Systems Reference Library

IBM Operating Systemn/360
PL/I: Language Specifications

This manual is a description of the full
facilities of PL/I to be implemented under
Operating System/360. However, the reader
should not assume that all facilities will
be available at initial release. Manuals
for specific System/360 implementations
will be released later.

Another publication will be issued spec-
ifying a subset of the facilities of the
language described in this manual. This
subset 1is planned for implementation under
the Basic Operating System/360 and Basic
Program Support for System/360.

File No. S360-29
Form C28-6571-1

B . e

MAJOR REVISION (JULY, 1965)

This publication, Form C28-6571-1, is a major revision of the previous
edition, Form C28-6571-0. This new edition reflects a number of significant
changes in the language. The sections containing these changes are indicated by
a dot (®) to the left of the subject heading in the Table of Contents.

In addition to the technical changes, certain organizational changes have
been made. Additional chapters (Chapters 5 and 6) have been formed from
material previously contained in Chapter 1. The information on attributes,
declarations, and scope of declarations, also previously contained in Chapter 1,
has been incorporated into Chapter 4.

This publication was prepared for production using an IBM computer to update
the text and to control the page and line format. Page impressions for photo-
offset printing were obtained from an IBM 1403 Printer using a special print
chain.

Copies of this and other IBM publications can be obtained through IBM Branch
Offices.

A form for readers' comments appears at the back of this publication. It may
be mailed directly to IBM. Address any additional comments concerning this
publication to the IBM Corporation, Programming Systems Publications, Department
D39, 1271 Avenue of the Americas, New York, N. Y., 10020.

© 1965 by International Business Machines Corporation

INTRODUCTION « ¢« o o o « o « =
Goals of the Language. « « « «

Basic Characteristics of PL/I.
New Features., . . « « « »
Block Structure. . . .
Description of Data. .
Storage Allocation . .
Data Conversion. . . .
Data Organization. . .
Input/Output . . « . .
Multi-Task Operations.
Compile-Time Facilities

-
-
-
-
-
.
-
-
o

Syntax Notation in This Mahual

oCHAPTER 1. PROGRAM ELEMENTS
Basic Language Structure .
Language Character Sets
60-Character Set . .
48-Character Set . .
Delimiters.
OperatorSe « o« o o o
Arithmetic Operators
Comparison Operators
Bit-String Operators
String Operator. . .
Parentheses.
Separators and Other
Data Character Set. . .
Collating Sequence. . .
Identifiers
Length of Identlflers.
OKEYWOXdASe « o « o o o o o
Statement Identifiers.
Attributes
Separating Keywords. .
Built-in Function Names
Options. . « « « &
Conditions . .+ « .
eThe Use Of Blanks . .
commentsS. « o o o« o =

lllU..‘l.l.l..ll

0‘00uoollnoo.&.a.lluocclo

eBasic Program Structure.
Simple Statements . .
Compound Statements .
oPrefikesS. « o o o o« o
®Label Prefixes . .
eCondition Prefixes
GXOUPSe o o o o o o o
BlOCKSae o ¢ o o o o
Use of the END Statement
Programs. « ¢ o« « « « «

s o 0 & 0 s &
3 & & & & & s & a2 o
¢ o & o o & 8 s & 0

oCHAPTER 2: DATA ELEMENTS . . .
oData TYPES « o « o o o o o« o «

Arithmetic Data « « « « o« =«

cnoocnnococ.og.l.ulnlocooo

e & & 6 8 0 s s & ¢

e

8 8 6 6 8 2 & & o & 0 0 o (P s s e s 6 s 0 e 2 0

& 8 8 ¢ & & & 0 o & s 0 e s e s s e e 0 0 0 s e &6 s & & & 5 s 0 0

o * & 6 8 & 5 0 s

@ 6 6 5 8 0+ 6 0 2 5 & 8 0 0 s 0 2 s s s o 0 s e

e 5 & & 8 & & & 9

a 6 8 &6 0 & & s s &

e @ 6 0 5 ¢ & & & & & &t 0 s & & & & & B & s s 0o

eStr

Sta

Scalar
Con

Variables « ¢« & o ¢ o o & « &«

Data AggregateS. « e « o« o o o o o o o
AYXYaySe o o « o o o o o o o o o o =
OStrUCtUreSe o« ¢ o o o o o« o o o o «
Arrays of Structures. . . « « ¢ . &

Naming « « o« ¢« o o o o ¢ o o o o o o &
Simple NaMeS. « o o « o « o o o o «
Subscripted Names - « ¢« ¢« « o o » =«

Cross Sections of Arrays . « . «
Qualified Names « « o « « o o o o «
Subscripted Qualified Names

Statement Labels ¢« ¢ « « ¢ o o o o o @
Constante. « « o o o o o o o ¢ o o o
Variable. « o o o o o ¢ o o o o o o
AYYAY o o o o o o o o o o o« o o o =

Initial Values for Label Arrays.

®CHAPTER 3: DATA MANIPULATION

®EXPIeSS1ONSe « o o o o o o o =

®Sca

CONTENTS

Base . .« . -
Scale. . . -
Mode . . . o
Precision. -
ing Data « . . .
Character-String Da

e« 8 &
s & s 0
¢ & & & @

Bit-String Data.
tement-Label Data

.
.
-
-
3
.
3
-

e o & ¢ o o o o
e o 5 » 5 s o o
e o ¢ 0 s & s 0
s & ¢ & ¢ ¢ o @
s & & o 8 o o &

ta

QuantitieS. « « ¢ o« o o « o o
stants . . . - e o o = e =
Real Arlthmetlc Constants. -
Decimal Fixed-Point Constants.
Binary Fixed-Point Constants .
Sterling Fixed-Point Constants .
Decimal Floating-Point Constants
Binary Floating-Point Constants.
Precision of Real Arithmetic

Constants . . . - o o o
Imaginary Arlthmetlc Constants
String Constants . « « « « «
Character-String Constants .
Bit-String Constants . « . .
Statement-Label Constants. .

0TaSKk NaMES « o o o o o o = = « o o o o

oEvent NamesS. « « « « ¢ o o o o o o o o

lar Expressions.
Arithmetic Operations .
Mixed Characteristics. .

Results of Arithmetic Opera
Arithmetic Conversions . .

Bit-String Operations. .
Comparison Operations. .
Concatenation Operations
Type Conversion.

* s
s 0 e 0

ion

0!‘.0(('.00.
anoluOo-oo
»

s s & 8 8 8 8 e 2 0 8 5 s s

eBit String to Character String .
eCharacter String to Bit String .
eCharacter String to Arithmetic .
eBit String to Arithmetic
Arithmetic to Character String .
eArithmetic to Bit String . .
eArray EXPressions « « « « « o «
Prefix Operators and Arrays.
Infix Operators and Arrays .
Scalar - Array Operations. .
Array - Array Operations . .
Array Expressions Involving
Structures.
eStructure Expressions . . « « . .

eEVALUATION OF EXPRESSIONS. « ¢ o « =«
eOrder of the Evaluation of
EXPresSSiONSe « o o o o o o o o o =

oCHAPTER U4: DATA DESCRIPTION . « « . »

oAttributes « « o ¢ 4 ¢ 2 o o o o « o @

eDeclarations « « . « . ¢« . . .

eExplicit Declarations . . .

e The DECLARE Statement. .

e Factoring of Attributes.
e Multiple Declarations and
Ambiguous References. «
eContextual Declarations
Implicit Declarations « . .
Scope of Declarations . . «
Scope of External Names.
Basic Rule on Use of Names . . .

. ¢ o 0

¢« s 3 s
.
¢« s s 0

The Attributes o« o ¢ ¢ o o o o o « o« «
Data Attributes
Arithmetic Data. . .
BaS€ o« o o o o o =
Scal€. « « o o o o o
Mode « ¢ o« o o o
Precision. « « « «
epDefault Conditions for
Arithmetic Data .« . . « . .
eThe PICTURE Attribute. . . .
String Attributes.
eThe LABEL Attribute.
eThe TASK Attribute «
eThe EVENT Attribute. . . . « . .
The dimension Attribute . « « « «
The SECONDARY Attribute « « « .+ . =«
eThe ABNORMAL and NORMAIL Attributes.
eThe USES and SETS Attributes. .
eEntry Name Attributes «

e o s 0o e
o 0 s o 2 0
¢ & o o o 2
e ¢ o s s 8

eThe ENTRY Attribute. . . .
eThe GENERIC Attribute. . .
The BUILTIN Attribute.
Scope Attributes.
eStorage Class Attributes., . . -
eThe ALIGNED and PACKED Attrlbutes -
eThe DEFINED Attribute . . .
eThe INITIAL Attribute . . .
eSymbol Table Attributes . .
The LIKE Attribute.
eFile Description Attributes
The FILE Attribute . . .

" o & s ¢ 8
L S T S
.
L]

¢ s 8 o s & o &

e 8 & e ¢ 3 & s s 8 s e s 0 e s 8 s o o

Standard Attributes.

e The Storage Equivalence
Attribute - o
eThe Function Attrlbutes. .« .
eFile Organization Attributes
eAccess Attributes. . « « .
eThe KEYLENGTH Attribute. . .
The ZERO Attribute . . . -
The ENVIRONMENT Attrlbute. .

eAssignment Of Attributes To
Identifiers. . . . e« o s s e

eApplication of Default

Attributes. « ¢ ¢« ¢ o« ¢ o o o o

.
¢ 8 e 6 e e o

eStructure Declarations and Attributes.
Level Number. . . . ¢ ¢ &« o « « o &
® Structures and the Dimension
Attribute. e o % * o
® Structures and Data Attrlbutes. . .
Structures and Scope Attributes . .
Structures and Storage Class
Attributes . ¢ & ¢ ¢ o o o o o o @

®CHAPTER 5: PROCEDURES, FUNCTIONS,
AND SUBROUTINES o o ¢ o o ¢ o o o o o

Formal ParameterSe « o« e o o o o o o o
eProcedure References . . ¢« « o o o o «

eFunction References and Function
ProcedUYeSe « o o« o o o o o o o o o o
eGeneric FUNCtions . « o o o « o o &«
Built-in FunctionS. « « « « ¢ ¢ o &

Subroutine References and Subroutine
ProcedUreS. o« o o 2 « o o o o a o o o

e The Arguments in a Procedure Reference
eThe Use of the ENTRY Attribute. . .
ePassing Arguments to the Entry

Pointe ¢ ¢« ¢ ¢ ¢ o ¢ ¢ ¢ 4 e o . .

The Special Procedure Attribute
RECURSIVE ¢ « o o o o o o o o o o o =

® CHAPTER 6: DYNAMIC PROGRAM
STRUCTURE . ¢« 4 o « 4 o ¢ o o o o o

Program Control. « « o ¢ o o o o o « &

Activation and Termination of Blocks .
Dynamic Descendance . « « « « « « «
Dynamic Encompassing. « « « « « . .

Allocation of Data and Storage Classes
Definitions and Rules

® Storage Classes « « « .« o e
The Static Storage Class . .

e The Automatic Storage Class.

The Controlled Storage Class .

« e s .

¢ o o o 8

eAsynchronous Operations And Tasks. . .
eSynchronous and Asynchronous
Operations « « o« o o ¢ o o o « o «

s o o o 0

58
59
59
59
59
61
61
62
62
62

63
63

64
L

64

65
65

65

66
66

67

68
69

69

70

eInterrupt Operations . « « « « « &

e CHAPTER 7:

Data SpecificationsS. « « « « « »

eSynchronizing Two Asynchronous
Operations « « « ¢« o« o o o o
eTask and Events . o« « « « o o
eThe (Creation of Tasks
eTermination of Tasks. « . « &
eAllocation of Data in Tasks .

o o s 0
¢ & s &
o s o e o

epurpose of the Condition Prefix
e Scope of the Condition Prefix .
eUUse of the ON Statement
eSystem Interrupt Action
Use of the REVERT Statement . .
Programmer-Defined ON-Conditions
Facilities for Program Checkout

s & o 8 s 8 s 2

INPUT/OUTPUT. . « « « «

eData TransmissSioN. « « « o o « o

List-Directed Transmission. . .
Data-Directed Transmission. . .
Format-Directed Transmission. .
eProcedure-Directed Transmission

¢« o o o o
¢ o o & 0

Data ListS. o o« ¢ o o o ¢ o o o o =
Repetitive Specification . .
Transmission of Data-List

ElementSe « o o o o o o s o o
e List-Directed Data Specification.
eList-Directed Inpute « « o« «
eList-Directed Input Format . .
‘eList-Directed Output . « « . .
eList-Directed Output Format. .
e Length of List-Directed Output
FieldSe o o o o o o o o o o o =
eData-Directed Data Specification. .
eData-Directed Data On External
Medium. « ¢ o o o o o o o o o @

Data-Directed Output Format.
eLength of Data-Directed Data
FieldS. o« o o o o o o o o =

-

eFormat-Directed Data Specification.

oFormat ListS. o« o o« o ¢ o o o o

Data Format ItemsS. . . .

e External Mode Format Items

e Internal Mode Format Items

Control Format Items . . .

Spacing Format Item. . .

Positioning Format Items

Remote Format Item . . .
epProcedure-Directed Data

Specification. « « ¢« ¢ ¢« ¢ & .

eInput/Output Statements.
eFile Preparation Statements .
eData Specification Statement.
eData Transmission Statements.
ePositioning Statements. . . .
eReport Generation Statements.

eRecord Identification Options.
The Key Option. « « o+ « « .
The Newkey Option . . « . &
The Region Option . - « « .

* & 5 2
¢« o 0 0

-

. ¢ 8 2 o 8 &

e & 8 o o 0

&« & 9 0

e 8 e & 3 o s s 0

® o ¢ & o 8 o o

® ¢ o » © o s & & 3

o o o 0

74

o CHAPTER 8: STATEMENTS . . .
Relationship Of Statements .
Classification. « « « « .
Assignment Statement .
Control Statements . .

e Data Declaration Statemen

Error Control and Debug
Statements. . «
Input/Output Statements.

t

Program Structure Statements

Sorting Statement. . . .

Storage Allocation Statements

eSequence of Control

ePseudo-Variables « ¢« « « o o o

eAlphabetic List of Statements

e The
¢ The

ALLOCATE Statement .
Assignment Statement

The BEGIN Statement. .
e The CALL Statement . .
e The CLOSE Statement. . .

The DECLARE Statement.

The
The
e The
e The
e The
The
e The
e The
e The
The
e The
e The
e The
The
e The
The

DELAY Statement. .
DELETE Statement .
DISPLAY Statement.
DO Statement . . .
END Statement. . .
ENTRY Statement. .
EXIT Statement .
FETCH Statement.
FORMAT Statement .
FREE Statement .
GET Statement. . .
GO TO Statement
GROUP Statement. .
IF Statement . .
LAYOUT Statement

o CHAPTER 9:

¢ The
eThe
e The
eThe
¢The
oThe
oThe
e¢The
eThe
eThe
The
oThe
eThe
eThe
eThe
eThe
eThe
eThe
eThe
eThe
eThe

ON Statement . .
OPEN Statement .
PAGE Statement . .
POSITION Statement
PROCEDURE Statement.
PUT Statement. . . .
READ Statement . . .
REPOSITION Statement
RESTORE Statement. .
RETURN Statement . .
REVERT Statement . .
SAVE Statement . . .
SEGMENT Statement.
SIGNAL Statement . .
SKIP Statement .
SORT Statement .
SPACE Statement.
STOP Statement .
TAB Statement.
WAIT Statement .
WRITE Statement.

Null Statement . .

S 8 6 8 5 s 0 6 6 0 s & s 0 s 2 0
8 5 6 8 6 & 8 8 4 0 8 & 6 06 0 B 0 S B ° 4 0 2 P 0 % & 3 6 0 " 8 e s % T S O 0 2 s e s 0
@ 5 8 6 8 5 5 8 & 0 8 5 8 6 0 6 8 8 & % 4 S 0 % e B S 6 5 0 % & 0 s % 0 s s s 2 s s b 0

e o o 8 0 e o
o s e s & o 0

PROGRAM MODIFICATION .

Macro VariableS. « o o o ¢ o o o o @
eThe Macro DECLARE Statement . . .

e o 8 o o o

95

95
95

95
95
95

95
95

96
97
97
98
.102
.102
-.103
. 104
.10“
-104
. 105
. 105
.107
107
.108
.108
.108
.108
109
.109
<110
. 111
<111
<112
<112
. 114
.116
- 117
.118
<119
.119
.121
- 121
<122
. 122
123
.124
«125
125
. 126
<127
. 127
<127
. 128
128

<131

131
<131

Macro EXpresSsionsS. « « « « o o o « o »

e Executable Macro Statements. « « . . .
The Macro Assignment Statement. . .
The Macro Null Statement.
The Macro GO TO Statement
The Macro IF Statement. . . . « . .

e Action of the Macro ProcesSsSOr. . « « «

© CHAPTER 10: SPECIAL TOPICS. « . «
eRelationship of Arguments and
ParameterS. « « o ¢ o o « o o o o o o
Evaluation of Argument Subscripts .
eUse of Dummy Arguments. o
eUse of the Entry Attribute.
Correspondence Of Parameters And
ArgumentsSe « o o o o o o ¢ o o o o
Allocation of Parameters. . « . . .
Parameters, Bounds and Length. .
Asterisk Notation for Bounds or
Lengthe ¢ ¢ ¢ & ¢« ¢ ¢ ¢ ¢ o o &
Expressions as Bounds or Length.

BProlOgUEeSe o o « o o o o o o o o o o o
eData Allocation Across TaskS « « « « «
eAllocation of Task and Event

Names . o« «o o o o o « o « o « @
®Abnormality. « « « o« ¢« ¢ o o o o o o .
O®PrOgYamS o o o o s s o o o o o o o o o
e APPENDIX 1: BUILT-IN FUNCTIONS . « « &
eArithmetic Generic Functions

eFloat Arithmetic Generic Functions . .

eString Generic Functions « « « « o« « »

-132
.132
. 132
. 132
132
133
.133
. 134
. 134
. 134
- 134
- 134
135
<136
-136

. 136
- 136

137
. 137
.138
.138
.138
.140
. 140
- 142

<143

e3uilt-In Functions for Manipulation of

AYTAYSe o o o o o o o o o o o o o o

144

eArray And Structure Built-In Functions .145

eCondition Built-In Functions

eOther Built-In Functions . . . « . .
APPENDIX 2: PICTURE SPECIFICATION
TABLES: ¢« o « o o o o o s o o o o

Digit Point and Subfield Delimiting
Characters. . ¢« ¢ ¢« ¢ ¢ ¢ ¢ o o o »

Zero Suppression Characters.

Drifting Editing Symbols
Drifting Characters
Editing Character . . . « . « «
Conditional Editing Characters. .
Sign Characters « « o o o o o o o«
Scaling Factor Specification. . .

eSterling Pictures.
ePictures for Character Strings. .
eAPPENDIX 3: ON-CONDITIONS. o« « « o o
eClassification of Conditions . .
e Computational Conditions. . .
¢ ITnput/Output Conditions . . .
e Program Checkout Conditions .
e Programmer-Named Conditions .
eSystem Action Conditions.

APPENDIX 4: PERMISSIBLE KEYWORD
ABBREVIATIONS 2 ¢ « o « o « o o o &
APPENDIX 5: THE 48-CHARACTER SET . .

INDEX:e o o 2 o « o o 3 o o o o« o o @

. 145

. 145

<147

.47
. 147

07
. 148
.148
. 148
.149
. 149

. 149
. 149

.150
150
.150
. 151
-152
. 153
.153
. 154
155

.156

Table 1. Arithmetic Base and Scale
CONVersSiONe v o« o o« o o o o o o o o «
Table 2. Scope and Use of Names in
Example 1, for "Scope of External
NameS™. o ¢ o o o o o o o o o o o o =
Table 3. Allowable statements for
CONSECUTIVE, REGIONAL, and INDEXED
organizations of a SEQUENTIAL access
file. ¢« &« &« o . . o o o o o o o s @
Table 4. Allowable Statements for the
REGIONAL and INDEXED Organizations of
a DIRECT Access File. . ¢« ¢ ¢ ¢ « o
Figure 1. General Format for
Repetitive Specification.
Figure 2. Example of Data-Directed
Transmission, Both Input and Output .

33

42

59

61
82

88

ILLUSTRATIONS

Figure 3. General Format for the
CLOSE Statement
Figure 4. General Forma
Statement « « ¢ ¢ ¢ ¢ e 4 e e o o
Figure 5. General Format for the
OPEN Statement. « « « ¢ o« ¢ o« « o «
Figure 6. Format of "option"
Allowed in the OPEN Statement . . .
Figure 7. General Format for the
PAGE Statement. « ¢« o« ¢ o o ¢ o =«
Figure 8. General Format for the
READ Statement. « « o« ¢ ¢ o o o o &«
Figure 9. General Format for the
SORT Statement. « « o« o« « o o o o o
Figure 10. General Format for the
WRITE Statement . . « ¢« o o o« o o

for the DO

. 104

. 105

- 114

. 114

-116

- 119

.126

129

GOALS OF THE LANGUAGE

Throughout the relatively brief history
of electronic data processing, certain com-
puters have been identified with a particu-
lar field of activity, either commercial or
scientific.

Programmers generally have specialized
in one field or the other. High-level
languages, of course, have emphasized this
divergence, going in one direction for
commercial programming and in another
direction for scientific programming.

Until recently, this difference present-
ed few problems. Each language was ade-
quate for its use; the commercial program-
mer dealt with relatively few computations
performed upon great amounts of data; the
scientific programmer performed complex
calculations using small amounts of data.

Now, however, the situation is changing.
Business and industry have discovered new

uses for the computer, and the commercial
programmer finds himself concerned with
more involved computations in statistical

forecasting and in linear programming for
operations research.

In science and engineering, the program-
mer needs a language to simplify the pre-
paration of reports, to sort and edit
technical data; he £finds more need for
input and output operations. The engineer
specifically wants the ability to handle
data at the bit level for applications such
as circuit analysis.

Today's new computing systems have been
designed to cope with all of these comput-
ing problems. They handle commercial and
scientific programs with equal ease, with
new power and new speed; they provide
facilities for such new techniques as
shared data processing, asynchronous pro-
gram execution, and real-time processing.

None of the traditional high-level lan-
guages, however, can be used with efficien-
cy across the entire range of ability of
these new computers.

That is the reason for PL/I, a multipur-
pose programming language for use not only
by commercial and scientific programmers
but by the real-time programmer and the
systems programmer as well. It is a lan-
guage designed for efficiency, a language
that enalles the programmer to use virtual-
1y all the power of his computer.

INTRODUCTION

PL/I is organized so that any program-
mer, no matter how extensive his experi-
ence, can use it easily at his own level.

This manual, because it is a reference
manual of the entire language, shows the
range and power of PL/I, its ability to
handle the most complex computing problems.

Actually, however, PL/I need be no more
complex than the program for which it is
used.

One of the primary aims in the design of
the language was modularity, that is, pro-
viding different subsets of the language
for different applications and different
levels of complexity. A programmer using
one subset need not even know about the
unused facilities.

Although PL/I is relatively machine
independent, this modularity might be com-
pared to a completely equipped data proc-
essing center. A novice programmer would
use only a small part of the system; he can
ignore the rest of the equipment. More
complex programs, of course, would require
more equipment. Some programs would use
certain modules of equipment; other pro-
grams, other modules. Rarely, if ever,
would a program require use of all the
facilities.

In PL/I, every attribute -- or descrip-
tion -- of a variable, every option, and
every specification has been given a
"default" interpretation. Wherever the
language provides for one or more alterna-
tives, a “default" interpretation -- or
assumption -- is made by the compiler if no
choice is stated by the programmer. And in
each case, the assumption that was chosen
in the design of the language is the one
most 1likely to be required by the program-
mer who need not know that alternatives
exist.

The "modularity" and the "default"
aspects are the bases upon which the sim-
plicity of PL/I has been built. They are
also part of its rower.

Introduction 9

BASIC CHARACTERISTICS OF PL/I

The overall aim in the design of the
language was to give the programmer freedom
in handling his computing system.

Freedom of expression: If a particular
combination of symbols has a useful mean-
ing, that meaning is allowed. Although
actual statements in the language must be
written using a specified character set,
data may be composed of any character
allowed by the configuration of the indivi-
dual computer. PL/I is written in a free-
field format; the programmer is free to
design his own format for listings.

Full access to machine and operating system
facilities: the PL/I programmer rarely, if
ever, will need to resort to assembly
language coding.

NEW FEATURES

Part of the 1language 1is, of course,
based on earlier programming languages.
Certain aspects are expansions of ideas
used previously. Other portions are
exclusively a part of PL/I. The following
paragraphs briefly introduce some of these
new features. All of them are discussed
more fully within the text.

Block Structure

The statements of a PL/I program are
organized into program sections called
"blocks." A program may be made up of one

block or many blocks. Blocks may be separ-
ate from one another, with no common state-
ments, or they may be nested, one within

anothere.
Blocks provide +two important logical
functions: (1) they define the scope of

applicability of data variables and other
kinds of names, so that the same name may
be used for different purposes in different
blocks without ambiguity, and (2) they
allow storage for data variables to be
assigned only during execution of the block
and freed for other uses at the termination
of the block.

Certain blocks, called "procedure"
blocks, may be invoked (i.e., called into
execution) remotely from different places’
in the program, and they provide means to
handle arguments and to return values.

10

Description of Data

In the language, data is described as
having certain characteristics called
attributes. For example, numeric data

would have a BINARY attribute or a DECIMAL
attribute; string data would be either
CHARACTER string or BIT string.

Storage Allocation

The computer storage for any data varia-
ble in a PL/I program may be assigned
statically, for the entire execution of the
program, or dynamically, during execution.

Two classes of dynamic storage are avai-
lable to the PL/I programmer, automatic and
controlled. When a variable has the con-
trolled storage attribute, the programmer
may allocate or free storage for that
variable at any time he wishes. Storage
for a variable having the automatic storage
attribute 1is allocated upon entry to the
block and freed upon exit.

Data Conversion

In keeping with the freedom of PL/I,
mixed expressions are allowed. In the
following example, F is declared to be a
fixed-point number, G a floating-point num-
ber, and H a character string that is ten
characters in length.

DECLARE F FIXED, G FLOAT,
(10) ;

H CHARACTER
H=F + G;

In the evaluation of the second state-
ment of the above example, F will be
converted to a floating-point value,
floating-point addition will be performed,
and the result will be converted to a
character string of ten characters and
assigned as a value to H.

Data Organization

Data variables can be grouped into eith-
er arrays or structures. An array is
composed of elements of the same charac-
teristics. A structure is a collection of
variables and arrays, not necessarily alike
in characteristics. Structures may also
contain other structures. 1Individual items
of an array are referred to by subscripted
names; individual items of a structure are
referred to by names that may sometimes

have to be qualified to avoid ambiguity.

In PL/I, arrays and structures are
treated as variables in their own right.
Either of them may be used as the operand
of an expression. The expression is then
an array expression or a structure expres-
sion, and it returns an array or structure
result.

Input/Qutput

The modularity of PL/I is particularly
apparent in the input/output facilities.
With PL/I, a programmer may control
input/output activity to whatever degree he
requires. He may handle mnormal transmis-
sion and conversion simply, or he may use
the full capability of the 1language for
control of more complex problems of input
and output.

Multi-Task Operations

In PL/I, a collection of procedures 1is
called a program; the execution of a pro-
gram (or many programs or a part of a
program) to perform a particular job is
called a task.

PL/I provides facilities for handling
two or more tasks concurrently. This
facility, of course, is extremely important
in the use of any computer system with
multiprocessing capabilities. It also is
valuable for a single processor system with
facilities for real-time operations.

During execution of a procedure, the
executing task might specify that a subor-
dinate task begin execution upon certain
data (i.e., the executing task invokes
another task); the new task, called an
attached task, might also invoke another
task. All tasks then proceed concurrently
and, in effect, simultaneously.

The multi-task facilities of PL/I allow
a subordinate task to communicate with its
originating, ox attaching, task through
arguments, and through data allocated in
the attaching task. The originating task
also may, at any time, test to see if a
subordinate task is completed and may, if
necessary, delay its own execution to wait
for the completion.

Compile-Time Facilities

Most programming languages are written
on one level only, as statements to the
computer to perform certain operations
using the supplied data. PL/I not only
directs the computer to operate upon the
data, but with a macro facility, it directs
the compiler to operate upon the program
itself.

The programmer can include in his pro-
gram information that will aid the compiler
to produce more efficient code, documenta-
tion, and diagnostics.

SYNTAX NOTATION IN THIS MANUAL

Throughout this manual, wherever a PL/I
statement -- or some other combination of
elements -- is discussed, +the manner of
writing that statement or phrase is illus-
trated with a uniform system of notation.

This notation is not a part of PL/I; it
is a standardized notation that may be used
to describe the syntax -- or construction
-- of any programming language. It pro-
vides a brief but precise explanation of

the general patterns that the language
permits. It does not describe the ' meaning
of the language elements, merely their

structure; that is, it indicates the order

in which the elements may (or must) appear,
punctuation that is required, and options
that are allowed.

The following rules explain the use of
this notation for any programming language;
only the examples apply sSpecifically to
PL/I:

1. A notation variable is the name of a
general class of elements in the pro-
gramming language. A notation varia-
ble must consist of:

a. Lower-case letters, decimal
digits, and hyphens and must begin
with a letter.

b. A combination of lower-case and
upper-case letters. There must be
one portion in all lower-case let-
ters and one portion in all upper-
case letters, and the two portions
must be separated by a hyphen.

All such variables used are
defined in the manual either formally,
using this notation, or are defined in
prose.

Examples:
This denotes the

a. digit. occur-

Introduction 11

S.

6.

12

rence of a digit, which may be 0
through 9 inclusive.

b. file-name. This denotes the
occurrence of the notation varia-
ble named file-name. An explana-
tion of file-name is given else-
where in the manual.

¢. DO-statement. This denotes the
occurrence of a DO statement. The
upper-case letters are used for
emphasis.

A notation constant denotes the liter-
al occurrence of the characters rep-
resented. A notation constant con-
sists either of all capital letters or
of a special character.
Example:
DECLARE identifier FIXED;
This denotes the literal occurrence
of the word DECLARE followed by the
variable "identifier," which is
defined elsewhere, followed by the
literal occurrence of +the word
FIXED followed by the 1literal
occurrence of the semicolon (;).
The term "syntactical unit," which is
used in subsequent rules, is defined
as one of the following:
a. a single variable or constant, or
b. any collection of variables, con-
stants, syntax-language symbols,
and reserved words surrounded by
braces or brackets.
Braces { } are used to denote group-
ing.
Example:
FIXED
identifier
FLOAT)
The vertical stacking of syntacti-
cal units indicates that a choice
is to be made. The above example
indicates that the variable
"identifier™ must be followed@ by
the 1literal occurrence of either
the word FIXED or the word FLOAT.
The vertical stroke | indicates that a
choice is to be made.
Example:
identifier {FIXED]FLOAT}
This has exactly the same meaning
as the above example. Both methods
are used in this manual to display
alternatives.
Square brackets [] denote options.

Anything enclosed in brackets nay

9.

10.

appear one time or may not appear at
all.

Example:

CHARACTER (length) [VARYING]

This denotes the literal occurrence
of the word CHARACTER followed by
the variable "length" enclosed in
parentheses and optionally followed
by the literal occurrence of the
word VARYING. If, in rule 4, the
two alternatives also were option-
al, the vertical stacking would be
within brackets, and there would be
no need for braces.
Three dots ... denote the occurrence
of the immediately preceding syntacti-
cal unit one or more times in succes-
sion.

Example:

[digit) ...

The variable, "digit," may or may

not occur since it is surrounded by

brackets. If it does occur, it may

be repeated one or more times.
Underlining is used to denote an ele-
ment in the language being described
when there is conflict between this
element and one in the syntax lan-
guage.

Example:

operand (&|]|4,} operand

This denotes that the variables
"operand” are separated by either
an "and" (¢, an "or" (|), Oor a
"not"™ (y) symbol. The constant |
is underlined in order to distingu-
ish the "or" symbol in the PL/I
language from the "or" symbols in
the syntax language.

The notation ::= should ke read "is

defined as."

Example:
word: :=letter|word| |lettexr

This dentoes that a "word"™ is

defined as a letter or a word

concatenated with a letter.
min max. The combination of these two
words with associated numeric values
specifies the minimum and maximum num-
ber of times a syntactical wunit may
occur. When min is used without max,
the implied max is infinity. When max

is used without min, the

implied min

is zero.

Examples:

Ae

min 2 max 6 {digit|letter}

This denotes that either "digit"
or "letter" intermixed in any com-
bination must occur at 1least two
times, but no more than six.

min 5 {digit|letter}

The variables "digit®™ or "letter”
intermixed in any combination must
occur at least five times, but
there is no limit on the number of
times over five that they may
occur.

max 3 label

The variable "label" may not occur
more than three times in succes-
sion. It may not be present at
all, or it may occur one, two, or
three times.

Introduction 13

CHAPTER 1. PROGRAM FLEMENTS

BASIC LANGUAGE STRUCTURE

PL/I allows the programmer to write the
statements of his program in a free-field
format. A statement, which is a string of
characters, is always terminated by the
special character, semicolon. A program
which is, in turn, a sequence of state-
ments, can thus be regarded simply as a
single string of characters, with no spe-
cial internal grouping. Hence, a PL/I
program can be physically represented and
transmitted to a computer in a natural way
by means of almost any input medium,
including a typewriter at a remote termi-
nal.

Input conventions, depending wupon the
machine configuration or the compiler, can,
of course, be set up so that the program
string may be presented to the computer
through the familiar medium of fixed-length
records, e.g., punched cards. This can be
accomplished by using certain predetermined

fields of the records for the program
string, and other fields for arbitrary
purposes.

LANGUAGE CHARACTER SETS

One of two character sets may be used to
write a source program: either a
60-character set or a U48-character set. No
assumptions are made in the language about
external or internal codes for the
characters. For a given program, the
choice Yetween the two sets is optional.
(In practice, this choice will depend wupon
the available equipment.)

60-Character Set

The 60-character set is
digits, special characters,
language alphabetic characters.

composed of
and English

There are 29 alphabetic characters, let-
ters A through Z and three additional
characters that are defined as and treated
as alphaketic characters. These characters
and the graphics by which they are rep-
resented are:

14

Currency symbol
Commercial At-sign
Numbexr sign

*» O

Decimal digits
A binary digit

There are ten digits.
are the digits 0 through 9.
(bit) is either a 0 or a 1.

An alphameric character is either an
alphabetic character or a digit.

There are 21 special characters. The
names and graphics by which they are rep-
resented are:

Name Graphic
Blank

Equal or Assignment symbol =

Plus +

Minus -

Asterisk or Multiply symbol *

Slash or Divide symbol 7/
Left Parenthesis (
Right Parenthesis)
Comma .
Decimal Point or Period .
Quotation mark '
Percent symbol %
Semicolon H
Colon H
Not symbol 1
And symbol §
‘Or symbol |
Greater Than symbol >
Less Than symbol <

Break character
Question mark ?

combined to
denoting

Special characters may be
create operators, €.ge, >=,

"greater than or equal to";
concatenation.

|}, denoting

48-Character Set

The characters making up the
48-character set are identical to those of
the 60-character set, with restrictions and
changes as described in Appendix 5.

DELIMITERS

Certain characters are used as
delimiters and fall into three classes:

operators

parentheses
separators and other delimiters

Operators

Operators used by the language are
divided into four types:

arithmetic operators
conparison operators
bit-string operators
string operators

Arithmetic Operators

The arithmetic operators are:

+ denoting addition or prefix plus

- denoting subtraction or prefix

minus
* denoting multiplication
/ denoting division

** denoting exponentiation

Comparison Operators

The comparison operators are:

> denoting greater than
>= denoting greater than or equal
to

= denoting equal to

1= denoting not equal to

<= denoting less than or equal to

< denoting less than
Bit-String Operators

The bit-string operators are:

1 denoting not
& denoting and
| denoting or

String Operator

The string operator is:

11l denoting concatenation

Parentheses

Parentheses are used in expressions and
for enclosing lists.

(left parenthesis
) right parenthesis

Separators and Other Delimiters

Name Graphic Use

comma ’ separates elements of a
list

semicolon ; terminates statements

assignment = used in assignment

symbol statement and DO

statement

colon : follows labels and con-
dition prefixes: also
used with dimension
specifications

blank used as a separator

quotation ' encloses string con-

mark stants

period . separates items in
qualified names; used
as a decimal or
binary point in con-
stants

percent % precedes macro state-
ment

Chapter 1: Program Elements 15

DATA CHARACTER SET

Although the language character set is a
fixed set defined for the language, the
data character set has not been limited.
Data may be represented by characters from
the language set plus any other characters

permitted by the particular machine con-
figuration.
Any character that will result in a

unique bit pattern is a valid character in
the data character set, and may be used in

source programs to construct character-
string constants and comments.
COLLATING SEQUENCE

In the execution of PL/I programs,
comparisons of character data will observe

the collating sequence resulting from the
representations of involved characters in

bytes of System/360 storage, in extended
binary coded decimal interchange code
(EBCDIC) .

IDENTIFIERS

An identifier is a string of alphameric
and break characters; the initial character
must always be alphapbetic.

Identifiers in the language are used for
the following:

scalar variable names

array names

structurevnames

statement labels

entry names

file names

keywords

condition names

headings for external names
Examples:

VARA

BCD320

FILE42

16

XR202

STARTA

RATE_OF_PAY
#32_45

$132

Xa_52

2531

AB12#

Length of Identifiers

Identifiers that a programmer constructs
in writing a PL/I program must be composed
of not more than 31 characters.

KEYWORDS

A keyword is an identifier which is a
part of the language. Keywords are not
reserved words. They may be classified as
follows:

statement identifiers
attributes

separating keywords
built-in function names

options

conditions

Statement Identifiers

A statement identifier is a sequence of
one or more keywords used to define the
function of a sStatement (see "Simple
Statements") .

Examples:

GO TO
DECLARE
READ

Attributes

Attributes are keywoxrds that specify the
characteristics of data, procedures, and
other elements of the language.

Example:
FLOAT

RECURSIVE
SEQUENTIAL

Separating Keywords

The five separating keywords are used to
separate parts of the IF and DO statements.
They are THEN, ELSE, BY, TO, WHILE.

Built-in Function Names

A Dbuilt-in function mname is a keyword
that is the name of an algorithm provided
ky the 1language and accessible +to the
programmer (see "Function References and
Function Procedures®" in Chapter 5).

Examples:

DATE
EXP

Options

An option is a specification that may be
used by the programmer +to influence the
execution of a statement.

Examples:

TASK
CROSS

Conditions

A condition is a keyword used in the ON,

SIGNAL, and REVERT statements, and as a
prefix to other statements (see
"Prefixes"). The programmer may Specify

special action on occurrence of the condi-
tion (see "Interrupt Operations").

Examples:

OVERFLOW
ZERCDIVIDE

THE USE OF BLANKS

Identifiers, constants, picture specifi-
cations, composite operators (e.g.,),
and the class of dummy variables iSUB (see
"The DEFINED Attribute" in Chapter #) may
not contain blanks. Blanks are permitted
within a character-string constant.

Identifiers, constants, or picture
specifications may not be immediately adja-
cent. They must be separated by an opera-
tor, assignment symbol (i.e., =), parenthe-
sis, colon, semicolon, comrma, period,
blank, or comment. Moreover, additiomal
intervening blanks or comments are always
permitted. Blanks are optional between
keywords of a statement identifier (e.g.,
GO TO), and between a level number and its
following identifier (see ™"Structures" in
Chapter 2) .

Examples:
CALLA is not equivalent to CALL A
A TO B BY C is not equivalent to ATOBBYC

AB+BC is equivalent to AB + BC

COMMENTS

General form:
/*% character-string */

A comment may be used wherever a blank is
permitted (except in a character-string
constant) . The character string in a com-
ment must not contain the character combi-
nation */ in that sequence.

Example:

LABEL: /* THE BLOCK OF CODING BETWEEN
BEGIN-END IS USED FOR PAYROLL CALCULA-
TIONS #*/

BEGIN;

END;

BASIC PROGRAM STRUCTURE

A PL/I program is constructed from basic
program elements called statements.

Statements are grouped into larger
program-elements, the group and the block.

There are two types of statements: simple

Chapter 1: Program Elements 17

and compound.

SIMPLE STATEMENTS

A simple statement is defined as:

[[statement-identifier]
statement-body] ;

The "statement identifier,™ if it appears,
is a keyword , characterizing the kind of
statement. If it does not appear, and the
statement body does appear, then the state-
ment 1is an assignment statement. If only
the semicolon arpears, the statement is
called a null statement.

Examples:

DO I =J TO (DO is the keyword)

A =B + C; (assignment statement)

(null statement)

-

CCMPOUND STATEMENTS

A compound statement is a statement that
contains other program-elements. There are
only two of them. They are:

The IF compcund statement
The CN compound statement
~The final contained statement of a com-
pound statement is a simple statement and
thus has a terminal semicolon. Hence, the
compound statement will automatically Le
terminated by this semicolon.
Examples:
IF A=B THEN GO TO S1; ELSE A=C;
CK CVERFLOW GO TO OVFIX;

Each PL/I statement is described in the
alphaketic list of statements in Chapter 8.

PREFIXES

There are two types of prefixes: 1label

prefixes and condition prefixes.

18

Label Prefixes

Statements may be labeled ¢to permit
reference to them. A labeled statement has
the form:

identifier: [identifier:] ...statement

The one or more "identifiers"™ are
called 1labels and may be used inter-
changeably to refer to that statement.

Labels appearing before PROCEDURE and
ENTRY statements are special cases and are
known as entry names (see "Procedure
References") . All other labels are called
statement labels.

A label appearing before a statement is
said to be declared, by virtue of its
appearance as a label.

Statement labels before
DECLARE are ignored.

appearing

Condition Prefixes

A condition prefix is a keyword that
determines whether or not a program inter-
rupt will result upon the occurrence of the
specified condition. (For information
regarding the use of the condition prefix
see the section "Interrupt Operations"™ in
Chapter 6.)

One or more condition
attached to a statement.

prefixes may be

Each condition prefix is followed by a
colon to separate it from the rest of the
statement or from other prefixes; condition
prefixes precede +the entire statement,
including any possible label prefixes for
the statement.

A condition prefix is a list of condi-
tion names, separted by commas and enclosed
in parentheses. Thus, a statement with a
set of prefixes has the following general
form:

{ (condition-name [,condition-
name] «..) :} ... [label:] ...
statement

The condition names are chosen from the
following fixed set:

UNDERFLOW
OVERFLOW
ZERODIVIDE
FIXEDOVERFLOW
CONVERSION
SIZE

SUBSCRIPTRANGE
CHECK (identifier 1list)

NOTE: CHECK (identifier l1list) may be wused
as a prefix only with the PROCEDURE and
BEGIN statements.

The meanings of these conditions are
explained in "The ON Statement,"™ in Chapter
8.

BAny of these condition names may be
preceded by the word NO. If NO 1is used,
there can be no intervening blank between
NO and the condition. For example, NOCON-
VERSICN can be specified in the prefix
list.

GROUPS

A group is a collection of one or more
statements and is used for control purpos-
es.

A group has one of two forms. The first
form, called a DO-group, is:

[label:] . + . DO-statement
program—-element-1
program—-element-2

END [lakel] ;

The label following END must be one of the
labels of the DO statement.

The DO statement is called the heading
statement of the DC-group, and may specify
iteration.

The second form of a group is simply a
single statement, as follows:

{label:] . . . statement
The “statement®™ is any statement except DO,
END, PRCCEDURE, BEGIN, DECLARE, FORMAT,
ENTRY, or any compile-time statement.
Example of the first form:
ALPHA: DO;
A=B*(C;
IF A < 0 THEN DC; B=1; C=0; END;
END ALPHA;
In the example above, any of the single
statements -- except the DO and END state-

ments -- 1is an example of the second form
of a group.

BLOCKS

A block is a collection of statements
that defines the program region -- or scope
-- throughout which an identifier is esta-
blished as a name. It also is wused for
control purposes.

There are two kinds of blocks, begin
blocks and procedure blocks.

A begin block has the general form:

[label:] . . . BEGIN-statement
program—element-1
program—-element-2

END [1agel];

The label following END must be one of the
labels of the BEGIN statement.

A procedure block, or procedure, has the
general form:
label: {label:] . . . PROCEDURE-statement
program-element-1
program-element-2

END [label] ;

The label following END must be one of the
labels preceding the PROCEDURE statement.

The BEGIN statement and the PROCEDURE
statement in the above forms are called
heading statements.

While the labels of the BEGIN statement
are optional, the PROCEDURE statement must
have at least one label.

Although the begin block and the proce-
dure have a physical resemblance and play
the same role in delimiting scope of names
(see "Scope of Declarations," in Chapter U#)
and defining allocation ané freeing of
storage (see "Allocation of Data and Stor-
age Classes,"” in Chapter 6), they differ in
an important functional sense. A begin
block, like a single statement, is activat-
ed by normal sequential flow, and it can
appear wherever a single statement can
appear. A procedure can only be activated
remotely by CALL statements, by statements
in which a CALL option appears, or by
function references. When a program con-
taining a procedure 1is executed, control
passes around the procedure, from the
statement before the procedure statement to
the statement after the END statement of
the procedure.

Chapter 1: Program Elements 19

Since a procedure can be activated only
by a reference to it, every procedure must
have a name. The label required <for the
heading statement of a procedure serves as
the procedure name. More than one label
provides more than one name.

The ©procedure name gives a means of
activating the procedure at its primary
entry point. Secondary entry points can
also be defined for a procedure by use of
the ENTRY statement. The labels preceding
all ENTRY statements in a given procedure
and the heading statement of the procedure
are collectively called entry names for the
procedure.

As the above definition of block
implies, any block A can include another
block B, but partial overlap is not possi-
ble; block B must be completely included in
block A. Such nesting may be specified to
any depth.

A procedure that is not included in any
other block is called an external proce-
dure. A procedure included in some other
block is called an internal procedure.

Every begin block must be included in
some other block. Hence, the only external
blocks are external procedures.

All of the text of a begin block except
the labels preceding the heading statement
of the block is said to be contained in the
block.

All of the text of a procedure except
the entry names of the procedure is said to
be contained in the procedure.

That part of the text of a block B that
is contained in block B, but not contained
in any other block contained in B, is said
to be internal to block B.

The entry names of an external procedure
are not internal to any procedure and are
called external names.

vital in
"Scope of

The notion of internal to is
the definition of scope (see
Declarations"™ in Chapter 4).

20

Example:

A: PROCEDURE;]
statement 1
B: BEGIN;

statement 2

statement 3

END B;

statement U

C: PROCEDURE; -
statement 5

X: ENTRY;

D: BEGIN;
statement 6
statement 7
END D;

statement 8

END C;

statement 9
END A; B

In this example, statements 1 through 9 are
labeled or unlabeled simple statements.

As the brackets on the right indicate,
block A contains block B and block C, and
block C contains block D.

Block A is an external procedure. The
procedure name is A, which is an external
name, and the only entry name for the
procedure.

X is an entry name corresponding to a
secondary entry point for procedure C.

Blocks B and D are begin blocks.
Block C is an internal procedure.
consists

The text internal to block A
of :

PROCEDURE ;
statement 1
B:
statement 4
C:
X:
statement 9
END A;
The text internal to block B consists
of:

BEGIN;

statement 2

statement 3

END B;

block C

The text internal to consists

PROCEDURE;
statement 5
ENTRY;

of:

D:

statement 8

END C;
The +text internal to klock D consists
of:

BEGIN;
statement 6
statement 7
END D;

USE OF THE END STATEMENT

As the examples above
statement has the form:

imply, the END

END ([label] :

and 1is used to terminate a

klock.

group or a

If the optional label following END is
not used, the END statement terminates that
unterminated group or block headed by the
DO, BEGIN, or PROCEDURE statement that
physically precedes, and appears closest
to, the END statement.

If, however, a label (e.g., 1) is used
following END, the statement terminates
that unclosed group or block headed by the
DO, BEGIN, or PROCEDURE statement with the

label L that physically precedes, and
appears closest to, the ENL statement. Any
groups or blocks headed by DO, BEGIN, or

statements contained in the ter-
also automatically

PROCEDURE
minated block L are
terminated by the END statement END L.
This feature eliminates the necessity of
writing the intermediate END statements to
terminate the contained blocks and groups.

The statement labeled L, which heads the
group or block terminated by the END state-
ment END L, is internal to a certain block
in the program (see "Blocks," for a defini-

tion of internal to). The terminating
statement END L, together with its own
possible statement-labels, is also consid-

ered to e internal to the same block. (If
the statement labeled L is a BEGIN or

PROCEDURE statement, this block, 1is of

course, the block L.)

The END statement may itself be labeled,
and a reference to this label can be made
from any part of the program where the
label is known. (For a definition of

known, see "Basic Rule on Use of Names" in

Chapter &) .

Example:
A: PRCCEDURE; A: PROCEDURE;
B: BEGIN; B: BEGIN;
A: PRCCEDURE; A: PROCEDURE;
C: DO; C: DO;
X: END B; END;
END A; END;
X: END B;
END A;
In the example on the left above, the

statement X:END B terminates the DO groups,
the internal procedure A, and the block B.
The statement END A terminates the external
procedure A.

The example on the right is equivalent
to the example on the left.

The statement X:END B is internal to
block B.

PROGRAMS

A program 1is a set of external proce-
dures. Thus, by definition, a program is a
set of procedure blocks, each of which 1is
completely nested, and separate from the
others.

Chapter 1: Program Elements 21

CHAPTER 2: DATA ELEMENTS

DATA TYPES

Information that is operated on in a
PL/I object program during execution is
called data. Each data item has a definite
type and representation.

The permitted data types are arithmetic,
string, label, task, and event. The
details for the specification of data type
attributes are contained in Chapter 4.

ARITHMETIC DATA

An arithmetic data item is one that has
a numeric value with characteristics of
base, scale, mode, and precision. The data
item may be represented either as a numeric
field or in a coded form, that is, in an
internal representation that is implementa-
tion dependent. A numeric field 1is a
string of characters that is given a numer-
ic interpretation by means of the PICTURE
attribute (see Chapter U). The base,
scale, and precision are all specified in
the picture of the numeric field. A data
item in coded form does not have a PICTURE
attribute, but has its characteristics
given by the attributes specifying base,
scale, mode, and precision.

Base (decimal or binary) , scale
(fixed-point or floating-point) , and
precision have reference to internal rep-
resentation of +the data described and to
the internal arithmetic that is to be used.

Base

Arithmetic data may be specified as
having either decimal or binary base.

Scale

Arithmetic data may ke specified as
having either fixed-point or floating-point
scale. Fixed-point data items are rational
numbers for which the number of decimal or
binary digits is specified; the position of
the decimal or binary yoint may also be
specified by a scale factor. Floating-
point data items are rational numbers in

22

the form of a fractional part and an
exponent part.
Mode

Arithmetic data may be operated on in

either the real or complex mode. In the
complex mode, a data item is considered to
consist of a number pair, the first member
of the pair representing the real part of
the complex number and the second, the
imaginary part.

Precision

The precision of fixed-point data (w,qd)
is specified by giving the total number of
binary or decimal digits, w, to be
maintained and a scale factor, d. The
precision of floating-point data is speci-
fied by giving only the total number of
binary or decimal digits to be maintained
(i.e., W .

STRING DATA

String data can be classified as
character-string or bit-string. The length
of a string data item is equivalent to the
number of characters (for a charac-
ter-string) or the number of binary digits
(for a bit-string) in the item. A string
data item of length zero is known as the

null string.

Character-String Data

Character-string data consists of a
string of =zero or more characters in the
data character set (see "Data Character
Set," in Chapter 1). The string may be
fixed or varying in 1length. The actual
number of characters must be specified if
it is of fixed 1length, and the maximum
length must be specified if it 1is of
varying length.

Bit-String Data

Bit-string data consists of a string of
zero or more binary digits (0 and 1) . The
string may be fixed or varying in 1length.
The actual 1length of the field must be
specified if it is of fixed length, and the
maximum length must be specified if it is
of varying length.

STATEMENT-LABEL DATA

Statement-label data consists of labels
of statements (see “Statement Labels" in
this chapter) .

SCALAR QUANTITIES

A data item may be either a constant or
the value of a scalar variable. Constants
and scalar variables are called scalar
quantities.

CONSTANTS

A constant is a data item that denotes
itself, i.e., 1its representation is both
its name and its value; thus, it cannot

change during the execution of a program.
Each constant has a type, as described
below. A signed constant 1is a constant

preceded by one of the prefix operators +
or —. Wherever the word "constant" appears
alone, and refers +to an arithmetic con-
stant, it is to be assumed to refer +to an
unsigned constant.

Real Arithmetic Constants

A real arithmetic constant is either

binary or decimal.

Decimal Fixed-Point Constants

A decimal fixed-point constant is rep-
resented by one or more decimal digits with
an optional decimal point.

Exanples:

72.192
.308
255.
158

Binary Fixed-Point Constants

A binary-fixed point constant is rep-
resented by one or more binary digits with
an optional binary point followed by the
letter B.

Examples:

11011B
11.1101B
.001B

Sterling Fixed-Point Constants

Sterling quantities may be specified and
will be interpreted as decimal fixed-point
pence. A sterling fixed-point constant
consists of the following concatenated
fields:

a pounds field that is a decimal
integer

a decimal point

a shillings field that is a decimal
integer less than 20

a decimal point

a pence field that is one or more
decimal digits with an optional
decimal point (the integral part
must be less than 12.)

an L
Examples:

101.13.8L
1.10.0L
0.0.2.5L

Decimal Floating-Point Constants

A decimal floating-point constant is
represented by one or more decimal digits
with an optional decimal point, followed by
the letter E, followed by an optionally
signed decimal exponent.

Examples:

12.E23
317.5E-16
0.1E+3
<U2E+73
32E-5

Binary Floating-Point Constants

A binary floating-point constant is
represented by one or more binary digits
with an optional binary point, followed by
the letter E, followed by an optionally
signed binary exponent, followed by the
letter B. The exponent is a string of
decimal digits specifying a power of two.

Chapter 2: Data Elements 23

Examples:

1.1011E3B
-11011E-27B

Precision of Real Arithmetic Constants

For purposes of expression evaluation,
an apparent precision is defined for real
arithmetic constants.

Real fixed-point constants have an
apparent precision (p,q) where ©p is the
total number of digits in the constant and
g 1is the number of digits specified to the
right of the decimal point.

The precision of a sterling constant is
equivalent to the precision of its corres-
ponding value in fixed-point pence. This
value is determined as follows: multiply
the value of the pounds field by 240; add
the product of 12 and the value of the
shillings field; add the value of the pence
field. The precision of the result (with
leading =zeros removed) is the precision of
the corresponding sterling constant.

The precision of a floating-point con-
stant is (p) where p is +the number of
digits of the constant left of the E. If
only the digit zero is left of the E, the
precision is 1.

Examples:
3.14 has precision (3,2)
0.012E5 has precision (4)

0.9.0.5L has precision (4,1)
0000001 has precision (7,0)

Imaginary Arithmetic Constants

An imaginary constant represents a com-
plex value of which the real part is zero
and the imaginary part is the value speci-
fied.

It 1is represented by a real arithmetic
constant, other than a sterling constant,
followed by the 1letter I. PL/I does not
define complex constants with non-zero real
parts, but provides the facility to specify
such data through expression, €.g.,
10.1+9.2TI.

Examples:

271
3.968E10I

24

String Constants

String constants can be classified as
character-string constants or bit-string
constants.

Character-String Constants

A character-string constant is
more characters in the data character set
enclosed in quotation marks. If it is
desired +to represent a quotation mark, it
must appear as two immediately adjacent
quotation marks. The constant may option-
ally be preceded by a decimal-integer con-
stant in parentheses to specify repetition.
If the constant specifying repetition is
zero, the result is the null string.

2€ero or

Examples:

'$ 123.45°
*JOHN JONES'
IITI ISI

(3) 'TOM*

The latter is exactly equivalent to

' TOMTOMTOM"

Bit-String Constants

A bit-string constant is zero or more
binary digits enclosed in quotation marks,
followed by the letter B. The constant may
optionally be preceded by a decimal-integer
constant in parentheses, to specify repeti-

tion. If the constant specifying repeti-
tion is zero, the result 1is the null
string.

Examples:

'0100'B
(10) *1'B

The latter is exactly equivalent to

'1111111111'B

Statement-Label Constants

iden-
in the program as a

A statement-label constant is an
tifier which appears
statement label.

The value of a 1label constant becomes
undefined when the Dblock to which it is
internal becomes inactive.

VARIABLES

A scalar yvariable,
denotes a data item. This data item is
called the value of the scalar variable.
Unlike a constant, however, a variable may
take on more than one value during the
execution of a program. The set of values
that a variable may take on is the range of
the variable. The range of a variable is
always restricted to one data type and, if
the type is arithmetic, to one base, scale,

like a constant,

mode, and precision. If there are no
further restrictions declared for the
range, the variable may assume values over

the entire set of data of that type.

