CR and LF. For
IBM terminals, the functions are performed
by the single character new line (NL). A
NL character in a message sent to a non-IBM
terminal cannot be translated to two separ-
ate characters, that is, to both the CR and
LF characters. To compensate for this,
QTAM takes advantage of the usual practice
of sending an EOB character at the end of
each line of text printed on the printer
(i.e., sending an EOB followed by a NL).
8tandard QTAM translate tables effect con-
version of the EOB and NL characters to LF
and CR, respectively, for messages sent
from an IBM terminal to a non-IBM terminal.
Conversely, when messages are sent from a
non-IBM terminal to an IBM terminal, CR and

Appendix H 153

LF characters are converted to EOB and NL
characters. Thus, as long as any messages
originating from an IBM terminal always use
the EOB and NL characters in combination,
the carriage return and line feed functions
at the receiving terminal (non-IBM) are
effected just as if the originating termi-
nal had entered CR and LF into the message.

When messages are sent from a telegraph-
type terminal (AT&T-83B3, TWX, WITA, or
Western Union 115A) to an IBM 2740 Model 2
with the Buffer Receive option, LF trans-
lates to EOB when using IBM-supplied
translate tables. Since (1) the contents
of the puffer are printed only when EOT is
received, and (2) all blocks are read into
the same buffer, only the block received
just prior to the EOT will be printed.

(A1l previous blocks will have been succes-
sively overlaid in the buffer.

End-of-Transmission and WRU

All IBM terminals employ a single end-
of-transmission (EOT) character called a
© . TWX terminals also employ a single
EOT character. The 83B3 and 115A terminals
represent EOT by the segquence

FIGS H LTRS.

An EOT in a message sent from an IBM or
TWX terminal to an 83B3 or 115A terminal is
translated by QTAM to the two-character
sequence FIGS H. The LTRS character is
not sent, so the EOT sequence is not com-
plete. The sequence is completed when QTAM
deselects the terminal prior to polling the
line or addressing a terminal on the line.
When QTAM sends the EOT character that
always begins a polling or addressing
operation, the TCU first sends the LTRS
character, completing the EOT sequence.

The TCU then sends the complete EOT
sequence FIGS H LTRS again. The EOT
sequence thus appears on the receiving line
twice, put this has no ill effect.

The EOT sequence FIGS H LTRS sent from
an 83B3 or 115A terminal to an IBM or TWX
terminal appears in main storage as an
upshift H (transmission code X'25'). The
TCU deletes the LTRS character from the
incoming data stream. The upshift H is
treated as an invalid character by the QTAM
translate table; it is translated to a sub-
stitute character (X'3F', in EBCDIC). The

154

user should edit out this substitute char-
acter from the message. When the message
is sent to the destination IBM or TWX ter-
minal, the user should edit the appropriate
EOT character into the message. Figure 36
provides the code representations for the
EOTs for each terminal type.

The user must edit out all WRU charac-
ters appearing in messages destined for TW:
terminals (OS QTAM does not support the WRU
functions in outgoing messages to TWX ter-
minals). The user should also edit out EOT
characters appearing in messages destined
for TWX terminals, Decause EOT will cause
the terminal to disconnect from the line
prematurely (i.e., while QTAM is preparing
to send additional messages to the same
terminal). To disconnect a TWX terminal
from the line, the TWX operator sends an
EOT from his terminal when he receives the
CPU identification sequence from the com-
puter. See the section entitled Management
of Switched Lines.

End-of-Message, End-of-Transmission, and
WRU for WTTA Terminals

The World Trade Telegraph Adapter recog-
nizes two end conditions that are set in
the hardware at the time the control unit
is installed. These are FIGS x and FIGS y
LTRS, where x and y are characters assigned
by the user of a specific system.

For a terminal equipped with the Auto-
matic Answerback Unit, FIGS x must be the
code combination No. 4 (FIGS D) sent by the
terminal WRU key. FIGS D is referred to as
the WRU signal. For terminals not equipped
with the Automatic Answerback Unit, any
other code combination can be selected.

Note 1: x and y must not be the same
character.
Note 2: The FIGS y LTRS sequence causes a

Read operation to end. Therefore, FIGS y
can be sent by a terminal as data only if
it is not followed by LTRS.

The above termination signals can be
used as EOM signals. Either the FIGS y
LTRS sequence (if not yet used as an EOM
signal) or two consecutive EOM signals can
represent the signal.

r T T 1
| | EOA Sequence | EOT Sequence]
| | frrans || Tcans 1|
rans rans
| Terminal Type |Characters|Code |EBCDIC|Character |Code |EBCDIC]
| | | (hex) | (hex) | | (hex) | (hex)
b T t { + t $ +
| TBM 12260 | STX {02 j02 |IEOT (©) |ou 137 1
| F + -4 + } { +
| |all others|EoA ((D) |16 178 |[EOT (©)) |1F {37
I b { ¢ + ¢ + t-—me
|Non-IBM|83B3 |CR LF LTRS|02081F|0D2506|FIGS H LTRS|1B051F|368806]
| : } -1 + 1 $ o
| {115a |Space jou |40 |FIGS H LTRS|1BO51F|368806]
| b : + + + ¥ ¢ :
| | TWX | |] |EOT j21 |37
b + 1 + 1 3 +
|WTTA | | | |EOM | Note* |37 1
| | [| |EOT |Note* |37 |
d L 1. L 4 L L 3
A
*Note: Any character assigned by the user.]
J

Figure 36. EOA and EOT Characters and Sequences

Appendix H 155

APPENDIX I: QTAM CHECKPOINT DATA RECORD

r—— —

Record Format:

1 2 3 4
k) T R T T) 1
[+ Next [t 1St|TERM ENTRIES|QCB ENTRIES|POLL LISTS|LCB ENTRIES|DEAD LETTER]
|Disk Loc| QCB | | | | | OCB ENTRY# |
L L L L e L ‘L J
SN | DU R /SO |

Formats of Fields:

1. Save all terminal entries (except distribution lists).

R
TERM ENTRY |Terminal Table Entry

L

b ——

1
]
1
L——-size of TERM entry + 1-——-J

2. Save QCB's only if current QCB is not the same as the last QCB saved.

| PROCESS
|oCB ONLY
I
f=—=—-=1T " T k) % R
QCB ENTRY |OSIZE| ONASE |QBACK|QFAC|t CURRENT|
| i |MSG HDR |
o et !
-2 4 1 i 3 4 Bl 3
3. Save polling list only if the list is not the same as the last polling list saved.
T T T 1
POLLING LIST | SIZE| STATUS | VARIABLE INFOQ]
[N - 4 —— d
'
L—-1-1——J——1-—_variable--4
4. Save LCB information based on QRLM of current QOCB being checkpointed.
r -7 T T T Ll
| LCBHDR|LCBTTIND] LCBSTATE | LCBNASEG|UNIT ADDR|
i 4. 4 i 1 4
r T T T T
L jc TS SEU, S § 1 L 33—t _—2 4
Control Record:
r T 1 Status
| STATUS | Not Used] 00 Normal Close
L i J 01 Abnormal Termination Area 1 Good Info
02 Abnormal Termination Area 2 Good Info

|
|
|
[
I
|
|
|
|
|
|
|
|
|
|
|
|
!
|
I
|
|
|
I
|
|
| I !
| +
|
|
|
|
|
|
|
|
|
|
|
!
!
I
|
|
I
|
|
|
|
I
|
!

