
Systems Reference Library 

IBM Operating System/360 

PL/I: Language Specifications 

This manual is a description of the full 
facilities of PL/I to be implemented under 
Operating System/360. However, the reader 
should not assume that all facilities will 
be available at initial release. Manuals 
for specific System/360 implementations 
will be released later. 

Another publication will be issued spec­
ifying a subset of the facilities of the 
language described in this manual. This 
subset is planned for implementation under 
the Basic Operating System/360 and Basic 
Program Support for System/360. 

File No. S360-29 
Form C28-6571-1 



MAJOR REVISION (JULY, 1965) 

This publication, Form C28-6571-1, is a major reV1S10n of the previous 
edition, Form C28-6571-0. This new edition reflects a number of significant 
changes in the language. The sections containing these changes are indicated by 
a dot (e) to the left of the subject heading in the Table of Contents. 

In addition to the technical changes, certain organizational changes have 
been made. Additional chapters (Chapters 5 and 6) have been formed from 
material previously contained in Chapter 1. The information on attributes, 
declarations, and scope of declarations, also previously contained in Chapter 1, 
has been incorporated into Chapter 4. 

This publication was prepared for production using an IBM computer to update 
the text and to control the page and line format. Page impressions for photo­
offset printing were obtained from an IBM 1403 Printer using a special print 
chain. 

Copies of this and other IBM publications can be obtained through IBM Branch 
Offices. 

A form for readers' comments appears at the back of this publication. It may 
be mailed directly to IBM. Address any additional comments concerning this 
publication to the IBM Corporation, Programming Systems publications, Department 
D39, 1271 Avenue of the Americas, New York, N. Y., 10020. 

C 1965 by International Business Machines Corporation 



INTRODUCTION 

Goals of the Latnguage. 

Basic Characteristics of PL/I. 
New 1i'eatures. • • • • • • • • 

Block structure. • 
DE~scription of Data. 
S·t:orage Allocation • 
Delta Conversion. • 
Delta Organization. • 
Input/Output • • • • 
Multi-Task Operations. 
Compile-Time Facilities. • 

9 

9 

10 
• • • • 10 

10 
10 
10 
10 
10 
11 
11 
11 

Syntax Notation in This Manual ••••• 11 

-CHAPTER 1. PROGRAM ELEMENTS • • • • • 14 

Basic Language Structure • 
Language Character Sets 

60-Character Set • • 
4H-Character Set • 

Delimiters. • • 
Operators. • • • • • • 
Arithmetic Operators • 

• • • • 14 
• • • • 14 
• • • • 14 

15 
15 

• • • • 15 
15 
15 Comparison Operators 

Bit-String Operators 
String Operator. • • 
Parentheses. • • • • 
Separators and Other 

• • • • • 15 
• 15 

15 
Delimiters •• 15 

Data Character Set. 
Collating Sequence. • • 
Identifiers • • • • • • • 

Length of Identif'iers. • 

• • • • 16 
• • • • 16 

16 
16 

• • • • 16 -Keywords. • • • • • • • • 
Statement Identifiers. • • • • 16 
Attributes • • • • • • • • • • • • 17 
Se para tinq Keywords. • • • 17 
Built-in Function Names. • 17 
Options. .. • • • • • • 17 
Conditions • • • ~ • • • • • • • • 17 

-The Use Of Blanks • .. • • • • 17 
Comments. • .. • • • 

-Basic Pr~Dgram Structure.. • 
Simpl1e Statements • 
Compound Sta 1:ements .. • • • • 

-Pref i:lCes • • .. •. • • .. • • • • 
-Label Prefixes • • • • • • 
-Co]!1di tion Prefixes • 

Group:s. . • .. • • • • • 
Blocks. • • • • • • • • • • • 
Use of the END Statement. 
Programs. • ., • • • • 

-CHAPTER 2: DATA ELEMENTS • 

17 

17 
• • • • 18 

18 
18 
18 

• • • • 18 
19 

• • • • 19 
• 21 
• 21 

• 22 

- Da ta Typ~~s • • • • 
Arithmetic Datta • • 

• • • • • 22 
• • • 22 

Base • 
Scale. 
Mode • 
Precision. 

-String Data • • • • • 
Character-String Data. • 
Bit-String Data. • • • • 

Statement-Label Data. 

CONTENTS 

• 22 
• 22 
• 22 
• 22 
• 22 
• 22 
• 23 
• 23 

Scalar Quantities. • • • • • • • • • 23 
Constants • • • • • • • • 23 

Real Arithmetic Constants. • • 23 
Decimal Fixed-Point Constants. • • 23 
Binary Fixed-Point Constants • • • 23 
Sterling Fixed-Point Constants • • 23 
Decimal Floating-Point Constants • 23 
Binary Floating-Point Constants •• 23 

-Precision of Real Arithmetic 
Constants • • • • • • • • • • • 

Imaginary Arithmetic Constants • 
-String Constants • • • • • • 
Character-String Constants • 
Bit-String Constants • • • • 
Statement-Label Constants. • 

Variables • • • • • • 

Data Aggregates. • • • • • 
Arrays. • • • 

-Structures. • 
Arrays of Structures. • • 

Naming • • • • • • • • 
Simple Names. • • • 
Subscripted Names • • • • • 

Cross Sections of Arrays 
Qualified Names • 
Subscripted Qualified Names • • 

• 24 
• 24 
• 24 
• 24 
• 24 
• 24 
• 25 

• 25 
• 25 
• 25 
• 26 

• 26 
• 26 
• 26 
• 27 
• 27 
• 28 

• 28 Statement Labels • 
Constant. 
Variable. • • 
Array • • •• 

• • • 28 

Initial Values 

-Task Names • • • 

-Event Names. 

• 28 
• 29 

for Label Arrays. • 29 

• 29 

• 30 

-CHAPTER 3: DATA MANIPULATION • • 31 

-Express ions. • • • • • • • • • • 31 
-Scalar Expressions. • • • • • 31 

Arithmetic Operations. • 31 
-Mixed Characteristics. • 31 
-Results of Arithmetic Operation •• 31 
-Arithmetic Conversions • • 32 
Bit-String Operations. • • 33 
Comparison Operations. • • 34 
Concatenation Operations • • • 34 

-Type Conversion. • • • • • 34 



-Bit String to Character String • 
_Character String to Bit String. 
-Character String to Arithmetic. 
-Bit String to Arithmetic •••• 
Arithmetic to Character String • 

-Arithmetic to Bit String • • 
-Array Expressions • • • • • • • 

• 34 
• 34 
• 34 
• 35 
• 35 
• 35 
• 35 
• 35 

• • 35 
Prefix Operators and Arrays. 
Infix Operators and Arrays • • 
Scalar - Array Operations •• 
Array - Array Operations • • • • 
Array Expressions Involving 
Structures •••• 

-Structure Expressions • • 

• 35 
• 36 

36 
• 36 

Standard Attributes. • • 
-The Storage Equivalence 

Attribute • • • • • • • 
-The Function Attributes. 
-File Organization Attributes 
-Access Attributes •••• 
-The KEYLENGTH Attribute. • • 

The ZERO Attribute • • • • • 
The ENVIRONMENT Attribute. • 

-Assignment Of Attributes To 
Identifiers. • • • • • • • 
-Application of Default 

Attributes. • • 

58 

• 59 
• 59 
• 59 
• 59 
• 61 
• 61 
• 62 

• 62 

• 62 

-structure Declarations and Attributes. • 63 
.EVALUATION OF EXPRESSIONS. • 

-Order of the Evaluation of 
Expressions •••••• 

• 37 Level Number. • • • • • • • • • • 63 
-structures and the Dimension 

• 37 Attribute. • • • • • • • • • • • 64 
-Structures and Data Attributes. • 64 

-CHAPTER 4: DATA DESCRIPTION • 38 structures and Scope Attributes • 64 
Structures and Storage Class 

"Attributes • • 38 Attributes • • • • • • • • • • • 64 

.Declarations • 
-Explicit Declarations • 

-The DECLARE Statement. 
-Factoring of Attributes •• 
-Multiple Declarations and 

Ambiguous References. 
-Contextual Declarations • 
Implicit Declarations • • • • • • • 
Scope of Declarations • • • • 

Scope of External Names •• 
Basic Rule on Use of Names • 

• 38 
• 38 
• 38 
• 39 

• 39 
• 40 
• 41 
• 41 
• 41 
• 43 

The Attributes • • • • • • • • • • • • • 43 
Data Attributes • • • 43 

Arithmetic Data. • • • • • • • • • 43 
Base • • • • • • • • • • • • 43 
Scale. • • • • • • • • 
Mode ••• 

• • • • 44 

Precision. • • • • • • 
-Default Conditions for 

Arithmetic Data • 
-The PICTURE Attribute. 
String Attributes •• 

-The LABEL Attribute. 

• 44 
• 44 

• 45 
• 45 
• 47 
• 47 
• 48 _The TASK Attribute • 

-The EVENT Attribute. • • 48 
The dimension Attribute • 
The SECONDARY Attribute • 

-The ABNORMAL and NORMAL Attributes. 
-The USES and SETS Attributes. 
-Entry Name Attributes • • 

-The ENTRY Attribute ••••••• 
-The GENERIC Attribute. • • 

The BUILTIN Attribute. • • • • • 
Scope Attributes •••••••••• 

-Storage Class Attributes •••••• 
-The ALIGNED and PACKED Attributes • 
-The DEFINED Attribute • • 
-The INITIAL Attribute • 

• 48 
• 49 
• 49 
• 50 
• 50 
• 51 
• 51 
• 52 
• 52 
• 53 
• 53 
• 54 
• 56 

-Symbol Table Attributes • • • • • 57 
The LIKE Attribute. • • • 58 

-File Description Attributes • • 58 
The FILE Attribute • • • • • 58 

-CHAPTER 5: PROCEDURES, FUNCTIONS, 
AND SUBROUTINES • • • 

Formal Parameters. 

-Procedure References • 

-Function References and FUnction 
Procedures. • • • • • 
-Generic Functions ••••• 
Built-in Functions. 

Subroutine References and Subroutine 

• 65 

• 65 

• 65 

• 66 
• 66 
• 66 

Procedures. • • • • • • • • • • • • • • 67 

-The Arguments in a Procedure Reference. 68 
-The Use of the ENTRY Attribute. • 69 
_passing Arguments to the Entry 

Point. • • • • • • • • • • • • • 69 

The Special Procedure Attribute 
RECURSIVE • • .. • • u • • • • • • • • • 70 

- CHAPTER 6: DYNAMIC PROGRAM 
STRUCTURE • • 71 

Program Control. • 71 

Activation and Termination of Blocks •• 71 
Dynamic Descendance • • • 71 
Dynamic Encompassing. • • •••• 72 

Allocation of Data and Storage 
Definitions and Rules 

-Storage Classes •••••• 

Classes • 72 
• 72 
• 72 

The Static Storage Class • 72 
_ The Automatic S·torage Class. • 72 

The Controlled Storage Class • 73 

-Asynchronous Operations And Tasks. • • • 74 
-Synchronous and Asynchronous 

Operations • • • • • • • • • • • 74 



eSynchronizing Two Asynchronous 
Operations • • • • • • •• • • 

eTask and EVEmts • • • 
eThe Creation of Tasks • 
eTermination of Tasks. • • • • 
eAllocation of Data in Tasks • 

• 74 
• 74 
• 75 
• 75 
• 75 

• Interrupt Operations • • • • • • • 75 
ePurpose of the Condition Prefix • 76 
e SCOPE~ of the Condition Prefix • • • • 76 
eUse of the ON Statement • • • • • 76 
e SystE~m Interrupt Action • • • • 77 

Use of the REVERT Statement • • 78 
Progranuner-Defined ON-Conditions ••• 79 
Facilities for Program Checkout • 79 

-CHAPTER 7: INPUT/OUTPUT. 

• Data Tramsmi ssion. • • • • • • • 
List-'Directed Transmission. • 
Data-Directed Transmission. • 
FormaLt-Directed Transmission. 

eProcedure-Directed Transmission • • 

Data Specifications. • • • • • • 
Data Lists. • • • • • • • • • 

Re!petitive Specification • 
Tz'ansmission of Data-List 

E:lements ••••••••• 
e List-'Directed Data Specification. • 

eList-Directed Input ••••• 
eList-Directed Input Format ~ •• 
eList-Directed Output •••••• 
eList-Directed Output Format. • • 
e Le~ngth of List-Directed Output 

• 80 

• 80 
• 80 
• 80 
• 80 
• 81 

• 82 
• 82 
• 82 

• 83 
• 83 
• 83 
• 83 
• 84 
• 84 

Fields. • • • • • • • • • • • • • 84 
eData-Directed Data Specification. • • 85 

eData-Directed Data On External 
Mledi um. • • • • • • • • • • • • • 86 

Data-Directed Output Format. • 87 
eLength of Data-Directed Data 

Fields. • • • • • • • • • • • • • 87 
eFormat-Direc'ted Data Specification. • 88 
eFormat Lists. • • • • • • 88 

Data Format Items. • 89 
e External,. Mode Format Items • • 89 
eInternal Mode Format Items. • 91 

Control Format Items • 92 
Spacing Format Item. • • • • • 92 
positioni:ng Format Items • • 92 
Remote Fo:rmat Item • • 93 

eProcedure-Directed Data 
Specification. • • • • • • 93 

eInput/Output Statements ••••• 
eFile Preparation Statements • 
eData Specification Statement. 
eData Transmission Statements. 
ePositioning statements •••• 
eReport Generation Statements. 

eRecord Identification Options. 
The Key Option. • • • • • 

• 93 
• • 93 

• 93 
• 93 
• 93 
• 93 

• 94 
• 94 

The Newkey Option • ~ • • • • • 94 
The Region Option • • 94 

e CHAPTER 8: STATEMENTS • • 

Relationship Of Statements 
Classification. • • • • 

Assignment Statement 
Control Statements • 

e Data Declaration Statement • 
Error Control and Debug 

Statements ••••••••• 
Input/Output Statements. • • 
Program Structure Statements • • 
Sorting Statement. • • • • • 
Storage Allocation Statements. • 

eSequence of Control • • • 

ePseudo-Variables • • • • • 
eAlphabetic List of Statements • 

eThe 
eThe 

The 
eThe 
e The 

The 
The 
The 

e The 
eThe 
eThe 

The 
eThe 
eThe 
eThe 

The 
eThe 
eThe 
eThe 

The 
eThe 

The 
eThe 
eThe 
eThe 
eThe 
eThe 
eThe 
eThe 
eThe 
eThe 
eThe 
The 

'eThe 
eThe 
eThe 
eThe 
eThe 
eThe 
eThe 
eThe 
eThe 
eThe 

ALLOCATE Statement • 
Assignment Statement 

BEGIN Statement. • 
CALL Statement. • 

CLOSE Statement. • • 
DECLARE Statement. 
DELAY Statement. • 
DELETE Statement. 
DISPLAY Statement. 

DO Statement •• 
END Statement. • • • 
ENTRY Statement. • • 

EXIT Statement 
FETCH Statement. • 

FORMAT Statement 
FREE Statement. • 

GET Statement. • • • 
GO TO Statement. 

GROUP Statement. 
IF Statement • • 
LAYOUT Statement • • 
Null Statement • 
ON Statement • • • 
OPEN Statement • 
PAGE Statement • 
POSITION Statement • 
PROCEDURE Statement. 
PUT Statement. • • • 
READ Statement • • • 
REPOSITION Statement 
RESTORE Statement. • 
RETURN Statement 
REVERT Statement • • 
SAVE Statement • • • 

SEGMENT Statement. 
SIGNAL Statement 
SKIP Statement • • • 
SORT Statement • 
SPACE Statement. 
STOP Statement • 

TAB Statement. 
WAIT Statement • 
WRITE Statement. 

• 95 

• 95 
• 95 
• 95 
• 95 
• 95 

• 95 
• 95 
• 95 

95 
• 95 
• 95 

• 96 
• 97 
• 97 
• 98 
.102 
.102 
.103 
.104 
.104 
.104 
.105 
.105 
.107 
.107 
.108 
.108 
.108 
.108 
.109 
.109 
• 110 
• 111 
• 111 
• 112 
.112 
.114 
.116 
• 117 
• 118 
• 119 
• 119 
.121 
.121 
.122 
.122 
.123 
.124 
.125 
.125 
.126 
.127 
.127 
.127 
.128 
.128 

eCHAPTER 9: PROGRAM MODIFICATION ••• 131 

Macro Variables. • • • • • • • 
eThe Macro DECLARE Statement 

.131 
• 131 



Macro Expressions. • • • • • • • • .132 e:auilt-In Functions for Manipulation of 

-Executable Macro statements. • • • • • 
The Macro Assignment Statement. 
The Macro Null Statement. • • 
The Macro GO TO Statement • • 
The Macro IF Statement. • • • • • • 

-Action of the Macro Processor •• 

.132 

.132 

.132 

.132 

.133 

.133 

.. CHAPTER 10: SPECIAL TOPICS •••••• 134 

8Relationship of Arguments and 
Parameters ••••••••••••••• 134 

Evaluation of Argument Subscripts •• 134 
eUse of Dummy Arguments •••••••• 134 
eUse of the Entry Attribute •••••• 134 

Correspondence Of Parameters And 
Arguments •••••••••••••• 135 

Allocation of Parameters ••••••• 136 
Parameters, Bounds and Length ••• 136 
Asterisk Notation for Bounds or 

Length •••••••••••••• 136 
Expressions as Bounds or Length •• 136 

• Prologues ••••••• 

eData Allocation Across Tasks 
eAllocation of Task and Event 

Names 

• Abnormali ty. • 

eprograms 

eAPPENDIX 1: BUILT-IN FUNCTIONS 

eArithmetic Generic Functions • • 

eFloat Arithmetic Generic Functions 

estring Generic Functions 

• 137 

• 137 

• 138 

• 138 

.138 

.140 

.140 

• 142 

.143 

Arrays ••••••••••••••••• 144 

eArray And Structure Built-In Functions .145 

eCondition Built-In Functions • •• 145 

eOther Built-In Functions ••• .145 

APPENDIX 2: PICTURE SPECIFICATION 
TABLES. • • • • • • • • • • • • • • • • 147 

Digit Point and Subfield Delimiting 
Characters. • • • • • • 

Zero Suppression Characters •• 

Drifting Editing Symbols ••• 
Drifting Characters • • • • 
Editing Character ••••• 
Conditional Editing Characters. 
Sign Characters • • • • • • • • 
Scaling Factor Specification. • 

eSterling Pictures ••••••••• 
ePictures for Character Strings • 

eAPPENDIX 3: ON-CONDITIONS ••• 

eClassification of Conditions • 
eComputational Conditions •• 
eInput/Output Conditions •• 
eProgram Checkout Conditions •• 
eProgrammer-Named Conditions 
eSystem Action Conditions •• 

APPENDIX 4: PERMISSIBLE KEYWORD 
ABBREVIATIONS • • • ~ • • • 

APPENDIX 5: THE 48-CHARACTER SET • 

INDEX. • 

• 147 

.147 

.147 

.148 

.148 

.148 

.149 

.149 

• 149 
.149 

.150 

.150 

.150 
• 151 
.152 
.153 
.153 

.154 

.155 

.156 



ILLUSTRATIONS 

Table 1. Ari"thmetic Base and Scale Figure 3. General Format for the 
Conversion. · · · · · · · · · · · · 33 CLOSE Statement · · · · · · · · · · · .104 

Table 2. Scope and Use of Names in Figure 4. General Format for the DO 
Example 1, for "Scope of External Statement . . . · · · · · · · · · · · .105 
Names". . . · · · · · · · · · · · · 42 Figure 5. General Format for the 

Table 3. Allowable statements for OPEN Statement. · · · · · · · · · • 114 
CONSECUTIVE, REGIONAL, and INDEXED Figure 6. Format of noption ll 

organizations of a SEQUENTIAL access Allowed in the OPEN Statement · · • 114 
file. . . . · · · · · .. · · · · · . . · 59 Figure 7. General Format for the 

Table 4. Allowable Statements for the PAGE Statement. · · · · · · · · · · · .116 
REGIONAL and INDEXED Organizations of Figure 8. General Format for the 
a DIRECT Access File. · · · · · · 61 READ Statement. · · · · · · · · · · · • 119 

Figure 1 • General Format for Figure 9. General Format for the 
Repetitive Specification. · · · · 82 SORT Statement. · · · · · · .126 

Figure 2. Example of Data-Directed Figure 10. General Format for the 
Transmission, Both Input and Output . · 88 WRITE Statement · · · · · · .129 





GOALS OF' THE LANGUAGE 

Throughout the relatively brief history 
of elect,ronic data processing, certain com­
puters have been identified with a particu­
lar field of activity, either commercial or 
scientific. 

Programmers generally have specialized 
in one field or the other. High-level 
languages, of course, have emphasized this 
divergence, going in one direction for 
commercial programming and in another 
direction for scientific programming. 

Until recently, this difference present­
ed few problems. Each language was ade­
quat,e for its use; the commercial program­
mer dealt with relatively few computations 
performed upon great amounts of data; the 
scientific programmer performed complex 
calculations using sroall amounts of data. 

Now, however, the situation is changing. 
Business and industry have discovered new 
uses for the computer, and the commercial 
programmer finds himself concerned with 
more involved computations in statistical 
forecasting and in linear programming for 
operations research. 

In science and engineering, the program­
mer needs a language to simplify the pre­
paration of reports, to sort and edit 
technical data; he finds more need for 
input and output operations. The engineer 
specifically wants the ability to handle 
data at the bit level for applications such 
as circuit analysis. 

Today's new computing systems have been 
designed to COpE~ with all of these comput­
ing prolblems. They handle commercial and 
scientific programs with equal ea~e, with 
new powter and new speed; they provide 
facilities for such new techniques as 
shared data processing, asynchronous pro­
gram execution, and real-time processing. 

None of the traditional high-level lan­
guages, however, can be used with efficien­
cy across the entire range of ability of 
these ne,,1.1 compu·t::ers. 

That is the reason for PL/I, a multipur­
pose programming language for use not only 
by commeJrcial and scientific programmers 
but by the real-time programmer and the 
systems programmer as well. It is a lan­
guage dE:signed for efficiency, a language 
that enables thE! programmer to use virtual­
ly all the power of his computer. 

INTRODUCTION 

PL/I is organized so that any program­
mer, no matter how extensive his experi­
ence, can use it easily at his own level. 

This manual, because it is a reference 
manual of the entire language, shows the 
range and power of PL/I, its ability to 
handle the most cOlliplex computing problems. 

Actually, however, PL/I need be no more 
complex than the program for which it is 
used. 

One of the primary aims in the deSign of 
the language was modularity, that is, pro­
viding different subsets of the language 
for different applications and different 
levels of complexity. A programmer using 
one subset need not even know about the 
unused facilities. 

Although PL/I is relatively machine 
independent, this modularity might be com­
pared to a completely equipped data proc­
eSSing center. A novice programmer would 
use only a small part of the system; he can 
ignore the rest of the equipment. More 
complex programs, of course, would require 
more equipment. Some programs would use 
certain modules of equipment; other pro­
grams, other modules. Rarely, if ever, 
would a program require use of all the 
facilities. 

In PL/I, every attribute -- or descrip­
tion -- of a variable, every option, and 
every specification has been given a 
Rdefault" interpretation. Wherever the 
language provides for one or more alterna­
tives, a "default" interpretation or 
assumption -- is made by the compiler if no 
choice is stated by the programmer. And in 
each case, the assumption that was chosen 
in the design of the language is the one 
most likely to be required by the program­
mer who need not know that alternatives 
exist. 

The "modularity" and the "default" 
aspects are the bases upon which the sim­
plicity of PL/I has been built. 'I'hey are 
also part of its power. 

Introduction 9 



BASIC CHARACTERISTICS OF PL/I 

The overall aim in the design of the 
language was to give the programmer freedom 
in handling his computing system. 

Freedom of expression: If a particular 
combination of symbols has a useful mean­
ing, that meaning is allowed. Although 
actual statements in the language must be 
written using a specified character set, 
data may be composed of any character 
allowed by the configuration of the indivi­
dual computer. PL/I is written in a free­
field format; the programmer is free to 
design his own format for listings. 

Full access to machine and operating system 
facilities: the PL/I programmer rarely, if 
ever, will need to resort to assembly 
language cOding. 

NEW FEATURES 

Part of the language is, of course, 
based on earlier programming languages. 
Certain aspects are expansions of ideas 
used previously. Other portions are 
exclusively a part of PL/I. The following 
paragraphs briefly introduce some of these 
new features. Allor them are discussed 
more fully within the text. 

Block Structure 

The statements of a PL/I program are 
organized into program sections called 
"blocks. R A program may be made up of one 
block or many blocks. Blocks may be separ­
ate from one another, with no common s"tate­
ments, or they may be nested, one within 
another. 

Blocks provide two important logical 
functions: (1) they define the scope of 
applicability of data variables and other 
kinds of names, so that the same name may 
be used for different purposes in different 
blocks without ambiguity, and (2) they 
allow storage for data variables to be 
assigned only during execution of the block 
and freed for other uses at the termination 
of the block. 

Certain blocks, called "procedure" 
b.locks, may be invoked (i.e., called into 
execution) remotely Trom different places' 
in the program, and they provide means to 
handle arguments and to return values. 

10 

Description of Data 

In the language, data is described as 
having certain characteristics called 
attributes. For example, numeric data 
would have a BINARY attribute or a DECIMAL 
attribute; string data would be either 
CHARACTER string or BIT string. 

Storage Allocation 

The computer storage for any data Varia­
ble in a PL/I program may be aSSigned 
statically, for the entire execution of the 
program, or dynamically, during execution. 

Two classes of dynamic storage are avai­
lable to the PL/I programmer, automatic and 
controlled. When a variable has the con­
trolled storage attribute, the programmer 
may allocate or free storage for that 
variable at any time he wishes. Storage 
for a variable having the automatic storage 
attribute is allocated upon entry to the 
block and freed upon exit. 

Data Conversion 

In keeping with the freedom of PL/I, 
mixed expressions are allowed. In the 
following example, F is declared to be a 
fixed-point number, G a floating-point num­
ber, and H a character string that is ten 
characters in length. 

DECLARE F FIXED, G FLOAT, H CHARACTER 
(10) 

H = F + G; 

In the evaluation of the second state­
ment of the above example, F will be 
converted to a floating-point value, 
floating-point addition will be performed, 
and the result will be converted to a 
character string of ten characters and 
assigned as a value to H. 

Data Organization 

Data variables can be grouped into eith­
er arrays or structures. An array is 
composed of elements of the same charac­
teristics. A structure is a collection of 
variables and arrays, not necessarily alike 
in characteristics. Structures may also 
contain other structures. Individual items 
of an array are referred to by subscripted 
names; individual items of a structure are 
referred to by names that may sometimes 



have to be qualified to avoid ambiguity. 

InPL/I, arrays and structures are 
treated as variables in their own right .. 
Ei ther I::>f them may be used as the operand 
of an expression. The expression is then 
an array expre,ssion or a structure expres­
sion, ,and it returns an array or structure 
result. 

Input/Output 

The modulari.ty of PL/I is particularly 
apparent. in t.he input/output facilities. 
With PL/I, a programmer may control 
input/output activity to whatever degree he 
r~quires • He may handle norma'l transmis­
s~on and conversion simply, or he may use 
the full capability of the language for 
control of more complex problems of input 
and output. 

Multi-Task Operations 

In PIJI, a collection of procedures is 
called a ~~; the execution of a pro­
gram (o~' many programs or a part of a 
program) to perform a particular job is 
called a task. 

PL/I provides facilities for handling 
two or more tasks concurrently. This 
facility, of course, is extremely important 
in the use of any computer system with 
multiprocessing capabilities. It also is 
valuable for a single processor system with 
facilities for real-time operations. 

During execution of a procedure, the 
executing task might specify that a subor­
dinate task begin execution upon certain 
data (i.e., the executing task invokes 
another task); the new task, called an 
attached task, might also invoke another 
task. All tasks then proceed concurrently 
and, in ,effect, simultaneously. 

The m'1lIti-taf3k facilities of PL/I allow 
a SUbordinate task to communicate with its 
originating, or attaching, task through 
arguments, and through data allocated in 
the attaching task. The originating task 
also may, at any time, test to see if a 
subordinate task is completed and may, if 
necessar:~ , delay its own execution to wait 
for the completion. 

Compile-Time Facilities 

Most programming languages are written 
on one level only, as statements to the 
computer to perform certain operations 
using the supplied data. PL/I not only 
directs the computer to operate upon the 
data, but with a macro facility, it directs 
the compiler to operate upon the program 
itself. 

The programmer can include in his pro­
gram information that will aid the compiler 
to produce more efficient code, documenta­
tion, and diagnostics. 

SYNTAX NOTATION IN THIS MANUAL 

Throughout this manual, wherever a PL/I 
statement -- or some other combination of 
elements is discussed, the manner of 
writing that statement or phrase is illus­
trated with a uniform system of notation. 

This notation is not a part of PL/I; it 
is a standardized notation that may be used 
to describe the syntax -- or construction 

of any programming language. It pro­
vides a brief but precise explanation of 
the general patterns that the language 
permits. It does not describe the meaning 
of the language elements, merely their 
structure; that is, it indicates the order 
in which the elements may (or must) appear, 
punctuation that is required, and options 
that are allowed. 

The following rules explain the use of 
this notation for any programming language; 
only the examples apply specifically to 
PL/I: 

1. A notation variable is the name of a 
general class of elements in the pro­
gramming language. A notation varia­
ble must consist of: 
a. Lower-case letters, decimal 

digits, and hyphens and must begin 
with a letter. 

b. A combination of lower-case and 
upper-case letters. There must be 
one portion in all lower-case let­
ters and one portion in all upper­
case letters, and the two portions 
must be separated by a hyphen. 

All such variables used are 
defined in the manual either formally, 
using this notation, or are defined in 
prose. 

Examples: 

a. digit. This denotes the occur-

Introduction 11 



rence of a digit, which may be 0 
through 9 inclusive. 

b. file-name. This denotes the 
occurrence of the notation varia­
ble named file-name. An explana­
tion of file-name is given else­
where in the manual. 

c. DO-statement. This denotes the 
occurrence of a DO statement. The 
upper-case letters are used for 
emphasis. 

2. A notation constant denotes the liter­
al occurrence of the characters rep­
resented. A notation constant con­
sists either of all capital letters or 
of a special character. 

Example: 

DECLARE identifier FIXED; 

This denotes the literal occurrence 
of the word DECLARE followed by the 
variable "identifier," which is 
defined elsewhere, followed by the 
literal occurrence of the word 
FIXED followed by the literal 
occurrence of the semicolon (;). 

3. The term "syntactical unit," which is 
us'ed in subsequent rules, is defined 
as one of the following: 
a. a single variable or constant, or 
b. any collection of variables, con­

stants, syntax-language symbols, 
and reserved words surrounded by 
braces or brackets. 

4. Braces {} are used to denote group­
ing. 

Example: 

identifier {FIXED} 
FLOAT' 

The vertical stacking of syntacti­
cal units indicates that a choice 
is to be made. The above example 
indicates that the variable 
"identifier" must be followed by 
the literal occurrence OI either 
the word FIXED or the word FLOAT. 

S. The vertical stroke I indicates that a 
choice is to be made. 

Example: 

identifier {FIXEDIFLOAT} 

This has exactly the same meaning 
as the above example. Both me1:hods 
are used in this manual to display 
alternatives. 

6. Square brackets [] denote options. 
Anything enclosed in brackets may 

12 

appear one time or may not appear at 
all. 

Example: 

CHARACTER (length) [VARYING] 

This denotes the literal occurrence 
of the word CHARACTER followed by 
the variable "length" enclosed in 
parentheses and optionally followed 
by the literal occurrence of the 
word VARYING. If, in rule 4, the 
two alternatives also were option­
al, the vertical stacking would be 
within brackets, and there would be 
no need for braces. 

7. Three dots ••• denote the occurrence 
of the immediately preceding syntacti­
cal unit one or more times in succes­
sion. 

Example: 

(digit] 

The variable, "digit," mayor may 
not occur since it is surrounded by 
brackets. If it does occur, it may 
be repeated one or more times. 

8. Underlining is used to denote an ele­
ment in the language being described 
when there is conflict between this 
element and one in the syntax lan­
guage. 

Example: 

operand {&Illl} operand 

This denotes that the variables 
"operand" are separated by either 
an "'and" (&), an Hor" (I), or a 
nnot'" h) symbol. The constant I 
is underlined in order to distingu­
ish the nor" symbol in the PL/I 
language from -the "or" symbols in 
the syntax language. 

9. The notation ::= should be read "is 
defined as." 

Example: 

word::=letterlwordllletter 

This dentoes that a nwordH is 
defined as a letter or a word 
concatenated with a letter. 

10. min max. The combination of these two 
words with associated numeric values 
specifies the minimum and maximum num­
ber of times a syntactical unit may 
occur. When min is used without max, 
the implied max is infinity. When max 



is 'Used without min, the implied min 
is zero. 

Examples: 

a. min 2 max 6 {digiti letter} 

This denotes that either "digit" 
or "letter" intermixed in any com­
bination must occur at least two 
times, but no more than six. 

b. min 5 {digiti letter} 

The variables "digit- or -letter­
intermixed in any combination must 
occur at least five times, but 
there is no limit on the number of 
times over five that they may 
occur. 

c. max 3 label 

The variable "label" may not occur 
more than three times in succes­
sion. It may not be present at 
all, or it may occur one, two, or 
three times. 

Introduction 13 



CHAPTER 1. PROGRAM ELEMENTS 

BASIC LANGUAGE STRUCTURE 

PL/I allows the programmer to write the 
statements of his program in a free-field 
format. A statement, which is a string of 
characters, is always terminated by the 
special character, semicolon. A program 
which is, in turn, a sequence of state­
ments, can thus be regarded simply as a 
single string of characters, with no spe­
cial internal grouping. Hence, a PL/I 
program can be physically represented and 
transmitted to a computer in a natural way 
by means of almost any input medium, 
including a typewriter at a remote termi­
nal. 

Input conventions, depending upon the 
machine configuration or the compiler, can, 
of course, be set up so that the program 
string may be presented to the computer 
through the familiar medium of fixed-length 
records, e.g., punched cards. This can be 
accomplished by using certain predetermined 
fields of the records for the program 
string, and other fields for arbitrary 
purposes. 

LANGUAGE CHARACTER SETS 

One of two character sets may be used to 
write a source program: either a 
60-character set or a 48-character set. No 
assumptions are made in the language about 
external or internal codes for the 
characters. For a given program, the 
choice between the two sets is optional. 
(In practice, this choice will depend upon 
the available equipment.) 

60-Character Set 

The 60-character set is composed of 
digits, special characters, and English 
language alphabetic characters. 

There are 29 alphabetic characters, let­
ters A through Z and three additional 
characters that are defined as and treated 
as alphabetic characters. These characters 
and the graphics by which they are rep­
resented are: 

14 

CUrrency symbol 
Commercial At-sign 
Number sign 

There are ten digits. 
are the digits 0 through 9. 
(bit) is either a 0 or a 1. 

$ 
0) 

:# 

Decimal digits 
A binary digit 

An alphameric character is either an 
alphabetic character or a digit. 

There are 21 special characters. The 
names and graphics by which they are rep­
resented are: 

Graphic 

Blank 

Equal or Assignment symbol 

Plus + 

Minus 

Asterisk or Multiply symbol * 
Slash or Divide symbol 

Left Parenthesis 

Right Parenthesis 

Comma 

Decimal Point or Period 

Quotation mark 

Percent symbol 

Semicolon 

Colon 

Not symbol 

And symbol 

Or symbol 

Greater Than symbol 

Less Than symbol 

Break character 

Question mark 

Special characters may 
create operators, e.g., 

/ 

, 

> 

< 

? 

be combined to 
>=, denoting 



"greater than or equal to"; II, denoting 
concaten,ation. 

48-Character Se~ 

The characters making up the 
48-character set are identical to those of 
the 60-c'haracter set, with restrictions and 
changes as desc:cibed in Appendix 5. 

DELIMITERS 

Certain characters are used as 
delimiters and fall into three classes: 

operators 

<= denoting less than or equal to 

< denoting less than 
Bit-String Operators 

The bit-string operators are: 

, 
& 
I 

denoting not 
denoting and 
denoting or 

String Operator 

The string operator is: 

II denoting concatenation 

parentheses Parentheses 
separators .and other delimiters 

Operators 

Operators used by the language are 
divided into four types: 

arit.hmetic operators 
comI:tarison operators 
bit-string operators 
stri.ng operators 

Arithmetic Operators 

The arithmetic operators are: 

+ denoting addition or prefix plus 

denoting subtraction or prefix 
minus 

* denoting multiplication 

/ denoting division 

** denoti.ng exponentiation 

Comparison Operators 

The ~=omparison operators are: 

> denoting greater than 

>= dEmoting greater than or equal 
to 

dEmoting equal to 

,= denoting not equal to 

Parentheses are used in expressions and 
for enclosing lists. 

( 
) 

left parenthesis 
right parentheSiS 

Separators and Other Delimiters 

comma 

semicolon 

assignment 
symbol 

colon 

blank 

quotation 
mark 

period 

percent 

Graphic 

separates elements of a 
list 

terminates statements 

used in assignment 
statement and DO 
statement 

follows labels and con­
dition prefixes: also 
used with dimension 
specifications 

used as a separator 

encloses string 
stants 

separates items 
qualifi~d names; 
as a decimal 
binary point in 
stants 

con-

in 
used 

or 
con-

precedes macro state­
ment 

Chapter 1: Program Elements 15 



DATA CHARACTER SET 

Although the language character set is a 
fixed set defined for the language, the 
data character set has not been limited. 
Data may be represented by characters from 
the language set plus any other characters 
permitted by the particular machine con­
figuration. 

Any character that will result in a 
unique bit pattern is a valid character in 
the data character set, and may be used in 
source programs to construct character­
string constants and comments. 

COLLATING SEQUENCE 

In the execution of PL/I programs, 
comparisons of character data will observe 
the collating sequence resulting from the 
representations of involved characters in 
bytes of System/360 storage, in extended 
binary coded decimal interchange code 
(~BCDIC) • 

IDENTIFIERS 

An identifier is a string of alphameric 
and break characters; the initial character 
must always be alphabetic. 

Identifiers in the language are used for 
the following: 

scalar variable names 

array names 

structure names 

statement labels 

entry names 

file names 

keywords 

condition names 

headings for external names 

Examples: 

VARA 

BCD320 

FILE42 

16 

XR20A 

STARTA 

$L32 

AB12. 

Length of Identifiers 

Identifiers that a programmer constructs 
in writing a PL/I program must be composed 
of not more than 31 characters. 

KEYWORDS 

A keyword is an identifier which is a 
part of the language. Keywords are not 
reserved words. They may be classified as 
follows: 

statement identifiers 

attributes 

separating keywords 

built-in function names 

options 

conditions 

Statement Identifiers 

A statement identifier is a sequence of 
one or more keywords used to define the 
function of a statement (see "Simple 
Statements") • 

Examples: 

GO TO 
DECLARE 
READ 



Attributes 

Attributes are keywords that specify the 
characteristics of data, procedures, and 
other elements of the language. 

Example: 

FLOAT 
RECURSIVE 
SEQUENTIAL 

Separating Keywords 

The five separating keywords are used to 
separate parts iQf the IF and DO statements. 
They are THEN, ELSE, BY, TO, WHILE. 

Built-in Function Naroes 

A built-in function name is a keyword 
that is the name of an algorithm provided 
by the language and accessible to the 
programmer (see "Function References and 
Function Procedures" in Chapter ~. 

Examples: 

DA'I'E 
EX1? 

Options 

An 2!)tion is a specification that may be 
used b~' the programmer to influence the 
execution of a stateroent. 

Examples: 

TASK 
CROSS 

Conditic)Ds 

A condition is a keyword used in the ON, 
SIGNAL, and REVERT statements, and as a 
prefix to other statements (see 
"PrefixE~s"). '1~he programmer may specify 
special action on occurrence of the condi­
·tion (sE~e "Interrupt Operations") • 

Examples: 

OVERFLOW 
ZERCDIVID1~ 

THE USE OF BLANKS 

Identifiers, constants, picture specifi­
cations, composite operators (e.g., ,=), 
and the class of dummy variables iSUB (see 
"The DEFINED Attribute" in Chapter 4) may 
not contain blanks. Blanks are permitted 
within a character-string constant. 

Identifiers, constants, or picture 
specifications may not be immediately adja­
cent. They must be separated by an opera­
tor, assignment symbol (i.e., =), parenthe­
sis, colon, semicolon, comma, period, 
blank, or comment. Moreover, additional 
intervening blanks or comments are always 
permitted. Blanks are optional between 
keywords of a statement identifier (e.g., 
GO T~, and between a level number and its 
following identifier (see "Structures" in 
Chapter 2) • 

Examples: 

CALLA is not equivalent to CALL A 

A TO B BY C is not equivalent to ATOBBYC 

AB+BC is equivalent to AB + BC 

COMMENTS 

General form: 

/* character-string */ 

A comment may be used wherever a blank is 
permitted (except in a character-string 
constant) • The character string in a com­
ment must not contain the character combi­
nation */ in that sequence. 

Example: 

LABEL: /* THE BLOCK OF CODING BETWEEN 
BEGIN-END IS USED FOR PAYROLL CALCULA­
TIONS */ 

BEGIN: 

END: 

BASIC PROGRAM STRUCTURE 

A PL/I program is constructed from basic 
program elements called statements. 

Statements are grouped into larger 
program-elements, the group and the block. 
There are two types of statements: SImPIe 

Chapter 1: Program Elements 17 



and compound. 

SIMPLE STATEMENTS 

A simple statement is defined as: 

[[statement-identifier] 
statement-body] 

The ·statement identifier,· if it appears, 
is a keyword, characterizing the kind of 
statement. If it does not appear, and the 
statement body does appear, then the state­
ment is an assignment statement. If only 
the semicolon appears, the statement is 
called a null statement. 

Examples: 

DO I = J TO 
10; 

A B + C; 

(DO is the keyword) 

(assignment statement) 

(null statement) 

COMPOUND STATEMENTS 

A compound statement is a statement that 
contains other program-elements. There are 
only two of them. They are: 

The IF compound staterr.ent 

The ON compound statement 

The final contained statement of a com­
pound statement is a simple statement and 
thus has a terminal semicolon. Hence, the 
compound statement will automatically be 
terminated by this semicolon. 

Examples: 

IF A=B THEN GO ~'O S 1; ELSE A=C; 

eN CVERFLOW GO TO OVFIX; 

Each PL/I statement is described in the 
alphacetic list of statements in Chapter 8. 

PREFIXES 

There are two types of prefixes: label 
prefixes and condition prefixes. 

18 

Label Prefixes 

Statements may 
reference to them. 
the form: 

be labeled to permit 
A labeled statement has 

identifier: [identifier:] ••• statement 

The one or more "identifiers" are 
called labels and may be used inter­
changeably to refer to that statement. 

Labels appearing before PROCEDURE and 
ENTRY statements are special cases and are 
known as entry names (see "Procedure 
References"). All other labels are called 
statement labels. 

A label appearing before a statement is 
said to be declared, by virtue of its 
appearance as a label. 

Statement labels appearing before 
DECLARE are ignored. 

Condition Prefixes 

A condition prefix is a keyword that 
determines whether or not a program inter­
rupt will result upon the occurrence of the 
specified condition. (For information 
regarding the use of the condition prefix 
see the section "Interrupt Operations" in 
Chapter 6.) 

One or more condition prefixes may be 
attached to a statement. 

Each condition prefix is followed by a 
colon to separate it from the rest of the 
statement or from other prefixes; condition 
prefixes precede the entire statement, 
including any possible label prefixes for 
the statement. 

A condition prefix is a list of condi­
tion names, separted by commas and enclosed 
in parentheses. Thus, a statement with a 
set of prefixes has the following general 
form: 

{(condition-name [,condition­
name] ••• ) :} ••• [label:] ••• 
statement 

The condition names are chosen from the 
following fixed set: 

UNDERFLOW 
OVERFLOW 
ZERODIVIDE 
FIXEDOVERFLOW 
CONVERSION 
SIZE 



SUBSCRIPTRANGE 
CHECK (identifier list) 

NOTE.!. C:HECK (identi£ier list) may be used 
as a p:refix only with the PROCEDURE and 
BEGIN statements. 

The meanings of these conditions are 
explained in "The ON Statement," in Chapter 
8. 

Any of these condition names may be 
preceded by the word NO. If NO is used, 
there can be no intervening blank between 
NO and t:he condition. For example, NOCON­
VERSICN can be specified in the prefix 
list. 

GROUPS 

A gro'!:!l2 is a collection of one or more 
statements and is used for control purpos­
es. 

A gro'llp has one of two forms. The first 
form, called a DO-group, is: 

[labtel:] DO-statement 
program-element-1 
program-element-2 

END [latel] 

The label follmll1ing END must be one of the 
labels of the DO statement. 

The DO statement is called the heading 
statement of the DC-group, and may specify 
iteration. 

The second form of a group is simply a 
single s'tatement., as follows: 

[lablel :] statement 

The "statement- is any statement except DO, 
END, PRCCEDURE" BEGIN, DECLARE, FORMAT, 
ENTRY, OJr any compile-time statement. 

Example of the first form: 

ALPHj~: DO; 
A=B*C; 

IF A < 0 ~HEN DC; B=1: C=O: END: 

END ALPHA: 

In the example above, any of the single 
statements except the DO and END state­
ments is an example of the second form 
of a group. 

BLOCKS 

A block is a collection of statements 
that defines the program region -- or scope 

throughout which an identifier is esta­
blished as a name. It also is used for 
control purposes. 

There are two kinds of blocks, begin 
blocks and procedure blocks. 

A begin block has the general form: 

[label: ] • BEGIN-statement 
program-element-1 
program-element-2 

END [label]; 

The label following END must be one of the 
labels of the BEGIN statement. 

A procedure block, or procedure, has the 
general form: 

label: [label :] PROCEDURE-statement 
program-element-1 
program-element-2 

END [label] 

The label following END must be one of the 
labels preceding the PROCEDURE statement. 

The BEGIN statement and the PROCEDURE 
statement in the above forms are called 
heading statements. 

While the labels of the BEGIN statement 
are optional, the PROCEDURE statement must 
have at least one label. 

Although the begin block and thE proce­
dure have a physical resemblance and play 
the same role in delimiting scope of names 
(see "Scope of Declarations," in Chapter 4) 

and defining allocation and freeing of 
storage (see "Allocation of Data and Stor­
age Classes," in Chapter ~, they differ in 
an important fUnctional sense. A begin 
block, like a single statement, is activat­
ed by normal sequential flow, and it can 
appear wherever a single statement can 
appear. A procedure can only be activated 
remotely by CALL statements, by statements 
in which a CALL option appears, or by 
function references. When a program con­
taining a procedure is executed, control 
passes around the procedure, from the 
statement before the procedure statement to 
the statement after the END statement of 
the procedure. 

Chapter 1: Program Elements 19 



Since a procedure can be activated only 
by a reference to it, every procedure must 
have a name. The label required for the 
heading statement of a procedure serves as 
the procedure name. More than one label 
provides more than one name. 

The procedure name gives a means of 
activating the procedure at its primary 
entry point. Secondary entry points can 
also be defined for a procedure by use of 
the ENTRY statement. The labels preceding 
all ENTRY statements in a given procedure 
and the heading statement of the procedure 
are collectively called· entry names for the 
procedure. 

As the above definition of block 
implies, any block A can include another 
block B, but partial overlap is not possi­
ble; block B must be completely included in 
block A. Such nesting may be specified to 
any depth. 

A procedure that is not included in any 
other block is called an external Eroce­
dure. A procedure included in some other 
block is called an internal procedure. 

Every begin block must be included in 
some other block. Hence, the only external 
blocks are external procedures. 

All of the text of a begin block except 
the labels preceding the heading statement 
of the block is said to be contained in the 
block. 

All of the text of a procedure except 
the entry names of the procedure is said to 
be contained in the procedure. 

That part of the text of a block B that 
is contained in block B, but not contained 
in any other block contained in B, is said 
to be internal to block B. 

The entry names of an external procedure 
are not internal to any procedure and are 
called external names. 

The notion of internal to is 
the definition of scope (see 
Declarations" in Chapter 4) • 

20 

vital in 
"Scope of 

Example: 

A: PROCEDURE; 
statement 1 
B: BEGIN; 

statement 2 
statement 3 
END B; 

statement 4 
C: PROCEDURE; 

statement 5 
X: ENTRY; 

D: BEGIN; 
statement 
statement 
END D; 

statement 8 
END C; 

statement 9 
END A.; 

] 

In this example, statements 1 through 9 are 
labeled or unlabeled simple statements. 

As the brackets on the right indicate, 
block A contains block B and block C, and 
block C contains block D. 

Block A is an external procedure. The 
procedure name is A, which is an external 
name, and the only entry name for the 
procedure. 

X is an entry name corresponding to a 
secondary entry point for procedure C. 

Blocks Band D are begin blocks. 

Block C is an internal procedure. 

The text internal to block A consists 
of: 

PROCEDURE; 
statement 1 
B: 
statement 4 
c: 
X: 
statement 9 
END A; 

The text internal to block B consists 
of: 

of: 

BEGIN; 
statement 2 
statement 3 
END B; 

The text internal to 

PROCEDURE; 
statement 5 
ENTRY; 

block C consists 



D: 
statement 8 
]~ND C; 

The 1:ext internal to block D consists 
of: 

13EGIN; 
statement 6 
statement 7 
]~ND D; 

USE OF THE END STATEMENT 

As thE~ examples above imply, the END 
statemen1: has the form: 

]~ND [label]; 

and is used t:o terminate a group or a 
block. 

If the optional label following END is 
not used p the END statement terminates that 
unterminated group or block headed by the 
DO, BEGIN, or PROCEDURE statement that 
physically precedes, and appears closest 
to, the lmD stat:ement. 

If, however, a label (e.g., L) is used 
followinq END, the statement terminates 
·that unclosed group or block headed by the 
DO, BEGJ[N, or PROCEDURE statement with the 
label L that physically precedes, and 
appears <:losest to, the END statement. Any 
groups 0]: blocks headed by DO, BEGIN, or 
PROCEDUR1~ statements contained in the ter­
minated block L are also automatically 
terminated by the END statement END L. 
'rhis fea·ture eli.minates the necessity of 
writing the int:ermeCl.iate END statements to 
terminatE~ the contained blocks and groups. 

The s·tatement: labeled L, which heads the 
group or block t:erminated by the END state­
ment Em) L, is internal to a certain block 
in the program (see "Blocks," for a defini­
tion of internal to). The terminating 
statemen·t END L, together with its own 
possible statement-labels, is also consid­
ered to be internal to the same block. (If 
the sta·tement labeled L is a BEGIN or 

PROCEDURE statement, this block, is of 
course, the block L.) 

The END statement may itself be labeled, 
and a reference to this label can be made 
from any part of the program where the 
label is known. (For a definition of 
known, see "Basic Rule on Use of Names" in 
Chapter 4) • 

Example: 

A: PROCEDURE; 

B: BEGIN; 

A: PROCEDURE; 

C: DO; 

X: END B; 
END A; 

A: PROCEDURE; 

B: BEGIN; 

A: PROCEDURE; 

C: DO; 

END; 
END; 
X: END B; 
END A; 

In the example on the left above, the 
statement X:END B terminates the DO groups, 
the ihternal procedure A, and the block B. 
The statement END A terminates the external 
procedure A. 

The example on the right is equivalent 
to the example on the left. 

The statement X:END B is internal to 
block B. 

PROGRAMS 

A program is a set of external proce­
dures. Thus, by definition, a program is a 
set of procedure blocks, each of which is 
completely nested, and separate from the 
others. 

Chapter 1: Program Elements 21 



CHAPTER 2: DATA ELEMENTS 

DATA TYPES 

Information that is operated on in a 
PL/I object program during execution is 
called data. Each data item has a definite 
type and representation. 

The permitted data types are arithmetic, 
string, label, task, and event. The 
details for the specification of data type 
attributes are contained in Chapter 4. 

ARITHMETIC DATA 

An arithmetic data item is one that has 
a numeric value with characteristics of 
base, scale, mode, and precision. The data 
item may be represented either as a numeric 
field or in a coded form, that is, in an 
internal representation that is implementa­
tion dependent. A numeric field is a 
string of characters that is given a numer­
ic interpretation by means of the PICTURE 
attribute (see Chapter 4). The base, 
scale, and precision are all specified in 
the picture of the numeric field. A data 
item in coded form does not have a PICTURE 
attribute, but has its characteristics 
given by the attributes specifying base, 
scale, mode, and precision. 

Base (decimal or binary) , scale 
(fixed-point or floating-point), and 
precision have reference to internal rep­
resentation of the data described and to 
the internal arithmetic that is to be used. 

Arithmetic data may be specified as 
having either decimal or binary base. 

Arithmetic data may be specified as 
having either fixed-point or floating-point 
scale. Fixed-point data items are rational 
numbers for which the number of decimal or 
binary digits is specified; the position of 
the decimal or binary ~oint may also be 
specified by a scale factor. Floating­
point data items are rational numbers in 

22 

the form of a fractional part and an 
exponent part. 

Mode 

Arithmetic data may be operated on in 
either the real or complex mode. In the 
complex mode, a data item is considered to 
consist of a number pair, the first member 
of the pair representing the real part of 
the complex number and the second, the 
imaginary part. 

Precision 

The precision of fixed-point data (w,d) 
is specified by giving the total number of 
binary or decimal digits, w, to be 
maintained and a scale factor, d. The 
precision of floating-point data is speci­
fied by giving only the total number of 
binary or decimal digits to be maintained 
(i. e., ~) . 

STRING DATA 

String data can be classified as 
character-string or bit-string. The length 
of a string data item is equivalent to the 
number of characters (for a charac­
ter-string) or the number of binary digits 
(for a bit-string) in the item. A string 
data item of length zero is known as the 
null string. 

Character-String Data 

Character-string data consists of a 
string of zero or more characters in the 
data character set (see nData Character 
Set," in Chapter 1). The string may be 
fixed or varying in length. The actual 
number of characters must be specified if 
it is of fixed length, and the maximum 
length must be specified if it is of 
varying length. 



Bit-String Data 

Bit-string data consists of a string of 
zero or more bi.nary digits (0 and 1). The 
string may be fixed or varying in length. 
The actual length of the field must be 
specified if it is of fixed length, and the 
maximum length must be specified if it is 
of varying lengt.h. 

STATEMEN'Jr-LABEL DATA 

~S~t~a~t~e~]~n~~e~n~t~-~l~a~b~~e~l~~d~a~t~a consists of labels 
of statements (see ·Statement Labels" in 
this chapter) • 

SCALA~JANTITIE:S 

A da1:a item may be either a constant or 
the value of a scalar variable. Constants 
and scalar variables are called scalar 
guantities. 

CONSTANTS 

A constant is a data item that denotes 
itsel~i.e., its representation is both 
its name and its value; thus, it cannot 
change during the execution of a program. 
Each constant has a type, as described 
below. A signed constant is a constant 
preceded by one of the prefix operators + 
or -. Wherever the word "constant" appears 
alone, and refers to an arithmetic con­
stant, i 1: is to be assumed to refer to an 
~nsigned constant. 

Real Ari 1:hmetic Constants 

A real ari t.hmetic constant is either 
binary or decimal. 

Decimal Fixed-Point Constants 

A decimal fixed-point constant is rep­
resented by one or more decimal digits with 
an optional deci.mal point. 

Examples: 

72. '192 
.30B 
255 .. 
158 

Binary Fixed-Point Constants 

A binary-fixed point constant is rep­
resented by one or more binary digits with 
an optional binary point followed by the 
letter B. 

Examples: 

11011B 
11.1101B 
.001B 

Sterling Fixed-Point Constants 

Sterling quantities may be specified and 
will be interpreted as decimal fixed-point 
pence. A sterling fixed-point constant 
consists of the following concatenated 
fields: 

a pounds field that is a decimal 
integer 

a decimal point 
a shillings field that is a decimal 

integer less than 20 
a decimal point 
a pence field that is one or more 

decimal digits with an optional 
decimal point (the integral part 
must be less than 12.) 

an L 

Examples: 

101.13.8L 
1.10.0L 
0.0.2.5L 

Decimal Floating-Point Constants 

A decimal floating-point constant is 
represented by one or more decimal digits 
with an optional decimal point, followed by 
the letter E, followed by an optionally 
Signed decimal exponent. 

Examples: 

12.E23 
317.5E-16 
o .1E+3 
.42E+73 
32E-5 

Binary Floating-Point Constants 

A binary floating-paint constant is 
represented by one or more binary digits 
with an optional binary point, followed by 
the letter E, followed by an optionally 
signed binary exponent, followed by the 
letter B. The exponent is a string of 
decimal digits specifying a power of two. 

Chapter 2: Data Elements 23 



Examples: 

1.1011E3B 
.11011E-27B 

Precision of Real Arithmetic Constants 

For purposes of expression evaluation, 
an apparent precision is defined for real 
arithmetic constants. 

Real fixed-point constants have an 
apparent precision (p,q) where p is the 
total number of digits in the constant and 
q is the number of digits specified to the 
right of the decimal point. 

The precision of a sterling constant is 
equivalent to the precision of its corres­
ponding value in fixed-point pence. This 
value is determined as follows: multiply 
the value of the pounds field by 240; add 
the product of 12 and the value of the 
shillings field; add the value of the pence 
field. The precision of the result (with 
leading zeros removed) is the precision of 
the corresponding sterling constant. 

The precision of a floating-point con­
stant is (~ where p is the number of 
digits of the constant left of the E. If 
only the digit zero is left of the E, the 
precision is 1. 

Examples: 

3.14 has precision (3,2) 
0.012E5 has precision (4) 
0.9.0.5L has precision (4,1) 
0000001 has precision (7,0) 

Imaginary Arithmetic Constants 

An imaginary constant represents a com­
plex value of which the real part is zero 
and the imaginary part is the value speci­
fied. 

It is represented by a real arithmetic 
constant, other than a sterling constant, 
followed by the letter I. PL/I does not 
define complex constants with non-zero real 
parts, but provides the facility to specify 
such data through expression, e.g., 
10.1+9.21. 

24 

Examples: 

27I 
3.968E10I 

String Constants 

String constants can be 
character-string constants 
constants. 

Character-String Constants 

classified as 
or bit-string 

A character-string constant is zero or 
more characters in the data character set 
enclosed in quotation marks. If it is 
desired to represent a quotation mark, it 
must appear as two immediately adjacent 
quotation marks. The constant may option­
ally be preceded by a decimal-integer con­
stant in parentheses to specify repetition. 
If the constant specifying repetition is 
zero, the result is the null string. 

Examples: 

'$ 123.45' 
'JOHN JONES' 
'IT' 's I 
(3) I TOM I 

The latter is exactly equivalent to 

I TOMTONTOM' 

Bit-String Constants 

A bit-string constant is zero or more 
binary digits enclosed in quotation marks, 
followed by the letter B. The constant may 
optionally be preceded by a decimal-integer 
constant in parentheses, to specify repeti­
tion. If the constant specifying repeti­
tion is zero, the result is the null 
string. 

Examples: 

'0100 ' B 
(10) I l' B 

The latter is exactly equivalent to 

'11111111111B 

Statement-Label Constants 

A statement-label constant is an iden­
tifier which appears in the program as a 
statement label. 

The value of a label constant becomes 
undefined when the block to which it is 
internal becomes inactive. 



VARIABLES 

A scalar variable, like a constant, 
denotes a data item. This data item is 
called the valuE~ of the scalar variable. 
Unlike a constant, however, a variable may 
take on more than one value during the 
execution of a program. The set O'f values 
that a variable may take on is the range of 
the variable. The range of a variable is 
always ]:-estrict.ed to one data type and, if 
-the type is arithmetic, to one base, scale, 
mode, and precision. If there are no 
further restrictions declared for the 
range, 1:he vari.able may assume values over 
the entire set of data of that type. 

Reference is made to a scalar variable 
by a name, which may be a simple name, a 
subscrip1:ed name, a qualified name, or a 
subscripted qualified name (see "Namingn in 
this chapter) • 

pATA AGGHEGATES 

In PL/I, variable data items are grouped 
into arrays or structures. Rules for this 
grouping are given below. (For the method 
of referring to an array or structure or a 
particular item of an array or structure, 
see nNaming," in this chapter.) 

ARRAYS 

An array is an n-dimensional, ordered 
collection of elements, all of which have 
identical data declaration. If arithmetic, 
all of t.he element.s of the array must have 
the same base, scale, mode, and precision 
or the same picture. If character-string 
or bit-string, all of the elements must 
have the same actual length, if fixed 
lengt.h, or the same maximum length, if 
varying length. The number of dimensions 
of an array, and the upper and lower bounds 
of each dimension, are specified by the use 
of the dimension attribute. 

Example: 
DEClaARE A(3,4); 

This statement defines A as an array 
with 2 dimensions: 3 rows and 4 columns. 
The matrix given below illustrates the 
arra'] A. 

A (1, 1) 
A (2,1) 
A (3, 1) 

A (1,2) 
A (2,2) 
A (3,2) 

A (1 ,3) 
A (2,3) 
A (3,3) 

A (1,4) 
A (2,4) 
A (3,4) 

The elements of an array may be struc­
tures (see "Arrays of structures") • 

STRUCTURES 

A structure is a hierarchical collection 
of scalar variables, arrays, and struc­
tures. These need not be of the same data 
type nor have the same attributes. 

