
Form Y33-6003-0

Language Specifications

IBM System/360

PL/I Language Specifications

This publication is a description of the
PL/I language. It does not describe any
implementation; nor can it be construed
that the publication implies any commitment
that the features are implemented or will
be implemented by IBM. The publication is
intended for the use of implementers and
programming language designers concerned
with language development and the study of
languages.

Restricted Distribution

PREFACE

This publication is a specifications
manual for the entire PL/I language. It is
not intended to reflect any implementation.
The book is designed for the use of implem­
enters, systems programmers, and others who
need to know the language beyond the pre­
sent implementations. The following books
describe the language as implemented for
the F-Ievel compiler and the D-Ievel com­
piler:

IBM _~stem/360: PL/I Reference Manual,
Form C28-8201

IBM System/360: PL/I Subset Reference
Manual, Form C28-8202

There are other IBM publications th~t
perform a tutorial function. These publi­
cations and their intended audience are as
follows:

RESTRICTED DISTRIBUTION: This publication may not be
tributed without the approval of local IBM management.

A PL/I Primer, Student Text~ Form
C28-6808, is intended for the novice
programmer who has little or no knowl­
edge of data processing, as well as for
the experienced programmer who wants to
learn PL/I.

A Guide to PL/I for FORTRAN Users.
Student Texto Form C20-1637, is direct­
ed toward the programmer who has a
working knowledge of FORTRAN..

A Guide to PL/I for Commer~1al P~o~ram­
mers'll Student Text. Form C20-1651" is
intended for the programmer who has
experience in commercial applications,.
Comparisons between PL/I and COBOL
(COmmon Business Oriented Language) are
included in this guide.

dis-

This publication q Form Y33-6003-0. makes obsolete the
previous edition, Form C28-6571-4.

In addition to language changes and new language features,
much of the material has been rewritten and reordered.
Changes and additions to the language are identified by
vertical bars to the left of the text. Language changes that
might affect existing programs are:

1. Priority of the concatenation operator

2. Conversion of character-string and bit-string data to
arithmetic

3. ALIGNED and PACKED attributes, including change of
keyword PACKED to UNALIGNED

4. The form of the AREA attribute

5. The defaults of REDU~IBLE and IRREDUCIBLE

6. Rounding of E and F format items

A form is provided at the back of this publication for
reader'S comments. If the form has been removed, comments
may be addressed to IBM united Kingdom Laboratories Ltd.,
Programming Publications, Hursley Park. Winchester, Hampshire,
England.

© Copyright International Business Machines Corporation 1965,
1968

INTRODUCTION

Presentation of Information in this
Manual. .. • • • • • . .

Syntax No1:ation in This Manual

CHAPTER 1.. PROGRAM ELEMENTS ,.

Basic Lan9uage Structure .•
Language Character Sets

60-Character Set • • •
48-Character Set •

Delimit:ers.. .• '.
Operators. • .. • •
Arit:hmetic Operators
Comparison Operators
Bi t-·string operators .. •
String operator.
Parentheses. .. • .. •

• • 11

• 11

• 11

• 13

• 13
• 13
.. 13
• 14
.. 14
• 14
• 14
.• 14
• 14
.. 14

Separators and Other Delimiters.
• 14
.. 14

Data Character Set. ,. •
Collating Sequence. • •
Identifiers • • .. • •

Length of Identifiers,. •
Keyworcls.. • .• • .. .•

Stat:ement Identifiers.. '.
Attributes • • •
Separating Keywords. • •
Built-in Function Names,.
Options. • • ,.
Conditions .. •

The Use Of Blanks
Comment:s

Basic Program Structure.
simple Statements ..
Compound Statements •
Prefixes. " •

Label Prefixes .• •
Condition Prefixes ..

Groups. • • • • • • •
Blocks. • •
Use of the END Statement .. ,.
Programs. .. • ,. .. • ..

CHAPTER 2: DATA ELEMENTS •

Data Organization. • ..
Scalar Items.. •

Constants,. ,. • •
Scalar Variables •

Data Aggregates ,. • ,. ,. .. •
Arrays • • • •
Structures ,. .. •
Arrays of Structures
Attributes of Structures

Naming • •
Simple Names .•
subscripted Names ..

Cross Sections of Arrays .. •

.• 15

.• 15
• 15
• 15

,. .. 15
• 15
.• 15
• 15
• 15
• 16
.. 16
.• 16
• 16

16
• 16
.• 17
• 17
.• 17
.. 17
• 17
• 18
.• 19
• 20

• 21

21
.. 21
.• 21

21
• 21

• • .• 21
.• 22

22
• 23

,. 23
,. 23
• 23
• 23

CONTENTS

Qualified Names •• •
Subscripted Qualified Names •

,. • 24
24

Data Types • • . • • • • • 25
Problem Data. .. • .. . • • 25

Arithmetic Data. . • • 25
Real Arithmetic '::onstants. • • 26
Imaginary Arithl(,etic Constants • . 27
Arithmetic Variables • • • 27
String Data. • .. • 27
Character-String Data. .. • • • 27
Bit-String Data. • • . 27
String Variables ,. • • 28

Program-Control Data. • • 28
Label Data .. • • • • • • .. 28
Statement-Label Constants. 28
Statement-Label Variables. 28
Task Data. • . 28
Event Data. .•• • • .. 28
Locator Data • ,. • • .• • • 28
Locator Qualification. • 29
Area Data. .. • 29
Cell Data. • • •• • '. • • 29

CHAPTER 3: DATA MANIPULATION • • 30

Expressions. • • • • .. • • • 30
Scalar Expressions. .. • • • • 30

Arithmetic Operations . 30
Mixed Characteristics.. • • .. • 30
Results of Arithmetic Operations • 30
Arithmetic Conversions •. 31
Bit-String Operations.. ,. .. 32
Comparison Operations.. • • • 33
Concatenation Operations • • 33
Type Conversion. • • • • • • • 33
Bit String to Character String '. • 33
Character String to Bit Strir.g •• 34
Character String to Arithmetic ... 34
Bi t String to Arithmetic ... ,. 34
Arithmetic to Character String • • 34
Arithmetic to Bit String • .. • • • 34

Aggrega te Expressions .• • • • • • .. • 34
Prefix Operators and Aggregate
Operands. • • • • • • .. • .. • • • 34

Infix Operators and Aggregate
Operands. • . • • • • • • • • 34

Built-in Functions with
Aggregate Arguments •••••••• 35

Value of an Aggregate Expression . 35

Evaluation of Expressions,.
Order of the Evaluation of

Aggregate Expressions. •

CHAPTER 4: DATA DESCRIPTION,.

Declarations .. • .. • .. • .. • • ..
Explicit Declarations • ..

• • 35

• • 36

• 37

37
• • 37

.• 38
38

,. 39

The DECLARE Statement .•
Declaration of structures.
Factoring in DECLARE Statements.

Multiple Declarations and
Ambiguous References.

Label Prefixes • • •
Parameters • • • • • • •

Contextual Declarations • •
Implicit and Built-in Declarations.
Establishment of Declarations •
Assignment of Attributes to
Identifiers. • • • .. • ..

Application of Default
Attributes. • • • • •

Scope of Declarations • • •
Scope of External Names.
Basic Rule on Use of Names •

The Attributes • • • • • •
Data Attributes .. • .. •

Problem Data Attributes.
Program Control Data Attributes.
Other Attributes of Data

Entry Name Attributes • • •
File Attributes • • • • •
Optimization Attributes • •
Scone Attributes.. •• • • • •
Storage Class Attributes.

Alphabetic List of Attributes.
ABNORMAL and NORMAL

(Optimization Attributes) •
ALIGNED and UNALIGNED (Data
Attributes) • . • • • • • •

AREA (Program Control Data
Attribute). • • • • • • • •

AUTOMATIC, STATIC, CONTROLLED
and BASED (Storage Class
Attributes) • • • • • • • •

BACKWARDS (File Description
Attribute) •••••••••••

BASED (storage Class Attibute) •
BINARY and DECIMAL (Arithmetic
Data Attributes) ••••••

BIT and CH}\.RACTER (String
Attributes) • .. • . • • • •

BUFFERED and UNBUFFERED (File
Description Attributes) • ..

BUILTIN (Entry Attribute) ••
CELL (Program Control Data
Attribute) •••••••••

CHARACTER (String Attribute)
COMPLEX and REAL (Arithmetic

Data Attributes). • • .• • •
CONTROLLED (storage Class
Attribute). • • • • .. •

DECIMAL (Arithmetic Data
Attribute). • • • • • .• .. •

DEFINED (Data Attribute) • •
Dimension (Array Attribute).
DIRECT and SEQUENTIAL (File

Description Attributes) • • •
ENTRY Attribute. • .• • • • • • •
ENVIRON~ENT (File Description
Attribute). .. • •• ..

EVENT (program Control Data
l\ttribute). • • • • • • • •

EXCLUSIVE (File Description
Attribute)

EXTERNAL and INTERNAL (Scope
l\ttributes) .. • •• • • • •

.. 39
• 39
• 40
• 40
• 41
• 41

• 41

• 41
• 42
.. 42
• 44

• 44
• 44
• 44
• 44
• 44
• 45
• 45
• 45

46
• 46

• 47

• 47

• 47

• 48

• 49

.. 51
• 51

• 51

• 51

• 52
• 52

• 52
• 54

• 54

· 54

• 54
• 54
• 56

• 57
• 57

• 58

• 58

• 59

• 60

FILE (File Description
Attribute) 60

FIXED and FLOAT (Arithmetic Data
Attributes) ••••• 60

FLOAT (Arithmetic Data
Attribute). • • • • • 61

GENERIC (Entry Name Attribute) • • 61
INITIAL (Data Attribute) •• • • . 62
INPUT, OUTPUT, and UPDATE (File
Description Attributes). ' •• 63

INTERNAL (Scope Attribute' 64
IRREDUCIBLE and REDUCIBLE

(Optimization Attributes)
KEYED (File Description
Attribute) ••••••

LABEL (Program Control Data

64

64

• • 65
65
65

Attribute) ••••••••
Length (String Attribute) •••
LIKE (Structure Attribute) ••
NORMAL (Optimization Attribute).
OFFSET and POINTER (Program

• 66

Control Data Attributes).
OUTPUT (File Description
Attribute)

PICTURE (Data Attribute) •
POINTER (Program Control Data
Attribute)

POSITION (Data Attribute) •••
Precision (Arithmetic Data
Attribute)

PRINT (File Description

66

67
• • 67

70
70

71

Attribute). • .. • • • • • •• 71
REAL (Arithmetic Data Attribute) • 71
RECORD and STREAM (File
Description Attributes) • • • • • 71

REDUCIBLE (Optimization
Attribute) •••••••••••• 72

RETURNS (Entry Name Attribute) • • 72
SECONDARY Attribute. • • • •• 72
SEQUENTIAL (File Description
Att ribute). • • • • • • ." • • 72

SETS and USES (Optimization
Attributes) • • • • • .. • .. • • • 72

STATIC (Storage Class Attribute) • 73
STREAM (File Description
Attribute)

TASK (Program Control Data
Attribute)

UNALIGNED (Data Attribute)
UNBUFFERED (File Description
Attribute). • • • ••• •

UPDATE (File Description

74

74
• • 74

74

Attribute). • • •• • • • '74
USES (Optimization Attribute) ••• 74
VARYING (String Attribute) • • 74

CHAPTER 5: PROCEDURES, FUNCTIONS, AND
SUBROUTINES •• 75

Parameters • • . 75

Procedure References 75

Function References and Procedures •
Generic Entry Names • • • • • • •
Built-in Functions.. • • • • • •

• • 76
76

• • 76

Subroutine References and Procedures • • 76

The Arguments in a Procedure Reference . 77
Eval ua"tion of Argument Subscripts • • 77
Use of Dummy Arguments. ,. • • 77
Entry Names as Arguments.. • • • • • 78
Use of the Entry Attribute. • • • • • 79
Correspondence of Parameters and
Argumf~nts,. • . • ,. •• • • 79

Allocation of Parameters. . • • • • • 81

The Special Procedure Option Recursive • 81

CHAPTER 6 '. DYNAMIC PROGRAM STRUCTURE. . 82

Program Control. • • 82

Prologues., • 82

Activation and Termination of Blocks •• 82
Dynamic Descendance • • • 83
Dynamic Encompassing. • • 83
The Environment of a Block
Activation. • • • • • • • • •• 83

The Environment of a Label Constant • 84

Generation of a Variable • • • • 84

Allocation of Data and Storage Classes • 85
Definitions and Rules . 85
StoragE~ Classes • • • • • • • 85

The Static Storage Class • 85
The Automatic Storage Class. • 85
The Controlled Storage Class • . • 86
The Based Storage Class. • • • 87

Asynchrorious Operations And Tasks.
Synchronous and Asynchronous

Operations • • • . • • • •
Synchronizing Two Asynchronous
Operations...

Tasks and Events.
The Creation of Tasks . • • • •
Termination of Tasks. • • • • •
Dynamic Descendance of Tasks ••

Sharing of Data between Tasks. .
Sharing Files between Tasks.

Interrupt operations • • . • • • •
Purpose of the Condition Prefix
Scope of the Condition Prefix.

The CHECK Condition. • •

• 87

• 87

• 88
• 88
• 89
• 89
• 90
• 90
• 90

• 91
• 91
• 91
• 92

Use of the ON Statement • . • •
System Interrupt Action. •

• • • 92

Use of the REVERT Statement
Programmer-Defined ON-Conditions .•
Condition Built-in Functions and

Pseudo- Variables. •

CHAPTER 7,. INPUT/OUTPUT.

File Opening And File Attributes •
Explicit Opening • • • • • •
Implicit Opening • . • • • •
Merging of Attributes. '. • •
Valid Combinations of File
Attributes. • . •

Data Stream Transmission
List-Directed Transmission.

• 93
• 94
• 94

• 95

· 96

• 96
• 96
• 97
• 97

• 98

• 98
• 98

Data-Directed Transmission. •
Edit-Directed Transmission. •

Data Stream Data Specifications.
Data Lists. • • . • • • • • •

Repetitive Specification.
Transmission of Data-List

98
• • 99

99
99

• • 99

Elements. • . • . • . • • . .100
List-Directed Data Specification ••. 101

List~Directed Input Format •.•. 101
List-Directed Output Format •••• 101

Data-Directeo Data Specification .•. 104
Data-Directed Data in the Stream .104
Length of Data-Directed Data
Fields •.•..••••••••. 106

Edit-Directed Data Specification ••. 106
Format Lists. • . • . • • . .107

Data Format Items. • . . .107
Control Format Items ...••.. 110
Spacing Format Item. • . .110
Printing Forroat Items. • .110
Remote Format Item. • • .110

Data Stream Transmission Statements .111

Record Transmiss ion. • . • • . . • .
Record Transmission Statements •.
RECORD Transmission Operations •.

SYSIN and SYSPRINT . • •

CHAPTER 8: STATEMENTS.

Relationship Of Statements .
Classification. • • • • .

Assignment Statement .
Control Statements • .
Data Declaration Statement
Error Control and Debug
Statements ..•••.•.•.

Input/Output Statements ..
File Preparation Statements •.
Record Status Statements . . .
Data Specification Statements.
Data Transmission Statements .
Program Structure Statements- .
Storage Allocation Statements.

Sequence of Control • . . • •
Alphabetic List of Statements

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

ALLOCATE Statement •
Assignment statement

BEGIN statement.
CALL Statement. •

CLOSE Statement. . .
DEGLARE Statement .•
DELAY statement. • •

DELETE Statement • • •
DISPLAY Statement. •

DO Statement . • •
END Statement. . .
ENTRY Statement. .

EXIT Statement.
FORMAT Statement
FREE statement.

GET Statement. • .
GO TO Statement

IF Statement . • .
LOCATE Statement •
Null Statement. •

• .111
• .112
· .113

· .114

• .115

· .115
• .115
• .115
• .115
· .115

· .115
• .115
• .115
• .115
• .11S
• .115
• .116
• .116
• .116
• .116
• .116
• .119
• .123
• .123
• .124
• .125
· .125
• .125
· .126
• .126
• .128
• .129
• .129
· .129
• .130
• .131
• .132
• .133
• .133
· .134

The ON statement • • . •
The OPEN statement • • •
The PROCEDURE statement.
The PUT statement •• 4 •

The READ statement • • •
The RETURN Statement.
The REVERT Statement • •
The REWRITE Statement.
The SIGNAL statement • •
The STOP statement •
The UNLOCK Statement • •
The WAIT statement.
The WRITE statement. •

CHAPTER 9: COMPILE-TIME FACILITIES

The Preprocessor ... • • • • •• •
Preprocessor Input and Output ..
The Preprocessor Scan • • • • •

Rescanning and Replacement •

Compile-Time Variables ..

Compile-Time Expressions

Compile-Time Procedures
Scanning Compile-Time Procedures

and Function References. •
Invocation of Compile-Time
Procedures • • • • • • ••

The Compile-Time Built-in Function
SUBSTR. • •

Compile-Time Statements.
The ACTIVATE And DEACTIVATE

Statements • • • • .. • •
The Assignment Statement. •
The DECLARE Statement • •
The DO Statement. .. • • • •
The GO TO Statement • •
The IF Statement. • •
The INCLUDE Statement
The Null Statement. •

APPENDIX 1: BUILT-IN FUNCTIONS AND
PSEUDO-VARIABLES. • • • • • •

Computational Built-in Functions •
String Handling Built-in Functions.

BIT String Built-in Function • •
BOOL String Built-in Function. •
CHAR String Built-in Function ••
HIGH String Built-in Function. •
INDEX String Built-in Function •
LENGTH String Built-in Function.
LOW String Built-in Function • •
REPEAT String Built-in Function.
STRING String Built-in Function.
SUBSTR String Built-in Function.
UNSPEC String Built-in Function.

Arithmetic Built-in Functions • • ..
ABS Arithmetic Built-in Function
ADD Arithmetic Built-in Function
BINARY Arithmetic Built-in
Function. • • •• .. .• ,.

CEIL Arithmetic Built-in
Function. • ,. • • ,. • • .. •

.134

.135

.136

.137

.138
• 139
.140
. 141
.141
.142
.142
• 142
.143

.145

.145

.145

.145

.145

.147

.147

.148

.148

.148

.149

.149

.149
• 150
.150
.151
.151
• 152
.152
• 153

.154

.155
• 155
.155
• 155
.155
• 156
.156
• 156
.156
• 157
.157
• 157
.158
• 158
.158
• 158

• 158

• 159

COMPLEX Arithmetic Built-in
Function. • • • • • • • •

CONJG Arithmetic Built-in
Function. • . • • • • • •
DECI~~L Arithmetic Built-in
Function. • • • . • • . .

DIVIDE Arithmetic Built-in
Function. • • • . • • • •

FIXED Arithmetic Built-in
Function. • • • • • • • •

FLOAT Arithmetic Built-in
Function. • • • . . • • .

FLOOR Arithmetic Built-in
Function. • • • • . • • •

IMAG Arithmetic Built-in

• .159

· .159

• .159

· .159

• .160

· .160

• .160

Function. • • • • . • • . . .160
MAX Arithmetic Built-in Function .160
MIN Arithmetic Built-in Function .161
MOD Arithmetic Built-in Function .161
MULTIPLY Arithmetic Built-in
Function .•.•••••••••. 161

PRECISION Arithmetic Built-in
Function. • • • .. • • • . • .161

REAL Arithmetic Built-in
Function. • • • • • • • • • .162

ROUND Arithmetic Built-in
Function. .. • • • • . • • • .162

SIGN Arithmetic Built-in
Function. • • • • • • •• • .162

TRUNC Arithmetic Built-in
Function 162

Mathematical Built-in Functions .•• 163
ATAN Mathematical Built-in
Function ••••••••••.•. 163

ATAND Mathematical Built-in
Function. • • • • • • • • •

ATANH Mathematical Built-in
Function. • . • • . • • .

COS Mathematical Built-in
Function. • . • • • • • .

COSD Mathematical Built-in
Function. • . • . • • • .

COSH Mathematical Built-in
Function. • . • • • • . •

ERF Mathematical Built-in
Function. • • • • • • • •

ERFC Mathematical Built-in
Function. • • • • .. • • •

EXP Mathematical Built-in
Function. • • • • • • • .

LOG Mathematical Built-in
Function. .. • • . .. • • .

LOG10 Mathematical Built-in
Function. • • • . • • • •

LOG2 Mathematical Built~in
Function. • • • • • •

SIN Mathematical Built-in
Function. .. . • . • • • •

SIND Mathematical Built-in
FUnction. • . • • • • • •

SINH Mathematical Built-in
Function. • • • . • • • ..

SQRT Mathematical Built-in
Function. • • • • • • • •

TAN Mathematical Built-in
Function. • . • . • • • •

TAND Mathematical Built-in
Functions • .. • • • • • •

.163

· .164

• .164

• .164

• .164

• .164

• .164

• .165

.165

• .165

· .165

• .165

• .165

• .165

• .166

• .166

• .166

TANH Mathematical Built-in
Function. '. .. • • • .• • • 166
Su~nary of Mathematical
Functions .• ,. • 10 •• ••• 166

Array Manipulation Built-in
Functions. • • •

ALL Array Manipulation Function •
ANY Array Manipulation Function.
DIM Array Manipulation Function.
H,BOUND Array Manipulation

Function.. • '. • • • • '. '. .•
LBOUND Array Manipulation
FUnction. • .. • .• • • .• •

POLY Array Manipulation Function
PROD Array Manipulation Function
SUM Array Manipulation Function.

.• 168
• 168
,.168
,.169

• 169

.• 169
• 169
.170
.170

Condition Built-in Functions. .. • .170
DATAFIELD Condition Built-in
Function. .. • • •• • • '. .170

ONCHAR Condition Built-in
Function... .. • .• • _ • ,.170

ONCODE Condition Built-in
Function.......... • .. ,. ,.. .. 170

ONCOUNT Condition Built-In
Function. • • .. • '. .. • .. ,. .. 171

ONFI:LE Condition Built-in
Function. .. • .• .. .• • • • • .171

ONKEY Condition Built-in
Function. • • . • • .171

ONLOe Condition Built-in
Function. • .171

ONSOURCE Condition Built-in
Function. • • • • •171

Based Storage Built-in Functions. .172
ADDR Based Storage Built-in
Function. • • • • • • • .. • .172

EMPTY. Based Storage Built-in
Function. • • • • • .. • .172

NULL Based Storage Built-in
Function.. .• '. '. • • .• .•172

NULLO Based Storage Built-in
Function.. • .. .• .• • • • .172

OFFSET Based Storage Built-in
Function.•• .. ,. .. ,. .172

POINTER Based Storage Built-in
Function 172

Multitasking Built-in Functions. • .173
COMPL,ETION Multitasking Built-in

Function. • • .173
PRIORITY Multitasking Built-in
Function. .. • • • • • • .. • .173

STATUS Multitasking Built-in
Function. • .. • .. • .. • .. • .173

Miscellaneous Built-in Functions .. •
ALLOCATION Built-in Function •
COUNT Built-in Function. •
DATE Built-in Function. •
LINENO Built-in ~3nction •
TIME Built-in Function

Pseudo-Variables .. • .. • • •
COMPLETION Pseudo-Variable •
COMPLEX Pseudo-Variable..
IMAG Pseudo-Variable • .. •
ONCHAR PseudO-Variable • •
ONSOURCE Pseudo-Variable '.
PRIORITY PseudO-Variable •
REAL Pseudo-Variable •
STATUS Pseudo-Variahle
SUBSTR Pseudo-Variable
UNSPEC Pseudo-Variable •

APPENDIX 2: PICTURE SPECIFICATION

• .173
• .173
• .174

.174
• .174
• .174

'. ,.174
.174

• .175
• .175
• .175
'. .175
• .175
• ,.'175
• .176

.176
• ,.176

CHARACTERS. • •• • •••••••. 177

Picture Characters for
Character-String Data ••••. 177

Picture Characters For Numeric
Character Data .•••••••.•••• 177

Decimal Digit and Point Specifiers •• 178
Binary Digit and Point Specifiers •. 178
Zero Suppression Characters ••••• 179
Insertion Characters. •••• • • .. .179
Signs And Currency Symbol •.•••• 180
Credit, Debit, And OVerpunched
Signs. • • • .. •

Exponent Specifiers ..
Scaling Factor. • • •
Sterling Pictures • •

APPENDIX 3: ON-CONDITIONS. ,.
Multiple Interrupts. ..

.• .181
• .182
• .182
• .182

• .184
• .184

Classification of Conditions •. 184
Computational Conditions. .184
Input/Output Conditions. .. . • .185
Program Checkout Conditions ••• 187
List Processing Conditions •••.•. 189
Programmer-Named Conditions.. • .189
System Action Conditions.. • • .189

APPENDIX 4: PERMISSIBLE KEYWORD
ABBREVIATIONS • • • •

APPENDIX 5: THE 48-CHARACTER SET

INDEX •.•

,. .190

• .191

• .192

FIGURES

Figure 1. General Format for
Repetitive Specification. • • • 99

Figure 2. List-Directed Input
Conversion. '.. • • .• • • • • .102

Figure 3. Example of Data-Directed
Transmission, both Input and Output •• 106

Figure 4. General Format for the
Assignment Statement. • .120

Figure 5. General Format for the DO
Statement. • • • • • • .126

Table 1. Arithmetic Base and scale
Conversion. • • 4 • • • • • • • • • • • 32

Table 2. Scope and Use of Names in
Example If for "Scope of External
Names". • • • • • • • . • • . • q3

Table 3. Mathematical Built-in
Functions • • • • • . • • • • ••• 167

TABLES

PRESENTATION OF INFORMATION IN THIS MANUAL

It is not intended that this manual
should be, read sequentially. It is essen­
tially a :reference book and an understand­
ing of the information in it does not
depend on having read preceding informa­
tion.

The index should be consulted whenever
seeking information to support statements
in the text.

SYNTAX NO'I~ATION IN THIS MANUAL

Throughout this manual, wherever a PL/I
statement -- or some other combination of
elements is discussed r the manner of
writing that statement or phrase is illus­
trated with a uniform system of notation.

This notation is not a part of PL/I; it
is a standardized' notation that may be used
to describe the syntax -- or construction

of any programming language. It pro­
vides a brief but precise explanation of
the general patterns that the language
permits. It does not describe the meaning
of the language elements, merely their
structure; that is, it indicates the order
in which t.he elements may (or must) appear r

punctuation that is required, and options
that are allowed.

The following rules explain the use of
this notat:ion for any programming language;
only the examples apply specifically to
PL/I:

1. A not:ation variable is the name of a
general class of elements in the pro­
gramnling language. A notation varia­
ble must consist of:

a. I~ower-case letters r decimal
digits, and hyphens and must begin
"lith a letter.

b. A combination of lower-case and
upper-case letters. There must be
one portion in all lower-case let­
i:ers and one portion in all upper­
ease letters, and the two portions
must be separated by a hyphen.

All such variables used are
defined in the manual either formally,
usinq this notation r or are defined in
prose.

INTRODUCTION

Examples:

a. digit. This denotes the occur­
rence of a digit, which may be 0
through 9 inclusive.

b. filename. This denotes the occur­
rence of the notation variable
named filename. An exolanation of
filename is given elsewhere in the
manual.

c. DO-statement. This denotes
occurrence of a DO statement.
upper-case letters are used
emphasis.

the
The
for

2. A notation constant denotes the liter­
al occurrence of the characters rep­
resented. A notation constant con­
sists either of all CAPITAL letters or
of a special character.

Example:

DECLARE identifier FIXED;

This denotes the literal occurrence
of the word DECLARE followed by the
notation variable "identifier,"
which is defined elsewhere, fol­
lowed by the literal occurrence of
the word FIXED followed by the
literal occurrence of the semicolon
(;).

3. The term "syntactical unit," which is
used in subsequent rules, is defined
as one of the fOllowing:

4.

a. a single variable or constant, or

b. any collection of variables, con­
stants, syntax-language symbols,
and reserved words surrounded by
braces or brackets.

Braces {} are used to denote group­
ing.

Example:

I FIXBD I
FLoAT

identifier

The vertical stacking of syntacti­
cal units indicates that a choice
is to be made. The above example
indicates that the variable
"identifier" must be followed by
the literal occurrence of either
the word FIXED or the word FLOAT.

Introduction 11

5. The vertical stroke I indicates that a
choice is to be ~ade.

Example:

identifier {FIXEDIFLOAT}

This has exactly the same meaning
as the above example. Both methods
are used in this manual to display
alternatives.

6. Square brackets [] denote options.
Anything enclosed in brackets may
appear one tiwe or may not appear at
all.

Example:

CHARACTER (length) [VARYING]

This denotes the literal occurrence
of the word CHARACTER followed by
the notation variable "length"
enclosed in parentheses and option­
ally followed by the literal occur­
rence of the word VARYING. If, in
rule 4, the two alternatives also
were optional, the vertical stack­
ing would be within brackets, and
there would be no need for braces.

7. Three dots ••• denote the occurrence
of the immediately preceding syntacti­
cal unit one or more times in succes­
sion.

12

8.

Example:

[digit]

The notation variable, "digit," may
or may not occur since it is sur­
rounded by brackets. If it does
occur, it may be repeated one or
more times.

Underlining
ment in the
when there
element and
guage.

Example:

is used to denote an ele­
language being described
is conflict between this

one in the syntax lan-

operand {&Il} operand

This denotes that the variables
"ol?erand" are separated by either
an "and" (&) or an "or" (I). The
notation constant I is underlined
in order to distinguish the "or"
symbol in the PL/I language from
the "or" symbols in the syntax
language.

BASIC LANG~AGE STRUCTURE

PL/I allows the programmer to write the
statements of his program in a free-field
format. A statement, which is a string of
characters, is always terminated by the
special character, semicolon. A program
which is, in turn, a sequence of state­
ments, can thus be regarded simply as a
single string of characters, with no spe­
cial internal grouping. Hence, a PL/I
program can be physically represented and
transmitted to a computer in a natural way
by means of almost any input mea.iuro,
including a typewriter at a remote termi­
nal.

Input conventions, depending upon the
machine configuration or the compiler, can,
of course, be set up so that the program
string may be presented to the computer
through the familiar medium of fixed-length
records, e.g., punched cards. This can be
accomplished by using certain predetermined
fields of the records for the program
string, and other fields for arbitrary
purposes.

LANGUAGE CHARACTER SETS

One of 1:.wo character sets may be used to
write a source program: either a
60-character set or a 48-character set. No
assumptions are made in the language about
external or internal codes for the
characters" For a given program, the
choice between the two sets is optional.
(In practice, this choice will depend upon
the available equipment.)

6 O-Charact~~r Set

The 60-character set is composed of
digits, special characters, and English
language alphabetic characters.

There are 29 alphabetic characters, let­
ters A through Z and three additional
characters (alphabetic extenders) that are
defined as and treated as alphabetic char­
acters. ~rhese characters and the graphics
by which they are represented are as fol­
lows:

CHAPTER 1. PROGRAM ELEMENTS

Currency symbol
Commercial At-sign
Number sign

There are ten digits.
are the digits 0 through 9.
(bit) is either a 0 or a 1.

$
@

Decimal digits
A binary digit

An alphameric character is either an
alphabetic character or a digit.

There are 21 special characters. The
names and graphics by which they are rep­
resented are:

Name
Blank

Equal or Assignment symbol

Plus

Minus

Asterisk or Multiply symbol

Slash or Divide symbol

Left Parenthesis

Right Parenthesis

Comma

Decimal Point or Period

Quotation mark

Percent symbol

Semicolon

Colon

Not symbol

And symbol

Or symbol

Greater Than symbol

Less Than symbol

Break character
(used as shown)

Question mark

Graphic

+

*
/

,
&

>

<

?

Note that the quotation mark used in
PL/I is the single quotation mark (also
known as an apostrophe or prime).

Chapter 1: Program Elements 13

Two consecutive special characters are
sometimes used as operators, e.g., >=,
denoting "greater than or equal to"; 11,
denoting concatenation.

48-Character set

The characters making up the
48-character set are identical to those of
the 60-character set, with restrictions and
changes as described in Appendix 5.

DELIMITERS

Certain characters are used as
delimiters and fall into three classes:

operators
parentheses
separators and other delimiters

Oper~tors used by the language
divided into four types:

arithmetic operators
comparison operators
bit-string operators
string operators

Arithmetic Operators

The arithmetic operators are:

are

+ denoting addition or prefix plus

denoting subtraction or prefix
minus

* denoting multiplication

/ denoting division

** denoting exponentiation

comparison Operators

The comparison operators are:

> denoting greater than

,> denoting not greater than

>= denoting greater than or equal
to

14

denoting equal to

,= aenoting not equal to

<= denoting less than or equal to

< denoting less than

,< denoting not less than

Bit-String Operators

The bit-string operators are:

,
&

I

denoting not
denoting ana
denoting or

String Operator

The string ooerator is:

I I denoting concatenation

Parentheses

Parentheses are used in expressions, for
enclosing lists, and for specifyinq infor­
mation associated with various keywords.

(

)
left parenthesis
right parenthesis

Separators and Other Delimiters

Name
comma

semicolon

assignment
symbol

colon

blank

quotation
mark

Graphic Use
separates elements of a

list

terminates statements

used in assignment
statement and DO
statement

follows labels and con­
dition prefixes; also
used with dimension
specifications

used as a separator

encloses string con­
stants and picture
specifications

Name
period

Graphic Use

percent
symbol

arrow ->

DATA CHARACTER SET

separates items in
qualified names; used
as a decimal or
binary point in con­
stants

precedes compile-time
statements

qualifies a reference
to a based variable

Althou9h the language character set is a
fixed set defined for the language, the
data character set has not been limited.
Data may be represented by characters from
the language set plus any other characters
permitted by the particular machine con­
figuration.

Any character that will result in a
unique bit pattern is a valid character in
the data character set, and may be used in
source programs to construct character­
string constants and comments.

COLLATING SEQUENCE

The collating sequence in PL/I is
implementation-defined.

IDENTIFIERS

An identifier is a string of alphameric
and break- characters, not contained in a
comment or constant, preceded and followed
by a delimiter; the initial character must
always be alphabetic.

Length of Identifiers

The maximum length of identifiers that a
programmer constructs in writing a PL/I
program i::; implementation defined.

KEYWORDS

A key~10rd is an identifier which is a
part of the language,. Keywords are not
reserved. words. They may be classified as
follows:

statement identifiers

attributes

separating keywords

built-in function names

options

conditions

Some keywords may
abbreviated form and
Appendix 4.

be written in an
these are listed in

A statement identifier is a sequence of
one or more keywords used to define the
function of a statement (see "Simple
Statements").

Examples:

GO TO
DECLARE
READ

Attributes

Attributes are keywords that specify the
characteristics of data, procedures, and
other elements of the language.

ExaIflple:

FLOAT
RECURSIVE
SEQUENTIAL

Separating Keywords

The five separating keyWords are used to
separate parts of the IF and DO statements.
They are THEN, ELSE, BY, TO, WHILE.

Built-in Function Names

A built-in function name is a keyword
that is the name of an algorithm provided
by the language and accessible to the
programmer (see "Function References and
Function Procedures" in Chapter 5).

Chapter 1: Program Elements 15

Examples:

DA'J~E

EXP

An 2ptiog is a specification that may be
used by the programmer to influence the
execution of a statement.

Examples:

TASK
BY NAME

Conditions

A co~dition is a keyword used in the ON,
SIGNAL, and REVERT statements, and as a
prefix to other statements (see
"Prefixes"). The programmer may specify
special action on occurrence of the
condition (see "Interrupt Operations").

Examples:

OVERFLOW
ZERODIVIDE

THE USE OF BLANKS

Identifiers, constants (except
character-string constants), picture speci­
fications, composite operators (e.g., ,=),
and the class of dun~y variables iSUB (see
"The DEFINED Attribute" in Chapter 4) may
not contain blanks.

Identifiers, constants, iSUB dummy vari­
ables, or picture specifications may not be
immediately adjacent. They must be sepa­
rated by a 60-character set operator,
assignment symbol, percent symbol, arrow,
parenthesis, colon, semicolon, comma, per­
iod, blank, or comment. r1oreover, addi­
tional intervening blanks or comments are
always permitted. Blanks are optional
between keywords of the statement identifi­
er GO TO.

Examples:

CALLA is not equivalent to CALL A

A TO B BY C is not equivalent to ATOBBYC

AB+BC is equivalent to AB + Be

16

COMMENTS

General format:

/* [character-stringJ */

Comments are norwally used. for documenta­
tion and do not participate in the execu­
tion of a program. ~ comment may be used
wherever a blank is permitted (except in a
character-string constant). The character
string in a comment must not contain the
cha~acter combination */ in that sequence.

Fxample:

LABEL: /* THE BLOCK OF CODING BETWEEN
BEGIN-~ND IS USED ~OR PAYROLL CALCULA­
TIONS */

SEGIN;

END;

BAS IC PTIOG R1\M STRUCTURE

A PL/I program is constructed from basic
program elements called statements.

Statements are grouped into larger
program-elements, the gro~ and the block.
There are two types of statements: SImple
and compound.

SIMPLE STATEMENTS

A simple statement is defined as:

[[statement-identifier]
statement-body]

The "statement identifier," if it appears,
is a keyword, characterizing the kind of
statement. If it does not appear, and the
statement body d.oes appear, then the state­
ment is an assignment statement. If only
the semicolon appears, the statement is
called a null statement.

Examples:

DO I = J TO (DO is the keyword)
10;

A = B + C; (assignment statement)

(null statement)

COMPOUND STATEMENTS

A co~)und statement is a statement that
contains other program-elements. There are
two of th~?m:

The IF compound statement

The ON compound statement

The final contained statement of a com­
pound sta~:ement is a simple statement and
thus has a terminal semicolon. Hence, the
compound statement will automatically be
terminated by this semicolon.

Examples:

IF A=:B THEN GO TO Sl; ELSE A=C;

ON OVERFLOW GO TO OVFIX;

Each PL/I statement is described in the
alphabetic list of statemE'nts in Chapter 8.

PREFIXES

There are two types of prefixes: label
prefixes and condition prefixes.

Label Prefi.xes

Statements may
reference to them.
the following form:

be labeled to permit
A labeled statement has

identifier: [identifier:] ••• statement

The one or more "identifiers" are called
labels and may be used interchangeably to
refer to that statement.

Labels appearing before PROCEDURE and
ENTRY statements are special cases and are
known as entry names (see "Procedure
References"). All other labels are called
statement labels.

A label appearing before a statement is
said to be declared, by virtue of its
appearance as a label.

statement labels appearing
DECLARE statements are ignored.

before

Condition Prefixes

A condition prefix specifies whether or
not a program interrupt will result upon
the occurrence of the specified condition.
(For information regarding the use of the
condition prefi~ see the section "Interrupt
Operations" in Chapter 6.>

One or more condition prefixes may be
attached to a statement.

Each condition prefix is followed by a
colon to separate it from the rest of the
statement or from other prefixes; condition
prefixes precede the entire statement,
including any possible label prefixes for
the statement.

A condition prefix is a list of condi­
tion names, separated by commas and
enclosed in parentheses. Thus, a statement
with a set of prefixes has the following
general fonn:

{(condition-name [,condition­
name] ••.) :1 ... [label:] ••.
statement

The condition names are chosen from the
following fixed set:

UNDERFLOW
OVERFLOW
ZERODIVIDE
FIXEDOVERFLOW
CONVERSION
SIZE
STRINGRANGE
SUBSCRIPTRANGE
CHECK (identifier-list)

Note: CHECK (identifier list) may be used
as a prefix only with the PROCEDURE and
BEGIN statements.

The meanings of these conditions are
explained in "The ON statement," in Chapter
8.

Any of these condition names may be
preceded by the word NO. If NO is used,
there can be no intervening blank between
NO and the condition. For example, NOCON­
VERSION can be specified in- the prefix
list.

GROUPS

A grouJ2 is a collection of one or more
statements and is used for control purpos­
es.

Chapter 1: Program Elements 17

A group has one of two fonns. The first
form, called a DO-group, is:

[label:] • DO-statement
program-element-l
program-element-2

END [label];

The label following END is one of the
labels of the DO statement (see "Use of the
END statement" in this chapter).

The DO statement is called the heading
statemeI!t of the DO-group, an~ may specify
iteration. Each program element represents
one or more statements.

The second form of a group is simply a
single statement, as follows:

[label:] ••• statement

The "statement" is any statement except DO,
END, PROCEDURE, BEGIN, DECLARE, FORMAT, or
ENTRY.

Example of the first form:

ALPHA: DO;
A=B*C;

IF A < 0 THEN DO; B=l; C=O; END;

END ALPHA;

In the example above, any of the single
statements except the DO and END state-
ments is an example of the second form
of a group.

BLOCKS

A block is a collection of statements
that defines the program region -- or scope

throughout which an identifier is esta­
blished as a name. It also is used for
control purposes.

There are two kinds of blocks, begin
blocks and 2rocedure blocks.

18

A begin block has the general form:

[label:] ••• BEGIN-statement
program-element-l
program-element-2

END [label];

The label following END is one of the
labels of the BEGIN statement (see "Use of
the END statement" in this chapter).

A procedure block, or procedure, has the
general fonn:

label: (label:] •.• PROCEDURE-statement
program-element-l
program-element-2

END (label];

The label following END is one of the
labels of the PROCEDURE statement (see "Use
of the END Statement" in thj.s chapter).

The BEGIN statement
statement in the above
heading statements.

and the PROCEDURE
forms are called

While the labels of the BEGIN statement
are optional, the PROCEDURE statement must
have at least one label.

Although the begin block and the proce­
dure have a physical resemblance and play
the same role in delimiting scope of names
(see "Scope of Declarations," in Chapter 4)
and defining allocation and freeing of
storage (see "Allocation of Data and Stor­
age Classes," in Chapter 6), they differ in
an important functional sense. A begin
block, like a sinqle statement, is activat­
ed by normal sequential flow (except when
used as an on-unit), and it can a~pear
wherever a single statement can appear. A
procedure can only be activated remotely by
CAt,I, statements, by statements in which a
CALL option appears, or by function ref­
erences. When a program containing a pro­
cedure is executed, control passes around
the procedure, from the statement before
the PROCEDURE statement to the statement
after the END statement of the procedure.

since a procedure can be activated only
by a reference to it, every procedure must
have a name. The label required for the
heading statement of a procedure serves as
the procedure name. More than one label
provides more than one procedure name.

The procedure name gives a means of
activating the procedure at its primary
entry point.. Secondary entry 20ints can
also be defined for a procedure by use of
the ENTRY statement. The labels preceding
all ENTRY statements in a given procedure
and the heading statement of the procedure
are collectively called entry names for the
procedure.

As the above definition of block
implies, any block A can include another
block B, but partial overlap is not possi-

ble; block B must be completely inclu4.ed in
block A. Such nesting may be specified to
any depth.

A procedure that is not included in any
other block is called an external 2~
dure. A procedure included in some other
block is called an internal procedure.

Every begin block must be included in
some other block. Hence, the only external
blocks are external procedures.

All of the text of a begin block except
the labels preceding the heading statement
of the block is said to be contained in the
block.

All of the text of a nrocedure except
the entry names of the procedure is said to
be contai:~,g!.~Li!! the procedure.

That part of the text of a block B that
is contained in block B, but not contained
in any other block contained in H, is said
to be int~~nal to block B.

The entry names of an external procedure
are not internal to any procedure and are
called external names.

The notion of internal to is
the definition of scope (see
Declarations" in Chapter 4).

Example:

A: PHOCEDURE;
statement 1
B: BEGIN;

statement. 321
sta tement. ~
E"'JD B:

statement 4
C: PROCEDURE;

statement 5
X' ENTRY;

D: BEGIN;
statement 761
statement ~
END Vi

statement 8
END C;

si:atement I)

END Ai

vital in
"Scope of

In this .example, statements 1 through 9 are
labeled or unlabeled siwple statements.

As the brackets on the r~ght indicate,
block A contains block B and block C, and
block C contains block D.

Block A is an external procedure. The
proce1ure name is A, which is an external
name, and the only entry name for the
procedure ..

x is an entry name corresponding to a
secondary ent.ry point for procedure C.

Blocks Band D are begin blocks.

Block C is an internal procedure.

The text internal to block A consists of

The

The

PROCEDURE;
statement 1
B:
statement U
C:
X:
statement 9
END A;

text internal

BEGIN;
statement 2
statement 3
END Bi

text internal

PROCEDURE;
statement 5
ENTRY;
D:
statement 8
END C;

to block B consists of

to block C consists of

The text internal to block D consists of

BEGIN;
statement 6
statement 7
END D;

USE OF THE END STATEMENT

As the examples above imply, the END
statement has the form:

END [label];

and is used to terminate a group or a
block.

If the optional label following END is
not used, the END statement terminates that
unterminated group or block headed by the
DO, BEGIN, or PROCEDURE statement that
physically precedes, and appears closest
to, the END statement.

If, however, a label (e.g., L) is used
following END, the statement terminates
that unclosed group or block headed by the
DO, BEGIN, or PROCEDURE statement with the
label L that physically precedes, and
appears closest to, the END statement. Any

Chapter 1: Program Elements 19

groups or blocks headed by DO, BEGIN, or
PROCEDURE statements contained in the ter­
minated block L are also automatically
terminated by the END statement END L.
This feature eliminates the necessity of
writing the intermediate END statements to
terminate the contained blocks and groups.

The statement labeled L, which heads the
group or block terminated hy the END state­
ment END L, is internal to a certain block
in the program (see "Blocks," for a defini­
tion of internal to). The terminating
statement END L, together with its own
possible statement-labels, is also consid­
ered to be internal to the same block. (If
the statement labeled L is a BEGIN or
PROCEDURE statement, this block is, of
course, the block L.>

The END statement may itself be labeled,
and a reference to this label can be made
from any part of the program where the
label is known. (For a definition of
known, see "Basic Rule on Use of Names"
Chapter 4).

Example:

(a) A: PROCEDURE;

B: BEGIN;

A: PROCEDURE:

C: DO;

X: END B;
END A;

20

in

(b) A: PROCEDURE;

B: BEGIN;

A: PROCEDURE;

C: DO;

END;
END;
X: END;
END;

In example (a), the statement X:END B
terminates the DO group, the internal pro­
cedure A, and the block B. The statement
END A terminates the external procedure A.
The statement X:END B is internal to block
B.

Example (b) is equivalent to example
(a) •

PROGRAMS

A Qrogram is composed of one or more
external procedures.

Information that is operated on in a
PUI object program during execution is
called data. Each data item has a definite
type and representation.

The aim of this chapter is to present a
discussion of (1) the various organizat,ions
that data may have, (2) the methods by
which data can be referred to, and (3) the
types of data allowed.

DATA ORGANIZATION

Data may be organized as scalar items
(i.e., single data items) or aggregates of
data items Ci.e., arrays and structures).
File names, entry names, and programmer­
defined condition names are not considered
to be data.

SCALAR ITEMS

A data item may be either a constant or
the value of a scalar variable. Constants
and scalar variables are called scalar
items. Scalar variables and scalar data
items rpay also be ca lIed element variables
and elemeqt data items respectively.

Constants

A constant is a data item that denotes
itself,"i:-e:-, its representation is both
its name and its value; thus, it cannot
change during the execution of a program.
Each constant has a type, as described
later in this chapter. A signed constant
is an arithmetic constant preceded by one
of the prefix operators + or -. Wherever
the word "constant" appears alone, and
refers to an arithmetic constant, it is to
be assumed to refer to an unsigned
constant.

Scalar Variables

A scalar variable, like a constant,
denotes a data item. This data item is
called the va,lue of the scalar variable.
Unlike a constant, however, a variable may

CHAPTE-q 2: DATA Et.EMENTS

take on more than one value during the
execution of a program. The set of values
that a variable may take on is the range of
the variable. The range of a variable is
always restricted to one data type Cand, if
the type is arithmetic, to one base, scale,
mode, and precision - see "l'~rithrnetic Data"
in this chanter). If there are no further
restrictions· declared for the range, the
variable may assume values over the E~ntire
set of data of that type.

Reference is made to a scalar variable
by a name, which may be a simple name, a
subscripted name, a qualified name, or a
subscripted qualified name (see "Naming" in
this chapter).

DATA AGGREGATES

In ?L/I, all classes of variable data
items may be grouped into arrays or struc­
tures. Rules for this grouping are given
below. CFor the method of referring to an
array or structure or a particular item of
an array or structure, see "Naming" in this
chapter.)

Arrays

An array is an n-dimensional, ordered
collection of elements, all of which have
identical data declarations. Clf arithmet­
ic, all of the elements of the array must
have the same base, scale, mode, and preci­
sion or the same picture. If character­
string or bit-string, all of the elements
must have the same actual length, if fixed
length, or the same maximum length, if
varying length.) The number of dimensions
of an array, and the upper and lower bounds
of each dimension, are specified by the use
of the dimension attribute.

Example:
DECLARE A (3 , 4) ~

This statement defines A as an array
with 2 dimensions: 3 rows and 4 columns.
The matrix given below illustrates the
array A.

AC1,1)
A(2,1)
A(3,1)

A(1,2)
A(2,2)
AD,2)

A(1,3)
A(2,3)
AD,3)

A(1,4)
A(2,4)
AC3,4)

Chapter 2: Data Elements 21

The elements of an array may be
structures (see "Arrays of Structures").

Structures

A structure is a hierarchical collection
of scal:ar--variables, arrays, and struc­
tures. These need not be of the same data
type nor have the same attributes.

The outermost structure is a major
structure, and all contained structures are
minor structures.

A structure is specified by declaring
the major structure name and following it
with the names of all contained elements.
Each name is preceded by a level number,
which is a non-zero decimal integer con­
stant. A major structure is always at
level one and all elements contained in a
structure (at level n) have a level number
that is numerically greater than!!, but
they need not necessarily be at level n+l,
nor need they all have the same level
number.

A minor structure at level n contains
all following items declared -with level
numbers greater than n up to but not
including the next item with a level number
less than or equal to g. A major structure
description is terminated by the declara­
tion of another item at level one, by the
declaration of an item having no level
number, or by the end of a D~CLARE state­
ment.

Examples:

1. DECLARE 1 PAYROLL, 2 NAME, 2 HOURS, 3
REGULAR, 3 OVERTI~E, 2 RATE;

takes the form:

1 PAYROLL
2 NAME
2 HOURS

3 REGULAR
3 OVERTIME

2 RATE

In t,he above example PAYROLL is defined
as the major structure containing the sca­
lar variables NAME and RATE and the struc­
ture HOURS. The structure HOURS contains
the scalar variables ~EGULAR and OVERTIME.

2. DECLARE 1 A, 2 B, 2 C, 3 D (2), 3 E, 2
P;

22

This takes the form:

A
B
C

F

D (1)
D (2)
E

The decimal integers before the iden­
tifiers s~ecify the levels; the decimal
intE:ger in parentheses specifies the bounds
of the one-dimensional array. A is defined
as the major structure and contains the
minor structure Cane the scalar variables
Band F. C contains D, a one-dimensional
array with two scalar variables, and the
scalar variable E.

3. DECLARE 1 A, 3 B, 2 C;

This takes the form:

A
B
C

Note that Band C are at the saroe
level although their level numbers
differ.

Arrays of Structures

An array of structures is formed by
giving the dimension attribute to a struc­
ture.

Examples:

1. DECLARE 1 CARDI~(3), 2 NAME, 2 WAGES,
3 NORMAL, 3 OVERTIME;

The decimal integers before the iden­
tifiers specify the level. The name,
CARDIN, represents an array of struc­
tures. Because CARDIN has a dimension
specified, NA~, NORMAL, and OVERTIME
are arrays, a~d their elements are
re:l:erre:l to by subscripted names.

The form of the data is as follows:

CARDIN (1) NAME (1)
WAGES (1) NORMAL (1)

OVERTIME (1)

CARDIN (2) NAME (2)

WAGES (2) NORMAL (2)
OVFRTIr.'IE (2)

CARDIN (3) NAME (3)
WAGES (3) NORMAL (3)

OVSRTIME (3)

2 • DECL1~RE 1 X, 2 Y, 2 Z (2), 3 P (2, 2) ,
3 Q, 2 R;

X is an undimensioned major structure
containing scalar variables, arrays,
and a structure.

Y is a scalar variable
Z is an array of structures
P is a three-dimensional array
Q is a one-dimensional array
R is a scalar variable

The form of the data is as follows:

y

Z (1) [I
x

Z (2) [I
R

(1,1,1)
(1,1,2)
(1,2,1)
(1,2,2)
(1)

(2,1,1)
(2,1,2)
(2,2,1)
(2,2,2)
(2)

Attributes of Structures

structures and arrays of structures are
not given data attributes. These can be
given only to structure base elements.

Major structure names may be declared
with -the EXTERNAL attribute. Items con­
tained in structures may not be declared
with the EXTERNAL attri.bute, and even if
INTERNAL is unspecified, they are assumed
to be INTEHNAL.

All items in the same structure are of
the same storage class, since only the
major structure may be given a storage­
class attribute. The storage class of the
major structure applies to all elements of
the structure. If a structure has either
the CONTROLLED or the BASED attribute, only
the major structure, not its elements, may
be allocated and freed.

NAMING

This section describes the rules for
referring 1::0 a particular data item, groups
of items, arrays, and structures. The
permitted types of data names are simple,
qualified, subscripted, and subscripted
qualified.

SIMPLE NAMES

A simple name is an identifier (see
"Identifiers," in Chapter 1) that refers to
a scalar, an array, or a structure.

SUBSCRIPTED NAMES

A subscripted name is used to refer to
an element or a cross section of an array.
It is a simple name that has been declared
to be the name of an array followed by a
list of subscripts. The subscripts are
separated by commas and are enclosed in
parentheses. A subscript is an asterisk or
a scalar expression that is evaluated and
converted to an integer before use (see
"Evaluation of Expressions," in Chapter 3).
The number of subscripts must be equal to
the number of dimensions of the array, and
the value of a specified subscript must
fall within the bounds declared for that
dimension of the array.

A subscripted name takes the form:

identifier (subscript ...)
Examples:

A (3)
FIELD (B,C)

subscript]

PRODUCT (SCOPE * UNIT + VALUE, PERIOD)
ALP HA (1, 2" 3 , 4)
X(1,*,3)

Cross Sections of Arrays

The concept of cross sections is a
logical extension of the subscripting nota­
tion. A cross section of an array is
referred to by the array name, followed by
a list of subscripts, at least one of which
is an asterisk. The subscripts are sepa­
rated by commas, and the entire list is
enclosed in parentheses. The number of
items in the list must be equal to the
number of dimensions of the array. If the
array is of dimensionality n, then an
asterisk may appear in k ~ n positions. If
the jth list position is occupied by an
asterisk, the cross section of the array
includes elements covered by varying the
jth subscript between its bounds. The
dimensionality of the cross section is
equal to the number of asterisks, k, in the
subscript list. If all subscript positions
are occupied by asterisks, then this ref­
erence to the cross section is equivalent
to a reference to the entire array.

Chapter 2: Data Elements 23

A cross section may be used anywhere A qualified name takes the form:
that. thE~ name of an array of dimensionality
k is required.. Subsequent references to identifier (. identifier} ••.•
the word "array" in this document should
therefore be taken to include cross sec- Examples:
tions of arrays.

Examples:

1. A (3,*) denotes the third row of the
array A.

2. B (*, *, 2) is a two-dimensional cross
section and denotes the second plane
of the array B.

3.. If MATRIX is the array:
123
456
789
MATRIX <*, 2) rE'presents the array:

2
5
8

QUALIFIED NAMES

A simple name usually refers uniquely to
a scalar variable, an array, or a struc­
ture. However, it is possible for a name
to refer to more than one variable, array,
or structure if the identically named items
are themselves parts of different struc­
tures.. In order to avoid any ambiguity in
referring to these similarly named items,
it is necessary to create a unique name;
this is done by forming a qualified name.
This means that the name common to more
than one item is preceded by the name of
the structure in which it is contained ..
This, in turn, can be preceded by the name
of its containing structure, and so on,
until the qualified name refers uniquely to
the required item.. The section "Multiple
Declarations and Ambiguous References" in
Chapter 4, contains further information on
this subject.