®156

R oo s e e —— U o—— ——— — ———— —— ——— — {— —— — — — — A T— — —— — ———— T st S—— W o— S— —— W — — — —— —" ———T — — — — —— — s wpn]

RETURN_CODES FOR MACRO INSTRUCTIONS USED TO MODIFY AND EXAMINE SYSTEM

APPENDIX J:

right-
All numbers in

are set in the low order byte,
the chart appear in hexadecimal notation.

adjusted, in register 15.

the

Upon return from the message processing
routine for the macro instruction,
return codes shown in the following chart

e s e oo e e £ e

Y S i e S S e e i e S i e
o “ ®
(] o o
b < tal
e s e e v e s e e s e e e e 2o}
- L4 L3
o — @
o o o
>4 < <
e e e e e e e e e e e e
-
(=]
o
.
<
e e e e e e e e e e e e e e e o
- [] -
o] =4
o o
S 3
e s i s e e s e e e e e]
o
o
>
e e e e e i e e e e e e e e
=Y
o
>
o e i e e s e s s o e e e e e]
)
(=]
<
e e e e e e e e e e e e e e
- - Ll
o [o]
o o o
o] o] >
o e e e e e e e e
- -
(=] (o]
o Lol
o =
e e e e e o it e e e e e e o
o - © o
o o o L]
X > W S
e e e e e e e e e e e e e
o |
S
o
Fi)
1]
algo
=
o ledl%g
[o T Le]
-~ g =} Z 0 - =]
[(] X — —~
=i~ jon) U= © O © o
M om o > S > s
(e} (=N} o~z =Kz =0
Zm DA - H = = -~ O
i S NG SO S S —— T ——

I T YT T e S T S e v S e e e g e e oy
-
o
o~
< | |
T.ll.lTl.l:lTlu-lunnnl.llT"Jnllli
L]
(=]
N
4
ek e e R e e
- - L]
N o o
o =4 N
L d 1 4 L d
»< kel =
e e e e e e e s e e e e e e e e e
® -
o (9]
o~ o
x S
e s e e s e s e e e s e s e e e e e
= b=t =y
o~ i &
- - -
> o] <
e e e e e s s e e e e e e e e e
o
o~
>
b e e e e e
-
(o
o~
<
e e o e e e e e e — o
=
o~
o]
T.|..|..LT|..1.|”|||||1TI|I|_T||I..|“..|.|II|1
i = | |
(K= | | |
o~
>4
o e e = — o e e e e e —
o
o
-
»
T.IuliTlllrllLTll.Llnllnjlalunﬂlll
] i M 2]
&) 1] 1% (=] 1]
|~ [=} o] =] [}
[o~ ~ ~
A =] = (1] + [ORe]
] ol H >IN (¢] (")
o [] D M (] Z =} +
a 2} (SR © Yoy v e T3
=] (O] n o 0o
Lol I L o] T K S + 0 L0 o
AW AN < M =]]
L B B B O B B) (O] ¢ N
© M ©Q g | XS == Lo
> > E > Q N @ ool o
[=Rie} [<I-] co il oQ (O} O MO
H g -z HEH | BB (2] [=">-4
.lllLrlll'l:l'llI“l‘lLr'lLrllll'IL

Appendix J 157

APPENDIX K: DISK QUEUING RULES

The data set defined for the DASD message
queues contains one gueue for each DASD
process and DASD destination queue defined
via the terminal table. Relative record
locations 2 through n+1l each contain the
first record for queues 1 through n. The
ordinal indication of the queue is in bytes
2-4 of the QCB whose address is in bytes 1
through 3 of the terminal table entry
(TQCBADDR) . Beginning at the record speci-
fied in bytes 2-U of the QCB, the queue is
chained through the data set. Rules for
chaining are as follows:

1. The relative record address of a seg-
ment on disk is contained in bytes 5
through 7 of the disk segment MSLCB.

2. The relative record address of the
next segment of a message is contained
in bytes 8 through 10 of the disk seg-
ment MSLINK.

3. The relative record address of the
header of the current message (if this
is a text segment) or of the header of
the previous message (if this is a
header segment) is contained in bytes
11 through 13 of the disk segment
MSHEAD.

4. The relative record address of the
header for the next message is con-
tained in bytes 14 through 16 of a
header segment MSDLINK.

158

Relative record location 1 contains the
first record of the dead-letter queue.
This queue contains all messages whose
destinations are invalid. For multiple-
routed messages, the message will appear in
the dead-letter queue once for each invalid
destination. This is in addition to the
queuing of the message in a DASD process or
DASD destination queue for a valid
destination.

Messages placed in a DASD queue via mul-
tiple destinations in the header, a distri-
bution list, REROUTE macro instruction, or
an ERRMSG macro instruction follow these
rules:

1. The primary destination (first DASD
queue into which message is placed)
contains the header segment and all
text segments. The REROUTE bit in
MSTATUS (bit 1 in byte 12) is set to
zero in the header prefix.

2. All subsequent DASD queues used as
destinations contain the header seg-
ment only. The REROUTE bit is set to
one in the header prefix of each of
these messages.

3. The header segments of these secondary
destinations are chained to the re-
spective text segments, which are in
the primary queues.

The following example is designed to pre-
sent the basic structure of a QTAM message
control program. (See Appendix M for a
more complicated sample program.) The pro-
gram is designed to receive messages from
two IBM 1050s and put them on the destina-
tion queue for any or all of the following:

e Cueue for the first 1050.

¢ Queue for the second 1050.

e Queue for the process program. (The
message processing program is not
included in this example.)

The program will translate each incoming
message segment from 1050 transmission code
to EBCDIC, count the incoming message head-
ers received from each terminal, route the
message to the proper destination queue,
and check the incoming message sequence
number.

Outgoing messages will be translated
from EBCDIC to 1050 transmission code.
output sequence number will be inserted,
and idle characters will be sent over the
line when the carriage return-line feed
character is recognized in the message
segment.

The

APPENDIX L: QTAM SAMPLE PROGRAM A

The format of the incoming message is:
H#NXXXXX SEQ TERMX YYYY ... emweC
where:

= EOA

N new line character
XXXXX = name of terminal originating
message

SEQ = input sequence number

TERMX = name of destination

YYYY = output sequence number

.es esse = message sent

C = carriage return character

Each message must be preceded by a new line
character. The following statements are
not meant to be card images, but aides to
the user in organizing his message control
program.

r T . T T |
| Name |Operation|Operand |Remarks |
|-)_(- ATCSEC T T {I
EXAMPLE T
| I | | |
| | SAVE | (14,12) | |
[| | |
I | BALR |11,0 | INLINE |
| | I | I
] | USING [*.,11 | CODE |
I			
	sT	13, SAVEAREA+4	
	I		
	LA	13, SAVEAREA i	
I I			
	B	OPEN	i
b $ t + 1			
	TERMTBL	PRCSS	Terminal table definition.
			PRCSS is name of last entry in table.
	I		
CNTR	OPTION	H	Optional field in terminal table.
PLIMIT	OPTION	X11	Optional field in terminal table.
I I [
TERM1	TERM	T,LINE1,1,E213E215,(0,1) [1050 destination entry.	
		I	
TERM2	TERM	T,LINE2,1,E213E215,(0,1)	1050 destination entry.
[
PRCSS	PROCESS		Process Program destination entry.
L 4 1 4 . J

(Part 1 of 3)

Appendix L 159

160

F ¥ . T T b
lName lOperat;on!Operand |Remarks |
¥ T a % "
| | | | |
| | BUFFER i4,92,5,BRB=4 14(92 byte) buffers.
| | | :
:POLLINEl :POLL | ¢(TERM1) |Polling list for LINEl. |
| | |
|LPOLLINE2 lPOLL l (TERM2) |Polling list for LINE2. |
r T T + i
| LINE1 | DCB | DDNAME=LINE1DD,] l|
; } =3§ORG=$X, , |DCB for first line. |
CRF=(G, P),] |
I	CPOLL= (POLLINE1), I		
		BUFRQ=2, INTVL=0, {	
		CPRI=S,	
l i	CLPS=LPS]		
I	!		
LINE2	DCB { DDNAME=LINE2DD,] ;		
= } }DSORG=€X, ,	DCB for second line.		
MACRF=(G,P),			
		CPOLL=(POLLINE2),	}
		BUFRQ=2,	
i		INTVL=0,CPRI=S,]	
		CLPS=LPS	
b + t - + {			
) 1			
DISK	DCB	DDNAME=DISKDD,	DCB for direct access message gqueue.
		DSORG=CQ,	
l]MACRF-(G,P) {		
1 1			
r T - T i			
ECB	DC	X'40000000' JECB with complete bit set on. Used only]	
} = :	for WAITR.		
! I			
! AVEAREA lDC 118F'0'	User's save area.		
¥ T T % {			
{ OPE }OPEN }i?igiwtiggggz. ;Note:d Disk data set must be first one			
U] ” opened.			
:		LINE2, (INOUT))	;
!		I	
	WAITR	ECB=ECB	Causes scheduler to be associated with
			the next lower partition. WAITR is not
I =ENDRE Y {	needed for release 16 or 17 systems.		
AD			
] I	
;	CLCSE	(LINE1, ,LINE2,,DISK)] I	
]		
; L	13,SAVERREA+4 i ‘		
I	1		
	RETURN [(14,12) l }		
b ¢ t + 1			
1			
I] I	
LPS	LPSTART	5, TERM=(1050) {Leave 5 spaces in buffer for header	
= } iRe . ort £ Lps }expan51on for SEQOUT Field.			
celive Portion o .			
[I		
	RCVSEG i 1 :		
I			
; {TRANS :RCVFlOSO]Translate from 1050 code to EBCDIC.			
: {RCVHDR } i :			
]			
{ }SKIP jx*as* jskip to NL character. i			
]			
l {COUNTER }CNTR Jcount headers for each terminal.]			
] I			
SOURCE f			
1 ! ! i !
(Part 2 of 3)