Structures may contain structures. The 
outermost structure is the major structure, 
and contained structures are minor struc­
tUres. A major structure must be at level 
one. Contained structures must always have 
a level number numerically greater than the 
structure in which they are contained. 
Identifiers preceded by level numbers but 
having no components are not considered to 
be structures. The level number may be 
followed by an optional blank. (Additional 
information on structures can be found in 
the section nStructure Declarations and 
Attributes" in Chapter 4.) 

Examples: 

1. DECLARE 1 PAYROLL, 2 NAME, 2 HOURS, 3 
REGULAR, 3 OVERTIME, 2 RATE; 

takes the form: 

PAYROLL 
2NAME 
2HOURS 

3REGULAR 
3 OVERTIME 

2RA'I'E 

In the above example PAYROLL is defined 
as the major structure containing the sca­
lar variables NAME and RATE and the struc­
ture HOURS. The structure HOURS contains 
the scalar variables REGULAR and OVERTIME. 

2. DECLARE 1 A, 2 B, 2 C, 3 D (2), 3 E, 2 
F: 

This takes the form: 

A 
B 
C 

F 

D (1) 
D (2) 
E 

The decimal integers before the iden­
tifiers specify the level; the decimal 
integer in parentheses specifies the bounds 
of the one-dimensional array. A is defined 
as the major structure and contains the 
minor structure C and the scalar variables 
Band F. C contains D, a one-dimensional 

Chapter 2: Data Elements 25 



array with two scalar variables, and the 
scalar variable E. 

3. DECLARE 1 A, 3 B, 2 C; 

This takes the form: 

A 
B 
C 

Note that B and C are at the same 
level although their level numbers 
differ. 

ARRAYS OF STRUCTURES 

An array of structures is formed by 
giving the dimension attribute to a struc­
ture. This dimension attribute causes all 
contained items to be arrays. 

Examples: 

1. DECLARE CARDI·N (3), 2 NAME, 2 WAGES, 
3 NORMAL, 3 OVERTIME; 

2. 

26 

The decimal integers before the iden­
tifiers specify the level. The name, 
CARDIN, represents an array of struc­
tures. Because CARDIN has a dimension 
specified, NAME, NORMAL, and OVERTIME 
are arrays, and their elements are 
referred to by subscripted namesQ 

The form of the data is: 

CARDIN ( 1) NAME ( 1) 
WAGES (1) NORMAL (1 ) 

OVERTIME (1) 

CARDIN (2) NAME ( 2) 
WAGES (2) NORMAL (2) 

OVERTIME (2) 

CARDIN (3} NAME 
WAGES 

(3) 
(3) NORMAL (3) 

OVERTIME (3) 

DECLARE 1 X, 2 Y, 2 Z 
3 Q, 2 R; 

(2), 3 P (2,2), 

X is an undimensioned major structure 
containing scalar variables, arrays, 
and a structure. 

Y is a scalar variable 
Z is an array of structures 
P is a three-dimensional array 
Q is a one-dimensional array 
R is a scalar variable 

The form of the data is: 

Y 

[! 
(1,1,1) 
(1 , 1 , 2) 

Z (1) (1,2,1) 
(1,2,2) 
(1) 

X 

(2) [! (2,1,1) 
(2, 1 , 2) 

Z (2,2,1) 
(2,2,2) 
(2) 

R 

NAMING 

This section describes the rules for 
referring to a particular data item, groups 
of items, arrays, and structures. The 
perroitted types of data names are simple, 
qualified, subscripted, and subscripted 
qualified. 

SIMPLE NAMES 

A simple name is an identifier (see 
"Identifiers," in Chapter 1) that refers to 
a scalar, an array, or a structure. 

SUBSCRIPTED NAMES 

A subscripted name is used to refer to 
an element of an array. It is a simple 
name that has been declared to be the name 
of an array followed by a list of sub­
scripts. The subscripts are separated by 
commas and are enclosed in parentheses. A 
subscript is an expression that is evaluat­
ed and converted to an integer before use 
(see "Evaluation of Expressions," in Chap­
ter 3). The number of subscripts must be 
equal to the number of dimensions of the 
array, and the value of a specified sub­
script must fall within the bounds declared 
for that dimension of the array. 

A subscripted name takes the form: 

identifier (subscript subscript] . .. ) 
Examples: 

A (3) 
FIELD (B,C) 
PRODUCT (SCOPE * UNIT + VALUE, PERIOD) 
ALPHA (1, 2 , 3 , 4 ) 



Cross Sections of Arrays 

The concept of cross sections is a 
logical extension of the subscripting nota­
tion. A cross section of an array is 
referred to by the array name, followed by 
a list of: subscripts, at least one of which 
is an asterisk. The subscripts are sepa­
rated by commas, and the entire list is 
enclosed in parentheses. The number of 
items in the list must be equal to the 
number of dimensions of the array. If the 
array is of dimensionality n, then an 
asterisk may appear in k S n positions. If 
the jth list position is occupied by an 
asterisk, the cross section of the array 
includes elements covered by varying the 
jth subscript between its bounds. The 
dimensionality of the cross section is 
equal to the number of asterisks, k, in the 
subscript list. If all subscript positions 
are occupied by asterisks, then this ref­
erence t~o the cross section is equivalent 
to a reference to the entire array. 

A cross section may be used anywhere 
that the name of an array of dimensionality 
k is required. Subsequent references to 
the word "array" in this document should 
therefore be taken to include cross sec­
tions of arrays. 

Examples: 

1. A (3,*) denotes the third row of the 
array A. 

2. B (*, *, 2) is a two-dimensional cross 
section and denotes the second plane 
of the array B. 

3. If ~~TRIX is the array: 
123 
4 5, 6 
789 
MATRIX (*, 2) is the vector: 

2 
5 
8 

QUALIFIED NAMES 

A simple name usually refers uniquely to 
a scalar variable, an array, or a struc­
ture. However, it is possible for a name 
to refer to more than one variable, array, 
or structure if the identically named items 
are themselves parts of different struc­
tures. In order to avoid any ambiguity in 
referring to these similarly naroed items, 
it is necessary to create a unique name: 
this is done by forming a qualified name. 
This means that the name common to more 
than one item is preceded by the name of 
the structure in which it is contained. 
This, in turn, can be preceded by the name 

of its containing structure, and so on, 
until the qualified name refers uniquely to 
the required item. The section "Multiple 
Declarations and Ambiguous References· in 
Chapter 4, contains further information on 
this subject. 

Thus, the qualified name is a sequence 
of structure names specified left to right 
in order of increasing level numbers: the 
simple names are separated by periods, and 
blanks may be placed as desired around the 
periods. The sequence of names need not 
include all of the containing structures, 
but it must include sufficient names to 
resolve any ambiguity. 

The qualified name, once composed, is 
itself a name. Subsequently, in this docu­
ment, when the terms scalar variable name, 
array name, or structure name are used they 
should also be taken to include qualified 
names. 

A qualified name takes the form: 

identifier {. identifier} ••• 

Examples: 

1. A program may contain the structures: 

DECLARE 1 CARDIN, 2 PART NO , 2 DESCRIP­
TION, 2 PRICE; 

DECLARE 1 CARDOUT, 2 PARTNO, 2 DES­
CRIPTION, 2 PRICE; 

Elements are then referred to as: 

CARDIN.PARTNO 
CARDOUT.PARTNO 
CARDIN. PRICE 

2. A program_may contain the structure: 

DECLARE 1 MARRIAGE, 2 MAN, 3 NAME, 3 
DATE, 2 WOMAN, 3 NAME, 3 DA'I'Ei 

Elements are then referred to as: 

MAN. NAME 
or MARRIAGE. MAN. NAME 

WOMAN. NAME 
or MARRIAGE WOMAN. NAME 

3. If the same program also contains the 
structure: 

DECLARE 1 BIRTH, 2 WOMAN, 3 NAME, 
3 DATE, 2 COMPLEXION; 

Elements are then referred to as: 

MAN. NAME 
or MARRIAGE.MAN.N1'>..ME 

MARRIAGE. WOMAN. NAME 

Chapter 2: Data Elements 27 



BIRTH. NAME 
or BIRTH. WOMAN. NAME 

COMPLEXION 

and the minor structures referred to 
as: 

MARRIAGE. WOMAN 

BIRTH. WOMAN 

SUBSCRIPTED QUALIFIED NAMES 

The elements of an array contained in a 
structure and requiring name qualification 
for identification are referred to by sub­
scripted qualified names. A subscripted 
qualified name is a sequence of names and 
subscripted names separated by periods. 
T~e order of names is as given for any 
qualified name. The subscript list follow­
ing each name refers to the dimensions 
associated with the name if the name is 
declared to be the name of an array in the 
structure description. 

As long as the order of the subscripts 
remains unchangerl, subscripts may be moved 
to the right and attached to names at a 
deeper level. Unless all of the subscripts 
are moved to the deepest level, the quali­
fied name is said to have interleaved 
subscripts. 

Provided that sufficient structure names 
are used to make the name unique, as 
described for qualified narr.es, and that the 
total number of subscripts is the same as 
the total dimensionality of the array, 
unsubscripted structure names may be omit­
ted in references. Ambiguity of names, 
however, cannot be resolved by subscript­
ing. A subscripted qualified name takes 
the general form: 

identifier (subscript [, subscript] ... ) ] 
{. identifier [(subscript [, sub­
script] ••• )] } ••• 

If any subscripts are given in a. ref­
erence to a qualified name, all those 
subscripts which apply to dimensions of 

The following subscripted qualified 
names refer to the same element, which is 
the seventh element of C contained in the 
fifth element of B contained in tenth row 
and twelfth column of A: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

A ( 1 0, 1 2) B ( 5 ) 
A ( 1 O) B ( 1 2 , 5 ) 
A (10) B (12) 

C (7) 
C (7) 

C (5, 7) 
C (7) 

C (5,7) 
A. B (10,12,5) 
A. B (10, 12) 
A. B (10) C (12,5,7) 
A. B. C ( 1 0 , 1 2 , 5 , 7) 
A (10, 12) B. C (5,7) 
A (10) B. C (1 2 , 5, 7) 

If structure B, but not structure A, is 
necessary for unique identification of this 
use of C, any of forms (4), (5), (6), or 
(7) may be used without including the A. 

If structure A, but not B, is necessary 
for identification of C, forms (7), (8), or 
(9) may be used without including the B. 

Except for form (7), all of the quali­
fied names in the above example have inter­
leaved subscripts. 

STATEMENT LABELS 

Statement-label data is used only in 
connection with statement labels. 
Statement-label data may be a constant, a 
scalar variable, or an array. 

CONSTANT 

A statement-label constant is an iden­
tifier that permits references to be made 
to statements. 

Example: 

ROUTINE1: IF X > 5 THEN GO TO EXIT; 

containing structures must be given. GO TO ROUTINE1; 

A subscripted qualified name must have 
at least one subscript. 

28 

Examples: 

A is an array of structures with the 
following description: 

DECLARE 
3 D; 

A (10, 12) 2 B (5), 3 C (7) , 

ROUTINE1 is a statement-label constant. 
EXIT is also a statement-label. 

VARIABLE 

A label variable is a variable that has 
as values statement-label constants. 



Example: 

DECLARE X LABEL; 
X POSROUTINE; 

POSROUTINE: 

X NEGROUTINE; 
GO TO X; 

NEGROUTI'NE: 

The label variable X may have the values 
of' ei the:r POSROUTINE or NEGROUTINE, both 
labels :in the procedure. In the above 
example, GO TO X transf'ers control to 
NEGROUTIll'1E. 

A statement--Iabel constant or a scalar 
label variable is called a statement-label 
designator. 

ARRAY 

A scalar label variable may be sub­
scripted if it refers to an element of an 
array declared t:o have the attribute LABEL. 
A label array must be explicitly declared 
to have 1:he attribute LABEL (see Chapter 
4) • 

Example: 

DECLARE CALCULATION (4) LABEL INITIAL 
(A, B, C, D) ; 

A: X x * Y + Z; 

B: IF X > Y THEN GO TO EXIT; 

GO TO CALCULATION (2); 

The GO TO statement t.ransfers control to 
label B by means of referring to the proper 
element of the CALCULATION label array, 
provided the variable CALCULATION (2) has 
not changed in value. 

Initial Values for Label Arrays 

Although the INITIAL attribute may be 
used to initialize label arrays, there is 
an alternate method of doing this. 

If a label array element appears in a 
block, followed by a colon, subscripts must 

be optionally Signed decimal integer con­
stants. 

The eff'ect of preceding a statement with 
a subscripted reference is as follows: 

1. An INITIAL attribute is constructed 
for the label array and added to the 
declaration. 

2. A label constant is constructed for 
the statement carrying the subscripted 
reference. This label constant is 
appropriately placed, with respect to 
the specified subscripts, in the INI­
TIAL attribute. 

A label array may not be initialized by 
using both this form of initialization and 
the INITIAL attribute in the declaration of 
the label array in the DECLARE statement. 
Also, this form of initialization can not 
be used for STATIC label arrays. 

Example: 

DECLARE Z (3) LABEL; 

Z (1) : IF X > Y THEN GO TO EXIT; 

Z (2) : A A + B + C * D; 

Z (3) : A A + 10; 

GO TO Z (I) ; 

Statements are given subscripted ref­
erences (Z (1t, Z (2) , and Z (3) ). Transfer 
1S made to a particular Z by means of 
giving I the value of 1, 2, or 3. 

TASK NAMES 

Task namES are used only in connection 
with tasks (see "Asynchronous Operations 
and Tasks," in Chapter 6 and "The TASK 
Attribute, n in Chapter 4). 'Iask names may 
have the dimension attribute or may be 
elements of structures. A task name has an 
associated priority number which may be 
assigned in the CALL statement (see Chapter 
8) or in an assignment statement using the 
PRIORITY pseudo-variable (see Chapter 8) • 

Chapter 2: Data Elements 29 



EVENT NAMES 

Event names are used only in connection 
with events (see "Asynchronous Operations 
and Tasks, " in Chapter 6 and liThe EVENT 
Attribute," in Chapter 4). EVent names may 
have the dimension attribute or may be 
elements of structures. A simple event 
name has an associated completion status. 
This status is denoted by the value 'O'B 

30 

for "not completed" and '1'B for 
"completed". If the event name has been 
associated with a given task through the 
use of an EVENT option in a CALL statement 
(see Chapter 8), the completion status of 
the event name will reflect the cOIfipletion 
status of trle task itself. The completion 
status of an event name may also be set 
explicitly by the execution of an assign­
ment statement using the EVENT pseudo­
variable (see Chapter 8) • 



EXPRESSIONS 

An expression is an algorithm used for 
computing a value. Expressions are of the 
three types: scalar, array, and structure, 
depending upon the types of the operands 
involved. The type of the result is also 
the same as that of the operands. An array 
(or structure) expression is simply an 
array (or structure) evaluated by expansion 
of the expression into a collection of 
scalar expressions (see nArray Expressions" 
and "Structure Expressions") • 
Syntactically, a scalar expression consists 
of a constant, a scalar variable, a func­
tion reference, a scalar expression 
enclosed in parentheses, a scalar expres­
sion preceded by a prefix operator, or two 
scalar expressions connected by an infix 
operator. Operands in a scalar expression 
need not have the same data attributes. If 
they differ, conversion will be performed 
before the operation. 

SCALAR EXPRESSIONS 

A scalar expression returns a scalar 
value. The type of the value is the type 
of the expression. The type of the expres­
sion is dependent upon the class of opera­
tors -- arithmetic, comparison, bit string., 
and concatenation (see "Operators") • 
Statement label disignators are not allowed 
in scalar exp:cessions except as function 
arguments. 

If A and B a.re expressions, then the 
operators + and - used in expressions of 
the for.m +A or -A, are called prefix 
operators. When these operators are used 
in expressions of the form A+B or A-B they 
are called infi,! operators. 

Arithmetic Opera.tions 

An arithmetic expression of any complex­
i ty is composc~d of a set of elementary 
arithmetic operations. 

An el1ementary arithmetic operation has 
the general form: 

{{+ I-} op~~rand} i {operand 
{+I - , * , / I **} operand} 

CHAPTER 3: DATA MANIPULATION 

The general form specifies the prefix 
operations of plus and minus and the infix 
operations of addition, subtraction, multi­
plication, division, and exponentiation. 
Operations are performed only with coded 
arithmetic data. If necessary, the data 
will be converted to coded arithmetic type 
before the operation is performed. 

Mixed Characteristics 

The two operands of an arithmetic opera­
tion. ~ay differ in base, scale, mode, and 
prec1s10n. When they differ, conversion 
takes place according to the following 
rules: 

BASE: If bases differ, the decimal operand 
is converted to binary. 

SCALE: If the scales of the operands 
differ, the fixed-point operand will be 
converted to floating-point, except in the 
case of exponentiation in which the first 
operand is floating-point and the second is 
fixed-point with precision (p,O). In the 
latter case, the second operand is not 
converted. 

MODE: If modes differ, the real operand is 
converted to complex by assuming an imag­
inary part of zero. 

PRECISION: If precisions differ, no con­
version is done; the arithmetic operation 
is carried out on operands of differing 
precision in a way consistent with normal 
mathematical practice. However, a particu­
lar implementation may restrict the preci­
sion of operands used in arithmetic expres­
sions, and if larger precisions are 
desired, the built-in functions ADD, SUB­
TRACT, etc. (see Appendix 1), may be used. 

Results of Arithmetic Operation 

After the conversions specified above 
have taken place, the arithmetic operation 
is performed. Any necessary truncations 
will be made towards zero, regardless of 
the base or scale of the operands. Alge­
braic signs of results will be correct, 
when an error condition causes truncation 
or a modulo result (see "OVERFLOW" in 
Appendix 3) • 

The base, scale, mode, and precision of 
the result depend on the operands and the 
operator in the following ways: 

Chapter 3: Data Manipulation 31 



1. 

2. 

3. 

32 

Prefix operations: The prefix opera­
tions of plus and minus yield a result 
having the base, scale, mode, and 
precision of the operand. 
Floating-point: If the first operand 
of an infix operation is floati.ng­
pOint the result is floating-poi.nt, 
and the base and mode of the result 
are the common base and mode of the 
operands. The precision of the result 
is the greater of the precisions of 
the two operands. 
Fixed-point: If the first operand of 
a binary operation is fixed, and if 
the operation is not exponentiation, 
the result is fixed, and the base and 
mode of the result are the common base 
and mode of the operands. If the 
operation is exponentiation, the 
second operand is converted to float­
ing point if its scale factor is not 
zero; and the first operand is con­
verted to floating-point unless the 
second operand is an unsigned integer 
constant meeting the conditions of 
item d below; in these cases, the 
rules-for floating-point apply. 

The precision of a fixed-point 
result depends on the operation and 
the prec1s10ns of the operands, 
according to rules given below. The 
following symbols are used: 

N the length of the largest number 
in the implementation 

m the total number of positions in 
the result 

n the scale factor of the result 
p the total number of positions in 

operand one 
q the scale factor of operand one 
r the total number of positions in 

operand two 
s the scale factor of operand two 
y value of operand two, if it is an 

unsigned integer constant 

a. Addition and subtraction: 

m min(N,max(p-q,r-s)+max(q,s) 
+ 1) 

n = max (q, s) 

b. Multiplication: 

m min (N, p+r+ 1) 
n q+s 

c. Division: 

d. 

m N 
n N-p+q-s 

Exponentiation: 
is an unsigned 
constant, 

if second operand 
non-zero integer 

m (p+ 1) *y - 1 
n q *y 

If m>N, however, or y is not an 
unsigned non-zero integer con­
stant, the first operand is con­
verted to floating-point and rules 
for floating-point exponentiation 
apply. If m~N, the result is 
obtained by repeated multi­
plication (see note below for a 
definition of exponentiation). 

e. The above rules hold for both real 
and complex mode. 

NOTE: 
is 

1. 

The operation of exponentiation 
defined as follows: 
Real Mode, X1**X2: 
a. If X1=0 and X2<0, the ZERO­

DIVIDE condition is raised. 
b. If X1=0 and X2=0, the ERROR 

condition is raised and the 
result is set to O. 

c. If x 1=0 and X2>0, the result 
is o. 

d. If X1<0 and X2<0, the ERRO~ 
condition is raised for any 
X2 of a form other than 
fixed-point (p,O) ; i.e., 
anything but a fixed-point 
integer. When X2 is a 
flxed-point integer, the 
result is 

1/ [(X1 *X1 *X1 * ••• *X1) , 
ABS (X2) times] 

e. If X1<0 and X2=0, the result 
is 1. 

f. If x,<O and X2>0, the limi­
tations are identical to 
those in item d. When X2 is 
a fixed-point- integer, the 
result is 
(x, *X1 *x 1 * ••• *X1) , X2 times. 

g. If X1>0 and X2<0, the result 
is 

EXP (x2*LOG (X1) 
h. If X1>0 and X2=0, the result 

is 1. 
i. If X1>0 and X2>0, the result 

is EXP(X2*LOG(x1» for any 
X2 except a fixed-point 
integer, in which case the 
result is the same as in 
item!. (See Appendix for 
a definition of EXP and 
LOG.) 

2. Complex Mode, Z1**Z2: 
If z,=O, the ERROR condition is 

raised in all cases except 
when the real part of Z2 is 
> 0 and the imaginary part 
of Z2 equals 0, in which 
case the result is O. Oth­
erwise, the result is 
EXP (z2*LOG (Z1) ) • 



Ari thmE~tic Conversions 

1.. Arithmetic Mode Conversion 

If a complex value is converted to 
a real value, the result is the real 
pa.rt of the complex value. 

If a real value is converted to a 
complex value, the result is a complex 
value that has the real value as the 
real part and zero as the imaginary 
part. 

2. Integer conversion 

If conversion to integer is speci­
fied, as in the evaluation of sub­
script expressions, the conversion 
wjll be to fixed-point binary (x,O) " 
Here x is the total number of posi­
tions in the field and depends upon 
the implementation. The scale factor 
is zero. Truncation, if necessaryv 
will be toward zero. 

3. Arithmetic Base and Scale Conversion 

Table defines the precision 
resulting from base and scale conver­
sion. CEIL refers to the ceiling of 
the expression. (The "ceiling" of a 
number is the smallest integer equal 
to or greater than the number.) 

Conv4~rsion from floating-point scale to 
fixed-point scale will occur only when a 
destination precision is known, as in an 
assignment to a fixed-point variable. If 
the destination precision is incapable of 
holding the floating point value, trunca­
tion on both left and right will occur, and 

Table 1.. Arithmetic Base and Scale Conversion 

the SIZE error condition will be raised 
(unless disabled) • 

Bit-String Operations 

Bit-string operations have the following 
general forms: 

, operand 
operand & operand 
operand , operand 

The prefix operation "not" and the infix 
operations "and" and "or" are specified 
above. The operands will be converted to 
bit-string type before the operation is 
performed. The result will be of bit­
string. If the operands are of different 
lengths after conversion, the shorter is 
extended on the right with zeros to the 
length of the longer. The length of the 
result will be of thjs extended length. 
The result is of varying length if either 
operand is of varying length or is a 
reference to the SUBSTR built-in fUnction. 
Otherwise, the result is of fixed length. 

The operations are performed on a bit­
by-bit basis. As a result of the 
operations, each bit position has the value 
defined in the following table: 

Before Conversion 
r-----.-------------T--------------------T----------------T---------------, 

After ,Binary Fixed I Decimal , Binary , Decimal I 
,(p,q) I Fixed (p,q) I Float (p) I Float (p) I 

r--------"-t-----,-------------t-------------------t----------------t---------------1 
I' I I , I 
, Binary, (p,q) ,(MIN(CEIL(p*3.32) I , I 
I Fixed, , + 1, N) , CEIL (ABS (q) , , I 
I' , * 3 • 32) * S I G N (q) ) I I I 
~-------·-~------------------t--------------------t----------------t---------------~ 
I Decimal, (CEIL (p/3. 32) + 1, I (p, q) I , I 
, }'ixed I CEIL (ABS (q) /3. 32) I , I I 
, ,*SIGN (q» I I I , 
~-------,-+_-----------------t--------------------t----------------t---------------~ 
, Binary I (p) I (MIN (CEIL ,(p) I (MIN (CEIL I 
I Float" , (p*3.32), N) )' I (p*3.32) ,N» I 
~--------t------------------t--------------------t----------------t---------------~ 
I Decimal, (CEIL(p/3.32» I (p) I (CEIL (p/3.32» I (p) , 
, Float I I I , I L ________ ~ ____ . _____________ ~ ___________________ ~ ________________ ~ _______________ J 

Chapter 3: Data Manipulation 33 



r-----T-----T-----T-----T-----T-----' 
I I I I I A I A I 
I I I NOT I NOT I AND I OR I 
I A I B I A I BIB I B I 
~-----+-----+-----+-----+-----+-----~ 
11 I 1 I 0 1 0 11 I 1 I 
~-----+-----+-----+-----+-----+-----~ 
!I 1 I 0 I 0 I 1 I 0 I 1 I 
,~-----+-----+-----+-----+-----+-----~ 
10111 1 1010 11 I 
t-----+-----+-----+-----+-----+-----~ 
1 0 101 1 I 1 101 0 I l _____ ~ _____ ~ _____ ~ _____ ~ _____ ~ _____ J 

Examples: 

If field A is '010111'B, field B is 
'111111'B, and field C is '101'B, then 

, A yields '101000'B 
C & B yields '101000'B 

A I , C yields '010111'B 
, h C h B) yields '101111' B 

For a discussion of hOW these expres­
sions are evaluated, see "Evaluation of 
Expressions,ft in this chapter. 

Comparison Operations 

Comparison operations have the general 
form: 

operand {<I<=I=t,=I>=I>} operand 

There are three types of comparisons: 

1. Algebraic, which involves the compari­
son of signed numeric values in coded 
arithmetic form. Conversion of numer­
ic fields will be performed. 

2. Character, which invol ves left.-to­
right, pair-by-pair comparisons of 
characters according to a collating 
sequence. If the operands are of 
different length, the shorter is 
extended to the right with blanks. 

3. Bit, which involves the left-to-right 
comparison of binary digits. If the 
strings are of different lengths, the 
shorter is extended on the right with 
zeros. 

The result of a comparison is a bit 
string of length one; the value is '1'B if 
the relationship is true or 'orB if it is 
false. 

If the operands of a comparison are of 
different types, the operand of the lower 
type is converted to the operand of the 
higher type. The priority of types is (1) 
arithmetic (highest), (2) character string, 
(3) bit string. 

34 

As a result of the conversion, both 
operands will then be arithmetic or charac­
ter string, and algebraic or character 
comparison will be performed. 

Only the operations = and ,= are defined 
when either operand is complex. 

Concatenation Operations 

Concatenation operations have the fol­
lowing general form: 

operand I I operand 

If both operands are of bit-string type, 
no conversion is performed, and the result 
is of bit type. In all other cases, the 
operands are converted where necessary to 
character-string type before the concatena­
tion is performed, and the result is of 
character type. The result is of varying 
length if either operand is of varying 
length or is a reference to the SUBSTR 
built-in function. Otherwise, the result 
is of fixed length. 

Examples: 

If A is '010111'B, B is '101'B, C is 
'XY,Z' and D is 'AA/BB', then 

AI IB yields ~010111101'B 
AI I A II B yields 3010111010111101' B 

CIID yields 'XY,ZAA/BB' 
DI IC yields 'AA/BBXY,Z' 

Type Conversion 

Bit String to Character String 

The bit 1 becomes the character 1, and 
the bit 0, the character O. The length is 
unchanged. The null bit string becomes the 
null character string. 

Character String to Bit String 

The characters 1 and 0 become the 
and O. The conversion is illegal 
character string contains characters 
than 0 and 1. The null character 
becomes the null bit string. 

Character String to Arithmetic 

bits 1 
if the 
other 

string 

The character string 
according to the rules of 

is interpreted 
list directed 



input (see "List-Directed Input Format,n in 
Chapter 7). The value is converted direct­
ly to an operand with the same base, scale" 
mode, and precision that a decimal real 
fixed-point variable of default precision 
would have been converted to if it had 
appeared. The null string is converted to 
the value zero~ sterling constants are not 
permitted. 

Bit String to Arithmetic 

The bit string is interpreted as an 
unsigned binary integer, and converted to 
fixed-point binary, precision (S,O), where 
S depends upon the implementation. The 
null string is converted to the value zero .. 

Ari throe·tic to Character String 

CODED AHITHMETIC AND BINARY NUMERIC FIELDS: 
The arithmetic value is converted to a 
charact4er string according to the rules of 
list-di:rected output specified in Chapter 
7. 

DECIMAL NUMERIC FIELDS: The numeric field 
is interpreted as a character string (see 
Appendix 2). 

Arithme1::ic to Bit String 

CODED ARITHMETIC AND DECIMAL NUMERIC 
FIELDS: The arithmetic value is converted 
to real then t:o fixed-point binary, preci-' 
sion (Plr 0), where p is related to thE~ 
precision before conversion as follows 
(with ceilings of expressions use~ 

BINARY ]~IXED (r, s) 
BI NARY FLOAT (r) 
DECIMAL FIXED (r,s) 

DECIMAL FLOAT (r) 

p min (N,max(r-s,O» 
p r 
p min (N,max(CEIL 

«r-s) *3.32) ,0» 
p = min(N,CEIL(r*3.3~ 

The reSUlting binary fixed-point value 
is interpreted as a bit string of length p. 

BINARY NUMERIC FIELDS: The numeric field 
is interpreted as a bit string. 

ARRAY EXPRESSIONS 

If the operands of an expression refer 
to arrays or to a combination of scalars 
and arrays, the expression is an array 
expression. 

An array expression returns an array 
result. That is, all operations performed 
on arrays are performed on an element-by­
element basis. Therefore, all arrays 

referred to in an array expression must be 
of identical bounds. 

Note: Array expressions are not always 
expressions of conventional matrix algebra. 

The appearance of a function reference 
(other than a built-in function) will imply 

a scalar result. For example, if A is an 
array, PROCEDURE (A) is a scalar function 
with an array argument. 

The built-in functions listed under 
"Arithmetic Generic FUnctions," nFloat 
Arithmetic Generic Functions," and "String 
Generic FUnctions," in Appendix 1 may part­
icipate in array expressions with array 
results. An array may be substituted for 
any of the arguments of these functions 
except those arguments which are required 
to be integer constants, or those which 
must be converted to integers. 

Prefix Operators and Arrays 

The result of the operation of a prefix 
operator or a built-in function upon an 
array is an array of identical bounds, each 
element of which is the result of the 
operation having been performed upon each 
of the corresponding elements of the origi­
nal array. 

Example: 

If A is the array 5 3 -9 
1 -2 7 
6 3 -4 

then -A is the array -5 -3 9 
-1 2 -7 
-6 -3 4 

Infix Operators and Arrays 

Scalar - Array Operations 

The result of an operation in which a 
scalar and an array are connected by an 
infix operator is an array of bounds ident­
ical to the original, each element of which 
is the result of the operation performed 
upon the scalar and upon each of the 
corresponding elements of the original 
array. 

Example: 

If A is the array 5 10 
12 11 

8 
3 

Chapter 3: Data Manipulation 35 



then 3*A is the array 15 30 24 
36 33 9 

Array - Array Operations 

The result of an operation in which two 
arrays of identical bounds are connected by 
an infix operator is an array of bounds 
identical to the original arrays, each 
element of which is the result of the 
operation performed upon the corresponding 
elements of the two original arrays by the 
infix operator. 

Example: 

If A is the array 2 
3 
1 
4 

and if B is the array 1 
7 
3 
6 

then A + B is the array 3 
10 

4 
10 

4 
6 
7 
8 

5 
8 
4 
3 

9 
14 
11 
11 

A*B is the array 2 20 
21 48 

3 28 
24 24 

and MAX (A+B,A*B) is the array 

3 20 
21 48 

4 28 
24 24 

Array Expressions Involving Structures 

An array expression may involve an array 
of structures. 

Example: 

Let A and B be arrays of structures: 

1 A (3) 
2 P 

3 Q 
3 R 

2 S 
3 T 
3 U 

1 B (3) 
2 C 

3 D 
3 E 

2 F 
3 G 
3 H 

Then, A+B*2 is a valid expression that 
will result in each element of the array B 
being multiplied by the constant 2 and 
added to the corresponding element of the 
array A. The above expression, A+B*2, is 
equivalent to the following: 

36 

A (1) .P.Q+B (1) .C.D*2, 
A (1) .P.R.+B (1) .C.E*2, 

A (3) .S.U+B (3) .F.H*2 

STRUCTURE EXPRESSIONS 

The operands of a structure expression 
are structures, or a combination of struc­
tures and scalars. A structure expression 
returns a structure result. Array operands 
are not allowed in structure expressions. 

All operations performed on structures 
are performed on an element-by-element 
basis. Thus, all structures appearing in a 
structure expression must have identical 
structuring. This means that the structure 
must have the same number of contained 
scalars and arrays. The positioning of the 
scalars and arrays within the structure 
must be the same, and arrays similarly 
positioned must have identical dimensions 
and bounds. The data types need not be the 
same. 

When an operation has one structure and 
one scalar operand, it is interpreted as 
many operations, one for each scalar ele­
ment in the structure. Each sub-operation 
involves a structure element and the scalar 
operand. 

A structure expression is a shorthand 
method of applying an expression to each 
item of a structure. 

Example: 

If there a+e two structures: 

1 A 1 B 
2 PART 1 2 PAR'!'1 

3 SUBPART 1 3 SUBPART1 
3 SUBPART2 3 ALPHA 
3 SUBPART3 3 SUBPART2 

2 PART 2 2 PART2 
3 SUBPART4 3 ALPHA 
3 BETA 3 SUBPART4 
3 SUBPART5 (3) 3 SUBPART5 (3) 

Then the expression A-2*B is shorthand for 
the following expressions: 

A SUBPART 1 2*B SUBPART 1 
A SUBPART2 - 2*B PART 1 . ALPHA 
A SUBPART3 - 2*B SUBPAR'!'2 
A SUBPART4 - 2*B PAR'I2 . ALPHA 
A . BETA - 2*B . SUBPART4 
A . SUBPlill.T5 - 2*B . SUBPF,RT5 



Note that the last expression is an array 
expressi.on. 

EVALUATION OF EXPRESSIONS 

In the following syntactical definition 
of an expression, operator precedence is 
indicated as extending from prefix +, pre­
fix , and ** at highest precedence, down 
through I I at lowest precedence. This 
hierarchy is modified as indicated by 
parenthe~ses, and by, which as a unary 
operator has precedence over any operators 
immediat,ely to its left, but has lower 
precedence than relational and arithmetic 
operators to its right. 

Recursion on the right of an operator 
indicates right-to-left evaluation (prefix 
operators and **), while recursion on the 
left of an operator indicates left-to-right 
evaluation. The operators + and * are 
conunutative, but not associative, as low­
order rounding errors will depend on the 
order of evaluation of an expression. Thus 
A+B+C is not necessarily equal to A+(B+C). 

expression ::= 

union ::= 

intersection ::= 

negation ::= 

relation :: = 

sum :: = 

sum1 ::= 

product: := 

product 1 ::= 

fact.or ::= 

factor 1 ::= 

union I {expression II 
union} 

intersection I {unionl 
intersection} 

negation I { intersec­
tion~negation} 

{, negation} I relation 

sum11 {relation=sum} 
I {relation, =sum} 
I {relation>sum} 
I {relation>=sum} 
I {relation<sum} 
I {relation<=sum} 

negation I sum1 

product I {sum1 + 
product} I {sum1 -
product} 

negation I product 1 

fac'tor I 
factor} 
factor} 

{product1 * 
I {product 1 / 

negation I factor1 

unit I {+ factor} {-
factor} I 
{uni t**factor} 

unit ::= 

unit1 : := 

negation I unitl 

constant I 
variable I 
reference 
(expression) 

scalar­
fUnction-

I 

The rules relating to abnormal fUnctions 
and abnormal data should be noted (see 
"Abnormality," in Chapter 1~. 

ORDER OF THE EVALUATION OF EXPRESSIONS 

Consider any scalar expression in which 
two operands are separated by an infix 
operator in the form of A op B, where ·op· 
denotes any operator. Then either A or B, 
or both, may be a "composite operand", that 
is, a subscripted name, a function 
reference, or a subexpression of the form 
op C, C op D, or (C). In such cases, the 
subscripts and arguments that must be 
evaluated and the functions that must be 
invoked before the operator is applied, are 
termed the "elements· of the operand. For 
the purposes of this discussion, an operand 
that is an unsubscripted name or a constant 
is termed a "simple operand." 

If A is a simple operand and B is not a 
simple operand, then A will not be accessed 
until all the elements of B are accessed. 
Otherwise all elements of A are accessed 
before B is accessed. Subscript lists are 
evaluated and accessed, left to right, 
immediately before the accessing of the 
array elements. Argument lists are evalu­
ated and accessed, left to right, immedi­
ately before the function is invoked. 

Array expressions are evaluated by per­
forming, in turn, a complete scalar evalua­
tion of the expression for each position of 
the array. The evaluations proceed in 
row-major order. The result of an evalua­
tion for an earl~er position can alter the 
values of scalar elements for the evalua­
tion of a later position (see Example 1, 
for "The Assignment Statement," in Chapter 
8) • 

Structure expressions are evaluated by 
performing a complete scalar evaluation of 
the expression for each eligible field, in 
the order in which the fiElds in the 
structures are stored. The results of an 
evaluation for an earlier position can 
alter the result for the evaluation of a 
later position. 

Chapter 3: Data Manipulation 37 



CHAPTER 4: DATA DESCRIPTION 

ATTRIBUTES 

An identifier appearing in a PL/I pro­
gram may refer to one of many classes of 
objects. It may, for example, represent a 
variable referring to a complex number 
expressed in fixed-point forro with decimal 
base; it may refer to a file; it may 
represent a variable referring to a charac­
ter string; it may represent a statement 
label or represent a variable referring to 
a statement label, etc. 

Those properties that characterize the 
object represented by the identifier, and 
other properties of the identifier itself 
(such as scope, storage class, etc.), 
together make up the set of attributes 
which can be associated with an identifier. 

There are a number of classes of attri­
butes. These classes and the attributes in 
each class are described fUrther on in this 
chapter. 

When an identifier is used in a given 
context in a program, attributes from cer­
tain of these attribute-classes must be 
known in order to assign a unique meaning 
to the identifier. For example, if an 
identifier is used as a data variable, the 
data type must be known; if the data type 
is arithmetic, the base, scale, mode, and 
precision must be known. 

Examples of Attributes: 

CHARACTER (50) Association of this a·ttri­
bute with an identifier defines the 
identifier as representing a variable 
referring to a string 50 characters in 
length. 

FLOAT Association of this attribute wi·th an 
identifier defines the 
representing a variable 
arithmetic data, where 
represented internally 
point form. 

identifier as 
referring to 
the data is 

in floating-

EXTERNAL Association of this attribute with 
an identifier defines the identifier 
as a name with a certain special 
scope. 

38 

DECLARATIONS 

A given identifier is established as a 
name, which holds throughout a certain 
scope in the program (see nScope of 
Declarations" in this chapter) , and a set 
of attributes may be associated with the 
identifier by means of a declaration. 

If a declaration is internal to a 
certain block, then the declared identifier 
is said to be declared in that block. 

'In a given program, an identifier may 
represent more than one name. In this 
case, each different name represented by 
the identifier is said to be a different 
use of the identifier. For example, an 
identifier may represent an arithmetic 
variable in one part of a program and an 
entry name in another part. These two 
parts, of course, cannot overlap. 

Each different use of the identifier is 
established by a different declaration. 
References to different uses are distingu­
ished by the rules of scope (see nScope of 
Declarations") • 

Declarations may be explicit, contex­
tual, or implicit. 

EXPLICIT DECLARATIONS 

Explicit declarations are made through 
use of the DECLARE statement, by which an 
identifier can be established as a name and 
given a certain set (possibly empty) of 
attributes. 

Only one DECLARE statement can be 
used to establish a given use of a 
given identifier, and all of the 
explicitly declared attributes for 
this use must be specified in the 
DECLARE statement. 

The DECLARE statement 

Function: 

The DECLARE statement is 
executable statement used 
specification of attributes 
names. 

a non­
for the 

of simple 



1. 

General Format: 

DECLARE [l,evel] name [attribute] 
[, [level] name [attribute] ••• ] ... , 

Syntax rules: 

Any numher 
declared as 
statement and 
commas. 

of identifiers may be 
names in one DECLARE 
must be separated by 

2. Attributes must follow the names to 
which they refer. (Note that the 
above format does not show factoring 
of attribu"tes, which is allowable as 
explained later) • 

3. "Level" is a non-zero decimal integer 
constant. If it is not specified, 
level 1 is assumed. A blank space is 
not required to separate a level num­
ber from the name following it. 

General Rules: 

1. All of the attributes for a particular 
name must be declared together in one 
DECLARE sta.tement. 

2. Attributes of EXTERNAL names, declared 
in separate blocks and compilations, 
must not conflict or supply explicit 
information that was not explicit or 
implicit in other declarations. 

Example: 

DECLARE JOE FLOAT, JIM FIXED (S,3), 
JACK BI'r ( 1 0) ; 

JOE is declared to be a floating-point 
scalar variable, JIM a five-position, 
fixed-point scalar variable with three 
places to the right of the decimal, and 
JACK a scalar variable of ten bits. 

Factoring of Attributes 

Attributes common to several name dec­
larations can be factored to eliminate 
repeated specification of the same attri­
bute for many identifiers. This factoring 
is achieved by enclosing the name declara­
tions in parentheses, and following this by 
the set of attributes which are to apply. 
In the case of a factored level number, the 
level number precedes the parenthesized. 
list of name declarations. 

Example: 

DECLARE «A FIXED, B FLOAT) STATIC, 
C CONTROLLED) ENTERNAL SYMBOL; 

This declaration is equivalent to the 
following: 

DECLARE A FIXED STATIC EXTERNAL 
SYMBOL, 

B FLOAT STATIC EXTERNAL SYMBOL, 
C CONTROLLED EXTERNAL SYMBOL; 

Multiple Declarations and Ambiguous 
References 

Two or more declarations of the same 
identifier, internal to the same block, 
constitute a multiple declaration of that 
identifier only if they have identical 
qualification (including the case of two or 
more declarations of an identifier at level 
1, i.e., scalars or major structures). In 
a multiple declaration, only the first 
declaration (by physical appearance) of the 
identifier is legal; the others are in 
error. 

Reference to a qualified name is always 
taken to apply to the identifier (for which 
the reference is valid) declared in the 
innermost block containing the reference. 
Within this block, the reference is unam­
biguous if either of the following is true: 

1. The reference gives a valid qualifica­
tion for one and only one declaration 
of the identifier. 

2. The reference represents the complete 
qualification of only one declaration 
of the identifier. The reference is 
then taken to apply to this identifi­
er. 

Otherwise, the reference is ambiguous and 
in error. 

Examples: 

1. DECLARE 1A, 2C, 2D, 3E; 
BEGIN; 

DECLARE 1A, 2B, 3C, 3E; 
A.C refers to C in the inner block. 
D.E refers to E in the outer block. 

2. DECLARE 1A, 2B, 2B, 2C, 3D, 2D; 
B has b~en multiply declared. 
A.D refers to the second D, since A.D 

is a complete qualification of only 
the second Di the first D would 
have to be referred to as A.C.D. 

3. DECLARE 1A, 2B, 3C, 2D, 3C; 
A.C is ambiguous because neither C is 

completely qualified by this ref­
erence. 

4. DECLARE 1A, 2A, 3A; 
A refers to the first A. 

A.A refers to the second A. 
A.A.A refers to the third A. 

5. DECLARE X; DECLARE 1Y, 2X, 3Z, 3A, 2Y, 
3Z, 3A; 

X refers to the first DECLARE 
Y.Z is ambiguous 

Y.Y.Z refers to the second Z 
Y.X.Z refers to the first Z 

Chapter 4: Data Description 39 



CONTEXTUAL DECLARATIONS 

The syntax of PL/I allows identifiers 
appearing in certain contexts to be recog­
nized without an explicit declaration. The 
various cases are described below~ 

1. An identifier may occur in a context 
where only a file name may appear. In 
some of these cases, the identifier is 
said to be declared as a file name, 
with the default attribute EXTERNAL 
(see "Application of Default 

Attributes" in this chapter) • 

Example: 

READ FILE (INFILE) DATA; 

Here, INFILE is declared contex­
tually with the attribute FILE. 

2. An identifier may occur in a context 
where only a task (or event) name (see 
liThe CALL Statement" in Chapter 8 and 
-Asynchronous Operations and Tasks" in 
Chapter 6) may appear. In some of 
these cases, the identifier is said to 
be declared as a task (or event) name 
(see "Application of Default 

Attributes") • 

Example: 

WAIT (EVENT2) ; 

Here, EVENT2 is declared contex­
tually as an event identifier. 

3. An identifier may occur in a context 
where only a programmer-specified con­
dition name (see Appendix 3) may 
appear. In this case, the identifier 
is said to be declared as a condition 
name, with the attribute EXTERNAL. 

Example: 

ON CONDITION (TEST1) GO TO CHECK; 

Here, TEST1 is declared contextual­
ly as a condition name. 

4. An identifier may appear within a 
statement in a context where only an 
entry name may appear. That is, an 
identifier is contextually declared as 
an entry name if it appears as a label 
to a PROCEDURE or ENTRY statement or 
if it appears following the keyword 
CALL or as the function name in a 
function reference whose argument list 
is non-empty. If the occurrence of 
the identifier does not lie within the 
scope of the same identifier used to 
label a PROCEDURE or ENTRY statement, 
the identifier is given a default 
attribute of EXTERNAL. 

40 

Example: 

CALL EXPRI; 

5. An identifier may appear as a label of 
a statement, i.e., as a statement 
label or an entry name. (A statement 
label variable must be explicitly 
declared with the attribute LABEL.) 

In this case, the label or name is 
said to be declared in the block to 
which it is internal (for the defini­
tion of internal to, see "Blocks") • 
This implies that every statement 
label except the label of a BEGIN 
statement is declared in the block to 
which its associated statement is 
internal. It further implies that a 
label appearing before a BEGIN, ENTRY, 
or PROCEDURE statement is declared in 
the immediately containing block. 

In the special case where the label 
for an external 

is said to be 
and has the 

(see "Scope of 

is an entry name 
procedure, the name 
declared externally, 
EXTERNAL attribute 
Declarations") • 

Example: 

A: PROCEDURE; 

P: PROCEDURE; 

LOOP:DOI=1 TO N; 

Q: BEGIN; 
LOOP:DO J=O TO I; 

END Q; 
END LOOP; 

END P; 
END A; 

In this example: 

END LOOP; 

A is declared as an external 
entry name. 
P is declared as an entry name in 
block A. 
LOOP in its first use is declared 
as a statement label in block P. 
Q is declared as a statement 
label in block P. 
LOOP in its second use is 
declared as a statement label in 
block Q. 



6. An identifier may appear in a formal 
parameter list in a PROCEDURE or ENTRY 
statement. In this case, the iden­
tifier is said to be declared in the 
block to which the list is internal. 
Attributes may be explicitly declared 
fOl: the identifier in a DECLARE state­
ment internal to the same block, in 
which case both the contextual and 
explicit declarations are regarded as 
constituting a Single declaration. 

Example: 

PAY: PROCEDURE (HOURS, RATE); 
DECLARE HOURS FIXED (6,2) 

END PAY; 

In this example, HOURS is declared 
explicitly and RATE contextually in the 
block PAY. 

7. An identifier may appear in list for 
data-directed transmission (see Chap­
te:r 7). In this case it is given the 
att.ribute SYMBOL. 

Example: 

READ DATA (A, B); 

Note: A.rithmetic or string attributes of 
constants are determined contextually. 

IMPLICIT' DECLARATIONS 

An identifier may be used in a block 
without being explicitly declared or con­
textually declared. In this case the iden­
tifier is said to be implicitly declared in 
the containing external procedure. As will 
be seen in the discussion of scope, this 
implicit declaration will then apply to the 
entire external procedure block except for 
any contained blocks where the identifier 
might be re-declared. 

Example: 

B1: PROCEDURE (Z1,Z2); 
TEMP1=ABS (Z 1**2+Z2**2) ; 
B2: BEGIN; 

TEMP2= 1/(TEMP1+Z2) **2; 
IF TEMP2>TEMP1 THEN RETURN 

(T:EMP2) ; 
END B2; 
RETURN (TEMP 1) 
END B1; 

In this example, TEMP 1 and TEMP2 
both implicitly declared in block B1. 

are 

SCOPE OF DECLARATIONS 

When a declaration of an identifier is 
made in a program, there is a certain 
well-defined reg~on of the program over 
which this declaration is applicable. This 
region is called the scope of the declara­
tion or the scope of the name established 
by the declaration. 

The scope of a declaration of an iden­
tifier is defined as that block B to which 
the declaration is internal, but excluding 
from block B all contained blocks to which 
another declaration of the same identifier 
is internal. 

This definition of scope can be applied 
to all identifier declarations except the 
declaration of entry names of external 
procedures (see "Declarations,· in this 
chapter) • The appearance of an identifier 
as the entry name of an external procedure 
is regarded as an explicit declaration of 
the identifier as an entry name with the 
EXTERNAL attribute. The scope of such a 
declaration is defined to be the entire 
external procedure, excluding all contained 
blocks to which another declaration of the 
same identifier is internal. 

Scope of External Names 

In general, distinct declarations of the 
same identifier imply distinct names with 
distinct non-overlapping scopes. It is 
possible, however, to establish the same 
name for distinct declarations of the same 
identifier by means of the EXTERNAL attri­
bute. The EXTERNAL attribute is defined as 
follows: 

An explicit or contextual declaration of 
an identifier that declares the iden­
tifier as EXTERNAL is called an external 
declaration for the identifier. All 
external declarations for the same iden­
tifier in a program will be linked and 
considered as establishing the same 
name. The scope of this name will be 
the union of the scopes of all the 
external declarations for this identifi­
er. 

In all of the external declarations for 
the same identifier, the attributes 
declared must be consistent, since the 
declarations all involve a single name. 
For example, it would be an error if the 
identifier ID were used as a file name in 
some READ statement in a program, and in 
the same program to declare ID as EXTERNAL 
ENTRY, since a file name always has the 
scope attribute EXTERNAL (see "Default 
Attributes") and the attribute FILE, which 
conflicts with the attribute ENTRY. 

Chapter 4: Data Description 41 



The EXTERNAL attribute can be used to 
communicate between different external pro­
cedures or to obtain non-continuous scopes 
for a name within an external procedure. 

An external name is a name that has the 
scope attribute EXTERNAL. If a name is not 
external, it is said to be an internal name 
and has the scope attribute INTERNAL. 

Example 1: 

1 A: 
2 

3 
4 
5 
6 

PROCEDURE; 
DECLARE (X,Z) FLOAT; 

B: PROCEDURE (Y); 
DECLARE Y BIT (6) 
C: BEGIN; 

DECLARE (A,X) FIXED; 

7 

8 
9 
10 

Y: RETURN; 
END C; 

END B; 
D: PROCEDURE; 

DECLARE X FILEi 
Y = Z; 

END D; 
END Ai 

The numbers on the left are for reference 
only, and are not part of the procedure. 
See Table 2 for an explanation of the scope 
and use of each name. 

Since entry names of external procedures 
and file names have the attribute EXTERNAL, 
the scope of the entry name A and of the 
file name X above may include parts of 
other external procedures of the program. 

Table 2. Scope and Use of Names in Example 1, for "Scope of External Names" 
r----------------------------------------------------------------------------, 

Reference Line 

42 

1 

2 

2 

3 

4 

5 

6 

6 

7 

8 

9 

10 

A 

X 

Z 

B 

y 

C 

A 

X 

Y 

D 

x 

Y 

Use Scope (by block names) 

external entry name all of A except C 

floating-point variable all of A except C and D 

floating-point variable all of A 

internal entry name all of A 

bit string all of B except C 

statement label all of B 

fixed-point variable all of C 

fixed-point variable all of C 

statement label all of C 

internal entry name all of A 

file name all of D 

floating-point variable all of A except B 



Example 2: 

A: PROCEDU:RE; 
DECLARE X EXTERNAL; 

B: PROCEDURE; 
2 DECLARE X FIXED; 

C: BEGIN; 
3 DECLARE X EXTERNAL; 

END C; 
END B; 

END A; 
D: PROCEDURE; 

4 DECLARE X FIXED; 

E: PROCEDURE; 
5 DECLARE X EXTERNAL; 

END Ei 
END D; 

The reference numbers on the left are not 
part of the procedure. 

In example 2, there are five declara­
tions for the identifier X. 

Declaration 2 declares X as a fixed­
point variable name; its scope is all of 
block B except block Ca 

Declaration 4 declares X as another 
fixed-point variable name, distinct from 
that of declaration 2; its scope is all of 
block D except block E. 

Declarations 1,3,5 all establish X as a 
single name; its scope is all of the 
program except the scopes of declarations 2 
and 4. 

Basic Rule on Use of Names 

A name is said to be known only within 
its scope. This definition suggests a 
basic _.- and almost self-evident -- rule on 
the use of names: 

All appearclnces of an identifier which 
are intended to represent a given name 
in a program must lie within the scope 
:of that name. 

There are many implications to the above 
rule. One of the most important is the 
limitation of transfer of control by the 
statement GO TO A, where A is a statement 
label. 

The statement GO TO A, internal to a 
block B, can cause a transfer of control to 
another statement internal to block B or to 
a statement in a block containing B, and to 
no other statement. In particular, it 
cannot transfer control to any point within 
a block contained in B. 

THE ATTRIBUTES 

Attributes are used to give 
characteristics to their associated iden­
tifiers. The attributes of the language 
are divided into the following classes: 

Data attributes 
Dimension attribute 
SECONDARY attribute 
ABNORMAL/NORMAL attributes 
USES and SETS attributes 
Entry name attributes 
Scope attributes 
Storage Class attributes 
ALIGNED and PACKED attributes 
DEFINED attribute 
INITIAL attribute 
Symbol table attributes 
Structure attributes 
LIKE attribute 
File description attributes 

DATA ATTRIBUTES 

Arithmetic Data 

Variables are declared to be of arith­
metic type if they are given any of the 
attributes base, scale, mode, or numeric 
picture. 

Base 

The base attribute specifies that the 
data is in binary or decimal form. 

General format: 

BINARY I DECIMAL 

Rules: 

This attribute may not be specified in 
combination with the PICTURE. attri­
bute. 

Chapter 4: Data Description 43 



Default: 

See "Default Conditions for Arithmetic 
Data." 

Examples: 

DECLARE A DECIMAL, B BINARY; 

Scale 

Function: 

The scale attribute specifies that the 
data is in fixed-point or floating-point 
form. 

General format: 

FIXED I FLOAT 

Rules: 

This attribute may 
combination with the 
bute. 

Default: 

not be given in 
PICTURE at-tri-

See "Default conditions for Arithmetic 
Data. II 

Examples: 

DECLARE A FIXED, B FLOAT; 

Mode 

Function: 

The mode attribute specifies that the 
mode of the data is real or complex. 

General format: 

REALI COMPLEX 

Rules: 

This attribute may be given in combi­
nation with the PICTURE attribute, to 
specify a complex numeric field. 

Default: 

See "Default Conditions for Arithmetic 
Data." 

Example: 

DECLARE A COMPLEX, B REAL: 

44 

Precision 
Function: 

The precision attribute specifies the 
number of significant binary or decimal 
digits to be maintained for both fixed­
point and floating-paint data, as well as 
the scale of the data. 

General format: 

(number-of-digits[,scale-factor]) 

Rules: 

1. The precision attribute must 
immediately follow a scale, base, or 
mode attribute and may never appear 
alone or separated from one of these 
attributes. 

2. nNumber-of-digits n is a decimal inte­
ger constant specifying the number of 
binary or decimal digits to be main­
tained and is used with both fixed­
point and floating-point data. 

3. The Dscale-factor" is an optionally 
signed decimal integer constant that 
defines the position of the point with 
respect to an integer data item of the 
specified number of digits. The scale 
factor is used only with fixed-point 
data. 

4. When the scale is fixed and no scale 
factor is given, it is assumed to be 
zero. 

5. The scale factor may be negative, and 
it may be larger than the number of 
digits. 

6. The scale factor effectively 
multiplies the integer data by the 
base raised to the power of the scale 
factor with the sign reversed. For 
example, decimal data of preclslon 
(5,2) represents numbers from .01 to 
999.99 or zero in magnitude: decimal 
data of precision (5,-2) represents 
numbers from 100 to 9999900 or zero in 
magnitude. 

7. This attribute may not be given in 
combination with the PICTURE attri­
bute. 

Examples: 

DECLARE A FLOAT (3), B REAL (10) 
FLOAT, X FIXED (5,2); 

The following table shows the meaning of 
the scaling for fixed-point variables: 

r----------T-------T----------T--------, 
1 Integer 1 Scale IPrecision IValue 1 
1 1 1 1 1 
1 00123 1 FIXED 1 (5,2) 11.23 1 
I 00123 1 FIXED 1 (5,-2) 112300 1 
1 123 1 FIXED 1 (3,4) 1.0123 1 
1 123 1 FIXED I (3,-4) 11230000 I L __________ .L ______ .L ___________ .L ________ J 



Default Conditions for Arithmetic Data 

If the base, scale, and mode are not 
specified, the arithmetic default attri­
butes are dependent upon the first letter 
of the name. If the first letter of the 
name is I through N, FIXED REAL BINARY is 
assumed; otherwise, FLOAT REAL DECIMAL is 
assumed. 

If arithmetic data attributes are partly 
specified, the remaining attributes are 
assumed as follows: 

Base: DECIMAL 
Scale: FLOAT 
Mode: REAL 

If precision is not specified, the 
assumed precision is that which is defined 
for the particular implementation of the 
language that is being used, where the 
definition depE~nds on the scale and base. 

The PIc'rURE At1:ribute 

Func"tion: 

The PICTURE attribute is used to define 
the int~=rnal and external formats or numer-' 
ic and charactE~r-string data fields and to 
specify the editing of data. This discus­
sion is limited to the use of the PICTURE 
attribute with numeric data. The use of 
the PIc~rURE att:ribute with character-string 
data is described in "String Attributes." 
The picture characters are described in 
Appendix 2. 

GeneJ::-al format: 

PICTURE 'numeric-picture-specirica­
tions' 

Genel:-al rules: 

1. PICTURE may not be specified in combi­
nation with the base, scale, or preci­
sion attri.butesp 

Numeric fields have mode, base, 
scale, and precision; these are speci­
fied by the picture characters used in 
describing the field, and by the use 
of the mode attribute if COMPLEX. 
Note the exception that sterling pic­
tures are treated as a separate cate­
gory, although they are real fixed­
point decimal fields. 

2. A "picture specification" is composed 
of a string of picture characters. It 
must be enclosed in quotation marks. 
Individual picture characters may be 
preceded by an iteration factor, which 

is a decimal integer constant, g, 
enclosed in parentheses, to indicate 
repetition of the character n times. 
If n Is zero, the character is 
omitted. This iteration factor speci­
fication may not follow the picture 
character F. 

3. Numeric picture specifications must 
include at least one digit position. 

4. The following paragraphs indicate the 
combination of picture characters that 
show mode, scale, base, and precision. 
In this discussion, a fixed-point 
field has one field, and a floating­
point field has two subfields. 
a. Real binary fixed-point fields 

take the following general forms: 

b. 

PICTURE ' [S 11] [V] 
[S I 1] ••• [F ( [+ 1-] integer)]' 

PICTURE ' [2] [V] [2] ••• [F ( [+ 1-] 
integer)] , 

PICTURE • [3] [V] [3] ••• [F ( [+ 1-] 
integer)] • 

Only one V, representing a point, 
may be present in a picture 
specification, but it may be in 
any position. When a sign charac­
ter (S) is specified, the field 
will contain a binary 1, if the 
value is negative, or a zero, if 
the value is positive, for each S 
in the picture. 
Real binary floating-point fields 
take the following general forms? 

PICTURE I [S 11] 
K [S 11] ••• ' 

PICTURE • [2] 
K2 ••• ' 

PICTURE • [3] 
K3 ••• • 

[V] [SI1] ••• 

[V] [2] 

[V] [3] 

Each sign character allowed to the 
right of the V in the first form 
represents the sign of the expo­
nent. 

c. Real decimal fixed-point fields 
take the following general form: 

PICTURE ' [91 •• • [V] [91 ••• 
[F([+I-] integer)]' 

Sign, editing, and zero­
suppression picture characters, as 
explained in Appendix 2, may be 
included. The V may not appear 
more that once in a picture 
specification. If no V is given, 
the decimal point will be assumed 
to appear to the right of the last 
digit. No attempt has been made 
to show the use of all valid 
picture characters in the general 
format above. These are explained 
in Appendix 2. 