Thus, the qualified name is a sequence
of names specified left to right in order
of increasing level numbers; the names are
separated by periods, and blanks may be
placed as desired around the periods.. The
sequence of names need not include all of
the containing structures, but it must
include sufficient names to resolve any
ambiguity. Any of the names may be sub­
scripted.

The qualified name, once composed, is
itself a name. Subsequently, in this pub­
lication, when the terms scalar variable
name, array name, or structure name are
used they should also be taken to include
qualified names.

24

1. A program may contain the structures:

DECLARE 1 CARDIN, 2 PARTNO, 2 DESCRIP­
TION, 2 PRICE;

DECLARE 1 CARDOUT, 2 PARTNO, 2 DES­
CRIPTION, 2 PRICE;

Elements are then referred to as:

CARDIN.PARTNO
CARDOUT.PARTNO
CARDIN. PRICE

2. A program may contain the structure:

DECLARE 1 MARRIAGF., 2 MAN, 3 NAME, 3
DATE, 2 WOMAN, 3 NAMF., 3 DATE;

Elements are then referred to as:

~.AN. NAME
or MARRIAGE. MAN. NAME

WOMAN. NAME
or MARRIAGE.WOMAN.NAME

3. If the same program also contains the
structure:

DECLARE 1 BIRTH, 2 WOMAN, 3 NAME,
3 DATE, 2 ADDRESS;

Elements are then referred to as:

MAN. NAME
or MARRIAGE. MAN. NAME

MARRIAGE.WOMAN.NAME

BIRTH. NAME
or BIRTH.WO~AN.NAME

ADDRESS

and the minor structures referred to
as:

¥~RRIAGE. WOMAN

BIRTH. WOMAN

SUBSCRIPTED QUALIFIED NAMES

The elements of an array contained in a
structure and requiring name qualification
for identification are referred to bv sub­
scripted qualified names. A subscripted
qualified name is a sequence of names and
subscripted names separated by periods.

The order of names is as given for any
qualified name. The subscript list follow­
ing each name refers to -the dimensions
associated with the name if the name is
declared to be the name of an array in the
structure description.

As lon9 as the order of the subscripts
remains unchanged, subscripts may be moved
to the right or left and attached to names
at a lower or higher level, respectively.
The number of subscripts, if any are speci­
fied, must match the number of dimensions
of the array. A subscripted qualified name
takes the general form:

identifier [(subscript [, subscript] ...)]
f. identifier [(subscript [, sub­
script] •••)] l ...

If any subscripts are given in a ref­
erence to a qualified name, all those
subscripts which apply to dimensions of
containing structures must be given.

Example 1:

A is an array of structures with the
following description:

DECLARE 1 A (10,12), 2 B (5), 3 C (7),
3 D;

The following subscripted qualified
names refer to the same element, which is
the seventh element of C contained in the
fifth element of B contained in tenth row
and twelfth column of A:

(1) A (10,12) . B (~) · C ("n
(2) A (10) · B (12,5) · C (7)
(3) A (10) · B (12) . C (5,7)
(4) A · B (10,12,5) . C (7)

(5) A · B (10,12) . C (5,7)
(6) A · B (10) . C (12,5,7)
(7) A · B · C (10,12,5,7)
(8) A (10,12) . B . C (5,7)
(9) A (10) · B . C (12,5,7)
(10) A (10,12,5,7) . B · C

If structure B, but not structure A, is
necessary for unique identification of this
use of Cv any of forms (4), (5), (6), or
(7) may be used without including the A.

If structure A, but not B, is necessary
for identification of C, forms (7), (8),
(9), or (10) may be used without including
the B.

Example 2:

If FIELD is the array of structures:

DECLARE 1 FIELD(3),
2 STATUS,
2 VALUE;

then FIELD(*).STATUS represents
array:

FIELD(l).STATU[,
FIELD(2).STATUS
FIELD(3).STATUS

Dl'.TA TYPES

the

The types of data allowed by PL/I can be
categorized as problem data and prooram­
control data.

PROBLEM DATA.

Problem data is any data that can be
classified as type arithmetic or type
string.

Arithmetic Data

An arithmetic data item is one that has
a numeric value with characteristics of
base, scale, mo~e, and precision. The data
item may be represented either as a numeric
field or in a coded form, that is, in an
internal representation that is implementa­
tion dependent. A numeric field is a
string of characters or bits that is given
a numeric interpretation by means of the
PICTURE attribute (see Chapter 4): The
base, scale, and precision are all speci­
fied in the picture of the numeric field.
A data item in coded form does not have a
PICTURE attribute, but has its charac­
teristics given by the attributes speci­
fying base, scale, mode, and precision. An
arithmetic constant is of coded form.

Base (decimal or binary), scale
(fix~d~point or floating-point), and
preclslon have reference to internal rep­
resentation of the data described and to
the internal arithmetic that is to be used.

BASE: Arithmetic data may be specified as
having either ':iecinlal or binary base.

SCALE: Arith~etic data may be specified as
having either fixed-point or floating-point
scale. Fixe1-point data items are rational
numbers for which the number of decimal or
binary digits is specified; the position of
the decimal or binary point may also be
specified by a scale factor. Floating­
point data items are rational numbers in
the form of a fractional part and an
exponent part.

Chapter 2: Data Elements 25

MODE: Arithmetic data may be operated on
in eithE~r the real or complex mode. In the
complex mode, a data item is considered to
consist of a number pair" the first member
of the pair representing the real part of
the complex number and the second, the
imaginary part.

PRECISION: The precision of fixed-point
data (p,g) is specified by giving the total
number of binary or decimal digits, p, to
be maintained and a scale factor, g. The
precision of floating-point data is
specified by giving the effective number,
p, of binary or decimal digits to be
maintained in the fractional part (for an
implementation, the actual number of digits
maintained internally may be greater than
p). Note that p must be greater than zero.

Real Arithmetic Constants

A real arithmetic constant is either
binary or decimal.

DECIMAL FIXED-POINT CONSTANTS: A decimal
fixed-point constant is represented by one
or more decimal digits with an optional
decimal point. If a decimal pOint is not
specified, the constant is a decimal inte­
ger constant.

Examples:

72.192
.308
255.
158

BINARY FIXED-POINT CONSTANTS: A binary
fixed-point constant is represented by one
or more binary digits with an optional
binary point followed by the letter B.

Examples:

10.B
11011B
11.1101B
.OOlB

STERLING FIXED-POINT CONSTANTS: Sterling
quantities may be specified and will be
interpreted as decimal fixed-point pence.
A ster~ing fixed-point constant consists of
the following concatenated fields:

26

a pounds field that is a decimal inte­
ger

a decimal point
a shillings field is one or more deci­

mal digits that represent a decimal
integer less than 20

a decimal point
a pence field that is one or more

decimal digits with an optional
decimal point (the integral part
must be less than 12.'

an L

Examples:

101 .• 13.8L
1.10.0L
0.0.2.5L

DECIMAL FLOATING-POINT CONSTANTS: A deci­
mal floatinq-point constant is represented
by one or more decimal digits with an
optional decimal point, followed by the
letter E, followed by an optionally signed
exponent. The exponent is one or more
decimal digits specifying an integral power
of ten.

Examples:

12.E23
317.5E-16
0.lE+3
.42E+73
32E-5

BINARY FLOATING-POINT CONSTANTS: A binary
floating-point constant is represented by
one or more binary digits with an optional
binary point, followed by the letter E,
followed by an optionally signed exponent,
followed by the letter B. The exponent is
one or more decimal digits specifying an
integral power of two.

Examples:

1.1011E3B
.11011E-27B

PRECISION OF REAL ARITHMETIC CONSTANTS:
For purposes of expression evaluation, an
apparent p~ecision is defined for real
arithmetic constants.

Real fixed-point constants have a preci­
sion (p,g) where p is the total number of
digits in the constant and g is the number
of digits specified to the right of the
decimal point.

The precision of a sterling constant is
equivalent to the precision of its corres­
ponding value in fixed-point pence. This
value is determined as follows: multiply
the value of the pounds field by 240; add
the product of 12 and the value of the
shillings field; add the value of the pence
field. The precision of the result (with
leading zeros removed) is the precision of
the corresponding sterling constant.

The precision of a floating-point con­
stant is (p) where 2 is the number of
digits of the constant left of the E.

Examples:

3.14 has precision (3,2)
0.012E5 has precision (4)
0.9.0.5L has precision (4,1)
0000001B has precision (7,0)

Imaginary Arithmetic Constants

An imaginary constant represents a com­
plex value of which the real part is zero
and the imaginary part is the value speci­
fied.

It is represented by a real arithmetic
constant, other than a sterling constant,
followed by the letter I. PL/I does not
define complex constants with non-zero real
parts, but provides the facility to specify
such data through an expression, e.g.,
10.1+9.21.

ExampleB:

271
3.968El0I

Arithmetic Variables

Ari thmet:ic variables are names of ari th­
metic data items. These names have been
given the characteristics (i.e.,
attributes) of base, scale, mode, and pre­
cision (see Chapter 4).

string Data

string data can be classified as
character-~;tring or bit-string. The length
of a string data item is equivalent to the
number of characters (for a charac­
ter-string) or the number of binary digits
(for a bit-string) in the item. A string
data item of length zero is known as a null
string.

Character-String Data

Character-string data consists of a
string of zero or more characters in the
data character set (see "Data Character
Set," in Chapter 1). The string may be
fixed or varying in length. The actual
number of characters must be specified if
it is of fixed length, and the maximum
length must be specified if it is of
varying length.

CHARACTER-~~TRING CONSTANTS: A character­
strinq constant is zero or more characters
in the data character set enclosed in

quotation marks. If it is desired to
represent a quotation mark, it must appear
as two immediately adjacent quotation
marks. The constant may optionally be
preceded by a decimal-integer constant in
parentheses to specify repetition. If the
constant specifying repetition is zero, the
resul t is the null character string ..

In a string repetition factor, blanks
may optionally surround the decimal integer
constant, or they may separate the right
parenthesis and leading quote.

A character string constant may contain
a string of characters which syntactically
constitute a comment; however, these
characters are treated as part of the
string value rather than as a comment.

Examples:

1$ 123.45'
'JOHN JONES'
'IT' 's'
(3) 'TOM'
, I

The fourth is exactly equivalent to

, TOMTOMTOM'

The last example, which is two single
quotation marks with no intervening blank,
specifies the null character string.

Bit-String Data

Bit-string data consists of a string of
zero or more binary digits (0 and 1). The
string may be fixed or varying in length.
The actual length of the field must be
specified if it is of fixed length, and the
maximum length must be specified if it is
of varying length.

BIT-STRING ·CONSTANTS: A bit-string con­
stant is zero or more binary digits
enclosed in quotation marks, followed by
the letter B. The constant may optionally
be preceded by a decimal-integer constant
in parentheses, to specify repetition. If
the constant specifying repetition is zero,
the result is the null bit string.

Examples:

'0100 1 B
(10)'l'B

• • B

The second is exactly equivalent to

'1111111111'B

The last example specifies the null bit
string.

Chapter 2: Data Elements 27

string Variables

string variables are
data items.. These names
string attributes .•

PROGRAM-CONTROL DATA

names of string
have been given

Program-control data is any data that
can be classified as type label, task,
event, pointer, area, or cell.

Label Data

statement-label data is used only in
connection with statement labels. state­
ment label data may be constants or varia­
bles, and the variables may be elements of
structures or arrays .•

statement-Label Constants

A statement-label constant is an iden­
tifier that appears in the program as a
statement label. It permits references to
be made to statements.

Example:

ROUTINE1: IF X > 5 THEN GO TO EXIT;

GO TO ROUTINE1;

EXIT: RETURN;

ROUTINEl and EXIT are statement-label
constants.

statement-Label Variables

A statement-label variable is a variable
that has as values statement-label con­
stants,. These variables can be grouped
into arrays or structures.

28

Example:

DECLARE X LABEL;
X POSROUTINE;

POSROUTINE:

X = NEGROUTINE;
GO TO X;

NEGROUTINE:

The label variable X may have the value
of either POSROUTINE or NEGROUTINE, both
labels in the procedure. In the above
example, GO TO X transfers control to
NEGROUTINE.

A statement-label constant or a scalar
label variable is called a statement-label
designator.

Task Data

A task variable is the name of a task
(see "Asynchronous Operations and Tasks" in
Chapter 6, and "The TASK Attribute" in
Chapter 4). A task variable may be an
element of an array or of a structure. The
priority associated with a task variable
may be assigned in the CALL statement, or
in an assignment statement via the PRIORITY
pseudo-variable (see Chapter 8).

Event Data

An event variable is the name of an
event used in connection with asynchronous

[
processing, in multitasking, the DISPLAY
statement, or with record-oriented I/O
operations. An event variable may be an
element of an array or of a structure.

An event variable has associated comple­
tion and status values that can be accessed
by the COMPLETION and STATUS built-in func­
tions (see "The EVENT Attribute" in Chapter
4) •

Locator Data

Locator data consists of pointer varia­
bles and offset variables. A pointer vari­
able has a value that is used to identify
the location of a single generation of a
variable. An offset variable has a value
that is used to identify the location of a
based variable relative to the beginning of

an area. (See "OFFSET and POINTER" in
Chapter 4.)

Locator Qualification

Locator qualification is used to asso­
ciate one or more pointer or offset values
with a based variable to identify a parti­
cular generation of data. If a based
variable is referred to without a locator
qualifier, the reference is the same as a
reference qualified by the locator variable
declared with the based variable in the
BASED attribute specification.

The format of a locator qualifier is as
follows:

scalar-Iocator-expression ->
(based-locator-variable ->J •••
based-variable

where "scalar-locator-expression" is a
pOinter-vari.able, an offset-variable, or a
function reference that returns a pointer
or offset value.

General rules:

1. Locato:r qualification is used to indi­
cate the generation of a based varia­
ble to which the associated reference
applies.

2. If an offset expression or an offset
variable is used as a locator qualifi­
er, it.s value is implicitly converted
to a pointer value.

3. More than one locator qualifier can be
specified in a reference. Only the
first (or leftmost) can be a function
reference; all other locator qualifi­
ers must themselves be based varia­
bles.

4. If more than one qualifier is used,
they are read from left to right.

Examples:

A P->B;
A P->Q->B;
A ADDR(X)->B;

The first. example causes assignment to A
of the valUE! of B in the generation pointed

to by P. The second example specifies that
the value of P is to be used to locate the
generation of Q which locates the specific
generation of B to be assigned to A. In
the third example, the generation of B is
derived from the location of the variable
X.

Area Data

An area variable represents an area of
storage in which based variables may be
allocated and freed.

Cell Data

A cell is a unit of storage that may be
used to hold values of different data
types. However, only the value of the most
recently assigned data type can be
accessed.

Cells are organized in the same way that
structures are organized; the name of the
cell wust be at a higher level than its
alternatives. For example, the following
statement specifies that the storage allo­
cated for the cell named ALPHA may contain
either of the two alternatives, ALT1 (a bit
string) or ALT2 (a structure), but not both
at the same time.

DECLARE 1 ALPHA CELL,
2 ALTl BIT (60),
2 ALT2,

3 BETA FLO~T,
3 GAMMA FIXED;

A cell provides storage equivalence and
not data equivalence. In other words,
since only one alternative can be active at
one time, the value of that alternative
cannot be retrieved by a reference to
another alternative. The assignment of a
value to an alternative deactivates the
previously active alternative and in effect
strips it of its value.

Thus, the value of an alternative can
only be retrieved by a reference to that
alternative. The cell name may be used to
qualify the reference but a reference to
the cell name alone will retrieve no value.

Chapter 2: Data Elements 29

CHAPTER 3: DATA l'-1ANIPULATION

EXPRESSIONS

An expression is an algorithm used for
computing a value. Expressions are of the
three types: scalar, array, and structure,
depending upon the type of the result. An
array (or structure) expression is simply
an array (or structure) evaluated by expan­
sion of the expression into a collection of
scalar-expressions. Syntactically, a sca­
lar expression consists of a constant, a
scalar variable, a scalar expression
enclosed in parentheses, a scalar expres­
sion preceded by a prefix operator, two
scalar expressions connected by an infix
operator, or a function reference that
returns a scalar value. (Note that any
programmer-written function returns a sca­
lar value, but some built-in functions may
return array or structure values.) Oper­
ands in a scalar expression need not have
the same data attributes. If they differ,
conversion will be performed before the
operation.

SCALAR EXPRESSIONS

A scalar expression returns a scalar
value. The class of the expression is
dependent upon the operators -- arithmetic,
comparison, bit string, and concatenation.
In the case of program control data, the
operands determine the class of expression.
Only the operators = and ,= may appear with
pointer and offset. No operators may
appear with label, cell, area, event, and
task data.

If A and B are expressions, then the
operators + and - used in expressions of
the form +A or -A, are called prefix
operators. When these operators are used
in expressions of the form A+B or A-B they
are called infix operators.

Arithmetic Operations

An arithmetic expression of any complex­
ity is composed of a set of elementary
arithmetic operations.

30

An elementary arithmetic operation has
the following general format:

{ {+ I-} operand} I {operand
{+I - 1 * 1 / 1 **} operand}

The general format specifies the prefix
operations of plus and minus and the ~infix
operations of addition, subtraction, mUlti­
plication, division, and exponentiation.
Operations are performe0 only with coded
arithmetic data. If necessary, the data
will be converted to coded arithmetic type
before the operation is performed.

Mixed Characteristics

The two operands of an arithmetic opera­
tion may differ in forro, base, scale, mode,
and precision. When they differ (except in
some cases of exponentiation), conversion
takes place according to the following
rules:

FORM: Numeric field operands of arithmetic
operations will be converted to coded form.
The result of an arithmetic operation is
always in coded form.

BASE: If bases differ, the decimal operand
is converted to binary.

SCALE: If the scales of the operands
differ, the fixed-point operand will be
converted to floating-point, except in the
case of exponentiation in which the first
operand is floating-point and the second is
fixed-point with precision (p,O). In the
latter case, the second operand is not
converted, and the result has the base,
scale, mode, and precision of the first
operand.

MODE: If the modes differ, the real oper­
and is converted to complex mode (by
acquiring an imaginary part of zero with
the same base, scale, and precision as the
real part). However, when the operation is
exponentiation and the second operand is
fixed-point with precision (p,O), then the
second operand is not converted.

PRECISION: If precisions differ, no con­
version is done.

Results of Arithmetic Operations

After the conversions specified above
have taken place, the arithmetic operation
is performed. Any necessary truncations

will be made towards zero~ regardless of
the base or scale of the operands.

The baseg scale, mode, and precision of
the result depend on the operands and the
operator in the following ways:

1. Prefix operations: The prefix opera­
tions of plus and minus yield a result
having the base, scale, mode, and
precision of the operand.

2. Floating-point: If the operands of
an infix operation are floating-point
the result is floating-point, and the
base and mode of the result are the
common base and mode of the operands.
The precision of the result is the
greater of the precisions of the two
operands.

3. Fixed-point: If the operands of an
infix operation are fixed, and if the
operation is not exponentiation, the
result is fixed, and the base and mode
of the result are the common base and
mode of the operands. If the opera­
tion is exponentiation, the second
operand is converted to floating point
if its scale factor is not zero; and
the first operand is converted to
floating-poitit unless the second oper­
and i!:l an unsigned integer constant
meetin9 the conditions of item £
below; in these cases, the rules for
floating-point apply_

The precision of a fixed-point
result dere?ds on the operation and
the preCl.S10nS of the operands,
according to rules given below. The
following symbols are used:

N

m

n
p

q
r

s
y

a.

b.

the maximum precision allowed by
the implementation for the base
of the result

the total number of positions in
the result

the scale factor of the result
the total number of positions in

operand one
the scale factor of operand one
the total number of positions in

operand two
the scale factor of operand two
value of operand two, if it is an

unsigned integer constant

Addition and subtraction:

m min(N,max(p-q,r-s)+max(q,s)+l)
n max(q,s)

Multiplication:

m min(N,p+r+1)
n q+s

c. Division:

m N
n N-p+q-s

d. Exponentiation: if the second
operand is an unsigned non-zero
real fixed-point constant of pre­
cision (r,O),

m (p+1) *y - 1
n q *y

If m>N, however, or y is not an
unsigned non-zero real fixed-point
constant of precision (r,O), the
first operand is converted to
floating-point and rules for
floating-point exponentiation
apply.

e. The above rules hold for both real
and complex mode.

Note: Some special cases of exponentiation
are defined as follows:

a. If X.1.=O and X2>0, the result is o.

b. If X.1.=O and X2:50, the ERROR condi-
tion is raised.

c. If X.1.*O and X2=0, the result is 1.

d. If x.1. <0 and X2 is not fixed-point
with precision (p,O), the ERROR
condition is raised.

a. If Z.1.=O and Z2 has its real part
>0 and its imaginary part equal to
0, the result is o.

b. If Z.1.=O and the real part of Z2 is
not greater than 0 or the imag­
inary part of Z2 is. not equal to
0, the FRROR condition is raised.

Arithmetic Conversions

1. Arithmetic Mode Conversion

If a complex value is converted to
a real value, the result is the real
part of the complex value.

If a real value is converted to a
complex value, the result is a complex
value that has the real value as the
real part and zero as the imaginary
part.

Chapter 3: Data Manipulation 31

Table 1. Arithmetic Base and Scale Conversion

Before Conversion
r-----------------------T-------------------T--------------T---------------,

After ,Binary Fixed , Decimal , Binary , Decimal ,
, (p,g) , FixedCp,g) , Float(p) , Float(p) ,

r--------+-----------------------+-------------------+-----.---------+---------------~
, Binary, (p,g) , (MINCCEIL(p*3.32) , , I
I Fixed, , +1,N1),CEILCABS(g), , I
" ,*3.32J*SIGNCg» , I I
~--------+-----------------------+-------------------+--------------+---------------~
, Decimal, CMIN(CEIL(p/3~32)+l,N2)1 (p,g) , I I
, Fixed, CEIL(ABS(g)/3.32) , , , I
I I *SIGN (g»' , I I
~----.----+-----------------------+-------------------+--------------+---------------~
, Binary, (MIN(p,N 3 » , (MINCCEIL I (p) ,(MIN(CEIL I
I Float I I (p*3 .• 32),N3», , (p*3.32),N 3 » I
~----.----+-----------------------+-------------------+--------------+---------------~
I Decimal, (MIN(CEIL(p/3.32),N ..) I (MINCp,N .. » ,(MIN(CEIL I (p) I
, F loa t I , , (p/3 • 32) , N ..)) , I l ________ ~ _______________________ ~ ___________________ ~ ______________ ~ _______________ J

N1 is the maximum precision allowed for binary fixed-point data.

N2 is the maximum precision allowed for decimal fixed-point data.

N3 is the maximum precision allowed for binary floating-point data.

N.. is the maximum precision allowed for decimal floating-point data.

2. Integer conversion

If conversion to integer is speci­
fied, as in the evaluation of sub­
script expressions, the conversion
will be to fixed-point binary (x.O).
Here x is the total number of posi­
tions in the field and depends upon
the implementation. The scale factor
is zero.. Truncation, if necessary,
will be toward zero.

3. Arithmetic Base and Scale Conversion

Table 1 defines the precision
resulting from base and scale conver­
sion. CEIL refers to the ceiling of
the expression. (The nceilingn of a
number is the smallest integer egual
to or greater tha n the number .•)

4. Floating-point to Fixed-point Conver­
sion

32

Conversion from floating-point
scale to fixed-point scale will occur
()nly when a destination precision is
known, as in an assignment to a fixed­
point 'ITariable.. If the destination
precision is incapable of holding the
floating point value, the result is
undefined and the SIZE condition will
be raised, if enabled.

Bit-String Operations

Bit-string operations have the following
general forms:

, operand
operand & operand
operand I operand

The prefix operation "not" and the infix
operations "and" and "or" are specified
above~ The operands will be converted to
bit-string type before the operation is
performed.. The result will be of bi t­
string type. If the operands are of
different lengths after conversion, the
shorter is extended on the right with zeros
to the length of the longer. The length of
the result will be of this extended length..
The result is of varying length if either
operand has the VARYING attribute .•

The operations are performed on a bit­
by-bi t basis.. As a result of the
operations, each bit position has the value
defined in the following table:

r-----T-----T-----T-----T-----T-----'
I I I I I A I A I
I I I not I not I and I or I
I A I B I A I BIB I B I
~-----+-----+-----+-----+-----+-----i
11111 0 1 0 111 1 I
~-----+-----+-----+-----+-----+-----~
11101 0 I 1 101 1 I
~-----+-----+-----+-----+-----+-----~
101 1 I 1 I 0 I 0 I 1 I
~-----+-----+-----+-----+-----+-----~
1010111 1 I 0 I 0 I
l_~ ___ ~ _____ ~ _____ ~ _____ ~ _____ ~ _____ j

Examples:

If field A is '010111'B, field B is
'llllll'B, and field C is '101'B, then

1 A yields '101000'B
C & B yields '101000'B

A I 1 C yields '010111'B
, (,CI,B) yields '101111'B

For a discussion of how these expres­
sions are evaluated, see "Evaluation of
Expressions," in this chapter.

Comparison Operations

Comparison operations have the general
form:

operand {<I,<I<=I=I,=I>=I>I,>} operand

There ar'e three types of comparisons:

1. Arithmetic, which involves the compar­
ison of signed mlmeric values in coded
arithmetic form. Conversion of numer­
ic fields will be performed.

2. Charac"ter, which involves left-to­
right, pair-by-pair comparisons of
characters according to the
implementation-defined collating
sequence~ If the operands are of
different lengths, the shorter is
extended to the right with blanks.

3. Bit, which involves the left-to-right
comparison of binary digits. If the
strings are of different lengths, the
shorter is extended on the right with
zeros.

The result of a comparison is a bit
string of length one; the value is 'l'B if
the relationship is true or 'O'B if it is
false.

Comparison operations always take place
between values in common representation.
If the operands of a comparison are of
different types, the operand of the lower

type is converted to conform with the
representation of the operand of the higher
type. The priority of types is (1) arith­
metic (highest), (2) character string, (3)
bit string. If one or both of the operands
is arithmetic, the operands are converted
to the same attribut~s as those defined for
arithmetic operations.

As a result of the conversion, both
operands will then be arithmetic or charac­
ter string, and arithmetic or character
comparison will be performed.

Only the operations = and ,= can be use~
if either operand is complex.

Only the operators = and ,= may be useQ
with locator variables, and both operands
must be locator variables or a function
that returns a locator value.

Concat'enation Operations

Concatenation operations have the fol­
lowing general form:

operand I I operand

If both operands are of bit-string type,
no conversion is performed, and the result
is of bit type. In all other cases, the
operands are converten where necessary to
character-string type before the concatena­
tion is performed, and the result is of
character type. The length of the result
is the sum of the lengths of the two
operands.. The result is a varying string
if either of the operands has the VARYING
attribute.

Examples:

If A is '010111'B, B is '101'B, C is
'XY,Z~ and D is 'AA/BB', then

AI IB yields '010111101'B
AI IAI IB yields '010111010111101'B

CI ID yields 'XY,ZAA/BB'
DI IC yields 'AA/BBXY,Z'

Type Conversion

Bit String to Character String

The bit 1 becomes the character 1, and
the bit 0, the character 0.. The length is
unchanged. The null bit string becomes the
null character string.

Chapter 3: Data Manipulation 33

Character string to Bit String

The characters 1 and 0 become the bits 1
and O. The conversion condition will be
raised if the character string contains
characters other than 0 and 1 in the
portion of the string to be converted. The
null character string becomes the null bit
string.

Character string to Arithmetic

The string for conversion must contain
one of the following:

1. [+1-] arithmetic-constant

2. [+1-] real constant {+I-} imaginary­
constant

The optionally signed constant or
complex expression may be surrounded by an
arbitrary number of blanks. However,
blanks may not appear between the optional
sign and the constant, nor may they precede
the central sign in a complex expression.
The string must not contain a sterling
constant.

The arithmetic value of the constant is
converted to the base, scale, mode, and
precision that a REAL FIXED DECI~mL value

lof r.aximum fixed decimal precision would
have been converted to if this had appeared
in place of the character string value. A
null string gives the value zero.

Bit String to Arithmetic

The bit string is interpreted as an
unsigned binary integer, and is converted
to the base, scale, mode, and precision

Ithat a real fixed binary value of maximum
fixed binary precision would have been
converted to had it appeared. A null
string gives the value o.

Arithmetic to Character String

The arithmetic value is converted to a
character string according to the rules of
list-directed output specified in Chapter
7.

Arithmetic to Bit String

The absolute arithmetic value is con­
verted to real then to fixed-point binary,
precision <p,O), where p is related to the
precision before conversion as follows
(with ceilings of expressions used):

34

BINARY FIXED (r,s)
DECIMAL FIXED (r,s)

BINARY FLOAT (r)
DECIHAL FLOAT (r)

p = win«N~,max(r-s,O»
p = min(N 2 ,max(CEIL
((r- s) * 3. 32) , 0))

T) = min(N 3 ,r)
D = min(N ,CEIL

(r*1.32»

The resulting binary fixei-noint value
is interpreted as a bit string of lenath p.

The result of a
point binary with
null bit string.

AGGREGATE EXPRESSIONS

conversion to fixe~­
precision (0,0) is the

An aggregate expression is an expression
involving one or more aggregate operan1s,
i.e. array or structure operands. An
aggregate expression is either an array
expression or a structure expression. For
convenlence, array expressions are
classified into simple array expressi0ns,
whose operands are not structures or arrays
of structures, and array of structure
expressions. See "The Assignment State­
ment," in Chapter 8.

Prefix Operators and Aggregate Operands

A prefix operator applied to an aggre­
gate yields a result whose aggregate type
is the same as the operand. Thus if A is
an array and B is a structure -A is an
array expression and -B is a structure
expression. The bounds and number of
dimensions of an array expression are those
of the operand.

Infix Operators and Aggregate Operands

An infix operator applied to two aggre­
gate operands, or to an aggregate operand
and a scalar, yields a result whose aggre­
gate type is determined by the operands.
The following table gives the aggregate
type of the result of an infix operation in
terms of the aggregate type of the oper­
ands:

r------------T--,
I Operand 1 I Operand 2 I
I ~------------T--------------T------------T---------------------~
I I scalar 1 simple array I structure larray of structures I
~------------+------------+--------------+------------+---------------------~
I scalar I scalar 1 simple I structure larray of I
1 1 1 array I lstructures I
~------------+------------+--------------+------------+---------------------~
I simple I simple I simple I array of larray of I
I array I array I array I structures Istructures 1

~------------+------------+--------------+------------+---------------------~
I structure I structure 1 array of 1 structure larray of I
I I I structures 1 I structures I
~------------+------------+--------------+------------+---------------------~
I array of 1 array of 1 array of 1 array of larray of I
1 structures I structures I structures 1 structures Istructures I L ____________ i_----------_i ______________ i ____________ i _____________________ J

If bot.h operands are arrays they must have
the same bounds and number of dimensions;
the result has these common bounds and
number of dimensions. If only one operand
is an array the result has the bounds and
number of dimensions of this array. When
structures are involved, they must all have
the same st.ructuring.

Built-in Functions with Aggregate
Arguments

The built-in functions listed under
"Arithmetic Built-in Functions,"
"Mathematical Built-in Functions," and
"string Built-in Functions" in Appendix 1
may be givEm aggregate expressions in argu­
ment posit~ions other than those which must
be integer constants. The aggregate type
of the result, its bounds and number of
dimensions, with g argument positions other
than integE~r constant ones can be obtained
by treating the reference as an expression
involving these B operands and (n-i) infix
operators.

For example, if A is a structure, B is a
simple array and C is a scalar.

SIN (A)
MAX(B,C)
MIN (A, B)

is a structure expression
is an array expression
is an array of structures
expression

Value of a~ ~gregate Expre~sion

Aggregate expressions can be used only
on the right hand side of an assignment
statement, as arguments, and in a data list
of a PUT s·tatement.

In an assignment statement the values
designated by an aggregate expression are

assigned to one or more aggregate target
variables. Such an assignment is carried
out as a sequence of scalar assignments
(see "The Assignment Statement," in Chapter
8). The definition has two major COnse­
quences:

1. Array expressions may
results of conventional
bra.

not yield the
matrix alge-

2. When a variable, or part thereof, is
specified both as an operand and as a
target, the values of the variable
when used in the expression may be
those assigned earlier in the sequence
of scalar assignments.

In other cases no named target variable
is available. When passing arguments a
dummy variable (the dummy argument) is
constructed. The aggregate type of the
dummy argument is that specified in the
corresponding parameter position of an
entry attribute, or if this information is
not specified in an entry attribute then
the aggregate type is that of the expres­
sion itself. The values transmitted to the
parameter are determined by assignment of
the expression to the dummy argument. The
values transmitted by an aggregate expres­
sion in an output data list are those which
would be assigned to a target variable
having the aggregate type of the expres­
sion.

EVALUATION OF EXPRESSIONS

In the evaluation of an expression, the
priority of operations is as follows.

Chapter 3: Data Manipulation 35

Highest: ,,**~prefix +, prefix -
*, /
infix +, infix -
I J
>= , >, , >, , =, <, , <, <= ,
&

Lowest: J

Operations within an expression are per­
formed in the order of decreasing priority.
For example, in the expression A+B**3,
exponentiation is performed before addi­
tion. If an expression involves operations
of the same priority, the operations" **,
prefix +, and prefix - are performed from
right to left and all other operations are
performed from left to right .•

If an expression is enclosed in paren­
theses, it is treated as a single operand.
The parenthesized expression is evaluated
before its associated operation is per­
formed. For example, in the expression
(A+B**3)/(C*DJ IE), A will be added to B**3,
C*D will be concatenated with E, and then
the first of these results will be divided
by the second.

Thus, parentheses modify the normal
rules of priority.

An implementation may cause evaluation
of subscripts, function references, and
locator qualifiers in any order that it
chooses. This is subject only to the
constraint that an operand must be fully
evaluated before its value is used in an
operation.

36

The operators + and * are commutative,
but not associative, as low-order rounding
errors will depend on the order of evalua­
tion of an expression.. Thus, A+B+C is not
necessarily equal to A+(B+C).

The rules relating to irreducible func­
tions and abnormal data should be noted
(see "Abnormality and Irreducibility," in
Chapter 10).

ORDER OF THE EVALUATION OF AGGREGATE
EXPRESSIONS

Array expressions are evaluated by per­
forming, in turn, a complete scalar evalua­
tion of the expression for each position of
the array. The evaluations ~roceed in
row-major order (final subscript varying
most rapidly). The result of an evaluation
for an earlier position can alter the
values of scalar elements for the evalua­
tion of a later position (see Example 1,
for "The Assignment Statement," in Chapter
8) •

Structure expressions are evaluated by
performing a complete scalar evaluation of
the expression for each eligible field, in
the order in which the fields in the
structures are declared. The results of an
evaluation for an earlier position can
alter the result for the evaluation of a
later position.

An idEmtifier appearing in a PL/I pro­
gram may refer to one of many classes of
objects. For example, it may represent a
variable referring to a complex number
expressed in fixed-point scale with decimal
base; it may refer to a file; it may
represen1: a variable ref erring to a charac­
ter string; it may represent a statement
label or represent a variable referring to
a statement label; it may be a variable
referring to a pointer or area, etc.

The recognition of an identifier as a
particular name is established through dec­
lara tion of the ·name .•

Those properties that characterize the
object represented by the name, and the
scope of the name itself, together make up
the set of attributes that are to be
associated with the name.

There are a number of classes of attri­
butes. 'rhese classes and the attributes in
each class are described further on in this
chapter.

When an identifier is used in a given
context in a program, attributes from cer­
tain of these attribute-classes must be
known in order to assign a unique meaning
to the identifier. For example, if an
identifier is used as a data variable, the
data type must be known: if the data type
is arithmetic, the base, scale, mode, and
precision must be known.

Examples of Attributes:

CHARACTER (50)--Association of this attri­
bute with an identifier defines the
identifier as representing a variable
referring to a string 50 characters in
length .•

FLOAT--Association of this attribute with
an identifier defines the identifier
as representing a variable referring
to arithmetic data, where the data is
represented internally in floating­
poi.nt form.

EXTERNAI.--Association of this attribute
with an identifier defines the
idEmtifier as a name with a certain
special scope .•

CHAPTER 4: DATA DESCRIPTION

DECLARATIONS

A given identifier is established as a
name, which holds throughout a certain
scope in the program (see "scope of
Declarations" in this chapter), and a set
of attributes may be associated with the
name by means of a declaration.

If a declaration is internal to a cer­
tain block, then the name is said to be
declared in that block.

In a program, a given identifier may be
established in different parts of the pro­
gram as different names. For example, an
identifier may represent an arithmetic
variable in one part of a program and an
entry name in another part. These two
parts, of course, cannot overlap.

Each different use of the identifier is
established by a different declaration.
References to different uses are distingu­
ished by the rules of scope (see "Scope of
Declarations") .•

Declarations may be explicit, contex­
tual, or implici.t.

EXPLICIT DECLARATIONS

Explicit declarations are made through
use of the DECLARE statement, label prefix­
es, and specification in a parameter list;
by this means, an identifier is established
as a name and can be given a certain set. of
attributes.

Only one DECLARE statement can be used
to establish an internal name. However,
complementary sets of ~xplicit declarations
are permitted:

1.. One explicit declaration of an entry
name as a statement prefix may be
combined with an explicit declaration
in a DECLARE statement.

2. One or more explicit declarations in
parameter lists may be combined with
an explicit declaration in a DECLARE
statement.

All declarations of a complementary set
must be internal to the same block.

Chapter 4: Data Description 37

The DECLARE statement

Function:

The DECLARE statement
executable statement used
specification of attributes
names.

is a
for

of

non­
the

simple

General Format:

DECLARE [level] identifier [attribute] •••
[, [level] identifier [attribute] •••] •.• ;

1.

2.

3.

4 .•

Syntax rules:

Any number of identifiers
declared as names in one
statement.

may be
DECLARE

Attributes must follow the names to
which they refer.. (Note that the
above format does not show factoring
of attributes, which is allowable as
explained later).

"Level" is a non-zero decimal integer
constant. If it is not specified,
level 1 is assumed.

A DECLARE statement may have a label
prefix, but such use does not cause
declaration of the identifier as a
labE~1 constant.

5. A DECLARE statement cannot have a
condition prefix.

General Rules:

1. All of the attributes given explicitly
for a particular name must be declared
together in one DECLARE statement.
(Note that for FILE, certain attri­
butes may be specified in an OPEN
statement. See Chapter 7, "File Open­
ing and File Attributes .• ")

2. The following attributes may not be
specified more than once for the same
name:

AREA

BASED

BIT

CHltRACTER

DEFINED

dimension

ENTRY (parameter attribute list)

GENERIC

38

INITIAL

LABEL (list)

'LIKE

OFFSET

PICTURE

POSITION

precision

RETURNS

3. Attributes of EXTERNAL names, declared
in separate blocks and compilations,
must not conflict or supply explicit
information that was not explicit or
implicit in other declarations.

Example:

DECLARE JOE FLOAT, JIM FIXED (5,3),
JACK BIT (10);

JOE is declared to be a floating-point
scalar variable, JIM a five-position,
fixed-point scalar variable with three
places to the right of the decimal point,
and JACY. a scalar variable of ten bits.

Declaration of Structures

The outermost structure is a major
structure, and all contained structures are
minor structures.

A structure is specified by declaring
the major structure name and following it
with the names of all contained elements.
Each name is preceded by a level number,
which is a non-zero decimal integer con­
stant. A major structure is always at
level one and all elements contained in a
structure (at level n) have a level number
that is numerically greater than n, but
they need not necessarily be at level- n+l,
nor need they all have the same level
number.

A minor structure at level n contains
all following items declared -with level
numbers greater than g up to but not
including the next item with a level number
less than or equal to g. A major structure
description is terminated by the declara­
tion of another item at level one, by the
declaration of an item having no level
number, or by the end of a DECLARE state­
ment.

Factorin<Lin DECLARE Statements

Attributes common to several name dec­
larations can be factored to eliminate
repeated specification of the same attri­
bute for many identifiers. This factoring
is achi.~ved by enclosing the name declara­
tions in parentheses, and following this by
the set of attributes which are to apply_
Level numbers also may be factored, but in
such cases, the level number precedes the
parenthesized list of name declarations.
Factoring of attributes is permitted only
in the DECLARE statement, but not within an
ENTRY attribute declaration.

General format:

declare-statement is defined as:

DECJLARE declaration-list;

where declaration-list is defined as:

declaration [, declaration] •••

where declaration is defined as:

[integer] {identifierl
(declaration-list)}
(dimension-attribute) {attribute .•.]

Examples:

1. DECLARE «A FIXED, B FLOAT) STATIC,
C CONTROLLED) EXTERNAL;

This declaration is equivalent to the
following:

DECJLARE A FIXED STATIC EXTERNAL,
13 FLOAT STATIC EXTERNAL,
C CONTROLLED EXTERNAL;

2,. DECLARE 1 A AUTOMATIC, 2 (B FIXED, C
FLOAT, D CHAR(10»;

This declaration is equivalent to the
following:

DECLARE 1 A AUTOMATIC,
2 B FIXED,
2 C FLOAT,
2 D CHAR(10)i

Multiple Declarations and Ambiguous
References

Two or more declarations of the same
identifier, internal to the same block,
constitute a multiple declaration of that
identifier only if they have identical
qualification (including the case of two or
more declarations of an identifier at level

1, i.e., scalars or major structures).
Multiple declarations are in error.

Reference to a qualified name is always
taken to apply to the identifier (for which
the reference is valid) declared in the
innermost block containing the reference.
Within this block, the reference is unam­
biguous if either of the following is true:

1. The reference gives a valid qualifica­
tion for one and only one declaration
of the identifier.

2. The reference represents the complete
qualification of" only one declaration
of the identifier. The reference is
then taken to apply to this identifi­
er.

Otherwise, the reference is ambiguous and
in error.

Examples:

1. DECLARE 1 A, 2 C, 2 D, 3 E;
BEGIN;
DECLARE 1 A, 2 B, 3 C, 3 E;
A.C=D.E;

A.C refers to C in the inner block.
D.E refers to E in the outer block.

2,. DECLARE 1 A, 2 B, 2 B, 2 C, 3 D, 2 D;
B has a mUltiple declaration.
A.D refers to the second D, since A.D

is a complete qualification of only
the second D; the first D would
have to be referred to as A.C.D or
C. D.

3. DECLARE 1 A, 2 B, 3 C, 2 D, 3 C;
A.C is ambiguous because neither C is

completely qualified by this ref­
erence.

4. DECLARE 1 A, 2 A, 3 Ai
A refers to the first A.

A.A refers to the second A.
A.A.A refers to the third A.

5,. DECLARE X; DECLARE 1 Y, 2 X, 3 Z, 3 A,
2 Y, 3 Z, 3 Ai

X refers to the first DECLARE
Y.Z is ambiguous

Y.Y.Z refers to the second Z
Y.X.Z refers to the first Z

Label Prefixes

A label acting as a prefix to a PROCE­
DURE or ENTRY statement explicitly declares
the identifier as having the ENTRY attri­
bute,. If the PROCEDURE or ENTRY statement
applies to an external procedure, the
attribute EXTERNAL is given, and this dec-

Chapter 4: Data Description 39

laration is considered to be internal to an
imaginary block containing the external
procedure. In all other cases, the attri­
bute INTERNAL is given, and the declaration
is internal to the block containing the
procedure.

A label acting as a prefix to any other
statement is an explicit declaration of the
identifier as a statement label constant.
The declaration is internal to the block
containing the statement.

Paramete!:§.

The appearance of an identifier in a
oarameter list of a PROCEDURE or ENTRY
~tatement is an explicit declaration of the
identifier as a parameter.

CONTEXTUAL DECLARATIONS

The syntax of PL/I allows unqualified
identifiers appearing in certain contexts
to be recognized without an explicit dec­
laration. Such contextual declarations
will not, howp.ver, override any explicit
declaration of the same identifier whose
scope includes the block containing a
statement that might otherwise cause con­
textual declaration.

Contextual declarations can occur as
follows:

1. Pointer. An undeclared identifier can
be contextually declaren as a pointer
variable if it appears:

a. In parentheses following the key­
word BASED in a BASED attribute
specification of a DECLARE state­
ment.

b. In parentheses following the key­
word SET in the SET option of an
~LLOCATE or LOCATE or READ state­
ment.

c. ~s a locator qualifier.

2. Area. An undeclared identifier can be
contextually declared as an area vari­
able if it appears in parentheses
following the keyword IN in the IN
clause of an ALLOCATE or FREE state­
ment or if it appears in parentheses
following the keyword OFFSET in an
OFFSET declaration, or by its appear­
ance in an OFFSET attribute specifi­
cation.

40

3. TasK. An undeclared identifier can be
contextually declared as a task varia­
ble if it appears in parentheses fol­
lowing the keyword TASK in the TASK
option of a CALL statement.

4. Event. An undeclared identifier can be
contextually declared as an event
variable if it appears:

a. In parentheses following the key­
word EVENT in the EVENT option of
a statement.

b. In parentheses following the key­
word WAIT in a WAIT statement.

5. Entry. An undeclared identifier that
is not a built-in function name can be
contextually declared as an entry name
if it appears:

6.

a. Following the keyword
CALL statement or CALL
an INITIAL attribute
cation.

CALL in a
option of

specifi-

b. In a function reference, when fol­
lowed by an argument list.

Built-in. An undeclared identifier
that is the same as a built-in func­
tion name can be contextually declared
with the BUILTIN attribute if it
appears followed by an argument list.

7. File. An undeclared identifier can be
contextually declared as a file name
if it appears:

a. In the file option of an input or
output statement.

b. In parentheses following one of
the input/output condition names.

P. Condition-name. An undeclared iden­
tifier can be contextually declared as
a condition name if it appears in
parentheses following the keyword CON­
DITION in an ON, SIGNAL, or REVERT
statement.

A contextual declaration is treated as
if it had been made in the external proce­
dure, even if the reference is made ln an
internal block. The scope of a contextual­
ly declared name is the entire external
procedure, except for any internal blocks
in which 'the same identifier is explicitly
declared.

IMPLICIT AND BUILT-IN DECLARATIONS

An identifier that is neither explicitly
declared nor contextually declared will be
declared implicitly as an arithmetic varia­
ble or it will be declared as the name of a
built-in function.

Attribu1:es assigne.d by an implicit dec­
laration depend upon the initial (or only)
letter of the identifier. An identifier
beginning \tlith any of the letters I through
N is assigned the attributes BINARY, FIXED,
RRAL, and default precision by implicit
declaration. An identifier beginning with
any other letter, including the three
alphabetic extenders, is assigned the
attributes DECIMAL, FLOAT, REAL, and
default precision.

Whenever an identifier is implicitly
declared as a variable, the declaration is
treated as if it had been made in the
external procedure. Even if the reference
causing the declaration appears in a con­
tained block, the scope of an implicitly
declared name is the entire external proce­
dure, except for internal blocks in ~which
the same identifier is explicitly declared.
Note that a contextual declaration occur­
ring anywhere within an external procedure
precludes an implicit declaration of that
identifier anywhere within the external
procedure.

The identifier will be declared as a
built-in function if the identifier name is
that of a built-in function and the iden­
tifier name is nowhere used

1. As a target variable in an assignment
statement

2. As the control variable in a DO­
statement

3. As the control variable in a
repetitive specification within a data
list

4. As a receiving field in the data list
of a GET statement

ESTABLISHMENT OF DECLARATIONS

The establishment of declarations of
names is based on a system of priority,
with explicit declarations having the
highest priority. It follows a three-step
process:

1. Explicit declarations are established,
with the scope of each name determined
by the block in which the declaration
is rrad1e.

2. Undeclared identifiers are scanned to
determine if their meaning can be
recognized contextually (in one of the
eight ways described under "contextual
Declarations"). Note that no contex­
tual declaration of an identifier can
be made if the identifier lies within
the scope of an already established
explicit declaration. If any unde­
clared identifier is recognized con­
textually, a declaration is generated,
with scope established as if the dec­
laration had been made in the external
procedure.

3. Following contextual declaration,
implicit declarations or declarations
as built-in functions are established
for all remaining undeclared identifi­
ers, wjth scope established as if the
declaration were made in the external
procedure.

ASSIGNMENT OF ATTRIBUTES TO IDENTIFIFRS

Names can be given attributes explicitly
through DECLARE statements, by occurrences
in certain recognizable contexts, and by
default rules for ioentifiers incompletely
descrihed by the programmer.

At the time of declaration, all attri­
butes need not be known. For an identifier
occurring as a pararreter, the charac­
teristic "parameter" is combined with any
explicitly declared attributes and/or
defaults. Attributes of a file name can be
specified in a DECLA~E statement, with
additional attributes snecified in an OPEN
statement or implieu bv the type of opera­
tion specified- in a~ data transmission
statement that opens the file implicitly.
An identifier occurring as an internal
entry label is given the attributes INTER­
NAL ENTRY, which then are also combined
with any declared attributes for that iden­
tifier, after which defaults are applied.

If an identifier appears in a context
that could furnish a contextual declaration
of this identifier, and if the contextual
reference occurs in the scope of a DECLARE
statement declaring the identifier, then
the context cannot add any attributes that
are not given explicitly or by default in
the DECLARE statement.

Application of Default Attributes

Default assumptions are as follows, for
the identifier classes indicated:

Chapter 4: Data Description 41

ENTRY type: EXTERNAL is assumed. IRREDUCI­
BLE is also assumed unless USES andlor
SETS is specified in which case REDU­
CIBLE is assumed. Scale, base, mode,
and precision defaults for the value
returned are the same as for arithmet­
ic type given below.

FILE type: A summary of file default
attributes appears in "File Opening
and File Attributes" in Chapter :.

I TASK type: ABNORMAL and ALIGNED are
assumed. Scope and storage class
defaults are the same as for Arithmet­
ic type given below.

EVENT type: Defaults are the same as for
TASK type.

LABEL type: Range is assumed to be all
labels which could be assigned to the
variable. NORMAL and ALIGNED are
assumed. Scope and storage class
defaults are the same as for arithmet­
ic type given below.

ILocator type: NORMAL and
assumed.. Scope and
defaults are the same
ic type given below.

ALIGNED are
storage class

as for arithmet-

f AREA type: NORMAL and ALIGNED are assumed.
Scope and storage class defaults are
the same as for arithmetic type given
below.

Condition type: EXTERNAL scope is assumed.

I strinq type: NORMAL and UNALIGNED are
assumed. Scope anc storage class
defaults are the same as for arithmet­
ic type given below.

Major Structure type: NORMAL is assumed.

Minor structure type: NORMAL is assumed.
INTERNAL is assumed.

Elementary Structure Element type: NORMAL
is assumed. INTERNAL is assumed. If
arithmetic type has been indicated,
then scale, base, mode, and precision
defaults are the same as for arithmet­
ic type given below.

Arithmetic type: If none of scale, base,
and mode has been given, then if the
identifier starts with any of the
letters I N, FIXED BINARY REAL is
assumed; otherwise FLOAT DECIMAL REAL
is assumed. If at least one of these
has been given, then the remaining
defaul ts are taken from FLOA.T, DECI­
MAL, and REAL. Default precision is
implementation defined, dependent on
scale and base. NORMAL, INTERNAL, and
ALIGNED are assumed. If no storage

42

class is given, then
associated with INTERNAL
with EXTERNAL.

SCOPE OF DECLARATIONS

AUTOMATIC is
and STATIC

When a declaration of an identifier is
made in a block, there is a certain well­
defined region of the program over which
this declaration is applicable. This
region is called the scope of the declara­
tion or the scope of the name established
by the declaration.

The scope of a declaration of an iden­
tifier is~defined as that block B to which
the declaratjon is internal, but excluding
from block B all contained blocks to which
another declaration of the same identifier
is internal. {Block B may be an imaginary
block that is considerpd to contain the
declaration of an external entry name, as
discussed under "Label Prefixes."}

Scope of External Names

In general, distinct declarations of the
same identifier imply distinct names with
distinct non-overlapping scopes. It is
possible, however, to establish the same
name for distinct declarations of the same
identifier by means of the EXTERNAL attri­
bute. The EXTERNAL attribute is defined as
follO\'1s:

A declaration of an identifier that
declares the identifier as EXTERNAL is
called an external declaration for the
identifier. All external declarations
for the same identifier in a program
will be linked and considered as esta­
blishing the same name. The scope of
this name will be the union of the
scopes of all the external declarations
for this identifier.

In all of the external declarations for
the same identifier, the attributes
declared must be consistent, since the
declarations all involve a single name.
For example, it would be an error if the
identifier ID were used as an EXTERNAL file
name in some READ statement in a program,
and in the same program to declare ID as
EXTERNAL ENTRY.

The EXTERNAL attribute can be used to
communicate bet~'1een different external pro­
cedures or to obtain non-continuous scopes
for a name within an external procedure.

An external name is a name that has the
scope attribute EXTERNAL. If a name is not
external, it is said to be an internal name
and has the scope attribute INTERNAL.

The following examples illustrate scope
of declarations. The numbers on the left
are for reference only, and are not part of
the procedure. See Table 2 for an explana­
tion of the scope and use of each name.

Example 1:

1 A:
2

3
4
5
6

7

8
9
10

PROCEDURE;
DECLARE CX,Z) FLOAT:

B: PROCEDURE C Y) ;
DECLARE Y BIT (6) ;

C: BEGIN;
DECLARE CA,X)

Y: RETUR.N;
END C:

END B-,
D: PROCEDURE;

DECLARE
y = Z:

END D;
END A:

X FILE;

FIXED:

since entry names of external procedures
and file names have the attribute EXTERNAL,
the scope of the entry name A and of the
file name X above may include parts of
other external procedures of the program.

Example 2:

A: PROCEDURE:
1 DECLARE X EXTERNAL:

2

3

B: PROCEDURE;
DECLARE X FIXED;

C: BEGIN;
DECLARE X EXTE~NAL;

E"l\fD c;
END Bi

END A:
D: PROCEDURE;

4 DECLARE X FIXE~i

E: PROCEDURE;
5 DECLARE X EX'1'ERNAL:

END Fi
END D;

Table 2. Scope and Use of Names in Example 1, for "scope of External Names"
r---------·---,
I Refer~B~~~ Line Na!!!~ gse Scope (by block names) I
I I
I 1 A external entry name all of A except C I
I
I 2 X floating-point variable all of A except C and D
I
I 2 Z floating-point variable all of A
I
I 3 B internal entry name all of A
I
I 4 Y bit string all of B except C
I
I 5 C statement label all of B
I
I 6 A fixed-point variable all of C
I
I 6 X fixed-point variable all of C
I
I 7 Y statement label all of C
I
I 8 D internal entry name all of A
I
I 9 X file name all of D
I
I 10 Y floating-point variable all of A except B I l __ J

Chapter 4: Data Description 43

In Example 2, there are five declara­
tions for the identifier x.

Declaration 2 declares X
point variable name; its scope
block B except block C.

as a fixed­
is all of

Declaration 4 declares X as another
fixed-point variable name, distinct from
that ~f declaration 2; its scope is all of
block D except block E.

Declarations 1,3,5 all establish X as a
single name; its scope is all of the
program except the scopes of declarations 2
and 4.

Basic Rule on Use of Names

P-.. name is said to be ~ only wi thin
its scope. This definition suggests a
basic _.- and almost self-evident -- rule on
the use of names:

~ll __ appearances of an identifier which
are intended to represent a given name
in CL2!:Qgram must lie \'lithin the scope
of ~hat nam~.