Reference is made to a scalar variable
by a name, which may be a simple name, a
subscripted name, a qualified name, or a
subscripted qualified name (see "Naming” in
this chapter) .

DATA AGGREGATES

In PL/I, variable data items are grouped
into arrays or structures. Rules for this
grouping are given below. (For the method
of referring to an array or structure or a
particular item of an array or structure,
see "Naming," in this chapter.)

ARRAYS

An array is an n-dimensional, ordered
collection of elements, all of which have
identical data declaration. If arithmetic,
all of the elements of the array must have
the same base, scale, mode, and precision

or the same picture. If character-string
or bit-string, all of the elements must
have the same actual 1length, if fixed
length, or the same maximum length, if

varying 1length. The number of dimensions
of an array, and the upper and lower bounds
of each dimension, are specified by the use
of the dimension attribute,

Example:
DECLARE A (3,4);

This statement defines A as an array
with 2 dimensions: 3 rows and 4 columns.
The matrix given below illustrates the
array A.

A1, N A(1,2) A(1,3) A(1,H
A(2,1) A(2,2) A(2,3) A(@2,W
A(3,1) A(3,2) A(3,3) A@3,H

The elements of an array may be struc-
tures (see "Arrays of Structures").

STRUCTURES

A structure is a hierarchical collection
of scalar variables, arrays, and struc-
tures. These need not be of the same data
type nor have the same attributes.

Structures may contain structures. The
outermost structure is the major structure,
and contained structures are minor struc-
tures. A major structure must be at level
one. Contained structures must always have
a level number numerically greater than the
structure in which they are contained.
Identifiers preceded by level numbers but
having no components are not considered to
be structures. The 1level number may be
followed by an optional blank. (Additional
information on structures can be found in
the section "Structure Declarations and
Attributes®™ in Chapter i4.)

Examples:

1. DECLARE 1 PAYROLL, 2 NAME, 2 HOURS, 3
REGULAR, 3 OVERTIME, 2 RATE;

takes the form:

1 PAYROLL
2NAME
2HOURS
3REGULAR
30VERTIME
2RATE

In the above example PAYROLL is defined
as the major structure containing the sca-
lar variables NAME and RATE and the struc-
ture HOURS. The structure HOURS contains
the scalar variables REGULAR and OVERTIME.

2. DECLARE 1A, 2B, 2C, 3D (2, 3 E, 2
F;
This takes the form:
A
B
&
D (1)
D (2)
E
F
The decimal integers before the iden-

tifiers specify the 1level; the decimal
integer in parentheses specifies the bounds
of the one-dimensional array. A is defined
as the major structure and contains the
minor structure C and the scalar variables
B and F. C contains D, a one-dimensional

Chapter 2: Data Elements 25

array with two scalar variables, and the
scalar variable E.

3. DECLARE 1 A, 3 B, 2 C;

This takes the form:

A
B
C
Note that B and C are at the same
level although their 1level numbers
differ.
ARRAYS OF STRUCTURES
An array of structures is formed by
giving the dimension attribute to a struc-

ture. This dimension attribute causes all
contained items to be arrays.

Examples:

1. DECLARE 1 CARDIN(3), 2 NAME, 2
3 NORMAL, 3 OVERTIME;

WAGES,

The dJdecimal integers before the iden-
tifiers specify the level. The name,
CARDIN, represents an array of struc-
tures. Because CARDIN has a dimension
specified, NAME, NORMAL, and OVERTIME
are arrays, and their elements are
referred to by subscripted names.

The form of the data is:

CARDIN (1) NAME M
WAGES (1) NORMAL (@)
OVERTIME n

CARDIN (2) NAME (2)
WAGES (2) NORMAL (2)
OVERTIME (2)

CARDIN (3) NAME (3)
WAGES (3) NORMAL (3)
OVERTIME (3)
2. DECLARE 1 X, 2 Y, 22 (2, 3P (2,2),

39, 2 R;

X is an undimensioned major structure

containing scalar variables, arrays,
and a structure.

is a scalar variable

is an array of structures

is a three-dimensional array

is a one-dimensional array

is a scalar variable

00 O N

The form of the data is:

26

Y —
P o(1,1,1)
P (1,1,2)
z | P (1,2,1)
P (1,2,2)
[0 (1
X —
P (2,1,1)
P (2,1,2)
z 2| P (2,2,
P (2,2,2)
Q (2)
| ® -
NAMING

This section describes the rules for
referring to a particular data item, groups

of items, arrays, and structures. The
permitted types of data names are simple,
qualified, subscripted, and subscripted
qualified.
SIMPLE NAMES

A simple name is an identifier (see

"Identifiers," in Chapter 1) that refers to
a scalar, an array, or a structure.

SUBSCRIPTED NAMES

A subscripted name is used to refer to
an element of an array. It is a simple
name that has been declared to be the name

of an array followed by a list of sub-
scripts. The subscripts are separated by
commas and are enclosed in parentheses. A

subscript is an expression that is evaluat-
ed and converted to an integer before use
(see "Evaluation of Expressions," in Chap-
ter 3) . The number of subscripts must be
equal to the number of dimensions of the
array, and the value of a specified sub-
script must fall within the bounds declared
for that dimension of the array.

A subscripted name takes the form:

identifier

ees)

(subscript [, subscript]

Examples:

A (3)

FIELD (B,C)

PRODUCT (SCOPE * UNIT + VALUE, PERIOD)
ALPHA (1,2,3,4)

Cross Sections of Arrays

The c¢oncept of cross sections 1is a
logical extension of the subscripting nota-
tion. A cross section. of an array is
referred to by the array name, followed by
a list of subscripts, at least one of which
is an asterisk. The subscripts are sepa-
rated by commas, and the entire 1list is
enclosed in parentheses. The number of
items in the list must be equal to the
number of dimensions of the array. If the
array 1is of dimensionality n, +then an
asterisk may appear in k < n positions. If
the Jjth 1list position is occupied by an
asterisk, the cross section of the azrxray
includes elements covered by varying the
jth subscript between its bounds. The
dimensionality of the «cross section is
equal to the number cf asterisks, k, in the
subscript list. If all subscript positions
are occupied by asterisks, then this ref-
erence to the cross section is equivalent
to a reference to the entire array.

A cross section may be used anywhere
that the name of an array of dimensionality
k is required. Subsequent references to
the word "array" in this document should
therefore be taken to include cross sec-
tions of arrays.

Examples:
1. A (3,% denotes the third row of the
array A.
2. B (¥, ¥, 2) is a two-dimensional cross
section and denotes the second plane

of the array B.
3. If MATRIX is the array:

1 2 3

4 5 6

7 8 9

MATRIX (*, 2) is the vector:
2
5
8

QUALIFIED NAMES

A simple name usually refers uniquely to
a scalar variable, an array, or a struc-
ture. However, it is possible for a name
to refer to more than one variable, array,
or structure if the identically named items
are themselves parts of different struc-
tures. In order to avoid any ambiguity in
referring to these similarly named items,
it is necessary to create a unique name;
this is done by forming a qualified name.
This means that the mname common +to more
than one item is preceded by the name of
the structure in which it is contained.
This, in turn, can be preceded by the name

of its containing structure, and so on,
until the qualified name refers uniquely to
the required item. The section "Multiple
Declarations and Ambiguous References"™ in
Chapter 4, contains further information on
this subject.

Thus, the qualified name is a sequence
of structure names specified left to right
in order of increasing level numbers; the
simple names are separated by periods, and
blanks may be placed as desired arocund the
periods. The sequence of names need not
include all of the containing structures,
but it must include sufficient names to
resolve any ambiguity.

The qualified name, once composed, 1is
itself a name. Subsequently, in this docu-
ment, when the terms scalar variable name,
array name, or structure name are used they
should also be taken to include qualified
names.

A qualified name takes the form:
identifier {. identifier} ...
Examples:
1. A program may contain the structures:
DECLARE 1 CARDIN, 2 PARTNC, 2 DESCRIP-
TION, 2 PRICE;

DECLARE 1 CARDOUT,
CRIPTION, 2 PRICE;

2 PARTNO, 2 DES-

Elements are then referred to as:
CARDIN.PARTNO
CARDOUT .PARTNO
CARDIN.PRICE
2. A program may contain the structure:

DECLARE 1 MARRIAGE, 2 MAN, 3 NAME, 3
DATE, 2 WOMAN, 3 NAME, 3 DATE;

Elements are then referred to as:

MAN.NAME
or MARRIAGE.MAN.NAME

WCMAN. NAME
or MARRIAGE WOMAN.NAME

3. If the same program also contains the
structure:

DECLARE 1 BIRTH, 2 WOMAN, 3 NAME,
3 DATE, 2 COMPLEXION;

Elements are then referred to as:

MAN.NAME
or MARRIAGE.MAN.NAME

MARRIAGE.WOMAN.NAME

Chapter 2: Data Elements 27

BIRTH.NAME
or BIRTH.WOMAN.NAME

COMPLEXION

and the minor structures referred to

as:

MARRIAGE . WOMAN

BIRTH . WOMAN

SUBSCRIPTED QUALIFIED NAMES

The elements of an array contained in a
structure and requiring name gqualification
for identification are referred to by Sub-
scripted qualified names. A subscripted
qualified name 1is a sequence of names and
subscripted names separated by periods.
Tre order of mnames 1is as given fcr any
qualified name. The subscript list follow-
ing each name refers to the dimensions
associated with the name if the name is
declared to be the name of an array in the
structure description.

As long as the order of the subscripts
remains unchanged, subscripts may be moved
to the right and attached to names at a
deeper level. Unless all of the subscripts

are moved to the deepest level, the quali-
fied mname 1is said to have interleaved
subscripts.

Provided that sufficient structure names
are used to make the name unique, as
described for qualified nawes, and that the
total number of subscripts is the same as
the total dimensionality of the array,
unsubscripted structure names may be omit-
ted in references. Ambiguity of names,
however, cannot be resolved by subscript-
ing. A subscripted gqualified name takes
the general form:

identifier [
)]
{- identifier [(sukscript [, sub-
scriptieee)} Yoo

(subscript [, subscript]

If any subscripts are given in a ref-
erence to a qualified nawme, all those
subscripts which apply to dimensions of

containing structures must be given.

A subscripted qualified name must have

at least one subscript.
Examples:

A 1is an array of structures with the
following description:

DECLARE 1 A (10,12)
3 D;

2B (5, 3cCc (1,

28

The following subscripted qualified
names refer to the same element, which is
the seventh element of C contained in the

fifth element of B contained in tenth row
and twelfth column of A:
(hy A (10,12) . B (5 . ¢C (7N
(2 A (10) . B (12,5 . C (7)
3) A (100 . B (12) . C (5,7
() A . B (10,12,5 . C (7
(5 A . B (10,12) . C (5,7
() A . B (100 . C (12,5,7)
() A. B . C (10,12,5,7
(8 A (10,12 . B . C (5,7
9% A (100 . B. C (12,5,7)

If structure B, but not structure A, is
necessary for unique identification of this
use of C, any of forms (4), (5, (6), or
(7) may be used without including the A.

If structure A, but not B, is necessary
for identification of C, forms (7), (8), or
(9) may be used without including the B.

Except for form (7), all of the quali-

fied names in the above example have inter-
leaved subscripts.

STATEMENT LABELS

Statement-label data is wused only in
connection with statement labels.
Statement-label data may be a constant, a
scalar variable, or an array.

CONSTANT

A statement-label constant is an iden-
tifier that permits references to be made
to statements.

Example:

ROUTINE1: IF X > 5 THEN GO TO EXIT;

GO TO ROUTINE1;

ROUTINE1 is a statement-label
EXIT is also a statement-label.

constant.

VARIABLE

A label variable is a variable that has
as values statement-label constants.

Example:

DECLARE X LABEL;
X = POSROUTINE;

POSROUTINE: -
X = NEGROUTINE;
GO TO X;
NEGROUTINE: -

The label variable X may have the values
of either POSROUTINE or NEGROUTINE, both

labels 1in the procedure. In the above
example, GO TO X transfers control to
NEGROUTINE.

constant or a scalar
statement-label

A statement-label
label variable is called a
designator.

ARRAY

A scalar 1label variable may be sub-
scripted if it refers to an element of an
array declared to have the attribute LABEL.

A label array must be explicitly declared
to have the attribute LABEL (see Chapter
4) .

Example:

DECLARE CALCULATION (4) LABEL INITIAL
,8,C,D);

=X *Y + Z;

>
e ¢ Me

B: IF X > Y THEN GO TO EXIT;

GC TO CALCULATION (2);

The GC TO statement transfers control to
label B ky means of referring to the proper
element of +the CALCULATION label array,
provided the variable CALCULATION (2) has
not changed in value.

Initial Values for ILabel Arrays

Although the INITIAL
used to initialize label arrays,
an alternate method of doing this.

attribute may be
there is

If a 1label array element appears in a
block, followed by a colon, subscripts must

be optionally signed decimal con-

stants.

integer

The effect of preceding a statement with
a subscripted reference is as follows:

1. An INITIAL attribute is constructed
for the label array and added to the
declaration.

2. A label constant is constructed for
the statement carrying the subscripted
reference. This label constant is
appropriately placed, with respect to
the specified subscripts, in the INI-
TIAL attribute.

A 1label array may not be initialized by
using both this form of initialization and
the INITIAL attribute in the declaration of
the 1label array in the DECLARE statement.
Also, this form of initialization c¢an not
be used for STATIC label arrays.

Example:

DECLARE Z

(3) LABEL;

IF X > Y THEN GO TO EXIT;

[\
—_
-
«
..

N
—_
N
"

g

=A + B+ C* D;

A+ 10;

N
—_
(%%
.
fo-]
I

e 8 Y e 2 s ™ s

GO TO Z (I);

Statements are given subscripted ref-
erences (Z(1y, 2(2), and Z(3)) . Transfer
is made to a particular 2Z by means of
giving I the value of 1, 2, or 3.

TASK NAMES

Task names are used only in connection
with tasks (see "Asynchronous Operations
and Tasks," in Chapter 6 and "The TASK
Attribute," in Chapter #). Task names may
have the dimension attribute or may be
elements of structures. A task name has an
associated priority number which may be
assigned in the CALL statement (see Chapter
8) or in an assignment statement using the
PRIORITY pseudo-variable (see Chapter 8).

Chapter 2: Data Elements 29

EVENT NAMES

Event names are used only in connection
with events (see "Asynchronous OCperations
and Tasks," in Chapter 6 and "The EVENT
Attribute,"™ in Chapter 4) . Event names may
have the dimension attribute or may be
elements of structures. A simple event
name has an associated completion status.
This status is denoted by the value '0'B

30

for "not completed" and '1'B for
"completed". If the event name has been
associated with a given task through the
use of an EVENT option in a CALL statement
(see Chapter 8), the completion status of
the event name will reflect the completion
status of the task itself. The completion
status of an event mname may also be set
explicitly by the execution of an assign-
ment statement using the EVENT pseudo-
variable (see Chapter 8).

EXPRESSICONS

An expression is an algorithm used for
computing a value. Expressions are of the
three types: scalar, array, and structure,
depending upon the types of the operands
involved. The type of the result is also
the same as that of the operands. An array
(or structure) expression is simply an
array (or structure) evaluated by expansion
of the expression into a collection of
scalar expressions (see "Array Expressions"
and "Structure Expressions") .
Syntactically, a scalar expression consists

of a constant, a scalar variable, a func-
tion reference, a scalar expression
enclosed in parentheses, a scalar expres-

sion preceded by a prefix operator, or two
scalar expressions connected by an infix
operator. Operands in a scalar expression
need not have the same data attributes. If

they differ, conversion will be performed
before the operation.
SCALAR EXPRESSIONS

A scalar expression returns a scalar
value. The type of the value is the type

of the expression. The type of the expres-
sion 1is dependent upon the class of opera-
tors -- arithmetic, comparison, bit string,
and concatenation (see "Operators") .
Statement label disignators are not allowed
in scalar expressions except as function
arguments.

If A and B are expressions, then the
operators + and - used in expressions of
the form +A or -A, are called prefix
operators. When these operators are used
in expressions of the form A+B or A-B they
are called infix operators.

Arithmetic Operations

An arithmetic expression of any complex-
ity 1is composed of a set of elementary
arithmetic operations.

An elementary arithmetic operation has
the general form:

{{+|-} operand} |
-1 *1 71

{operand
**} operand}

PRECTSION:

CHAPTER_3: DATA MANIPULATION

The general form specifies the prefix
operations of plus and minus and the infix
operations of addition, subtraction, multi-
plication, division, and exponentiation.
Operations are performed only with coded
arithmetic data. If necessary, the data
will be converted to coded arithmetic type
before the operation is performed.

Mixed Characteristics

The two operands of an arithmetic opera-
tion may differ in base, scale, mode, and

precision. When they differ, conversion
takes place according to the following
rules:

BASE: If bases differ, the decimal operand
is converted to binary.

SCALE: If the scales of the operands
differ, +the fixed-point operand will be

converted to floating-point, except in the
case of exponentiation in which the first
operand is floating-point and the second is
fixed-point with precision (p,0) . In the

latter case, the second operand is not
converted.
MODE: If modes differ, the real operand is

converted to complex by assuming an
inary part of zero.

imag-

If precisions differ, no con-
version is done; the arithmetic operation
is carried out on operands of differing
precision in a way consistent with normal
mathematical practice. However, a particu-
lar implementation may restrict the preci-
sion of operands used in arithmetic expres-
sions, and if larger precisions are
desired, the built-in functions ADD, SUB-
TRACT, etc. (see Appendix 1), may be used.

Results of Arithmetic Operation

After the conversions specified above
have taken place, the arithmetic operation
is performed. Any necessary truncations
will be made towards zero, regardless of
the base or scale of the operands. Alge-
braic signs of results will be correct,
when an error condition causes truncation
or a modulc result (see "OVERFLOW" in
Appendix 3) .

The base, scale, mode, and precision of
the result depend on the operands and the
operator in the following ways:

Chapter 3: Data Manipulation 31

3.

32

Prefix operations: The prefix opera-
tions of plus and minus yield a result
having +the base, scale, mode, and
precision of the operand.
Floating-point: I1f the first operand
of an infix operation is floating-
point the result is floating-point,
and the base and mode of the result
are the common base and mode of the
operands. The precision of the result
is the greater of the precisions of
the two operands.

Fixed-point: If the first operand of
a binary operation is fixed, and if
the operation is not exponentiation,
the result is fixed, and the base and
mode of the result are the common base
and mode of the operands. If the
operation is exponentiation, the
second operand is converted to float-
ing point if its scale factor is not
zero; and the first operand is con-
verted to floating-point unless the
second operand is an unsigned integer
constant meeting the conditions of
item 4 below; in these cases, the
rules for floating-point apply.

The precision of a fixed-point
result depends on the operation and
the precisions of the operands,
according to rules given below. The
following symbols are used:

N the 1length of the largest number
in the implementation

m the total number of positions in
the result

the scale factor of the result

the total number of positions in
operand one

the scale factor of operand one

the total number of positions in
operand two

the scale factor of operand two

value of operand two, if it is an
unsigned integer constant

rRQ o8

=Kon

a. Addition and subtraction:
m = min (N, max (p—g,r-s) +max (g, s)
n = max?&{s)

b. Multiplication:

m = min (N,p+r+1)
n = g+s

c. Division:

N
N-p+g-s

m
n

([l

d. Exponentiation: if second operand
is an unsigned non-zero integer
constant,

(p+1) *y - 1

m
n q *y

If m>N, however, or y is not an
unsigned non-zero integer con-
stant, the first operand is con-
verted to floating-point and rules
for floating-point exponentiation

apply. If m<N, the result is
obtained by repeated multi-
plication (see note Dbelow for a

definition of exponentiation).
e. The above rules hold for both real
and complex mode.

NOTE: The operation of exponentiation
is defined as follows:
1. Real Mode, xq,*%*%x,:

a. If x4=0 and x,<0, the ZERO-
DIVIDE condition is raised.

b. If x,=0 and x,=0, the ERROR
condition is raised and the
result is set to 0.

c. If x4=0 and x,>0, the result
is O.

d. If x4<0 and x,<0, the ERROR
condition 1is raised for any
x; of a form other than
fixed-point (r.0) 5 i.e.,
anything but a fixed-point
integer. When X, 1is a
fixed-point integer, the
result is

1/ [(x4 ¥R ¥ %00 *x4) ,
ABS (x5) times]

e. If x,<0 and x,=0, the result
is 1.

f. If x,<0 and x,>0, the 1limi-
tations are identical to
those in item d. When x, is
a fixed-point integer, the
result is
(R *X4*¥Rq4%...%%4), X, times.

g. If x4>0 and x,<0, the result
is

EXP (Xx2*LOG (x4))

h. If x,>0 and x,=0, the result
is 1.

i. If x4>0 and x,>0, the result
is EXP (xp*LOG (x4)) for any
X, except a fixed-point
integer, in which case the
result is the same as in
item f. (See Appendix 1 for
a definition of EXP and
1.0G.)

2. Complex Mode, z **z,:

If z,=0, the ERROR condition is
raised in all cases except
when the real part of z, is
> 0 and the imaginary part
of z, equals 0, in which
case the result is 0. Oth-
erwise, the result is
EXP (z2*LOG (z4)) -

Arithmetic Conversions

1.
If

a real value,

Arithmetic Mode Conversion

a complex value is converted to

the result is

the real

part of the complex value.

If

a

real value is converted to a

complex value, the result is a complex

value that has the real value
zero as the imaginary

real
part.

Intege

If conversion to integer is
evaluation of sub-
the
will be to fixed-point binary
the total number of posi-
and depends
The scale factor

if

fied,
script

Here
tions
the

is zer

implementation.

part and
r conversion

in the
expressions,

as
x is
in the field

O. Truncation,

will be toward zero.

Table

Arithmetic

1 defines

the

as the

speci-

conversion
(x,0) .

upon

necessary,

Base and Scale Conversion

precision

resulting from base and scale conver-

sion.
the
number

CEIL refers to the
expression.

is the smallest

ceiling of

(The "ceiling" of a
integer

equal

to or greater than the number.)

Conversi

on

from floating-point scale

fixed-pcint scale will occur

d

estination

precision is

assignment to a fixed-point

the

destination

precision

holding the floating point
tion on both left and right

known, as in
variable.
is incapable
value,
will occur,

to

a
an
If
of
trunca-
and

only when

the SIZE error condition will be raised

(unless disabled) .

Bit-String Operations

Bit-string operations have the following
general forms:

7 operand
operand & operand
operand | operand

The prefix operation "not" and the infix
operations "and" and "or"™ are specified
above. The operands will be converted to
bit-string type before the operation is
performed. The result will be of bit-
string. If the operands are of different
lengths after conversion, the shorter is
extended on the right with zeros to the
length of the 1longer. The length of the
result will be of this extended 1length.
The result 1is of varying length if either
operand 1is of varying length or is a
reference to the SUBSTR built-in function.
Otherwise, the result is of fixed length.

The operations are performed on a bit-
by-bit Dbasis. As a result of the
operations, each bit position has the value
defined in the following table:

Table 1. Arithmetic Base and Scale Conversion
Before Conversion
r T T T 1
After | Binary Fixed | Decimal | Binary | Decimal

| (r,9 | Fixed (p,9) | Float (p) | Float (p) |
r t : t -4 {
I | I | | |
| Binary | (P, | (MIN(CEIL (p*3.32) [|]
| Fixed | | +1,N) ,CEIL (ABS (q) | | |
| | | *3.32) *SIGN (g}) { | |
¢ 1 t ¥ ¥ 1
Decimal	(CEIL (pr3.32)+1,	(g, 9)		
Fixed	CEIL (ABS (q) /3.32)			
	*SIGN (9))			
L 1 41 1 i q				
1 T k) T T h)				
Binary	(P)	(MIN(CEIL	(p)	(MIN(CEIL
Float		(p*3.32) ,N))		(p*3.32) ,N))
’ t + $ - 1				
Decimal] (CEIL (p/3.32))	9]	(CEIL (p/3.32))	(P)	
_Flot	1 !			

Chapter 3: Data Manipulation 33

) T T T T T 1
		I I 2	A		
		NOT	NOT	AND	OR
A	B	A	B	B	B
[N 4 | }] N 1
¥ T v T T 1 1
I+ 1+ 0o f 0o { 1 | 1 |
s } i [i IS [,
1) T T T T + "
v o o v | 0 | 1|
il L i | i [} 4
LD T T T T T 1
joo0o v v o |0 |1
b —rt L ¢ t———1
{6 L o | v | v | 0 | o |
L 4 4 4 L 1 []

Examples:

If field A is '010111'B, field B is

'111111'B, and field C is '101'B, then

1 A yields '101000'B

C &€ B yields '101000'B

A | , C yields '010111'B
1 GCl1B) yields '101111'B

For a discussion of how these expres-

sions are evaluated, see "Evaluation of
Expressions,® in this chapter.

Comparison Operations

Comparison operations have the
form:

general

operand {<|<=|={1=|>=|>} operand
There are three types of comparisons:

1. Algebraic, which involves the compari-
son of signed numeric values in coded
arithmetic form. Conversion of numer-
ic fields will be performed.

2. Character, which involves left-to-
right, pair-by-pair comparisons of
characters according to a collating
sequence. If the operands are of
different length, the shorter is
extended to the right with blanks.

3. Bit, which involves the left-to-right
comparison of Dbinary digits. If the
strings are of different lengths, the
shorter 1is extended on the right with
Zeros.

The result of a comparison is a bit
string of length one; the value is '1'B if
the relationship is true or '0'B if it is
false.

If the operands of a comparison are of
different types, the operand of the lower
type 1is converted +to the operand of the
higher type. The priority of types is (1)
arithmetic (highest), (2) character string,
(3) bit string.

34

As a result of the conversion, both
operands will then be arithmetic or charac-
ter string, and algebraic or character
comparison will be performed.

Only the operations = and 4= are defined
when either operand is complex.

Concatenation Operations

Concatenation operations have the fol-

lowing general form:
operand| |operand

If both operands are of bit-string type,
no conversion is performed, and the result
is of bit type. 1In all other cases, the
operands are converted where necessary to
character-string type before the concatena-
tion is performed, and the result is of
character type. The result is of varying
length 1if either operand is of varying
length or is a reference to the SUBSTR
built-in function. Otherwise, the result
is of fixed length.

Examples:

If A is '010111'B, B is '101'B, C is
*XY,2' and D is 'AA/BB', then

A||B yields '010111101'B
Al|A]|B yields '010111010111101'B

C||D yields *XY,ZAA/BB'

D||C yields 'AA/BBXY,Z'

Type Conversion

Bit String to Character String

The bit 1 becomes the character 1, and
the bit 0, the character 0. The length is
unchanged. The null bit string becomes the

null character string.

Character String to Bit String

The characters 1 and 0 become the bits 1
and O. The conversion is illegal if the
character string contains characters other
than 0 and 1. The null character string
becomes the null bit string.

Character String to Arithmetic

The character
according to the

string is interpreted
rules of 1list directed

input (see "List-Directed Input Format," in
Chapter 7). The value is converted direct-
ly to an operand with the same base, scale,
mode, and precision that a decimal real
fixed-point variable of default precision
would have been converted to if it had

appeared. The null string is converted to
the value zero. Sterling constants are not
permitted.

Bit String to Arithmetic

The bit string 1is interpreted as an
unsigned binary integer, and converted to
fixed-point binary, precision (S,0), where
S depends upon the implementation. The
null string is converted to the value zero.

Arithmetic to Character String

CODED ARITHMETIC AND BINARY NUMERIC FIELDS:
The arithmetic wvalue is converted to a
character string according to the rules of
list-directed output specified in Chapter
7.

DECIMAL NUMERIC FIELDS: The numeric field
is interpreted as a character string (see
Appendix 2) .

Arithmetic to Bit String

CODED ARITHMETIC AND DECIMAL NUMERIC
FIELDS: The arithmetic value is converted
to real then to fixed-point binary, preci-
sion (p,0), where p is related to the
precision before conversion as follows
(with ceilings of expressions used) :

BINARY FIXED (r,s) p
BINARY FLOAT (x) b
DECIMAL FIXED (r,s) p

min (N,max (xr-s,0))
r

min (N,max (CEIL
(r-s) *3.32) ,0))

min (N,CEIL (x*3.32)

e n

DECIMAL FLOAT (r) p

The resulting binary fixed-point value
is interpreted as a bit string of length p.
BINARY NUMERIC FIELDS: The numeric field
is interpreted as a bit string.

ARRAY EXPRESSIONS

If the operands of an expression refer
to arrays or to a combination of scalars
and arrays, the expression 1is an array

expression.

An array expression returns an array
result. That is, all operations performed
on arrays are performed on an element-by-
element basis. Therefore, all arrays

referred to in an array expression must be
of identical bounds.

Note: Array expressions are not always
expressions of conventional matrix algebra.

The appearance of a function reference
(other than a built-in function) will imply
a scalar result. For example, if A 1is an
array, PROCEDURE (A) is a scalar function
with an array argument.

The built-in functions 1listed under
"Arithmetic Generic Functions,"™ "Float
Arithmetic Generic Functions,®" and "String

Generic Functions,"” in Appendix 1 may part-

icipate in array expressions with array
results. An array may be substituted for
any of the arguments of these functions

except those arguments which are required
to be integer constants, or those which
must be converted to integers.

Prefix Operators and Arrays

The result of the operation of a prefix
operator or a built-in function upon an
array is an array of identical bounds, each
element of which 1is the result of the
operation having been performed upon each
of the corresponding elements of the origi-
nal array.

Example:
If A is the array 5 3 -9
1 -2 7
6 3 -4
then -A is the array -5 -3 9
-1 2 -7
-6 -3 4

Infix Operators and Arrays

Scalar - Array Operations

The result of an operation in which a
scalar and an array are connected by an
infix operator is an array of bounds ident-
ical to the original, each element of which

is the result of the operation performed
upon the scalar and upon each of the
corresponding elements of the original
arraye.
Example:
If A is the array 5 10 8
12 1 3

Chapter 3: Data Manipulation 35

then 3*A is the array 15 30 24
36 33 9

Array - Array Operations
The result of an operation in which two

arrays of identical bounds are connected by
an infix operator is an array of bounds

jdentical to the original arrays, each
element of which dis the result of the
operation performed upon the corresponding

elements of the two original arrays by the
infix operator.

Example:
If A is the array 2 4
3 6
1 7
4 8
and if B is the array 1 5
7 8
3 4
6 3
then A + B is the array 3 9
10 14
4 1
10 11
A*B is the array 2 20
48
3 28
24 24

and MAX (A+B,A*B) is the array

3 20
21 48
4 28
24 24

Array Expressions Involving Structures

An array expression may involve an array
of structures.

Example:

Let A and B be arrays of structures:

1 A(3) 1 B(3)
2P 2 C

39 3D

3 R 3E
2Ss 2 F

3T 3 G

3 U 3 H

Then, A+B*2 is a valid expression that
will 1result in each element of the array B
being multiplied by the constant 2 and
added to the corresponding element of the
array A. The above expression, A+B*2, is
equivalent to the following:

36

A (1) .P.Q+B (1) .C.D*2,
A (1) .P.R.+B (1) .C.E*2,

A (3) .S.U+B (3) -F.H*2

STRUCTURE EXPRESSIONS

The operands of a structure expression
are structures, or a combination of struc-
tures and scalars. A structure expression
returns a structure result. Array operands
are not allowed in structure expressions.

All operations performed on structures
are performed on an element-by-element
basis. Thus, all structures appearing in a
structure expression must have identical
structuring. This means that the structure
must have the same number of contained
scalars and arrays. The positioning of the
scalars and arrays within the structure
must be the same, and arrays similarly
positioned must have identical dimensions
and bounds. The data types need not be the
same.

When an operation has one structure and
one scalar operand, it is interpreted as
many operations, one for each scalar ele-
ment 1in the structure. Each sub-operation
involves a structure element and the scalar
operand.

shorthand
an expression to each

A structure expression is a
method of applying
item of a structure.

Example:

If there are two structures:

1A 1B
2 PART1 2 PART1
3 SUBPART1 3 SUBPART1
3 SUBPART2 3 ALPHA
3 SUBPART3 3 SUBPART2
2 PART2 2 PART2
3 SUBPARTU 3 ALPHA
3 BETA 3 SUBPARTA
3 SUBPARTS (3) 3 SUBPART5 (3)

Then the expression A-2*B is shorthand for

the following expressions:

A . SUBPART1 - 2*%B . SUBPARTI1

A . SUBPART2 - 2*B . PART1 . ALPHA
A . SUBPART3 - 2#*B SUBPART 2

A . SUBPART4 - 2%*B PARTZ . ALPHA
A . BETA - 2%¥B . SUBPART4

A . SUBPARTS - 2*B SUBPARTS

Note that the last expression is an array
expression.

EVALUATION OF EXPRESSIONS

In the following syntactical definition
of an expression, operator precedence is
indicated as extending from prefix +, pre-
fix -, and ** at highest precedence, down

through || at lowest precedence. This
hierarchy is modified as indicated by
parentheses, and by 4 which as a unary

operator has precedence over any operators
immediately to its 1left, but has lower
precedence than relational and arithmetic
operators to its right.

Recursion on the right of an operator
indicates right-to-left evaluation (prefix
operators and *%*), while recursion on the
left of an operator indicates left-to-right
evaluation. The operators + and * are
commutative, but not associative, as low-
order rounding errors will depend on the
order of evaluation of an expression. Thus

A+B+C 1is not necessarily equal to A+ (B+C).

expression ::= union | {expression ||
union}

union ::= intersection | {union]
intersection}

intersection ::= negation | { intersec-
tion&negation}

negation ::= {1 negation} | relation

relation ::= suml| {relation=sum}
| {relation,=sum}
| {relation>sum}
| {relation>=sum}
| {relation<sum}

| {relation<=sum}

sum ::= negation | sumi

suml ::= product | {sumt +
product} | {sum1 -
product}

product. ::= negation | producti

productl ::= factor | {product1 *
factor} | {productl /
factor}

negation | factorit

unit | {+ factor } | {-
factor} |
{anit**factor}

uanit ::= negation | unit1i

unitl ::= constant | scalar-
variable | function-
reference |
(expression)

The rules relating to abnormal functions
and abnormal data should be noted (see
"Abnormality," in Chapter 10).

ORDER OF THE EVALUATION OF EXPRESSIONS

Consider any scalar expression in which
two operands are separated by an infix
operator in the form of A op B, where "op"
denotes any operator. Then either A or B,
or both, may be a "composite operand", that
is, a subscripted name, a function
reference, or a subexpression of the form
op C, Cop D, or (C). In such cases, the
subscripts and arguments that must be
evaluated and the functions that must be
invoked before the operator is applied, are
termed the “elements®" of the operand. For
the purposes of this discussion, an operand
that is an unsubscripted name or a constant
is termed a "simple operand."”

If A is a simple operand and B is not a
simple operand, then A will not be accessed
until all the elements of B are accessed.
Otherwise all elements of A are accessed
before B is accessed. Subscript lists are
evaluated and accessed, left to right,
immediately before the accessing of the
array elements. Argument lists are evalu-
ated and accessed, left to right, immedi-
ately before the function is invoked.

Array expressions are evaluated by per-
forming, in turn, a complete scalar evalua-
tion of the expression for each position of
the array. The evaluations proceed in
row-major order. The result of an evalua-
tion for an earlier position can alter the
values of scalar elements for the evalua-
tion of a later position (see Example 1,
for "“The Assignment Statement,” in Chapter
8) .

Structure expressions are evaluated by
performing a complete scalar evaluation of
the expression for each eligible field, in
the order in which the fields in the
structures are stored. The results of an
evaluation for an earlier position can
alter the result for the evaluation of a
later position.

Chapter 3: Data Manipulation 37

CHAPTER 4: DATA DESCRIPTION

ATTRIBUTES

An identifier appearing in a PL/I pro-
gram may refer to one of many classes of

objects. It may, for example, represent a
variable referring to a complex number
expressed in fixed-point form with decimal

base; it may refer to a file; it may
represent a variable referring to a charac-
ter string; it may represent a statement
label or represent a variable referring to
a statement label, etc.

Those properties that characterize the
object represented by the identifier, and
other properties of the identifier itself
(such as scope, storage class, etc.),
together make up the set of attributes
which can be associated with an identifier.

There are a number of classes of attri-
butes. These classes and the attributes in
each class are described further on in this
chapter.

When an identifier is used in a given
context in a program, attributes from cer-
tain of these attribute-classes must be
known in order to assign a unique meaning
to the identifier. For example, if an
identifier 1is used as a data variable, the
data type must be known; if the data type
is arithmetic, the base, scale, mode, and
precision must be known.

Examples of Attributes:

CHARACTER (50) Association of this attri-
bute with an identifier defines the
identifier as representing a variable
referring to a string 50 characters in
length.

FLOAT Association of this attribute with an
identifier defines the identifier as
representing a variable referring to
arithmetic data, where the data is
represented internally in floating-
point form.

EXTERNAL Association of this attribute with
an identifier defines the identifier
as a name with a certain special
scope.

38

DECLARATIONS

A given identifier is established as a
name, which holds throughout a certain
scope 1in the program (see "Scope of
Declarations" in this chapter), and a set
of attributes may be associated with the
identifier by means of a declaration.

If a declaration is internal to a
certain block, then the declared identifier
is said to be declared in that block.

‘'In a given program, an identifier may
represent more than one name. In this
case, each different name represented by
the identifier is said to be a different
use of the identifier. For example, an
identifier may represent an arithmetic
variable in one part of a program and an
entry name in another part. These two
parts, of course, cannot overlap.

Each different use of the identifier is
established by a different declaration.
References to different uses are distingu-
ished by the rules of scope (see "Scope of
Declarations") .

Declarations may be contex-
tual, or implicit.

explicit,

EXPLICIT DECLARATIONS

Explicit declarations are made through
use of the DECLARE statement, by which an
identifier can be established as a name and
given a certain set (possibly empty) of
attributes.

Only one DECLARE statement can be
used to establish a given use of a
given identifier, and all of the
explicitly declared attributes for
this use must be specified in the
DECLARE statement.

The DECLARE Statement

Function:

The DECLARE statement is a non-—
executable statement used for the
specification of attributes of simple
names.

General Format:

DECLARE [level] name [attribute] ...
[, [level] name [attribute] ...] <..;

Syntax rules:

1. Any number of identifiers may be
declared as names in one DECLARE
statement and must be separated by
commas.

2. Attributes must follow the names to
which they refer. (Note that the
above format does not show factoring
of attributes, which is allowable as
explained later).

3. "Level" is a non-zero decimal integer
constant. If it 1is not specified,
level 1 is assumed. A blank space is
not required to separate a level num-
ber from the name following it.

General Rules:

1. 2All of the attributes for a particular
name must be declared together in one
DECLARE statement.

2. Attributes of EXTERNAL names, declared
in separate blocks and compilations,
must not conflict or supply explicit
information that was not explicit or
implicit in other declarations.

Example:

DECLARE JOE FLOAT, JIM FIXED (5,3),
JACK BIT (10);

JOE 1is declared to be a floating-point
scalar variable, JIM a five-position,
fixed-point scalar variable with three
places to the right of the decimal, and
JACK a scalar variable of ten bits.

Factoring of Attributes

Attributes common to several name dec-
larations can be factored to eliminate
repeated specification of the same attri-
bute for many identifiers. This factoring
is achieved by enclosing the name declara-
tions in parentheses, and following this by
the set of attributes which are to apply.
In the case of a factored level number, the
level number precedes the parenthesized
list of name declarations.

Example:

DECLARE ((A FIXED, B FLOAT) STATIC,
C CONTROLLED) ENTERNAL SYMBOL;

This declaration is
following:

equivalent to the

DECLARE A FIXED STATIC EXTERNAL
SYMBOL,
B FLOAT STATIC EXTERNAL SYMBOL,
C CONTROLLED EXTERNAL SYMBOL;

Multiple Declarations and Ambiguous

References

Two oOr more declarations
identifier, internal to the
constitute a multiple declaration of that
identifier only 1if they have identical
gualification (including the case of two or
more declarations of an identifier at level
1, 1i.e., scalars or major structures). In
a multiple declaration, only the first
declaration (by physical appearance) of the

of the same
same block,

identifier is 1legal; the others are in
error.
Reference to a qualified name is always

taken to apply to the identifier (for which
the reference is wvalid) declared in the
innermost block containing the reference.
Within this block, the reference is unam-
biguous if either of the following is true:

1. The reference gives a valid qualifica-
tion for one and only one declaration
of the identifier.

2. The reference represents the complete
qualification of only one declaration

of the identifier. The reference is
then taken to apply to this identifi-
er.

Otherwise, the
in error.

reference is ambiguous and

Examples:

1. DECLARE 1a, 2C, 2D, 3E;
BEGIN;
DECLARE 1A, 2B, 3C, 3E;
A.C refers to C in the inner block.
D.E refers to E in the outer block.
2. DECLARE 1A, 2B, 2B, 2C, 3D, 2D;

B has been multiply declared.

A.D refers to the second D, since A.D
is a complete qualification of only
the second D; the first D would
have to be referred to as A.C.D.

3. DECLARE 1A, 2B, 3C, 2D, 3C:

A.C is ambiguous because neither C is
completely qualified by this ref-
exrence.

4. DECLARE 1A, 2A, 3A;
A refers to the first A.
A.A refers to the second A.

A.A.A refers to the third A.

5. DECLARE X; DECLARE 1Yy, 2X, 3Z, 3a, 2y,

3%, 3A;

X refers to the first DECLARE
Y.Z 1is ambiguous
Y.¥Y.Z refers to the second Z
Y.X.Z2 refers to the first Z

Chapter U4: Data Description 39

CONTEXTUAL DECLARATIONS

The syntax of PL/I allows identifiers
appearing in certain contexts to be recog-
nized without an explicit declaration. The
various cases are described below.

1. An identifier may occur in a context
where only a file name may appear. In
some of these cases, the identifier is
said to be declared as a file name,
with the default attribute EXTERNAL
(see "Application of Default
Attributes"™ in this chapter) .

Example:
READ FILE (INFILE) DATA;

Here, INFILE 1is declared contex-
tually with the attribute FILE.

2. An identifier may occur in a context
where only a task (or event) name (see
“The CALL Statement" in Chapter 8 and
"Asynchronous Operations and Tasks" in
Chapter 6) may appear. In some of
these cases, the identifier is said to
be declared as a task (or event) name
(see "Application of Default
Attributes") .

Example:
WAIT (EVENT?2) ;

Here, EVENT2 is declared contex-
tually as an event identifier.

3. An identifier may occur in a context
where only a programmer-specified con-
dition name (see BAppendix 3) may
appear. In this case, the identifier
is said to be declared as a condition
name, with the attribute EXTERNAL.

Example:
ON CONDITION (TEST1) GO TO CHECK:

Here, TEST1 is declared contextual-
ly as a condition name.

4., An identifier may appear within a
statement in a context where only an
entry name may appear. That 1is, an
identifier is contextually declared as
an entry name if it appears as a label
to a PROCEDURE or ENTRY statement or
if it appears following the keyword
CALL or as the function name in a
function reference whose argument list
is non-empty. If the occurrence of
the identifier does not lie within the
scope of the same identifier used to
label a PROCEDURE or ENTRY statement,
the identifier 1is given a default
attribute of EXTERNAL.

40

Example:

CALL EXPRI;

An identifier may appear as a label of
a statement, i.e., as a statement
label or an entry name. (A statement
label variable must be explicitly
declared with the attribute LABEL.)

In this case, the label or name is
said to be declared in the block to
which it is internal (for the defini-
tion of internal to, see "Blocks").
This implies that every statement
label except the 1label of a BEGIN
statement 1is declared in the block to
which its associated statement is
internal. It further implies that a
label appearing before a BEGIN, ENTRY,
or PROCEDURE statement is declared in
the immediately containing block.

In the special case where the label
is an entry name for an external
procedure, the name 1is said to be
declared externally, and has the
EXTERNAL attribute (see "Scope of
Declarations") .

Example:

A: PROCEDURE;

P: PROCEDURE;

LOOP:DOI=1 TO N;

Q: BEGIN;
LOOP:DO J=0 TO I;

END LOOP;
END Q;
END LOOP;
END P;
END A;

In this example:
A 1is declared as an external
entry name.
P is declared as an entry name in
block A.
LOOP in its first use is declared
as a statement label in block P.
Q 1is declared as a statement
label in block P.
LOOP in its second use is
declared as a statement label in
block Q.

6. An identifier may appear in a formal
parameter list in a PROCEDURE or ENTRY
statement. In this case, the iden-
tifier is said to be declared in the
block to which the list is internal.
Attributes may be explicitly declared
for the identifier in a DECLARE state-
ment internal +to the same block, in
which case both the contextual and
explicit declarations are regarded as
constituting a single declaration.

Example:
PAY:

PROCEDURE (HOURS, RATE) ;
DECLARE HOURS FIXED (6,2) ;

END PAY;

In this example, HOURS is declared
explicitly and RATE contextually in the
bilock PAY.

7. An identifier may appear in list for
data-directed transmission (see Chap-
ter 7). In this case it is given the
attribute SYMBOL.

Example:
READ DATA (A,B) ;

Note: Arithmetic or string attributes of
constants are determined contextually.

IMPLICIT DECLARATIONS

An identifier may be used in a block
without being explicitly declared or con-
textually declared. In this case the iden-
tifier is said to be implicitly declared in
the containing external procedure. As will
be seen in the discussion of scope, this
implicit declaration will then apply to the
entire external procedure block except for
any contained blocks where the identifier
might be re-declared.

Example:

B1: PROCEDURE (21,22) ;

TEMP1=ABS (Z1**2+22%%2) ;

B2: BEGIN;
TEMP2= 1/ (TEMP1+Z2) **2;

IF TEMP2>TEMP1 THEN RETURN
(TEMP2) ;

END B2;

RETURN (TEMP1) ;

END B1;

In this example, TEMP1 and TEMP2 are
both implicitly declared in block B1i.

SCOPE OF DECLARATIONS

When a declaration of an identifier is
made in a program, there 1is a certain
well-defined region of the program over
which this declaration is applicable. This
region is called the scope of the declara-
tion or the scope of the name established
by the declaration.

The scope of a declaration of an iden-
tifier 1is defined as that block B to which
the declaration is internal, but excluding
from block B all contained blocks to which
another declaration of the same identifier
is internal.

This definition of scope can be applied
to all identifier declarations except the

declaration of entry names of external
procedures (see "Declarations,®™ in this
chapter) . The appearance of an identifier

as the entry name of an external procedure
is regarded as an explicit declaration of
the identifier as an entry name with the
EXTERNAL attribute. The scope of such a
declaration is defined to be the entire
external procedure, excluding all contained
blocks to which another declaration of the
same identifier is internal.

Scope of External Names

In general, distinct declarations of the
same identifier imply distinct mnames with
distinct non-overlapping scopes. It is
possible, however, to establish the same
name for distinct declarations of the same
identifier by means of the EXTERNAL attri-
bute. The EXTERNAL attribute is defined as
follows:

An explicit or contextual declaration of
an identifier that declares the iden-
tifier as EXTERNAL is called an external
declaration for the identifier. All
external declarations for the same iden-
tifier in a program will be linked and
considered as establishing the same
name. The scope of this name will be
the union of the scopes of all the
external declarations for this identifi-
er.

In all of the external declarations for
the same identifier, the attributes
declared must be consistent, since the
declarations all involve a single name.
For example, it would be an error if the
identifier ID were used as a file name in
some READ statement in a program, and in
the same program to declare ID as EXTERNAL
ENTRY, since a file name always has the
scope attribute EXTERNAL (see “Default
Attributes®") and the attribute FILE, which
conflicts with the attribute ENTRY.

Chapter- 4: Data Description 41

The EXTERNAL attribute can be used to

communicate between different external pro- 7 Y: RETURN;
cedures or to obtain non-continuous scopes END C;
for a name within an external procedure. END B;
8 D: PROCEDURE;
An external name is a name that has the 9 DECLARE X FILE;
scope attribute EXTERNAL. If a name is not 10 Y =12Z;
external, it is said to be an intermal name o
and has the scope attribute INTERNAL. .
Example 1: END D;
END A;
1 A: PROCEDURE;
2 DECLARE (X,Z) FLOAT; The numbers on the left are for reference
- only, and are not part of the procedure.
. See Table 2 for an explanation of the scope
. and use of each name.
3 B: PROCEDURE (Y) ;
4 DECLARE Y BIT (6) ; Since entry names of external procedures
5 C: BEGIN; and file names have the attribute EXTERNAL,
6 DECLARE (A,X) FIXED; the scope of the entry name A and of the
. file name X above may include parts of
- other external procedures of the program.
Table 2. Scope and Use of Names in Example 1, for "Scope of External Names"
1 o |
| Reference Line Namwe Use Scope (by block names) |
I |
| 1 A external entry name all of A except C |
| |
| 2 X floating-point variable all of A except C and D |
| |
| 2 Z floating-point variable all of A |
| l
| 3 B internal entry name all of A |
| |
| 4 Y bit string all of B except C |
I |
| 5 C statement label all of B
| |
| 6 A fixed-point variable all of C |
| |
| 6 X fixed-point variable all of C |
I |
| 7)4 statement label all of C |
| |
| 8 D internal entry name all of A |
| |
| 9 X file name all of D |
| I
| 10 Y floating-point variable all of A except B |
| |
L — i |

42

Example 2:

A: PROCEDURE;
1 DECLARE X EXTERNAL;

B: PROCEDURE;
2 DECLARE X FIXED;

C: BEGIN;

3 DECLARE X EXTERNAL;
END C;
END B;
END A;
D: PROCEDURE;
4 DECLARE X FIXED;

E: PROCEDURE;
5 DECLARE X EXTERNAL;

END E;
END D;

The reference numbers on the left are not
part of the procedure.

In example 2, there are five declara-
tions for the identifier X.

Declaration 2 declares X as a fixed-
point variable name; its scope is all of
klock B except block C.

Declaration 4 declares X as another
fixed-point variable name, distinct from
that of declaration 2; its scope is all of
block D except block E.

Declarations 1,3,5 all establish X as a
single name; its scope 1is all of the
program except the scopes of declarations 2
and 4.

Basic Rule on Use of Names

A name 1is said to be known only within
its scope. This definition suggests a
basic -~ and almost self-evident -- rule on
the use of names:

All appearances of an identifier which
are intended to represent a given name
in a program must lie within the scope
of that name.

There are many implications to the above
rule. One of the most important is the
limitation of transfer of control by the
statement GO TO A, where A is a statement
label.

The statement GO TO A, internal to a
block B, can cause a transfer of control to
another statement internal to block B or to
a statement in a block containing B, and to
no other statement. In particular, it
cannot transfer control to any point within
a block contained in B.

THE ATTRIBUTES

Attributes are used to give
characteristics to their associated iden-
tifiers. The attributes of the language

are divided into the following classes:

Data attributes

Dimension attribute
SECONDARY attribute
ABNORMAL/NORMAL attributes
USES and SETS attributes
Entry name attributes

Scope attributes

Storage Class attributes
ALIGNED and PACKED attributes
DEFINED attribute

INITIAL attribute

Symbol table attributes
Structure attributes

LIKE attribute

File description attributes

DATA ATTRIBUTES

Arithmetic Data

Variables are declared to be of arith-

metic type if they are given any of the
attributes base, scale, mode, Oor numeric
picture.

Base

The base attribute specifies that the

data is in binary or decimal form.
General format:
BINARY | DECIMAL
Rules:
This attribute may not be specified in

combination with the PICTURE attri-
bute.

Chapter U4: Data Description 43

Default:

See "Default Conditions for Arithmetic

Data."

Examples:

DECLARE A DECIMAL, B BINARY;

Scale
Function:
The scale attribute specifies that the

data is in fixed-point oxr floating-point
form.

General format:

FIXED|FLOAT

Rules:
This attribute may not be given in
combination with the PICTURE attri-
bute.
Default:
See "Default Conditions for Arithmetic
Data."
Examples:
DECLARE A FIXED, B FLOAT;
Mode
Function:
The mode attribute specifies that the

mode of the data is real or complex.
General format:
REAL| COMPLEX
Rules:
This attribute may be given in combi-
nation with the PICTURE attribute, to
specify a complex numeric field.
Default:

See "Default Conditions for Arithmetic

Data."
Example:

DECLARE A COMPLEX, B REAL:

4y

Precision
Function:

The precision attribute
number of significant binary or decimal
digits to be maintained for both fixed-
point and floating-point data, as well as
the scale of the data.

specifies the

General format:

(number—of-digits[,scale-factbr])

Rules:
1. The precision attribute must
immediately follow a scale, base, or
mode attribute and may never appear

alone or separated from one of these
attributes.

2. "Number-of-digits" 1is a decimal inte-
ger constant specifying the number of
binary or decimal digits to be main-
tained and is used with both fixed-
point and floating-point data.

3. The "scale-factor" 1is an optionally
signed decimal integer constant that
defines the position of the point with
respect to an integer data item of the
specified number of digits. The scale
factor is used only with fixed-point
data.

4. When the scale is fixed and no scale
factor is given, it is assumed to Dbe
zero.

5. The scale factor may be negative, and
it may be 1larger than the number of

digits.
6. The scale factor effectively
multiplies the integer data by the

base raised to the power of the scale
factor with the sign reversed. For
example, decimal data of precision
(5,2) represents numbers from .01 to
999.99 or zero in magnitude: decimal
data of precision (5,-2) represents
numbers from 100 to 9999900 or zero in
magnitude.

7. This attribute may not be given in
combination with the PICTURE attri-
bute.

Examples:

DECLARE A FLOAT (3), B REAL (10)
FLOAT, X FIXED (5,2);

The following table shows the meaning of
the scaling for fixed-point variables:

T T T T |
Integer	Scale	Precision	[Value
00123	FIXED	(5,2) {1.23	
00123	FIXED	(5,-2) [12300	
123	FIXED	(3,4].0123
123	FIXED	(3,-b4)	1230000
L 1 [] i i |

Default Conditions for Arithmetic Data

If the
specified, the

base, scale, and mode are not
arithmetic default attri-
butes are dependent upon the first letter
of the name. If the first 1letter of the
name 1is I through N, FIXED REAL BINARY is
assumed; otherwise, FLOAT REAL DECIMAL is
assumed.

If arithmetic data attributes are partly
specified, the remaining attributes are
assumed as follows:

Base: DECIMAL
Scale: FLOAT
Mode: REAL

it precision is not specified, the
assumed precision is that which is defined
for the particular implementation of the
language that 1is being wused, where the
definition depends on the scale and base.

The PICTURE Attribute

Fuanction:

The PICTURE attribute is used to define
the internal and external formats of numer-
ic and character-string data fields and to
specify the editing of data. This discus-
sion is limited to the use of the PICTURE
attribute with numeric data. The use of
the PICTURE attribute with character-string
data is described in "String Attributes."”
The picture characters are described in
Appendix 2.

General format:

PICTURE ‘'numeric-picture-specifica-
tions*

General rules:

1. PICTURE may not be specified in combi-
nation with the base, scale, or preci-
sion attributes.

NMumeric fields have mode, base,
scale, and precision; these are speci-
fied by the picture characters used in
describing the field, and by the use
of the mode attribute if COMPLEX.
Note the exception that sterling pic-
tures are treated as a separate cate-
gory, although they are real fixed-
point decimal fields.

2. A "picture specification" is c¢omposed
of a string of picture characters. It
must be enclosed in quotation marks.
Individual picture characters may be
preceded by an iteration factor, which

is a decimal integer constant, n,
enclosed in parentheses, to indicate
repetition of the character n times.
If n is =zero, the character is
omitted. This iteration factor speci-

fication may not follow the picture
character F.
Numeric picture specifications must

include at least one digit position.
The following paragraphs indicate the
combination of picture characters that
show mode, scale, base, and precision.
In this discussion, a fixed-point
field has one field, and a floating-
point field has two subfields.
a. Real binary fixed-point fields
take the following general forms:

PICTURE ' (S|1] ... [V]
[S|1 ... [F([+|-] integer)]"

PICTURE " {2] «us [V] [2] -« [F([*]-]
integer)}] '

PICTURE * [3] ... [V] [3]...[F([+]|-]
integer)} '

Only one V, representing a point,
may be present in a picture
specification, but it may be in
any position. When a sign charac-
ter (S) is specified, the field
will contain a binary 1, if the
value is negative, or a =zero, if
the value is positive, for each S
in the picture.

b. Real binary floating-point fields
take the following general forms:

PICTURE * [S|1] ... [V]
K[S|1 ..

(S11] ..

PICTURE *[2] ... vi 2] «..
K2..."

PICTURE ' [3]... Y| (3] «-.
K3...'

Each sign character allowed to the
right of +the V in the first form
represents the sign of the expo-
nent.
c. Real decimal fixed-point fields
take the following general form:
PICTURE "{9] ... [V] ([9]...
[F([+}-] integer)} "

Sign, editing, and zero-
suppression picture characters, as
explained in Appendix 2, may be
included. The V may not appear
more that once in a picture
specification. If no V is given,
the decimal point will be assumed
to appear to the right of the last
digit. ©No attempt has Dbeen made
to show the use of all valid
picture characters in the general
format above. These are explained
in Appendix 2.