Chapter 4: Data Description 45 



46 

d. Real decimal floating-point fields 
take the following general form: 

PICTURE '[9] 
[9] ••• ' 

[V] [9] ••• {E I K} 

Sign, editing, and zero­
suppression picture characters may 
be included. Sign characters 
refer to the subfield in which 
they appear, except a CR or a DB, 
which refers to the first 
subfield. 

e. Complex fields may contain those 
picture characters that are valid 
for real fields as described 
above. They take the general 
form: 

real-picture 

The nreal-picture" represents both 
portions of the complex number. 
The attribute COMPLEX must also be 
specified. The real-picture may 
not specify a sterling field. 

f. Sterling fields are considered to 
be real fixed-point decimal 
fields. When involved in arith­
metic operations, they will be 
converted to a value representing 
fixed-point pence. Sterling pic­
tures have the general form: 

PICTURE 'G editing-character-1 
pounds-field separator-1 
shillings-field separator-2 
pence-field' 

"Editing character 1n may be one 
or more of the following picture 
characters: 

$ + - S 

The "pounds field" may contain the 
following picture characters: 

z Y * 9 T I R $ + - S 

nSeparator 1" may be one or more 
of the following picture charac­
ters: 

/. B V 

The nshillings field n may be: 

{99IZZIY9IZ9IZYI8} 

The 9s may be replaced by T, I, or 
R. 

The picture character Z may occur 
only if the whole of the field to 
the left of this character 
(including the pounds field) is 

5. 

also suppressed using the charac­
ter Z. 

"Separator 2" may be one or more 
of the picture characters: 

/. B V H 

The "pence field" takes the form: 

{991 zz I Y9171 Z91 ZY 16} [VI V.I. V] 
[91 Z I Y] ••• [B] ••• [P] [B] • •• [CR I DB 

1 S 1 - I +] [B] ••• 

Any of the nines may be replaced 
by one of the following: 

T I R 

In a sterling picture, there can 
not be more than one of the fol­
lowing characters: 

T I R CR DB S + -

Zero 
only 
point 
digits 
field. 

suppression characters can 
appear after the decimal 
in the pence field if all 

are suppressed in the 

The precision of picture specifi­
cations is described below. In this 
discussion, the following picture 
characters, actual and conditional, 
are defined as digit positions: 

2 3 9 Z * Y T I R 
and the drifting 

$ S + -

The precision of a fixed-point 
numeric field is (m,n), where m is the 
total number of digit positions in the 
field and n is the number of digit 
positions -following the V. If a 
drifting string contains n drifting 
characters, this specifies n-1 digit 
positions. For sterling pictures, m 
is 3 + the number of digits in the 
pound"s field + the number of fraction­
al digits in the pence field. 

The prec1s10n of a floating-point 
field is (p), where £ is the total 
number of digit positions before the E 
or K. 

Decimal or binary fixed-point pic­
tures may have a scaling factor. This 
may be achieved by placing the follow­
ing at the extreme right of the pic­
ture subfield: 

F ([+ 1-] integer) 

with the "integer" value represented 
by g, this specifies that the decimal 
or binary point should be assumed to 



be g places to the right (or left, if 
negative) of the position assumed in 
thE~ absence of the scaling factor. 
Th~~ precision of the numeric field is: 
thE~n (m, n-'g) • 

ThesE~ preci.sions may not exceed the 
limits for decimal fixed-point values, as 
defined for the particular implementation. 
of PL/I .. 

Func1:ion: 

The string attributes specify string 
data to be either in bit-string form or In 
character-string form with a specified 
length. The form of character-string data 
may also be specified. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

General format: 

{
BIT } 

CHARACTER (length) [VARYING] 

PICTURE 'character-picture­
specifications' 

Rules: 

BI']~ specifies bit-string data, CHARAC­
TEH specifies character-string data, 
and PICTURE specifies character-string 
data in picture form. 
The "length" specifies the actual 
length of fixed-length strings and the 
maximum length of varying-length 
strings, in which case the word VARY­
ING is used. If VARYING is specified, 
thEm either BIT or CHARACTER must also 
be specified. 
The length specification may be an 
expression or an asterisk. 
If the length specification is an 
expression, it will be converted to an 
integer at the point of allocation or 
upon entry to the declaring block for 
parameters. 
An asterisk may be used when the 
length is to be taken from a previous 
allocation for parameters or con­
trolled variables or if it is to be 
specified in a subsequent ALLOCATE 
statement for CONTROLLED variables. 
The length of strings declared STATIC 
must be a decimal integer constant. 
Since PICTURE is an attribute that 
also may apply to arithmetic data~ a 
separate explanation is in the section 
entitled "The PICTURE Attribute." 
Additional picture characters are pro­
vided when the PICTURE attribute is 
used to declare character-string data. 

These may be found in Appendix 2. 
8. BIT, CHARACTER, or VARYING may not be 

specified if PICTURE is specified. 

Example: 

DECLARE A BIT (10), B CHARACTER (5), C 
PICTURE 'XAA9AA', D BIT (*) VARYING; 

A is a field of ten bits; B is a field 
of five characters; C is a field of charac­
ters, letters, and a decimal digit; and D 
is a field of bits with a maximum length to 
be taken from a previous allocation or to 
be specified in a subsequent ALLOCATE 
statement. 

The LABEL Attribute 

Function: 

The LABEL attribute specifies that the 
associated variable will have statement 
labels as values. To aid optimization of 
the object program, it may also specify the 
values a label variable may have during 
execution of the program. 

1 • 

2. 

3. 

4. 

General format: 

LABEL [(statement-label-constant 
[, statement-Iabel-constan~ ••• )] 

Rules: 

If no statement-label constants are 
specified following the LABEL attri­
bute, the value of the variable may be 
any of the statement labels known in 
the scope of the variable. 
If the variable is a parameter, the 
value can also be any statement label 
that could be passed as an argument, 
or any value permitted for any label 
variable that may be specified as an 
argument. 
If a list of statement-label constants 
is specified, the variable may have as 
values only members of the list. The 
label constants in the list must be 
known in the block containing the 
declaration. 
An entry name cannot be a value of a 
label variable. 

Example: 

DECLARE START LABEL 
LABEL3} ; 

(LABEL 1 , LABEL2, 

Chapter 4: Data Description 47 



The TASK Attribute 

Function: 

The TASK attribute specifies that: the 
associated identifier is used as a task 
name (see "Asynchronous Operations and 
Tasks," in Chapter 6, the general rules 
under "The CALL Statement," in Chapter 8, 
and "Task Names," in Chapter 2) • 

General format: 

TASK 

Rules: 

1. An identifier may be explicitly 
declared with the TASK attribute in a 
DECLARE statement. It may be contex­
tually declared by its appearance in a 
TASR option appended to a CALL statL­
ment (see Chapter 8) • 

2. Task names may also have the following 
attributes: 

Dimension attribute 
Scope attribute (the default is 

INTERNAL) 
Storage class attribute (the 

default is AUTOMATIC) 
DEFINED attribute (task names may 

only be defined on other task 
names) 

ABNORMAL attribute (all task names 
are ABNORMAL) 

SECONDARY attribute 

3. A task name can appear only in a TASK 
option (see "The CALL Statement," in 
Chapter 8) or as the argument in the 
PRIORITY built-in function or in the 
PRIORITY pseudo-variable. 

The EVENT Attribute 

Function: 

The EVENT attribute specifies that the 
associated identifier is used as an event 
name (see "Asynchronous Operations and 
Tasks," in Chapter 6, the general rules 
under "The CALL Statement," in Chapter 8, 
and "Event Names," in Chapter 2) • 

General format: 

EVENT 

Rules: 

1. An identifier may be explicitly 
declared with the EVENT attribute in a 
DECLARE statement. It may be contex-

48 

tually declared by its appearance in 
an EVENT option appended to a CALL 
statement (see Chapter 8), or by its 
appearance in a WAIT statement (see 
Chapter 8) • 

2. Event names may also have the follow­
ing attributes: 

Dimension attribute 
Scope attribute (the default is 

INTERNAL) 
Storage class attribute (the 

default is AUTOMATIC) 
DEFINED attribute (event names may 

only be defined on other event 
names) 

ABNORMAL attribute (all event names 
are ABNORMAL) 

SECONDARY attribute 

3. An event name can appear only in an 
EVENT option (see "The CALL 
Statement," in Chapter 8), a WAIT 
statement (see Chapter 8), or as the 
argument in the EVENT built-in func­
tion or in the EVENT pseudo-variable. 

THE DIMENSION ATTRIBUTE 

Function: 

The dimension attribute defines 
bounds of an array. 

General format: 

(bound (, bound] ••• ) 

where IIbound ll is 
{(lower-bound :]upper-bound} 1* 

Rules: 

the 

1. The number of IIbounds" specifies the 
number of dimensions in an array. 

2. Bounds that are expressions are evalu­
ated and converted to integer data 
when storage is allocated for the 
array or when linkage is established 
for parameters. 

3. The bounds are indicated as follows: 
a. If only the upper bound is given, 

the lower bound is assumed to be 
one. 

b. When the actual bounds for each 
dimension are to be taken from a 
prtvious allocation for that iden­
tifier or are to be specified in a 
subsequent ALLOCATE statement, an 
asterisk must be used to represent 
each of the dimension bounds. 
Thus, asterisks may be used only 
for parameters and CONTROLLED 
variables. 

c. The lower bound must be less than 



or equal to the upper bound. 
4. The bounds of arrays declared static 

must be optionally signed decimal 
integer constants. 

Examples: 

1. DECLARE TAB:LEA (5,8), TABLEB (-5: 5,10) ; 

TABLEA is a two-dimensional array with 
5 rows and 8 columns (subscripts 
1 to 5 and 1 to 8). TABLEB is a 
two-dimensional array with 11 
rows and 10 columns (subscripts 
-5, -4, -3, -2, -1, 0, 1, 2, 3, 
4, 5 for the rows and 1 through 
10 for the columns) • 

2. DECLARE MATRIX (*,*); 

MATRIX is a two-dimensional array. 
The bounds are to be taken from a 
previous allocation for MATRIX or 
are to be subsequently specified 
in an ALLOCATE statement. 

THE SECONDARY AT'rRIBUTE 

Function: 

The SECONDARY attribute is used to spec­
ify that certain data normally does not 
require efficient storage. 

General format: 

SECONDARY 

Rules: 

1. This attribute may be declared only 
for major structures, arrays, and 
variables not contained in structures 
or arrays, i.e., for variables at 
level 1. 

2. The attribute specifies that where 
possible and necessary, less than nor­
mally efficient storage may be allo­
cated to the variable. 

THE ABNOR:MAL AND NORMAL ATTRIBUTES 

Function: 

The ABNORMAL and NORMAL attributes are 
used to specify procedures and/or data as 
being either normal or abnormal. 

General format: 

ABNO:RMALINOHMAL 

Rules for abnormality of procedures: 

1. Abnormality is a property of both 
external and internal procedures. 
Blocks invoking procedures that are 
abnormal must be within the scope of 
an ABNORMAL, USES, or SETS declaration 
for the invoked entry name. However, 
the invocation of an abnormal proce­
dure does not make the envoking proce­
dure itself abnormal. These attri­
butes enable program optimization to 
be performed. 

2. An external procedure is abnormal if 
it or any procedures invoked by it: 
a. Access, modify, allocate or free 

external data. 
b. Modify, allocate, or free their 

arguments. 
c. Return inconsistent function 

values for the same argument 
values. 

d. Maintain any kind of history. 
e. Perform input/output operations. 
f. Return control from the procedure 

by means of a GO TO statement. 
3. An internal procedure is abnormal: 

a. Under any of the conditions listed 
above for external procedures. 

b. If it, or any procedures called by 
it, access, modify, allocate, or 
free variables declared in an 
outer block. 

4. Abnormal external procedures invoked 
as functions must be declared with at 
least one of the attributes, ABNORMAL, 
USES, or SETS. The scope of this 
declaration must include the invoking 
block. 

5. ABNORMAL used alone specifies that all 
possible types of abnormality should 
be assumed. It is unnecessary to 
specify ABNORMAL for the built-in 
functions, TIME and DATE. 

6. The NORMAL attribute specifies that 
the entry name is for a procedure that 
is not abnormal. 

Rules for abnormal data: 

1. The ABNORMAL attribute may be declared 
for any variable. 

2. The ABNORMAL attribute specifies that 
a variable may be altered or otherwise 
accessed at an unpredictable time dur­
ing the execution of a program. This 
situation might occur, for example, 
during the execution of an ON-unit as 
described in liThe ON Statement," in 
Chapter 8. 

3. Every time ABNORMAL data is referred 
to, its associated storage contains 
its current value. 

Default for abnormality of procedures: 

If an external entry name appears only 
as a function reference, the entry name is 

Chapter 4: Data Description 49 



assumed to 
erwise, the 
ABNORMAL. 
procedures 
procedures 
assumed to 

have the NORMAL attribute; oth­
entry name is assumed to be 
Entry names of all internal 
and entry names of ext:ernal 
invoked in CALL statements are 

have the ABNORMAL attribute. 

Default for abnormality of data: 

Variables are assumed to be NORMAL, 
except structures containing ABNORMAI., ele­
ments; such structures may not be declared 
NORMAL. 

THE USES AND SETS ATTRIBUTES 

Function: 

The USES and SETS attributes are used to 
specify, for an entry name, the nature of 
an abnormality due to data manipulation. 

General format: 

USES (item [,item] ••• ) 
SETS (item [ ,item] ••• ) 

Rules: 
1. The items of the list following a 
USES or SETS attribute may be as 
follows: 
a. A decimal integer n, specifying 

the nth argument of any invocation 
of the procedure at the declared 
entry name. 

b. An unsubscripted data name known 
to both the block containing the 
declaration and the invoked proce­
dure. 

c. An asterisk indicating all iden­
tifiers described in b. 

2. An item in the USES list specifies the 
following: 
a. That the invoked procedure or pro­

cedures invoked by it access that 
item. 

b. That neither the invoked procedure 
nor procedures invoked by it reas­
sign that item unless it is also 
specified in a SETS attribute. 

c. That neither the invoked procedure 
nor procedures invoked by it 
access any other data known -to the 
block, except data designated by 
explicit arguments in either a 
CALL statement, a statement with a 
CALL option, or a function ref­
erence. 

3. An item in the SETS list specifies the 
following: 

50 

a. That the invoked procedure or pro­
cedures invoked by it reassign, 
allocate, or free that item. 

b. That neither the invoked procedure 
nor procedures invoked by it 

access that item other than to 
reassign, allocate, or free it, 
unless it is also specified in a 
USES attribute. 

c. That neither the invoked procedure 
nor procedures invoked by it reas­
sign, allocate, or free any other 
data known for the block, except 
data designated by explicit argu­
ments in the case of a CALL state­
ment. 

4. The USES and SETS attributes may be 
declared for any entry name used to 
invoke a procedure. The scope of this 
declaration must include the invoking 
block. If the ENTRY attribute is not 
declared, ENTRY is implied. If either 
USES or SETS is declared in the invok­
ing procedure, complete information 
must be given about the data that is 
used and/or set by the invoked proce­
dure. 

5. If an item in a USES or SETS list, as 
described in 1b above is defined on a 
base (see "The DEFINED Attribute") and 
if the base and any other items 
defined on it are known both to the 
invoking and invoked blocks, the base 
and the other items must also be 
specified in the list. 

6. A structure or array name appearing in 
a USES or SETS list implies that the 
names of all items contained in the 
structure or array also are on the 
list. It does not imply that items 
defined on elements of the structure 
are in the list; these must be 
declared as in rule 5, above. 

7. If the USES or SETS attribute is 
specified and the invoked procedure is 
abnormal in any other way, the ABNOR­
MAL attribute must still be specified 
(unless it is given by default). If 
the USES or SETS attribute is speci­
fied and the invoked procedure is not 
otherwise abnormal, the ABNORMAL 
attribute should not be specified. 

ENTRY NAME ATTRIBUTES 

An identifier may be declared to be an 
entry name by giving it the ENTRY attri­
bute. It may be declared to have any of 
the attributes SETS, USES, and BUILTIN. 
These attributes all imply EN'IRY and thus 
ENTRY need not be specified. The entry 
name also may have the attributes ABNORMAL 
or NORMAL and, with the exception of LABEL, 
SECONDARY, TASK, EVENT, or a dimension 
attribute, any of the data attributes list­
ed in the beginning of this section. 

The data attributes specify the charac­
teristics of the value returned when the 
entry name is invoked as a function. If 



data attributes are not specified, default 
or implicit characteristics will be assumed 
(see "Assignment of Attributes to 
Identifiers" in this chapte~ • 

An explicit declaration of an internal 
entry name and the procedure block having 
the entry name must both be internal to the 
same block. 

The ENTRY Attribute 

Function: 

The ENTRY attribute is used to declare, 
wi thin a lprocedure, entry names that are 
referred to in that procedure. 

General format: 

ENTRY [ (parameter-attribute-list 
[,parameter-attribute-list] ••• )] 

Rules: 

1. When ENTRY is used 6 it specifies that 
the identifier being declared is an 
entry name.. An entry name must be 
declared with the ENTRY attribute 
unless the entry label is known in the 
same block, or unless a reference is 
made to the entry name in a CALL 
statement or in a function reference 
with arguments, or if it is declared 
to have any of the attributes SETS, 
USES, GENEHIC, and BUILTIN. INTERNAL 
entries may only be declared in the 
block to which the procedure is inter­
nal. ENTRY without a parameter attri­
bute list specifies nothing about the 
number or nature of the parameters. 

2. When ENTRY is used with parameter 
attribute lists, each parameter attri­
bute list is a succession o£ attri­
butes describing the parameters of the 
entry point.. Permitted attributes are 
thosle allowed for parameters. 

3. The number of parameter attribute 
lists must be the same as the number 
of parameters required by the entry 
point. If a parameter attribute list 
is null, its place must be kept by a 
comma. 

4. Parameter attribute lists are not nec­
essa:ry if the parameters of the entry 
name are not to be described. 

5. The dimension attribute may be speci­
fied for array parameters. It must be 
the first attribute specified £or the 
parameter. 

6. The structuring for a structure param­
eter is specified by a structure des­
crip·tion using level numbers wi thout 
identifiers i' the level number being 
immediately followed by the list of 

attributes for that level of the 
structure. The first item in the 
description of the structure parameter 
must be at level one. 

7. Expressions occurring in ENTRY attri­
butes for length or dimension bounds 
are evaluated upon entering the block 
to which the declaration of the ENTRY 
attribute is internal. If an argument 
position sRecifies an entry with no 
data attributes, no default data 
attributes are provided. 

Default: 

If no attributes or level numbers are 
given for a parameter, no assumptions are 
made about it. When any attributes are 
specified, the remaining required attri­
butes are deduced according to the default 
rules given in "Assignment of Attributes to 
Identifiers." 

The GENERIC Attribute 

Function: 

The GENERIC attribute is used to define 
a name as a family of entry names, each of 
which is referred to by the name being 
declared. When the generic name is 
referred to, the proper entry name is 
selected, based upon the arguments speci­
fied for the generic name in the procedure 
reference. 

General format: 

GENERIC (entry-name-declaration 
[,entry-name-declaration] ••• ) 

Rules: 

1. No other attributes may be specified 
for the name being given the GENERIC 
attribute. 

2. Each "entry name declaration" follow­
ing the GENERIC attribute corresponds 
to one member of the family. 

3. Each entry name declaration must have 
the ENTRY attribute. It may optional­
ly have ABNORMAL, NORMAL, USES, SETS, 
BUILTIN, and data attributes. No 
entry name declaration may have the 
GENERIC attribute. 

4. Each entry name declaration must spec­
ify attributes or level numbers for 
every parameter of the associated 
entry name. Attributes unspecified 
but required for full definition will 
be deduced from default rules. 

5. When a generic name is referred to, 
the attributes of the arguments must 
match exactly the list following the 
entry name declaration of one and only 

Chapter 4: Data Description 51 



one member of the family. The ref­
erence is then interpreted as a ref­
erence to that member. Thus, the 
selection of a particular entry name 
is based upon the arguments of the 
reference to the generic name. 

6. The selection of a particular entry 
name is first based on the number of 
arguments in the reference to the 
name. The following attributes are 
then considered in choice of generic 
members: 

Base 
Scale 
Mode 
Precision 
PICTURE 
LABEL (but not range list) 
Dimensionality (but not bounds) 
CHARACTER (but not length) 
"BIT (but not length) 
VARYING 
TASK 
EVENT 
ENTRY (but not parameter descrip­

tion or other attributes of entry 
names other than data attributes 
of the value returned by a 
function) 

FILE (but no other FILE attributes) 
structuring, including only the 

attributes listed above for the 
structure members. 

7. Generic entry names (as opposed to 
references) may be specified as argu­
ments to non-generic procedures if the 
invoked entry name is declared with 
the ENTRY attribute (explicit or 
implicit for internal procedures). 
This ENTRY attribute must specify that 
the appropriate parameter is an entry 
name and specify by means of a further 
ENTRY attribute the attributes of all 
its parameters. This enables a choice 
to be made of which family member is 
to be passed. 

Example: 

DECLARE 
CALCULATE GENERIC (FIXCALC ENTRY (FIXED), 
FLTCALC ENTRY (FLOAT», Y FLOAT 
INITIAL (50); 

X=Y + CALCULATE (~; 

The assignment statement results in the 
invocation of the procedure FLTCALC, since 
the argument Y matches the entry attribute 
of the FLTCALC member of the family. 

52 

The BUILTIN Attribute 

Function: 

The BUILTIN attribute specifies that the 
reference to the associated identifier 
within the scope of the declaration is 
interpreted as a reference to the built-in 
function or pseudo-variable of the same 
name. 

General format: 

BUILTIN 

Rules: 

1. BUILTIN is used to refer to a built-in 
function or pseudo-variable in a block 
that is contained in another block in 
which this name has been declared to 
have another use. 

2. If the BUILTIN attribute is declared 
for an entry name, it may have no 
other attributes. 

3. For a list of built-in functions see 
Appendix 1. 

SCOPE ATTRIBUTES 

Function: 

The scope attributes are used to specify 
the scopes in which declared identifiers 
are known. 

General format: 

{ INTERN. AL } 
EXTERNAL [(identifier)] 

Rules: 

1. For a full discussion of the INTERNAL 
and EXTERNAL attributes, see "Scope of 
Declarations". 

2. In the form EXTERNAL (identifier), the 
identifier specifies a heading for the 
declared name. The scope of the name 
is then the union of the scopes of all 
EXTERNAL declarations of the same name 
with the same heading. 

Default: 

If the scope is unspecified for variable 
names, INTERNAL is assumed. 

Example: 

DECLARE SUM EXTERNAL (~; 

The variable SUM 
with the heading X. 

is declared external 
In other declarations, 



tbe beading distinguishes 
from other variables named 
heading or other headings. 

STORAGE CLASS AT'rRIBUTES 

Function: 

this 
SUM 

variable 
with no 

Storage class attributes 
allocate a particular class of 
variables. 

are used to 
storage to 

General format: 

STATIC I AUTOMATIC I CONTROLLED 

Rules: 

1. STATIC specifies that storage is allo­
cated at the start of execution of the 
program and is not released until 
program execution bas been completed. 

2. AUTOlMATIC specifies that storage is 
allocated on each entry to the block 
to which the storage declaration is 
internal. The storage is released on 
leaving th(~ block. . If the block is a 
proc1edure that is invoked recursively, 
the previously allocated storage is 
"pushed down" on entry, and the latest 
allocation of storage is "popped upn 
on bermination. (For a discussion of 
npushed down n and "poFped up" storage, 
see "Allocation of Data and storage 
Classes" in Chapter 6.) 

3. CONTlROLLED specifies that full control 
will be maintained over the allocation 
and freeing of storage by means of the 
stab:~ments l\LLOCATE and FREE. 

4. AUTOMATIC variables may have INTERNAL 
scope only. STATIC and CONTROLLED 
variables may have INTERNAL or EXTER­
NAL scope. 

5. Storage class attributes may not be 
specified for entry names, file names, 
members of structures, or DEFINED 
data .• 

6. STATTC and AUTOMATIC attributes may 
not be specified for parameters. 

7. Variables declared with adjustable 
leng1ths and dimensions ma:y not have 
·the STATIC attribute. 

8. If a procedure involving static stor­
age is invoked from within or as a 
separate task, the static storage is 
common to all invocations. 

9. If, during execution of a statement, 
controlled data is allocated or freed 
(by an abnormal function, for 

example), any reference in the state­
ment to that data produces an unde­
:f ined result:. 

10. storage class attributes may only be 
given for variables at level 1. The 
storage class applies to all elements 

1. 

2. 

3. 

of a structure or array of structures. 
If a structure is CONTROLLED, only the 
major structure, and not the elements, 
may be allocated and freed. 

Default: 

If storage 
the scope 
assumed. 
If storage 
the scope 
assumed. 
If neither 
specified, 

Example: 

class is unspecified and 
is EXTERNAL, STATIC is 

class is unspecified and 
is INTERNAL, AUTOMATIC is 

storage class'nor scope is 
AUTOMATIC is assumed. 

EXAMPLE: PROCEDURE; 
DECLARE A STATIC INITIAL 

(0), B CONTROLLED, C (10) 
ALLOCATE Bi 
A = A + 1; 

FREE Bi 
WRITE LIST (A) 
END EXAMPLE; 

The variable A is of the static storage 
class and is used to count the number of 
times the procedure is invoked. The varia­
ble B is of the controlled storage class, 
and storage is allocated and freed by use 
of the ALLOCATE and FREE statements. The 
variable C is of the automatic storage 
class by default. 

THE ALIGNED AND PACKED ATTRIBUTES 

Function: 

The ALIGNED and PACKED attributes are 
used to specify in storage the arrangement 
of string or numeric field data elements 
within data aggregates. 

General format: 

ALIGNED I PACKED 

Rules: 

1. These attributes may be specified for 
the following: 
a. Names of major structures. 
b. Names of arrays that are not them­

selves part of a structure. 
2. PACKED specifies that each string or 

numeric field element is packed in 
storage contiguous with the string or 
numerlC field elements that surround 
it. There should be no unused storage 
between two adjacent elements, provid-

Chapter 4: Data Description 53 



ed all data elements of the aggregates 
are string or numeric field variables 
of the same class. In other cases, 
some unused space may appear but stor­
age is to be conserved when possible. 

3. ALIGNED specifies that each string 
data element within the aggregate may 
start at a storage boundary to be 
defined individually for each implem­
entation of PL/I. This implies that 
two adjacent string or numerical field 
elements of a homogeneous aggregate 
may not necessarily occupy contiguous 
storage, if a more efficient program 
is possible. 

4. Arguments to the STRING generic fUnc­
tion must be PACKED structures. 

Default: 

1. The default for major structures is 
PACKED. 

2. The default for arrays that are not 
part of structures is ALIGNED. 

Examples: 

DECLARE 
1 A (10) PACKED, 2 B BIT 
(200), 2 C BIT (500), 2 D BIT 
(30~, E (10,1~ ALIGNED BIT (1~; 

All elements of A, an array of struc­
tures, will occupy a continuous area of 
storage. Each element of the array ~ will 
start at a storage boundary defined for 
that implementation of PL/I. There may be 
unused storage between the elements of the 
latter array. 

THE DEFINED ATTRIBUTE 

Function: 

The DEFINED attribute specifies that 
scalar, array, or structure data is to 
occupy the same storage as that already 
assigned to other data. 

General format: 

DEFINED base-identifier 
[subscript list] 

Rules for defining: 

1. In general, the defined item must have 
the same characteristics as the Rbase 
identifier.n However, mixed defining 
is permitted in the following two 
classes: 

54 

a. The bit class is composed of the 
following: 
(1) numeric fields of binary base 
(2) fixed-length bit strings 

(3) packed arrays or structures of 
ei ther or both (1) and (2) 

b. The character class is composed of 
the following: 
(1) numeric fields of decimal base 
(2) fixed-length character strings 
(3) packed arrays or structures of 

either or both (1) and (2) 
2. The INITIAL, SYMBOL, storage class, 

and scope attributes must not be spec­
ified for the defined item. The VARY­
ING attribute must not be specified 
for either the defined item or the 
base. It should be noted that 
although the base may have the EXTER­
NAL attribute, the defined item is 
always INTERNAL. The name of the 
base, if declared external, will be 
known in all blocks in which it is 
declared external, but the name of the 
defined item will not. However, the 
value of the defined item will be 
changed if the value of the base item 
is changed in an external block. 

3. The LIKE attribute must be specified 
for a defined item if it is to apply. 

4. The defined item must always be speci­
fied as a subset (including the full 
set) of the base identifier. Thus, 
the dimensions and string length of a 
defined item must be a subset of those 
of the base. 

S. No other attribute conflicts, except 
those mentioned in the above rules, 
are allowed between the defined item 
and the base. 

6. Expressions specified in base-
identifier subscript lists are 
evaluated when the defined item is 
referred to and not when it is 
declared. Use of a defined item in an 
argument list is interpreted as a 
reference to the defined item. 

7. The base identifier must always be 
known within the block where the 
defined identifier is declared and 
cannot have been declared with the 
DEFINED attribute. 

8. Expressions in attributes of the 
defined data other than in the DEFINED 
attribute are evaluated on entry to 
the declaring block. The current gen­
eration of the base at each point of 
reference to the defined item is nor­
mally taken as the defining base. If, 
howevel:, a def ined item is passed as a 
parameter and the base is reallocated, 
the parameter will be based on the 
generation current at the time of 
invocation. 

9. Data defined on a CONTROLLED base 
refers to the most recent generation 
of base data. 

Rules for scalar defining: 

1. Both the defined item and base iden­
tifier must be scalars. 



2. The base identifier may be subscript­
ed, in order to specify a scalar 
element of an array, but the defined 
term may not be an element of a 
structure or an array. 

3. Permitted forms are as follows: 

coded arithmetic 

label 

binary numeric 
field or bit 
string 

decimal numeric 
field or char-­
acter string 

task 
event 

Base Identifier 

coded arithmetic of the 
same base, scale, 
mode, and precision 

label 

binary numeric field or 
bit string 

decimal numeric field 
or character string 

task 
event 

4. The POSITION attribute may be speci­
fied when the base is a fixed-length 
string. 

General Format: 

POSITION (decimal-integer-constant) 

This specifies the position (n) relative 
to the start of the base where the defined 
item begins. If omitted, POSITION (1) is 
assumed. The position (n) is restricted as 
follows: n + length (defined-item) - 1 must 
be less than or equal to the length (base 
identifier) • If POSITION is given, then 
the DEFINED att:ribute must also be given. 

Rules for ar:ray defining: 

1. Both the defined item and the base 
identifier must be arrays. 

2. The defined item must have a dimension 
attribute, and may not be an element 
of a struc-ture. 

3. The permit-ted forms are the same as 
those for scalar defining. 

4. In array defining there is a relation­
ship between each element of the 
defined ar:ray and a corresponding ele­
ment of the base identifier. 

5. The elements of the defined array must 
have lengths less than, or equal to, 
the lengths of the base array ele­
ments. 

6. The POSITION option may be given when 
the base identifier refers to an array 
of strings. It specifies that each 
element of the defined array begins at 
the nth bit or character position of 
the corresponding element of the base 
array. 

7. In array defining, both the defined 
array and the base array may be arrays 
of structures. In this case, one of 
the following conditions must be 

satisfied: 
a. Both strings must be PACKED and 

composed of string or numeric 
field elements of the same class. 

b. Both arrays must have identical 
structure descriptions. 

In this form of defining, the 
base may not be a parameter. 

8. Two classes of array defining are 
permitted, simple and subscripted. 

Rules for simple array defining: 

1. The base identifier must be an unsub­
scripted array name having the same 
number of dimensions as the defined 
array. 

2. The dimension bounds of the defined 
array must be a subset of the bounds 
of the base array. 

3. A subsequent subscripted reference to 
the defined array is interpreted as a 
reference to the base array with iden­
tical subscripts. 

4. A subsequent unsubscripted reference 
to the defined array is interpreted as 
a reference to the declared subset of 
the base array specified by the dimen­
sion bounds. 

Rules for subscripted array defining: 

1. The base identifier must be an array 
name followed by a defining subscript 
list. The base array need not have 
the same number of dimensions as the 
defined array. 

2. The defining subscript list defines 
the relationship between the elements 
of the defined array and the base 
array and must have as many subscripts 
as the base array has dimensions. 

3. The defining subscripts may be an 
expression, including the dummy varia­
ble iSUB, and take the following form: 

a± at *1SUB± a 2 *2SUB... ± an *nSUB 

In the expression iSUB, i is a decimal 
integer constant in the-range 1 to n, 
with n being the dimensionality of the 
defined array. The symbol ~ is any 
scalar expression involving variables 
known within the block containing the 
DEFINED declaration. The integer 
value of the expression will be used. 
If any ~ is zero, that iSUB may be 
omitted. 

4. The subscripted reference to the 
defined array is then interpreted as 
follows: 
a. Each iSUB in the defining sub­

script is replaced by the integer 
value of the ith subscript given 
for the defined array. Before 
replacement, the subscript concep­
tually is enclosed in parentheses. 

b. The reference to the defined array 

Chapter 4: Data Description 55 



elements is a reference to the 
base array element specified by 
the generated subscript. 

S. For example, in the following state­
ment, B is a vector having as elements 
the diagonal of matrix A: 

DECLARE A(10,10), B (10) DEFINED 
A (lSUB, lSUB); 

6. A subsequent unsubscripted reference 
to the defined array is interpreted as 
a reference to the entire array as 
defined by the mapping. 

7. If a defined array name is specified 
as an argument to an invoked proce­
dure, the expressions in the defining 
subscript list are evaluated before 
the invocation. The invoked procedure 
can still reassign values to elements 
of the defined array by a parameter, 
but the relationship between the 
defined array elements and the base 
elements is frozen on entry. 

8. The POSITION option cannot be used 
with subscripted array defining. 

Rules for mixed defining (structures and 
arrays) : 

1. Major structures and arrays not con­
tained in structures, having elements 
all of the same class as described 
earlier in this section, may be 
defined on scalar strings of the same 
class and on structures or arrays 
having elements all of the same class 
and which are not part of a major 
structure having the ALIGNED attri­
bute. 

2. When scalar strings are defined items, 
base items may be any of the follow­
ing: 
a. major structures that are PACKED 
b. minor structures contained in a 

PACKED major structure 
c. structure elements with the base 

being specified as a subscripted 
structure name 

d. unsubscripted PACKED arrays not 
contained in structures 

e. unsubscripted arrays not contained 
in undimensional structures 

All of the elements of the base 
item must be of the same class as the 
defined string. 

3. When the base item is a scalar string, 
the POSITION option may be specified 
to indicate that the defined array or 
structure is offset from the start of 
the string. It may not be specified 
with mixed defining when the base is 
an array or structure. 

4. Defining subscript lists may not~ b.e 
used with mixed defining. 

5. The base in mixed defining may not be 
a parameter. 

56 

Examples: 

DECLARE 1 P, 2 Q CI~CTER (10), 2 R 
CHARACTER (1 00) , 

PSTRINGl CHARACTER (110) DEFINED P; 

DECLARE LIST CHARACTER (40), ALIST 
CHARACTER (1 0) 

DEFINED LIST, BLIST CHARACTER (20) 
DEFINED LIST 

POSITION (21), CLIST CHARACTER (10) 
DEFINED LIST 

POSITION (11) ~ 

DECLARE ALL (16), EVEN (8) DEFINED ALL 
(2*1SUB) ; 

THE INITIAL ATTRIBUTE 

Function: 

The INITIAL attribute either specifies 
constant values to be assigned to data when 
storage is allocated to it, or it specifies 
a procedure to be invoked to perform ini­
tialization at allocation. 

General format: 

1. INITIAL (item [, item] ••• ) 
2. INITIAL CALL entry-name 

[argument-list] 

Rules for form 1: 

1. In this discussion, the term constant 
denotes either an optionally signed 
constant or a complex expression of 
the following form: 

real-constant {+/-} imaginary-constant 

2. One constant value is required for a 
scalar; more may be given for an 
array. 

3. Constant values specified for an array 
are assigned to successive elements of 
the array in row-major order (final 
subscript varying most rapidly) • 

4. If too many constant values are speci­
fied, excess ones are ignored; if not 
enough are specified, the remainder of 
the array is not initialized. 

5. The items in the list may be an 
optionally signed constant, an aster­
isk denoting no initialization for a 
particular element, or an iteration 
specification. 

6. The iteration specification has one of 
the following general forms: 

(iteration-factor) constant 

(i teration-factor) (i tern [, item] ••• ) 



(iteration-facto~ * 
7. The "iteration factor" may be any 

expression that satisfies the rules 
stated in the section on "Prologues" 
in Chapter 10. When storage is allo­
cated, the expression is evaluated to 
give an integer that specifies the 
number of repetitions. 

8. Only constants are permissible as 
i tE!ration factors for STATIC data. 

9. A negative or zero iteration factor 
yields no initialization. 

10. Iterations may be nested. 
11. SeE! "Sta,tement Label Data," in Chapter 

2, for an alternative method of speci­
fying initial values for label arrays. 

12. The INITIAL attribute may not be given 
fol:' the following: 

entry names 
file names 
DEFINED data 
structures 
parameters 
TASK data 
EVENT data 

13.. If on~y one parenthesized scalar 
express10n precedes a string initial 
value, it is interpreted as a replica­
tion factor for the string. If two 
appear, the first is taken to be an 
initialization iteration factor, the 
second, a string replication factor. 
For example: 

(2) 'A') is equivalent to ('AA') 
j: (2) (1) 'A') is equivalent to 

('A', 'A') 

Rules for form 2: 

1. The entry name and arguments passed 
must satisfy the conditions stated in 
"Prologues." 

2. This form may not be used to initial­
iZE! STATIC data. 

Examples: 

1. DEC~RE SWITCH INITIAL ('1'B) ; 
2. DECLARE MA}{vALUE INITIAL (99), 

MINVALUE INITIAL (-99) ; 
3. DECLARE A (100,10) INITIAL «920) 0, 

(20) «3) 5,9) ; 
4. DECLARE TA.BLE (20, 20) INITIAL CALL 

INITIALIZE (X,Y); 

The third example results in the 
following: each of the first 920 ele­
ments of A is set to 0, the next 80 
elements consist of 20 repetitions of 
thE! sequence 5,5,5, 9. 

In the last example, INITIALIZE is 
thE~ name of a procedure that sets the 
initial values of elements in TABLE. 

X and Yare arguments passed to INI­
TIALIZE. 

SYMBOL TABLE ATTRIBUTES 

Function: 

The symbol table attributes are used in 
conjunction with data-directed input/output 
operations. They specify whether or not 
the names of data-directed input/output 
elements are to be placed in a symbol 
table. 

General format: 

{

SYMBOL [(identifier)]} 

NOSYMBOL 

Rules: 

1. SYMBOL specifies that the declared 
name is to be placed in the symbol 
table. 

2. SYMBOL (identifie~, used when the 
declared name must be qualified to 
make it unique, specifies that the 
identifier in parentheses is to appear 
in the symbol table as a synonym for 
the name to which it refers. 

3. A variable whose name or synonym 
appears in the symbol table may have 
its values transmitted under data­
directed directed input without a data 
list. 

~ 4. NOSYMBOL specifies that the declared 
name is not to appear in the symbol 
table. 

S. The appearance of an identifier as an 
element to be transmitted in a data­
directed input or output list is a 
contextual declaration of the 
attribute SYMBOL. 

6. It is illegal to specify SYMBOL with­
out a synonym for two structure ele­
ments declared internal to the same 
block and having the same identifier. 

7. Symbol table attributes may not be 
declared for entry names, files, 
labels, task and event data, DEFINED 
data, or parameters. 

Reference: 

See Chapter 7 for a complete discussion 
of data-directed input and output. 

Default: 

The default attribute is NOSYMBOL unless 
the name appears in a list for data­
directed input or output. 

Chapter 4: Data Description 57 



THE LIKE ATTRIBUTE 

Function: 

The LIKE attribute specifies that the 
name being declared is given the same 
structuring as the name following the 
attribute LIKE. 

General format: 

LIKE structure-name 

Rules: 

1. The "structure name n may be unquali­
fied or qualified, but it may not be 
subscripted. 

2. The structure must be known to the 
block containing the LIKE attribute. 

3. Neither the structure name nor any of 
its substructures can be declared with 
the LIKE attribute. 

4. The LIKE attribute specifies that: the 
name being declared is a structure 
with a substructure having elements 
with attributes and names identical to 
the names and attributes of the ele­
ments of the named structure. Con­
tained dimension and length attributes 
are recomputed. Attributes of the 
structure name itself do not carry 
over, only its elements enter into 
this process. 

5. If the structure description of the 
named structure has been declared, and 
if a direct application of the des­
cription to the structure being 
declared LIKE would cause an incorrect 
discontinuity in level numbers, then 
the level numbers will be modified by 
a constant before application. 

6. The number that immediately follows 
the member that has the LIKE attribute 
must have a level-number that is equal 
to or less than that of the member 
that has the LIKE attribute. 

Examples: 

1 • DECLARE 1 A (1 O) , 
2 FIELD1, 

3 DTL1 PIC ' $ZZ.99 1
, 

3 DTL2 CHAR (10), 
2 FIELD2 BIT (50), 

1 X, 
2 FIELD1, 

3 SUBFLD1 (20) LIKE A • FIELD1 
3 TABLES (3), 

2 FIELD2 LIKE A • FIELD1; 

The above is equivalent to: 

DECLARE 1 A(10) , 
2 FIELD1, 

3 DTL1 PIC '$ZZ.99 1
, 

58 

3 DTL2 CHAR (10), 
2 FIELD2 BIT (50), 

1 X, 
2 FIELD1, 

3 SUBFLD1 (20), 
4 DTL1 PIC '$ZZ.99 1

, 

4 DTL2 CHAR (10), 
3 TABLE (3), 

2 FIELD2, 
3 DTL1 PIC '$ZZ.99 1

, 

3 DTL2 CHAR (10) i 

2. DECLARE 1 A EXTERNAL, 2 (B,C,~, 1 E 
LIKE Ai 

The above is equivalent to : 

DECLARE 1 A EXTERNAL, 2(B,C,~, 1 E, 
2 (B,C, D) ; 

FILE DESCRIPTION ATTRIBUTES 

File description attributes are used to 
describe data files. Declarations of the 
same file in more than one external proce­
dure must not conflict. For a complete 
discussion of data files see Chapter 7. 

The FILE Attribute 

Function: 

The FILE attribute specifies that the 
associated identifier is a file name. 

General form: 

FILE 

Standard Attributes 

Function: 

The standard attributes are used to 
assign a file name as a synonym for the 
standard input/output file. 

General format: 

STANDINISTANDOUT 

Rules: 

No other attributes except the ZERO 
attribute are used to describe a file 
if it has been given a STANDIN or 
STANDOUT attribute. 



The Storage Equivalence Attribute 

Func1:ion: 

The storage equivalence attribute is 
used to specify the sharing of storage used 
for transmission to external media by two 
files. 

Genel~al format: 

POOL (file-name) 

Rules: 

1. The "file name" specifies a file that 
may share the storage area necessary 
for transmission to an external medium 
wi 1::h the file currently being des­
cribed. 

2. The technique of pooling is implemen­
ta1::ion defined. 

Funct:ion: 

The function attributes specify 
function of a file. 

General format: 

INPUT I OUTPUT I INOUT 

Rule~j : 

the 

The particular attribute used speci­
fies that the file is to be used for 
input, output, or for both input and 
output. A declaration of INOUT for a 
file with SEQUENTIAL access denotes 
the update-in-place mode. Such files 
must be accessed in the sequence READ, 
thE~n WRITE. 

File Orqanization Attributes 

Funct~ion: 

The file organization attributes, which 
are used in conjunction with the access 
attribut~es, specify the manner in which the 
records comprising a file are located. 

General format: 

{
CONSECUTIVE } 
REGIONAL (maximum-number-of-recorCis) 
INDEXED 

Rules: 

1. CONSECUTIVE specifies that the loca­
tion of records within the file is 
dependent upon the current physical 
position of the device containing the 
file. 

2. REGIONAL specifies that the location 
of records within the file is deter­
mined by relative physical regions of 
the device containing the file. The 
"maximum number of records" indicates 
the maximum number of records within a 
region and must be a decimal integer 
constant. If this is omitted there is 
one record per region. such a file 
may be accessed in the DIRECT mode 
with (optionally) only a REGION 
option, and no KEY option. 

3. INDEXED specifies that the location of 
records within a file is determined by 
means of an ordered index that 
addresses areas of the device contain­
ing the file. 

Default: 

If DIRECT access is specified, then 
INDEXED is assumed. Otherwise the default 
is CONSECUTIVE. 

Access Attributes 

Function: 

The access attributes specify the manner 
in which the records within a file are 
accessed. 

General format: 

SEQUENTIAL I DIRECT 

Rules: 

1. SEQUENTIAL normally specifies that the 
next record to be accessed is deter­
mined by the order implicitly given 
the file by virtue of its organiza­
tion. If, however, a KEY is provided, 
direct access is performed. 

2. DIRECT specifies that the next record 
to be accessed is determined by an 
explicitly stated identification (see 
the KEY, NEWKEY, and REGION options 
with the READ and WRITE statements, in 
Chapter ~. Direct access is permit­
ted only on files organized in the 
REGIONAL or INDEXED fashion. 

Default: 

If REGIONAL or INDEXED organization is 
specified, then DIRECT is assumed. Other­
wise the default is SEQUENTIAL. 

Chapter 4: Data Description 59 



Table 3. Allowable statements for CONSECUTIVE, REGIONAL, and 
INDEXED organizations of a SEQUENTIAL access file. 

CONSECUTIVE 

REGIONAL 

INDEXED 

60 

r----------------T---------'-------T----------------, 
I INPUT I OUTPUT I INOUT I 
~----------------+----------------+----------------~ 

READ WRITE READ 

GET 
PUT 

SPACE 
SKIP 
GROUP 
SEGMENT 

TAB 
POSITION 
LAYOUT 

GET 
PUT 

SPACE 
SKIP 
GROUP 
SEGMENT 

TAB 
POSITION 
LAYOUT 
PAGE 

WRITE 

GET 
PUT 

SPACE (In) 
SKIP (In) 
GROUP (In) 
SEGMENT 

TAB 
POSITION 
LAYOUT 

(In) 

~----------------+----------------+----------------~ 
READ WRITE WRITE 

READ REGION 

READ REGION 
and KEY 

GET 
PUT 

SPACE 

WRITE REGION 

WRITE REGION 
and KEY 

WRITE REGION 
and NEWKEY 

GET 
PUT 

SPACE 

WRITE REGION 

WRITE REGION 
and KEY 

WRITE REGION 
and NEWKEY 

GET 
READ REGION 
READ KEY 

and REGION 

SPACE (In) 
GET 
PUT 

TAB TAB TAB 
POSITION POSITION POSITION 
LAYOUT LAYOUT LAYOUT 

~----------------+----------------+----------------~ 
READ WRITE READ 

READ KEY WRITE KEY 
WRITE NEWKEY 

WRITE 

READ KEY 
WRITE KEY 
WRITE NEW KEY 

SPACE (In) 

TAB TAB TAB 
POSITION POSITION POSITION 
GET G E'l; GET 
PUT PUT PUT I 
SPACE SPACE I 
LAYOUT LAYOUT LAYOUT I ________________ ~ ________________ ~ ________________ J 



Table 4. Allowable Statements for the REGIONAL and INDEXED 
Organizations of a DIRECT Access File 

r-----------------T-------------'--T----------------, 
I I t I 
I INPUT I OUTPUT I INOUT I 
~-----------------+----------------+----------------~ 

REGIONAL READ REGION 

READ REGION 
and KEY 

SPACE 
GET 
PUT 

WRITE REGION 

WRITE REGION 
and KEY 

WRITE REGION 
and NEWKEY 

SPACE 
GET 
PUT 

READ REGION 
WRITE REGION 

READ REGION 
and KEY 

WRITE REGION 
and KEY 

WRITE REGION 
and NEWKEY 

SPACE (In) 
GET 
PUT 

TAB TAB TAB 
POSITION POSITION POSITION 
LAYOUT LAY CUT LAYOUT 

~-----------------+--------------.--+----------------~ 

INDEXED READ 

READ KEY 

Tl~B 

POSITION 
Gl~T 

PUT 
SPACE 
Ll~YOUT 

WRITE KEY 
WRITE NEWKEY 

TAB 
POSITION 
GET 
PUT 
SPACE 
LAYOUT 

READ KEY 
WRITE KEY 

WRITE NEWKEY 

TAB 
POSITION 
GET 
PUT 
SPACE 
LAYOUT L _________________ .1. _______________ ..L ________________ J 

Note that a declaration of INOUT for a 
file with SEQUENTIAL access indicates 
update-in-place. It applies to all file 
organizations on direct access devices. 
The order of access to such a file must be 
first READ, then WRITE. 

A CONSECUTIVE file will, on WRITE, 
replace the last record read. REGIONAL and 
INDEXED files will, on READ, remember the 
KEY (and REGIO~ values and use them for 
the next WRITE. 

The KEYLENGTH Attribute 

Function: 

The KEYLENGTH attribute specifies the 
length, in characters, of the keys asso­
ciated with records within files organized 
in the HEGIONAL or INDEXED mode. 

General format: 

KEYLENGTH (length) 

Rules: 

For indexed organization, this attri­
bute must appear. 

Default: 

For regional organization, absence of 
this attribute implies a key length of zero 
(a keylength of zero is only permitted on 

REGIONAL files which have one record per 
region) • 

The ZERO Attribute 

Function: 

Chapter 4: Data Description 61 



The ZERO attribute specifies that trail­
ing blank characters in data input fields 
read by format items E, F, or (; are to be 
treated as numeric zeros. 

General format: 

ZERO 

Rules: 

The ZERO attribute has no effect on 
output data. 

The E~~IRONMENT Attribute 

Function: 

The ENVIRONMENT attribute is an implem­
entation defined attribute which specifies 
various characteristics of a file which are 
not related to the PL/I language. 

General· Format: 

ENVIRONMENT (option-list) 

Rules: 

1. The option list will be defined indi­
vidually for each implementation of 
PL/I. 

2. Information such as the device type, 
buffering, file organization support, 
record format, file disposition, etc., 
may be specified in the option list. 

3. Parentheses occurring within the 
option list must be matched. 

ASSIGNMENT OF ATTRIBUTES TO IDENTIFIERS 

Identifiers can be given attributes 
explicitly through DECLARE statements, by 
occurrences in certain recognizable con­
texts, and by default rules for identifiers 
incompletely described by the programmer. 

Within an external procedure, statement 
label constants, internal entry labels, 
parameters, and identifiers appearing in 
DECLARE statements are qualified by the 
respective blocks in which their declara­
tions (contextual or explicit) occur. For 
an identifier occurring as a parameter, the 
characteristic, "parameter,· is combined 
with any explicitly declared attributes for 
the identifier. Default attributes are 
added as described below. An identifier 
occurring as an internal entry label is 
given the attributes INTERNAL ENTRY, which 
then are also combined with any declared 
attributes for that identifier, after which 
defaults are applied. 

62 

The following 
through context, 
indicated ways: 

attributes, 
are recognized 

assigned 
in the 

1. ENTRY (subroutine): CALL state­
ment or CALL option 

2. ENTRY (function): identifier fol­
lowed by parenthesized list (if 
the identifier is not initial 
value for a label array and has 
not been declared in a containing 
block as an array) • 

3. FILE: READ, WRITE, SPACE, GROUP, 
SKIP, PAGE, LAYOUT, SORT, OPEN, 
CLOSE, G~VING, POOL, FROM, or ON, 
REVERT, or SIGNAL (file 
conditions) • 

4. 

5. 

TASK: TASK option 

EVENT: EVENT 
statement 

option or WAIT 

6. SYMBOL: DATA list 

7. (programmer named condition): ON 
CONDITION, SIGNAL CONDITION, or 
RE..VERT CONDITION 

If an identifier appearing in one of 
these contexts has been declared explicitly 
or contextually in a containing block with­
out the indicated attribute, an error is 
raised. If it has already been de~lared 
with the attribute, then the identifier is 
taken to be the one in the innermost block 
in which it has been so declared. In case 
1 above, the characteristic, "subroutine," 
is added to the declaration. 

If an identifier found in one of these 
contexts has not been previously declared 
as described above, then it is qualified by 
the containing external procedure and is 
given the indicated attribute. Defaults 
are then added. 

Remaining undeclared simple identifiers 
are qualified by tae containing external 
procedure, and default attributes are 
assigned. 

Application of Default Attributes 

Default assumptions are as follows, for 
the identifier classes indicated: 

ENTRY type: EXTERNAL is assumed. If 
the entry is EXTERNAL and is not 
a subroutine, then NOR~ffiL is 
assumed. Otherwise, ABNORMAL is 



assum,ed. Scale, base, mode and 
precision defaults for the value 
returned are the same as for 
Arithmetic type given below. 

If a procedure has multiple entry 
names and no data attributes, there is 
potential ambiguity in the charac­
teristics of the value to be returned. 
In order to <"void this ambiguity, 
succeeding labels are interpreted as 
if they were entry names for succes­
sive ENTRY statements. For example, 
in the following, statement a is 
interpreted as if both statement band 
statement c had been written. 

a. A: 
b. A: 
c. B: 

B: ENTRY; 
ENTRY; 
ENTRY; 

FILE type: EXTERNAL scope is assumed. 
If neither organization nor 
access method is given, then CON­
SECUTIVE SEQUENTIAL is assumed. 
If CONSECUTIVE is given, then 
SEQUENTIAL is assumed. If 
INDEXED or REGIONAL is given, 
then DIRECT is assumed. If 
DIRECT is given, then INDEXED is 
assumed. If SEQUEN'I'IAL is given, 
then CONSECUTIVE is assumed. 

'I'ASK type: ABNORMAL is assumed. 
Scope and storage class defaults 
are the same as for Arithmetic 
type given below. ALIGNED is 
assumed for arrays not in struc­
tUres. 

EVENT type: Defaults are the same as 
for TASK type. 

LABEL type: Range is assumed to be 
all labels which could be 
assigned to the variable. NORMAL 
is assumed. Scope and storage 
class defaults are the same as 
for .Arithmetic type given below. 
ALIGNED is assumed for arrays not 
in structures. 

Condition type: EXTERNAL scope is 
assumed. 

String type: NOSYMBOL is assumed. 
NORMAL is assumed. Scope and 
storage class defaults are the 
same as for Arithmetic type given 
below. ALIGNED is assumed for 
arrays not in structures. 

Major structure type: PACKED is 
assumed. NOSYMBOL is asswned. 
NORMAL is assumed. Scope and 
storage class defaults are the 
same as for Arithmetic type given 
below. 

Minor Structure type: 
assumed. NORMAL 
INTERNAL is assumed. 

NOSYMBOL is 
is assumed. 

Elementary Structure Element 
type: NOSYMBOL is assumed. NOR­
MAL is assumed. INTERNAL is 
assumed. If Arithmetic type has 
been indicated, then scale, base, 
mode, and precision defaults are 
the same as for Arithmetic type 
given below. 

Arithmetic type: If none of scale, 
base, and mode has been given, 
then if the identifier starts 
with any of the letters I N, 
FIXED BINARY REAL is assumed; 
otherwise FLOAT DECIMAL REAL is 
assumed. If at least one of 
these has been given, then the 
remaining defaults are FLOAT, 
DECIMAL and REAL. Default preci­
sion is implementation defined, 
dependent on scale and radix. 
ALIGNED is assumed for arrays not 
in structures. NOSYMBOL is 
assumed. NORMAL is assumed. 
INTERNAL is assumed. If no stor­
age class is given, then AUTOMAT­
IC 1S associated with INTERNAL 
and STATIC with EXTERNAL. 

STRUCTURE DECLARATIONS AND ATTRIBUTES 

This section is a summarization of data 
declarations and attributes as they apply 
specifically to structures. 

LEVEL NUMBER 

The outermost structure is a major 
structure, and all contained structures are 
minor structures. 

A structure is specified by declaring 
the major structure name and follow~ng it 
with the names of all contained elements. 
Each name is preceded by a level number, 
which is a non-zero decimal integer con­
stant. A major structure is always at 
level one and all elements contained in a 
structure (at level n) have a level number 
that is numerically greater than n, but 
they need not necessarily be at level n+1, 
nor need they all have the same level 
number. 

A minor structure at level n contains 
all following i tenls declared wIth level 
numbers greater than B up to but not 
including the next item with a level number 

Chapter 4: Data Description 63 



less than or equal to n. 
description is terminated 
tion of another item at 
declaration of an item 
number, or by the end 
list. 

A major structure 
by the dec lara­
level one, by the 
having no level 
of a declaration 

STRUCTURES AND THE DIMENSION ATTRIBUTE 

When a structure name is given the 
dimension attribute,. it is an array of 
structures, and all contained items are 
arrays (see "Arrays of Structures," in 
Chapter 2). Contained scalar items, con­
tained structure elements, and cross sec­
tions of contained arrays are referred to, 
respectively, by subscripted names, sub­
scripted qualified names, and the asterisk 
notation (see "Naming," in Chapter 2) • 

STRUCTURES AND DATA ATTRIBUTES 

Structures and arrays of structures are 
not given data attributes. These can be 

64 

given 
ments. 

only to elementary structure ele-

STRUCTURES AND SCOPE ATTRIBUTES 

Major structure names may be declared 
with the EXTERNAL attribute. Items con­
tained in structu~es may not be declared 
with the EXTERNAL attribute, and even if 
INTERNAL is unspecified, they are assumed 
to be INTERNAL. 

STRUCTURES AND STORAGE CLASS ATTRIBUTES 

All i telT1S in the same structure must be 
of the same storage class, since only the 
major structure may be given a storage­
class attribute. The storage class of the 
major structure applies to all elements of 
the structure. If a structure has the 
CONTROLLED attribute, only the major 
structure, not its elements, may be allo­
cated and freed. 



CHAPTER 5: PROCEDURES, FUNCTIONS, AND SVBROUTINES 

FORMAL PJ\RAMETERS 

The P:ROCEDURE statement heading a 
procedure and defining the primary 
point to the procedure may specify a 
of formal parameters. (For syntax 
details of the PROCEDURE statement, 
Chapter 8.) 

given 
entry 
list 

and 
see 

One o:r more ENTRY statements may also be 
used in the procedure to define secondary 
entry points. Like the heading statement 
of the procedure, each of the ENTRY state­
ments must have at least one label to serve 
as an entry name for that point, and each 
may specify a list of formal parameters, 
unrelated to the parameter lists for the 
other entry points. (For syntax and 
details see liThe ENTRY Statement. ") 

The formal pararreters are identifiers 
and may appear in statements of the proce­
dure in the context of scalar variable 
names, array names, structure names, state­
ment label designators, entry names, file 
names, task names, or event names. 

The appearance of an identifier in a 
formal paramete:(' list for a procedure con­
stitutes a declaration of the identifier as 
a parameter. This contextual declaration 
can be combined with an explicit declara­
tion and other contextual declarations in 
the procedure that will associate required 
attributes with the parameter. Required 
attributes not declared explicitly or con­
textually will be assigned by default. 

No declarations of the parameter can 
appear outside the procedure. (For further 
details about the restrictions on attri­
butes of parameters see "Arguments and 
Parameters," in Chapter 10.) 

Example: 

SBPRIM: PROCEDURE (X, Y, ~; 

SBSEC: 

DECLARE (X, Y, A, B) FIXED, Z 
FLOAT; 

A = X-1; B = Y+l; 
GO TO CCMMON; 
ENTRY (X, Z); 
A = X-2; B = X-3; 
COMMON: Z = A**2+A*B+B**2; 
END SBPRIM; 

In this example, the procedure may be 
entered at its primary entry point SBPRIM, 
where the formal parameter list is (X, Y, 
~, or at its secondary entry point SBSEC, 
where the formal parameter list is ~, Z). 

PROCEDURE REFERENCES 

At any point in a program where an entry 
name for a given procedure is known, the 
procedure may be invoked by a procedure 
reference, which has the form: 

entry-name [(argument [ , argument] ... ) ] 
The number of arguments (pOSSibly zero) 

in the procedure reference must be equal to 
the number of formal parameters in the list 
for the entry point denoted by the entry 
name. 

The procedure invoked by t.he procedure 
reference may be an external or an internal 
procedure. If it is an internal procedure, 
the block to which the entry name is 
internal must be active at the tirne of 
invocation of the procedure (for a defini­
tion of "active," see "Activation and Ter­
mination of Blocks" in Chapter 6). 

When a procedure reference invokes a 
procedure, each argun;ent specifiea in the 
reference is associated with its corres­
ponding formal parameter in the list for 
the denoted entry point, and control is 
passed to the procedure at the entry point. 
The conditions the arguments must satisfy, 
and the manner of association of eacn 
argument with its matching parameter are 
discussed in "The Arguments in a Procedure 
Reference. II 

When a procedure becomes inactive, the 
association between arguments and paramet­
ers is terminated. 

There are two distinctly different uses 
for procedures, determined by one of two 
contexts in which a procedure reference may 
appear: 

1. A procedure reference may appear as an 
operand in an expression. (For a 
complete description of expression, 
see "Expressions," in Chapter 3). In 
this case, the reference is said to be 
a function reference, and the proce­
dure is invoked as a fUnction proce­
dure, or simply a function. 

2. A procedure reference may appear fol­
lowing the keyword CALL, either in a 
CALL statement or in a statement using 
a CALL option. In this case, the 
reference is said to be a subroutine 
reference, and the procedure is 

Chapter 5: Procedures, FUnctions, dnd Subroutines 65 



invoked as a subroutine pro~edure, or 
simply a subroutine. 

(Ordinarily a given procedure will be 
used exclusively as a function procedure or 
exclusively as a subroutine procedure.) 