There are many implications to the above
rule. One of the most important is the
limitation of transfer of control by the
statement GO TO A, where A is a statement
label.

The statement GO TO A, internal to a
block B, can cause a transfer of control to
another statement internal to block B or to
a statement in a block containing B, and to
no other statement. In particular, it
cannot transfer control to any point within
a block contained in B.

THE ATTRIBUTES

The attributes are divided into separate
classes, as listed in the following
paragraphs. Each attribute is described in
detail in the "Alphabetic List of Attri­
butes," below.

DATA ATTRIBUTES

problem Data Attributes

At·tributes for problem data are used to
describe arithmetic and string variables.
Arithmetic variables have attributes that

44

specify the base, scale, mode, and preci­
sion of the data items. String variables
have attrirutes that specify whether the
variable r~presents character strings or
bit strings and that specify the length to
be maintained. The arithmetic data attri­
butes are:

BINARY I DECIMAL

FIXED I FLOAT

REALI COMPLEX

(precision)

PICTURE

The string data attributes are:

BITICHARACTER

(length)

VARYING

PICTURE

Program Control Data Attributes

Attributes for program control data
specify that the associated name is to be
used by the programmer to control the
execution of this program. The ~rogram
control data attributes are:

LABEL

TASK

EVENT

CELL

AREA

POINTER

OFFSET

Other Attributes of Data

I The INITIAL, DEFINED, ALIGNED, UNAL­
IGNED, storage class, and scope attributes
can be declared for both problem data and
program control data.

Other attributes apply only to data
aggregates. For array variables, the
dimension attribute specifies the number of
1imensions and the bounds of an array. The
LIKE attribute specifies that the structure

variable being declared is to have the same
structuring as the structure of the name
following the attribute LIKE. The SECON­
DARY attribute specifies that certain data
does not require efficient storage.

ENTRY NAME ATTRIBUTES

The entry name attributes identify the
name being declared as an entry name and
describe features of the associated entry
point. For example, the attribute BUILTIN
specifies that the reference to the asso­
ciated name within the scope of the dec­
laration is interpreted as a reference to
the built-in function or pseudo-variable of
the same name. The entry ;name attrib-:..1tes
are:

EWrRY

RETURNS

GENERIC

BUILTIN

FILE ATTRIBUTES

The file description attributes esta­
blish an identifier as a file name and
describe characteristics for that file,
e.g., how the data of the file is to be
transmitted, ~,qhether records of a file are
to be buffered. If the same file name is
declared in more than one external proce­
dure, the declarations must not conflict,
unless one is declared with the INTERNAL
attribute.

The file attributes are:

FILE

STREAM I RECORD

INPUT I OUTPUT I UPDATE

PRINT

SEQUENTIAL I DIRECT

BUFFERED I UNBUFFERED

BACKWARDS

ENVIRONMENTCoption-list)

KEYED

EXCI.USIVE

Note that file description attributes,
except for the ENVIRONMENT attribute, can
be specified as options in the option list
of the OPEN statement.

OPTIMIZATION ATTRIBUTES

The optimization attributes provide
information to the compiler to allow (or
prevent) optimization of certain portions
of the compiled program. They specify the
way in \,qhich data-- may be altered and the
behavior of orocedures when they are
invoked. The bptimization attributes are:

ABNORMAL I NO:qMAL

IRREDUCIBLFI~EDUCIBLE

SETS (item-list)

USES (item-list)

In the absence of any information to the
contrary, the followiilg assumptions are
made:

1. All entry names are irreducible.

2. All variables are normal.

A variable is said to be abnormal if its
value may be altered or otherwise accessed
without an explicit indication. Thus, for
example, the appearance of a variable name
on the left side of an assiqnment state­
ment, in the data list specification of a
GET st.atement, or as an argument to an
irreducible function or crocedure (see
below) indicates a predictable situation
where the variable may change its value.
However, when the variable is subject to
change by the occurrence of an ON­
condition, or if it is subject to change in
a procedure invoked with the TASK option
(see "Asynchronous Operations and Tasks"),
then there is no way to predict the point
at which the change in value will occur or,
in fact, if it will occur.

Such possibilities cannot always be
recognized contextually. Furthermore, if a
portion of a source program contains sever­
al references to such a variable, the order
in which the in.::1icated operations are exe­
cuted becomes significant. (For example,
if B is abnormal, the expression B + B is
not necessarily equivalent to the expres-
sion 2 * B.) -

The implication is that the programmer
expects the operation to be performed in a
particular order. such variables must
therefore be declared ABNORMAL, to inhibit
the optimization of such portions of a
source program.

Chapter 4: Data Description 45

If a function is invoked several times
with the same arguments, a compiler mayor
may not be able to invoke the function once
and then, in subsequent references, simply
use the value returnec'l by the first invoca­
tion. 'rhe "irreducibility" of a procedure
determines whether the number of times it
is invoked may be reduced in this way
without altering the results of the pro­
gram. A procecnre is either completely
irreducible, definitively irreducible, or
reducible.

A procedure is completely irreducible if
it, or any of its 1ynamically descendant
blocks, does any of the fOllowing:

1. Returns different function values for
identical argument values

2. Haintains any kind of history

3. Performs input or output operations

4. Returns control from the proceclure by
means of a GO TO statement

If any such cases a?ply, each function
reference to the procedure must be evaluat­
ed. The IRREDUCIBLE attribute is used to
describe such procedures; it must either be
given explicitly or obtained by default.
The additional specification of USES and
SETS is allowed, but will not cause the
procedure to be recognized as definitively
irreducible.

Provided a procedure is not completely
irreducible, it is definitively irreducible
if it, or any of its dynamically descendant
blocks, accesses, modifies, allocates, or
frees any of its arguments or any genera­
tion of a variable known in the invoking
block. These actions of the procedure may
be defined by the USES and SETS attributes.
Provided these attributes are specified and
the procedure is declared REDUCIBLE or is
REDUCIBLE by default, the ?rocedure is
'recognized as being definitively irreduci­
ble.. The number of invocations of such a
procedure with identical arguments may be
reduced provided the following conditions
are satisfied:

1. No variable specified in the
attribute is also s?ecified in
SETS attribute

USES
the

2. No variable mentioned in the USES
and/or SETS attribute has its value
changed between the function referen­
ces

When irreducibility is specified, wheth­
er it be complete or definitive, the order
of evaluation of expressions becomes signi­
ficant. Hence, the results of a program in

46

I which irreducible funct5.ons are invoked may
depend on the implementation.

SCOPE ATTRIBUTES

The scope attributes are used to specify
whether or not a
another external
attributes are:

na!T1e may
procedure.

INTERNAL I EXTERNAL

be known in
The scope

All external declarations for the same
identifier in a program are linked as
declarations of the same name. The scope
of this name is the union of the scopes of
all the external declarations for this
identifier.

In all of the external declarations for
the same identifier, the attributes
declared must re consistent, since the
declarations all involve a single name.
For example, it woulj te an error if the
identifier ID were declared as an EXTERNAL
file name in one block and as an EXTERNAL
entry name in another tlock in the same
program.

The INTERNAL attribute specifies that
the declared name is known only in the
declaring block and its contained blocks.

The same identifier may be declared with
the INTERNAL attribute in more than one
block without regard to whether the attri­
butes given in one block are consistent
with the attributes given in another block,
since each such declaration establishes a
different name.

STORAGF. CLASS ATTRIBUTES

The storage class attributes are used to
specify the type of storage for a data
variable. The storage class attritutes
are:

STATIC

AUTOMATIC

CONTROLLED

BASED

ALPJ:!ABE~~IC LIST OF ATTRIBUTES

Following are detailed descriptions of
the att.ributes, listed in alphabetic order.
Alternative attributes ~re discussed
together, with the discussion listed in the
alphabet.ic location of the attribute whose
name is the first in alphabetic or~er. A
cross-reference to the combined discussion
appears wherever an alternative appears in
the alphEbetic listing.

ABNORMAL an~ NORMAL (Optimization
Attribu!:.esl

The ABNORMAL and NORMAL attributes spec­
ify the ways in which values of variables
may be altered.

The NORMAL attribute specifies that the
value of a variable will not be changed
except ·through normal assignments that can
be predicted. Consequently, the value need
not necessarily be accessed each time the
variable is referred to.

The ABNORMAL attribute specifies that
the value of a variable may be changed at
an unpredictable time. Consequently, the
value must he accessed each time the varia­
ble is referred to. A variable should be
declared ABNORMAL if its value might be
changed in an on-unit or by references in
more than one task.

General for~at:

ABNORMAL I NORMAL

General rules:

1. If any component of a structure, eith­
er a scalar variable or a minor struc­
ture, is declared ABNORMAL, no con­
taining structure name, nor the name
of the major structure can be expli­
ci tly declared NORMA!.. However, con­
tained components of an ABNORMAL
structure can be declared with the
NOR~JAL attribute.

2. A structure explicitly declared with
the NORMA.IJ attribute cannot contain
abnormal components.

Assumptions:

NORMAL is the default. Variables are
assumed to be NORMAL unless they are compo­
nents of a structure declared to be ABNOR­
MAL; such components are assumed to be
ABNORMAL unless they are explicitly
declared NORMAL. Each component of a
structure that has been explicitly declared

NORMAL will be given the NORMAL attribute
by default. Each AB~OR~AL component of a
structure will cause its containing compo­
nents to be ABNORMAL by default. Any
structure component that has not been given
a NORMAL or ABNOR~AL attribute, either
explicitly or by default, will be NORMAL by
default.

ALIGNED and UNALIGNED (Data Attributes)

The ALIGNFD and U~ALIGNED attributes
specify the arrangement of data elements in
storage to provide sneed of access or
storage economy respectively.

ALIGNED and UNALIGNED are element data
attributes, but, syntactically, either may
also be applied to any aggregate. This is
semantically equivalent to the application
of the attribute to all contained elements
of the aggregate which are not explicitly
declared with the ALIGNED or UNALIGNED
attribute.

General format:

ALIGNED I UNALIGNED

General rules:

1. Application of either attribute to an
aggregate affects the contained mem­
bers, unless any member is explicitly
declared otherwise. Thus application
of either attribute to a substructure
affects the containe0 members and
overrides an ALIGNED or UNALIGNET)
attribute that may have been implicit­
ly applied to those members by having
been specified for the containing
structure.

2. The AJ"IGNED and UNALIGNFn attributes
are applied by r'lefaul t. at element
level. The default for bit-class and
character-class data is UNALIGNED, and
for all other types of data it is
AJ.JIGNED.

3. For string overlay defining, all the
elements of the defined item must have
the UNALIGNED attribute, as must those
of the base item covered by the range
of defining, i.e., from its beginning
for a length equal to the length of
the item plus the value of the start­
ing position minus one.

4. For simple an1 iSUB defining, the
attributes ALIGNED and UNALIGNED must
agree between corresponding elements
of the defined item and the base.

Chapter 4: Data Description 47

5. The ALIGNED and UNALIGNED attributes
of an argument in a procedure invoca­
tion must match the attributes of the
corresponding parameter. If the
attributes of the orginal argument do
not match those of the corresponding
parameter in an ENTRY attribute dec­
laration, a dummy argument is created
with the attributes specified in the
ENTRY attribute declaration, and the
original argument is assigned to it.

6. If a BASED variable is used to access
a generation of another variable, then
the ALIGNED and UNALIGNED attributes
of the accessed variable and the BASED
variable must agree.

7. For all operators and built-in fUnc­
tions, the default for ALIGNED or
UNAIJIGNED is applicable to the ele­
ments of the result.

8. Constants take the default for ALIGNED
or UNALIGNED.

AREU~~.s~gram Control Data Attribute)

The AHEA attribute defines storage that,
on allo~ation, is to be reserved for the
allocation of based variables. Storage
thus reserved can be allocated to and freed
from based variables by naming the area
variable in the IN option of the ALLOCATE
and FREE statements. Storage that has been
freed can be subsequently reallocated to a
based variable.

General format:

AREA [(size)]

Syntax rule:

The "size" can be an expression or an
asterisk.

General rules:

1. The area size for areas that are not
of static storage class is given by an
expression which is converted to an
integer when the area is allocated.
It is used in an implementation­
defined way to indicate the amount of
storage to be reserved.

2. The size for areas of static storage
class must he specified as a decimal
integer constant.

3. An asterisk may be used to specify the
size if the area variable being
declared is controlled or is a param­
eter. In the case of a controlled

48

4.

area variable that is declared with an
asterisk, the size must be specified
in the ALLOCATE stateroent used to
allocate the area. In the case of a
parameter that is declared with an
asterisk, the size is inherited froro
the arqument.

The AREA condition is raised if an
attempt is made to allocate a based
variable in an area that does not
contain sufficient free storage for
the allocation.

5. Data of the area type cannot be con­
verted to any other type; an area can
be assigned to an area variable only.

6. During execution, the state of the
storage allocated for an area depends
only on the allocations made and freed
in the area; it docs not depend on the
size of the area. This state is
re1?resented by the significant alloca­
tions made in t~e area. When an area
~llocated, it contains no signifi­
cant allocations; its value is identi­
cal to the EMPTY built-in function.
An allocation, A, roade in an area is
significant at some given time if it
has not heen freed by that time. If
it has been freed by that time, it is
significant only if a subsequent sig­
nificant allocation was made before A
was freed.

7. No operators can be applied to area
variables. An area expression is
either a reference to an area variable
or a reference to a function returning
data of area type.

8. Only the INITIAL CALl: form of the
INITIAIJ attribut.e is allowed with area
variables. Since area variables are
effectively initialized to the value
of the EMPTY built-in function, only
one alternative of a cell can be, or
can contain, data of area type.

9. An area may have the DEFINED attri­
bute. Only simple and iSUB defining
are allowed. '"The base must have the
same size as the defined area.

10. Area data may be transmi,tted in RECORD
I/O; it maintains its validity. Area
data cannot be transmitted by STREAM
I/O.

Assumptions

1. If the size is
impleroentation-defined
is supplied.

omitted, an
default value

2. An area variable can be contextually
declared hy its appearance in an

OFFSET attribute specification or in
an IN option.

AUTOMATIC, STATIC, CONTROLLED and BASED
(storage Class Attributes)

The storage class attributes are used to
specify the type of storage allocation ·to
be used for data variables.

AUTOMATIC specifies that storage is to
be allocated upon each entry to the block
to which the storage declaration is inter­
nal. The storage is released upon exit
from the block. If the block is a proce­
dure that is invoked recursively, the pre­
viously allocated storage is "pushed down"
upon en1:ry; the latest allocation of stor­
age is ",?opped up" upon termination of each
generation of the recursive procedure.

STATIC specifies that storage is to be
allocatE~d when the program is loaded and is
not to be released until program execution
has been completed.

CONTROLLED specifies that full control
will be maintained by the programmer over
the allocation and freeing of storage by
means of the ALLOCATE and FREE statements.
r.1ul tiple allocations of the same controlled
variable, without intervening freeing, will
cause stacking of generations of the varia­
ble.

BASED, like CONTROLLED, specifies that
full control over allocation and freeing
will bE! maintained by the programmer. How­
ever, the separate generations are not
stacked; each may be accessed by a pointer
value that identifies the generation and is
used as a locator qualifier applied to the
based v'ariable. A based variable can be
used to identify data of any storage class
by associating the based variable name ~ .. lith
a locat.or qualifier that points to that
data. Based variables can be allocated and
freed by use of the ALLOCATE and FREE
statements. Such allocations are not
stacked. Any generation is available as
long as it remains in an allocated state.

General format:

STATIC
AU'I'Qt1ATIC
CONTROLLED
BASED [(scalar-locator-expression)]

General rules:

1.. Automatic and based variables can have
internal scope only. Static and con­
trolled variables may have either
internal or external sco~e.

2. Storage class attributes cannot be
specified for entry names, file names,
members of structures, or DEFINFD data
items.

3. STATIC, BASED, and AUTOMATIC attri­
butes cannot be specified for paramet­
ers.

4. Variables declared with adjustable
lengths and dimensions cannot have the
STATIC attribute.

5. For a structure variable, a storage
class attribute can be given only =or
the major strncture name. The attri­
bute then applies to all elements of
the structure or to the entire array
of structures. If the CONTROLLED or
BASED attribute is given to a struc­
ture, only the major structure and not
the elements can be allocated and
freed.

6. If, during evaluation of an expres­
sion, a c011troiled or based variable
is allocated or freed, the result of
the statement Jepends upon the implem­
entation in those cases in which the
variable is used elsewhere in the
statement.

7. The following rules govern the use of
based variables:

a. If no locator expression is speci­
fied, any reference to the based
variable must have an explicit
locator qualifier. This does not
apply to a based variable that is
the object o~ a REFER option or
that is to be allocated through
the use of an ALLOCATE or LOCATE
statement.

b. A reference to a based variable
without an explicit locator quali­
fier is implicitly qualified by
the locator expression in the
BASED attribute specification in
the DECLARE statement for that
based variable. Identifiers in
this implicit qualification are
those of the names in the declar­
ing block. Expressions occuring
ln this implicit qualifier are
evaluated in the current environ­
ment of the declaring block with
enabling of conditions as the ena­
bling of conditions exists at the
point of reference. Consider the
following example:

Chapter 4: Data Description 49

50

DECLARE B BASED (P(I»,
P(3) POINTER;

BEGIN;
DECLARE P POINTER, Ii

L: B Xi

The statement B=X has the same
effect as:

P (I) ->B=X;

Where both P and I are the names
known in the outer block, not
those declared in the begin block.
Conditions enabled at L are used
when P(I) is e~raluated.

c. When a reference is made to a
based variable, the data attri­
butes assumed are those of the
based variable, while the asso­
ciated locator variable identifies
the generation of data. If the
reference is to a component of a
based structure, a second, tem­
porary locator variable is created
to determine the location of the
component in relation to the
beginning of the structure.

d. Array bounds and string lengths
declared with the based variable
are evaluated dynamically with
each reference to the based varia­
ble. Therefore, the asterisk
notation for dimensions and
lengths is not permitted. A ref­
erence to a component of a based
structure causes evaluation of
sufficient elements of the struc­
ture to determine the position of
the component.

e. When a based variable is allocated
using the ALLOCATE or LOCATE
statement, expressions for bounds,
lengths, and area sizes are evalu­
ated at the time of allocation.

f. The REFER option can be used to
create structures that contain
self-defining data. It may be
used in a DECLARE statement to
specify a bound of an array, the
length of a string, or the size of
an area. The REFER option has the
following form:

expression REFER(unsubscripted­
scalar-variable)

The "unsubscripted-scalar-varia­
ble," which is the object of the
REFER option, must be the name of
a preceding scalar member of the
structure containing the REFER
option.

Upon allocation of a structure
containing one or more REFER
options, all expressions for
bounds, string lengths, and area
sizes are evaluated (in any
order), a new generation of the
structure is then allocated, and
the relevant locator variable is
assigned a value to identify this
generation. Initialization is
then done (in any order) for the
new generation of variables that
are objects of the REFER options,
using the value obtained for each
from the expression appearing in
its respective REFER option .•

In a reference specifying some
generation of a based variable,
some of whose bounds, lenghts, and
sizes are specified by REFER
options, these values are taken
from the values of those variables
in the generation referred to,
that are objects of the REFER
options.

Note: The unsubscripted variable
that is the object of the REFER
option differs from other based
variables in that when a reference
is made to it, the implied pointer
from the based variable is not
used, but the reference is always
to that generation of the struc­
ture that is currently being
accessed or allocated.

g. The EXTERNAL attribute cannot be
specified for a based variable.

h. The VARYING attribute cannot be
specified for a based variable.

i. The INITIAL attribute may be spec­
ified for a based variable. The
values are used only upon explicit
allocation of the based variable
with an ALLOCATE or LOCATE state­
ment.. If the ~.EFER option appears
in a structure for which any ele­
ment has the INITIAL attribute,
initialization specified by the
INITIAL attribute is done after
contained variables named in all
REFER options have been assigned
their proper values.

j. A based variable cannot appear in
the item list of a CHECK condition

prefix, nor in a data-dir~cted
data list.

k. Whenever a based variable contain­
ing arrays, strings, or areas is
passed as an argument, dimensions,
lengths, and sizes are determined
at the time the argument is passed
and remain fixed throughout execu­
tion of the invoked block.

Assumptions:

1. If no storage class attribute is spec­
i.fied and the scope is internal, AUTO­
MATIC is assumed.

2. If no storage class attribute is spec­
ified and the scope is external, STA­
TIC is assumed.

3. If neither the storage class nor the
scope attribute is specified, AUTOMAT­
IC is assumed.

4. An undeclared identifier appearing in
parentheses following the keyword
BASED in the BASED attribute specifi­
cation is contextually declared with
the POINTER and AUTOMATIC attributes.

BACKWARDS (File Description Attribute)

The BACKWARDS attribute specifies that
the records of a SEQUE:NTIAL INPUT file are
to be accessed in reverse order, i.e., from
the last record to the first record.

General format:

BACKWARDS

General :rule:

The BACKWARDS attribute applies to
RECORD files only: that is, it conflicts
with the STREAM attribute. It implies
RECORD and SEQUENTIAL.

BASED (S·torage Class Attibute)

See AUTOMATIC.

BINARY and DECIMAL (Arithmetic Data
Attributes>

The BINARY and DECIMAL attributes speci­
fy the base of the data items represented

by an arithmetic variable as either binary
or decimal.

General format:

BINARY I DECIMAL

General rule:

The BINARY or DECIMAL attribute cannot
be specified with the PICTURE attribute.

Assumptions:

Undeclared identifiers (or identifiers
declared only with one or more of the
ABNORMAL, NORMAL, DEFINED, SECONDARY, INI­
TIAL, ALIGNED, UNALIGNED, dimension, scope,
and storage class attributes) are assumed
to be arithmetic variables with assigned
attributes depending upon the initial let­
ter. For identifiers beginning with any
letter I through N, the default attributes
are REAL FIXED BINARY with default preci­
sion. For identifiers beginning with any
other alphabetic character J the default
attributes are REAL FLOAT DECIMAL with
default preclslon. If FIXED or FLOAT
and/or REAL or COMPLEX are declared, then
DECIMAL is a.ssumed.

BIT and CHARACTER (String Attributes)

The BIT and CHARACTER attributes are
used to specify string variables. The BIT
attribute specifies a bit string. The
CHARACTER attribute specifies a character
string. The length attribute for the
string must also be specified.

General format:

{
BIT } (length) [VARYING]
CHARACTER

General rules:

1. The length attribute specifies the
length of a fixed-length string or the
maximum length of a varying-length
string.

2. The VARYING attribute specifies that
the variable is to represent varying­
length strings, in which case, length
specifies the maximum length. The
current length at any time is the
length of the current value. VARYING
may appear anywhere in the declaration
of the string, and it may be factored.
VARYING cannot be specified for
defined or based variables.

Chapter 4: Data Description 51

3. The length attribute must immediately
follow the CHARACTER or BIT attribute
at the same factoring level with or
without intervening blanks.

4. The length attribute may be specified
by an expression or an asterisk.

If the length specification is an
expression, it is converted to an
integer when storage is allocated for
the variable,.

The asterisk notation can be used for
specification of parameters and con­
trolled variables. In the case of
parameters other than controlled par­
ameters, it indicates that the length
is to be that of the argument; other­
wise a decimal integer constant is
required. In the case of controlled
variables, it indicates that the
length is to be specified when the
variable is allocated.. For based
variables, the asterisk notation can­
not be used, but the REFER option of
the BASED attribute can be used to
specify length at allocation time.

5. If a string has the STATIC attribute,
the length attribute must be a decimal
integer constant.

6. The BIT, CHARACTER, and VARYING attri­
butes cannot be specified with the
PICTURE attribute.

7. The PICTURE attribute can be used
instead of CHARACTER to declare a
fixed· length string variable (see the
PICTURE attribute).

8. All of the string attributes must be
decla.red explicitly unless the PICTURE
attri.bute is used. There are no
defaults for string data.

BUFFERED and UNBUFFERED (File Description
AttributeE!l

The BUf'FERED attribute specifies that
during transmission to and from external
storage each record of a SEQUENTIAL RECORD
file, must pass through intermediate storage
buffers.

The UNBUFFERED attribute specifies that
such records need not pass through buffers.
It does not, however, specify that they
must not.

General format:

BUFFERED I UNBUFFERED

52

General rule:

The BUFFERED and UNBUFFERED attributes
can be specified for SEQUENTIAL RECORD
files only.

Assumption:

Default is BUFFERED,.

BUILTIN (Entry Attribute)

The BUILTIN attribute specifies that any
reference to the associated name within the
scope of the declaration is to be inter­
preted as a reference to the built-in
function or pseudo-variable of the same
name.

General format:

BUILTIN

General rules:

1. BUILTIN is used to refer to a built-in
function or pseudo-variable in a block
that is contained in another block in
which the same identifier has been
declared to have another meaning .•

2.. If the BUILTIN attribute is declared
for an entry name, the entry name can
have no other attributes.

3. The BUILTIN attribute
declared for parameters.

cannot be

CELL (Program Control Data Attribute)

Function:

The CELL attribute establishes the asso­
ciated identifier as a cell and specifies
that each declaration in the alternative
list will occupy the same storage as the
other alternative declarations in the list.
It differs from the DEFINED attribute in
that it provides storage equivalence (i.e.,
different data declarations occupying the
same storage), whereas the DEFINED attri­
bute provides data equivalence (i.e., dif­
ferent ways of referring to the same data).

General format:

CELL alternative-list

Syntax rules:

1. The alternative list should contain
the data declarations of at least two
alternatives.. This declaration of a
cell is the same as the declaration
for a structure except that the CELL
attribute is specified for the first
name.

2. Each alternative declaration must be
preceded by a level number, which must
be numerically greater than the level
number of the cell identifier.

3. The cell identifier may be given other
attributes. These attributes may be
specified either before or after the
keyword CELL but not after the alter­
na.tive list. The only other attri­
butes that a cell identifier may have
are a.s follows:

a. T'he dimension attribute

h. ABNORMAL or NORMAL

c,. Any of the storage class attri­
butes

d,. EXTERNAL or INTERNAL

e. SECONDARY

Note that c, Q, and e may be given
only for a cell at level-l,.

General rules:

1,. Each alternative may have any of the
attributes that a structure component
may have.

2. Each alternative is qualified by the
name of the cell to wh~ch it belongs
and may be referred to as such.

3. Any dimension that a cell identifier
has been given is inherited by the
alternatives of that cell.

4. Only one alternative may be active at
one time. In other words, at anyone
point: in time, only one alternative of
a cell can contain a value. An
assignment to one alternative effec­
tively deactivates the previously
active alternative.

5. Only one alternative of a cell may
have the INITIAL attribute.

6. A cell may appear only in DECLARE,
ALLOCATE, and FREE statements, as well
as in the context of arguments and
parameters ..

7. Only one AREA alternative is allowed
for a single cell variable, and if an
alternative contains an area, no other
alternative can have the INITIAL
attribute.

Examples:

1. DECLARE 1. AAA,
2 BBB CELL,

3 U POINTE!?,
3 V FLOAT (12),
3 W CELL,

4 XX CHARACTER (20),
4 YY BIT (100),

2 CCC CHARACTER (5),
2 DOD (20) CELL,

3 EE BIT (5),
3 FF CHARACTER (1):

The above example describes a structure
AAA whose components are as follows:

a. BBB, a cell whose alternatives are
the pointer variable U, the
floating-point variable V, and
another cell, W. The cell w, in
turn, contains two alternatives:
the character string XX and the
bit string YY.

b. CCC, a character string.

c. DOD', an array of 20 elements, each
of which is a cell having two
alternatives: bit string EE and
character string FF. Note that
DDD(10).EE and EE(10) are referen­
ces to the same alternative: name­
ly, the bit string alternative for
the tenth cell in ODD.

2. DECLARE 1 A CELL CONTROLLED,
2 B FLOAT (8),
2 C FIXED (10):

ALLOCATE A;

FREE A:

In this example, A is a cell whose
storage is a.llocated and freed by the use
of the ALLOCATE and FREE statements. Dur­
ing the time that A remains allocated, its
alternatives, Band C, are available for
use.

Chapter 4: Data Description 53

CHARACTER (string Attribute)

See BIT ..

COMPLEX and REAL (Arithmetic Data
Attributes)

The COMPLEX and REAL attributes are used
to specify the mode of an arithmetic varia­
ble. REAL specifies that the data items
represented by the variable are to be real
numbers. COMPLEX specifies that the data
items represented by the variable are to be
complex numbers, that is, each data item is
a pair: the first member is a real number
and the second member an imaginary number.

General format:

REALI COMPLEX

General rule:

1. If a numeric character variable is to
represent complex values, the COMPLEX
attribute must be sDecified with the
PICTURE attribute. 'The COMPLEX or
REAL attribute is the only other
arithmetic or string data attribute
that can be specified with the PICTURE
attribute.

2. A single precision attribute applies
to a complex variable (unless it is
declared with the PICTURE attribute).
It specifies the precision of both the
real and the imaginary parts.

Assumption:

Default is REAL.

CONTROLLED (storage Class Attribute)

See AUTOMATIC.

DECIMAL (Arithmetic Data Attribute)

See BINARY,.

DEFINED (Data Attribute)

The DEFINED attribute specifies that the
level one scalar, array" or structure data
is to occupy some or all of the storage

54

assigned to the base item specified in the
attribute,.

General format:

DEFINED base-item

Rules for defining:

1. The INITIAL, the storage class, and
the EXTERNAL attributes must not be
specified for the defined item, nor
may the defined item be a parameter.
Neither the defined item nor the base
item may contain VARYING strings. The
defined item is internal by default.

2. The base item is a (possibly
subscripted) scalar, array, or struc­
ture. It must not have the based
attribute or the defined attribute.

3. In references to defined data, the
bounds and string lengths of the
defined data are used to determine
whether the STRINGRANGE and SUBSCRIPT­
RANGE conditions occur.

There are three types of defining, sim­
ple defining, iSUB defining, and string
overlay defining.

If the POSITION attribute is specified
for the defined item, string overlay defin­
ing is in effect; in this case the base
item must not contain references to iSUB
variables. If the subscripts specified in
the base item contain any references to
iSUB variables, iSUB defining is in effect.
If neither iSUB variables nor the POSITION
attribute is present, then simple defining
is in effect if the base item and defined
item match according to the criteria given
below; otherwise, string overlay defining
is in effect.

A base item and a defined item match if
the base item when passed as an argument
would match a parameter which had the
attributes of the defined item (apart from
the defined attribute). For this purpose,
the parameter is assumed to have all
bounds, string lengths, and area sizes
specified by asterisks.

Simple Defining

Simple defining allows a (possibly
subscripted) scalar, array, or structure
item to be accessed by a different name.
The attributes ALIGNED and UNALIGNED must
agree between corresponding elements of the
defined item and base. Array bounds and
string lengths associated with the defined
item may differ from those of the base
item" although they are subject to certain
constraints given below.

1. Corresponding to any simple defined
reference, there is an equivalent ref­
erence to the base item given in the
DEFINED attribute of the defined item.
The qualified name in this equivalent
reference is the name of the base
item; if the defined reference was
qualified" the equivalent reference is
further qualified by those identifiers
in the declaration of the base item
which correspond to the qualifying
identifiers in the defined reference.
If the base item names an array the
equivalent reference contains a sub­
script corresponding to each dimension
in the array. The ith subscript in
the equivalent reference is the ith
subscript specified in the base item,
unless an asterisk is specified for
the base item in the DEFINED attribute
specification. Wherever an asterisk
appears, it indicates that the sub­
script to be used in the equivalent
reference is the corresponding sub­
script of the reference to the defined
item ..

2. The range specified by a bound pair of
a dE:!fined array must equal or be
contained within the range specified
by the corresponding bound pair of the
base array .•

3,. The length of a simple defined string
must not be greater than the length of
the corresponding base string.

4. The size of a simple defined area must
be equal to the size of the corres­
ponding base area.

Example:

DECU\RE A(10),1 X(M,N),2 Y,2 Z,
C DEFINED AD),
1 E(M/2) DEFINED X(*,I),2 F,

2 G;

C refers to A(3), E.F(3) refers to
X.Y(3,I).

iSUB Defining

The USE~ of iSUB defining allows a trans­
formation to be applied to the subscripts
of a defined reference to designate a
chosen element of the base array. If the
defined reference does not specify some
subscript expression, the transformation is
applied to the subscripts generated during
the evaluation of the aggregate expression
or aggregate assignment which contains the
reference. The defined item and base items
may be arrays of structures.

The subscripts in the base item in the
DEFINED at:tribute make one or more referen-

ces to the dummy iSUB variables; i is a
decimal integer constant in the range~l to
n where n is the number of dimensions in
the defined array. The number of sub­
scripts in the base item must be equal to
the number of declared dimensions of the
base array; subscript positions must not be
specified by asterisks.

Corresponding to a subscripted iSUB­
defined reference is an 'equivalent
subscripted reference to an element of the
base array. The qualified name part is
derived in the way used for simple-defined
references. However, the subscript list is
derived differently. The jth subscript in
the equivalent reference is the jth sub­
script in the base item, after each iSUB
variable has been replaced by the integer
value of the ith subscript in the defined
reference. -

The attributes of the base array and of
the defined array must obey the rules for
valid simple defining.

An array reference to an iSUB array must
not be passed as an argument, unless a
dummy is created. Sca.lar references to
iSUB defined arrays may be passed without
the creation of a dummy.

Within the expressions in a base item,
iSUB variables are treated as fixed binary
variables with the precision given by the
conversion rules.

Example:

DECLARE X(10,10),Y(5)
DEFINED X(2*lSUB,2*lSUB):

The array Y refers to the even elements of
the diagonal of X. Thus Y(l) refers to
X(2,2), Y(2) to X(4,4), etc.

String Overlay Defini~

String overlay defining is applicable
only to string and pictured data. It
enables some or all of the storage asso­
ciated with a variable to be accessed using
any suitable string or pictured scalar or
an aggregate of string and pictured data.

The POSITION attribute can be used to
specify the bit or character within the
base item at which the defined item is to
begin. Its format is:

POSITION (decimal-integer-constant)

It may appear anywhere within the declara­
tion of the level-one name of the defined
item. If it is omitted POSITION(l) is
assumed. The number of bits or characters
in the defined item, plus n-l where ~ is

Chapter 4: Data Description 55

the decimal integer constant in the POSI­
TION attribute, must be not greater than
the number of bits or characters in the
base it.em.

The defined item and the base item mllst
both be of bit class or both be of charac­
ter class. The bit class consists of:

a. Unaligned fixed-length bit strings

b. Unaligned binary numeric data

c. Aggregates consisting of items ~ and E
The composition of the character class is:

a. Unaligned
strings

fixed-length character

b. Unaligned decimal numeric data

c. Unaligned character-string
data

pictured

d. Aggregates consisting of items ~, E,
and £

All the elements of the base item cov­
ered by the range of defining and all the

I
elements of the defined item must have the
UNALIGNED attribute.

The base item cannot be an aggregate
parameter, nor can it be an interleaved
array. An interleaved array is an array
whose associated storage contains gaps
occupied by other fields; an array is
interleaved if, when written in cross­
section notation, it has an asterisk to the
right of any subscript expression or has no
asterisk corresponding to an array of
structures which contains the array.

Example:

DECLARE A CHARACTER(10),
B{lO) CHARACTER{l) DEFINED Ai

B = "O"i

The assignment to B sets each character in
A to '0".

Order of Evaluation

Evaluation proceeds as follows:

1. The array bounds, string lengths, and
area sizes of a defined item are
evaluated upon entry to the block in
which the item is declared.

2. A defined reference is treated as a
reference to some or all of that
generation of its base item that is
available at the point of reference.
When a defined item is passed as an

56

argument without creation of a dummy,
the corresponding parameter refers to
the relevant part of that generation
of the base item that is available
when the argument is passed; realloca­
tion of the base within the called
procedure will not affect the meaning
of the parameter.

3. In a reference to a defined item, all
subscripts in the reference are evalu­
ated and converted to integer before
any of the subscripts in the base item
are evaluated. Expressions in the
base item are then evaluated in the
current environment of the block con­
taining the declaration of the defined
item; names used in the base item are
interpreted in the block containing
the declaration of the defined item.

Dimension (Array Attribute)

The dimension attribute specifies the
number of dimensions of an array and the
bounds of each dimension. The dimension
attribute either specifies the bounds (only
the upper bound or both the upper and lower
bounds) or indicates, by use of an aster­
isk, that the actual bounds for the array
are to be taken from elsewhere.

General format:

(bound [, bound] ••.)

where "bound" is:

{[lower-bound:] upper-boundll*

and "upper-bound" and "lower-bound" are
element expressions.

General rules:

1. The number of bounds specifications
indicates the number of dimensions in
the array unless the variable teing
declared is contained in an array of
structures, in which case it inherits
dimensions from the containing struc­
ture.

2.. The bounds specification indicates the
bounds as follows:

a. If only the upper bound is given,
the lower bound is assumed to be
1.

b. On allocation of storage, the
lower bound must be less than or
equal to the upper bound.

c. An asterisk specifies that the
aC1:ual bounds are to be specified
in an ALLOCATE statement, if the
variable is controlled, or are to
be taken from the argument (other
than for a controlled parameter),
if the variable is a parameter.
ThE~ asterisk notation can be used
only for parameters and CONTROLLED
variables.

3. Bounds that are expressions are evalu­
ated and converted to integer data
when storage is allocated for the
array,. Bounds in a parameter a ttri­
bute list that are specified by
expressions are evaluated in the pro­
logue of the block containing the
entry attribute that specifies them;
this does not apply to the bounds in a
controlled parameter attribute list,
which are never evaluated. For simple
paramet:ers, bounds can be only option­
ally signed decimal integer constants
or asterisks.

4. The bounds of arrays declared STATIC
must be optionally signed decimal
integer constants.

5.. The dimension attribute must immedi­
ately follow the array name (or the
parenthesized list of names, if it is
being factored).. Intervening blanks
are opt:ional.

6. The ast:erisk notation cannot be used
for based variables, but the REFER
option can be used to specify a bound
at the time of allocation.

DIRECT and SEQUENTIAL (File Description
Attributes)

The DIRECT and SEQUENTIAL attributes
specify the manner in which the records of
a RECORD file are to be accessed. SEQUEN­
TIAL specifies that the records are to be
accessed according to their logical
sequence in the data set. DIRECT specifies
that the records of the file are to be
accessed by use of a key,. Each record of a
direct filE~ must, therefore, have a key
associated with it. Either of these attri­
butes implies the RECORD attribute.

Note that: SEQUENTIAL and DIRECT specify
only the current usage of the file; they do
not specify physical properties of the data
set associat:ed with the file,. A SEQUENTIAL
file may clctually have keys recorded with
the data.

General format:

SEQUENTIAL I DIRECT

General rules:

1,. DIRECT files must also have the KEYED
attribute which is implied by DIRECT.
SEQUENTIAL files mayor may not have
the KEYED attribute.

2. The DIRECT and SEQUENTIAL attributes
cannot be specified with the STREAM
attribute.

Assumptions:

1. Default is SEQUENTIAL
files.

for RECORD

2. If a file is implicitly opened by an
UNLOCK statement, DIRECT is assumed;
if by LOCATE, SEQUENTIAL is assumed.

ENTRY Attribute

The ENTRY attribute specifies that the
identifier being declared is an entry name.
It also is used to describe the attributes
of parameters of the entry point .•

General format:

ENTRY [(parameter-attribute-list
[,parameter-attribute-list] •••)]

Each "parameter attribute list" describes
the attributes of a single parameter; the
parameter name is not listed, but if the
parameter is a struc1:ure, the level number
must precede the attributes for each level.
If a parameter is an array, the dimension
attribute must be the first specified for
that parameter: otherwise, attributes may
appear in any order. Parameter attribute
lists must appear in the same order as the
associated parameters. If the attribute of
any parameter need not be described, the
absence of the corresponding parameter
attribute list must be indicated by a
comma.

General rules:

1. The ENTRY attribute with associated
parameter attribute lists must be
declared for any entry name that is
invoked within the block if the attri­
butes of any argument of the invoca­
tion differ from the attributes of the
associated parameter. This specifies
that the compiler is to create the
necessary dummy arguments,.

2. The ENTRY attribute, without any par­
ameter attribute list, is implied by
the attributes REDUCIBLE, IRREDUCIBLE,

Chapter 4: Data Description 57

3.

4.

5.

6.

USES, SETS, and RETURNS. The term
"entry name" is applied to names that
are explicitly declared with the ENTRY
attribute, to names that receive the
ENTRY attribute contextually or by
implication, and to names with the
BUILTIN or GENERIC attribute.

'I~he ENTRY a ttr ibute cannot be
fied with the BUILTIN or
attribute.

speci­
GENERIC

The ENTRY attribute must be specified
or implied for an entry name that is a
parameter.

Expressions used for length, sizes, or
bounds in an ENTRY attribute specifi­
cation for non-controlled parameters
are evaluated upon entry to the block
t~o which the declaration of the ENTRY
attribute is internal. Such evaluated
ENTRY attributes form part of the
environment of those blocks internal
to the block containing the ENTRY
attribute specifications, which are
dynamic descendants of that block.

Factoring of attributes is not perrnit­
t:ed within parameter attribute lists
of an ENTRY attribute specification.

7. The ENTRY attribute must appear for
each entry name in a GENERIC attribute
specifica"tion.

8. The ENTRY attribute can be declared
for an internal entry name only within
t:he block to which the name is inter­
nal.

As sumpti ons :

The ENTRY attribute can be assumed eith­
er contextually or by implication. The
appearance of a name as a label prefix of
either a PROCEDURE statement or an ENTRY
statement constitutes an explicit declara­
tion of that identifier as an entry name.
No dE~faults are applied for parameter
attribute lists unless attributes and/or
level numbers are specified. If only a
level number and/or the dimension attribute
is specified for a parameter attribute
list, FLOAT" DECIMAL, CONTROLLED, and REAL
are assumed,.

ENVIRQNMENT (File Description Attribute)

The ENVIRONMENT attribute is an
implementation-defined attribute that
specifies various file characteristics that
are not part of the PL/I language.

58

General fonnat:

ENVIRONMENT (option-list)

EVENT (Program Control Data Attribute)

The EVENT attribute specifies that the
associated identifier being declared is
usee as an event name. Event names are
used to investigate the current state of
tasks or of asynchronous input/output oper­
ations. They can also be used as program
switches.

General format:

EVENT

General rules:

1. An identifier may be explicitly
declared with the EVENT attribute in a
DECLARE statement. It may be contex­
tually declared by its appearance in
an EVENT option of a CALL statement,
in a WAIT statement, in a DISPLAY
statement, or in a record transmission
statement.

2. Event names may also have the follow­
ing attributes:

Dimension

Scope (the default is INTERNAL)

Storage class (the
AUTOMATIC)

default is

DEFINED (event names may only be
defined on other event names)

3.. An event variable has two separate
values:

a. A single bit which reflects the
completion value of the variable.
'l'B indicates complete, 'O'B
indicates incomplete"

b. A fixed binary value of
implementation-defined precision
which reflects the status value of
the variable. A zero value
indicates normal.

The values of the event variable can
be separately returned by use of the
COMPLETION and STATUS built-in func­
tions.

Assignment of one event variable to
another causes both the completion and
status values to be assigned.. Conver­
sion between event variables and any
other data type is not possible.

4.

5.

6.

7.

8.

Event variables may be elements of
containing
part in

this would
or from

aggregates. Aggregates
event variables may take
assignment, provided that
not require ;conversion to
event data.

The values of an inactive event varia­
ble can be set by one of the following
means:

a. Use of
variable,
value

the
to

COMPLETION pseudo­
set the completion

b. Use of the STATUS pseudo-variable,
to set the status value

c. Event variable assignment

d. By a statement with the EVENT
option

The values of an active event variable
can be set by one of the following
means:

a. By a WAIT statement for
variable associated
i.nput/output event

an event
with an

b. By the termination of a task with
which the event variable is
associated

c. By closing a file on which an
input/output operation with an
event option is in progress

d. Use of the STATUS pseudo-variable,
to set the status value

An event variable may be associated
with an event, that is, a task or an
input/output operation, by means of
the EVENT option on a statement. The
variable remains associated with the
event until the event is completed.
During this period the event variable
is said to be active. It is an error
to associate an active event variable
with another event, or to modify the
completion value of an active event
variable by event variable assignment
or by use of the COMPLETION pseudo­
variable. For a task, the event is
completed when the task is terminated
because of a RETURN, END, or EXIT
statement; for an input/output event,
the event is completed during the
execution of the WAIT for the
associated event.

It is an error to assign to the
completion value of an active event
variable (including an event variable
in an array, structure, or area) by
means of an input/output statement.

9. On execut.ion of a CALL statement with
the EVENT option the event variable,
if inactive, is set to zero status
value and to incomplete. The sequence
of these two assignments is uninter­
ruptable, and is completed before con­
trol passes to the named entry point.
On termination of the task initiated
by the CALL statement, the event vari­
able is set complete and is no longer
active. If the task termination is
not due to RETURN or END in the task,
then the event variable status is set
to 1, unless it is already nonzero.
The sequence of the two assignments to
the event variable values is uninter­
ruptable.

10. On execution of an input/output state­
ment with the EVENT option, the event
variable, if inactive, is set to zero
status value and to incomplete. The
sequence of these two assignments is
uninterruptable and is completed
before any transmission is initiated
but after any action associated with
an implicit opening is completed. An
input/output event variable will not
be set complete until either the ter­
mination of the task that initiated
the event or the execution, by that
task, of a WAIT statement naming the
associated event variable.. The WAIT
operation delays execution of this
task until any transmission associated
with the event is terminated. If no
input/output conditions are to be
raised for the operation, the event
variable is set complete and is no
longer active. If any input/output
conditions are to be raised, the event
variable is set to have a status value
of 1 and the relevant conditions are
raised. On normal return from the
last on-unit entered as a result of
these conditions, or on abnormal
return from one of the on-units, the
event variable is set complete and is
no longer active.

11. An event variable declared for use as
a program switch is never set active.
Completion and status values must be
set by the programmer.

EXCLUSIVE (File Description Attribute)

The EXCLUSIVE attribute specifies that
records in a DIRECT UPDATE file may be
locked by an accessing task to prevent
other tasks from interfering with an opera­
tion..

Chapter 4: Data Description 59

General format:

EXCLUSIVE

General rules:

1. The EXCLUSIVE attribute can be applied
to RECORD KEYED DIRECT UPDATE files
only.

2. A READ statement referring to a record
in an EXCLUSIVE file has the effect of
locking that record~ unless the READ
statement has the NOLOCK option, or
unless the record has already been
locked by another task; in the latter
case., the task executing the READ
statement will wait until the record
is unlocked before proceeding.

3. Execution in the locking task of a
WRITE, DELETE, or REWRITE statement
specifying the key of a locked record
will automatically unlock the record
at the end of the DELETE, REWRITE, or
WRITE operation; if the record has
been locked by another task, the task
executing the WRITE, DELETE, or REW­
RITE statement will wait until the
record is unlocked. While a WRITE,
DELETE, or REWRITE operation is taking
place, the record is always locked.

4. Automatic unlocking takes place at the
end of the operation, on normal return
from anyon-units entered because of
the operation (that is, at the corres­
ponding WAIT statement when the EVENT
option has been specified).

5. A locked record can be explicitly
unlocked by the task that locked it,
by means of the UNLOCK statement.

6. Closing an EXCLUSIVE file unlocks all
the records in the file.

7. When a task is terminated, all records
locked by that task are unlocked.

Assumptions:

1,. If a file is implicitly opened by the
UNLOCK statement, it is given the
EXCLUSIVE attribute.

2. EXCLUSIVE implies
DIRECT" and UPDATE.

RECORD, KEYED,

EXTERNAL and INTERNAL (Scope Attributes)

The EXTERNAL and INTERNAL attributes
specify the scope of a name. INTERNAL
specifies that the name can be known only
in the declaring block and its contained

60

blocks. EXTERNAL specifies that the name
may be known in other blocks containing an
external declaration of the same name.

General format:

EXTERNAL I INTERNAL

Assumptions:

INTERNAL is assumed for entry names of
internal procedures and for variables with
any storage class. EXTERNAL is assumed for
file names and entry names of external
procedures. Programmer-defined condition
names are assumed to be EXTERNAL.

FILE (File Description Attribute)

The FILE attribute specifies that the
identifier being declared is a file name.

General format:

FILE

Assumptions:

The FILE attribute can be implied by any
of the other file description attributes.
In addition, an identifier may be contex­
tually declared with the FILE attribute
through its appearance in the FILE option
of any input/output statement, or in an ON
statement for any input./output condition.

FIXED and FLOAT (Arithmetic Data
Attributes)

The FIXED and FLOAT attributes specify
the scale of the arithmetic variable being
declared. FIXED specifies that the varia­
ble is to represent" fixed-point data items.
FLOAT specifies that the variable is to
represent floating-point data items.

General format:

FIXED I FLOAT

General rule:

The FIXED and FLOAT attributes cannot be
specified with the PICTURE attribute.

Assumptions:

Undeclared identifiers (or identifiers
declared only with one or more of the
dimension, ABNORMAL, NORMAL, DEFINED, SEC­

IONDARY, INITIAL, ALIGNED, UNALIGNED, scope,

and storag,e class attributes) are assumed
to be arithmetic variables with assigned
attributes depending upon the initial let­
ter. For identifiers beginning with any
letter I through N, the default attributes
are REAL FIXED BINARY with default preci­
sion. For identifiers beginning with any
other alphabetic character, the default
attributes are REAL FLOAT DECIMAL with
default precision. If BINARY or DECIMAL
and/or REA:L or COMPLEX are specified, FLOAT
is assumed; however, if a base or mode
attribute is specified with a precision
attribute that included a scale factor,
FIXED is assumed.

FLOAT (Arithmetic Data Attribute)

See FIXED .•

GENERIC (Eptry Name Attribute)

The GENERIC attribute is used to define
a name as a family of entry names, each of
which is referred to by the name being
declared. When the generic name is
referred 1:0, the proper entry name is
selected, based upon the arguments speci­
fied for the generic name in the procedure
reference.

General format:

GENERIC (entry-name-declaration
(,entry-name-declaration] •••)

General rules:

1. No o1:her attributes can be specified
for the name being given the GENERIC
attribute .•

2. Each "entry name declaration" follow­
ing the GENERIC attribute corresponds
to Olle member of the family, and has
the form:

en1:ry-name attribute-list

3. The "attribute list" of each entry
name declaration specifies attributes
of thE~ entry name. It must include
the ENTRY attribute. It may optional­
ly have USES, SETS, REDUCIBLE, IRREDU­
CIBLE f INTERNAL, EXTERNAL, and RETURNS
attributes. No entry name declaration
can have the GENERIC attribute, nor
can i 1: have the BUILTIN attribute.

4. Each entry name declaration must spec­
ify a1:tributes and/or level numbers

for each parameter. An ENTRY declara­
tion within a GENERIC declaration is
exactly the same as any other ENTRY
declaration. Therefore, no other
entry attribute declaration for the
same identifier can appear in the same
block if the entry name appears in a
GFNERIC attribute specification.

5. When a generic name is referred to,
the attributes of the arguments must
match exactly the list following the
entry name declaration of one and only
one member of the family. The ref­
erence is then interpreted as a ref­
erence to that member. Thus, the
selection of a particular entry name
is based upon the arguments of the
reference to the generic name. Note
that no conversion is done for argu­
ments passed to generic functions.
Consequently, the precision of a con­
stant or any other expression must
match the precision of a parameter.

6. The selection of a particular entry
name is first based on the number of
arguments in the reference to the
name. The following attributes are
then considered in choice of generic
members:

Base

Scale

Mode

Precision

PICTURE

LABEL (but not label list)

Number of dimensions (but not
bounds)

CHARACTER (but not length)

BIT (but not length)

VARYING

ENTRY (but not parameter descrip­
tion or other attributes of entry
names)

FILE (but no other FILE attributes)

ALIGNED

UNALIGNED

AREA (but not size)

OFFSET (but not specified
variable)

area

Chapter 4: Data Description 61

POINTER

TASK

EVENT

7. Generic entry names (as opposed to
references) may be specified as argu­
ments to non-generic procedures if the
invokef entry name - is explicitly
declared with the ENTRY attribute.
This ENTRY attribute must specify that
the appropriate parameter is an entry
name and must specify, by means of a
further ENTRY attrib1lte, the at.tri­
butes of all its parameters. This
enables a choice to be wade of which
family member is to be passed.

INITIAL (Data Attribute)

The INITIAL attribute has two forms.
The first specifies an initial constant
value to be assigned to a data item when
storage is allocated to it. The second
form specifies that, through the CA~L
option, a procedure is to be invoked to
perform initialization at allocation.

General format:

1. INITIAL (item [,iterrJ ...)

2. INITIAL CALL entry-name
[argument-list]

General rule:

The INITIAL attribute cannot be given
for entry names, file names, defined varia­
bles, structures, parameters, cell names,
or task or event variables. Note, however,
that it can be given for an element of a
structure or bne alternative of a cell
(unless an alternative contains an area, in
which case only that alternative can be
initialized).

Rules for general format 1:

1. In this
"constant"
ing:

discussion, the term
denotes one of the follow-

{+I-] arithmetic-constant

character-string-constant

hit-string-constant

[+I-]real-constant(+I-lirnaginary­
constant

2. Only one constant value can be speci­
fied for an element variable; more

62

than one can be specified for an array
variatle. A structure variable can be
initialize~ only by separate i~itiali­
zation of its elementary names, wheth­
er they are element or array varia­
bles.

3. Constant values specified for an array
are assigned to successive elements of
the array in row-major order (final
subscript varying most rapidly).

4. If too many constant values are speci­
fied for an array, excess ones are
ignored; if not enough are specified,
the remainder of the array is not
initializec.

5. Each item in the list can be a con­
stant, an asterisk denoting no ini­
tialization for a particular element,
or an iteration specification.

6. The iteration specification has one of
the following general forms:

(iteration-factor) constant

(iteration-factor) (item[,item] .••)

(iteration-factor) *
The "iteration factor" specifies the
number of times the constant, item
list, or asterisk is to be repeated in
the initialization of elements of an
array. If a constant follows the
iteration factor, then the specified
number of elements are to be initial­
izea with that value. If a list of
items follows the iteration factor,
then the list is to be repeated the
specified number of tirres, with each
item injtializing an element of the
array. If an asterisk follows the
iteration factor, then the specified
number of ele.JT1ents are to be skipped
in the initialization operation.

7. The iteration factor is a scalar
expression; for STATIC data, it must
be an unsigned decimal integer con­
stant. When storage is allocated for
the array, the expression is evaluated
to give an integer that specifies the
number of iterations.

8. A negative or zero iteration factor
causes no initialization.

9. For initialization of a string array,
if only one parenthesized element
expression precedes the string initial
value, the expression is interpreted
to be a string repetition factor for
the string; that is, it is interpreted
as a part of the specification of the
value for a single element of the

array. Consequently, to cause ini­
tiali:zation of more than one element
of a string array, both the string
repetition factor and the iteration
factor must be explicitly stated, even
if the string repetition factor is
~ For example, consider the fol­
lowing:

«2) 'A') is equivalent to ('AA')
(for a single element)

«2) (l)'A') is equivalent to
(' A', • A') (for two elements)

10. Label constants given as initial
values for label variables must be
known within the block in which the
label variable declarations occur.
STATIC label variables cannot have the
INITIAL a.ttribute.

11. An alternative method of initializa.­
tion is available for elements of
arrays of non-STATIC statement label
variables: an element of a label array
can appear as a statement prefix,
provided that all subscripts are
optionally signed decimal integer con­
stants. The effect of this appearance
is the initialization of that array
element to a value that is a con­
struc1:ed label constant for the state­
ment prefixed with the subscripted
reference. This statement must be
internal to the block containing the
declaration of the array. Only one
form of initialization can be used for
a given label array.