Chapter U: Data Description u5

46

Real decimal floating-point fields
take the following general form:

PICTURE '[9 ... [V] [9]...{E|K}
9 ..."

Sign, editing, and zZero-
suppression picture characters may
be included. Sign characters
refer to the subfield in which
they appear, except a CR or a DB,
which refers to the first
subfield.

Complex fields may contain those

picture characters that are valid
for real fields as described
above. They take the general
form:

real-picture

The "real-picture" represents both
portions of the complex number.
The attribute COMPLEX must also be
specified. The real-picture may
not specify a sterling field.

Sterling fields are considered to
be real fixed-point decimal
fields. When involved in arith-
metic operations, they will be
converted to a value representing
fixed-point pence. Sterling pic-
tures have the general form:

PICTURE 'G editing-character-1
pounds-field separator-1
shillings-field separator-2
pence-field'

"Editing character 1" may be one

or more of the following picture
characters:
$+- s

The "pounds field" may contain the
following picture characters:

ZY* 9TIRGS$ + - S
"Separator 1" may be one or wmore
of the following picture charac-
ters:

/ . BYV
The "shillings field" may be:
{991221Y9)29)7Y|8}

The 9s may be replaced by T, I, or
R.

The picture character Z may occur

only if the whole of the field to
the left of this character
(including the pounds field) is

also
ter Z.

suppressed using the charac-

"Separator 2" may be one
of the picture characters:

or more

/ . BVH
The "pence field" takes the form:
{991221Y91712912Y|6} [V|V.|.V]
(9]12]¥) eee [Blee-[P] [B]... [CR|DB
[S]=1+) (B} ..

Any of the nines may be replaced
by one of the following:

TIR

In a sterling picture, there can
not be more than one of the fol-
lowing characters:

TIRCRDBS + -

Zero suppression characters can
only appear after the decimal
point in the pence field if all
digits are suppressed in the
field.
The precision of picture specifi-
cations is described below. In this
discussion, the following picture
characters, actual and conditional,

are defined as digit positions:

12392 *YTIR
and the drifting
$ S+ -

The precision of a fixed-point
numeric field is (m,n), where m is the
total number of digit positions in the
field and n is the number of digit
positions following the V. If a
drifting string contains n drifting
characters, this specifies n-1 digit
positions. For sterling pictures, m
is 3 + the number of <Jdigits in the
pounds field + the number of fraction-
al digits in the pence field.

The precision of a floating-point
field is (p), where p 1is the total
number of digit positions before the E
or K.

Decimal or binary fixed-point pic-
tures may have a scaling factor. This
may be achieved by placing the follow-
ing at the extreme right of the pic-
ture subfield:

F ([+]|-] integer)
with the "integer" value represented

by g, this specifies that the decimal
or binary point should be assumed to

be g places to the right (or left, if
negative) of +the position assumed in
the absence of the scaling factor.
The precision of the numeric field is
then (m,n-g).

These precisions may not exceed the
limits for decimal fixed-point values, as

defined for the particular implementation
of PL/I.
String Attributes

Function:

The string attributes specify string

data to be either in bit-string form or in
character-string form with a specified
length. The form of character-string data
may also be specified.

General format:

{BIT }
CHARACTER) (length) [VARYING] |

PICTURE 'character-picture-
specifications'

Rules:

1. BIT specifies bit-string data, CHARAC-
TER specifies character-string data,
and PICTURE specifies character-string
data in picture form.

2. The "length" specifies the actual
length of fixed-length strings and the
maximum length of varying-length
strings, in which case the word VARY-
ING is used. If VARYING is specified,
then either BIT or CHARACTER must also
be specified.

3. The length specification
expression or an asterisk.

4, If the 1length specification 1is an
expression, it will be converted to an
integer at the point of allocation or
upcn entry to the declaring block for
parameters.

5. An asterisk

may be an

may be used when the
length is to be taken from a previous
allocation for parameters or con-
trolled variables or if it is to be
specified in a subsequent ALLOCATE
statement for CCNTROLLED variables.

6. The length of strings declared STATIC
must be a decimal integer constant.

7. Since PICTURE is an attribute that
also may apply to arithmetic data, a
separate explanation is in the section
entitled "The PICTURE Attribute."
Additional picture characters are pro-
vided when the PICTURE attribute is
used to declare character-string data.

These may be found in Appendix 2.
8. BIT, CHARACTER, or VARYING may not be
specified if PICTURE is specified.

Example:

DECLARE A BIT (10), B CHARACTER (5), C
PICTURE 'XAA9AA', D BIT (¥ VARYING;

A is a field of ten bits; B is a field
of five characters; C is a field of charac-
ters, letters, and a decimal digit; and D
is a field of bits with a maximum length to
be taken from a previous allocation or to
be specified in a subsequent ALLOCATE
statement.

The LABEL Attribute

Function:
The LABEL attribute specifies that the
associated variable will have statement

labels as values. To aid optimization of
the object program, it may also specify the
values a 1label variable may have during
execution of the program.

General format:

LABEL [(statement-label-constant
[, statement-label-constant] ...)]

Rules:

1. If no statement-label constants are
specified following the LABEL attri-
bute, the value of the variable may be
any of the statement labels known in
the scope of the variable.

2. If the variable 1is a parameter, the
value can also be any statement 1label
that could be passed as an argument,
or any value permitted for any label
variable that may be specified as an
argument.

3. If a list of statement-label constants
is specified, the variable may have as
values only members of the list. The

label constants in the 1list must be
known in the ©block containing the
declaration.

4. An entry name cannot be a value of a

label variable.
Example:

DECLARE START LABEL
LABEL3) ;

(LABEL1, LABEL2,

Chapter U4: Data Description 47

The TASK Attribute

Function:

The TASK attribute specifies that the
associated identifier is wused as a task
name (see "Asynchronous Cperations and
Tasks,"™ in Chapter 6, the general rules

under "The CALL Statement,” in
and "Task Names," in Chapter 2).

Chapter 8,

General format:
TASK
Rules:

1. An identifier may be explicitly
declared with the TASK attribute in a
DECLARE statement. It may be contex-
tually declared by its appearance in a
TASK option appended to a CALL state-
ment (see Chapter 8).

2. Task names may also have the following
attributes:

Dimension attribute

Scope attribute (the default is
INTERNAL)
Storage class attribute (the

default is AUTOMATIC)

DEFINED attribute (task names may

only be defined on other task
names)
ABNORMAL attribute (all task names

are ABNORMAL)
SECONDARY attribute

3. A task name can appear only in a TASK
option (see "The CALL Statement," in
Chapter 8) or as the argument in the
PRIORITY built-in function or in the
PRIORITY pseudo-variable.

The EVENT Attribute

Function:

The EVENT attribute specifies that the
associated identifier is used as an event
name (see "Asynchronous Operations and
Tasks,"™ in Chapter 6, the general rules
under "The CALL Statement," in Chapter 8,
and "Event Names," in Chapter 2).

General format:
EVENT
Rules:
1. An identifier may be explicitly

declared with the EVENT attribute in a
DECLARE statement. It may be contex-

48

tually declared by its appearance in
an EVENT option appended to a CALL
statement (see Chapter 8), or by its
appearance in a WAIT statement (see
Chapter 8).

2. Event names may also have the follow-
ing attributes:

Dimension attribute

Scope attribute (the default is
INTERNAL)
Storage class attribute (the

default is AUTOMATIC)

DEFINED attribute (event names may
only be defined on other event
names)

ABNORMAL attribute (all event names
are ABNORMAL)

SECONDARY attribute

3. An event name can appear only in an
EVENT option (see "The CALL
Statement,” in Chapter 8), a WAIT

statement (see Chapter 8), or as the
argument in the EVENT built-in func-
tion or in the EVENT pseudo-variable.

THE DIMENSION ATTRIBUTE

Function:

The dimension attribute defines the

bounds of an array.
General format:
{(bound ([, bound] ...)

where "bound" is
{ [Lower-bound :] upper-bound} |*

Rules:
1. The number of "bounds"™ specifies the

number of dimensions in an array.
2. Bounds that are expressions are evalu-

ated and converted to integer data
when storage is allocated for the
array or when linkage is established

for parameters.

3. The bounds are indicated as follows:

a. If only the upper bound is given,
the lower bound is assumed to be
one.

b. When the actual bounds for each
dimension are to be taken from a
previous allocation for that iden-
tifier or are to be specified in a
subsequent ALLOCATE statement, an
asterisk must be used to represent

each of the dimension bounds.
Thus, asterisks may be used only
for parameters and CONTROLLED

variables.
Cc. The lower bound must be less than

or equal to the upper bound.
4, The bounds of arrays declared static
must be optionally signed decimal
integer constants.

Examples:
1. DECLARE TABLERA (5,8), TABLEB (-5:5,10) ;

TABLEA is a two-dimensional array with
5 rows and 8 columns (subscripts
1 to 5 and 1 to 8. TABLEB is a
two-dimensional array with 11
rows and 10 columns (subscripts
-5, -4, —3' -2, -1, 0, 1, 2, 3,
4, 5 for the rows and 1 through
10 for the columns) .

2. DECLARE MATRIX (*,%) ;

MATRIX 1is a two-dimensional array.
The bounds are to be taken from a
previous allocation for MATRIX or
are to be subsequently specified
in an ALLOCATE statement.

THE SECONDARY ATTRIBUTE

Function:

The SECONDARY attribute is used to spec-
ify that certain data normally does not
require efficient storage.

General format:
SECCNDARY
Rules:

1. This attribute may be declared only
for major structures, arrays, and
variables not contained in structures
or arrays, i.e., for variables at
level 1.

2. The attribute specifies that where
possible and necessary, less than nor-
mally efficient storage may be allo-
cated to the variable.

THE ABNORMAL AND NORMAL ATTRIBUTES

Function:

The ABNORMAL and NORMAL attributes are
used to specify procedures and/or data as
being either normal or abnormal.

General format:

ABNORMAL | NORMAL

1.

2.

Rules for abnormality of procedures:

Abnormality is a property of both
external and internal procedures.
Blocks invoking procedures that are
abnormal must be within the scope of
an ABNORMAL, USES, or SETS declaration
for the invoked entry name. However,
the invocation of an abnormal proce-
dure does not make the envoking proce-
dure itself abnormal. These attri-
butes enable program optimization to
be performed.

An external procedure is abnormal if
it or any procedures invoked by it:

a. Access, modify, allocate or free

external data.
b. Modify, allocate, or free their

arguments.

c. Return inconsistent function
values for the same argument
values.

d. Maintain any kind of history.

e. Perform input/output operations.
f. Return control from the procedure
by means of a GO TO statement.

An internal procedure is abnormal:

a. Under any of the conditions listed
above for external procedures.

b. If it, or any procedures called by
it, access, modify, allocate, or
free variables declared in an
outer block.

Abnormal external procedures invoked

as functions must be declared with at

least one of the attributes, ABNORMAL,

USES, or SETS. The scope of this

declaration must include the invoking

block.

ABNORMAL used alone specifies that all

possible types of abnormality should

be assumed. It is unnecessary to
specify ABNORMAL for the built-in
functions, TIME and DATE.

The NORMAL attribute specifies that

the entry name is for a procedure that

is not abnormal.

Rules for abnormal data:

The ABNORMAL attribute may be declared
for any variable.

The ABNORMAL attribute specifies that
a variable may be altered or otherwise
accessed at an unpredictable time dur-
ing the execution of a program. This
situation might occur, for example,
during the execution of an CON-unit as
described in "The ON Statement,"™ in
Chapter 8.

Every time ABNORMAL data is referred
to, its associated storage contains
its current value.

Default for abnormality of procedures:

If an external entry name appears only
as a function reference, the entry name is

Chapter 4: Data Description 49

assumed +to have the NORMAL attribute; oth-
erwise, the entry name is assumed to be

ABNORMAL. Entry names of all internal
procedures and entry names of external
procedures invoked in CALL statements are

assumed to have the ABNORMAL attribute.
Default for abnormality of data:

Variables are assumed to be NORMAL,
except structures containing ABNORMAL ele-
ments; such structures may not be declared
NORMAL.

THE USES AND SETS ATTRIBUTES

Function:

The USES and SETS attributes are used to
specify, for an entry name, the nature of
an abnormality due to data manipulation.

General format:

USES (item[,item] ...)
SETS (item|[,itemn] ...)

Rules:

1. The items of the list following a

USES or SETS attribute may be as

follows:

a. A decimal integer n, specifying
the nth argument of any invocation
of the procedure at the declared
entry name.

b. An unsubscripted data name known
to both the block containing the
declaration and the invoked proce-
dure.

c. An asterisk indicating all
tifiers described in b.

2. An item in the USES list specifies the
following:

a. That the invoked procedure or pro-
cedures invoked by it access that
item.

b. That neither the invoked procedure
nor procedures invoked by it reas-
sign that item unless it is also
specified in a SETS attribute.

c. That neither the invoked procedure
nor procedures invoked by it
access any other data known to the
block, except data designated by
explicit arguments in either a
CALL statement, a statement with a
CALL option, or a function ref-
erence.

3. BAn item in the SETS list specifies the
following:

a. That the invoked procedure or pro-
cedures invoked by it reassign,
allocate, or free that item.

b. That neither the invoked procedure
nor procedures invoked by it

iden-

50

access that item other than to
reassign, allocate, or free it,
unless it 1is also specified in a
USES attribute.

c. That neither the invoked procedure
nor procedures invoked by it reas-
sign, allocate, or free any other
data known for the block, except
data designated by explicit argu-
ments in the case of a CALL state-
ment.

4. The USES and SETS attributes may be
declared for any entry name used to
invoke a procedure. The scope of this
declaration must include the invoking
block. If the ENTRY attribute is not
declared, ENTRY is implied. If either
USES or SETS is declared in the invok-
ing procedure, complete information
must be given about the data that is
used and/or set by the invoked proce-
dure.

5. If an item in a USES or SETS list, as
described 1in 1b above is defined on a
base (see "The DEFINED Attribute") and
if the base and any other items
defined on it are known both to the
invoking and invoked blocks, the base
and the other items must also be
specified in the 1list.

6. A structure or array name appearing in
a USES or SETS list implies that the
names of all items contained in the
structure or array also are on the
list. It does not imply that items
defined on elements of the structure
are in the 1list; these must be
declared as in rule 5, above.

7. If the USES or SETS attribute is
specified and the invoked procedure is
abnormal in any other way, the ABNOR-
MAL attribute must still be specified
(unless it 1is given by default). If
the USES or SETS attribute is speci-
fied and the invoked procedure is not
otherwise abnormal, the ABNORMAL
attribute should not be specified.

ENTRY NAME ATTRIBUTES

An identifier may be declared to be an
entry name by giving it the ENTRY attri-
bute. It may be declared to have any of
the attributes SETS, USES, and BUILTIN.
These attributes all imply ENTIRY and thus
ENTRY need not be specified. The entry
name also may have the attributes ABNORMAL
or NORMAL and, with the exception of LABEL,
SECONDARY, TASK, EVENT, or a dimension
attribute, any of the data attributes list-
ed in the beginning of this section.

The data attributes specify the charac-
teristics of the value returned when the
entry name is invoked as a function. It

data attributes are not specified, default
or implicit characteristics will be assumed
(see "Assignment of Attributes to
Identifiers™ in this chapter).

An explicit declaration of an internal
entry name and the procedure block having
the entry name must both be internal to the
same block.

The ENTRY Attribute

Function:

The ENTRY attribute is used to declare,
within a procedure, entry names that are
referred to in that procedure.

General format:

ENTRY [(parameter-attribute-list
[,parameter—attribute-1list] ...)]

Rules:

1. When ENTRY is used, it specifies that
the identifier being declared is an
entry name. An entry name must be
declared with the ENTRY attribute
unless the entry label is known in the
same block, or unless a reference is
made to +the entry mname in a CALL
statement or in a function reference
with arguments, or if it is declared
to have any of the attributes SETS,
USES, GENERIC, and BUILTIN. INTERNAL
entries may only be declared in the
block to which the procedure is inter-
nal. ENTRY without a parameter attri-
bute 1list specifies nothing about the
number or nature of the parameters.

2. When ENTRY is used with parameter
attribute lists, each parameter attri-
bute 1list 1is a succession of attri-
butes describing the parameters of the
entry point. Permitted attributes are
those allowed for parameters.

3. The numbex of parameter attribute
lists must be the same as the number
of parameters required by the entry

point. If a parameter attribute 1ist
is null, its place must be kept by a
COMMa «

4, Parameter attribute lists are not nec-
essary if the parameters of the entry
name are not to be described.

5. The dimension attribute may be speci-
fied for arxay parameters. It must be
the first attribute specified for the
parameter.

6. The structuring for a structure param-
eter 1is specified by a structure des-
cription using level numbers without
identifiers, the level number being
immediately followed by the 1list of

attributes for that 1level of the
structure. The first item in the
description of the structure parameter
must be at level one.

7. Expressions occurring in ENTRY attri-
butes for 1length or dimension bounds
are evaluated upon entering the block
to which the declaration of the ENTRY
attribute is internal. If an argument
position specifies an entry with no

data attributes, no default data
attributes are provided.

Default:

If no attributes or level numbers are

given for a parameter, no assumptions are
made about it. When any attributes are
specified, the remaining required attri-
butes are deduced according to the default
rules given in "Assignment of Attributes to
Identifiers.”

The GENERIC Attribute

Function:

The GENERIC attribute is used to define
a name as a family of entry mnames, each of

which is referred to by the name being
declared. When the generic name is
referred to, the proper entry name 1is

selected, based upon the arguments speci-
fied for the generic name in the procedure
reference.

General format:

GENERIC (entry-name-declaration
[,entry-name-declaration] ...)

Rules:

1. No other attributes may be
for the
attribute.

2. Each "entry name declaration" follow-
ing the GENERIC attribute corresponds
to one member of the family.

3. Each entry name declaration must have
the ENTRY attribute. It may optional-
ly have ABNORMAL, NORMAL, USES, SETS,
BUILTIN, and data attributes. No
entry name declaration may have the
GENERIC attribute.

4. Each entry name declaration must spec-
ify attributes or 1level numbers for
every parameter of the associated
entry name. Attributes unspecified
but required for full definition will
be deduced from default rules.

5. When a generic name is xreferred to,
the attributes of the arguments must
match exactly the list following the
entry name declaration of one and only

specified
name being given the GENERIC

Chapter L4: Data Description 51

one member of the family. The ref-
erence is then interpreted as a ref-
erence to that member. Thus, the
selection of a particular entry mname
is based upon the arguments of the
reference to the generic name.

6. The selection of a particular entry
name is first based on the number of
arguments in the reference to the
name. The following attributes are
then considered in choice of generic
members:

Base

Scale

Mode

Precision

PICTURE

LABEL (but not range list)

Dimensionality (but not bounds)

CHARACTER (but not length)

BIT (but not length)

VARYING

TASK

EVENT

ENTRY (but not parameter descrip-
tion or other attributes of entry
names other than data attributes
of the value returned by a
function)

FILE (but no other FILE attributes)

structuring, including only the
attributes 1listed above for the
structure members.

7. Generic entry names (as opposed to
references) may be specified as argu-
ments to non-generic procedures if the
invoked entry name is declared with
the ENTRY attribute (explicit or
implicit for internal procedures) .
This ENTRY attribute must specify that
the appropriate parameter is an entry
name and specify by means of a further
ENTRY attribute the attributes of all
its parameters. This enables a choice
to be made of which family member is
to be passed.

Example:

DECLARE
CALCULATE GENERIC (FIXCALC ENTRY (FIXED),
FLTCALC ENTRY (FLOAT)), Y FLOAT
INITIAL (50) ;

X=Y + CALCULATE (Y) ;

The assignment statement results in the
invocation of the procedure FLTCALC, since
the argument Y matches the entry attribute
of the FLTCALC member of the family.

52

The BUILTIN Attribute

Function:

The BUILTIN attribute specifies that the
reference to the associated identifier
within the scope of the declaration is
interpreted as a reference to the built-in
function or pseudo-variable of the same
name.

General format:
BUILTIN
Rules:

1. BUILTIN is used to refer to a built-in
function or pseudo-variable in a block
that is contained in another block in
which this name has been declared to
have another use.

2. If the BUILTIN attribute is
for an entry name,
other attributes.

3. PFor a list of built-in functions see
Appendix 1.

declared
it may have no

SCOPE ATTRIBUTES

Function:

The scope attributes are used to specify
the scopes in which declared identifiers
are known.

General format:

{INTERNAL
EXTERNAL { (identifier)]

Rules:

1. For a full discussion of the INTERNAL
and EXTERNAL attributes, see "Scope of
Declarations".

2. In the form EXTERNAL (identifier), the
identifier specifies a heading for the
declared name. The scope of the name
is then the union of the scopes of all
EXTERNAL declarations of the same name
with the same heading.

Default:

If the scope is unspecified for variable
names, INTERNAL is assumed.

Example:
DECLARE SUM EXTERNAL (X) ;

The variable SUM is
with the heading X.

declared external
In other declarations,

variable
with no

the heading distinguishes this
from other variables mnamed SUM
heading or other headings.

STORAGE CLASS ATTRIBUTES

Function:

Storage class attributes are used to
allocate a particular class of storage to
variables.

General format:
STATIC|AUTOMATIC | CONTROLLED
Rules:

1. STATIC specifies that storage is allo-
cated at the start of execution of the
program and is not released until
program execution has been completed.

2. AUTOMATIC specifies that storage is
allocated on each entry to the block
to which +the storage declaration is
internal. The storage is released on
leaving the block. If the block is a
procedure that is invoked recursively,
the previously allocated storage is
"pushed down" on entry, and the latest
allocation of storage is "popped up"”
on termination. (For a discussion of
"pushed down" and "porped up" storage,
see "Allocation of Data and Storage
Classes™ in Chapter 6.)

3. CONTROLLED specifies that full control
will be maintained over the allocation
and freeing of storage by means of the
statements ALLOCATE and FREE.

4. AUTOMATIC variables may have INTERNAL
scope only. STATIC and CONTROLLED
variables may have INTERNAL or EXTER-
NAL scope.

5. Storage class attributes may not be

specified for entry names, file names,
members of structures, or DEFINED
data.

6. STATIC and AUTOMATIC attributes may
not be specified for parameters.

7. Variables declared with adjustable
lengths and dimensions may not have
the STATIC attribute.

8. If a procedure involving static stor-
age 1is invoked from within or as a
separate task, the static storage is
common to all invocations.

9. If, during execution of a statement,
controlled data is allocated or freed
(by an abnormal function, for
example) , any reference in the state-
ment to that data produces an unde-
fined result.

10. Storage class attributes may only be
given for variables at level 1. The
storage class applies to all elements

of a structure or array of structures.
If a structure is CONTROLLED, only the
major structure, and not the elements,
may be allocated and freed.

Default:

1. If storage class is unspecified and
the scope 1is EXTERNAL, STATIC is
assumed.

2. If storage class 1is unspecified and

the scope is INTERNAL, AUTOMATIC is
assumed.
3. If neither storage class nor scope is

specified, AUTOMATIC is assumed.
Example:

EXAMPLE: PROCEDURE;
DECLARE A STATIC INITIAL
(0) , B CONTROLLED, C (10) ;
ALLOCATE B;
A=A+ 1;

FREE B;
WRITE LIST (A) ;
END EXAMPLE;

The variable A is of the static storage
class and is used to count the number of
times the procedure is invoked. The varia-
ble B 1is of the controlled storage class,
and storage is allocated and freed by use
of the ALLOCATE and FREE statements. The
variable C is of +the automatic storage
class by default.

THE ALIGNED AND PACKED ATTRIBUTES

Function:

The ALIGNED and PACKED attributes are
used to specify in storage the arrangement
of string or numeric field data elements
within data aggregates.

General format:
ALIGNED| PACKED
Rules:

1. These attributes may be specified for

the following:

a. Nanies of major structures.

b. Names of arrays that are not them-
selves part of a structure.

2. PACKED specifies that each string or
numeric field element 1is packed in
storage contiguous with the string or
numexric field elements that surround
it. There should be no unused storage
between two adjacent elements, provid-

Chapter 4: Data Description 53

1.

2.

ed all data elements of the aggregates
are string or numeric field variables
of the same class. In other cases,
some unused sSpace may appear but stor-
age 1is to be conserved when possible.
ALIGNED specifies that each string
data element within the aggregate may
start at a storage boundary to be
defined individually for each implem-
entation of PL/I. This implies that
two adjacent string or numerical field
elements of a homogeneous aggregate
may not necessarily occupy contiguous
storage, if a more efficient program
is possible.

Arguments to the STRING generic func-
tion must be PACKED structures.

Default:

The default for major structures is
PACKED.

The default for arrays that
part of structures is ALIGNED.

are not

Examples:

DECLARE

12 (10)
(200, 2 C BIT (500),
(300), E (10,15) ALIGNED BIT (15);
All
tures, will occupy a
storage.
start at a
that
unused storage between the elements of

PACKED, 2 B BIT
2 D BIT

elements of A, an array of struc-
continuous area of
Each element of the array E will

storage boundary defined for
implementation of PL/I. There may be

the

latter array.

THE DEFINED ATTRIBUTE

The
scalar, array, oOr
occupy the

Function:

DEFINED attribute specifies that
structure data is to

same storage as that already

assigned to other data.

1.

54

Genexral format:

DEFINED base-identifier
[subscript 1list]

Rules for defining:

In general, the defined item must have
the same characteristics as the "base
identifier."” However, mixed defining
is permitted in the following two

classes:
a. The bit class is composed of the
following:

(1) numeric fields of binary base
(2) fixed-length bit strings

1.

(3) packed arrays or structures of
either oxr both (1) and (2)
b. The character class is composed of
the following:
(1) numeric fields of decimal base
(2) fixed-length character strings
(3) packed arrays or structures of
either or both (1) and (2)
The INITIAL, SYMBOL, storage class,
and scope attributes must not be spec-
ified for the defined item. The VARY-
ING attribute must not be specified
for either the defined item or the
base. It should be noted that
although the base may have the EXTER-

NAL attribute, the defined item 1is
always INTERNAL. The name of the
base, if declared external, will be

known in all blocks in which it is
declared external, but the name of the
defined item will not. However, the
value of the defined item will be
changed if the value of the base item
is changed in an external block.

The LIKE attribute must be specified
for a defined item if it is to apply.
The defined item must always be speci-
fied as a subset (including the full
set) of the base identifier. Thus,
the dimensions and string length of a
defined item must be a subset of those
of the base.

No other attribute conflicts, except
those mentioned in the above rules,
are allowed between the defined item
and the base.

Expressions specified in base-
identifier subscript lists are
evaluated when the defined item is
referred to and not when it is

declared. Use of a defined item in an
argument 1list 1is interpreted as a
reference to the defined item.

The base identifier must always be
known within the block where the
defined identifier 1is declared and

cannot have been declared with the
DEFINED attribute.

Expressions in attributes of the
defined data other than in the DEFINED
attribute are evaluated on entry to
the declaring block. The current gen-
eration of the base at each point of
reference to the defined item is nor-
mally taken as the defining base. 1If,
however, a defined item is passed as a
parameter and the base is reallocated,

the parameter will be Dbased on the
generation current at the time of
invocation.

Data defined on a CONTROLLED base

refers to the most
of base data.

recent generation

Rules for scalar defining:

Both the defined item and base iden-
tifier must be scalars.

Ge

The base identifier may be subscript-
ed, in order to specify a scalar
element of an array, but the defined
term may not be an element of a
structure or an array.

3. Permitted forms are as follows:
Defined Item Base Identifier
coded arithmetic coded arithmetic of the
same base, scale,
mode, and precision
label label
binary numeric binary numeric field or
field or bit bit string
string
decimal numeric decimal numeric field
field or char- or character string
acter string
task task
event event
4, The POSITION attribute may be speci-

fied when the base is a fixed-length
string.

neral Format:

POSITION (decimal-integer-constant)

This specifies the position (n) relative
to the start of the base where the defined

item

begins. If omitted, POSITION (1) is

assumed. The position (n) is restricted as
follows: n + length (defined-item) - 1 must

be 1le
ident

ss than or equal to the 1length (base
ifier). If POSITION is given, then

the DEFINED attribute must also be given.

Rules for array defining:

1.

2.

Both the defined item and the base
identifier must be arrays.

The defined item must have a dimension
attribute, and may not be an element
of a structure.

The permitted forms are the same as
those for scalar defining.

In array defining there is a relation-
ship between each element of the
defined array and a corresponding ele-
ment of the base identifier.

The elements of the defined array must
have lengths 1less than, or equal to,
the lengths of the base array ele-
ments.

The POSITION option may be given when
the base identifier refers to an array
of strings. It specifies that each
elerent of the defined array begins at
the nth bit or character position of
the corresponding element of the base
array.

In array defining, both the defined
array and the base array may be arrays
of structures. In this case, one of
the following conditions must be

satisfied:

a. Both strings must be PACKED and
composed of string or numeric
field elements of the same class.

b. Both arrays must have identical
structure descriptions.

In this form of defining, the
base may not be a parameter.
8. Two classes of array defining are
permitted, simple and subscripted.

Rules for simple array defining:

1. The base identifier must be an unsub-
scripted array name having the same
number of dimensions as the defined
array.

2. The dimension bounds of the defined
array must be a subset of the bounds
of the base array.

3. A subsequent subscripted reference to
the defined array is interpreted as a
reference to the base array with iden-
tical subscripts.

4. A subsequent unsubscripted reference
to the defined array is interpreted as
a reference to the declared subset of
the base array specified by the dimen-
sion bounds.

Rules for subscripted array defining:

1. The base identifier must be an array
name followed by a defining subscript
list. The base array need not have
the same number of dimensions as the
defined array.

2. The defining subscript 1list defines
the relationship between the elements
of the defined array and the base
array and must have as many subscripts
as the base array has dimensions.

3. The defining subscripts may be an
expression, including the dummy varia-
ble isuB, and take the following form:

at a, *¥1SUBt+ a, *2SUB... * ap *nSUB

In the expression iSUB, i is a decimal

integer constant in the range 1 to n,

with n being the dimensionality of the

defined array. The symbol a 1is any
scalar expression involving variables
known within the block containing the

DEFINED declaration. The integer

value of the expression will be used.

If any a is zero, that iSUB may be

omitted.

4. The subscripted reference to the
defined array is then interpreted as
follows:

a. Each iSUB in the defining sub-
script is replaced by the integer
value of the ith subscript given
for the defined array. Before
replacement, the subscript concep-
tually is enclosed in parentheses.

b. The reference to the defined array

Chapter U4: Data Description 55

8.

elements is a reference to the
base array element specified by
the generated subscript.
For example, in the following state-
ment, B is a vector having as elements
the diagonal of matrix A:

DECLARE A(10,10), B (10) DEFINED
A (1SUB, 1SUB) ;
A subsequent unsubscripted reference

to the defined array is interpreted as
a reference to the entire array as
defined by the mapping.

If a defined array name 1is specified
as an argument to an invoked proce-
dure, the expressions in the defining
subscript 1list are evaluated before
the invocation. The invoked procedure
can still reassign values to elements
of the defined array by a parameter,
out the relationship between the
defined array elements and the base
elements is frozen on entry.

The POSITION option cannot be used
with subscripted array defining.

Rules for mixed defining (structures and

arrays) :

1.

4.

5.

56

Major structures and arrays not con-
tained in structures, having elements
all of the same class as described
earlier in this section, may be
defined on scalar strings of the same
class and on structures or arrays
having elements all of the same class
and which are not part of a major
structure having the ALIGNED attri-
bute.
When scalar strings are defined items,
base items wmay be any of the follow-
ing:
a. major structures that are PACKED
b. minor structures contained in a
PACKED major structure
c. structure elements with the base
being specified as a subscripted
structure name
d. unsubscripted PACKED arrays
contained in structures
e. unsubscripted arrays not contained
in undimensional structures
211l of the elements of the base
item must be of the same class as the
defined string.
When the base item is a scalar string,
the POSITION option may be specified
to indicate that the defined array or
structure is offset from the start of
the string. It may not be specified
with mixed defining when the base is
an array or structure.
Defining subscript lists
used with mixed defining.
The base in mixed defining may not be
a parameter.

not

may not be

Examples:

DECLARE 1 P, 2 Q CHARACTER (10), 2 R
CHARACTER (100) ,

PSTRING1 CHARACTER (110) DEFINED P;

DECLARE LIST CHARACTER (40), ALIST
CHARACTER (10)
DEFINED LIST, BLIST CHARACTER (20)

DEFINED LIST
POSITION (21),

DEFINED LIST
POSITION (11);

CLIST CHARACTER (10)

DECLARE ALL (16), EVEN (8) DEFINED ALL

(2*1SUB) ;

THE INITIAL ATTRIBUTE

The

Function:

INITIAL attribute either specifies

constant values to be assigned to data when
storage is allocated to it, or it specifies
a procedure to be invoked to perform ini-
tialization at allocation.

1.
2.

1.

General format:

INITIAL (item [, item] ...)
INITIAL CALL entry-name
{argument-1ist])

Rules for form 1:

In this discussion, the term constant
denotes either an optionally signed
constant or a complex expression of
the following form:

real-constant {+|-} imaginary-constant

One constant value is required for a
scalar; more may be given for an
array.

Constant values specified for an array
are assigned to successive elements of
the array in row-major order (final
subscript varying most rapidly) .

If too many constant values are speci-
fied, excess ones are ignored; if not
enough are specified, the remainder of
the array is not initialized.

The items in the 1list may be an
optionally signed constant, an aster-
isk denoting no initialization for a
particular element, or an iteration
specification.

The iteration specification has one of
the following general forms:

(iteration-factor) constant
(iteration-factor)

(item [, item] ...)

1.

12.

13.

Rules

1.

2.

(iteration-factor) *

The "iteration factor" may be any
expression that satisfies the rules
stated in the section on "Prologues"
in Chapter 10. When storage is allo-
cated, the expression is evaluated to
give an integer that specifies the
number of repetitions.

Only constants are permissible as
iteration factors for STATIC data.

A negative or zero iteration factor
yields no initialization.

Iterations may be nested.

See "Statement Label Data," in Chapter
2, for an alternative method of speci-
fying initial values for label arrays.
The INITIAL attribute may not be given
for the following:

entry names
file names
DEFINED data
structures
parameters
TASK data
EVENT data

If only one parenthesized scalar
expression precedes a string initial
value, it is interpreted as a replica-
tion factor for the string. If +two
appear, the first 1is taken to be an
initialization iteration factor, the
second, a string replication factor.
For example:

((2) 'A') is equivalent to ('AA')
(2 (M *'a"Y) is equivalent to
(IAI' IAI)

for form 2:

The entry name and arguments passed
must satisfy the conditions stated in
"Prologues.™"

This form may not be used to initial-
ize STATIC data.

Exanmples:

1.
2.

3.

4.

DECLARE
DECLARE

SWITCH INITIAL ('1°'B);
MAXVALUE INITIAL (99),
MINVALUE INITIAL (~99) ;
DECLARE A (100,10) INITIAL ((920) 0,
(20) ((3)5,9) ¢

DECLARE TABLE (20,20) INITIAL CALL
INITIALIZE (X,Y);

The +third example results in the
following: each of the first 920 ele-
ments of A is set to 0, the next 80
elements consist of 20 repetitions of
the sequence 5,5,5,9.

In the last example, INITIALIZE is
the name of a procedure that sets the
initial values of elements in TABLE.

X and Y are arguments passed to INI-

TIALIZE.

SYMBOL TABLE ATTRIBUTES

The

Function:

symbol table attributes are used in

conjunction with data~directed input/output

the

table.

1.

operations. They specify whether or not
names of data-directed input/output
elements are to be placed in a symbol
General format:
{SYMBOL {(identifier)]
NOSYMBOL
Rules:
SYMBOL specifies that the declared
name is to be placed in the symbol
table.
SYMBOL (identifier), used when the
declared name must be qualified to
make it unique, specifies that the

See

identifier in parentheses is to appear
in the symbol table as a synonym for
the name to which it refers.

A variable whose name or synonym
appears in the symbol table may have
its values transmitted under data-
directed directed input without a data
list.

NOSYMBOL specifies
name is not to appear
table.

The appearance of an identifier as an
element to be transmitted in a data-
directed input or output 1list is a
contextual declaration of the
attribute SYMBOL.

It 1is illegal to specify SYMBOL with-
out a synonym for two structure ele-
ments declared internal to the same
block and having the same identifier,
Symbol table attributes may not be
declared for entry names, files,
labels, task and event data, DEFINED
data, or parameters.

that the declared
in the symbol

Reference:

Chapter 7 for a complete discussion

of data-directed input and output.

the

Default:

The default attribute is NOSYMBOL unless

name appears in a 1list for data-

directed input or output.

Chapter 4: Data Description 57

THE LIKE ATTRIBUTE

Function:

The LIKE attribute
name being declared is
structuring as the name
attribute LIKE.

specifies that the
given the same
following the

General format:

LIKE structure-name

Rules:

1. The "structure name"™ may be unquali-
fied or qualified, but it may not be
subscripted.

2. The structure must be known to the

block containing the LIKE attribute.

3. Neither the structure name nor any of
its substructures can be declared with
the LIKE attribute.

4. The LIKE attribute specifies that the
name being declared 1is a structure
with a substructure having elements
with attributes and names identical to
the names and attributes of the ele-
ments of the named structure. Con-
tained dimension and length attributes

are recomputed. Attributes of the
structure mname itself do not carry
over, only its elements enter into

this process.

5. If the structure description of the
named structure has been declared, and
if a direct application of the des-
cription to the structure being
declared LIKE would cause an incorrect
discontinuity in 1level numbers, then
the level numbers will be modified by
a constant before application.

6. The number that immediately follows
the member that has the LIKE attribute
must have a level-number that is equal
to or less than that of the member
that has the LIKE attribute.

Examples:

1. DECLARE 1 A (10),
2 FIELD1,
3 DTL1 PIC'$2Z.99',
3 DTL2 CHAR (10),
2 FIELD2 BIT (50),

’

2 FIELD1,
3 SUBFLD1 (20) LIKE A . FIELD]
3 TABLES (3),

2 FIELD2 LIKE A . FIELDI1;

The above is equivalent to:
DECLARE 1 A (10),

2 FIELD1,
3 DTL1 PIC '$22.99°,

58

3 DTL2 CHAR (10),
2 FIELD2 BIT (50),
1%,
2 FIELD1,
3 SUBFLD1 (20),
4 DTL1 PIC '$2Z.99°',
4 DTL2 CHAR (10),
3 TABLE (3),
2 FIELD2,
3 DTL1 PIC '$2Z.99°',
3 DTL2 CHAR (10) ;

2. DECLARE 1 A EXTERNAL, 2 (B,C,D), 1 E
LIKE A;

The above is equivalent to :

DECLARE 1 A EXTERNAL, 2 (B,C,D),
2 (B,C,D);

1E,

FILE DESCRIPTION ATTRIBUTES

File description attributes are used to
describe data files. Declarations of the
same file in more than one external proce-
dure must not conflict. For a complete
discussion of data files see Chapter 7.

The FILE Attribute

Function:

The FILE attribute specifies that the
associated identifier is a file name.

General form:

FILE

Standard Attributes

Function:

The standard attributes are wused to
assign a file name as a synonym for the
standard inputs/output file.

General format:

STANDIN| STANDOUT

Rules:

No other attributes except the ZERO
attribute are used to describe a file

if it has been given a STANDIN or
STANDOUT attribute.

The Storage Equivalence Attribute

Function:

The storage equivalence attribute is
used to specify the sharing of storage used
for transmission to external media by two
files.

General format:
POOL (file-name)
Rules:

1. The "file name" specifies a file that
may share the storage area necessary
for transmission to an external medium
with the file currently being des-
critked.

2. The technique of pooling is
tation defined.

implemen-

The Function Attributes

Function:

The function attributes
function of a file.

specify the

General format:

INPUT | OUTPUT | INCUT

Rules:

The particular attribute used speci-
fies that the file is to be used for

input, output, or for both input and
output. A declaration of INOUT for a
file with SEQUENTIAL access denotes

the update-in-place mode. Such files
must be accessed in the sequence READ,
then WRITE.

File Organization Attributes

Function:

The file organization attributes, which
are used in conjunction with the access
attributes, specify the ranner in which the
records comprising a file are located.

General format:

CCNSECUTIVE
REGIONAL (maximum-number-of-records)
INDEXED

Rules:

1. CONSECUTIVE specifies that the loca-
tion of records within the file is
dependent wupon the current physical
position of the device containing the
file.

2. REGIONAL specifies that the location
of records within the file is deter-
mined by relative physical regions of
the device containing the file. The
"maximum number of records" indicates
the maximum number of records within a
region and must be a decimal integer
constant. If this is omitted there is
one record per region. Such a file
may be accessed in the DIRECT mode
with (optionally) only a REGION
option, and no KEY option.

3. INDEXED specifies that the location of
records within a file is determined by
means of an ordered index that
addresses areas of the device contain-
ing the file.

Default:
If DIRECT access 1is specified, then
INDEXED is assumed. Otherwise the default

is CONSECUTIVE.

Access Attributes

Function:

The access attributes specify the manner
in which the records within a file are
accessed.

General format:
SEQUENTIAL|DIRECT
Rules:

1. SEQUENTIAL normally specifies that the
next record to be accessed 1is deter-
mined by the order implicitly given
the file by virtue of its organiza-
tion. If, however, a KEY is provided,
direct access is performed.

2. DIRECT specifies that the next record
to be accessed 1is determined by an
explicitly stated identification (see
the KEY, NEWKEY, and REGION options
with the READ and WRITE statements, in
Chapter 8). Direct access is permit-
ted only on files organized in the
REGIONAL or INDEXED fashion.

Default:
If REGIONAL or INDEXED organization is

specified, then DIRECT is assumed. Other-
wise the default is SEQUENTIAL.

Chapter 4: Data Description 59

Table 3.

CONSECUTIVE

REGIONAL

INDEXED

Allowable statements for CONSECUTIVE, REGIONAL, and

INDEXED organizations of a SEQUENTIAL access file.
r T T 1
| INPUT | OUTPUT | INOUT |
t ¥ t 1
READ	WRITE	READ
		WRITE
GET	GET	GET
PUT	PUT	PUT
SPACE	SPACE	SPACE (In)
SKIP	SKIP	SKIP (In) {
GROUP	GROUP	GROUP (In)
SEGMENT	SEGMENT	SEGMENT (In) [
TAB	TAB	TAB
POSITION	POSITION	POSITION
LAYOUT	LAYOUT	LAYOUT
	PAGE	
t -+ S 1		
READ	WRITE	WRITE
READ REGION	WRITE REGION	WRITE REGION
READ REGION	WRITE REGION	WRITE REGION
and KEY	and KEY	and KEY
	WRITE REGION	WRITE REGION
	and NEWKEY	and NEWKEY
GET	GET	GET
PUT	PUT	READ REGICN
		READ KEY
		and REGION
	{	
SPACE	SPACE	SPACE (In)
		GET
		PUT
TAB	TAB	TAB 1
PCSITION	POSITION	POSITION
LAYOUT	LAYOUT	LAYOUT
t + + i		
READ	WRITE	READ
		WRITE
]
	! {	
READ KEY	WRITE KEY	READ KEY
	WRITE NEWKEY	WRITE KEY
		WRITE NEWKEY
		SPACE (In)
{		
TAB	TAB	TAB I
POSITION	POSITION	POSITION
GET	GET	GET
PUT	PUT	PUT
SPACE	SPACE	
LAYOUT	LAYOUT	LAYOUT
L [] L E

60

Table 4. Allowable Statements for the

REGIONAL

and INDEXED

Organizations of a DIRECT Access File

| i 1 1
| INPUT | ouTPUT | INOUT |
| 1 i]
REGIONAL | READ REGION | WRITE REGICN | READ REGION |
		WRITE REGION
READ REGION	WRITE REGION	READ REGION
and KEY	and KEY	and KEY
	WRITE REGION	
	and NEWKEY	
		WRITE REGION i
		and KEY
i i	WRITE REGION	
		and NEWKEY
	[
SPACE	SPACE	SPACE (In)
GET	GET	GET
PUT	PUT	PUT
TAB	TAB	TAB
POSITION	POSITION	POSITION
LAYOUT	LAYCUT	LAYOUT
i' i i ?		
INDEXED	READ	WRITE KEY
	WRITE NEWKEY	WRITE KEY
I		
READ KEY		WRITE NEWKEY
	I !	
TAB	TAB	TAB
POSITION	POSITION	POSITION
GET	GET	GET
PUT	PUT	PUT
SPACE	SPACE	SPACE
LAYOUT	LAYOUT	LAYOUT
L 1 L J
Note that a declaration of INOUT for a General format:
file with SEQUENTIAL access indicates
update-in-place. It applies to all file KEYLENGTH (length)
organizations on direct access devices.

The order of access to such a file must be
first READ, then WRITE.

A CONSECUTIVE file will, on WRITE,
replace the last record read. REGIONAL and
INDEXED files will, on READ, remember the
KEY (and REGION) values and use them for
the next WRITE.

The KEYLENGTH Attribute

Function:

The KEYLENGTH attribute specifies the
length, in characters, of the keys asso-
ciated with records within files organized
in the REGIONAL or INDEXED mode.

Rules:

For indexed organization, this attri-

bute must appear.
Default:

For regional organization, absence of
this attribute implies a key length of zero
(@ keylength of zero is only permitted on
REGICNAL files which have one record per
region) .

The ZERO Attribute

Function:

Chapter 4: Data Description 61

The ZERO attribute specifies that trail-
ing blank characters in data input fields
read by format items E, F, or G are to be
treated as numeric zeros.

General format:

ZERC

Rules:

The ZERQ attribute has no effect on

output data.

The ENVIRONMENT Attribute

Function:

The ENVIRONMENT attribute is an implem-
entation defined attribute which specifies
various characteristics of a file which are
not related to the PL/I language.

General Format:
ENVIRONMENT (option-1list)
Rules:

1. The option list will be defined indi-
vidually for each implementation of
PL/I.

2. Information such as the device type,
buffering, file organization support,
record format, file disposition, etc.,
may be specified in the option list.

3. Parentheses occurring within the
option list must be matched.

ASSIGNMENT OF ATTRIBUTES TC IDENTIFIERS

Identifiers can be given attributes
explicitly through DECLARE statements, by
occurrences in certain recognizable con-
texts, and by default rules for identifiers
incompletely described by the programmer.

Within an external procedure, statement
label constants, internal entry 1labels,
parameters, and identifiers appearing in
DECLARE statements are qualified by the
respective blocks in which their declara-
tions (contextual or explicit) occur. For
an identifier occurring as a parameter, the
characteristic, "parameter," is combined
with any explicitly declared attributes for
the identifier. Default attributes are
added as described below. An identifier
occurring as an internal entry 1label is
given the attributes INTERNAL ENTRY, which
then are also combined with any declared
attributes for that identifier, after which
defaults are applied.

62

The following attributes, assigned
through context, are recognized in the
indicated ways:

1. ENTRY (subroutine): CALL state-

ment or CALL option

2. ENTRY (function): identifier fol-
lowed by parenthesized list (if
the identifier is mnot initial
value for a label array and has
not been declared in a containing
block as an array) .

3. FILE: READ, WRITE, SPACE, GROUP,
SKIP, PAGE, LAYOUT, SORT, OPEN,
CLOSE, GIVING, POOL, FROM, or ON,

REVERT, oxr SIGNAL (file
conditions) .

4, TASK: TASK option

5. EVENT: EVENT option or WAIT
statement

6. SYMBOL: DATA list

7. (programmer named condition): ON
CONDITION, SIGNAL CONDITION, or
REVERT CONDITION

If an identifier appearing in one of
these contexts has been declared explicitly
or contextually in a containing block with-
out the indicated attribute, an error is
raised. If it has already Dbeen declared
with the attribute, then the identifier is
taken to be the one in the innermost block
in which it has been so declared. 1In case
1 above, the characteristic, "subroutine,"
is added to the declaration.

If an identifier found in one of these
contexts has not been previously declared
as described above, then it is qualified by
the containing external procedure and is
given the indicated attribute. Defaults
are then added.

Remaining undeclared simple identifiers
are qualified by the containing external
procedure, and default attributes are
assigned.

Application of Default Attributes

Default assumptions are as follows, for
the identifier classes indicated:

ENTRY type: EXTERNAL is assumed. If
the entry is EXTERNAL and is not
a subroutine, then NORMAL is
assumed. Otherwise, ABNORMAL is

assumed. Scale, base, mode and
precision defaults for the value

returned are the same as for
Arithmetic type given below.
If a procedure has multiple entry

names and no data attributes, there is
potential ambiquity in the charac-
teristics of the value to be returned.
In order to avoid this ambiguity,
succeeding labels are interpreted as
if they were entry names for succes-
sive ENTRY statements. For example,
in the following, statement a is
interpreted as if both statement b and
statement ¢ had been written.

a. A: B: ENTRY;
b. A: ENTRY;
c. B: ENTRY;

FILE type: EXTERNAL scope is assumed.
If neither organization nor
access method is given, then CON-

SECUTIVE SEQUENTIAL is assumed.
If CONSECUTIVE is given, then
SEQUENTIAL is assumed. 1f

INDEXED or REGIONAL is given,
then DIRECT is assumed. If
DIRECT is given, then INDEXED is
assumed. If SEQUENTIAL is given,
then CONSECUTIVE is assumed.
TASK type: ABNORMAL is assumed.
Scope and storage class defaults
are the same as for Arithmetic
type given below. ALIGNED is
assumed for arrays not in struc-
tures.

EVENT type: Defaults are the same as
for TASK type.

LABEL type: Range is assumed to be
all labels which could be
assigned to the variable. NORMAL
is assumed. Scope and storage
class defaults are the same as
for Arithmetic type given below.
ALIGNED is assumed for arrays not
in structures.

Condition type: EXTERNAL

assumed.

scope is

String type: NOSYMBOL is assumed.
NORMAL is assumed. Scope and
storage class defaults are the
same as for Arithmetic type given
below. ALIGNED is assumed for
arrays not in structures.

Major Structure type: PACKED is

assumed. NOSYMBOL is assumed.

NORMAL is assumed. Scope and

storage class defaults are the

same as for Arithmetic type given
below.

Minor Structure type: NOSYMBOL is
assumed. NORMAL is assumed.
INTERNAL is assumed.

Elementary Structure Element
type: NOSYMBOL is assumed. NOR-
MAL is assumed. INTERNAL is
assumed. If Arithmetic type has

been indicated, then scale, base,

mode, and precision defaults are

the same as for Arithmetic type

given below.
Arithmetic type: If none of scale,
base, and mode has been given,
then if the identifier starts
with any of the letters I - N,
FIXED BINARY REAL is assumed;
otherwise FLOAT DECIMAL REAL is
assumed. If at least one of
these has been given, then the
remaining defaults are FLOAT,
DECIMAL and REAL. Default preci-
sion 1s implementation defined,
dependent on scale and radix.
ALIGNED is assumed for arrays not
in structures. NOSYMBOL is
assumed. NORMAL is assumed.
INTERNAL is assumed. If no stor-
age class is given, then AUTOMAT-
IC 1is associated with INTERNAL
and STATIC with EXTERNAL.

STRUCTURE DECLARATIONS AND ATTRIBUTES

This section is a summarization of data
declarations and attributes as they apply
specifically to structures.

LEVEL NUMBER

The outermost structure 1is a major
structure, and all contained structures are
minor structures.

A structure is specified by declaring
the major structure name and following it
with the names of all contained elements.
¥ach name 1is preceded by a level number,
which is a non-zero decimal integer con-
stant. A major structure is always at
level one and all elements contained in a
structure (at level n) have a level number
that is numerically greater than n, but
they need not necessarily be at level n+i,
nor need they all have the same level
number.

A minor structure at level n contains
all following items declared with level
numbers greater than n up to but not
including the next item with a level number

Chapter 4: Data Description 63

less than or equal to n. A major structure
description is terminated by the declara-
tion of another item at level one, by the
declaration of an item having no level
number, or by the end of a declaration
list.

STRUCTURES AND THE DIMENSION ATTRIBUTE

When a structure name is given the
dimension attribute, it 1is an array of
structures, and all contained items are
arrays (see "Arrays of Structures," in
Chapter 2). Contained scalar items, con-
tained structure elements, and cross sec-

tions of contained arrays are referred to,
respectively, by subscripted names, sub-
scripted qualified names, and the asterisk
notation (see "Naming,®" in Chapter 2).

STRUCTURES AND DATA ATTRIBUTES

Structures and arrays of structures are
not given data attributes. These can be

(<

given structure ele-

ments.

only to elementary

STRUCTURES AND SCOPE ATTRIBUTES

Major structure names may be declared
with the EXTERNAL attribute. Items con-
tained in structures may not be declared

with the EXTERNAL attribute, and even if
INTERNAL is unspecified, they are assumed
to be INTERNAL.

STRUCTURES AND STORAGE CLASS ATTRIBUTES

All items in the same structure must be
of the same storage class, since only the
major structure may be given a storage-
class attribute. The storage class of the

major structure applies to all elements of
the structure. If a structure has the
CONTROLLED attribute, only the major

structure, not
cated and freed.

its elements, may be allo-

CHAPTER 5:

PROCEDURES, FUNCTIONS, AND SUBROUTINES

FORMAL PARAMETERS

The PROCEDURE statement heading a given
procedure and defining the primary entry
point to the procedure may specify a list
of formal parameters. (For syntax and
details of the PROCEDURE statement, see
Chapter 8.)

One or more ENTRY statements may also be
used 1in the procedure to define secondary
entry points, XLike the heading statement
of the procedure, each of the ENTRY state-
ments must have at least one label to serve
as an entry name for that point, and each
may specify a 1list of formal parameters,
unrelated to the parameter 1lists for the
other entry points. (For syntax and
details see "The ENTRY Statement.")

The formal parareters are identifiers
and may appear in statements of the proce-
dure in the context of scalar variable
names, array names, structure names, state-
ment label designators, entry names, file
names, task names, or event names.

The appearance of an identifier in a
formal parameter list for a procedure con-
stitutes a declaration of the identifier as
a parameter. This contextual declaration
can be combined with an explicit declara-

tion and other contextual declarations in
the procedure that will associate required
attributes with the parameter. Required

attributes not declared explicitly or
textually will be assigned by default.

con-

No declarations of the
appear outside the procedure. (For further
details about the restrictions on attri-
butes of parameters see "Arguments and
Parameters,"™ in Chapter 10.)

parameter can

Example:

SBPRIM: PROCEDURE (X, Y, Z);

DECLARE (X, Y, A, B) FIXED, %2

FLOAT;
A =X-1; B = Y+1;
GO TO CCMMON;
SBSEC: ENTRY (X, 2):
A = X-2; B = X-3;
COMMON: Z = A*¥*2+A*B+B*%*2;

END SBPRIM;

In this example, the procedure may be
entered at its primary entry point SBPRINM,
where the formal parameter list is (X, Y,
Z), or at its secondary entry point SBSEC,
where the formal parameter list is (X, 2Z).

Chapter 5:

PROCEDURE REFERENCES

At any point in a program where an entry
name for a given procedure is known, the
procedure may be invoked by a procedure

reference, which has the form:

entry-name [(argument [,argument]

eea)l

The number of arguments (possibly zero)
in the procedure reference must be equal to
the number of formal parameters in the list
for the entry point denoted by the entry
name.

The procedure invoked by the procedure
reference may be an external or an internal
procedure. If it is an internal procedure,
the block to which the entry name is
internal must be active at the time of
invocation of the procedure (for a defini-
tion of "active," see "Activation and Ter-
mination of Blocks" in Chapter 6).

When a procedure reference invokes a
procedure, each argunent specifiea in the
reference is associated with its corres-
ponding formal parameter in the list for
the denoted entry point, and control is
passed to the procedure at the entry point.
The conditions the arguments must satisfy,
and the manner of association of each
argument with its matching parameter are

discussed in "The Arguments in a Procedure
Reference."
When a procedure becomes inactive, the

association between arguments and paramet-
ers is terminated.

There are two distinctly different uses
for procedures, determined by one of two
contexts in which a procedure reference may
appear:

1. A procedure reference may appear as an
operancd in an expression. (For a
complete description of expression,
see "“Expressions," in Chapter 3). 1In
this case, the reference is said toc be
a function reference, and the proce-
dure 1is invoked as a function proce-
dure, or simply a function.

2. A procedure reference may appear fol-
lowing the keyword CALL, either in a
CALL statement or in a statement using
a CALL option. In this case, the
reference 1is said to be a subroutine
reference, and the procedure 1is

Procedures, Functions, and Sukroutines 65

invoked as a subroutine procedure, or
simply a subroutine.

(Ordinarily a given procedure will be
used exclusively as a function procedure or
exclusively as a subroutine procedure.)

FUNCTION REFERENCES AND FUNCTION PROCEDURES

When a function reference appears in an
expression, the function procedure is
invoked. The procedure is then executed,
using the arguments, if any, specified in
the function reference. The result of this
execution 1is the required value, which is
passed with return of control back to the
point of invocation. This returned value
is then used, in place of the function
reference, to evaluate the expression.