FUNCTION REFERENCES AND FUNCTION PROCEDURES 

When a function reference appears in an 
expression, the function procedure is 
invoked. The procedure is then executed, 
using the arguments, if any, specified in 
the function reference. The result of this 
execution is the required value, which is 
passed with return of control back to the 
point of invocation. This returned value 
is then used, in place of the function 
reference, to evaluate the expression. 

The procedure invoked by a function 
reference normally will terminate execution 
with a statement of the form 
RETURN (expression}, where expression is a 
scalar expression of arithmetic, character­
string, or bit-string type (see liThe RETURN 
Statement ") • (A GO TO statement may also 
be used to terminate execution of a 
procedure invoked by a function reference.) 
It is the value of this expression that 
will be returned as the function value. 
The PROCEDURE or FNTRY statement at the 
invoked entry point may specify data attri­
butes for the function value (see liThe 
PROCEDURE Statement" and liThe ENTRY State­
ment,· in Chapter 8). Just prior to 
return, the expression is evaluated, and, 
before being passed back, the value is 
converted, if necessary, to conform to 
these attributes, or, if the attributes are 
not specified, to the default attributes 
implied by the entry name. 

If the invoked function procedure is 
terminated by a GO TO statement, the evalu­
ation of the expression that invoked the 
function will not be completed and control 
will go to the designated statement. 

GENERIC FUNCTIONS 

A generic functior. is a family of fUnc­
tions with a single name. A fUnction 
reference to a generic function causes the 
selection of a certain member of the fami­
ly, depending upon the attributes of' the 
arguments. The characteristics of the 
value returned depend upon the member that 
is selected. 

66 

Generic functions may be built-in (see 
below) or specified by the programmer, who 
may, by means of the attribute GENERIC, 
define a name to be a generic function 
name. An entry name may be explicitly 
declared with the GENERIC attribute. The 
GENERIC attribute requires a list of all of 
the entry names of the family and the 
attributes of·all of the arguments for each 
member (different members must have differ­
ent argument attribute patterns). Then any 
reference appearing in the scope of this 
declaration and using the declared generic 
name as an entry name will result in the 
use of that member of the declared family 
that has the same argument attribute pat­
tern as the pattern in the argument list of 
the reference. For complete details see 
DEntry Name Attributes" in Chapter 4. 

Subroutine procedures may also be gener­
ic. The method of selecting a particular 
subroutine corresponds exactly to that of 
selecting a particular function. 

BUILT-IN FUNCTIONS 

Besides fUnction procedures written by 
the programmer, a function reference may 
invoke one of a comprehensive set of built­
in functions. 

The set of built-in functions is an 
intrinsic part of PL/I. It includes not 
only the commonly used arithmetic fUnctions 
but also functions for manipulating strings 
and arrays, as well as other necessary or 
useful functions related to special 
facilities provided in the language. The 
complete list of these functions and their 
descriptions can be found in Appendix 1. 

A large number of the built-in functions 
are generic. The built-in generic fUnc­
tions are of considerable convenience to 
the programmer. He may, for example, 
always use the same name EXP for the 
exponential function, regardless of whether 
the argument is of REAL or COMPLEX mode, 
regardless of the precision of the argu­
ment, etc., and automatically he will 
obtain that one of the EXP family that fits 
the requirements. 

Each built-in function, whether or not 
it is generic, has a specified number of 
arguments glven. For some built-in func­
tions only a minimum is specified; addi­
tional argunlents are optional. For others, 
a maximum is specifiedi only one argument 
is required. 



Each of the built-in functions that are 
not generic has only a single member. When 
a reference is made to one of these fUnc­
tions, any arguments whose attributes do 
not ma'tch the attributes required by that: 
fUnction are converted to the appropriate 
form before the function is invoked. The 
charact1eristics of the value returned are 
determined by the function. 

Unlike proqrammer-specified functions, 
which always return a scalar value, there 
are many built--in functions that may effec­
tively return an array or structure value 
when array or structure expressions are 
used in certain of their argument posi­
tions. This facility is useful in combina­
tion wi"th the facility of array or struc­
ture expressions. 

The fixed set of names for the built-in 
functions is part of the language of PL/I. 
However, the identifiers corresponding to 
these names are not reserved; any such 
identifier can be used by the programmer 
for other purposes. If the identifier is 
declared. explicitly for sorr;e other use, any 
appearance of the identifier in the scope 
of this declaration will refer to that 
other use. The built-in function cannot, 
of course, be used in this scope. If the 
identifier appears, but not in the scope of 
a declaration establishing the identifier 
for another use, the identifier will be 
regarded as implicitly declared in the 
containing external procedure with the 
attribu'te BUIL'J?IN, and this appearance will 
refer to the built-in fUnction. 

If an identifier corresponding to a 
built-in function name is declared to have 
a use oither than as the buil t- in fUnction 
in some block, the built-in function can be 
used in contained blocks by declaring the 
identifier with the attribute BUILTIN. 

SUBROUTINE REFERENCES AND SUBROU'l'INE 
PROCEDURES 

When a procedure is invoked as a subrou­
tine by the execution of a CALL statement 
or a statement with a CALL option, the 
initial action is the same as if the 
procedUJ::-e werE' invoked as a function: the 
arguments in the procedare reference, if 
any, are associated with the formal param­
eters and control is passed to the proce­
dUre a1: the denoted entry point. (If the 
invocation involves a task option, the 
procedure will not necessarily be activated 
immedia1:ely; see II Asynchronous Operations 
and Tasks" in Chapter 6.) 

Unlike the fUnction procedure, the sub­
routine procedure does not return an expli-

citly specified value to the point of 
invocation, and control need not necessari­
ly be returned to this point. The proce­
dure may terminate in the following ways: 

1. Control reachE:s a RETURN statement for 
the procedure. When executed, this 
statement returns control to the first 
executable statement logically follow­
ing the invoking statement, unless the 
invocation specified a task option or 
the procedure was invoked by a state­
ment with a CALL option. If a task 
option has been used, control is sim­
ply terminated for this task. If the 
procedure was invoked by a statement 
having a CALL option, control is 
returned to that statement at the 
point immediately following the CALL 
option. 

2. Control reaches an END statement for 
the procedure, which in this case is 
treated as a RETURN statement. The 
effect is as in case 1. 

3. Control reaches a GO TO statement in 
the procedure that transfers control 
out of the procedure. (This is not 
permitted if the procedure has been 
invoked by a statement with a CALL 
option or in a CALL statement with a 
task option.) In this case, control 
will go to the ~esignated statement 
(see "The GO TO Statement"). The 
statement label designator of the GO 
TO statement may be a parameter of 
type LABEL, which is associated with a 
label argument passed from the invok­
ing procedure. 

4. Control reaches an EXIT or STOP state­
ment. 

Example of Function Reference: 

COMP: PROCEDURE; 

S1: P10=QS*POLYS (RO, VAL1) 

POLYS: PROCEDURE (C, X) ; 
RETURN (C+X* (1+X* (2+X* (3+X* (4 

+5 *x) ) ) ) ) ; 
END POLYS; 

END COMP; 

In this example, the external procedure 
cm"lP contains the function procedure POLYS, 
which is invoked when the expression 
QS*POLY5(RO, VAL1) is being evaluated dur­
ing execution of the assignment statement 
labeled S1. When POLY5 is invoked, the 
arguments RO and VALl will be associated 
with the parameters C and X, respectively. 

Chapter 5: Procedures, Functions, and Subroutines 67 



'rhe returned value for POLY5 (RO, VAL 1) 
'~ill be the value of the expression: 

RO+VAL1*(1+VAL1* (2+VAL1*(3+VAL1* (4+5* 
VALl»» 

Examples of Subroutine Reference: 

1. COMP: PROCEDURE: 

Sl: CALL POLYS (RO, VAL1); 
S2: P10 = QS*TEMP; 

POLYS: PROCEDURE (C, X); 
TEMP=C+X* (1+X* (2+X* (3+X* 
( 4 + S * X) ) ) ) ; 

RETURN; 
END POLYS; 

END COMP; 

In the above example, the effect is the 
same as in the previous example using the 
function reference. The subroutine proce­
dure POLYS is invoked by the CALL statement 
labeled S1. The arguments and parameters 
are associated as in the previous example, 
but here, the value of the expression (the 
same as in the previous example) is 
assigned within the subroutine to the vari­
able TEMP, which is used by the statement 
labeled S2, after the RETURN statement 
passes control back to that statement. 
'rhus, communication of the value is by 
means of the shared variable TEMP, which, 
of course, remains available for use fol­
lowing the execution of S2. 

In some cases the invoked and the invok­
ing procedure may be separated in such a 
way that sharing a name in the above simple 
manner is not possible (see "Scope of 
Declarations n

). Another more general meth­
od of communicating values from the invoked 
procedure, which may be a~plied in these 
cases, is illustrated in the follm'ling 
alternative example: 

2. COMP: PROCEDURE; 

68 

S1: CALL POLYS (RO, VAL1, TEMP); 
S2: P10=QS*TEMP; 

POLYS: PROCEDURE (C,X~~ 

Z=C+X* (l+X* (2+X* (3+X* 
(4+S*X) » ) ; 

RETURN; 
END POLYS; 

El'4l) COMP; 

Here, the invocation of POLYS by the 
CALL statement will associate the variable 
TEMP with the parameter Z, and the action 
will be exactly as in the previous example: 
the parameter Z will effectively be 
replaced by the name TEMP in the assignment 
statement for Z, and TEMP will be assigned 
the value of the expression on the right­
hand side, with RO replacing C and VALl 
replacing X, before return to statement S2. 
In this case, the value has been 
communicated from the subroutine through a 
parameter. 

The above two examples illustra'te how a 
single value obtained in a subroutine can 
be communicated back to the invoking proce­
dure. The action of a subroutine will 
generally be more complex than this; many 
communicated variables may be involved, 
whether scalar, array, structure, or 
statement-label variables; input/output 
operations may be specified, etc. In con­
trast, the usual purpose of a function 
procedure is to return a scalar value. 

THE ARGUMENTS IN A PROCEDURE REFERENCE 

In general, an argument in a procedure 
reference may be any valid PL/I expression. 
An exception to this rule concerns the 
built-in functions: the only built-in 
functions that may be passed as arguments 
in a procedure reference are the Float 
Arithmetic Generic Functions (see Appendix 
1) • 

The attributes of each argument in a 
procedure reference must, in general, match 
the attributes of the corresponding param­
eter at the named entry point. (An excep­
tion in case of a data argument is des­
cribed below.) 

For example, assume that the procedure 
SUB in a program is defined by: 

SUB: PROCEDURE (X, Y, Z); 
DECLARE X FIXED, Y ENTRY, Z LABEL; 

END SUB; 



This implies that the formal parameter X 
is used as a fixed-point variable with 
certain default data attributes, Y is used 
as an entry name, and Z is a statement. 
label designator in the body of the proce­
dure. Then if SUB is invoked in the 
program by the statement: 

CA1:'L SUB (R*S, CALC, LS) 

it is then necessary that: 

1. ThE~ expression R*S have all the data 
at1:ributes of the parameter X (unless 
SUB is described by an ENTRY attri­
bu1:e, see below) • 

2. CALC be an entry name. 
3. LS be a statement-label deSignator. 

THE USE OF THE ENTRY ATTRIBUTE 

(The ENTRY attribute is completely des­
cribed in Chapt~er 4.) 

An identifier is contextually declared 
to be an entry name in a block if it 
appears as a label to a PROCEDURE or ENTRY 
statement or if it appears in the block. 
following the keyword CALL or as the fUnc­
tion name in a function reference whose 
argumen1: list is non-empty. If it is 
desired to use the identifier as an entry 
name in a block where it is not so 
declared, the identifier must be given the 
ENTRY a1:tribute explicitly in a DECLARE 
statement for t.he block. 

As an illustration, in the above exam­
ple, the CALL statement: 

CA]~L SUB (R*S, CALC, LS); 

has the entry name CALC as its second 
argumen1:. This appearance of CALC is not. 
recogni~~able as an entry name by context. 
It must previously have been declared 
(either contextually, or explicitly in a 

DECLARE statement) to have the attribute' 
ENTRY. 

A more qeneral form of the ENTRY attri­
bute allows the programmer to enumerate the 
attribut.es of t.he parameters for the named 
entry point. 

As an illustration, in the above CALL 
s1;.atement example, the three parameters 
corresponding t~o the three arguments of the 
CALL s1:atement. might be described in the~ 
invokin9 proceClure by the statement: 

DECLARE SUB 
LABEL) ; 

ENTRY (FIXED, ENTRY, 

This statement specifies that: 

1. SUB is an entry name. 
2. The entry point SUB has three paramet-

ers. 
3. The first parameter has the FIXED 

attribute with certain default data 
attributes. 

4. The second parameter has the ENTRY 
attribute. 

S. The third parameter has the LABEL 
attribute. 

The number of parameters and the attri­
butes of each, as described in the ENTRY 
attribute specification, must always agree 
with the number of parameters and their 
attributes, as defined for the described 
entry point within the invoked procedure. 

One of the applications of the extended 
form of the ENTRY attribute is mentioned in 
the immediately following description. (A 
detailed discussion of the various uses for 
the ENTRY attribute, including the ABNOR­
MAL, USES, SETS, and GENERIC attributes, 
can be found in Chapter 4.) 

PASSING ARGUMENTS '1'0 THE ENTRY POINT 

When a procedure is invoked at a given 
entry point by a procedure reference and 
each argument is associated with its cor­
responding formal parameter, the arguments 
are said to be passed to the entry point. 

The action involved in passing the argu­
ments generally will assume that the attri­
butes of each argument match the attributes 
of its corresponding formal parameter, as 
described above. However, if the argument 
is an expression whose attributes do not 
correspond to those declared for the param­
eter associated with that argument, the 
expression will be evaluated and converted, 
before the argument is passed, to conform 
to the attributes described by the corres­
ponding member of the ENTRY attribute list. 

As an illustration, in the preceding 
example, the first argument in the CALL 
statement, which invokes the procedure SUB, 
is the expression R*S. Assume that R*S has 
the FLOAT attribute with certain default 
attributes. These do not match the attri­
butes of the first parameter at the entry 
point SUB. Then the ENTRY attribute must 
be used in the invoking procedure to speci­
fy the same attributes for the first param­
eter as specified in the invoked procedure 
SUB. (The preceding illustration shows one 
way of doing thiS.) Thus, on execution of 
the CALL statement, the expression R*S is 

Chapter 5: Procedures, Functions, and Subroutines 69 



evaluated according to the FLOAT attribute 
and then converted to a £ixed-point value 
'with the other required attributes, pefore 
being passed to the entry point SUB. 

(A detailed description of the ac-tion 
involved in passing arguments to the 
invoked entry point can be found in Chapter 
10.) 

In certain circumstances, the prepara­
tory action includes the construction of a 
dummy argument. For example; a dummy argu­
ment is constructed when the argument must 
be converted, as in the example of R*S just 
discussed, or when the argument is an 
expression involving constants or opera·tors 
~*S is again an example of this 
circumstance) • 

In each of its appearances as a ref­
erence in the procedure, the formal pa:r:am­
eter corresponding to the argument effec­
tively is replaced by the argument name. 
Thus, all appearances o£ the parameter 
during execution of the procedure are 
treated as appearances of the argument 
name. However, in the cases where a dummy 
argument is constructed, it is the dummy 
argument name that replaces the parameter. 
passing an argument does not always imply a 
true logical substitution of the argument 
name for the parameter in the procedure. 
However, in the important case where the 
argument is an arithreetic, string, or label 
variable having identical attributes with 

70 

the corresponding parameter, a logical sub­
stitution does occur. Thus, parameters can 
be used ~communicate values from the 
invoked procedure back to the invoking 
procedure. Example 2 of "Subroutine Ref­
erences," above, is an illustration of 
this. 

In the above example, the appearance of 
CALC as the second argument when SUB is 
called does not imply that the identifier 
CALC is contextually declared as an entry 
name, even though t.he above ENTRY attribute 
for SUB has been given. 

THE SPECIAL PROCEDURE ATTRIBUTE RECURSIVE 

In the PROCEDURE statement or ENTRY 
statement for a given procedure, certain 
special attributes that characterize the 
procedure itself may be specified. (For a 
complete discussion of these attributes, 
see liThe PROCEDURE statement.") One of 
these, which has particular significance, 
is the attribute RECURSIVE. When a proce­
dure of a program is re-activated in a task 
while it is still active in the same task 
(see "Activation and Termination of 
Blocks"), the procedure is said to be used 
recursively. P~y procedure used recursive­
ly during program execution must be speci­
fied with the RECURSIVE attribute. 



PROGRAM CONTROl, 

Every program, when it is being execut­
ed, has a control that determines the order 
of execution of the statements. For a 
discussion of their order see "Sequence of 
Control," in Chapter 8. 

Execution of the program is initiated by 
the operating system, which invokes the 
initial procedure. This initial procedure 
must be an external procedure that has been 
specified with the MAIN attribute (see "The 
PROCEDUFtE Statement," in Chapter 8). This 
procedure cannot have CONTROLLED parameters 
(see "Storage Classes," in this chapte~ • 

ACTIVATION AND TERMINATION OF BLOCKS 

A begin block is said to be activated 
when control passes through the BEGIN 
statement for the block. A procedure block 
is said to be activated when the procedure 
is invoked at anyone of its entry points. 

During certain time intervals of the 
execution of a program, a block may be 
active. A block is active if it has been 
activated and is not yet terminated. 

There are a number of ways in which a 
block may be terminated. These are implied 
by the following rules: 

1. A begin block is terminated when con­
trol passes through the END statement 
for the block. 

2. A procedure block is terminated on 
execution of a RETURN statement or an 
END statement for the block. (The END 
statement implies a RETURN statement; 
see Chapter 8.) 

3. A block is terminated on execution of 
a GO TO statement contained in the 
block which transfers control to a 
point not contained in the block. 

4. Th€~ execution of a STOP statement 
causes termination of the major task. 

s. Th€~ execution of an EXIT statement 
causes termination of the task con­
taining the statement and all tasks 
att:ached by this task. Thus, all 
blocks corresponding to these tasks 
are terminated. 

6. When a block B is terminated, all of 
th€~ dynamic descendants of B also are 
ter'mina ted. 

CHAPTER 6: DYNAMIC PROGRAM STRUCTURE 

DYNAMIC DESCENDANCE 

If a block B is activated and control 
stays at points internal to B until B is 
terminated, no other blocks can be activat­
ed while B is active. (This discussion is 
not applicable to the multi-task, or asyn­
chronous, mode of operation, which implies 
more than a single control; see 
"Asynchronous Operations and Tasks.") 

However, another block, B1, may be acti­
vated from a point internal to block B 
while B still remains active. This is 
possible only in the following cases: 

1. B1 is a procedure block immediately 
contained in B (the label of B1 is 
internal to ~ and reached through a 
procedure reference. 

2. B1 is a begin block immediately con­
tained in B and reached through normal 
flow. 

3. B1 is a procedure block not contained 
in B and reached through a procedure 
reference. {Bl, in this case, may be 
identical to B (i.e., a recursive 
call, but conceptually it is to be 
regarded dynamically as a different 
block.) 

4. B1 is a begin block or a statement 
specified by an ON statement (see "The 
ON statement") , and reached through an 
interrupt. (For present purposes, 
even if B1 is a statement, it can be 
regarded as a block, and this case is 
dynamically similar to case 1 or case 
3 above.) 

In any of ~he above cases, while B1 is 
active, it 1S said to be an an immediate 
dynamic descendant of B. 

Block B1 may itself have an immediate 
dynamic descendant B2, etc., so that a 
chain of blocks (B, B 1, B2, ••• ) is creat­
ed, where, by definition, all of the blocks 
are active. In this chain, each of the 
blocks B1, B2, etc., is said to be a 
dynamic descendant of B. 

It is important for the progran®er to 
note that the termination of a given block 
may automatically imply the termination of 
other blocks and that these blocks need not 
necessarily be contained in the given 
block; storage for all AUTOMATIC variables 
declared in these blocks will be released 
at the time of termination ~ee "Storage 
Classes") • 

Chapter 6: Dynamic Program Structure 71 



DYNAMIC ENCOMPASSING 

Block A dynamically encompasses block B, 
or block B is dynamically encompassed by 
block A, if B is a dynamic descendant of A. 

ALLOCATION OF DATA AND STORAGE CLASSES 

Because the internal storage of any 
computer is limited in size, the efficient 
use of this storage during the execution of 
a program is frequently a crucial consider­
ation. The simple static process of data 
allocation used by many compilers -- the 
assignment of a distinct storage region for 
each distinct variable used in the source 
program may be wasteful. Multiple use 
of a storage region for different data 
during program execution can reduce the 
total amount of storage required. 

Provisions are included in the language 
to give the programmer virtually any degree 
of control over the allocation of storage 
for the data variables in a program. On 
the other hand, the entire problem of 
allocation can be ignored completely by the 
programmer, if storage economization is of 
little significance in his situation, and a 
reasonably efficient use of storage usually 
will still be obtained automatically. 

DEFINITIONS AND RULES 

Storage is said to be allocated for a 
variable when a certain region of storage 
is associated with, or assigned to, the 
variable. Allocation for a given variable 
may take place statically, before execution 
of the program, or dynamically, during 
execution. 

Storage may be allocated dynamically for 
a variable and subsequently released. 
Thus, this storage is freed for possible 
use in later allocations. If storage has 
been allocated for a variable and not 
subsequently released, the variable is said 
to be in an allocated state. 

When a variable appears in a statement 
of a source program, the appearance is 
called a reference if it corresponds either 
to the assignment of a value to the varia­
ble (e.g., an appearance on the leTt side 
of an assignment statement) or to a use of 
the value of the variable (e.g., appearance 
in an expression to be evaluated) • 

72 

At any point where a variable appears as 
a reference, it must be in an allocated 
state. 

Note: An unallocated variable may appear 
as an argument to a procedure with a 
corresponding CONTROLLED parameter, as an 
argument to the ALLOCATION function, or in 
an ALLOCATE statement. 

STORAGE CLASSES 

Every variable in a program must have a 
storage class, which specifies the manner 
of storage allocation for the variable. 

There are three storage classes. The 
storage class is specified by declaring the 
variable with one of the three storage 
class attributes STATIC, AUTOMATIC, or CON­
TROLLED. The storage class may be declared 
explicitly or by default. 

The Static Storage Class 

Storage for a variable with attribute 
STATIC is allocated before execution of the 
program and is never released during execu­
tion. 

The scope attribute (see Chapter 4) of a 
STATIC variable may be INTERNAL or EXTER­
NAL. An EXTERNAL variable with unspecified 
storage class has, by default, the STATIC 
storage class attribute. 

The Automatic Storage Class 

If a variable has the attribute AUTOI~T­
IC, the status of the block containing this 
variable (see "Data Description") deter­
mines dynamic allocation for the variable. 
Whenever this block is activated during 
execution of a program, storage will be 
allocated for the variable, and the varia­
ble will remain in an allocated state until 
termination of the block. At the time of 
termination, the storage will be released. 
Thus, the time interval during which the 
variable is in an allocated state will 
necessarily include the intervals when the 
variable is known (see "Scope of 
Declarations") • 

Termination of a block by means of a GO 
TO statement may imply simUltaneous termi­
nation of other blocks and, consequently, 
simultaneous release of storage for all 
AUTOMATIC variables declar"ed in these 
blocks (see "The GO TO Statement") • 



If the block is a procedure and is 
called recursively (reactivated one or more 
times before return), previously allocated 
storage for the AUTOMATIC variable is 
·pushed down· on each entrance and ·popped 
up" on each return to yield the proper 
generation of storage for the variable 
after each return, until the final return 
out of the procedure. 

Note: 'The terms • pushed down" and "popped 
up" refer to the notion of a push-down 
stack. A push-down stack is a logical 
device S, similar in behavior to a physical 
stacking procE=ss. When an element is 
placed in S, it is conceptually placed on 
top of the elements already in S, which are 
"pushed down." At any time, if S is not 
empty, the top element -- the element most 
recently placed in S -- can be removed from 
S, and the remaining elements are "popped 
up. II 

The scope attribute (see Chapter 4) of 
an AUTOMATIC variable must be INTERNAL. An 
INTERNAL variable with unspecified storage 
class has, by default, AUTOMATIC storage 
class at"tribute .. 

The Controlled Storage Class 

If a variable has the attribute CON­
TROLLED, storagE~ allocation must be expli­
citly specified for the variable by the 
ALLOCATE and FREE statements. 

The AJLLOCATE statement (see Chapter 8) 
specifies one or more variables, each with 
certain optional attributes. Execution of 
the statement causes the allocation of 
storage for the variable specified. 

The FHEE stat:ement specifies one or more 
variables, and E~xecution of the statement 
causes the storage most recently allocated 
for the variables to be released. 

At some point: in a program, it may not 
be known whether a variable X is in an 
allocated state. The built-in function 
ALLOCATION (seE! Appendix 1) is provided to 
test this state. The function reference 
ALLOCATION (X) will return the value '1'B 
if X is in an allocated state, and the 
value 'O'B if not. 

The scope attribute of a CONTROLLED 
variable may be INTERNAL or EXTERNAL. 

Example: 

A: PROCJEDURE; 
DECLARE X S,]~ATIC; 

B: PROCEDURE; 
DECLARE Y (100) CONTROLLED, Z CHAR­

ACTER (1000); 

ALLOCATE Y; 

FREE Y; 

C: BEGIN; 
DECLARE Z (100) 

END C; 

RETURN; 

END B; 

END A; 

Assume in the above example that the 
termination of procedure A occurs on the 
return implied by END A, the termination of 
procedure B occurs on the RETURN statement, 
and the termination of block C occurs at 
END C. Then in this example: 

Storage for the static variable X is 
allocated before execution and is never 
released. 

The character-string variable Z is AUTO­
MATIC by default. Storage is allocated 
for this Z on entrance to procedure B 
and is released on execution of the 
RETURN statement. 

The array-variable Z is AUTOMATIC by 
default. Storage is allocated for this 
Z at the beginning of execution of block 
C and is released at END C. 

Storage for the CONTROLLED variable Y is 
allocated on execution of the ALLOCATE 
statement and is released on execution 
of the FREE statement. After execution 
of the FREE statement, t.he variable Y 
presumably is not used, but t.he 
character-string variable Z can be used, 
since storage is not released for this 
variable until the termination of proce­
dUre B. 

Chapter 6: Dynamic Program Structure 73 



ASYNCHRONOUS OPERATIONS AND TASKS 

PL/I allows tasks to be created by the 
programmer and provides facilities for the 
following: 

1. Synchronizing tasks 
2. Testing whether or not a task is 

complete 
3. Changing the priority of tasks. 

SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS 

Unless the program specifies the crea­
tion of tasks, the execution of the state­
ments of the program will proceed serially 
in time, according to the sequence desig­
nated by the order of the statements and 
the control statements (see "Sequence of 
Control" in chapter 8). Such operation is 
said to be synchronous. 

In addition to full facilities for con­
ventional synchronous processing, means are 
provided for performing operations ,asyn­
chronously. 

Some reasons for considering the use of 
asynchronous operations are: 

1. The programmer may wish to make use of 
computer facilities which can operate 
simultaneously, e.g., input/output 
channels, multiple central processing 
units. 

2. A program may be written in which 
input/output units initiate or com­
plete transmission at unpredictable 
times, e.g., disc seeks, terminals. 

The following two diagrams distinguish 
between synchronous and asynchronous opera­
tions. The first diagram depicts the seri­
al action of synchronous operations, and 
the second diagram depicts the parallel 
action of asynchronous operations. (The 
circles represent statements.) 

---0--0---0----------------0---------
time--> 

74 

r-o---o------- ••• 
I 
I 

rO------o----o-------- ... 
I 
I 

O-O-Oi-------o------o------o-----------
tirne--> 

In asynchronous operation, once a new 
line has been started, the statements on 
that line are executed in sequence, but 
independently of the statements on any 
other line. Statements on any two li,nes 
need not necessarily be executed simultane­
ously -- whether this occurs depends on the 
resources and state of the system. 

SYNCHRONIZING TWO ASYNCHRONOUS OPERATIONS 

In order that the result of an asynchro­
nous operation may be made available to 
other procedures, means are provided to 
synchronize two or more asynchronous opera­
tions. 

The following diagram illustrates this: 

ABC D E F G 
0--0--0--0----------0--------0---0--... 

I 
time--> I 

I -------0--0-........ -0---0------0---------
L M 

Wait 
N o P 

Assume that before statement N can be 
executed, both M and E must have been 
executed. M therefore issues a WAIT state­
ment which will suspend operation on that 
line until E has completed. After N, the 
statements 0, P, ••• , are executed synchro­
nously, as are the statements F, G, ••• ,. 

TASK AND EVENTS 

In PL/I, asynchronous operations result 
from the creation, by the programmer, of 
tasks. The synchronizing of operations is 
obtained by waiting on events. 

A task is an identifiable execution of a 
set of instructions. A task is dynamic, 
and only exists during the execution of a 
program or part of a program. 

A task is not a set of instructions, but 
an execution of a set of instructions. The 
instructions themselves, as wI-i tten by the 
programmer, may in fact be executed several 
times in different tasks. 

It is necessary for at least one task to 
exist when a PL/I program is executed. 
Thus when an external procedure is first 
entered, its execution is part of a task. 
This particular task is called the major 
task; it is created by the operating envi-



ronment and its creation does not necessar­
ily concern the PL/I programmer. If the 
programmer is concerned with only synchro­
nous operations, then the major task will 
be the program itself. 

In order to initiate asynchronous opera­
tions, ·the programmer has to create new 
tasks, as described below. All tasks 
created :by the programmer are called sub­
task~. 

With each task, except the major task, 
it is possible to associate a task name. 
The task name may be used to refer to and 
set the priority of the task. 

A task may be suspended by the 
programm4~r until some point in the execu­
tion of another task has been reached. The 
specified poin1: is known as an event and 
the recoJrd of i 1:s completion is contained 
in an event name. (See the EVENT built-in 
function and the EVENT pseudo-variable.) 

An event name may be associated with the 
completion of a task. It is necessary to 
specify such an event name if the program­
mer wishes to synchronize a point in one 
task wi i:h the completion of another task, 
by means of the WAIT statement. 

Other event names may be defined by the 
programmer and used in WAIT statements. In 
this way, the programmer can synchronize a 
task with events other than the completion 
of another task. Event naules may be set by 
referrinq to them in assignment statement 
by means of the EVENT pseudo-variable. 

'rHE CREA~rION OF TASKS 

In PL/I tasks are created by writing: 

A Tl~SK option 
An IWENT option 
A PIUORITY option 

or any combination of these options in a 
CALL sta-tement (see liThe CALL Statement" in 
Chapter 8). The called procedure will then 
be execut:ed asynchronously with the calling 
procedure. The CALL statement itself is 
not part of the newly-created task. The 
I~xecution of the calling procedure is known 
as !he attaching task. The execution of 
the called procedure is known as the 
attached task. ---

The TF~SK option is given in order to 
name the task created by the CALL. This is 
necessar~y if the programmer wishes to exam­
ine or change the priority of the called 
procedure, since the PRIORITY function and 
pseudo-variable have a task name as an 
argument. 

The EVENT option is given if the pro­
grammer wishes to issue a WAIT statement 
which will wait on the completion of the 
task created by the CALL. 

The PRIORITY option is given if the task 
created by the CALL is to be given a 
different priority from that of the task in 
which the CALL statement appears. 

The term "task option" will be used in 
all later discussions to denote anyone of 
the three options TASK, EVENT, or PRIORITY, 
or any part of these options, or all three. 

TERMINATION OF TASKS 

A task may be terminated in one of the 
four following ways: 

1. Control for the task reaches an EXIT 
statement (see Chapter 8 for a discus­
sion of each of the statements men­
tioned here) • 

2. Control for any task reaches a STOP 
statement. 

3. Control for the task reaches a RETURN 
statement for the procedure defining 
the task. 

4. Control for the task reaches an END 
statement for the procedure defining 
the task. 

ALLOCATION OF DATA IN TASKS 

The rules of scope and storage alloca­
tion hold across task boundaries. If stor­
age is allocated for a variable in the 
attaching task, this allocation may apply 
to the attached task, so that the variable 
may appear as a reference in the attached 
task. It is the responsibility of the 
programmer to be certain that storage for 
such a variable is not released too early 
in the attaching task. (Normally, this is 
done by synchronizing by use of the WAIT 
statement.) 

(Further details concerning tasks as 
related to storage allocation and other 
special considerations can be found in 
Chapter 10; also see liThe WAIT Statement n 

for other information and examples.) 

INTERRUPT OPERATIONS 

During the course of program execution 
anyone of a certain set of conditions may 
occur that can result in an interrupt. An 

Chapter 6. Dynamic Program Structure 75 



interrupt operation causes the suspension 
of normal program activities, in order to 
perform a special action; after the special 
action, program activities mayor may not 
resume at the point where they were sus­
pended. The time point of an interrupt is, 
in general, unpredictable. 

For most conditions that can cause an 
interrupt, the special action to be taken 
may be specified by the programmer. To do 
this, he may specify the condition in an ON 
statement; therefore these conditions are 
known as the ON-conditions. A complete 
list and description of the ON-conditions 
can be found in Appendix 3. With two 
exceptions (see "Programmer Defined ON­
Conditions," in this chapter), each ON­
condition is named with a unique identifier 
suggestive of the condition (e.g., 
ZERODIVIDE names the condition obtaining 
whenever an attempt is made to divide by 
zero) • This collection of names, like the 
built-in function names, is an intrinsic 
part of the language, but the names are not 
reserved; the programmer may use them for 
other purposes, so long as no ambiguity 
exists. 

PURPOSE OF THE CONDITION PREFIX 

The conditions named in the prefix to a 
statement may occur during program execu­
tion of a statement lying in the scope of 
the prefix (see below). If one of these 
conditions actually does occur, the appear­
ance in the prefix of the corresponding 
condition name -- or its negation with the 
word NO determines whether or not an 
interrupt operation will then take place. 

Any condition whose occurrence will 
cause an interrupt is said to be ena.bled. 
Enabling of the first five conditions list­
ed above, namely, UNDERFLOW, OVERFLOW, ZE­
RODIVIDE, FIXEDOVERFLOW, and CONVERSION, is 
provided automatically by PL/I; any occur­
rence of one of these conditions will cause 
an interrupt unless the enabling has been 
negated through the use of a prefix con­
taining the condition name preceded by the 
word NO. The programmer must himself ena­
ble the other conditions through the use of 
a prefix. For example, no interrupt will 
occur for a SIZE error (see SIZE condition 
in Appendix 3), unless the error occurs in 
a calculation within the scope of a SIZE 
prefix. For further details, see "The ON 
Statement" in Chapter 8 and "System Inter­
rupt Action" below. 

76 

SCOPE OF THE CONDITION PREFIX 

The scope of the prefix depends upon the 
statement to which it is attached. 

If the statement is a PROCEDURE or BEGIN 
statement, the scope of the prefix is the 
block or group defined by this statement, 
including all nested blocks, except those 
for which the condition is re-specified. 
The scope does not include procedures that 
lie outside the scope as defined above but 
which may be invoked by the execution of 
statements in this scope. 

If the statement is an IF statement or 
an ON statement, the scope of the prefix 
does not include the blocks or groups that 
are part of the statement. Any such block 
may also have an attached prefix, whose 
scope rules are implied by the other rules 
given here. 

For any other statement, the scope of 
the prefix is that of the statement itself, 
including any expressions appearing in ~he 
statement but not any procedure explicitly 
called by the statement. 

USE OF 'l'HE ON STATE MEN'll 

In order to define the action to be 
taken when an interrupt occurs, the pro­
grammer may write an ON statement, which 
has the general form: 

ON condi,tion-specification 
specification 

action-

The Ucondition specification" either is 
an ON-condition name or denotes a 
programmer-defined condition, and the 
"action specification" is a single simple 
statement or begin block, optionally 
preceded by the keyword SNAP (see liThe ON 
StatementU for complete syntax and 
details). If the single statement is null, 
control is given back to the point of 
interrupt. 

When an ON statement that is internal to 
a given block (for example, a block B) is 
executed, it causes a preparatory action 
with the following effect: 

If, during the execution of any state­
ment after the execution of the ON 
statement and before the termination 
of block B (including the execution of 
statements in all dynamic descendants 
of block B), the condition specified 



in the ON statement ever occurs and an 
interrupt results, the statement or 
begin block specified in the ON state­
ment will be executed as though it 
were invoked as a procedure block. 
(If SNAP also has been specified, a 
standard action providing program 
checkout information will precede this 
pseudo-invocation.) Control normally 
will be re-turned to the point follow­
ing the interrupt. 

When an ON statement specifying a given 
condition is executed, the action to be 
taken is established by the execution. The 
time interval during which this action 
specification is effective is defined above 
in the description of the effect of an ON 
statement. There are two qualifications to 
this description: 

1. If, after a given action is esta­
blished by execution of an ON state­
ment, and while this action specifi­
cation is still effective, another ON 
statement specifying the same condi­
tion is executed, then this latter ON 
statement will take effect as des­
cribed above, so that its specified 
action will determine the interrupt 
action for the given condition. (The 
eff,ect of the old ON statement is 
either temporarily suspended or com­
pletely nullified, depending upon 
whether or not the new ON statement is 
in a block dynamically descendant from 
the block to which the old ON state­
ment is internal; see "The ON 
Statement" and "The REVERT Statement" 
for more details.) 

2. There are eight ON-conditions whose 
names (possibly preceded by the word 
"NO") may appear in a prefix to a 
sta1tement. Even when one of these 
conditions appears in an ON statement, 
occurrence of the condition will not 
necessarily result in an interrupt. 
For an interrupt to occur, there are 
cer1tain additional requirements, which 
are described in the following para­
graph. 

There are three of these eight ON­
conditions, SIZE, SUBSCRIPTRANGE, and 
CHECK (identifier lis~, for which an 
interrupt will not take place when the 
condition occurs unless the programmer 
specifically deSignates that the 
interrupt is to take place. He may 
enable th1:5 condition by explicitly 
specifying the condition in a prefix 
whose scope will cover the calculation 
where the condition may occur. If a 
calculation resulting in the occur­
rence of either of these conditions 
does not lie within the scope of such 
a prefix, no interrupts will occur. 
The other five of these eight special 

ON-conditions, namely OVERFLOW, UNDER­
FLOW, ZERODIVIDE, CONVERSION, and FIX­
EDOVERFLOW, are always enabled, but 
the programmer may specifically deSig­
nate that an interrupt is not to take 
place. An interrupt for anyone of 
these conditions will always take 
place when the condition occurs unless 
the occurrence is in a calculation 
lying within the scope of a prefix 
specifying NOOVERFLOW, NOUNDERFLOW, 
NOZERODIVIDE, NOCONVERSION, or NOFIXE­
DOVERFLOW, respectively. 

All other conditions, whose names cannot 
be used in a prefix, are always enabled. 

SYSTEM INTERRUPT ACTION 

Each of the ON-conditions has a standard 
action defined for it if an interrupt 
should occur. If there has been no pre­
vious execution of an ON statement (in 
which the programmer specifies the inter­
rupt action), any interrupt caused by the 
occurrence of the condition during program 
execution will result in a standard system 
action, which is dependent upon the nature 
of the condition. If the programmer does 
not want the system action in the case 
where one of these conditions may occur and 
cause an interrupt, he must specify an 
alternative action for the condition 
through use of the ON statement. 

In some situations, the programmer may 
want to specify his own action for a given 
condition, to have it hold for part of the 
execution of the program, and then to have 
this specification nullified and allow the 
standard system action. In this case, he 
may use the special action-specification 
SYSTEM, as follows: 

A: 

ON condition-name SYSTEM; 

Example 1: 

PROCEDURE; 

ON OVERFLOW 
BEGIN; 
DECLARE NUMBOV STATIC 

INITIAL (0); 
NUMBOV=NUMBOV + 
IF NUMBOV = 100 'l'HEN GO 

TO OVERRi 
END; 

ON OVERFLOW; 

Chapter 6. Dynamic Program Structure 77 



ON OVERFLOW SYSTEM; 

END A; 

In the above example, assume that the 
program consists only of procedure A, that 
the three ON statements are the only ON 
statements involving the OVERFLOW condi­
tion, that they are internal to procedure 
A, and that they are executed in their 
physical order. 

When program execution begins, the OVER­
FLOW condition is enabled by the system; 
any floating-point overflow condition that 
occurs before the first ON OVERFLOW state­
ment is executed will result in an inter­
rupt, with standard system action. Howev­
er, the execution of the first ON OVERFLOW 
statement establishes the action specified 
in the BEGIN block. (The number of over­
flows is counted and if this number has not 
reached 100, the action is finished.) Any 
OVERFLOW interrupts will receive this 
action until the second ON OVERFLOW state­
ment is executed. The action specified 
here is a null statement; any subsequent 
OVERFLOW interrupts will effectively be 
ignored until control reaches the third ON 
OVERFLOW statement, which reestablishes the 
standard system action. 

Example 2: 

(SIZE): A: PROCEDURE; 

ON SIZE GO TO AERR; 

CALL B; 

END Ai 

(SIZE, NOOVERFLOW) B: PROCEDURE; 

ON SIZE GO TO BERR; 

RETURN; 
END R; 

In the above example, the prefix (SIZE) 
enables that condition for procedure A and 
specifies that if a SIZE error (see Appen­
dix 3) occurs during any calculation in 
procedure A, an interrupt is to take place. 

78 

The prefix (SIZE, NOOVERFLO~ for procedure 
B specifies the same requirement with res­
pect to a SIZE error for procedure B; in 
addition, it specifies for procedure B that 
any interrupt that might be caused by an 
OVERFLOW condition is to be suppressed. 

After the beginning of execution of 
procedure A, and before the execution of 
the first ON statement, any SIZE error will 
result in an interrupt with standard system 
action. After execution of this ON state­
ment, and bEfore execution of the ON state­
ment in the invoked procedure B, any SIZE 
error will result in an interrupt with the 
action GO TO AERR. After execution of the 
ON statement in procedure B, the action GO 
TO BERR becomes established for the SIZE 
condition, but the effect of the previous 
ON statement is suspended only temporarily. 
After the RETURN statement in procedure B 
is executed, the effect of this previous ON 
statement is reinstated, so that SIZE 
errors occurring after this point again 
result in the action GO TO AERR. 

If any floating-point overflow condition 
occurs during the execution of procedure A, 
an interrupt will result with the standard 
system action for the OVERFLOW condition. 
However, for any occurrence of an CVERFLOW 
condition during the execution of procedure 
B, the interrupt will be suppressed. 

Example 3: 

(NO OVERFLOW) A: PROCEDURE; 

(OVERFLOW) :B: BEGIN; 

END B; 

END A; 

In the above example, interrupts will be 
suppressed for OVERFLOW conditions occur­
ring during execution of that part of 
procedure A that is not included in block 
B. OVERFLOW conditions occurring during 
execution of block B """ill result in an 
interrupt. 

USE OF THE REVERT STATEMENT 

The REVERT statement may be used, fol­
lowing an ON statement, to reinstate an 
action specification that existed in the 
i~nediate, dynamically encompassing block 



without 1having to return control to that 
block (slee "The REVERT Statement, II in Chap­
ter 8. :Eor format and rules) • 

Example: 

(SIZE) A: PROCEDURE; 
ON SIZE GO TO AERR; 

CALL B; 

END A: 
(SIZE) B: PROCEDURE: 

ON SIZE GO TO BERR: 

REVERT SIZE: 

END B; 

In the above example, if a SIZE error 
occurs in procedure B after execution of 
the ON statement, an interrupt will take 
place wi 1:h the resulting action GO TO BERR. 
After execution of the REVERT statement, 
the condition as specified by the ON state­
ment in procedure A is reinstated. Program 
control remains in procedure B, but any 
subsequent SIZE error that occurs in proce­
dUre B will cause an interrupt with the 
action GO TO AERR. 

PROGRAMM'ER-DEFINED ON-CONDITIONS 

There are two kinds of ON-conditions ·the 
programmE!r may construct: 

1. An arbitrary identifier can be used to 
create a condition name by means of 
the keyword CONDITION used in the ON 
stat~ement, as follows: 

ON CONDITION (identifier) action-
specification 

Such a statement contextually declares 
the "identifier" to be a condition­
name and the execution of the 
statement enables the named condition. 
The condition can be caused to "occur" 
only by the execution of a SIGNAL 
stat.ement (see "The SIGNAL 
Stat.ement") • 

E'or example, if the following 
stat.ement is executed: 

ON CONDITION(KE~ block 

and later the following statement is 
executed: 

SIGNAL CONDITION (KEY) : 

then the latter execution will (by 
definition of the SIGNAL statement) 
cause an interrupt, with the action 
defined by the block in the ON state­
ment. 

2. The CHECK (identifier list), where 
nidentifier list n represents variables 
or labels declared in the program, can 
appear as the condition specification 
in the ON statement. Whenever one of 
the variables in the list is assigned 
a value, or one of the procedures or 
statements whose label appears in the 
list is executed and if the condition 
is enabled, the condition defined by 
this specification is regarded as 
occurring, and an interrupt will take 
place. (For a precise explanation of 
this kind of condition, see Appendix 
3, nON Conditions. n ) 

FACILITIES FOR PROGRAM CHECKOUT 

The programmer-specified condition des­
cribed above is a powerful tool for program 
checkout. As an example of its use, sup­
pose that a block contains the prefix 
(CHECK (A,SUB1,STS» and that the following 
statement is executed: 

ON CHECK (A, SUB1, STS) SYSTEM 

In the example, A is a data variable, 
SUB1 is a procedure name, and STS is a 
statement label. Then, whenever a value is 
assigned to A (or to any part of A, if A is 
an array or structure name), an interrupt 
occurs, and A is printed out on a debugging 
file with its new value. If the statement 
labeled ST5 or the procedure SUB1 is exe­
cuted, the label is printed out. 

Another useful ON-condition is the con­
dition named SUBSCRIPTRANGE. Parts of the 
program can be designated by the program­
mer, using the keyword SUBSCRIPTRANGE in 
appropriate prefixes, to receive constant 
monitoring of subscript values. Whenever 
the value of some subscript in some array 
goes out of its designated range, an inter­
rupt will occur, and action, specified by a 
previously executed ON statement, will take 
place to correct the error. 

The SIGNAL statement also will be found 
useful for checkout, since it can be used 
to simulate the occurrence of any ON­
condition (see "The SIGNAL Statement n

) • 

Chapter 6. Dynamic Program Structure 79 



CHAPTER 7: INPUT/OUTPUT 

All input/output activity is performed 
with named collections of data called 
files. The name of a file is a file name. 
Files may be subdivided into smaller 
collections of data called records. Furth­
ermore, records may be ordered within a 
file so that the data conceptually consti­
tutes a single stream upon which the record 
structure has been superirr.posed. Records 
in such ordered files may be collected into 
groups. 

The natural record structure of a data 
stream may be inappropriate to some appli­
cations. For such applications, signifi­
cant divisions of data may be indicated by 
arbitrary symbols called segment marks. 
Such divisions are called segments. The 
programmer can, by specifying segments, 
provide for the crossing of record boundar­
ies during data transmission. 

Data is transmitted between the external 
medium and internal storage as a record. 
The record may be considered a continuous 
string of characters or bits, with the 
string subdivided into contiguous subst­
rings called fields. A field may be empty, 
or it may contain one and only one item of 
data. Fields, segment rr.arks, and item 
delimiters cannot span record boundaries. 

The number of fields in a 
size of those fields, the 
data item in each field, and 
marks, if any, is called the 
record. 

record, the 
nature·of the 
the segment 

format of the 

The order of items to be transmitted is 
specified by a list of elements. On input, 
the elements are variables or pseudo­
variables to which are assigned the values 
of the corresponding fields of data. On 
output, the elements are expressions whose 
values are given to the corresponding 
fields of output data. As data is trans­
mitted, a field pointer moves across the 
record in synchronization with the process­
ing of the list elements. The positioning 
of the pointer is governed by format items 
and positioning statements given for the 
record. The list element and the format 
may be specified in the record or may be 
specified in a list of elements and a 
format specification in the program. 

80 

DATA TRANSMISSION 

There are four modes of data transmis­
sion: list-directed, data-directed, format­
directed, and procedure-directed. 

LIST-DIRECTED TRANSMISSION 

List-directed transmission permits the 
user to specify the storage area to which 
data is assigned or from which data is 
transmitted without specifying the format. 

Input: The data on the external medium is 
in the form of optionally signed valid 
constants or expressions to represent 
complex constants. The program storage 
areas to which the data is to be assigned 
is specified by a data list. (See 
"List-Directed Input" below.) 

Output: The 
are specified 
the data on 
function of 
"List-Directed 

data values to be transmitted 
by a data list. The form of 
the external medium is a 
the data value. (See 

Output" below.) 

DATA-DIRECTED TRANSMISSION 

Data-directed transmission permits the 
user to read or write self-identifying 
data. (See "Data-Directed Data 
Specification" below.) 

Input: The data on the external medium is 
in the form of optionally signed valid 
constants and includes information defining 
the program storage areas to which the data 
is to be assigned. 

Output: The data values to be transmitted 
are specified by a data list. The data on 
the external medium has the form of 
constants and includes the name of the data 
being transmitted. 

FORMAT-DIRECTED TRANSMISSION 

Format-directed transmission permits the 
user to specify both the storage area to 
which data is to be assigned or from which 
data is to be transmitted and the form of 
fields in the record. 



Input: The form of the data on the exter­
nal medium is defined by a format list. 
The program sto:["age areas to which the data 
is to be assigned is specified by a data 
list. 

Output: The da'ta values to be transmitted 
are defined by a data list. The form that 
the data is to have on the external medium 
is defined by a format list. 

PROCEDURE-DIREc'rED THANSMISSION 

Procedure-directed transmission provides 
the ability to process data fields during 
transmission by invoking a procedure with a 
CALL option. 

When a statement specifying a file is 
executed, the specified file becomes the 
current file. If this statement then 
invokes a procedure which also contains a 
statement specifying a file, etc., a stack 
of current files is created, with the 
actual current file being the most recent 
entry into the stack. When a statement 
specifying a file is completed, that file 
is released from the stack and the next 
file in the stack, if any, becomes the 
current file. 

This concept of a current file makes 
possible the use of GET and PUT and various 
positioning statements without having to 
specify the file name in the statements. 

A GET or PUT statement that is executed 
when there is no current file causes the 
ERROR condition to be raised. 

Examples: 

1. Zl: PROCEDURE: 
DECLAHE FILEX FILE: 

READ FILE (FILEX), LIST (A,B,C), 
CALI.. Z2: 

END Z": 
Z2: PROCEDURE: 

DECLM~E FILEY FILEi 

READ FILE (FILEY), DATA, CALL 
Z3: 

END Z2: 
Z3: PROCEDURE: 

DECLARE FILEZ FILE; 

WRITE FILE (FILEZ), LIST (P,Q) 

END Z3; 

Upon execution of the READ statement in 
procedure Z1, FILEX becomes the current 
file. Since this READ statement invokes 
procedure Z2, the READ statement in Z2 is 
executed. This causes FILEY to become the 
current file. Now there are two files in 
the stack of current files (FILEX and 
FILEY) • Similarly, the READ statement in 
Z2 invokes procedure Z3 in which FILEZ is 
added to the stack of current files. This 
stack is ordered from most current to least 
current as follows: 

FILEZ 
FILEY 
FILEX 

When the WRITE statement in Z3 is com­
pleted, FILEZ is removed from the stack of 
current files. Similarly, when the READ 
statement in Z2 is completed, FILEY is 
removed froIIl the stack, and upon completion 
of the READ statement in Z1, there are no 
more current files. 

2. A: 

B: 

PROCEDURE: 
DECLARE P FILE: 

READ FILE (P), (D,E) (2F(S,3», 
CALL B: 

END A; 
PkOCEDURE: 
SKIP (4); 
GET LIST (F) 

END B; 

The READ statement in procedure A causes 
file P to become the current file, data 
items D and E to be transmitted, and 
procedure B to be invoked. Procedure B 
causes a skip to the fourth record of the 
current group on the current file (P), and 
causes data item F' to be read. 

Chapter 7: Input/Output 81 



DATA SPECIFICATIONS 

Data specifications are given in READ, 
WRITE, GET, and PUT statements to describe 
the data to be transmitted. The data 
specifications correspond to the modes of 
transmission. 

DATA LISTS 

List-directed, data-directed, and 
format-directed data specifications require 
a data list to specify the data items to be 
transmitted. 

General format: 

(element [, element] ••• ) 

Syntax rules: 

The character of the 
upon whether the data 
input or for output. The 
are as follows: 

elements depends 
list is used for 
rules for each 

1. On input, each data-list element for 
format- and list-directed data may be 
one of the following: a scalar name, 
an array name, a structure name, a 
pseudo-variable, a pseudo-array, a 
pseudo-structure, or a repetitive 
specification involving any of ·these 
elements. For a data-directed data 
specification, each data-list element 
may be an unsubscripted scalar, array, 
or structure name. 

2. On output, each data-list element for 
format- and list-directed data speci­
fications may be one of the following: 
a scalar expression, an array expres­
sion, a structure expression, or a 
repetitive specification involving any 
of these elements. For a data­
directed data specification, each 
data-list element may be a scalar, 

array, or structure name, or a repeti­
tive specification involving any of 
these elements. 

Repetitive Specification 

General format is shown in Figure 1. 

Syntax rules: 

1. Each element in the element list of 
the repetitive specification is as 
described for data-list elements 
above. 

2. The expressions in the specification 
are described as follows: 
a. Each expression in the specifi­

cation is a scalar expression. 
b. In the specification , expression 

1 represents the starting value of 
the control variable or pseudo­
variable. Expression 3 represents 
the increment to be added to the 
control variable after each 
repetition of data-list elements 
in the repetitive specification. 
Expression 2 represents the termi­
nating value of the control varia­
ble. The exact meaning of the 
specification is identical to that 
of a DO statement with the same 
specification When the last 
specification is completed, con­
trol passes to the next element in 
the data list. 

3. Repetitive specification may be nested 
to any depth. That is, each element 
in the element list may be a repeti­
tive specification. A repetitive 
specification involving m elements 
repeated n times is equivalent to m * 
n elements~ For example, consider the 
following list element: 

( (A (I, J) 1= 1 TO 2) J=3 TO 4) 

r------------------------------------------------------------------------, 
I (element [, element] {Variable } = specification I 
I pseudo-variable [, specification] .... ) I 
I I 
I A specification has the following format: I 
I I 
I [TO expression-2 [BY expresSiOn-3]] I 
I expression-1 [WHILE (expression- 4)] I 
I BY expression-3 [TO expression-2] I L ________________________________________________________________________ J 

Figure 1. General Format for Repetitive Specification 

82 



This gives the elements of the array A 
in the following order: 

A(1,3), A(2,3), A(1,4), A(2,4) 

Transmission of Data-List Elements 

If a data-list element is, of cOIlll'lex 
mode, the real part is transmitted before 
the imaginary part. 

If a data-list element is an array name, 
the elements of the array are transmitted 
in row-major order, that is, with the 
rightmost subscript of the array varying 
most frequently_ 

If a data-list element is a structure 
name, the elements of the structure are 
transmitted in the order in which they are 
stored. 

If, within a data list used in an input 
statement, a variable is assigned a value, 
this new value is used in all later ref­
erences in the data list. 

Example: 

In the following statement, 
structure, XSTRING is a character 
and C is an array: 

B is a 
string, 

DEC:LARE A FLOAT, 1 B, 2 P, 2 E, 3 F, 
XSTRING 
CHARACTgR (6), C (10) FIXED; 

The following data list, involving these 
data items, and the scalar variable A, may 
be used for input or output. 

(A,B, SUBSTR (XSTRING,2), (C(I) I=1 TO 
'10) ) 

The data-list elements are transmitted 
in the following order: 

A ~rhe scalar variable is transmitted. 
P, F The elements of the structure B 

are transmitted. 

SUBSTR (XSTRING, 2) The second through 
sixth characters of the string are 
transmitted. 

C (1), C (2) ••• , C (10) The ten 
elements of the array are trans­
mitted. 

LIST-DIRECTED DATA SPECIFICATION 

General format: 

LIST data-list [(scalar-expression)] 

Syntax rules: 

1. The "data list" is described in the 
preceding discussion. 

2. The nsc~lar expression," which may 
optionally follow the data list, rep­
resents a separator of data items on 
the external medium. 

List-Directed Input 

When the data item is an array name and 
the data consists of scalar constants, the 
first constant is assigned to the first 
element of the array, the following con­
stant to the second element, etc., in 
row-major order. 

A structure name in the data list rep­
resents a list of the contained scalar 
variables and arrays in the order specified 
in the structure description. 

List-Directed Input Format 

Data on the external medium has the 
following general form: 

[+1-] arithmetic-constant 
'string-constant' [~ 
[+1-] real-constant {+I-} imaginary­

constant 

Sterling constants may not be used. A 
string constant must be one of the four 
permitted fo~ms listeQ above. The string 
value is obtained by deleting surrounding 
quotes and replacing contained double 
quotes by single quotes. If the string 
represents an optionally signed arithmetic 
constant or complex expression, this value 
represents the converted arithmetic value. 
If the string represents a bit constant, 
this bit string value is converted to an 
arithmetic value as described in Chapter 3. 
If the string represents a character con­
stant, the above process is repeated. 

Redundant blanks are permitted as in 
PL/I programs. However, if there is no 
specified separator, or if the separator is 
specified as a blank, no blanks may precede 
the central + or - in complex expressions. 

A null field on input implies the data 
list item is to be skipped. 

Chapter 7: Input/Output 83 



A scalar expressien, enclosed in paren­
theses, eptienally may fellew the list­
directed data list. If the expression is 
not present, data items on the external 
medium must be separated by a cemma or a 
blank. If present, the expression is 
evaluated and converted, if necessary, to a 
character string: the resultant character 
string is recognized as the separator of 
data items en the external medium. 

The transmission of the list ef con­
stants on input is terminated by an attempt 
to read the segment mark. List-directed 
input implies the SEGlvlENT optien. 

List-Directed Output 

The values ef the scalar variables in 
the data list are converted to a character 
representation of the data value, as des­
cribed below, and transmitted to the exter­
nal medium. 

A scalar expressien, enclosed in paren­
theses, eptionally may follow the list­
directed data list. If the expression is 
net present, a blank is used to' separate 
data items to' be transmitted. If present, 
the expression is evaluated and converted, 
if necessary, to a character string: the 
resultant character string is used to 
separate data items to be transmitted. 

If the SEGMENT option appears in the 
WRITE statement, the final data item trans­
mitted will be follewed by the segment mark 
(a semicolen will not appear as a de:fault 
fer list-directed output) • 

List-Directed Output Fermat 

Data fields written under list directien 
are aligned in vertical columns. This 
alignment is called tabbing, and is separ­
ately defined for each implementation ef 
the language. System tabbing may be over­
ridden by a TAB eption in a LAYOUT state­
ment for the appropriate file. 

Each item of a list-directed data speci­
fication, except the last, is immediately 
followed by the separating character indi­
cated in the list-directed data specifi­
cation by a scalar expression enclosed in 
parentheses. If the data is to be reread 
under list direction, care should be taken 
to avoid including character data or numer­
ic fields in the output and to avoid 
ambiguity resulting from choice of separat­
ing or terminating characters. 

Data items are written en successive tab 
positions unless an item extends into a 

84 

succeeding position. (In that 
next free position is used.) 
may span several tabs, but must 
record bounaaries. 

case, the 
A data item 

not span 

Length of List-Directed Output Fields 

The length of the data field on the 
external medium is a function of the inter­
nal precision and value of the data item. 

CODED ARITHMETIC DATA: The external form 
of coded arithmetic data is a possibly 
signed valid decimal constant whose field 
width, w, is a function of the internal 
precision declared for the data item and 
the value of the data item. In the discus­
sion below, the following abbreviations are 
used: 

1. The letter w represents the field 
width, which 1S defined as the length 
of the data field on the external 
medium. 

2. The letter d represents the number of 
positions In the external data field 
to the right of the decimal point. 

3. The letter E represents the total 
number of significant digits in the 
data field. 

4. The letter Sl represents the number of 
digits to the right of the decimal 
peint. 

S. The letter z represents the total 
number of leading zeros to be sup­
pressed. A zero immediately before 
the decimal point, whether the decimal 
point is printed or not, is net sup­
pressed. 

6. The letter t represents the existence 
or nonexistence of a decimal point: t 
takes on the values 0 and 1 depending 
upen the value of q. 

7. 

if q 0, then t 0 
if q I 0, then t 1 

The letter u represents the existence 
of a minus sIgn: u takes on the values 
o and 1 depending on the value of the 
data. 

if data value < 0, then u 1 
if data value ~ 0, then u 0 

8. The letter s represents a scale factor 
as described for floating-point data. 

9. The pair (r,s) represents the declared 
internal precision of a coded real 
decimal fixed point data item. 

There are five kinds of coded arithmetic 
data to' consider: coded real fixed-point 
decimal data, coded real fixed-point binary 
da·ta, coded real floating-point decimal 
data, coded real floating-point binary 
data, and coded complex data. 



Coded Real Fixed-Point Decimal Data: The 
data item is converted to precision (p,q) 
and transmitted to a field of width ~ where 

q MAX (s, 0) 
p r-s+q 
w = p-z+t+u 

Coded Real Fixed-Point Binary Data: The 
data is converted to fixed-point decimal 
and is transmitted as coded real fixed­
point decimal data. 