12. General format 1 of the INITIAL attri­
bute cannot be used in t.he declaration
of locator or area variables.

Rules for general format 2:

1. The "entry name" and "argument list"
passed must satisfy the condition
stated for prologues in Chapter 6,
"Dynamic Program Structure."

2. General format 2 cannot be used to
initialize STATIC data.

3.. General format 2 can be used to l.nl.­
tialize locator and area variables.

Examples:

1. DECLARE SWITCH BIT (1)
INITIAL ('l'B):

2. DECLARE MAXVALUE INITIAL (99),
MINVALUE INITIAL (-99);

3. DECLARE A (100,10) INITIAL
«920)0, (20) «3)5,9»;

4. DECLARE TABLE (20,20) INITIAL
CALL INITIALIZE (X,Y):

5. DECLARE Z(3) LABEL:

Z (1): IF X Y THEN GO TO EXIT:

Z (2): A A + B + C * D:

Z(3): A A + 10;

GO TO Z(I)i

EXIT: RETURN:

The third example results in the follow­
ing: each of the first 920 elements of A is
set to 0, the next 80 elements consist of
20 repetitions of the sequence 5,5,5,9.

In the fourth example, INITIALIZE is the
name of a procedure that sets the initial
values of elements in TABLE. X and Yare
arguments passed to INITIALIZE.

In the last example, transfer is made to
a particular element of the array Z by
giving I a value of 1,2, or 3.

INPUT, OUTPUT, and UPDATE (File Description
Attributes)

The INPUT, OUTPUT, and UPDATE attributes
indicate the function of the file. INPUT
specifies that data is to be transmitted
from external storage to the program. OUT­
PUT specifies that a new data set is to be
created to which data is to be transmitted
from the program to external storage.
UPDATE specifies that the data can be
transmitted in either direction: that is,
the file is both an input and an output
file.

General format:

INPUT I OUTPUT I UPDATE

Chapter 4: Data Description 63

General rules:

1. A file with the INPUT attribute cannot
have the\PRINT attribute.

2. A file with the OUTPUT attribute can­
not have the BACKWARDS attribute.

3. A file with the UPDATE attribute can­
not have the STREAM, BACKWARDS, or
PRINT attributes. A declaration of
UPDATE for a SEQUENTIAL file indicates
the update-in-place mode; to access
such a file, the sequence of state­
ments must be READ, then REWRITE.

Assumptions:

Default is INPUT. The PRINT attribute
implies OUTPUT. If a file is opened impli­
citly by a PUT, LOCATE, or WRITE statement,
OUTPUT is assumed: by a GET or REAL state­
ment, INPUT is assumed; by a DELETE,
UNLOCK, or REh~ITE statement, UPDATE is
assumed. The EXCLUSIVE attribute implies
UPDATE.

INTERNAL (Scope Attribute)

See EXTERNAL.

IRREDUCIBLE and REDUCIBLE (Optimization
Attributes)

The IRREDUCIBLE and REDUCIBLE optimiza­
tion attributes, specified for an entry
name, supply information to the compiler
concerning the degree of optimization that
can be accomplished. / The IRREDUCIBLE
attribute specifies that a calling sequence
must be generated for every reference to
the entry name. The REDUCIBLE attribute
specifies that references to the entry name
with arguments of identical values and
attributes can always be assumed to have
the same effect.

General format:

IRREDUCIBLE I REDUCIBLE

General Rules:

1. Either external and internal proce­
dures can be irreducible or reducible.
Blocks invoking procedures that are
reducible must be within the scope of
a REDUCIBLE, USES, or SETS declaration
for the invoked entry name.

2. An external procedure is irreducible
if it or any procedure invoked by it:

64

a. Access, allocate, modifYI or free
external data.

b. Modify, allocate, or free their
arguments.

c.

d.

e.

Return
values
values.

inconsistent
for the same

function
argument

Maintain any kind of history.

Perform input/output operations.

f. Return control from the procedure
by means of a GO TO statement.

3. An internal procedure is irreducible:

a. Under any of the conditions listed
under 2 for external procedures.

b. If it or any procedures called by
it access, monify, allocate, or
free variables declared in an
outer block.

4. Any procedure to which none of the
conditions stated in 2 and 3 apply is
said to be reducible, and its entry
name should be explicitly declared
with the REDUCIBLE attribute. The
scope of the exolicit declaration must
inciude any invoking block.

5. An entry na~e for which the USES
and/or SETS attributes are specified
is RFDUCIBI,E by default. This· speci­
fies that the neighborhood of the call
can be optimized although the number
of references to the entry can be
reduced only if no variable is men­
tioned in both the USES and the SETS
list for the entry and if none of the
variables nameQ in the USES and SETS
lists has its value changed between
references.

Assumptions:

Default is IRREDUCIBLE. If USES and/or
SETS is specified, the entry is assumed to
be definitively reducible.

KEYED (File Description Attribute)

The KEYED attribute specifies that the
options KEY, KEYTO, and KEYFROM may be used
to access records in the file. These
options indicate that keys are involved in
accessing the records in the file.

General format:

KEYED

General rules:

1. A KEYED file cannot have the attri­
butes STREAM or PRINT .•

2. The KEYED attribute can be specified
for RECORD files only.

3. The KEYED attribute must be specified
for every file with which any of the
options KEY, KEYTO, and KEYFROM is
used. It need not be specified if
none of the options are to be used,
even though the corresponding data set
may actually contain recorded keys.

Assumption:

The DIRECT and EXCLUSIVE attributes
imply KEYED.

LABEL (Program Control Data Attribute)

The LABEl, attribute specifies that the
identifier being declared is a label varia­
ble and is to have statement labels as
values. To aid in optimization of the
object program, the attribute specification
may also include the values that the name
can have during execution of the program.

General format:

LABEL, [(statement-Iabel-constant
[, statement-Iabel-constant] •.••)]

General rules:

1. If a list of statement label constants
is given, the variable can have as
values only members of the list.. If
mUltiple labels are prefixed to a
statement all of the labels have the
same value. The label constants in
the list must be known in the block
containing the declaration.

2.. The parenthesized list of statement
label constants can be used in a LABEL
attribute specification for a label
array. The label list applies to each
elememt of the array.

3. If the variable is a parameter, its
value~ can be any statement label vari­
able or constant passed as an argu­
ment. If the argument is a label
variable, the value of the label par­
ameter can be any value permitted for
the label variable that is passed.

4. An entry name cannot be a value of a
label variable.

5. A subscripted label specifying an ele­
ment of a label array can appear as a
statement label prefix, if the label
variable is not STATIC, but it cannot
appear in an END statement after the
keyword END. For further information,
see general rule 12 in the oiscussion
of the INITIAL attribute.

6. The INITIAL attribute cannot be speci­
fied for STATIC label variables.

Length (String Attribute)

See BIT.

LIKE (Structure Attribute)

The LIKE attribute specifies that the
name being declared is a structure variable
with the same structuring as that for the
name following the att~ibute keyword LIKE.
Substructure names, elementary names, and
attributes for substructure names and elem­
entary names are to be identical.

General format:

LIKE structure-variable

General rules:

1. The "structure variable" can te a
major structure name or a minor struc­
ture name. It can be a qualified
name, but it cannot be subscripted.

2. The "structure variable" must be known
in the block containing the LIKE
attribute specification. The struc­
ture names in all LIKE attributes are
associated with ~eclared structures
before any LIKE attributes are expand­
ed. For exarrple:

DECLARE 1 A, 2 C, 3 E, 3 F,
1 D, 2 C, 3 G, 3 H:

BEGIN;
DECLARE 1 ~ LIKE D, 1 B LIKE A.C;

END:

These declarations result in the fol­
lowing:

Chapter 4: Data Description 65

1 A LIKE D is expanded to give:

1 A, 2 C, 3 G, 3 H

1 B LIKE A.C is expanded to give:

1 B, 3 E, 3 F

3. Neither the nstructure variablen nor
any of its substructures can be
declared with the LIKE attribute, nor
may the "structure variablen have been
completed by the LIKE attribute.

4, Neither additional substructures nor
elementary names can be added to the
created structure; any level number
that immediately follows the
"structure variable" in the LIKE
attribute,specification in a DECLARE
statement must be algebraically equal
to or less than the level number of
the name declared with the LIKE attri­
bute.

5. Attributes of the "structure variable"
itself do not carryover to the creat­
ed structure. For example, storage
class attributes do not carryover.
If the "structure variable" following
the keyword LIKE represents an array
of structures, its dimension attribute
is not carried over. The only ALIGNED
and UNALIGNED attributes that are car­
ried over are those explicitly speci­
fied for substructures and elements of
the structure variable; the LIKE
attribute is expanded before the
ALIGNED and UNALIGNED attributes are
applied to the contained elements of
the nstzacture variable." The other
attributes of substructure names and
elementary names, however, are carried
over; if the attributes that are car­
ried over contain names, these names
are interpreted in the block contain­
ing the LIKE attribute. An exception
is that this does not apply to the
INITIAL attribute for any elements of
a label array that has been initial­
ized by prefixing to a statement.

6. If a direct application of the des­
cription to the structure declared
LIKE would cause an incorrect continu­
ity of level numbers (for example, if
a minor structure at level 3 were
declared LIKE a major structure at
level 1) the level numbers are modi­
fied by a constant before application.

NORMAL (Optimization Attribute)

See ABNORMAL.

66

OFFSET and POINTER (Program Control Data
Attributes)

The OFFSET and POINTER attributes des­
cribe locator variables. A locator varia­
ble can be used in a based variable ref­
erence to identify a particular generation
of the based variable. Offset variables
identify a location relative to the start
of an area; pointer variables identify any
location, including those within areas.

General format:

POINTERIOFFSET[(scalar-area-variable)]

General rules:

1. A pointer variable can be explicitly
declared in a DECLARE statement, or it
can be contextually declared by its
appearance as a pointer qualifier, by
its appearance in a BASED attribute,
or by its appearance in a SET option.

2. An offset variable must be explicitly
declared.

3. The value of a pointer variable or
function uniquely identifies a genera­
tion. This generation may be accessed
by using the variable or function as
the locator qualifier in a reference
to a based variable whose evaluated
attributes match those of the genera­
tion. A value of pointer type may be
obtained from the built-in functions
ADDR, NULL, and POINTER.

4. The value of an offset variable or
function identifies the position of a
generation within an area relative to
the area. This value may be converted
to a pointer to the generation by
supplying the area and the offset
value as arguments to the POINTER
built-in function. A value of offset
type may be obtained from the built-in
functions NULLO and OFFSET. If an
offset, 0, when associated (e.g., by
the POINTER built-in function) with an
area A1, identifies a generation G1,
then when A1 is assigned to A2
(possibly by some intervening
input/output operations) the genera­
tion G2 in A2 which corresponds to G1
may be accessed by the pointer value
obtained by supplying A2 and 0 to the
POINTER built-in function. Use of an
offset to access a generation in an
area other than the area initially
used to establish the offset is
allowed in more cases than the forego­
ing. The general case is now given,
using the foregoing nomenclature.
There can be associated with an area
an ordered list of the evaluated

attributes of the significant alloca­
tions (see "The AREA Attribute"l made
in the area. G2 is accessed by POIN­
TER (A2,O) provided the ordered list
of evaluated attributes of Al when Gl
was allocated match the part, up to
the allocation of G2, of the list of
evaluated attributes of the signifi­
cant allocations in A2 when ° is used
to access G2.

5. The value of a locator variable can be
set in any of the following ways:

a. With the SET option of a READ
statement

b. By a LOCATE statement

c. By an ALLOCATE statement

d. By assignment of the value of a
locator variable or function

6. Locator variables cannot be operands
of any operators other than the com­
parison operators = and ,=.

7. Locator data cannot be converted to
any other data type, but pointer can
be converted to offset, ana vice
versa.

8. A locator value can be assigned only
to a locator variable. When an offset
value is assigned to an offset varia­
ble, the area variables named in the
OFFSET attributes are ignored.

9. Locator data cannot be transmitted
using STREAM input/output.

10. Only the INITIAL CALL form of the
INITIAL attribute is allowed in loca­
tor declarations.

Assumptions:

An undeclared identifier appearing in
the BASED attribute specification, in a SET
option, or as a locator qualifier, is
contextually declared to be a pointer vari­
able. An undeclared identifier appearing
in the OFFSET attribute specification is
contextually declared to be an area varia­
ble. A variable named in the OFFSET attri­
bute is given the AREA attribute.

See INPUT ..

PICTURE (Data Attributel_

The PICTURE attribute is used to define
the internal and external formats of
character-string, numeric character, and
numeric bit data and to specify the editing
of data. Numeric character data is data
having an arithmetic value but stored
internally in character form. Numeric
character data is converted to coded arith­
metic before arithmetic operations can be
performed.

The picture characters are described in
Appendix 2, "Picture Specification Charac­
ters."

General format:

PICTURE

'character-picture-specification'

'numeric-picture-specification'

A "picture specification," either character
or numeric, is composed of a string of
picture characters enclosed in single quo­
tation marks. An individual picture char­
acter may be preceded by a repetition
factor, which is a decimal integer con­
stant, ~, enclosed in parentheses, to indi­
cate repetition of the character ~ times.
If n is zero, the character is ignored.
ricture characters are considered to be
grouped into fields, some of which contain
subfields.

General rules:

1. The "character picture specification"
is used to describe a character-string
data item. Three characters may be
used: A, indicating that the associat­
ed position in the data item may
contain any alphabetic character or a
blank; X, indicating that the asso­
ciated postion may contain any charac­
ter; and q, indicating that the asso­
ciated position may contain any deci­
mal digit or a blank. A character
picture specification must include at
least one A or X. Each character
picture specification is a single
field with no contained subfields.

Example:

DECLARE ORDER# PICTURE
'AA(3l9X99X(4l9'i

This declaration specifies that values
of ORDER# are to be character strings
of length 13. The string consists of
two letters, three digits, any charac­
ter, two digits, any character, and

Chapter 4: Data Description 67

68

four digits. For example, the charac­
ter string ~GF342-63-0024' would fit
this description.

Editing and suppression characters are
not allowed in character picture
specifications.. Each picture specifi­
cation character must represent an
actual character in the data item.

The "numeric picture specification" is
used to describe, for decimal digits,
a character item that represents eith­
er an arithmetic value or a character­
st:ring value, depending upon its use.
For binary digits, the "numeric
picture specification" is used to des­
cribe a bit item that represents eith­
er an arithmetic value or a bit-string
value. A numeric picture specifi­
cation can consist of one or more
fields, some of which can be divided
into subfields. A single field is
used to describe a fixed-point number
or the mantissa of a floating-point
number. Either may be divided into
two subfields, one describing the
integer portion, the other describing
the fractional portion. For floating­
point numbers, a second field is
required to describe the exponent; it
cannot be divided into subfields. A
second field may optionally be used
with fixed-point numbers to indicate a
scaling factor. Seven basic picture
characters can be used in a numeric
picture specification:

9 indicating any decimal digit

1 indicating any binary digit

2 indicating a binary digit in 2's
complement notation

3 indicating a binary digit in l's
complement notation

v indicating the assumed location of
a decimal point. It does not spec­
ify an actual character in the
character-string value of the data
item. The V also indicates the end
of a subfield of a picture specifi­
cation.

K indicating, for floating-point data
items, that the exponent should be
assumed to begin at the position
associated with the picture charac­
ter following the K. It does not
specify an actual character in the
charact~r-string value of the data
item, either an E or a sign. The K
delimits the two fields of the
specification.

E indicating, for floating-point data
items, that the associated position
will contain the letter E to indi­
cate the beginning of the exponent.
The E also delimits the two fields.

In addition to these characters, zero
suppression characters, editing char­
acters, and sign characters may be
included in a numeric picture specifi­
cation to indicate editing. Editing
characters are not a part of the
arithmetic value of a numeric charac­
ter data item, but they are a part of
its character-string value. Repeti­
tion factors are allowed in numeric
picture specifications.

3. A numeric character data item can have
a decimal or binary base, depending
upon the digit picture character used.
Its scale and precision are specified
by the picture characters. The PIC­
TURE attribute cannot be specified in
combination with base, scale, or pre­
cision attributes. If the mode of the
numeric character data is COMPLEX,
however, the COMPLEX attribute must be
explicitly stated.

4. The following paragraphs indicate the
combinations of picture characters for
different arithmetic data formats.

a. Real decimal fixed-point items are
described in the following general
form:

PICTURE' [9] ••• [V] [9] •••
[F([+I-] integer)]'

The' optional field of the picture
spe'cification, beginning with the
letter F together with a parenthe­
sized, optionally signed decimal
integer constant, is a scaling
factor that in~icates the location
of an assumed decimal point if
that location is outside the
actual data i,tem. The scaling
factor has an effect similar to
the exponent of a floating-point
number; it indicates that the
assumed decimal point is "integer"
places to the right (or left, if
negative) of the position other­
wise indicated.

Sign, editing, and zero suppres­
sion picture characters can be
included in a fixed-point specifi­
cation. The V cannot appear more
than once in a specification,
although it may be used in combi­
nation with the decimal point (.)
or comma (,) editing characters,
which cause insertion of a period
or comma. If no V is included,

the decimal point is assumed to be
to the right of the rightmost
digit. Only one sign indication
can be included in the first field
(the actual sign of the integer in
a scaling factor is allowed
additionally). The specification
must include at least one digit
position.

Example:

DECLARE A PICTURE '999V99';

This specification describes
numeric character items of five
digits, two of which are assumed
to be fractional digits.

b. Real decimal floating-point items
are described by the follmving
general form:

PICTURE
'[9] ••• [V] [9] ••. {EIKl9 •.• '

Both the mantissa field and the
exponent field must each contain
at least one digit position.

Sign, editing, and zero suppres­
s~on picture characters can be
included in a floating-point
specification. One sign indica­
tion is allowed for each field.
Only one V is allowed, and it can
appear in the first field only.
As with fixed-point specifi­
cations, the V may appear in com­
bination with the decimal point
editing character (as.V or V.).
At least one digit must appear in
the mantissa field.

c. Real binary fixed-point items are
described in the following general
forms:

PI CTURE • [S] [1 J .••• [V] [1] •.•
[F([+I-Jinteger)]'

'PICTURE '[2] .•. [V] [2] •••
[F([+I-]integer)],

PICTURE' [3] ••. [V] [3] •••
[F([+I-]integer)]'

Note: The picture character 1 spe­
(~ifies that the associated posi­
't:ion in the data contains a binary
digit. The picture character 2
specifies that the associated
position in the data contains a
binary digit that is a part of a
binary value in 2's complement
notation. The picture character 3
specifies that the as~ociated
position in the data contains a

binary digit that is a part of a
binary value in l's complement
notation. A binary picture speci­
fication cannot contain a combina­
tion of the characters 1, 2, and
3.

Only one V, representing a point,
can be present in a picture speci­
fication, but it may be in any
position within the first (or
only) field. When a sign charac­
ter (S) is specified, the data
will contain a binary 1, if the
value is negative, or a zero, if
the value is positive. The sign
character can be used only with
the picture character 1. At least
one digit must appear in the man­
tissa field.

No picture characters other than
those shown above can be used in a
real binary fixed-point picture
specification.

d. Real binary floating-point items
are described in the following
general forms:

PIC'I'URE '[S] [1] ••• [V] [1] •••
K[S]l[l] ••• '

PICTURE '[2] ••. [V] [2] ••• K2[2] •.• '

PICTURE '[3] ••• [V]{3J ••• K3[3J •.• '

(See the note in paragraph c,
atove, for an explanation of the
picture characters 1, 2, and 3.)
At least one 1igit must appear in
the mantissa field.

The sign character allowed to the
right of the K when the picture
character 1 is used represents the
sign of the exponent. Siqns are
not allowed with specifications
using either the picture character
2 or the picture character 3.

Note that the exponent is
expressed in binary notation and
that the picture character E is
not allowed in the picture speci­
fication nor is an actual E
allowed to appear in the data.

No characters other than those
shown in the format above can be
used in a binary floating-point
picture specification.

e. complex numeric character data is
described using the general form:

PICTURE 'real-picture' COMPLEX

Chapter 4: Data Description 69

The "real picture" is a specifi­
cation for either a fixed-point or
a floating-point data item. The
single picture specification des­
cribes both parts of a complex
number.

5. The precision of a numeric character
variable is del?endent upon the number
of digit positions, actual and condi­
tional. Digit positions can be speci­
fied by the following characters:

70

9 which is an actual decimal digit
character

1 which is an actual binary digit
character

2 which is an actual binary digit
character for a 2's complement num-
ber

3 which is an actual binary digit
character for a l's complement num-
ber

:\ which are conditional

)

(cl;aracters specifying
Slon

decimal digit
zero suppres-

y

T

I which are decimal digit characters
specifying an overpunch

R

$

+ which are conditional decimal digit
drifting characters

S

Each but the first conditional digit
drifting character in a drifting
string specifies a digit position. A
conditional digit drifting character
used alone does not specify a digit
position.

Precision of a fixed-point variable is
(p,q), where Q is the number of digit
positions in the picture specification
and g is the number of digit positions
following V. Precision of a floating­
point variable is (p), where E is the
number of digit positions preceding
the E or K. Indicated static editing
characters or insertion characters do
not participate in the specification

of precision, but they must be counted
in the number of characters if the
data item is written as output or
assigned internally to a character
string ..

6. A variable representing sterling data
items can be specified by using a
numeric picture specification that
consists of three fields, one each for
pounds, shillings, and pence. The
pence field may be divided into two
subfields. Data so described is
stored in character format as three
contiguous numbers corresponding to
each of the three fields. If any
arithmetic operations are specified
for the variable, its value is con­
verted to coded fixed-point decimal
representing the value in pence.
Sterling picture specifications have
the following form:

PICTURE

'G (editing-character-l] .••

M pounds-field

M (separator-l] •..
shillings-field

M (separator--2J ...
pence-field

(editing-character-2J •.• '

Picture specification characters,
editing characters, and separators can
be used in any of these fields and are
discussed in Appendix 2, "Picture
Speci~ication Characters."

The precision (p,q) of a sterling
numeric character data item is defined
as follows:

q = number of fractional digits in
the pence field

p 3+q+(number of digit positions,
actual and conditional, in the
pounds field)

POINTER (program Control Data Attribute)

See OFFSET.

See DEFINED.

Precision ~Arithmetic Data Attribute'

The precision attribute is used to spec­
ify the minimum number of significant
digits to be maintained for the values of
the data items, and to specify the scale
factor (the assumed position of the binary
or decimal point). The precision attribute
applies to both binary and decimal data.

General fOlrmat:

(number-of-digits [,scale-factor])

The "number of digits" is an unsigned
decimal integer constant and "scale factor"
is an optionally signed decimal integer
constant. The precision attribute specifi­
cation is often represented, for brevity,
as (p,q), where 2 represents the "number of
digits" and g represents the "scale
factor. "

General rules:

1. The precision attribute, if it
appears, must immediately follow the
scale (FIXED or FLOAT), base (DECIMAL
or BINARY), or mode (REAL or COMPLEX)
attribute at the same factoring level.

2. The number of digits specifies the
number of digits to be maintained for
data items assigned to the variable.
The scale factor specifies the number
of fractional digits. No point is
actually present; its location is
assumed.

3. The scale factor can be specified for
fixed-point variables only; the number
of digits can be specified for both
fixed-point and floating-point varia­
bles.

4. When the scale is FIXED and no scale
factor is specified, it is assumed to
be zero; that is, the variable is to
represent integers.

5. The scale factor can be negative, and
it can be larger than the number of
digits. A negative scale factor (-q)
always specifies integers, with the
point assumed to be located g places
to the right of the rightmost actual
digit. A positive scale factor (q)
that is larger than the number of
digits always specifies a fraction,
with the point assumed to be located g
places to the left of the rightmost
actual digit.

6. The precision attribute cannot be
specified in combination with the PIC­
TURE attribute,.

Assumptions:

The defaults are implementation defined
and dependent upon the base and scale of
the variable.

PRINT (File Description Attribute)

The PRINT attribute specifies that the
data of the file is ultimately to be
printed. The PAGE and LINE options of the
PUT statement and the PAGESIZE option of
the OPEN statement can be used only with
files having the PRINT attribute.

General format:

PRINT

General rules:

1. The PRINT attribute implies the OUTPUT
and. STREAM attributes.

2. The PRINT attribute conflicts with the
RECORD attrihute.

REAL (Arithmetic Data Attribute)

See COMPLEX.

RECORD and STREAM (File Description
Attributes) -

The RECORD and STnEAM attributes specify
the kind of data transmission to be used
for the file. STREAM indicates that the
data of the file is considered to be a
continuous stream of data items, in charac­
ter form, to be assigned from the stream to
variables, or from expressions into the
stream. RECORD indicates that the file
consists of a collection of physically
separate records, each of which consists of
one or more data items in any form. Each
record is transmitted as an entity to or
from a variable or buffer.

General format:

RECORD I STREAM

General rules:

1. A file with the STREAM attribute can
be specified only in the OPEN, CLOSE,
GET, and PUT I/O statements.

Chapter 4: Data Description 71

2. A file with the RECORD attribute can
be specified only in the OPEN, CLOSE,
READ, WRITE, REWRITE, LOCATE, UNLOCK,
and DELETE I/O statements,.

3. A file with the STREAM attribute can­
not have any of the following attri­
butes: UPDATE, DIRECT, SEQUENTIAL,
BACKWARDS, BUFFERED, UNBUFFERED,
EXCLUSIVE, and KEYED, any of which
implies RECORD.

4. A file with the RECORD attribute can­
not have the PRINT attribute.

Assumptions:

Default is STREAM. If a file is impli­
citly opened by a READ, WRITE, REWRITE,
LOCATE, UNLOCK, or DELETE statement, RECORD
is assumed.

REDUCIBLE (Optimization Attribute)

See IRREDUCIBLE.

RETURNS (Entry Name Attribute)

The RETURNS attribute may be specified
in a DECLARE statement for an entry name
that is used in a function reference within
the scope of the declaration. It is used
to describe the attributes of the function
value returned when that entry name is
invoked as a function.

General format:

RETURNS (attribute •••)

General rules:

1. The attributes in the parenthesized
list following the keyword RETURNS
must be separated by blanks (except
for attributes such as precision that
are enclosed in parentheses). They
must agree with the attributes speci­
fied explicitly or by default in the
PROCEDURE or ENTRY statement to which
the entry name is prefixed.

2. Only arithmetic, string,
AREA, PICTURE, ALIGNED, and
at~tributes can be specified.

locator,
UNALIGNED

3. Length attribute specifications are
evaluated on entry to the block con­
taining the RETURNS attribute specifi­
cation. such evaluated RETURNS attri­
butes form part of the environment of

72

blocks contained within the block
declaring the attribute and dynamical­
ly descendant from the block.

4. For an internal function, the RETURNS
attribute can be specified only in a
DECLARE statement that is internal to
the same block as the function proce­
dure.

Assumptions:

If the RETURNS attribute is not speci­
fied for an entry name, a RETURNS attribute
is assumed specifying the attributes REAL,
FIXED, BINARY with default precision if the
entry name begins with any of the letters I
through N; otherwise, the assumed attri­
butes are REAL, FLOAT, DECIMAL with default
precision ..

SECONDARY Attribute

Function:

The SECONDARY attribute is used to spec­
ify that certain data normally does not
require efficient storage.

General format:

SECONDARY

General rules:

1. This attribute may be declared only
for major structures, arrays, and
variables not contained in structures
or arrays, i.e., for variables at
level 1.

2. The attribute specifies that where
possible and necessary, less than nor­
mally efficient storage may be allo­
cated to the variable.

SEQQENTIAL (File Description Attribute)

See DIRECT.

SETS and USES (Optimization Attributes)

The SETS and USES attributes specify,
for an entry name, the nature of its
irreducibility due to data manipulation.
The SETS attribute specifies all of the
data, includinq arguments, that may be
altered, allocated, or freed by the proce-

dure, or any procedures called by it. The
USES attribute specifies all of the data
(though not the argument.s) that is accessed
by the procedure, or any procedures called
by it.

General format:

USES (item [,item] •••)

SETS (item [,item] ••.)

General rules:

1. The items of the list following a USES
or SETS attribute can be as follows:

a. A decimal integer constant indi­
cating the parameter position that
is used or set. Thus, a 1 indi­
cates the first parameter, a 2 the
second parameter and so on, with
the nth parameter being specified
by an integer constant of value n.

b. An unsubscripted, non-based data
variable known in both the block
containinq the declaration and in
the invoked procedure. An aster­
isk can be used as an abbreviated
notation to describe all such
variables.

2. When an item appears in a USES list,
it indicates that the invoked proce­
dure or procedures invoked by it:

a. Access that item

b. Do not assign to that item unless
it is also specified in a SETS
attribute .

c. Do not access any other data known
to the block, except data desig­
nated by explicit arguments in
either a CALL statement or a func­
tion reference.

3. When an item is specified in a SETS
list, it indicates that the invoked
procedure or procedures invoked by it:

a. Assign to, allocate, or free that
item

h. Do not access that item other than
to reassign, allocate, or free it,
unless it is also specified in a
USES attribute, or it is an argu­
ment

c. Do not
free
block

assign to, allocate, or
any other data known in the

4. Items appearing in USES or SETS lists
indicate the following:

a. It is assumed that any item not in
a SETS list, but known both inside
and outside the procedure, will
not be altered by the invocation
of the procedure. It is also
assumed that any item known both
inside and outside the procedure,
but not in a USES list, will not
be used.

b. It is assumed that arguments will
be used but not set, unless they
are in a SETS list.

c. If a data item represented by a
variable known outside the proce­
dure is both used and set within
the procedure, it must appear in
both the USES and SETS lists.

5. The USES and SETS attributes may be
declared for any entry name used to
invoke a procedure. The scope of this
declaration must include the invoking
block. If the ENTRY attribute is not
decla~ed, ENTRY is implied. If either
USES or SETS is declared in the invok­
ing procedure, complete information
must he given about the data that is
used and/or set by the invoked proce­
dure.

6. If an item in a USES or SETS list, as
described in 1b above, is defined on a
base, and if the base and any other
items ~efined on it are known both to
the invoking nnd invoked blocks, the
base and the other items must also be
specified in the list.

7. A structure or array variable appear­
ing in a USES or SETS list implies
that names of all items containe·'l in
the structure or array also are in the
list. However, it does not imply that
items defined on elements of the
structure are in the list: these must
be declared as in rule 6, above.

8. If a procedure is declared with the
USES or SETS attribute, or both, and
is not declared to be IRREDUCIBLE,
then it is assumed that the procedure
is not irreducible for any other rea­
son. If it is (for example, if it
performs input/output), then the IRRE­
DUCIBLE attribute must also be speci­
fied.

STATIC (Storage Class Attribute)

See AUTOMATIC.

Chapter 4: Data Description 73

STREAM (File Description Attribute)

See RECORD.

TASK (Pro~am Control Data Attribute)

The TASK attribute describes a variable
that may be used as a task name, to test or
control the relative priority of a task.

General format:

TASK

General rules:

1. An identifier can be explicitly
declared with the TASK attribute in a
DEClARE statement, or it can be con­
textually declared by its appearance
in a TASK option of a CALL statement.

2. Task variables can also have the fol­
lowing attributes:

a. Dimension

b. Scope (the default is INTERNAL)

c. Storage class (the default is
AUTOMATIC)

d. DEFINED (task variables may only
be defined on other task names)

e. SECONDARY

3. A task variable can be used in the
following contexts:

a. In the TASK option of a CALL
statement

b. As an argument of the ALLOCATION
built-in function and of the
PRIORITY pseudo-variable or built­
in function.

c. As an argument in a procedure.

d. As a parameter in a
ENTRY statement
parameter attribute
ENTRY attribute

PROCEDURE
or in
list of

or
the

an

e. In an ALLOCA'I'E or FREE statement

4. A task variable may be associated with
a task by specifying the task name in
the TASK option of a CALL statement.
A task variable is said to be active
if its associated task is active. A
task variable must be in an allocated

74

state when it is associated with a
task and must not be freed while it is
active. An active task variable can­
not be associated with another task.

5. A task variable contains a single
value, a priority value.. This value
is a fixed-point binary value of pre­
cision (n,O), where !! is
implementation-defined.. This value
can be tested and adjusted by means of
the PRIORITY built-in function and
pseudo-variable. The built-in
function returns the priority of the
task argument relative to the priority
of the task executing the function.
Similarly, the pseudo-variable permits
assignment, to the named task varia­
ble, of a priority relative to the
priority of the task executing the
assignment.

6. Structures, arrays, or areas contain­
ing task variables cannot take part in
assignment or input/output operations.

7. Task data cannot be converted to any
other data type.

8. A task variable cannot be passed as an
argument if this would require crea­
tion of a dummy araument.

UNALIGNED (Data Attribute)

See ALIGNED.

UNBUFFERED (File Description Attribute)

See BUFFERFD.

UPDATE (File Description Attribute)

See INPUT.

USES (Optimization Attribute)

See SETS.

VARYING (String Attribute)

See BIT.

CHAPTER 5: PROCEDURES, FUNCTIONS, AND SUBROUTINES

PARAMETERS

The PROCEDURE statement heading a given
prOCedUrE! and defining the primary entry
point to the procedure may specify a list
9f~mE!ter~.

One 01:." more ENTRY statements may also be
used in the procedure to define secondary
entry points. Like the heading statement
of the procedure, each of the ENTRY state­
ments must have at least one label to serve
as an entry name for that point, and each
may specify a list of parameters. Paramet­
er lists for different entry points to a
procedure need not be the same.

A parameter may be a scalar, array, or
structure name that is unqualified and
unsubscripted, or it may be a file paramet­
er or an entry parameter. Parameters must
be level 1 identifiers, i.e., they cannot
be members of structures.

A file parameter may be used within a
procedure wherever a file name may be used;
an entry parameter may be used wherever an
entry name may be used ..

A reference within a procedure to a
parameter produces an undefined result if
the entry point at which the procedure is
invoked does not include that parameter in
its parameter list.

Parameters are explicitly declared by
their appearance in a PROCEDURE or ENTRY
statement, but attributes can be supplied
in a DECLARE s·tatement internal to the
procedure. If attributes are not supplied
in a DECLARE statement, default arithmetic
attributes are applied, depenaing upon the
initial letter of the identifier.

Parameters cannot be declared with the
storage class attributes STATIC, AUTOMATIC,
or BASED or with the DEFINED attribute, but
a parameter may be used as a base identifi­
er in a DEFINED attribute for simple and
iSUB defining.

A parameter may have the CONTROLLED
storage class attribute. In this case, the
associated argument must also have the
CONTROLLED attribute with no dummy created
for that argument.

scope attributes cannot be declared for
parameters; internal is always assumed.
Except for controlled parameters, any
bounds, lengths, and area sizes must be

specified either by asterisks or decimal
integer constants which, for bounds, may be
signed.

Example:

SBPRIM:

SBSEC:

PROCEDURE (X, Y, Z);
DECLARE <X, Y, A, B) FIXED, Z

FLOAT;
A = X-l; B = Y+l;
GO TO COMMON;
ENT R Y (X , Z);
A = X-2; B = X-3;
COMMON: Z = A**2+A*B+B**2;
END SBPRIM;

In this example, the procedure may be
entered at its primary entry point SBPRIM,
where the parameter list is (X, Y, Z), or
at its secondary entry point SBSEC, where
the parameter list is <X, Z).

PROCEDURE REFERFNCES

At any point in a program where an entry
name for a given procedure is known, the
procedure may be invoked by a procedure
reference, which has the form:

entry-name [(argument [,argument] ...)]

The number of arguments (possibly zero)
in the procedure reference must be equal to
the number of parameters in the list for
the entry point denoted by the entry name.

The procedure invoked by the procedure
reference may be an external or an internal
procedure. If it is an internal procedure,
the block to which the entry name is
internal must be active at the time of
invocation of the procedure.

When a procedure reference invokes a
procedure, each argument specified in the
reference is associated with its corres­
ponding parameter in the list for the
denoted entry point, and control is passed
to the procedure at the entry point.

When a procedure becomes inactive, the
association between arguments and paramet­
ers is terminated.

There are two distinctly different uses
for procedures, determined by one of two
contexts in which a procedure reference may
appear:

Chapter 5: Procedures, Functions, and Subroutines 75

1. A procedure reference may appear as an
operand in an expression. In this
case, the reference is said to be a
function reference, and the procedure
is invoked as a function procedure, or
simply a function.

2. A procedure reference may appear fol­
lowing the keyword CALL, either in a
CALL statement or in a CALL option.
In this case, the reference is said to
be a subroutine reference, and the
procedure is invoked as a subroutine
procedur~, or simply a subroutine.

FUNCTION REFERENCES AND PROCEDURES

When a function reference appears in an
expression, the procedure is invoked. The
procedure is then executed, using the argu­
ments, if any, specified in the function
reference. The result of this execution is
the required value, which is passed with
return of control back to the point of
invocation. This returned value is then
used to evaluate the expression.

The procedure invoked by a function
reference normally will terminate execution
with a statement of the form
RETURN (expression), where expression is a
scalar expression of arithmetic, character­
string, bit-string, locator, or area type.
It is the value of this expression that
will be returned as the function value.
The PROCEDURE or ENTRY statement at the
invoked entry point may specify data
attributes for the function value. Just
prior to return, the expression is evaluat­
ed, and, before being passed back, the
value is converted, if necessary, to con­
form to these attributes, or, if the attri­
butes are not specified, to the default
attributes implied by the entry name.

GENERIC ENTRY NAMES

A generic entry name designates a family
of entry points with a single name. A
reference to a generic name causes the
selection of a certain member of the fami­
ly, depending upon the attributes of the
arguments. The characteristics of the
value returned depend upon the member that
is selected.

Generic names
below) or specified
may, by means of
define a name to be
name. The GENERIC
list of all of the

76

may be built-in (see
by the programmer, who
the GENERIC attribute,

a generic procedure
attribute requires a
entry names of the

family and the attributes of all of the
parameters for each member (different mem­
bers must have different parameter attri­
bute lists). Then any reference appearing
in the scope of this declaration and using
the declared generic name as an entry name
will result in the use of that member of
the declared family with the parameter
attribute lists that match the arguments in
the reference.

BUILT-IN FlmCTIONS

Besides function references to proce­
dures written by the programmer, a function
reference may invoke one of a comprehensive
set of built-in functions.

The set of built-in functions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic functions
but also functions for manipulating strings
and arrays, as well as other necessary or
useful functions related to special facili­
ties provided in the language. The iden­
tifiers corresponding to the built-in func­
tion names are not reserved; any such
identifier can be used by the programmer
for other purposes. The complete list of
these functions and their descriptions can
be found in Appendix 1.

Fach built-in function, whether or not
it is generic, requires a specified number
of arguments. For some built-in functions
only a m~n~mum is specified; additional
arguments are optional. For others, a
maximum is specified.

Each of the built-in functions that is
not generic has only a single member. When
a reference is made to one of these func­
tions, any arguments whose attributes do
not match the attributes required by that
function are converted to the appropriate
form before the function is invoked. The
characteristics of the value returned are
determined by the function.

Unlike programmer-specified functions,
which always return a scalar value. there
are many built-in functions that may return
an array or structure value when array or
structure expressions are used in certain
of their argument positions. This facility
is useful in array or structure expres­
sions.

SUBROUTINE REFERENCES AND PROCEDURES

When a procedure is invoked
execution of a CALL statement or

by
a

the
CALL

option, the initial action is the same as
if the procedure were invoked as a func­
tion: the arguments in the proce~ure ref­
erence, if any, are associated with the
parameters, and control is passed to the
procE'durE~ at the denoted entry point. No
value is returned by a procedure invoked in
this way.

A procedure may be terminated in one of
the following ways:

1. Control reaches a RETURN statement for
the procedure. When executed, this
stat:ement normally returns control to
the first executable statement logi­
cally following the invoking state­
ment:.

2. Control reaches an END
the procedure. The
caSE' 1.

~3tatement for
effect is as in

3. Control reaches a GO TO statement in
the procedure that transfers control
out of the procedure. In this case,
control will go to the designated
s ta t.ement •

4. Cont.rol reaches an EXIT or STOP state­
ment .•

THE .ARGUMENTS IN A PROCEDURE REFERENCE

~\fhen a procedure is invoked, a relation­
ship is established between the argllments
of the invoking statement and the paramet­
ers of the invoked entry point. A paramet­
er itself may be passed as an argument.

In general, the arguments in a procedure
referenCE! may be any of the following:

1. Expressions

2. Ent:!::·y names (programmer-defined)

3. Mathematical built-in function names
(see Appendix 1)

4. FilE!nameS

The attributes of each argument in a
procedure reference must, in general, match
the attributes of the corresponding param­
et.er at t:he named entry point.

For example, assume that the procedure
SUB in a program is defined by:

SUB: PROCEDURE (X, Y, Z)~
DECLARE X FIXED, Y ENTRY, Z LABEL;

END SUB;

This inplies that the parameter X is
used as a fixed-point variable with certain
default data attributes, Y is used as an
entry name, and Z is a statement label
variable in the body of the ~rocedure.
Then if SUB is invoked in the program by
the statement:

CALL SUB (~*S, CALC, LS);

it is then necessary that:

1. The expression R*S has all the data
attributes of the nararoeter X (unless
SUB is described by an ENTRY attri­
bute; see below).

2. CALC be an entry name.

3. LS be a statement-label designator.

EVALUATION OF ARGUMENT SUBSCRIPTS

Hhen an argulT'.ent is a subscripted varia­
ble, the subscripts are evaluated before
invocation. The srecified ele~ent is then
passed as the argument. Subsequent changes
in the subscript during the execution of
the invoked proce1ure have no effect upon
the corresponding parameter.

USE OF DUMrv:Y ARGUMENTS

A constructed dummy argument containing
the argument value is passefl to a procedure
if the argument is one of the following:

an arithmetic,
stant.

string, or lahel con-

an expression involving operators
an expression in parentheses
an Expression whose data attril:::utes

disagree with the data attributes
declared for the parameter in an
ENTRY attribute specification in
the invoking block

a function reference with arguments

In all other cases the argument as it
apl.?ears is passed. The parameter becomes
identical with the passed argument. If a
dummy is created, changes to the parameter
are not reflected back in the original
argument.

Chapter 5: Procedures, Functions, and Subroutines 77

ENTRY NAMES AS ARGUMENTS

When an entry name is specified as an
argument of a procedure, one of the follow­
ing applies:

1. If the entry name argument, ca 11 i t ~·1,
is specified with an argument list of
its own, it is recognized as a func­
tion reference; M is invoked, ana the
value returned by M effectively repla­
ces r~ and its argument list in the
containing argument list.

2. If the entry name argument appears
without an argument list, but within
an operational expression or within
parentheses, then it is taken to be a
function reference with no arguments.
For example:

CALI. A ((B)) ;

This passes, as the argument to proce­
dure A, the value returned by the
function procedure B.

3. If the entry name argument ap~ears

without an argument list and neither
within an operational expression nor
within parentheses, the entry name
itself is passed to the function or
subroutine being invoked. In such
cases, the entry name is not taken to
be a function re=erence, even if it is
the name of a function that does not
require arguments. For example:

78

CALL A(B);

This passes the entry name B as an
argument to procedure A.

There is an exception to this rule,
however: if an identifier is known as
an entry name and a~oears as an argu­
ment and if the parameter attribute
list for that argument specifies an
attribute other than an entry name,
the entry name will be invoked and its
returned value passed. For example:

A: PROCEDURE;
DECLARE B ENTRY,

C ENTRY (FLOAT) i

x = C(B)i

END A;

In this case, B is invoked and its
returned value is passed to C.

Consider the following example:

CALLP: ~ROCEDURE;

DECLARE RREAD ENTRY,
SUBR ENTRY (ENTRY, FLOAT,

FIXED BINARY, LABEL);

CALL SUBR (RREAD, SQRT (R), S,
LABl);

LABl: CALL ERRT(S) ;

SUBR: PROCEDURE (NAME, X, J, TRANPT);
DECLARE NAME ENTRY, TRANPT LABEL;

IF X > J THEN CALL NAME(J);
ELSE GO TO TRANPTi

END SUB-qi

In this exam~le, assume that CALLP,
SUBR, and RREAD are external entry names.
In CAI,L?, both 'R.READ ant) SUBR are explicit­
ly declared to have the ENTRY attribute.
(Actually, the explicit ~eclaration for
SUBR is use1 princip~lly to proVide infor­
mation about the characteristics of the
parameters of snBR.) Four arguments are
specified in the CALL SUBR statement.
These arguments are interpreted as follows:

1. The first argument, RRFAD, is recog­
nized as an entry pame (because of the
ENTRY attrihute declaration). This
argument is not in conflict with the
first narameter as specified in the
parameter attribute list in the ENTRY
attribute declaration for SUBR in
CALLP. Therefore, since RREAD is rec­
ognized as an entry name and not as a
function reference, the entry name is
passed at invocation.

2. The second argument, SQRT(R), is rec­
ognized as a function reference
because of the argument list accom­
panying the entry name. SQRT is
invoked, and the value returned by
SQRT is assigned to a dummy argument,
which effectively replaces the ref­
erence to SQRT. The attributes of the
dummy argument agree with those of the

second parameter, as specified in the
parameter at~tribute list declaration.
Hhen SUER is invoked, the dummy argu­
ment is passed to it.

3. The t.hird argument, S, is simply a
decimal floating-point element varia­
ble. However, since its attributes do
not agree with those of the third
parameter, as specified in the param­
eter attribute list declaration, a
dummy argument is created containing
the value of S converted to the attri­
butes of the third parameter. When
SUBR is invoked, the dummy argument is
passed ..

4.. The fourth argument, LAB1, is a
statement-label constant. Its attri­
buteB agree with those of the fourth
parameter. But since it is a con­
stan1:, a dummy argument is created for
it. Hhen SUBR is invoked, the dummy
argument is passed.

In SUDR, four parameters are explicitly
declared in the PROCEDURE statement.. If no
further explicit declarations were givpn
for thesE~ parameters, ari thmetic default
attribute::; would be supplied for each.
Therefore, since NAME must represent an
entry name, it is explicitly declared with
the ENTRY attribute, and since TRANPT must
represent a statement label, it is expli­
citly declared with the LABEL attribute. X
and J are arithmetic, so the defaults are
allowed to apply.

Note that the apoearance of NAME in the
CALL statement does not constitute a con­
textual declaration of NAr~E as an entry
name. such a contextual declaration can be
made only if no explicit aeclaration
applies, and the appearance of NAME in the
PROCEDURE statemE!nt of SUER constitutes an
explicit declaration of NAME as a paramet­
er. If the attributes of a parameter are
not explicitly declared in a complementary
DECLARE statement, arithmetic defaults
apply. consequently, NAME must be expli­
citly declared to have the ENTRY attribute:
otherwise, it would be assumed to be a
binary fixed-point variable, and its use in
the CALL statement would result in an
error.

USF OF THE ENTRY ATTRIBUTE

If an ENTRY attribute without parameter
attribute lists is specified for an iden­
tifier, it indicates only that the iden­
tifier is an entry name. In this case, the
argument and parameter attributes must
agree. A contextual declaration of an
identifier as an entry name supplies an
ENTRY attribute specification of this type.

If an ENTRY attribute specification with
parameter attribute lists is supplied for
the invoked entry name, each argument is
converted, if necessary, to conform to the
attributes specified for its corresponding
parameter in the ENTRY attribute- specifi­
cation. String lengths and area sizes are
considered to match in two circumstances
only: if the length or area size is speci­
fied by an asterisk in the ENTRY attribute
or if declarations for both the argument
and the parameter contain the same decimal
integer constant.

Dummy arguments are allocated immediate­
ly before invocation of the procedure and
freed upon return.

The asterisk notation may be use1 in the
ENTRY attribute to specify that for
strings, areas, or arrays, the argument
length, size, or bounds is to be assumed
for the parameter.

Example:

A: PROCEDURE:
DECLARE B ENTRY (FIXED,),

(C,D) FLOAT:

CALL B (C, D) :

END Ai

B: PROCEDURE (P,Q):
DECLARE P FIXED, Q FLOAT:

END Bi

The specification of the ENTRY attribute
in procedure A indicates that B has two
parameters, the first with attribute FIXED
and the second, indicated by the comma,
with attributes that match those of the
argument. Hmvever, the arguments C and D
both have the FLOA.T attribute. Since C is
to be fixed-point when it is passed to
procedure B, a dummy argument is const_ruct­
ed by converting C from floating-point to
fixed-point.. This dummy argument is then
passed to B.

CORRESPONDENCE OF PARAMETERS AND ARGUMENTS

If a parameter of an invoked entry is a
scalar, the argument must be a scalar
expression. The data attributes of the
argument or dummy argument must agree with
the corresponding attributes of the param­
eter. If a constant is used to specify the

Chapter 5: Procedures, Functions, and Subroutines 79

length of a string parameter or the size of
an area parameter in the invoked procedure,
the value of the length or size expression
of the argument must agree with the con­
stant.

If a parameter of an invoked entry is an
array, the argument in general must be an
array expression with identical bounds and
dimensionality. The argument may be a
scalar expression so long as an ENTRY
attribute is given for the invoked entry,
specifying the dimension attribute and
bounds expressions for the relevant param­
eter. In this case, a dummy array argument
will be constructed where the value of each
element of the array is the value of the
scalar expression. The data attributes of
the argument must agree with those of the
parameter if a dummy has been created. If
constants are used to specify the bounds of
the parameter in the invoked procedure, the
values of the bounds of the array argument
must agree with the values of these con-

I stants. ALIGNED and UNALIGNED attributes
must agree.

If a parameter is a structure, the
argument in general must be a structure
expression. When a structure description
is given for a parameter in an ENTRY
attribute specification, a scalar expres­
sion may be specified as the corresponding
argument. A dummy structure argument will
then be constructed where the value of each
element of the structure is the value of
the scalar expression. The data attributes
of the elements of the structure argument
must match those of the associated paramet­
er as specified in the invoked procedure.
The relative structuring of the argument
and the parameter must be the same,
although the level numbers need not be I identical. ALIGNED and UNALIGNED attri­
butes must agree. contained strings and
arrays with lengths, areas, and bounds
specified by constants must agree as des­
cribed above.

If a parameter is an area, the corres­
ponding argument must be an--area expres­
sion. If its size is declared by a con­
stant in the invoked procedure, the corres­
ponding argument must have the same size.
This applies to areas in arrays and struc­
tures.

If a parameter is a cell, the corres­
ponding argument must be a cell variable
whose relative structuring is the same as
that of the parameter, although the level
numbers need not be identical. This also
applies to cells in arrays and structures.

If a parameter is a scalar-label varia­
bl~, the argument must be a scalar-label
expression. If a parameter is an array­
la~~~yariable, the argument in general

80

must be an array-label variable. If an
ENTRY attribute is given for the invoked
entry in the invoking procedure, and if the
appropriate parameter attribute list
specifies that the parameter is a label
array, then the argument may also be a
scalar-label expression; a dummy label
array argument will be suitably construct­
ed. A dummy argument is always constructed
when the argument is a label constant.

If the argument is a statement label
constant, this statement label constant is
qualified by an identification of the cur­
rent invocation of the block containing the
label. Any reference to the parameter is a
reference to the statement label in that
environment.

If a parameter is an entry parameter,
the corresponding argument must be an
unparenthesized entry name. If an ENTRY
attribute srecification is given for the
invoked entry in the invoking procedure,
and if the appropriate parameter attribute
list specifies that the parameter is an
entry name and specifies further (nested)
parameter lists, then the argument may also
be a generic name or the name of a mathema­
tical generic built-in function; the alter­
native whose parameter attribute list
matches the nested parameter list is
selected and passed to the parameter.

If a parameter is a pointer-variable,
the corresponding argument must be a loca­
tor expression. If the argument is an
offset variable its value is converted to
pointer using the area named in its offset
attribute; this offset attribute must spec­
ify an area variable, and the parameter
must be described as a pointer in the entry
attribute. If the argument is an offset
function reference, its value is converted
to pointer using the area variable named in
the offset attribute within the RETURNS
attribute in the declaration of the
function's name; this offset attribute must
specify an area variable, and the parameter
must be described as a pointer in the entry
attribute.

If a parameter is an offset-variable,
the corresponding argument must be a loca­
tor expression. If the argument is a
pointer expression, an offset-attribute
specifying an area variable must be used to
describe the parameter in the entry attri­
bute; this area variable is used to convert
the pointer expression to area. If the
argument is an offset-expression the area
variable, if any, associated with the argu­
ment and the area variable, if any, in the
offset attribute in the entry attribute
have no effect on argument passing: if
different variables are specified this does
not, of itself, cause the creation of a
dummy.

If a parameter is a file parameter, the
argument must be a file name or parameter.
With the exception of FILE, any file attri­
butes declared for the parameter are
ignored.

ALLOCATION OF PARAMETERS

A simple parameter, that is, one that is
not controlled, may correspond to an arqu­
ment of any storage class; if more than one
generation of the argument exists, however,
the parameter is synonymous only with the
generation existing at the point of invoca­
tion. At: least one generation must exist.
A controlled parameter, however, always
must be presented with a controlled argu­
ment; thE~ argument must be an unsubscripted
name of controlled data that is not an
element of a structure.

When a procedure is invoked without a
task opt:ion, the parameter is synonymous
with the entire allocation stack of the
controlled variable. Thus each reference
to the parameter is a reference to the
current generation of the associated argu­
ment. A controlled parameter may be allo­
cated and/or freed in the invoked proce­
dure, t:hus manipulating the allocation
stack of the associated argument.

When a procedure is attached as a task,
only the current generation of a controlled
argument is available to the new task. The
new task can allocate and free subsequent
generations, but it cannot free the genera­
tion passed to it.

If storage has not been allocated for an
argument passed to a controlled para~eter
declared with the asterisk notation, expli­
cit bounds or length must be declared in an
ALLOCATE statement executed before another
reference to the parameter in the invoked
procedure.

THE SPECIAL PROCEDURE OPTION RECURSIVE

In the PROCEDURE statement for a given
procedure, certain special options that
characterize the ~rocedure itself may be
specified. (For a complete discussion of
these options, see "The PROCEDURE State­
ment.") One of these, which has particular
significance, is the option RECURSIVE.
When a procedure of a program is re­
activated in a task while it is still
active in the same task (see "Activation
and Termination of Blocks"), the procedure
is said to be used recursively. Any
procedure used recursively during program
execution must be specified with the RECUR­
SIVE option.

Chapter 5: Procedures, Functions, and Subroutines 81

CHAPTER 6: DYNAMIC PROGRAM STRUCTURE

PROGRA.M CONTROL

Every program, when it is being execut­
ed, has a control that determines the order
of execution of the statements. For a
discussion of their order see "Sequence of
Control," in Chapter 8.

Execution of the program is initiated by
the operating system invoking the initial
procedure at some entry point. Some
implementations may require that this entry
point be identified by the OPTIONS option
in the PROCEDURE statement of the initial
procedure. This procedure cannot have CON­
TROLLED parameters.

PROLOGUES -----

On enterinq a block, certain initial
actions are perforwed, e.g., allocation of
storaqe for automatic variables. These
initi~l actions constitute the prologue.

At the beginning of the prologue, the
follm..;ring items are available for computa­
tion:

1. The established generation of automat­
ic and defined variables declared out­
side the block and known within it.

2. static variables known within the
block.

3. Controlled and based variables known
within the block, but only those gen­
erations that can be accessed by the
task executing the block. Note that,
for controlled variables, this means
only the most recent generation allo­
cated in the task or inherited by the
task.