v k3 Ll 1
| Name | Operation|Operand]Remarks |
T i i i |
| | SEQIN |]Check incoming sequence number for |
|] | |validity. |
I | |] |
| | ROUTE | | |
| I I | I
| | ENDRCV | | |
[| |] ,) |
| | EOBLC |]Check for correct reception or message. |
| I | | I
	ERRMSG [X'0200' ,=CL5" TERM1', i		
		=C*.INVALID SOURCE®]	
	POSTRCV		
		Send Portion of LPS.	
]	
	SENDHDR	i	
	I] 1		
	SEQOUT	5 jInsert output sequence number.	
] !	
	SENDSEG		
I			
	TRANS	SEND1050]Translate from EBCDIC to 1050 code.	
I I I] !			
	PAUSE	X*5B',20X"'5E"	Insert 20 idle characters.
]	1		
i	ENDSEND	1	
]	
[EOBLC]Check for correct message transmission.	
I			
]	POSTSEND		
b + 1 } —- 1			
	END	EXAMPLE	
L 1 L L J
)

(Part 3 of

Appendix L 161

APPENDIX M: OQTAM SAMPLE PROGRAM B

The following example is an 0S QTAM message message processing program for closedown.
control program. The purpose of the pro- (See IBM System 360 0OS QOTAM Message Pro-
gram is to switch messages between a non- cessing Program Services Appendix D for the
switched 1050, a switched 1050 and an 83B3. related MPP.) :

In addition, a message can be sent to a

oA ek

PROGRAM: OS QTAM MESSAGE SWITCHING
TERMINALS SUPPORTED:
SWITCHED 1050
NONSWITCHED 1050
NONSWITCHED 8383
FORMAT OF TERMINAL INPUT:
CR (FIGS H LTRS FOR 83B3)
SOURCE TERMINAL (Z PRECEDES ATL IN 83B3 FOR SKIP MACRO)
SPACE
MESSAGE SEQUENCE NUMBER (3 DIGITS)
PACE

*
£
%
%
¥*
*
*
*
s
%*
*
*
DESTINATION TERMINAL{S) *
SPACE *
SLASH *
SPACE *
MESSAGE *

EOB (AT THE END OF EACH BLOCK) *

EOT (AT THE END OF EACH MESSAGE) *

EE *

EXAMPLE: RTP 001 ATL NYC / THIS IS THE MESSAGE 00 *
BT *

OUTPUT OF MESSAGE ORIGINATED AT A 1050 *
SOURCE TERMINAL *
SPACE *
MESSAGE SEQUENCE NUMBER ®
SPACE ®
DESTINATION TERMINAL{S) *
SPACE *
SLASH *
SPACE *

DATE (YEAR AND DAY OF YEAR) =
SPACE *

TIME (HOUR,MINUTE AND SECOND} *
SPACE *
QUTPUT MESSAGE SEQUENCE NUMBER (ONLY IF 1050 TO 1050) *
SPACE *
MESSAGE *
EXAMPLE: RTP 001 ATL NYC / 68,065 10,16.33 001 THIS 1S THE MESSAGE *
A

%*

*

*

%*

*

*

*

*

*

*

*

*

*

*

*

OUTPUT OF MESSAGE ORIGINATED AT A 8383
SOURCE TERMINAL
SPACE
MESSAGE SEQUENCE NUMBER
SPACE
DESTINATION(S)
SPACE
SLASH
SPACE
QUTPUT MESSAGE SEQUENCE NUMBER (ONLY IF 8383 TGO 1050)
SPACE
MESSAGE
EXAMPLE: RTP 001 ATL NYC * THIS IS THE MESSAGE

HoRokk R 3 33k Aok Fok ek COMMENTS

=R EEREEEEEEEEE T IR I IR R I R R R I I TR R IR N O N N R A

SQTAM CSECT
SAVE (14912)ssWILLI
BALR 12,40
USING *,12
ST 13,SAVEAREA+4
LA 13,SAVEAREA
8 OPEN
ECB 0C X140000000"' Used only by WAITR
SAVEAREA DC 18F'Q!
OPEN OPEN (DISKDCB, (INOGUT)} CKPNTDCB, { INDUT) 4NYCDCB, { INOUT), % Disk data set must be opened first and checkpoint data set
must be second.
ATLDCB s { INOUT) yRTPDCB (INOUT) }
WAITR ECB=ECB This instruction is needed only for systems prior to
release 15.
ENDREADY
CLOSE (NYCDCB+yATLDCB+sRTPDCB,9yCKPNTDCB,,DISKDCB) Disk data set must be closed last and checkpoint data set
must be next to last.
L 13ySAVEAREA+4

RETURN (14,12)

0162

* AN A

Fkponkdkkkx TERMINAL LIST 0 o 3ok e ke ok ook
e 3l o0 e e ek e R AR K
TERMTBL EOJsCPINTV=2
'COUNTL OPTION H
COUNT2 OPTION H
POLLMT OPTION FLl
RTP TERM T,RTPDCB+1,E213E215,(0y0,9)
NYC TERM T,NYCDCB,1,E213,(0,0) ,CALL=5880
ATL TERM T,ATLDCB,1,18131807
ALL DLIST (RTP,NYC,ATL)
E0S PROCESS
LR
wdwkkres BUFFER POOL FOR INPUT AND OUTPUT x**************:*:*****x**:*:
BUFFER 20,120,8
ARk
wasdmrr POLLING LISTS p—
b
RTPPOLL POLL (RTP)
NYCPOLL POLL E215
ATLPOLL POLL (ATL)
N
*akdktik DCBYS,ECB AND SAVE AREA
3ok sk e
RTPDCB DCB DSORG=CX,
MACRF={G,P),
DDNAME=RTPOD
CPOLL={RTPPOLL)
BUFRQ=5,
CPRI=E,
CLPS=LPS1050
NYCDCB DCB DSORG=CX,
MACRF=(G,P),
DDNAME=NYCDD,
CPOLL=(NYCPOLL) ,
BUFRQ=5 ,
CPRI=E,
CLPS=LPS$1050
ATLDCB DCB DSORG=CX,
MACRF=(GsP) s
DDNAME=ATLDD
CPOLL=(ATLPOLL) »
BUFRQ=5
CPRI=E,
CLPS=LPS83B3
CKPNTDCB DCB DSORG=CQ,
MACRF={G,P 1,
DDNAME =TCHKPNT
DISKDCB DCB DSORG=CQ,

MACRF={G4P),y
DDNAME=DISKDD

DC XL50'FF

EOJ is last
be taken
Storage for

item in term table and checkpoint records will
every 30 seconds (2x15).

counting incoming messages from 1050.

Storage for counting outgoing messages for 1050.
Storage for polling limit for NS 1050.

Only addressing characters defined-for SW 1050.

Destination ALL sends the message to all terminals.

EOJ refers to a DD card in the MPP JCL (//EOJ DD DUMMY).

20 buffers of 120 bytes each and 8 CCWs that QTAM generates
for the PAUSE macro.

Polling list for NS 1050.
Polling characters for SW 1050.

Polling list for 83B3.

Data set organization is that of a communications line group.

A queued access method is used to access the line group.

Name of DD card that identifies the line.

Identifies polling list for this line.

Buffers requested for transmission of data from terminal to
computer.