Coded Real Floating-Point Decimal Data: 
The data is converted according to the 
rules for fixed'-point format items, F (w,d) • 
For F-conversion, if p is the declared 
precision of the data item, w = p + 2 and d 

p 1. For list-directed output, the 
field containing the converted data item is 
padd.ed on the right with four blank 
characters, such that the total field width 
is w + 4. The effect is similar to the 
pair of format items F(w,d), X(4}. 

If this conv,ersion causes either a digit 
over'flow into the sign position or a signi­
fica,nt zero digit in the position immedi­
ately to the right of the decimal point, 
the data item is converted according to the 
rules for floating-point format items, 
E(w,d,~. For E-conversion, w = p + 6, d = 
P - 1, and s = p. 

Coded Real Floa"ting-point Binary Data: The 
data is converbed to floating-point decimal 
with a precision (p) and transmitted as 
coded real floa"ting-point decimal data. 

Coded Complex Data: The data is represent­
ed as two immediately adjacent real data 
fields, the left-hand field being the real 
part of the data and the right-hand field 
being the imaginary part of the data. 

A sign always precedes the imaginary 
part,. If the value of the imaginary part 
1S greater than, or equal to, zero, the 
sign is plus; if the value of the imaginary 
part is less than zero, the sign is minus. 
The imaginary part is always followed by 
the letter I. 

The field width of the real part of the 
complex data is as described in the items 
above, whichever applies. The field width 
of the imaginary part is as described above 
plus 2 (one position for the sign and one 
for the letter I) if u = 0, or plus 1 ~or 
the letter I), if u = 1. Therefore, the 
field width of 'the complex data field is 
the sum of the widths of the subfields. 

NUMERIC FIELD DATA: The base of numeric 
field data is either decimal or binary. 

Numeric Decimal Data: The external format 
and field width of the numeric decimal data 

item is that described by the associated 
picture specification. 

Numeric Binary Data: The external format 
and field width of the numeric binary data 
item is that described by the associated 
picture specification. The binary digits 0 
and 1 are represented by the characters 0 
and 1. 

CHARACTER-STRING DA'l'A: 'l'he contents of the 
character string are written out. Enclos­
ing quotation marks are not supplied, and 
contained quotation marks are unmodified. 
The field width is the current length of 
the string. 

BIT-STRING DATA: The format of the data on 
the external medium is that of a bit-string 
constant, that is, the value is enclosed in 
quotation marks and followed by the letter 
B. The field wiqth is (p + 3) , where E is 
the current length of the string and the 
three ~dditional positions are for the two 
quotation marks and the letter B. 

Examples of list-directed dqta specifi­
cations: 

READ LIST (CARD. RATE, 
DYNAMIC FLOW) ; 

READ LIST «THICKNESS (DISTANCE) 
DISTANCE = 1 TO 1000»; 

WRITE LIST (P, Z, M, R) ; 
WRITE LIST (A * B / C, (X + Y) ** 2) 

(.,.) ; 

The first two examples are list-directed 
input specifications and the latter are 
output specifications. 

DATA-DIRECTED DATA SPECIFICATION 

General format: 

Option 1 
DATA 

Option 2 
DATA data-list 

Syntax rules: 

1. The data list is described in -Data 
Lists," in this chapter. It may not 
include formal parameters. 

2. Option 1 implies that all of the data 
items to be transmitted are known to 
the block containing the READ or GET 
statement and are declared with a SYM­
BOL attribute. Option 1 may be used 
for data-directed input only. 

3. Option 2 may be used for both data­
directed input and output. 

Chapter 7: Input/OUtput 85 



Data-Directed Data On External Medium 

The data on the external medium 
associated with data-directed transmission 
is in the form of a list of scalar assign­
ments having the following general format: 

scalar-variable = (+1-] constant 
[,scalar-variable=[+I-] constant] 

sterling constants may not be used. 

... , 

The scalar variable must pe unsubscript­
ed and cannot be a pseudo-variable. 

Syntax rules: 

1. The ·scalar variable" may be a sub­
scripted name with decimal integer 
constant subscripts, but may not be 
declared with the DEFINED attribute. 

2. On input, the scalar assignments may 
be separated by either a blank or a 
comma. On output, the assignments are 
separated by blanks. 

3. The terminating semicolon may be 
replaced by a segment-mark if so spec­
ified in the READ or WRITE statement. 

4. The constant in the general format 
above may be a complex expression used 
to represent a complex constant. 

General rules for data-directed input: 

1. If the data specification in Option 
is used, the names on the external 
medium may be any unqualified name 
known at the point of transmission and 
declared with the SYMBOL attribute. 

2. If Option 2 is used, each element of 
the data list must be an unsubscripted 
scalar, array, or structure name. The 
names on the external medium must 
appear in the data list; however w the 
order of the names need not be the 
same, and the data list may include 
names that do not appear on the exter­
nal medium. 

For example, consider the following 
data list, where A, B, C, and Dare 
names of scalar variables: 

DATA (B,A,C,D) 

This data list may be associated with 
the following input data stream: 

A = 2.5, B = .00476, D 125; 

Note that C appears in the data list 
but not on the external medium. 

3. If the data list in Option 2 includes 
the name of an array, subscripted 
references to that array may appear on 
the external medium. The entire array 

86 

need not appear on the external medi­
um. 

Let X be the name of a two­
dimensional array declared as follows: 

DECLARE X (2,3); 

Consider the following data 
input data stream: 

list 

Data List 
DATA (X) 

Input Data Stream 
X(1,1) = 7.95, X(2,1) 

8085, X(1,3) = 73; 

and 

Although the data list has only the 
name of the array, the associated 
input stream may contain values for 
individual elements of the array. 

4. If the data list includes qualified 
names, then qualified names of 
identical form may appear on the 
external medium. Consider the follow­
ing structures: 

DECLARE 1 CARDIN, 2 PARTNO, 2 DESCRP 
SYMBOL (X) , 2 PRICE SYMBOL (X1) , 
CARDOUT, 2 PARTNO, 2 DESCRP 
SYMBOL (X2) , 2 PRICE SYMBOL (X3) ; 

If it is desired to read a value for 
CARDIN.PARTNO, then the data list and 
input data stream have the following 
forms: 

Data List 
DATA (CARDIN. PARTNO) 

Input Data Stream 
CARDIN. PART NO 
737314; 

5. When a structure name is given in a 
data list, elementary structure ele­
ments, which have been declared with 
the SYMBOL (identifier) attribute, may 
be transmitted. In this case, the 
scalar variable in the assignment list 
on the external medium is the iden­
tifier given in the SYMBOL attribute. 
The equivalent qualified name may not 
appear in the assignment list unless 
the qualified name also appears in the 
data list. 

Consider the structures described 
in item 4. If it is desired to read 
values for DESCRP in CARDIN and for 
PRICE in CARDOUT, the following data 
list and input stream may be used: 

Data List 
DATA (CARDIN,CARDOUT) 

Input Stream 
X = 65, X3 = 38; 

Both of these data items may have 
been transmitted by using identical 
qualified names in both the data list 
and input stream as described in item 
4, above. 



General rules for data-directed output: 

1. The elements of the data list may be a 
scalar name, an array name, a struc­
ture name, a repetitive specification 
involving a.ny of these elements or 
further repetitive specifications. 
The data with names appearing in the 
data list is transmitted, in the form 
of a list of scalar assignments sepa­
rated by blanks and terminated by a 
semicolon. 

2. Array names in the data list are 
treated as a list of the contained 
subscripted elements in row-major 
order. 

Let X be an array declared as 
follows: 

DECLARE X (2, 4) 

Let X appear in a data list as fol­
lows: 

DATA (X) 

Then, on output, the output 
stream is as follows: 

data 

X(1,1)=1 X(1,2)=2 X(1,3)=3 X(1,4)=4 
X(2,1)=5 X(2,2)=6 X(2,3)=7 X(2,4)=8; 

3. Subscript expressions in a data name 
are evaluated and replaced by integer 
constants. 

4. Qualified names appearing in the data 
list are "transR'i tted with the same 
qualification, but subscripts follow 
the qualified name rather than bei~g 
interleaved. If a data list is speC1-
fied for a structure element transmit­
ted under data-directed output as fol­
lows: 

DATA (Y (1,3) • Q) 

Then the associated data field in the 
output stream is as follows: 

Y.Q'(1,3)=3.756; 

5. Structure names in the data list are 
interpreted as a list of the contained 
scalar or array elements, and arrays 
are treated as above. 

Consider the following structure: 

1 11., 2 B, 2 C, 3 D 

If a data list for data-directed out­
put. is as follows: 

DATA (A) 

Then the associated data fields in the 
output stream are as follows: 

B=2 D=17; 

6. Data-directed output is suitable for 
data-directed input only if it 
includes no numeric fields of binary 
base or numeric fields of decimal base 
that do not have the form of valid 
arithmetic constants. 

7. If a data-directed output list con­
tains an item declared with the attri­
bute, SYMBOL (identifier), the synonym 
is used rather than the name in the 
data list. 

Data-Directed Output Format 

Data fields written under data direction 
are tabbed, that is, aligned in vertical 
columns. This tabbing may be overridden by 
a TAB option in a LAYOUT statement for the 
appropriate file. 

Data items are written on successive tab 
positions unless an item extends into a 
succeeding position. (In that case, the 
next free position is used.) A data item 
may span several tabs; however, data items 
must not span records. 

Length of Data-Directed Data Fields 

The length of the data field on the 
external medium is a function of the inter­
nal precision, the value of the data item 
being written, and the length of the data 
identifier and its associated subscript 
list. The field length for coded arithmet­
ic data, numeric field data, and bit-string 
data is the same as described for list­
directed output (see -Length of List­
Directed Output Fields") • 

For character-string data the contents 
of the character string are written out 
enclosed in quotation marks. Each 
quotation mark contained within the charac­
ter string is represented by two successive 
quotation marks. 

Example: 

Assume that A is declared as a one­
dimensional array of six elements; B is a 
one-dimensional array of seven elements. 
If it is desired to calculate values, the 
procedure in Figure 2 calculates and writes 
out values for A (I) = B (I+1) +B (I) • 

Chapter 7: Input/OUtput 87 



r-------------------------------------.--------------------------, 
AB: PROCEDURE; 

Input S·tream on External Medium 
DECLARE A (6) , B (7) ; 

B (1) =1,B (2) =2,B (3) =3, 
READ DATA (B) . 

B (4) = 1 , B (5) = 2 , B (6) = 3 , B (7) = 4; 
DO I = 1 TO 6; 

A (I) = B (1+1) + B (I) 
Output Stream on External Medium 

END; 

WRITE DATA (A) ; 
A (1) =3 A (2) =5 A (3) =4 A (4) =3 

A (5) =5 A (6) = 7; 
END AB; _______________________________________________________________ J 

Figure 2. Example of Data-Directed Transmission, Both Input and Output 

FORMAT-DIRECTED DATA SPECIFICATION 

General format: 

data-list format-list 

General rules: 

1. The data list is described in "Data 
Lists,· the format list in nPormat 
Lists." Only this form of 
transmission can be used for sterling 
data. 

2. On output, the value of each data item 
in the data list is converted to a 
format specified by the associated 
format item in the format list. The 
first scalar data item is associated 
with the first format item, the second 
scala.r data item with the second for­
mat item, etc. Suppose the format 
list effectively contains j format 
items, and the data list effectively 
contains ~ data items. Then if j<k 
after j scalar data items have been 
transmitted, the format list is re­
used, the (j+l)th scalar item being 
associated with the first format item, 
etc. This re-use is perforn:ed as many 
times as required. If j>k , redundant 
format items are ignored. 

3. An array or a structure in a data list 
is equivalent to n data items, where n 
is the n~mber of -scalar elements in 
the array or structure. 

4. If a data list item is associated with 
a control format item, that control 
action is executed and the data list 
item is paired with the next format 
item. 

5. 'The specified transmission is complete 
when the last data item has been 

88 

processed using the corresponding 
format item. Subsequent format items, 
including control format items, are 
ignored. 

Examples: 

The first of the following examples is a 
format-directed input specification, and 
the second is an output specification: 

1. (NAME, DATE, SALARY) (A (COLA COLB) , 
X (2), A (6), F (M+2, 2) ) -

2. ( • RESULT (. I I I I I .) =', A (I) 1= 1 TO 
20) (A,F (2) ,A,F (8,33)) 

FORMAT LISTS 

The format-directed 
and the FORMA'l' and 
require a format list. 

data specification 
POSITION statements 

General format of a format list: 

{
item } [,item ] ( n item , n item ••• ) 
n format-list ,n format-list 

Syntax rules: 

1. Each "i tern" represents a format item 
as described below. 

2. The letter n represents an iteration 
factor, which-is either an expression 
enclosed in parentheses, or a decimal 
integer constant. The iteration fac­
tor specifies that the associated for­
mat item is to be used n successive 
times. A zero or negative iteration 



factor specifies that the associated 
format item is to be skipped and not 
used. 

If an expression is used to rep­
resent the iteration factor, it is 
evaluated and converted to an integer 
once for ei:lch set of iterations. The 
associated format item is that item or 
list of items to the right of the 
iteration :Eactor. 

General rule: 

There are itwo types o:f format items: 
data format items and control format 
items. Data format items specify the 
form of data on an external medium. 
Control fo:cmat items specify control 
over reco:cds and groups being read or 
constructed. 

Data Format Items 

Data format items describe data rep­
resentation in two modes: external and 
internal. The external mode is designed to 
be readable and uses character representa­
tion. The internal mode is in coded form, 
which is individually defined for each 
implementation of PL/I, and is primarily 
used for compact intermediate storage. 
Arithmetic in-ternal mode format items, 
other than the numeric picture item (P), 
specify coded internal form. The P format 
i tern specifies -that the internal form is 
numeric field or character string. 

External Mode Format Items 

The discussion of external mode format 
items requires the following definitions: 

1. The letter w represents the length of 
the field -in characters used by the 
external representation (including 
signs, decimal or binary points, 
blanks, editing characters, and the 
letters E and B, as used in represen­
tation of constants) • 

2. The letter d represents the number of 
positions after the decimal or binary 
point. 

3. The letter s represents the number of 
significan't - digits (binary or deciu;al) 
to appear. 

4. The letter E represents a scale fac­
tor, which may be positive or nega­
tive. 

The quantities w,d,s may be specified by 
an expression. When the format item is 
used, the expression is evaluated and con­
verted to an integer. If wsO in a format 

specification, then, on input, the asso­
ciated list item is skipped, unless it is a 
string, in which case the data value is 
taken as the null string. On output, the 
FIELDOVERFLOW condition is raised unless 
the format item is A or B and the associat­
ed list item has the null string as its 
value. 

On input, the data item in the external 
data field is converted to the charac­
teristics of the list item. Rules for the 
conversion are given in Chapter 3. 

There are six format items associated 
with data in external mode: fixed-point 
(F), floating-point (E), complex (C), Pic­
ture specification (P), character-string 
(A, P), and general (G). 

FIXED-POINT FORMAT ITEMS: Numeric data may 
be described by a fixed-point format item. 

General format: 

Option 1. 

F (w) 

Option 2. 

F (w, d) 

Option 3. 

F (w,d,p) 

General rules: 

1. On input, the data items in the exter­
nal data field are the character rep­
resentation of decimal fixed-point 
numbers anywhere in a field of width 
w. 

In Option 2, if no decimal point 
appears in the number, it is assumed 
to appear i~oediately before the last 
d digits (if trailing blanks are 
treated as zeros, they are included in 
the count of d digit~. If a deciroal 
point does appear, it overrides the d 
specification. Option 1 is treated as 
option 2, with d equal to zero. 

In Option 3, the scale factor 
effectively multiplies the external 
data value by 10 raised to the value 
of p. If P is positive, the number is 
treated as though the decimal point 
appeared p places to the right of its 
given position. If p is negative, the 
data is treated as though the decimal 
point appeared p places to the left of 
its given position. The given posi­
tion of the decimal point is that 
indicated either by an actual point, 
if it is given, or by d, in the 

Chapter 7: Input/OUtput 89 



absence of an actual point. 
2. On output, the external data is a 

decimal fixed-point number, right­
adjusted in a field of width w. 

In Option 1, only 
portion of the ntlmber is 
decimal point appears. 

the integer 
written. no 

In Option 2, both the integer and 
fractional parts of the number are 
written. If d is specified, a decimal 
point is inserted before the last d 
digits, and the value is appropriately 
positioned. Trailing zeros are sup­
plied if the number of fractional 
digits is less than d (where d must be 
less than ~) • - -

In Option 3, the scale factor 
effectively multiplies the internal 
data value by ten raised to the power 
of p before it is edited into its 
external character representation4 If 
d is omitted, only the integer portion 
of the number is considered. 

For all options, if the value of 
the number is less than zero, a minus 
sign will be prefixed to the external 
character representation; if it is 
greater than or equal to zero, no sign 
will appear. Therefore, for negative 
values, w must encompass both sign and 
decimal point. 

FLOATING-POINT FORMAT ITEMS: Numeric data 
may be described by a floating-point format 
item. 

General format: 

E (w,d [, s]) 

General rules: 

1. On input, the data item in the exter­
nal data field is an optionally signed 
character representation of a decimal 
floating-point number anywhere within 
a field of width w. 

90 

The external form of the number is 
as follows: 

[~] [CEl ±} exponent] fixed-point- E [±] 
number 

a. If there is no decimal point in 
the external data field, the deci­
mal point is assuITed to be before 
the last d digits. If there is a 
decimal point in the external data 
field~ it overrides the decimal 
point placerrent specified by d. 

b. The "exponent" is a decimal inte­
ger. If the exponent and the 

preceding E or sign are omitted, a 
zero exponent is assumed. 

2. On outf-ut, the data item in the exter­
nal data field has the following gen­
eral form: 

~] s-d digits.d digits E { ~ } expo-
nent 

a. The "exponent" is a decimal inte­
ger of Q digits, where ~ is 
defined individually for each 
implementation. The exponent is 
adjusted so that the leading digit 
of the characteristic is nonzero. 

b. If the above form does not fill 
the field of width w, it is right­
adjusted, and blanks are inserted 
on the left. If s is omitted it 
is taken as equal to d. The field 
width w must be greater than or 
equal to (s + n + 3) for non­
negative values and (s + n + 4) 
for negative values of the data 
item. 

COMPLEX FORMAT ITEMS: Complex numeric data 
may be described by a complex format item. 

General format: 

C (real-format-item 
[,real-format-item]) 

General rules: 

1. Each "real format item" is specified 
by F, E, G, I, or P formats. P can 
specify a numeric field only; it 
cannot specify a sterling field. 

2. On input, the external data is the 
real and imaginary parts of the com­
plex number in adjacent fields des­
cribed by the two contained format 
items. If the second real format item 
is omitted, it is assumed to be the 
same as the first. 

3. On output, the form of the real and 
imaginary parts is specified by 
enclosed real format items. If the 
second is omitted, it is assumed to be 
the same as the first. 

PICTURE FOR~~T ITEM: Numeric data may be 
described by a numeric picture using the P 
format item. 

General format: 

P 'numeric-picture-specification' 

The "numeric picture specification" is 
described in "The PICTURE Attribute," in 
Chapter 4. 

On input, the picture specification des­
cribes the form of the data on the external 



medium and how it is to be interpreted 
numerically. ~rhe external rep:resentation 
of binary numeric fields uses the charac­
ters 0 and 1. 

On output, the value of the list item is 
edited to the form specified by the picture 
before it is transmitted. Binary numerlC 
fields will have a character representation 
after transmission. 

BIT-STRING FORMAT ITEMS: The bit-string 
item describes the external representation 
of a bit string using the characters 0 and 
1. 

General format: 

A [ ('w) ] 

General rules: 

1. If w is omitted, it is taken to be the 
maxImum length of the associated dat.a 
lis·t element on input or the current 
length on output; it must be specified 
if conversion is to be performed. 

2. On input, the external data is a 
character representation of bit string 
any'where within the field of width w. 

3. On --output u the character representa­
tion of bit string is left-adjusted in 
the field of ~idth w. Truncation, if 
necessary, is performed on the right. 
Blanks are used for padding. 

CHARACTKR-STRING FORMAT ITEMS: Character 
data may be described by a character-string 
format i'tem. 

General format: 

fA [(w)] } l P • charactE~r-picture-specification • 

General rules: 

1. The "character picture specification" 
is described in "The String Attri­
butes," in Chapter 4. 

2. The external representation is a 
string of ~ characters. 

3. On output v truncation, if necessary, 
is performed on the right. If the 
associated list element is too short, 
it is extended on the right with 
blanks. If the picture form is used, 
w is implied. Checking and editing 
are performed. 

4. w can be omitted on output, in which 
casle the associated data list element 
must be a character string, and w is 
taklen to bE~ the maximum length of that 
string. 

GENERAL ]~'ORMAT ITEMS: Both character data 
and numeric data may be described by the 
general format item. 

General format: 

G {(w) (w,d) (w, d, s) } 

General rules: 

1. The type of the external character 
representation of the data is assumed 
to be that of the associated data-list 
element. 

2. In the case of strings and numeric 
fields, the effect of the general 
format item is identical to A (w); d 
and s, if specified, are ignored. 
Coded bit-string external representa­
tion may not be described by a general 
format item. 

3. On input for arithmetic data, the 
scale of the external character rep­
resentation is deduced. The effect of 
the general format item is then ident­
ical to F (w), F (w,d) for fixed-point 
numbers and E (w,d,s) for floating­
point numbers. 

On output for arithmetic data, the 
data is analyzed with respect to the 
specified field width w. 

4. If the data item may be represented 
without loss of accuract as a fixed­
point number, the external form is 
that specified by F (w), or F (w,d) if 
d is specified. If the data item 
cannot be suitably represented by an F 
format item, it is necessary that d be 
specified in the general format item. 
The effect is then identical to E 
(w,d) or E (w,d,s) if s is specified. 

Internal Mode Format Items 

Internal mode format items may specify 
precision and length. This is given in 
exactly the same way as with the precision 
attribute. The base or the precision is 
that of the format item, or, where this is 
indeterminate, that of the associated data 
item. If size or precision is omitted, it 
is assumed to De that of the associated 
data item. The type, base, scale, mode, 
and precision of a data item may differ 
from its associated format item. Wherever 
this occurs, conversion is performed. 
Precision must be specified in this case. 

There are six format items associated 
with data in internal mode: fixed-point 
(IF), floating-point (IE), picture (P), 
bit-string (B), character-string (A,P), and 
general (IG). 

INTERNAL FIXED-POINT ITEMS: Numeric data 
in internal, mode may be described by the 
internal fixed-point format item. 

Chapter 7: Input/Output 91 



General format: 

{
IF [(precision)] } 
IFB [(precision)] 

The first form is used for decimal data, 
the second form for binary data. 

INTERNAL FLOATING-POINT FORMAT ITEMS: 
Numeric data in internal mode may be des­
cribed by the internal floating-point for­
mat item. 

General format: 

{
IE [(precision)] } 
IEB [(precision») 

The first form is used for decimal data, 
the second form for binary data. 

INTERNAL PICTURE FORMAT ITEMS: Decimal 
numeric data in internal mode may be des­
cribed by an internal picture format item. 

General format: 

P 'picture-specification' 

The "picture specification" is described 
in "The PICTURE Attribute," in Chapter 4. 

INTERNAL BIT-STRING FORMAT ITEMS: The 
internal bit-string format item describes 
the internal representation of a bit 
string. It may also be used for the output 
of binary numeric fields in internal mode, 
since the conversion from binary numeric to 
bit string is a null conversion. 

General format: 

B [(length)] 

General rules: 

1. "Length" is the length of the string 
in bits. If omitted, it is taken as 
the current length of the associated 
bit-string list item. 

2. The external representation is the 
coded form for a bit string. If ~ 
bits are encoded in one character, the 
width of the external field may be 
represented as follows: 

CEIL (length/s) 

3. On input, the coded string is inter­
preted as bit string and is truncated, 
if necessary, to the specification 
length. 

4. On output, the string is extended with 
zeros to length s*CEIL(length/s) and 
the external form is this string. 

INTERNAL CHARACTER-STRING FORMAT ITEMS: 
Character data in internal mode may be 

92 

described by an internal character-string 
format item. 

General format: 

{
A [(w)] } 
P 'character-picture-specification' 

The "character picture specification" is 
described in "The Picture Attribute," in 
Chapter 4. 

INTERNAL GENERAL FORMAT ITEMS: Both char­
acter data and numeric data in internal 
mode may be described by an internal gener­
al format item. 

General format: 

IG 

The IG format item specifies that the 
format of the data on the external medium 
is to be identical to its internal form. 

Control Format Items 

There are two types of control format 
items: the spacing format item, X, and the 
positioning format items, which effect 
transmission in exact.ly the same way as do 
the statements of the same names. All of 
these format items except POSITION, are for 
use only with data in the external mode. 

Spacing Format Item 

General format: 

X (w) 

General rules: 

1. On input, the format item specifies 
that the next w characters of the 
external data are to be ignored. 

2. On output, the format specifies that w 
characters of blanks are to be insert­
ed into the external data. 

Positioning Format Items 

The pOSitioning format items are: 

SPACE [(expression)] 

SKIP [(expression)] 

GROUP [(expression)] 

POSITION (format list) 

TAB [(expression)] 



General rules: 

1. The effect of each of the$e format 
items is identical to the statements 
of ithe same names (see the individual 
staitements,. described in Chapter 8, 
for a description of the action 
taken) • 

2. Only the POSITION item of the above, 
may be used in lists intended for 
internal string editing. 

Remote Format It:em 

If it is desired to locate format items 
remotely from a format list, the remote 
format i ic.em, R, may be used. 

General format: 

R (statement-Iabel-designato~ 

General rules: 

1. The "statement-Iabel-designator" is a 
label constant or a label variable 
that is the statement label of a 
FOR1>1AT statement. The FORMAT state­
ment includes a format list that is 
tak4=n ,to replace the remote format 
item. 

2. 'l'he R format item and the speci£ied 
FORIVJAT statement must be internal to 
the same block. 

PROCEDURJE-DIRECTED DATA SPECIFICATION 

The data specification 
directed transmission has 
general format: 

for 
the 

procedure­
following 

CALI, entry--name [(argument [,argument] 
' ... ) ] 

The Cl~LL opt:ion causes the procedure 
whose name is " entry name" to be invoked in 
the same manner as the CALL statement. 

The invoked procedure may per£orm 
further action on the data to be transmit­
ted by using GE']:, PUT, and the positioning 
statemenits. 

INPUT/ou~rpUT STATEMENTS 

The input/out:P'\lt statements may be clas­
sified as follows: file preparation, data 
specification, data transmission, position­
ing, report generation, SAVE and RESTOR.E 

statements, and DISPLAY statements. A des­
cription of each statement is given in 
Chapter 8. 

FILE PREPARATION STATEMENTS 

The OPEN statement causes certain check­
ing and allocation of facilities in prepar­
ation for input/output on a file. 'l'he 
CLOSE statement causes disposition of a 
file and release of facilities upon comple­
tion of input/output. Both statements are 
optional. 

DATA SPECIFICA'l'ION STATEMENT 

The format of a record to be transmitted 
may be specified by the FORMAT statement or 
in the data transmission statements. 

DATA TRANSMISSION STATEMEN'l'S 

The READ and WRITE statements cause the 
transmission of data between storage and 
external media. The GET and PU'l' statements 
cause data to be moved between the current 
record and specified variables in conjunc­
tion with procedure-directed data transmis­
sion. The DISPLAY statement causes messa­
ges to be transmitted between the program 
and the machine operator. 

POSITIONING STATEMENTS 

Positioning within and between records 
may be accomplished with the POSITION, TAB, 
SKIP, SPACE, and GROUP statements. The 
first two of these apply only to current 
files. The remainder may apply either to 
the current file or an explicitly designat­
ed file. 'lhe SEGMENT statement is used to 
position between segments. The REPOSITION 
statement has a special use with the ON 
statement (see liThe REPOSITION Statement") • 

REPORT GENERATION STATEMENTS 

The PAGE and LAYOUT statements are pro­
vided to facilitate preparation of files 
for printing. The statements may, however, 
be used for nonprint files. The statements 
refer explicitly (or in the case of 
procedure-directed transmission, implic-

Chapter 7: Input/OUtput 93 



itly) to a particular 
applies to that file 
another statement of 
such statements are 
standards are assumed 

file. Each statement 
until overridden by 
the same type. Until 

encountered, system 
to apply. 

The execution of a PAGE or LAYOUT state­
ment for a file destroys all options esta­
blished by previously executed PAGE or 
LAYOUT statements for the same file. Exe­
cution of a CLOSE statement releases the 
PAGE and LAYOUT for the indicated file. 

RECORD IDENTIFICATION OPTIONS 

THE KEY OPTION 

Function: 

The KEY option is used when direct 
access to a particular record is required. 
The file containing this record must. have 
the REGIONAL or INDEXED organization (see 
"File Organization Attributes," in Chapter 
4) • 

General format: 

KEY (expression) 

General rules: 

1. The "expression," which, if necessary, 
is converted to characters, is the key 
value used to locate the particular 
record in the file. This expression 
is evaluated whenever transmission of 
another record is required. 

2. If the KEY option appears in an output 
context and if the key already exists 
within the file, that record is 
replaced by the record being written; 
if the key does not exist, the record 
is added to the file. 

3. The ACCESS condition is raised (see 
·ON-Conditions, in Appendix 3) if the 
KEY option is used in an input context 
and the key does not exist. 

4. The KEY option may appear only in the 
READ or WRITE statement. 

THE NEWKEY OPTION 

Function: 

The NEWKEY option serves the same pur­
pose as the KEY option except that the key 
of the record being w~itten must not 
already exist within the file. If such a 
duplicate key exists, an error condition is 

94 

raised. When a file is being created with 
keys, the NEWKEY option must be employed. 

General format: 

NEWKEY (expression) 

General rules: 

1. See "The KEY Option" for a discussion 
of the purpose of the KEY and NEWKEY 
options. 

2. The key of the record is represented 
by the "expression," which is convert­
ed to characters, if necessary. The 
NEWKEY option can be used in an output 
context only. 

3. The NEWKEY option may appear only in a 
WRITE statement. 

THE REGION OPTION 

Function: 

The REGION option is used when direct 
access to a file organized in the REGIONAL 
mode is required (see "File Organization 
Attributes," in Chapter 4, for a definition 
of the REGIONAL file organizatio~ • 

General format: 

REGION (expression) 

General rules: 

1. The "expression" is converted to inte­
ger: this integer n represents the nth 
region of the file- (relative to the 
beginning of the file) to which the 
specified input/output device is to be 
positioned. The value of the expres­
sion must be within the limits of the 
file. 

2. The REGION option may be used in 
conjunction with the KEY option if the 
region is defined to contain more than 
one record. In this case, the speci­
fied device first is positioned to the 
specified region and the region is 
then searched for a record with the 
specified key value. 

3. The REGION option may appear only in 
the READ or WRITE statement. 



This section includes a description of 
each statement in the language. These 
descriptions are presented in alphabetic 
order. 

To show the relationships among these 
statements, they are also classified into 
logical 9roups. 

RELATIONSHIP OF STATEMENTS 

CLASSIFICATION 

Statements may be classified into the 
following logical groups: assignment, con­
trol, data declaration, error control and 
debu~j, input/output, program structure, 
sorting, and storage allocation. 

Assignment Statement 

The assignment statement is used to 
evaluate expressions and to assign values 
to scalars, arrays, and structures. 

~ontrol statements 

The control statements alter the normal 
sequential flow of control through a pro­
gram. ~rhe control statements are GO '1'0, 
IF, DO, CALL, RETURN, WAIT, STOP, EXI'I', 
DELAY. 

Data Declaration Statement 

The data declaration statement, DECLARE, 
specifies attributes for names and iden­
tifiers. This statement. is described in 
Chapter 1+. 

Error Control and Debug statements 

When an interrupt occurs during program 
execution, standard operating system action 
is taken.~ howevE~r, the language provides 
the facility to override system action on 

CHAPTER 8: STATEMENTS 

these interrupts. By using the ON state­
ment, a programmer may specify the action 
to be taken when an interrupt occurs and 
can record the status of the program at the 
point of the interrupt. By using the 
SIGNAL statement, the programmer may ini­
tiate programmed interrupts and may simu­
late machine interrupts to facilitate 
debugging. 

Input/Output Statements 

See "Input/Output Statements," in Chap­
ter 7, for a classification and discussion 
of statements used in input/output opera­
t.ions. 

Program Structure Statements 

The program structure statements are: 
PROCEDURE, BEGIN, END, DO, and ENTRY. The 
first three statements delimit the scope of 
declarations within a prcgram. 'Ihe ENTRY 
statement provides a secondary entry point 
for a procedure. 

Sorting Statement 

The SOR'I statement sorts and, optional­
ly, merges records on a file. 

Storage Allocation Statements 

The storage allocation statements are: 
ALLOCATE, FREE, FETCH, and DELETE. The 
ALLOCATE and FREE statements allocate and 
free storage for variables. The FETCH and 
DELETE statements allocate and free storage 
for progranls. 

SEQUENCE OF CONTROL 

Within a block, control normally passes 
sequentially from one statenlent to the 
next. If a DECLARE, FORMA'I', or :EN'I'RY is 
encountered, control passes to the next 
statement. If a PROCEDURE st.i;tt€Iftent is 

Chapter 8: Statements 95 



encountered, control passes to the state­
ment following the end of the procedure. 
Control passes to the statement-following 
an IF statement when control reaches the 
end of the THEN-unit. Sequential operation 
is modified by the following statements: 
CALL, END, EXIT, GO TO, PROCEDURE, RETURN, 
SIGNAL, and STOP. 

A CALL statement passes control to the 
specified entry point. 

An END statement, logically terminating 
a procedure, acts as a RETURN statement, 
causing control to return to the invoking 
procedure. 

The EXIT statement causes control to 
leave a task; the STOP statement causes 
control to leave a program. 

A GO TO statement causes control to 
transfer to the specified statement label. 

A PROCEDURE statement heads a procedure. 
Procedures may be considered as independent 
blocks and are placed anywhere within an 
external procedure, consistent with desired 
identifier scopes. However, a procedure 
may be invoked only by a CALL statement, a 
statement with a CALL option, or a function 
reference. Thus, control passes around a 
nested procedure, from the statement before 
a PROCEDURE statement to the statement 
after the appropriate END statement for the 
procedure. 

A RETURN statement returns control from 
a procedure to the invoking procedure. 

A SIGNAL statement. specifying an enabled 
condition causes control to pass to the 
on-unit of the associated eN statement. If 
there is no associated ON stat.ement, con­
trol is passed to the appropriate system 
routine. 

The following conditions may cause 
sequential operation to be modified: 

1. A function reference in any expression 
causes control to pass to the speci­
fied function procedure. 

2. The occurrence of an enabled concli tion 
specified in an ON statement causes 
control to pass to the statement or 

96 

block contained in the statement. If 
there is no ON statement, control is 
passed to the appropriate system rou­
tine. 

3. The flow of control through the IF and 
ON statements and through a DO group 
mayor may not be sequential. 

4. In an appropriate environment, the 
asynchronous execution of several 
operations may involve transfer of 
control under the influence of exter­
nal occurrences. 

The following example 
sequence of control: 

A: PROCEDURE; 
B: X = Y + Z; 
C: CALL D; 
E: W = P*Q; 

D: PROCEDURE; 
G: S = T/P; 
H: RETURN; 
I: BND D; 

.J: U = V**W; 
K: GO TO N; 

N: END; 

illustrates 

Control flows in the following order: A, 
B, C, D, G, H, E, .J, K, N. 

PSEUDO-VARIABLES 

The following built-in fUnctions (see 
Appendix 1 for a more complete description) 
may be used as pseudo-variables on the left 
side of an equal sign in an assignment 
statement, or a DO statement, or in a data 
list in a READ statement or a GE1 state­
ment. In the definitions below, the item 
in the data list of a GET or FEAD statement 
may be considered to correspond to the item 
on the left side of the equal sign in an 
assignment statement; the value being 
transmitted may be considered to correspond 
to the expression on the right side. 

COMPLEX (a,b) The letters a and b rep­
resent variables that need not have the 
same characteristics. During execution of 
an assignment statement, the real part of 
the expression on the right is aSSigned to 
a, the imaginary part to b. 

REAL (c) The letter c represents a 
complex variable. During execution of an 
assignment statement, the real value of the 
expression is aSSigned to the real f'art of 
c. 

I MAG (c) The 
complex variable. 

letter c represents a 
During execution of an 



assignment statement, the real value of the 
expression is assigned to the imaginary 
part of c. 

ONCHAH The exp~ession on the right is 
converted to a character string of length 
1. On assignment, the character that 
caused the input EDIT error interrupt is 
replaced by the value assigned. This 
pseudo-variable is defined only while such 
an interrupt is being processed. 

ONFIEIJD The expression on the right is 
evaluated and converted to a character 
string. On assignment, the field that was 
being processed when the input interrupt 
occurred is replaced by the value assigned. 
This pseudo-variable is defined only while 
an interl~upt is being processed. 

SUBSTH (s,i[,k]) The letter s represents 
a string. During execution of an assign­
ment sta"tement, the expression is assigned 
to the substri.ng of s defined by the 
built-in function SUBSTR-(see Appendix 1). 
This substring i.s always treated as a fixed 
length s1:ring. 

EVENT (V) ThE! letter v represents a sca­
lar even1: name. When used in an assignment 
statement, the expression on the right-hand 
side is E~valuatE!d and converted to a bit 
string of lengt:h 1. The value of this bit 
string is used in an assignment to the 
named event (see nAsynchronous Operations 
and Tasks" in Chapter 6) • 

P.t<IORITY [ (V) ] The letter v represents a 
scalar task name. When used In an assign­
ment statement, the expression on the 
right-hand side is evaluated and converted 
to FIXED (m,o) where m is implementation 
defined. The priority of ~, the named 
task, is adjusted to be ~, relative to that 
of tbe task in which the assignment is 
performed, prior to that assignment. If v 
is not specified, this is the task in ~Nhich 
the assignment stateroent is executed (see 
"Asynchronous Operations and Tasks" in 
Chap"ter 6). 

UNSPEC (V) The letter v refresents a 
scalar variable" 'The expressicn on the 
right is evaluated and converted to a bit 
string ('lI1hose lE~ngth is a.n implementation 
defined function of the characteristics of 
v), and assigned to v without conversion to 
the type of ~. 

ALPHABETIC LIST OF STATEMENTS 

The ALLOCATE Statement 

Function: 

The ALLOCATE statement causes storage to 
be allocated for specified controlled data. 

General format: 

ALLOCATE [level] identifier 
[dimension] [attribute] 
[, [level] identif ier [dimension] 
[attribute] ••• ] ••• ; 

Syntax rules: 

1. Each identifier must represent data of 
the controlled storage class or be an 
element of a controlled major struc­
ture. 

2. "Dimension" indicates a dimension 
attribute. nAttribute" indicates a 
BIT, CHARACTER, or INITIAL attribute. 
"Level n indicates a level number. 

3. A dimension attribute, if present, 
must specify the same number of dimen­
sions as that declared for the asso­
ciated identifier. 

4. The attribute BIT may appear only with 
a BIT identifier; CHARACTER may appear 
only with a CHARACTER identifier. 

5. A structure or structure element name 
may appear only if the entire major 
structure including all level numbers 
and identifiers appear as in the 
DECLAR~ statement for that structure. 

6. The length specification may be 
dropped from BIT or CHARACTER attri­
butes. 

General rules: 

1. An ALLOCATE statement for an identifi­
er for which storage was allocated and 
not freed causes storage for the iden­
tifier to be "pushed down" or stacked. 
This pushing down creates a new gener­
ation of data for the identifier. 
When storage for this identifier is 
freed, using the FREE statement, stor­
age is "popped upn or removed from the 
stack. 

2. Bounds for arrays and lengths of 
strings are fixed at the execution of 
an ALLOCATE statement. 
a. If a bound or length is explicitly 

specified in an ALLOCATE state­
ment, that bound or length over­
rides any bound or length given in 
the DECLARE statement. 

b. If a bound or length is specified 
by an asterisk in an ALLOCATE 
statement, that bound or length is 
taken from the most recent genera-

Chapter 8: Statements 97 



tion of data for the identifier. 
In case no such generation exists, 
the bound or length is undefined. 

c. If a bound or length is not speci­
fied in an ALLOCATE statement, it 
must be explicitly specified in 
the DECLARE statement. The scope 
of this declaration must include 
the ALLOCATE statement. The 
expression from the DECLARE state­
ment is evaluated at the point of 
allocation. 

3. Upon allocation of an identifier, ini­
tial values are assigned to it if the 
identifier has an INITIAL attribute in 
either the ALLOCATE statement or 
DECLARE statement. Expressions or a 
CALL option in the INITIAL attribute 
are executed at the point of alloca­
tion. If an INITIAL attribute appears 
in both DECLARE and ALLOCATE state­
ments, only the INITIAL attribute in 
the ALLOCATE statement is used. 

4. To determine whether or not storage 
has been allocated for an identifier 
the built-in function ALLOCATION may 
be used. 

5. A parameter that is declared CON­
TROLLED may be specified in an ALLO­
CATE statement if the associated argu­
ment is given the CONTROLLED attri­
bute. ~ee "Relationship of Arguments 
and Parameters," in Chapter 10). 

Examples: 

1. The following examples illustrate the 
use of the ALLOCATE statement when the 
DECLARE statement contains explicit 
bounds for an array A: 

DECLARE A(N1,N2) CONTROLLED; 
The values of N1 and N2 are assumed to 
be known at this point. 

N1, N2 = 10; 
ALLOCATE A; The bounds are 10 and 

10 
ALLOCATE A The bounds are K1 and 

(K1,K2) ; K2 which override N1 
and N2. 

N1 = N1 + 1 ; 
ALLOCATE A; The bounds are 11 and 

10. 
ALLOCATE A The bounds are 11 and 

(* , *) ; 10. 
ALLOCATE A The bounds are J1 and 

(J 1, J2) J2. 
N1, N2 = 20; 

2. The following example illustrates the 
use of the ALLOCATE statement when the 
DECLARE statement contains asterisks 
for the length of a bit string B: 

98 

DECLARE B BIT (*) 
ALLOCATE B 

BIT (*); 

VARYING CONTROLLED; 
Illegal; violates rule 

2b. 

ALLOCATE B; Illegal; violates rule 
2b. 

ALLOCATE B The length is N. 
BIT (N); 

ALLOCATE B CHAR­
ACTER (4); 

ALLOCATE B 

Illeqal; violates syn­
tax rule 4. 

The length is 8. 
BIT (8); 

4. The following example illustrates the 
use of the built-in function ALLOCA­
TION and of the INITIAL attribute for 
an identifier in an ALLOCATE state­
ment: 

DECLARE A (N, N) 
( (N*N) 0) ; 

CONTROLLED INI'l'IAL 

IF 1 ALLOCATION (A) THEN ALLOCATE A 
INITIAL (1, (N-1) «N) 0,1» ; 

ALLOCATE Ai 

The Assiqnment Statement 

Function: 

The assignment s·tatement is used to 
evaluate expressions and to assign values 
to scalars, arrays, and structures. 

General format: 

Option 1. (Scalar Assignment) 

{ 

scalar- } [, scalar- ] 
variable variable ••• =sca~ar-

pseudo- , pseudo- expreSS10n; 
variable variable 

Option 2. (Array Assignment) 

{
array } [, array ] 
pseudo-array .,pseudo-array 

= array-expression [BY NAME) 

Option 3. (Structure Assignment) 

{
structure } 
pseudo-structure 

=structure-expression [,BY NAME] i 

Option 4. (Statement Label Assignment) 

scalar-label-variable 
[, scalar-label-variable] 

{
label-constant; } 
scalar-label-variable; 



array-label-variable [,array-Iabel-
variable] ••• = 

{

label-constant; } 
scalar-label-variable; 
array-Iabel-variable; 

Syntax rules: 

1. In Option 1, each variable on the left 
of t.he equal sign may be of arithmet­
ic, bit, or character data type. 

2. In Option 2, each array referred to on 
the left of the equal sign may be an 
array variable name or a pseudo-array. 
If t.he BY NAME option is present, 
those arrays must be arrays of struc­
turE!s. A pseudo-array is a pseudo­
vari.able with array arguments whose 
arguments are array variable names. 
(In the case of the pseudo-variable 

SUBSTR (s,i,k) , this requirement 
applies only to the argument 5!.; see 
I. Pseudo-Variables.") 

All of the arrays on the left and 
the arrays in the array expression 
must~ have the same number of dimen­
sions and identical dimension bounds. 

3. In Option 3, in the absence of the BY 
NAME option, the structure indicated 
on the left must have structuring 
identical to the structures indicated 
in the structure expression. Actual 
level numbers of the structures 
involved need not be the same; only 
the structuring described need be the 
SamE!. 

General rules: 

1. The assignment statement is evaluated 
as follows: 
a. In Options 1 and 4, if any expres­

sions appear on the left of the 
equal sign, either in subscripts 
or in pseudo-variables, these 
expressions are evaluated exactly 
once from left to right. The 
expression on the right of the 
equal sign is evaluated. The 
value of the expression on the 
right of the equal sign is 
assigned to the variables on the 
left of the equal sign, from left 
to right. 

b. In Options 2 and 3, the assignment 
statement is treated as if it were 
a sequence of scalar assignment 
statements applied on an element­
by-element basis. See Rules 3 and 
4 below for a discussion of the 
evaluation of a structure or array 
assignment BY NAME. 

c. In the following definition of 
order of assignment, A is an array 
of dimensionality ~: 

L1: DO I1 = LBOUND (A,1) TO HBOUND (A,1) 

2. 

3. 

DO 12 = LBOUND (A, 2) TO HBOUND (A,2) 

DO In = LBOUND (A,n) TO HBOUND (A,n); 
A(I1, I2, ••• ,In) = array-expression; 

Subscripts (11, ••• , In) are 
inserted for the appropriate 
arrays on the righthand side, thus 
yielding a sequence of scalar 
assignments. 

The result of the evaluation for a 
later position in an array or 
structure may be affected by the 
evaluation and assignment to an 
earlier position (see Example 1, 
below) • 

d. When necessary, the expression 
value, or values, is converted to 
the characteristics of the varia­
ble on the left according to the 
rules in "Expressions," in Chapter 
3. 

When a variable on thE left is a bit 
or character string or the UNSPEC 
pseudo-variable, the expression is 
evaluated as above, and the assignment 
is performed from left to right, 
starting with the leftmost position. 
a. If the string has a fixed length 

and the value of the expression is 
longer than the string, the value 
is truncated at the right. 

b. If the string has a fixed length 
and the value of the expression is 
shorter than the string, the value 
is extended on the right with 
zeros for bit strings or with 
blanks for character strings. 

c. If the string has a varying length 
and the value of the expression is 
longer than the maximum length ot 
the string, the value is truncat­
ed; the assigned string is of the 
maximum length. 

d. If the string has a varying length 
and the value of the expression is 
shorter than the maximum length of 
the string, the value is assigned; 
the new length of the string is 
the length of the value. 

e. If the variable on the left is the 
pseudo-variable SUBSTR with an 
argument that is a varying-length 
string, the assignment is per­
formed to this substring in p.I:·ec­
i_sely the same way as it would be 
if the argument were of fixed 
length, where this fixed length is 
the current length of the string. 

If the BY NAME option is used for 
arrays of structures in option 3, the 
assignment statement is treated as a 
sequence of BY NAME structure assign­
ments applied on an element-by-element 
basis. 

Chapter 8: Statements 99 



4. If the BY NAME option is used in 
Option 3, the assignment statement 
causes the following activity: 

100 

a. Subscript expressions on the left 
are evaluated. 

b. The names of all contained arrays 
and scalars are extracted from 
each structure operand appearing 
on both left and right. 

c. These names are qualified by all 
the minor structure names that 
contain them, up to but not 
including the structure names 
specified in the structure expres­
sion BY NAME. 

For example, suppose there 
three structures: 

ONE 
2 PART1 

3 RED 
3 WHITE 
3 BLUE 

2 PART2 
3 GREEN 
3 YELLOW 
3 ORANGE (3) 

2 PART3 
3 BLACK 
3 WHITE 

THREE 
3 PART 1 

5 BLACK 
5 WHITE 
5 RED 

3 PART2 
5 YELLOW 
5 WHITE 

TWO 
2 PART1 

3 RED 
3 GREEN 
3 WHITE 

2 PART2 
3 BLUE 
3 YELLOW 
30RANGE (3) 

5 ORANGE (3) 
5 PURPLE 

are 

Note that the structures contain 
array names. 

The elements of these structures 
are as follows: 

Structure ONE 
PART1.RED 
PART1.WHITE 
PART1.BLUE 
PART2.GREEN 
PART2.YELLOW 
PART2.0RANGE 
PART3.BLACK 
PART3.WHITE 

Structure TWO 
PAR'I1.RED 
PAR'11 • GREEN 
PART1.WHITE 
PART2.BLUE 
PAR'I2.YELLOW 
PAR'I'2.0RANGE 

structure THREE 
PART-1 • BLACK 
PART1.WHITE 
PART1.RED 
PART2.YELLOW 
PART2.WHITE 
PART2.0RANGE 
PART2.PURPLE 

d. The largest subset of qualified 
names is selected such that each 
selected name is contained in all 
structures involved in the assign­
ment statement. 

From the above example, this pro­
duces: 

PART1.RED 
PART1.WHITE 
PART2.YELLOW 
PART2.0RANGE 

e. All expressions involving the 
selected names are evaluated and 
values from the right are assigned 
to items on the left for identical 
qualified names. The order of the 
left hand structure is used. 
These assignments must be valid; 
for example, arrays may not be 
assigned to arrays of different 
dimensions or bounds. 

For example, the statement ONE=TWO 
-2 * THREE, BY NAME is then equi­
valent to: 

ONE.PART1.RED =TWO.PART1.RED-2*THREE. 
PART1.RED 

ONE.PART1.WHITE =TWO.PART1.WHITE-2*THREE. 
PART1.WHITE; 

ONE.PART2.YELLOW=TWO.PART2.YELLOW-2*THREE. 
PART2.YELLOW; 

ONE.PART2.0RANGE=PART2.0RANGE-2*THREE. 
PART2.0RANGE; 

f. In BY NAME structure assignment, 
it is unnecessary for the struc­
turing of all participating struc­
tUres to be identical. Names of 
variables that are defined on 
structures appearing in BY NAME 
assignment take no part in name 
matching (see "The DEFINED 
Attribute") • 

In Option 4, the value of the label 
constant or the label variable is qualified 
by an identification of the current invoca­
tion of the block containing the label and 
by the current task. 

This qualification information is used 
when a GO TO statement specifies the label 
variable to make the identified invocation 
current and to check that control does not 
cross task boundaries. 

Examples: 

1. The following example illustrates 
array assignment (Option 2) : 



2. 

Given the array A 

and the array B 

2 
3 
1 
4 

1 
7 
3 
6 

4 
6 
7 
8 

5 
8 
4 
3 

Consider the assignment statement: 

A = (A + B) * * 2 - A (1 , 1) ; 

After execution, A has 
7 

93 
9 

93 

the value 
74 

189 
114 
114 

Note that the new value for A(1,1), 
which is 7~ is used in evaluating the 
expression for all other elements. 
The following example illustrates 
string assignment: 

A is a fixed-length string whose 
value is 'XZ/3Q'. 

B is a varying-length string of 
maximum length 8 whose value is 
'MAFY' • 

C is a fixed-length string of 
lengt:h 3. 

D is a varying-length string of 
maximum length 5. 

Then in thE~ statement: 

C=A, the value of C is 'XZ/'. 
C='X', the value of C is 'Xbb'. 
D=B, the value of D is 'MAFY'. 
D=SUBS1~R (A, 2,3) I I SUBSTR (A, 2,3) , 

the value of D is 'Z/BZ/'. 
SUBSTR(A,2,4)=B, the value of A is 

'XMAFY' • 
SUBSTR{B,2,2)='R', the value of B 

is 'MRbY'. 
SUBSTR(B,2)='R', the value of B is 

'MRbb' • 

3. The following examples illustrate sca­
lar assignment (Opt.ion 1): 

a. A,B,C = A+SIN(~ + C**2; provided 
X has the characteristics of the 
expression, this is the same as 
X = A+SIN(~ + C**2; 

b. 

A X; 
B X; 
C X; 

COMPLEX (U1, V1) 
+ REAL (Q); 

This is the same as 

COMPLEX (U, V) 

C=COMPLEX (U, V) + REAL (Q) 
U1=REAL (C) ; 
U2=IMAG (C) ; 

4. The following example illustrates 
structure assignment (Option 3) : 

5. 

DECLARE 1X, 2Y, 2Z, 2R, 3S, 3P, 1A, 
2B, 2C, 2D, 3E, 3Q; 

X = X*A; 

The second statement is equivalent to 
the following statements: 

Y 
Z 
S 
P 

Y*B; 
Z*C; 
S*Ei 
P*Q; 

The following example 
statement label assignment 

DECLARE P LABEL; 
P = Ai 
GO TO P; 

A: X = Y**2; 

illustrates 
(Option 4) ; 

This set of statements causes control 
to transfer to A when the GO '1'0 P 
statement is executed. 

6. The example below illustrates assign­
ment to an array of structures 
(Options 2 and 3) • 

In the following statement, A is an 
array of structures, and R is a struc­
ture: 

DECLARE 1A (2,2), 2B, 2C, 2D, 3E, 3F, 
1R, 3S, 3T, 3U, 5V, 5W; 

The following is an array aSSignment 
statement: 

A=Ri 

The above aSSignment statement is 
equivalent to the following four 
structure assignment statements: 

A (1, 1) =R; 
A (1,2) =R; 
A (2,1) =R; 
A(2,2)=R; 

The four statements above are, in 
turn, equal to the following: 

A(1,1) 
A (2,2) • 

B, A(1,2).B, 
B=S; 

A (2, 1) • B, 

A(1,1) .C, A(1,2) .C, A(2,1) .C, A(2,2). 
C = T; 

Chapter 8: Statements 101 



A(1,1).E, A(1,2).E, A(2,1),E, A(2,2). 
E = Vi 

A(1,1) .F, A(1,2) .F, A(2,1) .F, A(2,2).F 
= W; 

(If R is ABNORMAL, sixteen statements 
are actually generated.) 

7. The following example illustrates con­
version of data defined by a picture 
description assigned to floating-point 
data, and vice versa: 

DECLARE A FLOAT, B PICTURE '999V99 1
; 

A 

B 

B; (B is converted from fixed­
point to floating-point.) 

A; (A is converted from floating­
point to fixed-point.) 

The BEGIN statement 

Function: 

The BEGIN statement is the 
statement of a begin block. 

heading 

1. 

2. 

1. 

2. 

General format: 

BEGIN; 

General rules: 

A BEGIN statement is used in conjunc­
tion with an END statement. 
See Chapter 1 for a discussion of 
blocks. 

Examples: 

ON OVERFLOW BEGIN; 

END; 

(SIZE) PROCEDURE; 

(NOSIZE): A: BEGIN; 

END; 

END; 

The SIZE 
prefix to the 
enabling is 

condition is enabled with the 
PROCEDURE statement. This 

negated throughout the begin 

102 

block with the prefix NOSIZE. On exit from 
the begin block, SIZE errors are again 
enabled because statements again are in the 
scope of the SIZE prefix. 

The CALL Statement 

Function: 

The CALL statement invokes a procedure 
and causes control to be transferred to a 
specified entry point of the procedure. 

1. 

2. 

3. 

4. 

1 • 

General format: 

CALL 1 
entry-name ! 
(scalar-expression) 

[(argument [, argument] • • .)] 

[TASK-option] [EVENT-option] 
[PRIORITY-option] ; 

where the three options have the for­
mat: 

TASF. (scalar-task-name) 
EVENT (scalar-event-name) 
PRIORITY (expression) 

Syntax rules: 

The entry name or the value of the 
scalar expression represents the entry 
point of the procedure invoked. When 
necessary, the value of the expression 
is converted to a character string. 
Each argument may be any of the fol­
lowing: any type of expression, a 
statement label constant, a statement 
label variable, a statement label 
array, an entry name, an entry param­
eter, a file name, a file parameter, a 
task name, a task parameter, an event 
name, or an event parameter. 
The TASK, EVENT, and PRIORITY options 
can appear in any order, and are 
separated from each other and the 
initial part of the CALL statement by 
a blank. 
The scalar event and task names may be 
subscripted references to event or 
task arrays. 

General rules: 

When the scalar expression is used to 
designate the entry point and invoked 
procedure, the scalar expression is 
evaluated to give a character string, 
whose length is implementation­
defined. This string specifies a pro­
gram name that must appear in an 
active FETCH statement logically prior 
to the call. 



An active FETCH statement is one 
whose function has not been voided by 
a subsequent DELETE statement. 

2. Whe~rl the procedure name is represented 
by a scalar expression, no conversion 
is performed for the arguments (see 
"Relationship of Arguments and Param­
eters," in Chapter 10), and the argu­
men"ts may not be entry names, state­
ment label designators, or built-in 
function names .. 

3. The TASK, EVENT, and PRIORITY options, 
whejrl used alone or in any combination, 
specify that the invoked and invoking 
procedures are to be executed asyn­
chronously.. Note that if either the 
EVENT option or the PRIORITY option, 
or :both, are used without the TASK 
option, the created task will have no 
name (see rtAsynchronous Operations and 
Tasks" in Chapter 6) • 

4. When the TASK option is used, the task 
name is associated with the task 
created by the CALL. Reference to 
this name enables the priority of the 
task to be controlled. 

5. When the EVENT option is used, the 
event name is associated with the 
completion of the task created by the 
CAL'L statement. Another task can then 
wait for completion of this created 
task by specifying the event name in a 
WAI'T statement. 'rhe value of the 
completion status for the event name 
(i.e., the value of EVENT (event 

name» is set to 'O''S on execution of 
the CALL statement and to '1'B on 
completion of the created task. (see 
"Event Names" in Chapter 2 and "The 
WAIT statement" in this chapter.) 

6. If the PRIORITY option is used, the 
expression in the above form is evalu­
ated when the CALL statement is exe­
cuted. The result of this evaluation 
is converted to FIXED (m,o) where m is 
implementation defined. The priority 
of the named task is then made m 
relative to the task in which the CALL 
is executed. 

7. See "Relationship of Arguments and 
Parameters U for a detailed description 
of the interaction of CALL arguments 
and invoked entry parameters. 

Examples: 

1. CALL CRITICAL_PATH (A,B*C,D) 

CRITICAL PATH: PROCEDURE (ALPHA,BETA, 
GAMMA) FLOAT: 

END; 

2 • FETCH (A I I B) 

CALL (A I I B) (C , D, E) ; 

3. CALL PAYROLL (NAME, DATE, HRRATE) 

4. CALL PRINT (A,B) TASK (T2) EVENT (ET2) 
PRIORITY (- 2) ; 

The CLOSE Statement 

Function: 

The CLOSE statement releases facilities 
that were allocated during the opening of a 
file and causes proper disposition of the 
file. 

General format is shown in Figure 3. 

Following is the format of I. ident I.: 

IDENT 
data-list format-list 

CALL entry-name [(argument 
[, argument]] ••• ) 

Syntax rules: 

1. The "file name" is the name of a file 
to be closed. 

2. Each file name is separated from its 
option by a blank. 

3. An option that is common to two or 
more file names may be factored in the 
same way that attributes in a DECLARE 
statement may be factored (see 
"Factoring of Attributes" in Chapter 
4) • 

General rules: 

1. The CLOSE statement causes certain 
actions to be performed on the file, 
whose name is one of the file names of 
the CLOSE statement. The file is 
repositioned to its logical beginning, 
and the facilities allocated to it are 
released. 

If a CLOSE statement is encountered 
and the file has not been opened, or 
has already been closed, the statement 
is ignored. 

If, however, the file is not closed 
by a CLOSE statement, the file is 
closed at the completion of the task 
in which the file was opened. 

2. The IDENT option specifying a data 
list and format list yields a charac­
ter string that is compared with the 
file label for an input file or is 
written as the file label for an 

Chapter 8: Statements 103 



r-----------------------------------------------------------------------------------, 
I I 
I CLOSE {filename [ident] J~filename [ident] ] I 
I (filename [, filename] ••• ) [ident], (filename [, filename] ••• ) [ident] ••• ; I 
I I L ___________________________________________________________________________________ J 

Figure 3. General Format for the CLOSE Statement 

output file. For an INOUT file, INPUT 
is assumed. The data list and format 
list are described in Chapter 7. 

The IDENT option specifying an 
entry name and argument list causes 
the specified file to become the cur­
rent file and the designated procedure 
to be invoked for reading or writing 
the file label through GET or PUT. 
The form of file labels is implementa­
tion defined. 

If the IDENT option is not speci­
fied, no special label operations are 
performed. 

Examples: 

1. CLOSE MASTER; 

The file, MASTER, is closed~ and the 
facilities allocated to it are 
released. The file is repositioned to 
its logical beginning. 

2. CLOSE TABLEA, TABLEB, TABLEC; 

The three files, TABLEA, TABLEB, and 
TABLEC, are closed in the same way as 
MASTER, in the preceding example. 

The DECLARE Statement 

See "The DECLARE Statement", in Chapter 
4, for a discussion of the DECLARE state­
ment. 

The DELAY Statement 

Function: 

The DELAY statement causes execution of 
the controlling task to be suspended for a 
specified period of time. 

General format: 

DELAY (scalar-expression); 

General rule: 

Execution of the DELAY statement caus-

104 

es the scalar expression to be evalu­
ated and converted to an integer nand 
execution to be suspended for n mil­
liseconds. 