4. Arguments passed to the block.

The prologue makes available for compu­
tation all the other variables known within
the block as follows:

5. Automatic variables declared in the
block.

6. Defined variables declared within the
block.

7. Entry and generic names declared with­
in the block.

82

In making these items available, the
prologue may need to evaluate expressions
concerned with automatic and defined data.
Such expressions may occur specifying
lengths, bounds, sizes of areas, and itera­
tion factors, as well as arguments in a
CALI, option. Expressions of these kinds
also occur in RETURNS and ENTRY attribute
specifications. These exnressions may
depend on items of 1, 2, 3 or 4. They may
also be dependent on items 5, 6, and 7
under the following circumstances: If an
item is referred to in an exnression and
the allocation or initialization of a sec­
ond item depends on that expression, then
that first item must in no way be dependent
on the second item for its own allocation
and initialization. Further, the first
item must in no way be dependent on any
other item that so depen1s on the second
item.

Example:

The following is illegal:

DECLARE (A(M) INITIAL (1),
M INITIAL «A(I)}3}) AUTO;

The evaluations must not invoke irredu­
cible fUnctions. The entry invoked with
the INITIAL CALL attritute may be irreduci­
ble only in that it sets the data being
initialized. The sequence in which the
evaluations refer to any abnormal data is
not defined.

ACTIVATION AND TERMINATION OF BLOCKS

A begin block is said to be activated
when control passes through the BEGIN
statement for the block. A procedure block
is said to be activated when the procedure
is invoked at anyone of its entry points.

During certain time intervals of the
execution of a program, a block may be
active. A block is active if it has been
activated and is not yet ~erminated.

There are a number of ways in which a
block may be terminated. These are implied
by the following rules:

1. A begin block is terminated when con­
trol passes through the END statement
for the block.

2. A p:r:ocedurE~ block is terminated on
execution of a RETURN statement or an
END :3tatement for the block. (The END
statement implies a RETURN statement;
see Chapter 8.)

3. A block is terminated on execution of
a GO TO statement contained in the
block which transfers control to a
point not contained in the block. Any
intervening blocks are also terminat­
ed.

4. The execution of a STOP statement
causes termination of the major task.

5. The execution of an EXIT statement
causes termination of the task con­
taining the statement and all tasks
attached by this task. Thus, all
blocks corresponding to these tasks
are termina1:.ed.

6. When a block B is terminated, all of
the dynamic descendants of B also are
terminated.

7. When a block is terminated, all active
subtasks created during the execution
of that block are terminated.

DYNAl-UC DESCENDANCE

If a block B is activated and control
stays at points internal to B until B is
terminated, no other blocks can be activat­
ed while B is ac·tive. (This discussion is
not applicable to the multi-task, or asyn­
chronous, mode of operation, which implies
more than a single control.)

However, another block, Bl, may be acti­
vated from a point internal to block B
while B still rema1ns active. This is
possible only in the following cases:

1.. Bl is a procedure block immediately
contained in B (the label of Bl is
internal to B) and reached through a
procedure reference.

2. Bl is a begin block internal to Band
reached throl1gh normal flow.

3. Bl is a procedure block not contained
in B and reached through a procedure
reference. (Bl, in this case, may be
identical to B, i.e., a recursive
call. However, it is to be regarded
dynamically as a different block.)

4. Bl is a begin block or a statement
specified by an ON statement (see "The
ON Statement"), and reached through an
interrupt. (For present purposes,

even if Bl is a statement, it can be
regarded as a block, and this case is
dynamically similar to case 1 or case
3 above.)

In any of the above cases, while Bl is
active, it is said to be an an immediate
dynamic descendant of B.

Block Bl may itself have an immediate
dynamic descendant B2, etc., so that a
chain of blocks (B, Bl, B2, .•.) is creat­
ed, where, by definition, all of the blocks
are active. In this chain, each of the
blocks Bl, B2, etc., is said to be a
Qynamic descendant of B.

It is important for the programmer to
note that the termination of a given block
may automatically imply the termination of
other blocks and that these blocks need not
necessarily be contained in the given
block; storage for all AUTOMATIC variables
declared in these blocks will be released
at the time of termination (see "storage
Classes").

DYNAMIC ENCOMPASSING

If block B is a dynamic descendant of
block A, then block A dynamically encom­
passes block B, and block B is dynamically
encompassed by block A.

THE ENVIRONMENT OF A BLOCK ACTIVATION

A block is said to statically contain
those blocks that are nested within it; the
scope of declarations within a block, B,
includes those blocks statically contained
in B. Now, certain attributes are evaluat­
ed and certain generations established on
entry to a block; the relevant attributes
and generations are:

Generations of automatic data

Generations of simple parameters

Bounds, string-lengths, and area sizes
of defined data

Bounds, string lengths, and area sizes
within sim?le parameter attribute
lists of entry attributes

String lengths and area sizes within
RETURNS attribute specifications and
in PROCEDURE and ENTRY statements

When several activations of B are in exis­
tence, as in recursion, it is essential to

Chapter 6: Dynamic Program Structure 83

know which activation of B holds the stor­
age and evaluated attributes of data
declared in B and known to a given descen­
dant activation of a block statically con­
tained in B. If a block, Bl, is nested
within ~ statically containing blocks, the
particular activation of each of the n
blocks that hold the evaluated attributes
and generations known to Bl form the envi­
ronment of the activation of Bl.

The immediate environment of an activa­
tion of a begin block is provided by the
activation of the immediate statically con­
taining block that activates the begin
block.

The immediate environment of an activa­
tion of a procedure by one of its entry
names (i.e., not by an entry ~arameter) is
provided by the activation of the immediate
statically containing block that activates
the procedure.

When an entry name is passed as an
argument, the immediate environment to be
used in subsequent invocations by an entry
parameter is determined and passed with it.
This environment is provided by the activa­
tion, in the current environment of the
block that passes the entry name, of the
block that statically contains the proce­
dure whose entry name is passed.

The iwmediate environment of an activa­
tion of an on-unit is provided by that
activation of the block, containing the
ON-statement, in which the on-unit is esta­
blished.

The immediate environm(~nt of an activa­
tion of some block, BA, is provided by an
activation of the block, Bl, which stati­
cally contains BA. If BA is nested within
the n blocks Bl, H2 ••• Bn, there is a
sequence of block activations-such that the
activation of Bi+l provides the immediate
environment of the activation of Bi. This
sequence provides the complete environment
of the activation of BA.

THE ENVIRONMENT OF A LABEL CONSTANT

A label constant written as a label
prefix designates a point within the text
of a block, B. During execution, there may
be several activations of B; it is essen­
tial to know to which such activation of B
a reference to the label refers.

A reference to a label constant, L, made
in some activation of a block Bl is to L in
that activation of B which ~orms part of
the current environment of the activation
of Bl. (Of course, if Band Bl are the

84

same block, L refers to the current block.)
When a label-constant is assigned to a
label variable, this environmental informa­
tion is assigned as well; subsequent GO TO
statements naming the label variable will
reestablish the environment assigned to the
variable, and hence may cause blocks to be
terwinated.

GENERATION OF A VARIABLE

A level-one generation, or allocation,
of a variable is created whenever storage
is allocated for the variable. A level-one
generation, or a subgeneration as described
below, consists 0= the storage for the
generation and has associated with it a
pointer to the generation and the evaluated
set of attributes of the generation. The
pointer to the generation serves as a
unique identification of the generation.
The evaluated set of attributes is esta­
blished when the generation is allocated
and enables the contents of the storage to
be interpreted.

In the case of static, automatic, and
controlled generations, the pointer to the
generation can only be obtained by supply­
ing the variable as the argument of the
ADD~ built-in function. For based varia­
bles a locator variable is specified when a
based generation is to be created by an
ALLOCATE, LOCATE, or READ statement; a
value is assigned to the locator variable
enabling it to be used to access the
generation that is created.

The storage for a generation contains
the values of the var10US fields in the
variable. The evaluated set of attributes
of a generation comprises the structuring

I of the variable, its ALIGNED or UNALIGNED
attribute, the data types of its compo­
nents, and the bounds of arrays, lengths of
strings and sizes of areas as evaluated at
the point of allocation.

A generation of an aggregate or area
variable consists of a number of subgenera­
tions. If a generation is an array, each
subscripted item in the array is a subgen­
eration. If a generation is a structure,
each item immediately contained within the
structure is a subgeneration. An aggregate
subgeneration itself contains further
subgenerations. An area generation con­
tains a set of subgenerations corresponding
to the generations that have been allocated
in the area but not freed. If a subgenera­
tion is an area, the attributes of its
subgeneration are significant only if one
of these subgenerations is being accessed.

Offset variables may be used to identify
the position of a generation within an
area. The position is not qualified by the
area itself, so the offset may be applied
to any suitable area. This is achieved by
supplying the offset and the area as argu­
ments of the POINTER built-in function: the
result is a pOinter identifying the genera­
tion within the area.

ALLOCATION OF DATA AND STORAGE CLASSES

Because the internal storage of any
computer is limited in size, the efficient
use of this storage during the execution of
a 9rogram is frequently a crucial consider­
ation. The simple static process of uata
allocation used by many compilers the
assignment of a distinct storage region for
each distinct variable used in the source
program _.- may be wasteful. Multiple use
of a storage region for different data
during program execution can reduce the
total amount of storage required.

Provisions are included in the language
to give t:he programmer virtually any degree
of control over the allocation of storage
for the data variables in a program if he
chooses to do so.

DEFINITIONS AND RULES

Storage is said to be allocated for a
variable when storage is associated with
the variable. l'lcllocation for a given vari­
able may take place statically, before
execution of t~he program, or dynamically,
during execution.

Storaqe may be allocated dynamically for
a variable and subsequently releasen.
Thus, this storage is freed for possible
use in later allocations. If storage has
been allocated for a variable and not
subsequently released, the variable is said
to be in an allocated state.

When a variable appears in a statement
of a source program, the appearance is
called a reference. If a reference corres­
ponds either-:Cc)the assignment of a value
to the variable (e.g., an appearance on the
left side of an assignment statement) or to
a use of the value of the variable (e.g.,
appearance in an expression to be
evaluated) the variable- must be in an
allocated state.

STORAGE CLASSES

Every variable in a program must have a
storage class, which specifies the manner
of storage allocation.

There are four storage classes. The
storage class is specified by declaring the
variable with one of the four storage class
attributes STATIC, AUTOr1ATIC, CONTROLLED,
or BASED. The storage class may be
declared explicitly or by default.

The Static storage Class

Storage for a variable with the attri­
bute STATIC is allocaten before execution
of the program and is never released during
execution.

The scope attribute of a static variable
may be INTERNAL or EXTERNAL. An external
variable with unspecified storage class
has, by default, the ST~TIC storage class
attribut.e.

The Automatic Storage Class

If a variable has the attribute AUTO~AT­
IC, the activation and termination of the
block containing the declaration of this
variable determines storage allocation for
the variable. Whenever this block is acti­
vated during execution of a program, stor­
age will be allocated for the variable, and
the variable will remain in an allocated
state until termination of this block. At
the time of termination, the storage is
released. Thus, the time interval during
which the variable is in an allocated state
will necessarily include the intervals when
the variable is known.

Termination of a block by means of a GO
TO, STOP, or EXIT statement may imply
simultaneous termination of other blocks
and, consequently, simultaneous release of
storage for all automatic variables
declared in these blocks.

If the block is activated recursively
(reactivated one or more times before
return), the previous generation of an
automatic variable or parameter is "pushed
down" on each entrance and "popped up" on
each return to yield the proper generation
of storage for the variable after each
return, until the final return out of the
procedure.

Chapter 6: Dynamic Program Structure 85

Note: The terms "pushed down" and "popped
up" refer to the notion of a push-down
stack. ,A push-down stack is a logical
device S, similar in behavior to a physical
stacking process. When an element is
placed in S, it is conceptually placed on
top of the elements already in S, which are
"pushed down." At any time, if S is not
empty, the top element -- the element most
recently placed in S -- can be removed from
S, and the remaining elements are "popped
up. "

The scope attribute of an automatic
variable must be INTERNAL. An internal
variable with unspecified storage class
has, by default, the AUTOMATIC storage
class at"tribute.

The Controlled storage Class

The ALLOCATE statement may specify one
or more controlled variables, each with
certain optional attributes. Execution of
the statement causes the allocation of
storage for the variables specified.

The FREE statement may specify one or
more controlled variables, and execution of
the statement causes the storage most
recently allocated for the variables to be
released ..

At some point in a program, it may not
be known whether a controlled variable X is
in an allocated state. The built-in func­
tion ALLOCATION is provided to test this
state,. rrhe function reference ALLOCATION
(X) will return the value 'liB if any
generation of X is in an allocated state,
and the value 'OIB if not.

More than one ALLOCATE statement speci­
fying thE~ same variable, without an inter­
vening FREE statement creates a push-down
stack of generations of that variable. A
FREE statement always frees the topmost
generation.

Generations that are not explicitly
freed ar(~ freed automatically upon termina­
tion of the task in which they are allocat­
ed.

The scope attribute of a controlled
variable may be INTERNAL or EXTERNAL,.

86

Example:

A: PROCEDURE;
DECLARE X STATIC;

B: PROCEDURE;
DECLARE Y (100) CONTROLLED,

Z CHARACTER (1000);

ALLOCATE Y;

FREE Yi

C: BEGIN;
DECLARE Z (100);

END C;

RETURN;

END B;

END A;

Assume in the above example that the
termination of procedure A occurs on the
return implied by END A, the termination of
procedure B occurs on the RETURN statement,
and the termination of block C occurs at
END C. Then in this example:

Storage for the static variable X is
allocated before execution and is never
released.

The character-string variable Z is AUTO­
MATIC by default. Storage is allocated
for this Z on entry to procedure Band
is released on execution of the RETURN
statement.

The array-variable Z is AUTOMATIC by
default. Storage is allocated for this
Z at the beginning of execution of block
C and is released at END C.

Storage for the CONTROLLED variable Y is
allocated on execution of the ALLOCATE
statement and is released on execution
of the FREE statement. After execution
of the FREE statement, the variable Y
presumably is not used, but the

character-string variable Z can be used,
since storage is not released for this
variable until the termination of proce­
dure B .•

The Based Storage Class

The BASED At1:ribute specifies that gen­
erations of the declared variable may be
allocated under the control of the program­
mer. A based variable can be allocated by
use of the ALLOCATE statement (optionally
in a specified area) and freed by use of
the FREE statement. A based variable can
be allocated in a buffer by use of the
LOCATE statement; such a generation is
freed when the J::-ecord is tra nsmi tted by a
subsequent LOCliTE or WRITE statement for
the same file, or when the file is closed.
A based generation may also be allocated by
a READ statement with the SET option. All
based generations allocated in a task, with
the exception of those allocated in areas,
are automatically freed when the task is
terminated.

A based reference comprises t"l,vO parts
which together enable a generation to be
accessed. Firstly, there is a based varia­
ble which provides the attributes of the
generation. Secondly, there is a locator
qualifier which identifies the generation;
this qualifier is obtained from the based
attribute of the based variable unless a
qualifier is specified in the reference, in
which case it o,rerrides any qualifier given
in the based attribute.

When a BASED variable is used to access I a genera'tion, t:he ALIGNED and UNALIGNED
attributes of the BASED variable and the
accessed generation must agree.

Based variables need not be allocated.
Based references may be used to access
generations in any storage class. The ADDR
built-in is used to obtain a pointer value
which will ident:ify a non-based generation .•
A based reference refers to an allocated
generation if i t:s locator qualifier has a
defined v'alue.

ASYNCHRONOUS OPERATIONS AND TASKS

PLiI provides facilities for execution
of a program as a set of asynchronous
tasks. These facilities include provision
for:

1.. Creating and terminating tasks

2. Synchronizing tasks

3. Testing whether or not a task is
complete

4. Changing the priority of a task

5.. Testing the status of the termination
of a task

SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS

Unless the program specifies the crea­
tion of tasks, the execution of the state­
ments of the program will proceed serially
in time, according to the sequence desig­
nated by the order of the statements ana
the control statements.. Such operation is
said to be synchronous.

In addition to full facilities for con­
ventional synchronous processing, means are
provided for performing operations asyn­
chronously.

Some reasons for considering the use of
asynchronous operations are:

1. The programmer may wish to make use of
computer facilities which can operate
simultaneously, e.g., input/output
channels, mUltiple central processing
units.

2. A program may be written in which
input/output uni~s initiate or com­
plete transmission at unpredictable
times, e.g., disc operations, termi­
nals .•

The following two diagrams distinguish
between synchronous and asynchronous opera­
tions. T~e first diagram depicts the seri­
al action of synchronous operations, and
the second diagram depicts the parallel
action of asynchronous operations. (The
circles represent statements.)

---0--0---o----------------0---------
time-->

r-O---O------- •••
I
I

r 0-------0----0--------
I
I

o-o-o~-------o------o------o-----------
time-->

In asynchronous operation, once a new
line has been started, the statements on
that line are executed in sequence, but
independently of the statements on any
other line. Statements on any two lines

Chapter 6: Dynamic Program Structure 87

need not necessarily be executed simultane­
ously -- whether this occurs depends on the
resources and state of the system.

SYNCHRONIZING TWO ASYNCHRONOUS OPERATIONS

In order that the result of an asynchro­
nous operation may be mane available to
other tasks, a WAIT statement can be used
to synchronize two or more asynchronous
operations.

The following diagram illustrates this:

ABC D E F G
o--O--C)--O----------o--------o---o-- •••

I
time--> I

I
-------0--0-........ -0---0------0---------

L M N 0 P
Wait

Assume that before statement N can be
executed, both Land E must have been
executed. M therefore issues a WAIT state­
ment which will suspend operat.ion on that
line until E has been completed.. After N,
the statements 0, P, ••• , are executed syn­
chronously, as are the statements F,
G, •.•• ,.

TASKS AND EVENTS

In PL/I, asynchronous operations result
from the creation, by the programmer, of
tasks or from the initiation of DISPLAY
statements or record transmission with an
event option. The synchronizing of opera­
tions is obtained by waiting on events.

A task is an identifiable execution of a
set or-instructions. A task is dynamic,
and only exists during the execution of a
program or part of a program.

A task is not a set of instructions, but
an execution of a set of instructions. The
instructions themselves, as written by the
programmE~r, may in fact be executed several
times in different tasks.

It is necessary for at least one task to
exist when a PL/I program is executed.
Thus when an external procedure is first
entered, its execution is part of a task.
This particular task is called the maj~r
task; it is created by the operating enV1-
ronment and its creation does not necessar­
ily concern the PI,/I programmer. If the
programmer is concerned with only synchro-

88

nous operations, then the major task will
be the program itself.

In order to initiate asynchronous opera­
tions of tasks, the programmer has to
create new tasks, as described below. All
tasks created by the programmer are called
sub-tasks.

With each task, except the major task,
it is possible to associate a task varia­
ble. The task variable may be used to
refer to and set the priority of the task;
it cannot be used, however, to test comple­
tion of the task.

A task may be suspended by the program­
mer until some point in the execution of
another task has been reached. The speci­
fied point is known as an event and the
record of its completion is contained in an
event variable and accessed by the COMPLE­
TION built-in function. The value 'liB
indicates the event is complete; 'O'B indi­
cates the event is incomplete. An event
variable also has a status value, accessed
by the STATUS built-in function, which
indicates the manner in which the event has
been completed.

An event variable may be associated with
the completion of a task. It is necessary
to specify such an event variable if the
programmer wishes to synchronize a point in
one task with the completion of another
task, by means of the WAIT statement.

The DISPLAY statement and some RECORD
input/output operations can be associated
with event variables. These event varia­
bles can then be used in WAIT statements to
synchronize the task with the completion of
the input/output event.

An event variable remains associated
with an event until the event has been
completed. During this period of associa­
tion, the event variable is said to be
active. Any attempt to associate it with
another event or to mOdify its completion
value is an error, and the ERROR condition
is raised.

An event variable associated with a task
is set complete when the task is terminat­
ed. If the task is terminated by a RETURN
or END statement, the status value indi­
cates normal termination; otherwise, the
status must have a non-zero value.

On execution of an input/output state­
ment with the EVENT option, the event
variable is first set active and then
incomplete. This is done before any
input/output transmission is initiated, but
after any action associated with an impli­
cit opening is complete. An input/output
event variable is not set complete until a

WAIT statement naming the associated event
variable is executed in the task that
initiated the event. The WAIT statement
delays execution of this task until any
transmission associated with the event has
been terminated. If no input/output condi­
tions are to be raised for this operation,
the event variable is set complete and is
no longer active. If any input/output
conditions are to be raised, all conditions
are raised during the execution of the WAIT
statement. On a normal return from the
last on-unit entered as a result of these
conditions, or on an abnormal return from
one of these on-units, the event variable
is set complete and is no longer active
(see "Multiple Interrupts" in Appendix 3
for more information).

THE CREATION OF TASKS

In PLiI tasks are created by execution
of a CALL statemen't that contains one or
more of the following:

A TASK option
An EVENT option
A PRIORITY option

The called procedure will then be executed
asynchronously with the calling procedure.
The CALL statement itself is not part of
the newly-created task. The execution of
the calling procedure is known as the
attaching task. The execution of the
called procedure is known as the attached
task.

The TASK option is given in order to
name the task created by the CALL. This is
necessary if the programmer wishes to exam­
ine or change the priority of the called
procedure. since -the PRIORITY function and
pseudo-variable have a task name as an
argument.

The EVENT option is given if the pro­
grammer wishes to issue a WAIT statement
which will wait on the completion of the
task created by the CALL.

On execution of a CALL statement with
the EVENT option, -the event variable, which
must be inactive, is set incomplete. The
variable becomes active immediately before
it is set incomplete. All this is accom­
plished before con-trol passes to the named
task.

The task crea-ted by the CALL statement
must be given a priority. This priority
may be specified in either of two ways:

1. through the PRIORITY
CALL statemen-t, or

option in the

2. by assignment to the PRIORITY pseudo­
variable for the task name prior to
the execution of the CALL statement
that creates the task using the same
task name.

If a task is attached without a
specified priority, the priority of the
attached task is the same as the priority
of the attaching task.

The term "task option" will be used in
all later discussions to denote anyone of
the three options TASK, EVENT, or PRIORITY,
or any part of these options, or all three.

TERMINATION OF TASKS

A task may be terminated in one of the
following ways:

1. Control for the task reaches a RETURN
or END statement for the procedure
invoked with a task option.

2. Control for any task reaches a STOP
statement.

3. Control for the task reaches an EXIT
statement.

4. A block or task from which this task
is a dynamic descendant is terminated.

When a task is terminated the following
actions take place:

1. All I/O events, which were initiated
in that task and which are not yet
complete, are set complete and their
status value is set to 1 if it is not
already non-zero. Their results are
not defined.

2. All files, which were opened during
that task and are not yet closed, are
closed. During this process all I/O
conditions are disabled.

3. All records locked by the task, or any
of its subtasks, are unlocked.

4. All CONTROLLED variables allocated
during the execution of the task are
freed.

5. BASED variables allocated in AREAs are
freed when the AREA in which they were
allocated is freed. All other BASED
allocations are freed when the task in
which they were allocated is freed.

6. All active
terminated.
nation of

blocks in the task are
This involves the termi­

all tasks initiated during

Chapter 6. Dynamic Program Structure 89

the execution of these blocks and
still active.

7. If the task is terminated by any
statement other than a RETURN or END
statement in this task, the status
value of the event variable associated
with the task is set to 1 unless it is
already non-zero. In all cases the
completion value of the event is set
to '1' B..

Variables which were being assigned to
at the time of task termination, or data
sets associated with OUTPUT or UPDATE files
which were being created or updated at the
time of task termination, may not have
defined values after termination. It is
the responsibility of the programmer to
ensure that assignment to variables or
transmission to files is properly completed
before the task performing these operations
terminates.

DYNAMIC DESCENDANCE OF TASKS

If, within the execution of a task, a
block B is activated and control for that
task stays at points internal to B until B
is terminated, no other blocks can be
activated within that task while B is
active.

It is possible, however, for control of
that task to pass outside B and cause
activation of other blocks while B is still
active for single tasking applications in
any of the ways described under "Dynamic
Descendance." It is also possible for a
new control of a task to be initiated
during the activation of B by a CALL with a
TASK, EVENT or PRIORITY option. Just as
all additional blocks activated in the
original task are dynamic descendants of B,
all blocks in the new task are dynamic
descendants of B and of the blocks of which
B is a descendant. Most of the rules
associated with dynamic descendance apply
across task boundaries, e.g.. ON units
established prior to the attaching of a
task are inherited by the subtask just as
if the initial block of the subtask had
been synchronously called.

Sharing of Data between Task~

The rules of scope for names apply to
blocks whether or not the blocks are
invoked as, or by, subtasks. The same
variables, or generations of these varia­
bles, can therefore be referenced by two or
more asynchronously executing tasks. This

90

can give rise to unpredictable or undefined
results unless special steps are taken in
the source program to ensure that more than
one reference to the same variable cannot
be in effect at one instant (e.g. by
forcing temporary synchronisation by use of
WAIT), or unless none of the references t.o
a variable that can be in effect at one
instant can assign to the variable.
Subject to this qualification and the nor­
mal scope rules, the following additional
rules apply.

1. Any generation of any variable of any
storage class can be referenced in any
task by means of an appropriate BASED
variable reference. It is the user's
responsibility to ensure the required
variable is in an allocated state at
the time of reference. BASED varia­
bles allocated in an AREA are freed­
when the AREA is freed; all other
BASED variables are freed when the
task, in which they were allocated, is
terminated.

2. Static variables may be referenced in
any task in which they are known.

3. Automatic variables can be referred to
by any block dynamically descendent
from the block which allocates them,
regardless of task boundaries.

4. Controlled variables can be referenced
in any task in which they are known;
however, not all allocations are known
in each task. When a task is initiat­
ed, only the allocation of each con­
trolled variable currently known by
the attaching task is passed to the
attached task~ Both tasks may ref­
erence this allocation. Subsequent
allocations in the attached task are
known only within the attached task;
subsequent allocations in the attach­
ing task are known only within the
attaching task. A task may only free
allocations it has allocated. It is
permissible for no allocations of the
controlled variable to exist at the
time of attaching. It is not permis­
sible for a task to free a controlled
allocation shared with a subtask if
the subtask subsequently attempts to
reference the generation. When a task
is terminated all allocations of con­
trolled storage made within that task
are freed.

Sharing Files between Tasks

A file is shared between a task and its
subtask if the file is open at the time the
snbtask is attached. '"('he rules concerning
such shared files are as follows.

1. If a subtask shares a file with its
attaching task, the subtask musfnot
close the file. A subtask must not
access a shared file after its attach­
ing task has closed the file, even if
the attaching task reopens the file
before the subtask accesses it.

2. If a task shares a file with one of
its subtasks it may close the shared
file, provided the subtask makes no
subsequent attempt to access the file.

3. If a file name is known to a task and
its subtask, and its associated file
was not open when the subtask was
attached, then both the task and its
subtask may each separately open,
access and close the file.

INTERRUPT OPERATIONS

During the course of program execution
anyone of a certain set of conditions may
occur that can result in an interrupt. An
interrupt operation causes the suspension
of normal program activities, in order to
perform a special action; after the special
action, program activities mayor may not
resume at the point where they were sus­
penned.

For conditions recognized by PL/I, the
special action to be taken when an inter­
rupt occurs may be specified by the pro­
grammer. To do this, he may specify the
condition in an ON statement; therefore
these conditions are known as the ON­
conditions.. A complete list and
description of the ON-conditions can be
found in Appendix 3. with one exception
(see "Programmer Defined ON-Conditions," in
this chapter), each ON-condition is named
with a ~nique identifier suggestive of the
condition (e.g., ZERODIVIDE specifies the
condition obtaining whenever an attempt is
made to dbride by zero). This collection
of names is an intrinsic part of the
language, but the names are not reserved:
the programmer may use them for other
purposes, BO long as no ambiguity exists.

PURPOSE OF THE CONDITION PREFIX

In general, during the execution of a
statement, an ON condition may be in either
an enabled or disabled state.

If a particular condition is enabled and
an interrupt occurs during execution of the
statement, the action specification for the
condition is executed. This action speci-

fication may either be standard system
action or it may have been specified by the
programmer through the use of an ON state­
ment.

If a particular condition is disabled
during execution of a statement, it is
assumed that the condition will not occur.
The result is unpredictable for a statement
in which a disabled condition occurs. How­
ever for the CHECK condition, results are
defined.

By means of condition prefixes, the
programmer can control the enabled/disabled
status of the following ON conditions:

CHECK
CONVERSION
FIXEDOVERFLOW
OVERFLOW
STRINGRANGE

SIZE
SUBSCRIPTRANGE
UNDE"R.FLOW
ZERODIVIDE

The appearance of any of the above
keywords in a prefix list causes the asso­
ciated condition to be enabled for the
scope of the prefix. The appearance of any
of the above precedeo by a NO (with no
separating blank) causes the associated
condition to be disacled for the scope of
the prefix.

SCOPE OF THE CONDITION PREFIX

The scope of the prefix depends upon the
statement to which it is attached.

If the statement is a PROCEDURE or BEGIN
statement, the scope of the prefix is the
block defined by this statement, inclUding
all nested blocks, except those blocks and
statements for which the condition is re­
specified. The scope does not include
procedures that lie outside the scope as
defined above but which may be invoked by
the execution of statements in this scope.
The identifier list of a CHECK prefix to a
PROCEDURE or BEGIN statement belongs to the
scope of the corresponding procedure or
begin block. If a variable in this list is
redeclared in a nested block, it is no
longer in the "checked" state, unless, of
course, it appears in a CHECK prefix for
that nested block. This does not apply
however, if both declarations refer to the
same external name.

If the statement is an IF statement or
an ON statement, the scope of the prefix
does not include the blocks or groups that
are part of the statement. Any such block
may also have an attached prefix, whose
scope rules are implied by the other rules
given here.

Chapter 6. Dynamic Program Structure 91

For any other statement, the scope of
the prefix is that of the statement itself,
including any expressions evaluated during
the execution of the statement but not any
procedure explicitly called by the
statement.

The CHECK condition is provided for
program testing. The keyword CHECK in a
prefix list is followed by a parenthesized
name list. The names in the list may be
statement label constants, entry names, and
variables, including array and structure
variables and label variables. Subscripted
names are not allowed, but qualified names
can be used.

The CHECK prefix may be attached only to
PROCEDURE or BEGIN statements, and there­
fore, it always applies to an entire block.

An interrupt will generally occur
immediately after the execution of a state­
ment in which the value of a variable in a
check list may have been altered. With
statement labels and entry names, however,
the interrupt occurs immediately before the
execution of the statement or the invoca­
tion of the entry name.

The system action for the CHECK condi­
tion is to print the identifier causing the
interrupt and, if it is a variable (other
than program control data), to print its
new value in the form of data-directed
output on a debugging file. For program
control data, only the variable is printed;
no value is included.

USE OF THE ON STATEMENT

In order to define the action to be
taken when an interru~t occurs, the pro­
grammer may write an ON statement. See
·'The ON Statement," Chapter 8, for the
general form of the statement, the syntax
and other details.

When an ON statement that is internal to
a given block (for example, a block B) is
executed, it causes a preparatory action
with the following effect:

92

If, during the execution of any state­
ment after the execution of the ON
statement and before the termination
of block B (including the execution of
statements in all dynamic descendants
of block B), the condition specified
in the ON statement ever occurs and an

interrupt results, the statement or
begin biock specified in the ON state­
ment will be executed as though it
were invoked as a procedure block.
(If SNAP also has been specified, a
standard action providing program
checkout information will precede this
pseudo-invocation.) Control normally
will be returned to the point of
interrupt or to the statement follow­
ing the one that was interrupted.

When an ON statement specifying a given
condition is executed, the action to be
taken is established by the execution. The
time interval during which this on-unit is
effective is defined above in the descrip­
tion of the effect of an ON statement.
There are two qualifications to this des­
cription:

1. If, after a given action is esta­
blished by execution of an ON state­
ment, and while this on-unit is still
effective, another ON statement speci­
fying the same condition is executed,
then this latter ON statement will
take effect as described above, so
that its specified action will deter­
mine the interrupt action for the
given condition. (The effect of the
old ON statement is either temporarily
suspended or completely nullified,
depending upon whether or not the new
ON statement is in a block dynamically
descendant from the block to which the
old ON statement is internal; see "The
ON Statement" and "The REVEHT
Statement" for more details.)

2. There are nine ON-conditions whose
names (possibly preceded by the word
"NO" without intervening blanks) may
appear in a condition prefix. Even
when one of these conditions appears
in an ON statement, occurrence of the
condition will not necessarily result
in an interrupt. For an interrupt to
occur, there are certain additional
requirements, which are described in
the following paragraph.

There are four of these nine ON­
conditions, SIZE, SUBSCRIPTRANGE,
STRINGRANGE, and CHECK (identifier
list), for which an interrupt will not
take place when the condition occurs
unless the programmer specifically
designates that the interrupt is to
take place. He may enable this condi­
tion by explicitly specifying the con­
dition in a prefix whose scope will
cover the calculation where the condi­
tion may occur. If a calculation
resulting in the occurrence of either
of these conditions does not lie with­
in the scope of such a prefix, no
interrupts will occur. The other five

of these nine ON-conditions, namely
OVERFLOW, UNDERFLOW, ZEnODIVIDE, CON­
VERSION, and FIXEDOVERFLOW, are always
enabled, but the programmer may speci­
fically desi(}nate that an interrupt is
not to take place. An interrupt for
anyone of these conditions will
always take place when the condition
occurs unless the occurrence is in a
calculation lying within the scope of
a prefix specifying NOOVERFLOW, NOUN­
DERFLOW, NOZERODIVIDE" NOCONVERSION,
or NOFIXEDOVERFLOW, respectively.

The other conditions cannot be named in
prefixes, but they are always enabled and
cannot be disabled.

SYSTEM INTERRUPT l-\.CTION

Each of the ON-conditions has a standard
action defined for it if an interrupt
should occur. If no established on-unit is
in force for a given condition at the time
that condition is raised and causes an
interrupt, then standard system action will
be taken. Standard system action is depen­
dent upon the na1:ure of the condition. If
the programmer dOE=s not want the system
action in the case where one of these
conditions may occur and cause an inter­
rupt, he must specify an alternative action
for the condition through use of the ON
statement.

In some situations, the programmer may
want to specify his own action for a given
condition, to have it hold for part of the

ON OVERFLOW SYSTEM;

END A;

In the above example, assume that the
program consists only of procedure A, that
the three ON statements are the only ON
statements involving the OVERFLOW condi­
tion, that they are internal to procedure
A, and that they are executed in their
physical order.

When program execution begins, the OVER­
FLOW condition is enabled by the system;
any floating-point overflow condition that
occurs before the first ON OVERFLOW state­
ment is executed will result in an inter­
rupt, with standard system action. Howev­
er, the execution of the first ON OVERFLOW
statement establishes the action specified
in the BEGIN block. (The number of over­
flows is counted and if this number has not
reached 100, the action is finished.) Any
OVERFLOW interrupts will receive this
action until the secon1 ON OVERFLOW state­
ment is executed. The action specified
here is a null statement; any subsequent
OVERFLOW interrupts will effectively be
ignored until control reaches the third ON
OVERFLOW statement, which reestablishes the
standard system action.

Example 2:

(SIZE): A: PROCEDURE;

execution of the program, and then to have ON SIZE GO TO AERR;
this specification nullified and allow the
standard system action. In this case, he
may use the keywOlrd SYSTErJI, as follows:

ON condition-name SYSTEM;

Example 1:

A: PROCEDURE;

ON OVERFLOW
BEGIN;;
DECLARE NllMBOV STATIC

INrrIAL (0);

NUMBOV=NUMBOV + 1;
IF NutVJBOV = 100 THEN CO

TO OVERR;
END:

ON OVERFLOW;

CALL B;

END A;

(SIZE, NOOVERFLOW): B: PROCEDURE;

ON SIZE GO TO BERR;

RETURN;
END B;

In the above example, the prefix (SIZE)
enables that condition for procedure A and
specifies that if a SIZE condition occurs
during any calculation in procedure A, an
interrupt is to take place. The prefix
(SIZE, NOOVERFLOW) for procedure B speci-

Chapter 6. Dynamic Program Structure 93

fies the same requirement with
SIZE error for procedure B: in
specifies for procedure B that
rupt t.hat might be caused by
condition is to be suppressed4

respect to a
addition, it

any inter­
an OVERFLOW

After the beginning of execution of
procedure A, and before the execution of
the first ON statement, any SIZE condition
will result in an interrupt with standard
system action. After execution of this ON
statement, and before execution of the ON
statememt in the invoked procedure S, any
SIZE condition will result in an interrupt
with the action GO TO AERR4 After execu­
tion of the ON statement in procedure B,
the action GO TO BERR becomes established
for the SIZE condition, but the effect of
the previous ON statement is suspended only
temporarily 4 After the RETURN statement in
procedure B is executed, the effect of this
previous ON statement is reinstated, so
that SIZE conditions occurring after this
point again result in the action GO TO
AERR.

If any floating-point overflow condition
occurs during the execution of procedure A,
an interrupt will result with the standard
system action for the OVERFIDW condition4
However, for any occurrence of an OVERFLOW
condition during the execution of procedure
B, the interrupt will be suppressed4

Example 3:

X: PROCEDURE;
DECLARE A,B;
ON OVERFI,OW BEG IN ;

Y: BEGIN;
DECLARE A,B;

END Y;

END Xi

PUT DATJ\ (A, B);
END;

This example illustrates the effect of
establishment of the generation of varia­
bles at the time an ON condition is execut­
ed. If the OVERFLOW condition should
arise, the values transmitted by the PUT
statement in the on-unit will be the values
of the variables A and B that are declared
in the outer block4 This is true~ even if
the OVERFLOW condition should arise during
execution of the begin block Y, where A and
B have been redeclared4

94

USE OF THE REVERT STATEMENT

The REVERT statement may be used, fol­
lowing an ON statement, to reinstate an
action specification that existed in the
immediate, dynamically encompassing block
at the time the descendant block was
invoked4

Example:

(SIZE): A: PROCEDURE;
ON SIZE GO TO AERR;

CALL B;

END A;
(SIZE): B: PROCEDURE;

ON SIZE GO TO BERR:

REVERT SIZE:

END B:

In the above example, if a SIZE condi­
tion occurs in procedure B after execution
of the ON statement, an interrupt will take
place with the reSUlting action' GO TO BERR.
After execution of the REVERT statement,
the condition as specified by the ON state­
ment in procedure A is reinstated4 Program
control remains in procedure B, but any
subsequent SIZE condition that occurs in
procedure B will cause an interrupt with
the action GO TO AERR4

PROGRAMMER-DEFINED ON-CONDITIONS

An identifier can be used to create a
condition name by means of the keyword
CONDITION used in the ON statement, as
follows:

ON CONDITION(identifier) on-unit

Such a statement contextually declares the
identifier to be a condition-name and the
execution of the statement provides an
on-unit4 The condition can be caused to
occur only by the execution of a SIGNAL
statement (see "The SIGNAL Statement").

For example, if the following statement
is executed:

ON CONDITION{ABC) block

and later the following statement is exe­
cuted:

SIGNAL CONDITION(ABC);

then the latter execution will (by
tion of the SIGNAL statement)
interrupt, with t~he action defined
block in the ON statement.

defini­
cause an

by the

CONDITION BUILT-IN FUNCTIONS AND PSEUDO­
VARIABLES

The condition built-in functions are
provided for the investigation of inter­
rupts. Each such function is associated
with certain conditions:

Built-in Function

ONFILE

ONLOC
ONSOURCE
ONCHAR
ONKEY

ONCODE
DATAFIELD
ONCOUN'I'

Associated Conditions

I/O conditions, and
CONVERSION raised dur­
ing an I/O operation
All conditions
CONVERSION condition
CONVERSION condition
I/O condition or CON­
VERSION condition
raised by an operation
on a KEYED file
All conditions
NAME condition
I/O conditions for an
I/O operation with the
event option

Appendix 1 gives the value returned by
these functions when they are used in the
following contexts:

1. An on-unit for one of the associated
condi.tion for the function, or an
ERROR on-unit entered as standard sys­
tem action for one of the associated
conditions. However, if the condition
is CONVERSION and this on-unit is

entered via a SIGNAL statement, ONCHAR
is the character blank and ONSOURCE is
the null string.

2. A block, B, which is a dynamic descen­
dant of such an on-unit, provided that
no intervening block is an on-unit for
one of the conditions associated with
the function nor is any such block an
ERROR on-unit entered as standard sys­
tem action for, or normal return from,
any of the conditions associated with
the function.

In all other contexts the value of a
condition built-in function is the null
character string, except for ONCHAR which
is the single character blank and ONCODE
and ONCOUNT which have the value zero.

The condition built-in functions are
inherited by blocks in a manner analagous
to the inheritance of on-units. Thus if,
for example, the CONVERSION condition
occurs in a CO~VERSION on-unit, the values
of ONSOURCE and ONCHAR are stacked before
the new CONVERSION on-unit is entered.
Within the new CONVERSION on-unit ONCHAR
and ONSOURCE have values determined by this
second conversion interrupt; the values
pertaining to the first interrupt are re­
established when control returns from the
second on-unit.

The condition pseudo-variables, i.e.,
ONCHAR and ONSOURCE, may be used within
blocks defined in 1 and 2 above to alter a
character string value whose conversion has
raised a CONVERSION interrupt. If the
source for the conversion is a variable or,
pseudo-variable or if it is specified by
the SUBSTR bui.lt-in function with a
variable as its first argument, then within
these blocks an assignment to the condition
pseudo-variables is an assignment to the
variable concerned. It is an error to
assign to the condition pseudo-variables in
any other blocks.

Chapter 6. Dynamic Program structure 95

CHAPTER 7. INPUT/OUTPUT

A collection of data external to the
program constitutes a data set. Input
activity transmits data from a data set to
a program. Output activity transmits data
from a program to a data set. Input/output
statements refer to a filename declared in
the program.

In STREAt1 input/output, the data set can
be considered to be a continuous stream of
characters. The GET and PUT statements are
used to transmit data values from and to
the data set. Conversions may occur during
transmission (see "Data stream Transmis­
sion," below).

In ~ECORD input/output, the data set
consists of discrete records. The READ and
WRITE statements cause a single record to
be transmitted from or to the data set.
Transmission is direct, without any conver­
sion, either directly to data variables or
to an intermediate buffer that may be
addressable. When transmission is to or
from data variables, the attributes of the
variables should accurately oescribe the
composition of the record.

FILE OP:ENING AND FILE ATTRIBUTES
i

The file attributes are discussed in
Chapter 4. This section describes how
attributes are collected and become asso­
ciated with a file, as well as describing
how a file is opened.

The file a.ttributes can be divided into
two categories, alternative attributes and
additive attributes. Alternative attri­
butes are those in which one of a group may
be selected. If there is no explicit or
implied declaration for one of the alterna­
tives, and if one of those alternatives is
required, a default attribute is selected.
Additive attributes are those that are
never applied by default and must always be
stated explicitly (except KEYED which is
implied by DIRECT), either in a file dec­
la.ration or in the OPEN statement (the one
exception is that PRINT may be applied by
default for the SYSPRINT file, see
"Standard Files").

Following is a summary of the alterna­
tive attributes and their defaults:

96

Attributes

STREAM I RECORD
INPUTIOUTPUTIUPDATE
SEQUENTIAL I DIRECT
BUFFERED I UNBUFFERED
INTERNAL I EXTERNAL

Default

STREAM
INPUT
SEQUENTIAL
BUFFERED
EXTERNAL

Following is a list of the additive
attributes:

PRINT

BACKWARDS

EXCLUSIVE

KEYED

ENVIRONMENT (option-list)

OPENING A FILE

The opening of a file is the means by
which a filename is associated with a
particular data set. The identity of the
data set can be indicated through the TITLE
option of the OPEN statement; otherwise,
the filename will indicate the identity of
the data set. A part of the opening
process is the completion of the set of
attributes that describe the composition of
the data set and the method in which the
individual records of the data set will be
accessed. A file can be opened either
explicitly or implicitly.

Opening a file for stream input, for
SEQUENTIAL INPUT forwards, or for SEQUEN­
TIAL UPDATE causes the data set to be
positioned to the first record of the data
set. Opening for backwards causes the data
set to be positioned to the last record.

Explicit Opening

A file is opened explicitly through
execution of an OPEN statement that speci­
fies the filename. The OPEN statement ma.y
list any of the attributes given above
except the ENVIRONMENT, INTERNAL, or EXTER­
NAL attributes. Attributes listed in an
OPEN statement are merged with any attri­
butes listed in a file declaration for that
filename. In an explicit opening, the OPEN­
statement must be executed prior to the
execution of any of the statements listed
below under "Implicit Opening" that refer
to that filena.me.

Implicit Opening

An implicit opening of a file may occur
if one of the statements listed below is
executed prior to the execution of an OPEN
statement specifying the same filename.
The statement type is used to determine the
usage and function attributes of the file
if they have not been explicitly stated in
a DECLARE statE~ment. The effect of an
implicit opening, caused by one of these
statementB, is as if the statement were
preceded by an OPEN statement specifying
the attributes deduced from the statement
type.

Following is a list of the statement
identifiers and the attributes that will be
deduced from each and that will be applied
in the absence of an explicit declaration
to the contrary:

GET
PUT
READ
WRITE
REWRITE
LOCATE

DELETE

UNLOCK

Merging of Attributes

Attributes Deduced

STREAM, INPUT
STREAM, OUTPUT
RECORD, INPUT
RECORD, OUTPUT
RECORD, UPDATE
RECORD, OUTPUT,

SEQUENTIAL,
BUFFERED

RECORD, DIRECT,
UPDATE

RECORD, DIRECT,
UPDATE,

EXCLUSIVE

There must be no conflict between the
attributes specified in a file declaration
and the attributes merged as the result of
the file opening, either explicit or impli­
cit. For example, the attributes INPUT and
UPDATE are in conflict, as are the attri­
butes UPDl\TE and STREAtIt.

After the attributes are merged, the
attribute im21ication~, listed below, are
applied prior to the application of default
attributes discussed earlier in this sec­
tion.. Implied at.tributes can also cause a
conflict. If a conflict in attributes
exists after the application of default
attributes, the UNDEFINEDFILE condition is
raised.

Following is a list
the other attributes
after mer9ing:

of attributes and
that each implies

Merged Attribute Im2lied Attribute(s)

UPDATE
SEQUENTIAL
DIRECT
BUFFERED

RECORD
RECORD
RECORD, KEYED
RECORD,

UNBUFFERED
SEQUENTIAL

RECORD,
SEQUENTIAL

OUTPUT, STREAM
RECORD,

SEQUENTIAL,
INPUT

RECORD, KEYED,
DIRECT,

UPDATE
RECORD

PRINT
BACKWARDS

EXCLUSIVE

KEYED

The following two examples illustrate
attribute merging for an explicit opening
and for an implicit opening:

Explicit o2ening example

DECLARE LISTING FILE STREAM;

OPEN FILE (LISTING) PRINT:

The filename LISTING has the EXTER­
NAL attribute by default.

Attributes after merge, due to exe­
cution of the OPEN statement, are
EXTERNAL, STREAM and PRINT.

Attributes after implication are
EXTERNAL, STREAM, PRINT, and OUT­
PUT.

since this is a complete set of
file attributes, no file attribute
defaults are applied. The default
attribute BUFFERED does not apoly
as this attribute can be specified
only for SEQUENTIAL RECORD files.

Im2licit o2ening example

DECLARE MASTER FILE KEYED I~TERNAL;

READ FILE (MASTER) INTO
(MASTER RECORD)
KEYTO (MASTER_KEY):

Attributes after merge due to the
opening caused by execution of the
READ statement are KEYED, INTERNAL,
RECORD, and INPUT.

Attributes after implication are
KEYED, INTERNAL, RECORD and INPUT .•
There are no additional attributes
implied.

Chapter 7: Input/Output 97

Attributes after default applica­
tion are KEYED, INTERNAL, RECORD,
INPUT, SEQUENTIAL, and BUFFERED.

Valid Combinations of File Attributes

Valid complete combinations of
attributes are as follows:

file

98

FILE STREAM INPUT

FILE STREAM OUTPUT

FILE STREAM OUTPUT PRINT

FILE RECORD INPUT SEQUENTIAL BUFFERED

FILE RECORD INPUT SEQUENTIAL BUFFERED
BACKWARDS

FILE RECORD INPUT SEQUENTIAL BUFFERED
]{EYED

FILE RECORD INPUT SEQUENTIAL BUFFERED
KEYED BACKWARDS

FILE RECORD OUTPUT SEQUENTIAL BUFFERED

FILE RECORD OUTPUT SEQUENTIAL BUFFERED
KEYED

FILE RECORD UPDATE SEQUENTIAL BUFFERED

FILE RECORD UPDATE SEQUENTIAL BUFFERED
l<EYED

FILE RECORD INPUT SEQUENTIAL UNBUFFERED

FILE RECORD INPUT SEQUENTIAL UNBUFFERED
BACKWARDS

FILE RECOHD INPUT SEQUENTIAL UNBUFFERED
KEYED

FIIJE RECORD INPUT SEQUENTIAL UNBTJFFERED
KEYED BACKWARDS

FILE RECORD OUTPUT SEQUENTIAL UNBUFFERED

FILE HECORD OUTPUT SEQUENTIAL UNBUFFERED
KEYED

FILE RECORD UPDATE SEQUENTIAL UNBUFFERED

FILE RECORD UPDATE SEQUENTIAL UNBUFFERED
KEYED

FILE RECORD INPUT DIRECT KEYED

FILE RECORD OUTPUT DIRECT KEYED

FILE RECORD UPDATE' DIRECT KEYED

FILE RECORD UPDATE DIRECT KEYED EXCLUSIVE

In addition, ENVIRONMENT may be speci­
fied with any valid combination, and each
filename is external or internal.

DATA STREAM TRANSMISSION

There are three modes of STREAM trans­
mission: list-directed, data-directed, and
edit-directed. All of these modes of
transmission utilize data specifications as
described in the next section. This sec­
tion discusses the general characteristics
of the transmission modes. The details of
these transmission modes are discussed
later in the chapter.

LIST-DIRECTED TRANSMISSION

List-directed transmission permits the
user to specify the storage area to which
data is assigned or from which data is
transmitted without specifying the format.

Ineut: The data in the stream is in the
form of optionally signed valid constants
or of expressions to represent complex
constants. The program storage areas to
which the data is to be assigned is speci­
fied by a qata list.

output: The data values to be transmitted
are specified by a data list. The form of
the data placed in the stream is a function
of the data value and precision.

DATA.-DIRECTED TRANSMISSION

Data-directed transmission permits the
user to read or write self-identifying
data.

Input: The data in the stream is in the
form of optionally signed valid constants
and includes information identifying the
program storage areas to which the data is
to be assigned.

output: The data values to be transmitted
are specified by a 1ata list. The data
placed in the stream has the form of
constants and includes the name of the data
being transmitted.

EDIT-DIRECTED TRANSMISSION

Edit-directed transmission permits the
user to specify the storage area to which
data is to be assigned or from which data
is to bp transmitted and the form of data
fields in the stream.

Input: The form of the data in the stream
is defined by a format list. The program
storage areas to which the data is to be
assigned is specified by a data list.

Output: ']'he data values to be transmitted
are defined by a data list. The form that
the data is to have in the stream is
defined by a format list.

DATA STREAM DA.TA SPECIFICATIONS

Data specifications are given in GET and
PUT statements to identify the data to be
transmitted. The form of the data specifi­
cations correspond to the modes of trans­
mission.

DATA LISTS

List-directed and edit-directed data
specifications require a data list to spec­
ify the data items to be transmitted. A
data-directed data specification mayor may
not include a data lIst.

General format:

(data-list)
where "dat.a list" is def ined as:

element [, element]

Syntax rules:

The nature of the elements depends upon
whether the data list is used for input or
for output. The rules for each are as
follows:

1. On input, each aata-list element for
edit=dIrected and list-directed data
may be one of the following: a scalar
name, an array name, a structure name,
a pseudo-variable, or a repetitive
specification involving any of these
elements. For a data-directed data
specification, each data-list element
may be an unsubscripted scalar, array
or structure name.

2. On output, each data-list element for
edit-directed and list-directed data
specifications may be one of the fol­
lowing: a scalar expression, an array
expression, a structure expression, or
a repetitive specification involving
any of these elements. For a data­
directed data specification, each
data-list element may be a scalar,
array, or structure name, or a repeti­
tive specification involving any of
these elements.

3. The elements o~ a data list must be of
arithmetic or string data type.

4. A data list must be enclosed in its
own set of delimiting parentheses.

Repetitive Specification

A repetitive specification ap~ears in a
data list as follows:

(repetitive-specification)

General format is shown in Figure 1.

Syntax rules:

1. Each repetitive specification must
have its own set of delimiting paren­
theses, the first preceding the first
applicable element, and the second
following the applicable DO specifi­
cation.

r---------·--, , ,
I lscalar-variable ! ' I element [,element] ••. DO = specification [,specification]... ,
I scalar-pseudo-variable ,
I ,
, A specification has the following format: I
I I
" [TO expression-2 [BY exp resSiOn-3]] "

expression-1 [WHILE (expression-4)]
I BY expression- 3 [TO expression- 2] , l __ J

Figure 1. General Format for Repetitive S~ecification

Chapter 7: Input/Output 99

2. Each element in the element list of
the repetitive specification is the
same as those described for data-list
elements above.

3. The expressions in the specification
are described as follows:

a. Each expression in the specifi­
cation is a scalar expression.

h. In the specification, expression 1
represents the starting value of
the control variable or pseudo­
variable. Expression 3 represents
the increment to be added to the
control variable after each
repetition of data-list elements
in the repetitive specification.
Fxpression 2 represents the termi­
nating value of the control varia­
ble. The exact meaning of the
specification is identical to that
of a DO statement with the same
specification. When the last
specification is completed, con­
trol passes to the next element in
the data list.

4. Repetitive specification may be nesterl
to any depth. That is, each element
in the element list may be a repeti­
tive specification. A repetitive
spE~cification involving !!} elements
repeated g times is equivalent to m*n
elements. For example, consider the
following statement:

GET LIST «(A(I,J) DO I
DO J = 3 TO 4»;

This is equivalent to:

DO J = 3 TO 4;
DO I = 1 TO 2;
GET LIST (A(I,J»;
END;

END;

1 TO 2)

It gives values to the elements of the
array A in the following order:

A(1,3), A(2,3), A(1,4), A(2,4)

Consider the following example:

PUT LIST «A(J),(B(I,J) DO I=l TO 10)
DO J=5 TO 10»;

'rhis is equi va lent to:

100

DO J=5 TO 10;
PUT LIST (A(J)};

DO I=l TO 10;
1)UT LIST (B(I,J});
END:

END;

Transmission of Data-List Elements

If a data-list element is of complex
mo~e, the real part is transmitted before
the imaginary part.

If a data-list element is an array name,
the elements of the array are transmitted
in row-major order, that is, with the
rightmost subscript of the array varying
most frequently.

If a data-list element is a structure
name, the elements of the structure are
transmitted in the or~er specified in the
structure declaration. For example, if the
structure declaration was:

DECLARE 1 A(10), 2 B, 2 C;

then the statement

PUT FILE (X) LIST (A):

would result in the output being ordered as
follows:

A.B(l) A.C(l) A.B(2) A.C(2) A.B(3)
A.C(3) •••• etc.

If, however, the declaration had been:

DECLARE 1 A, 2 R(10), 2 C(lO);

then the same PUT statement would produce:

A.B(l) A.R(2)
A.C(l) A.C(2} A.C(3)

A.B(3) A.B(lO)
A.C(lO).

If, within a data list used in an input
statement, a variable is assigned a value,
this new value is used in all later ref­
erences in the data list, and the format
list, if present.