Receiving and sending have equal priority.

Identifies the line procedure specifications for this line.

Data set organization is that of the direct access message
queue or the checkpoint for the MCP.

Records are to be accessed with GET and PUT macro instructions.

Name of DD card that describes the checkpoint data set.

Data set organization is that of the direct access message
queue or the checkpoint for the MCP.

Records are to be accessed with GET and PUT macro instructions.

Name of DD card that describes the message queue data set.

Needed only for systems prior to release 15.

Appendix M 163

#*
*kkkakxk | INE PROCEDURE SPECIFICATIONS FOR SW 1050 AND NS 105
*

[—
0 skt dokokolok

LPS1050 LPSTART 21,TERM=(1050)
RCVSEG

TRANS RCVF1050

RCVHDR
SKIP X'15¢
SOURCE 3
SEQIN 3
ROUTE 3

EOA C'/¢
DATESTMP
TIMESTMP 9

COUNTER COUNT1

ENDRCV

POLLIMIT POLLMT
CANCELM X1B600?!

EOBLC

ERRMSG X'0200',SOURCE,=C*INVALID SOURCE!

ERRMSG X'2000',SOURCE=C'SEQUENCE NUMBER TOO HIGH. U
ERRMSG X'1000',SOURCE,=C'SEQUENCE NUMBER TOO LOW. US

ERRMSG X*'8000' s SOURCE,=C* INVALID DESTINATION'

POSTRCV

SENDHDR
COUNTER COUNT2
SEQOUT 4

MVi 32(6)4X'15"
SENDSEG

TRANS SEND10S50
PAUSE X'5B',20X'5E"

ENDSEND

EGBLC

ERRMSG X'0080',SOURCE,=C'OUTPUT TRANSMiSSION ERROR®

POSTSEND

e1l6l

Aok Rk ARk
SES '
ES$ '

21 bytes reserved in msg hdr=9 for datestamp + 7 for
timestamp + 4 for SEQOUT + 1 for the MVI instruction.

Translates 1050 code to EBCDIC.

Move SCAN pointer to the CR character in the buffer.
Checks to see if the source code is valid.

Checks to see if the input sequence number is valid.
Checks to see if the destination code is valid.

/ will identify the end of the destination codes.
Inserts date into header after /.

Inserts time into header after date.

Counts incoming messages from the 1050.

The poll limit is found at the location POLLMT.

Cancel the message if any of the following bits are on in
the error halfword: 1011011000000000.

Sends a positive or negative acknowledgment when EOB is
received.

0200,2000,1000,8000 indicate error halfword bits.

SOURCE: Error msg is sent to terminal origimating the msg
in error.

$ causes the correct input sequence number to be included
in the error msg.

Counts outgoing messages to the 1050.
Puts the correct sequence out number in all messages going
to the 1050.

Insures that a NL character is the first character in the
buffer.

Translates EBCDIC code to 1050 code.

Sends 20 idle characters (5E) after a NL character (5B) is
transmitted.

Performs an LRC and returns a positive or negative response.

* gk sk

skkgkkkk | INE PROCEDURE SPECIFICATIONS FOR 83B3 saioidiodcioskiokonk ko
* sk kA

LPS83B3 LPSTART 1,TERM=(83B3)
RCVSEG

TRANS RCVET1

BREAKOFF 120 Causes the breakoff error bit to be posted if a message over
120 characters long is received or if a buffer is filled
with the same character.

RCVHDR

POLLIMIT 3

SKIP X'EOQ* Move SCAN pointer to the Z character in the buffer.
SOURCE 3

SEQIN 3

ROUTE 3

ECA Ce/e

ENDRCV
CANCELM X'B600*
ERRMSG X'0200',SOURCEy=C*' INVALID SOURCE!'

ERRMSG X'2000',SOURCE,=C* SEQUENCE NUMBER TOO HIGH. USES$ ‘' . .
The two spaces at ?he beginning of the message plus the one
ERRMSG X'1000°%,SOURCE,=C? SEQUENCE NUMBER TOO LOW. USES . spaee reserved in LPSTART are needed for the EOA characters.

ERRMSG X'8000°*,SOURCE,=C' INVALID DESTINATION®
ERRMSG X'0020',SOURCE,=C* MESSAGE TOO LONG'

POSTRCV
SENDHDR

MVC 32(3,6),=X'0D2506"' Inserts the 83B3 EOA characters.

SENDSEG
TRANS SENDT1

ENDSEND

ERRMSG X'40FC®,SOURCE,=C* ,TRANSMISSION ERROR' The period (.) causes the header to be inserted into the buffer
preceding the text.

POSTSEND

END 0SQTAM

Appendix M 165e@

APPENDIX N: ON-LINE TERMINAL TESTING

The on-line terminal test facility provides
tests that can be used by the terminal
operator as a startup procedure and by the
IBM customer engineer for terminal checkout
and diagnosis of terminal failure.

The tests operate on-line with the
user's problem program and in no way affect
uséer operation except for the line time
required by the terminal tests to perform
their function on the selected line.

Tests requested from a terminal c¢an be
returned to that terminal, to any other
terminal on the same line, or to any other
terminal in the system. The tests are:
message switching, comparison of incoming
data to a stored pattern in core storage,
all-characters messages sent to specified
terminals, and test patterns for diagnosis
- of failures in the SELECTRIC o typing ele-
ment of the terminal.

Requests for the various tests are
entered from a remote terminal and are
identified by a test activation code of
99999. The individual tests and terminal
addresses are selected by secondary activa-
tion codes.

Tests are not provided for Teletype
terminals.

FORMAT OF TEST REQUEST MESSAGES

All fields of the test request message are
consecutive: that is, they are not
separated by blanks.

The total length of the test request
message should not exceed the size of a
buffer as specified in the BUFFER macro
instruction. Data not included in this
first buffer will not be processed.

The format of the test control message
is:

99999 format-integer test-integer type-
integer f{addr-char(s)] [unit-char(s)]
[{text-chars] end-char

where:

99999
is the primary action code used to
identify this message to the system as
a test request message. This field
must always appear, exactly as shown,
in every test request message. <

166

format

test

type

addr

defines the test header format; it is
either 0 or 1. Format 0 uses actual
line addresses and can be used to
address any terminal on the same line.
Format 1 uses symbolic addresses and
can be used to address any terminal
within the system.

specifies the test to be executed. It
is always one integer (1 through 9
described in the section Types of
Tests Available).

specifies the type of terminal for
which the test is being requested.
Type codes that may be used are shown
in the following table:

[Terminal Type iType Code]
|IBM 1030 1 1 1
|IBM 1050 I 2 :
{IBM 1060 = 3 }
{IBM 2740 { 4 =
=IBM 1030 - Badge readerl 5 }
jor Manual Entry] |
:IBM 2260 = 6 }
L ; L J
Exception: Type code 5 is used only

with format 0. It defines the type of
terminal requesting the test (as well

as the type of terminal for which the

test is being requested).

is the address of (a) the terminal to
which a test ressage is to be sent
(tests 1, 6, and 8); (b) the terminal
at which a device to be tested mechan-
ically is located (tests 2, 3, 4, and
7); oxr (c¢) the terminal to which a
response message from the terminal-
test facility is sent (test 5). (Test
9 does not utilize the address field.)

Note: For the IBM 1050, 1060, and
2260-28u48, two addressing characters
are specified in the TERM macro
instruction. For these devices, the
first of the two addressing characters
is the actual address of the terminal,
and is therefore the character to be

specified in the addr field. The
second of the two addressing charac-
ters specifies the particular device
at the terminal, and is specified in
the unit field discussed below.

When used with format 0, this is a
one- or two-character field depending
on the type of device from which the
test request message is being entered.
It is a one-character field for the
IBM 1030 card reader, IBM 1050
devices, and IBM 2740 devices, and is
the addressing character for the
selected terminal. Only one character
is necessary because these devices are
capable of transmitting the actual
alphabetic terminal address character.

For the IBM 1030 badge reader or manu-
al entry, IBM 1060 devices, and IBM
2260 devices, this field must consist
of two characters. The address is
selected by transmitting a predefined
code as follows:

1. 1IBM 1060:

Terminal Code

Address Entered
A 01
B 02
C 03
Z 26

2. IBM 1030 badge reader or manual
entry:

Terminal Code

Address Entered
B 02
C 03
D oy
Z 26
Note: If 10 is entered as the

addr field, the message will be
considered an invalid request,
because the corresponding address
(J) is not a legal IBM 1030
address.