The procedure invoked by a function
reference normally will terminate execution
with a statement of the form
RETURN (expression), where expression is a
scalar expression of arithmetic, character-
string, or bit-string type (see "The RETURN
Statement"). (A GO TO statement may also
be used to terminate execution of a
procedure invoked by a function reference.)
It 1is the value of this expression that
will be returned as the function value.
The PROCEDURE or FNTRY statement at the
invoked entry point may specify data attri-
butes for the function wvalue (see "The
PROCEDURE Statement" and “The ENTRY State-
ment, "™ in Chapter 8). Just prior to
return, the expression is evaluated, and,
before being passed back, the value is
converted, if necessary, to conform to
these attributes, or, if the attributes are
not specified, to the default attributes
implied by the entry name.

If the 1invoked function procedure is
terminated by a GO TO statement, the evalu-
ation of the expression that invoked the
function will not be completed and control
will go to the designated statement.

GENERIC FUNCTIONS

A generic function is a family of func-
tions with a single name. A function
reference to a generic function causes the
selection of a certain member of the fami-
ly, depending upon the attributes of the
argumrents. The characteristics of the
value returned depend upon the member that
is selected.

66

Generic functions may be built-in (see
below) or specified by the programmer, who
may, by means of the attribute GENERIC,
define a name to be a generic function
name. An entry name may be explicitly
declared with the GENERIC attribute. The
GENERIC attribute requires a list of all of
the entry names of the family and the
attributes of -all of the arguments for each
member (different members must have differ-
ent argument attribute patterns). Then any
reference appearing in the scope of this
declaration and using the declared generic
name as an entry name will result in the
use of that member of the declared family
that has the same argument attribute pat-
tern as the pattern in the argument 1list of
the reference. For complete details see
"Entry Name Attributes™ in Chapter 4.

Subroutine procedures may also be gener-
ic. The method of selecting a particular
subroutine corresponds exactly to that of
selecting a particular function.

BUILT-IN FUNCTIONS

Besides function procedures written by
the programmer, a function reference may
invoke one of a comprehensive set of built-
in functions.

The set of built-in functions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic functions
but also functions for manipulating strings
and arrays, as well as other necessary or
useful functions related to special
facilities provided in the language. The
complete 1ist of these functions and their
descriptions can be found in Appendix 1.

A large number of the built-in functions
are generic. The built-in generic func-
tions are of considerable convenience to
the programmer. He may, for example,
always use the same name EXP for the
exponential function, regardless of whether
the argument is of REAL or COMPLEX mode,
regardless of the precision of the argu-
ment, etc., and automatically he will
obtain that one of the EXP family that fits
the requirenents.

Each built-in
it is generic, has a
arguments given.

function, whether or not

specified number of
For some built-in func-
tions only a minimum is specified; addi-
tional arguments are optional. For others,
a maximum is specified; only one argument
is required.

Each of the built-in functions that are
not generic has only a single member. When
a reference is made to one of these func-
tions, any arguments whose attributes do
not match the attributes required by that
function are converted to the appropriate
form before +the function is invoked. The
characteristics of the value returned are
determined by the function.

Unlike programmer-specified functions,
which always return a scalar value, there
are many built-in functions that may effec-
tively return an array or structure value
when array or structure expressions are
used 1in certain of their argument posi-
tions. This facility is useful in combina-
tion with the facility of array or struc-
ture expressions.

The fixed set of names for the built-in
functions is part of the language of PL/I.
However, the identifiers corresponding to
these names are not reserved; any such
identifier can be used by the programmer
for other purposes. If the identifier is
declared explicitly for some other use, any
appearance of the identifier in the scope

of this declaration will refer to that
other use. The built-in function cannot,
of course, be used in this scope. If the

identifier appears, but not in the scope of
a declaration establishing the identifier

for another use, the identifier will be
regarded as implicitly declared in the
containing external procedure with the

attribute BUILTIN, and this appearance will
refer to the built-in function.

If an identifier corresponding to a
built-in function name is declared to have
a use other than as the built-in function
in some block, the built-in function can be
used in contained blocks by declaring the
identifier with the attribute BUILTIN.

SUBROUTINE REFERENCES AND SUBROUTINE
PROCEDURES

When a procedure is invoked as a subrou-
tine by the execution of a CALL statement

or a statement with a CALL option, the
initial action is the same as 1if the
procedure were invoked as a function: the

arguments in the procedure reference, if
any, are associated with the formal param-
eters and control is passed to the proce-
dure at the denoted entry point. (If the
invocation involves a task option, the
procedure will not necessarily be activated
immediately; see "Asynchronous Operations
and Tasks" in Chapter 6.)

Unlike the function procedure, the sub-
routine procedure does not return an expli-

Chapter 5:

citly specified wvalue to the point of
invocation, and control need not necessari-
ly be returmned to this point. The proce-
dure may terminate in the following ways:

1. Control reaches a RETURN statement for
the procedure. When executed, this
statement returns control to the first
executable statement logically follow-
ing the invoking statement, unless the
invocation specified a task option or
the procedure was invoked by a state-
ment with a CALL option. If a task
option has been used, control is sim-
ply terminated for this task. If the
procedure was invoked by a statement
having a CALL option, control is
returned to that statement at the
point immediately following the CALL
option.

2. Control reaches an END statement for
the procedure, which in this case is
treated as a RETURN statement. The
effect is as in case 1.

3. Control reaches a GO TO statement in
the procedure that transfers. control
out of the procedure. (This is not
permitted if the procedure has been
invoked by a statement with a CALL
option or in a CALL statement with a
task option.) In this case, control
will go to the cdesignated statement
(see "The GO TO Statement"). The
statement label designator of the GO
TO statement may be a parameter of
type LABEL, which is associated with a
label argument passed from the invok-
ing procedure.

4., Control reaches an EXIT or STOP state-
ment.

Example of Function Reference:

COMP: PROCEDURE;

S1: P10=05*POLY5 (RO, VALT) ;

POLY5: PROCEDURE (C, X);

RETURN (C+X* (14X* (2+X* (3+X* (4
+5%%))))) ;

END POLY5;

END COMP;

In this example, the external procedure
COMP contains the function procedure POLY5,
which is invoked when the expression
O5%POLY5 (RO, VAL1) is being evaluated dur-
ing execution of the assignment statement
labeled S1. When POLYS is invoked, the
arguments RO and VAL1 will be associated
with the parameters C and X, respectively.

Procedures, Functions, and Subroutines o7

The returned value for POLYS (RO, VALI1)
will be the value of the expression:

RO+VALT* (1+VAL1* (2+VAL1* (3+VAL1* (4+5%
VAL1))))

Examples of Subroutine Reference:

1. COMP: PROCEDURE;

S1: CALL POLY5 (RO, VAL ;
S2: P10 = QS5*TENMP;

POLY5: PROCEDURE (C, X);
TEMP=C+X* (1+X*% (2+X* (3+X*
(4+5%X%)))) ;

RETURN;

END POLY5;

END COMP;

In the above example, the effect is the
same as 1in the previous example using the
function reference. The subroutine proce-
dure POLY5 is invoked by the CALL statement
labeled S1. The arguments and parameters
are associated as in the previous example,
but here, the value of the expression (the
same as in the previous example) is
assigned within the subroutine to the vari-

able TEMP, which is used by the statement
labeled S2, after the RETURN statement
passes control back to that statement.
Thus, communication of the value 1is by

means of the shared variable TEMP, which,
of course, remains available for use fol-
lowing the execution of S2.

In some cases the invoked and the invok-
ing procedure may be separated in such a
way that sharing a name in the above simple
manner is not possible (see "Scope of
Declarations") . Another more general meth-
od of communicating values from the invoked
procedure, which may be applied in these
cases, 1s illustrated in the following
alternative example:

2. COMP: PROCEDURE;

S1: CALL POLY5 (RO, VAL1, TEMP) ;
S2: P10=Q5*TEMP;

POLY5: PROCEDURE (C,X,Z);

68

Z=C+X* (1+X* (2+X* (3+X*
(4+5%X)))) ;

RETURN;

END POLY5;

END COMP;

Here, the invocation of POLY5 by the
CALL statement will associate the variable
TEMP with the parameter Z, and the action
will be exactly as in the previous example:
the parameter 2 will effectively be
replaced by the name TEMP in the assignment
statement for Z, and TEMP will be assigned
the value of the expression on the «right-
hand side, with RO replacing C and VAL1
replacing X, before return to statement S2.
In this case, the value has been
communicated from the subroutine through a
parameter.

The above two examples illustrate how a
single value obtained in a subroutine can
be communicated back to the invoking proce-
dure. The action of a subroutine will
generally be more complex than this; many
communicated variables may be involved,
whether scalar, array, structure, or
statement-label variables; input/output
operations may be specified, etc. 1In con-
trast, +the wusual purpose of a function
procedure is to return a scalar value.

THE ARGUMENTS IN A PROCEDURE REFERENCE

In general, an argument in a procedure
reference may be any valid PL/I expression.
An exception to this rule concerns the
built-in functions: the only built-in
functions that may be passed as arguments
in a procedure reference are the Float
Arithmetic Generic Functions (see Appendix
1.

The attributes of each argument in a
procedure reference must, in general, match
the attributes of the corresponding param-
eter at the named entry point. (An excep-
tion in case of a data argument is des-
cribed below.)

For examnple, assume that the procedure
SUB in a program is defined by:
SUB: PROCEDURE (X, Y, 2Z);

DECLARE X FIXED, Y ENTRY, Z LABEL;

END SUB;

This implies that the formal parameter X
is used as a fixed-point variable with
certain default data attributes, Y is used
as an entry name, and Z%Z 1is a statement
label designator in the body of the proce-
dure. Then if SUB is invoked in the
program by the statement:

CALL SUB (R*S, CALC, L5);

it is then necessary that:

1. The expression R#*S have all the data
attributes of the parameter X (unless
SUB 1is described by an ENTRY attri-
bute, see below).

2. CALC be an entry name.

3. L5 be a statement-label designator.

THE USE OF THE ENTRY ATTRIBUTE

(The ENTRY attribute is completely des-
cribed in Chapter 4.y

An Jjdentifier is contextually declared
to be an entry name in a block if it
appears as a label to a PROCEDURE or ENTRY
statement or if it appears in the block
following the keyword CALL or as the func-
tion name in a function reference whose
argument 1list is non-empty. If it is
desired to use the identifier as an entry
name in a block where it 1is not so
declared, the identifier must be given the
ENTRY attribute explicitly in a DECLARE
statement for the block.

As an illustration, in the above exam-
ple, the CALL statement:

CALL SUB (R*S, CALC, L5);

has the entry name CALC as its second
argument. This appearance of CALC is not
recognizable as an entry name by context.
It must previously have been declared
(either contextually, or explicitly in a
DECLARE statement) to have the attribute
ENTRY.

A more general form of the ENTRY attri-
bute allows the programmer to enumerate the
attributes of the parameters for the named
entry point.

As an illustration, in the above CALL
statement example, the +three parameters
corresponding to the three arguments of the
CALL statement might be described in the
invoking procedure by the statement:

DECLARE SUB
LABEL) ;

ENTRY (FIXED, ENTRY,

Chapter 5:

This statement specifies that:

1. SUB is an entry name.
2. The entry point SUB has three paramet-

ers.

3. The first parameter has the FIXED
attribute with certain default data
attributes.

4. The second parameter has the ENTRY
attribute.

5. The third parameter has the LABEL
attribute.

The number of parameters and the attri-
butes of each, as described in the ENTRY
attribute specification, must always agree
with the number of parameters and their
attributes, as defined for the described
entry point within the invoked procedure.

One of the applications of the extended
form of the ENTRY attribute is mentioned in
the immediately following description. (A
detailed discussion of the various uses for
the ENTRY attribute, including the ABNOR-
MAL, USES, SETS, and GENERIC attributes,
can be found in Chapter 4.)

PASSING ARGUMENTS TO THE ENTRY POINT

When a procedure is invoked at a given
entry point by a procedure reference and
each argqument 1is associated with its cor-
responding formal parameter, the argquments
are said to be passed to the entry point.

The action involved in passing the argu-
ments generally will assume that the attri-
butes of each argument match the attributes

of 1its corresponding formal parametexr, as
described above. However, if the argument
is an expression whose attributes do not

correspond to those declared for the param-
eter associated with that argument, the
expression will be evaluated and converted,
before the argument is passed, to conform
to the attributes described by the corres-

ponding member of the ENTRY attribute list.

As an illustration, in the preceding
example, the first argument in the CALL
statement, which invokes the procedure SUB,
is the expression R*¥S. Assume that R*S has

the FLOAT attribute with certain default
attributes. These do not match the attri-
butes of the first parameter at the entry

point SUB. Then the ENTRY attribute must
be used in the invoking procedure to speci-
fy the same attributes for the first param-
eter as specified in the invoked procedure
SUB. (The preceding illustration shows one
way of doing this.) Thus, on execution of
the CALL statement, the expression R*S is

Procedures, Functions, and Subroutines 69

evaluated according to the FLOAT attribute
and then converted to a fixed-point value
with the other required attributes, before
being passed to the entry point SUB.

(A detailed description of the action
involved in passing arguments to the
invoked entry point can be found in Chapter
10.)

In certain circumstances, the prepara-
tory action includes the construction of a
dummy argument. For example, a dummy argu-
ment is constructed when the argument must
be converted, as in the example of R*S just
discussed, or when the argument is an
expression involving constants or operators

(R*S is again an example of +this
circumstance) .
In each of its appearances as a ref-

erence 1in the procedure, the formal param-
eter corresponding to the argument effec-
tively is replaced by the argument name.
Thus, all appearances of +the parameter
during execution of the procedure are
treated as appearances of the argument
name. However, in the cases where a dummy
argument is constructed, it is the dummy
argument name that replaces the parameter.
Passing an argument does not always imply a
true logical substitution of the argument
name for the parameter in the procedure.
However, in the important case where the
argument is an arithmetic, string, or label
variable having identical attributes with

70

the corresponding parameter, a logical sub-
stitution does occur. Thus, parameters can
be used to communicate values from the
invoked procedure back to the invoking

procedure. Example 2 of "Subroutine Ref-
erences,"™ above, 1is an illustration of
this.

In the above example, the appearance of
CALC as the second argument when SUB is
called does not imply that the identifier
CALC is contextually declared as an entry
name, even though the above ENTRY attribute
for SUB has been given.

THE SPECIAL PROCEDURE ATTRIBUTE RECURSIVE

In the PROCEDURE statement or ENTRY
statement for a given procedure, certain
special attributes that characterize the
procedure itself may be specified. (For a

complete discussion of these attributes,
see "The PROCEDURE Statement.") One of
these, which has particular significance,

is the attribute RECURSIVE. When a proce-
dure of a program is re-activated in a task
while it 1is still active in the same task
(see "Activation and Termination of
Blocks") , the procedure is said to be used
recursively. Any procedure used recursive-
ly during program execution must be speci-
fied with the RECURSIVE attribute.

PROGRAM CONTROL

Every program, when it is being execut-
ed, has a control that determines the order
of execution of the statements. For a
discussion of their order see "Sequence of
Control," in Chapter 8.

Execution of the program is initiated by
the operating system, which invokes the
initial procedure. This initial procedure
must be an external procedure that has been
specified with the MAIN attribute (see "The
PROCEDURE Statement,® in Chapter 8). 'This
procedure cannct have CONTROLLED parameters
(see "Storage Classes," in this chapter) .

ACTIVATION AND TERMINATION OF BLOCKS

A begin block is said to be activated
when control passes through the BEGIN
statement for the block. A procedure block
is said to be activated when the procedure
is invoked at any one of its entry points.

During certain time intervals of the
execution of a program, a block may be
active. A Dblock is active if it has been
activated and is not yet terminated.

There are a number of ways in which a
block may be terminated. These are implied
by the following rules:

1. A begin block is terminated when con-
trol passes through the END statement
for the block.

2. A procedure block 1is terminated on
execution of a RETURN statement or an
END statement for the block. (The END
statement implies a RETURN statement;
see Chapter 8.)

3. A block is terminated on execution of
a GO TO statement contained in the
block which transfers control to a
point not contained in the Llock.

4. The execution of a STOP statement
causes termination of the major task.

5. The execution of an EXIT statement
causes termination of the task con-
taining the statement and all tasks
attached by this task. Thus, all
blocks corresponding to these tasks
are terminated.

6. When a block B is terminated, all of
the dynamic descendants of B also are
terminated.

CHAPTER 6: DYNAMIC PROGRAM STRUCTURE

DYNAMIC DESCENDANCE

If a block B is activated and control
stays at points internal to B until B is
terminated, no otler blocks can be activat-
ed while B is active. (This discussion is
not applicable to the multi-task, or asyn-
chronous, mode of operation, which implies
more than a single control; see
"Asynchronous Operations and Tasks.")

However, another block, B1, may be acti-
vated from a point internal to block B
while B still remains active. This is
possible only in the following cases:

1. B1 is a procedure block immediately
contained in B (the 1label of B1 is
internal to B) and reached through a
procedure reference.

2. B1 is a begin block immediately con-
tained in B and reached through normal
flow.

3. B1 is a procedure block not contained
in B and reached through a procedure
reference. (B1, in this case, may be
identical to B (i.e., a recursive
call, but conceptually it is to be
regarded dynamically as a different
block.)

4. B1 is a begin block or a statement
specified by an ON statement (see "The
ON Statement") , and reached through an
interrupt. (For present purposes,
even 1if B1 is a statement, it can be
regarded as a block, and this case is
dynamically similar to case 1 or case
3 above.)

In any of the above cases, while B1 is
active, it 1is said to be an an immediate
dynamic descendant of B.

Block B1 may itself have an immediate
dynamic descendant B2, etc., so that a
chain of blocks (B, B1, B2,...) 1is creat-

ed, where, by definition, all of the blocks
are active. In this chain, each of the
blocks B1, B2, etc., 1is said to be a
dynamic descendant of B.

It is important for the programmer to
note that the termination of a given block
may automatically imply the termination of
other blocks and that these blocks need not
necessarily be contained in the given
block; storage for all AUTOMATIC variables
declared in these blocks will be released
at the time of termination (see "Storage
Classes") .

Chapter 6: Dynamic Program Structure 71

DYNAMIC ENCOMPASSING

Block A dynamically encompasses block B,
or block B is dynamically encompassed by
block A, if B is a dynamic descendant of A.

ALLOCATION OF DATA AND STORAGE CLASSES

Because the internal storage of any
computer is limited in size, the efficient
use of this storage during the execution of
a program is frequently a crucial consider-
ation. The simple static process of data
allocation used by many compilers -- the
assignment of a distinct storage region for
each distinct variable used in the source
program —-- may be wasteful. Multiple use
of a storage region for different data
during program execution can reduce the
total amount of storage required.

Provisions are included in the language
to give the programmer virtually any degree
of control over the allocation of storage
for the data variables in a program. On
the other hand, the entire problem of
allocation can be ignored completely by the
programmer, if storage economization is of
little significance in his situation, and a
reasonably efficient use of storage usually
will still be obtained automatically.

DEFINITIONS AND RULES

Storage 1is said to be allocated for a
variakle when a certain region of storage
is associated with, or assigned to, the
variable. Allocation for a given variable
may take place statically, before execution
of the program, or dynamically, during
execution.

Storage may be allocated dynamically for
a variable and subsequently released.
Thus, this storage is freed for possible
use 1in later allocations. If storage has
been allocated for a variable and not
subsequently released, the variable is said
to be in an allocated state.

When a variable appears in a statement
of a source program, the appearance is
called a reference if it corresponds either
to the assignment of a value to the varia-
ble (e.g., an appearance on the 1left side
of an assignment statement) or to a use of
the value of the variable (e.g., appearance
in an expression to be evaluated).

At any point where a variable appears as
a reference, it must be in an allocated
state.

72

Note: An unallocated variable may appear
as an argument to a procedure with a
corresponding CONTROLLED parameter, as an
argument to the ALLOCATION function, or in
an ALLOCATE statement.

STORAGE CLASSES

Every variable in a program must have a
storage class, which specifies the manner
of storage allocation for the variable.

There are three storage classes. The
storage class is specified by declaring the
variable with one of the three storage
class attributes STATIC, AUTOMATIC, or CON-
TROLLED. The storage class may be declared
explicitly or by default.

The Static Storage Class

Storage for a variable with attribute
STATIC is allocated before execution of the
program and is never released during execu-
tion.

The scope attribute (see Chapter 4) of a
STATIC variable may be INTERNAL or EXTER-
NAL. An EXTERNAL variable with unspecified
storage class has, by default, the STATIC
storage class attribute.

The Automatic Storage Class

If a variable has the attribute AUTOMAT-
IC, the status of the block containing this
variable (see "Data Description") deter-
mines dynamic allocation for the variable.
Whenever this block is activated during
execution of a program, storage will be
allocated for the variable, and the varia-
ble will remain in an allocated state until
termination of the block. At the time of
termination, the storage will be released.
Thus, the time interval during which the

variable is in an allocated state will
necessarily include the intervals when the
variable is known (see "Scope of

Declarations") .

Termination of a block by means of a GO
TO statement may imply simultaneous termi-
nation of other blocks and, consequently,
simultaneous release of storage for all
AUTOMATIC variables declared in these
blocks (see "The GO TO Statement") .

If the block 1is a procedure and is
called recursively (reactivated one or more
times before return), previously allocated
storage for the AUTOMATIC variable is
"pushed down" on each entrance and "popped

up” on each return to yield the proper
generation of storage for the variable
after each return, until the final return

out of the procedure.
Note: The terms "pushed down" and "popped
up® refer to the notion of a push-down
stack. A push-down stack is a logical
device S, similar in behavior to a physical
stacking process. When an element is
placed in S, it is conceptually placed on
top of the elements already in S, which are
"pushed down." At any time, if S is not
empty, the top element -- the element most
recently placed in S -- can be removed from
S, and the remaining elements are "popped
up’ "

The scope attribute (see Chapter 4) of
an AUTOMATIC variable must be INTERNAL. An
INTERNAL variable with unspecified storage
class has, by default, AUTOMATIC storage
class attribute.

The Controlled Storage Class

If a variable has the attribute CON-
TROLLED, storage allocation must be expli-
citly specified for the variable by the
ALLOCATE and FREE statements.

The ALLOCATE statement (see Chapter 8)
specifies one or more variables, each with
certain optional attributes. Execution of
the statement causes the allocation of
storage for the variable specified.

The FREE statement specifies one or more
variables, and execution of the statement
causes the storage most recently allocated
for the variables to be released.

At some point in a program, it may not
be known whether a variable X is in an
allocated state. The built-in function
ALLOCATION (see Appendix 1) is provided to
test this state. Tre function reference
ALLOCATION (X) will return the value '1°'B
if X is in an allocated state, and the
value '0'B if not.

The scope attribute of a CONTROLLED
variable may be INTERNAL or EXTERNAL.

Example:

A: PROCEDURE;
DECLARE X STATIC;

B: PROCEDURE;
DECLARE Y (100) CONTROLLED, Z CHAR-
ACTER (1000) ;

ALLOCATE Y;

C: BEGIN;

DECLARE Z (100) ;
END:C;
RETUéN;
E?D é;
END A;
Assume in the above example that the

termination of procedure A occurs on the
return implied by END A, the termination of
procedure B occurs on the RETURN statement,
and the termination of block C occurs at
END C. Then in this example:

Storage for the static variable X is
allocated before execution and is never
released.

The character-string variable Z is AUTO-
MATIC by default. Storage is allocated
for this Z on entrance to procedure B
and < is released on execution of the
RETURN statement.

The array-variable 2 is AUTOMATIC by
default. Storage is allocated for this
Z at the beginning of execution of block
C and is released at END C.

Storage for the CONTKOLLED variable Y is
allocated on execution of the ALLOCATE
statement and is released on execution
of the FREE statement. After execution
of the FREE statement, the variable ¥
presumably is not used, but the
character-string variable Z can be used,
since storage is not released for this
variable until the termination of proce-
dure B.

Chapter 6: Dynamic Program Structure 73

ASYNCHRONOUS OPERATIONS AND TASKS

PL/I allows tasks to be created by the
programmer and provides facilities for the
following:

1. Synchronizing tasks

2. Testing whether or
complete

3. Changing the priority of tasks.

not a task is

SYNCHRONQOUS AND ASYNCHRONQUS OPERATIONS

Unless the program specifies the crea-
tion of tasks, the execution of the state-
ments of the program will proceed serially
in time, according to the sequence desig-
nated by the order of the statements and
the control statements (see "Sequence of
Control®" in chapter 8) . Such operation is
said to be synchronous.

In addition to full facilities for con-
ventional synchronous processing, means are
provided for performing operations asyn-

chronously.

Some reasons for considering the use of
asynchronous operations are:

1. The programmer may wish to make use of
computer facilities which can operate
simultaneously, €.g., input/output
channels, multiple central processing
units.

2. A program may be written in which
input/output units initiate or com-
plete transmission at unpredictable
times, e.g., disc seeks, terminals.

The following two diagrams distinguish
between synchronous and asynchronous opera-
tions. The first diagram depicts the seri-
al action of synchronous operations, and
the second diagram depicts the parallel
action of asynchronous operations. (The
circles represent statements.)

———0——0-—-0 o
time-->
[—O———O—mm———— eee
|
|
ro O o] eee
I
|
0—0-04 o] le} le)
time-->

74

In asynchronous operation, once a new
line has been started, the statements on
that 1line are executed in sequence, but
independently of the statements on any
other 1line. Statements on any two lines
need not necessarily be executed simultane-
ously -- whether this occurs depends on the
resources and state of the system.

SYNCHRONIZING TWO ASYNCHRONOUS OPERATIONS

In order that the result of an asynchro-
nous operation may be made available to
other procedures, means are provided to
synchronize two or more asynchronous opera-
tions.

The following diagram illustrates this:

A B C D E F G
0—==0——0—=0 o o O——eae
|
time-—-> |
|
—— e e—O0==O=cess 00 e—0 o 0o
L M N (0] P

wait

Assume that before statement N can be
executed, both M and E must have been
executed. M therefore issues a WAIT state-
ment which will suspend operation on that
line wuntil E has completed. After N, the
statements O, P,..., are executed synchro-
nously, as are the statements F, G,...,.

TASK AND EVENTS

In PL/I, asynchronous operations result
from the creation, by the programmer, of
tasks. The synchronizing of operations is
obtained by waiting on events.

A task is an identifiable execution of a
set of instructions. A task 1is dynamic,
and only exists during the execution of a
program or part of a program.

A task is not a set of instructions, but
an execution of a set of instructions. The
instructions themselves, as written by the
programner, may in fact be executed several
times in different tasks.

It is necessary for at least one task to
exist when a PL/I program is executed.
Thus when an external procedure is first
entered, its execution is part of a task.
This particular task is called the major
task; it is created by the operating envi-

ronment and its creation does not necessar-
ily concern the PL/I programmer. If. the
programmer 1s concerned with only synchro-
nous operations, then the major task will
be the program itself.

In order to initiate asynchronous opera-
tions, the programwer has to create new
tasks, as described below. All tasks
created by the programmer are called sub-
tasks.

With each task, except the major task,
it is possible to associate a task name.
The task mname may be used to refer to and
set the priority of the task.

A task may be suspended by the
programmer until some point in the execu-
tion of another task has been reached. The
specified point is known as an event and
the record of its completion is contained
in an event name. (See the EVENT built-in
function and the EVENT pseudo-variable.)

An event name may be associated with the
completion of a task. It is necessary to
specify such an event name if the program-
mer wishes to synchronize a point in one
task with the completion of another task,
by means of the WAIT statement.

Other event names may be defined by the
programmer and used in WAIT statements. 1In
this way, the programmer can synchronize a
task with events other than the completion
of another task. Event nawmes may be set by
referring to them in assignment statement
by means of the EVENT pseudo-variable.

THE CREATION OF TASKS

In PL/I tasks are created by writing:

A TASK option
An EVENT option
A PRIORITY option

or any combination of these options in a
CALL statement (see "The CALL Statement" in
Chapter 8). The called procedure will then
be executed asynchronously with the calling
procedure. The CALL statement itself is
not part of the newly-created task. The
execution of the calling procedure is known
as the attaching task. The execution of
the called procedure is known as the
attached task.

The TASK option is given in order to
name the task created by the CALL. This is
necessary if the programmer wishes to exam-
ine or change the priority of the called
procedure, since the PRIORITY function and
pseudo-variable have a task name as an
argument.

The EVENT option is given if the pro-
grammer wishes to issue a WAIT statement
which will wait on the completion of the
task created by the CALL.

The PRIORITY option is given if the task
created by the CALL 1is to be given a
different priority from that of the task in
which the CALL statement appears.

The term "task option"” will be used in
all 1later discussions to denote any one of
the three options TASK, EVENT, or PRIORITY,
or any part of these options, or all three.

TERMINATION OF TASKS

A task may be terminated in one of the

four following ways:

1. Control for the task reaches an EXIT
statement (see Chapter 8 for a discus-
sion of each of the statements men-
tioned here) .

2. Control for
statement.

3. Control for the task reaches a RETURN
statement for the procedure defining
the task.

4. Control for the task reaches an END
statement for the procedure defining
the task.

any ‘task reaches a STOP

ALLOCATION OF DATA IN TASKS

The rules of scope and storage alloca-
tion hold across task boundaries. If stor-
age 1is allocated for a variable in the
attaching task, this allocation may apply
to the attached task, so that the variable
may appear as a reference in the attached
task. It 1is the responsibility of the
programmer to be certain that storage for
such a variable is not released too early
in the attaching task. (Normally, this is

done by synchronizing by use of the WAIT
statement.)

(Further details concerning tasks as
related to storage allocation and other
special considerations can be found in
Chapter 10; also see “The WAIT Statement”

for other information and examples.)

INTERRUPT OPERATIONS

During the course of program execution
any omne of a certain set of conditions may
occur that can result in an interrupt. An

Chapter 6. Dynamic Program Structure 75

interrupt operation causes the suspension
of normal program activities, in order to
perform a special action; after the special
action, program activities may or may not
resume at the point where they were sus-
pended. The time point of an interrupt is,
in general, unpredictable.

For most conditions that can cause an
interrupt, the special action to be taken
may be specified by the programmer. To do

this, he may specify the condition in an ON
statement; therefore these conditions are
known as the ON-conditions. A complete
list and description of the ON-conditions
can be found in Appendix 3. With two
exceptions (see "Programmer Defined ON-
Conditions,®™ in this chapter), each ON-
condition is named with a unique identifier
suggestive of the condition (e.g.,
ZERODIVIDE names the condition obtaining
whenever an attempt is made to divide by
zZero) . This collection of names, like the
built-in function names, is an intrinsic
part of the language, but the names are not
reserved; the programmer may use them for
other purposes, so long as no ambiquity
exists.

PURPOSE OF THE CONDITION PREFIX

The conditions named in the prefix to a
statement may occur during program execu-
tion of a statement lying in the scope of
the prefix (see below). If one of these
conditions actually does occur, the appear-
ance in the prefix of the corresponding
condition name -- or its negation with the
word NO -- determines whether or not an
interrupt operation will then take place.

Any condition whose occurrence will
cause an interrupt is said to be enabled.
Enabling of the first five conditions list-
ed above, namely, UNDERFLOW, OVERFLOW, ZE-
RODIVIDE, FIXEDOVERFLOW, and CONVERSION, is
provided automatically by PL/I; any occur-
rence of one of these conditions will cause
an interrupt unless the enabling has been
negated through the use of a prefix con-
taining the condition name preceded by the
word NO. The programmer must himself ena-
ble the other conditions through the use of
a prefix. For example, no interrupt will
occur for a SIZE error (see SIZE condition
in Appendix 3), unless the error occurs in
a calculation within the scope of a SIZE
prefix. For further details, see "The ON
Statement®™ in Chapter 8 and "System Inter-
rupt Action" below.

76

SCOPE OF THE CONDITION PREFIX

The scope of the prefix depends upon the
statement to which it is attached.

If the statement is a PROCEDURE or BEGIN
statement, +the scope of the prefix is the
block or group defined by this statement,
including all nested blocks, except those
for which the condition is re-specified.
The scope does not include procedures that
lie outside the scope as defined above but
which may be invoked by the execution of
statements in this scope.

If the statement is an IF statement or
an ON statement, the scope of the prefix
does not include the blocks or groups that
are part of the statement. Any such block
may also have an attached prefix, whose
scope rules are implied by the other rules
given here.

For any other statement, the scope of
the prefix is that of the statement itself,
including any expressions appearing in the
statement but not any procedure explicitly
called by the statement.

USE OF THE ON STATEMENT

In order to define the action to be
taken when an interrupt occurs, the pro-
grammer may write an ON statement, which
has the general form:

ON condition-specification action-
specification

The “condition specification" either is
an ON-condition name or denotes a

programmer-defined condition, and the
"action specification"™ is a single simple
statement or begin block, optionally

preceded by the keyword SNAP (see "The ON
Statement" for complete syntax and
details) . If the single statement is null,
control is given back to the point of
interrupt.

When an CON statement that is internal to
a given Dblock (for example, a block B) is
executed, it causes a preparatory action
with the following effect:

If, during the execution of any state-
ment after +the execution of the ON
statement and before the termination
of block B (including the execution of
statements in all dynamic descendants
of block B), the condition specified

in the ON statement ever occurs and an
interrupt results, the statement or
begin block specified in the ON state-
ment will be executed as though it

were invoked as a procedure block.
(If SNAP also has been specified, a
standard action providing program

checkout information will precede this
pseudo-invocation.) Control normally
will be returned to the point follow-
ing the interrupt.

When an ON statement specifying a given
condition is executed, the action to bLe
taken is established by the execution. The
time interval during which this action
specification is effective is defined above
in the description of the effect of an CN
statement. There are two qualifications to
this description:

1. If, after a given action 1is esta-
blished by execution of an ON state-
ment, and while this action specifi-
cation is still effective, another ON
statement specifying the same condi-
tion is executed, then this latter ON
statement will take effect as des-
cribed above, so that its specified
action will Jetermine the interrupt
action for the given condition. (The
effect of the o0ld ON statement is
either temporarily suspended or com-
pletely nullified, depending upon
whether or not the new ON statement is
in a block dynamically descendant from
the block to which the old ON state-
ment is internal; see "The ON
Statement® and "The REVERT Statement"”
for more details.)

2. There are eight ON-conditiomns whose

names (possibly preceded by the word
"NO") may appear in a prefix to a
statement. Even when one of these

conditions appears in an CN statement,
occurrence of the condition will not
necessarily result in an interrupt.
For an interrupt to occur, there are
certain additional requirements, which
are described in the following para-
graphe.

There are three of these eight ON-
conditions, SIZE, SUBSCRIPTRANGE, and
CHECK (identifier 1list), for which an
interrupt will not take place when the
condition occurs unless the programmer

specifically designates that the
interrupt is to take place. He may
enable this condition by explicitly

specifying the condition in a prefix
whose scope will cover the calculation
where the condition may occur. If a
calculation resulting in the occur-
rence of either of these conditions
does not lie within the scope of such
a prefix, no interrupts will occur.
The other five of these eight special

ON-conditions, namely OVERFLOW, UNDER-
FLOW, ZERODIVIDE, CONVERSION, and FIX-
EDOVERFLOW, are always enabled, but
the programmer may specifically desig-
nate that an interrupt is not to take
place. An interrupt for any one of
these conditions will always take
place when the condition occurs unless

the occurrence is in a calculation
lying within the scope of a prefix
specifying NOOVERFLOW, NOUNDERFLOW,

NOZERODIVIDE, NOCONVERSION, or NOFIXE-
DOVERFLOW, respectively.

All other conditions, whose names cannot
be used in a prefix, are always enabled.

SYSTEM INTERRUPT ACTION

Each of the ON-conditions has a standard
action defined for it 1if an interrupt
should occur. I1f there has been no pre-
vious execution of an ON statement (in
which the programmer specifies the inter-
rupt action) , any interrupt caused by the
occurrence of the condition during program
execution will result in a standard system
action, which is dependent upon the nature
of the condition. If the programmer does
not want the system action in the case
where one of these conditions may occur and
cause an interrupt, he must specify an
alternative action for the condition
through use of the ON statement.

In some situations, the programmer may
want to specify his own action for a given
condition, to have it hold for part of the
execution of the program, and then to have
this specification nullified and allow the
standard system action. In this case, he
may use the special action-specification
SYSTEM, as follows:

ON condition-name SYSTEM;
Example 1:

A: PROCEDURE;

ON OVERFLOW

BEGIN;

DECLARE NUMBOV STATIC
INITIAL (O) ;

NUMBOV=NUMBCV + 1

IF NUMBOV = 100 THEN GO
TO OVERR;

END;

ON OVERFLOW;

Chapter 6. Dynamic Program Structure 77

.

ON COVERFLOW SYSTEM;

END A;

In the above example, assume that the
program consists only of procedure A, that
the three ON statements are +the only ON
statements involving the OVERFLOW condi-
tion, that they are internal to procedure
A, and that they are executed in their
physical order.

When program execution begins, the OVER-
FLOW condition is enabled by the system;
any floating-point overflow condition that
occurs before the first ON OVERFLOW state-
ment is executed will result in an inter-
rupt, with standard system action. Howev-
er, the execution of the first CN OVERFLOW
statement establishes the action specified
in the BEGIN block. (The number of over-
flows is counted and if this number has not
reached 100, the action is finished.) Any
OVERFLOW interrupts will receive this
action until the second ON OVERFLOW state-
ment is executed. The action specified
here 1is a null statement; any subsequent
OVERFLOW interrupts will effectively be
ignored until control reaches the third ON
OVERFLOW statement, which reestablishes the
standard system action.

Example 2:

(SIZE) : A: PROCEDURE;
ONiSIZE GO TO AERR;
CA%L B;
ENé A;

(SIZE, NOOVERFLOW) : B: PROCEDURE;

ON SIZE GC TO BERR;

RETURN;
END RBR;

In the above example, the prefix (SIZE)
enables that condition for procedure A and
specifies that if a SIZE error (see Appen-
dix 3) occurs during any calculation in
procedure A, an interrupt is to take place.

78

The prefix (SIZE, NOCVERFLOW) for procedure
B specifies the same requirement with res-
pect to a SIZE error for procedure B; in
addition, it specifies for procedure B that
any interrupt that might be caused by an
OVERFLOW condition is to be suppressed.

After the beginning of execution of
procedure A, and before the execution of
the first ON statement, any SIZE error will
result in an interrupt with standard system
action. After execution of this ON state-
ment, and before execution of the ON state-
ment in the invoked procedure B, any SIZE
error will result in an interrupt with the
action GO TO AERR. After execution of the
ON statement in procedure B, the action GO
TO BERR becomes established for the SIZE
condition, but the effect of the previous
ON statement is suspended only temporarily.
After the RETURN statement in procedure B
is executed, the effect of this previous ON
statement is reinstated, so that SIZE
errors occurring after this point again
result in the action GO TO AERR.

If any floating-point overflow condition
occurs during the execution of procedure A,
an interrupt will result with the standard
system action for the OVERFLOW condition.
However, for any occurrence of an CVERFLOW
condition during the execution of procedure
B, the interrupt will be suppressed.

Example 3:

(NCOVERFLOW) : A: PROCEDURE;
(OVERFLOW) :B: BEéIN;
ENé B;
ENé A;

In the above example, interrupts will be
suppressed for OVERFLOW conditions occur-
ring during execution of that part of
procedure A that is not included in block
B. OVERFLOW conditions occurring during
execution of block B will result in an
interrupt.

USE OF THE REVERT STATEMENT

The REVERT statement may be used, fol-

lowing an ON statement, to reinstate an
action specification that existed in the
immediate, dynamically encomrpassing block

without having to return control +to that
block (see "The REVERT Statement," in Chap-

ter 8. for format and rules).
Example:
(SIZE) : A: PROCEDURE;
ON SIZE GO TO AERR;
CALL B;
END A;
(SIZE) s B: PROCEDURE;
ON SIZE GO TO BERR;
REVERT SIZE;
END B;
In the above example, if a SIZE error
occurs in procedure B after execution of
the CN statement, an interrupt will take

place with the resulting action GO TO BERR.
After execution of the REVERT statement,
the condition as specified by the ON state-
ment in procedure A is reinstated. Program
control remains in procedure B, but any
subsequent SIZE error that occurs in proce-
dure B will cause an interrupt with the
action GO TO AERR.

PROGRAMMER-DEFINED ON-CONDITIONS

There are two kinds of ON-conditions the
programmer may construct:

1. An arbitrary identifier can be used to
create a condition name by means of
the keyword CONDITION used in the ON
statement, as follows:

CN CONDITION (identifier) action-
specification

Such a statement contextually declares
the "identifier" to be a condition-
name and the execution of the
statement enables the named condition.
The condition can be caused to "occur"
only by the execution of a SIGNAL

statement (see "The SIGNAL
Statement") .
For example, if the following

statement is executed:

ON CONDITION (KEY) block

and later the following statement 1is

executed:

SIGNAL CONDITION (KEY) ;

then the latter execution will (by
definition of the SIGNAL statement)
cause an interrupt, with the action

defined by the block in the ON state-
ment.

2. The CHECK (identifier 1list), where
"identifier list" represents variables
or labels declared in the program, can
appear as the condition specification
in +the ON statement. Whenever one of
the variables in the list is assigned
a value, or one of the procedures or
statements whose label appears in the
list 1is executed and if the condition
is enabled, the condition defined by
this specification 1is regarded as
occurring, and an interrupt will take
place. (For a precise explanation of
this kind of condition, see Appendix
3, "ON Conditions.")

FACILITIES FOR PROGRAM CHECKOUT

The programmer-specified condition des-
cribed above is a powerful tool for program
checkout. As an example of its use, sup-
pose that a block contains the prefix
(CHECK (A,SUB1,ST5)) and that the following
statement is executed:

ON CHECK (A, SUB1, ST5) SYSTEM

In the example, A is a data variable,
SUB1 is a procedure name, and ST5 is a
statement label. Then, whenever a value is
assigned to A (or to any part of A, if A is
an array or structure name), an interrupt
occurs, and A is printed out on a debugging
file with its new value. If the statement
labeled ST5 or the procedure SUB1 is exe-
cuted, the label is printed out.

Another useful ON-condition is the con-
dition named SUBSCRIPTRANGE. Parts of the
program can be designated by the program-
mer, using the keyword SUBSCRIPTRANGE in
appropriate prefixes, to receive constant
monitoring of subscript values. Whenever
the value of some subscript in some array
goes out of its designated range, an inter-
rupt will occur, and action, specified by a
previously executed ON statement, will take
place to correct the error.

The SIGNAL statement also will be found
useful for checkout, since it can be used
to simulate the occurrence of any ON-
condition (see "The SIGNAL Statement") .

Chapter 6. Dynamic Program Structure 79

CHAPTER 7: INPUT/OUTPUT

All
with

input/output activity is performed
named collections of data called
files. The name of a file is a file name.
Files may be subdivided into smaller
collections of data called records. Furth-
ermore, records may be ordered within a
file so that the data conceptually consti-
tutes a single stream upon which the record
structure has been superimposed. Records
in such ordered files may be collected into

groupse.

The mnatural record structure of a data
stream may be inappropriate to some appli-
cations. For such applications, signifi-
cant divisions of data may be indicated by

arbitrary symbols called segment marks.
Such divisions are called segments. The
programmer can, by specifying segments,

provide for the crossing of record boundar-
ies during data transmission.

Data is transmitted between the external
medium and internal storage as a record.
The record may be considered a continuous
string of characters or bits, with the
string subdivided into contiguous subst-
rings called fields. A field may be empty,
or it may contain one and only one item of
data. Fields, segment marks, and item
delimiters cannot span record boundaries.

The nurber of fields in a record, the
size of those fields, the nature of the
data item in each field, and the segment
marks, if any, is called the format of the
record.

The order of items to be transmitted is
specified by a list of elements. On input,
the elements are variables or pseudo-
variables to which are assigned the values
of the corresponding fields of data. On
output, the elements are expressions whose
values are given to the corresponding
fields of output data. As data is trans-
mitted, a field pointer moves across the
record in synchronization with the process-
ing of the list elements. The positioning
of the pointer is governed by format items
and positioning statements given for the
record. The 1list element and the format
may be specified in the record or may be
specified in a 1list of elements and a
format specification in the program.

80

DATA TRANSMISSION

There are four modes of data transmis-
sion: list-directed, data-directed, format-
directed, and procedure-directed.

LIST-DIRECTED TRANSMISSION

List-directed transmission permits the
user to specify the storage area to which
data 1is assigned or from which data is
transmitted without specifying the format.

Input: The data on the external medium is
in the form of optionally signed valid
constants or expressions to represent
complex constants. The program storage
areas to which the data is to Dbe assigned
is specified by a data list. (See

"List-Directed Input" below.)

Output: The data values to be transmitted
are specified by a data list. The form of
the data on the external medium is a

function of the data value. (See
"List-Directed Output" below.)
DATA-DIRECTED TRANSMISSION

Data-directed transmission permits the

user to read or write self-identifying
data. (See "Data-Directed Data
Specification"” below.)

Input: The data on the external medium is
in the form of optionally signed valid

constants and includes information defining
the program storage areas to which the data
is to be assigned.

The data values to be transmitted
are specified by a data list. The data on
the external medium has the form of
constants and includes the name of the data
being transmitted.

Output:

FORMAT-DIRECTED TRANSMISSION

Format-directed transmission permits the
user to specify both the storage area to
which data is to be assigned or frcm which
data is to be transmitted and the form of
fields in the record.

Input: The form of the data on the exter-
nal medium is defined by a format 1list.
The program storage areas to which the data
is to be assigned is specified by a data
list.

Output: The data values to be transmitted
are defined by a data list. The form that
the data is to have on the external medium
is defined by a format list.

PROCEDURE-DIRECTED TRANSMISSION

Procedure-directed transmission provides
the ability to process data fields during
transmission by invoking a procedure with a
CALL option.

When a statement specifying a file is
executed, the specified file becomes the
current file. If this statement then
invokes a procedure which also contains a
statement specifying a file, etc., a stack
of current files 1is created, with the
actual current file being the most recent
entry into the stack. When a statement
specifying a f£ile is completed, that file
is released from the stack and the next
file in the stack, 1if any, becomes the
current file.

This concept of a current file makes
possible the use of GET and PUT and various
positioning statements without having to
specify the file name in the statements.

A GET or PUT statement that is executed
when there is no current file causes the
ERROR condition to be raised.

Examples:
1. Z1:

PROCEDURE;
DECLARE FILEX FILE;

-

READ FILE (FILEX), LIST (A,B,C),
CALL 22;

END Z1;
722: PROCEDURE;
DECLARE FILEY FILE;

-

READ FILE (FILEY), DATA, CALL
Z3;

END Z2;
Z3: PROCEDURE;

DECLARE FILEZ FILE;

WRITE FILE (FILEZ), LIST (P,Q):

END Z3;

Upon execution of the READ statement in
procedure 21, FILEX becomes the current

file. Since this READ statement invokes
procedure Z2, the READ statement in 22 is
executed. This causes FILEY to become the

Now there are two files in
the stack of current files (FILEX and
FILEY) . Similarly, the READ statement in
22 invokes procedure Z3 in which FILEZ is
added to the stack of current files. This
stack is ordered from most current to least
current as follows:

current file.

FILEZ
FILEY
FILEX
When the WRITE statement in Z3 is com-
pleted, FILEZ is removed from the stack of
current files. Similarly, when the READ
statement in 22 is completed, FILEY is

removed from the stack, and upon completion
of the READ statement in 21, there are no
more current files.

2. A: PROCEDURE ;

DECLARE P FILE;

READ FILE (P),
CALL B;

(D,E) (2F (8,3)),

END A;

B: PKOCEDURE ;
SKIP (4);
GET LIST (F):

END B;

The READ statement in procedure A causes

file P to Dbecome the current file, data
items D and E to be transmitted, and
procedure B to be invoked. Procedure B

causes a skip to the fourth record of the
current group on the current file (P), and
causes data item F to be read.

Chapter 7: Input/Output 81

DATA SPECIFICATIONS

Data specifications are given in READ,
WRITE, GET, and PUT statements to describe
the data to be transmitted. The data
specifications correspond +to the modes of
transmission.

DATA LISTS

List-directed, data-directed, and

array, or structure name, or a repeti-

tive specification involving any of
these elements.
Repetitive Specification
General format is shown in Figure 1.

Syntax rules:

format-directed data specifications require 1. Each element in the element 1list of
a data list to specify the data items to be the repetitive specification 1is as
transmitted. described for data-list elements
above.
General format: 2. The expressions in the specification
are described as follows:
(element [, element]...) a. Each expression in the specifi-
cation is a scalar expression.
Syntax rules: b. In the specification , expression
1 represents the starting value of
The character of the elements depends the control variable or pseudo-
upon whether the data 1list is used for variable. Expression 3 represents
input or for output. The rules for each the increment to be added to the
are as follows: control variable after each
repetition of data-list elements
1. On input, each data-list element for in the repetitive specification.
format- and list-directed data may be Expression 2 represents the termi-
one of the following: a scalar name, nating value of the control varia-
an array name, a Structure mname, a ble. The exact meaning of the
pseudo-variable, a pseudo-array, a specification is identical to that
pseudo-structure, or a repetitive of a DO statement with the same
specification involving any of these specification . When the 1last
elements. For a data-directed data specification is completed, con-
specification, each data-list element trol passes to the next element in
may be an unsubscripted scalar, array, the data list.
or structure name. 3. Repetitive specification may be nested
2. On output, each data-list element for to any depth. That is, each element
format- and list-directed data speci- in the element list may be a repeti-
fications may be one of the following: tive specification. A repetitive
a scalar expression, an array expres- specification involving m elements
sion, a structure expression, or a repeated n times is equivalent to m *
repetitive specification involving any n elements. For example, consider the
of these elements. For a data- following list element:
directed data specification, each
data-list element may be a scalar, ((A(I,J) I=1 TO 2) J=3 TO W)
r 1
| variable |
| (element [, element] ... { = specification |
| pseudo-variable) [,specification]...) |
| |
| A specification has the following format: |
| |
| TO expression-2 [BY expression-3] |
| expression-1 [WHILE (expression-4)] |
| BY expression-3 [TO expression-2] |
L)

Figure 1.

82

General Format for Repetitive Specification

This gives the elements of the array A
in the following order:

A(1,3), A(2,3), A (1,), A(2,0)

Transmission of Data-List Elements

If a data-list element is- of complex
mode, the real part is transmitted before
the imaginary part.

If a data-list element is an array name,
the elements of the array are transmitted
in row-major order, that 1is, with the
rightmost subscript of the array varying
most frequently.

If a data-list element is a structure

name, the elements of the structure are
transmitted in the order in which they are
stored.

If, within a data list used in an input
statement, a variable is assigned a value,
this new value is used in all later vref-
erences in the data list.

Example:

In the following statement, B 1is a
structure, XSTRING is a character string,
and C is an array:

DECLARE A FLOAT, 1 B, 2P, 2 E, 3 F,

XKSTRING
CHARACTER (6) , C (10) FIXED;

The following data list, involving these
data items, and the scalar variable A, may
be used for input or output.

(A,B, SUBSTR (XSTRING,2),
10))

(C(@ I=1 TO

The data-list elements are transmitted
in the following order:

A The scalar variable is transmitted.
P, ¥ The elements of the structure B
are transmitted.

SUBSTR (XSTRING, 2) The second through
sixth characters of the string are
transmitted.

C(h, C(2 ., CQ1O) The ten,
elements of the array are trans-
mitted.

LIST-DIRECTED DATA SPECIFICATION

General format:
LIST data-list [(scalar-expression)]

Syntax rules:

1. The "data 1list" is described in the
preceding discussion.
2. The “"scalar expression," which may

optionally follow the data list, rep-
resents a separator of data items on
the external medium.

List-Directed Input

When
the data consists of scalar constants,

the data item is an array name and
the

first constant 1is assigned to the first
element of the array, the following con-
stant to the second element, etc., in

row-major order.

A structure name in the data 1list rep-
resents a 1list of +the contained scalar
variables and arrays in the order specified
in the structure description.

List-Directed Input Format
Data on the external medium has the
following general form:

[+]1-] arithmetic-constant

'string-constant' ([B]

[+]-]1 real-constant {+|-} imaginary-
constant

Sterling constants may not be used. A
string constant must be one of the four
permitted forms 1listed above. The string
value is obtained by deleting surrounding
quotes and replacing contained double
quotes by single quotes. If the string
represents an optionally signed arithmetic
constant or complex expression, this value
represents the converted arithmetic wvalue.
If the string represents a bit constant,
this bit string value is converted to an
arithmetic value as described in Chapter 3.
If the string represents a character con-
stant, the above process is repeated.

Redundant blanks are permitted as in
PL/I programs. However, if there is no
specified separator, or if the separator is
specified as a blank, no blanks may precede
the central + or - in complex expressions.

A null field on input implies the data
list item is to be skipped.

Chapter 7: Input/Output 83

A scalar expression, enclosed in paren-
theses, optionally may follow the list-
directed data list. If the expression is
not present, data items on the external
medium must be separated by a comma or a
blank. If present, the expression is
evaluated and converted, if necessary, to a
character string; the resultant character
string is recognized as the separator of
data items on the external medium.

The transmission of the 1list of con-
stants on input is terminated by an attempt
to read the segment mark. List-directed
input implies the SEGMENT option.

List-Directed Output

The +values of +the scalar variables in
the data list are converted to a character
representation of the data value, as des-
cribed below, and transmitted to the exter-
nal medium.

A scalar expression, enclosed in paren-
theses, optionally may follow the list-
directed data list. If the expression is
not present, a blank is used to separate
data items to be transmitted. If present,
the expression is evaluated and converted,
if necessary, to a character string; the
resultant character string is used to
separate data items to be transmitted.

If the SEGMENT option appears in the
WRITE statement, the final data item trans-
mitted will be followed by the segment mark
(a semicolon will not appear as a default
for list-directed output).

List-Directed Output Format

Data fields written under list direction
are aligned in vertical columns. This
alignment is called tabbing, and is separ-
ately defined for each implementation of
the language. System tabbing may be over-
ridden by a TAB option in a LAYOUT state-
ment for the appropriate file.

Each item of a list-directed data speci-
fication, except the last, 1is immediately
followed by the separating character indi-
cated in the 1list-directed data specifi-
cation by a scalar expression enclosed in
parentheses. If the data is to be reread
under 1list direction, care should be taken
to avoid including character data or numer-
ic fields in the output and to avoid
ambiguity resulting from choice of separat-
ing or terminating characters.

Data items are written on successive tab
positions unless an item extends into a

84

that case, the
A data item
span

succeeding position. (In
next free position is used.)
may span several tabs, but must not
record bounaaries.

Length of List-Directed Output Fields
The 1length of the data field on the
external medium is a function of the inter-

nal precision and value of the data item.

CODED ARITHMETIC DATA: The external form

of coded arithmetic data 1is a possibly
signed valid decimal constant whose field
width, w, is a function of the internal
precision declared for the data item and
the value of the data item. In the discus-
sion below, the following abbreviations are
used:

1. The letter w represents the field
width, which is defined as the 1length
of the data field on the external
medium.

2. The letter 4 represents the number of
positions 1in the external data field
to the right of the decimal point.

3. The letter p represents the total
number of significant digits in the
data field.

4. The letter g represents the number of

digits to +the right of the decimal
point.

5. The 1letter 2z represents the total
number of 1leading =zeros to be sup-

pressed. A zero immediately before
the decimal point, whether the decimal
point is printed or not, is not sup-
pressed.

6. The letter t represents the existence
or mnonexistence of a decimal point; t
takes on the values 0 and 1 depending
upon the value of q.

if g = 0, then t
if q # 0, then t

0
1

o

7. The letter u represents the existence
of a minus sign; u takes on the values
0 and 1 depending on the value of the
data.

if data value < 0, then u
if data value = 0, then u

8. The letter s represents a scale factor
as described for floating-point data.
9. The pair (r,s) represents the declared
internal precision of a coded real

decimal fixed point data item.

There are five kinds of coded arithmetic
data to consider: coded real fixed-point
decimal data, coded real fixed-point binary
data, coded real floating-point decimal
data, coded real floating-point binary
data, and coded complex data.

Coded Real Fixed-Point Decimal Data: The
data item is converted to precision (p,q)
and transmitted to a field of width w where

MAX (s, 0)
r-s+q
p-z+t+u

It Wu

q
p
w

Coded Real Fixed-Point Binary Data: The
data is converted +to fixed-point decimal
and 1is transmitted as coded real fixed-
point decimal data.

Coded Real Floating-Point Decimal Data:
The data is converted according to the
rules for fixed-point format items, F(w,d).
For F-conversiomn, if p dis the declared
precision of the data item, w = p + 2 and 4
= - 1. For list-directed output, the
field containing the converted data item is
padded on the right with four blank
characters, such that the total field width
is w + 4., The effect is similar to the
pair of format items F(w,d), X (4) .

If this conversion causes either a digit
overflow into the sign position or a signi-
ficant zero digit in the position immedi-
ately to the right of the decimal point,
the data item is converted according to the
rules for floating-point format items,
E(w,d,s) . For E-conversion, w =p + 6, d =
p-1, and s = p.