Execution resumes after n millisec­
onds only if the controlling task is 
of sufficiently high priority to be 
selected in preference to all other 
ready tasks. 

Example: 

DELAY (10); 

Execution of the controlling task 
is suspended for ten milliseconds. 

The DELETE Statement 

Function: 

The DELETE statement causes a specified 
program to be made inaccessible. 

General format: 

DELETE (scalar-expression) 

General rules: 

1. The scalar expression is evaluated 
and, where necessary, converted to a 
character string, whose length is 
implementation-defined. This string 
represents the name of the program to 
be deleted. 

The DELETE statement makes the 
specified program inaccessible and 
also deletes the STATIC data areas of 
the deleted program. 

2. The specified program must have 
appeared in a previously executed 
FETCH statement. 

3. After execution of a DELETE statement, 
the program name may not be specified 
in a CALL statement before it appears 
in another FETCH statement. 

Examples: 

1. DELETE ('PROCTL ' ) i 
2 • DELETE (A I I B) ; 



The DISP:LAY Statement 

Function: 

The DISPLAY statement causes a message 
to be displayed to the machine operator. A 
response may be requested. 

General format: 

Option 1. 

DIS'PLAY (scalar-expression) 

Option 2. 

DIS'PLAY (scalar-expression) 
(character-variabl~ 

General rules: 

[task] 

REPLY 

1. Execution of the DISPLAY statement 
causes the scalar expression to be 
evaluated and, where necessary, con­
verted to a character string. This 
character string is the message to be 
displayed. 

2. In Option 2, the character variable 
receives a string that is a message to 
be supplied by the operator. 

3. In option 2, execution of the program 
is suspended until the operator's mes­
sage is received. In option 1, execu­
tion continues uninterrupted. 

Example: 

DISPLAY (' :E:ND OF JOB') ; 

This statement causes the message, "END 
OF JOB n to be displayed. 

The DO Statement 

Function: 

The DO statement delimits the start of a 
DO group (see nGroupsn) and may specify 
iteration of the statements within the 
group. 

General format is shown in Figure 4. 

Syntax rules: 

1. The "variable" in Option 3 is a sub­
scripted or unsubscripted scalar vari­
able. Label variables, string varia­
bles, complex variables are allowed 
provided the expansions given below 
result in valid PL/I programs. 

2. Each "expression" in the specification 
list is a scalar expression. 

3. If BY expression3 is omitted from the 
specification list, expression3 is 
assumed to be one (1). 

4. If TO expression2 is omitted from the 
specification list, the iteration is 
performed indefinitely until terminat­
ed by some other statement within the 
scope of the DO or the WHILE clause. 

5. If both TO expression2 and BY 
expression3 are omitted, this form of 
the specification list implies a sin­
gle execution of the DO group with the 

r---------------------------------------------------------------------------------, 
Option 1 

DO; 

Option 2. 

DO WHILE (scalar-expressio~ 

Option 3. 

{

PSeUdO-variable} 
DO = specification [,specification] 

variable 

A specification has the following format: 

TO expression2 [BY expreSSiOn3]] 
expression [WHILE (expression 4)] 

BY expression3 [TO expression2] L ______________ .= _________________________________________________________________ _ 
Figure 4. General Format for the DO Statement 

Chapter 8: Statements 105 



control variable having the value of 
expression 1. 

General rules: 

1. In Option 1, the DO statement delimits 
the start of a DO group. 

2. In Option 2, the DO statement delimits 
the start of a DO group and specifies 
an iteration defined by the following 
expansion: 

LABEL: DO WHILE (expression) 
statement 1 

statement n 
END; 

NEXT: statement 

The above expansion is exactly equival­
ent to the following expansion: 

LABEL: IF (expression) THEN; ELSE GO TO 
NEXT; 
statement 

statement n 
GO TO LABEL; 

NEXT: statement 

3. In Option 3, the DO statement delimits 
the start of a DO group and specifies 
controlled iteration defined by the 
following expansion: 

LABEL: DO variable = expression1 
TO expression2 BY expression3 
WHILE expression4; 

statement 1 

statement n 
END; 

NEXT: statement 

The above expansion is exactly equival­
ent to the following expansion: 

LABEL:t1=sexp1; t2=sexp2; ••• ; tm=sexpm; 
e1=expression1; e2=expression2; 
e3=expression3; 
v=e1 ; 

LABEL 1: IF (e3>=O) & (v>e2) I (e3<O) & (v<e2) 
THEN GO TO NEXT; 

IF (expression 4) THEN; ELSE GO TO NEXT; 
statement 1 

statement n 
v=v+e3; 
GO TO LABEL 1 ; 

NEXT: statement 

106 

In this expansion sexp1, ••• ,sexpm are 
the expressions which appear in subscripts 
of the controlled variable or pseudo­
variable, followed by the second and third 
argument positions if the SUBSTR pseudo­
variable is being used. The letter ~ 
denotes the controlled variable with all 
expi replaced by tie In the simplest 
cases, m=o and the first statement is 
e1=expression1. The variables t1, ••• ,tm, 
are BINARY FIXED integer variables of 
default precision, inserted by the compil­
er. The variables e1, e2, and e3 have the 
characteristics of the corresponding 
expressions. 

a. If more than one specification is 
given, the statement labeled NEXT 
refers to the initialization for 
the next specification; for exam­
ple: 

NEXT: e5 expression 5; 

The ti variables are computed only 
once-rn each DO statement. 

b. If the WHILE clause is omitted, 
the IF statement involving 
expression4 is replaced by a null 
statement. 

c. If the TO clause is omitted, the 
IF statement and the assignment 
statement involving e2 are omit­
ted. 

d. If both the TO clause and the BY 
clause are omitted, all statements 
involving e2 and e3 are omitted as 
well as the statement II GO TO 
LABEL1;". 

4. The WHILE clause in Options 2 and 3 
specifies that before each associated 
execution of the DO group, the expres­
sion is evaluated and, if necessary, 
converted to give a bit-string value. 
If any bit in the resulting string has 
the value '1', the iterations continue 
uninterrupted. If all bits have the 
value 'a', the iterations associated 
with the current specification are 
terminated. 

5. In the specification list, in Option 
3, expression1 represents the starting 
value of the control variable. 
Expression3 represents the increment 
to be added to the control variable 
after each iteration of the statements 
in the DO group. Expression2 rep­
resents the terminating value of the 
control variable. Iteration termi­
nates as soon as the value of the 
control variable passes its terminat­
ing value. When the last specifi­
cation is completed, control passes to 
the statement following the DO group. 

6. Control may transfer into a DO group 
from outside the DO group only if the 
DO group is delimited by the DO state-



ment in Option 1; ·that is , iteration 
is not specified. 

Examples: 

1. DO INDEX CTR WhILE (A>B), 5 TO 10 
WHILE (A B), 100; 

2. DO I = J TO K BY I, 1+1 TO N BY 1: 
3. DO WHILE (~; 
4. DO; 
5. DO WHILE (TAX-DEDCT < ESTTAX * 4); 
6. DO COMPLEX (X, Y) 0 BY 1 + 1 I WHILE 

(X<:10) ; 

The END Statement 

Funct.ion: 

The END statement terminates blocks and 
groups. 

General format: 

END [label]; 

General rules: 

1. If a label follows END, the END state­
ment terminates that group or block 
having that label. 

2. If a label does not follow END, the 
END statement terminates that group or 
block headed by the nearest preceding 
DO, BEGIN, or PROCEDURE statement for 
which there is no other corresponding 
END statement. 

3. An END statement may be used to termi­
nate more than one group or block (see 
"Use of the END Statement," in Chapter 
1) • 

4. The END statement may have a label 
prE~ceding the END. This label may be 
referred to anywhere in the program 
where the label is known. 

5. If control reaches an END statement, 
terminating a procedure, it is treated 
as a RETURN statement. 

6. If control reaches an END statement 
which terminates a BEGIN block that is 
an on-unit, either control is returned 
to the point following the interrupt 
location, or an appropriate system 
ac1:ion is taken. 

For examples, see "Use of the END 
statement," in Chapter 1. 

The ENTHY Statement 

The ENTRY statement specifies a secon­
dary entry point to a procedure. 

General format: 

entry-name: ••• ENTRY [(parameter 
[, parameter] ••• ) ] 
[data-attributes) : 

General rules: 

1. The parameters are names that specify 
the parameters of the entry point. 
When the procedure is invoked, a rela­
tionship is established between the 
arguments of the invocation and the 
parameters of the invoked entry point 
(see RRelationship of Arguments and 

Parameters") • 
2. The data attributes specify the char­

acteristics of the value returned by 
the procedure when invoked as a fUnc­
tion at this entry point. The value 
specified in the RETURN statement of 
the invoked entry is converted to th'e 
specified data attribute. 

If insufficient data attributes are 
specified at the entry point, default 
attributes are ap~lied, as determined 
by the name of the entry point. 

If an ENTRY statement has more than 
one label, each label is interpreted 
as if it were a single entry name for 
a separat.e ENTRY statement. 

Consider the statement: 

A:I: ENTRY: 

This statement is equivalent to: 

A: ENTRY; 
I: EN'IRY; 

The ENTRY statement must be inter­
nal to the procedure block for which 
it defines a secondary entry point. 
The ENTRY statement may not be inter­
nal to any block contained in this 
procedure; nor may it be within a DO 
group that specifies iteration. 

Example: 

NAME: PROCEDURE(~ CHARACTER (15) ; 
DECLARE 'IABLE (1 00) CHARJI~CTER (15) 
EXTERNAL; 

INITIAL: ENTRY (N) CHARACTER (1) 
RETURN (TABLE (N» ; 

Function: END; 

Chapter 8: statements 107 



The EXIT Statement 

Function: 

The EXIT statement causes immediate ter­
mination of the task that contains the 
statement and all tasks attached by this 
task (see "Asynchronous Operations and 
Tasks,ft in Chapter 6). If the EXIT state­
ment is executed in a major task, it is 
equivalent to a STOP statement (see this 
chapter) • 

General format: 

EXIT; 

The FETCH Statement 

Function: 

The FETCH statement causes a program to 
be fetched and made available for invoca­
tion by a CALL statement, with the entry 
name specified by an expression. 

General format: 

FETCH (scalar-expression) 

General rules: 

1. On execution of the FE'l'CH statement, 
the scalar expression is evaluated 
and, where necessary, converted to a 
character string whose length is 
implementation-defined. This string 
specifies the name of a program to be 
fetched. 

It is assumed that the specified 
program was not available before the 
FETCH. 

2. After execution of the FETCH 
statement, the fetched program may be 
invoked by a CALL ~tatement, with the 
entry name specified by an expression 
(see "The CALL statement") • 

3. Data declared EXTERNAL, task identifi­
ers, and file names may be shared only 
among procedures within a program. 
Consequently, any program which is 
made available by a FETCH statement 
may not share externals with any other 
program. 

4. Initial values for data in static 
storage are established at the time of 
fetching. 

Examples: 

1 • FETCH ( I PROCTL I) 
2. FETCH ( I PROG I I I PETA) 

108 

CALL ( I PROG I I I BETA) (ALPHA) 

The FORMAT statement 

Function: 

The FOR1'<lAT statement specifies a. format 
list for use with data transmitted under 
format direction. 

General format: 

label: ••• FORMAT format-list; 

Syntax rules: 

1. The "format list'" is as described for 
use with a format-directed data speci­
fication (see "Format Lists" in Chap­
ter 7) • 

2. At least one "label" is required. It 
is the name of a statement label 
appearing in a remote forffiat item. 

General rules: 

1. A READ, WRITE, GET, or PUT statement, 
or an IDENT option may include a 
remote format specification, R, in the 
format list of a format-directed data 
specification. That portion of the 
format list covered by the H 
(statement label designator) format 
item must be specified in a FOR~~T 
statement with a corresponding state­
ment label. 

2. The remote format item and the FORMAT 
statement must be internal to the same 
block. 

The FREE Statement 

Function: 

The FREE statement causes the storage 
most recently allocated for specified con­
trolled variables to be freed. 'l'he next 
most recent allocation is made available, 
and subsequent references to the identifier 
refer to that allocation. 

General format: 

FREE identifier [,identifier] 

Syntax rule: 

Each identifier is a scalar, array, or 
major structure name of the controlled 
storage class. 



General rules: 

1. Controlled storage allocated in a task 
cannot be freed by a task which it 
attaches. 

2. If a specified identifier has no allo­
cated storage at the time the FREE 
statement is executed, no action is 
taken. 

Examples: 

1 • FREE X, Y , Z ; 
2. The following excerpt from a procedure 

illustrates the FREE statement in con­
junction with an ALLOCATE statement: 

DECLARE A (100) INITIAL «100) 0) 
CONTROLLED, C (100), X (100) ; 

ALLOCATE Ai 

C=A; 

FREE Ai 

X=SIN(C**2 + X/Y) 

The GET statement 

Function: 

The GET statement causes data to be 
fetched from the current record, converted 
from external data form, if necessary, and 
assigned to variables as specified. The 
GET statement has meaning only when there 
is a current file; if there is no current 
file, the ERROR condition is raised. 

General format: 

GET data-specification [, data-speci­
fication] ••• ; 

General rules: 

1. The "data specifications" are dis­
cussed in Chapter 7. Only those forms 
specified for input may be used; a 
CAL"L option may not be used. 

2. As data is fetched from the record, 
the action that occurs is as if a 
pointer moved across the record as 
demanded by the data specifications. 
This pointer may be repositioned with­
in the record by use of the POSITION 
statement or the REPOSITION statement. 

Example: 

READAB: PROCEDURE; 
READ (A, B) (2F (7,3) ), CALL GETC; 

END READABi 

GETC: PROCEDURE; 
GET (C) (G (8,5» 

END GETC; 

The GO TO Statement 

Function: 

The GO TO statement causes control to be 
transferred to the specified statement. 

General format: 

{ }{

label-constant } 
GO TO ; 
GOTO scalar-Iabel-variable 

General rules: 

1. If a label variable is specified, the 
GO TO statement has the effect of a 
multi-way switch. The value of the 
label variable is the label of the 
statement to which control is trans­
ferred. 

Since the label variable may have 
different values at each execution of 
the GO TO statement, control may not 
always pass to the same statement. 
(Example 2 illustrates a GO TO state­

ment used as a multi-way switch.) 
2. A GO TO statement may not pass control 

to an inactive block (see "Activation 
and Termination of Blocks," in Chapter 
6, for a discussion of active and 
inactive blocks) • 

A GO TO statement may not transfer 
control from outside a DO group to a 
statement inside the DO group if the 
DO group specifies iteration unless 
the GO TO terminates a procedure 
invoked from within the DO group. 

3. A GO TO statement that transfers con­
trol from one block (~ to a dynamical­
ly encompassing block (~ has the 
effect of terminating block D, as well 
as all other blocks that are dynamical­
ly descendant from block A. Conditions 
are reinstated, and automatic variables 
are freed in the same way as if the 
blocks terminated normally. When a GO 

Chapter 8: Statements 109 



TO statement transfers control out of a 
procedure invoked as a fUnction, the 
evaluation of the expression that con­
tained the corresponding function ref­
erence is discontinued, and control is 
transferred to the specified statement. 

4. A GO TO may not terminate any procedure 
invoked within an input/output state­
ment, unless the GO TO is encountered 
in an ON unit. 

5. A GO TO may not terminate any procedure 
invoked during a prologue (see 
·Prologues· in Chapter 10) , or an ALLO­
CATE statement. 

6. A GO TO statement may not be used to 
transfer control from a task to its 
attaching task or to any of its descen­
dant tasks. 

Examples: 

1. GO TO A234; 

A234: 

2. The following example illustrates a GO 
TO statement that effectively is a 
multi-way switch. 

DECLARE L LABEL (L1, L2) INITIAL 
(L2) ; 

GO TO MEET; 
L1: X = Y - 1; 

L = L2; 
GO TO MEET; 

L2: Y = X -1; 
L = L1; 

MEET: CALL FUDGE (X, Y, Z); 
IF Z = LIMIT GO TO L; 

3. The following procedure illustrates 
use of the GO TO statement with a 
subscripted label variable to effect a 
multi-way switch: 

110 

CALC: PROCEDURE (N1, N2); 
DECLARE SWITCH (3) LABEL INITIAL 
(CALC 1 , CALC2, CALC3) 

I=MOD(N1+N2,3) +1; 
GO TO SWITCH (I); 

CALC1: ••• 

RETURN; 
CALC2: ••• 

RETURN; 
CALC3: ••• 

END CALC; 

The GROUP Statement 

Function: 

The GROUP statement causes a group mark 
to be inserted in the file on output, or 
positioning of the file to the next group 
mark on input. 

General format: 

GROUP [(expression)] [FILE 
(f ile-name) ] ; 

Syntax rule: 

The ·expressionn , if specified, is a 
scalar expression and it is evaluated and 
converted, where necessary, to an integer 
n. If the expression is not specified, it 
is assumed to be 1. 

General rules: 

1. A group is defined as a sequence of 
records delimited by a group-delimi­
ter. A group is created (1) by the 
GROUP format item specified in a WRITE 
or PUT statement specifying format­
directed transmission, or (2) by a 
GROUP statement. 

2. In a GROUP statement, input records 
are skipped until a group-delimiter is 
encountered, with synchronization 
occurring at the next group, or, if Q 
is the value of the expression, at the 
nth subsequent group. Output records 
are followed by a separate record 
containing a group-delimiter and 
released. If n is negative or zero, 
the group statement or format item is 
ignored. 

3. The FILE option specifies that the 
action is to be taken on the named 
file. In the absence of a FILE 
option, the current file is assumed 
(see nprocedure-Directed Transmiss~onn 
for a discussion of current files) • 

4. The techniques for marking a group are 
implementation defined. 

Examples: 

1. GROUP FILE (X); 

If X is an input file, records are 
skipped until a group-delimiter is 
encountered. The file is then posi­
tioned immediately following the group­
delimiter. 



2. GROUP; 

Since no file is specified, the 
GROUP sta1:ement positions the current 
file. If the current file is an 
output file a group-delimiter is 
placed on the file, where it is cur­
ren"tly positioned, and the group is 
released from the program. If the 
current file is an input file, records 
are spaced until a group mark is 
encountered. 

The IF S·tatemen-t:: 

Function: 

The IF statE~ment causes program flow to 
depend on the value of an expression. 

General format: 

IF .scalar-expression THEN unit-1 [ELSE 
uni t-2] 

Syntax rules:: 

1. Each "unit" is either a group or a 
begin block, either of which would be 
terminated by a semicolon. 

2. The IF statement is not itself termi­
nated by a semicolon. 

General rules: 

1. When the ELSE clause -- ELSE, and its 
following unit is not specified, 
the scalar expression is evaluated 
and, if necessary, converted to a bit 
string. If any bit in the resulting 
string has the value 1, the unit is 
executed, and control passes to the 
statement following the IF statement. 
If all bits have the value 0, the unit 
is not executed, and control passes to 
the next statement. When the ELSE 
clause is specified, the expression is 
similarly evaluated. If any bit is 1, 
unit-1 is executed, and control passes 
to the statement following the IF 
statement. If all bits have the value 
0, unit-2 is executed, and control 
pass~s to the next statement. The 
units may contain statements that 
specify transf~r of control (see 
"Sequence of Control"), and so over­
ride these normal sequencing rules. 

2. IF statements may be nested, that is, 
either unit-1 or unit-2, or both, may 
themselves bE. IF statements. Since 
each ELSE clause is always associated 
with the innermost preceding IF, an 
ELSE with a null statement may be 
required to specify the desired 
effect. 

1. 

2. 

Examples: 

IF QUEUE EMPTY THEN CALL COMPILE; 
ELSE GO TO MULTIPROCESS; 

A: IF X > Y THEN 
IF Z W THEN 
IF W < P THEN Y 1 ; 
ELSE P Q; 
ELSE; 

ELSE X = 4; 
J: Z = 5; 

The LAYOUT Statement 

Function: 

The LAYOUT statement specifies the hori­
zontal layout of data on input and output. 

General format: 

LAYOUT 
[FILE (file-name [,file-name] ••• )] 
[MARGIN (expression-1, expression-2)] 
[TAB (expression [,expression] ••• )]; 

Syntax rules: 

1. The options may appear in any order. 
2. The "expressions" are scalaz expres­

sions. 

General rules: 

1. The FILE option specifies the files to 
be operated upon. In the absence of a 
FILE option, the current file is used, 
or if there is no current file, the 
standard output file is assumed. 

2. The MARGIN option specifies left and 
right margins. The values of both 
expressions are converted to integers 
when the LAYOUT statement is executed. 
These values are interpreted as the 
positions of the left and right mar­
gins of the record and line, respec­
tively, relative to the beginning of 
the record or line. On input, data 
before the left margin or after the 
right margin is ignored. On output, 
the first data item of a record or 
line is aligned on the left margin, 
with blanks before it; data is not 
placed beyond the right margin. If 
the left margin is specified to the 
right of, or equal to the right mar­
gin, or if either margin is negative, 
the ERROR condition is raised. 

3. ThE. TAB option specifies tabbing. The 
expressions are converted to integers 
when the LAYOUT statement is executed. 
The values are used to indicate char­
acter pOSitions from the left end of 
the line or record. These values need 

Chapter 8: Statements 111 



not be in ascending order. Column 1 
is the leftmost column. During list­
directed and data-directed output, 
successive items are aligned on suc­
cessive free tabs. There is a default 
tabbing for list- and data-directed 
output which is implementation 
defined. There is no automatic tab­
bing on input. During format-directed 
transmission, alignment on a tab can 
be achieved by use of the TAB format 
item. In other cases, alignment on a 
tab can be achieved by using the TAB 
statement. 

4. In the absence of a LAYOUT statement, 
system standards apply. 

5. Execution of a LAYOUT statement des­
troys all options established by a 
previously executed LAYOUT statement 
for the same file. 

The Null Statement 

Function: 

The null statement causes no action and 
does not modify sequential operation. 

General format: 

[label:] ... , 
Example: 

ON OVERFLOW; 

The on-unit (see liThe ON Statement") is 
a null statement. 

'Ihe ON Statement 

Function: 

The ON statement specifies the action to 
be taken when an interrupt occurs for the 
named condition. For a discussion of 
"enable" and "interrupt," see "Interrupt 
"Operations" in Chapter 6. 

General format: 

Option 1 

ON condition [SNAP] on-unit 

112 

Option 2 

ON condition SYSTEM; 

Syntax rules: 

1. The II condition" may be anyone of 
those described in Appendix 3. 

2. The "on-unit" is an action specifi­
cation and it is either an unlabeled 
single simple statement (other than 
BEGIN, DO, END, RETURN, or DECLARE) or 
an unlabeled begin block. Since the 
on-unit itself requires a semi-colon, 
no semi-colon appears in Option 1. 

3. The on-unit may not be a RETURN state­
ment, nor may a RETURN statement 
appear within the begin block. 

General rules: 

1. The standard action to be taken for 
all ON-conditions is established by 
the language. When an interrupt takes 
place before an ON statement for that 
condition has been executed, standard 
system action is taken. This standard 
system action is described in Appendix 
3. The ON statement in Option 2 
specifies that standard system action 
is to be taken when an interrupt 
results from the occurrence of the 
specified condition. 

2. The ON statement in Option is a 
means for the programmer to specify a 
special action, that is, execution of 
the on-unit, to take place when an 
interrupt occurs for the specified 
condition. 

3. In Option 1, if SNAP is specified, 
then when the given condition occurs, 
a calling trace is listed. 

4. Control can reach an on-unit only when 
an interrupt occurs for the condition 
associated with this on-unit in an ON 
statement. 

5. If an action specification is esta­
blished by an ON statement in a given 
block, it remains in effect throughout 
this block and throughout all dynamic 
descendants of this block (see 
"Activation and Termination of 
Blocks," in Chapter 6, for a discus­
sion of blocks and generations of 
blocks) • 

If an action is specified more than 
once in a given block, the effect of 
the old (or prior) ON statement is 
either temporarily suspended or com­
pletely nullified by the new (or 
later) ON statement, as follows: 
a. If the new (or later) ON statement 

is in a block dynamically descend­
ed from the block containing the 
old (or prior) ON statement, the 



effec1: of the old ON statement is 
temporarily suspended or stacked. 
The effect of the old ON statement 
is restored upon termination of 
the block containing the new ON 
statement. 

b. If thE! new (or later) ON statement~ 
and the old (or prior) ON state­
ment are internal to the same 
block, the effect of the old ON 
statement is completely nullified. 

6. If an action is specified by an ON 
statement in a particular task, the 
effect of this ON statement is inher­
i tE~d by each attached task and by each 
task atta.ched by the attached task, 
etc. (see QAsynchronous Operations 
and Tasks," in Chapter 6 , for a 
discussion of attached and attaching 
tasks) • 

7. A condition raised during execution 
results in an interrupt if and only if 
the condition is enabled at the point 
where it is raised. 
a. The conditions OVERFLOW, UNDER­

FLOW, ZERODIVIDE, CONVERSION, the 
input output conditions, and the 
conditions CONDITION, FINISH, and 
ERROR are enabled by default. 

b. The conditions SIZE, SUBSCRIP­
TRANGE, and CHECK are disabled by 
default. 

c. The enabling status of OVERFLOW, 
UNDERFLOW, ZERODIVIDE, CONVERSION, 
SIZE, SUBSCRIPTRANGE, and CHECK 
are controlled by the condition 
prefix (see "Prefixes" in Chapter 
1) • 

Examples: 

1. IOPR: PROCEDURE; 

R 1: READ FILE (FILEX) (A, B) 
(2F (7,3) ) ; 

ON CONVERSION (FILEX) 
CONVQ = 9999; 

R2: READ FILE (FILEX) (X) 
(A (6) ) ; 

END IOPR; 

Assume that program execution 
begins with procedure rOPR. At the 
beginning of execution, all conditions 
are enabled. 

If an illeqal 
from FILEX during 
statement R1, the 
action occurs. 

character is read 
the execution of 
standard system 

~['he ON statement. specif ies that the 
execution of the statement COWQ = 

2. 

9999 is to occur in the event that a 
conversion error causes an interrupt 
subsequent to execution of the ON 
statement. Thus, if a conversion 
error occurs during the transmission 
of X in statement R2, the normal 
sequence of control is interrupted, 
and the statement CONVQ 9999 is 
executed. 

ZCHK: PROCEDURE; 

S1 : ON OVERFLOW OVSWCH 1 ; 

CALL Q; 

Q: PROCEDURE; 

S2: ON OVERFLOW OVSWCH 2; 

S3: ON OVERFLOW SYSTEM; 

END Q; 
END ZCHK; 

Assume that program execution 
begins with procedure ZCHK. 

If an overflow occurs prior to 
execution of the S1 : ON statement, an 
interrupt with standard system action 
occurs. If an overflow occurs subse­
quent to execution of the S1 ON 
statement, an interrupt occurs, and 
the statement OVSWCH = 1 is executed. 

When procedure Q is invoked, the S1 
ON statement remains in effect until 

the S2 : ON statement is executed. At 
this point, the effect of the 51 : ON 
is temporarily suspended, and the 52 : 
ON goes into effect. 

If an overflow occurs between the 
52 : ON and the S3 : ON, an interrupt 
occurs, and the statement OV5WCH 2 
is executed. 

When the 53 : ON is executed, it 
completely replaces the 52: ON (the 
S1 ON is still stacked). If an 
overflow occurs after the 53: ON is 
executed and before the end of proce­
dure Q, it causes the standard system 
action to take place. 

Chapter 8: Statements 113 



3. 

After control is returned from Q to 
ZCHR, the S3: ON is completely 
replaced by the S1: ON, whose effect 
is restored. Any overflows occurring 
from this point to the end of proce­
dure ZCHK cause the statement OVSWCH = 
1 in S1: ON to be executed. 

SBCHK: PROCEDUREi 
DECLA.~E A (9) 

B1: ••• A(I} ••• i 
ON SUBSCRIPTRANGE BEGIN; 

IF 1>9 THEN 
GO TO BIGER 

ELSE GO TO 
LITLERi 

iHGER: 

LITLER: ••• i 
END; 

(SUBSCRIPTRANGE): B2: ••• A (I) ••• , 
B3: ••• ; 

END SBCHK; 

Assume that procedure SBCHK is 
only procedure in the program. 

the 

At the beginning of execution, any 
occurrence of the condition SUBSCRIP­
TRANGE will not give an interrupt; it 
is not enabled, since the condition 
name does not appear in a prefix in 
the PROCEDURE statement. However, the 
occurrence of any other ON condition, 
except SIZE and CHECK (identifier), 
will give an interrupt. If in state­
ment B1, the value of I is greater 

than 9 or less than 1, no interrupt 
action is taken. 

When the ON statement for the con­
dition SUBSCRIPTRANGE is executed, any 
interrupt that results from a subse­
quent occurrence of the SUBSCRIPTRANGE 
condition will result in the action 
specified by the begin block in the ON 
statement. 

The prefix for statement B2 speci­
fies that the condition SUBSCRIPTRANGE 
is enabled and should cause an inter­
rupt if it occurs during the execution 
of statement B2. In this case, the 
begin block in the ON statement is 
executed. 

In the execution of B3 and subse­
quent statements, the occurrence of a 
subscript that is not within the spec­
ified range does not cause an inter­
rupt action to occur. 

For further examples, see "Interrupt 
Operations" in Chapter 6. 

The OPEN Statement 

Function: 

The OPEN statement acquires and prepares 
files for subsequent transmission. 

General Format is shown in Figure 5. 

r-------------------------------------------------------------------.-----------, 
, I 

I

I {filename ~ption] ••• } ,I 
OPEN 

I (filename [option] ••• [,filename [option] ••• ] ••• ) [option] ••• I 
I [, filename [option] • • • ] I 
I , filename [option] ••• [, fi lename [option] ••• ] ••• ) [option] ••• • •• i I 
I I 
I I l _______________________________________________________________________________ J 

Figure 5. General Format for the OPEN Statement 

114 



r-------·-----------------------------------------------------------------------------, 
I I 

I [~~~i!~TJ [TITLE (expression)] [ACTIVITY (expression) ][ident-option] [ENVIRONMENT I 
I INOUT (option-list) ] I 
I I 
I I l _______ . _____________________________________________________________________________ J 

Figure 6. Format of "option" Allowed in the OPEN Statement 

Syntax rules: 

1. The options may appear in any order. 
2. The "file name" may be described in a 

DECLARE statement with the file attri­
butes discussed in Chapter 4. 

3. Opt:ions that are common to two or more 
file names may be factored in the same 
way that attributes in a DECLARE 
staltement may be factored (see 
"Factoring of Attributes" in Chapter 
4). Only one level of factoring is 
permitted. 

General rules: 

1. The OPEN statement causes certain 
act:ions to be performed upon the file, 
whose name is one of the file names of 
the OPEN statement. These actions are 
specified by the options. 

If, however, a file is not opened 
by an OPEN statement, the file is 
opEmed during the first READ or WRITE 
statement that refers to it. 

If an OPEN statement is encountered 
for a file already opened, the state­
ment is ignored. 

2. The following options may be given to 
a file in the OPEN statement: 

One of these options may be 
given to specify the direction of 
data transmission that is permit­
ted for the file. INOUT may be 
given for both direct and sequen­
tial access files, stating that 
both INPUT and OUTPUT are permit­
ted. 

Either the OPEN statement or 
the file declaration must specify 
the direction of data transmis­
sion. References to the file in 
PAGE and LAYOUT statements before 
INPUT or OUTPUT is established, 
forces no assumptions. References 
to the file in GROUP, SPACE, SKIP, 
or SEGMENT statements before INPUT 

or OUTPUT is established, forces 
the default assumption INPUT. 

It should be noted that INPUT 
files may not be written upon and 
OUTPUT files may not be read. 

b. [TITLE (expression)] 

A file name may be associated 
with more than one set of data. 
The choice of the desired set may 
be delayed until the OPEN state­
ment is executed. At this point, 
the "expression" in the TITLE 
option is evaluated, converted to 
a character string, and used to 
identify the data set. The origi­
nal file name is remembered, such 
that TITLE does not permanently 
override it. If the TITLE option 
is omitted, the file name is taken 
as the data set name. The TITLE 
option can be used to let the file 
name refer to more than one actual 
file. 

c. [ACTIVITY (expression)] 

The ACTIVITY option causes the 
"expression" to be evaluated and 
converted to an integer that indi­
cates the relative activity of the 
file. This relative activity is 
represented in units defined indi­
vidually for each implementation 
6f the language. 

d. The format of the ident option is 
as follows: 

(

data-list format list I 
IDENT 

CALL entry-name [(argument 
[, argument]] ••• ) 

The ident option in an OPEN 
statement for an output file spe­
cifies that a label is to be 
placed on the external medium. 
For an input file, IDENT provides 
information for label checking. 

The ident option specifying a 
data list and format list yields a 
character string that is compared 

Chapter 8: Statements 115 



r----------------------------------------------------------------------------, , I 
I PAGE [FILE (file-name [,file-name] ••• )] I 
I [NUMBER [(expression)]] [HEAD (expression)] I 
I [FOOT (expression)] [SIZE (expression)] I 
I [SPACE (expression)] I 
I { (expression- 2) } ] I 
I [AT (expression-1) I 
I CALL entry-name (argument [, argument] •• ,,) ; I l ____________________________________________________________________________ J 

Figure 7. General Format for the PAGE Statement 

with the file label for an input 
file or is written as the file 
label for an output file. For an 
INOUT file, INPUT is assumed. The 
data list and format list are 
described in Chapter 7. 

The ident option specifying an 
entry name and argument list caus­
es the specified file to become 
the current file and the designat­
ed procedure to be invoked for 
reading or writing the file label 
through GET or PUT. The form of 
file labels is implementation 
defined. 

If the ident option is not 
specified, no special label opera­
tions are performed. 

e. The ENVIRONMENT option specifies 
various characteristics of the 
FILE being opened. See "The E"f:-,WI­
RONMENT Attribute," in Chapter 4. 

Examples: 

1. OPEN MATRIX INPUT. 

The file MATRIX is made available for 
use as an input file. 

2. OPEN WORKFILE OUTPUT 
(CREATE, BUFFER (2»; 

The PAGE Statement 

Function: 

ENVIRONMENT 

The PAGE statemenL specifies the verti­
cal format of files. 

General format is shown in Figure 7. 

Syntax rules: 

1. The options may appear in any order. 
2. "Expression" is a scalar expression. 
3. The AT option may appear more -than 

once. 

116 

General rules: 

1. The PAGE statement is used only with 
CONSECUTIVE SEQUENTIAL OUTPUT files; 
it causes a skip to the start of the 
next page. 

2. The FILE option specifies the files to 
be operated upon" If the FILE option 
is omitted, the current file is 
assumed (if the current file is an 
INPUT file, the ERROR condition is 
raised). If there is no current file, 
the standard system output file is 
assumed. 

3. The NUMBER option specifies that the 
pages are to be numbered on the right 
of the heading, starting at the number 
that is the integer value of the 
expression. If the NUMBER option is 
not specified, numbering is not gener­
ated. If the expression is omitted, 
numbering starts at one (1). 

4. The HEAD option provides a page title, 
left adjusted on every page. The 
character string, which is the value 
of the expression, is the page title. 
The expression is evaluated when the 
PAGE statement is executed. 

5. The FOOT option provides a le£t­
adjusted line at the foot of each 
page. The character string, which is 
the value of the expression, is the 
footing line. The expression is 
evaluated when the PAGE statement is 
executed. 

6. The SIZE option specifies the number 
of lines per page, including heading, 
footing, and blank lines. The integer 
value of the expression provides this 
information. If this option is unspe­
cified, system standards apply. Lines 
here mean actual page lines, not print 
lines. 

7. The SPACE option specifies the line 
spacing. If the integer value of the 
expression is n, then (n-1) blank 
lines are effectively generated 
between each two lines explicitly 
specified. In the absence of this 
option, SPACE (1) is implied. The 
SPACE option implies spacing before 
printing. 



8. The AT option specifies that certain 
action is to occur at a specified 
location on every page. Expression 

Note: 

is evaluated and converted to an inte­
ger n when the PAGE statement is 
executed. (If the value of n is zero 
or negative, the AT option is 
ignored.) Subsequently, when the nth 
line of each page is reached, the 
following occurs before continuing 
wit~h the output: 
a. If expression 2 is specified, it 

is evaluated and converted to a 
character string that is generated 
as the nth line. 

b. If a CALL option is specified, the 
arguments are evaluated, where 
necessary, and the procedure 
entry, specified by "entry name," 
is invoked. This procedure may 
cause special page handling. 

The scope of the arguments 
includes the block containing the 
PAGE statement. Since the argu­
ments are evaluated at each invo­
cation, the block containing the 
PAGE statement must still be 
active at each invocation, that 
is, when the nth line is reached 
on each page A procedure 
invoked by the CALL option can 
contain only GET and PUT state­
ments for data transmission. The 
file which caused the procedure to 
be invoked becOInes the current 
file during entry to the invoked 
procedure. 

ThE! nth line is said to be "reached" , 
in the sense used above, when: 

(1) A WRITE statement is encountered 
for which the previous WRITE for 
that file released line (n-1). 

(2) A WRITE statement with the CROSS 
option is being executed and a 
SPACE or SKIP releases line (n-1), 
and the first item to be output 
for line n has just been evaluated 
(or if a further SPACE or SKIP 

attempts to pass line n) • 

(In the above definition., when n=1, 
n-1 refers to the last line of the 
prE!vious page.) 

9. In the absence of a PAGE statement, 
system standards apply. 

10. AT options override spacing and skip­
ping, and the SPACE factor is still 
applied to the data line which caused 
thE! AT t,o be activated. AT lines do 
not: have the SPACE factor applied to 
thE!ID, as only enough blank lines are 
generated to cause the AT line to 
appear on the specified line number. 
ThE! AT procedure must have a SPACE 

format item or statement in order to 
emit the line; otherwise the data 
being output from the WRITE which 
caused the procedure to be invoked 
will be written on the same line. 

11. The SEGMENT option may not be applied 
to a file controlled by a PAGE state­
ment. 

Example: 

PAGE FILE (FILEX), NUMBER (100), HEAD 
('PAGE HEADING') 

FOOT ('BOTTOM OF PAGE'), SIZE (34); 

The POSITION Statement 

Function: 

During data transmission, the action 
that occurs is as if a pointer moved across 
the records as demanded by the data speci­
fications. The POSITION statement manipu­
lates this pointer. 

General format: 

POSITION format-list; 

Syntax rules: 

1. The format list is as described for 
.format-directed data specification in 
"Format Lists," in Chapter 7. 

2. The following format items are not 
allowed in the format list of a POSI­
TION statement: GROUP, SEGMENT, SKIP, 
SPACE, and the remote format item, R. 

General rules: 

1. When the POSITION statement is execut­
ed, the pointer is first reset to the 
beginning of the current record. The 
format elements are then used to 
determine the movement of the pointer 
as if there were associated data list 
elements corresponding to the format 
items. Since no data list exists, all 
format items must have an explicit or 
implicit field width (precision) 
specification. 

2. If the POSITION statement moves the 
pointer across parts of an output 
record that have no information edited 
into them, the record is assum~d to be 
initially blank. 

Chapter 8: Statements 117 



Examples: 

GETAB: PROCEDURE: 

GET (A,B) (2F (5,2), X (6»: 

IF (A>O & B = 0) THEN POSITION 
(X (25»: 

RETURN; 
END GETAB: 

READY PROCEDURE: 

READ (Y) (F (8,3) ), CALL GETABi 

END READYi 

The PROCEDURE Statement 

Function: 

The PROCEDURE statement has the follow­
ing fUnctions: 

1. Heads a procedure 
2. Defines the primary entry point to a 

procedure 
3. Specifies the parameters for the pri­

mary entry point 
4. Defines any special attributes of the 

proc~dure 
5. Specifies the attributes of the value 

that is returneo if the procedure is 
invoked as a fUnction at the primary 
entry point 

General format: 

entry-name: ••• PROCEDURE 
[ (parameter [, paramete~ ••• )] 
[OPTIONS (option-list)] 

~ECURSIVE] [data-attribute~ 

Syntax rules: 

1. The data sttributes and the OPTIONS 
and RECURSIVE attributes may appear in 
any order and are separated by blanks. 

2. The attributes in the OP~IONS list are 
separated by commas, where necessary. 

General rules: 

1. The "parameters" are names that speci­
fy the parameters of the entry point. 
When the procedure is invoked, a rela­
tionship is established between the 
arguments of the invocation and the 
parameters of the invoked entry point 
(see "Relationship of Arguments and 
Parameters," in Chapter 10). 

2. The OPTIONS attribute specifies a list 
of options, separated by COTImlaS where 
necessary. The list, depending upon 
implementation, includes the options 

118 

MAIN and REENTRANT. The OPTIONS 
attribute may be specified only for an 
external procedure. 

3. The RECURSIVE attribute specifies that 
this procedure may be invoked recur­
sively. It does not apply to con­
tained procedures which, if recursive, 
must also have the attribute. 

4. The data attributes permitted with a 
PROCEDURE statement are the arithmetic 
and string attributes. The data 
attributes specify the characteristics 
of the value returned by the procedure 
when invoked as a function at the 
primary entry point. The value speci­
fied in the RETURN statement of the 
invoked procedure is converted to the 
specified data attributes. 

If insufficient data attributes are 
specified at the entry point, default 
attributes are applied, as determined 
by the name of the entry point. 

If a procedure has more than one 
label and no data attributes, there 
is, because of default attributes, 
potential ambiguity in the charac­
teristics of the value to be returned 
(see "Assignment of Attributes to 
Identifiers" in Chapter 4). To avoid 
this ambiguity, the first label is 
interpreted as if it were a single 
entry name for a separate PROCEDURE 
statement, and each subsequent label 
is interpreted as if it were a separ­
ate ENTRY statement. 

For example, the statement: 

A:I: PROCEDURE; 

is equivalent to: 

A: PROCEDURE; 
I: EN'I'RYi 

Examples: 

B: PROCEDURE; 

C=A (X, Y) 
END B; 

A: PROCEDURE (B,C) FIXED; 

RE'I'URN (B*C + SIN (P» 
END Ai 

If procedure A is invoked as a function, 
as it is in procedure B, then when control 
is returned to B, the expression (B*C + SIN 
(P» is evaluated, converted to fixed 
point, and the value assigned to C in 
procedure B. 



The PUT Statement 

Funct~ion: 

The PUT statement has meaning only when 
there is a current file: if there is no 
current file, the ERROR condition is 
raised. The PUT statement then causes data 
to be fetched from variables as specified 
and to be moved to the record being con­
structed for the current file (see 
"Procedure-Directed 
Chapter 7) • 

General format: 

Transmission, II 

PUT data-specification ••• I 

Gene:r-al rules: 

in 

1. The "data specifications" are dis­
cussed in "Data Specifications," in 
Chapter 7. Only tho~e forms specified 
for output may be used: a CALL option 
may not be used. 

2. As the data record is being formed, 
the action that occurs is as if a 
pointer moved across the record as 
demanded by the data specifications. 
This pointer may be repositioned by 
use of the POSITION statement or the 
REPOSITION statement. 

The character count of varying­
length records depends upon the 
rig'htmost sweep of the pointer. The 
character count of fixed-length 
records is predetermined. 

The READ Statement 

E'unct,ion: 

']~he READ statement is normally used to 
transmit data from an external storage 

medium to internal 
the STRING option 
statement causes the 
an internal storage 
storage areas. 

storage. However, if 
is specified, the READ 
movement of data from 
area to other internal 

General format is shown in Figure 8. 

Syntax rules: 

1. The options may appear in any order. 
2. At least one "data specification" must 

appear, but more than one is permissi­
ble. The CALL option may appear in 
conjunction with other data specifi­
cations. 

3. When the STRING option is used, only 
the data specifications may be used; 
the other options must not appear, nor 
may the CALL option. 

4. Each "expression" is a scalar expres­
sion. 

General rules: 

1. The FILE option specifies the name of 
the file from which the data is to be 
acquired. 

The STRING option provides for the 
internal editing and moving of 
strings. It specifies the name of a 
string variable or the name of an 
element in a string array from which 
data is transmitted to the data list. 

In the absence of a FILE or STRING 
option, the standard system input file 
is assumed. 

2. The data specifications are discussed 
in "Data Specifications," in Chapter 
7. Only those forms specified for 
input may be used. All modes of 
transmission may be arbitrarily speci­
fied together. The transmissions 
associated with each data specifi­
cation and edit procedure are per­
formed in the order that the options 
appear. 

r----------------------------------------------------------, 

[

FILE (file-name)] 
READ {data-specification} 

STRI NG (name) 

[
CROSS [(expression)] [HOLD] ] 
SEGMENT (expression) 

[PRIN'I'] [KEY (expression)] [REGION (expression)] 

[ZERO] : 

Figure 8. General Format for the READ Statement 

Chapter 8: Statements 119 



3. 

4. 

5. 

120 

Each READ statement normally processes 
one record; an error condition is 
normally produced if the data specifi­
cation causes the record bounda1~ to 
be crossed. However, the CROSS option 
permits data acquisition to proceed 
through any number of records in order 
to satisfy the specified data require­
ments. The number of records read may 
be limited by the integer value of the 
expression in the CROSS option. If no 
expression is specified, unlimited 
crossing is allowed. The margin qual­
ifications for the data file, if spec­
ified by a LAYOUT statement, remain 
valid while under control of the CROSS 
option. Record boundary crossing due 
to LIST, DATA, or SEGMENT does not 
require the presence of the CROSS 
option. It may be specified, however, 
to limit the number of records 
crossed. Crossing due to SPACE, SKIP, 
or GROUP does require its presence. 
Data items may not span record boun­
daries. 

A HOLD option permits part of one 
record to be processed. This HOLD 
option causes the position of the 
record pointer to be set on comple­
tion, so that the next READ begins its 
data scan at the point where the 
previous operation ceased scanning. 
If HOLD is not specified, the remain­
ing part of the record is skipped. 
HOLD may not be specified for a file 
which is accessed in more than one 
task. 

The SEGMENT option implies both the 
CROSS and HOLD options. The expres­
sion in the SEGMENT option is convert~ 
ed, if necessary, to a character 
string. This string serves as a seg­
ment mark. If it is the null string, 
the ERROR condition is raised. This 
option permits the data input stream 
to be synchronized, not at the record 
boundary, but at the roark, effectively 
causing the segment to be operated 
upon as a record. Before data items 
are transmitted from the input stream, 
a scan for the segment mark is made in 
order to delimit the segment. The 
segment mark is not part of the seg­
ment. A subsequent READ will begin 
after the mark. Should the end of the 
segment be encountered while transmit­
ting data, transmission ends for that 
data specification. 
The PRINT option specifies that data 
being read is, at the same time, 1::0 be 
written, in the same format, on the 
standard output file. 
The KEY and REGION options may be used 
when direct access to a particular 
record is required (see liThe KEY 
Option" and "The REGION Option" in 

6. 

7. 

8. 

1 • 

2. 

3. 

4. 

Chapter 7). If a file is declared 
with the access attribute DIRECT, then 
the KEY or REGION option must be used 
with each READ for that file, unless 
the immediately preceeding READ of the 
file had the HOLD option. 
The ZERO option specifies that trail­
ing blanks in numeric data input 
fields are to be treated as zeros when 
read under F, G, or E format. 
A count is kept of the number of 
scalar data items transmitted. The 
COUNT (file-name) built-in function 
may be used to determine this number 
of transmitted data items. 
If a group mark is encountered during 
a read operation, the END GROUP condi­
tion is raised. 

Examples: 

READ FILE 
ITEM. COST) 

(INVENTORY) , 
(A (20), F (5,2) ) 

(ITEM. NAME, 

The file name INVENTORY is read 
under format-directed transmission for 
one record. The first 20 characters 
of the record are placed in the 
character-string variable ITEM.NAM.E, 
the next 5 are converted from fixed­
pOint decimal external format to the 
internal form of the variable, 
ITEM. COST. A subsequent READ of the 
data file is synchronized to the next 
record boundary. 

READ FILE (TABLES) , (TABLE. POOL) 
(F (5) ), KEY (Q); 

The file named TABLES is read for 
the record composed of five-digit, 
fixed-point integers. The record is 
converted to integer representation, 
and each item is assigned to the array 
TABLE. POOL. 

READ FILE (FILEZ) , (AB) (A (10) ) , 
SEGMEN'I ( I * ') ; 

The file-FILEZ is read for alpha­
betic data items, each ten characters 
in length, that are aSSigned to the 
character-string array AB. 1>.ssignment 
ceases when either the complete array 
is satisfied or the SEGMENT mark, the 
asterisk, is encountered (in the for­
mer case, the input data stream is 
subsequently synChronized to the seg­
ment mark) • 

READ DATA; 

This statement under data-directed 
transmission specifies that data is to 
be read under data-directed transmis­
sion from the standard system input 
tape. It is assumed that the records 
to be read are composed of scalar 



assignments gl.vl.ng the 
data items to be read and 
of these data items. 

names of the 
the values 

The REPOSITION Statement 

Function: 

Duri.ng data transmission, the action 
that occurs is as if a pointer moved across 
the records being processed. If an error 
condition occurs during this activity, 
then, under the control of an ON statement, 
a REPOSITION statement may reset the poin'­
ter to the start of the data item that 
caused the error condition. 

General format: 

REPOSITION; 

Examples: 

READX: PROCEDURE; 
READ FILE (FILEX) 

CALL GETY; 

END READX; 

(X) (F (7 , 2) ) 

GETY: PROCEDURE; 
ON CONVERSION (FILEX) REPOSITION; 
GET (y) (X (1 7), F (7 , 2) ) ; 
RETURN; 

END GE'1~Y; 

The RES,]~ORE Sta.tement 

~'unct:ion: 

The RESTORE statement causes data pre­
viously saved by name in auxiliary storage 
to be restored (see "The SAVE statement") • 

1. 

2. 

3. 

General format: 

RESTORE (item, [, item] ••• ) 
[, (expression) ] 

Synta.x rules: 

Each "item" may be an array, majo~ 
structure name, or a scalar which is 
not part of an array or structure. 
Each item must have appeared in a 
previously executed SAVE statement; 
The "expression" is a scalar expres­
sion. 

General rules: 

1. The RESTORE statement without an 
expression is equivalent to a series 
of simple RESTORE statements as fol­
lows: 

RESTORE (item1) 
RESTORE (item2) 

The RESTORE statement with an expres­
sion is equivalent to the following 
statements: 

temp=expression 
RESTORE (i tern 1) (temp) ; 
RESTORE (i tem2) (temp) ; 

Each simple RESTORE statement 
causes the specified data to be iden­
tified by the data name qualified by 
the integer value of the expression 
(if an expression is specified) con­
verted to BINARY FIXED (s,O), where s 
is implementation defined. -

2. Once an item has been restored,. it may 
not be restored again. If the same 
item has been saved repeatedly with no 
qualifying expression, the action of 
restoring the data causes the top item 
of the stacked information to be 
deleted. Therefore, the stacked 
information is treated in "first-in 
last-out" manner. 

3. An item may be saved in one external 
procedure and restored in another if 
the data name is declared EXTERNAL. 

4. One SAVE statement may be used to save 
more than one scalar, array, or struc­
ture; however, these items may be 
restqred separately. 

5. The extents of the data restored must 
be the same as the data saved. 

Examples: 

1 • RESTORE (A, B , C) ; 

2. 

Assume that the scalar data items 
A, B, and C were previously saved by 
using the SAVE statement. The RESTORE 
statement then causes A, B, and C to 
be made available for computation. 

SAVERM: PROCEDURE 
DECLARE TABLE (10) , 1 

2 RED, 3 CRIMSON, 3 
BLUE, 3 NAVY, 3 
YELLOW; 

RAINBOW, 
PINK, 2 
'I'EAL, 2 

Chapter 8: Statements 121 



SAVE (TABLE, RAINBOW); 

RESTORE (TA.lJLE) 

RESTORE (RAINBO~ 

END SAVERM; 

Since TABLE is an array and RAINBOW 
is a structure, the SAVE statement 
causes all 10 data items in TABLE to 
be saved and the elementary items 
(CRIMSON, PINK, NAVY, TEAL, and 
YELLO~ of the structure to be saved. 

The first RESTORE statement causes 
the entire array to be restored; the 
second RESTORE statement causes the 
elementary items of the structure to 
be restored. 

:rhe RETURN Statement 

Function: 

The RETURN statement terminates ex'ecu­
tion of the procedure that contains the 
RETURN statement and returns control to the 
invoking procedure. It may also return a 
value. 

General format: 

Option 1. 

RETURN; 

Option 2. 

RETURN (expression) 

General rules: 

1. Only the RETURN statement in Option 1 
can be used to terminate procedures 
not invoked as function procedures; 
control is returned to the point logi­
cally following the invocation. 

122 

Option 1 represents the only form 
of the RETURN statement that may be 
used to terminate a procedure imToked 
with the task option. If the task 
option involved an EVENT option (see 
"The CALL Statement,n in this 
Chapter), then the execution of the 
RETURN statement will cause the com­
pletion status of the associated event 
name to be set to 'l'B. 

2. The RETURN statement in Option 2 is 
used to terminate a procedure invoked 
as a function procedure. Control is 
returned to the pOint of invocation, 
and the value returned to the function 
reference is the value of the expres­
sion specified. 

If the entry point at which the 
procedure is invoked specifies data 
attributes, the value of the expres­
sion is converted to the implicit or 
explicit data attributes specified at 
the entry point, before it is 
returned. 

3. If control reaches an END statement 
corresponding to the end of a proce­
dure, this END statement is treated as 
a RETURN statement (of the Option 1 
form) for the procedure. 

Example: 

A: PROCEDURE (X,Y) FIXED; 
DECLARE (X,Y) FLOA'!; 

RETURN (X**2+Y**~ 
END; 

B: PROCEDURE; 
DECLARE A ENTRY FIXED; 

R A (P, Q) 

END; 

In the assignment statement (R 
A (P ,Q) ;), procedure B invokes procedure A 
as a function. Procedure B specifies that 
the scalar expression in the RETURN state­
ment is to be evaluated; since X and Yare 
floating-point variables and the PEOCEDURE 
statement specifies that the value returned 
is to be fixed point, the value of the 
expression is converted to fixed point, and 
this value is returned to B. 

The REVERT stat.ement 

Function: 

A REVERT statement specifying a given 
ON-condition is used to nullify the effect 
of the most recent previously executed ON 
statement for that condition and to cause 
the action specification to be reesta­
blished as it was in the immediate, dynami­
cally encompassing block (see "Activation 
and Termination of Blocks," in Chapter 6) • 



GenE:ral format: 

REVERT condition; 

Syntax rule: 

The "condition" is any ON-condition 
(see Appendix 3) • 

GenE!ral rules: 

The execution of a given REVERT state­
mEmt, specifying a given condition and 
internal to a given block, has the 
effect described above only if an ON 
st:atement, specifying the same condi­
ti.on and internal to the same block, 
wa.s executed after the block was acti­
va.ted. If such an ON statement was 
executed, and if the execution of no 
other similar REVERT statement has 
in.tervened, then the execution of the 
given REVERT. statement does have the 
effect described above. Otherwise, 
the REVERT statement is effectively 
treated as a null statement. Thus, a 
repeated REVERT statement results in 
no operation. 

Examples: 

A: PROCEDURe:; 

ON1: ON ZERODIVIDE GO TO ERRSPEC; 

C.l\LL B; 

B: PR OC1~DURE ; 

01~2: ON ZERODIVIDE; 

REVERT ZERODIVIDE~ 

END B~ 

ON3: ON ZERODIVIDE SYSTEM; 

END A~ 

Unlef)s it is stated otherwise, the con­
dition ZERODIVIDE always is enabled. If 
division by zero occurs prior to execution 

of statement ON1, an interrupt with stand­
ard system action takes place. 

If division by zero occurs after execu­
tion of ON1 and prior to execution of 
statement ON2, an interrupt takes place and 
control transfers to the statement GO TO 
ERRSPEC. 

If division by zero occurs after execu­
tion of ON2 and prior to the REVERT state­
ment, an interrupt takes place effectively 
with no action. 

When the REVERT statement is executed, 
the effect of the statement ON2 is nulli­
fied, and statement ON1 again becomes 
effective. If division by zero occurs 
after execution of the REVERT statement and 
prior to the execution of statement ON3, an 
interrupt takes place, and control trans­
fers to the statement GO TO ERRSPEC. 

After the execution of 
division by zero causes 
action to take place. 

The SAVE Statement 

Function: 

statement ON3, 
standard system 

The SAVE statement causes data to be 
placed in auxiliary storage, identified by 
its name, and if the name is INTERNAL, by 
the block in which it is declared. 

General format: 

SAVE (item-1 [,item-2] ••• ) 
[ (expression) ] 

Syntax rule: 

Each "item" may be an array, major 
structure name, or a scalar which is 
not ~art of an array or structure. 
The "expression" is a scalar expres­
sion. 

General rules: 

1. The SAVE statement without an expres­
sion is equivalent to a series of 
Simple SAVE statements as follows: 

SAVE (item 1) ~ 
SAVE (item 2) ; 

The SAVE statement with an expres­
sion is equivalent to the following 
statement: 

Chapter 8: Statements 123 



temp=expression; 
SAVE (i tern 1) (temp) 
SAVE (item 2) (temp) 

Each simple SAVE statement causes 
the specified data to be identified by 
the data name, qualified by the inte­
ger value of the expression (if an 
expression is specified) converted to 
BINARY FIXED (s,O) where ~ is implem­
entation defined. 

2. If no expression is specified, and 
items of the same name are repeatedly 
saved, the values are stacked, and 
restored in a last-in, first-out 
basis. 

If an expression is specified and 
items of the same name are repeatedly 
stored, only one value for a given 
name and given expression value is 
saved at anyone time. Subsequent 
execution of a SAVE statement with 
matching identification causes the 
previously saved value to be overri­
den. 

3. The extents of the data, when 
restored, must be the same as they 
were when the data was saved. 

Example: 

SAVE (A, B , C); 

The scalar data items A, B, and Care 
saved in auxiliary storage. 

DO N=1 TO 10; 
X=Y**N; 
SAVE (X) (N) ; 
END; 

I=J+M/2; 
RESTORE (X) (I) 
Q = SIN (X) 

Each execution of the SAVE statement 
causes the current value of X to be iden­
tified by the current value of N and to be 
saved. 

The RESTORE statement causes one of the 
previously saved values of X to be 
restored. In particular, that value o£ X 
identified by an integer whose value is 
J+M/2 is restored. 

124 

The assignment statement Q=SIN(X); uses 
this restored value of X. 

The SEGMENT Statement 

Function: 

The SEGMENT statement specifies posi­
tioning within a segmented "file. Segment 
marks may also be written on a file by a 
WRITE statement that specifies a SEGMENT 
option (see "The WRITE Statement") • 

1. 

2. 

3. 

General format~ 

SEGMEN'I' [ (expression) 
name) ] ; 

General rules: 

[ FILE (file-

The scalar "expression," if specified, 
is converted to character, if neces­
sary; this character string is the 
segment mark. If the SEGMENT state­
ment appears within a procedure 
invoked by a CALL option in a READ or 
WRITE statement that specifies a SEG­
MENT option, the expression may be 
omitted; in this case, the SEGMENT 
option defines the segment mark. 
The SEGMEN""'I' statement causes the poin­
ter to be positioned at the next 
segmen~ mark after the current posi­
tion. On input, sufficient records 
may be skipped to effect this posi­
tioning. On output, the segment mark 
is added to the data stream. Segments 
positioning need not, however, cross 
record boundaries. 
The FILE option specifies that the 
action is to be taken on the named 
file. In the absence of a FILE 
option, the current file is assumed 
(see "Procedure-Directed Transmission" 

for a discussion of "current" files). 

Examples: 

1. SEGMENT FILE (FILE PROC) ; 
2. SEGMENT (A+B**3); 
3. DECLARE FILX FILE STANDIN; 

SEGMENT FILE (FILX) 

In Example 3, the SEGMENT statement 
positions the system standard input file; 
the name FILX is declared as a pseudonym 
for this tape. 



The SIGNAL Statement 

Function: 

The SIGNAL statement simulates the 
occurre!nce of an interrupt (see nInterrupt 
Operations,A in Chapter 6, and nThe ON 
StatementN

) • It may be used to test the 
action specification of the current ON 
statement. 

General format: 

SIGNAL condition; 

Syntax rule: 

The cond:ition may be anyone of those 
described in nON-Conditions," in 
Appendix 3. 

General rulE~s: 

1. WhlEm a SIGNAL statement is executed, 
it is as if the specified condition 
had actually occurred. The sequence 
of control through the program is 
interrupted, and control is trans­
feJrred to the current ON statement for 
the specified condition. After execu­
tion of the on-unit, control normally 
re1:urns to the statement immediately 
following the SIGNAL statement. 

2. If an ON statement specifies the CON­
DDCION condition, the condition can 
cause an interrupt only if a SIGNAL 
statement, specifying this condition, 
is given. 

3. If the condition s~ecified in the 
SIGNAL statement 1.S disabled, no 
int:errupt occurs, and the sta.tement is 
equivalent to a null statement. 

4. If the condition has no current ON 
statement, then the normal system 
act~ion for the condition is performed. 

Examples: 

1. X: PROCEDURE; 

ON1: ON ENDFILE (DATIN) Y,Z 0; 

S1: SIGNAL ENDFILE (DATI~ 

ON2: ON ENDFILE (DATI~ SYSTEM; 

S2: SIGNAL ENDFILE (DATI~ 

END X; 

The S1: SIGNAL statement causes an 
interrupt in the same way as if an 
attempt to read past a file delimiter, 
had actually occurred. Control is 
transferred to the statement Y,Z 0 
in the ON1: ON statement. 