3. IBM 2260 devices: the addr field
is used to select the IBM 2848
display control unit. The
address of a display control unit
can be any ASCII noncontrol char-
acter; therefore there are 96
possible display control unit
addresses.

unit

Terminal Ccde

Address Entered

0100000 01

0100001 02

0100010 03

1111111 96

Note: The predefined code appli-

cable to a particular display
control unit can be determined
from a display station by utiliz-
ing the Request Address test
(test 9).

When used with header format 1,
this field is variable in length
(from one to nine characters).
The first character is a digit
defining the number of following
characters that constitute the
symbolic address name. This sym-
bolic address name defines a ter- -’
minal in the terminal table.

Examples:

a. U4CHII (four-character symbol-
ic name)

b. 7CHICAGO (seven-character
symbolic name) '

c. 0 (a zero indicates that the
test is to be returned to the
requesting terminal)

Note that terminal CHII could
request a test for itself by
using either example a or c.

specifies the particular unit at the
terminal specified in the addr field.
This field is used only when the for-
mat 0 is specified. When using format
1, both the terminal and the unit at
the terminal are defined by the sym-
bolic name in the addr field.

For IBM 1050 and IBM 1060 devices, one
character is specified. The appropri-
ate code can be determined from the
publication describing the type of
terminal being addressed.

Note: this field is not applicable to
IBM 1030 and IBM 2740 devices; there-
fore text can start in this position.

For IBM 2848 devices, two characters
are specified. IBM 2260 display sta-
tions are selected by transmitting a
predefined code. The device selection

Appendix N 167

text

end

character can be any of 25 ASCII non-
control characters.

Device Selection Code
Character in ASCII Entered
1000000 01
1000001 02
1000010 03
1011000 25

Note: The predefined code applicable
to a particular display station can be
determined from a display station by
utilizing the Request Address test
(test 9).

is the text of the message sent as a
part of the terminal test. Text is
included only when using the Message
Switching test (test 1), Stored Com-
pare test (test 5), or Write Line
Address test (test 8).

is the end character for the device
from which the test request message is
being transmitted.

Device End Character

IBM 1030 EOB

IBM 1050 EOT

IBM 1060 EOB

IBM 2740 EOT

IBM 2260 ETX

Note: The header as transmitted from

an IBM 1060 device is entered by uti-
lizing the data and transaction keys.
The EOB character is entered by de-
pressing the Teller A or Teller B key.

TYPES OF TESTS AVAILABLE

A total of nine tests are provided for IBM

1030,

1050, 1060, 2740, and 2260 devices.

The integer associated with each test
description is the code to be entered in
the test field to select that test for use.

1

168

Message Switching. This test will
receive a message from the requesting
terminal and return it to the same
terminal or to any other terminal as
specified in the addr field.

Note: the number of characters that
can be switched is directly dependent
on the buffer length that the user
specifies in the BUFFER macro instruc-
tion. The total length of the test
request message must not exceed this
length. Data in subsequent buffers
for this message will not be switched.

Tilt. The tilt test is sent to the
terminal specified in the addr field.
This test is designed to check the
SELECTRIC typing element.

Rotate. The rotate test is sent to
the terminal specified in the addr
field. This test is designed to check
the SELECTRIC typing element.

Twist. The twist test is sent to the
terminal specified in the addr field.
This test is designed to check the
SELECTRIC typing element.

Note: The inability of the SELECTRIC
typing element tc perform correctly
the tilt, rotate, and twist tests is
normally detected by observing par-
tially printed characters within the
pattern, printed during the test.

Stored Compare. The text transmitted
from the requesting terminal is com-
pared with a stored message in the
CPU. The message in storage is com-
patible with the transmitting capabil-
ities of the terminal(s) involved.

The compare message sent from the ter-
minal consists of the numbers 0
through 9 followed by the alphabet (A
through Z3. The alphabet is entered
in lower case from an IBM 1050 or an
IBM 2740.

Exceptions:

1. When transmitting from an IBM
2740 terminal with station con-
trol a space character must pre-
cede the comparison data; when
transmitting from an IBM 2740
terminal without station control,
two space characters must precede
the comparison data.

2. The Stored Compare test for an
IBM 1060 is requested by entering
the following message:

TELLER A
999996534210
TELLER B

Comparison is then made to this
message. Response to this

request is printed only at the requesting
terminal.

The number of characters that can
be compared is directly dependent
apon the data length of the buf-
fer that the user specifies in
the BUFFER macro instruction.

The total length of the test
request message must not exceed
this length.

If the comparison to the stored
message is valid, the following
message is sent to the terminal
specified in the addr field:

CMP VLD-n

where n is the last charactexr
against which a comparison could
be made. If the data length of
the buffer as specified in the
BUFFER macro instruction is not
great enough to hold all of the
message transmitted, the message
is truncated after one buffer is
filled and comparison is made
only to the contents of that buf-
fer. So long as the text con-
tents of that buffer is wvalid,
the comparison is considered
valid. However, if the buffer
length is so limited that no
characters can be compared, n is
a slash (/).

Exception: The message sent to
an IBM 1060 after a valid com-
parison is:

CMP VLD

If the comparison to the stored
message is invalid, the data
received is message switched to
the terminal specified in the
addr field.

Note: The Stored Compare test is
not applicable to the IBM 1030
badge reader or manual entry.
This test is also not valid for a
1060 terminal on a line with Auto
Poll.

All Characters. fThis is a standard
all characters test for customer
engineer terminal checkout and for a
"good morning" message for the user.
Special characters are not used in
this test. Characters received at the
terminal are:

1. For IBM 1030, 1060, and 2848
(2260 and 1053): numbers 0-9 and
alphabet A-2Z.

24 For IBM 1050 and 2740: numbers
0-9, alphabet a-z (lowercase),
and alphabet A-2Z (uppercase).

Carriage Mechanism Analyzer. A
defined message in storage is used to
exercise the terminal specified in
order to analyze the capability of the
typewriter carriage mechanism to per-
form within defined specifications.
This test is not applicable to an IBM
1053 printer attached to a remote 2848
control unit.

Write Line Address (2260 only). This
is a line selectivity test that uses
the first two characters after the
unit field (format 0) or the addr
field (format 1) as a new line code.
These characters can be followed by
data that is to be switched to the
terminal and written on the line spec-
ified on the display station screen.
The following characters are used to
select the line on the display station
screen:

Characters Line Number
01 #1
09 #9
10 #10
11 #11
12 #12

Request Address (2260 only). The addr
and unit fields are not used in this
test. ETX can be sent immediately
after the type field. The message
returned to the requesting display
station is in the following format:

DC + DV dcaddr dvaddr
where:

dcaddr
is the predefined code necessary
to select this display control
unit (two bytes).

dvaddr
is the predefined code necessary
to select this display station
(two bytes).

TERMINAL TEST RULES

1.

The data length of the buffer as spec-
ified in the BUFFER macro instruction
must be long enough to contain all of
the test request header (that is, all

Appendix N 169

170

of the test request message before the
text field).

To request a test from an IBM 1030
badge reader, the badge reader must be
wired to read out the entire ten
columns of the badge. (Refer to the
appropriate publication on IBM 1030
devices.)

The transaction code received from IBM
1030 devices is not included as part
of the test request.

When using header format 0, all IBM
1030 tests require an IBM 1033 printer
on the same line as the requesting
terminal. The printer is specified in
the addr field.

The terminal test will not test the
IBM 1035 badge readers or IBM 1030
badge readers in a 1035 environment.

10.

When switching messages from one ter-
minal to another, the sending terminal
must conform to the character set of
the receiving terminal.

A maximum of 63 characters can be
switched to an IBM 1033 printer.

To return a test to the requesting
terminal on a dial line, format 0 must
be used and EOT must be sent within
the first buffer.

On an IBM 2740 basic terminal or ter-
minal on a line with Auto Poll, format
1 must not be used with a zero in the
addr field.