Coded Real Floating—-Point Binary Data: The
data is converted to floating-point decimal
with a precision (p) and transmitted as
coded real floating-point decimal data.

Coded Complex Data: The data is represent-
ed as two immediately adjacent real data
fields, the left-hand field being the real
part of the data and the right-hand field
being the imaginary part of the data.

A sign always precedes the imaginary
part. If the value of the imaginary part
is greater than, or equal to, zero, the
sign is plus; if the value of the imaginary
part is less than zero, the sign is minus.
The imaginary part is always followed by
the letter I.

The field width of the real part of the
complex data 1is as described in the items
above, whichever applies. The field width
of the imaginary part is as described above
plus 2 (one position for the sign and one
for the letter I) if u = 0, or plus 1 (foxr
the letter I), if u = 1. Therefore, the
field width of the complex data field is
the sum of the widths of the subfields.

NUMERIC FIELD DATA: The base of numeric
field data is either decimal or binary.

Numeric Decimal Data: The external format
and field width of the numeric decimal data

item is that described by the associated
picture specification.

Numeric Binary Data: The external format
and field width of the nuweric binary data
item is that described by the associated
picture specification. The binary digits 0
and 1 are represented by the characters 0
and 1.

CHARACTER-STRING DATA: The contents of the

character string are written out. Enclos-
ing quotation marks are not supplied, and
contained quotation marks are unmodified.
The field width is the current length of
the string.

BIT-STRING DATA: The format of the data omn
the external medium is that of a bit-string
constant, that is, the value is enclosed in
quotation marks and followed by the letter
B. The field width is (p + 3), where p is
the current length of the string and the
three additional positions are for the two
quotation marks and the letter B.

Examples of list-directed data specifi-
cations:
READ LIST (CARD.RATE,
DYNAMIC_FLOW) ;
READ LIST ((THICKNESS (DISTANCE)

DISTANCE = 1 TO 1000)) ;
WRITE LIST (P, Z, M, R):;
WRITE LIST (A * B/ C,

("+");

(X + ¥) *+ 2)

The first two examples are list-directed
input specifications and the 1latter are
output specifications.

DATA-DIRECTED DATA SPECIFICATION

General format:

Option 1
DATA

Option 2
DATA data-list

Syntax rules:

1. The data 1list is described in "Data
Lists,"” in this chapter. It may not
include formal parameters.

2. Option 1 implies that all of the data
items to be transmitted are known to
the block containing the READ or GET
statement and are declared with a SYM-
BOL attribute. Option 1 may be used
for data-directed input only.

3. Option 2 may be wused for both data-
directed input and output.

Chapter 7: Input/Output 85

Data-Directed Data On External Medium

The data on the external medium
associated with data-directed transmission
is in the form of a list of scalar assign-
ments having the following general format:

scalar-variable = (+|-] constant
[,Scalar-variable= [+|-] constant] ...;

Sterling constants may not be used.

The scalar variable must be unsubscript-
ed and cannot be a pseudo-variable.

Syntax rules:

1. The “scalar variable" may be a sub-
scripted name with decimal integer
constant subscripts, but may not be
declared with the DEFINED attribute.

2. On input, the scalar assignments may
be separated by either a blank or a
comma. On output, the assignments are
separated by blanks.

3. The terminating semicolon may be
replaced by a segment-mark if so spec-
ified in the READ or WRITE statement.

4. The constant in the general format
above may be a complex expression used
to represent a complex constant.

General rules for data-directed input:

1. If the data specification in Option 1
is used, the names on the external
medium may be any unqualified mname
known at the point of transmission and
declared with the SYMBOL attribute.

2. If Option 2 is used, each element of
the data list must be an unsubscripted
scalar, array, or structure name. The
names on the external medium must
appear 1in the data list; however, the
order of the names need not be the
same, and the data list may include
names that do not appear on the exter-
nal medium.

For example, consider the following
data list, where A, B, C, and D are
names of scalar variables:

DATA (B,A,C,D)

This data list may be associated with
the following input data stream:

A = 2.5, B= .00476, D = 125;

Note that C appears in the data 1list
but not on the external medium.

3. If the data list in Option 2 includes
the name of an array, subscripted
references to that array may appear on
the external wmedium. The entire array

86

need not appear on the external medi-
um.

Let X be the name of a two-
dimensional array declared as follows:
DECLARE X (2,3);

Consider the following data 1list and
input data stream:

Data List Input Data Stream

DATA (X) X(1,1) = 7.95, X(2,1) =

8085, Xx(1,3) = 73;

Although the data 1list has only the
name of the array, the associated
input stream may contain values for
individual elements of the array.

If the data 1list includes qualified
names, then qualified names of
identical form may appear on the
external medium. Consider the follow-
ing structures:

DECLARE 1 CARDIN, 2 PARTNO, 2 DESCRP

SYMBOL (X) , 2 PRICE SYMBOL (X1),

1 CARDOUT, 2 PARTNO, 2 DESCRP

SYMBOL (X2) , 2 PRICE SYMBOL (X3) ;

If it is desired to read a value for
CARDIN.PARTNO, then the data list and
input data stream have the following
forms:

Data List Input Data Stream
DATA (CARDIN.PARTNO) CARDIN.PARTNO =
737314;
5. When a structure name is given in a

data 1list, elementary structure ele-
ments, which have been declared with
the SYMBOL (identifier) attribute, may
be transmitted. In this case, the
scalar variable in the assignment list
on the external medium is +the iden-
tifier given in the SYMBOL attribute.
The equivalent qualified name may not
appear in the assignment list unless
the qualified name also appears in the
data list.

Consider the structures described
in item U4. If it is desired to read
values for DESCRP in CARDIN and for
PRICE in CARDOUT, the following data
list and input stream may be used:

Data List Input Stream
DATA (CARDIN, CARDOUT) X = 65, X3 = 38;

Both of these data items may have
been transmitted by using identical
qualified names in both the data 1list
and input stream as described in item
4, above.

1.

General rules for data-directed ocutput:

The elements of the data list may be a
scalar name, an array name, a struc-
ture name, a repetitive specification
involving any of these elements or
further repetitive specifications.
The data with names appearing in the
data list is transmitted, in the form
of a list of scalar assignments sepa-
rated by blanks and +terminated by a
semicolon.

Array names in the data
treated as a 1list of the
subscripted elements in
order.

list are
contained
row-major

Let X Dbe an
follows:

array declared as

DECLARE X (2,4) ;

Let X appear in a data 1list as fol-
lows:

DATA (X)

Then, on output, the output data

stream is as follows:

X(1,1=1 X(1,2)=2 X(1,3)=3 X(1,4)=4
X(2,1) =5 X(2,2)=6 X(2,3)=7 X(2,U4)=8;

Subscript expressions in a data name
are evaluated and replaced by integer
constants.

Qualified mnames appearing in the data
list are +transwitted with the same
qualification, but subscripts follow
the qualified name rather than being
interleaved. If a data list is speci-
fied for a structure element transmit-
ted under data-directed output as fol-
lows:

DATA(Y (1,3) .Q)

Then the associated data field in the
output stream is as follows:

Y.Q (1,3) =3.756;

Structure names in the data 1list are
interpreted as a list of the contained
scalar or array elements, and arrays
are treated as above.

Consider the following structure:

14, 28, 2C, 3D

If a data list for data-directed out-
put is as follows:

DATA (3)

Then the associated data fields in the
output stream are as follows:

B=2 D=17;

6. Data-directed output is suitable for
data-directed input only if it
includes no numeric fields of binary
base or numeric fields of decimal base
that do not have the form of valid
arithmetic constants.

7. If a data-directed output 1list con-
tains an item declared with the attri-
bute, SYMBOL (identifier), the synonym
is used rather than the name in the
data list.

Data-Directed Output Format

Data fields written under data direction
are tabbed, that is, aligned in vertical
columns. This tabbing may be overridden by
a TAB option in a ILAYOUT statement for the
appropriate file.

Data items are written on Successive tab
positions unless an item extends into a
succeeding position. (In that case, the
next free position is used.) A data item
may Span several tabs; however, data items
must not span records.

Length of Data-Directed Data Fields

The length of the data field on the
external medium is a function of the inter-
nal precision, the value of the data item
being written, and the length of the data
identifier and its associated subscript
list. The field length for coded arithmet-
ic data, numeric field data, and bit-string
data is the same as described for 1list-
directed output (see "Length of List-
Directed Output Fields").

For character-string data the contents
of the character string are written out
enclosed in quotation marks. Each

quotation mark contained within the charac-
ter string is represented by two successive
quotation marks.

Example:

Assume that A is declared as a one-
dimensional array of six elements; B is a
one-dimensional array of seven elements.
If it 1is desired to calculate values, the
procedure in Figure 2 calculates and writes
out values for A(I) = B(I+1)+B(I).

Chapter 7: Input/Output 87

AB: PROCEDURE;

Input Stream on External Medium

DECLARE A (6), B(7):
READ DATA (B) -
DO I =1 TO 6;
A (1)

= B(I+1) + B(I);

B (1) =1,B (2) =2,B (3) =3,

B (4) =1,8B (5) =2,B (6) =3,B (7) = 4;

Output S5tream on External Medium

END;
WRITE DATA (B) ;

END AB;

o o o — — —— —— — ——— ————

A()=3 A(2)=5 A(3)=U A (4) =3

A(5) =5 A(6)= 7

b e e S — ——— — — —— — — — —— —— o}

Figure 2.

FORMAT-DIRECTED DATA SPECIFICATION

General format:
data-list format-list
General rules:
"Data

1. The data list is described in

Lists,"™ the format 1list in "Format
Lists.* Only this form of
transmission can be used for stexling
datae.

2. On output, the value of each data item
in the data list is converted +to a
format specified by the associated
format item in the format 1list. The
first scalar data item is associated
with the first format item, the second
scalar data item with the second for-
mat item, etc. Suppose the format
list effectively contains 3j format
items, and the data list effectively
contains k data items. Then 1if j<k
after j scalar data items have been
transmitted, the format 1list is re-
used, the (j+1)th scalar item being
associated with the first format item,
etc. This re-use is perfornmed as many
times as required. If j>k , redundant
format items are ignored.

3. BAn array or a structure in a data list
is equivalent to n data items, where n
is the number of scalar elements in
the array or structure.

4. If a data list item is associated with
a control format item, that control
action is executed and the data 1list
item 1is paired with the next format
item.

5. The specified transmission is complete
wnen the 1last data item has been

88

Example of Data-Directed Transmission, Both Input and Output

processed using the corresponding
format item. Subsequent format itemns,
including control format items, are
ignored.

Examples:

The first of the following examples is a
format-directed 1input specification, and
the second is an output specification:

1. (NAME,DATE, SALARY) (A (COLA_COLB) ,
X(2)y, A(6), F(M+2,2))

2. ('RESULT('|| I || ")=', A(I) I=1 TO
20) (A,F(2) ,A,F(8,33))
FORMAT LISTS
The format-directed data specification
and the FORMAT and POSITION statements

require a format list.
General format of a format list:
,item

,n item
,n format-list

item
({n item aee)
n format-1list

Syntax rules:

1. Each "item" represents a format item
as described below.

2. The letter n represents an iteration
factor, which is either an expression
enclosed 1in parentheses, or a decimal
integer constant. The iteration fac-
tor specifies that the associated for-
mat item is to be used n successive

times. A zero or negative iteration

factor specifies that the associated
format item is to be skipped and not
used.

If an expression is used to rep-
resent the iteration factor, it is
evaluated and converted to an integer
once for each set of iterations. The
associated format item is that item or
list of items to the 1right of the
iteration factor.

General rule:

There are two types of format items:
data format items and control format
items. Data format items specify the
form of data on an external medium.
Control format items specify control
over records and groups being read or
constructed.

Data Format Items

Data format items describe data rep-
resentation in two modes: external and
internal. The external mode is designed to
be readable and uses character representa-
tion. The internal mode is in coded form,
which is individually defined for each
implementation of PL/I, and is primarily

used for compact intermediate storage.
Arithmetic internal mode format items,
other than the numeric picture item (P),

specify coded internal form. The P format
item specifies that the internal form is
numeric field or character string.

External Mode Format Items

The discussion of external mode format
items requires the fcllowing definitions:

1. The letter w represents the length of
the field in characters used by the

external representation (including
signs, decimal or binary points,
blanks, editing characters, and the

letters E and B, as used in represen-
tation of constants).

2. The letter d represents the number of
positions after the decimal or binary
point.

3. The letter s represents the numper of
significant digits (binary or decimal)
to appear.

4. The 1letter p represents a scale fac-
tor, which may be positive or nega-
tive.

The quantities w,d,s may be specified by
an expression. When the format item is
used, the expression is evaluated and con-
verted to an integer. If w<0 in a format

specification, then, on input, the asso-
ciated list item is skipped, unless it is a
string, in which case the data value is
taken as the null string. On output, the
FIELDOVERFLOW condition 1is raised unless
the format item is A or B and the associat-
ed list item has the null string as its
value.

On input, the data item in the external
data field is converted to the charac-
teristics of the list item. Rules for the
conversion are given in Chapter 3.

There are six format items associated
with data in external mode: fixed-point
(F) , floating-point (E), complex (C), Pic-
ture specification (P), character-string
(A,P), and general (G).

FIXED-POINT FORMAT ITEMS: Numeric data may

be described by a fixed-point format item.
General format:
Option 1.
F W)
Option 2.
F (w,d)
Option 3.
F(w,d,p)
General rules:

1« On input, the data items in the exter-
nal data field are the character rep-
resentation of decimal fixed-point
numbers anywhere in a field of width
We

In Option 2, if no decimal point
appears in the number, it is assumed
to appear imwediately before the last
a digits (if trailing blanks are
treated as zeros, they are included in
the count of 4 digits). It a decimal
point does aprear, it overrides the 4
specification. Option 1 is treated as
option 2, with d equal to zero.

In Option 3, the scale factor
effectively multiplies the external
data value by 10 raised to the value
of p. If p is positive, the number is
treated as though the decimal point
appeared p places to the right of its
given position. If p is negative, the
data is treated as though the decimal
point appeared p places to the left of
its given position. The given posi-
tion of the decimal point 1is that
indicated either by an actual point,
if it 1is given, or by d, in the

Chapter 7: Input/Output 89

FLOATING-POINT FORMAT ITEMS:

absence of an actual point.

On output, the external data
decimal fixed-point number,
adjusted in a field of width w.

is a
right-

In Option 1,
portion of the number is
decimal point appears.

only the integer
written; no

In Option 2, both the integer and
fractional parts of the number are
written. If & is specified, a decimal
point 1is 1inserted before the last 4
digits, and the value is appropriately
positioned. Trailing zeros are sup-
plied if +the number of fractional
digits is less than d (where d must be
less than w).

In Option 3, the scale factor
effectively multiplies the internal
data value by ten raised to the power
of p before it 1is edited into its
external character representation. If
d is omitted, only the integer portion
of the number is considered.

For all options, if the value of
the number is less than zero, a minus
sign will be prefixed to the external
character representation; if it is
greater than or equal to zero, no sign
will appear. Therefcre, for negative
values, w must encompass both sign and
decimal point.

Numeric data

may be described by a floating-point format
item.

1.

90

[

General format:

E (w,d [, 8])

General rules:

On input, the data item in the exter-
nal data field is an optionally signed
character representation of a decimal
floating-point number anywhere within
a field of width w.

The external form of the number is
as follows:

+] [E] +
- fixed-point- E [#] { exponent
number

a. If there 1is no decimal point in
the external data field, the deci-
mal point is assured to be before
the 1last d digits. If there is a
decimal point in the extermal data
field, it overrides the decimal
point placerent specified by d.

b. The “"exponent" is a decimal inte-
ger. If the exponent and the

COMPLEX FORMAT ITEMS:

preceding E or sign are omitted, a
zero exponent is assumed.
On output, the data item in the exter-
nal data field has the following gen-
eral form:

+
[-] s-d digits.d digits E {-} expo-
nent

a. The "exponent" is a decimal inte-
ger of n digits, where n is
defined individually for each
implementation. The exponent is
adjusted so that the leading digit
of the characteristic is nonzero.

b. If the above form does not fill
the field of width w, it is right-
adjusted, and blanks are inserted
on the left. If s is omitted it
is taken as equal to d. The field
width w must be greater than or
equal to (s + n + 3) for non-
negative values and (s + n +)
for negative wvalues of the data
item.

Complex numeric data

may be described by a complex format

1.

PICTURE FORMAT ITEM:

item.

General format:

C (real-format-item
[,real-format-item])

General rules:

Each "real format item" is specified
by ¥, E, G, I, or P formats. P can
specify a numeric field only; it

cannot specify a sterling field.

On input, the external data is the
real and imaginary parts of the com-
plex number in adjacent fields des-
cribed by the two contained format
items. If the second real format item
is omitted, it 1is assumed to be the
same as the first.

On output, the form of the real and
imaginary parts is specified by
enclosed real format items. If the

second is omitted, it is assumed to be
the same as the first.

Numeric data may be

described by a numeric picture using the P
format item.

The "numeric picture
described in

General format:

P 'numeric-picture-specification'

specification" is

“The PICTURE Attribute," in

Chapter 4.

On input, the picture specification des-

cribes the form of the data on the external

medium and how it is to be interpreted
numerically. The external representation
of binary numeric fields uses the charac-
ters 0 and 1.

On output, the value of the list item is
edited to the form specified by the picture
before it 1is transmitted. Binary numeric
fields will have a character representation
after transmission.

BIT-STRING FORMAT ITEMS: The bit-string
item describes the external representation
of a bit string using the characters 0 and
1.

General format:
Af[(w)]
General rules:

1. If w is omitted, it is taken to be the
maximam length of the associated data
list element on input or the current
length on output; it must be specified
if conversion is to be performed.

2. On input, the external data is a
character representation of bit string
anywhere within the field of width w.

3. On output, the character representa-
tion of bit string is left-adjusted in
the field of width w. Truncation, if
necessary, is performed on the right.
Blanks are used for padding.

CHARACTER-STRING FORMAT ITEMS: Character
data may be described by a character-string
format item.

General format:

A [w]
P 'character-picture-specification’

General rules:

1. The “"character picture specification”
is described in "The String Attri-
butes," in Chapter 4.

2. The external representation is a
string of w characters.

3. On output, truncation, if necessary,
is performed on the right. If the
associated 1list element is too short,
it is extended on the right with
blanks. Xf the picture form is used,
w is implied. Checking and editing
are performed.

4. w wcan be omitted on output, in which
case the associated data 1list element
must be a character string, and w is
taken to be the maximum length of that
string.

GENERAL FORMAT XTEMS: Both character data
and numeric data may be described by the
general format item.

General format:

G {w | (w,d | (w,d4,s)}
General rules:
1. The type of the external character

representation of the data is assumed
to be that of the associated data-list
element.

2. In the case of strings and numeric
fields, the effect of the general
format item is identical toaA (@w); 4d
and s, 1if specified, are ignored.
Coded bit-string external representa-
tion may not be described by a general
format item.

3. On input for arithmetic data, the
scale of the external character rep-

resentation is deduced. The effect of
the general format item is then ident-
ical to F (w, F (w,d) for fixed-point
numbers and E (w,d,s) for floating-
point numbers.

On output for arithmetic data, the
data is analyzed with respect to the
specified field width w.

4. If the data item may be represented
without 1loss of accuracy as a fixed-
point number, the external form is
that specified by F (w), or F (w,d) if
d 1is specified. If the data item
cannot be suitably represented by an F
format item, it is necessary that d be

specified in the general format item.
The effect is then identical to E
(w,d) or E (w,d,s) if s is specified.

Internal Mode Format Items

Internal mode format items may specify
precision and length. This 4is given in
exactly the same way as with the precision
attribute. The base or the precision is
that of the format item, or, where this is
indeterminate, that of the associated data

item. If size or precision is omitted, it
is assumed to be that of the associated
data item. The type, base, scale, mode,

and precision of a data
from its associated format item. Wherever
this occurs, conversion 1is performed.
Precision must be specified in this case.

item may differ

format items associated
internal wode: fixed-point
(IF) , floating-point (IE), picture (P),
bit-string (B), character-string (A,P), and
general (IG).

There are six
with data in

INTERNAL FIXED-POINT ITEMS: Numeric data

in internal. mode may be described by the
internal fixed-point format item.

Chapter 7: Input/Output 21

General format:

IF [(precision)]
IFB [(precision)]
The first form is used for decimal data,
the second form for binary data.

INTERNAL FLOATING-POINT FORMAT ITEMS:
Numeric data in internal mode may be des-
cribed by the internal floating-point for-
mat item.

General format:

IE [(precision)]
IEB [(precision)]

The first form is used for decimal data,
the second form for binary data.

INTERNAL PICTURE FORMAT ITEMS: Decimal
numeric data in internal mode may be des-
cribed by an internal picture format item.

General format:
P 'picture-specification'

The "picture specification" is described
in "The PICTURE Attribute," in Chapter 4.

INTERNAL BIT-STRING FORMAT ITEMS: The
internal bit-string format item describes
the internal representation of a bit
string. It may also be used for the output
of binary numeric fields in internal mode,
since the conversion from binary numeric to
bit string is a null conversion.

General format:
B [(length)]
General rules:

1. "Length" is the length of the string
in bits. If omitted, it is taken as
the current length of the associated
bit-string list item.

2. The external representation is the
coded form for a bit string. If s
bits are encoded in one character, the
width of the external field may be
represented as follows:

CEIL (length/s)

3. On input, the coded string is inter-
preted as bit string and is truncated,
if necessary, to the specification
length.

4, On output, the string is extended with
zeros to length s*CEIL (lengths/s) and
the external form is this string.

INTERNAL CHARACTER-STRING FORMAT
Character data in

ITEMS:
internal mode may be

92

described by an
format item.

internal character-string

General format:

A (W] }

P 'character-picture-specification’

The "character picture specification" is
described in "The Picture Attribute," in
Chapter 4.

INTERNAL GENERAL FORMAT ITEMS: Both char-
acter data and numeric data in internal
mode may be described by an internal gener-
al format item.

General format:
IG
The IG format item specifies that the

format of the data on the external medium
is to be identical to its internal form.

Control Format Items

There are two types of control format
items: the spacing format item, X, and the
positioning format items, which effect
transmission in exactly the same way as do
the statements of the same names. All of
these format items except POSITION, are for
use only with data in the external mode.
Spacing Format Item

General format:

X (w)

General rules:

1. Omn input, the format item specifies
that the next w characters of the
external data are to be ignored.

2. On output, the format specifies that w
characters of blanks are to be insert-
ed into the external data.

Positioning Format Items
The positioning format items are:
SPACE [(expression)]
SKIP [(expression)]
GROUP [(expression)]
POSITION (format 1list)

TAB [(expression)]

General rules:

1. The effect of each of these format
jtems 1is identical to the statements

of the same names (see the individual
statements, described in Chapter 8,
for a description of the action
taken) .

2. Only the POSITION item of the above,
may be used in 1lists intended for
internal string editing.

Remote Format Item

If it is desired to locate format items
remotely from a format 1list, the remote
format item, R, may be used.

General format:

R (statement-label-designator)

General rules:

1. The "statement-label-designator" is a

label constant or a label variable
that is the statement 1label of a
FORMAT statement. The FORMAT state-

ment includes a format 1list that is
taken to replace the remote format
item.

2. The R format item and the specified
FORMAT statement must be internal to
the same block.

PROCEDURE-DIRECTED DATA SPECIFICATION

The data specification for
directed transmission has the
general format:

procedure-
following

CALL entry-name [(argument [,argument]
see)]

The CALL option causes the procedure
whose name is "entry name"™ to be invoked in
the same manner as the CALL statement.

The invoked procedure may perform
further action on the data to be transmit-
ted by using GET, PUT, and the positioning
statements.

INPUT/OUTPUT STATEMENTS

The input/output statements may be clas-
sified as follows: file preparation, data
specification, data transmission, position-
ing, report generation, SAVE and RESTORE

A des-
given in

statements, and DISPLAY statements.
cription of each statement is
Chapter 8.

FILE PREPARATION STATEMENTS

The OPEN statement causes certain check-
ing and allocation of facilities in prepar-
ation for input/output on a file. The
CLOSE statement causes disposition of a
file and release of facilities upon comple-
tion of input/output. Both statements are
optional.

DATA SPECIFICATION STATEMENT

The format of a record to be transmitted
may be specified by the FORMAT statement or
in the data transmission statements.

DATA TRANSMISSION STATEMENTS

The READ and WRITE statements cause the
transmission of data between storage and
external media. The GET and PUT statements
cause data to be moved between the current
record and specified variables in conjunc-
tion with procedure-directed data transmis-
sion. The DISPLAY statement causes messa-
ges to be transmitted between the program
and the machine operator.

POSITIONING STATEMENTS

Positioning within and between records
may be accomplished with the POSITICN, TAB,
SKIP, SPACE, and GROUP statements. The
first two of these apply only to current
files. The remainder may apply either to
the current file or an explicitly designat-
ed file. The SEGMENT statement is used to
position between segments. The REPOSITION
statement has a special wuse with the ON
statement (see "The REPOSITION Statement®) .

REPORT GENERATION STATEMENTS

The PAGE and LAYOUT statements are pro-
vided to facilitate preparation of files
for printing. The statements may, however,
be used for nonprint files. The statements
refer explicitly (or in the case of
procedure-directed transmission, implic-

Chapter 7: Input/Output 93

itly) to a particular file. Each statement
applies to that file until overridden by
another statement of the same type. Until
such statements are encountered, system
standards are assumed to apply.

The execution of a PAGE or LAYOUT state-
ment for a file destroys all options esta-
blished by previously executed PAGE or
LAYOUT statements for the same file. Exe-
cution of a CLOSE statement releases the
PAGE and LAYOUT for the indicated file.

RECORD IDENTIFICATION OPTIONS

THE KEY CPTION

Function:

The XKEY option is used when direct
access to a particular record is required.
The file containing this record must have
the REGIONAL or INDEXED organization (see
"File Organization Attributes,®" in Chapter
4y .

General format:
KEY (expression)
General rules:

1. The "expression," which, if necessary,
is converted to characters, is the key
value used to locate the particular
record in the file. This expression
is evaluated whenever transmission of
another record is required.

2. If the KEY option appears in an output
context and if the key already exists
within the file, that record is
replaced by the record being written;
if the key does not exist, the recorad
is added to the file.

3. The ACCESS condition is raised (see
"ON-Conditions, in Appendix 3) if the
KEY option is used in an input context
and the key does not exist.

4. The KEY option may appear only in the
READ or WRITE statement.

THE NEWKEY OPTION

Function:

The NEWKEY option serves the same pur-
pose as the KEY option except that the key
of the record being written must not
already exist within the file. If such a
duplicate key exists, an error condition is

94

raised. When a file is being created with
keys, the NEWKEY option must be employed.

General format:
NEWKEY (expression)

General rules:

1. See "The KEY Option" for a discussion
of the purpose of the KEY and NEWKEY
options.

2. The key of the record is represented

by the "expression," which is convert-
ed to characters, if necessary. The
NEWKEY option can be used in an output
context only.

3. The NEWKEY option may appear only in a
WRITE statement.

THE REGION OPTION

Function:

The REGION option is used when direct
access to a file organized in the REGIONAL
mode 1is required (see "File Organization
Attributes,” in Chapter 4, for a definition
of the REGIONAL file organization) .

General format:
REGION (expression)

General rules:

1. The "expression" is converted to inte-
ger; this integer n represents the nth
region of the file (relative to the
beginning of the £file) to which the
specified input/output device is to be

positioned. The value of the expres-
sion must be within the limits of the
file.

2. The REGION option may be wused in

conjunction with the KEY option if the
region is defined to contain more than
one record. In this case, the speci-
fied device first is positioned to the
specified region and the region is
then searched for a record with the
specified key value.

3. The REGION option may appear
the READ or WRITE statement.

only in

This section includes a description of
each statement in the 1language. These
descriptions are presented in alphabetic

order.
To show the relationships among these

statements, they are also classified into
logical groups.

RELATIONSHIP OF STATEMENTS

CLASSIFICATION

Statements may be classified into the
following logical groups: assignment, con-
trol, data declaration, error control and
debug, input/output, program structure,
sorting, and storage allocation.

Assignment Statement

The assignment statement 1is used to
evaluate expressions and to assign values
to scalars, arrays, and structures.

Control Statements

The contreol statements alter the normal

sequential flow of control through a pro-
gram. The control statements are GO 70,
IF, DC, CALL, RETURN, WwAIT, STOP, EXIT,
DELAY.

Data Declaration Statement

The data declaration statement, DECLARE,
specifies attributes for names and iden-
tifiers. This statement is described in
Chapter .

Error Control and Debug Statements

When an interrupt occurs during program
execution, standard operating system action
is taken; however, the language provides
the facility to override system action on

CHAPTER 8: STATEMENTS

these interrupts. By using the ON state-
ment, a programmer may sSpecify the action
to be taken when an interrupt occurs and
can record the status of the program at the
point of the interrupt. By using the
SIGNAL statement, the programmer may ini-
tiate programmed interrupts and may simu-
late machine interrupts to facilitate
debugging.

Input/Output Statements

See “"Input/Output Statements," in Chap-
ter 7, for a classification and discussion
of statements used in input/output opera-
tions.

Program Structure Statements

The program structure statements are:
PROCEDURE, BEGIN, END, DO, and ENTRY. The
first three statements delimit the scope of
declarations within a prcgram. The ENTRY
statement provides a secondary entry point
for a procedure.

Sorting Statement

The SORT statement sorts and, optional-
ly, merges records on a file.

Storage Allocation Statements

The storage allocation statements are:
ALLOCATE, FREE, FETCH, and DELETE. The
ALLOCATE ana FREE statements allocate and
free storage for variables. The FETCH and
DELETE statements allocate and free storage
for prograns.

SEQUENCE OF CONTROL

Within a block, control normally passes

sequentially from one statemnent +to the
next. If a DECLARE, FORMAT, or ENIRY is
encountered, contrcl passes to the next

statement. If a PROCEDURE statement 1is

Chapter 8: Statements 95

encountered, control passes to the state-
ment following the end of the procedure.
Control passes to the statement following
an IF statement when control reaches the
end of the THEN-unit. Sequential operation
is modified by the following statements:
CALL, END, EXIT, GO TO, PROCEDURE, RETURN,
SIGNAL, and STOP.

A CALL statement passes control to the
specified entry point.

An END statement, logically terminating
a procedure, acts as a RETURN statement,
causing control to return to the invoking
procedure.

The EXIT statement causes control to
leave a task; the STOP statement causes
control to leave a program.

A GO TO statement causes control to
transfer to the specified statement label.

A PROCEDURE statement heads a procedure.
Procedures may be considered as independent
blocks and are placed anywhere within an
external procedure, consistent with desired
identifier scopes. However, a procedure
may be invoked only by a CALL statement, a
statement with a CALL option, or a function
reference. Thus, control passes around a
nested procedure, from the statement before
a PROCEDURE statement to the statement
after the appropriate END statement for the
procedure.

A RETURN statement returns control from
a procedure to the invoking procedure.

A SIGNAL statement specifying an enabled
condition causes control to pass to the
on-unit of the associated CN statement. If
there is no associated ON statement, con-
trol is passed to the appropriate system
routine.

The following conditions may cause
sequential operation to be modified:

1. A function reference in any expression
causes control to pass to the speci-
fied function procedure.

2. The occurrence of an enabled condition
specified in an ON statement causes
control to pass to the statement or

926

block contained in the statement. If
there is no ON statement, control is
passed to the appropriate system rou-
tine.

3. The flow of control through the IF and
ON statements and through a DO group
may or may not be sequential.

4. In an appropriate environment, the
asynchronous execution of several
operations may involve transfer of
control under the influence of exter-
nal occurrences.

The following illustrates
sequence of control:

example

A: PROCEDURE;

B: X=Y + Z;

C: CALL D;

E: W = pP*Q;
D: PROCEDURE;
G: S = T/P;
H: RETURN;
I: END D;

J: U = V**y\;

K: GO TO N;

N: END;

Control flows in the following order: A,
B, ¢, D, G, H, E, J, K, N.

PSEUDO-VARIABLES

The following built-in functions (see
Appendix 1 for a more complete description)
may be used as pseudo-variables on the left
side of an equal sign in an assignment
statement, or a DO statement, or in a data
list in a READ statement or a GET state-
ment. In the definitions below, the item
in the data list of a GET cr KEAD statement
may be considered to correspond to the item
on the left side of the equal sign in an
assignment statement; the value being
transmitted may be considered to correspond
to the expression on the right side.

COMPLEX (a,b) The letters a and b rep-
resent variables that need not have the
same characteristics. During execution of
an assignment statement, the real part of
the expression on the right is assigned to
a, the imaginary part to b.

REAL (¢) The 1letter ¢ represents a
complex variable. During execution of an
assignment statement, the real value of the
expression is assigned to the real part of
c.

IMAG (c) The
complex variable.

letter ¢ represents a
During execution of an

assignment statement, the real value of the
expression is assigned to the imaginary
part of c.

ONCHAE The expression on the right is
converted to a character string of length

1. On assignment, the character that
caused the input EDIT error interrupt is
replaced by the value assigned. This

pseudo-variable is defined only while such
an interrupt is being processed.

ONFIELD The expression on the right is
evaluated and converted to a character
string. On assignment, the field that was

being processed when the input interrupt
occurred is replaced by the value assigned.
This pseudo-variable is defined only while
an interrupt is being processed.

SUBSTR (s,1i({,k]l) The letter s represents
a string. During execution of an assign-
ment statement, the expression is assigned
to the substring of s defined by the
built-in function SUBSTR (see Appendix 1).
This substring is always treated as a fixed

length string.

EVENT (v) The letter v represents a sca-
lar event name. When used in an assignment
statement, the expression on the right-hand
side is evaluated and converted to a bit
string of length 1. The value of this bit
string is used in an assignment to the
named event (see "Asynchronous Operations
and Tasks" in Chapter 6).

PRICRITY ([(V)] The letter v represents a
scalar task name. When used in an assign-
ment statement, the expression on the
right-hand side is evaluated and converted
to FIXED (m,0) where m 1is implementation
defined. The priority of v, the named
task, is adjusted to be n, relative to that
of the task in which the assignment is
performed, prior to that assignment. If v
is not specified, this is the task in which

the assignment statement is executed (see
“Asynchronous OQOperations and Tasks" in
Chapter).

UNSPEC (v) The 1letter V rerresents a

scalar variable. The expressicn on the
right 1is evaluated and converted to a bit
string (whose length is an implementation
defined function of the characteristics of
V) , and assigned to v without conversion to
the type of v.

ALPHABETIC LIST OF STATEMENTS

The ALLOCATE Statement

O
Function:

The ALLOCATE statement causes storage to

be allocated for specified controlled data.

1.

1.

General format:

ALLOCATE [level] identifier
[dimension] [attribute] ...
[, [Level] identifier [dimension]

fattribute] «ce] a..;

Syntax rules:

Each identifier must represent data of
the controlled storage class or be an
element of a controlled major struc-

ture.

"Dimension" indicates a dimension
attribute. "Attribute" indicates a
BIT, CHARACTER, or INITIAL attribute.

"Level" indicates a level number.

A dimension attribute, if present,
must specify the same number of dimen-
sions as that declared for the asso-
ciated identifier.

The attribute BIT may appear only with
a BIT identifier; CHARACTER may appear
only with a CHARACTER identifier.

A structure or structure element name
may appear only if the entire major
structure including all level numbers
and identifiers appear as in the
DECLARE statement for that structure.
The length specification may be
dropped from BIT or CHARACTER attri-
butes.

General rules:

An ALLOCATE statement for an identifi-

er for which storage was allocated and

not freed causes storage for the iden-
tifier to be "pushed down" or stacked.

This pushing down creates a new gener-

ation of data for the identifier.

When storage for this identifier is

freed, using the FREE statement, stor-

age is "popped up" or removed from the
stack.

Bounds for arrays and lengths of

strings are fixed at the execution of

an ALLOCATE statement.

a. If a bound or length is explicitly
specified in an ALLOCATE state-
ment, that bound or length over-
rides any bound or length given in
the DECLARE statement.

b. If a bound or length is specified
by an asterisk in an ALLOCATE
statement, that bound or length is
taken from the most recent genera-

Chapter 8: Statements 97

tion of data for the identifier.
In case no such generation exists,
the bound or length is undefined.
c. If a bound or length is not speci-
fied in an ALLOCATE statement, it
must be explicitly specified in
the DECLARE statement. The scope
of this declaration must include
the ALLOCATE statement. The
expression from the DECLARE state-
ment is evaluated at the point of
allocation.
Upon allocation of an identifier, ini-
tial wvalues are assigned to it if the
identifier has an INITIAL attribute in
either the ALLOCATE statement or
DECLARE statement. Expressions or a
CALL option in the INITIAL attribute
are executed at the point of alloca-
tion. If an INITIAL attribute appears
in both DECLARE and ALLOCATE state-
ments, only the INITIAL attribute in
the ALLOCATE statement is used.
To determine whether or not storage
has been allocated for an identifier
the built-in function ALLOCATION may
be used.
A parameter that 1is declared COR-
TROLLED may be specified in an ALLO-
CATE statement if the associated argu-
ment is given the CONTROLLED attri-
bute. (See "Relationship of Arguments
and Parameters," in Chapter 10).

Examples:

1.

N1,

The following examples illustrate the
use of the ALLOCATE statement when the
DECLARE statement contains explicit
bounds for an array A:

DECLARE A (N1,N2) CONTROLLED;
The values of N1 and N2 are assumed to
be known at this point.

N2 = 10;

ALLOCATE A; The bounds are 10 and

10

ALLOCATE A The bounds are K1 and

N1

(K1,K2) ; K2 which override N1
and N2.
= N1 + 1;

ALLCCATE A; The bounds are 11 and

10.

ALLOCATE A The bounds are 11 and

(¥, %) ; 10.

ALLOCATE A The bounds are J1 and

N1,

2.

31, J2); J2.
N2 = 20;

The following example illustrates the
use of the ALLOCATE statement when the
DECLARE statement contains asterisks
for the length of a bit string B:

DECLARE B BIT (¥) VARYING CONTROLLED;
ALLCCATE B Illegal; violates rule

98

BIT (*); 2b.

ALLOCATE B; Illegal; violates rule
2b.

ALLOCATE B The length is N.
BIT (N);

ALLOCATE B CHAR- Illegal; violates syn-
ACTER (4) ; tax rule 4.

ALLOCATE B The length is 8.
BIT (8);

4. The following example illustrates the
use of the built-in function ALLOCA-
TION and of the INITIAL attribute for
an identifier in an ALLOCATE state-
ment:

DECLARE A (N,N) CONTROLLED INITIAL
((8*N) 0) ;

IF , ALLOCATION (A) THEN ALLOCATE A
INITIAL (1, (N-1) ((N)O,1));

ALLCCATE A;

The Assignment Statement

Function:

The assignment statement 1is used to
evaluate expressions and to assign values
to scalars, arrays, and structures.

General format:

Option 1. (Scalar Assignment)

scalar- , Scalar-
variable variable | ...=scalar-
pseudo- s pseudo- expression;
variable variable

Option 2. (Array Assignment)

array sarray
pseudo-array (pseudo-array cee

= array-expression [BY NAME] ;
Option 3. (Structure Assignment)

structure
pseudo-structure
=structure-expression [,BY NAME] ;

Option 4. (Statement Label Assignment)

scalar-label-variable
[,scalar-label-variable] ...=
label-constant;
[scalar-label—variable;}

1.

2.

1.

L1:

array-label-variable [,array-label-
variable] ...=
label-constant;
scalar—-label-variable;
array-label-variable;

Syntax rules:

In COption 1, each variable on the left
of the equal sign may be of arithmet-
ic, bit, or character data type.

In Option 2, each array referred to on
the 1left of the egual sign may be an
array variable name or a pseudo-array.
If the BY NAME option 1is ©present,
those arrays must be arrays of struc-
tures. A pseudo-array is a pseudo-
variable with array arguments whose
arguments are array variable names.
(In the case of the pseudo-variable
SUBSTR (s,i,k, this requirement
applies only to the argument s; see

" pseudo-Variables.")

211 of the arrays on the left and
the arrays in the array expression
must have the same number of dimen-

sions and identical dimension bounds.
In Option 3, in the absence of the BY

NAME option, the structure indicated
on the 1left must have structuring
identical to the structures indicated

in the structure expression. Actual
level numbers of the structures
involved need not be the same; only

the
same.

structuring described need be the

General rules:

The assignment statement is evaluated

as follows:

a. In Options 1 and 4, if any expres-
sions appear on the left of the

equal sign, either in subscripts

or in pseudo-variables, these
expressions are evaluated exactly
once from 1left to right. The
expression on the right of the
equal sign is evaluated. The
value of the expression on the
right of the equal sign is

assigned to the variables on the
left of the equal sign, from left
to right.

b. In Options 2 and 3, the assignment
statement is treated as if it were
a sequence of scalar assignment
statements applied on an element-
by-element basis. See Rules 3 and
4 below for a discussion of the
evaluation of a structure or array
assignment BY NAME.

c. In the following definition of
order of assignment, A is an array
of dimensionality n:

DO I1 = LBOUND (A,1) TO HBOUND (A,1);

2.

DO I2 = LBOUND (A,2) TO HBOUND (A,2);

DO In = LBOUND (A,n) TO HBOUND (A,n);

A(I1, 12,...,In) = array-expression;
Subscripts (I1, 000, In) are
inserted for the appropriate

arrays on the righthand side, thus
yielding a sequence of scalar
assignments.

The result of the evaluation for a
later position in an. array or

structure may be affected by the
evaluation and assignment to an
earlier position (see Example 1,
below) .

d. When necessary, the expression
value, or values, is converted to

the characteristics of the varia-
ble on the left according to the
rules in "Expressions," in Chapter
3.

When a variable on the left is a bit
or character string or the UNSPEC
pseudo-variable, the expression is
evaluated as above, and the assignment
is performed from left to right,
starting with the leftmost position.

a. If the string has a fixed length
and the value of the expression is
longer than the string, the value
is truncated at the right.

b. If the string has a fixed length
and the value of the expression is
shorter than the string, the value
is extended on the right with
zeros for bit strings or with
blanks for character strings.

c. If the string has a varying length
and the value of the expression is
longer than the maximum length ot
the string, the value is truncat-
ed; the assigned string is of the
maximum length.

d. If the string has a varying length
and the value of the expression is
shorter than the maximum length of
the string, the value is assigned;
the new length of the string is
the length of the value.

e. If the variable on the left is the
pseudo-variable SUBSTR with an
argument that is a varying-length
string, the assignment 1is per-
formed to this substring in prec-
isely the same way as it would be
if the argument were of fixed
length, where this fixed length is
the current length of the string.

If the BY NAME option is wused for

arrays of structures in option 3, the

assignment statement is treated as a

sequence of BY NAME structure assign-

ments applied on an element-by-element
basis.

Chapter 8: Statements 99

100

If the
Option 3,

BY NAME option
the

in
statement

is used
assignment

causes the following activity:

de

b.

1 ONE

2

Structure ONE

Subscript expressions on the left
are evaluated.

The names of all contained arrays
and scalars are extracted from
each structure operand appearing
on both left and right.

These names are qualified by
the minor structure names that
contain them, up to but not
including the structure names
specified in the structure expres-
sion BY NAME.

all

For example, suppose there

three structures:

are

1 TWO
2 PART1

3 RED

3 GREEN

3 WHITE

PART2

3 BLUE

3 YELLOW

30RANGE (3)

PART

3 RED

3 WHITE
3 BLUE
PART2 2
3 GREEN

3 YELLOW

3 ORANGE (3)
PART3

3 BLACK

3 WHITE

1 THREE
3 PART1
5 BLACK
5 WHITE
5 RED
3 PART2
YELLOW
5 WHITE
5 ORANGE (3)
5 PURPLE

(]

Note
array

that the structures contain
names.

The elements of +these structures

are as follows:

Structure TWO

PART1.RED PART1.RED
PART1.WHITE PART 1.GREEN
PART1.BLUE PART1.WHITE
PART2.GREEN PART2.BLUE
PART2.YELLOW PART2.YELLOW
PARTZ2.ORANGE PARTZ2 .ORANGE
PART3.BLACK

PART3.WHITE

Structure THREE
PART1.BLACK
PART1.WHITE
PART1.RED
PART2.YELLOW
PART2.WHITE
PART2.O0ORANGE
PART2.PURPLE

d. The 1largest subset of qualified
names is selected such that each
selected name is contained in all
structures involved in the assign-
ment statement.

From the above example, this
duces:

pro-

PART1.RED
PART1.WHITE
PART2.YELLOW
PARTZ.ORANGE

e. All expressions involving the
selected names are evaluated and
values from the right are assigned
to items on the left for identical
qualified names. The order of the
left hand structure is used.
These assignments must be valid;
for example, arrays may not be
assigned to arrays of different
dimensions or bounds.

For example, the statement ONE=TWO
-2 * THREE, BY NAME is then equi-
valent to:

ONE.PART1.RED =TWO.PART 1. RED-2*THREE.
PART1.RED
ONE.PART1.WHITE =TWO.PART1.WHITE-2*THREE.

PART1.WHITE?;

ONE.PART2.YELLOW=TWO.PART2.YELLOW-2*THREE.

PART2.YELLOW;
ONE.PART2.0ORANGE=PARTZ2.ORANGE-2*THREE.
PART2.O0RANGE;

f. In BY NAME structure assignment,

it is unnecessary for the struc-
turing of all participating struc-

tures to be identical. Names of
variables that are defined on
structures appearing in BY NAME
assignment take no part 1in name
matching (see "The DEFINED
Attribute") .

In Option 4, the value of the 1label

constant or the label variable is qualified
by an identification of the current invoca-
tion of the block containing the label and
by the current task.

This qualification information is used
when a GO TO statement specifies the label
variable to make the identified invocation
current and to check that control does not
cross task boundaries.

Examples:

1. The following example illustrates
array assignment (Cption 2):

Given the array A 2 4
3 6
1 7
4 8
and the array B 1 5
7 8
3 4
6 3

Consider the assignment statement:

A = (A+B) **2-A (1,1 ;
After execution, A has the value
7 74
93 189
9 114
93 114

Note that the new value for A (1,1),
which is 7, is used in evaluating the
expression for all other elements.

The following example illustrates
string assignment:

Given:
A is a fixed-length string whose
value is 'XZ/3Q°'.
B is a varying-length string of

maximum length 8 whose value is

'MAFY'.

C is a fixed-length string of
length 3.

D is a varying-length string of

maximum length 5.
Then in the statement:

C=A, the value of C is 'Xz/'.
C='X"', the value of C is 'Xbb'.
=B, the value of D is 'MAFY'.
D=SUBSTR (A, 2,3) | | SUBSTR (A,2,3),
the value of D is 'Z/BZ/°'.
SUBSTR (A, 2,4) =B, the value of A is

*XMAFY'.

SUBSTR (B, 2,2) ="R', the value of B
is 'MRbY'.

SUBSTR (B, 2) ='R', the value of B is
*MRbb"'.

The following examples illustrate sca-
lar assignment (Option 1):

a. A,B,C = A+SIN(B) + C**2; provided
X has the characteristics of the
expression, this is the same as

X = A+SIN(B) + C**2;
A = X;
B = X;
C = X;

b. COMPLEX (U1, V1) = COMPLEX (U, V)
+ REAL (Q) ;

This is the same as

5.

C=COMPLEX (U, V) +REAL (Q) ;
U1=REAL (C) ;
U2=IMAG (C) ;

The following example illustrates
structure assignment (Option 3):

DECLARE 1X, 2Y, 22, 2R, 3S, 3P, 1A,
2B, 2¢C¢, 2D, 3E, 30;
X = X*A;

The second statement is equivalent to
the following statements:

Y = Y*B;
7 = 7*C;
S = S*E;
P = P*Q;

The following example illustrates
statement label assignment (Option 4) ;

DECLARE P LABEL;
P = A;
GO TO P;

A: X = Y*%2;

set of statements causes control
the GO T0O P

This
to transfer to A when
statement is executed.
The example below illustrates assign-
ment to an array of structures
(Options 2 and 3).

In the following statement, A is an
array of structures, and R is a struc-
ture:

DECLARE 1A (2,2), 2B, 2C, 2D, 3E, 3F,
1R, 3s, 3T, 3U0, 5V, 5W;

The following is an array assignment
statement:

A=R;

The above assignment statement is

equivalent to the following four
structure assignment statements:

A(1,1) =R;

A(1,2)=R;

A(2,1) =R;

A(2,2)=R;

The four statements above are, in

turn, equal to the following:

A(1,1) . B, A(1,2) .B, A(2,1) .8,
A(2,2) . B=S;

A(1,1) .Cc, A{(1,2).C, A(2,1).C, A(2,2).
C=1T;

Chapter 8: Statements 101

A(1,%Y.E, A(1,2).E, A(2,1) ,E,
E = V;

A(2,2).

A(,1).F, A(1,2).F, A(2,1) .F, A(2,2).F

(If R is ABNORMAL, sixteen statements
are actually generated.)

7. The following example illustrates con-
version of data defined by a picture
description assigned to floating-point
data, and vice versa:

DECLARE A FLOAT, B PICTURE '9939v99°';

A = B; (B is converted from fixed-
point to floating-point.)

B = A; (A is converted from floating-

point to fixed-point.)

The BEGIN Statement

Function:

The BEGIN statement is the
statement of a begin block.

heading

General format:
BEGIN;
General rules:
1. A BEGIN statement is used in conjunc-
tion with an END statement.
2. See Chapter 1 for a discussion of
blocks.
Examples:

1. ON OVERFLOW BEGIN;

END;

2. (SIZE): PROCEDURE;

(NOSIZE) : A: BEGIN;
END;
END;
condition is enabled with the

PROCEDURE statement. This
negated throughout the begin

The SIZE
prefix to the
enabling is

102

block with the prefix NOSIZE. On exit from
the begin block, SIZE errors are again
enabled because statements again are in the
scope of the SIZE prefix.

The CALL Statement

Function:

The CALL statement invokes a procedure
and causes control to be transferred to a
specified entry point of the procedure.

General format:

entry-name
CALL (scalar~expression)
[(@rgument [,argument] . . .)]

[TASK-option] [EVENT-option]
[PRIORITY-option] ;

where the three options have the for-
mat:

TASE (scalar-task-name)
EVENT (scalar-event-name)
PRIORITY (expression)

Syntax rules:

1. The entry name or the value of the
scalar expression represents the entry
point of the procedure invoked. When
necessary, the value of the expression
is converted to a character string.

2. Each argument may be any of the fol-
lowing: any type of expression, a
statement label constant, a statement
label variable, a statement label
array, an entry name, an entry param-
eter, a file name, a file parameter, a
task name, a task parameter, an event
name, oOr an event parameter.

3. The TASK, EVENT, and PRIORITY options
can appear in any order, and are
separated from each other and the
initial part of the CALL statement by
a blank.

4. The scalar event and task names may be
subscripted references +to event or
task arrays.

General rules:

1. When the scalar expression is used to
designate the entry point and invoked
procedure, the scalar expression 1is
evaluated to give a character string,
whose length is implementaticn-
defined. This string specifies a pro-
gram name that must appear in an
active FETCH statement logically prior
to the call.

1.

An active FETCH statement is one
whose function has not been voided by
a subsequent DELETE statement.

When the procedure name is represented
by a scalar expression, no conversion
is performed for the arguments (see
"Relationship of Arguments and Param-
eters," in Chapter 10), and the argu-
ments may not be entry mnames, state-
ment label designators, or built-in
function names.

The TASK, EVENT, and PRIORITY options,
when used alone or in any combination,
specify that the invoked and invoking
procedures are to Dbe executed asyn-
chronously. Note that if either the
EVENT option or the PRIORITY option,
or both, are used without the TASK
option, the created task will have no
nane (see "Asynchronous Operations and
Tasks"™ in Chapter 6) .

When the TASK option is used, the task
name is associated with the task
created by the CALL, Reference to
this name enables the priority of the
task to be controlled.

When the EVENT option is wused, the
event name is associated with the
completion of the task created by the
CALL statement. Another task can then
wait for completion of this created
task by specifying the event name in a
WAIT statement. The value of the
completion status for the event name
(i.€., the value of EVENT (event
name)) is set to '0'B on execution of
the CALL statement and to '1'B on
completion of the created task. (see
"Event Names" in Chapter 2 and "The
WAIT Statement™ in this chapter.)

If the PRIORITY option is used, the
expression in the above form is evalu-
ated when the CALL statement is exe-
cuted. The result of this evaluation
is converted to FIXED (m,0) where m is
implementation defined. The priority
of the named +task is then made m
relative to the task in which the CALL
is executed.

See "Relationship of Arguments and
Parameters"™ for a detailed description
of the interaction of CALL arguments
and invoked entry parameters.

Examples:

CALL CRITICAL_PATH

(A,B*C,D) ;

CRITICAL_PATH: PROCEDURE (ALPHA,BETA,
GAMMA) FLOAT;

.

END;

FETCH (A]|B);

3‘

CALL (A||B) (C,D,E);
CALL PAYROLL (NAME, DATE, HRRATE) ;

CALL PRINT (A,B) TASK (T2) EVENT (ET2)
PRIORITY (-2);

The CLOSE Statement

Function:

The

CLOSE statement releases facilities

that were allocated during the opening of a
file and causes proper disposition of the
file.

1.
2.

3.

1.

General format is shown in Figure 3.

Following is the format of "ident":

data-list format-1list
IDENT
CALL entry-name [(argument
[,argument]] ...)

Syntax rules:

The "file name" is the name of a file
to be closed.

Each file name is separated from
option by a blank.

An option that is common to two or
more file names may be factored in the
same way that attributes in a DECLARE
statement may be factored (see
"Factoring of Attributes" in Chapter
4y .

its

General rules:

The CLOSE statement causes certain
actions to be performed on the file,
whose name is one of the file names of
the CLOSE statement. The file 1is
repositioned to its logical beginning,
and the facilities allocated to it are
released.

If a CLOSE statement is encountered
and the file has not been opened, or
has already been closed, the statement
is ignored.

If, however, the file is not closed
by a CLOSE statement, the file is
closed at the completion of the task
in which the file was opened.

The IDENT option specifying a data
list and format 1list yields a charac-
ter string that is compared with the
file 1label for an input file or is
written as the file 1label for an

Chapter 8: Statements 103

CLOSE |filename ([ident]
(filename [, filename] ...)

[identJE(filena

filename [ident]

[ident]...;]

me [,filename] ...)

e e e e e

Figure 3.

output file.
assumed.

is

General Format for the CLOSE Statement

For an INQUT file, INPUT
The data list and format

list are described in Chapter 7.

The

entry name and
specified file to become the cur-

the

IDENT option specifying an
argument 1list causes

rent file and the designated procedure
to be invoked for reading or writing

the

file

label through GET or PUT.

The form of file labels is implementa-
tion defined.

If the IDENT option is
no special label operations are

fied,

not speci-

performed.

Examples:

1.

CLOSE MASTER:;

es the scalar expression to be evalu-
ated and converted to an integer n and
execution to be suspended for n mil-
liseconds.

Execution resumes after n millisec-
onds only if the controlling task is
of sufficiently high priority to be
selected in preference +to all other
ready tasks.

Example:
DELAY (10);

Execution of the controlling task
is suspended for ten milliseconds.

The DELETE Statement

The file, MASTER, is closed, and the
facilities allocated to it are
released. The file is repositioned to
its logical beginning.
Fua
2. CLOSE TABLEA, TABLEB, TABLEC;
Th
The three files, TABLEA, TABLEB, and progr
TABLEC, are closed in the same way as
MASTER, in the preceding example. Ge
The DECLARE Statement Ge
1.
See "The DECLARE Statement", in Chapter
4, for a discussion of the DECLARE state-

ment.

nction:

e DELETE statement causes a specified
am to be made inaccessible.

neral format:

DELETE (scalar-expression) ;

neral rules:

The scalar expression 1is evaluated
and, where necessary, converted to a
character string, whose length is
implementation-defined. This string
represents the name of the program to

be deleted.

The DELAY Statement The DELETE statement makes the
specified program inaccessible and
also deletes the STATIC data areas of

Function: the deleted program.
2. The specified program must have
The DELAY statement causes execution of appeared in a previously executed
the controlling task to be suspended for a FETCH statement.

specified period of time. 3. After execution of a DELETE statement,

the program name may not be specified
General format: in a CALL statement before it appears
in another FETCH statement.
DELAY (scalar-expression) ;
Examples:
General rule:
1. DELETE (*PROCTL') ;
Execution of the DELAY statement caus- 2. DELETE (A]|B) ;

104

The DISPLAY Statement

Function:

The ©DISPLAY statement causes a message

to be displayed to the machine operator. A
response may be requested.

1.

General format:

Option 1.
DISPLAY (scalar-expression) [task]
Option 2.

DISPLAY (scalar-expression) REPLY
(character-variable)

General rules:

Execution of the DISPLAY statement
causes the scalar expression to be
evaluated and, where necessary, con-
verted to a character string. This
character string is the message to be
displayed.