Example:

In the following statement, B is a
structure, XSTRING is a character string,
and C is an array:

DECLARE A FLOAT, 1 B, 2 P, 2 E, 3 F,
XSTRING CHARACTER (6), C(lO) FIXED;

The following data list, involving these
data items, and the scalar variable A, may
be used for input or output:

(A,B, SUBSTR (XSTRING, 2),
(C(I) DO I = 2 TO 7»

The data-list elements are transmitted
in the following order:

A - the scalar variable is transmitted

P,F - the elements of the structure B
are transmitted

SUBSTR (XSTRING, 2) - the second
through sixth characters of the
string XSTRING are transmitted

C(2), C(3), ••• , C(7) - the six speci­
fied elements of the array are
transmi·tted

LIST-DIRECTED DATA SPECIFICATION

General forma·t:

LIS'I' (data-list)

Syntax rules:

The "aata list" is described in the
preceding discussion.

List-Directed Input Format

When the data item is an array name and
the data consists of constants, the first
constant is assigned to the first element
of the array, the following constant to the
second element, etc., in row-major order.

A structure name in the data list rep­
resents a list of the contained scalar
variables and arrays in the order specified
in the structure description.

Data in the stream has one of the
following general forms:

[+I-Jarithmetic-constant
character-string-constant
bit-string-constant
[+l-Jreal-constant{+I-}imaginary-constant

sterling constants cannot be
string constant must be one
permitted forms listed above.
and string repetition factors
allowed.

used. .f\.
of the two
Iteration
are not

Constants and complex expressions may be
surrounded by blanks, which are not treated
as part of the data. However, blanks
cannot appear between the optional sign and
the cons1:ant, nor can they precede the
central sign in a complex expression.

Data items in the stream must be sepa­
rated ei1:her by a blank or by a comma.
This separator may be preceded and/or fol­
lowed by an arbitrary number of blanks. A

null field in the stream is indicated
either by the very first non-blank charac­
ter in the stream being a comma, or by two
adjacent commas separated by an arbitrary
number of blanks. A null field specifies
that the value of the associated item in
the data list specification is to-remain
unchanged.

The transmission of the list of con­
stants on input is terminated by expiration
of the data list or by the end-of-file
condition. In the former case, positioning
is always at the character following the
first blank or comma following the last
data item. More than one blank can separ­
ate two data items, and a comma separator
may be preceded or followed by one or more
blanks. In such cases, a subsequent list­
or data-directed GET will ignore interven­
ing blanks and the comma (if present), and
will access the next data item. However,
if an edit-directed GET should follow, the
first character accessed will be the char­
acter to which the file has been positioned
(in other worns, the next data item will
begin with the first character following
the blank or comma that separated it from
the previous data item).

If the data is a character-string con­
stant, the surrounding quotation marks are
deleted and the enclosed characters inter­
preted as a character string.

If the data is a bit-string constant, it
is interpreted as a bit string.

If the data is an arithmetic constant or
complex expression, it is converted to
coded arithmetic with the base, scale,
mode, and precision implied by the con­
stant.

The list item is then examined and the
interpreted string value is assigned to it
as shown in Figure 2.

The type conversions are described in
Chapter 3, except arithmetic to character
conversion which is described below under
"List-Directed Output Format."

List-Directed output Format

The values of the scalar variables in
the data list are converted to a character
representation of the data value~ as des­
cribed below, and transmitted to the data
stream.

In general, a blank is used to separate
data items transmitted. However, for PRINT
files, implementation-defined tabs are pro­
vided such that the printing of a data item

Chapter 7: Input/Output 101

r-----------------T--------------------T--,
I Strearr. Item I Data List I Conversion I
~-----------------+--------------------+--~
I I I I
I I Arithmetic I Character to Arithmetic I
I Character I Character string I Character string assignment I
I string I Bit string I Character to bit string I
I I I I
I I Arithmetic I Bit string to Arithmetic I
I Bit string I Character String I Bit string to Character string I
1 I Bit String I Bit string assignment I
1 I I I
I I l\rithmeti c I Ari thmetic type conversion I
I Arithmetic I Character String 1 Arithmetic to Character string I
1 I Bit string I Arithmetic to Bit string I L _________________ ~ __________ ------____ ~ ______________________________________ ~ _________ J

Figure 2. List-Directed Input Conversion

is always followed by a positioning to the
next available tab position. If a numeric
data item is longer than the number of
characters remaining on the current line,
the entire item will be printed starting at
the beginning of the next line. (Of
course, if the length of the item is
greater than the size of the line, split­
ting must occur.)

The length of the data field placed in
the data set is a function of the internal
precision and value of the data item.

CODED ARITHMETIC DATA: The external form
of coded arithmetic data is a possibly
signed valid decimal constant whose field
width, w, is a function of the internal
precision declared for the data itero and
the value of the data item. In the discus­
sion below, the following symbols are used:

1.

2.

3.

4.

5.

The letter w represents the
width, which lS defined as the
of the data field.

field
length

The letter g represents the number of
positions in the external data field
to the right of the decimal point.

The letter E represents the
number of digits in the data
after any necessary conversion
necimal.

total
item

to

The letter g represents the scale
factor of the data item after any
necessary conversion to decimal.

The letter ~ represents a scaling
factor as described for floating-point
data.

6. The letters yyy represent a scaling
fac1:or for fixed-point data. The let­
ter E: actually appears in the output
stream to indicate the presence of a
scaling factor. Its value is similar

102

to the value of E in a floating-point
number.

7. The letter ~ represents any decimal
digit.

8. The letter ~ represents a blank posi­
tion in the output.

9. The letter n represents the number of
decimal digits in the exponent, which
is defined separately for each implem­
entation.

There are five kinds of coded arithmetic
data to consider: coded real fixed-point
decimal data, coded real fixed-point binary
data, coded real floating-point decimal
data, coded real floating-point binary
data, and coded com~lex data.

Note: The discussions below apply to coded
arithmetic data only when the value of the
data item to be transmitted is greater than
or less than zero. If the converted deci­
mal value of a fixed-poi.nt item is equal to
zero, the following rules apply:

1.

2.

3.

If q = 0, the representation transmit­
ted is a single zero preceded by p+2
blanks.

If p>=q>O, the representation trans­
mitted is a single zero preceded by
p-q+1 blanks, and followed by a deci­
mal point and q zeros.

If p<q or q<O, the representation
transmitted is a single zero preceded
by p blanks and followed by F(+I-} n
digi ts.

If the converted decimal value of a
floating-point item is equal to zero, the
representation transmitted is a single
zero, followed by a decimal point, p-1
zeros, and E+~ zeros.

Coded Real Fixed-Point Decimal Data: A
decimal fixed-poi.nt source with precision
(p,q) is converted to character-string rep­
resentation as follows:

1. If p>=q>=O (that is, if the assumed
decimal point li.es within the field of
the internal representation) then:

a. The constant is right adjnstef'. in
a field of width p+3.

b.]~eading zeros are replaced by
blanks, except for a single zero
that i.mmediately precedes the
decimal point of a fractional num­
ber.

c. If the value is negative, a minus
sign precedes the first signifi­
cant digit (or the zero before the
point of a fractional number).
Positive values are unsigned.

d. Unless the source is an integer,
the constant has q fractional
digits. If the source is an inte­
ger, there is no decimal point.

2. If q is negative or greater than p, a
scaling factor is appended to the
right: of the constant. The constant
itself is of the same form as an
integer. The scaling factor has the
form:

F{+I-}nnn

wherE~ {+ 1-}nnn has the value -q.

The number of digits in the scaling
factor is ju.st sufficient to contain
the value of q without leading zeros.

The length of the intermediate string
is:

p+3+k

where k is the number of digits neces­
sary to represent the value of q (not
including a sign or the letter F).
For E!xample , given:

DECLARE A FIXEDC4,-3),
C CHAR(lO);
A=1234.0E3;
C=:A;

The interme!diate string generated in
converting A would be:

b1234F+3

which., when assigned to C, would g:!:ve:

b1234F+3bb

Coded Real Fixed-Point Binary Data: The
data item is converted to fixed-point deci­
mal and is transmitted as coded real fixed­
point decimal data.

Coded Real Floating-Point Decimal Data:
The data item is converted according' to the
rules for floating-point format items, ECw,
d, s). For E-conversion, w = p + n+4, d
p - 1 and s == p.

Coded Real Floating-Point Binary Data: The
data item is converted to floating-point
decimal with a precision (p) and
transmitted as coded real floating-point
decimal data.

Coded Complex Data: The data is externally
represented as two immediately adjacent
real data fields, the left hand field being
the real part of the data and the right­
hand field being the imaginary part. of the
data.

A sign always precedes the imaginary
part. If the value of the imaginary part
is greater than, or equal to, zero, the
sign is plus; if the value of the imaginary
part is less than zero, the sign is minus.
The imaginary part is always followed by
the letter I. The field width of the
external representation is 2w + 1, where w
is as defined above for fixed-point or
floating-point output.

NUMERIC
numeric
binary.

CHARACTER DATA: The base of
character data may be decimal or

Numeric Decimal Data: The external format
and field width of the numeric decimal data
item is that described by the associated
picture specification.

Numeric Binary Data: The external format
ann field width of the numeric binary data
item is that described by the associated
picture specification. The binary digits 0
and 1 are represented by the characters 0
and 1.

Complex Numeric Data: The real and imag­
inary parts are transmitted as above and
the external representation is the conca­
tenation of the real and imaginary parts.
The field width is 2w, where w is the
number of character positions (or bits, if
binary) allocated. to the real part of the
numeric data; no I is appended.

CHARACTER-STRING DATA: The contents of the
character string are written out. If the
file has the attribute PRINT, enclosing
quotation marks are not supplied, and con­
tained quotation marks are unmodified. The
field width is the current length of the
string. If the file does not have the
attribute PRINT, enclosing quotation marks

Chapter 7: Input/Output 103

are supplied, and contained quotation marks
are replaced by two quotation marks. The
field width is the current length of the
string plus the number of added quotation
marks.

BIT-STRING DATA: The format of the data on
the external mediuw is that of a bit-string
constant, that is, the value is enclosed in
quotation marks and followed by the letter
B. The binary bits are represented by the
characters 0 and 1. The field width is
p+3, where J2 is the current length of the
string, and the three additional positions
are for the two quotation marks and the
letter B.

Examples of list-directed data specifi­
cations:

1. LIST (CARD. RATE, DYNAMIC_FLOW)

2. LIST «THICKNESS (DISTANCE) DO DIS-
TANCE = 1 TO 1000))

3. LIST (P,Z,M,R)

4. LIST (A*B/C, (X+Y)**2)

The specification in example 4 may only
be used for output.

DATA-DIRECTED DATA SFECIFICATION

General format:

Option 1

DATA

Option 2

DATA (data-list)

General rules:

1. The data list is described in "Data
Lists," in this chapter. It cannot
include parameters, or based or
defined variables. Names of structure
elements need only have enough quali­
fication to resolve any ambiguity;
full qualification is not required.

2. On input, option 1 implies· that all of
the data items to be transmitted are
known to the block containing the GET
statement; the NAME condition will be
raised if a name that is not known to
the block is transmitted. On output,
it specifies that all data items known
to the block and allowed in data­
directed transmission are to be
transmitted.

104

3. Recognition of a semicolon in the
stream on inout causes transmission to
cease. On o;]tout a semicolon is writ­
ten into the stream after the last
data item transmitted.

Data-Directed Data in the Stream

The data in the stream associated with
data-directed transmission is in the form
of a list of scalar assiqnments having the
following general format:-

1.

scalar-variable = constant
[(bl,} scalar-variable = constant] ..• ;

General rules:

The "scalar variable" may be
scri~ted name with decimal
constant subscripts.

a sub­
integer

2. On input, t.he scalar assignments may
be separated by either a blank (R in
the above format) or a comma. On
output, the assignments are separated
by blanks.

3. The constant in the general format
above has one of the forms as des­
cribed under "List-Directed Input
Format" in this chapter.

General rules for data-directed input:

1. If the data specification in option 1
is used, the names in the stream may
be any fully qualified name known at
the point of transmission.

2. If option 2 is used, each element of
the data list must be an unsubscripted
scalar, array, or structure name. The
names in the stream must appear in the
data list; however, the order of the
names need not be the same and the
data list may include names that do
not appear in the stream. If a name
appears in the stream but not in the
data list, the NAME condition will be
raised.

For example, consider the following
data list, where A, B, C, and Dare
names of scalar variables:

DATA (B, A, C, D)

This data list may be associated with
the following input data stream:

A=2.5, B=.00476, D=125, Z='ABC';

Note that C appears in the data list
but not in the stream and that Z, not
in the dat.a list, wi 11 raise the NAME
condition.

3. If the data list in Option 2 includes
the name of an array, subscripted
references to that array may appear in
the stream. The entire array need not
appear.

Let X be the name of a two dimen­
sional array declared as follows:

DECLARE X (2, 3);

Consider the follO\~ing data list and
input data stream:

Data List
DATA-cxr-

Input Data stream
X(l,l} = 7.95, X(1,2}
8085, X(1,3} =73;

Although the data list has only the
name of the array, the associated
input stream may contain values for
individual elements of the array.

4. If the data list includes the names of
structure elements, then ~ully quali­
fied names of the items must appear in
the stream. Consider the following
structures:

5.

DECI~RE 1 CARDIN, 2 PARTNO, 2 DESCRP,
2 PRICE,

1 CARDOUT, 2 PART!'10, 2 DESCRP,
2 PRICE;

If it is desired to read a value for
CARDIN.PARTNO, then the data list and
input data stream have the following
forms:

Data List
DATA-TcARDIN.PARTNO)

Input
Data Stream
CARDIN.PARTNO
737314;

Interleavefi subscripts cannot appear
in qualified names in the stream. All
subscripts must be moved all the way
to the right, following the last name
of the qualified name. For example,
assume that Y is rjeclared as follows:

DECLARE 1 Y(S,5}, 2 A(10), 3 B, 3 C,
3 D;;

An element name would have to appear
in the stream as follows:

Y.A.B(2,3,8}=8.72

The name in the data list, of course,
could not contain the subscript.

General rules for data-o.irected output:

1. An element of the data list, which can
be subscripted may be a scalar varia­
ble, an array variable, a structure
variable, a repetitive specification
involving any of these elements or
further repetitive specifications.
The data with names appearing in the
data list is transmitted in the form
of a list of scalar assignments sepa­
rated by blanks and terminated by a
semicolon. Tabs and line splitting
for PRINT file data items follow the
rules set for list-directed transmis­
sion.

2. Array variables in the data list are
treated as a list of the contained
subscripted elements in row-major
order.

Let X be an array declared as follows:

DECLARE X (2,4);

Let X appear in a data list as fol­
lows:

DATA (X)

Then, on output, the output
stream is as follows:

data

X(l,l}= 1 X(1,2}= 2 X(1,3)= 3 X(l,4)= 4
X(2,1)= 5 X(2,2)= 6 X(2,3}= 7 X(2,4)= 8;

3. Items that are part of a structure
appearing in the data list are trans­
mitted with the =ull qualification,
but subscripts follow the qualified
names rather than being interleaved.
If a data list is specified for a
structure element transmitted under
data-directed output as follows:

4 .•

DJ\TA (Y(1,3".Q)

then the associated data field in the
output stream is as follows:

Y.Q(1,3) = 3.756;

structure names in the data list are
interpreted as a list of the contained
scalar or array elements, and arrays
are treated as above.

consider the following structure:

1 A, 2 B, 2 C, 3 D

If a data list for data-directed out­
put is as follows:

DATA (A)

Chapter 7: Input/Output 105

r--,
I AB: PROCEDURE; I
I Input Stream
I DECLARE A(6), B(?);
1 B(l)=l, B(2)=2, B(3)=3,
I GET FILE (X) DATA (B);
I B(4)=1, B(5)=2, B(6)=3, B(7)=4;
1 DO I = 1 TO 6;
I
I A (I) = B (I+1) + B (I);
I output Stream
I END;
I A(l)= 3 A(2)= S A(3)= 4 A(4)= 3
I PUT FILE (Y) DATA (A);
I A(S)= S A(6)= 7;
I END AB; l __ _

Figure 3,. Example of Data-Directed Transmission, both Input and Output

then, if the values of Band D were 2
and 17 respectively, the associated
data fields in the output stream would
be as follows: -

A.B= 2 A.C.D= 17;

Length of Data-Directed Data Fields

The length of the data field on the
external medium is a function of the inter­
nal precision, the value of the data item
being written, and the lenqth of the data
identifier and its associated subscript
list. The field length for coded arithmet­
ic data, numeric field data, and bit-string
data is the same as described for list­
directed output (see "Format of List­
Directed output Fields"). Subscripts are
printed as possibly signed decimal integer
constants with no leading blanks.

For character-string data, the contents
of the character string are written out
enclosed in quotation marks. Each
quotation mark contained within the charac­
ter string is represented by two successive
quotation marks.

Example:

Assume that A is declared as a one­
dimensional array of six elements; B is a
one-dimensional array of seven elements.
The procedure in Figure 3 calculates and
writes out values for A(I) = B(I+1) + B(I),.

106

EDIT-DIRECTED DATA SPECIFICATION

General format:

EDIT (data-list)(format-list)
[(data-list) (format-list)] •.•

General rules:

1. The data list general rules are given
in "Data Lists," and the format list
general rules in "Format Lists." This
form of transmission can be used for
sterling values.

2. On output, the value of each data item
in the data list is converted to a
format specified by the associated
format item in the format list. The
first scalar data item is associated
with the first format item. If the
format item is a control format item,
the control item is executed, and the
data item associated with the first
name in the nata list is then
associated with the next format item.
The second scalar data item is then
associated with the second data format
item, etc. Suppose the format list
specifies j data format items, and the
data list specifies k data items.
Then, if j<k, after -j scalar data
items have been transmitted, the for­
mat list is re-used, the (j+1)th sca­
lar item being associated with the
first format item, etc. This re-use
is performed as many times as
required. If j>k, excessive format
items are ignored.

3. For input, data in the stream is
considered to be a continuous string
of characters not separated into indi­
vidual data items. The number of
characters for each data item is spec­
ified by a format item in the format
list. The characters are treated

according to the associated format
item.

4. An array or a structure in a data list
is E~qui valent to n data items, where n
is the number of -scalar elements i;
the array or structure.

5. The specified transmission is complete
when the last data item has been
processed using its corresponding for­
mat i.tem. Subsequent format items,
including control format items, are
ignored.

Examples:

The first of the following examples is
an edit-directed input specification, and
the second is an output specification.

1. EDIT (NAME, DATE, SALARY)
(A(COLA-COLB), X(2), A(6), F(M +2,2»

2. EDIT ('INVENTORY-'
(A, :[1'(5»

FORMAT LISTS

I I INUM,INVCODE)

The edit-directed data specification
requires an associated format list.

General format of a format list:

(format--list)

where "format list" is defined as:

{ ~ t~~E~m } [: ~ t~~em] •••
n(format-list) , n(format-list)

Syntax rules:

1. Each "item" represents a format item
as described below.

2. The letter n represents an iteration
factor, whIch is either an expression
enclosed in parentheses, or a decimal
integer constant. If a decimal inte­
ger constant is used, at least one
blank must must follow it. The itera­
tion factor specifies that the asso­
ciated format item is to be used n
successive times,. A zero or negative
iteration factor specifies that the
associated format item is to be
skipped and not used (the data list
item will be associated with the next
forma.t item). If an expression is
used to represent the iteration fac­
tor, it is evaluated and converted to
an integer once for each set of itera-

tions. The associated format item is
that item or list of items to the
right of the iteration factor.

3. A format list always must be delimited
by parentheses. -

General rule:

There are two types of format items:
data format items and! control format
items. Data format items specify the
form of data fields in the stream.
Control format items specify page, line,
and spacing operations.

Data Format Items

Data forrnat items describe data rep­
resentation in the data stream.

The discussion of format items requires
the following definitions:

1. The letter ~ represents the length of
the data field, in characters, used by
the external renresentation (including
signs, decimal points, blanks, and the
letter E as usej in the representation
of constants).

2. The letter Q represents the number of
positions after the decimal point.

3. The letter 2 represents the number of
significant digits to appear.

4. - The letter B represents a scaling
factor, which may be positive or nega­
tive.

Any of the quantities ~, Q, ~, and B may
be specified by a scalar expression. When
the format item is used, the expression is
evaluated and converted to an integer. If
w~O in a format specification, then the
associated data and format list items are
skipped, unless, on input, w=O and the data
item is a string, in which case, the data
value is taken as the null string. On
output, the format list item is skipped if
w is less than or equal to zero. The
quantity Q must be less than or equal to ~,
and ~ must be less than or equal to ~.

On input, the data item in the external
data field is treated as if it conformed to
the characteristics described by the format
item.

There are six format items associated
with data: fixed-point (F), floating-point
(E), complex (C), picture specification
(P), character string (A), and bit string
(B).

Chapter 7: Input/Output 107

FIXED-PO=I~N~T ___ F~O=R~M_A~T~IT~E_M_S_:
data may be described by
format i·tem.

Decimal numeric
a fixed-point

General format:

Option 1
F(w)

Option 2
F(w,d)

Option 3
F(W, a, p)

General rules:

1. On input, the data item in the exter­
nal data field is the character rep­
resentation of a decimal fixed-point
number anywhere in a field of width w.
Leading and trailing blanks are
ignored, but if the data consists only
of blanks, it is interpreted as zero.

In option 2, if no decimal point
appears in the number, it is assumed
to appear immediately before the last
d digits (trailing blanks are
ignored). If a decimal point does
appear, it overrides the d specifi­
cation. Option 1 is treated as Option
2, with 9 equal to zero.

In Option 3, the scaling factor
effectively multiplies the external
data value by 10 raised to the value
of 2. If 2 is positive, the number is
treat.ed as though the decimal point
appeared 2 places to the right of its
given position. If £ is negative, the
data is treated as though the decimal
poi.nt appeared 2 places to the left of
i.ts given position. The given posi­
tion of the decimal point is that
indicated either by an actual point,
if it is given, or by 0., in the
absence of an actual point.-

2. On output, the exter~al data is a
decimal fixed-point number, right­
adjusted in a field of width w. If
th~ right-adjustment results in low­
order digits being removed, the
remaining lowest-order digit is round­
ed if it was followed by a digit
greater than or equal to 5.

108

In Option 1, only the integer por­
tion of the number is written: no
decimal point appears.

In Option 2, both the integer and
fractional parts of the number are
written. If d is greater than 0, a
decimal point is inserted before the
last d digits, and the value is
appropriately positioned. Trailing

zeros are supplied if the number of
fractional diqits is less than 0.
(where d must be less than w). If the
absolute value is less than 1, a zero
precedes the point; if w is not large
enough to include the zero, the SIZE
condition wll be raised.

In Option 3, the scaling factor
effectively multiplies the internal
data value by ten raised to the power
of p, before it is edited into its
external character n~presentation. If
g is zero, only the integer portion of
the number is consi.dered.

For all options J if the value of
the data item is less than zero, a
minus sign will be prefixed to the
external character representation; if
it is greater than or equal to zero,
no sign will appear. Therefore, for
negative values, ~ must encompass both
sign an~ decimal point. If the length
of the data item is greater than ~,
the SIZE con~ition is raised.

FLOATING-POINT FORMAT ITEMS:
numeric data may be described
floating-point format item.

General format:

E(w, 0.[, s])

General rules:

Decimal
by a

1. On input, the data item in the exter­
nal data field is an optionally signed
character represent.ation of a decimal
floating-point number anywhere within
a field of width~. An all-blank
field is rot trpated as zero; it
causes the CONVERSION con~ition to be
raised. The mantissa is a fixed deci­
mal constant.

The external forro of the number is
as follows:

[±] mantissa f!{ [E] ±} exponent]
~ E [±],

a. If there is no decimal point in
the data field, the decimal point
is assumed to be before the last 0.
digits of the mantissa. If there
is a decimal point in the data
field, it overrides the decimal
point placement specified by g.
Note that trailing blanks in the
data field are ignored.

b. The "exponent" is a decimal inte­
ger constant. If the exponent and
the preceding E or sign are omit­
ted, a zero eXDonent is assumed.

2. On output, the data item in the data
field has t_he following general form:

[-] s-d digits.d digits Ef±} exponent

a. The "exponent" is a decimal inte­
ger constant of ~ digits, where n
is defined individually for each
impleme!ntation. The exponent is
adjusted so that the leading digit
of the mantissa is nonzero.
Unless the value of the data is
zero, at least one non-fractional
significant digit always will
appear. In the case of the value
zero, one zero digit appears
before the point and Q zero digits
after the point: the exponent is
also zero.

b. If the above form does not fill
the field of width w, it is right­
adjusted. If the rIght-adjustment
results in low-order digits being
removed, the remaining lowest­
order digit is rounded if it was
followed by a digit greater than
or equal to 5. If ~ is omitted it
is taken as equal to d + 1. The
field width w-must be-greater than
or equal to s + n + 3 for non­
negative values, and s + n + 4 for
negative values of the data item.
However, if d is zero, the decimal
point is not written, and w is
equal to s+n+2. If the length- of
the data item is greater than ~,
the SIZE condition is raised.

COMPLEX F'ORMAT I'TEMS: Complex data may be
described. by a complex format item.

General forma-t:

C(real-format-item
[, real-format-item])

General rules:

1. Each "real format item" is specified
by F, E, or P formats. P can specify
a numeric field only; it cannot
specify a sterling picture.

2. On input, the external data is the
real and im.aginary parts of the com­
plex: number in adjacent fields des­
cribet1 by -the two contained format
items. If -the second real format item
is omitted, it is assumed to be the
same as the first.

3. On output, -the form of the real and
imaginary parts is specified by the
real format items. If the second is
omi tted, i't is assumed to be the same
as the firs·t.

PICTURE FORMAT ITEM: Numeric data may be
described by a numeric picture using the P
format item. The picture format item
allows transmission of sterling data items.

General format:

P .1 numeric-picture-specification'

The "numeric picture specification" is
described in "The PICTURE Attribute," in
Chapter 4.

On input, the picture specification des­
cribes the form of the data on the external
medium and how it is to be interpreted
numerically.

On output_, the value of the list item is
edited to the form specified by the picture
before it is transmitted.

BIT-STRING FORMAT ITEMS: The bit-string
item describes the data field representa­
tion of a bit string using the cha~acters 0
and 1.

General format:

B (w)

General rules:

1. In the case of input, !!. is always
required. For output, if w is omit-
ted, it :is taken to be-the current
length of the associated bit-string
data-list element; !!. must be specified
if conversion is to be performed.

2. On input, the dat~ field is a charac­
ter representation of bit string any­
where within the field of width!!.. If
the data field contains only blanks,
or any characters other than zero or
one, the CONVF.RSION condition is
raised.

3. On output, the character representa­
tion of the bit string is left­
adjusted in the field of width w.
Truncation, if necessary, is performed
on the right. Blanks are used for
padding.

CHARACTER-STRING FORMAT ITEMS: Character
data may be described by a character-string
format item.

General format:

(w) I
'character-picture-specification'

General rules:

1. The external representation
string of ~ characters.

is a

Chapter 7: Input/Output 109

2. On input, truncation, if necessary, is
performed on the right. If the asso­
ciated list element is too short, it
is extended on the right with blanks.
If the picture form is use~, ~ is
implied. Checking is performed. On
input, ~ is always required.

3. On output, ~ can be omitted, in which
case w is taken to be the current
length-of the string (or the length of
the converted character string).

There are three types of control
items, the spacing format item
positioning format items SKIP and
and the printing format items
LINE.

Spacing Format Item

format
X, the
COLUMT\I,

PAGE. and

The spacing format iter:l specifies rela­
tive horizontal spacing.

General forroat:

Genera 1 rl1 es:

1. On input, the forP.1at item speci-:ies
that the next w characters of the
stream are to be ignored.

2. On output, the format item speci-:ies
that w blank charac~0rs arp to be
insp.rte~ into the stream.

3. If ~ is less than zero, j~ i e taken as
zero.

Positioning Format Items

The positioning format items specify
positioninq to a new current line or to a
specified column in the current (or next)
line. (The length of a line is derived
from the linesize of the file.)

General format:

SKIP lew)]
COLUMN (w)

General rules:

1. The SKIP format item operates in the
same manner as the SKIP option of a
GET or PUT statement.

2. The COLUMN format item specifies that
the file is to be positioned to the
wth column of the current line. If

110

the file is an output file, blank
characters are inserted into the
stream until the wth column of the
line is reached. If the file is an
input file, characters are ignored
until the wth column is reached. If
the file Is already positioned beyond
the wth column of the current line,
the -data set is positioned to the ~th
column of the next line. If w is less
than 1 or qreater than the linesize of
the file, w is assumen to be 1.

printing Format Items

The printing format items can be used
only with STREAM PRINT files.

General format:

PAGE
LINE (w)

General rule:

The PAGE and LINE format items operate
in the same manner as the corresponding
options with thp PUT statement.

Note that X and COLT1MN specify, respec­
tively, relative horizontal spacina ana
absolute horizontal spacina. Similarly,
SKIP and LINE specify relative vertical
positioning and absolute vertical position­
inq. The first line on any page is line
numher onc.

Remote Format Item

If it is desired to locate format items
rpmotcly from a format list, the remote
-:ormat item, Q, may be used.

General forHlat:

R(statement-label-~esignator)

General rules:

1. The "statement label designator" is a
label constant or a label variable
that has as its value the statement
label of a FORMAT statement. The
FORMAT statement includes a format
list that is taken to replace the
format item.

2. The R format item and the snecified
FO'PMAT statement must be internal to
the same invocation of the same block.

3. There can be no recursion. That is, a
remote FORMAT statement may not con­
tain an R format item which names
itself as a state~ent label designa-

tor, nor may it name another remote
FORMAT statement that will lead to the
naming of the original FORMAT state­
ment through a statement label desig­
nator. This is assured if the FORMAT
statement referred to by a remote
format item does not itself contain a
further remote format item.

4. Any conditions enabled for the GET or
PUT statement wust be correspondingly
enabled for the remote FORMAT state­
ments utilized.

5. If the GET or PUT statement is the
single statement of an on-unit, it
cannot contain a remote format item.

6.. A FORMAT statement encountered in
sequential flow of control is ignored.

DATA STREAM TRANSMISSION STATEMENTS

This section provides a summary of the
allowed STREAM transmission statements,
along with their options, according to file
attributes (the statements are discussed
individually in Chapter 8).

STREAM INPUT:

~
FILE (filename) (COpy] J

GET '(SKI. P[(SCalar-expression ...)]]
STRING (scalar-character-strinq­

variable)

[data-specification];

STREAM ou'rpUT:

[

FIL.'P (filename) J
PUT ,. (SKIP[(scalar-expression)]]

STRING (scalar-character-string­
variable)

(data-specification];

STREAM OU'rpUT PRINT:

PUT (FI:LE (filename)]
(data-specification]

[

PAGE [L:i:NE (expression)]]
SKIP (expression)]
LINE (expression)

Note: The "da't:a specification" can be
omitted only if the SKIP option or one of
the printing options appears.

The da'ta specification can have one of
the following forms:

LIST (data-list)
DATA (data-list)]
EDIT(data-list) (format-list)

(data-list) (format-list)] •..

Data lists and format lists are dis­
cussed earlier in this chapter. Format
lists may use any of the following format
items:

A,B,C,E,F,P,R,X,
SKIP,COLUMN

PAGE,LINE

A,B,C,E,F,P,R,X

RECORD TRANSMISSION

which may be used
with any STREAM file

which may be used
only with STRE1\M
OTJTPUT PRINT files
which may be used
with the STRING
option

Data sets that contain discrete records
or which are to be created as a collection
of discrete records may be manipulated with
record operation statements. The record
operation statements are READ, WRITE, ~EW­
RITE, LOCATE, DELETE, and UNLOCK. A gener­
al description of these statements is con­
tained in this chapter, and they are des­
cribed completely in Chapter R. The
records obtained from data sets or dis­
patched to ~ata sets are defined in terms
of the data attributes of a variable. For
input operations the record is obtainei
from the data set an~ placed intact into
the variable. For output operations, the
variable is transwitted intact into the
data set .•

The variables involved in record trans­
mission must be unsubscripted, of level 1
(scalar variables and array variables are
of level 1 by default), and of any storage
class. The variables cannot be parameters
or defined variables. They may contain
VARYING length strings. They may contain
LABEL, EVENT, TASK, and POINTFR variables,
but such data may lose its validity in
transmission. OFFSET variables, however,
will maintain their validity.

with RECORD transmission, it is possible
to operate upon the record in a buffer if
the file has the BUFFERED attribute. Oper­
ations within the buffer are accomplished
through the use of a based variable, which
describes the data attributes of the
record, and a pointer variable, which iden­
tifies the location of the record within
the buffer. Note that an offset variable
cannot be used, since an offset value is
relative only to its associated area varia­
ble.

Chapter 7: Input/Output 111

For input/output operations specifying
based variables, the pointer value is set
by the SET option in the READ or LOCATE
statements.

RECORD TRANSMISSION STATEMENTS

This section provides a summary of the
allowed RECORD transmission statements,
along with their options, according to file
attributes (the statements are discussed
individually in Chapter 8).

112

SEQUENTIA.L BUFFERED INPUT:

READ FILE (filename)
INTO (variable) [KEYTO

(character-string-variable)];

READ FILE (filename)
SET (pointer-variable)
[KEYTO
(character-string-variable)];

READ FILE (filename)
[IGNORE (expression)]:

READ FIL~ (filename)
INTO (variable)
KEY (expression):

READ FILE (filename)
SET (pointer-variable)
KEY (expression):

SEQUENTIAL BUFFERED OUTPUT:

WRITE FILE (filename)
FROM (variable)
[KEYFROM (expression)];

LOCATE variable FILE (filename)
[SET (pointer-variable)]
[KEYFROM (expression)];

SEQUENTIAL BUFFERED UPDATE:

READ FILE (filename)
INTO (variable)
[KEYTO
(character-string-variable)];

READ FILE (filename)
SET (pointer-variable)
[KEYTO
(character-string-variable)]:

REWRITE FILE (filename):

REWRITE FILE (filename)
FROM (variable);

READ FILE (filename)
[IGNORE(expression)];

READ FILE (filename)
INTO (variable)
KEY (expression);

READ FILE (filename)
SET (pointer-variable)
KEY (expression):

DELETE FILE(filename);

SEQUENTIAL UNBUFFERED INPUT:

READ FILE (filename)
INTO (variable)
[KEYTO
(character-string-variable)]

[EVENT (event-variable)]:

READ FILE (filename)
[IGNORE (expression)]
(EVENT (event-variable)]:

READ FILE (filename)
INTO (variable
KF.Y (expression)
(EVENT (event-v2riable)];

SEQUENTIAL y~BUFFERED OUTPUT:

WRITE FILE (filename)
FP..Orv" (variable)
[KEYFROM (expression)]
[EVENT (eve~t-variable)];

SEQUENTIAL UNBUFFERED UPDATE:

READ FILE (filename)
INTO (variable)
[KEVTO
(character-string-variable)]

[EVFNT (event-variable)]:

REWRITE FILE (filename)
FROM (variable)
[EVENT (event-variable)];

READ FILE (filename)
[IGNORE (expression)]
[EVENT (event-variable)];

READ FILE (filename)
INTO (variable)
KEY (expression)
[EVENT (event-variable)];

DELETE FILE (filename)
[EVE~T (event-variable)];

DIRECT INPUT:

READ FILE (filename)
INTO (variable)
KEY (expression)
[EVENT (event-variable)]:

DIRECT._OUTPUT:.

WRITE FIIJE (filename)
FROM (variable)
KEYFROM (expression)
[EVENT (event-variable)];

DIRECT _UPDATE:.

READ FIIJE (filename)
INTO (variable)
KEY (expression)
[EVENT (event-variable)];

REWRITE FILE (filename)
FROM (variable)
KEY (expression)
[EVENT (event-variable)];

WRITE FII~E (filename)
FPOI-1 (variable)
KEYFROM (expression)
[EVENT (event-variable)];

DELETE FILE (filename)
KEY (expression)
(EVENT (event-variable)];

DIRECT UPDATE EXCLUSIVE:

READ FILE (filename)
INTO (variable)
KEY (expression) [NOLOCK]
[EVENT (event-variable)];

REWRITE FILE (filename)
FROM (variable)
KEY (expression)
[EVENT (event-variable)];

vJH.ITE FIIJE (filename)
FROM (variable)
KEYFROM (expression)
[EVENT (event-variable)];

DJ!:LETE :E"ILE (filename)
KEY (expression)
[EVENT (event-variable)];

UNLOCK FILE (fi lename)
KEY (expression);

RECORD TRANSMISSION OPERATIONS

1. A SEQUENTI]~L file specifies that the
accessin~, creation, or modification
of 'the dat:a set records is performed
in a particular order, that is, from
the first record of the data set to
the last record of the data set (or,
if the BACKWARDS attribute is speci­
fied, from the last to the first).

2.

3.

4.

5.

6.

7.

A DIRECT file specifies that the
accessing, creation, or modification
of the data set records is performed
by indicating which particular record
of the data set is to be operated
upon.

A data set that is accessed, created,
or modified in the SEQUENTIAL access
method mayor may not have the attri­
bute KEYED. If a data set has been
created with the K~YED attribute, any
recorded keys actually present in the
data set may be ignored while access­
ing sequentially, or they may be
extracted from the data set by use of
the KEYTO option. It is possible to
create a KEYFD data set as a SEQUFN­
TIAL OUTPUT file an1 later to access
that data set as a DIRECT file.

SEQUENTIAL INPUT and SEQUENTIAL UPDATE
files may be positioned to a particu­
lar record within the data set by a
READ operation that specifies the key
of the desired record. Thereafter,
successive READ statements without the
KEY ontion will access the records
sequentially. This kind of accessing
may be used only if the data set
contains keyed records and if the file
has the KEYED attribute.

Existing records of a data set in a
SEQUENTIAL UPDATE file can he rewrit­
tE'n (REWRITE statement), ignored (READ
statement with an IGNORE ontion), or
deleted (DELETF statement), but the
number of records ca~not be increased.
Note that when deletinq a record from
a SEQUENTIAL UPDATE file, the program­
mer cannot explicitly identify the
record to be deleted; only the last
record that was read can be deleted.
On the other hand, for DIRECT UPDATE
files, the proqrammer can and must
explicitly identify the record to be
deleted by the DELETE statement. In
addition, he can add records to a
DIRECT UPDATE file as well as rewrite
them by using WRITE and REWRITE state­
ments, respectively.

If the READ INTO option is used in
referring to a SEQUENTIAL BUFFERED
UPDATE file and the next REWRITE
statement does not make use of a FROM
option, the record in the data set is
replaced from the buffer and not from
the variable that had been specified
in the INTO option of the READ state­
ment. The FROM option in a REWRITE
statement must specifically name the
variable INTO which the data has been
read if that data is to be rewritten.

Operations upon
sequentially may

a data set accessed
lead to erroneous

Chapter 7: Input/Output 113

results if the same data set or file
is being referred to asynchronously in
more than one task.. The separate
tasks might use different filenames,
but if the different file openings
identify the same data set, the tasks
would refer to the same set of
records.

8. A data set being accessed directly is
suitable for asynchronous operations
because the reference to the data set
does not imply any explicit ordering
of the records and because the records
are transmitted INTO and FROM varia­
bles that can be known only within the
individual tasks. This is true wheth­
er the data set is identified by more
than one file opening or is referred
to through use of the same filename.

9. When a file has the DIRECT UPDATE
EXCLUSIVE attributes, it is possible
to protect individual records from
simultaneous updating by differant
tasks. For an EXCLUSIVE file, any
READ statement without a NOLOCK option
automatically locks the recorn read.
No other task operating upon the same
file can access a locked record until
it is unlocked by the locking task.
Any task (other than the locking task)
referring to a locked record will wait
at that point until the record is
unlocked. A record can be explicitly
unlocked by the locking task through
execution of a REWRITE, DELETE, or
UNLOCK statement for the same record.
Records are unlocked automatically
when the file is closed or upon com­
pletion of the locking task. The
EXCLUSIVE attribute applies only to
the file and not to the data set.
Consequently, record protection is
provided only if all tasks refer to
the data set through use of the same
file; if they refer to the same data
set using different files, the protec-

114

tion does not apply. To ensure pro­
tection, the data set to which ref­
erence is made by more than one task
through the same file must be opened
by a parent of all these tasks. Note
that a reference to a file parameter
and a reference to its associate argu­
ment are references to the same file.

10. A WRITE s'tatement adds records to a
data set, while a REWRITE statement
replaces records. Thus, a WRITE
statement may be used with OUTPUT or
UPDATE files, while a REWRITE state­
ment may only be used with UPDATE
files. Moreover, a WRITE statement
may use the KEYFROM option to indicate
the actual transference of a key from
internal storage to the data set; the
REWRITE s'tatement uses the KEY option
to identify the existent record to be
replaced.

SYSIN AND SYSPRINT

A GET statement that does not specify a
file or string option is equivalent to the
GET statement:

GET FILE(SYSIN) ..• ;

A PUT statement that does not specify a
file or strinq option is equivalent t.O the
PUT statement:

PUT FILF(SYSPRINT) ... i

The contextual recognition of the FILE
attribute applies to the identifiers SYSIN
and SYSPRINT in these stateroents.

If the merged attributes of a file named
SYSPRINT contain the attributes STREAM and
OUTPUT and if SYSPRINT is not internal, the
default attribute of PRINT is suP?lied.

This section includes a description of
each statement in the language. These
descriptions are presented in alphabetic
order.

To show the relationships among these
statement:s, they are a Iso classified into
logical groups.

RELATION§iHIP OF STATEMENTS

CLASSIFICATION

StatenEnts may be classified into the
following logical groups: assignment, con­
trol, declaration, error control and debug,
input/output, program structure, and stor­
age allocation.

Assignment Statement

The assignment statement is
evaluate expressions and to assign
to scalars, arrays, and structures.

Control Statemenots

used to
values

The control statements affect the normal
sequential flow of control through a pro­
gram. The control statements are GO TO,
IF, DO, CALL, RE'rURN, WAIT, STOP, EXIT, and
DELAY.

Data Declaration Statement

The data declaration statement, DECLARE,
specifies attributes for identifiers. This
statement is described in Chapter 4.

Error Control and Debug Statements

When an interrupt occurs during program
execution, standard operating system action
is taken; however, the language provides
the facility to override system action on
these interrupts.. By using the ON state-

CHAPTER 8: STATEMENTS

ment, a programmer may specify the action
to be taken when an interrupt occurs and
can record the status of the program at the
point of the interrupt. By using the
SIGNAL statement, the programmer may ini­
tiate programmed interrupts and may simu­
late machine interrupts to facilitate
debugging.

Input/Output Statements

The input/output statements may be
classified as follows: file preparation,
record status, data specification, and data
transmission.

File Preparation Statements

The OPEN statement associates a filename
with a data set and completes the specifi­
cation of the attributes of the file, in
preparation for input/output on a file.
The CLOSE statement dissociates the file­
name from the data set and thereby releases
the filename for use in connection with any
other data set.

Record Status Statements

The DELETE statement deletes a record
from an UPDATE file. The UNLOCK statement
makes accessible a record which would
otherwise be inaccessible as a result of
the READ statement accessing from an EXCLU­
SIVE file.

Data Specification Statements

The format of data fields to be trans­
mitted may be specified by the FORMAT
statement or in the GET or PUT data trans­
mission statements.

Data Transmission Statements

The GET and PUT statements cause values
to be transmitted between a data set and
specified variables in the program. The
READ and WRITE statements cause a single
record to be transmitted between a data set
and variables in the program. The REWRITE
statement specifies the updating of an
existing record of the data set. The
LOCATE statement permits a record to be
created in the buffer storage and subse­
quently written. The DISPLAY statement
causes messages to be transmitted between
the program and the machine operator.

Chapter 8: statements 115

Program Structure statements

The program structure statements are:
PROCEDURE, BEGIN, END, DO, and ENT~Y. The
first three statements delimit the scope of
declarations within a program. The ENTRY
statement provides a secondary entry point
for a procedure.

storage ~llocation Statements

The storage allocation statements are
ALLOCATE and FREE. These statements allo­
cate and free storage for variables.

SEQUENCE OF CONTROL

Within a block, control normally passes
sequentially from one statement to the
next. If a DECLARE, FORMAT, or ENTRY is
encountered, control passes to the next
statement. If an internal PROCEDURE state­
ment is encountered, control passes to the
statement following the end of the proce­
(lure. Control passes to the statement
~ollowing an IF statement when control
reaches the end of the THEN-unit. Sequen­
tial operation is also modified by the
following statements: CALL, DO, END, EXIT,
GO TO, PROCEDURE, RETURN, SIGNAL, and STOP.

A CALL statement passes control to the
specified entry.point.

A DO statement defines a group that is
treated as a single statement and can cause
repeated execution of a group.

An END statement, logically terminating
a procedure, acts as a RETURN statement,
causing control to return to the inVOking
procedure.

The EXIT statement causes control to
leave a task; the STOP statement causes
control to leave a program.

A GO TO statement causes control to
transfer to the specified statement label.

A PROCEDURE statement heads a procedure.
Procedures may be considered as independent
blocks and are placed anywhere within an
external procedure, consistent with ·1esired
identifier scopes. However, a procedure
may be invoked only hy a CALL statement, a
statement with a CALL option, or a function
reference. Thus, control passes around a
nested procedure, from the statement before
a PROCEDURF. statement to the statement
after the appropriate END statement for the
procedure.

116

A RETURN statewent returns control from
a procedure to the invoking procedure.

~ SIGNAL statement specifying an enabled
condition ca 11ses control to pass to the
on-unit of the associated ON statement. If
there is no associated ON statement, con­
trol is passed to the appropriate system
rout.ine.

The following conditions may
sequential operation to be modified:

cause

1. A function reference in any expression
causes control to Dass to the speci­
fied function procedure.

2. The occurrence of an enabled condition
specified in an ON statement causes
control to pass to the associated
ON-unit. If there is no ON statewent,
control is passed to the appropriate
system routine.

3. The flow of control 1:hrough the IF and
ON statements an<1 through a DO group
mayor may not be sequential.

4. In an appropriate environment, the
asynchronous execution of several
operations may involve transfer of
control under the influence of exter­
nal occurrences~

The following
sequence of control:

A: PROCEDURE;
B: X = Y + Zi
C: CALL Di
F: W = P*Qi

D: PROCEDURE i
G: S = T/Pi
H: RETURN;
I: END Di

J: U = V**W;
K: GO TO N;

N: END;

example illustrates

Control flows in the following order: A,
B, C, D, G, H, E, J, K, N.

ALPHABETIC LIST OF STATEMENTS

The ALLOCATE Statement

Function:

The ALLOCATE statement causes storage to
be allocated for specified controlled
and/or based variables.

G0::"'.eral format:

option 1:

ALLOCATE [level] identifier
[dimension] [attribute] .••
{,[level] identifier [dimension]
[attribute] ••.] .•• ;

option 2:

ALLOCATE based-variable-ident"ifier
[SET (scalar locator-variable)]
{IN (scalar area-variable)]
[, based-variable-identifier
[SET (scalar locator-variable)]
[IN (scalar area-variable)]] •.. ;

Syntax rules:

1. Based ~Jariables and controlled varia.­
bles may both he allocated in the same
ALLOCATE statement ..

Syntax rules 2 through 6 apply only to
option 1:

2. Each identifier must represent data of
the controlled storage class or be an
element of a controlled major struc­
ture.

3. "Dimension" indicates a dimension
attribute. " Attribute" indicates an
AREA, BIT, CHARACTE"R, or INITIAL
attribute. "Leuel" indicates a level
number.

4. A dimension attribute, if present,
must specify the same number of <'limen­
sions as that declaIed f0r the asso­
ciated identifier.

5. The attribute BIT may appear only with
a BIT identifier; CHARAcrEH. may appear
only with a CHARhCTER identifier; AREA
may appear only with an AREA identifi­
er.

6. A structure element name, other than
the major structure name, way appear
only if the relative structuring of
the entire structure appears as in the
DECLA.RE statement for that structure.
In this case, dimension attributes
must be specified for all identifiers
that are declared with the dimension
attribute.

Syntax rules 7 and 8 apply only to
Option 2:

7. The baseCl variable appearing in the
ALLOCll-.TE s·tatement may be a scalar
variable, an array, or a major struc­
ture. VJhen it is a major structure,
only the major structure name is spec­
ified.

8. The SET clause, if present, may appear
preceding or following the IN clause.
The SET clause must appear unless a
locator varinble has been sDecified in
the BASED attribute declaration for
the variable, in which case it is
optional.

General Rules:

Rules 1 through S a?~ly only to Option 1:

1. When option 1 is used, an ALLOCATE
statement for an identifier for which
storage was allocated and not freed
causes storage for the identifier to
be "pushed clown" or stacked. This
pushing 00wn creates a new generation
of data for the identifier. When
storage for this identifier is freed,
using the FREF statement, storage is
"popped up" or removed from the stack.

2. Bounds o~ arrays, lengths of strings
and sizes of areas are fixed at the
execution of an ALT.OCATE statement.

a. If a bound, length, or size is
explicitly specified in an ALLO­
CATE statement, it overrides the
specification given in the DECLARE
statement.

b. If a bound, length, or size is
specified by an asterisk in an
ALLOCATE statement, that value is
taken from the most recent alloca­
tion. If the variable has not
been previously allocated, the
bound, length, or size is unde­
fined.

c. Either the ALLOCATE statement or
the DECLARE statement must specify
any necessary dimension, size, or
length attributes for a~ identifi­
er. Any expression taken ~rom the
DECLARE statement is evaluated at
the point of allocation using the
condition enabling of the ALLOCATE
statement, although the names are
interprete0 in the environment of
the DECLARE statement.

d. If, in either an ALLOCATE or a
DECLARE statement, bounds,
lengths, or area sizes are speci­
fied by expressions that contain
references to the variable being
allocated, the expressions are
evaluated using the value of the
most recent qeneration of the
variable.

3. Upon allocation of an identifier~ ini­
tial values are assigned to it if the
identifier has an INITIAL attribute in
either the ALLOCATE statement or)

Chapter 8: Statements 117

4.

DECLARE stateITent. Expressions or a
CALL option in the INITIAL attribute
are executed at the Doint of alloca­
tion, using the condition enabling the
ALLOCATE statement, although the names
are interpreted in the environment of
the declaration. If an INITIAL attri­
bute appears in both DECLARE and ALLO­
CATE statements, the INITIAL attribute
in the ALLOCATE statement is used. If
initialization involves reference to
the variable being allocated, the ref­
erence will be to the new generation
of the variable.

A parameter that is declared
TROLLED may be specified in an
CATE statement.

CON­
ALLO-

5. The evaluations implied by the ALLO­
CATE statement are subject to the same
interdependency and irreducibility
rules as those for the evaluations
involved in prologue activity (see
"prologues," in Chapter 6).

Rules 6 through 11 apply only to Option 2:

6. When Option 2 is used, storage is not
"pushed down" or stacked. A given
generation of a based variable may be
accessed by a suitable based reference
regardless of allocations of the based
variable performed after this genera­
tion is allocate0. The allocation of
a based variable proceeds as follmis:

118

a. Bounds, string lengths, and area
sizes of all the fields are evalu­
ated in an implementation-defined
order. Expression preceding the
keyword REFER are use~ as the
values of the bounds, string
lengths, or area sizes specified
by the RBFE~ options.

b. Sufficient storage for a genera­
tion of the based variable with
these bounds, string lengths, and
area sizes is allocated. This may
raise the AREA condition if the
allocation is attempted in an
area.

c. Within the newly allocated genera­
tion, those variables that are
objects of REFER options are ini­
tialized to the values specified
in the REFBR options. This i~i­
tialization is performed in an
implementation-defined order.

d. The locator variable specified in
the SET option or, in its absence,
the locator variable specified in
the BASED attribute of the based
variable declaration, is assigned
a pointer value which identifies

the generation that has been allo­
cated.

e. Initial values specified in the
declaration of the based variable
are assigned to the generation
that has heen allocated.

Note: Stages c and d may be performed in
either order.

7. The allocation of a based variable
involves the based variable to be
allocated, a locator variable to iden­
tify the new generation, and an area
if the generatio~ is to be allocated
in an area. If no SET option is
specified, a SET option is assumed to
specify the locator variable given in
the BASED attrihute of the based vari­
able declaration; it is an error, in
such a case, if this BASED attribute
does not specify a locator variable.
'If the SET option specifies an offset
variable and no IN option is present
then an IN option is assumed to speci­
fy the area given in the OFFSET attri­
bute of the offset variable declara­
tion; in such a case, it is an error
if this OFFSET attribute does not
specify an area variable.

8. If the SET option specifies an offset
variable, the pointer value identify­
ing the new generation is assigned to
the offset variable; the IN option
must be present, or be assumed, and it
must specify either the same area as
that suecified in the OFFSET attribute
of the" offset variable declaration, or
an area contained in or containing
that area.

9. If no IN option is present and none is
assumed, the new generation is allo­
cated in storage associated with the
task which executes the ALLOCATE
statement. The SET option in this
case must specify a pointer variable.

10. If an IN option is present, or is
assumed, an attempt is made to allo­
cate the new generation in the area
specified in the IN option. If there
is sufficient storage the generation
is allocated in the area and a pointer
value identifying the generation is
assigned to the locator variable spec­
ified in the SET option. If insuffi­
cient storage exists, the AREA condi­
tion is raised. On normal return from
an AREA on-unit, the IN option is
re-evaluated, and the allocation is
attempted again.

11. A pointer value identifying an area
does not necessarily compare equal
with a pointer value identifying the

first generation allocated within the
area.

Examples:

1. The following examples illustrate the
use of the ALLOCATE statement for a
controlled identifier:

DECLAHE A (Nl ,. N2) CONTROLLED

Nl, N2 = 10 i
ALLOCA'rE Ai

ALLOCA'rE A
(Kl,K2):

Nl = ~l + 1;
ALLOCNrr Ai

ALLOCA~rE A
(* v*) ;

ALLOCATE A
(Jl, J2);

The bounds are 10 and
10

The bounds are K1 and
K2 which override Nl
and N2.

The bounds are 11 and
10.

The bounds are 11 and
10.

The bounds are Jl and
J2.

2. The following example illustrates the
use of the ALLOCATE statement when the
DECLARE statement contains asterisks
for the length of a controlled bit
string B:

DECLARF: B BIT (*) VARYING CONTROLLED

ALLOCA'I'E P
B I'J' (*) i

ALLOCA'I'E B;

ALLOCATE B
BIT (N);

Illegal; v~olates rule
2b.

Illegal; violates rule
2c.

The maximum length is
N.

3. The following example illustrates the
use of the built-in function ~LLOCA­
TION ane of the INITIAL attribute for
a controlled variable in an ALLOCATE
statement:

DECLARE A(N,N)
«N*N) 0) ;

IF 1 ALLOCATION
INITIAL (1, (N-l)

ALLOCATE A;

CONTROLLED INITIAL

(A) THEN ALLOCATE
«N)O,l» ;

4. The following example illustrates
three uses of Option 2 of the ALLOCATE
statement for based identifiers.

DECLARF. VALUE BASED (P),
RATES (10) BAS~D (Q),
1 GROUP BASED (R),

2 J FIXED BINARY,
2 PTS (EXT REFER (J» POINTER,
2 VALUES (10) FIXED,

TABLE AREA STATIC EXTE~NAL,
S POINTER;

a. ALLOCATE VALUE SET (P);
Allocates space in systems storage
for a generation of the based
variable VALUE, and sets the poin­
ter variable ? to identify the
particular generation.

b. ALLOCATE GROUP SET (R)i
Allocates space in systems storage
for a generation of the structure
GROUP, and sets the pointer varia­
ble R to identify the generation.
The dimension of each of the com­
~onent PTS is determined by the
value of EXT; subsequent referen­
ces refer to the value of J, which
is assigned the value of EXT at
the time of allocation.

c. AI,LOCATE RATES SET (S) IN (TABLE) i
Allocates s~ace in the storage
area corresponding to the area
variable T~BLE for a generation of
the array RlI.TES. The pointer S is
set to identj.fy the point within
TABLE at which RATES is allocated.