If the terminal requesting the online
terminal test is a nonswitched termi-
nal polled under control of the Auto
Poll feature, and the message format
is 0, then the EOT character must be
in the first buffer.

During periods of low message traffic the
user of Teleprocessing often desires to
shut off his meter for a period of time and
then resume operation. The QTAM user can
do so by using the interval timer. 1In
order to use this capability, the interval
timer feature must be present and all
necessary requirements for the feature must
be met.

IBM System/360 Operating System Supervi-
sor and Data Management Services, Form C28-
6646, should be used to obtain necessary
information about the interval timer and
the use of the STIMER macro instruction.
When there is no activity in the system,
the STIMER macro instruction may be issued.
This will cause the meter to be shut off
for the specified period of time. A mes-
sage processing program may be entered to:
(1) stop all nonswitched and noncontention
line groups to ensure there is no activity,
(2) set the interval of time delay, and (3)
start all nonswitched and noncontention
line groups when the time has elapsed.

The following example will cause the
system to wait, with the meter off, for
five minutes.

STOPLN TERM1,ALL (one STOPLN issued
for each line group)

STIMER WAIT,DINTVL=TIME

STARTLN TERM1,ALL (one STARTLN issued
for each line group)

CL8(00050000)

An alternate method for nonswitched or
noncontention lines not employing the Auto
Poll feature is to change the INTVL field
of the DCB. When the intervals of the

APPENDIX O: CPU USAGE METER CONTROL

lines overlap, the meter will be shut off.
Instructions to change the INTVL field can
be inserted into the LPS section of the
message control program as follows:

USING IHADCB, 5 Set up address-
ability for DCB
DSECT
LPS LPSTART TERM=(1050)

MSGTYPE C'M' A message type f
of "M" indicate
that the inter-
val is to be
changed.

LA 5, DCB1 Set base address
for first DCB.

MVI DCBINTVL, X"10' Move in desired
interval of

. time delay.

- Change interval for each DCB.

MSGTYPE Execute follow-
ing code for

- all other

. messages.

ENDRCV

DCBD DSORG= (QX) QTAM DSECT for

DCB.

In this example a "M" type of message is
entered when the interval of time is to be
changed. The code between the MSGTYPE
macros changes the interval specified in
the DCB. This will subsequently change the
delay at the end of a polling list. All
other messages will not execute this code.

Note: The user must determine when his
message traffic is slcw enough to use this
method and how to inccrporate the message
processing program at the proper times. It
is not necessary to employ either method
for dial or contention lines.

Appendix O 171@

GLOSSARY

addressing: a procedure in which the com-
puter transmits identifying characters to a
terminal preparatory to sending a message
to that terminal.

addressing characters: a set of characters
peculiar to a terminal and the addressing
operation; response to the transmission of
these characters indicates whether or not
the terminal can receive a message.

answering: a procedure by which a called
party completes a connection (for switched
lines).

buffer: a storage device or area used to
compensate for a difference in the rate of
flow of information, or the time of occur-
rence of events. Buffers consist of main
storage areas; size of the areas is desig-
nated by the user.

calling: a procedure by which a first
party attempts to establish a connection
with a second party through a central
exchange. Also, dialing.

chain:
an ordered arrangement of items.
are related to each other by links.
more chains may exist in each queue.

the part of a queue consisting of
The items
One or

closed routine (or subroutine): a routine
or subroutine that is not inserted as a
block of instructions within a main routine
but is entered by basic linkage from the
main routine.

communication line group: a group of lines
with similar characteristics (such as asso-
ciation with the same type of terminal
device).

component: a point in a communications
network at which data can enter or leave;
an input/output device. A component is
always attached to a terminal control unit.

data _collection: a telecommunications ap-
plication in which data from several loca-
tions is accumulated at one location before
processing.

data control block: an area of main
storage that serves as a logical connector
between the user's problem program and a
data set. The data control block can also
be used to provide control information for
any transfer of data. Abbreviated "DCB".

172

destination code: the name of a terminal
or processing program to which a message is
directed.

destination queues, DASD: a group of
queues in which the gqueue control block for
each queue resides in main storage, and the
message segment chain for each queue
resides on a direct access storage device.

dead-letter queue: a queue containing mes-
sages that could not be placed in the
appropriate destination or process queue.
The dead-letter queue begins in relative
record address 1 on the direct access
storage device used.

delimiter macro instructions: LPS macro
instructions that group functional macros
into various coding subgroups.

direct access queues: a group of queues,
or, more specifically, message segment
chains of gueues, residing on a direct
access storage device. The group can
include destination and process queues.

distribution list entry: a terminal table
entry containing information on a group of
terminals, each of which is to successively
receive any message directed to the group.
The information in the entry includes rela-
tive addresses that lccate the single ter-
minal entries for each terminal in the
group.

end-of-address character (machine): Con-
trol character(s) transmitted indicating
the end of non-message-data characters (for
example, addressing characters). Abbre-
viated, EOA.

end-of-address character (program): a QTAM
character that must be placed in a message
if the system is to accommodate routing of
that message to several destinations; the
character must immediately follow the last
destination code in the message header.
Abbreviated, EOA.

exchange, common-carrier: the location of
a common carrier's communication equipment
for interconnecting subscribers' lines.

functional macro instructions: LPS macro
instructions that operate on message seg-
ments and perform functions such as message
editing, checking validity of codes used in
the header, routing messages to specified
destinations, maintaining logs of messages,
and checking for errors in transmission or
specification.

group_code entry: a terminal table entry
containing information on a prespecified
group of terminals with the group code fea-
ture; this feature facilitates simultaneous
transmission of a message to all members of
the group through the specification of a
single set of unique address characters.

header: a part of the first segment of a
message containing information necessary
for directing the message to its destina-
tion, and other control information.

line control block (LCB): an area of main
storage containing control data for opera-
tions on a line. The LCB can be divided
into several groups of fields; most of
these groups can be identified as general-
ized control blocks. QTAM maintains an LCB
for each line in the system.

Line Procedure Specifications: a sequence
of user-selected macro instructions that:

1. Specifies the manner in which control
information in the message header is
to be examined and processed; and

2. Specifies other functions (such as
translating) to be performed.

Abbreviatéd, LPS.

log: a collection of messages that pro-
vides a history of message traffic.

logging: the process of recording messages
on a storage medium for purposes of main-
taining a history of message traffic.

LPS control routine: a QTAM routine that:

1. Performs initialization functions; and

2. Obtains the address of the LPS line
group routine to be used for process-
ing a particular message segment.

LPS line group routine: a user-defined
routine comprised of subroutines necessary
to prepare a message segment for process-
ing, and examine and process the control
information in the message segment. The
functions performed are based on the user-
selected macro instructions that determine
the configuration of each line group rou-
tine. Each line in the system must have an
LPS to handle messages from terminals on
lines in that line group. However, more
than one line group may use the same LPS if
they all require identical message control
procedures.

message: a combination of letters, digits,
and sympols whose termination pcint is
marked by an end-of-transmission (EOT)
character.

message data: transmitted characters that
are recorded as part cf a message. A mes-
sage data area is the area in a buffer that
receives message data. In QTAM, a message
data area begins with either the thirty-
third byte of a buffer (if the message data
includes a message header), or with the
twenty-third byte of the buffer (if the
message data consists of text only).

message segment: that portion of a message
that fits in the message data area of a
buffer.

message switching: a telecommunications
application in which a message is received
at a central location, stored on a direct
access device until the proper outgoing
line is available, and then transmitted to
the appropriate destination.

polling: a flexible, systematic, centrally
controlled method of permitting terminals
on a multiterminal line to transmit without
contending for the line. The computer con-
tacts terminals according to the order
specified by the user; each terminal con-
tacted is invited to send messages.

polling characters: a set of characters
peculiar to a terminal and the polling
operation; response tc these characters
indicates to the computer whether or not
the terminal has a message to send.

polling list: a list containing control
information and nares of entries in the
terminal table for a single line; the order
in which the names are specified determines
the order in which the terminals are
polled.

polling pass: a complete cycle through a

polling 1list.

process program entry: a terminal table
entry containing information on a process-
ing program as the destination for a
message.

process queue, DASD: a queue in which the
queue control block resides in main
storage, and the message segment chain
resides on a direct access storage device.

processing collected data: an application
in which the data accumulated through a
data collection application is processed.

processing inguiries: a telecommunications
application involving receipt of a message
from a remote terminal, processing of the
message, generation of a response message,
and transmission of the response message to
the originating terminal.

queue: an item system consisting of:

Glossary 173

1. A gueue control block.

2. One or more ordered arrangements of
items (chains).

queue control block: an area in main
storage containing control data for a
queue. Abbreviated, QCB.

relative line number: a number assigned by
the user to a communications line at system
generation.

resource: any facility of the computing
system or operating system required by a
job and including main storage, input/
output devices, the central processing
unit, data sets, and control and processing
programs.

single terminal entry: a terminal table
entry containing information on a single
terminal.

telecommunications: any transmission or
reception of signals, writing, sounds, or
intelligence of any nature, by wire, radio,
visual methods, or electromagnetic systems.
Ooften used interchangeably with
"communication."