This statement causes the message, "END
OF JOB" to be displayed.

The DO Statement

Function:

The DO statement delimits the start of a
DO group (see "Groups") and may specify
iteration of the statements within the
group.

General format is shown in Figure 4.
Syntax rules:

1. The "variable" in Option 3 is a sub-
scripted or unsubscripted scalar vari-
able. Label variables, string varia-
bles, complex variables are allowed
provided the expansions given below
result in valid PL/I programs.

2. Each "expression" in the specification
list is a scalar expression.

3. If BY expression3 is omitted from the

2. 1In Option 2, the character <variable specification list, expression3 1is
receives a string that is a message to assumed to be one (1).
be supplied by the operator. 4, TIf TO expression2 is omitted from the
3. In option 2, execution of the program specification 1list, the iteration is
is suspended until the operator's mes- performed indefinitely until terminat-
sage is received. 1In option 1, execu- ed by some other statement within the
tion continues uninterrupted. scope of the DO or the WHILE clause.
5. If both TO expression?2 and BY
Example: expression3 are omitted, this form of
the specification list implies a sin-
DISPLAY ('END OF JOB') ; gle execution of the DO group with the
r 3
| |
| Option 1 |
| |
| DO; |
| |
| Option 2. :
: DO WHILE (scalar—expression) ; |
| |
| Option 3. |
| |
| pseudo-variable |
| DO = specification ({,specification]... |
| variable |
|
= A specification has the following format: |
- |
‘= TO expression2 [BY expression3) |
| expression 1 [WHILE (expression U4)] |
| BY expression3 [TO expression2} |
L y]

Figure 4.

General Format for the DO Statement

Chapter 8: Statements 105

control variable having the value of
expression 1.

General rules:

1« In Option 1, the DO statement delimits
the start of a DO group.

2. In Option 2, the DO statement delimits
the start of a DO group and specifies
an iteration defined by the following
expansion:

LABEL: DO WHILE (expression) ;
statement 1

statement n
END;
NEXT: statement
The above expansion is exactly
ent to the following expansion:

equival-

LABEL: IF (expression) THEN; ELSE GO TO
NEXT;
statement 1

statement n
GO TO LABEL;
NEXT: statement
3. In Option 3, the DO statement delimits
the start of a DO group and specifies
controlled iteration defined by the
following expansion:

LABEL: DO variable = expressionl
TO expression2 BY expression3
WHILE expressionl;
statement 1
statement n
END;
NEXT: statement
The above expansion is exactly equival-
ent to the following expansion:

LABEL:t1=sexpl; t2=sexp2;...; tm=sexpm;
el=expressioni; e2=expression2;
e3=expression3;
v=el;

LABEL1: IF (e3>=0) & (v>e2) | (e3<0) § (v<e2)
THEN GO TO NEXT;

IF (expression 4) THEN; ELSE GO TO NEXT;
statement 1

statement n
v=v+e3;
GO TO LABEL1;

NEXT: statement

106

In this expansion sexpl,...,sexpm are
the expressions which appear in subscripts
of the controlled variable or pseudo-
variable, followed by the second and third
argument positions if +the SUBSTR pseudo-
variable is being wused. The letter v
denotes the controlled variable with all

expi replaced by ti. In the simplest
cases, m=0 and the first statement is

el=expressicnl. The variables t1,...,tm,
are BINARY FIXED integer variables of
default precision, inserted by the compil-
er. The variables el, e2, and e3 have the
characteristics of the corresponding
expressions.

a. If more than one specification is
given, the statement labeled NEXT
refers to the initialization for
the next specification; for exam-
ple:

NEXT: e5 = expression 5;

The ti variables are computed only
once in each DO statement.

b. If the WHILE clause is omitted,
the IF statement involving
expressionl is replaced by a null
statement.

c. If the TO clause is omitted, the
IF statement and the assignment
statement involving e2 are omit-
ted.

d. If both the TO clause and the BY
clause are omitted, all statements
involving e2 and e3 are omitted as
well as the statement "GO TOC
LABEL1;".

4., The WHILE clause in Options 2 and 3
specifies that before each associated
execution of the DO group, the expres-
sion 1is evaluated and, if necessary,
converted to give a bit-string value.
If any bit in the resulting string has
the value '1', the iterations continue

uninterrupted. It all bkits have the
value '0', the iterations associated
with the current specification are

terminated.

5. In the specification list, in Option
3, expressionl represents the starting
value of the control variable.
Expression3 represents the increment
to be added to the control variable
after each iteration of the statements

in the DO group. Expression2 rep-
resents the terminating value of the
control wvariable. Iteration termi-
nates as soon as the value of the

control variable passes its terminat-
ing value. When the last specifi-
cation is completed, control passes to
the statement following the DO group.
6. Control may transfer into a DO group
from outside the DO group only if the
DO group is delimited by the DO state-

ment in Option 1; that is, iteration

is not specified.
Examples:

1« DO INDEX = CTR WHILE (A>B), 5 TO 10
WHILE (A = B), 100;

2. DOI=JTOKBY I, I+1 TO N BY 1;

3. DO WHILE (P);

4, DO;

5. DO WHILE (TAX-DEDCT < ESTTAX * 4);

6. DO COMPLEX (X,Y) = (0 BY 1+1I WHILE
(X<10) ;

The END Statement

Function:

The END statement terminates blocks and
groups.

General format:
END ([label];
General rules:

1. If a label follows END, the END state-
ment terminates that group or block
having that label.

2. If a 1label does not follow END, the
END statement terminates that group or
block headed by the nearest preceding
DO, BEGIN, or PROCEDURE statement for
which there is no other corresponding
END statement.

3. An END statement may be used to termi-
nate more than one group or block (see
"Use of the END Statement," in Chapter
1.

4. The END statewment may have a label
preceding the END. This label may be
referred to anywhere in the program
where the label is known.

5. If control reaches an END statement,
terminating a procedure, it is treated
as a RETURN statement.

6. If control reaches an END statement
which terminates a BEGIN block that is
an on-unit, either control is returned
to the point following the intexrrupt
location, or an appropriate system
action is taken.

For examples, see "Use of the END
Statement," in Chapter 1.

The ENTRY Statement

Function:

The ENTRY statement specifies a secon-
dary entry point to a procedure.

General format:
entry-name: ...

[, Parameter]
[@data-attributes] ;

ENTRY [(parameter
eee)]

General rules:

1. The parameters are names that specify
the parameters of the entry point.
When the procedure is invoked, a rela-
tionship is established between the
arguments of the invocation and the
parameters of the invoked entry point
(see T"Relationship of Arguments and
Parameters") .

2. The data attributes specify the char-
acteristics of the value returned by
the procedure when invoked as a func-
tion at this entry point. The value
specified in the RETURN statement of
the invoked entry is converted to the
specified data attribute.

If insufficient data attributes are
specified at the entry point, default
attributes are applied, as determined
by the name of the entry point.

If an ENTRY statement has more than
one label, each label is interpreted
as 1if it were a single entry name for
a separate ENTRY statement.

Consider the statement:
A:I: ENTRY;
This statement is equivalent to:

A: ENTRY;
I: ENTRY;

The ENTRY statement must be inter-
nal to the procedure block for which
it defines a secondary entry point.
The ENTRY statement may not be inter-
nal to any block contained in this
procedvre; nor may it be within a DO
group that specifies iteration.

Example:

NAME: PROCEDURE (N) CHARACTER (15) ;
DECLARE TABLE (100) CHARACTER (15)
EXTERNAL;

INITIAL: ENTRY(N) CHBRACTER (1) ;

RETURN (TABLE (N)) ;

END;

Chapter 8: Statements 107

The EXIT Statement

Function:

The EXIT statement causes immediate ter-
mination of the task that contains the
statement and all tasks attached by this
task (see "Asynchronous Operations and
Tasks, "™ in Chapter 6). If the EXIT state-
ment is executed in a wmajor task, it is
equivalent to a STOP statement (see this
chapter) .

General format:

EXIT;

The FETCH Statement

Function:

The FETCH statement causes a program to
be fetched and made available for invoca-
tion by a CALL statement, with the entry
name specified by an expression.

General format:
FETCH (scalar-expression) ;
General rules:

1. Cn execution of the FETCH statement,
the scalar expression 1is evaluated
and, where necessary, converted to a
character string whose length is
implementation-defined. This string
specifies the name of a program to be

fetched.
It is assumed that the specified
program was not available before the
- FETCH.
2. After execution of the FETCH

statement, the fetched program may be
invoked by a CALL statement, with the
entry name specified by an expression
(see "The CALL Statement") .

3. Data declared EXTERNAL, task identifi-
ers, and file names may be shared only
among procedures within a program.
Consequently, any program which is
made available by a FETCH statement
may not share externals with any other
program.

4. 1Initial values for data in static
storage are established at the time of
fetching.

Examples:

1. FETCH ('PROCTLY) ;
2. FETCH ('PROG'||RETA) ;

108

CALL ('PROG' || BETA) (ALPHA) ;

The FORMAT Statement

Function:

The FORMAT statement specifies a format
list for use with data transmitted under
format direction.

General format:
label:...FORMAT format-list;
Syntax rules:

1. The "format list"™ is as described for
use with a format-directed data speci-
fication (see "Format Lists" in Chap-
ter 7).

2. At 1least one "lakel" is required. It
is the name of a statement label
appearing in a remote format item.

General rules:

1. A READ, WRITE, GET, or PUT statement,
or an IDENT option may include a
remote format specification, R, in the
format 1ist of a format-directed data
specification. That portion of the
format list covered by the R
(statement label designator) format
item must be specified in a FORMAT
statement with a corresponding state-
ment label.

2. The remote format item and the FORMAT
statement must be internal to the same
block.

The FREE Statement

Function:

The TFREE statement causes the storage
most recently allocated for specified con-
trolled variables to be freed. The next
most recent allocation is made available,
and subsequent references to the identifier
refer to that allocation.

General format:
FREE identifier [,identifier] ...;
Syntax rule:
Each identifier is a scalar, array, or

major structure name of the controlled
storage class.

1.

2.

1.
2.

General rules:

Controlled storage allocated in a task
cannot be freed by a task which it
attaches.

If a specified identifier has no allo-
cated storage at the time the TFREE
statement 1is executed, no action is
taken.

Examples:
FREE X,Y,%;
The following excerpt from a procedure

illustrates the FREE statement in con-
junction with an ALLOCATE statement:

DECLARE A (100) INITIAL ((100) 0)
CONTROLLED, C (100), X (100) ;

ALLOCATE A;

FREE A;

X=SIN (C**2 +

The GET Statement

Function:
The GET statement causes data to be
fetched from the current record, converted

from external data form,
assigned to variables

and
The

if necessary,
as specified.

GET statement has meaning only when there

is
fil

1.

a current file; if there is no current
e, the ERROR condition is raised.

General format:

GET data-specification [, data-speci-
fication] ...;

General rules:

The "data specifications" are dis-
cussed in Chapter 7. Only those forms
specified for input may be used; a
CALL option may not be used.

As data is fetched from the record,
the action that occurs is as if a
pointer moved across the record as

demanded by the data specifications.
This pointer may be repositioned with-
in the record by use of the POSITION
statement or the REPOSITION statement.

Example:

READAB: PROCEDURE;
READ (A, B)

(2F (7,3)) , CALL GETC;
END READAB;

GETC:
GET

PROCEDURE;
© (G (8,5));

END GETC;

The GC TO Statement

Function:

The GO TO statement causes control to be
transferred to the specified statement.
General format:
label-constant
GO TO H
GOTO scalar-label-variable
General rules:

1. If a label variable is specified, the
GO TO statement has the effect of a
multi-way switch. The value of the
label variable is the 1label of the

statement to
ferred.

Since the label variable
different values at each execution

which control is trans-

may have

of

the GO TO statement, control may not

always pass to the
(Example 2 illustrates a GO TO
ment used as a multi-way switch.)
an inactive block

to (see

same statement.
state-

A GO TC statement may not pass control
"Activation

and Termination of Blocks," in Chapter

6, for a discussion of active

inactive blocks) .

and

A GO TO statement may not transfer

control from outside a DO group to
statement

DO group specifies

the GO TO terminates a
invoked from within the DO group.

3.
trol from one block

1y encompassing block (&) has
effect of terminating block D, as

a

inside +the DO group if the
iteration unless
procedure

A GO TO statement that transfers con-
(D) to a dynamical-

the
well

as all other blocks that are dynamical-

ly descendant from block A.
are reinstated,

Conditions
and automatic variables

GO

109

are freed in the same way as if the
blocks terminated normally. When a
Chapter 8: Statements

TO statement transfers control out of a
procedure invoked as a function, the
evaluation of the expression that con-
tained the corresponding function ref-
erence is discontinued, and control is
transferred to the specified statement.

4. A GO TO may not terminate any procedure
invoked within an input/output state-
ment, unless the GO TO is encountered
in an ON unit.

5. A GO TO may not terminate any procedure
invoked during a prologue (see
"Prologues" in Chapter 10), or an ALLO-
CATE statement.

6. A GO TO statement may not be used to
transfer control from a task to its
attaching task or to any of its descen-
dant tasks.

Exanmples:

1. GO TO A234;

-

A234: ...

2. The following example illustrates a GO
TO statement that effectively is a
multi-way switch.

.

DECLARE I LABEL
(L2) ;

GO TO MEET;

- 1.

(L1, L2) INITIAL

L1:

2

[

~.

EE
L2: 1

He @

Y
L
O TO
X
L1

MEET: CALL FUDGE (X, Y, Z);
IF Z = LIMIT GO TO L;

~

3. The following procedure illustrates
use of the GO TO statement with a
subscripted label variable to effect a
multi-way switch:

CALC: PROCEDURE (N1, N2);
DECLARE SWITCH (3) LABEL INITIAL
(CALC1, CALC2, CALC3);
I=MOD (N1+N2,3) +1;
GO TO SWITCH (I);
CALC1: ...

RETURN;
CALC2: ...

RETURN;
CALC3: ...

END CALC;

The GROUP Statement

Function:

The GROUP statement causes a group mark
to be inserted in the file on output, or
positioning of the file to the next group
mark on input.

General format:

GROUP [(expression)]
(file-name)] ;

[FILE

Syntax rule:

The "expression®", if specified, is a
scalar expression and it is evaluated and
converted, where necessary, to an integer

n. If the expression is not specified, it

is assumed to be 1.
General rules:

1. A group 1is defined as a sequence of
records delimited by a group-delimi-
ter. A group 1is created (1) by the
GROQUP format item specified in a WRITE

or PUT statement specifying format-
directed transmission, or (2) by a
GROUP statement.

2. In a GROUP statement, input records

are skipped until a group-delimiter is
encountered, with synchronization
occurrlng at the next group, or, if n
is the value of the expression, at the
nth subsequent group. Output records
are followed by a separate record
containing a group-delimiter and
released. If n is negative or zero,
the group statement or format item is

ignored.

3. The FILE option specifies that the
action is to be taken on the named
file. In the absence of a FILE

option, the current file is assumed
(see "Procedure-Directed Transmission"
for a discussion of current files).

4. The techniques for marking a group are
implementation defined.

Examples:
1. GROUP FILE (X) ;

If X is an input file, records are
skipped until a group-delimiter is
encountered. The file is then posi-
tioned immediately following the group-
delimiter.

GROUP;

Since no file is specified, the
GROUP statement positions the current
file. If +the current file is an
output file a group-delimiter is
placed on the file, where it is cur-
rently positioned, and the group is
released from the program. If the
current file is an input file, records
are spaced until a group mark is
encountered.

The IF Statement

The

Function:

IF statement causes program flow to

depend on the value of an expression.

10

2.

1.

General format:

IF scalar-expression THEN unit-1 [ELSE

unit-2]

Syntax rules:

Each "unit" is either a group or a
begin block, either of which would be
terminated by a semicclon.

The IF statement is not itself termi-
nated by a semicolon.

General rules:

When the ELSE clause -- ELSE, and its
following unit -- is not specified,
the scalar expression 1is evaluated

and, if necessary, converted to a bit
string. If any bit in the resulting
string has the value 1, the wunit is
executed, and control passes to the
statement following the IF statement.
If all bits have the value 0, the unit
is not executed, and control passes to
the next statement. When the ELSE
clause is specified, the expression is
similarly evaluated. If any bit is 1,
unit-1 is executed, and control passes
to the statement following the IF
statement. If all pits have the value
0, unit-2 1is executed, and control
passes to the next statement. The
units may contain statements that
specify transfer of control (see
"Sequence of Control"), and so over-
ride these normal sequencing rules.

IF statements may be nested, that is,
either unit-1 or unit-2, cr both, may
themselves be IF statements. Since

each ELSE clause is always associated
with the innermost preceding IF, an
ELSE with a mnull statement may be
required to specify the desired
effect.

1.

2.

Examples:

IF QUEUE = EMPTY THEN CALL COMPILE;
ELSE GO TO MULTIPROCESS;

A: IF X > Y THEN
IF Z = W THEN
IF W< P THEN ¥ = 1;
ELSE P = Q;

ELSE;
ELSE X = 4;
J: 2 = 5;

The LAYOUT Statement

Function:

The LAYOUT statement specifies the hori-

zontal layout of data on input and output.

General format:

LAYOUT

[FILE

(file-name {,file-name]

eee)]

{MARGIN (expression-1, expression-2)]

[TAB (expression [,expression]

1.
2.

1.

eee)]

Syntax rules:

The options may appear in any order.
The "expressions" are scalar expres-
sions.

General rules:

The FILE option specifies the files to
be operated upon. In the absence of a
FILE option, the current file is used,
or if there is no current file, the
standard output file is assumed.

The MARGIN option specifies left and
right margins. The values of both
expressions are converted to integers

when the LAYOUT statement is executed.
These values are interpreted as the
positions of the left and right mar-
gins of the record and 1line, respec-

tively, relative to the beginning of
the record or 1line. On input, data
before the left margin or after the
right margin is ignored. On output,
the first data item of a record or
line is aligned on the 1left margin,
with Dblanks before it; data is not

placed beyond the right margin. if
the left margin is specified to the
right of, or equal to the right mar-
gin, or if either margin is negative,
the ERROR condition is raised.

The TAB option specifies tabbing. The
expressions are converted to integers
when the LAYOUT statement is executed.
The values are used to indicate char-
acter positions from the left end of
the line or record. These values need

Chapter 8: Statements 111

not be in ascending order.
is the leftmost column.
directed and data-directed
successive itemns
cessive free tabs.
tabbing for 1list-
output which is
defined. There is no automatic
bing on input.
transmission,
be achieved by use of the
item.
tab can be achieved by using the
statement.

4, In
system standards apply.

5. Execution of a LAYOUT
troys all options
previously executed LAYOUT
for the same file.

The Null Statement

Function:

The
does not modify sequential operation.

General format:
[Label:] ...;
Example:

CN OVERFLOW;

The on-unit (see "The ON Statement")
a null statement.

The ON Statement

Function:

Column 1
During 1list-
output,
are aligned on suc-
There is a default
and data-directed
implementation
tab-
During format-directed
alignment on a tab can
TAB format
In other cases, alignment on a
TAB

the absence of a LAYOUT statement,
statement des-

established by a
statement

null statement causes no action and

is

The ON statement specifies the action to
be taken when an interrupt occurs for the

discussion
see

named condition. For a

"enable" and "interrupt,"

"Operations" in Chapter 6.
General format:

Option 1

ON condition [SNAP] on-unit

of
"Interrupt

Option 2

1.

2.

1.

ON condition SYSTEM;

Syntax rules:

The "condition" may be any one of
those described in Appendix 3.

The "on-unit" is an action specifi-
cation and it is either an unlabeled
single simple statement (other than

BEGIN, DO, END, RETURN, or DECLARE) or
an unlabeled begin block. Since the
on-unit itself requires a semi-colon,
no semi-colon appears in Option 1.

The on-unit may not be a RETURN state-
ment, nor may a RETURN statement
appear within the begin block.

General rules:

The standard action to be taken for
all ON-conditions is established by
the language. When an interrupt takes
place before an ON statement for that
condition has been executed, standard
system action is taken. This standard
system action is described in Appendix
3. The ON statement in Cption 2
specifies that standard system action
is to be taken when an interrupt
results from the occurrence of the
specified condition.

The ON statement in Option 1 is a
means for the programmer to specify a
special action, that is, execution of
the on-unit, to take place when an
interrupt occurs for the specified
condition.

In Option 1, if SNAP 1is specified,
then when the given condition occurs,
a calling trace is listed.

Control can reach an on-unit only when
an interrupt occurs for the condition
associated with this on-unit in an ON
statement.

If an action specification is esta-
blished by an ON statement in a given
block, it remains in effect throughout
this block and throughout all dynamic
descendants of this block (see
"Activation and Termination of
Blocks," in Chapter 6, for a discus-
sion of blocks and generations of
blocks) .

If an action is specified more than
once in a given block, the effect of

the o0ld (or prior) ON statement is
either temporarily suspended or com-
pletely nullified by the new (or
later) ON statement, as follows:

a. If the new (or later) ON statement
is in a block dynamically descend-
ed from the block containing the
0old (or prior) ON statement, the

1.

effect of the old ON statement is
temporarily suspended or stacked.
The effect of the old ON statement
is restored upon termination of
the block containing the new ON
statement.

b. If the new (or later) ON statement
and the o0l1ld (oxr prior) ON state-
ment are internal to the same
block, the effect of the old ON
statement is completely nullified.

If an action is specified by an ON

statement in a particular task, the

effect of this ON statement is inher-
ited by each attached task and by each
task attached by the attached task,
etc. (see "Asynchronous Operations

and Tasks,” in Chapter 6 , for a

discussion of attached and attaching

tasks) .

A condition raised during execution

results in an interrupt if and only if

the condition is enabled at the point
where it is raised.

a. The conditions OVERFLCW, UNDER-
FLOW, ZERODIVIDE, CONVERSION, the
input output conditions, and the
conditions CONDITION, FINISH, and
ERROR are enabled by default.

b. The conditions SIZE, SUBSCRIP-
TRANGE, and CHECK are disabled by
default.

c. The enabling status of OVERFLOW,
UNDERFLOW, ZERODIVIDE, CONVERSION,
SIZE, SUBSCRIPTRANGE, and CHECK
are controlled by the condition
prefix (see "Prefixes" in Chapter
1.

Examples:

IOPR: PROCEDURE;

R1: READ FILE (FILEX) (A, B)
(2F (7,3)) 3
ON CONVERSION (FILEX)
CONVQ = 9999;

R2: READ FILE

(FILEX) (X)
(A (6)) ;
END IOPR;
Assume that program execution
begins with procedure IOPR. At the

beginning of execution, all conditions
are enabled.

If an illegal character is read
from FILEX during the execution of
statement R1, the standard system

action occurs.

The ON statement specifies that the
execution of +the statement CONVQ =

9999 is to occur in the event that a
conversion error causes an interrupt
subsequent to execution of the ON
statement. Thus, if a conversion
error occurs during the transmission
of X in statement R2, the normal
sequence of control is interrupted,

and the statement CONVQ = 9999 is
executed.
ZCHK: PROCEDURE;
S1: ON OVERFLOW OVSWCH = 1;
CALL Q;
Q: PROCEDURE;
S2: ON OVERFLOW OVSWCH = 2;
S3: ON OVERFLOW SYSTEM;
END Q;
END ZCHK;
Assume that program execution

begins with procedure ZCHK.

If an overflow occurs prior to
execution of the S1 : ON statement, an
interrupt with standard system action
occurs. If an overflow occurs subse-
quent to execution of the S1 : ON
statement, an interrupt occurs, and
the statement OVSWCH = 1 is executed.

When procedure Q is invoked, the S1
: ON statement remains in effect until
the S2 : ON statement is executed. At
this point, the effect of the S1 : ON
is temporarily suspended, and the S2 :
ON goes into effect.

If an overflow occurs between the
S2 : ON and the S3 : ON, an interrupt
occurs, and the statement OVSWCH = 2
is executed.

When the 83 : ON is executed, it
completely replaces the S2 : ON (the
ST : ON is still stacked). If an
overflow occurs after the S3 : ON is
executed and before the end of proce-
dure Q, it causes the standard system
action to take place.

Chapter 8: Statements 113

After control is returned from Q to

ZCHK,

the S3: ON is completely

replaced by the S1: ON, whose effect

is restored.
from this

Any overflows occurring
point to the end of proce-

dure ZCHK cause the statement OVSWCH =

1 in S1: ON to be executed.
3. SBCHK: PROCEDURE;
DECLARE A (9) ;
Bl: .+ ¢ A(I) ev.;
ON SUBSCRIPTRANGE BEGIN;
IF I>9 THEN
GO TO BIGER
ELSE GO TO
LITLER;

(SUBSCRIPTRANGE) :

Assume that procedure SBCHK is

BIGER: PP

LITLER: ...;
END;
B2:¢e..A(I)...;
B3:eees
END SBCHK;

For

than 9 or less than 1, no
action is taken.

interrupt

When the ON statement for the con-
dition SUBSCRIPTRANGE is executed, any
interrupt that results from a subse-
quent occurrence of the SUBSCRIPTRANGE
condition will result in the action
specified by the begin block in the ON
statement.

The prefix for statement B2 speci-
fies that the condition SUBSCRIPTRANGE
is enabled and should cause an inter-
rupt if it occurs during the execution

of statement B2. In this case, the
begin block in the ON statement is
executed.

In the execution of B3 and subse-
quent statements, the occurrence of a
subscript that is not within the spec-

ified range does not cause an inter-
rupt action to occur.
further examples, see "Interrupt

Operations" in Chapter 6.

the

only procedure in the program.

At the beginning of execution, any

occurrence of the condition SUBSCRIP-

The OPEN Statement

TRANGE will not give an interrupt; it

is not enabled,
name
the PROCEDURE statement.

occurrence of any other ON
except SIZE
will give an interrupt.
ment BI1,

since the condition
appear in a prefix in
However, the

condition,
(identifier),
If in state-
of I is greater

does not

and CHECK

the wvalue

Function:

The OPEN statement acquires and prepares
files for subsequent transmission.

General Format is shown in Figure 5.

OPEN

e

filename [option] ...

(filename [option] ... [,filename [option] ...]...) [option}...

,filename [option] ...

,filename[option]...[,filename[option]...]...)[option]...]...;

Figure 5.

General Format for the OPEN Statement

R |

f
|
I
|
|
I
I
t

INPUT
OUTPUT
INOUT

[TITLE (expression)]

[ACTIVITY (expression)][ident-option}

[ENVIRONMENT
(option-1list)] :

— — —— — o}

Figure 6.

1.
2.

3.

1.

Syntax rules:

The options may appear in any order.
The "file name" may be described in a
DECLARE statement with the file attri-
butes discussed in Chapter 4.

Options that are common to two or more
file names may be factored in the same
way that attributes in a DECLARE
statement may be factored (see
"Factoring of Attributes" in Chapter
4y . Only one level of factoring is
permitted.

General rules:

The OPEN statement causes certain
actions to be performed upon the file,
whose name is one of the file names of
the OPEN statement. These actions are
specified by the options.

If, however, a file is not opened
by an OPEN statement, the file is
opened during the first READ or WRITE
statement that refers to it.

If an OPEN statement is encountered
for a file already opened, the state-
ment is ignored.

The following options may be given to
a file in the OPEN statement:

a. | INPUT
OUTPUT
INOUT

One of these options may be
given to specify the direction of
data transmission that is permit-
ted for the file. INOUT may be
given for both direct and segquen-
tial access files, stating that
both INPUT and OUTPUT are permit-
ted.

Either the OPEN statement or
the file declaration must specify
the dJdirection of data transmis-
sion. References to the file in
PAGE and LAYOUT statements before
INPUT or OUTPUT is established,
forces no assumptions. References
to the file in GROUP, SPACE, SKIP,
or SEGMENT statements before INPUT

Format of "option" Allowed in the OPEN Statement

or OUTPUT is established, forces
the default assumption INPUT.

It should be noted that INPUT
files may not be written upon and
OUTPUT files may not be read.

[TITLE (expression)]

A file name may be associated
with more than one set of data.
The choice of the desired set may
be delayed until the OPEN state-
ment is executed. At this point,
the "expression" in the TITLE
option is evaluated, converted to
a character string, and used to
identify the data set. The origi-
nal file name is remembered, such
that TITLE does not permanently
override it. If the TITLE option
is omitted, the file name is taken
as the data set name. The TITLE
option can be used to let the file
name refer to more than one actual
file.

[ACTIVITY (expression)]

The ACTIVITY option causes the
"expression" to be evaluated and
converted to an integer that indi-
cates the relative activity of the
file. This relative activity is
represented in units defined indi-
vidually for each implementation
of the language.

The format of the ident option is
as follows:

data-list format list

IDENT
CALL entry-name [(argument
{,argument}] ...)
The ident option in an OPEN

statement for an output file spe-
cifies that a 1label is to be
placed on the external medium.
For an input file, IDENT provides
information for label checking.

The ident option specifying a
data 1list and format list yields a
character string that is compared

Chapter 8: Statements 115

r 1
| I
| PAGE [FILE (file-name [,file-name] ...)] |
| [NUMBER [(expression)]] [HEAD (expression)] |
| [FOOT (expression)] [SIZE (expression)] |
| [SPACE (expression)] |
| (expression-2) |
| [AT (expression-1) |
| CALL entry-name (argument [,argument] ...) |
L 4
Figure 7. General Format for the PAGE Statement
with the file label for an input General rules:
file or is written as the file
label for an output file. For an 1. The PAGE statement is used only with
INOUT file, INPUT is assumed. The CONSECUTIVE SEQUENTIAL OUTPUT files;
data 1list and format 1list are it causes a skip to the start of the
described in Chapter 7. next page.
2. The FILE option specifies the files to
The ident option specifying an be operated upon. If the FILE option
entry name and argument list caus- is omitted, the current file is
es the specified file to become assumed (if the current file is an
the current file and the designat- INPUT file, the ERROR condition is
ed procedure to be invoked for raised). If there is no current file,
reading or writing the file 1label the standard system output file is
through GET or PUT. The form of assumed.
file labels is implementation 3. The NUMBER option specifies that the
defined. pages are to be numbered on the right
of the heading, starting at the number
If the ident option is not that is the integer value of the
specified, no special label opera- expression. If the NUMBER option is
tions are performed. not specified, numbering is not gener-
e. The ENVIRONMENT option specifies ated. If the expression is omitted,
various characteristics of the numbering starts at one (1).
FILE being opened. See "The ENVI- 4. The HEAD option provides a page title,
RONMENT Attribute,"™ in Chapter 4. left adjusted on every page. The
character string, which is the value
Examples: of the expression, is the page title.
The expression 1is evaluated when the
1. OPEN MATRIX INPUT. PAGE statement is executed.
5. The FOOT option provides a left-
The file MATRIX is made available for adjusted line at the foot of each
use as an input file. page. The character string, which is
the value of the expression, 1is the
2. OPEN WORKFILE OUTPUT ENVIRONMENT footing 1line. The expression is
(CREATE, BUFFER (2)): evaluated when the PAGE statement is
executed.
6. The SIZE option specifies the number
The PAGE_Statement of 1lines per page, including heading,
footing, and blank lines. The integer
value of the expression provides this
Function: information. If this option is unspe-
cified, system standards apply. Lines
The PAGE statement specifies the verti- here mean actual page lines, not print
cal format of files. lines.
7. The SPACE option specifies the line
General format is shown in Figure 7. spacing. If the integer value of the
expression 1is n, then (n-1) blank
Syntax rules: lines are effectively generated
between each two 1lines explicitly
1. . The options may appear in any order. specified. In the absence of this
2. "Expression" is a scalar expression. option, SPACE (1) is implied. The
3. The AT option may appear more than SPACE option implies spacing before

116

once.

printing.

Note:

9.
10.

The AT option specifies that certain
action 1is to occur a specified
location on every page. Expression 1
is evaluated and converted to an inte-
ger n when the PAGE statement is
executed. (If the value of n is =zero
or negative, the AT option is
ignored.) Subsequently, when the nth
line of each page 1is reached, the
following occurs before continuing
with the output:

a. If expression 2 is specified, it
is evaluated and converted to a
character string that is generated
as the nth 1line. .

b. If a CALL option is specified, the
arguments are evaluated, where
necessary, and the procedure
entry, specified by "entry name,"
is invoked. This procedure mnmay
cause special page handling.

at

The scope of the arguments
includes the block containing the
PAGE statement. Since the argu-

ments are evaluated at each invo-
cation, the block containing the
PAGE statement must still be
active at each invocation, that
is, when the nth line 1is reached
on each page . A procedure
invoked by the CALL option can
contain only GET and PUT state-
ments for data transmission. The

file which caused the procedure to

be invoked becomes the current
file during entry to the invoked
procedure.

The nth line is said to be "reached",
in the sense used above, when:

statement is encountered
the previous WRITE for
released line (n-1).
statement with the CROSS
being executed and a
SPACE or SKIP releases line (n-1),
and the first item to be output
for line n has just been evaluated
(or if a further SPACE or SKIP
attempts to pass line n).

() A WRITE
for which
that file

(2) A WRITE
option is

(In the
n-1 refers to the
previous page.)
In the absence of a PAGE statement,
system standards apply.

AT options override spacing and skip-
ping, and the SPACE factor is still
applied to the data line which caused
the AT to be activated. AT lines do
not have the SPACE factor applied to
them, as only enough blank lines are

above definition, when n=1,
last 1line of the

generated to cause the AT 1line to
appear on the specified line number.
The AT procedure must have a SPACE

11.

format item or statement in order to
emit the 1line; otherwise +the data
being output from the WRITE which
caused the procedure to be invoked
will be written on the same line.

The SEGMENT option may not be applied

to a file controlled by a PAGE state-
ment.

Example:
PAGE FILE (FILEX), NUMBER (100), HEAD

(*PAGE HEADING')
FOOT ("BOTTOM OF PAGE'), SIZE (34);

The POSITION Statement

During data

Function:

transmission, the action

that occurs is as if a pointer moved across

the
fications.

records as demanded by the data speci-
The POSITION statement manipu-

lates this pointer.

1.

2.

1.

General format:

POSITION format-list;

Syntax rules:

The format 1list is as described
format-directed data specification
"Format Lists," in Chapter 7.
The following format items
allowed in the format list of a POSI-
TION statement: GROUP, SEGMENT, SKIP,
SPACE, and the remote format item, R.

for
in

are not

General rules:

When the POSITION statement is execut-
ed, the pointer is first reset to the
beginning of the current record. The
format elements are then used to
determine the movement of the pointer
as if there were associated data 1l1list

elements corresponding to the format
items. Since no data list exists, all
format items must have an explicit or
implicit field width (precision)
specification.

If the POSITION statement moves the
pointer across parts of an output

record that have no information edited
into them, the record is assumed to be
initially blank.

Chapter 8: Statements 117

Examples:

GETAB: PROCEDURE;

CET (A,B) (2F (5,2), X (6)) ;

IF (>0 & B = 0) THEN POSITION
(X (25)):

RETURN;

END GETAB;

READY : PROCEDURE;

READ (Y) (F(8,3)), CALL GETAB;

END READY;

The PROCEDURE Statement

The

Function:

PROCEDURE statement has the follow-

ing functions:

1.
2.

3.
4.

5.

entry-name:

1.

2.

1.

118

Heads a procedure

Defines the primary entry point to a
procedure

Specifies the parameters for the pri-
mary entry point

Defines any special attributes of
procedure

Specifies the attributes of the value
that is returned if the procedure is
invoked as a function at the primary
entry point

the

General format:

« « « PROCEDURE
[(parameter ([, parameter] ...)]
[OPTIONS (option-1list)]
[RECURSIVE] [data-attributes] ;

Syntax rules:

data sttributes and the OPTIONS
RECURSIVE attributes may appear in
any order and are separated by blanks.
The attributes in the OPTIONS list are
separated by commas, where necessary.

The
and

General rules:

The "parameters" are names that speci-
fy the parameters of the entry point.
When the procedure is invokeéd, a rela-
tionship 1is established between the
arguments of the invocation and the
parameters of the invoked entry point
(see "Relationship of Arguments and
Parameters, " in Chapter 10).

The OPTIONS attribute specifies a list
of options, separated by commas where
necessary. The 1list, depending upon
implementation, includes the options

B:

as

is returned to B, the expression
(?))
point,

MAIN and REENTRANT. The OPTIONS
attribute may be specified only for an
external procedure.

The RECURSIVE attribute specifies that
this procedure may be invoked recur-
sively. It does not apply to con-
tained procedures which, if recursive,
must also have the attribute.

The data attributes permitted with a
PROCEDURE statement are the arithmetic
and string attributes. The data
attributes specify the characteristics
of the value returned by the procedure
when invoked as a function at the
primary entry point. The value speci-
fied in the RETURN statement of the
invoked procedure is converted to the
specified data attributes.

If insufficient data attributes are
specified at the entry point, default
attributes are applied, as determined
by the name of the entry point.

If a procedure has more than one
label and no data attributes, there
is, Dbecause of default attributes,
potential ambiguity in the charac-
teristics of the value to be returned
(see "Assignment of Attributes to
Identifiers" in Chapter 4) . To avoid
this ambiguity, the first 1label is
interpreted as if it were a single
entry name for a separate PROCEDURE
statement, and each subsequent label
is interpreted as if it were a separ-
ate ENTRY statement.

For example, the statement:

A:1: PROCEDURE;
is equivalent to:

A: PROCEDURE;
I: ENTRY;

Examples:

PROCEDURE;

C=A (X,Y) ;
END B;
PROCEDURE

(8,C) FIXED;

RETURN (B*C + SIN (P))
END A;

If procedure A is invoked as a function,

it is in procedure B, then when control
(B*C + SIN
converted to fixed
assigned to C in

is evaluated,
and the value

procedure B.

The PUT Statement

Function:

The PUT statement has meaning only when
there is a current file; if there 1is no
current file, the ERROR condition is

raised. The PUT statement then causes data
to be fetched from variables as specified
and to be moved to the record being con-
structed for the current file (see
"Procedure-Directed Transmission," in
Chapter 7).
General format:
PUT data-specification ...;
General rules:
1. The "data specifications®™ are dis-
cussed in "Data Specifications,"™ in
Chapter 7. Only those forms specified

for output may be used; a CALL option
may not be used.

2. As the data record is being formed,
the action that occurs 1is as if a

pointer moved across the record as
demanded by the data specifications.
This pointer may be repositioned by

use of the POSITION statement or the
REPOSITION statement.

The character count of varying-
length records depends upon the
rightmost sweep of the pointer. The
character count of fixed-length
records is predetermined.

The READ Statement

Function:

medium to internal storage. However, if
the STRING option is specified, the READ
statement causes the movement of data from
an internal storage area to other internal
storage areas.

General format is shown in Figure 8.
Syntax rules:

1. The options may appear in any order.

2. At least one "data specification" must
appear, but more than one is permissi-
ble. The CALL option may appear in
conjunction with other data specifi-
cations.

3. When the STRING option is used, only
the data specifications may be used;
the other options must not appear, nor
may the CALL option.

4. Each "expression" is a scalar
sion.

expres-—

General rules:

1. The FILE option specifies the name of
the file from which the data is to be
acquired.

The STRING option provides for the
internal editing and moving of
strings. It specifies the name of a
string variable or the name of an
element in a string array from which
data 1is transmitted to the data list.

In the absence of a FILE or STRING
option, the standard system input file
is assumed.

2. The data specifications are discussed
in "Data Specifications,"™ in Chapter
7. Only those forms specified for
input may be wused. All modes of
transmission may be arbitrarily speci-
fied together. The transmissions
associated with each data specifi-
cation and edit procedure are per-
the order that the options

P S S ——————

The READ statement is normally used to formed in
transmit data from an external storage appear.
r - -
' .
| FILE (file—-name)
| READ {data-specification} ...
| STRING (name)
|
| CROSS [(expression)] [HOLD]
| SEGMENT (expression)
|
| [PRINT] [KEY (expression)] [REGION (expression)]
|
| [ZEROQ] ;
L S |

Figure 8.

General Format for the READ Statement

Chapter 8: Statements 119

120

Each READ statement normally processes
one record; an error condition is
normally produced if the data specifi-
cation causes the record boundary to
be crossed. However, the CROSS option
permits data acquisition to proceed
through any number of records in order
to satisfy the specified data require-
ments. The number of records read may
be limited by the integer value of the
expression in the CROSS option. If no
expression 1is specified, unlimited
crossing is allowed. The margin qual-
ifications for the data file, if spec-
ified by a LAYOUT statement, remain
valid while under control of the CROSS
option. Record boundary crossing due
to 1IST, DATA, or SEGMENT does not
require the presence of the CROSS
option. It may be specified, however,
to 1limit the number of records
crossed. Crossing due to SPACE, SKIP,
or GROUP does require its presence.
Data items may not span record boun-
daries.

A HOLD option permits part of one

record to be processed. This HOLD
option causes the position of the
record pointer to be set on comple-

tion, so that the next READ begins its
data scan at the point where the
previous operation ceased scanning.
If HOLD is not specified, the remain-
ing part of the record is skipped.
HOLD may mnot be specified for a file
which is accessed in more than one
task.

The SEGMENT option implies both the
CROSS and HOLD options. The expres-
sion in the SEGMENT option is convert-
ed, if necessary, to a character
string. This string serves as a seg-
ment mark. If it is the null string,
the ERROR condition is raised. This
option permits the data input stream
to be synchronized, not at the record
boundary, but at the mark, effectively
causing the segment to Dbe operated
upon as a record. Before data items
are transmitted from the input stream,
a scan for the segment mark is made in
order to delimit the segment. The
segment mark is not part of the seg-
ment. A subsequent READ will begin
after the mark. Should the end of the
segment be encountered while transmit-
ting data, transmission ends for that
data specification.

The PRINT option specifies that data
being read is, at the same time, to be
written, in the same format, on the
standard output file.

The KEY and REGION options may be used
when direct access to a particular
record is required (see "The KEY
Option®™ and "The REGION Option*® in

1.

2.

3.

Chapter 7). If a file is declared
with the access attribute DIRECT, then
the KEY or REGION option must be used
with each READ for that file, unless
the immediately preceeding READ of the
file had the HOLD option.

The ZERO option specilties that trail-
ing blanks in numeric data input
fields are to be treated as zeros when
read under F, G, or E format.

A count is kept of the number of
scalar data items transmitted. The
COUNT (file-name) built-in function
may be used to determine this number
of transmitted data items.

If a group mark is encountered during
a read operation, the END GROUP condi-
tion is raised.

Examples:

READ FILE
ITEM.CGST)

(INVENTORY) ’
(A(20), F(5,2));

(ITEM.NAME,

The file mname INVENTORY is read
under format-directed transmission for
one record. The first 20 characters
of the record are placed in the
character-string variable ITEM.NAME,
the next 5 are converted from fixed-
point decimal external format to the
internal form of the variable,
ITEM.COST. A subsequent READ of the
data file is synchronized to the next
record boundary.

READ FILE (TABLES) ,
(F(5)) ., KEY (Q);

(TABLE.POOL)

The file named TABLES is read for
the record composed of five-digit,
fixed-point integers. The record is
converted to integer representation,
and each item is assigned to the array
TABLE.POOL.

READ FILE
SEGMENT (*'*') ;

(FILEZ) , @B) (@A(10),

The file-FILEZ is read for alpha-
betic data items, each ten characters
in length, that are assigned to the
character-string array AB. PAssignment
ceases when either the complete array
is satisfied or the SEGMENT mark, the
asterisk, 1is encountered (in the for-
mer case, the input data stream is
subsequently synchronized to the seg-
ment mark) .

READ DATA;
This statement under data-directed

transmission specifies that data is to
be read under data-directed transmis-

sion from the standard system input
tape. It is assumed that the recoxds
to be read are composed of scalar

ssignments giving the names of the
data items to be read and the values
of these data items.

The REPOSITION Statement

Function:

During data transmission, the action
that occurs is as if a pointer moved across
the records being processed. If an error
condition occurs during this activity,
then, under the control of an ON statement,
a REPOSITION statement may reset the poin-
ter to the start of the data item that
caused the error condition.

General format:
REPOSITION;
Examples:

READX: PROCEDURE;

READ FILE (FILEX), (X)
CALL GETY;

F(7,2));

END READX;

GETY: PROCEDURE;

ON CONVERSION (FILEX) REPOSITION;

GET (Y) (X(17), F(7,2)) ;
RETURN;
END.GETY;

The RESTORE Statement

Function:

The RESTORE statement causes data pre-
viously saved by name in auxiliary storage
to be restored (see "The SAVE statement®™).

General format:

RESTORE (item, ([,item] ...)
{, (expression)] ;

Syntax rules:

1. Each "item"™ may be an array, major
structure name, oOr a Scalar which is
not part of an array or structure.

2. Each item must have appeared 1in a
previously executed SAVE statement.

3. The T"expression" is a scalar expres-
sion.

General rules:

1. The RESTORE statement without an
expression is equivalent to a series
of simple RESTORE statements as fol-
lows:

RESTORE (iteml) ;
RESTORE (item2) ;

The RESTORE statement with an expres-
sion is equivalent to the following
statements:

temp=expression
RESTORE (iteml) (temp) ;
RESTORE (item2) (temp) ;

Each simple RESTORE statement
causes the specified data to be iden-
tified by the data name qualified by
the integer value of the expression
(if an expression is specified) con-
verted to BINARY FIXED (s,0), where s
is implementation defined.

2. Once an item has been restored, it may
not be restored again. If the same
item has been saved repeatedly with no
qualifying expression, the action of
restoring the data causes the top item
of the stacked information to be
deleted. Therefore, the stacked
information is treated in "first-in
last-out" manner.

3. An item may be saved in one external
procedure and restored in another if
the data name is declared EXTERNAL.

4. One SAVE statement may be used to save
more than one scalar, array, or struc-
ture; however, these items may be
restored separately.

5. The extents of the data restored must
be the same as the data saved.

Examples:
1. RESTORE (A,B,C);

Assume that the scalar data items
A, B, and C were previously saved by
using the SAVE statement. The RESTORE
statement then causes A, B, and C to
be made available for computation.

2. SAVERM: PROCEDURE
DECLARE TABLE (10) , 1 RAINBOW,
2 RED, 3 CRIMSON, 3 PINK, 2
BRLUE, 3 NAVY, 3 TEAL, 2

YELLOW;

Chapter 8: Statements 121

SAVE

(TABLE, RAINBOW) ;

RESTORE (TABLE) ;

RESTORE (RAINBOW) ;

END SAVERM;

Since TABLE is an array and RATINBOW
is a structure, the SAVE statement
causes all 10 data items in TABLE to
be saved and the elementary items
(CRIMSON, PINK, NAVY, TEAL, and
YELLOW) of the structure to be saved.

The first RESTORE statement causes
the entire array to be restored; the
second RESTORE statement causes the
elementary items of the structure to
be restored.

The RETURN Statement

Function:

The RETURN statement terminates execu-
tion of +the procedure that contains the
RETURN statement and returns control to the
invoking procedure. It may also return a
value.

General format:

Option 1.
RETURN;
Option 2.
RETURN (expression) ;

General rules:

1. Only the RETURN statement in Option 1
can be used to terminate procedures
not invoked as function procedures;
control is returned to the point logi-
cally following the invocation.

Option 1 represents the only form
of the RETURN statement that may be

used to terminate a procedure invoked
with the +task option. If the task
option involved an EVENT option (see

“The CALL Statement, " in this
Chapter), then the execution of the
RETURN statement will cause the com-

pletion status of the associated event
name to be set to '1'B.

122

2. The RETURN statement in Option 2 is
used to terminate a procedure invoked
as a function procedure. Control is
returned to the point of invocation,
and the value returned to the function
reference is the value of the expres-
sion specified.

If the entry point at which the
procedure is invoked specifies data
attributes, the value of the expres-

sion is converted to the implicit or
explicit data attributes specified at
the entry point, before it is
returned.

3. 1If control reaches an END statement
corresponding to the end of a proce-
dure, this END statement is treated as

a RETURN statement (of the Option 1
form) for the procedure.
Example:
A: PROCEDURE (X,Y) FIXED;
DECLARE (X,Y) FLOAT;
RETURN (X**2+Y%%*D) ;
END;
B: PROCEDURE;
DECLARE A ENTRY FIXED;
R=2a(P,9Q:
END;
In the assignment statement (R =
A(P,9) ;), procedure B invokes procedure A

as a function. Procedure E specifies that
the scalar expression in the RETURN state-
ment is to be evaluated; since X and Y are
floating-point variables and the PROCEDURE
statement specifies that the value returned
is to be fixed point, the value of the
expression is converted to fixed point, and
this value is returned to B.

The REVERT Statement

Function :

A REVERT statement specifying a given
ON-condition is used to nullify the effect
of the most recent previously executed ON
statement for that condition and to cause
the action specification to be reesta-
blished as it was in the imwediate, dynami-
cally encompassing block (see "Activation
and Termination of Blocks,"™ in Chapter 6).

General format:
REVERT condition;
Syntax rule:

The "condition" is
(see Appendix 3).

any ON-condition

General rules:

The execution of a given REVERT state-
ment, specifying a given condition and
internal to a given block, has the
effect described above only if an ON
statement, specifying the same condi-
tion and internal to the same block,
was executed after the block was acti-
vated. If such an ON statement was
executed, and if the execution of mno
other similar REVERT statement has
intervened, then the execution of the
given REVERT statement does have the
effect described above. Otherwise,
the REVERT statement is effectively
treated as a null statement. Thus, a
repeated REVERT statement results in
no operation.

Examples:

A: PROCEDURE;

ON ZERODIVIDE GO TO ERRSPEC;

ON1:

CALL B;

B: PROCEDURE;

-

CN2: ON ZERODIVIDE;

-

REVERT ZERODIVIDE;

ON ZERODIVIDE SYSTEM;

ON3:
END A;
Unless it is stated otherwise, the con-

dition ZERODIVIDE always is enabled. If
division by zero occurs prior to execution

of statement ON1, an interrupt with stand-
ard system action takes place.

If division by zero occurs after execu-
tion of ON1 and prior to execution of
statement ON2, an interrupt takes place and
control transfers to the statement GO TO
ERRSPEC.

If division by zero occurs after execu-
tion of ON2 and prior to the REVERT state-
ment, an interrupt takes place effectively
with no action.

When the REVERT statement 1is executed,
the effect of the statement ON2 is nulli-
fied, and statement ON1 again becomes
effective. If division by 2zero occurs
after execution of the REVERT statement and
prior to the execution of statement ON3, an
interrupt takes place, and control trans-
fers to the statement GO TO ERRSPEC.

After the execution of
division by zero causes
action to take place.

statement ON3,
standard system

The SAVE Statement

Function:

The SAVE statement causes data to be
placed in auxiliary storage, identified by
its name, and if the name is INTERNAL, by
the block in which it is declared.

General format:
SAVE (item-1 [,item-2] ...)
[(expression)] ;

Syntax rule:

Each "item™ may be an array, major
structure name, or a scalar which is
not part of an array or structure.
The "expression"™ is a scalar expres-
sion.

General rules:

1. The SAVE statement without an expres-
sion is equivalent to a series of
simple SAVE statements as follows:

SAVE (item 1) ;
SAVE (item 2);

The SAVE statement with an expres-
sion is equivalent to the following
statement:

Chapter 8: Statements 123

temp=expression;

SAVE (item 1) (temp) ;
SAVE (item 2) (temp) ;
Each simple SAVE statement causes

the specified data to be identified by
the data name, qualified by the inte-
ger value of the expression (if an
expression is specified) converted to
BINARY FIXED (s,0) where s is implem-
entation defined.

2. If no expression is specified, and
items of the same name are repeatedly
saved, the values are stacked, and

restored in a last-in, first-out
basis.
If an expression is specified and

items of the same name are
stored, only one vValue
name and given expression

repeatedly
for a given
value 1is

saved at any one time. Subsequent
execution of a SAVE statement with
matching identification causes the
previously saved value to be overri-
den.

3. The extents of the data, when
restored, must be the same as they

were when the data was saved.
Example:
SAVE (A, B, Q) ;

The scalar data items A, B, and C are
saved in auxiliary storage.

DO N=1 TO 10;

X=Y**N;
SAVE (X) (N) ;
END;
I=J+M/2;
RESTORE (X) (I);
Q = SIN (X);
Each execution of the SAVE statement

causes the current value of X to be iden-
tified by the current value of N and to be
saved.

The RESTORE statement causes one of the
previously saved values of X to be
restored. 1In particular, that value of X
identified by an integer whose value is
J+M/2 is restored.

124

The assignment statement Q=SIN (X) ;
this restored value of X.

uses

The SEGMENT Statement

Function:

The SEGMENT statement specifies posi-
tioning within a segmented file. Segment
marks may also be written on a file by a
WRITE statement that specifies a SEGMENT
option (see "The WRITE Statement").

General format:

SEGMENT [(expression)]
name) | ;

[FILE (file-

General rules:

1. The scalar "expression," if specified,
is converted to character, if neces-
sary; this character string is the
segment mark. If the SEGMENT state-
ment appears within a procedure
invoked by a CALL option in a READ or
WRITE statement that specifies a SEG-
MENT option, the expression may be
omitted; in this case, the SEGMENT
option defines the segment mark.

2. The SEGMENT statement causes the poin-
ter to be positioned at the next
segment mark after the current posi-
tion. On input, sufficient records
may be skipped to effect this posi-
tioning. On output, the segment mark
is added to the data stream. Segments
positioning need not, however, cross
record boundaries.

3. The FILE option specifies that the

action 1is to be taken on the named

file. In the absence of a FILE
option, the current file 1is assuwed

(see "Procedure-Directed Transmission"

for a discussion of “"current®” files).

Examples:

1. SEGMENT FILE (FILE PROC) ;
2. SEGMENT (A+B**3);
3. DECLARE FILX FILE STANDIN;

SEGMENT FILE (FILX) ;

In Example 3, the SEGMENT statement
positions the system standard input file;
the name FILX is declared as a pseudonym
for this tape.

The SIGNAL Statement

Function:

The

SIGNAL

statement simulates the

occurrence of an interrupt (see "Interrupt

Operations,® in

Chapter 6, and "The ON

The S1: SIGNAL statement causes an
interrupt in the same way as if an
attempt to read past a file delimiter,
had actually occurred. Control is
transferred to the statement ¥,2 = 0
in the ON1: ON statement.

When the S2: SIGNAL statement caus-

Statement") . It may be used to test the es an interrupt, control is trans-
action specification of the current ON ferred to the ON2: ON statement, and
statement. standard system action is taken.
General format: 2. ON CONDITION (TAX) TAXCT = TAXCT+1;
SIGNAL condition; .
Syntax rule: SIGNAL CONDITICN (TAX) ;
The condition ray be any one of those The ON statement establishes an
described in "ON-Conditions, " in action for the programmer-specified
Appendix 3. condition TAX. This condition can
occur only when a SIGNAL statement
General rules: causes the condition to occur.
1. When a SIGNAL statement is executed,
it is as 1if the specified condition
had actually occurred. The sequence
of control through the program is
interrupted, and control is trans-
ferred to the current ON statement for The SKIP Statement
the specified condition. After execu-
tion of the on-unit, control normally
returns to the statement immediately Function:
following the SIGNAL statement.
2. If an ON statement specifies the CON- The SKIP statement causes records (or
DITION condition, the condition can lines) to be skipped.
cause an interrupt only if a SIGNAL
statement, specifying this condition, General format:
is given.
3. If the condition specified in the SKIP [(expression)] [(FILE file-
SIGNAL statement is disabled, no name)] ;
interrupt occurs, and the statement is
equivalent to a null statement. General rules:
4. If the condition has no current CN
statement, then the normal system 1. The scalar "expression," if specified

action for the condition is performed.

Examples:

1. Xz

ON1:

S1:

ON2:

S2:

PROCEDURE;
- 2.

ON ENDFILE (DATIN) Y,Z = 0;

SIGNAL ENDFILE (DATIN) ;

ON ENDFILE (DATIN) SYSTEM;

SIGNAL ENDFILE (DATIN) ;

END X;

when the SKIP statement is executed,
is evaluated and converted, where nec-
essary, to an integer n. If the
expression 1is not specified, n is
assumed to be 1.

When used with print files, lines and
pages are considered, otherwise,
records and groups are indicated.

On input, the SKIP statement causes
a skip to the nth record of the group.
If the current record is greater than
n, a skip to the nth record of the
next group occurs.

On output, the SKIP statement caus-
es the creation of a sufficient number
of empty records to cause alignment on
the record as described for input.

The FILE option specifies that the
action is to be taken upon the named
file. In the absence of a FILE

option, the current file is assumed.

Chapter 8: Statements 125

DOWN

oo — e e o e e

SORT FILE (file-name [,file-name€] ...) [RECORD (format-1list)

up
{ } (integer {[,integer}...) ... [GIVING (file-name)] ;

S p——

Figure 9. General Format for the SORT Statement

Examples:
1. OPEN PQR INPUT;
SKIP (N) FILE (PQR);

2. OPEN FILEA OUTPUT;

SKIP FILEA;

The SORT Statement

Function:

The SORT statement specifies that
records on a particular file are to be
sorted and, optionally, merged. The sort-
ing is performed on specified fields in
ascending or descending order.