When the S2: SIGNAL statement caus­
es an interrupt, control is trans­
ferred to the ON2: ON statement, and 
standard system action is taken. 

2. ON CONDITION ,(TAX) TAXCT = TAXCT+ 1 ; 

SIGNAL CONDITION (TAX) 

The ON statement establishes an 
action for the programmer-specified 
condition TAX. This condition can 
occur only when a SIGNAL statement 
causes the condition to occur. 

The SKIP statement 

Function: 

The SKIP statement causes records (or 
lines) to be skipped. 

General format: 

SKIP [ (expression) 
name) ] ; 

General z'ules: 

[ (FILE file-

1. The scalar "expression,n if specified 
when the SKIP statement is executed, 
is evaluated and converted, where nec­
essary, to an integer n. If the 
expression is not specified, n is 
assumed to be 1. 

2. When used with print files, lines and 
pages are conSidered, otherwise, 
records and groups are indicated. 

On input, the SKIP statement causes 
a skip to the nth record of the group. 
If the current record is greater than 
n, a skip to the nth record of the 
next group occurs. 

On output, the SKIP statement caus­
es the creation of a sufficient number 
of empty records to cause alignment on 
the record as described for input. 

3. The FILE option specifies that the 
action is to be taken upon the named 
file. In the absence of a FILE 
option, the current file is assumed. 

Chapter 8: Statements 125 



r-------------------------------------------------------------------------------, 
I I 
I SORT FILE (file-name [,file-name] ••• ) [RECORD (format-list) I 
I I 

~ {UP } (integer [, integer] ••• ) ••• [GIVING (f ile-name)] ; I 
I DOWN I 
I I 
I I l. _____________________________________________________________________________ .i.I 

Figure 9. General Format for the SORT Statement 

Examples: 

1. OPEN PQR INPUT; 

SKIP (N) FILE (PQR) 

2. OPEN FILEA OUTPUT; 

SKIP FILEA; 

The SORT Statement 

Function: 

The SORT statement specifies that 
records on a particular file are to be 
sorted and, optionally, merged. The sort­
ing is performed on specified fields in 
ascending or descending order. 

The general format is shown in Figure 9. 

Syntax rules: 

1. The options may appear in any order. 
2. The UP and DOWN options may be repeat­

ed as required, to specify an ascend­
ing sort on some fields and a descend­
ing sort on others, in the required 
order. 

GE:neral rules: 

1. The size of the records to be sorted 
either must be specified within the 
ENVIRONMENT attribute for the file 
name or must be implied by a record 
description using the RECORD specifi­
cation. 

2. The FILE specification specifies the 
files to be sorted. If more than one 
file name is specified, a merge is 
also performed. 

3. The RECORD specification describes 
either the format of the whole record 

126 

or merely an initial portion of the 
record. When only an initial portion 
of the record is to be described, the 
ENVIRONMENT attribute must be declared 
for the file name, giving the actual 
length of the record or the maximum 
length for varying-length records. 

The format list (see Chapter 7) 
defines fields on the record; the nth 
format item describes the nth field. 
If a format item has an iteration 
factor of ~, this constitutes m 
fields. Of the positioning format 
items listed in Chapter 7, only POSI­
TION is permitted; this item does not 
constitute a field. 

4. The UP/DOWN specification indicates 
the sorting order. UP specifies an 
ascending sort; DOWN specifies a des­
cending sort. 

The integers in the specification 
are decimal integer constants that 
specify the fields to be sorted with 
respect to the record description. 
The fields to be sorted are taken from 
the UP/DOWN specification i.n left-to­
right order. The file is ordered on 
the leftmost specified field first, 
and within that ordering, on the next 
field, and so on. 

The sort comparisons are performed 
using the character collating sequence 
for character-string fields, bit 
comparison for bit-string fields, and 
algebraic comparison for arithmetic 
fields. 

5. The GIVING option specifies the file 
on which the sorted output is to be 
written. If omitted, the standard 
output file is used. 

If an output file is specified that 
differs from the standard output file 
and that differs from any of the files 
to be sorted, the file must not be 
currently open. Rather the operating 
system opens it for output, produces 
the sorted file, and closes it. 



If an output file is specified that 
differs from the standard output file 
but is identical to one of the files 
being sorted, then, after reading the 
file, the operating system closes it, 
opens it for output, produces the 
sor1ted fiIE~, and closes it. 

Example: 
SCR~r FILE (MASTER) , RECORD (A (1) , 

(6) P'99999'), UP (1,3,5) ; 

~rhis SORT statement specifies that 
the file MASTER is to be sorted in 
ascending sequence. The RECORD speci­
fication indicates that each record in 
MASTER is composed of 7 fields; the 
first field contains one character; 
subsequent fields each contain five 
digits. 

The records are sorted on the 
first, third, and fifth fields, in 
thai: order. 

~~he sorted file is written on the 
standard output file. 

The SPACE Statement 

Function: 

The S]?ACE statement causes spacing over 
records on input files and the completion 
and release of records on output files. 

G~:;neral format: 

SPACE [(scalar-expression)] [FILE 
(file-name) ] 

G~:;neral rules: 

1. The expression, if specified, is 
evaluated and converted, where neces­
sary, to an integer n. If the expres­
SiOIl is not specifIed, it is assumed 
to be 1. 

2. The FILE option specifies that the 
action is to be taken on the named 
file. In the absence of a FILE 
option, the current file is assumed 
(see "Procedure-Directed Transmission" 

for a discussion of current files) • 
3. On input, this statement causes the 

file to be positioned at the start of 
the nth record following the current 
record. On output, this statement 
causes the completion and release of 
the current record and the emission of 
n-1 empty records. 

4. The use of SPACE on a REGIONAL or 
INDEXED file accessed in the DIRECT 
mode is limited in that an expression 
may not be specified. Use of SPACE in 

such instances causes the current 
record to be released. Subsequent 
data transmission to or from the cur­
rent file will cause the KEY and 
REGION values to be reevaluated in 
order to determine the next record to 
be accessed. 

The STOP Statement 

Function: 

The STOP statement causes immediate ter­
mination of the major task and all sub­
tasks (see IIAsynchronous Operations and 
Tasks," in Chapter 6) • 

General format: 

STOP; 

The TAB Statement 

Function: 

During data transmission, the action 
that occurs is as if a pointer moved across 
the records being processed. The TAB 
statement causes this pointer to be aligned 
on the nth tab of the record or line (see 
liThe LAYOUT Statement"). Intervening data 
is skipped. 

General format: 

'I'AB [(scalar-expression)] 

General rule: 

The "scalar expression," if specified, 
is evaluated and converted to an integer n. 
This integer represents the nth tab for 
ali.gnment. If the scalar expression is 
omitted, the smallest tab value to the 
right of the current position in the record 
is used. 

Example: 

TAB (3) 

Suppose the LAYOUT for the current file 
contains the specification TAB (10, 50, 20, 
60) ; then the above statement causes a TAB 
to column 20 to occur, since 20 is the 
third tab. This may involve backing up 
certain character positions. If backing up 
has occurred, it is meaningful to use a GET 
statement even on an output file; and a PUT 
statement Hiay be used on input files fol­
lowed by TAB or POSITION to cause re­
reading of a field. 

Chapter 8: Statements 127 



If the TAB statement moves the pointer 
across a part of an output record which has 
no data edited into it, the record is 
assumed to be initially blank. 

The WAIT Statement 

Function: 

The WAIT statement is used-to cause the 
suspension of operations in the task where 
it appears until certain events have been 
completed. 

General format: 

WAIT (event-name [,event-name) ••• ) 
[(scalar-expression)] 

Syntax rule: 

The event name is as described in 
"Event Names," Chapter 2. 

before the task issuing the WAIT 
statement can resume. If the value of 
the expression is zero or negative, 
the WAIT statement is treated as a 
null statement. If the value of the 
expression is greater than the number, 
n, of event names in the list, the 
value is taken to be n. If the 
statement refers to an array event 
name, then each of the array elements 
may contribute to the count. 

Example: 

PI: PROCEDURE; 

CALL P2 EVENT (EP2) ; 

WAIT (EP2) i 

General rules: END; 

1. The execution of this statement causes 
the task in which it is executed to be 
suspended until, for some or all of 
the event names in the list above, the 
condition 

EVENT (event-name) = '1'B 

is satisfied. (See "Asynchronous 
Operations and Tasks," in Chapter 6, 
"Event Names," in Chapter 2, 
"Pseudo-Variables," in this chapter , 
and the description of the EVENT 
built-in function in Appendix 1.) 

2. If the optional expression does not 
appear, all the event names in the 
list must satisfy the above condition 
before the task issuing the WAIT 
statement can resume. 

3. If the optional expression appears, 
the expression is evaluated when the 
WAIT statement is executed and con­
verted to an integer. This integer 
specifies the number of events that 
must satisfy the above condition 

128 

The CALL statement, when executed, 
attaches a task whose completion sta­
tus is associated with the event name 
EP2. When the WAIT statement is 
encountered, the execution of the task 
corresponding to PI is suspended until 
the value of EVENT (EP2) is '1'B, i.e., 
until the attached task is completed. 

The WRITE Statement 

Function: 

The WRITE statement is normally used to 
transmit data from internal storage to an 
external storage medium. However, if the 
STRING option is specified, the write 
statement causes the movement of data from 
one or more internal storage areas to 
another internal storage area. 



r------------------------------------------------------------------------------, 
WR.ITE {data- specification} ,

- FILE (file-name)] 

_ STRING (name) 

1
- CROSS [(expression)] 
_ SEGMENrr (expression) 

[KEY (expression)] 

[HOLD]] 

[NEWKEY (expression)] [REGION (expression)] 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

[FROM (file-name)] I ______________________________________________________________________________ J 

Figure 10. General Format for the WRITE Statement 

Syntax rules:: 

1. The options may appear in any order. 
2. At least one ndata specification" must 

appear, but more than one is permissi­
ble. How(~ver, only one procedure­
directed data specification can be 
givl2n, but it may appear in 
conjunction with other data specifi­
cations. 

3. When the STRING option is used, only 
the data specification may appear; the 
othl2r options must not appear. 

4. Either a "data specification" or a 
FRaN option must appear. 

General rules: 

1. The FILE option specifies the name of 
the file to be associated with the 
data transmitted. 

'rhe STRING option provides for the 
intl~rnal edi ting and moving of 
strings. It specifies the name of a 
string variable or the name of an 
element in a string array into which 
data is transmitted from the data 
list. A PICTURE attribute given for 
the string is ignored. 

Tn the absence of a FILE or STRING 
option, the standard system output 
file is assumed. 

2. The data specifications are discussed 
in Chapter 7. Only those forms speci­
fied for output may be used. All 
modes of transmission may be arbitrar­
ily specified together. The transmis­
sions associated with each data speci­
fication and edit procedure are per­
formed in t:he order that the options 
appE~ar. 

3. Eacll WRITE statement normally process­
es one record; an error condition is 
produced if the data specification 
causes the record boundary to be 
crossed. However, the CROSS option 
permits dat:a transmission to proceed 
through any number of records in order 
to satisfy the specified data require-

ments. The number of records written 
may be limited by the integer value of 
the expression in the CROSS option. 
If no expression is specified, unlim­
ited crossing is allowed. The margin 
qualifications for the data file, if 
specified by a LAYOUT statement, 
remain valid while under control of 
the CROSS option. Record boundary 
crossing due to LIST, DATA, or SEGMENT 
does not require the presence of the 
CROSS option. It may be specified, 
however, to limit the number of 
records crossed. Crossing due to 
SPACE, SKIP, or GROUP does require its 
presence. 

A HOLD option permits part of one 
record to be processed. The HOLD 
option causes the position of the 
record pointer to be remembered on 
completion, so that the next WRITE 
begins its data scan at the point 
where the previous one ceased scan­
ning. If a HOLD option is not speci­
fied and the record is of fixed 
length, the remaining part of the 
record is padded. HOLD may not be 
specified for a file which is accessed 
in more than one task. 

The SEGMENT option implies both the 
CROSS and HOLD options. The expres­
sion in the SEGMENT option is convert­
ed, if necessary, to a character 
string. This string serves as a seg­
ment mark. 

At completion of record construc­
tion for the WRITE operation (through 
one or possibly more records), the 
specified mark is added to the last 
record. Emission of the record is not 
thereby implied. Subsequent data is 
appended to this record until the 
maximum record length is met. A maxi­
mum SEGMENT length is defined by each 
implementation. 

4. The KEY, NEWKEY, and REGION option may 
be used when direct access to a parti­
cular record is required (see "The KEY 

Chapter 8: Statements 129 



Option," "The NEWKEY Option,- and -The 
REGION Option,- in Chapter 7. If a 
file is declared with the access 
attribute DIRECT, then the KEY, NEWK­
EY, or REGION option must be used with 
each WRITE for that file unless the 
previous WRITE for that file had the 
HOLD option. 

S. The FROM option specifies that the 
last record read from the file, the 
name of which is specified in the FROM 
option, is to be written on the output 
file. Data specifications given in a 
WRITE with the FROM option replace the 
initial portion of the record read 
from. If both the FILE option and the 
FROM option specify the same file, the 
file must be a direct access file. In 
this case, the KEY option may be 
dropped to signify that the new and 
old keys are the same. FROM may not 
be used with files accessing in two 
simultaneous asynchronous procedures. 

6. A count. is kept of the number of 
scalar data items transmitted. The 
COUNT (file-name) built-in function 
may be used to determine this number 
of transmitted data items. 

Examples: 

1. WRITE FILE (INVENTORY), (ITEM. NAME, 
ITEM.COST) (A (20) ,F (5,2» ; 

130 

One record of the file named INVEN­
TORY is written under format-directed 
transmission. The character-string 
variable ITEM. NAME is written in the 
first 20 characters of the record. 
The variable ITEM. COST is converted to 

2. 

3. 

4. 

fixed decimal and written in the next 
5 characters of the record. 

WRITE FILE (TABLES) , 
(F (5) ), KEY (Q); 

(TABLE. POOL) 

A record is constructed from the 
contents of the TABLE. POOL array, and 
a key, the value of the variable Q, is 
appended. Should the key be identical 
~o an existent key within the data 
file, the WRITE causes replacement of 
that keyed .record. 

WRITE FILE (FILEZ), (' FINAL DATA', X, Y) 
(A, F (3,2), E (5,2» ; -

Three data items are transmitted to 
FILEZ (assuming X and Yare scalar 
variables). The first is the charac­
ter string of length 10, FINAL_DATA, 
then the fixed-point form of the value 
of x, then the floating-point form of 
the value of Y. 

WRITE DATA (X,Y,Z) 

The values of the three variables 
X, Y, and Z are transmitted to the 
standard output file in the data­
directed format. If X is floating­
point value 3.1141593, Y is fixed­
paint value 347, and Z is character­
string value MATH then the output data 
stream would appear as the following: 

X=3.1141593, Y=347, Z='MATH' 

It would be in a form suitable for 
data-directed input. 



A PL/I source program may contain 
compile-time variables and statements. 
These may be used to effect program param­
eterization and modification and iterative 
program generation. The name "macro" is 
used to describe such compile-time activi­
ty. To differentiate the PL/I macro lan­
guage 'from the rest of PL/I, the latter is 
called the Hexecution-timeH language. 

When a source program involves macro 
activity, the compiler is supplied with 
text consisting of a skeleton execution­
time program with interspersed macro 
statements. This text is called the 
Hsource text. II Compile-time activity is 
perform~ed by a part of the compiler called 
the Nma4C::ro processor. H The macro processor 
converts the source text into text rep­
resentilrlg an e)cecution-time PL/I program., 
This cr4eated text is called "program text. II 

:For ease of learning, the PL/I macro 
statements and the variables and labels 
have b4een madE~ very similar to the corres­
ponding execution-time entities. Wi th OnE! 
exception, thE~ macro language forms a sub­
set of 1the execution-time language. (The 
exception is the CHARACTER attribute in thE! 
DECLARE statememt.) 

Macro statements and skeleton execution­
time text can, in general, be interspersed 
in any ''lay in t:he source text. Each macro 
statement begins with a percent sign. 
Macro statements are recognized by the~ 
occurrence of a percent sign other than 
wi thin a 'comment or character string. The 
restric1:ions on the form of source text are 
as follows: 

If the source program involves any 
macro activity, the first statement. 
must be the macro DECLARE statement. 

Quotation marks and comments 
delimiters must be matched within the 
skeleton execution-time program. 

Beyond the requirements above there is 
no requirement that the skeleton execution­
time program be syntactically correct. 

MACRO Vl\RIABLES 

If compile-time activity is to take 
place, t:he source text must contain one and 
only one macro DECLARE statement. The 
first character of the souzce text must be 

CHAPTER 9: PROGRAM MODIFICATION 

a percent sign. (A comment or blank may 
appear just after the initial percent sign, 
but not before.) The percent sign 1S the 
beginning of the macro DECLARE statement. 
This statement is used to declare the macro 
variables. All macro variables must be 
declared. The scope of macro variables is 
the entire source text. Each macro 
variable and macro label must have a unique 
naIrie. 

THE MACRO DECLARE STATEMENT 

General format: 

% DECLARE macro-declaration 
[, macro-declaration] ••• j 

A "macro declaration" may be either of 
the following: 

1. macro-variable-specification 
2. (macro-variable-specification 

[,macro-variable-specification] ••• ) 
attribute ••• 

A Hmacro variable specification" is of 
form: 

identifier [attribute] 

The "identifier" is the name of the 
macro variable to be declared. Attributes 
are associated with it in the same way as 
for the execution time DECLARE statement. 
In particular, the same rules apply for 
conflicting attributes. However, at most, 
one level of factoring is permitted. The 
following are the permissible attributes on 
a macro DECLARE statement: 

FIXED 

This specifies 
is an integer of 
precision. 

that the macro variable 
implementation defined 

CHARACTER (decimal-integer-constant) 

This specifies that the variable is a 
fixed-length character string. The length 
is given by the decimal integer constant. 

CHARACTER VARYING 

No length may be given. This attribute 
specifies that the macro variable is a 
varying-length character string. The 
length of the variable is defined as the 

Chapter 9: Program Modification 131 



length of the last value assigned to it. 
Initially the length is undefined. 
(Storage is reserved for the variable as it 

1s needed.) 

INITIAL 
(optionally-signed-decimal-integer­
constant) 

This attribute may be given only to 
macro variables with the FIXED attribute. 
The specified constant is a~signed to the 
macro variable(s) to which the attribute 
applies. The assignment is performed at 
the start of compile-time activity. 

INITIAL (character-string-constant) 

This attribute may be given only to 
macro variables of character data type. 
The specified constant is assigned to the 
macro variable(s) to which the attribute 
applies. The assignment is performed at 
the start of compile-time activity. 

The first three attributes in the above 
list are data attributes. One and only one 
of these must apply to each macro variable. 

MACRO EXPRESSIONS 

Macro expressions may take one of the 
following forms: 

1. [+ I - ] operand ({ + I - I / I * } 
operand] 

2. operand II operand [ II operan~ ••• 

An operand appearing alone in form 1 or 
the operands in form 2 may be any of the 
permitted operands. Operands used with a 
sign or an arithmetic operator must be 
decimal integer constants or fixed macro 
variables. Expressions of form 2 may 
involve conversion from type integer to 
type character. The conversion is per­
formed according to list-directed transmis­
sion rules (see "List-Directed Specifi­
cations," in Chapter 7) • 

Macro expressions are subdivided into 
fixed and character expressions. Macro 
expressions involving macro variables that 
have not been assigned a value are in 
error. 

Macro expressions 
exactly the same way 
expressions. 

132 

are evaluated in 
as execution-time 

EXECUTABLE MACRO STATEMENTS 

The 'executable macro statements are enu­
merated below. Any executable macro state­
ment may optionally be preceded by one or 
more labels, each consisting of an iden­
tifier. 

THE MACRO ASSIGNMENT STATEMENT 

General format: 

%[ label :] ••• macro-variable 
macro-expression; 

The statement causes the value of the 
macro expression to be assigned to the 
macro variable. If the expression is of 
fixed type, the variable on the left may be 
either of fixed or character type. If the 
expression is of character type, the varia­
ble on the left must also be of character 
type unless the value of the expression is 
a string that contains a decimal integer 
constant, optionally signed, and with 
optional surrounding blanks. In this lat­
ter case, the variable may be of fixed 
type. 

All conversions implied in assignment 
are performed according to list-directed 
transmission rules (see "List-Directed Data 
Specifications n

) • 

THE MACRO NULL STATEMENT 

General format: 

% (label:] ••• ; 

Macro null statements are used for plac­
ing macro labels in the text. 

THE MACRO GO TO STATEMENT 

General format: 

% (label:] ••• GO TO label; 

The macro label following the GO TO must 
appear on another macro statement in the 
source text. The execution of the macro GO 
TO statement is described below. 



THE MACRO IF STATEMENT 

General format: 

% [label:] ..•• IF macro-expression 
comparison-operator macro-expression 
THEN GO 'fa label; 

The six "comparison operators" are list­
ed in "Scalar Expressions,· in Chapter 3. 
The relationship is evaluated to yield a 
true value or a false value in the same way 
as for the execution-time IF statement. If 
the relationship is true, the statement 
acts as a macro GO TO statement. If the 
relationship is false, the statement acts 
as a null statement. 

The two macro expressions to be compared 
may be of differing data types. In this 
case, the exp:ression of character type is 
converted to an integer; it must therefore 
represent a decimal integer, optionally 
signed and with optional surrounding 
blanks. 

ACTION OF THE MACRO PROCESSOR 

The way in which the macro processor 
creates program text from source text ~s 
described below. Initially program text is 
nUll. 

Initi.ally the macro DECLARE statement is 
processE!d to form a list of macro varia­
bles. INITIAL values are assigned. The 
DECLARE statement is then deleted from the 
source t~ext. 

After this, the source text is scanned 
sequentially, starting froIT: the beginning 
of the t~ext. The scan acts as follows: 

If t:he name of a macro variable occurs 
in the source text delimited at each end by 
any of t:he special characters list'ed in 
Chapter 1, other than the break character, 
and is not within a character string, a 
comment., or a macro statement, then the 
scan behaves exactly as if the name had 

been replaced by the current value of the 
macro variable it represents, converted to 
a character string if necessary. The 
source text, however, remains unchanged. 
The conceptually inserted value is not 
enclosed in quote marks. The value must 
not contain unmatched quotation marks or 
comment delimiters. If the name of a macro 
variable occurs within conceptually insert­
ed text, then this name is, in turn, 
conceptually replaced by its value. (Thus 
the replacement of JIM by JIM+1 would cause 
the macro processor to go into an infinite 
loop.) 

If the macro variable A currently con­
tains the null string, it may appear 
between the two characters of a composite 
operator, e.g., *A* or ,A=. However, the 
combinations /A* and *A/ are not allowable 
when A has null value. 

If the scan encounters a percent sign, 
other than in a comment or character con­
stant, a syntactically correct macro state­
ment must follow. (Comments may be embed­
ded in a macro statement as usual.) This 
macro statement is executed. If the state­
ment involves a GO TO, the scan resumes at 
the designated statement. Otherwise, the 
scan resumes with the text following the 
statement just executed; the macro state­
ment itself is replaced by a blank space. 

All text passed 
added to program 
provisions: 

over by the scan is 
text with the following 

1. If a macro statement is encountered by 
the scan, none of the text from the 
opening percent sign up to, and 
including, the closing semicolon is 
added to program text. 

2. The circumstances under which redUn­
dant blanks or comments appear in 
p~ogram text are individually defined 
for each implementation of PL/I. 

Macro activity ends when the 
encounters the end of the source text. 
program text then is compiled normally. 
is impossible for the program text 
contain any macro statements. 

scan 
The 
It 
to 

Chapter 9: Program Modification 133 



CHAPTER 10: SPECIAL TOPICS 

RELATIONSHIP OF ARGUMENTS AND PARAMETERS 

When a procedure is invoked, a relation­
ship is established between the arguments 
of the invoking statement and the paramet­
ers of the invoked entry point. 

A parameter may be a scalar, array, or 
structure name (including a label variable 
name, a task name, or an event name) that 
is unqualified and unsubscripted, or it may 
be a file parameter or an entry parameter. 

A file parameter may be used within a 
procedure wherever a file name may be used; 
an entry pa.rameter may be used whereve.r an 
entry name may be used. 

A parameter is accessible in the proce­
dure only if the parameter is in the 
parameter list of the entry point at which 
the procedure is invoked. 

Parameters must be declared in the 
invoked procedure; they cannot be declared 
in outer containing blocks. If no explicit 
declaration is given, an implicit or con­
textual declaration is assumed, internal to 
the invoked procedure. 

Parameters cannot be declared with the 
storage class attributes STATIC or AUTOMAT­
IC, with scope attributes, or with the 
DEFINED attribute. 

A parameter may have the CONTROLLED 
storage class attribute. In this case, the 
associated argument must also have the 
CONTROLLED attribute. 

EVALUATION OF ARGUMENT SUBSCRIPTS 

When an argument is a subscripted varia­
ble, the subscripts are evaluated before 
invocation. The specified element is then 
passed as the argument. Subsequent changes 
in the subscript during the execution of 
the invoked procedure have no effect upon 
the corresponding parameter. 

USE OF DUMMY ARGUMENTS 

A constructed dummy argument containing 
the argument value is passed to a procedure 
if the argument is one of the following: 

134 

a constant, 
an entry name, 
an expression other than a single 

unparenthesized scalar variable, 
array variable, or structure varia­
ble, or 

an expression whose data attributes 
may disagree with the declared data 
attributes of the parameter. 

In all other cases the argument as it 
appears is passed. The parameter becomes 
identical with the passed argument; thus, 
changes to a dummy will be reflected in the 
original argument only if a dummy is not 
passed. 

USE OF THE ENTRY ATTRIBUTE 

An ENTRY attribute may be specified for 
the invoked entry name; this ENTRY attri­
bute appears in a DECLARE statement whose 
scope includes the invoking block. If an 
ENTRY attribute is not specified in the 
invoking procedure for the invoked entry 
name, the attributes of the arguments must 
agree with those of the corresponding par­
ameters of the invoked entry. 

If an ENTRY attribute without parameter 
attribute lists is specified for an iden­
tifier, it indicates that the identifier is 
an entry name. In this case also, the 
argument and parameter attributes are 
assumed to agree. 

However, if an ENTRY attribute with 
parameter attribute lists is specified for 
the invoked entry name, then the attributes 
of the parameter of the invoked entry are 
assumed to be the same as those specified 
for it in the ENTRY attribute specifi­
cation. If an argument has data attributes 
that differ from the corresponding set of 
attributes defined in the ENTRY attribute 
specification (string lengths are consid­
ered to match only if they have the same 
decimal integer constant as length) , then a 
dummy argument, with the value of the given 
argument, is constructed by converting the 
argument to the data attributes defined for 
the corresponding parameter in the ENTRY 
attribute specification. If conversion is 
impossible, then the program is in error 
(e.g., conversion of file name to bit). 

The dummy argument is then passed to the 
invoked entry. Dummy arguments have CON­
TROLLED storage class in the invoking pro­
cedure. They are allocated immediately 



before invocat~ion of the procedure and 
freed upon return, unless the invocation 
has a task option, in which case they are 
freed upon exi t~ from the invoking block. 

The asterisk notation may be used in the 
ENTRY a1:tribute to specify that for varying 
length strings, or arrays of adjustable 
dimensions, the current argument bounds or 
length are to be assumed for the parameter. 

Example: 

A: PROCEDURE; 
DEC]~ARE B E:NTRY (FIXED, FLOAT), 

(C,D) FLOAT; 

CAL]~ B (C, D) 

END A; 

B: PROCEDURE (P, Q) ; 
DECLARE P F'IXED, Q FLOAT; 

END B; 

The specification of the ENTRY attribute 
in procedure A indicates that B has two 
paramet~~rs, the first with attribute FIXED 
and the'second with attribute FLOAT. How­
ever, t.he arguments C and D both have the 
FLOAT a1:tribute. Since C is to be f ixed­
point ,ghen it. is passed to procedure B, a. 
dummy a]~gument is constructed by converting­
C from floating-point to fixed-point. This 
dummy argument is then passed to B. 

CORRESPONDENCE OF PARAMETERS AND ARGUMENTS 

If a paramet~er of an invoked entry is a 
scalar, the argument must be a scalar 
expression. The data attributes of the 
argumen1: must agree with the corresponding 
attributes of the parameter. 

If a paramet:er of an invoked entry is an 
array, the argument must be an array 
expression. The argument may also be a 
scalar expression so long as an ENTRY 
attribu1:e is given for the invoked entry, 
specifying the dimension attribute for the 
relevant parameter. Asterisks may not be 
given in the dimension attribute if the 
argumen1t is a scalar. In this case, a 
dummy array argument will be constructed 
where the valuE~ of each element of the 
a-:ray is the value of the scalar expres­
S10n. ~['he data attributes of the argument~ 
must agJcee with those of the parameter. If 

the asterisk notation is not used to speci­
fy the dimensions of the parameter in the 
invoked procedure, the values of the bounds 
of the array argument must agree with the 
values of the bounds specified for the 
parameter in the invoked procedure. 

If a parameter is a structure, the 
argument must be a structure expression. 
When a structure description is given for a 
parameter in an ENTRY attribute specifi­
cation, a scalar expression may be speci­
fied as the corresponding argument. A 
dummy structure argument will then be con­
structed where the value of each element of 
the structure is the value of the scalar 
expression. The data attributes of the 
elements of the structure argument must 
match those of the associated parameter as 
specified in the invoked procedure. The 
relative structuring of the argument and 
the parameter must be the same, although 
the level numbers need not be identical. 

If a parameter is a scalar-label Varia­
ble, the argument must be a scalar-label 
variable or constant. If a parameter is an 
array-label variable, the argument must be 
an array-label variable. If an ENTRY 
attribute is given for the invoked entry in 
the invoking procedure, and if the 
appropriate parameter attribute list speci­
fies that the parameter is a label array, 
then the argument may be a scalar-label 
variable or constant; a dummy label array 
argument will be suitably constructed. A 
dummy argument is always constructed when 
the argument is a label constant or label 
array. 

If the argument is a statement label 
constant, this statement label constant is 
qualified by an identification of the cur­
rent invocation of the block containing the 
label; this information is passed as a 
dummy argument to the invoked entry. 

If a parameter is an entry parameter, 
the argument must be an entry name or entry 
parameter. When a parameter is specified 
as an entry parameter in the parameter 
description of an ENTRY attribute and is 
not given data attributes, no default data 
attributes are assumed. If it is necessary 
that the entry parameter have data attri­
butes, they may be specified in the param­
eter description and a check will be made 
to insure that a correct argument is pro­
vided. 

If a parameter is a file parameter, the 
argument must be a file name or file 
parameter. 

An argument passed to a parameter that 
is a fixed-length string variable or an 
array must be of fixed length. An argument 
passed to a parameter that is a varying-

Chapter 10: Special Topics 135 



length string variable or an array must be 
of varying length. 

Example: 

M1: PROCEDURE; 
DECLARE A (10), AA (10), AAA (10) , 

N EXTERNAL; 

N=10; CALL Sl (A,AA,AAA) ; 

END Ml; 

Sl: PROCEDURE (P,PP,PPP); 
DECLARE P (10) , PP (*) , PPP (N) , 

N EXTERNAL; 

END Sl; 

In the above example, P, PP, and PPP are 
parameters. Procedures M1 and Sl are both 
external procedures. P is declared with 
constant bounds; thus, the bounds of any 
argument associated with P must be 10. PP 
is declared with the asterisk notation; 
thus, anyone-dimensional argument of the 
same type may be associated with it. PPP 
is declared with an adjustable bound; thus, 
the bound of any argument associated with 
PPP must be equal to the value of N when 51 
is activated. Note that a similar effect 
would result if Sl were internal to Ml and 
N were an internal variable declared in Ml. 

ALLOCATION OF PARAMETERS 

A parameter that has no storage class 
may correspond to an argument of any 
storage class; if more than one genera"tion 
of the argument exists, however, the param­
eter is synonymous only with the generation 
existing at the point of invocation. A 
CONTROLLED parameter, however, always must 
be presented with a CONTROLLED argument; 
the argument must be an unsubscripted name 
of CCNTROLLED data that is not an element 
of a structure. The parameter is synonym­
ous with the entire allocation stack of the 
coritrolled variable. l'hus each reference 
to the parameter is a reference to the 
current generation of the associated argu­
ment. A controlled parameter may be allo­
cated and/or freed in the invoked proce­
dure, thus manipulating the allocation 
stack of the associated argument. 

136 

Parameters, Bounds and Length 

If an argument is a string or an array, 
the length of the string or the bounds of 
the array must be declared in the invoked 
procedure by using the asterisk notation, 
by giving explicit bounds or length or by 
declaring the bounds or length as an 
express~on that, when evaluated, gives the 
appropriate value. The expressions speci­
fied for the bounds or length must be 
formulated according to the rules stated in 
"Evaluation of Expressions," in Chapter 3. 

The number of dimensions and the bounds 
of the array argument or the length of the 
string argument must be the same as those 
of the corresponding parameters. However, 
the actual bounds or length may not be 
known at the time the invoked procedure is 
written; the invoked procedure may assume 
either that storage has been allocated 
prior to the invocation or that storage 
will be allocated explicitly in the proce­
dure for those parameters declared CON­
TROLLED. 

Asterisk Notation for Bounds or Length 

The correspondence between argument and 
parameter in the invoked procedure can be 
achieved by specifying, the length by an 
asterisk or by specifying each and every 
bound by an asterisk, thus indicating that 
the length or bounds are the same as those 
for the corresponding argument. 

If storage has been allocated for an 
argument, the corresponding parameter in 
the invoked procedure is assumed to have 
the same length or bounds as the argument. 
If the parameter is controlled, further 
allocations of the data will use these same 
bounds or length unless different length or 
bounds are specified in the ALLOCATE state­
ment. 

If storage has not been allocated for an 
argument passed to a parameter declared 
with the asterisk notation, explicit bounds 
or length must be declared in an ALLOCATE 
statement given before another reference to 
the parameter in the invoked procedure. 

Expressions as Bounds or Length 

If storage has been allocated for an 
argument passed to a parameter for which 
explicit bounds or length are specified, 
then upon entry to the invoked procedure, 
any expressions are evaluated and must give 
values such that the bounds or length of 
the parameter are the same as the argument. 
If the parameter is controlled and is 
subsequently reallocated, these expressions 



are again evaluated to give new bounds or' 
length for the new allocation, unless they 
are specified in the ALLOCATE statement. 

If storage has not been allocated for 
the argument, t~hen, at the point of entry, 
no requirements are made on the value of 
the expressions specified for the corres­
ponding parameter bounds or length. These­
expressions are evaluated at a subsequent 
point of allocation, unless they are speci­
fied in the ALI,OCATE statement. 

Example: 

M2: PROCEDURE; 
DEC1~RE A(10), AA(25) CONTROLLED; 

CALL S2 (A,AA, 1 O~ ; 

END M2; 

S2: PROCEDURE (P , PP , N) ; 
DECLARE PPC*) CONTROLLED, P(N), 

~~ (25), S (5) ; 

pp Q; 

ALLOCATE PP(5); 

PP -- S; 

END S2; 

PROLOGU:E~S 

On entering a block, certain initial 
actions are performed, e.g., allocation of 
storage for a,utomatic variables. These 
initial actions constitute the prologue. 

On entry to the prologue, the following 
items al:e available for computation: 

1. variables declared outside the block 
and known within it 

2. val~iables declared STATIC and known 
wi 1:hin the block 

3. ar9uments passed to the block 
4. The most recent generations of con-

tr()lled variables known within the 
block 

The prologue makes available for 
computation all the other variables 
known within the block as follows: 

5. automatic variables declared in the 
block 

6. Defined variables declared within the 
block 

In making these items available, the 
prologue may need to evaluate expressions 
defining lengths, bounds, iteration fac­
tors, and initial values. Such expressions 
may depend on items of 1, 2, 3 or 4. They 
may also be dependent on items 5 and 6 
under the following circumstances: If an 
item is referred to in an expression and 
the allocation or initialization of a sec­
ond item depends on that expression, then 
that first item must in no way be dependent 
on the second item for its own allocation 
and initialization. Further, the first 
item must in no way be dependent on any 
other item that so depends on the second 
item. 

Example: 

The following is illegal: 

DECLARE (A(M) INITIAL (1), 
M INITIAL «A (1» ('ABC'» 
AUTO; 

The evaluations must not invoke abnormal 
functions. The entry invoked with the 
INITIAL CALL attribute may be abnormal only 
in that it sets the data being initialized. 
The sequence in which the evaluations refer 
to any abnormal data is not defined. 

Function calls within the evaluations 
must not r~fer to items being made availa­
ble by the prologue. 

DATA ALLOCATION ACROSS TASKS 

The scope of an identifier declared in 
an attaching task may include the attached 
task. Thus, the WAIT statement should 
properly be used in the attaching task to 
avoid freeing storage allocated in the 
attaching task and used in the attached 
task. 

An attached task has almost the same 
access to the attaching task's data as it 
would have if it were executed synchronous­
ly; however, when it is attached, only the 
generations of CONTROLLED variables current 
at the time of attachment are passed to the 
attached task. Subsequent allocations in 
the attached task are known only within the 
attached task; subsequent allocations in 
the attaching task are known only within 

Chapter 10: Special Topics 137 



the attaching task. A task may only :free 
storage that it has allocated. All storage 
allocated within a task is destroyed when 
that task is completed. 

. Allocation of Task and Event Names 

Like variables, task names and event 
names have scope and storage class attri­
butes. Storage will be allocated for task 
and event names in the same manner as for 
variables (by virtue of either an explicit 
or contextual declaration). If a given 
task is active and there is a task or event 
name associated with the task, then storage 
must not be released for the name until the 
task is terminated. 

ABNORMALITY 

The ABNORMAL, NORMAL, USES, and SETS 
attributes are provided in PL/I to enable 
the compiler to generate optimized code. 

In the absence of any information, the 
following assumptions are made: 

1. All external function references are 
normal. 

2. All other procedure references are 
abnormal. 

3. All variables are normal. 

A variable is said to be abnormal if its 
value may be altered or otherwise accessed 
without an explicit indication. Thus, for 
example, the appearance of a variable name 
on the left side of an assignment state­
ment, in the data list specification of a 
READ or GET statement, or as an argument to 
an abnormal function or procedure (see 
below) indicates a predictable situation 
where the variable may change its value. 
However, when the variable is subject to 
change by the occurrence of an ON­
condition, or if it is subject to change in 
a procedure invoked with the TASK option 
(see -Asynchronous Operations and TasksH) , 
then there is no way to predict the point 
at which the change in value will occur or, 
in fact, if it will occur. 

Such possibilities cannot always be 
recognized contextually. Furthermore, if a 
portion of a source program contains sever­
al references to such a variable, the order 
in which the indicated operations are exe­
cuted becomes significant. (For example, 
if B is abnormal, the expression B + B is 
not necessarily equivalent to the exp.res­
sion 2 * B.) 

138 

The implication is that the programlner 
expects the operation to be performed in a 
particular order. Such variables must 
therefore be declared ABNORMAL, to inhibit 
the optimization of such portions of a 
source program • 

A procedure may possess varying degrees 
of abnormality. A procedure is said to be 
"definitively abnormal" if it, or any pro­
cedures invoked by it, accesses, modifies, 
allocates, or frees external data or modi­
fies, allocates, or frees arguments. In 
addition, an internal procedure is abnormal 
if it, or any procedures invoked by it, 
accesses, modifies, allocates, or frees any 
variables known in the invoking block. 
Such procedures are only definitively 
abnormal because the exact nature of their 
abnormality is described by the USES and 
SETS attributes, thus inhibiting some, but 
not all, optimization in the neighborhood 
of a reference to the procedure (see liThe 
USES and SETS Attributes·· in Chapter 4) • 

However, if a procedure is "completely 
abnormal," all optimization of successive 
references must be inhibited. A procedure 
is completely abnormal if it, or any proce­
dures invoked by it, does any of the 
following: 

1. returns inconsistent function values 
for identical argument values 

2. maintains any kind of a history 
3. performs input or output operations 
4. returns control from the procedure by 

means of a GO TO statement 

The ABNORMAL attribute (described in 
Chapter 4) is used to describe such a 
procedure. It may also, of course, be used 
to describe a procedure that is 
"definitively abnormal." 

When abnormality is specified, the order 
of execution becomes significant. In par­
ticular, if an expression contains a ref­
erence to an abnormal fUnction that way 
affect valUES in other parts of the expres­
sion, the value of the expression will, in 
general, depend upon the order in which 
data is accessed ~ee "Order of Evaluation 
of Expressions, " in Chapter 3) • 

If an ABNORfvlAL procedure, referred to in 
a statement, allocates or frees controlled 
data that has been referred to else~lere in 
the same statement, then the effect of the 
statement is undefined. 

PROGRAMS 

A program 
erence for 

constitutes a domain of ref­
external identifiers and a 



domain of persistence for data. A program 
consists of a set of external procedures, 
linked -to each other in the following 
sense. Every external identifier has con­
stant meaning across all external proce~ 
dures in a program. Values of data known 
in a program exist only as long as the 
~rograro is available for execution. 

When a program becomes available for 
execution, its STATIC data is initialized 
according to INITIAL attributes in the 
progr am; all stacks of CON'I'ROLLED data are 
empty; :no data is available to the RESTORE 
statemen't; thesE~ values disappear when the 
program is made unavailable for execution. 

A program is made available for execu­
tion either by the operating environment as 
a major task, or by the FETCH statement. 
It is made unavailable by termination of 
the major task or by the DELETE statement. 

There is complete data isolation between 
programs except for arguments passed from 
one - to the other and for files with the 
same TITLE. This is true even if both 
programs contain apparently identical 
external procedures. 

Chapter 10: Special 'I'opics 139 



APPENDIX 1: BUILT-IN FUNCTIONS 

ARITHMETIC GENERIC FUNCTIONS 

The generic functions listed in this 
section return a value of type coded arith­
metic. The arguments may, unless otherwise 
specified, be any expressions. If neces­
sary they will be converted to type coded 
arithmetic before the function is invoked 
according to the rules stated under "Type 
Conversion,· in Chapter 3. Also certain 
conversions of arithmetic characteristics 
will be performed before the function is 
invoked, where this is explicitly defined 
to be the case for particular functions 
below. Where conversion to highest charac­
teristics is specified, these are deter­
mined by the rules for mixed charac­
teristics, as explained in Chapter 3, 
applied to the arguments. Where reference 
is made to an argument, it should be taken 
to mean the converted argument when an 
argument that is not coded arithmetic has 
been specified. The magnitude of a complex 
number is the positive square root of the 
sum of the squares of the real and imag­
inary parts where this value has the base 
and scale of the complex number and the 
mode· REAL. 

ABS 

MAX 

MIN 

140 

Arguments and Function Value 

Arguments: One is given. 
Function value = absolute value of 

argument, i.e., positive value of 
real argument, positive magnitude 
of complex. The mode is REAL. 
Base, scale, and prec1s10n are 
those of the argument, unless the 
argument is fixed complex~ in 
which case the precision is 
MIN (N,p+1) ,~ for an argument of 
precision (p, q) • 

Arguments: Two or more are given. 
Complex arguments are not permit­
ted. 

Function value = value of maximum 
argument, converted to highest 
characteristics of all arguments 
specified. If the arguments are 
FIXED of precisions (P1,qi), 
(P2,q2) , ••• , (Pn,qn), the result-' 

ing precision is 
(MAX (p 1 , ••• , Pn) , MAX (q 1 , ••• , qn) ) • 

Arguments: Two or more are given. 
Complex arguments are not permit­
ted .. 

MOD 

SIGN 

FIXED 

FLOAT 

Function value = value of minimum 
argument, converted to highest 
characteristics of all arguments 
specified. If the arguments are 
FIXED of precisions (Pl,q1), 
(P2, q2) , ••• , (Pn,~), the resul t-

ing precision is 
(MAX (p" , ••• , Pn) , MAX (q 1 , • •• , qn) ) • 

Arguments: two are given, x and y. 
Base and scale of the arguments 
are converted to the higher char­
acteristics of the pair.· Complex 
arguments are not permitted. 

Function value = positive remainder 
after division of x by Y to yield 
an integer quotient. The mode is 
REAL; base and scale are those of 
the converted arguments. Preci­
sion for FLOAT is the higher of 
the precisions of the arguments, 
and for FIXED is defined as fol­
lows: 

Let the precision of x be 
(p,q) and the precision of y 

be (r,s) • The resulting 
precision is 
(MIN (N,r-s+u) ,MAX (q, s) ) • 

Arguments: One is given. Complex 
arguments are not permitted. 

FUnction value = integer 1 if argu­
ment >0; = 0 if argument = 0; = 
-1 if argument <0. The result is 
fixed binary with default preci­
sion. 

Arguments: Three are given. The 
second and third are optional 
decimal integer constants speci­
fying the number of digits after 
the decimal or binary point and 
the scale factor of the result. 
If omitted, the second argument 
assumes a value specified by each 
implementation, the third assumes 
zero. 

Function value first argument 
converted to fixed-point scale 
with precision as specified but 
base and mode unchanged. 

Arguments: Two are given. The sec­
ond is an optional decimal inte­
ger constant specifying the pre­
cision of the result. If omit­
ted, a value specified by each 
implementation will be assumed. 



FLOOR 

CEIL 

TRUNC 

BINARY 

DECIMAL 

Function value first argument 
converted to FLOAT scale with 
precision as specified but base 
and mode unchanged. 

Arguments: One is given, x. A 
complex argument is not permit­
ted. 

Function value largest integer 
not exceeding x. Base, scale, 
and mode are those of the con­
verted argument. Precision of 
result for x FIXED (p,q) is 
(MIN (N,~J.AX (p-q+ 1,1) ) ,0) • 

A.rguments: 
complex 
ted. 

One is 
argument 

given, x. A 
is not permit-

F'unction value = smallest integer 
not exceeded by x. Base, scale, 
and mode are those of the con­
verted argument. Precision of 
result for x FIXED (p,q) is 
(MIN (N,"MAX (p-q+ 1,1» , 0) • 

,P.,rguments: One is given, x. A 
complex argument is not permit­
ted. 

Function value = FLOOR (x) if x ~ 
0, CEIL (x) if x < O. Base, 
scale and mode are those of the 
converted argument. Precision of 
result for x FIXED (p,~ is 
(MIN (N,MAX (p-q+ 1,1) ) ,0) • 

Plrguments: Three are given. The 
s-econd and third are optional 
decimal integer constants speci­
fying the binary precision of the 
result. If the scale is FIXED, 
all three are required; if the 
scale is FLOAT, the third is not 
required. If both the second and 
third arguments are omitted, the 
precision of the result is as 
defined for base conversion in 
Chapter 3. 

l~unction value first argument 
converted to binary base with 
scale and mode unchanged. 

l~rgument.s: Three are given. The 
second and third are optional 
decimal integer constants speci­
fying the decimal precision of 
the result. If the scale is 
FIXED, all three are required; if 
the scale is FLOAT, the third is 
not required. If both the second 
and third argullients are omitted, 
the precision of the result is as 
defined for base conversion in 
Chapter 3. 

FUnction value first argument 
converted to decimal base with 
scale and mode unchanged. 

PRECISION 

ADD 

Arguments: Three are given. The 
second and third are decimal 
integer constants specifying the 
precision of the result. If the 
scale is FIXED, all three are 
required; if the scale is FLOAT, 
the third is not required. 

Function value first argument 
converted to specified precision. 
Base, scale, and mode are 
unchanged. 

Arguments: Four are given. The 
third and fourth are decimal 
integer constants specifying the 
precision of the result. If the 
scale of the result is FIXED, all 
four are required; if the scale 
is FLOAT, the fourth is not 
required. 

Function value the sum of the 
first and second arguments. Base 
and scale of the result are the 
higher of those of the first two 
arguments. Precision is as spec­
ified. 

MULTIPLY 

DIVIDE 

COMPLEX 

Arguments: Four are given. The 
third and fourth a~e decimal 
integer constants specifying the 
precision of the result. If the 
scale of the result is FIXED, all 
four are required; if the scale 
is FLOAT, the fourth is not 
required. 

Function value = the product of the 
first and second arguments. Base 
and scale of the result are the 
higher of those of the first two 
arguments. Precision is as spec­
ified. 

Arguments: Four are given. The 
third and fourth are decimal 
integer constants specifying the 
precision of the result. If the 
scale of the result is FIXED, all 
four are required; if the scale 
is FLOAT, the fourth is not 
required. 

Function value 
dividing the 
the second. 
the result 
those of the 
Precision is 

the result of 
first argument by 

Base and scale of 
are the higher of 
first two arguments. 
as specified. 

Arguments: Two are given. The 
first is the real part, the sec-

Appendix 1 1 4 1 



REAL 

I MAG 

CONJG 

ond is the imaginary part. 
Function value complex number 

formed from the two arguments. 
Base, scale, and precision of 
result are the highest charac­
teristics of those of the argu­
ments. 

Arguments: One is given, complex 
value. 

Function value = real part of argu­
ment. Base, scale, and precision 
are unchanged. 

Arguments: One is given, complex 
value. 

Function value = imaginary part of 
argument. Base, scale, mode, and 
precision are unchanged. 

Arguments: One is given, complex 
value. 

Function value conjugate of the 
argument. Base, scale, mode, and 
precision are unchanged. 

FLOAT ARITHMETIC GENERIC FUNCTIONS 

The following generic functions may have 
as arguments any expression. This expres­
sion will be converted to floating point 
before the function i$ invoked. The result 
will be of scale FLOAT with the precision 
and base of the con.verted argument. If the 
mode of the argument is COMPLEX, the mode 
of the result will be COMPLEX. The follow­
ing functions are defined only for REAL 
arguments: LOG2, LOG10, ATAND, TAND, SIND, 
COSD, ERF, ERFC, and ATAN with two argu­
ments. 

The following table specifies the mean­
ing of these functions for real arguments: 

142 

Function Reference Function Value 

EXP (x) 
LOG (x) 
LOG 1 0 (x) 

LOG2 (x) 
ATAND (x) 
ATAN (x) 

TAND (x) degree 
argument 

TAN (x) radian 
argument 

SIND (x) degree 
argument 

SIN (x) radian 
argument 

COSD (x) degree 
argument 

COS (x) radian 
argument. 

TANH (x) radian 
argument 

ERF (x) 

SQRT (x) 

ERFC (x) 
COSH (x) radian 

argument 
SINH (x) radian 

argument 
ATANH (x) 

exp (x) 
In (x). Error if x$O. 
log 10 (x). Error if 

x$O. 
log2(x). Error if X$O. 
arctan (~ in degrees. 
arctan (x) in radians. 
ABS (arctan (x» <pi/2. 
tan (x) 

tan (x) 

sin (x) 

sin (x) 

cos (x) 

cos (x) 

tanh (x) 

Two divided by square 
root of p~, multi­
plied by the integral 
from 0 to x of EXP 
(-t2) with respect to 
t. 

The positive 
root of x. 

1 - ERF (x) 
cosh (x) 

sinh (x) 

square 

arctant (x). Error if 
ABS (x) ~1 • 

ATAN (y,x) The arguments are converted to 
the highest characteristics 
of the pair. The value is: 

ATAND (y,x) 

arctan (y/x) ifx>O 
pi/2 if x=O, 
error if x=O, 
-pi/2 if x=O, 
pi+arctan(y/x) if x<O, 
-pi+arctan(y/x) if x<O, 
ATAN(y,x} in degrees, 

(180/pi) *ATAN (y, x) 

y>O 
y=O 
y<O 
y~O 
y<O 

i.e. 

With complex mode many of these mathema­
tical functions are formally mu1tiple­
valued, so the following table defines the 
principal values which are returned by the 
built-in functions. Here Z = x+iy is the 
argument, and w = u+iv is the value. 



Function Reference 
EXP (Z) 

Function Value 
exp (Z) 

LOG (Z) 

ATAN (Z) 

ATAN (Z) 

SIN (Z) 

COS (Z) 

SQRT (Z) 

COSH (Z) 

SINH (Z) 

Log(Z), where -pi 
<v$pi. Error if Z=O. 

(LOG «l+Z) / (l-Z») /2. 
Error if Z= +1 or -1. 

iATANH(iZ). Error if 
Z= +li or -li. 

sin~)=sin(x)cosh(y)+ 
icos (x) sinh (y) 

cos (Z)=cos (x) cosh(y)­
isin (x) sinh (y) 

z** (1/2) • Either 
REAL(Z) >0, or REAL(Z) 
=0 and IMAG (Z) ~O. 

cosh(Z)=cosh(~cos(y)+ 
isinh (X) sin (y) 

sinh(Z)=sinh(x) cos (y)+ 
icosh (X) sin (y) 

STRING GENERIC FUNCTIONS 

The generic functions listed in this 
section may b€~ used for manipu.lation of 
strings. The arguments specified as 
strings may be any expression. If the 
argument is arit.hn.etic, it will be convert­
ed to bit string (if binary bas~ or 
character string (if decimal bas~ before 
the func1:ion is invoked. 

Name 

BIT 

CHAR 

SUBSTR 

ArgumEmts and Function Value 

l~rguments: Two are given. The sec­
ond is an optional decimal inte­
ger specifying the size of 
result~. 

Function value first argument 
converted to type bit string. If 
the size is unspecified, the size 
of the result will be a function 
of the first argument charac­
terist~ics (see "Type Conversion, n 

in Chapter 3) • 

.i~rgument:s: Two are given.. The sec­
ond is an optional decimal inte­
ger specifying the size of 
result:. 

J?unctioll value first argument 
converted to type character 
string. If the size is unspeci­
fied, the size of the result will 
be a function of the first argu­
ment characteristics (see "Type 
Conversion," in Chapter 3) • 

Argumen1:s: Three are given. The 
first is a string, the second is 
any E~xpression having value i 

INDEX 

LENGTH 

HIGH 

LOW 

REPEAT 

when converted to integer, the 
third is optionally any expres­
sion having value j when convert­
ed to integer. 

The function value is defined as 
follows: 
Let k be the length of the first 

argument. 
If i>k, the value is the null 

string. 
If i$k, the value is that subst­

ring beginning at the Mth char­
acter or bit of the first argu­
ment, and extending N charac­
ters or bits, where M and N are 
defined by: 

M=max (i, 1) 
N=max (0, min (j+min 

(i, 1) -1, k-M+ 1», if j is 
specified. 

N=k-M+1, if j is not speci­
fied. 

Arguments: Two are given. If both 
arguments are bit strings, no 
conversion occurs, otherwise con­
version to character string is 
performed. 

Function value decimal integer 
with implementation defined pre­
cision giving: 
a. ~he index of the first ele­

ment of the first argument 
such that starting at this 
element the second argument 
appears as a substring. 

b. Zero, if no such index satis­
fying (a) exists, or if eith­
er of the arguments is of 
zero length. 

Arguments: One is given, a string. 
Function value = fixed binary inte­

ger of default precision giving 
current length of argument. 

Arguments: One is given, a decimal 
integer constant. 

Function value = character string 
of the length specified and com­
posed of the highest characters 
of the data character set. 

Arguments: One is given, a decimal 
integer constant. 

Function value = character string 
of the length specified and com­
posed of the lowest characters of 
the data character set. 

Arguments: Two are given. The 
first is a string and the second 
a decimal integer constant n. 

Append.ix 1 143 



UNSPEC 

BOOL 

Function value = string argument 
concatenated with itself n times, 
giving a total of n+1 terms in 
the concatenation. If n is zero 
or negative, the result- is the 
argument itself. 

Arguments: One is given. 
Function value = bit string which 

is the internal coded representa­
tion of the argument. The length 
is an implementatlon defined 
fUnction of the argument charac­
teristics. If the argument is a 
varying length string, the result 
is adjusted to be just large 
enough to hold the internal form 
of the argument expression after 
conversion to bit string. 

Arguments: Three are given, bit 
string X, Y, and W. W is con­
verted if necessary, to a bit 
string of length 4, n~n2n3n4. 

This string defines which of the 
16 possible boolean functions is 
desired, in the manner implied 
below. 

Function value = bit string Z where 
if X and Yare of different 
lengths, the shorter is extended 
with zeros, and Z is of the 
longer length. The following 
table relates the jth bit of Z to 
the jth bits of X and Y. 

r------T------T------, 
I Xj I Yj I Zj I 
~------+------+------~ 
I 0 I 0 I nll I 
~------+------+------~ 
I 0 I 1 I n 2 I 
~------+------+------~ 
I 1 I 0 I n 3 I 
~------+------+------~ 
I 1 I 1 I n 4 I l ______ ~ ______ ~ ______ J 

BUILT-IN FUNCTIONS FOR MANIPULATION OF 
ARRAYS 

The following built-in functions have 
array expression arguments and return sca­
lar values. In the following functions X 
is any array expression unless otherwise 
specified. 

Function 
Reference 

SUM (X) 

144 

Function Value 

A scalar value equal to the 

PROD (X) 
ALL (X) 

ANY (X) 

POLY (X, Y) 

A (M) + 

LBOUND (X, S) 

HBOUND (X, S) 
DIM (X, S) 

sum of all the elements of 
X. Precision, mode and 
base are that of argument 
elements. (The argument 
is converted to arithmetic 
FLOAT before the function 
is invoked.) 

As abo've but product. 
The argument is converted to 

bit string. The result is 
a bit string of the length 
(or max length if 

variable) of the elements 
of X. The ith bit of the 
result is 1, if the ith 
bits of all the elements 
of X are 1. Otherwise O. 

As above, ith bit of the 
result is 1 if any of the 
ith bits of the elements 
of X are 1. If all 0, 
then the result bit is o. 

POLY (A, X) ; A (M: N) and 
X (P:Q) are vectors. 

Result is 

N-M J-1 
L: (A (M+J) * IT X (P+ I) ) 

J=1 1=0 

If Q-P<N-M-1, then X (P+I) 
X (Q) for P+I>Q. 

A scalar second operand X is 
interpreted as a vector 
with one element, X(1). 
The function result is 
then 

N-M 
IT A (M+J) *X**J 

J=O 

The characteristics of the 
result are the higher of 
those of the arguments 
(after conversion to 
arithmetic type) except 
for scale, which is always 
FLOAT. 

S is a scalar expression 
which is converted to a 
binary integer n, of 
default precision. The 
function value is an inte­
ger of default precision 
giving the current lower 
bound of the nth dimension 
of X. 

As above but higher bound. 
S is as above. The function 

value is a binary integer 
n of default precision 
giving the current extent 
of the nth dimension of X. 



NOTE: The func-tions LBOUND, 
HBOUND, and DIM are not 
defined if the argument X 
is unallocated, if it has 
less than n dimensions, or 
if n~O. 

SCAN (l~~, I, 
~operator') 

A is any array expression; I 
is a decimal integer con­
stant. The third argument 
may be any binary operator 
in quotes. The function 
value is defined by the 
value of TEMP on exit from 
the following loop: 

'I~E~jP = A (*, ••••• , *, LBOUND (A, I) , 
* , ••••• , *) ; 

DO J = LBOUND (A, I) + 1 '1'0 HBOUND 
(A, I) ; 

'I'EMP = TEMP .operator A (*, ••••• , *,J, 
* , ..... , *) 

END; 

TEMP has dimensions N-1 
where A has N. The bounds 
of TEMP are the first (1 -
1) and the last (N - I) of 
A. TEMP has the base, 
scale, mode and precision 
of A if arithmetic, and 
the length of elements of 
A, if string. 

ARRAY AND STRUCTURE BUILT-IN FUNCTIONS 

All of the built-in functions listed 
under "Arithmetic Generic Functions" and 
"String Generic Functions" in this appendix 
may have array or structure expressions as 
arguments, except where decimal integer 
constants are required. They yield an 
array o:r struc"ture of the same dimension 
bounds or structuring as the argument--thE! 
function being performed on each element. 
The rules arE~ the same as those for thE! 
scalar functions. 

CONDITION BUIL'I'-IN FUNCTIONS 

'rhe following built-in functions (with 
no arguments) are available to allow inves­
tigation of int:errupts arising from enabled 
ON conditions. They may be referred to 
only in ON units. 

Function 
Hef~~e 

ONPOIN'I' 

Function Value 

An integer, being the value of 
the I/O buffer pointer when 
the I/O condition arose. 

ONLOC 

ONFIELD 

ONCHAR 

ONCODE 

A character string of variable 
length, being the name of the 
procedure in which the condi­
tion arose. 

A character string of variable 
length, being the contents of 
the field being processed 
when the input condition 
arose. 

A character string of length 1, 
being the character which 
caused an input conversion 
error. 

A binary integer of default 
precision whose value depends 
on a detected error. Each of 
the following error categor­
ies has a set of contiguous 
code values: 

I/O errors 
Conversion errors 
Control prograrr 

errors 
Built-in function 

errors 

OTHER BUILT-IN FUNCTIONS 

Function 
Reference Function Value 

DATE Character string of length six 
of the form YYMMDD, where YY 
is year, MM is month, DD is 
day. 

TIME Character string of length nine 

ALLOCATION (X) 

of the form HHMMSSTTT, where 
HH is hours, I~ is minutes, 
SS is seconds, TTT is mil­
liseconds. 