Teleprinter: a trade name used by Western
Union to refer to its telegraph terminal
equipment.

Teletype: a trademark of the Teletype
Corporation. A system used for transmit-

ting messages to remote points; the system

174

employs keyboard or paper tape sending and
printed receiving.

Teletypewriter: a trade name used by ATET
to refer to its telegraph terminal
equipment.

Teletypewriter Exchange Serxrvice (TWX): a
switched network providing the means for
interconnecting ATET subscribers.

terminal: a point in a system at which
data can enter, leave, or enter and leave.
A terminal can also be a control unit to
which one or more input/output devices can
be attached (see compcnent).

terminal name: the symbolic name for a
terminal, as assigned by the user.

terminal table: an ordered collection of
information consisting of a control field
for the table and blocks of information on
each terminal from which a message can
originate, and each terminal, group of ter-
minals, and processing program to which a
message can be sent.

terminal table entry: a block of informa-
tion on a terminal, group of terminals, or
processing program; one of the units that
comprise the terminal table.

text: that part of the message of con-

cern to the party ultimately receiving the
message (that is, the message exclusive of
the header, or control, information).

Where more than one page reference is
given, the major reference appears first.

Access line 12,27
Access method 7
Activating communication lines 57,98
Activation of closed subroutines 92-93
Addressing 15

characters 43,46,47,48

terminals 15
Alternate destination 84
Answering 15
Applications 30,31
Assembling MCPs and MPPs 127
Assignment of registers 94,129
Autocall feature 29
Autoansr feature 29
Auto Poll facility 9,52,53,8,27,33,88
Auto Poll line 53

Breakoff error 67,70
BREAKOFF macro instruction 70,62,124
Buffer 7,54-57

definition 54-56

format 123

handling 21-24

insufficient 56

number 38,56

pool 54

size 54-56
BUFFER macro instruction 56-57
Buffer request block (BRB) 55-57

Calling 15
Canceling messages 70-71
CANCELM macro instruction
70-71,64,74,62,124
Capabilities, QTAaM 7,8
Channel, multiplexer 8,9
Character set and code correspondence
135-138
chart 141-147
Checkpoint/Restart facility 108-111,19
Checkpoint data set 34,35
allocating space for 109-110
defining 110
opening 110
closing 110
keyword operands 35
CHNGP macro instruction 101
CHNGT macro instruction 99-100
CHNGT operator control message 104
CLOSE macro instruction 112
Code
addressing 15
conversion see Code, translation
correspondence 135
destination 20, 44,84,85
device see Code, transmission
message type 21,62
source 87,88
translation 88-90

INDEX

translation tables 90
transmission 32

coding format, macro instruction 9-10
Communication lines 11,12

activating 57,98-99
configuration 13,14
dedicated 12
enabling 15,58

error halfword 64-67
half-duplex 11
leased 12

private 12

Communication line grcup 17

characteristics 33
data set 33,36-u4l

Communication network 11-16

nonswitched 12,13
switched 12,13,27-28

Component, terminal 10,43

Components of the LPS 60-61

Concepts and terminology,
telecommunications 11-16
Configuration, network 13,14
Contention system 15

Control characters 138-139

Control formats used by QTAM 113-121
Control information, QTAM 42

defining 42-50,19
macro instructions 42-50

Control station 15

Control unit failure error 67
Control unit, telecommunications (TCU) 11
Conversational mode 79,311,112
Converting transmissicn code see Code,
translation -

COPYC operator control message 103
COPYP macro instructicn 100

COPYQ macro instruction 101-102
COPYT macro instruction 99

COPYT operator control message 104
COUNTER macro instruction 71,43,46
CPU usage meter control 171

DASD destination queue see Queue
DASD process queue see Queue

DASD volume 32

Data definition (DD) statement 33
Data formats used by QTAM 113-121
Data set

activation 57-58

checkpoint 19,24,33-34,57,156
communication-line group 33,36-42,19,57
DASD message queues 19,24,33,35,57,111
deactivation 111-112

definition 33-42,19

initialization 57-60

machine 11

message-log 19,33-34,58

DATESTMP macro instruction 71-72,68,75

DCB macro instruction 34-42

Deactivating the telecommunications system
111,112

Index 175

Dedicated lines 12
Dead-letter queue see Queue
Delay, polling see Polling interval
Delimiter LPS macro instructions 67-70
summary 126
Destination
alternate 84
code 44,84,85
invalid 66,84
queue, DASD see Queue
queue, main storage see Queue
Device-access field 43
Direct access message queues 24
data set 19,24,33-34,57,111-112
Direct access storage device (DASD),
allocation 33
formatting 128
DIRECT macro instruction 72,43,81
Disk queuing rules 158
Distribution list 44,49,85
Distribution list entry 44,49
DLIST macro instruction 49,42,50-51

Editing of non-IBM terminals 153-154
carriage return, line feed, new line,
and end of block 153-154
end of address 153
end of transmission 154
Enabling of line 15,26,58
End-of-address (EOA) character
machine 20,153,155
program 20,75-76
End-of-block (EOB) character 76-78,153-154
End-of-text (ETX) character 76-78,154
End-of-transmission (EOT) character
20,154,155
End Receive subgroup 67,62
End Send subgroup 68,62
ENDRCV macro instruction 67,62
ENDREADY macro instruction 60,58
ENDSEND macro instruction 68,62
Entry, terminal table see Terminal table
EOA macro instruction 72-73
EOB macro instruction 73-74,67
EOBLC macro instruction 74-75,67,
ERRMSG macro instruction 75-76,43,64-65
Error checking 64-67,73-75,85
Error conditions 64-67
Error correcting 73-75
Error halfword 66-67
Error-handling LPS macro instructions
6U-65
Error message, transmission of 75-76
Error recovery procedures 107-108
Examining and modifying control system
status 58,98-102
Expedite mode 49,31
Extended BCD interchange code (EBCDIC)
18,32,88-90
Fanctional LPS macro instructions 61-63
summary 126

GET macro instruction 2u4
Glossary 172-174

Group code 43-44,86
Group code entry 43-44,86

176

Half-duplex line 11
Hardware error checking 73
Hardware timer 8
Header, message 19
field skipping 87
format 19-20,62-63
incomplete 66
prefix 20
scannhing 63-64
Header analysis error byte 66

Idle characters, use cf
Incomplete header 66
INITIATE mode 78-79,70,75
Initiate function 79

Input sequence number 85-86,40
Inquiry processing application 31
Inserting characters in messages
Insufficient buffers 56,67
INTERCPT macro instruction
76-77,25,43,62, 64

INTERCPT operator control message
Interval, polling 27,38

Interval timer feature 8
Intervention required error 66,67
INTREL operator control message 105

82-83,63-64

82-83

104-105

Invalid destination ccde 66,85

Invalid operator control messages 106-107
Invalid source code 66,87

IODEVICE macro exarple 128

Leased line 11,12

Limiting message length 67,70

Limiting number of messages 83-84

Line, access 12,27

Line and station configuration 13,14

Line connection, establishing 15-16
Line control block 45
Line control error byte 66-67
Line, communication see Communication line
Line procedure specification (LPS)
60-63,17,18,32
components of 60-61
delimiter macro instructions
End Receive subgroup 61
End Send subgroup 61