The general format is shown in Figure 9.
Syntax rules:

1. The options may appear in any order.

2. The UP and DOWN options may be repeat-
ed as required, to specify an ascend-
ing sort on some fields and a descend-
ing sort on others, in the required
order.

General rules:

1. The size of the records to be sorted
either mast be specified within the
ENVIRONMENT attribute for the file
name or must be implied by a record
description using the RECORD specifi-
cation.

2. The FILE specification specifies the
files to be sorted. If more than one
file name 1is specified, a merge is
also performed.

3. The RECORD specification describes
either the format of the whole record

126

or merely an initial portion of the
record. When only an initial portion
of the record is to be described, the
ENVIRONMENT attribute must be declared
for the file name, giving the actual
length of the record or the maximum
length for varying-length records.

The format 1list (see Chapter 7)
defines fields on the record; the nth
format item describes the nth field.
If a format item has an iteration
factor of m, this constitutes m
fields. O0f the positioning format
items 1listed in Chapter 7, only POSI-
TION is permitted; this item does not
constitute a field.

The UP/DOWN specification indicates
the sorting order. UP specifies an
ascending sort; DOWN specifies a des-

cending sort.

The integers in the specification
are decimal integer constants that
specify the fields to be sorted with
respect to the record description.
The fields to be sorted are taken from
the UP/DOWN specification in left-to-
right order. The file is ordered on
the leftmost specified field first,
and within that ordering, on the next
field, and so on.

The sort comparisons are performed

using the character collating sequence
for character-string fields, bit
comparison for bit-string fields, and
algebraic comparison for arithmetic
fields.
The GIVING option specifies the file
on which the sorted output is to be
written. If omitted, the standard
output file is used.

If an output file is specified that
differs from the standard output file
and that differs from any of the files
to be sorted, the £file must not be
currently open. Rather the operating
system opens it for output, produces
the sorted file, and closes it.

If an output file is specified that
differs from the standard output file
but is identical to one of the files
being sorted, then, after reading the
file, the operating system closes it,
opens it for output, produces the
sorted file, and closes it.

Example:
SCRT FILE (MASTER) , RECORD (A (1),
(6) P'99999", UP(1,3,5) ;

This SORT statement specifies that
the file MASTER is to be sorted in
ascending sequence. The RECORD speci-
fication indicates that each record in
MASTER 1is composed of 7 fields; the
first field contains one character;
subsequent fields each contain five
digits.

The records are sorted on the
first, third, and fifth fields, in
that order.

The sorted file is written on the
standard output file.

The SPACE Statement

Function:

The SPACE statement causes spacing over
records on input files and the completion
and release of records on output files.

General format:

SPACE [(scalar-expression)]
(file-name)] ;

(FILE

General rules:

1. The expression, if specified, is
evaluated and converted, where neces-
sary, to an integer n. If the expres-
sion 1is not specified, it is assumed
to be 1.

2. The FILE option specifies that the
action 1is to be taken on the named
file. In the absence of a FILE
option, the current file is assumed
(see "Procedure-Directed Transmission"
for a discussion of current files).

3. On input, this statement causes the
file to be positioned at the start of
the nth record following the current
record. On output, this statement
causes the completion and release of
the current record and the emission of
n-1 empty records.

4, The use of SPACE on a REGIONAL or
INDEXED file accessed in the DIRECT
mode is limited in that an expression
may not be specified. Use of SPACE in

such instances causes the current
recoxrd to be released. Subsequent
data transmission to or from the cur-
rent file will <cause the KEY and
REGION values to be reevaluated in
order to determine the next record to
be accessed.

The STOP Statement

Function:

The STOP statement causes immediate ter-
mination of the major task and all sub-
tasks (see "Asynchronous Operations and
Tasks,” in Chapter 6).

General format:

STOP;

The TAB Statement

Function:

During data transmission, the action
that occurs is as if a pointer moved across
the records being processed. The TAB
statement causes this pointer to be aligned
on the nth tab of the record or line (see
"The LAYOUT Statement") . Intervening data
is skipped.

General format:
TAB [(scalar-expression)];
General rule:

The "scalar expression," if specified,
is evaluated and converted to an integer n.
This integer represents the nth tab for
alignment. If the scalar expression is
omitted, the smallest tab value +to the
right of the current position in the recorad
is used.

Example:
TAB (3) :

Suppose the LAYOUT for the current file
contains the specification TAB (10, 50, 20,
60) ; then the above statement causes a TAB
to column 20 to occur, since 20 is the
third tab. This may involve Dbacking up
certain character positions. 1If backing up
has occurred, it is meaningful to use a GET
statement even on an output file; and a PUT
statement may be used on input files fol-
lowed by TAB or POSITION to cause re-
reading of a field.

Chapter 8: Statements 127

If the TAB statement moves the pointer
across a part of an output record which has
no data edited into it, the record is
assumed to be initially blank.

The WAIT Statement

Function:

The WAIT statement is used to cause the
suspension of operations in the task where
it appears until certain events have been
completed.

General format:

WAIT (event-name [,event-namel ...)
[(scalar-expression)] ;

Syntax rule:
described in

The event name 1is as
"Event Names,"™ Chapter 2.

General rules:

1. The execution of this statement causes
the task in which it is executed to be
suspended until, for some or all of
the event names in the list above, the
condition

EVENT (event-name) = '1'B

is satisfied. (See "Asynchronous
Operations and Tasks,®" in Chapter 6,
"Event Names," in Chapter 2,
"Pseudo-Variables," in this chapter ,
and the description of the EVENT
built-in function in Appendix 1.)

2. If the optional expression does not
appear, all the event names in the
list must satisfy the above condition
before the task issuing the WAIT
statement can resume.

3. If the optional expression . appears,
the expression 1is evaluated when the
WAIT statement is executed and con-
verted to an integer. This integer
specifies the number of events that
must satisfy the above condition

128

before the task issuing the WAIT
statement can resume. If the value of
the expression 1is zero or negative,
the WAIT statement 1is treated as a
null statement. If the value of the
expression is greater than the number,
n, of event names in the 1list, the
value is taken to be n. If the
statement refers to an array event
name, then each of the array elements
may contribute to the count.

Example:

PI: PROCEDURE;

CALL P2 EVENT (EP2) ;

WAIT (EP2) ;

END;
The CALL statement, when executed,
attaches a task whose completion sta-

tus is associated with the event name
EP2. When the WAIT statement is
encountered, the executicn of the task
corresponding to PI is suspended until
the value of EVENT (EP2) is '"1'B, i.e.,
until the attached task is completed.

The WRITE Statement

Function:

The WRITE statement is normally used to
transmit data from internal storage to an
external storage medium. However, if the
STRING option 1is specified, the write
statement causes the movement of data from
one oOr more internal storage areas to
another internal storage area.

e

WRITE [

FILE (file-name)

STRING (name)

|"CROSS { (expression)]

(HOLD]
_ SEGMENT (expression)

[KEY (expression)]

[FROM (file—name)] ;

] {data-specification} ...

[NEWKEY (expression)}

-l

[REGION (expression)]

Figure 10.

1.
2.

1.

Syntax rules:

The options may appear in any order.
At least one "data specification" must
appear, but more than one is permissi-
ble. However, only one procedure-
directed data specification can be
given, but it nmay appear in
conjunction with other data specifi-
cations.

When the STRING option is used, only
the data specification may appear; the
other options must not appear.

Either a "data specification" or a
FROM option must appear.

General rules:

The FILE option specifies the name of
the file to be associated with the
data transmitted.

The STRING option provides for the
internal editing and moving of
strings. It specifies the name of a

string variable or the name of an
element in a string array into which
data 1is transmitted £from the data
list. A PICTURE attribute given for
the string is ignored.

In the absence of a FILE or STRING
option, the standard system output
file is assumed.

The data specifications are discussed
in Chapter 7. Only those forms speci-
fied for output may be used. All
modes of transmission may be arbitrar-
ily specified together. The transmis-
sions associated with each data speci-
fication and edit procedure are per-
formed in the order that the options
appear.

Each WRITE statement normally process-
es one record; an error condition is
produced if the data specification
causes the record boundary to be
crossed. However, the CROSS option
permits data transmission to proceed
through any number of records in order
to satisfy the specified data require-

General Format for the WRITE Statement

ments. The number of records written
may be limited by the integer value of
the expression in the CROSS option.
If no expression is specified, unlim-
ited crossing is allowed. The margin
qualifications for the data file, if
specified by a LAYOUT statement,
remain valid while under control of
the CROSS option. Record boundary
crossing due to LIST, DATA, or SEGMENT
does not require the presence of the

CROSS option. It may be specified,
however, to limit the number of
records crossed. Crossing due to

SPACE, SKIP, or GROUP does require its
presence.

A HOLD option permits part of one
record to be processed. The HOLD
option causes the position of the

record pointer to be remembered on
completion, so that the next WRITE
begins its data scan at the point

where the previous one ceased scan-

ning. If a HOLD option is not speci-
fied and the record 1is of fixed
length, the remaining part of the

record is padded. HOLD may not be
specified for a file which is accessed
in more than one task.

The SEGMENT option implies both the
CROSS and HOLD options . The expres-
sion in the SEGMENT option is convert-
ed, if necessary, to a character
string. This string serves as a seg-
ment mark.

At completion of record construc-
tion for the WRITE operation (through
one or possibly more records), the
specified mark is added to the last
record. Emission of the record is not
thereby implied. Subsequent data is
appended to this record until the
maximum record length is met. A maxi-
mum SEGMENT length is defined by each
implementation.

The KEY, NEWKEY, and REGION option may
be used when direct access to a parti-
cular record is required (see "The KEY

Chapter 8: Statements 129

1.

130

Option, "™ "The NEWKEY Option,"™ and "The
REGION Option," in Chapter 7. 1If a
file is declared with the access
attribute DIRECT, then the KEY, NEWK-
EY, or REGION option must be used with
each WRITE for that file unless the
previous WRITE for that file had the
HOLD option.

The FROM option specifies +that the
last record read from the file, the
name of which is specified in the FROM
option, is to be written on the output
file. Data specifications given in a
WRITE with the FROM option replace the
initial portion of the record read
from. If both the FILE option and the
FROM option specify the same file, the
file must be a direct access file. 1In
this case, the KEY option may be
dropped to signify that the new and
old keys are the same. FROM may not
be used with files accessing in two
simultaneous asynchronous procedures.
A count 1is kept of +the number of
scalar data items transmitted. The
COUNT (file-name) built-in function
may be used to determine this number
of transmitted data items.

Examples:

WRITE FILE
ITEM.COST)

(INVENTORY) ,
(a(20) ,F(5,2));

(ITEM.NAME,

One record of the file named INVEN-
TORY is written under format-directed
transmission. The character-string
variable ITEM.NAME is written in the
first 20 characters of the record.
The variable ITEM.COST is converted to

fixed decimal and written in the next
5 characters of the record.

WRITE FILE (TABLES),
(F(5)), KEY (Q) ;

(TABLE.POOL)

A record is constructed from the
contents of the TABLE.POOL array, and
a key, the value of the variable Q, is
appended. Should the key be identical
to an existent key within the data
file, the WRITE causes replacement of
that keyed record.

WRITE FILE (FILEZ),
(&, F (3,2,

(*FINAL_DATA',X,Y)
E(5,2));

Three data items are transmitted to
FILEZ (assuming X and Y are scalar
variables) . The first is the charac-
ter string of length 10, FINAL DATA,
then the fixed-point form of the value
of x, then the floating-point form of
the value of Y.

WRITE DATA (X,Y,Z);

The values of the three variables
X, ¥, and Z are transmitted to the
standard output file in the data-
directed format. If X is floating-
point value 3.1141593, Y is fixed-
point value 347, and 2 is character-
string value MATH then the output data
stream would appear as the following:

X=3.1141593, Y=347, zZ='"MATH'

It would be in a form suitable for
data-directed input.

A PL/1 source program may contain
compile-time variables and statements.
These may be used to effect program param-
eterization and modification and iterative
program generation . The name “macro" is
used to describe such compile-time activi-
ty. To differentiate the PL/I macro lan-
guage from the rest of PL/I, the latter is
called the "execution-time®” language.

When a souxce program involves macro
activity, the compiler is supplied with
text consisting of a skeleton execution-
time program with interspersed macro
statements. This text is called the
"source text." Compile-time activity is
performed by a part of the compiler called
the “macro processor." The macro processor
converts the source text into text rep-
resenting an execution-time PL/I program.
This created text is called "program text."

For ease of 1learning, the PL/I macro
statements and the variables and 1labels
have been made very similar to the corres-
ponding execution-time entities. With one
exception, the macro language forms a sub-
set of the execution-time language. (The
exception is the CHARACTER attribute in the
DECLARE statement.)

Macro statements and skeleton execution-
time text can, in general, be interspersed
in any way in the source text. Each macro
statement begins with a percent sign.
Macro statements are recognized by the
occurrence of a percent sign other than
within a comment or character string. The
restrictions on the form of source text are
as follows:

If the source program involves any
macro activity, the first statement
must be the macro DECLARE statement.

Quotation marks and comments
delimiters must be matched within the
skeleton execution-time program.

Beyond the requirements above there is

no requirement that the skeleton execution-
time program be syntactically correct.

MACRO VARIABLES

If compile-time activity is to take
place, the source text must contain one and
only one macro DECLARE statement. The
first character of the source text must be

CHAPTER 9: PROGRAM MODIFICATION

a percent sign. (A comment or blank may
appear just after the initial percent sign,
but not before.) The percent sign is the
beginning of the macro DECLARE statement.
This statement is used to declare the macro
variables., All macro variables must be
declared. The scope of macro variables is
the entire source text. Fach macro
variable and macro label must have a unique
nare.

THE MACRO DECLARE STATEMENT

General format:

% DECLARE macro-declaration

[, macro-declaration] ...;

A "macro declaration" may be either of
the following:

1. macro-variable-specification

2. (macro-variable-specification
{macro-variable-specification] ...)
attribute...

A "macro variable specification"™ is of
form:

identifier [attribute] ...
The "identifier" is the name of the

macro variable to be declared. Attributes
are associated with it in the same way as

for the execution time DECLARE statement.
In particular, the same rules apply for
conflicting attributes. However, at most,

one level of factoring is permitted. The
following are the permissible attributes on
a macro DECLARE statement:

FIXED
This specifies that the macro variable
is an integer of implementation defined

precision.
CHARACTER (decimal-integer-constant)

This specifies that the variable is a
fixed-length character string. The length
is given by the decimal integer constant.

CHARACTER VARYING

No 1length may be given. This attribute
specifies that the macro variable is a
varying-length character string. The
length of the variable is defined as the

Chapter 9: Program Modification 131

length of the last value assigned to it.
Initially the length is undefined.
(Storage is reserved for the variable as it
is needed.)

INITIAL
(optionally-signed-decimal-integex-
constant)

This attribute may be given only to
macro variables with the FIXED attribute.
The specified constant is assigned to the
macro variable(s) to which the attribute
applies. The assignment is performed at
the start of compile-time activity.

INITIAL (character-string-constant)

This attribute
macro variables of

may be given only to

character data type.
The specified constant is assigned to the
macro variable(s) to which the attribute
applies. The assignment is performed at
the start of compile-time activity.

The first three attributes in the above

list are data attributes. One and only one
of these must apply to each macro variable.

MACRO EXPRESSIONS

Macro expressions
following forms:

may take one of the

1. [+ | -] operand ({ + | - | 7 | *}
operand]
2. operand || operand [|| operand] ...

An operand appearing alone in form 1 or
the operands in form 2 may be any of the
permitted operands. Operands used with a
sign or an arithmetic operator must be
decimal integer constants or fixed macro
variables. Expressions of form 2 may
involve conversion from type integer to
type character. The conversion 1is per-
formed according to list-directed transmis-
sion rules (see "“List-Directed Specifi-
cations," in Chapter 7).

Macro expressions are subdivided into
fixed and character expressions. Macro
expressions involving macro variables that
have mnot been assigned a value are in
erroxr.

Macro expressions are evaluated in
exactly the same way as execution-time
expressions.

132

EXECUTABLE MACRO STATEMENTS

The executable macro statements are enu-
merated below. Any executable macro state-
ment may optionally be preceded by one or
more labels, each consisting of an iden-
tifier.

THE MACRO ASSIGNMENT STATEMENT

General format:

%{ label :]... macro-variable =
macro-expression;

The statement causes the value of the
macro expression to be assigned to the
macro variable. If +the expression is of
fixed type, the variable on the left may be
either of fixed or character type. If the
expression is of character type, the varia-
ble on the left must also be of character
type unless the value of the expression 1is
a string that contains a decimal integer
constant, optionally signed, and with
optional surrounding blanks. In this lat-
ter case, the variable may be of fixed

type.
All conversions implied in assignment
are performed according to list-directed

transmission rules (see "List-Directed Data
Specifications") .

THE MACRO NULL STATEMENT

General format:
% ([label:]...;

Macro null statements are used for plac-
ing macro labels in the text.

THE MACRO GO TO STATEMENT

General format:

% [label:]... GO TO label;

The macro label following the GO TO must
appear on another macro statement in the
source text. The execution of the macro GO
TO statement is described below.

THE MACRO IF STATEMENT

General format:

% [label:] ... IF macro-expression
comparison-operator macro-expression
THEN GO TO label;

The six "comparison operators" are list-
ed in "Scalar Expressions," in Chapter 3.
The relationship is evaluated to vyield a
true value or a false value in the same way
as for the execution-time IF statement. If
the relationship is true, the statement
acts as a macro GO TO statement. If the
relationship 1is false, the statement acts
as a null statement.

The two macro expressions to be compared
may be of differing data types. In this
case, the expression of character type is
converted to an integer; it must therefore
represent a decimal integer, optionally
signed and with optional surrounding
blanks.

ACTION CF THE MACRO PROCESSCR

The way in which +the macro processor

creates program text from source text is
described below. Initially program text is
null.

Initially the macro DECLARE statement is
processed to form a list of macro varia-
bles. INITIAL values are assigned. The
DECLARE statement is then deleted from the
source text.

After this, the source text is scanned
sequentially, starting from the beginning
of the text. The scan acts as follows:

If the name of a macro variable occurs
in the source text delimited at each end by
any of the special characters 1listed in
Chapter 1, other than the break character,
and is not within a character string, a
comment, or a macro statement, then the
scan behaves exactly as 1if +the name had

been replaced by the current value of the
macro variable it represents, converted to
a character string if necessary. The
source text, however, remains unchanged.
The conceptually inserted value is not
enclosed in quote wmarks. The value must
not contain unmatched quotation marks or
comment delimiters. If the name of a macro
variable occurs within conceptually insert-
ed text, then this name is, in turn,
conceptually replaced by its value. (Thus
the replacement of JIM by JIM+1 would cause
the macro processor to go into an infinite
1oop.)

If the macro variable A currently con-

tains the null string, it may appear
between the two characters of a composite
operator, e.g., *A* or A=. However, the

cowbinations /A* and *A/ are not allowable
when A has null value.

If the scan encounters a percent sign,
other than in a comment or character con-
stant, a syntactically correct macro state-
ment must follow. (Comments may be embed-
ded in a macro statement as usual.) This
macro statement is executed. If the state-
ment involves a GO TO, the scan resumes at
the designated statement. Otherwise, the
scan resumes with the text following the
statement Jjust executed; the macro state-
ment itself is replaced by a blank space.

All text passed over by the scan is
added to program text with the following
provisions:

1. If a macro statement is encountered by
the scan, none of the text from the
opening percent sign up to, and
including, the closing semicolon is
added to program text.

2. The circumstances under which redun-
dant Dblanks or comments appear in
program text are individually defined
for each implementation of PL/I.

Macro activity ends when the scan
encounters the end of the source text. The
program text then is compiled normally. It
is impossible for the program text to
contain any macro statements.

Chapter 9: Program Modification 133

CHAPTER 10: SPECIAL TOPICS

RELATICNSHIP OF ARGUMENTS AND PARAMETERS

When a procedure is invoked, a relation-
ship is established between the arguments
of the invoking statement and the paramet-
ers of the invoked entry point.

A parameter may be a scalar, array, Or
structure name (including a label variable
name, a task name, Or an event name) that
is unqualified and unsubscripted, or it may
be a file parameter or an entry parameter.

A file parameter may be used within a
procedure wherever a file name may be used;
an entry parameter may be used wherever an
entry name may be used.

A parameter is accessible in the proce-
dure only if the parameter is in the
parameter list of the entry point at which
the procedure is invoked.

Parameters must Dbe declared in the
invoked procedure; they cannot be declared
in outer containing blocks. If no explicit
declaration is given, an implicit or con-
textual declaration is assumed, internal to
the invoked procedure.

Parameters cannot be declared with the
storage class attributes STATIC or AUTOMAT-
IC, with scope attributes, or with the
DEFINED attribute.

A parameter may have the CONTROLLED
storage class attribute. 1In this case, the
associated argument must also have the
CONTROLLED attribute.

EVALUATION OF ARGUMENT SUBSCRIPTS

When an argument is a subscripted varia-
ble, the subscripts are evaluated before
invocation. The specified element is then
passed as the argument. Subsequent changes
in the subscript during the execution of
the invoked procedure have no effect wupon
the corresponding parameter.

USE OF DUMMY ARGUMENTS

A constructed dummy argument containing
the argument value is passed to a procedure
if the argument is one of the following:

134

a constant,
an entry name,
an expression other than a single
unparenthesized scalar variable,
array variable, or structure varia-
ble, or
an expression whose data attributes
may disagree with the declared data
attributes of the parameter.
In all other cases the argument as it
appears 1is passed. The parameter becomes
identical with the passed argument; thus,
changes to a dummy will be reflected in the
original argument only if a dummy is not
passed.

USE OF THE ENTRY ATTRIBUTE

An ENTRY attribute may be specified for
the invoked entry name; this ENTRY attri-
bute appears in a DECLARE statement whose
scope includes the invoking block. If an
ENTRY attribute is not specified 1in the
invoking procedure for the invoked entry
name, the attributes of the arguments must
agree with those of the corresponding par-
ameters of the invoked entry.

If an ENTRY attribute without parameter
attribute 1lists is specified for an iden-
tifier, it indicates that the identifier is
an entry name. In this case also, the
argument and parameter attributes are
assumed to agree.

However, if an ENTRY attribute with
parameter attribute lists is specified for
the invoked entry name, then the attributes
of the parameter of the invoked entry are
assumed to be the same as those specified
for it in the 'ENTRY attribute specifi-
cation. If an argument has data attributes
that differ from the corresponding set of
attributes defined in the ENTRY attribute
specification (string lengths are consid-
ered to match only if they have the same
decimal integer constant as length) , then a
dummy argument, with the value of the given
argument, is constructed by converting the
argument to the data attributes defined for
the corresponding parameter in the ENTRY
attribute specification. If conversion is
impossible, then the program is in error
(e.g., conversion of file name to bit).
The dummy argument is then passed to the
invoked entry. Dummy arguments have CON-
TROLLED storage class in the invoking pro-
cedure. They are allocated immediately

before invocation of the procedure and
freed upon return, unless the invocation
has a task option, in which case they are
freed upon exit from the invoking block.

The asterisk notation may be used in the
ENTRY attribute to specify that for varying
length strings, or arrays of adjustable
dimensions, the current argument bounds or
length are to be assumed for the parameter.

Example:

A: PROCEDURE;
DECLARE B ENTRY
(C,D) FLOAT;

(FIXED, FLOAT),

CALL B(C,D);

END A;

B: PROCEDURE (P,Q);
DECLARE P FIXED,

Q FLOAT;
END B;

The specification of the ENTRY attribute
in procedure A indicates +that B has two
parameters, the first with attribute FIXED
and the - second with attribute FLOAT. How-

ever, the arguments C and D both have the
FLOAT attribute. Since C is to be fixed-
point when it is passed to procedure B, a

dummy argument is constructed by converting
C from floating-point to fixed-point. This
dummy argument is then passed to B.

CORRESPONDENCE OF PARAMETERS AND ARGUMENTS

If a parameter of an invoked entry is a

scalar, the argument must be a scalar
expression. The data attributes of the
argument: must agree with the corresponding

attributes of the parameter.

If a parameter of an invoked entry is an

array, the argument must be an array
expression. The argument may also be a
scalar expression so 1long as an ENTRY
attribute is given for the invoked entry,

specifying the dimension attribute for the
relevant parameter. Asterisks may mnot be

given in the dimension attribute if the
argument is a scalar. In this case, a
dummy array argument will be constructed

where the value of each element of the
array 1is the value of the scalar expres-
sion. The data attributes of the argument
must agree with those of the parameter. If

the asterisk notation is not used to speci-
fy the dimensions of the parameter in the
invoked procedure, the values of the bounds
of the array argument must agree with the
values of +the bounds specified for the
parameter in the invoked procedure.

If a parameter is a structure, the
argument must be a structure expression.
When a structure description is given for a
parameter in an ENTRY attribute specifi-
cation, a scalar expression may be speci-
fied as the corresponding argument. A
dummy structure argument will then be con-
structed where the value of each element of

the structure is the value of the scalar
expression. The data attributes of the
elements of the structure argument must

match those of the associated parameter as

specified in the invoked procedure. The
relative structuring of the argument and
the parameter must be the same, although

the level numbers need not be identical.

If a parameter is a scalar-label varia-
ble, the argument must be a scalar-label
variable or constant. If a parameter is an
array-label variable, the argument must be
an array-label variable. If an ENTRY
attribute is given for the invoked entry in
the invoking procedure, and if the
appropriate parameter attribute list speci-
fies that the parameter is a 1label array,
then the argument may be a scalar-label
variable or constant; a dummy label array
argument will be suitably constructed. A
dummy argument is always constructed when
the argqument is a label constant or label
array.

If the argument 1is a statement label
constant, this statement label constant is
qualified by an identification of the cur-
rent invocation of the block containing the
label; this information is passed as a
dummy argument to the invoked entry.

If a parameter is an entry parameter,
the argument must be an entry name or entry
parameter. When a parameter is specified
as an entry parameter in the parameter
description of an ENTRY attribute and is
not given data attributes, no default data
attributes are assumed. If it is necessary
that the entry parameter have data attri-
butes, they may be specified in the param-
eter description and a check will be made
to insure that a correct argument is pro-
vided.

If a parameter is a file parameter, the
argument must be a file name or file
parameter.

An argument passed to a parameter that
is a fixed-length string variable or an
array must be of fixed length. An argument
passed to a parameter that is a varying-

Chapter 10: Special Topics 135

length string variable or an array must be
of varying length.

Exawple:

M1: PROCEDURE;
DECLARE A (10), AA(10), AAA (10),
N EXTERNAL;

N=10; CALL S1(A,AAR,AAR);

END M1;

S1: PROCEDURE (P,PP,PPP) ;
DECLARE P (10) , PP (¥) ,PPP (N) ,
N EXTERNAL;

END S1;

In the above example, P, PP, and PPP are
parameters. Procedures M1 and S1 are both
external procedures. P 1is declared with
constant bounds; thus, the bounds of any
argument associated with P must be 10. PP
is declared with the asterisk notation;
thus, any one-dimensional argument of the
same type may be associated with it. PPP
is declared with an adjustable bound; thus,
the bound of any argument associated with
PPP must be equal to the value of N when S1
is activated. Note that a similar effect
would result if S1 were internal to M1 and
N were an internal variable declared in M1.

ALLOCATICN OF PARAMETERS

A parameter that has no storage class
may correspond to an argument of any
storage class; if more than one generation
of the argument exists, however, the param-
eter is synonymous only with the generation
existing at the point of invocation. A
CONTROLLED parameter, however, always must
be presented with a CONTROLLED argument;
the argument must be an unsubscripted name
of CCNTROLLED data that is not an element
of a structure. The parameter is synonym—
ous with the entire allocation stack of the
controlled variable. Thus each reference
to the parameter 1is a reference to the
current generation of the associated argu-

ment. A controlled parameter may be allo-
cated and/or freed in the invoked proce-
dure, thus manipulating the allocation

stack of the associated argument.

136

Parameters, Bounds and Length

If an argument is a string or an array,
the 1length of the string or the bounds of
the array must be declared in the invoked
procedure by using the asterisk notation,
by giving explicit bounds or length or by
declaring the bounds or length as an
expression that, when evaluated, gives the
appropriate value. The expressions speci-
fied for the bounds or 1length must be
formulated according to the rules stated in
"Evaluation of Expressions," in Chapter 3.

The number of dimensions and the bounds
of the array argument or the length of the
string argument must be the same as those
of the corresponding parameters. However,
the actual bounds or 1length may not be
known at the time the invoked procedure is
written; the invoked procedure may assume
either that storage has been allocated
prior to the invocation or that storage
will be allocated explicitly in the proce-
dure for those parameters declared CON-
TROLLED.

Asterisk Notation for Bounds or Length

The correspondence between argument and
parameter in the invoked procedure can be
achieved by specifying the 1length by an
asterisk or by specifying each and every
bound by an asterisk, thus indicating that
the 1length or bounds are the same as those
for the corresponding argument.

If storage has been allocated for an
argument, the corresponding parameter in
the invoked procedure is assumed to have
the same length or bounds as the argument.
If the parameter is controlled, further
allocations of the data will use these same
bounds or length unless different length or
bounds are specified in the ALLOCATE state-
ment.

If storage has not been allocated for an
argument passed to a parameter declared
with the asterisk notation, explicit bounds
or length must be declared in an ALLOCATE
statement given before another reference to
the parameter in the invoked procedure.

Expressions as Bounds or Length

been allocated for an
parameter for which
explicit bounds or length are specified,
then upon entry to the invoked procedure,
any expressions are evaluated and must give
values such that the bounds or length of
the parameter are the same as the argument.
If the parameter is controlled and is
subsequently reallocated, these expressions

If storage has
argument passed to a

are again evaluated to give new bounds or
length for the new allocation, unless they
are specified in the ALLOCATE statement.

If storage has not been allocated for
the argument, then, at the point of entry,
no requirements are made on the value of

the expressions specified for the corres-
ponding parameter bounds or length. These
expressions are evaluated at a subsequent

point of allocation, unless they are speci-
fied in the ALLOCATE statement.

Example:

M2: PROCEDURE;
DECLARE A (10) , AA (25) CONTROLLED;

CALL S2(A,2A,10);

END M2;

S2: PROCEDURE (P,PP,N) ;
DECLARE PP (*) CCNTROLLED, P (N),
Q(25), 8(5 ;

PP = Q;

ALLOCATE PP (5) ;

END S2;

PROLOGUES

On entering a block, certain initial
actions are performed, e.g., allocation of
storage for automatic variables. These
initial actions constitute the prologue.

On entry to the prologue, the following
items are available for computation:

1. variables declared outside the block
and known within it

2. variables declared STATIC
within the block

3. arguments passed to the block

and known

4, The most recent generations of con-
trolled variables known within the
block

The prologue makes available for
computation all the other variables
known within the block as follows:

5. automatic variables declared in the
block

6. Defined variables declared within the
block

In making these items available, the
prologue may need to evaluate expressions
defining lengths, bounds, iteration fac-
tors, and initial values. Such expressions
may depend on items of 1, 2, 3 or 4. They
may also be dependent on items 5 and 6
under the following circumstances: If an
item is referred to in an expression and
the allocation or initialization of a sec-
ond item depends on that expression, then
that first item must in no way be dependent
on the second item for its own allocation
and initialization. Further, the first
item must in no way be dependent on any

other item that so depends on the second
item.
Example:

The following is illegal:

DECLARE (A (M) INITIAL (1),
M INITIAL ((A (1)) (*ABC"))
AUTO;

The evaluations must not invoke abnormal
functions. The entry invoked with the
INITIAL CALL attribute may be abnormal only
in that it sets the data being initialized.
The sequence in which the evaluations refer
to any abnormal data is not defined.

Function calls within the evaluations

must not refer to items being made availa-
ble by the prologue.

DATA ALLOCATION ACROSS TASKS

The scope of an identifier declared in
an attaching task may include the attached
task. Thus, the WAIT statement should
properly be used in the attaching task to
avoid freeing storage allocated in the
attaching task and used in the attached
task.

An attached task has almost the same
access to the attaching task's data as it
would have if it were executed synchronous-
ly; however, when it is attached, only the
generations of CONTROLLED variables current
at the time of attachment are passed to the
attached task. Subsequent allocations in
the attached task are known only within the
attached task; subsequent allocations in
the attaching task are known only within

Chapter 10: Special Topics 137

the attaching task. A task may only free
storage that it has allocated. All storage
allocated within a task is destroyed when
that task is completed.

Allocation of Task and Event Names

Like variables, task names and event
names have scope and storage class attri-
butes. Storage will be allocated for task
and event names in the same manner as for
variables (by virtue of either an explicit
or contextual declaration). If a given
task is active and there is a task or event
name associated with the task, then storage
must not be released for the name until the
task is terminated.

ABNORMALITY

The ABNORMAL, NORMAL, USES, and SETS
attributes are provided in PL/I to enable
the compiler to generate optimized code.

In the absence of any information, the
following assumptions are made:

1. All external function references are
normal.

2. All other procedure references are
abnormal.

3. All variables are normal.

A variable is said to be abnormal if its
value may be altered or otherwise accessed
without an explicit indication. Thus, for
example, the appearance of a variable name
on the left side of an assignment state-
ment, in the data list specification of a
READ or GET statement, or as an argument to
an abnormal function or procedure (see
below) indicates a predictable situation
where the variable may change its value.
However, when the variable is subject to
change by the occurrence of an ON-
condition, or if it is subject to change in
a procedure invoked with the TASK option
(see "Asynchronous Operations and Tasks"),
then there is no way to predict the point
at which the change in value will occur or,
in fact, if it will occur.

Such possibilities cannot always be
recognized contextually. Furthermore, if a
portion of a source program contains sever-
al references to such a variable, the order
in which the indicated operations are exe-
cuted becomes significant. (For example,
if B is abnormal, the expression B + B is
not necessarily equivalent to the expres-
sion 2 % B.)

138

The implication is that the programmer
expects the operation to be performed in a
particular order. Such variables must
therefore be declared ABNORMAIL, to inhibit
the optimization of such portions of a
source program.

A procedure may possess varying degrees
of abnormality. A procedure is said to be
"definitively abnormal" if it, or any pro-
cedures invoked by it, accesses, modifies,
allocates, or frees external data or modi-
fies, allocates, or frees arguments. In
addition, an internal procedure is abnormal
if 1it, or any procedures invoked by it,
accesses, modifies, allocates, or frees any
variables known in the invoking block.
Such procedures are only definitively
abnormal because the exact nature of their
abnormality is described by +the USES and
SETS attributes, thus inhibiting some, but
not all, optimization in the neighborhood
of a reference to the procedure (see "The
USES and SETS Attributes" in Chapter 4).

However, if a procedure is "completely
abnormal," all optimization of successive
references must be inhibited. A procedure
is completely abnormal if it, or any proce-
dures invoked by it, does any of the
following:

1. returns inconsistent function values
for identical argument values

2. maintains any kind of a history

3. performs input or output operations

4. returns control from the procedure by
means of a GO TO statement

The ABNORMAL attribute (described in
Chapter #4) is wused to describe such a
procedure. It may also, of course, be used

to describe a procedure that is

"definitively abnormal."

When abnormality is specified, the order
of execution becomes significant. In par-
ticular, if an expression contains a ref-
erence to an abnormal function that may
affect values in other parts of the expres-
sion, the value of the expression will, in
general, depend upon the order in which
data is accessed (see "Order of Evaluation
of Expressions, " in Chapter 3).

If an ABNORMAL procedure, referred to in
a statement, allocates or frees controlled
data that has been referred to elsewhere in
the same statement, then the effect of the
statement is undefined.

PROGRAMS

constitutes a domain of ref-
external identifiers and a

A program
erence for

domain of persistence for data. A program
consists of a set of external procedures,
linked to each other in the - following
sense. Every external identifier has con-
stant meaning across all external proce-
dures 1in a program. Values of data known
in a program exist only as 1long as the
program is available for execution.

When a program becomes available for
execution, its STATIC data 1is initialized
according to INITIAL attributes in the
program; all stacks of CONTROLLED data are
empty; mno data is available to the RESTORE
statement; these values disappear when the
program is made unavailable for execution.

A program is made available for
tion either by the operating environment as
a major task, or by the FETCH statement.

It is made unavailable

by termination

execu-

of

the major task or by the DELETE statement.

There is complete data isolation between

programs except for arguments

one - to the other

same TITLE. This is

programs contain
external procedures.

Chapter 10:

apparently

passed from
and for files with the

true even if both

Special Topics

identical

139

APPENDIX 1: BUILT-IN FUNCTIONS

ARITHMETIC GENERIC FUNCTIONS

The generic functions 1listed in this
section return a value of type coded arith-
metic. The arguments may, unless otherwise
specified, be any expressions. If neces-
sary they will be converted to type coded
arithmetic before the function is invoked
according to the rules stated under "Type
Conversion,"™ in Chapter 3. Also certain
conversions of arithmetic characteristics
will be performed before the function is

invoked, where this is explicitly defined
to be the case for particular functions
below. Where conversion to highest charac-

teristics is specified, these are deter-
mined by the 1rules for mixed charac-
teristics, as explained in Chapter 3,
applied to the arguments. Where reference
is made to an argument, it should be taken
to mean the converted argument when an
argumwent that is not coded arithmetic has
been specified. The magnitude of a complex
number is the positive square root of the
sum of the squares of the real and imag-
inary parts where this value has the base
and scale of the complex number and the
mode REAL.

Name Arguments and Function Value

ABS

Arguments: One is given.

Function value = absolute value of
argument, i.e., positive value of
real argument, positive magnitude
of complex. The mode is REAL.
Base, scale, and precision are
those of the argument, unless the
argument is fixed complex, in
which case the precision is
MIN (N,p+1) ,q) for an argument of
precision (p,q) -

Arguments: Two oOr more are given.
Complex arguments are not permit-
ted.

Function value = value of maximum
argument, converted to highest
characteristics of all arguments
specified. If the arguments are
FIXED of precisions (pP4,94) »
sz:qz):-'~l (?ngqn)l the FeSUlt‘
ing precision is
(MAX (P1seeesPn) MAX(dqseeerQn)) -

MIN
Arguments: Two Or more are given.
Complex arguments are not permit-
ted.

140

Function value = value of minimum
argument, converted to highest
characteristics of all arguments
specified. If the arguments are
FIXED of precisions (P1r91) »
'(leqz) recey (EngC.{n) , the Fesu;lt—
ing precision is
(MAX (P4seeesPn) HMAX(dqsee-,9n)) -

MOD
Arguments: two are given, x and y.
Base and scale of the arguments
are converted to the higher char-
acteristics of the pair. Complex
arguments are not permitted.
Function value = positive remainder
after division of x by y to yield
an integer quotient. The mode is
REAL; base and scale are those of
the converted arguments. Preci-
sion for FLOAT is the higher of
the precisions of the arguments,
and for FIXED is defined as fol-
lows:
Let the precision of x be
(p,q) and the precision of y
be (x,s) . The resulting
precision is
(MIN (N,r-s+u) ,MAX (q,S)) .

SIGN

Arguments: One is given. Complex
arguments are not permitted.

Function value = integer 1 if argu-
ment >0; = 0 if argument = 0; =
-1 if argument <0. The result is
fixed binary with default preci-
sion.

FIXED

Arguments: Three are given. The
second and third are optional
decimal integer constants speci-
fying the number of digits after
the decimal or binary point and
the scale factor of the result.
If omitted, the second argument
assumes a value specified by each
implementation, the third assumes
zero.

Function value = first argument
converted to fixed-point scale
with precision as specified but
base and mode unchanged.

FLOAT
Arguments: Two are given. The sec-
ond is an optional decimal inte-

ger constant specifying the pre-
cision of the result. If omit-
ted, a value specified by each

implementation will be assumed.

FLOOR

CEIL

TRUNC

BINARY

DECIMAL

Function value = first argument
converted to FLOAT scale with
precision as specified but base
and mode unchanged.

Arguments: One 1is given, x. 2
complex argument is not permit-
ted.

Function value = largest integer
not exceeding X. Base, scale,
and mode are those of the con-
verted argument. Precision of
result for x FIXED (p,q) is
(MIN (N,MAX (p~-g+1,1)) ,0)

Arguments: One is given, x. A
complex argument is not permit-
ted.

Function value = smallest integer
not exceeded by x. Base, scale,
and mode are those of the con-
verted argument. Precision of
result for x FIXED (p,q) is
(MIN (N,MAX (p-q+1,1)),0) .

Arguments: One 1is given, x. A
complex argument is not permit-
ted.

Function value = FLOOR (x) if x =
0, = CEIL (x) if x < 0. Base,
scale and mode are those of the
converted argument. Precision of
result for x FIXED (p,9) is
(MIN (N, MAX (p-q+1,1)) ,0) .

Arguments: Three are given. The
second and third are optional
decimal integer constants speci-
fying the binary precision of the
result. If the scale 1is FIXED,
all three are required; if the
scale is FLOAT, the third is not
required. If both the second and
third arguments are omitted, the
precision of the result 1is as
defined for base conversion in
Chapter 3.

Function value = first argument
converted to binary base with
scale and mode unchanged.

Arguments: Three are given. The
second and third are optional
decimal integer constants speci-
fying the decimal precision of
the result. If the scale is
FIXED, all three are required; if
the scale is FLOAT, the third is
not required. If both the second
and third arguments are omitted,
the precision of the result is as
defined for base conversion in
Chapter 3.

Function value = first argument
converted to decimal base with
scale and mode unchanged.

PRECISION

Arguments: Three are given. The
second and third are decimal
integer constants specifying the
precision of the result. If the
scale is FIXED, all three are
required; if the scale is FLOAT,
the third is not required.

Function value = £irst argument
converted to specified precision.
Base, scale, and mode are
unchanged.

Arguments: Four are given. The
third and fourth are decimal
integer constants specifying the
precision of the result. If the
scale of the result is FIXED, all
four are required; if the scale
is FLOAT, the fourth is not
required.

Function value = the sum of the
first and second arguments. Base
and scale of the result are the
higher of those of the first two
arguments. Precision is as spec-
ified.

MULTIPLY

Arguments: Four are given. The
third and fourth are decimal
integer constants specifying the
precision of the result. If the
scale of the result is FIXED, all
four are required; if +the scale
is FLOAT, the fourth 1is not
required.

Function value = the product of the
first and second arguments. Base
and scale of the result are the
higher of those of the first two
arguments. Precision is as spec-
ified.

Arguments: Four are given. The
third and fourth are decimal
integer constants specifying the
precision of the result. If the
scale of the result is FIXED, all
four are required; if the scale
is FLOAT, the fcurth is not

required.

Function value = the result of
dividing the first argument by
the second. Base and scale of

the result are the higher of
those of the first two arguments.
Precision is as specified.

Arguments: Two are given. The
first 1is the real part, the sec-

Appendix 1 141

ond is the imaginary part.

Function value = complex number
formed from the two arguments,
Base, scale, and precision of

result are the highest charac-
teristics of those of the argu-
ments.

REAL

Arguments: One 1is given, complex
value.

Function value = real part of argu-
ment. Base, scale, and precision
are unchanged.

IMAG

Arguments: One is given, complex
value.

Function value = imaginary part of
argument. Base, scale, mode, and
precision are unchanged.

CONJG

Arguments: One 1is given, complex
value.

Function value = conjugate of the
argument. Base, scale, mode, and

precision are unchanged.

FLOAT ARITHMETIC GENERIC FUNCTIONS

The following generic functions may have
as arguments any expression. This expres-
sion will be converted to floating point
before the function is invoked. The result
will be of scale FLOAT with the precision
and base of the converted argument. If the
mode of the argument is COMPLEX, the mode
of the result will be COMPLEX. The follow-
ing functions are defined only for REAL
arguments: LOG2, LOG10, ATAND, TAND, SIND,
COSD, ERF, ERFC, and ATAN with two argu-
ments.

The following table specifies the mean-
ing of these functions for real arguments:

142

Function Reference Function Value

EXP (x) exp (x)

LOG (x) 1n (x) . Error if x<0.

LOG10 (x) logio (x) « Exrror if

x<0.

LOG2 (%) log, (x) « Error if x<0.

ATAND (x) arctan (x) in degrees.

ATAN (x) arctan (x) in radians.

ABS (arctan (x)) <pir/2.

TAND (x) degree tan (x)

argument

TAN (x) radian tan (x)

argument

SIND (x) degree sin (x)

argument

SIN (x) radian sin (%)

argument

COSD (x) degree cos (X)

argument

COS (x) radian cos (x)

argument .

TANH (x) radian tanh (x)

argument

ERF (x) Two divided by square

root of pi, multi-
plied by the integral
from 0 to x of EXP
(-t2) with respect to
t.
SQRT (x) The positive square
root of x.
ERFC (x) 1 - ERF ()
COSH (x) radian cosh (x)
argument
SINH (x) radian sinh (%)
argument
ATANH (x) arctant (x). Frror if
ABS (x) 21.

ATAN (y, X) The arguments are converted to
the highest characteristics
of the pair. The value is:

arctan (y/x) ifx>0

pis2 if x=0, y>0

error if x=0, y=0

-pis/2 if x=0, y<o0

pitarctan (y/x) if x<0, y=0

-pit+arctan (y/x) if x<0, y<o0
ATAND (y,X) ATAN (y,x) in degrees, i.e.

(180/pi) *ATAN (y,x)

With complex mode many of these mathema-
tical functions are formally multiple-
valued, so the following table defines the
principal values which are returned by the
built-in functions. Here Z = x+iy is the
argument, and w = u+iv is the value.

Function Reference Function Value

EXP (2) exp (2)

LOG (2) Log (2) » where -pi
<v<pi. Error if Z=0.

ATAN (Z) (LOG ((1+2) 7 (1-2))) /2.
Error if Z= +1 or -1.

ATAN (z) iATANH (iZ) . Error if
Z= +1i or -1i.

SIN (2) Sin (2) =sin (x) cosh (y) +
icos (x) sinh (y)

COSs (2) cos (Z) =cos (x) cosh (y) -
isin (%) sinh (y)

SORT (2) Zx%* (1/2) o Either
REAL (Z) >0, or REAL (Z)
=0 and IMAC (Z) 20.

COSH (2) cosh (2) =cosh (x) cos (y) +
isinh (%) sin (y)

SINH (Z) sinh (2) =sinh (x) cos (y) +

icosh (x) sin (y)

STRING GENERIC FUNCTIONS

The generic functions 1listed in this
section may be used for manipulation of
strings. The arguments specified as

strings may be any expression. If the
argument is arithmetic, it will be convert-
ed to bit string (if binary base) or
character string (if decimal base) before
the function is invoked.

Name Arguments and Function Value

BIT

Arguments: Two are given. The sec-
ond is an optional decimal inte-
ger specifying the size of
result.

Function value = first argument
converted to type bit string. If
the size is unspecified, the size
of the result will be a function
of the first argument charac-
teristics (see "Type Conversion,"”
in Chapter 3).

CHAR

Arguments: Two are given. The sec-
ond is an optional decimal inte-
ger specifying the size of
result.

Function value = first argument
converted to type character
string. If the size is unspeci-
fied, the size of the result will
be a function of the first argu-
ment characteristics (see "Type
Conversion," in Chapter 3).

SUBSTR
Arguments: Three are given. The
first 4is a string, the second is
any expression having value i

INDEX

LENGTH

HIGH

LOW

REPEAT

when converted to integer, the
third is optionally any expres-
sion having value j when convert-
ed to integer.

The function value is defined as
follows:
Let k be the length of the first
argument.
If i>k, the wvalue is the null
string.

If i<k, the value is that subst-
ring beginning at the Mth char-
acter or bit of the first argu-
ment, and extending N charac-
ters or bits, where M and N are
defined by:

M=max (i,1)
=max 0,
(i, -1,

specified.
N=k-M+1, if j is not
fied.

min (j+min
k-M+1)), if j is

speci-

Arguments: Two are given. If both
arguments are bit strings, no
conversion occurs, otherwise con-

version to character string is
performed.
Function value = decimal integer

with implementation defined pre-
cision giving:

a. The index of the first ele-
ment of the first argument
such that starting at this

element the second argument
appears as a substring.

b. Zero, if no such index satis-
fying (a) exists, or if eith-
er of the arguments is of
zero length.

Arguments: One is given, a string.

Function value = fixed binary inte-
ger of default precision giving
current length of argument.

Arguments: One is given, a decimal
integer constant.

Function value = character string
of the length specified and com-
posed of the highest characters
of the data character set.

Arguments: One is given, a decimal
integer constant.

Function value = character string
of the length specified and com-
posed of the lowest characters of
the data character set.

Arguments: Two are given. The
first is a string and the second

a decimal integer constant n.
Appendix 1 143

Function value = string argument
concatenated with itself n times,
giving a total of n+1 terms in
the concatenation. If n is zero
or negative, the result is the
argument itself.

UNSPEC

Arguments: One is given.

Function value = bit string which
is the internal coded representa-
tion of the argument. The length
is an implementation defined
function of the argument charac-
teristics. If the argument is a
varying length string, the result
is adjusted to be just large
enough to hold the internal form
of the argument expression after
conversion to bit string.

BOOL

Arguments: Three are given, bit
string X, ¥, and W. W dis con-
verted 1if necessary, to a bit
string of 1length 4, n'n2n3n4.
This string defines which of the
16 possible boolean functions is
desired, in the manner implied
below.

Function value = bit string Z where
if X and Y are of different
lengths, the shorter is extended
with zeros, and 2 is of the
longer 1length. The following
table relates the jth bit of Z to
the jth bits of X and Y.

Y] Z3

nt

n=

n3

n4

(m oy e e e s Sy e
o

fo = o e e e e e o]
—

o e = o — e e - ——

e el e e

BUILT-IN FUNCTIONS FOR MANIPULATION OF
ARRAYS

The following built-in functions have
array expression arguments and return sca-
lar values. In the following functions X
is any array expression unless otherwise
specified.

Function
Reference Function Value
SUM (X) A scalar value equal to the

144

PROD (X)
ALL (X)

ANY (X)

POLY (X,Y)

A (M +

LBOUND (X, S)

HBOUND (X, S)
DIM (X,S)

N-M

sum of all the elements of
X. Precision, mode and
base are that of argument
elements. (The argument
is converted to arithmetic
FLOAT before the function
is invoked.)

As above but product.

The argument is converted to
bit string. The result is
a bit string of the length
(or max length if
variable) of the elements
of X. The ith bit of the
result is 1, if the ith
bits of all the elements
of X are 1. Otherwise 0.

As above, ith bit of the
result is 1 if any of the
ith bits of the elements
of X are 1. If all O,
then the result bit is 0.

POLY (A, X ; A (M:N) and
X(P:Q) are vectors.
Result is

J-1
(A M+J) * T[X (P+I))
I=0

If Q-P<N-M-1, then X (P+I) =
X(Q) for P+I>Q.

A scalar second operand X is
interpreted as a vector
with one element, X(1).
The function result is
then

N-M
TT A M+d) *X**xJ
J=0

The characteristics of the
result are the higher of
those of the arguments
(after conversion to
arithmetic type) except
for scale, which is always
FLOAT.

S 1is a scalar expression
which is converted to a
binary integer n, of
default precision. The
function value is an inte-
ger of default precision
giving the current lower
bound of the nth dimension
of X.

As above but higher bound.

S is as above. The function
value 1is a binary integer
n of default precision
giving the current extent
of the nth dimension of X.

NOTE: The functions LBOUND,
HBOUND, and DIM are not
defined if the argument X
is unallocated, if it has
less than n dimensions, or
if n<0.

SCAN (2,I, A is any array expression; 1
‘operator') is a decimal integer con-
stant. The third argument
may be any binary operator
in quotes. The function
value is defined by the
value of TEMP on exit from

the following loop:

TEMP = A (*,.e...,%, LBOUND (&,I),
¥, ceeeea,¥);

DO J = LBOUND (A,I) + 1 TO HBOUND

a,1);
TEMP = TEMP operator A (*,.....,%*,J,
¥, e0cee ¥ ;
END;
TEMP has dimensions N-1

where A has N. The bounds
of TEMP are the first (I -
1) and the last (N - I) of
A. TEMP has the base,
scale, mode and precision
of A if arithmetic, and
the length of elements of
A, if string.

ARRAY AND STRUCTURE BUILT-IN FUNCTIONS

All of the built-in functions listed
under "Arithmetic Generic Functions" and
"String Generic Functions"™ in this appendix
may have array or structure expressions as

arguments, except where decimal integer
constants are required. They yield an
array or structure of the same dimension

bounds or structuring as the argument--the
function being performed on each element.
The rules are the same as those for the
scalar functions.

CONDITION BUILT—-IN FUNCTIONS

The following built-in functions (with
no arguments) are available to allow inves-
tigation of interrupts arising from enabled
ON conditiorns. They may be referred to
only in ON units.

Function
Reference Function Value
ONPOINT An integer, being the value of

the I/0 buffer pointer when
the I/0 condition arose.

ONLOC A character string of variable
length, being the name of the
procedure in which the condi-
tion arose.

character string of variable
length, being the contents of
the field being processed
when the input condition
arose.
ONCHAR A character string of length 1,
being the character which
caused an input conversion
error.

binary integer of default
precision whose value depends
on a detected error. Each of
the following error categor-
ies has a set of contiguous
code values:

ONFIELD A

ONCODE A

I/0 errors

Conversion errors

Control program
errors

Built-in function
errors

OTHER BUILT-IN FUNCTIONS

Function

Reference Function Value

DATE Character string of length six
of the form YYMMDD, where YY
is year, MM is month, DD is
day.

TIME Character string of length nine

of the form HHMMSSTTT, where
HH is hours, MM is minutes,
SS 1is seconds, TTT is mil-
liseconds.
ALLOCATION (X)
X is a CONTROLLED major Struc-
ture or unsubscripted array
or scalar variable not in a
structure. The function
value is '1'B if storage has
been allocated for X and '0'B
if not.
(Filename)
The value of this function is a
decimal integer of precision
(n) , where n is implementa-
tion defined. It specifies
the current position of the
pointer relative to the start
of the current logical record
for the named file.
COUNT (Filename)

The value of this function is a
binary fixed-point integer of
default precision. It
returns a value that is the
number of scalar data items
transmitted during the last

POINT

Appendix 1 145

ROUND

read or write operation on
the specified file.

(Expression,

Decimal Integer Constant)

STRING

146

The expression may be scalar,

array, or structure. The
function value is the expres-
sion value rounded c¢n the
n'th digit after the point
where n is the value of the
integer. (Binary digits if
binary base, decimal if deci-
mal base.) If the expression
is of string type, the func-
tion value 1is the string
value unmodified. Floating
point rounding is a bias
removal rather than systemat-
ic rounding; the decimal
point is assumed at the left.
Base, scale, mode and preci-
sion of the value are those
of argument. For fixed-point
scale, digits after the
rounded digit are set to
zero.

(Structure Name)

The argument must be a packed

structure composed either of

all bit strings and numeric
fields of binary base, or
character strings and numeric
field of decimal base. The
function value is a string,
being the concatenation of
all the structure elements.
The argument must not be a
parameter.

EVENT (scalar event name)

This function will return the

value '0O'B OR '1'B, depending
on the current status of the
referenced event name (see
"Asynchronous Operations and
Tasks," in Chapter 6 and "The
WAIT Statement,” in Chapter
8) .

PRIORITY (scalar task name)

This function will return the

priority of the named task
relative to the priority of
the task in which the func-
tion is evaluated (see
"Asynchronous Operations and
Tasks,"™ in Chapter 6 and "The
WAIT Statement," in Chapter
8) .

DIGIT POINT AND SUBFIELD DELIMITING
CHARACTERS

9 Specifies that the associated field
position will contain any decimal
digit.

1 Specifies that the associated field
position contains a binary digit.

This character may not appear in a
picture with either 2 or 3.

2 Specifies that the associated field
position contains a binary digit,
being part of a binary value in 2's
complement notation. This character

may not appear 1in a picture with
either 1, 3, or S.

3 Specifies that the associated field
position contains a binary digit,

being part of a binary value in 1's
complemeni: notation. This character
may not appear in a picture with
either 1, 2, or S.

V Specifies that a decimal or binary point

should be assumed to appear at this
point in the associated field. 1t
does mnot specify a character in the
field.

K Specifies that the exponent subfield
should be assumed to follow the point
in the field associated with the K.
It does not specify a character in the
field.

E Specifies that the associated field
position will contain the letter E,
indicating the start of the exponent

subfield.

ZERO SUPPRESSION CHARACTERS

A leading zero in a numeric subfield is
a zero to the left of the actual occurrence

of the digits 1 to 9 in the subfield. The
leftmost of these 1latter digits and all
digits in the subfield following it, are

significant digits (including any zeros) .
Picture characters are provided for zero
suppression, leading zero suppression, and
the replacement of these zeros by blanks or
asterisks.

Z Specifies a conditional digit position.
If the associated field position
involves a leading zero it will be
represented in the field by a blank,
otherwise the digit will appear. The
character may not appear to the right
of 9 T I R or a drifting string in a

APPENDIX 2: PICTURE SPECIFICATION TABLES

subfield.
a subfield.