X is a CONTROLLED major struc­
ture or unsubscripted array 
or scalar variable not in a 
structure. The fUnction 
valUe is '1'£ if storage has 
been allocated for X and 'O'B 
if not. 

POINT (Filename) 
The value of this function is a 

decimal integer of precision 
(n) , where n is implementa­
tion defined. It specifies 
the current position of the 
pointer relative to the start 
of the current logical record 
for the named file. 

COUNT (Filename) 
'The value of this fUnction is a 

binary fixed-point integer of 
default precision. It 
returns a value that is the 
number of scalar data items 
transmitted during the last 

Appendix 1 145 



read or write operation on 
the specified file. 

HOUND (Expression, 
Decimal Integer Constant) 

The expression may be scalar, 
array, or structure. The 
function value is the expres­
sion value rounded on the 
n'th digit after the point 
where n is the value of the 
integer. (Binary digits if 
binary base, decimal if deci­
mal base.) If the expression 
is of string type, the fUnc­
tion value is the string 
value unmodified. Floating 
point rounding is a bias 
removal rather than systemat­
ic rounding; the decimal 
point is assumed at the left. 
Base, scale, mode and preci­
sion of the value are those 
of argument. For fixed-point 
scale, digits after the 
rounded digit are set to 
zero. 

STRING (structure Name) 

146 

The argument must be a packed 
structure composed either of 

all bit strings and numeric 
fields of binary base, or 
character strings and numeric 
field of decimal base. The 
function value is a string, 
being the concatenation of 
all the structure elements. 
The argument must not be a 
parameter. 

EVENT (scalar event name) 
This function will return the 

value 'O'B OR '1'B, depending 
on the current status of the 
referenced event name (see 
"Asynchronous Operations and 
Tasks,· in Chapter 6 and "The 
WAIT Statement," in Chapter 
8) • 

PRIORITY (scalar task name) 
This function will return the 

priority of the named task 
relative to the priority of 
the task in which the func­
tion is evaluated .(see 
"Asynchronous Operations and 
Tasks," in Chapter 6 and "The 
WAIT Statement," in Chapter 
8) • 



DIGIT POINT AND SUBFIELD DELIMITING 
CHARACTERS 

9 Specifies that the associated field 
position will contain any decimal 
digit. 

1 Specifies that the associated field 
position contains a binary digit. 
This chara.cter may not appear in a 
picture with either 2 or 3. 

2 Specifies that the associated field 
position contains a binary digit, 
being part of a binary value in 2'5 
complement notation. This character 
may not appear in a picture with 
either 1, 3, or S. 

3 Specifies that the associated field 
position contains a binary digit, 
being part of a binary value in l's 
complemen1: notation. This character 
may not appear in a picture with 
either 1, 2, or S. 

V Specifies that a decimal or binary point 
should be assumed to appear at this 
point in the associated field. It 
does not specify a character in the 
fi4~ld. 

K Specifies ,that the exponent subfield. 
should be assulT1ed to follow the point~ 
in the field associated with the K. 
It does not specify a character in the 
field. 

E Specifies that the associated field 
position will contain the letter E, 
indicating the start of the exponent 
subfield. 

ZERO SUPPRESSION CHARACTERS 

A lE~adin:g zero in a numeric subfield is 
a zero to the left of the actual occurrence 
of the digits 1 to 9 in the subfield. The 
leftmost of these latter digits and all 
digits in the subfield following it, are 
significant digits (including any zeros) • 
Picture characters are provided for zero 
suppression, leading zero suppression, and 
the replacement of these zeros by blanks or 
asterisks. 

Z Speci.fies a conditional digit position. 
If the associated field position 
involves a leading zero it will be 
represented in the field by a blank, 
otherwise the digit will appear. The 
character may not appear to the right 
of 9 T I R or a drifting string in a 

APPENDIX 2: PICTURE SPECIFICATION TABLES 

subfield. It may not appear with * in 
a subfield. 

* Specifies a conditional digit position. 
If the associated field position 
involves a leading zero it will be 
represented in the field by *, other­
wise the digits will appear. The 
character may not appear to the right 
of 9 T I R or drifting string in a 
subfield. It may not appear with Z in 
a subfield. 

Y Specifies a conditional digit position. 
If the associated field position 
involves a zero (leading or otherwise) 
it will be represented in the field by 
a blank, if it involves a digit other 
than zero that digit will appear. 

DRIFTING EDITING SYMBOLS 

The following picture characters may be 
static or drifting: 

Character 

I ~ I sign characters 

$ currency symbol 

The static use of these characters spe­
cifies that there is a field position where 
a sign, a currency symbol, or a blank 
always appears. The drifting use specifies 
that leading zeros may be suppressed, and 
the suppressed posi tions n,ay contain 
blanks. In this case, the rightmost sup­
pressed position associated with the pic­
ture character will contain a sign, a 
blank, or a dollar sign. 

A drifting character is 
multiple use of that character 
subfield. Thus, if a subfield 
dollar sign, it is interpreted 
if it contains more than one, 
The drifting character must be 
each position through which it 

specified by 
in a picture 
contains one 
as static; 

as drifting. 
specified in 
may dI.-ift. 

Drifting characters must appear in 
strings. A string is a sequence of the 
same drifting character, optionally con­
taining interspersed editing characters 
comma (,), point (.), slash (/), or V or B. 
Picture characters slash, comma, point, and 
B following the last drifting symbol of the 
string are considered part of the string. 
However, a following V terminates the 
string and is not part of it. A subfield 

Appendix 2 147 



may only conta:L.n one drifting string. The 
picture characters * and Z may not appear 
t~o the right of a drifting string in a 
subfield. 

The field position associated with the 
character slash, comma, point, and B 
appearing in a drifting string will contain 
one of the following: 

1. slash, comma, point, or blank if a 
significant digit has appeared to the 
left 

2. the drifting symbol, if the next posi­
tion to the right contains the left­
most significant digit of the subfield 

3. blank, if the leftmost significant 
digit of the subfield is more than one 
position to the right 

If a drifting string contains the drift­
ing character n times, then the string is 
associated with n 1 conditional digit 
positions. The field position associated 
1rJith the leftmost drifting character may 
only contain the drifting character or 
blank, never a digit. If a drifting string 
is specified for a subfield, the other 
potentially drifting characters may only 
appear once to the left of the string in 
the subfield, i.e., the other characters 
represent a static sign or dollar sign. 

If a drifting string contains a v, then 
all digit positions of the subfield follow­
ing the V must also be part of the drifting 
string. 

If one of the characters Z or * follows 
the V in a subfield, then all digit posi­
tions in the subfield following the V must 
be Z or asterisk (*). 

In the case where all digit positions 
after the V contain suppression characters, 
suppression will only occur where all the 
fraction digits are zero. The resulting 
field will then be all blanks or asterisks. 
If there are any significant fraction 
digits they all will appear unsuppressed. 

DRIFTING CHARACTERS 

$ If this character appears rnor~ than once 
in a subfield it is a drifting charac­
ter, otherwise it is a static charac­
ter. The static character specifies 
that the character $ be placed in the 
associated field position. The static 
character must appear either to the 
left of all digit positions in a 
sutfield or to the right of all digit 
positions in a subfield. See details 
above for the drifting use of the 

148 

character. 
S Specifies the sign character + if the 

field value is 20, otherwise The 
character may be drifting or static. 
The rules are identical to those for 
the dollar sign. 

+ Specifies the sign character + if the 
field value is 2 to 0, otherwi~e 
blank. The charac·ter may be drifting 
or static. The rules are identical to 
those for the dollar sign. 

Specifies the sign character - if field 
value is <0, otherwise blank. The 
character may be drifting or static. 
The rules are identical to those for 
the dollar sign. 

EDITING CHARACTER 

B Specifies that a blank appear in the 
associated field position. 

CONDITIONAL EDITING CHARACTERS 

If the subfields in which the comma 
appears involve no zero suppression, 
that character specifies that a comma 
will appear in the associated field 
position. If zero suppression is 
involved the comma will appear only if 
there is an unsuppressed digit to the 
left of the comma position in the 
subfield. If there is no such unsup­
pressed digit, the associated field 
position will contain a character that 
depends on the first digit 
(conditional or otherwise) picture 
charact~r preceding the comma. 

If the preceding character is an 
asterisk the field poSition will con­
tain an asterisk. 

If the preceding character is a drift­
ing sign or dollar sign the action 
taken will be identical to that which 
would have occurred if the picture 
specification had contained the drift­
ing character in place of the comma. 

If the preceding picture character is 
anything other than the above, the 
field position associated with the 
comma will contain a blank. 

/ Exactly as comma, but a slash will 
appear when indicated. 

Exactly as comma, but a point will 
appear when indicated. 



SIGN CHARACTERS 

Digit characters in numeric fields may 
contain an overpunched sign. The following 
picture characters are used to specify 
overpunching: 

T Specifies that the associated field 
position will contain a digit over­
punched with the sign of the contain­
in9 subfiE~ld. 

I Specifies that the associated field 
position will contain a digit over­
punched with + if the containing 
suhfield is ~ 0; otherwise it will 
contain the digit with no overpunch-· 
inq. 

R Specifies that the associated field 
position will contain a digit over­
punched with - if the containing sub­
field is < 0; otherwise it will con­
tain the digit with no overpunching. 

The two character picture items CR and 
DB nay be used to reflect the sign of REAL 
numeric fields .. 

CR Specifies that the associated field 
positions will contain the letters CR 
if the containing field value is <0. 
Otherwise the positions will contain 
two blanks. The characters CR may 
appear only to the right of all digit 
positions of a field. 

DB As CR, except that a DB appears if the 
containing field value is greater, or 
equal to, zero. 

SCALING FACTOR SPECIFICATICN 

F Specifies that the optionally signed 
decimal integer enclosed in parenthe­
ses following the picture character F 
in the picture string is the scaling 
factor (see nThe PICTURE Attribute," 
in Chapter 4) • 

STERLING PICTURES 

The following additional characters are 
provided for use in sterling pictures. 

8 Specifies the position of a shilling 
digit in BSI single-character rep­
resentation. 

7 Specifies the position of a pence digit 
in BSI single-character represen­
-tation. 

6 Specifies the position of a pence digit 
in IBIv.i single-character representa­
tion. 

G Specifies the start of a sterling pic­
ture. It does not specify a character 
in the numeric field. 

H Specifies that the associated field 
position contains the shilling charac­
ter s. 

P Specifies that the associated field 
position contains the pence character 
P. 

PICTURES FOR CHARACTER STRINGS 

A form of picture may be given for 
character strings. The following are used 
to indicate the form: 

A The associated field position may con­
tain any alphabetic character or 
blank. 

X The associated field position may con­
tain any character. 

9 The associated field position may con­
tain any decimal digit or blank. At 
least one X or A must appear in the 
picture. 

Appendix 2 149 



APPENDIX 3: ON-CONDITIONS 

The ON-conditions are those conditions 
that may be specified in the ON statement. 
These conditions are also specified in 
SIGNAL and REVERT statements. 

For each condition name, the description 
in this appendix includes the circumstances 
under which the condition occurs, the 
standard system action that would be taken 
in the absence of programmer-specified 
action, and, where applicable, the result. 
("Standard system action" does not refer to 

any operating system but to standard action 
prescribed for the language.) 

For the conditions OVERFLOW, UNDERFLOW, 
ZERODIVIDE, CONVERSION, or FIXEDOVERFLOW, 
an interrupt action will always take place 
on occurrence of the condition unless the 
occurrence is in a calculation lying wi,thin 
the scope of a prefix specifying NOOVER­
FLOW, NOUNDERFLOW, NOZERODIVIEE, NOCONVER­
SION, or NOFIXEDOVERFLOW. For the condi­
tions SIZE, SUBSCRIPTRANGE, or CHECK 
(identifier list), an interrupt will not 

take place on occurrence of the condition 
unless the occurrence is in a calculation 
lying within the scope of a prefix speci­
fying the condition. (See "Prefixes," in 
Chapter 1). 

For any other condition, whose name may 
not be used in a prefix, an interrupt 
always will result from the occurrence of 
the condition. 

CLASSIFICATION OF CONDITIONS 

The ON-conditions are classified as fol­
lows: computational conditions, 
input/output conditions, program-checkout 
conditions, prograromer-named conditions, 
and system-action conditions. 

The computational conditions 
ciated with data handling, 
evaluation, and computation. 

are asso­
expression 

The input/output conditions are asso­
ciated with data transmission. 

The program-checkout conditions facili­
tate debugging of programs. 

The programmer-named conditions permit 
the programmer to use conditions of his own 
naming. These conditions are raised only 
by a SIGNAL statement. 

150 

The system-action conditions provide 
facilities to the programmer to extend the 
standard system action taken after the 
occurrence of a condition or at the comple­
tion of a program. 

COMPUTATIONAL CONDITIONS 

CONVERSION: This condition is raised 
whenever an illegal internal conversion is 
attempted on character string data. The 
condition will be raised for such errors as 
characters other than 0 or 1 in conversion 
to bit string, characters not permitted in 
conversion to numeric field, or illegal 
characters in conversion to arithmetic. 
The CONVERSION condition is analogous to 
the EDIT condition for input/output. 

Result: Undefined. 

Standard system action: Comment and raise 
the ERROR condition. 

FIXEDOVERFLOW: This condition occurs dur­
ing fixed-point arithmetic operations if 
the results of these operations exceed N, 
the maximum field width as defined by the 
implementation. See SIZE for a related 
condition that occurs on aSSignment. 

Result: Truncation on the left to size N. 

Standard system action: Comment and con­
tinue. 

OVERFLOW: 'Ihis condition occur s when the 
exponent of a floating-point number exceeds 
the permitted maximum, as defined by the 
implementation. 

In some implementations, the condition 
may be detected by hardware interrupt, in 
others by special COding. 

Result: Maxi.mum positive value. 

Standard system action: Comment and raise 
the ERROR condition. 

SIZE: This condition is raised by internal 
conversions between data types, or between 
differing bases, scales, or precisions. 
The condition arises when a value is 
assigned to a data item, with a loss of 
high-order bits or digits. The error 
situations are similar to those listed 
under the input/output condition FIELDOVErt­
FLOW. The string assignments, analogous to 



item 1 under "Input" and item 1 under 
"Output" (see "Input/Output Conditions" in 
this appendix) of FIELDOVERFLOW, do not 
raise the SIZE condition. However, assign­
ments analogous t:o the other listed si tua­
tions do raise the SIZE condition. 

The SIZE condition should be distingu­
ished from FIXEDOVERFLOW that occurs during 
arithmetic calculations. A value too large 
for the field to which it is assigned will 
raise a SIZE condition on assignment, 
regardless of whether there was a FIXEDOV­
ERFLOW in the calculation of the value. 
FIXEDOVERl?LOW depends upon the size of 
fixed-point numbers allowed in the implem­
entation. SIZE depends upon the declared 
size of the item of data receiving a value. 

Result: l"1odulo assignment for fixed-point; 
otherassignments are undefined. 

Standard system action: Comment and raise 
the ERROR condition. 

UNDERFLOW: This condition occurs when the 
exponent -of a floating-point number is 
smaller 1than the permitted minimum, as 
defined b~{ the implementation. 

The condition does not occur when equal 
numbers a:re subtl~acted (often call signifi­
cance error) • 

In some implementations, the condition 
may be de1tected hy hardware interrupt, in 
others by special coding. 

Smallest positive non-zero value. 

standard system action: Comment and con­
tinue execution. 

ZERODIVID:E: This condition occurs on an 
attempt to divide by zero. The condition 
does not distinguish between fixed-point 
and floating-point division; either can 
cause it. 

In some implementations, the condition 
may be de1tected by hardware interrupt, in 
others by special coding. 

Result: 1JndefinE~d. 

Standard system action: comment and raise 
the ERROR condition. 

INPUT/OUTlPUT CONDITIONS 

EDIT (filename): This condition is caused 
by an illegal character in the input data 
from a specified file, or a character that 

is illegal for an output editing operation. 
For example, characters other than 0 or 1 
when the list item is a bit string, or 
characters not permi t.ted by the PICTURE for 
a numeric field (for both input and 
output), or an illegal character in an 
arithmetic constant. 

Standard system action: Comment and raise 
the ERROR condition. 

ENDFILE (filename): This condition is 
caused by an attempt to read past a file 
delimiter from the specified file. 

Standard system action: Comment and raise 
the ERROR condition. 

ENDGROUP (filename): This condition is 
caused by an attempt to read past a group' 
delimiter from the specified file. The 
file is positioned past the group mark. 

Standard system action: Conunent and con­
tinue. 

ENDRECORD (filename) This condition is 
caused by an illegal attempt to read past a 
record delimiter from the specified file. 
The file position is undefined. 

Standard system action: Comment and raise 
the ERROR condition. 
FIELDOVERFLOW (filename): This condition 
can be raised for input and output opera­
tions in which the source value is too 
large for the destination. 

Input: The condition is raised in the 
following circumstances: 

1. For a string list item--if the string 
is too long for the maximum (varying) 
or actual (fixed) length of the string 
list item. 

2. For a numeric field list item--if the 
input value cannot be edited according 
to the PICTURE for the numeric field 
list item, or according to the PICTURB 
format item. These conditions exclude 
those covered by the EDIT condition. 

3. For an arithmetic list item--

a. If the input value exceeds the 
implementation defined floating­
point number range (for a 
floating-point list item) • 
Note: The condition is not raised 
if the precision of the list item 
is insufficient to hold all given 
digits of the input value. 

b. If the input value (after insigni­
ficant leading zeros are removed) 
exceeds the maximum value that the 
destination field can hold. 

Digits on the right end are truncated 
without notice. 

Appendix 3 151 



Output: The condition is raised if: 

1. The length of a string list. item 
exceeds the field width of the format. 

2. The pictured field cannot hold the 
value of the list item. 

3. The arithmetic value in a string 
(e.g., 1.25 E95) exceeds the floating­
point number range for an arithmet;.ic 
format. 

4. The arithmetic value of a list item 
exceeds the maximum value that can be 
accommodated in the field designated 
by the format. 

Standard System Action: The system action 
for output is to fill the output field with 
asterisks and continue; for input, the 
system action is to comment and continue. 

IDENT (filename): This condition is raised 
if the OPEN or CLOSE IDEN'I' option does not 
compare with the label on the designated 
file. This applies only to the IDENT 
option form that specifies both data list 
and format list. 

Standard system action: Comment and return 
from the ON unit. Frocessing will 
continue, with the unmatched label ignored. 

NAME (filename): This condition is caused 
by an unrecognizable identifier on data­
directed input. 

Standard system action: comment and raise 
the ERROR condition. 

ACCESS (filename): This condition is 
raised whenever a programming error pre­
vents successful access of a record from 
the designated file. The particular error 
may be determined by means of the O~CODE 
built.-in function. If a return is made 
from the ON unit, the ERROR condition is 
raised. 

Standard system action: Comment and 
the ERROR condition. 

TRANSMIT (filename): This condition 
caused by a transmission error on 
specified file. 

raise 

is 
the 

standard system action: Comment and retry, 
and if unsuccessful after a standard .number 
of retries (defined by the implementation) , 
comment and raise the ERROR condition. A 
READ transmission error may be accepted by 
a return from the ON unit; a WRITE trans­
mission error cannot be accepted (a return 
from the ON unit will raise the ERROR 
condition) • 

UNDEFINEDFILE (filename): This condition is 
raised when the specified file is not 
available. 

152 

Standard system action: Comment and raise 
the ERROR condition. 

PROGRAM CHECKOU'!' CONDITIONS 

SUBSCRIPTRANGE: This condition occurs when 
a subscript is evaluated and found to lie 
outside its specified bounds. 

The condition does not 
between values that are too 
values that are too small. 

Result: Undefined. 

distinguish 
large and 

Standard system action: Comment and raise 
the ERROR condition. 

CHECK (identifier list) : A statement prefix 
specifying this condition may only be 
applied to PROCEDURE or BEGIN statements. 

In the identifier list, each identifier 
is one of the following: 

a statement label 
an unsubscripted variable name rep­

resenting a scalar, array, struc­
ture, or label variable 

an entry label 

Each item in the list is, in effect, 
enabled independently. 

None of the conditions that follow (up 
to but not including "Programmer-Named 
Conditions") will be raised in a prologue. 

Statement Label: For a statement-label 
identifier the condition is raised prior to 
the execution of the statement to which the 
label is prefixed. If the label is pre­
fixed to a non-executable statement, no 
condition will be raised. 

Variables: For identifiers representing 
variables, the condition is raised whenever 
the value of the variable, or any genera­
tion of any part of the variable, may have 
been changed by any statement within the 
scope of the prefix. 

The condition will be raised by the 
explicit reference to an identifier ID in 
the circumstances listed below, where ID 
is: 

an identifier in the list 
an identifier representing a structure 

or element contained by, or con­
taining, an identifier in the list 

The reference to ID may be subscripted 
or qualified. 



The condition will be raised for ID if: 

1. ID a.ppears on the left hand side of an 
assignment statemen·t. (This applies 
to assignment BY NAME even if the 
identifier mentioned does not appear 
in the final expansion of the state­
ment .• ) 

2. ID is set as a result of a pseudo­
variable or pseudo-array appearing on 
the left hand side of an assignment. 

3. ID appears as the controlled variable 
of a DO statement (or ID is set as a 
result of a pseudo-variable appearing 
as the controlled variable of a DO 
loop) • 

4. ID appears in a data list on a READ or 
GET statement. 

S. ID has the SYMBOL attribute and a 
data.-directed READ or GET statement is 
executed. 

6. ID appears as the second argument of a 
DISPLAY statement. 

7. ID appears as a STRING option on a 
WRITE statement. 

8. ID is passed as an argument to a 
programmer-defined procedure, and no 
dummy is created. 

9. ID appears on a RESTORE statement. 

However, the condition is NO'l' raised 
under any of the following circumstances: 

1. If the value of a variable defined 
upon ID or upon part of ID changes 
value in any of the ways described 
above. 

2. If t.he value of a variable upon which 
ID is defined changes valueo 

3. If a parameter which represents ID 
changes value. 

4. If ID appears in a GO TO or RETURN 
stat.ement or any statement which 
involves the execution of a GO TO or 
RETURN statement. 

Each condition is raised after the 
statement which caused it to be raised has 
been executed. If the statement has a task 
option, the condition is raised when the 
attaching task regains control. If the 
statement is a DO statement, the condition 
is raised each time control proceeds 
sequentially to the statement following the 
DO statement. If the DO specifies itera­
tion, the condition is raised once for 
every iteration. 

Nc statement other than a DO statement 
can cause a condition to be raised more 
than once for the same identifier. If a 
statement causes a CHECK condition to be 
raised for several identifiers, then the 
conditions will be raised in the left-to­
right order of appearance of the 
identifiE!rs in the statement. 

Entry Labels: For an entry label, the 
condition is raised prior to each invoca­
tion of the entry label. The condition is 
raised only if the entry label is invoked 
by the name given in the ON list. 

Result: Continue. 
cuted normally. 

The statement is exe-

Standard system action: If t'he identifier 
is a statement label or an entry label, the 
label will be printed on a debugging file. 

If the identifier represents data, the 
identifier and its new value will be print­
ed on a debugging file in the format of 
data-directed output. 

PROGRAMMER-NAMED CONDITIONS 

CONDITION (identifier): This condition is 
always enabled and may not appear in a 
condition prefix. The identifier is speci­
fied by the programmer, and is EXTERNAL. 
The condition is raised by the execution of 
a SIGNAL statement having the same iden­
tifier. 

Standard system action: Comment and con­
tinue. 

SYSTEM ACTIGN CONDITIONS 

The following conditions are always ena­
bled and may not appear in a condition 
prefix. 

FINISH: This condition is raised immedi­
ately before the major task terminates by 
executing a STOP, RE'l'URN, END, or EXI'l' 
statement. The ON unit is executed as part 
of the task in which the interrupt takes 
place. 

.;;;;s..;:t..;:a;;.:n:.;:.d;:;;;.a=r...;;;d=--_s="V.L..;;;;s-=t..;:e::.;:;m:.:..-_..::.:a..;:c:...:t~i=-o=-n:..::..:...: Te rmina te the 
major task. 

ERROR: This condition is raised when a 
major task is forced to terminate because 
of some error situation. 

Standard system action: Comment and raise 
the FINISH condition. 

Appendix 3 153 



APPENDIX 4: PERMISSIBLE KEYWORD ABBREVIATIONS 

Abbreviations are provided for certain 
keywords. The abbreviations themselves are 
keywords and will be recognized as synono­
mous in every respect with the full key­
words. The abbreviated keywords are shown 
to the right of the full keywords in the 
following list. 

154 

PROCEDURE 
DECLARE 
DECIJvlAL 
BINARY 
COMPLEX 
CHARACTER 
VARYING 
POSITION 

PROC 
DCL 
DEC 
BIN 
CPLX 
CHAR 
VAR 
pas 

INITIAL 
INTERNAL 
EXTERNAL 
AUTOMATIC 
CON'l'ROLLED 
DEFINED 
ABNORMAL 
PRECISION 
OVERFLOW 
UNDERFLOW 
FIXEDOVERFLOW 
SUBSCRIPTRANGE 
ZERODIVIDE 
CONVERSION 
ENVIRONMENT 
PICTURE 

INIT 
INT 
EXT 
AUTO 
CTL 
DEF 
ABNL 
PREC 
OFL 
UFL 
FOFL 
SUBRG 
ZDIV 
CONV 
ENV 
PIC 



The characters that make up the 
48-character set are same as those that 
make up 60-char~cter set except for certain 
restrictions. 

The following 
included: 

characters are not 

Percemt 

Colon 

Not 

Or 

And 

Grea t:er Than 

J.Jess Than 

Break character 

Semicolon 

Number sign 

Commercial At sign 

Quest:ion mark 

The following three 
replaced as indicated: 

60-Character Set 

; 

" 

, 

> 

< 

# 

? 

characters are 

48-Character set 

, . 
// 

The two periods which replace the colon 
must be i.mmediately preceded by a blank if 
the preceding character is a period. 

The following operators, as used in the 
60-character, set are replaced in the 

APPENDIX 5: THE 48-CHARACTER SET 

48-character set by alphabetic operators as 
indicated: 

60-Character Set 48-Character Set 

> G'I' 

>= GE 

,= NE 

<= LE 

< LT 

, NOT 

OR 

& AND 

II CAT 

The above nine words are "reserved" in 
the 48-character set; that is, they must 
not be used as progran~er-specified 
identifiers. 

In each case, one or more blanks must 
irrrrnediately precede the alphabetic operator 
if the preceding character would otherwise 
be alphameric, and one or more blanks must 
immediately follow if the following charac­
ter would otherwise be alphameric. Thus, 
to indicate the comparison of the variables 
A6 and BQ2Y f01 inequality, one would write 
A6 NE BQ2Y, but not A6NEBQ2Y, A6 NEBQ2Y, or 
A6NE BQ2Y. As the equal symbol is usable, 
however, the comparison of these two varia­
bles for equality may be written A6=BQ2Y. 

The break character, commercial at-sign, 
and number sign are not used and conse­
quently may not be employed in identifiers. 

The default seqment delimiter for data­
directed transmission is a single semicolon 
regardless of which character set is used; 
if no hardware re~resentation of a 
semicolon is available, the programn:er IT.ust 
supply an e~plicit segment delimiter. 

Appendix 5 155 



(If more than one page number is given, the primary discussion is listed first.) 

abbreviation of keywords •••••••••••••• 154 
ABNORMAL attribute ••••••••••••••••• 49,138 
abnormality •••••••••••••••••••••••• 138,49 

defaults for •••••••••••••••••• 50,62,63 
access attributes •••••••••••••••••••••• 59 
activation; 
see blocks, activation 

ACTIVITY option ••••••••••••••••••••••• 115 
ALIGNED attribute •••••••••••••••••••••• 53 
ALLOCATE statement ••••••••••••••••••••• 97 
allocation •••••••••••••••••••••••••• 72,10 
also see storage class attributes 

of parameters •••••••••••••••••••••• 136 
in tasks •••••••••••••••••••• 75,137,138 
test for •••••••••••••••••••••••• 145,98 

ALLOCATION built-in function •••••••••• 145 
arguments •••••••••••••••••••• 68,65,69,134 

dummy ••••••••••••••••••••••••••• 70,134 
evaluation of subscripts ••••••••••• 134 
list •••••••••••••••••••••••••••••••• 65 

arithmetic built-in functions ••••••••• 140 
arithmetic data •••••••••••••••••••••••• 

attributes •••••••••••••••••••••••••• 
arithmetic operations •••••••••••••••••• 

22 
43 
31 

array ••••••••••••••••••••••••••••••• 25,10 
allocation •••••••••••••••••••••••••• 53 
assignment •••••••••••••••••••••• 98,101 
bounds ••••••••••••••••••••••••••• 25,48 

also see asterisks 
cross section of •••••••••••••••••••• 27 
defining •••••••••••••••••••••••••••• 55 
dimensions ••••••••••••••••••••••• 25,26 
expressions; 

see expressions 
manipulation ••••••••••••••••••••••• 144 
of statement labels ••••••••••••••••• 29 
of structures ••••••••••••••••••••••• 26 

assignment 
array ••••••••••••••••••••••••••• 98,101 
scalar •••••••••••••••••••••••••••••• 98 

98,95 statement •••••••••••••••••••••••• 
evaluation of 

statement-label 
••••••••••••••••••••• 99 
•••••••••••••••••• 98,99 

string •••••••••••••••••••••••••• 
structure ••••••••••••••••••••••• 

99,101 
98,100 

asterisks 
for bounds or length •••••• 136,48,97,98 
for cross sections of arrays •••••••• 27 
with INITIAL attribute ••••••••••• 56,57 
with USES or SETS attributes •••••••• 50 

asynchronous operations •••••••••••••••• 74 
AT option (with PAGE statement) 116,117 
attached task ••••••••••••••••••• 75,11,137 
attaching task •••••••••••••••••• 75,11,137 
attributes •••••••••••••••••••• 38,43,17,11 
also see individual attribute 

defaults for •••••••••••••••••••••• 62,9 
also see individual attribute 

factoring of •••••••••••••••••••••••• 39 
with macro DECLARE statement ••••••• 131 

AUTOMATIC attributes; 
see allocation, storage class attributes 

base •••••••••••••••••••••••••••••••• 22,43 
base identifier •••••••••••••••••••••••• 54 
BEGIN statement •••••••••••••••••••• 102,19 
BINARY attribute; 
see scale 

156 

BIT; 
see string attributes 

bit-string data •••••••••••••••••••••••• 23 
bit-string operations •••••••••••••••••• 33 
blanks 

use of •••••••••••••••••••••••••••••• 17 
with qualified names •••••••••••••••• 27 
with structure level numbers •••••••• 25 
in picture specification ••••••••••• 148 
trailing, in input fields ••••••••••• 62 

blocks •••••••••••••••••••••••••••••• 19,10 
activation of ••••••••••••••••••••••• 71 
begin ••••••••••••••••••••••••••••••• 19 
nested •••••••••••••••••••••••••••••• 20 
procedure ••••••••••••••••••••••••••• 19 
termination of •••••••••••••• 71,109,122 

bounds; 
see array 

overriding DECLARE statement •••••••• 97 
of parameters •••••••••••••••••••••• 136 

BUILTIN attribute ••••••••••••••••••• 52,67 
built-in functions •••••••••••••• 140,17,66 
BY and TO ••••••••••••••••••••••••••••• 1 05 
BY NAME option •••••••••••••••••••••• 98,99 

CALL option ••••••••••••••• 19,62,65,67,116 
CALL statement •••••••••••••••••••••••• 102 

with FETCH statement ••••••••••••••• 108 
for creating tasks •••••••••••••••••• 75 

CHARACTER; 
see string attributes 

character string 
data •••••••••••••••••••••••••••••••• 22 
pictures ••••••••••••••••••••••••••• 149 

also see string 
characters 

alphabetic •••••••••••••••••••••••••• 14 
alphameric •••••••••••••••••••••••••• 14 
data character set •••••••••••••••••• 16 
48-character set •••••••••••••••••••• 15 
language character set •••••••••••••• 14 
60-character set •••••••••••••••••••• 14 
special ••••••••••••••••••••••••••••• 14 

CLOSE statement ••••••••••••••••••••••• 103 
coded arithmetic data •••••••••••••••••• 22 
collating sequence ••••••••••••••••••••• 16 
comment •••••••••••••••••••••••••••••••• 17 
comparison operations 
compile-time activity 
COMPLEX attribute; 

• • • • • • • • • • • • • • • • •• 34 
•••••••••••••• 131,11 

see mode 
COMPLEX pseudo-variable •••••••••••••••• 
composite operand •••••••••••••••••••••• 
compound statement ••••••••••••••••••••• 
concatenation operations ••••••••••••••• 
condition prefixes ••.••••••••••••••••••• 
conditions; 
see ON-conditions 

CONSECUTIVE attribute •••••••••••••••••• 
constants .............................. . 

bit-string •••••••••••••••••••••••••• 
character-string .~ •••••••••••••••••• 
fixed-point binary •••••••••••••••••• 
fixed-point decimal ••••••••••••••••• 
floating-point binary ••••••••••••••• 
floating-point decimal •••••••••••••• 
imaginary •••••••• $ •••••••••••••••••• 

real arithmetic •• ~ •••••••••••••••••• 

96 
37 
18 
34 
18 

59 
23 
24 
24 
23 
23 
23 
23 
24 
23 



statement-label ••••••••••••••••••••• 24 
sterling •••••••••••••••••••••••••••• 23 

contained in ••••••••••••••••••••••••••• 20 
contextual declarations •••••••••••••••• 40 
also see declarations 

control 
modification of ••••••••••••••••••••• 96 
program ••••••••••••••••••••••••••••• 71 
return of •••••••••••••••••••• 122,66,67 
sequence of ••••••••••••••••••••••••• 95 
sta~:ements •••••••••••••••••••••••••• 95 

CONTROLLED attribute •••••••••••••••• 53,97 
also see storage 

conver~)ion ••••••••••••••••••••••••••••• 
arithmetic base and scale ••••••••••• 
arithmetic mode ••••••••••••••••••••• 

33 
33 
33 

integer ••••••••••••••••••••••••••••• 33 
in expressions •••••••••••••••••••••• 31 
type •••••••••••••••••••••••••••••••• 34 
with RETURN statement •••••••••••••• 122 

COUNT built-in function ••••••• 145,120,130 
COUNT option •••••••••••••••••••••• 120,130 
CROSS option •••••••••••••••••••••• 120, 129 
cross sections; 
see al~ray 

crossing of records boundaries 120,129 
curren~: file ••••••••••••••••••••••••••• 81 

data 
aggregates •••••••••••••••••••••••••• 
arithmetic •••••••••••••••••••••••••• 
bit-string •••••••••••••••••••••••••• 
character set ••••••••••••••••••••••• 
character-string •••••••••••••••••••• 
coded arithmetic •••••••••••••••••••• 
description ••••••••••••••••••••••••• 
elements •••••••••••••••••••••••••••• 
list •••••••••••••••••••••••••••••••• 
numE~ric ••••••••••••••••••••••••••••• 

25 
22 
23 
16 
22 
22 
38 
22 
82 
22 

specification ••••••••••••••••••••••• 82 
repetitive specification for •••••• 82 
s~:a tement.s •••••••••••••••••••••••• 93 

statement-label ..•••••••••••••••• 23,29 
transmission •••••••••••••••••••••••• 

s~:a tement.s •••••••••••••••••••••••• 
types ••••••••••••••••••••••••••••••• 

80 
93 
22 

default for •••••••••••••••••••• 45,62 
data-directed transmission ••••••••••••• 80 

data specification for •••••••••••••• 85 
input ••••••••••••••••••••••••••••••• 86 
length of field ••••••••••••••••••••• 87 
output •••••••••••••••••••••••••••••• 

DECIMAI~ attribute; 
see base 

declarations ••••••••••••••••••••••••••• 
con~:extual •••••••••••••••••••••••••• 
explicit •••••••••••••••••••••••••••• 
external •••••••••••••••••••••••••••• 
implicit •••••••••••••••••••••••••••• 
mul t:iple ......•..........•.•.....••. 
scope of •••••••••••••••••••••••••••• 

DECLARE statement •••••••••••••••••••••• 
defaul ~:; 
see a"ttributes 

DEFINED attribute •••••••••••••••••••••• 
definecl on •...•..............••.•...... 
DELAY statement ••••••••••••••••••••••• 
DELETE statement •••••••••••••••••••••• 

87 

38 
40 
38 
41 
41 
41 
41 
38 

54 
54 

104 
104 

delimiters ••••••••••••••••••••••••••••• 15 
descendence of blocks •••••••••••••••••• 71 
dimension attribute •••••••••••••••••••• 48 

with ALLOCATE statement ••••••••••••• 97 
DIRECT attribute ••••••••••••••••••••••• 59 
DISPLAY statement ••••••••••••••••••••• 105 
DO groups •••••••••••••••••••••••••• 19,105 
DO statement •••••••••••••••••••••••••• 105 
DOWN specification •••••••••••••••••••• 126 

editing; 
see PICTURE attribute 

symbols •••••••••••••••••••••••• 147,148 
drifting ••••••••••••••••••••••••• 147 

ELSE clauses •••••••••••••••••••••••••• 111 
nesting of ••••••••••••••••••••••••• 111 

enable ••••••••••••••••••••••••••••••••• 76 
encompassing blocks •••••••••••••••••••• 72 
END statement ••••••••••••••••••••••••• 107 

use of •••••••••••••••••••••••••••••• 21 
ENTRY attribute •••••••••••••••••••••••• 51 

declaration of ••••••••••••••••••• 40,51 
use of •••••••••••••••••••••••••• 69,134 

entry name ••••••••••••••••••••••• 18,20,40 
attributes •••••••••••••••••••••••••• 51 
default for ••••••••••••••••••••••••• 51 
with IDENT option •••••••••••••• 104,115 
passing arguments to •••••••••••••••• 69 
required for PROCEDURE statement 118 

entry point 
primary ••.••••.••••.•••••••.•••••••• 20 
secondary ••••..••••.•••••••••••• 20,107 

ENTRY statement ••••••••••••••••••••••• 107 
evaluation 

of argument subscripts ••••••••••••• 
in array assignment ••••••••••••••••• 
of assignment statement ••••••••••••• 
of expressions •••••••••••••••••••••• 

EVENT 

134 
99 
99 
37 

built-in function •••••••••••••••••• 146 
option •••••••••••••••••••••••••• 75,102 
pseudo-variable ••••••••••••••••••••• 97 

event name •.•••••••••••••••••••••••••••• 30 
EXIT statement ••••••••••••••••••••• 108,71 
explicit declarations; 
see declarations 

exponentiation ••••••••••••••••••••••••• 32 
expressions •••••••••••••••••••••••••••• 31 

array ••••...•••••••••••••••.•••••••• 35 
as bounds or length •••••••••••••••• 136 
evaluation of ••••••••••••••••••••••• 37 
scalar •••••••••••••••••••••••••••••• 31 
structure ••••••••••••••••••••••••••• 36 

extended values on assignment •••••••••• 99 
EXTERNAL attribute •••••••••••••••••• 52,41 
external declarations •••••••••••••••••• 41 
external names ••••••••••••••••••• 20,42,62 

scope of •••••••••••••••••••••••••••• 41 
external procedure ••••••••••••••••••••• 20 

factoring 
of attributes ••••••••••••••••••••••• 
of options ••••••••••••••••••••••••• 

FETCH statement ••••••••••••••••••••••• 
relationship with CALL statement •• 

file ••••••••••••••••••••••••••••••••••• 

39 
103 
108 
108 

80 
attributes •••••••••••••••••••••• 58,114 
closing •••••••••••••••••••••••••••• 103 

Index 157 



conditions ••••••••••••••••••••••••• 151 
current ••••••••••••••••••••••••••••• 81 
names ••••••••••••••••••••••••• 80,58,63 
opening •••••••••••••••••••••••••••• 114 
preparation statements •••••••••••••• 93 
specification ••••••••••••••••••••••• 59 

FILE attribute ••••••••••••••••••••••••• 58 
FILE option •• 111,114,115,116,119,124,125, 
•••••••••••••••••••••••••••••• 126,127,129 

FIXED attribute; 
see scale 

fixed-point; 
see constants, precision, variables 

FLOAT attribute; 
see scale 

floating-point; 
see constants, precision, variables 

FOOT option ••••••••••••••••••••••••••• 116 
format 

of data-directed output ••••••••••••• 87 
of list-directed I/O ••••••••••••• 83,84 
of records •••••••••••••••••••••••••• 84 

format-directed data specification ••••• 88 
format-directed transmission ••••••••••• 80 
format items ••••••••••••••••••••••••••• 89 

control ••••••••••••••••••••••••••••• 
external mode ••••••••••••••••••••••• 
data •••••••••••••••••••••••••••••••• 
internal mode ••••••••••••••••••••••• 
remote •••••••••••••••••••••••••••••• 

92 
89 
89 
91 
93 

format list •••••••••••• 88,103,108,115,117 
FORMAT statement •••••••••••••••••••••• 108 

label required for ••••••••••••••••• 108 
48-character set ••••••••••••••••••• 155,15 
FREE statement •••••••••••••••••••••••• 108 
FROM option ••••••••••••••••••••••• ~ ••• 130 
function ••••••••••••••••••••••••••••••• 65 

52,66,140 built-in ••••••••••••••••••••• 
generic ••••••••••••••••••••••••••••• 66 
procedure ••••••••••••••••••••••••••• 66 

termination of ••••••••••••••••••• 122 
reference •••••.••••••.•••••••••••••• 66 

GENERIC attribute ••••••••••••••••••• 51,66 
generic functions •••••••••••••••••••••• 66 

arguments of the reference ••••••• 51,66 
GET statement ••••••••••••••••••••••••• 109 

with current file ••••••••••••••••••• 81 
with procedure-directed transmission 81 

GIVING option ••••••••••••••••••••••••• 126 
GO TO statement ••••••••••••••••••••••• 109 
groups ••••••••••••••••••••••••••••••••• 19 

DO groups ••••••• ~.~ ••• ~. • • • • • • • • • •• 19, 105 
of I/O files •••••••••••••••••••• 80,110 
single statement •••••••••••••••••••• 19 

GROUP statement ••••••••••••••••••••••• 110 

HEAD option ••••••••••••••••••••••••••• 116 
heading statements •••••••••••••• ~ •• ~ ••• 19 
HOLD option •• ~ ••••••••••••••••••••• 120,129 

IDENT option •••••••••••••••••••••• 104,115 
i.dentifiers ••••• ~ •••••••••••• ~. •• • •• • •• •• 16 

attributes of ••••••••••••••••••••••• 38 
length of ••••••••••••••••••••••••••• 16 

IF 

158 

statement labels •••••••••••••••••••• 16 
keywords •••• • _. • • • • • • • • • • • • • • • • • • • • •• 16 
statement •••••••••••••••••••••••••• 111 

IMAG pseudo-variable ••••••••••••••••••• 96 
imaginary numbers •••••••••••••••••••••• 24 
also see mode 

implicit declarations; 
see declarations 

INDEXED attribute •••••••••••••••••••••• 59 
infix operators; 
see operators 

INITIAL attribute ••••••••••••••••••• 56,29 
rules with ALLOCATE statement ••••••• 98 

initial value for statement-label 
arrays ••••••• ~ •••••••••••••••••••••• 29 

INOUT attribute .~ •••••••••••••••••• 59,114 
INPUT attribute •••••••••••••••••••• 59,114 
input/output ••••••••••••••••••••••••••• 80 

statements •••••••••••••••••••••••••• 93 
INTERNAL attribute ••••••••••••••••••••• 52 
internal name •••••••••••••••••••••••••• 42 
internal procedure ••••••••••••••••••••• 20 
internal to •••••••••••••••••••••••••••• 20 
interleaving ••••••••••••••••••••••••••• 28 
interrupt ••••••••••••••••••• 75,18,114,150 

system •••••••••••••••••••••• 77,114,150 
iteration ••••••••••••••••••••••••••••• 105 

factor •••••••••••••••••••••••• 56,24,88 

KEY option •••••••••••••• 94,59,120,129,130 
KEYLENGTH attribute •••••••••••••••••••• 61 
keyword •••••••••••••••••••••••••••••••• 16 

abbreviations of ••••••••••••••••••• 
separating •••••••••••••••••••••••••• 

known .................................. . 

label 
also see statement label 

154 
17 
43 

18 

required for FORr~T statement •••••• 108 
LABEL attrioute •••••••••••••••••••••••• 47 
LAYOUT statement •••••••••••••••••••••• 111 
length 

data-directed data fields ••••••••••• 87 
format-directed data fields ••••••••• 89 
identifiers ••••••••••••••••• ~ ••••••• 16 
keys ••••••••••••••••••••• ~ •••••••• ~ ••• 61 
list-directed data fields ••••••••••• 84 
overriding DECLARE statement •••••••• 97 
parameters ••••••••••••••••••••••••• 136 
strings •••••••••• ~ ••• ~ •• ~ ••••••••••• ~ •• ~. 47 

level numbers ........................ 25,63 
also see structures 

optional blank ....................... 25 
LIKE attribute ••••••••••••••••••••••••• 58 

with DEFINED attribute •••••••••• ~ ••• 54 
list-directed 

data specification •••••••••••••••••• 83 
input ...... . -a a-a. •• • .. •• • • • •• • •• •••••• 83 
length of field ••••••••••••••••••••• 84 
output •••••••••••••••••••••••••••••• 84 
transmission ......................... 80 

macro 
assignment statement ••••••••••••••• 132 
DECLARE statement ••.•••••••••••••••• 131 
expressions •••••••• ~ ••••••••••••••• 132 
GO TO statement •••••••••••••••••••• 132 
IF statement ••••••••••••••••••••••• 133 
null statement ••••••••••••••••••••• 132 
processor •••••••••••••••••••••••••• 133 
sta tements •••••••••.•••••••••••••••• 132 
variables •••••••••••••••••••••••••• 131 



MAIN at:tribute ••••••••••••••••••••• 71, 118 
MARGIN option ••••••••••••••••••••••••• 111 
mode •••••••••••••••••••••••••••••••• 22,44 
multiple declarations •••••••••••••••••• 39 
multiple labels •••••••••••••••• 18,107,118 

names •••••••••••••••••••••••••••• 16,26,42 
extE~rnal •••••••••••••••••••••••••••• 42 
inte~rnal •••••••••••••••••••••••••••• 
qualified ••••••••••••••••••••••••••• 
scope of •••••••••••••••••••••••••••• 
simple •••••••••••••••••••••••••••••• 
subs:cripted ....•........•.•...•.••.. 
subscripted qualified ••••••••••••••• 
use of •••••••••••••••••••••••••••••• 

42 
27 
41 
26 
26 
28 
43 

nesting' 
of blocks •••••••••••••••••••••••• 20,71 
of ELSE clauses •••••••••••••••••••• 111 

NEWKEYoption •••••••••••••••••••••• 94,129 
NORMAL attribute ••••••••••••••••••• 49,138 
NOSYMBOL attribute ••••••••••••••••••••• 57 
null pa.rameter list •••••••••••••••••••• 51 
null st.a tement ••••••••••••••••••••• 1 8, 11 2 

macro •••••••••••••••••••••••••••••• 
null st:ring ........................... . 

132 
22 

116 
22 

NUMBER option ••••••••••••••••••••••••• 
numeric field •••••••••••••••••••••••••• 

112 
121 

76 
ONCHAR pseudo-variable ••••••••••••••••• 97 
ON-conditions ••••••• 18,76,112,122,123,150 

ON sta t.eroent •••••••••••••••••••••••••• 
with REPOSITION statement •••••••••• 
use of •••••••••••••••••••••••••••••• 

also see ON statement 
built-in functions ••••••••••••••••• 
input/output ••••••••••••••••••••••• 

145 
151 

nullification of •••••••••••••••••••• 18 
prefixes used with ••••••••••••••• 18,76 
program checkout •••••••••••••••• 79,152 
programmer-defined ............... 79,153 
with SIGNAL statement •••••••••••••• 125 

ONFIELD pseudo-variable •••••••••••••••• 97 
on-unit ••••••••••••••••••••••••••••••• 112 

cannot be RETURN statement ••••••••• 
OPEN st.a tement •••••••••••••••••••••••• 
operati.ons 

arit.hmetic •••••••••••••••••••••••••• 
arra.y-array ...............•......... 
bit string •••••••••••••••••••••••••• 
comj;:larison •••••••••••••••••••••••••• 
concatenation ••••••••••••••••••••••• 
scalar-array •••••••••••••••••••••••• 

operands 
composite ••••••••••••••••••••••••••• 
simple •••••••••••••••••••••••••••••• 

operators 

112 
114 

31 
36 
33 
34 
34 
35 

37 
37 

arit.hmetic •••••••••••••••••••••••••• 15 
bit string •••••••••••••••••••••••••• 15 
com:parison •••••••••••••••••••••••••• 15 
infix ••••••••••••••••••••••••••••••• 31 
prefix •••••••••••••••••••••••••••••• 31 
string •••••••••••••••••••••••••••••• 15 

options •••••••••••••••••••••••••••••••• 17 
also see individual options 

OPTIONS attribute ••••••••••••••••••••• 118 
output; 
see input/output 

OUTPUT attribute ••••••••••••••••••• 59,115 

PACKED attribute ••••••••••••••••••••••• 53 
PAGE statement •••••••••••••••••••••••• 116 
parameters ••••••••••••••••••••••••• 65,134 

allocation of •••••••••••••••••••••• 136 
bounds and length •••••••••••••••••• 136 
controlled •••••••.•.•••••••••••••••• 98 
with ENTRY statement ••••••••••••••• 107 
with PROCEDURE statement ••••••••••• 118 

PICTURE attribute •••••••••••••••••• 45,147 
with numeric data ••••••••••••••••••• 45 
specification •••••••••••••••••••••• 
with string data •••••••••••••••••••• 

picture format items 

147 
47 

external ••••••.••••••••••••.•..•.••• 90 
92 

picture specification tables •••••••••• 147 
internal ••••.••.•••••••••••.•••••••• 

POOL attribute ••••••••••••••••••••••••• 59 
POSITION attribute ••••••••••••••••••••• 55 
POSITION statement •••••••••••••••••••• 117 

format items that are not 
allowed with ••••••••••••••••••••• 117 

positioning statements ••••••••••••••••• 93 
precision ••••••••••••••••••••••••••• 22,44 

in expressions •••••••••••••••••••••• 31 
of format items ••••••••••••••••••••• 89 
in picture specifications ••••••••••• 46 
of real arithmetic constants •••••••• 23 

prefix 
condition •••••••••••••••• 18,76,112,150 
label ••••••••••••••••••••••••••••••• 18 

prefix operators; 
see operators 

PRINT option •••••••••••••••••••••••••• 120 
PRIORITY 

built-in function •••••••••••••••••• 146 
option •••••••••••••••••••••••••• 75,102 
pseudo-variable ••••••••••••••••••••• 97 

procedure ••••••••••••••••••••••••••• 19,65 
activation of ••••••••••••••••••••••• 71 
attribute ••••••••••••••••••••••• 70,118 
external •••••••••••••••••••••••••••• 20 
internal •••••••••••••••••••••••••••• 20 
invocation ••••••••••••••••••••••• 65,66 
name •••••••••••••••••••••••••••••••• 20 
parameters •••••••••••••••••••••••••• 65 
termination of ••••••••••••••••••• 67,71 

also see termination of blocks 
procedure-directed data specification 93 
procedure-directed transmission •••••••• 81 
PROCEDURE statement •••••••••••••••• 118,19 
program ••••••••••••••••••••••••••••• 2 1 , 11 

control •••••••••••••••••••••••••• 71, 95 
deletion of •••••••••••••••••••••••• 104 
elements •••••••••••••••••••••••••••• 14 
modification ••••••••••••••••••••••• 131 
structure •••••••••••••••••••••••• 17,71 

prologues ••••••••••••••••••••••••••••• 137 
pseudo-array ••••••••••••••••••••••••••• 98 
pseudo-structure ••••••••••••••••••••••• 98 
pseudo-variables ••••••••••••••••••••••• 96 
PUT statement ••••••••••••••••••••••••• 119 

without current file •••••••••••••••• 81 
with procedure-directed transmission 81 

qualified names 27,39 

READ statement •••••••••••••••••••••••• 119 
81 with procedure-directed transmission 

Index 159 



REAL attribute; 
see mode 

REAL pseudo-variable ••••••••••••••••••• 
record ••••••••••••••••••••••••••••••••• 

96 
80 

RECORD specification •••••••••••••••••• 126 
RECURSIVE attribute •••••••••••••••• 70,118 
REENTRANT attribute ••••••••••••••••••• 118 
REGION option ••••••••••• 94,59,120,127,129 
REGIONAL attribute ••••••••••••••••••••• 59 
relationship of arguments and 

parameters ••••••••••••••••••••••••• 134 
remote format specification •••••••• 93,108 
report generation statements ••••••••••• 93 
REPOSITION statement •••••••••••••••••• 121 

with ON statement •••••••••••••••••• 121 
RESTORE statement ••••••••••••••••••••• 121 
return of control ••••••••••••••• 66,71,122 
return of value •••••••••••••••••••• 66,122 
RETURN statement •••••••••••••••• 122,66,71 

cannot be an on-unit ••••••••••••••• 112 
returned value 

characteristics of •••••••••••• 107,118 
specifications •••••••••••••••••••• 118 

REVERT statement •••••••••••••••••••••• 
use of ••••••••••••••••••••••••••••• 

122 
78 

SAVE statement •••••••••••••••••••••••• 123 
scalar ••••••••••••••••••••••••••••••••• 23 

assignment •••••••••••••••••••••••••• 98 
constant; 

see constants 
defining •••••••••••••••••••••••••••• 54 
expression; 

see expressions 
variable 

see variables 
scale ••••••••••••••••••••••••••••••• 22,44 
scope 

of declarations ••••••••••••••••••••• 41 
of names •••••••••••••••••••••••••••• 41 
of condition prefixes ••••••••••••••• 76 

scope attributes •••••••••••••••••••• 41,52 
default for ••••••••••••••••••• 52,62,63 

SECONDARY attribute •••••••••••••••••••• 49 
secondary entry point •••••••••••••• 20,107 
segment •••••••••••••••••••••••••••••••• 80 

mark •••••••••••••••••••••••••••• 80,124 
SEGMENT option •••••••••••••••• 117,120,129 
SEGMENT statement ••••••••••••••••••••• 124 
separators ••••••••••••••••••••••••••••• 15 
sequence 

collating ••••••••.•••••••••••••••••• 
of control •••••••••••••••••••••••••• 

16 
95 

modification of ••••••••••••••••••••• 96 
SEQUENTIAL attribute ••••••••••••••••••• 59 
SETS attribute, ••••••••••••••••••••• 50,138 
sign picture characters ••••••••••••••• 149 
SIGNAL statement •••••••••••••••••••••• 125 

with programmer-defined 
ON-conditions ••••••••••••••••••••• 79 

simple operand ••••••••••••••••••••••••• 37 
60-character set ••••••••••••••••••••••• 14 
SIZE option ••••••••••••••••••••••••••• 116 
SKIP statement •••••••••••••••••••••••• 
SORT statement •••••••••••••••••••••••• 
SPACE option •••••••••••••••••••••••••• 
SPACE statement ••••••••••••••••••••••• 
specification ••••••••••••••••••••••••• 

160 

125 
126 
116 
127 
106 

stack, push-down ••••••••••••••••••••••• 
stacking current files ••••••••••••••••• 
standard attributes •••••••••••••••••••• 
STANDIN attribute •••••••••••••••••••••• 

73 
81 
58 
58 

STANDOUT attribute ••••••••••••••••••••• 58 
statement label •••••••••••••••••• 16,18,47 

array ••••••••••••••••••••••••••••••• 29 
initial values for •••••••••••••••• 29 

assignment ••••••••••••••••••••••• 98,99 
constant •••••••••••••••••••••••••••• 
data •••••••••••••••••••••••••••••••• 

28 
23 

designator •••••••••••••••••••••••••• 29 
required for FORMAT statement •••••• 108 

28 
17,95 

variable ••••••••••••••.••••••••••••. 
statements •••••••••••••••••••••••••• 
also see individual statement 

alphabetic list of •••••••••••••••••• 97 
classification •••••••••••••••••••••• 95 
compound •••••••••••••••••••••••••••• 18 
heading ••••••••••••••••••••••••••••• 19 
identifiers ••••••••••••••••••••••••• 16 
input/output •••••••••••••••••••••••• 93 
relationship •••••••••••••••••••••••• 95 
simple •••••••••••••••••••••••••••••• 18 

STATIC attribute; 
see storage class attributes 

sterling 
constants ~ •••••••••••••••••••••••••• 23 
pictures •••••••••••••••••••••••• 46,149 

STOP statement •••••••••••••••••••••••• 127 
storage; 
also see allocation 

ALLOCATE statement • • • • • • • • • • • • • • • • •• 97 
automatic •••••••••••••••••••••••• 72,53 
controlled •••••••••••••••••••• 73,53,97 
FREE statement ••••••••••••••••••••• 108 
static ••••••••••••••••••••••••••• 72,53 

storage class attributes •••••••••••• 53,72 
default for •••••••••••••••••••••• 53,63 
restrictions •••••••••••••••••••••••• 
with structures ••••••••••••••••••••• 

storage equivalence attribute; 
see POOL attribute 

string 
assignment ••.•••••••••••••••••••••. 
attributes •••••••••••••••••••••••••• 
built-in functions ••••••••••••••••• 
data ................................ . 

53 
64 

101 
47 

143 
22 

STRING option ••••••••• ~ ••••••••••• 119,129 
structure •••••••••••••••••••••••••••••• 25 

assignment •••••••••••••••••••••••••• 98 
BY NAME; 

see BY NAME 
declarations and attributes ••••••••• 63 
with DEFINED attribute •••••••••••••• 56 
with LIKE attribute ••••••••••••••••• 58 
level numbers •••••••••••••••••••• 25,63 
storage allocation ••••••••••••••• 98,53 
with storage class attributes ••••••• 53 

subroutine •••••••••••• ~ •••••••••••••••• 65 
references •••••••••••••••••••••••••• 67 

subscripts ••••••••••••••••••••••••••••• 26 
interleaved ••••••••••••••••••••••••• 28 

SUBSTR pseudo-variable ••••••••••••••••• 97 
SYMBOL attribute ••••••.••••••••••••••••• 57 

with DEFINED attribute •••••••••••••• 54 
symbol table attributes •••••••••••••••• 57 

default for •••••••••••••••••••••• 57,63 



syntactical unit ••••••••••••••••••••••• 11 
syntax notation •••••••••••••••••••••••• 11 

TAB option •••••••••••••••••••••••••••• 111 
TA.B statement ••••••••••••••••••••••••• 127 
task ••••••••••••••••••••••••••••• 11,29,74 

attached ••••••••••••••••••••••••• 11,75 
attaching •••••••••••••••••••••••• 11,75 
major ••••••••••••••••••••••••••••••• 74 
synchronization of •••••••••••••••••• 74 
termination of •••••••••••••••••••••• 75 

task option •••••••••••••••••••••••••••• 75 
TASK option ••••••••• ~ •••••••••••••• 75,102 
termination 

blocks •••••••••••••••••••••• 71,109,122 
function procedure •••••••••••••• 66,122 
program •••••••••••••••••••••••••••• 127 
task •••••••••••••••••••••••••••••••• 

TITLE option .•••••••••••••••••••••••••• 
TO and By ••••••••••••••••••••••••••••• 
truncation on assignment ••••••••••••••• 

75 
115 
105 

99 

UNSPEC pseudo-variable ••••••••••••••••• 97 
UP option ••••••••••••••••••••••••••••• 126 
USES attribute ••••••••••••••••••••••••• 50 

variables 
array ••••••••••••••••••••••••••••••• 25 
scalar •••••••••••••••••••••••••••••• 25 

range of •••••••••••••••••••••••••• 25 
default for range ••••••••••••••••• 63 

statement-label ••••••••••••••••••••• 28 

WAIT statement •••••••••••••••••••• 128,137 
WHILE clause •••••••••••••••••••••••••• 106 
WRITE statement ••••••••••••••••••••••• 128 

with procedure-directed 
transmission •••••••••••••••••••••• 81 

ZERO attribute ••••••••••••••••••••••••• 61 
ZERO option ••••••••••••••••••••••••••• 120 
zero suppression ••••••••••••••••••• 147,45 

Index 161 



FOLD 

FROM 

NAME 

OFFICE NO. 

COMMENT SHEET 

IBM OPERATING SYSTEM/360 
PL/I: LANGUAGE SPECIFICATIONS 

Form C28-6571-1 

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED 

o SUG(3ESTED ADDITION 

o SUGC;ESTED DELETION (PAGE 

o ERRC)R (PAGE 

EXPLANA TION 

NO POSTAGE NECESSARY IF MAILED IN U. S. A. 
FOLD ON TWO LINES, STAPLE, AND MAIL 

FOLD 

FOLD 



FOLD FOLD 

--- - - -- -- - ---- - -------------- .... --------------

FOLD 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 

1271 AVENUE OF THE AMERICAS 

NEW YORK, N. Y. 10020· 

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS, 

DEPARTMENT 039 

STAPLE 

FIRST CLASS 
PERMIT NO. 33504 

NEW YORK, N. Y. 

FOLD 

STAPLE 

w 
Z 

...I 

C) 
Z 
o 
...I 
c( 

... 
:J 
U 



C28-6571·1 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 