61-63

error-handling macro instructions 64-65
functions 61-63
functional macro instructions 61-63

header field scanning 63-6U4
macro instruction summary 62
Receive group 18,21,60-61
Receive Header subgroup 61
Receive Segment subgroup 61
Send group 18,60
Send Header subgroup 61
Send Segment subgrcup 61
LOGSEG macro instruction 77-78
Logging messages 77,30
Longitudinal redundancy check (LRC) 73
LPSTART macro instruction 68-69,62,9

Machine and device requirements, QTAM 8

Machine data set 11

Macro instructions
coding format 9-10
control information
summaries 122-126

42-60

LPS (see Line procedure specification)
Main storage - destination queue see Queue

Main storage - process gueue see Queue
Management of switched lines 25-26
Message
canceling 70-71
code translation
control 14-16
counting 71
editing 18

88-90

flow 21-24
format 19-20,62
header 19-20,62

intercepting 76-77,104-105
limiting length of 67,70
limiting number of 83-84
logging 77-78,30,33
priority 78,79
processing 16
response 31
rerouting 84-85
routing 30-31,32,85
segment 21-22
sequence number
switching 30
text 19
translation
type 20
work unit 20,24
Message control program
composition 32
functions 17,32
Message log data set 33-34
Message processing applications
Message processing program 17,7
return codes 157 \
Message switching application 30
Message type 19,61,80
Minimum buffer length 56
Mode, conversational 31,79
MODE macro instruction 78-80,92-93
Modifying system status 58,98-102
MSGTYPE macro instruction 80,61
Multiplexer channel 8,9

85-87,43

88-90

32,7,17

30-31

Negative response 15,25,26,74
Network 11-16
configuration 11-16
nonswitched 12,13

switched 12,14,27-28,25

Offset field in terminal table 116,118
On-line terminal testing 19,166-170
test request message 166
tests available 168
OPCTL macro instruction 80-82
OPEN macro instruction 58-60
Open suproutine, use of 93,96

Operating environment 18
Operating system considerations 9
Operator Awareness Messages 108
Operator control facility 19
OPTION macro instruction
Optional area terminal table subfields
45,46,42,43,47
Outgoing message, sample format 21
Output sequence number 86,43

45-46,42,43,51

PAUSE macro instructicn 82-83,56
POLL macro instruction 52-54
POLLIMIT macro instruction 83-84,43,51
Polling 51-52,15,26,27,59
address 15,53
characters 15,44,48,50,52
interval 27,38
limit 51
Polling list 37,52
defining 52-54
examining and modifying
example 53
formats 120
Positive response 15,25,73-74
POSTRCV macro instruction 69,62
POSTSEND macro instruction 69,62
Prefix (header and text) 24
Priming a message queue 105
Priority
message 78
receiving and sending 27-28,39,78
system 18
Private line 12
Processing collected data 31
Processing inquiries 31
Processing program 7,17
PROCESS macro instruction
Process program entry 44
Process queue
DASD see Queue
main storage see Queue
PUT macro instruction 24

100-101

49-51, 42, 51

OTAM
capabilities 7,8,17
facilities 17,18-19

general concepts 11-29
machine and device requirements 8
message control 14-16
operating environment 18
sample programs 159,162
terminal types supported by 8
Queue

control block 101-102

DASD destination 23-24,158

DASD process 23-24,158

dead~letter 85,158

MS destination 24

MS process 24
Queue control block 101-102
Queuing

by line 47

by terminal 46-47
RCVEITA2 macro instruction 91
RCVEZSC3 macro instruction 91
RCVHDR macro instruction 69,62
RCVSEG macro instruction 69,62
Receive group of LPS 18,21-24,62
Receive Header subgroup of LPS 62
Receive Segment subgroup of LPS 62
Register assignments 94,129
Register usage 129
Relative line number 36-37,47,50
Releasing intercepted messages 105
RELEASEM operator control message 105
REROUTE macro instruction 8u4-85,64
Response message 31

Index

177

Restarting 110

Return codes summary 157
ROUTE macro instruction 85
Routing messages 32,85

Sample programs, QTAM 159,162
-Scan pointer 63-64
Scan routine, QTAM 93,63-64
Segment, message 21-24
Selectric typing element 167
Send group of LPS 18,60-61
SENDHDR macro instruction 69-70,62
SENDITA2 macro instruction 91-92
Send Header subgroup of LPS 62
SENDSEG macro instruction 70
Send Segment subgroup of LPS 62
SENDZSC3 macro instruction 91-92
SEQIN macro instruction 85-86
SEQOUT macro instruction 86-87
Sequence checking 85-86
Sequence number error 85-86
Should not occur error 66
Single-terminal entry 43
SKIP macro instruction 87
Skipping of header fields 87
Source code 87

invalid 87
SOURCE macro instruction 87
STARTLN macro instruction 98-99,58,098
STARTLN operator control message 106
Station 11
STOPLN operator control message 105-106
Suppressing message transmission 76-77
SWITCH operator control message 106
Switched lines

management of 25-26

terminal table format 116
Switched network 12,14,27-28
System generation 29
System modification 31

Telecommunications control unit (TCU) 11
Telecommunications system concepts 11-16
TERM macro instruction 46-~49,43,50
Terminal 11

178

addressing 15
character sets 135
component 11,43
polling 51-54,15,27,59
types supported by QTAM 7-8
Terminal table
defining 42-49
device-access field U3
distribution-list entry 44,49
entry formats 113-117
examining and modifying 99-100,101-102
example 50-51,118
group code entry 43-44
optional area subfield u45-46,43,50
process program entry 44,49
single terminal entry 43
Terminal test rules 169-170
Terminal types supported by QTAM 8
TERMTBL macro instruction 44-45,50-51
Text 19
Text prefix 21
Threshold values 40,107,108
number of data checks 40,107,108
number of intervention requireds
40,107,108
number of time-outs 40,107,108
number of transmissions 40,107,108
Time out error 67
TIMESTMP macro instruction 88,61,78
Translating transmission code 88-90
Translation tables 89
TRANS macro instruction 88-90,61
Transmission code 32,135
translation 88-90
Transmission error 66
TWX-terminal I.D. sequence 48

User-Written Subroutines within LPS 92-97
Vertical redundancy check (VRC) 66

Work area, message processing 24

Work unit, message 20,24

WITA polling list 119
WTTA terminals 8

C30-2005-2

NIV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only}

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

ADW WVYILA SO N9s/S AT

‘w*Q’N ur pajutig

2-CNN7-NECTY

READER’S COMMENT FORM

IBM System/360 Operating System
Queued Telecommunications Access Method
Message Control Program

e How did you use this publication?
As a reference source (]}
As a classroom text d
As a self-study text a

® Based on your own experience, rate this publication., . .

As a reference source: Very Good Fair Poor
Good

As a text: : Very Good Fair Poor
Good

e What is your occupation?

® We would appreciate your other comments; please give specific page and line
references where appropriate. If you wish a reply, be sure to include your name

and address.

e Thank you for your cooperation, No postage necessary if mailed in the U, S, A.

Very
Poor

Very
Poor

C30-2005-2

C30-2005-2

YOUR: COMMENTS, PLEASE . . .

This publication is one of a series that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the
back of this form, together with your comments, help us produce better publications
for your use. Each reply is carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using your IBM

system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold

Fold

D D WD W WD A A T BT SN W € 3 WD I WD LI W (LW W RS R WY LI L YIS D W G GIR PR G DGR GRS RS ML WU GIID U T D G TR G M VD G G RN B G e S G S —— v— =

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

POSTAGE WILL BE PAID BY . ..

IBM Corporation
P.0O. Box 12275
Research Triangle Park
North Carolina 27709

Attention: Programming Documentation, Dept. 844

FIRST CLASS

PERMIT NO. 569
RESEARCH TRIANGLE PARK
NORTH CAROLINA

P OIS A G D G s G LN N G TR GEE. A WED EN R T RS S0 O WP $D D @A) GE IS G WIS @A (R U G G GAS GV TAD GND GEE M SR D RN A G TP GRS G THNS S S e G Y Gae G S = -

Fold

BV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

ISJUBWIWOY) [BUOIPPY

Cut Along Lline

ADW WV.IA SO nos/< WAT

*V*Q°MN Ul PIAULLY

7-G0N7-N¢eN