* Specifies a conditional digit position.
If the associated field position
involves a leading zero it will be
represented in the field by *, other-
wise the digits will appear. The
character may not appear to the right
of 9 T I R or drifting string in a
subfield. It may not appear with Z in
a subfield.

Y Specifies a conditional digit position.
If the associated field position
involves a zero (leading or otherwise)
it will be represented in the field by
a blank, if it involves a digit other
than zero that digit will appear.

It may not appear with * in

DRIFTING EDITING SYMBOLS

The following picture characters may be
static or drifting:

Character Name

S

+ sign characters
$ currency Symbol

The static use of these characters spe-
cifies that there is a field position where
a sign, a currency symbol, or a Dblank
always appears. The drifting use specifies
that 1leading zeros may be suppressed, and
the suppressed positions may contain
blanks. 1In this case, the vrightmost sup-
pressed position associated with the pic-
ture character will contain a sign, a
blank, or a dollar sign.

A drifting character is specified by
multiple use of that character in a picture
subfield. Thus, if a subfield contains one
dollar sign, it is interpreted as static;
if it contains more than one, as drifting.
The drifting character must be specified in
each position through which it may drift.

Drifting characters
strings. A string is a sequence of the
same drifting character, optionally con-
taining interspersed editing characters
comma (,), point (.), slash (/), or V or B.
Picture characters slash, comma, point, and
B following the last drifting symbol of the
string are considered part of the string.
However, a following V terminates the
string and is not part of it. A subfield

must appear 1in

Appendix 2 147

may only contain one drifting string. The
picture characters * and 2 may not appear
to the right of a drifting string in a
subfield.

The field position associated with the
character slash, comma, point, and B
appearing in a drifting string will contain
one of the following:

1. slash, comma, point, ~or blank if a
significant digit has appeared to the
left

2. the drifting symbol, if the next posi-
tion to the right contains the 1left-
most significant digit of the subfield

3. Dblank, if the 1leftwost significant
digit of the subfield is more than one
position to the right

If a drifting string contains the drift-
ing character n times, then the string is
associated with n - 1 conditional digit

positions. The field position associated
with the 1leftmost drifting character may
only contain the drifting character or

blank, never a digit. If a drifting string

is specified for a subfield, the other
potentially drifting characters may only
appear once to the left of the string in
the subfield, i.e., the other characters

represent a static sign or dollar sSign.

1f a drifting string contains a V, then
all digit positions of the subfield follow-
ing the V must also be part of the drifting
string.

If one of the characters Z or ¥ follows
the V in a subfield, ther all digit posi-
tions in the subfield following the V must
be Z or asterisk (¥).

In the case where all digit positions
after the V contain suppression characters,
suppression will only occur where all the
fraction digits are zero., The resulting
field will then be all blanks or asterisks.
If there are any significant fraction
digits they all will appear unsuppressed.

DRIFTING CHARACTERS

$ If this character appears more than once
in a subfield it is a drifting charac-
ter, otherwise it is a static charac-
ter. The static character specifies
that the character $ be placed in the
associated field position. The static
character must appear either to the
left of all digit positions in a
sukfield or to the right of all digit
positions in a subfield. See details
above for the drifting use of the

148

character.

Specifies the sign character + if the
field value 1is 20, otherwise -. The
character may be drifting or static.
The rules are identical to those for
the dollar sign.

Specifies the sign character + if the
field value is 2 to 0, otherwise
blank. The character may be drifting
or static. The rules are identical to
those for the dollar sign.

Specifies the sign character - if field
value is <0, otherwise blank. The
character may be drifting or static.
The rules are identical to those for
the dollar sign.

EDITING CHARACTER

B Specifies

that a blank appear in the
associated field position.

CONDITICNAL EDITING CHARACTERS

r

/ Exactly as

If the subfields in which the comma
appears involve no zero suppression,
that character specifies that a comma
will appear in the associated field
position. I1f =zero suppression is
involved the comma will appear only if
there is an unsuppressed digit to the
left of the comma position in the
subfield. If there is no such unsup-
pressed digit, the associated field
position will contain a character that
depends on the first digit
(conditional or otherwise) picture
character preceding the comma.

If the preceding character is an
asterisk the field position will con-
tain an asterisk.

If the preceding character is a drift-
ing sign or dollar sign the action
taken will be identical to that which
would have occurred if the picture
specification had contained the drift-
ing character in place of the comma.

If the preceding picture character is
anything other than the above, the
field position associated with the
comma will contain a blank.
comma, but a
appear when indicated.
Exactly as comma, but a
appear when indicated.

slash will

point will

SIGN CHARACTERS

Digit characters in numeric fields may
contain an overpunched sign. The following
picture characters are used to specify
overpunching:

T Specifies that the associated field
position will contain a digit over-
punched with the sign of the contain-
ing subfield.

I Specifies that the associated field
position will contain a digit over-
punched with + if the containing
subfield is =2 0; otherwise it will
contain the digit with no overpunch-

ing.

R Specifies that the associated field
position will contain a digit over-
punched with - if the containing sub-

field is < 0; otherwise it will con-
tain the digit with no overpunching.

The two character picture items CR and
DE wmay be used to reflect the sign of REAL
numeric fields.

CR Specifies that the associated field
positions will contain the letters CR
if the containing field value is <O0.
Ctherwise the positions will contain
two Dblanks. The characters CR may
appear only to the right of all digit
positions of a field.

DB As CR, except that a DB appears if the
containing field value is greater, or
equal to, zero.

SCALING FACTOR SPECIFICATICN

F Specifies that the optionally signed
decimal integer enclosed in parenthe-
ses following the picture character F
in the picture string is the scaling
factor (see "The PICTURE Attribute,”
in Chapter 44).

STERLING PICTURES

The following additional characters are
provided for use in sterling pictures.

8 Specifies the position of a shilling

digit in BSI single-character rep-
resentation.
7 Specifies the position of a pence digit

in BST single-character represen-
tation.

6 Specifies the position of a pence digit
in IBM single-character representa-
tion.

G Specifies the start of a sterling pic-
ture. It does not specify a character
in the numeric field.

H Specifies that +the associated field
position contains the shilling charac-
ter S.

P Specifies that the associated field
position contains the pence character
P.

PICTURES FOR CHARACTER STRINGS

A form of picture
character strings.
to indicate the form:

may be given for
The following are used

A The associated field position may
tain any alphabetic
blank.

X The associated field position may con-
tain any character.

9 The associated field position may con-
tain any decimal digit or blank. At
least one X or A must appear in the
picture.

con-
character or

Appendix 2 149

APPENDIX 3: ON-CONDITIONS

The ON-conditions are those conditions
that may be specified in the ON statement.
These conditions are also specified in
SIGNAL and REVERT statements.

For each condition name, the description
in this appendix includes the circumstances
under which the condition occurs, the
standard system action that would be taken
in the absence of programmer-specified
action, and, where applicable, the result.
("Standard system action"™ does not refer to
any operating system but to standard action
prescribed for the language.)

For the conditions OVERFLOW, UNDERFLOW,
ZERODIVIDE, CONVERSION, or FIXEDOVERFLOW,
an interrupt action will always take place
on occurrence of the condition unless the
occurrence is in a calculation lying within
the scope of a prefix specifying NOOVER-
FLOW, NOUNDERFLOW, NOZERODIVIEE, NOCONVER-
SION, or NOFIXEDOVERFLOW. For the condi-
tions SIZE, SUBSCRIPTRANGE, or CHECK
(identifier 1list), an interrupt will not
take place on occurrence of the condition
unless the occurrence is in a calculation
lying within the scope of a prefix speci-
fying the condition. (See "Prefixes,"™ in
Chapter 1).

For any other condition, whose name may
not be used in a prefix, an interrupt
always will result from the occurrence of
the condition.

CLASSIFICATION OF CONDITICONS

The ON-conditions are classified as fol-

lows: computational conditions,
input/output conditions, program-checkout
conditions, programmer-named conditions,

and system-action conditioms.

The computational conditions are asso-
ciated with data handling, expression
evaluation, and computation.

The input/output conditions are asso-
ciated with data transmission.

The program-checkout conditions facili-

tate debugging of programs.

The programmer—-named conditions permit
the programmer to use conditions of his own
naming. These conditions are raised only
by a SIGNAL statement.

150

The system-action conditions provide
facilities to the programmer to extend the
standard system action taken after the
occurrence of a condition or at the comple-
tion of a program.

COMPUTATIONAL CONDITIONS

CONVERSION: fThis condition is raised
whenever an illegal internal conversion is
attempted on character string data. The
condition will be raised for such errors as
characters other than 0 or 1 in conversion
to bit string, characters not permitted in

conversion to numeric field, or illegal
characters in conversion to arithmetic.
The CONVERSION condition is analogous to

the EDIT condition for input/output.

Result: Undefined.

Standard system action: Comment and raise

the ERROR condition.

FIXEDOVERFLOW: This condition occurs dur-
ing fixed-point arithmetic operations if
the results of these operations exceed N,
the maximum field width as defined by the
implementation. See SIZE for a related
condition that occurs on assignment.

Result: Truncation on the left to size N.
Standard system action: Comment and con-
tinue.

OVERFLOW: This condition cccurs when the

exponent of a floating-point number exceeds
the permitted maximum, as defined by the
implementation.

In some implementations, +the condition
may be detected by hardware interrupt, in
others by special coding.

Result: Maximum positive value.

Standard system action: Comment and raise

the ERROR condition.

SIZE:
conversions
differing bases,
The condition arises
assigned tc a data
high-order bits or digits. The error
situations are similar to those 1listed
under the input/output condition FIELDOVER-
FLOW. The string assignments, analogous to

This condition is raised by internal
between data types, or between
scales, or precisions.
when a value is
iter, with a loss of

item 1 under "Input" and item 1 under
"Output®™ (see "Input/Output Conditions"™ in
this appendix) of FIELDOVERFLOW, do not

raise the SIZE condition.
ments analogous to the other listed
tions do raise the SIZE condition.

However, assign-
situa-

The SIZE condition should be distingu-
ished from FIXEDOVERFLOW that occurs during
arithmetic calculations. A value too large
for the field to which it is assigned will
raise a SIZE condition on assignment,
regardless of whether there was a FIXEDOV-
ERFLOW in the calculation of the value.
FIXEDOVERFLOW depends upon the size of
fixed-point numbers allowed in the implem-
entation. SIZE depends upon the declared

is illegal for an output editing operation.
For example, characters other than 0 or 1
when the 1list item 1is a bit string, or
characters not permitted by the PICTURE for

a numeric field (for both input and
output), or an illegal character in an
arithmetic constant.

Standard system action: Comment and raise

the ERROR condition.

ENDFILE (filename) : This condition is
caused by an attempt to read past a file
delimiter from the specified file.

Standard system action: Comment and raise

size of the item of data receiving a value.

Result: Modulo assignment for fixed-point;
other assignments are undefined.
raise

Standard system action: Comment and

the ERROR condition.

UNDERFLOW: This condition occurs when the
exponent of a floating-point number is
smaller +than the permitted minimum, as

defined by the implementation.

The condition does not occur when equal
numbers are subtracted (often call signifi-
cance error) .

In some implementations, the condition
may be detected by hardware interrupt, in
others by special coding.

Result: Smallest positive non-zero value.

Standard system action: Comment and con-

tinue execution.

ZERODIVIDE: This condition occurs on an
attempt to divide by zero. The condition
does not distinguish between fixed-point
and floating-point division; either can
cause it.

In some implementations, the condition
may be detected by hardware interrupt, in
others by special coding.

Result: Undefined.

Standard system action: Comment and raise

the ERROR condition.

INPUT/QUTPUT CONDITIONS

EDIT (filename) : This condition is caused
by an 1illegal character in the input data
from a specified file, or a character that

the ERROR condition.
ENDGROUP (filename) : This condition is
caused by an attempt to read past a group-
delimiter from the specified file. The
file is positioned past the group mark.

Standard system action: Comment and con-
tinue.
ENDRECORD (filename) : This condition is

caused by an illegal attempt to read past a
record delimiter from the specified file.
The file position is undefined.

Standard system action: Comment and raise
the ERROR condition.
FIELDOVERFLOW (filename) : This condition

can be raised for input and output opera-
tions in which the source value is too
large for the destination.
Input: The condition 1is raised in the
following circumstances:

1. For a string list item—--if the string
is too long for the maximum (varying)
or actual (fixed) length of the string
list item.

2. For a numeric field list item—-if the
input value cannot be edited according
to the PICTURE for the numeric field
list item, or according to the PICTURE
format item. These conditions exclude
those covered by the EDIT condition.

3. For an arithmetic list jitem—-

a. If the input value exceeds the

implementation defined floating-
point number range (for a
floating-point list item) .
Note: The condition is not raised
if the precision of the list item
is insufficient to hold all given
digits of the input value.

b. If the input value (after insigni-
ficant leading zeros are removed)
exceeds the maximum value that the
destination field can hold.

Digits on the right end are truncated

without notice.

Appendix 3 151

Cutput: The condition is raised if:
1. The 1length of a string 1list item

exceeds the field width of the format.
2. The pictured field cannot hold the
value of the list item.

3. The arithmetic wvalue in a string
(e.g., 1.25 E95) exceeds the floating-
point number range for an arithmetic
format.

4, The arithmetic value of a list item

exceeds the maximum value that can be
accommodated in the field designated
by the format.

Standard_ System Action: The system action
for output is to f£ill the output field with
asterisks and continue; for input, the
system action is to comment and continue.

IDENT (filename) : This condition is raised
if the OPEN or CLOSE IDENT option does not
compare with the label on the designated
file. This applies only to the IDENT
option form that specifies both data 1ist
and format list.

Standard system action: Comment and return
from the ON unit. Frocessing will
continue, with the unmatched label ignored.

This condition is caused
identifier on data-

NAME (filename) :
by an unrecognizable
directed input.

Standard system action: Comment and raise

the ERROR condition.

ACCESS (filename) : This condition is
raised whenever a programming error pre-
vents successful access of a record from

the designated file. The particular exror
may be determined by means of the ONCODE
built-in function. If a return is made
from the ON unit, the ERROR condition is
raised.

raise

Standard system action: Comment and

the ERROR condition.

condition is
exrror on the

TRANSMIT (filename): This
caused by a transmission
specified file.

Standard system action: Comment and retry,
and if unsuccessful after a standard number
of retries (defined by the implementation),
comment and raise the ERROR condition. A
READ transmission error may be accepted by
a return from the ON unit; a WRITE trans-
mission error cannot be accepted (a return
from the ON unit will xaise the ERROR
condition) .

UNDEFINEDFILE (filename) : This condition is
raised when the specified file 1is not
available.

152

Standard system action: Comment and raise

the ERROR condition.

PROGRAM CHECKOUT CONDITIONS

SUBSCRIPTRANGE: This condition occurs when
a subscript is evaluated and found to lie
outside its specified bounds.

The condition does
between values that are
values that are too small.

not distinguish
too large and

Result: Undefined.

Standard system action: Comment and raise

the ERROR condition.

CHECK (identifier list): A statement prefix

specifying this condition may only be
applied to PROCEDURE or BEGIN statements.

In the identifier list, each identifier
is one of the following:

a statement label

an unsubscripted variable name rep-
resenting a scalar, array, struc-
ture, or label variable

an entry label

Each item in the
enabled independently.

list is, in effect,

None of the conditions that follow (up
to but mnot including "Programmer-Named
Conditions™) will be raised in a prologue.

Statement Label: For a statement-label
identifier the condition is raised prior to
the execution of the statement to which the
label is prefixed. If the label is pre-
fixed to a non-executable statement, no
condition will be raised.

Variables: For identifiers representing
variables, the condition is raised whenever
the value of the variable, or any genera-
tion of any part of the variable, may have
been changed by any statement within the
scope of the prefix.

The condition will be raised by the
explicit reference to an identifier ID in
the circumstances 1listed below, where ID
is:

an identifier in the list

an identifier representing a structure
or element contained by, or con-
taining, an identifier in the 1list

The reference to ID may be subscripted
or gqualified.

The cocndition will be raised for ID if:

1. ID appears on the left hand side of an

assignment statement. (This applies
to assignment BY NAME even if the
identifier mentioned does not appear

in the final expansion of the state-
ment.)

2. ID is set as a result of a pseudo-
variable or pseudo-array appearing on
the left hand side of an assignment.

3. ID appears as the controlled variable
of a DO statement (or ID is set as a
result of a pseudo-variable appearing
as the controlled variable of a DO
loor) .

4. ID appears in a data list on a READ or
GET statement.

5. 1ID has the SYMBOL attribute and a
data-directed READ or GET statement is
executed.

6. ID appears as the second argument of a
DISPLAY statement.

7. ID appears as a
WRITE statement.

8. 1ID is passed as an
programmer-defined procedure,
dunmy is created.

9. ID appears on a RESTORE statement.

STRING option con a

argument to a
and no

However, the condition is NCT raised
under any of the following circumstances:

1« If the value of a variable defined
upon ID or upon part of ID changes
value in any of the ways described
above.

2. If the value of a variable upon which
ID is defined changes value.

3. If a parameter which represents ID
changes value.

4. 1If ID appears in a GO TO or RETURN
statement or any statement which

invclves the execution of a GO TO or
RETURN statement.

Each condition 1is raised after the
statement which caused it to be raised has
been executed. If the statement has a task
option, the condition 1is raised when the
attaching task regains control. If the
statement is a DO statement, the condition
is raised each time control proceeds
sequentially to the statement following the
DO statement. If the DO specifies itera-
tion, the condition 1is raised once for
every iteration.

Nc statement other than a DO statement
can cause a condition to ke raised more
than once for the same identifier. If a
statement causes a CHECK condition to be
raised for several identifiers, then the
conditions will be raised in the left-to-
right crder of appearance of the
identifiers in the statement.

Entry Labels: For an entry 1label, the

Result:

condition is raised prior to each invoca-
tion of the entry label. The condition is
raised only if the entry label is invoked

by the name given in the ON list.

Continue. The statement is exe-

cuted narmally.

Standard system action: If the identifier

is a statement label or an entry label, the
label will be printed on a debugging file.

If the identifier represents data, the
identifier and its new value will be print-

ed on a debugging file in the format of
data-directed output.

PROGRAMMER-NAMED CONDITIONS

CONDITION (identifier): This condition is

always enabled and may not appear in a
condition prefix. The identifier is speci-
fied by the programmer, and is EXTERNAL.
The condition is raised by the execution of
a SIGNAL statement having the same iden-
tifier.

Standard system action: Comment and
tinue.

con-

SYSTEM ACTICN CONDITIONS

The following conditions are always ena-

bled and may not appear in a condition
prefix.
FINISd: This condition is raised immedi-

ately before
executing a

the major task terminates by
STOP, RETURN, END, or EXIT

statement. The ON unit is executed as part
of the task in which the interrupt takes
place.

Standard system action: Terminate the

major taske.

ERROR: This condition is raised when a
major task 1is forced to terminate because
of some error situation.

raise

Standard system action: Comment and

the FINISH condition.

Appendix 3 153

APPENDIX 4: PERMISSIBLE KEYWORD ABBREVIATIONS

Abbreviations are provided for certain
keywords. The abbreviations themselves are
keywords and will be recognized as synono-
mous in every respect with the full key-
words. The abbreviated keywords are shown
to the right of the full keywords in the
following list.

PROCEDURE PROC
DECLARE DCL
DECIMAL DEC
BINARY BIN
COMPLEX CPLX
CHARACTER CHAR
VARYING VAR
POSITION POS

154

INITIAL
INTERNAL
EXTERNAL
AUTOMATIC
CONTROLLED
DEFINED
ABNORMAL
PRECISION
OVERFLOW
UNDERFLOW
FIXEDOVERFLOW
SUBSCRIPTRANGE
ZERODIVIDE
COMVERSION
ENVIRONMENT
PICTURE

INIT
INT
EXT
AUTO
CIL
DEF
ABNL
PREC
OFL
UFL
FOFL
SUBRG
ZDIV
CONV

PIC

The characters that make up the
}8-character set are same as those that
nmake up 60-character set except for certain
restrictions.

The following characters are not

included:
Percent %
Colon H
Not 1
Or |
And &
Greater Than >
Less Than <
Break character -
Semicolon H
Number sign #
Commercial At sign a

“w

Question mark

The following three characters are

replaced as indicated:

60-Character Set 48-Character Set

e e
N
N

The two periods which replace the colon
must be immediately preceded by a blank if
the preceding character is a period.

The following operators, as used in the
60-character, set are replaced in the

APPENDIX 5: THE 48-CHARACTER SET

U8-character set by alphabetic operators as
indicated:

60-Character Set 48-Character Set

> GT
>= GE
.= NE
<= LE
< LT
. NOT
| OR
i3 AND
I CAT

The above nine words are "reserved" in
the U48-character set; that is, they must
not be used as programmer-specified
identifiers.

In each case, one or more blanks must
immediately precede the alphabetic operator
if the preceding character would otherwise
be alphameric, and one or more blanks must
immediately follow if the following charac-
ter would otherwise be alphameric. Thus,
to indicate the comparison of the variables
A6 and BQ2Y for inequality, one would write
A6 NE BQ2Y, but not A6NEBQ2Y, A€ NEBQ2Y, or
A6NE BQ2Y. As the equal symbol is wusable,
however, the comparison of these two varia-
bles for equality may be written A6=BQ2Y.

The break character, commercial at-sign,
and number sign are not used and conse-
quently may not be employed in identifiers.

The default segment delimiter for data-
directed transmission is a single semicolon
regardless of which character set is used;
if no hardware representation of a
semicolon is available, the programrer must
supply an explicit segment delimiter.

Appendix 5 155

(If more than one page number is given, the primary discussion is listed first.)

abbreviation of Kkeywords eceeeeceecesee.. 154
ABNORMAL attribute .c.c.ceecccccseas.. 49,138
abnormality eeceeccsceconcencocnsses 138,49
defaults fOr .eececcacecnesasees 50,62,63
access attributes ..ccecevccsscsnccssaas 59
activation;
see blocks, activation
ACTIVITY OpPtion sceceescecccaccossccaca 115
ALIGNED attribute scecececcccnccscscccsss 53
ALLOCATE statement .ccececeecececcscascsccces 937
allocation ecececenscnscccescsascancscas 72,10
also see storage class attributes
Of parameters .c.ccceececcccccccescesss 136
in tasksS cveccsccecccaccsecsss 75,137,138
teSt fOY eceececccscccanccscaaasnass 145,98
ALLOCATION built-in function ...cceace.. 145
AYQUMENLS ceeeencoscccsacanaess 68,65,69,134
AUNMY ecececcccccccnccaccccaanscnss 70,130
evaluation of subscriptsS ..eecscee.. 134
1iSt eeececesccccccccscaccaancacncnnsaas 65
arithmetic built-in functionsce... 140
arithmetic data .cceeececcccsccacccccanes 22
attributes asveeeececacncaccacscssacass U3
arithmetic operations ...ecececececsccsceas 31
AYYAY coececesscsscccccscccccnsncscccsss 25,10
2llocation .seececcccccsccscccsccsansses 53
ASSIigNMENt cecccececccscssccccccasas 98,101
DOUNAS ceeeecccaccsvcccscccasacass 25,U8
also see asterisks
Cross section Of .c..ceveeccccassncaaas 27
defining ceeceecccccsccccccescncscaacas 55
AimensionNS seeccecncsscoscccnaasces 25,26
expressions;
See expressions
manipulation cececececccccsancccccsse 144
of statement l1abels .s.cececaceccaccesas 29
Of sStructuYesS ceececcecccascscncasssaanaas 26
assignment
AYYAY eenceccscsccancsaccsccssacas 938,101
SCAlAY eveecsasscscsncscssscsccnccass 98
statement ..c.ccccsecaccccncscccsss 38,95
evaluation of ceeccecceccccccscccness 99
statement-label ..ccaccccccccccaaa 98,99
StriINg eceecececcacsacoscccacances 99,101
SETUCLUYE cecacecoccscnacnsccaans 98,100
asterisks
for bounds or length 136,48,97,98
for cross sections of arrays ee.eceee. 27
with INITIAL attribute ..cceeeeeceae 56,57
with USES or SETS attributesS .ececeeae.. 50
asynchronous operations .ccececececcececaces 74
AT option (with PAGE statement) ... 116,117
attached task .cecececcececcccaseasss 75,11,137
attaching task ceceececcccncesesas 75,111,137
attributes eeecececsccccceccaccess 38,U3,17,11
also see individual attribute
defaults fOr eeeeecacecnsensceccsae 62,9
also see individual attribute
factoring Of ceeecececcecocaccccancaas 39
with macro DECLARE statement 131
AUTOMATIC attributes;
see allocation, storage class attributes

DASE teeesccccssaancncsocsssccncnsaas 22,U3
base identifi€r .eeecececcsscscacsnsssanass Ol
BEGIN statement ..c.ceeccecccceascass 102,19
BINARY attribute;

see scale

156

BIT;
see string attributes

bit-string data ceecececcecccccnccancasse 23

bit-string operationscccecececeecceses 33

blanks
USE Of ceevesccccscnaccccncsccnccanaa 17
with qualified Names cveecececcceccaes 27
with structure level numbers 25
in picture specification ..cccccc... 148
trailing, in input fields ..ccceccc.. 62

D1OCKS ecececesecccancccsccssccanassass 19,10
activation Of ceeeececcaccscccanannaae 71
begin cevececcccsccecccacsocsccnsacsas 19
nested c.cceiceacccnceccccssasacccscas 20
PrOoCEAUYE cecesscecccanacccsccasacccnas 19
termination Of .ceccececeeceees 71,109,122

bounds;

see array

overriding DECLARE statement 97
of parameters ...c.cecceecccacccccencas 136

BUILTIN attribute .ceececcecececccssces 52,67

built-in functions ..ceeceececececee.. 140,17,66

BY @nd TO ceecceccccsccaccaccscanaccsesns 105

BY NAME Option cceceececccacccacceaees 98,99

CALL option ceeeecececeesa.. 19,62,65,67,116
CALL statement .e.ccecceccecccccccncccensases 102
with FETCH statement ...ccccceeceec.. 108
for creating taskS ccceccecccaccoccess 715
CHARACTER;
see string attributes
character string
Aata ceccecccccacscccccscceccccnnnens 22
PiCctUresS ceieevcccecncscccccacaccnsa 1UI
also see string
characters
alphabetiC seeeecacccccccnancaccaaanss 11U
AlphameriC ceeececccccccccscscacccccas 14
data character set ..icieeceacceceess 16
48-character Set eceecceeccccecccccossaee 15
language character set .cecececeaccess 14
60-character Set .ceccecececcccacccceas 11U
Special ceeccecccccccancacsssscnanses 14
CLOSE statement ...cccececcecccacaccnsess 103
coded arithmetic data ceceeccncececannss 22
collating SEQUENCE ccevcesccecccscanscas 16
COMMENE ceesecccccacssccccsccacccnsacceces 17
comparison OperatioONsS .ccceceaceccccccccses 34
compile-time activity eceecececececce.. 131,11
COMPLEX attribute;
see mode
COMPLEX pseudo-variablecccccascecacecs 96
composite operand .c.ccscecececccccccasnces 37
compound statementcccccccccccscecs 18
concatenation operations ...ccecececeascsecs 3U
condition prefiXxes .caececeeccccccccncecees 18
conditions;
see ON-conditiomns
CONSECUTIVE attributecccececeaccess 59
CONStANES cececececcvnnccnanccacncnnaccosns 23
Dit-String ceceeecescececccecccccncaes 24
character-string coeeecececcceccccecccsas 24
fixed-point binary eceecececeecececaceses 23
fixed-point decimal ccceceeccsaaceccas 23
floating-point binary ..cececcecececececeses 23
floating-point decimalcececeeeas 23
imaginary ecceeecccnecscacsccccaaccaces 24
real arithmetic c.ucecaeerccacaccacan 23

Ay

statement-1abel cceecccccccccccsscacs 24
SteXling ceeceecescccccsoscsscssscccsacses 23
contained in ...ececececaccccecncacacaces 20

contextual declarations .c.ceeccaaa. eeeacs UO
also see declarations
control

modification Of ceeececcccssanascnces 96
PYXOJYaAM s cececasascccscnccaccascnaasnsncse 11
return of secsescscsescas 122,66,67
sequence Of cccececccecccccccancacase 95
statements .cceceececcceccccsscnncccccaa 95

CONTROLLED attribute .cecceececccassnaes 53,97

also see storage

CONVErSiON ceeesacssccsccccccsccnsssascsse 33
arithmetic base and scale ceeececases 33
arithmetic mode cescsscansssass 33
INteger ceeceecececccceccnsenssoasaccans 33
in eXpreSSiONnS eccecccsccecccsasccacna 31
tYPE coeceeccocscceccncscacncsccnnaacs 3l
with RETURN statement .cceeecececececeses 122

COUNT built-in function 145,120,130

COUNT OPtiON esececccccccccaccasass 120,130

CROSS OptiON ecccaseseascacsccescecnsosss 120,129

cross sections;

see array
crossing of records boundaries 120,129
current file eesscescascscaccsccssa 81

data
aggregates ..cceececcecccceccccacasanas 25
ArithmeticC ceeeececceecccascscssaceaacsce 22
Dit=StYINg sececeececccccccscccccscacs 23
character Set .eececscccsscsccsaccnca 10
character-string cceeceececeecceacecaccaee 22
coded arithmeticC eceececececccccccscess 22
description ceeeececescecccccecssassesa 38
€lementS cececcccccsccsccossncscssccccas 22
1iSt ceeceeccsascsccccscccacsansacsses 82
NUMEYIC teoeeoccsucssscssccscssscssosss 22
specification cceececcccecceccacenasas 82
repetitive specification for 82
StatementsS cesesccccscccccccccsaccses 93
statement-label ccccceacaans eeeees 23,29
transSmiSSiON eececcecscssscscsscscascas 80
statements ..ccecevecccccccccsacsass 93
LYPES ceveeccecocsccccscccnscsacccnne 22
default fOYr ceeececcccacccccnccaes U5,62
data~directed transmisSSion .c.ceceeceessees 80
data specification for ..ceecevecece.. 85
iNPUL teeceeececacocsscncscccnccacscce 86
length of field ceeecececececcccasnces 87
OULPUL ceecececeveccccccccccccacsnaas 87
DECIMAL attribute;
see base
declaratiONS ececeececsccccsssssscssssscceccss 38
CONteXtUal ceeccescccsccsnsnnccsnsans U0
eXPlicCit ceeeccccccccccceacccncasacass 38
exXternadl ececceeccccscccccsscsccacccacce U1
Implicit ceeeacceaceaccccccncncnncass U1
MILItIPle ceceececeecccccccsccacnasnsnass U1
SCOPE Of ceeeevocsccacssccsnasascacccaas U1
DECLARE statement ececececcececcccsasccssceses 38
default;
see attributes
DEFINED attribute .cceececececcccccesseces DU
defined ON ceceeeeccccccccsssasasssccass Ol
DELAY Statement ecceecsccesccccccscccsccas 104
DELETE statement ..cceeceecccececcccacees 104

delimiters .cceececccssccccccccccaccaaas 195
descendence Of bDloCKS ceeeceeccconcncaceces 71
dimension attribUte ..ceecceccecccccccaaas U8

with ALLOCATE statement ..cccecececccaa 97
DIRECT attribuUte .ccacececceccccsnccscsses 59
DISPLAY statement ..cecceececececeacaass 105
DO GYOUPS ecesesccsacsscccsccssssvesss 19,105
DO statement s.cceececceacceccescaccacaass 105
DOWN specification ec.cececececcecnccces eees 126

editing;
see PICTURE attribute
SYMDOLS cecacecscccccoscceasncacsass 147,148
Arifting eceeceeccsccsccccacaanccacess 147
ELSE ClaUSEeS cecevcccsscscoccccncccncans 111
nesting of ceeeecececceccccccccccanes 111
ENAD1E cceecccccccncasccanscscnncsonceas 10
encompassing bloCKS .ceececececncecncaes 72
END statement eceeececcccccccscscscsccas 107
USE Of eecececsccscccccocsassccsnconnce 21
ENTRY attributeccecceccccccncccacaes 51
declaration Of eeacececcccancaasas 40,51
USE Of ceeecccaccccacaccssnsassses 09,134
ENLYY NAME ceeeeceoscncacnscacesasas 18,20,40
AttribUtesS ceecenceccccoccccccoassscee 51
default fOr ceeeceececccscsccccccnsces 51
with IDENT Option eeeceecececececessss 104,115
passing arguments tO ..cceeccecccccecs 69
required for PROCEDURE statement ... 118
entry point
pPrimary eecee.. teecesccscccssccccsccce 20
SeCONAAYY ceceecacoacncecescssces 20,107
ENTRY statement ecccecececcncecscccecass 107
evaluation
of argument SULSCriptS ceeceececececaecs 134
in array assignment ec.ccccecsccescees 99
of assignment statement ceeeaces 99
Of eXPressSionsS cecececeececceccccacnces 37
EVENT
built-in function eccecececcecccoccs.s 146
OPLiON ceeeecccecansscocccssacsssas 75,102
pseudo-variable .c.ceececcceccccccacasss 97
event NamME ceeeeecccsccccccccessascssnas 30
EXIT statement .c...eceecececececcccaaa. 108,71
explicit declarations;
see declarations
exponentiation ceeecececccceccesccccccaas 32
EXPYeSSiONS ceeceececoscanconccsnccnaannas 31
AYTAY eceecccccsscssccaccscccscscseasnscss 35
as bounds or length .eieceecceceacss 136
evaluation of .c..cecceccccccccacccnces 37
SCAlAY cceevececccccncnccscsnscansnnacs 31
SErUCtUYE ceeececacccccccccnncccanacae 30
extended values on assignment ...cce.... 99
EXTERNAL attribute ceceeccecccscseasaas 52,41
external declarationsS cceeeccecnccascscsss U1
external NAMES .eceececcsccccsascaaas 20,02,62
SCOPE Of ceececececsccoccccccncassccansss Ul
external procedure ceecen eeacesss 20

factoring
of attributescecceccccccccccacneses 39
Of OptionsS .ceeecececccecscnccaaaaaas 103
FETCH statement ccccecececaccccecscccnsss 108
relationship with CALL statement .. 108
£il€ cececccccecccscsccaccscnccncssasces 80
attribUtesS ceeececsccscescascaccaes 58,110
ClOSINgG veeeececccccccscaccnnaaneass 103

Index 157

CONAitioNnsS seeeecceceansscceansssaccsaa 151
Current ..cceceecccccscccansccsscscecss 91
NAMES ceeesocsccscsssscnccasssss 30,58,63
OPENING teeececaccecccccccsocancsecs 1104
preparation statements ...cceececceeess 93
specification ceeevecccccccescccnssss 959
FILE attribute cveccececccccccncccacnscccss 598
FILE option .. 111,114,115,116,119, 124,125,
eescsescssccsecscscsassssssaccesces 126,127,129
FIXED attribute;
see scale
fixed-point;
see constants, precision, variables
FLOAT attribute;
see scale
floating—-point;
see constants, precision, variables
FOOT OPtiON cceceeccscccscccscccnnsnsnnss 116
format
of data-directed output ..c.cceccecccess 87
of list-directed I/0 ceeeeececassss 83,84
Of reCoOrds .cecececcecccssccconcscccacsss 8U
format-directed data specification 88
format-directed transmisSsion eeceececeecs. 80
format itemS .ccecevecccccccccccnnssssass 89
CONtYOl ceeeeccoseascccccacssancnsanece 92
external mOde .c.ceceececcccccscsccnses 89
dat@ secaccesccccscccccscssccccccsccscss 89
internal MOAE esveesccccccasssasasceasce 91
YEMOLE caeecccccecccoccsscsssansssoaass I3
format 1list ecececeeeecse.. 88,103,108,115,117
FORMAT statement ...c.ceeecececcscccecccass 108
label required fOr cecevececceacesss 108
U8-character sSet ...cecceceacecsccssss 155,15
FREE statement ..ccececcccecccsscesccess 108
FROM OptioNn .ceceescscccccssccscncsssess 130
fUNCtioNn ececececccecscccccccccscscnsnasasaes 65
built=in ceceecceccasssacaceaecs 952,66,140
JENEYXIC ceceeosveccacascccscssnsasancass 66
ProCeAUYe ceecececcesccnccscsasccsncsss 606
termination Of .ccecececccsaccccss 122
refeYencCe ceeceeescecccscccesncsscssnce 66

GENERIC attribute .c.ceeceecccccsscseses 51,66
generic functionsS .ceceececcecccccncnnces 06
arguments of the reference 51,66
GET statement c.ccecescccccccsscccscess 109
with current file cc.ccececccccscscas 81
with procedure-directed transmission 81
GIVING OPtiONn sececsecsscccccscasssnceass 126
GO TO statement ceececccecccceccccnceece 109
JYOUPS ccecacccaaaccccacscccsssosonccsecce 19
DO GYOUPS cecessccssccssccnnsasss 19,105
Of I/0 fileS eeceencecccscnssssss 80,110
single statement .cccececcccccccccense 19
GROUP statement .cceccececccccccccscscseccss 110

HEAD OPtiON cecececcacecaccscccascccses 116
heading statements ..cccececccccceccceess 19
HOLD OptiOn ccecececcsecscsacncensecees 120,129

IDENT OPtiONn seececececccccccseesses 104,115
identifiers .ieieccecesccceccscsccscccncas 16
attributes Of cccecececccscecccccecnccess 38
length Of ccicceeeccccccnccnssccacaas 16
statement 1abelsS cccceccescecocanncaase 16
KeyWwordsS ceceecececcaceccscccnccccacee 16
IF statement ...cceeccecscosccccccccccces 111

158

IMAG pseudo-variable ceeececccccscccnses 96
imaginary NUMbErS ceecececccacscccccsccsss 24U
also see mode ’
implicit declarations;
see declarations
INDEXED attribute .cecececccrvecccncccases 959
infix operators;
see operators
INITIAL attribute cecscececccecnceeess 56,29
rules with ALLOCATE statement 98
initial value for statement-label
AYTAYS ceececosocscscccccsasscscnccsece 29
INOUT attribute ecvecececescccsccecaass 59,114
INPUT attribute ecveeecececceancccececeeces 59,114
input/outpuUt .ceeevecoescscsccscasccanscess 80
statementsS ceceecececccccccecccccecnecs I3
INTERNAL attribute ceeeceacccssccccscsces 52
internal Name .cesceccccccccsvcancccsaces U2
internal procedUre ...cccecececcecccscscscss 20
internal tO c.cecesccccscessscnscascnccas 20
interleaving esceececcecccncecccsassassees 28
interrupt ..ecceeccsecscsceece-s 75,18,114,150
SyStem .cccecececsccccacceasas 77,114,150
iteration ceceeccescaccccscsscescancncss 105
factOr ceceeescascccacenassnaces H6,2U4,88

KEY option eececececececesss 94,59,120,129,130
KEYLENGTH attribute .ceeveeccececccccccsess 61
KeyWord eceeececescccencccessccccacsascscs 16
abbreviations Oof ...ccececcccacacas. 154
Separating ecececececccecensccccscccnccccees 17
KNOWN ccceccecsncsncccsocvcnccncncssanssnses U3

label ceececcecnascavescsscsccsassncccsns 18
also see statement label
required for FORMAT statement 108
LABEL attrinute .eeeeeenwccccacacacccneces U7
LAYOUT statement .cccececcecccccccscsnscees 111
length
data-directed data fieldS .eccececceeea 87
format-directed data fields .eceeeee. 89
identifi€rs ceeeeceesocecsecccaseasacees 16
KEYS ceaceccecceccnccncncnnccnncnncas 01
list-directed data f£ieldS .eeescssc.. 8U
overriding DECLARE statement ..e.ceee. 97
ParametersS ceececececcsceccccessccccsses 136
StringsS eceeececcecccccncccoccnccscsccesas 47
level NUMDErS ceeacecesvsccaccacenses 295,63
also see structures
optional blank ceecseveesccccsccscscas 25
LIKE attribute .ceceecccvescccsncsccncecee D8
with DEFINED attribute ...ccceceaces. 5S4
list-directed
data specification .seecccacscscsssec. 83
INPUL teceicecocroscacvonsnssoccancsnans 83
length Of field ececenccceccencccceees 8l
OULPUL teeeeecccccccncncccassccccness 8l
transmisSion cecescencccccscascscssces 80
macro
assignment statement .c.cccccccccce.. 132
DECLARE statement cc.seecceccccesnceacss 131
EXPreSSiONS eeececcocsnsccccoscsscacess 132
GO TO statement eeeesceccccccaccaaces 132
IF statement .c.cccccsecescccccccacsss 133
null statement ...ccceecccccacccacess 132
PXOCESSOY .ececececcecscsccccsscssneses 133
statements cecececcccnccscccsncscncncs 132
vVariableS s.ecsccceccssccassccacccasea 131

MAIN attribute .ceecececcccccescacaces 71,118
MARGIN OpPtiONn eceecececcccccccsccncccacss 111
MOAE ececeascccnscccsncsannsacvscncccae 22,4l
nmultiple declarationsS cccecececeacceaceces 39
multiple labels ...eccecececccass 18,107,118
NAMES eceeecescsccscscccacncncscnsccas 16,26,U2
eXternal cececescccccccscsccnsccsscccas U2
internal ecceececececccccsccccccccnssas U2
qualified ecccececcccecccccccscccaccaas 27
SCOFE Of ceeeccecccscccacccnnacscccnae H1
SIMPle eceeecscccscceascncacasccnnccanas 26
subscripted ccecececcccccccsncccnsceses 26
subscripted qualified ccceevccecececs.. 28
USE Of cececvccocccscccccnancacsccanss U3
nesting
Of BlOCKS ceecceccccccccscansecssns 20,71
Of FELSE ClauSeS cecececccccccsassaecs 111
NEWKEY OpPtiOn eccceecececccccceacasesss 94,129
NORMAL attribute cceceececcccseaccceesss 49,138
NOSYMBCL attribute cceececececceeaceaaceaecs 57
null parameter liSt ceececececccsccccccsss 51
null statement ec.eeecececcccccccncesss 18,112
MACYO coeevcssccsccccssscsansncsccsccsce 132
NUlLl String ceceecececececccceccccccncasas 22
NUMBER OPtiOn cceccececcecccccccnccassess 116
numMeric field cc.ececacecccccccccccnccacs 22

ON statement .c.c.ececececceccccacccaccsscsces 112
with REPOSITION statement .c..eeeceece. 121
USE Of eccecoscocccccsccancanacassnsas 716

ONCHAR pseudo-variable ..ccecececcecceses 97

ON-conditions 18,76,112,122,123,150

also see ON statement
built-in functions ..ccececessscscceas 145
input/output .cceececccccccaceccaces 151
nullification Oof ececececececcccccaceeas 18
prefixes used with ..cccveceacace. 18,76
program checkout ...cececececececeass 79,152
programmer-definedcecceecece. 79,153
with SIGNAL statement ..eececececcecee. 125

ONFIELD pseudo-variable ceccecescecscecsecse 97

ON-UNit .cecececcssccsccancacocaccanssccecas 112
cannot be RETURN statement .c.ccecaes 112

OPEN statement ...cceecececccecceccaacass 114

operations
arithmetic cceiececceccccacancanaaeas 31
AYYAY—AYTAY secescecssccscscsoncscsessacas 30
bit String eeceececececceccsccaccacsses 33
COMPAY1iSON secececccccaccascssnsacceass 3l
concatenation eccecececececcncsccccsss 3l
SCRlar—arYay ecececscceccscscsceccasnsce 35

operands
COMPOSite wseeeeceoecccccccccancesnnanoe 37
SIiMPlE ecsesccccccccccccccsnccncscanse 37
operators
ArithmeticC cceeeccccccenascssccncanaa 15
bit String eccecececceccccceccecscncees 15
COMPAY1SON ceescccccccccoccsccscncanaans 15
infiX seecceccecsccaccccscosnccncassccceas 31
PrefiX cceeecececcsccccccscacsaansnnacs 31
StYINg eccececeececscccccccccscccccnnssse 15

OPtiONS ccecceccncacccscccaccccccosnasncone 17

also see individual options

OPTIONS attribute .cccecececescassssscaas 118

output;

see input/output
CUTPUT attribute .ceeececececccesconcecess 59,115

PACKED attribute ...cececceccccccccccaancss 53
PAGE statement .cccecececccccocccccccsses 116
PATAMELEYS ceesscaccsacccsnssascasnass 05,134
allocation Of ceceeccesccaccasasccaecs 136
bounds and length .cc.ccececceneaaces 136
controlled cecececeecccccecccccccccosaccnss 98
with ENTRY statement cecececcececceccececes 107
with PROCEDURE statement ...cecee... 118
PICTURE attribute ...cccecececccsess U5,147
with numeric data ccceceescesccssaccass U5
specification ecccececcccccsccccccceas 147
with string data ceecceecceccccccccacss U7
picture format items
exXternal .ceccececcecccccccccccccscaccss 90
internal .c.cceccccsccccccanscaccacancs 92
picture specification tables cceseecee. 147
POOL attribute .eeceececcccccscscccasansss DI
POSITION attribute .cceccececcecccecccscceees 55
POSITION statement ..cececceeccecccccccceceeses 117
format items that are not
allowed wWith ..ceecccesccssscacaces 117
positioning statements cececccceccecccccsees 93
PrEeCiSiON ceecececsncscscccccscccsasass 22,40
in €XPreSSiONS cececececceccccesccsccases 31
of format itemsS ..ccceccecaascascccsses 89
in picture specifications ...cceccc.. 46
of real arithmetic constants ...c.cc.. 23
prefix
condition ecceescescecessss 18,76,112,150
1abel cececceccsccccacccsssccccccncacs 18
prefix operators;
See operators
PRINT OpPtion cececeecececccecccnacsaccas 120
PRIORITY
built-in function c.cceececcecccccacaass 1U6
OPtioN ceccececeacsscccaccccacnsness 75,102
pseudo-variable .c.eececececcccccccacsss 97
ProCeAUrE eeececcescccccccccccassnses 19,65
activation ofccccecccnasccsanses 71
attribute ..ccceiccecceccccccncees 70,118
external .c..cceeceacecccccccccsccacseses 20
internal ccecececcccccccccccsccccascancs 20
invoCation scaeecececccccsccccasaaa 05,66
NAME cececcceccscccssccsssscsccccncose 20
PArametersS c.ecceccececcsccsccaccances 05
termination Of ..cecececcccccaceasces 67,71
also see termination of blocks
procedure-directed data specification .. 93
procedure-directed transmission e.c..... 81
PROCEDURE statementcccceeceeea. 118,19
PrOJYAM ¢cecoocsccscccssssscsccccacaas 21,11
CONtYO)l ceeecececccsccascnnncccaasa 71,95
deletion Of ceececscccccecccccccccasse 104
elementsS .ccceecscceccccncccnassscccscs 14
modification eceececececacccacsaaceaees 131
structure eceece.s. ceccccsssccccceaanes 17,71
PYOlOgUES ceecececcecccnsssnscsscsccsnsnsce 137
PSeUAdO—AYYAY eceoeccccecacccsscssasacnsas 98
pseudo-structure veceecccasss I8
pPseudo-variablesS ceececccccccccccccccaces 96
PUT statement ...cacececcscccccccccasses 119
without current fileé ceieccececccacecss 81
with procedure-directed transmission 81

qualified Names .c.ecececcecccsccncacss 27,39

READ statement ...ccecececcececcccccass 119
with procedure-directed transmission 81

Index 159

REAL attribute;
see mode
REAL pseudo-variable .ccececececcceccacsceaas 96
YECOYA cavecencoancsancecoccssssocsanssssccs 80
RECORD specification ccecececesccscecsceces 126
RECURSIVE attribute ..cceceecenccceces 70,118
REENTRANT attributeccceccceeaceecces 118
REGION option .ccccecececes. 94,59,120,127,129
REGIONAL attribute .ceecceececscccaasssscss 59
relationship of arguments and
PArametersS ceececcccccccccccsaccccascs 134
remote format specification .eec.... 93,108
report generation statements ececcececescs 93
REPOSITION statement c.cecececccceesecsces 121
with ON statement .c.cececececcsccccaccss 121
RESTORE statement ceccecececcccccccevccaaass 121
return of contrOl ceeceecacesccees 66,711,122
return Of VAlU€ eceeeecocccsasccccecas 66,122
RETURN statement ..ccceecececcecceeses 122,66,71
cannot be an on-uUnit ...cccecccscces 112
returned value
characteristics Of ecececccoces 107,118
specifications ..ceccececcsccccncasas 118
REVERT statement .ecccecceccccccaccccss 122
USe Of .ceeeecceccccocscccnccccccccess 78
SAVE statementccecececacceccsccnsaas 123
SCAlAY eeecccccscscsscsscccccscncansaace 23
asS5igNmeNnt cccecececcececcscscscnscccceess 98
constant;
see constants
defining ceeececcececccccccccccssocnscss Ol
expression;
see expressions
variable
see variables
SCALE ceceeasencscnnccscccccscccccccsnae 22,Ul
scope
Oof declarationsS cecvececcesnmcccccssnsss 41
Of NAMES ceceoeccccassoancsansccccaccas U1
of condition prefiXes ..ccececccecaccss 76
scope attributescececcccccecaca. 41,52
default fOr ceceesccccscesencsas 52,62,63
SECONDARY attribute .ecceececceccccsccssnssss U9
secondary entry pointccceeeeee.. 20,107
Segment .cc.cececccccccccccccsacascesacses 80
MAYK cceecesccccsccanassscssssnsss 80,120
SEGMENT option eccccececceceececass 117,120,129
SEGMENT statement ceecececcecceccccecccscass 12U
SepPaAratorsS cecescccccccsvcccccccnsccscce 15
sequence
c0llating ceeceececcececccccccsncccsaas 16
Of cONtrol ceeceecececcasecscoccscnansaa 95
modification Of ceeeececcscscsccascccecs 96
SEQUENTIAL attribute .ccececcecccccsssececs 59
SETS attribute ccececececceccccsceceasess 50,138
sign picture characters .c..ecececececcececss 149
SIGNAL statement ..c.ceeecccacceccccassas 125
with programmer-defined
ON-conditionsS ececeecccecccssscssscnce 79
simple operand ..cccecececcccccccscccance 37
60-character Set .c.cceccecsccccccccsscns 14
SIZE OPtiON ececcscceasnscaccscasccsccaces 116
SKIP stateméent ..cececeoceccccccccaccaaces 125
SORT statement .cceceececececcscscassansas 126
SPACE OPtiON eecceccscsscaascncacncaceas 116
SPACE statementccececcceccscccanes 127
specification cececccccscccccsccccccccces 106

160

stack, pusSh-AOWN .ccecccseccscccsscccscce 73
stacking current filesS .ccccecccceccnses 81
standard attributesS ..cccececccacccascecss 58
STANDIN attribute .cccccecccccaccscscscees 58
STANDOUT attribute eccecececccccscsccsceceaece 58
statement label .ccccecceccccancaces 16,18,47
AYYAY eecescecsasccsccscccncacsncance 29
initial values fOr ceecceccccccceaass 29
asSSignment ececccececscsscccecccccceccs 98,99
CONStANt cececccccsaccccanccccncccsecs 28
AAtaA cescesescccccscccccocvacssaccsncsas 23
desSignator ececeececcscscccccscescnscs 29
required for FORMAT statement <..... 108
Variable .csececcceccsccscccncscsccccsas 28
statements cececeecesccccsscccncccacas 17,95
also see individual statement
alphabetic 1ist Of cevececccscccccacs 97
classification ecccecececccccccceccacas 95
COMPOUNG ccceccecsscsccccosncsansccsanss 18
heading seeccecccccccscccccnccacscsss 19
identifierS cecececeesccceacscnccccacas 16
input/outpUt cececececencecccccccccease I3
relationship ceeeccecccccccssecsanaces 95
SIMPle ceececccccccccccccncsacsnscasas 18
STATIC attribute;
see storage class attributes
sterling
consStants ceecececcacsccocccccsccscscancas 23
PiCtUreS ceececcccccccscccsannceaes U6,149
STOP statement ceeeececccccccccccccanca 127
storage;
also see allocation
ALLOCATE statement eceecececccccccescess 97
automatiC .cccecceccsascceveccccsaas 72,53
controlled ceececceccsccccccness 73,53,97
FREE statement ...ccccecsecccecscsacses 108
StatiC ceescccccccncssaccoaacccsass 712,53
storage class attributesccec... 53,72
default fOr ceeececccccccecccenscaaas 53,63
restrictionsS ceeececescccccccccscaasees 53
with structures .cccscceccccccesccasces 6U
storage equivalence attribute;
see POOL attribute
string
asSignment cecececscesscsccscccaceaas 101
AttributesS ceececcceseccacssccancacas U7
built-in functions ..ececcesasccceccess 143
data ceceeccccccacacsassccscccccnnceas 22
STRING OPtiOn ecccececccccnesccssnceecs 119,129
StruCtUre .eececccccccecncecccscccccnsccs 25
asSSignment cecececccesecccccccccscaccss 98
BY NAME;
see BY NAME
declarations and attributes ..cceca.. 63
with DEFINED attribute .ececececccececas. 56
with LIKE attribute ..cecceeecccsascees 58
level NUMbEYS ceecccncscccccccnces 25,63
storage allocation c.ccececaceccececee 98,53
with storage class attributes 53
SUDYOUtINE esececcccccasncsessscsnccsnnnans 05
references ceecececcccsccccceccssncaceaa 607
SUDSCIriptsS ccececveccocncscccsscscnaccscs 26
interleaved ccc.cececsccccceacccccaceces 28
SUBSTR pseudo-variable cececscecscccaacas 97
SYMBOL attribute ...cecscececacccccaceces 57
with DEFINED attribute .se.eececcececceecsa 5l
symbol table attributesceccececcececes 57
default fOr ceeececccnennceccacasanaas 57,63

syntactical unit ...eeeecncceccccecceass 11
syntax notation vececesceccccscsccacncsas 11

TAB OPtion eeeececcecsesccsccosccscncacacas 111
TAB statement ..ceececececececcecccnanscacecas 127
tASK ecececcacscccccescccaccaceces 11,29,74
attached ..eceececececsccceancencccncass 11,75
attaching scecececececcccecccccccascsess 11,75
MAJOY cecenecccccnncccscscscccccnsecscse 14U
synchronization of .c..cecceccccccnass T4
termination Of sececceccesceccccsaces 75
task Option csececesecncecseccccsssccsces 715
TASK OpPtion ceeceecesececsecccceccnccsass 75,102
termination
blOCKS ceccececscsencancanaaaa 711,109,122
function proceduUre .c..ceccscecece.. 66,122
PrOJYaM eesececcscanccccccccnsccnssas 127
tASK ceeacsscacsscccscccsccscscccsccsas 15
TITLE OPtion .cececoccenccccscscoccccscsss 115
TO @Nd BY ccesscesccenccccccacncasceass 105
truncation on assignment ..cccecceccceces 99

UNSPEC pseudo-variable ...cececcececscsss 97
UP OPLiON ecceeccecescecscscscscssncncssscscse 126
USES attribute ..ccceecececcacsaccacacaes 50

variables
AYYAY cecesccscsceccecsccssvccsaccconncane 2D
SCAlaAY cecceccccccscncscsaccscccccccccce 25
Yange Of ceeceeecccceaceccccaccaceas 25
default fOor range .ceececeeccecccscececs 63
statement-label ..ccccecccccncecacea. 28

WAIT statement .ccceececccccacecssas 128,137
WHILE ClAUSE ceeaceacacscscenccnssonccses 106
WRITE statement ccccceccceccccccccccccases 128
with procedure-directed
transmissSion ec.cecececcccccccccscecs 81

ZERO attribute cceecececccecscaccecancass 01

ZERO OPtiON cececscscsceccscsccccsssascas 120
ZEeX0O SUPPYESSIiON ceeseccceasscesacass 147,45

Index 161

CUT ALONG LINE

FOLD

FoLD

COMMENT SHEET

IBM OPERATING SYSTEM/360
PL/1: LANGUAGE SPECIFICATIONS
Form C28-6571-1

FROM

NAME

OFFICE NO,

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED

[J sueeesTED ADDITION
(] suceEsTED DELETION (PAGE)

E’ ERROR (PAGE)

EXPLANATION

NO POSTAGE NECESSARY IF MAILED IN U.S. A,

FOLD ON TWO LINES, STAPLE, AND MAIL

FOLD

FoLD

FIRST CLASS
PERMIT NO, 33504

NEwW YORK, No Yo
]
BUSINESS REPLY MAIL ——
NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,
]
L]
POSTAGE WILL BE PAID BY —
IBM CORPORATION T—
1271 AVENUE OF THE AMERICAS —
L]
NEW YORK, N.Y. 10020
]
.]
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS, —
DEPARTMENT D39 T——
RN
.]
foo T T T T T TS T o

STAPLE . STAPLE

——— i —— - - S - - - " a8 . S T G T S - - —
CUT ALONG LINE

C28-6571-1

BV

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

Y'S'M) Ul paiulid

1-1£59-82D