The Assignment Statement

Function:

The assignment statement is used to
evaluate an expression and to assign its
value to one or more target variables: the
target variables ma'l be scalar, array, or
structure variables. The target variables
may be indicated by Dseudo-variables.

General format is shown in Figure 4.

Syntax rule:

In Options 1, 2, and 3 the target
variables must be respectively scalars,
arrays, and structures. Note that an array
of structures is treated as an array.

General rules:

1. Aggregate assignments (Options 2 and
3) are expanded into a series of
scalar assignments according to rules
5 through 8.

2. A scalar assignment is performed as
follows:

Chapter 8: Statements 119

r---,
I I
IOption 1 (Scalar Assignment) I
I I
I {SCalar-variable} [, scalar-variable] I
I scalar-expression: I
I pseudo-variable ,pseudo-variable I
I I
10ption 2 (Array Assignment) I
I I
I {arraY-Variable} [,arraY-Variable] {structure-~xp~ession [,BY NAMEJ} 1
1 aYr~y-expreSSlon [, BY NAME] : I
I pseudo-variable ,pseudo-variable scalar-expression I
1 I
IOption 3 (Structure Assignment) I
1 I I {structure-variable} [,structure-variable] •.. = {structure-.expression [,BY NAME]}::

I pseudo-variable ,pseudo-variable scalar-expression I l ___ J

Figure 4. General Format for the Assignment Statement

a. Subscripts of the target varia­
bles, and the second ann third
arguments of SUBSTR pseudo­
variable references, are evaluated
from left to right.

b. The expression on the right-hand
side is then eval 1laten.

c. For each target variable (in left
to right order), the expression is
converted to the characteristics
of the target variable according
to the rules in "EXl;)ressions" in
Chapter 3 (except that whenever a
conversion of arithmetic base is
involved, the value is converted
directly to the precislon of the
target variable). The converted
value is then assigned to the
target variable.

3. The following rules apply to string
scalar assignment:

120

a. If the target variable is a fixed­
length string, the expression
value is truncated on the right if
it is too long or padded on the
right (with blanks for character
string, zeros for bit strings) if
the value is too short. (Note
that a string pseudo-variable is
considered to be a fixed-length
string). The resulting value is
assigned to the target.

b. If the target is a VARYING string
and the value of the expression is
longer than the maximum length
declared for the variable, the
value is truncated on the riqht.
The target string obtains- a

current length equal to its roaxi­
mum length.

c. If the target is a VARYING string
a-nd the value of the expression is
not greater than the maximu~
length, the value is assigned: the
target string obtains a current
length equal to the length of the
value.

4. The following rules apply to assign­
ments other than string:

a. If the target is an area variable,
the expression must be an area
variable or function. All unfreed
allocations in the target area are
freed. A se~lence of allocations
and freeinqs is then, effectively,
performed in the target area for
generations corresponding to the
significant allocations in the
source area; these operations are
perfo~ed in precisely the same
order as the significant alloca­
tions were allocated and, where
appropriate, freed. The AREA con­
dition is raised by the assignment
if any such allocation in the
target area raises the AREA condi­
tion. Finally, the value of each
allocation (which has not been
freed) in the source area is
assigned to the corresponding
allocation in the target area.

b. If the target is a pointer varia­
ble, the expression can only be a
pOinter (or offset) variable or a
pointer (or offset) function ref­
erence. If the expression is of
offset type, its value is convert­
ed to pointer by an implicit ref-

erence to the POINTER built-in
function.

c. If the target is an offset varia­
ble, the eipression can only be an
offset (or pointer) variable or an
offset (or pointE'~r) function ref­
erence. If the expression is of
pointer type, its value is con­
verted to offset by an implicit
reference to the OFFSET built-in
function.

d. If the target is a label variable,
the expression can only be a label
variable or label constant. Envi­
ronmental information is always
assigned to the label variable.

e. If the target is an event varia­
ble, the expression can only be an
event variable. The assignment is
uninterruptable, and it involves
both the completion and status
values; i.e., no other operations
will ~ake place (for exa~ple, in
other tasks) while the assignment
is being performed. An event
variable does not become active
when it has an active event varia­
ble assigned to it. It is an
error to assign to an active event
variable.

f. If the target is a STATUS pseudo-
variable, a value can be assigned
whether or not the event variable
is active. It is an error to
assign to a COMPLETION pseudo-
variable if the named event
variable is acti Vf_~.

5. The first target variable in an aggre­
gate assignment is known as the master
variable. I= the master variable is
an array, then an array expansion
(Rule 6) is per~ormed; otherwise, a
structure expansion (Rules 7 and 8) is
performed. The generated assignment
statements must satisfy the syntax
rules. The CHECK condition for
assignment to a target variable is not
raised during the assignment; it is
raised (when suitably enabled) after
the assignment is complete. Such
CHECK cont'litions are raised in the
written order of the enabled identifi­
ers. In the case of BY NAME assign­
ment, the CHECK condition for the
target variable is raised regardless
of whether any value is assigned to an
item. The label prefix of the origi­
nal statement is applied to a null
statement preceding the other generat­
ed statements.

6. In option 2, all array operands must
have the same number of dimensions and

identical bounds. The array assign­
ment is expanded into a loop of the
form:

LABEL: DO j1

DO j2

DO jn

LBOUND(master-variable,l) TO
HBOUND(master-variable,l);

LBOU~D(master-variable,2) TO
HBOUND(master-variable,2);

LBOUND (master-variable, n) TO
HBOUND(master-variable,n) ;

generated assignment statement

END LABEL;

In this expansion, n is the number
of dimensions of the master variable
that are to participate in the assign­
ment. In the generated assignment
statement, all array operands are
fully subscripted, using (from left to
right) the dummy integer variables j1
to jn. If an array operand appears
with no subscriDts, it will only have
the subscripts j1 to jn; if cross­
section notation is used, the
asterisks are replaced by j1 to jn.
If the original assignment statement
(which may have been generated by Rule
7 or Rule 8) has a condition prefix,
the generated assignment statement is
given this condition prefix. If the
original assignment statement (which
may have been generated by Rule 8) has
a BY NAME optio~, the generate~
assignment statement is given a BY
NAtJIE option. If the generated assign­
ment statement is a structure assign­
ment, it is expanded as given below.

7. In Option 3, where the BY NAME option
is not specified, the following rules
apply:

a. None of the operands can be
arrays, although they may be
structures that contain arrays.

b. All of the structure operands must
have the same number, k, of
immediately contained items~

c. The assignment statement (which
may have been qenerated by Rule 6)
is replaced by ~ generated assign­
ment statements. The ith generat­
ed aSSignment statement is-derived
from the original assignment
statement by replaCing each struc­
ture operan~ by its ith contained
item; such generated assignment
statements may require further
expansion according to Rule 6 or

Chapter 8: Statements 121

Rule 7. All generated assignment
statements are given the condition
prefix of the original statement.

8. In Option 3, where the BY NAME option
is given, the structure assignment,
which may have been generated by Rule
6, is expanded according to steps a
through d below. None of the operands
can be arrays.

a. The first item iromedia.tely con­
tained in the master variable is
considered.

b. If each structure operand and tar­
get variable has an immediately
contained item with the same iden­
tifier, an assignment statement is
generated as follows: the state­
ment is derived by replacing each
structure operand and target vari­
able with its immediately con­
tained item that has this iden­
tifier. If any structure contains
no such identifier, no statement
is generated. If the generated
assignments is a structure or
array-of-structures assignment, BY
NAME is appended. All generated
assignment statements are given
the condition prefix of the origi­
nal assignment statement.

c. step b is repeated for each of the
items immediately contained in the
master variable. The assignments
are generated in the order of the
items contained in the master
variable.

d. steps a through c may generate
further array and structure
assignments. These are expanded
according to ~ules 6 through 8.

Examples:

1. Suppose that the following
structures have been declared:

three

122

lONE
2 PA.RTl

3 RED
3 t~HITE
3 BLTJF

2 PART2
3 GREEN
3 YELLOW
3 ORANGE(3)

2 PART3
3 BLA.CK
3 WHITE

1 TWO
2 PARTl

3 RED
3 GREEN
3 WHITE

2 PART2
3 BLUE
3 YEI .. LOW
3 ORANGE(3)

1 THREE
3 PARTi

5 BLACK
5 v.1HITE
5 RED

3 PART2
5 YELLOW
5 WHITE
5 ORANGE(3)
5 PURPLE

Consider the following assignment:

ONE = TWO - 2 * THREE, BY NAME;

By Rule 8 this generates:

ONE.PART1 = TWO.PARTl - 2 *
THREE.PARTi, BY NAME;

ONF.PART2 = TWO.PART2 - 2 *
THREE,. PART2, BY NAME;

Applying Rule 8 again, these state­
ments are replaced by:

ONE.PART1.RED = TWO.PART1.RED
- 2 * THREE.PARTi.RED;

ONE.PARTi.WHITE = TWO.PART1.WHITE
- 2 * THREE.PART1.WHITE;

ONE.PART2.YELLOH = TWO.PART2.YELLOW
- 2 * THREE.PAR'J'2.YELLOW;

ONE. PART2. ORA.NGE = TWO. PART2. O:R.A.NGE
- 2 * THREE.PART2.0RANGE;

The final assignment is expanded
according to Rule 6.

2. The following example illustrates
array assignment (Option 2):

Given the array A

and the array B

2
3
1
4

1
7
3
6

4
6
7
8

5
8
4
3

consider the assignment statement:

A = (A+B)**2-A(1,1);

After execution, A has
7

93
9

93

the value
74

189
114
114

Note that the new value for A(l,l),
which is 7, is used in evaluatinq the
expression for all other elements.

3. The followin9 example
string assignment:

illustrates

Given:

A is a fixed-length string whose
value is 'XZ/BQ'.

B is a varying-length string of
maximum length 8 whose value is
'MAFY' •

C is a fixed-length string of
length 3.

D is a varying-length string of
maximum length 5.

Then in the s1:atement:

C=A, the value of C is 'XZ/'.
C='X', the value of C is 'Xbb'.
D=B, the value of D is 'fv'lAFY'.
D=:3UBSTR(A,2,3)I ISTJBSTR(A,2,3),

-the value of D is 'Z/BZ/'.
SUBSTR(A,2,4)=B, the value of A is

I XMAFY' .
SUBSTR(B,2,2)='R', the value of B

is 'MRbY'.
SUBSTR(B,2)='R', the value of B is

"MRbb' •

The BEGIN S~~at.ement:

Function:

The BEGIN statement is the heading
statement of a begin block.

General :format:

BEGIN [OPTIONS(option-list)];

Syntax rule:

The syntax of the "option list" is
implementation-defined.

General rules:

1. A BEGIN statement is used in conjunc­
tion with an END statement.

2. See Chapter 1 for a discussion of
blocks.

Exa.mples:

1. ON OVERFLOW BEGIN:

END:

2. (SIZE): Q: PROCEDURE;

(NOSIZE): A: BEGIN:

END;

END;

The SIZE condition is enabled with the
prefix to the PROCEDURE statement. This
enabling is negated throughout the begin
block with the prefix NOSIZE. On exit from
the begin block, SIZE errors are again
enabled because statements again are in the
scope of the SIZE prefix.

The CALL Statement

Function:

The CALL statement invokes a procedure
and causes control to be transferred to a
specified entry point of the procedure.

General format:

CALL entry-name

[(argument [,argument] •..)]

[TASK [(scalar-task-name)]]
[EVENT (scalar-event-name)]
[PRIORITY (scalar-expression)];

Syntax rules:

1. The entry name, which can be a generic
name, represents the entry point of
the procedure invoked.

2. An argument is
name, file name,

an expresion, entry
or file parameter

3. The TASK, EVENT, and PRIORITY options
can appear in any order.

1.

2.

General rules:

The TASK, EVENT, and PRIORITY options,
when used alone or in any combination,
specify that the invoked and invoking
procedures are to be executed asyn­
chronousl y.

When the TASK option is used, the task
name, if given, is associated with the
task created by the CALL. Reference
to this name enables the priority of
the task to be controlled at some
other point by the use of the PRIORITY
pseudo-variable and built-in function.

Chapter 8: Statements 123

3. When the EVENT option is used, the
event name is associated with the
completion of the task created by the
CALL statement. Another task can then
wait for completion of this created
task by specifying the event name in a
WAIT statement.

Upon execution of the CALL state­
ment, the event variable is made
active, and the completion value is
set to 'O'B and the status value to O.
Upon termination of the created task,
the completion value is set to 'liB
and, unless the task has been termi­
nated by a RETURN or END statement,
the status is set to 1 if still zero.

4. If the PRIORITY option is used, the
expression in the PRIORITY option is
evaluated to an integer ~, of an
implementation-defined precision
(n,O). The priority of the named task
is then made m relative to the task in
which the CALL is executed.

If a CALL statement with the EVENT
or TASK option does not have the
PRIORITY option, the priority of the
invoked task is made equal to that of
the task variable in the TASK option,
if there is one, or else made equal to
the priority of the invoking task.

5. Expressions in these options, as well
as any argument expressions, are
evaluated in the task in which the
call is executed. This includes exe­
cution of anyon-units entered as the
result of the evaluations.

6. The environment of the invoked proce­
dure is established after evaluation
of the expressions named in Rule 5,
and before the procedure is invoked.

Examples:

1. CALL CRITICAI,_PATH (A, B*C, D) ;

CRITICAL PATH:
GAM~A);

PROCEDURE (ALPHA, BETA,

END;

2. CALL PAYROLL (NAME, DATE, HRRATP);

3. CALL PRINT (A,B) TASK (T2) EVENT (ET2)
PRIORITY (-2);

124

The CLOSE Statement

Function:

The CLOSE statement dissociates the
named file from the data set with which it
was associated by opening in the current
task.

General format:

CLOSE options-group [,options-group] ..• ;

Following is the format of "options
group" :

FILE (filename) [IDENT(scalar-argument)]

General rules:

1. The options may appear in either order
within an options group.

2. The FILE (filenaroe) option specifies
which file is to be closed. It must
appear once in each options group.
Several files can be closer'! by one
CLOSE statement.

3. A closeo file can be reopened.

4. Closing an unopened file, or an
already closed file, has no effect.

5. The CLOSE statement cannot be used to
close a file in a task different from
the one that opened the file.

6. If a file is not closed by a CLOSE
statement, it is automatically closed
at the completion of the task in which
it was opened.

7. All I/O event variables associated
with operations on the file that have
not been completed before the file is
closed are set complete, with a status
value of 1 if not already non-zero.

8. A CLOSE statement unlocks all records
in the file.

9. The argument in the IDENT option is
used as follows:

Input Files: The argument must be a
character-string variable that may be sub­
scripted. The data set is examined for an
identifying user label, which is then
assigned to the variable. The label will
be a trailer label, unless the file is a
BACKWA~DS file, in which case it will be a
header label. If there is no label, a null
string will be assigned.

Ou:92.ut Fi!:..§s: The. argument is an expres­
sion. Its character-string value is placed
with the data set as a trailer label.

Update ~~les: The argument must be a
character-string variable that may be sub­
scripted. The data set is examined for an
identifying label, which is then assign~d
to the variable. The label will be a
trailer label.

Examples:

1. CLOSE FILE (MASTER);

The file, MASTER, is closed,
facilities allocated to
released.

and the
it are

2. CLOSE FILE (TABLEA), FILE (TABLEB);

The t\1TO files, TA.BLEA and TABLEB are
closed in the same way as MASTER, in
the preceding examnle.

The DECLARE Statement

See "The DECLARE Statement" in Chapter
4.

Function:

The DELAY statE~ment ca1lses execution of
the controlling task to be suspended for a
specified period of time.

General format:

DEI .. AY (scalar-expression);

General rules:

Execution of the DELAY statement
causes the scalar expression to be
evaluated and converted to an integer
n and the task to be suspended for n
milliseconds.

Execution resumes after n millisec­
onds only if the controlling task is
of sufficiently high priority to be
selected in preference to all other
reaily tasks.

Example:

DELAY (1.0);

The controlling task is suspended
for ten milliseconds.

The DELETE Statement

Function:

The DELETE statement deletes a record
from an UPDATE file.

General format:

DELETE option-list

Following is the format of
list" :

"option

FILE (=ilenawe) [KEY(scalar-expression)]
[EVENT (scalar-event-variable)]

General rules:

1.. The options may apnear in any order.

2. The FILE (filenaroe) ontion specifies
the UPDATE file; it must be specified.

3. The KEY option must be specifieil if
the file is a DIRECT UPDATE .f'=ile; it
cannot be specified otherwise. The
expression is converted to a character
string and determines which record is
to be deleted.

4. If the file is a SEQUENTIAL UPDATE
file, the record to be deleted is the
last record that was read.

5. The EVENT option allows processing to
continue while the record is being
deleted. It cannot be sDecified for
SEQUENTIAL BUFFERED -Files. The com­
pletion part of the evpnt-variable is
given the value 'O'B until the execu­
tion of the ~ELETE is complete, at
which time it is given the vable '1.' B.
The execution of a DELETE statement
with an EVENT op+.ion is cons:ldered
complete only after a WAIT statement
naming the event has been executed.

6. The DELETE statement unlocks a record
only if that record had been locked in
the same task in which the DELETE
appears.

7. The D~LETE statement can cause impli­
cit opening of a file.

Example:

DELFTE FILE(ALPHA) KEY (DKEY);

This statement causes the record iden­
tified by DKEY to be deleted from the data
set associated with the file ALPHA. If the
record was previously locked in the same
task, it is unlocked.

Chapter 8: Statements 125

The DISPLAY Statement

Function:

The DISPLAY statement causes a message
to be displayed to the machine operator.. A
response may be requested.

General format:

option :1. ..

DISPLAY (scalar-expression);

Option 2.

DISPLAY {scalar-expression}
REPLY (scalar-character-variable)
[EVENT (scalar-event-variable)];

syntax rule:

REPLY and EVENT may appear in either
order.

General rules:

1. Execution of the DISPLAY statement
causes the scalar expression to be
evaluated and" where necessary, con­
verted to a varying character string
of implementation-defined maximum
length. This character string is the
message to be displayed.

2. In Option 2, the character variable
receives a string that is a message to
be supplied by the operator.

3. In Option 2, if the EVENT option is
not specified, execution of the task
is suspended until the operator's mes-

sage is received~ In option 1, execu­
tion continues uninterrupted.

4. If the EVENT (event-variable) option
is given, execution will not wait for
the reply to be completed before con­
tinuing with subsequent statements.
the completion part of the event vari­
able will be given the value' 0" B
until the reply is completed, when it
will be given the value 'l'B. The
reply is considered complete only
after the execution of a WAIT state­
ment naming the event ..

Example:

DISPLAY ('END OF JOB');

This statement causes the message, "END
OF JOB" to be displayed.

The DO Statement

Function:

The DO statement delimits the start of a
DO group and may specify repetitive execu­
tion of the statements within the group.

General format is shown in Figure 5 .•

Syntax rules:

1.. The "variable" in Option 3 is a sub­
scripted or unsubscripted scalar vari­
able. It cannot be a task or cell
variable nor an active event variable,
nor can it be an area variable that
conta ins any of those .•

r---,
I I
I option 1. 1
1 I

DO;

OptiC)D 2.

DO WHILE (scalar-expression);

Option 3.

{
PSeUdO-variable}

DO = specification [,specification] ••• ;
variable

A specification has the following format:

,
I ,
I
I , ,
I
I , , ,
1
I

[

TO expression2 [BY expreSSiOn3]] I
expressionl [WHILE (expression4)] ,

BY expression3 [TO expression21 , L _________ ~ ___ J

Figure 5. General Format for the DO statement

126

2. Each "expression" in the specification
list is a scalar expression.

3.. If t.he BY clause is omitted from the
specification and the TO clause
appears, expression3 is assumed to be
one (1)".

4. If the TO clause is omitted from the
specification and the BY clause
appears, the iteration is performed
until terminated by the WHILE clause,
if present, or by some other statement
within the group.

5.. If both TO expression2 and BY
expression3 are omitted, this form of
the specification implies a single
execution of the DO group with the
control variable having the value of
expression 1 or it implies no execu­
tion if the WHILE statement is false.

6. If the variable in Option 3 is not a
string variable or a real arithmetic
variable, the TO and BY clauses cannot
be used ..

General rules:

1. In Option 1" the DO statement delimits
the start of a DO group.

2. In Option 2, the DO statement delimits
the start of a DO group and specifies
repetitive e~cecution defined by the
following:

LABEL: DO WHILE (E~xpression);
statement l

statement n
END;

NEXT: statement

The: above is exactly equivalent to the
following 4~xpansi()n:

LABEL: IF (expression) THEN; ELSE GO TO
NEX~r;
sta1:ement 1.

stat,ement n
GO TO LABEl,;

NEXT: sta1:ement

3. In Opt:ion 3, the DO statement delimits
the st:art of a DO group and specifies
contr()lled repetitive execution
definE~d by the following:

LABEL: DO variable (a1, ••• ,an)=
expressionl
TO expression2

BY expression3
WHILE (expression4);
statement-l

statement-m
LABELl: END;
NEXT: statement

This is exactly equivalent to the
following expansion:

tempn=an;
el=expressionl;
e2=expression2;
e3=expression3;
v=el;

LABEL2: IF (e3>=O)S(v>e2)I
(e3<O)&(v<e2)
THEN GO TO NEXT;

IF (expression4) THEN;
ELSE GO TO NEXT;
statement-l

statement-m
LABELl: v=v+e3;

GO TO LABEL2;
NEXT: statement

In the above expansion, a1~ ••• ran
are expressions that may appear as
subscripts of the control variable;
temp1 ••• tempn are compiler-created
integer variables to which the expres­
sion values are assigned; y is equi­
valent to "variable" with the asso­
ciated "temp" subscripts; "el," "e2,"
and "e3" are compiler-created varia­
bles having the attributes of
"expressionl," "expression2," and
"expression3, " respectively.. In the
simplest cases, there are no sub­
scripts (i.e., n=O) and the first
statement in the expansion is there­
fore el=expressionl.

Additional rules for the
expansion follow:

above

a. The above expansion only shows the
result of one "specification." If
the DO statement contains more
than one "specification," the
statement labeled NEXT is the
first statement in the expansion
for the next "specification .. " The
second expansion is analogous to
the first expansion in every res-

Chapter 8: Statements 127

pect. Thus, if a second
"specification" appeared in the DO
statement (with expressionl
through expression4 represented by
expression5 through expression8),
the second expansion would look
like this:

NEXT: e5=expression5;

v=e5;
LABEL3: IF .•• THEN GO TO NEXT1;

IF (expressionS) THEN;
ELSE GO TO NEXT1;

statement-l

statement-m
LABEL4: v=v+e7;

GO TO LABEL3;
NEXT1: statement

b. If the WHILE clause is omitted,
the IF statement immediately
preceding statement-l in the
expansion is omitted.

c. If "TO expression2" is omitted,
the statement "e2=expression2" and
the IF statement identified by
LABEL2 are omitted.

d. If both "TO expression2" and "BY
expression3" are omitted, all
statements involving e2 and e3, as
well as the statement GO TO
LABEL2, are omitted.

e. Although the above expansions show
a specific order, in which the BY
and TO clauses are evaluated, no
specific ordering is defined by
the language.

4. The WHILE clause in Options 2 and 3
specifies that before each associated
execution of the DO group, the expres­
sion is evaluated and, if necessary,
converted to give a bit-string value.
If any bit in the resulting string has
the value ., 1", the i tera tion contin­
ues. If all bits have the value '0',
the iterations associated with the
current specification are terminated.

5. In the specification list, in Option
3, expressionl represents the starting
value of the control variable.
Expression3 represents the increment
to be added to the control variable
after each iteration of the statements
in the DO group. Expression2 rep­
resents the terminating value of the
control variable. Iteration termi­
nates as soon as the value of the

128

control variable passes its terminat­
ing value. When the last specifi­
cation is completed, control passes to
the statement following the DO group.

6. control may, under any circumstances,
be transferred into a DO group from
outside the DO group if the DO group
is delimited by the DO statement in
Option 1; that is, iteration is not
specified. If the DO group is itera­
tive, a GO TO statement can transfer
control to a statement inside the
group only if the GO TO specifies an
abnormal return from a block that has
been activated from within the DO
group.

7. The effect of allocating or freeing
the control variable is undefined .•

Examples:

1. DO INDEX
WHILE (A

Z WHILE
B), 100;

(A>B), 5 TO 10

2. DO 1=1 TO 9,11 TO 20;

3. DO WHILE (P) ;

4 .• DO;

5. DO WHILE (TAX-DEDCT < ESTTAX * 4) ;

6. DO COMPLEX(X,Y) 0 BY 1+11 WHILE
(X<10) ;

The END Statement

Function:

The END statement terminates blocks and
DO-groups.

General format:

END [label];

General rules:

1. If a label follows END, the END state­
ment terminates the unclosed block or
DO-group that is headed by the nearest
preceding heading statement having
that label; it also terminates all
unclosed blocks and DO-groups that are
physically within that block or group.

2. If a label does not follow END, the
END statement terminates that group or
block headed by the nearest preceding
DO, BEGIN, or PROCEDURE statement for
which there is no other corresponding
END statement.

3. If control reaches an
terminating a procedure,
as a RETURN statement.

END statement
it is treated

4. If control reaches an END statement
which terminates a BEGIN bl,ock that is
an on-unit, control is returned to the
point specified for that particular
interrupt.

5. If a label follows END, that label may
not be an el«~ment of a label array.

For examples, see "Use of the END state­
ment," in Chapter 1.

Function:

The ENTRY statement specifies a secon­
dary entry point ito a procedure.

General format:

{entry-name:} ••• ENTRY
[(parameter [,parameter] •••)]
[data-attributes];

General rules:

1. The parameters are names that specify
the rarameters of the entry point.
When the entry is invoked, a relation­
ship is established between the arqu­
ments of the invocation and the param­
eters of the ~nvoked entry point.

2. The data attributes with an ENTRY
staterrent are the arithmetic, string,
AREA, OFFSE'r, and POINTER attributes.
The data attributes specify the char­
acteristics of the value returned by
the procedure when invoked as a func­
tion by any of the entry names. The
value specified in the RETURN state­
ment of the invoked entry is convert­
ed, if necessary, to conform to the
specified da'ta attributes.

3. If an ENTRY statement has more than
one label, each label is interpreted
as if it were a single entry name for
a separate ENTRY statement having the
same parameter list. If data attri­
butes are specified, they apply to all
entry names. If no data attributes
are specified" arithmetic defaults are
applied separately to each name,
depending upon the initial letter of
the identif i42r.

Consider the statement:

A:I: ENTRY;

This statement is equivalent to:

A: ENTRY;
I: ENTRY;

If the entry point were invoked by a
function reference to A, a floating­
point value will be returned; if to I,
a fixed-point value.

4. An ENTRY statement cannot be internal
to a begin block, nor can it be
internal to a DO group that specifies
iteration.

5. A condition prefix cannot be prefixed
to an ENTRY statement.

The EXIT Statement

Function:

The EXIT statement causes immediate
termination of the task 'that contains the
statement and all tasks attached by this
task. If the EXIT statement is executed in
a major task, it is equivalent to a STOP
statement.

General format:

EXIT;

General rule:

If an EXIT statement is executed in the
major task, the FINISH condition is raised
in that task. On normal return from the
FINISH on-unit, the prograIT is terminated.
An EXIT statement executed in any other
task terminates the task and its descen­
dants. The event variables associated with
these tasks are set complete. and their
status values are set to 1 <unless already
non-zero) •

The FORMAT Statement

Function:

The FORMAT statement specifies a format
list for use with data transmitted under
edit direction.

General format:

label: [label:] •.• FORMA'I (format-list) :

Syntax rules:

1. The "format list" is as described for
use with an edit-directed data speci­
fication (see "Format Lists" in Chap­
ter 7).

Chapter 8: Statements 129

2,. At least one "label" is required.. It
is the name of a statement label
appearing in a remote format item.

General rules:

1. A GET or PUT statement may include a
remote format specification, R, in the
format list of an edit-directed data
specification.. That portion of the
format list covered by the R format
item must be specified in a FORMAT
statement with a corresponding state­
ment label.

2. The remote format item and the FORMAT
statement must be internal to the same
block.

3. A FORMAT statement encountered in
sequential flow of control is treated
as a no-operation.

4,. It is an error to attempt to transfer
control to a FORMAT statement by means
of a GO TO statement.

5. Th,~ CHECK condition is never raised
for the label of a FORMAT statement,
whether the label is encountered in a
format list or in sequential flow of
control.

Example:

COMMON: FORMAT (A (5), F (5 , 2), X (3) ,
F(10,O»;

The FRE1~ statement

Function:

The FREE statement causes the storage
allocated for specified based or controlled
variables to be freed. For controlled
variables, the next most recent allocation
in the task is made available, and subse­
quent references in the task to the iden­
tifier refer to that allocation,.

130

General formats:

Option 1

FREE controlled-variable
[~controlled-variableJ ••• ;

Option 2

FREE [locator-qualifier->J
based-variable
[IN scalar-area-variableJ
[,[locator-qualifier->J
based-variable
[rN scalar-area-variableJ J ;

Syntax rules:

1. In Option 1, the "controlled variable"
must be an unsubscripted, level-one
controlled variable.

2. In Option 2, the "based variable" must
be an unsubscripted, level-one based
variable. See "Locator
Qualification," Chapter 2, for more
details of locator qualifiers.

3. The forms of Option 1 and Option 2 can
be combined in the same FREE state­
ment.

General rules:

1. Controlled storage allocated in a task
cannot be freed by a descendant task.

2. If a specified controlled identifier
has no allocated storage at the time
the FREE statement is executed, no
attempt is made to free the storage.

Rules 3 and 4 apply only to Option 2.

3. A based variable can be used to free
storage only if that storage has been
allocated by a based variable having
identical data attributes, including
values of bounds, lengths, and area
sizes.

4,. An IN option must be specified or
implied if and only if the
generation to be freed was allocated
in an area; the IN option must specify
the area in which the generation was
allocated. The effect of the FREE
statement is to make the relevant
storage available for subsequent allo­
cation by an ALLOCATE statement which
names the same area in the IN option.
If the reference to the variable to be
freed is pointer-qualified by the
POINTER built-in function (either
explicitly, or implicitly by the
appearance of an offset as the pointer
qualifier), and the IN option is
absent, the statement is executed as
if it contains the IN option naming
the area which is the second argument
of the POINTER built-in function..
Unless allocation has been in an area,
the FREE statement cannot include an
IN option nor can an IN option be
implied by use of an offset variable.

Examples:

I. DCL A AREA, 0 OFFSET (A), V BASED (0);
FREE Vi

The FREE statement is equivalent to
FREE POINTER (0, A)->V IN (A);

2. The following excerpt from a procedure
illustrates the FREE statement in con­
junction wi t:h an ALl.OCATE statement:

DECLARE A(100) INITIAL ((100)0)
CONTROLLlm , C(100), X(100);

ALLOCATE A;

C=A;

FREE A;

3. In the example below, it is assumed
the declarations specified in Example
4 of the ALLOCATE statement apply.

FREE VALUE;

Frees that portion of storage which is
occupied by the generation of VALUE
identified by pointer P.

FREE T -> GROUP;

Frees that portion of storage which is
occupied by the generation of GROUP
identified by pointer T. The value J
is llsed to determine the dimensions of
PTS and VALUES.

The GET statement

Function:

The GET statement normally causes values
from a data set to be assigned to variables
specified in a data list. Alternatively,
the values may come from a character-string
variable.

General format:

GET option-list

Follo~1ing
list":

rFILE

lSTRING

is the format of "option

(filename) [COpy] l
[SKIP[(scalar-expression)]]
(scalar-character-string­
variable)

[data-specification];

General rules:

1. If neither the FILE (filename) option
nor the ST'RING(character-string-name)

option appears, the
FILECSYSIN) is assumed.

file option

2,. The data specification must appear
unless the SKIP option is specified.

3,. The options may appear in any order.

4,. The filename refers to a file which
has been associated, by opening, with
the data set which is to provide the
values. It must be a STREAM INPUT
file.

5. The "scalar-character-string-variable"
refers to the character string that is
to provide the data to be assigned to
the data list. This name may be a
reference to a character string built­
in function. Each GET operation using
this option always begins at the
beginning of the specified string. If
the number of characters in this
string is less than the total number
of characters implied by the data
specification, the ERROR condition is
raised.

6. When the STRING option is used under
data-directel:l transmission, the ERROR
condition is raised if an identifier
within the string does not have a
match within the data specification.

7. For the rules concerning data specifi­
cation see "Data Lists", Chapter 7.

8. If the FILE (filename) option refers
to a file that is n?t open in the
current task, the file ~s implicitly
opened in the task for stream input
transmission.

9,. The COPY option, which may only bp
used with the file option, specifies
that the source data, as read, is to
be written, without alteration, on the
standard installation print file.

10.. The SKIP option, which may only be
used with the file option, causes a
new current line to be defined for the
data set. The expression, if present,
is converted to an integer 'ji, which
must be greater than zero. The data
set is positioned at the start of the
wth line relative to the current line.
If the expre'ssion is omitted, SKIP (1)
is assumed. The SKIP option always is
executed before any data is transmit­
ted.

Examples:

1. GET LIST (A,B,C);

Chapter 8: Statements 131

Specifies the list-directed transmis­
sion of the values to be assigned to
A, Band C from the file SYSIN.

2. GET FILE (BETA) EDIT (X,Y,Z)
F(S,2), A(10»:

(A(5) ,

Specifies the edit-directed transmis­
sion of the values assigned to X, Y
and Z from file BETA.

The GO 'I'O Statement

Function:

The GO TO statement causes control for a
task to be transferred to the specified
statement within the task.

General format:

{GO TO} {label-constant: }
GO TO scalar-Iabel-variablei

General rules:

1. If a label.variable is specified, the
GO TO statement has the effect of a
multi-way switch. The value of the
label variable is the label of the
sta'tement to which control is trans­
ferred ..

Since the label variable may have
different values at each execution of
the GO TO statement, control may not
always pass to the same statement.
(Example 2 illustrates a GO TO state­
ment used as a multi-way switch.)

2.. A GO TO statement cannot pass control
to an inactive block or to another
task,.

A GO TO statement cannot transfer
control from outside a DO group tq a
statement inside the DO group if the
DO group specifies iteration except in
a case in which the GO TO specifies an
abnormal return from a block that has
been activated from within the DO
group ..

3. A GO TO statement that transfers con­
trol from one block (D) to a dynami­
cally encompassing block (A) has the
effect of terminating block 0, as well
as all other blocks that are dynami­
cally descendant from block A,. On­
units are reestablished, and automatic
variables are freed in the same way as
if the blocks were terminated
normally. When a GO TO statement
transfers control out of a procedure
invoked as a function~ the evaluation

132

of the expression that contained the
corresponding function reference is
discontinued, and control is trans­
ferred to the specified statement.

4. A GO TO cannot terminate any block
activated during a prologue or during
execution of an ALLOCATE statement.

Examples:

1. GO TO A234;

A234:

2. The following example illustrates a GO
TO statement that effectively is a
multi-way switch:

DECLARE L LABEL (Ll, L2) INITIAL
(L2) ;
GO TO MEET;

Ll: X = Y - 1;
L = L2;
GO TO MEET;

L2: Y = X -1;
L = Ll;

MEET: CALL FUDGE (X, Y, Z)i
IF Z = LIMIT THEN GO ~O L;

3. The following procedure illustrates
use of the GO TO state~ent with a
subscripted label variable to effect a
multi-way switch:

CALC: PROCEDURE (Nl, N2)i
DECLARE SWITCH(3) LABEL INITIAL
(CALC1, CA.LC2, CALC3) i
I=MODCN1+N2,3)+li
GO TO SWITCH (I);

CALC1: •..

RETURN;
CALC2: • , ••

RETURN:
CALC3 :. , ••

END CALC;

The IF Statement

Function:

The IF statement specifies evaluation of
an expression and conversion to bit string,
and a consequent flow of control dependent
upon the value of the bit string.

General format:

IF scalar-expression THEN unit-l [ELSE
unit-2]

Syntax rules:

1.. Each "unit" is a DO-group, a begin
block, or any statement, other than
DECLARE, END, ENTRY, FORMAT, or PROCE­
DURE. The unit may have its own
labels and condition prefixes.

2. The IF statement is not itself termi­
nated by a semicolon.

General rules:

1.. When the ELSE clause -- ELSE, and its
following unit is not specified,
the scalar expression is evaluated
and, if necessary, converted to a bit
string. If any bit in the resulting
string has the value 1, unit-1 is
executed, and control passes to the
statement following the IF statement.
If all bits have the value 0, unit-l
is not executed, and control passes to
the next statement. When the ELSE
clause is specified, the expression is
similarly evaluated. If any bit is 1,
unit-1 is executed, and control passes
to i:he statement following the IF
statement. If all bits have the value
0, unit-2 is executed, and control
passes to the next statement. The
units may contain statements that
specify tra.nsfer of control and so
override these normal sequencing
rules.

2. IF s1:atement~s may be nested, that is,
eithE~r unit.-l or unit-2, or both, may
themselves be IF statements,. Each
ELSE clause is always associated with
the innermost unmatched IF in the same
block or DO group; consequently, an
ELSE or a THEN with a null statement
may be required to specify a desired
sequence of control.

3. A condition prefix to an IF statement
enables (or disables) the condition
only durinsr evaluation of the scalar
expr.~ssion of the IF clause; it is not
applicable t:o either of the THEN or
ELSE clauses, which may have their own
condition prefixes.

1.

2.

Examples:

IF A = Z THEN CALL X(O);
ELSE CALL X(A);

IF X > Y
THEN IF Z = W

THEN L: Y = 1;
ELSE;

ELSE (SIZE): Y A;

3. IF A THEN GO TO M;
GO TO N;

The LOCATE Statement

Function:

The LOCATE Statement, which applies to
BUFFERED OUTPUT files, causes allocation of
the specified based variable in a huffer;
it may also cause transmission of a based
variable previously allocated in a buffer.

General format:

LOCATE variable option-list ;

Following is the format of
list":

"option

FILE (filename')
[SET (s cala.r-pointer-variable)]
[KEYFROM (scalar-expression)]

Syntax rules:

1. The options in the option list may
appear in any order.

2. The "variable" must be an unsubscript­
ed level 1 based variable.

1.

General rules:

The
the

FILE (filename)
file involved.

appear.

option specifies
This option must

2. Execution of a LOCATE statement causes
the specified based variable to be
allocated in the buffer. Components
of the based variable that have been
given the INITIAL attribute" or compo­
nents specified in REFER options, are
initialized. A pointer value is
assigned to t:he pointer variable named
in the SET option or, if the SET
option is omitted, to the pOinter
variable specified in the declaration
of the based variable. The pointer
value identifies the record in the
buffer. If the pointer variable is an
offset variable, the pointer value is
implicitly converted. After execution

Chapter 8: Statements 133

of the LOCATE statement in a task,
values may be assigned to the based
variable for subsequent transmission
to the file, which will occur immedi­
ately before the next LOCATE, WRITE,
or CLOSE operation on the file in the
task, at which time the record is
freed.

3. If the KEYFROM(expression) option
appears, the value of the scalar
expression is converted to a character
string and is used as the key of the
record when it is subsequently writ­
ten.

4. If the FILE(filename) option refers to
a file that is not open in the current
task, the file is implicitly opened in
the task.

Example:

LOCATE ALPHA SET (REC POINT)
(BETA);

FILE

The based variable ALPHA is allocated
in a buffer and REC POINT is set to
identify ALPHA in the buffer. Values
may subsequently be assigned to ALPHA
and the record will be written in the
data set associated with file BETA
when a subsequent LOCATE or WRITE
statement is executed for file BETA or
if BETA is closed, either explicitly
or implicitly ..

The Null Statement

Function:

The null statement is a no-operation.

General format:

Example:

ON OVERFLOW;

The on-unit is a null statement .•

134

The ON Statement

Function:

The ON statement specifies the action to
be taken when an interrupt occurs for the
named condition. For a discussion of
"enable" and "interrupt," see "Interrupt
"Operations" in Chapter 6.

General format:

Option 1

ON condition [SNAP] on-unit

Qption 2

ON condition [SNAP] SYSTEM;

Syntax rules:

1. The "condition" may be anyone of
those described in Appendix 3.

2. The "on-unit" is. an action specifi­
cation, and it is either an unlabeled
single simple stat.ement (other than
BEGIN, DO, END, RETURN, ENTRY, FORMAT,
PROCEDURE, or DECLARE) or an unlabeled
begin block. It may have a condition
prefix. Since the on-unit itself
requires a semi-colon, no semi-colon
appears in Option 1.

3. The on-unit may not be a RETURN state­
ment, nor may a RETURN statement be
internal to the begin block.

General rules:

i. A.n ON statement, such as in Option 1,
must be executed before its effect can
be established.

2. The standard action to be taken for
all ON-conditions is defined by the
language. When an interrupt takes
place before an ON statement for that
condition has been executed, standard
system action is taken. This standard
system action is described in Appendix
3. The ON statement in Option 2
specifies that standard system action
is to be taken when an interrupt
results from the occurrence of the
specified condition.

3. The ON statement in Option 1 is a
means for the programmer to specify
action (other than standard system
action), that is, execution of the
on-unit, to take place when an inter­
rupt occurs for the specified condi­
tion. The on-unit is treated as a
procedure internal to the block in
which it appears.

4,. If SNAP is specified, then
gi ven condi t:ion occurs, a
trace is list:ed.

when the
calling

5. Control can reach an on-unit only when
an interrupt occurs for the condition
associated with this on-unit in an ON
statement,.

6~ If an action specification is esta­
blished by execution of .an ON state­
ment, it remains in effect until it is
overriden by another ON statement or
REVERT statement specifying the same
condition, or until termination of the
block in which the ON statement is
executed.

7. A single sta1:ement on-unit cannot con­
tain a remob~ format item..

The OPEN Statemen~

Function:

The OPEN statement asso_.iates a filename
with a data set and completes the specifi­
cation of attribu"tes for the file.

General format:

OPEN options-group [, options-group] .. , •• ;

Following is the format of "options
group":

FILE (filename)
[IDENT(scalar-argument)]
[TITLE(scalar-expression)]
[INPUT I OUTPUT I UPDATE]
[STREAM I RECORD]
[DIRECT 1 SEQUENTIAL]
[BUFF'ERED 1 UNBUFFERED]
[EXCI,USIVE]
[KEYE:D]
[BACKWARDS]
[PRINT]
[LINE:SIZE (scalar-expression)]
[PAGESIZE (scalar-expression)]

General rules:

1. The INPUT, OUTPUT, UPDATE, STREAM,
RECORD, DIRECT, SEQUENTIAL, BUFFERED,
UNBUE'FERED, EXCLUSIVE, KEYED, BACK­
WARDS, and PRINT options specify
attributes which may augment the
attributes specified in the file dec­
lara1:ion; the options may repeat
attributes specified in a DECLARE
statE!ment, but they must not conflict
with any declared attributes.

2.. The options may appear in any order
within a group.

3. The FILE (filemame) option specifies
which file is to be opened,. The
option must appear once in each
options group .. , Several files can be
opened by one OPEN statement.

4. If a file has been opened in a parti­
cular task and not subsequently
closed, then re-opening this file in
the same task or a descendant task has
no effect on the file or its associat­
ed data set. All options (including
TITLE) are evaluated whether o·r not
they conflict with the options of the
previous OPEN, but they are not used.
If a file has been opened and subse­
quently closed, it may be re-opened in
the task that originally opened it,
but any attempt to open it (or use it)
in a descendant of that task -- if the
descendant has inherited the file as
an open file -- will give undefined
results.

5. The "argument" in the IDENT option is
used as follows:

Input files: The argument must be a
character-string variable that may be
subscripted. The data set is examined
for an identifying user label which is
then assigned to the variable given as
the argument. The label will be a
header label unless the file is a
BACKWARDS file, in which case it will
be a trailer label. If there is no
label, a null string will be assigned
to the character string variable.

Output files: The argument is an
expression. Its character-string
value of the argument is placed with
the data set as a header label.

Update files: The argument must be a
character-string variable that may be
subscripted. The data set is examined
for an identifying label which is then
assigned to the variable given as the
argument. The label is a header
label.

6. If the TITLE (expression) option
appears, the expression is converted
to a character string which is used in
the association of a data set with the
file. If the, option does not appear,
a character string identical to the
filename is taken as the identifi­
cation.. In the case of a parameter,
the identifier of the original argu­
ment passed to the parameter, rather
than the identifier of the parameter
itself, is used. A data set may be

Chapter 8: statements 135

accessed by two or more files only if
all the files are direct.

7. The LINESIZE option can be specifie~
only for a STREAM OUTPUT file. The
expression is evaluated, converted to
an integer, and used as the length of
a line during subsequent operations on
the file. New lines may be started by
use of the printing and control format
items or by options in a GET or PUT
statement. If an attempt is made to
position a file past the end of a line
before explicit action to start a new
line is taken, a new line is automat­
icallystarted, and the file is posi­
tioned to the start of this new line.
If no LINESIZE is given for a STREAH
OUTPUT file, an implementation-defined
default is supplied.

The LINESIZE option cannot be spec­
ified for an INPUT file. The linesize
taken into consideration whenever a
SKIP option appears in a GET statement
is the linesize that was used to
create the data set.

8. The PAGESIZE option can be specified
only for a STRFAH PRINT file. The
expression is converted to an integer
and used as the number of lines on a
page. During subsequent output to the
file, new pa"ges may be started by use
of the PAGE format item or PUT state­
ment option. If a page becomes over­
filled before action to start a new
page is given, the ENDPAGE condition
is raised. Default is implementation
defined.

Examples:

1. OPEN FILE (ALPHA.), FILE (BETA) TITLE
(. WORKFILE') ;

The files ALPHA ano BETA are opened.
The data set associated with BETA is
identified through use of the name
WORKFILE, whereas ~LPHA is identified
with a data set through use of the
name ALPHA.

2. OPEN FILE (MASTER) UPDATE;

The file MASTER is opened as an UPDATE
file. MASTER is the name used to
associate a data set with the file.

The PROCEDURE statement

Function:

The PROCEDURE statement has the follow­
ing functions:

136

1. Identifies a portion of program text
as a procedure.

2. Defines the prim~ry entry pOint to a
procedure.

3. Specifies the parameters for the pri­
mary entry point.

4. Defines any special attributes of the
procedure.

5. Specifies the attributes of the value
that is returned if the procedure is
invoked as a function at the primary
entry point.

General format:

{entry-name:} ... PROCEDURE
[(parameter [, parameter] ..•)]
[OPTIONS(option-list)]
[RECURSIVE] [data-attributes];

Syntax rules:

1. The data attributes and the OPTIONS
and RECURSIVE options may appear in
any orn.er.

2. The syntax of the OPTIONS list is
implementation-defined.

General rules:

1. The "parameters" are names that speci­
fy the parameters of the entry point.
When the procen.ure is invoked, a rela­
tionshio -is established between the
arguments of the invocation and the
parameters of the invoked entry point
(see "Correspondence of Arguments and
Parameters" in Chapter 6).

2. OPTIONS specifies a list of options,
which depends upon implementation.
OPTIONS may be specified for any pro­
cedure.

3. RECURSIVE specifies that the procedure
may be invoked recursively. This
option applies only to the procedure
for which it is declared, but not any
procedures contained in it. It is an
error to invoke a procedure recursive­
ly by any of its entry points if it is
not given the RECU~SIVE option in its
PROCEDURE statement~

4. The data attributes permitted with a
PROCEDURE statement are the arithmet­
ic, string, AREA, OFFSET, and POINTER
attributes. The data attributes spec­
ify the characteristics of the value
returned by the procedure when invoked
as a function at the primary entry
point. (This rule a~plies to each
entry name by which the ~rocedure may

be invoked, i.e., each entry name
prefixed to the PROCEDURE statement.)
The value specified in the RETURN
statement of the invoked procedure is
converted to the specified data attri­
but:es.

5. If a PROCEDURE statement has more than
one entry name, the first name is
interpreted as the only label on the
statement; each subsequent entry name
is interpreted as a separate ENTRY
statement having an identical paramet­
er list and the same data attributes
as written in the PROCEDURE statement.
This equivalence is true only after
multiple closure has been resolved.
Defaults for the data attributes are
applied separately for each such entry
statement and for the resulting proce­
dure statement. If no data attributes
are specified, arithmetic defaults are
applied separately to each name,
dependi.ng upon the initial letter of
the identifier.

For examplE~, the statement:

A: I: PROCEDURE;

is effectively the same as:

A· PROCEDURE;
I: ENTRY;

Since no data att.ributes are specified
in the example, defaults will differ
for the t"lflO entry names. The equi va­
lance applies only after mUltiple clo­
sure has been resolved.

Example:

B: PROCEDURE;
DECLARE A RETURNS(FIXED);

D=A(X,Y);
END B;

A: PROCEDURE (B,C) FIXED;

RETURN (B*C + SIN (P»;
END A;

If procedure A is invoked as a func­
tion, as it is in procedure S, then
when control is returned to B, the
expression (B*C + SIN (P» is evaluat­
ed, convert~ed to fixed point, and the
value assigned to D in procedure B.

The PUT Statement

Function:

The PUT statement causes the transmis­
sion of data and/or the execution of con­
trol options. Data items transmitted are
the character-string representations of
values of expressions that are assigned to
a data set or to a designated character­
string variable.

General format:

PUT option-list

Following
list":

is the format of "option

[FILE (filename) I STRING
(s calar- character-string-variable)]

[data-specification] [PAGE]
[SKIP [(expression)]]
[LINE (expression)]

Syntax rule:

The PAGE, SKIP, and LINE options cannot
be used with the STPING option.

General rules::

1. If neither the FILE (filename) option
nor the STRING (character string name)
appears, the file option
FILE (SYSPRINT) is assumed.

2. The "filename" refers to a file that
has been associated, by opening, with
the data set that is to receive the
values. It must be a STREAM OUTPUT
file.

3. The "scalar-character-string-variable"
refers to the character string
variable or pseudo-variable that is to
receive the values.

After appropriate conversion, the
data specified by the data list is
assigned to the string starting at the
leftmost character (leftmost specified
character in the case of a SUBSTR
pseudo-variable). Note that any sub­
sequent PUT statement will cause
assignment to begin at the same place.
If the string is not long enough to
accommodate the data, the ERROR condi­
tion is raised.

4. The options may appear in any order.
The PAGE and LINE options can be
specified for PRINT files only. All
of the options take effect before
transmission of any values defined by
the data specification, if given. Of

Chapter 8: Statements 137

the three, only PAGE and LINE may
appear in the same PUT statement, in
which case, the PAGE option is applied
first.

5. The PAGE option causes a new current
page to be defined within the data
set~ If a data specification is pre­
sent, the transmission of values
occurs after the definition of the new
page. The page remains current until
the execution of a PUT statement with
the PAGE option, until a PAGE format
item is encountered, or until an END­
PAGE interrupt results in the
definition of a new page. A new
current page implies line one.

6. The SKIP option causes a new current
line to be defined for the data set.
The expression, if present, is con­
verted to an integer ~, which for
non-PRINT files must be greater than
zero. The data set is positioned at
the start of the wth line relative to
the current line. -If the expression
is omitted, SKIP(l) is assumed.

For PRIN~ files ~ may be less than
or equal to zero; in this case, the
effect is that of a carriage return
with the same current line. If less
than w lines remain on the current
page when a SKIP(w) is issued, BNDPAGE
is raised.

7. The LINE option causes a current line
to be defined for the data set. The
expression is converted to an integer
w. If ~ specifies the current line of
the most recent PUT statement, no new
current line is established. If w is
greater, blank lines are inserted so
that the next line will be the wth
line of the current page. If more
than w lines have alrea~y been written
on the current page or if ~ exceeds
the limits set by the PAGESIZE option
of the OPEN statement or by default ,
thE~ ENDPAGE condition j s raised. If w
is less than or equal to zero, it is
assumed to be 1.

8. If the FIl,E (fi lena me) option refers t.o
a file that is not open in the current
task, the file is opened implicitly in
this task for stream output.

Examples:

1. PUT DATA (A,B,C);

2.

138

specifies the data-directed transmis­
sion of the values A, Band C to the
file SYSPRINT.

PUT FILE (LIST) EDIT (X,Y,Z)
PAGE;

0\(10))

Specifies that a new page is to be
defined for the print file LIST. The
values of X, Y and Z are placed
starting in the first printing posi­
tion of the new page. Each of the
values will use the A(10) format item.

The READ Statement

Function:

The READ statement causes a record to be
transmitted from a RECORD INPUT or RECORD
UPDATE file to a variable or buffer.

General format:

READ option-list

Following is the format of
list n:

FILE (filename)

"option

[

INTO (variable)]
SET(scalar-pointer-variable)
IGNORE (scalar-expression)

[
KEY (scalar-expression)]
KFYTO

(character-string-scalar-variable)
[EVENT (event-scalar-variable)]

[NOLOCK]

General rules:

1. The options may appear in any order.

2. The FILE (filename) opti.on specifies
the file from which the record is to
be read. This option must appear. If
the file speci~ied is not open in the
current task, it is implicitly opened
in the task.

3. The INTO (variable) option specifies an
unsubscripted level 1 variable into
which the record is to be read. It
cannot be a parameter, nor can it have
the DEFINED attribute.

4. The KEY and KEY~O options can be
specified for KEYED files only.

5. The KEY (expression) option must appear
if the file is DIRECT. The expression
is converted to a character string
that determines which record is read.

6. The KEYTO(character-string-variable)
option may be given only if the file
is SEQUENTIAL. It specifies that the
key of the record is to be copied into
the string variable, which may be a
pseudo-variable. This copying follows
the rules for character string assign-

ment, and if proper assignment cannot
be made, the KEY condition is raised.
The key will match that which was
specified in the KEYFROM option when
the record was written. KEYTO and KEY
may not appear in the same READ state­
ment.

7. The EVENT (event-variable) option
allows processing to continue while
the record is being read or ignore1.
It may not be specified for SEQUENTIAL
BUFI~ERED files. If the EVENT (e~Tent
variable) option is given, the event
variable will be set active and will
be given the value 'O'B until the
execution is complete, when it will be
given the value 'l'B. The execution
of a READ statement with an EVENT
option is considered complete only
after the execution of a HAlT state­
ment. naming that event variable.

8. Any READ statement referring to an
EXClUSIVE file will cause the record
to be locked for access by a given
opening of a file unless the NOLOCK
option is specified. A locked record
cannot be read, deleted, or· rewritten
by any other task until it is
unlocked. Any attempt to read,
delete, rewrite, or unlock a record
locked by another task results in a
wait. Subsequent unlocking can be
accomplished by the locking task
through the execution of an UNLOCK,
REWRITE, or DELETE statement that spe­
cifies the same key, by a CLOSE state­
ment, or by cow~letion of task in
which the n~cord was locked.

Note that a record is considered
locked only for tasks other than the
task that actually locks it; in other
words, a locked record can always be
read by the task that locked it and
still remain locke~ as far as other
tasks are concerned (unless, of
course, the record has been explicitly
unlocked by one of the above methods).

9. The SET option specifies that the
record is to be rpad into a buffer and
that a pointer value is to be assigned
to the named pointer variable. The
pointer value identifies the record in
the buffer.

10. The IGNORE option rray be specified for
SEQUENTIAL INPUT ana SEQfJFNTIAL UPDATE
files. The expression in the IGNORE
option is evaluatpd and converted to
an integer. If the value, n, is
great.er than zero, n records are
ignored; a subsequent ~EAD statement
for the file will access the (n+1)th
record. A READ statement without an

INTO, SET, or IGNORE option is equi­
valent to a READ with an IGNORE(l).

11. A keyed file being accessed sequen­
tially way be positioned by issuing a
READ statement with the KEY option.
The soecified kev will be used to
identi~y the -record required.
Thereafter, records may be read
sequentially from that point by use of
READ Btatements without the KEY
option. This apolies to INPUT and
UPDATE files.

For BUFFERED SEQUENTIAL files, two
positioning statements can be used,
~V'ith the following formats:

READ FII.E (filename)
INTO (variable)
KEY (expression);

RFAD FILE (filename)
SET (pointer-variable)
KEY (expression);

For UNBUFFERED SEQUENTIAL files,
only the first form shown immediately
above can be used, and it may be
specified with the EVENT option.

Examples:

1. READ FILE (ALPHA) SET (REC_IDENT);

The next record from the data set
associated with AIJPHA is made availa­
ble and the pointer variable REC IDENT
is set to identify the record In the
buffer.

2. READ FILE (BF.TA) KEY (VALUE) INTO
(WORK) ;

The record identified by the key VALUE
is transmitted from the data set asso­
ciated with BETA into the variable
WORK.

The RETURN Sta temE~nt

Function:

The RETURN statement terminates execu­
tion of the procedure that contains the
RETURN statement. If the procedure has not
been invoked as a task, the RETURN state­
ment returns control to the invoking proce­
dure. The RETURN statement may also return
a value.

General forrnat:

option 1.

RETURN;

Chapter 8: Statements 139

Option 2.

RETtffiN (scalar-expression);

General rules:

1. Only the RETURN statement in Option 1
can be used to terminate procedures
not invoked as function procedures;
control is returned to the point logi­
cally following the invocation.

Option 1 represents the only form
of the RETURN statement that can be
used to terminate a proceaure initiat­
ed as a task. If the RETURN statement
terminates the major task, the FINISH
condition is raised prior to the exe­
cution of any termination processes.
If the RETURN statement t.erminates any
other task, the completion value of
the associated event variable (if any)
is set to 'l'B, and the status value
is left unchanged.

2. The RETURN statement in Option 2 is
used to terminate a procedure invoked
as a function procedure only. Control
is returned to the point of invoca­
tion, and the value returned to the
function reference is the value of the
expression specified converte~ to con­
form to the attributes declared for
the invoked entry point. These attri­
butes may be explicitly specified at
the entry point: they are otherwise
implied by the initial letter of the
entry name through which the procedure
is invoked.

3. If control reaches an END statement
corresponding to the end of a proce­
dure, this END statement is treated as
a RETURN statement (of the Option 1
form) for the procedure.

Example:

A: PROCEDURE <X,Y) FIXED:
DECLARE <X,Y) FI,Ol\T:

RETURN (X**2+Y**2):
END;

B: PROCEDURE:
DECLARE A ENTRY RETURNS <FIXED);

R lUP,Q);

END:

In the assignment statement (R=A(P,Q):),
procedure B invokes procedure A as a fUnc-

140

tion. Procedure B specifies that the sca­
lar expression in the RETURN statement is
to be evaluated: since X and Yare
floating-point variables and the PROCEDURE
statement specifies that the value returned
is to be fixed point, the value of the
expression is converted to fixed point, and
this value is returned to B.

The REVERT Statement

Function:

A REVERT statement specifying a given
ON-condition is used to reestablish the
action specification for the named condi­
tion as it was in the immediate, dynamical­
ly encompassing block. In the case of an
initial external procedure, standard system
action is established.

General format:

REVFRT condition;

Syntax rule:

The "condition" is any ON-condition
(see Appendix 3).

Examples:

A: PROCEDURE;

ON1: ON ZERODIVIDE GO TO EP.RSPEC:

CALL B:

B: PROCEDURE:

ON2:0N ZERODIVIDE:

REVERT ZERODIVIDE:

END B;

END Ai

Unless it is stated otherwise, the con­
dition ZERODIVIDE always is enabled. If
division by zero occurs prior to execution
of statement ONl, an interrupt with stand­
ard system action takes place.

If division by zero occurs after execu­
tion of ONl and prior to execution of
statement ON2, an interrupt takes place and
control transfers to the statement GO TO
ERRSPEC.

If Clivision by zero occurs after execu­
tion of ON2 and prior to the REVERT state­
ment, an interrupt takes place effectively
with no action.

When the REVERT statement is executed,
the effect of the statement ON2 is nulli­
fied, and statement ONl again becomes
effective.

Function:

The REWRITE statement causes replacement
of an existing record in a data set
referred t,o by an UPDATE file.

General format:

REWRITE option-list

Following
list n:

is the format of "option

FILE (filename) [KFY(scalar-expression)]
[FROM(variable)]
[PVFNT (event-scalar-variable)]

General rules:

1. The options may appear in any order.

2. The FILE (filename) option specifies
the file involved. If it refers to a
file that is not open in the current
task, the file is opened implicitly in
this task.

3. The KEY (expression) option must appear
if the fille is a DIRECT UPDATE file
and it cannot appear otherwise. The
expression is converted to a character
string and determines ~.qhich record is
written.

4. The FROM(variable) option may be given
to specify an unsubscripted level 1
variable which is to be used as the
source for the record. The
FROM(variable) option must be speci­
fied for a DIRECT UPDATE or SEQUENTIAL
UNBUFFERED UPDATE file. The FROM

5.

6.

option can be omitted for SEQUENTIAL
BUFFERED UPDATE files only, in which
case, the file is updated from the
buffer assocjated with the file.

The EVENT (event-variable) option
allows procE~ssing to continue while
the record is; being written. It may
not be specified for SEQUENTIAL BUF­
FERED files. If the EVENT (event
variable) option is given, the event
variable will be made active and will
be given the value 'O'B until the
execution is complete, when it will be
given the value 'l'B. The execution
of a REWRIT'E statement with an EVENT
option is considered complete only
after the execution of a WAIT state­
ment naming that event.

If the record rewritten is
was locked in the same
becomes unlocked.

Example:

REWRITE FILE (ALPH~);

one
task,

that
it

The last record read from the data set
associated with file ALPHA is rewrit­
ten from the buffer.

Function:

The SIGNAL stat.ement simulates the
occurrence of the named condition and caus­
es an interrupt if the condition is ena­
bled. It mav he llseti to test the action
specification of the current ON statement.

General format:

SIGNAL condition;

Examples:

1. X: PROCEDURE;

ON1: ON ENDFTLE (DATIN) Y,Z 0;

Sl: SIGNAL ENDFILE (DATIN);

ON2: ON ENDFLr.E (DATIN) SYSTEM;

Chal~ter 8: Statements 141

2.

82: SIGNAL ENDFILE (DATIN);

END X;

The Sl statement causes an inter­
rupt in the same way as if an attempt
to read past a file delimiter had
actually occurred. Control is trans­
ferred to the statement Y,Z = 0 in the
ONl statement.

When the S2 statement causes an
interrupt, control is transferred to
the ON2 statement, and standard system
action is taken.

ON CONDITION (TAX) TAXCT TAXCT+l;

SIGNAL CONDITION (TAX);

The ON statement establishes an
action for the programmer-specified
condition TAX. This condition can
occur only when a SIGNAL statement
causes the conQition to occur.

The STOP Statement

Function:

The STOP statement causes immediate ter­
mination of the major task and all sub­
tasks.

General format:

STOP;

General rule:

Prior to any termination activity the
FINISH condition is raised in the task in
which the STOP is executed. On normal
return from the FINISH on-unit, all tasks
in the program are terminated.

The UN~OCK statement

Function:

The UNLOCK statement makes the specified
locked record available to other tasks for
operations on the record.

General format:

UNLOCK option-list;

142

Following is the format of
list":

"option

1.

2.

3.

FILECfilename) KEY(scalar-expression)

General rules:

The options may appear in
order.

either

The FILE (filename) option specifies
the file involved, which must have the
attribltes UPDATE, DIRECT, and EXCLU­
SIVE. If the file is not open in the
current task, it is opened implicitly.

In the KEY(expression) option, the
"expression" is converted to a charac­
ter string that determines which
record is unlocked.

4. A record can be unlocked only by the
task which locked it.

The WAIT statement

Functlon:

The execution of a WAIT statement within
an activation of a block retains control
for that activation of that block within
the WAIT statement until certain specified
events have completed.

General format:

WAIT (event [,event] .•.)
[(scalar-expression)] ;

Syntax rule:

Each event is an event variable or
structure consisting only of event varia­
bles.

General rules:

1. Control for a given block activation
remains within this statement until,
at possibly separate times during the
execution of the statement, t.he condi­
tion

COMPLETION (event) = 'l'B

has been satisfied, for some or all of
the events in the list.

2. If the optional expression does not
appear, all the event names in the
list must satisfy the above condition
before control returns to the next
statement in this task following the
WAIT.

3. If the optional expression appears,
the expression is evaluated when the
WAI'I' statement is executed and con­
verted to an integer. This integer
specifies -the number of events in the
list that must satisfy the above con­
dition before control for the block
passes to the statement following the
WAIT. Of course, if an on-unit
entered du(~ to the WAIT is terminated
abnormally, control might not pass to
the statement following the WAIT.

If the value of the expression is
zero or negative, the t-lAIT statement
is treated as a null statement. If
theV'alue of the expression is greater
than the number, n, of events in the
list, the value Is taken to be n. If
the statement refers to an aggregate
of event variables, then each element
in the aggregate contributes to the
count.

4. If the event variable named in the
list has been associated with a task
in its attachinq CALL statement, then
the condition in-oule 1 will be satis­
fie~ on termination of that task.

5. If the event variable named in the
list i~ associated with an I/O opera­
tion initiat~d in the same task a~ the
WAIT, the condition in Rule 1 will be
satisfied when the I/O operation is
com~leted. The pxe~ltio~ of the WAIT
is a necessary part of the completion
of an I/O operatio~. If prior to, or
during, the W~IT all transmission
associated with the I/O oppration is
terminate,1, then the ~-;AIT perform:: the
following action: If the transmissjon
has finishej without requiring any I/O
conditions to be raised, the eV2~t
variable is set complete. I~ the
transmission has been terminatp0 but
has required conditions to be raised,
the event variable is set abnormal,
and all the required ON conditions are
raised. On return from the last on­
unit, the event variable is set
complete.

6. The order in which ON conditions for
different I/O events are raised is not
dependent on the order of appearance
of the events in the list. If an ON
condition for one event is raised,
then all other conditions for that
event are raised before the WAIT is
terminated or before any other I/O
conditions are raised unless an abnor­
mal return is made from one of the
on-units thus entered. The order in
which I/O ON conditions are raised for
an eVAnt is implementation-defined.
The raising of ON conditions for one
event implies nothing about the com-

pletion or termination of transmission
of other events in the list.

7. If an abnormal return is made from any
on-unit enterei from a WAIT, the asso­
ciated event variable is set complete,
the execution of the WAIT is terminat­
ed, and control passes to the point
specified hy the abnormal return.

8. If some of the events in the WAIT list
are associated with I/O operations and
have not been set complete before the
WAIT is terminated (either because
enough events have been completed or
due to an abnormal return), these
incomplete events will not be set
complete until the execution of anoth­
er WAIT referring to these events.

Example:

PI: PROCEDURE;

CALL P2 EVENT(EP2);

WAIT(EP2):

END;

The CALL stateme~t, when executed,
attaches a task whose completion sta­
tus is associated with the event na~e
EP2. When the W~IT statement is
encountered, the execution of the
attached task is suspended until the
value of COMP~ETIO~(~P2) is 'l'B,
i.e., until the attached task is com­
pleted.

The WRITE Statement

Function:

The WRITE statement transfers a record
from a variable in internal storaqe to a
RECORD OUTPUT or DIRECT RECORD UPDATE fiIp.

General format:

WRITE option-list

Following
list" :

is the format of "option

FILE (filename) FROM (variable)
[KFYFROM (scalar-expression)]
[EVENTCevent-scalar-variable)]

General rules:

1. The options may appear in any order.

Chapter A: Statements 143

2. THe FILE(filename) option, which must
appear, specifies the file in which
the record is to be written. If the
file is not open in the current task,
it is opened implicitly in this task.

3. The FROM(variable) option specifies an
unsubscripted level 1 variable which
is to be written.

4. rhe expression in the KEY FROM option
1S converted to character string and
associated with the record as its key.

5. The EVENT (event variable) option
allows processing to continue ~hile
the record is being written. It may
not be specified for SEQUENTIAL BUF­
FERED files. If the EVENT (event
variable) option is given, the event

144

variable will be made active and given
the value 'O'B until the execution is
complete, when it will be given the
value 'l'B. The execution of a WRITE
statement with an EVENT option cannot
he consideren complete until a WAIT
statement naming that event has been
executed.

Example:

WRITE FILE(BETA) F~OM(UPDATE)

KEYFROM(ONKEY) ;

Specifies that the record UPDATE is
written as the next record in the data
set associated with file BETA. The
key identifying the record in the data
set is taken from UKEY.

PL/I allows a programmer to alter the
text of a source program at compile tiwe.
This can be done in the following ways:

1. Modification of a source program for
the purpose of changing variable names
or for notational convenience.

2. Conditional compilation of sections of
the source program. In other words,
the user can dictate which sections of
his program are to be compiled.

3. Incorporation of strings of text into
the source program, where the strings
of text reside in a user or system
library.

These operations are performed by the
preprocessor staqe of the compiler.

PREPROC:CSSOR INPUT AND OUTPUT

The preprocessor interprets compile-time
statements and acts upon the source program
accordingly. Input to the preprocessor
consists of a character strinq, called the
source text, which consists 6£ identifiers
and const,ints; between any two of these,
there must be at least one blank, delimi­
ter, commc:mt, or compile-time statement.
Compile-time staternent~ are identifie1 by a
leading percent sign (%) and are executed
upon being encountered by the Drocessor.
One or more blanks and/or comments may
separate the percent sign from the state­
ment. Note that a percent sign apnearing
in a character string is considered only to
be a character in that string.

compilc=-time activity 1.lay also be speci­
fied by statements in a compile-tiwe proce­
dure. In this case, only the PROCEDURE and
END sta t ements rE~qui re, or can ha ve , per­
cent signs. A compile-time procedure is
invoked by a compile-time function ref­
erence.

output from the preprocessor consists of
a newly created character string, called
the I2!:2g!:3~!!! text, which contains the modi­
fied source program text, and which serves
as input to the compiler. This new text
has been modified by the preprocessor
accorfling to the compile-time statements
encountered in the source text.

CHAPTER 9: COMPILE-TIME FACILITIES

THE PREPROCESSOR BeAN

The preprocessor begins to scan the
characters of thE:; source text in a sequen­
tial manner. If 1:he source text does not
contain a compile-time statement, the pre­
processor places the scanned characters
into the program i:ext in the same order and
form in which they were encountered.

When a compile--time statement is encoun­
tered durinq the scan, it is executed.
This executi6n may cause the sequential
scanning and olacinq of characters to be
modified in either"of-the following ways:

1. The executed cownile-time statement
may cause the preprocessor to continue
the scan from a di fferent point in the
source text.

2. The executed comnile-time statement
may specify to the preprocessor that
upon the subsequent encounter of a
specified identifier within the source
program, that identifier itself is not
to be inserted into the program text
being generated; rather, the currently
assigned value of the identifier (that
is, the value assigned by a compile­
time statement executed prior to this
encounter) is to be placed into the
program text (unless this value or
part of it, in turn, can be replaced
-- see "Rescanninq and Replacement"
below). Note that compjle-time
statements themselves are never
inserted in the program text; rather,
a blank is inserte~ in place of such
compile-time statements.

The preprocessor scan is terminated when
an attempt is made to scan beyond the last
character in the source text. The result­
ing program text is a string representing
the PL/I program to be compiled.

Rescanning and ReEla~ement

Replacement of a variable or invocation
of a compile-time procedure (and subsequent
replacement of the function reference) can­
not take place until the variable or the
entry name has been activated, either by a
reference in a %ACTIVATE or %DECLARE state­
ment.

Chapter 9: Compile-Time Facilities 145

When an activated variable or an acti­
vated procedure name is encountered in the
source text, its value becomes a candidate
for replacement. This value cannot contain
percent signs, unmatched quotation marks,
or unmat,ched comment delimiters. The value
is then res canned from left to right to
determine whether or not it, or any part of
it, can be replaced, at the second replace­
ment level, by another value. If it cannot
be replaced, it is inserted into the pro­
gram text; if it is replaced, the new
value, in turn, is rescanned, etc. Thus,
insertion of a value into program text
takes place only after all possible
replacements have been made (see Example 2
below) •

Examples:

1. If the source text contained the fol­
lowing statements:

% DECLARE A CHARACTER, B FIXED;
% A, = 'B + C';
% B = 2;
X A;

then the following would be generated
in the program text:

x = 2 + C ;

In the above example, the first
statement is a compile-time DECLARE
statement that establishes A and B as
compile-time variables with the indi­
cated attributes, and also serves to
activate these variables. The second
statement is a compile-time assignment
statement that assigns the character
string IB + c' to A. The third
statement is also a compile-time
assignment statement, and assigns the
value 2 to B. The fourth statement is
a source program stater.1ent which
assigns A to X. However, since A has
been activated for replacement and has
been assigned a value, namely, the
string 'B + C', the value of A is
rescanned for possible further
replacement action. This rescanning
causes B to be replaced by the value
2. However, since 2 is not a compile­
time variable, it cannot be replaced,
and the chain of replacements comes to
an end. Thus, the source program
statement X = A; becomes the program
text statement X = 2 + C. Note
that a blank is appended to each end
of the replacement value when it is
written into the program text. Also
note that in the examples shown in
this chapter all leading blanks of
fixed-point values are not shown.

2. The following example illustrates an
error because a procedure name and its

146

delimited
provided
level:

argument
at the

list
same

are not
replacement

% DECLARE (A,B,C) CHARACTER,
D ENTRY (CHARACTER)
RETURNS (CHARACTE~);

% D: PROCEDURE (E) CHARACTER;

% END;
% A 'D' ;
% B 'X) , ;
% C 'A (B' ;

Y C;

In the first scan,
statements cause
'replacement:

Y = A(B;

the compile-time
the following

The second scan causes replacement of
A, as follows:

Y == D(B;

In the third scan, since it is done
from left to right, the character 'D'
is encountered before the character
'B'. Consequently, an attempt would
be made to invoke the procedure before
the argument list is complete, which
would be in error. The complete,
delimited argument list (X), (as
intended in this coding) would have to
be supplied at the same (or an
earlier) level of replacement as the
entry name D.

Example: Compile-Time Loop Expansion

A programmer may wish, at object-time,
to execute the following loop:

DO I
Z (I)

END;

1 TO 10;
XCI) + Y(l);

The following program would accomplish
the same thing, but without the execution­
time requirements of incrementing and
testing:

% DECLARE I FIXED;
% I = 1;
% LAB:;
Zer) = XCI) + Y(I);
% I = I + 1;
% IF I<= 10 % THEN % GO TO LAB;
% DEACTIVATE I;

The precise effect of each of these
statements is detailed below.

The statement % I=l assigns the value 1
to the compile-time variable I and speci-

fies that, unless the programmer indicates
otherwise (note the later appearance of the
% DEACTIVATF, statement), subsequent occur­
rences of the identifier I in the source
program will result in its replacement in
the program text by the string '1'. The %
LAB: statement is a compile-time null
statement that is used as the transfer
target for the % GO TO statement that
appears la'ter.

The string 'Z{I) = XCI) + Y(I):' is a
source program statement,. Initially, the
variable I was given the value 1: there­
fore, the first time that this string is
scanned, the string 'Z(1) =X(1) +
Y(1):' will be inserted into the program
text by the preprocessor. I is then incre­
mented by 1 (% I = 1+1:), after which the
compile-time IF statement instructs the
preprocessor to test the value of I. If I
is not greater than 10, the scan is to
resume at the compile-time statement
labeled LAB: otherwise, the scan is to
continue with the text immediately follow­
ing the % GO TO statement.

The % DEACTIVA'rE statement is interpret­
ed as follows: subsequent occurrences of
the identifier I in the source program are
not to be replaced by the string '11' in
the program text being formed (note that I
has the value 11 at the time the % DEACTI­
VATE statement is encountered): instead
each I will be left unmodified.

As a result of the above compile-time
activity, the following PL/I statements are
generated into the program text:

Z (1)
Z (2)

x (1
X (2

+ y(1):
+ Y(2):

Z(10) = X(10) + Y(10):

The foregoing statements are the state­
ments tha.t will actually be compiled into
executable object code.

COMPILE-TIME VARIPELES

A compile-time variable is an identifier
that has been specified in a %DECLARE
statement with either the FIXED or CHARAC­
TER attribute. No other attributes can be
declared for a compile-time variable.
Defaults are applied, however. A compile­
time variable declared with the FIXED
attribute is also given the attributes
DECIMAL and. an implementation-defined pre­
cision: a CHARACTER compile-time variable
is given the VARYING attribute with no
maximum IE~ngth. No contextual or implicit

declaration of identifiers is allowed in
compile-time statements.

The scope of a compile-time name encom­
passes all text subsequently scanned except
those preprocessor procedures that have
redeclared that identifier. The scope of a
preprocessor variable that has been
declared in a preprocessor procedure is the
entire procedure (there is no nesting of
preprocessor procedures).

When a preprocessor variable has been
given a value, that value replaces all
occurrences of the corresponding identifier
in text other than preprocessor statements
during the time that the variable is
active. If the preprocessor variable is
inactive (or if it has no value), replace­
ment activity cannot occur for the corres­
ponding identifier.

A preprocessor variable is activated
initially by its appearance in the %DECLARE
statement. It can be deactivated and sub­
sequently reactivated hy its appearance in
%DEACTIVATE and %ACTIVATE statements, res­
pectively. Deactivation of a preprocessor
variable does not strip it of its value: in
other wores, an inactive preprocessor vari­
able retains the v2lne it had while it was
active and can be altered by a preprocessor
statement or procefl 1lre if so desired.

COMPILE-TIME EXPRESSIONS

Compile-time expressions are written and
evaluated in the same way as source program
expressions, with the following exceptions:

1. The operands of a compile-time expres­
sion can consist only of compile-time
variables, references to compile-time
procedures, decimal integer constants,
bit-string constants, character-string
constants, and references to the
built-in function SUBSTR. Repetition
factors are not allowed with the
string constants and the arguments of
a reference to SUBSTR must be compile­
time expressions.

2. The exponent.iation symbol (**) cannot
be used.

3. For ari thmE!tic operations, only
decimal integer arithmetic of
implementation-defined precision is
performed. Note that the properties
of the division operator are affected.
For example, the expression 3/5 evalu­
ates to 0, rather than to 0.6.

A character string in an expression
being assigned to a compile-time variable

Chapter 9: Compile-Time Facilities 147

may include compile-time variables, ref­
erences to compile-time procedures, con­
stants, and operators~ preprocessor state­
ments cannot be included in such strings.

COMPILE-TIME PROCEDURES

A compile-time procedure is a procedure
that can be invoked only at the prepro­
cessor stage. Its syntax differs from
other PLiI procedures mainly in that its
PROCEDURE and END statements must each have
a leading percent symbol.

General format:

% label [label:] •••
[(identifier[,identifier] •••)]
{CHARACTERIFIXED}:

PROCEDURE

(label:] RETURN (proprocessor-expression);

% [label:] END [label];

Each identifier in the procedure state­
ment is a parameter of the procedure; each
parameter must be explicitly declared as
FIXED or CHARACTER.

The label after the keyword END must be
one of the labels of the procedure state­
ment.

The CHARACTER or FIXED attrjbute in the
compile-time procedure statement specifies
the attribute to which the returned value
is to be converted.

A compile-time procedure can be invoked
only by a function reference. Recursive
invocation of a compile-time procedure is
not all.owed, but the returned value, upon
rescanning, can invoke the same procedure.
Control cannot be transferred out of the
procedure by a GO TO statement: consequent­
ly a RETURN statement must be executed to
return both control, and the returned
value, to the point of invocation.

The only statements and groups, besides
one or more RETURN statements, that a
compile--time procedure can contain are:

The null statement

The DECLARE statement

The assignment statement

148

The GO TO statement

The IF statement

The DO group

The syntax of these statements, and of the
DO group is described under "Compile-time
Statements" in this chapter, however, with­
in a compile-time procedure, these state­
ments must be written without percent sym­
bols.

Names declared in a compile-time proce­
dure are not known outside the procedure.
Names declared in source text are known
within the procedure unless they have been
redeclared.

SCANNING COMPILE-TIME PROCEDURES AND
FUNCTION REFERENCES

When the scan encounters a
procedure, the procedure is
scanning recommences after the
ment of the procedure.

compile-time
skipped and
END state-

If the scan is to recognise an identifi­
er, with any required argument list, as a
compile-time function reference the iden­
tifier must be declared in a compile-time
DECLARE-statement as an entry name. The
declaration of the entry name and the
compile-time procedure must both be in
source text: that is, any necessary
INCLUDES must have been executed. The
declaration, but not necessarily the proce­
dure, must have been scanned. If the
reference is not in a compile-time state­
ment, the identifier must be activated; if
it is not activated the identifier becomes
part of the program text and the scan
continues .•

The argument list in a compile-time
function reference is delimited by a
balanced pair of parentheses whose left
parenthesis is adjacent to the entry name,
or is separated from the entry name by
blanks and comments only. Commas which are
not within further balanced parentheses
separate the arguments from each other.

INVOCATION OF COMPILE-TIME PROCEDURES

The number of arguments in a compile­
time function reference must be the same' as
the number specified in the entry attribute
for the function's entry name; furthermore,
the number of parameters specified in the
entry attribute must be the same as the
number indicated in the corresponding
procedure statement.

The at~tributes of those parameters spec­
ified in the entry attribute must be the
same as t~hose declared for the correspond­
ing parameters. For each parameter whose
attributes are not specified in the entry
attribute, the corresponding argument must
have attributes identical to those declared
for the parameters.

A compile-time function reference
behaves differently when encountered in
source tE~xt from when it is encountered in
a compile-time statement. In source text
the arguments are pieces of source text and
the result returned by the function becomes
part of source text; in a compile-time
statement: the arguments are compile-time
expressions and the function returns a
value for use in a compile-time expression .•

In source text the arguments are delim­
ited by t:he parentheses of the argument
list, and by int.ervening commas in the text
which are not themselves between balanced
parentheses. The string of source text
corresponding t.o each arg'lment pOSition is
scanned and any necessary replacement is
performed; the reSUlting sequence of char­
acters is treated as an argument. If it is
specified by an entry attribute, the argu­
ment will be converted to FIXED, otherwise
it is treated as a character string. The
value returned by the function is either
FIXED or CHARAC'I'ER. In the former case the
value is convert.ed to CHAPl.\CTER and insert­
ed in source text. In the latter case the
string returned is scanned, and any neces­
sary replacement takes place, before it is
inserted in source text. Dummy arguments
are always created when a function is
invoked from source text.

In a compile-time statement the argu­
ments of the function are compile time
expressions; they are evaluated and any
conversions specified by the entry attri­
bute arl~ performed before the function is
invoked. Dummy arguments will be created
where an argument is a constant, an expres­
sion in parentheses or where the attribute
of the argument differs from that specified
for the corresponding parameter in an entry
attribut.e.

THE COMPILE-TIME BUILT-IN FUNCTION SUBSTR

The built-in function SUBSTR is the only
built-in function that can be invoked dur­
ing the preprocessor stage. It may be
invoked from source text or from a compile­
time statement.

The identifier SUBSTR is recognized as
the built-in function name when it is
encountered in a compile-time statement.

However, if the identifier SUDSTR has
already been declared as a variable or an
entry name, a reference to SUBSTR in a
compile-time statement is taken as a ref­
erence to the user-declared SUBSTR. When a
programmer-written procedure name~ SUBSTR
is in source text it is an error for the
scan to encounter a reference to SUBSTR in
a compile-time statement if no declaration
for SUBSTR has been scanned. If the iden­
tifier SUBSTR refers to the built-in fUnc­
tion, SUBSTR, it can be activated only by
an ACTIVATE statement.

The built-in function SUBSTR behaves the
same as a user compile-time function when
encountered in source text or in a compi1e­
time statement. The first argument is, if
necessary, convE~rted to character; the
second and third arguments are, if neces­
sary, converted to decimal. The returned
value is a character string.

COMPILE-TIME STATEMENTS

Note that wherever keywords are shown
below, they may be abbreviated as shown in
Appendjx 4. Note also that a comment
appearing within a compile-time statement
is never written into the program text.

THE ACTIVATE AND DEACTIVATE STATEMENTS

Function:

The appearance of an identifier in an
ACTIVATE statement makes it eligible for
replacement when certain conditions are met
(see General Rules below); such an appear­
ance is said to activate an identifier.
The DEACTIVATE statement deactivates an
identifier; that is, any subsequent appear­
ance of such an identifier in the source
program causes no replacement action
(unless, of course, the identifier is again
activated); the identifier remains
unchanged.

General format:

% [label:] [ACTIVATEIDEACTIVATE} iden-
tifier (,identifier] ••. ,

General rules:

1. Compi1e-timce identifiers representing
variables, procedure references, and
the built-in function SUBSTR may be
activated or deactivated.

2. When an identifier is deactivate~, its
appearance in the source program does

Chapter 9: Compile-Time Facilities 149

not: cause any replacement action; the
identifier is placed unchanged into
the program text. However, any value
that the identifier may have had
before it was dpactivated remains in
effect as far as compile-time state­
ments are concerned; deactivating an
identifier only nullifies its ability
to effect replacement.

3. When an identifier is activated, the,
following conditions must be met in
order for replacement to occur:

a. The identifier must not appear
within a comment or a character
string.

b. The jdentifier must be immediately
preceded and followed by a PL/I
delimiter.

If both conditions are met, the
replacement value for the compile-time
variable or procedure reference is
converted to a character string and
then placed into the program text
(assuming that the rescan does not
cause any further replacement). A
single blank is inserted immeoiately
preceding an~ following the value.

Note: The appearance of an identifier in a
DECLARE statement serves to activate that
identifier initially. Therefore, an iden­
tifier need be activated by an ACTIVATE
statement only if it has been explicitly
deacti va"ted.

Example:

If the source text contains the fol­
lowing statements:

% DECLARE I FIXED, T CHARACTER;
% DEACTIVATE I;
% I = 15;
% T = 'A(I)';

S = I*'r*3;
% I = I + 5;
% ACTIVATE I;
% DEACTIVATE T;

R = I*~r*2;

150

then the program text generated by the
above would be:

S
R

I* ACI) *3;
20 *T*2;

THE ASSIGNMENT STATKMENT

Function:

The compile-time assignment statement is
used to evaluate compile-time expressions
and to assign the result to a compile-time
variable.

General format:

% [label:] compile-time-variable
compile-time-expression;

General rules:

1. For arithmetic operations, only deci-
mal integer arithmetic of precision
(p,O) 1S performed (p is
implementation-defined): that is, each
operan~ is converted to a decimal
fixed-point value of precision (0.,0)
before the operation is performed, and
the ~ecimal fixed-point result is con­
verted to precision (p,O) also. Any
character string being converted to an
arithmetic value must be in the form
of an optionally signed decimal inte­
ger constant.

2. The conversion of a fixed-point deci­
mal quantity to a char;cter-string
always results in a string of length
p+3.

3. The value assigned to a compile-time
character-string variable may include
percent signs, unmatched quotation
marks, and unmatched comment delimi­
ters.

THE DECLARE STATEMENT

Function:

The DECLARE statement establishes an
identifier as a compile-time variable or a
compile-time procedure name. The appear­
ance of an identifier in a compile-time
DECLARE statement activa.tes that identifi­
er; that is, it indicates to the prepro­
cessor that this identifier may cause
replacement action in the source program.

General format:

% [label:] ••• DECLARE identifier
attribute-list (,identifier
attribute-list] •• ,.;

where "a-ttribute list n is defined as:

CHARAc'rER I FIXED I ENTRY [([CHARACTER I FIXED]
[, [CHARACTEHIFIXED]] •••)]

1.

RETU'RNS (CH]~RACTER I FIXED)

Syntax rules::

The attributes may be factored
PL/I source program 'DECLARE
men·ts.

as in
state-

2. Although the DECLARE statement may be
labeled, all such labels are ignored.

General rules:

1. A length cannot be specified with tte
CHARACTER attribute. If CHARACTER is
specified, it is assumed that the
associated identifier represents a
varying character string that has no
maximum length.

2. A compile-time declaration is not
known until it has been scanned by the
preprocessor. Any reference to a
compile-time variable or compile-time
procedure name encountered in a
compile-time statement before the
variable or procedure name has been
declared is in error.

3. The scope of a compile-time variable
name, compile-time procedure name, or
a label of a compile-time statement is
the entire text scanned by the proc­
essor, not~ incluaing any compile-time
procedures that redeclare the iden­
tifier. The scope of a name declared
in a compile-time procedure is limited
to that procedure.

4. Multiple declaration of compile-time
variables or labels are not allowed.

5. A compile--time DECLARE statement is
executed only the first time it is
encountered; any subsequent scanning
through thE! statement has no effect.

THE DO S'rATEMEN,]~

General format:

% [label:] DO[i ml r'I'O m2 [BY m3]1
LBY m3 [TO m2] J

% [label:] ••• END [label];

] ;

Syntax rule:

The i represents a compile-time varia­
ble, and ml, m2, and m3 are compile-time
expressions.

1.

General rules::

Transfer may not be made into an
iterative DO group except via a return
from a compile-time procedure invoked
from within the group.

2. The text of a DO group may consist of
both compile-time statements and
source program statements. The source
program statements are not executed;
they are scanned for possible replace­
ment actbri ty. Thus, the example
below resul-t:s in the same expansion
generated by the example called
"Compile-Time Loop Expansion" in the
section "Rescanning ana Replacement."

% DECLARE I FIXED;
% no I = 1 TO 10;
Z(D = XCI) + Y(I);
% END;
% DEACTIVATE Ii

3. The expansion of the DO is the same as
for source proqram DO groul?s r with the
PL/I source urogram statements
replaced by the equivalent compile­
time statemE~nts.

THE GO TO STATEMENT

Function:

The compile-t:ime GO TO statement causes
the processor to resume its scan at the
specified label.

General format::

% [label:] (GO TOIGOTO} label;

1.

2,.

General rule:

The label that determines the point at
which the scan will resume must be the
label of a compile-time statement.

A compile-t:ime GO TO statement can be
used to transfer control from included
text to a compile-time statement in
the containing text, but the reverse
is in error.,

Chapter 9: Compile-Time Facilities 151

THE IF STATEMENT

Function:

The compile-time IF statement controls
the flow of the processor's scan according
to the value of a compile-time expression4

General format:

% [label:] IF compile-time-expression
% THEN compile-time-group-1
[% ELSE compile-time-group-2]

Syntax rule:

A compile-time group is any
executable compile-time statement
compile-time DO-group (see below).

General rules:

single
or a

1. The compile-time expression is evalu­
ated and converted to a bit string.
(If the conversion cannot be made, it
is an error.) If any bit in the
string has the value 1, compile-time
group-1 is executed and group-2, if
present, is skip~ed. Otherwise,
group-1 is skipped and gronp-2, if
present, is executed. In either case,
the scan resumes immediately following
the IF statement, unless, of course, a
compile-time GO TO statement in one of
the groups has caused the processor to
resume its scan elsewhere.

2. Compile-time IF statements may be
nested. See General Rule 2 of "The IF
statement," Chapter 8.

THE INCLUDE STATEMENT

Function:

The INCLUDE statement is used to incor­
porate strings of external text into the
program text being formed.

General format:

%[label:] ••• INCLUDE text-identification
[, tE~xt- identification] ••• ;

where "tE~xt-identificationn is of the form:

{
identifier-1 [(identifier-2)]}

[identifier-1] (identifier-2)

General rules:

1. Each text identification is used in an
implementation-defined manner to iden-

152

tify a data set. This data set may
contain source program text and/or
compile-time statements.

2. The incorporated data sets are
scanned, in sequence, in the same
manner as the source text, i.e.,
replacements are made and compile-time
statements are executed. Thus, they
may contribute to the final program
text. Note that the included text
does not replace the INCLUDE state­
ment, which is executed again if it is
reencountered in the scan.

3. A transfer of control from included
text to a statement in the containing
text is valid, but the reverse is in
error. (Note that "transfer of
control" should be taken in the sense
of a GO TO statement only; a "transfer
of control" in the sense of inVOking a
compile-time procedure is always per­
missible.)

4. Compile-time IF statements, DO groups,
and proce~ures must each be complete
within a single included data set.

Examples:

L. Assume tho.t the (1ata set named PAYRL
contains the following structure dec­
laration:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST CHARACTER (30) VARYING,
3 FIRST CHARACTER (15) VARYING,
3 MIDDLE CHARACTER (3) VARYING,

2 MAN_NO FIXED DECIMAL (6,0),
2 HOURS,

3 REGLR FIXED DECIMAL (8,2),
3 OVRTIM FIXED DECIMAL (8,2),

2 RATE,
3 REGLAR FIXED DECIMAL (8,2),
3 OVERTIME FIXED DECIMAL (8,2);

then the following compile-time program

% DECLARE PAYROLL CHARACTER;
% PAYROLL = 'CU~_PAY';
% INCLUDE PAYRL;
% DEACTIVATE PAYROLL;
% INCLUDE PAYRL;

would generate two identical structure des­
criptions in the program text, the only
difference being their names, CUM PAY and
PAYROLL. -

2. If the source text contained the fol­
lowing:

% DECLARE(FI:LENAME1,FILENAME2)
CHA.RACTER;
% FILENAMEl = 'MASTER';
% FILENAME2 = 'NEWFILE';
% INCLUDE DECLARATIONS;

and if the data set named DECLARATIONS
contained

DECLARE
FILENAMEl FII~E RECORD INPUT

DIRECT KEYED,
FILENAME:2 FILE RECORD OUTPUT

DIRECT KEYED;

then the proqram text would contain
the followinq statement:

DECLARE
MASTER FILE RECORD INPUT DIRECT

KEYED,
NEWFILE FILE RECORD OUTPUT DIRECT

KEYED;;

Note that in this way a central
library of file declarations can be
used, with each user supplying his own
names for the files being declared.

THE NULL STATEMENT

Function:

The compile-time null statement is used
to insert compile-time labels into the
text; these labels are transfer targets for
compile-time GO TO statements.

General format:

% [la bel:] ••• ;

Chapter 9: Compile-Time Facilities 153

APPENDIX 1: BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES

All of the built-in functions and
pseudo-variables that are available to the
PL/I programmer are given in this appendix,
and are presented in alphabetical order
under their respective headings. The gen­
eral organization of the appendix is as
follows:

1. Computational Built-in Functions
a. String-handling built-in functions
b. Arithmetic built-in functions
c. Mathematical built-in functions
d. Array manipulation built-in func­

tions

2. Condition Built-in Functions

3. Based storage Built-in Functions

4. ~ultitasking Built-in Functions

5. Hiscellaneous Built-in Functions

6. Pseudo-Variables

The computational buil "t.-in functions
provide string handling, arithmetic opera-
tions (addition, division,
etc.), mathematical operations (trig­
onometric functions, square root, etc.),
and array manipulation. The cor.putational
built-in functions are:

String Handling:

BIT
BOOL
CHAR
HIGH
INDEX
LENG1'U

Arithmetic:

ABS
ADD
BINARY
CEIL
COMPLEX
CONJG
DECIMAL
DIVIDE
FIXED
FLOAT
FLOOR

154

LOW
REPEAT
STRING
SUBSTR
UNSPEC

IMAG
MAX
MIN
MOD
MULTIPLY
PRECISION
REAL
ROUND
SIGN
TRUNC

Mathematical:

ATAN
ATAND
ATANH
COS
COSD
COSH
ERF
ERFC
EXP
T~OG

Array Manipulation:

l\LL
ANY
DIM
HBOUND

LOG10
LOG2
SIN
SIND
SINH
SQRT
TAN
TAND
TANH

LBOUND
POLY
PROD
SUM

The condition built-in functions allow
the PL/I programrner to investigate inter­
rupts arising from enahled ON-conditions.
The condition built-in functions are:

DATAFIEI.D
ONCHAR
ONCODE
ONCOUNT

ONFILE
ONKEY
ONI,OC
ONSOURCE

The based storage built-in functions are
designed to facjlitate list processing and
the use of based storage. They mainly
return special values to locator and area
variables. The basecl storage built-in
functions are:

ADDR
EMPTY

NULL
NULLO

OFFSET
POINTER

The multitasking built-in functions
allow the programmer to investigate the
current state of a task or asynchronous
input/output operation, or the current
priority of a task. The multitasking
built-in functions are:

COMPLETION
PRIORITY
STATUS

The miscellaneous built-in functions
perform various duties; for example, one
function provides the current date, another
provides a count of data items transmitted
during a STREAM input/output operation;,
while another provides an indication of
whether or not a controlled variable is in
an allocated state. The miscellaneous
built-in functions are:

ALLOCATION
COUNT
DATE

LINENO
TIME

Each of the pseudo-variables is des­
cribed briefly. A more detailed descrip­
tion can be found in the discussion of the
corresponding built-in function. The
pseudo-variables are:

COMPLETION
COMPLEX
I MAG
ON CHAR
ONSOURCE

PRIORITY
REAL
STATUS
SUBSTR
UNSPEC

COMPUTATIQNAL BUILT-IN FUNCTIONS

STRING HANDLING BUILT-IN FUNCTIONS

The functions described in this section
may be used for manipulating strings.
Unless it is specifically stated otherwise,
any argument can be a scalar or aggregate
expression (see "Built-in Functions with
Aggregat.e Arguments," in Chapter 3). An
argument t.hat is specified as "string" can
be an expression of any data type, but if
it is arithmetic, it is converted to bit­
string (if binary base) or character-string
(if decimal base) before the function is
invoked.

Conversions are made ;lccon1ing to the
rules for data conversion.

Definition: BIT converts a given value to
a bit-string and returns the result to the
Doint of invocation. This function allows
the programmer to control the size of the
result of a bit-string conversion.

Refere!!s::e: BIT (value [,length])

Arguments: The argument, "value," is an
expression represE=nting the quantity to be
converted to a bit string. The argument,
"length," when specified, is an expression
whose value gives the length of the result.
If "length" is not specified, it is
determined according to the type conversion
rules.

Result: The value returned by this fUnc­
tion is "value" converted to a bit string.
The length of this bit string is determined
by the integral value of "length," as
described above4

BOOL Strin~ Built-in Function

Definition: BOOL produces a bit string
whose bit representation is a result of a
given boolean operation on two given bit
strings.

Reference: BOOL (x,y,w)

Arguments: Arguments "x" and "y" are the
two bit strings upon which the boolean
operation specified by "w" is to be per­
formed. If "x" and "y" are not bit
strings, they are converted to bit strings.
If "x" and "y" differ in length, the
shorter string is extended with zeros on
the right to match the length of the longer
string.

Argument "w" represents the boolean
operation. It is a bit string of length 4
and is defined as n1.. n2 n3 n .. , where each .!!
is either 0 or 1. There are 16 possible
bit combinations and thus 16 possible boo­
lean operations. If necessary, "w" is
converted to a bit strinq (of length 4)
before t.he funct.ion is invoked, if neces­
sary.

Result: The value returned by this func­
tion--rs a bit string, ~, whose length is
equal to the longer of "x" and "y." Each
bit of z is determined by the boolean
operation-on the corresponding bi t.s of "x"
and "y" as follows: the ith bit of ~ is set
to the value of n1.., n 2 , n3, or n .. depending
on the combination of the ith bits of "x"
an~ "y" as shown in the -boolean tahle
below:

r-------------T-------------TT------------,
I xi I yi I I zi I
~-------------+-------------++------------~

I I " I I 0 I 0 II n1.. I
~-------------+-------------++------------~
I I " I I 0 I 1 II n2 I
~-------------+-------------++------------~
I I II I
I 1 I 0 II n3 I
~-------------+-------------++------------~
I I II I
I 1 I 1 II n.. I l _____________ ~ _____________ ~~ ____________ J

CHAR String Built-in Function

Definition: CHAR converts a given value to
a character string and returns the result
to the point of invocation. This function
allows the programmer to control the size
of the result of a character-string conver­
sion .•

Appendix 1: Built-in Functions and Pseudo-Variables 155

Reference: CHAR (value [,length])

Argument.s: The argument, "value," is an
expression representing the quantity to be
converted to a character string. The argu­
ment, "length, " when specif ied, is an
expression whose integral value gives the
length of the result. If "length" is not
specified, it is determined according to
the type conversion rules.

Result: The value returned by this func­
tion is "value" converted to a character
string. The length of this character
string is determined by the integral value
of "lenqth," as described above.

HIGH St~~Built-in Function

Definition: HIGH forros a character string
of a given length from the highest charac­
ter in the collating sequence; that is,
each character in the constructed string is
the highest character in the collating
sequence.

Reference: HIGH (length)

Argument: The argument, "length," is an
expression whose integral value specifies
the length of the string th~t is to be
formed.

Result: The value returned by this func­
tion is a character string whose length is
determine~ by the integral value of
"length"; each character in the string is
the highest character in the collating
sequence.

INDEX String Built-in Function

Definition: INDEX searches a specified
string for a specified bit or character
string configuration. If the configuration
is found, the starting location of that
configuration within the string is returned
to the point of invocation.

Referer~~ INDEX (string, config)

Argumef!~~.!.. Two arguments must. be speci­
fied. The first argument, "string," rep­
resents the string to be searched; the
second argument, "config," represents the
bit or character string configuration for
which "string" is to be searched. If
neither argument is a bit string, or if
only one argument is a bit string, both
arguments are converted to character
strings. If both arguments are bit-string,
no conversion is performed.

156

Result: The value returned by this func­
tion is a binary integer of default preci­
sion. This binary integer is either:

1. The location in "string" at which
"config" has been found. If more than
one "config" exists in "string," the
location of the first one found (in a
left-to-right sense) will be returned.

2. The value 0, if "config" does not
exist within "string" or if either of
the arguments has a length of zero.

LENGTH String Built-in Function

Definition: LENGTH finos the string length
of a given value and returns it to the
point of invocation.

Reference: LENGTH (string)

Argument: The argument, "string," rep­
resents a character string or a bit string
whose length is to be found. The argument
need not represent a string; if it does
not, it is converted before the function is
invoked to a character string (if the
argument is DECIMAL) or a bit string (if
the argument is BINARY).

Result: The value returned by this fUnc­
tion is a fixed binary integer of default
precision giving the current length of
"string." If "string" is an array expres­
sion, an array of identical bounds is
returned.

Example: If XYZ is a varying-length char­
acter string whose maximum length is 30,
but whose current length is 25, then the
statement:

I = LENGTH(SUBSTR(XYZ,4»;

will assign a binary value of 22 to I.

LOW Strinq Built-in Function

Definition: LOW forms a character string
of specified length from the lowest charac­
ter in the collating sequence; i.e., each
character of the formed string will be the
lowest character in the collating sequence.

Reference: LOW (length)

Argument: The argument, "length," is an
expression whose integral value specifies
the length of the string being formed.

Result: The value returned by this fUnc­
tion is a character string whose length is
determined by the integral value of
"length"; E~ach character in the string is
the lowest~ character in the collating
sequence.

REPEAT Stri~ Built-in Function

Definition~ REPEAT takes a given string
value and forms a new string consisting of
the given string value concatenated with
itself a specified number of times.

Reference: REPEAT (string, factor)

Arquments: The argument "string" rep­
resents the string from which the new
string will be formed. If this argument is
not a string, it will be converted to a
string.

The argument "factor" is an expression
whose integral value specifies the number
of times that "string" is to be concatenat­
ed with itself; "factor" can be signed.

Result: The value returned by this func­
tion is "string" concatenated with itself
"factor" times. In other words, the
returned value will be a string containing
(factor+l) occurrences of the value
"string." If "factor" is less than or
equal to zero, t.he returned value is i<'ient­
ical to the argument (i.e., the converted
argument, if the original argument was not
a string).

STRING Stri:ng Buil t:- in Function

Definition: STRING concatenates all the
elements in the result of an expression
into a single string element.

Reference: STRING (x)

Arguments: The argument, "x," is an ele­
ment, array, or structure expression, whose
result is composed either entirely of char­
acter strings and/or decimal numeric char­
acter data, or entirely of bit strings
and/or binary numeric character data.

Res!!lt:
t.ion is
string,
ments in
varying
string.

The value returned by this func-
an element bit string or character
the concatenation of all the ele­
"x." If "x" contains one or more
strings, the result is a varying

SUBSTR String Built-in Function

Definition: SUBSTR extracts a substring of
user-defined length froIl1 a given string and
returns the substring to the point of
invocation. (SUBSTR can also be used as a
ps eudo-variable.)

Reference: SUBSTR (string,i[,j])

Arguments: The argument "string" rep­
resents the string from which a substring
will be extracted. If this argument is not
a string, it will be converted to a string.
Argument "in represents the starting point
of the substring and "j" represents the
length of the substring. Arguments "i" and
"j" must be integers or expressions that
can be converted to integers.

Assuming that the length of "string" is
~, arguments "i" and "j" must satisfy the
following conditions:

1. j must be less than or equal to k and
greater than or equal to O.

2. i must be less than or equal to k and
greater than or equal to 1.

3. The value of i+j-l must be less than
or equal to k.

Thus, the substring, as specified by "i"
and "j" must lie within "string."

If "j" is not specified, it is assumed
to be equal to the value of k-i+l. In
other words, it is assumed to be the length
of the remainder of "string," beginning at
the ith position in "string."

When these conditions are not satisfied,
the SUBSTR ref erenc(~ ca'lses the STRINGRANGE
interrupt to be raised, if it is enabled.

Result: The value returned by this func­
tion is a varying-length string whose cur­
rent length is defined as follows:

1. If j=O, the re1:urned value is the null
string.

2. If j is greater than 0, the returned
value is that substring beginning at
the ith character or bit of the first
argument and extending j characters or
bits.

3. If j is not specified, the returned
value is that substring beginning at
the ith character or bit and extending
to the end of "string."

Appendix 1: Built-in Functions and Pseudo-Variables 157

Definition: UN SPEC returns a bit string
that is the internal coded representation
of a given value. (UNSPEC can also be used
as a pseudo-variable.)

Reference: UNSPEC (x)

Argument: The argument, "x," may
arithmetic, string, locator, or
expression, or an area variable,
internal coded representation is
found.

be an
area

whose
to be

Resul!:.E.. The value returned by this func­
tion is the internal coded representation
of "x" and is imnlementation defined. This
representation 1s in bit-string form. The
length of this string depends upon the
attributes of "x".

1'4RITHMETIC BUILT-IN FUNCTIONS

All values returned by arithmetic built­
in functions are in code1 arithmetic form.
The arguments of these functions should
also be in that form. If an argument is
not coded arithmetic, then, before the
function is invoked, it is converted to
coded arithmetic according to the rules for
data conversion. Note, therefore, that in
the funct.ion descriptions below, a
reference to an argument alTN'ays weans the
converted argument, if conversion was nec­
essary.

In some function descriptions, the
phrase "converted to the highest
characteristics" is used; this means that
the rules for mixed characteristics are
followed. See "Mixed Characteristics",
Chapter 3.

In general, an argument of an arithmetic
built-in function may be a scalar or aggre­
gate expression (see "Built-in Functions
with Aggregate Arquments," in Chapter 3).

Unless it is specifically stated other­
wise:

1. The mode of an argument may be real or
complex.

2. The base, scale, mode, and precision
of the returned value are oetermined
according to the rules for the conver­
sion of expression operands.

In many of these built-in function des­
criptions, the symbol N is used. This
symbol represents the -maximum precision
permitted by an implementation for the
given base and scale.

158

ABS Arithmetic Built-in Function

Definition: ABS finds the absolute value
of a given quantity and returns it to the
point of invocation.

Reference: ABS (x)

Arqument: The quantity whose absolute
value is to be found is given by "x."

Result: The value returnee: by this func­
tion is the absolute value of "x." If "x"
is real, the result is the positive value
of "y"; if "x" is complex, the result is
the positive square root of the sum of the
squares of the real and imaginary parts of
"x." The mode of the result is real, while
the base, scale, and precision are the same
as those of "x," with one exception: if "x"
is a complex fixed-point value of precision
(p,q), the precision of the result is~

(MIN(N,p+l),q)

Ant:: Arithmetic Built-in Function

Definition:
values and
invocation.
grammer to
result of an

Reference:

ADD finds the sum of two given
ret.urns it to the poi nt of
This function allows the pro­
control the precision of the
add operation.

ADD (x,y,p[,q])

Arguments: Arguments "x" and fly" represent
the values to be added. Arguments "p" and
"q" must be decimal integer constants spec­
ifying the precision of the result; "q" may
be signed. If the scale of the result is
fixed-point, both "p" and "q" must be
specified; if the scale of the result is
fioating-point, only "p" must be specified.
In either case, "p" must not exceed !':!.

Result: The value returned by this func­
tion is the sum of "x" and "y." The
precision of the result is determined by
"p" and "q"; this precision is maintained
throughout the execution of the function.

BINARY Arithmetic Built-in Function

Definition: BINA.RY converts a given value
to binary base and returns the converted
value to the point of invocation. This
function allows the programmer to control
the ~recision of the result of a binary
conversion.

Reference: BINARY (x[,p[,q]])

Arguments~ The first argument, "x," rep­
resents the value to be converted to binary
base.. Ar~ruments "p" and "q," when speci­
fied, must be decimal integer constants
giving the precision of the binary result;
"q" may be signed. The precision of a
fixed-point result is (p~q); the precision
of a float.ing-point result is (p). If both
"p" and "q" are omitted, the precision of
the result. is determined according to the
standard rules for data conversion. Note
that "g" must be omitted for floating-point
arguments .•

Result: The value returned by this fUnc­
tion is the binary equivalent of "x." The
scale and mode of this value are the same
as those of "x." The precision is given by
"p" and "q."

CEIL Arithmetic Built-in Function

Definition: CEIL determines the srrallest
integer that is gl:'eater than or equal to a
given real value and returns that integer
to the point of invocation.

Reference: CEIL (x)

Argument: The argument, "x," must not be
complex.

~esult: The value returned by this func­
tion is the smallest integer that is great­
er than or equal to "x." The base, scale,
mode, and precision are the same as those
of "x," with one exception: if "x" is a
fixed-point value of precision (p,q), the
precision of the result is defined as:

(MIN(N,MAX(p-q+1,1»,O)

COMPLEX Arithmetic Built-in Function

Definition~ COMPLEX forms a complex number
from two given real values and returns it
to the point of invocation. (COMPLEX can
also be used as a pseudo-variable.)

Reference: COMPLEX (x,y)

Arguments: Arguments "x" and "y" must both
be real; "x" represents the real part of
the complex number to be formed and "y"
represents the imaginary part.

Result: The value returned by this func­
tion is the complex number that has been
formed from "x" and "y."

CONJG Arithmetic Built-in Function

Definition: CO~JG finds the conjugate of a
complex value and returns it to the point
of invocation. (The conjugate of a complex
number is the complex number with the sign
of the imaginary part reversed.)

Reference: CONJG (x)

Argument: The argument, "x," is the value
whose conjugate is to be found; it must be
complex.

Result: The value returned by this func­
tion is the conjugate of "x." The base,
scale, mode, and precision of the conjugate
are the same as those of the argument.

DECIMAL Arithmet.ic Built-in Function

Definition: DECIMAL converts a given value
to decimal base and returns the converted
value to the point of invocation. This
function allows the programmer to control
the precision of the result of a decimal
conversion.

Reference: DECIMAL (x[,p[,q]])

Arguments: The first argument, "x," rep­
resents the value to be converted to deci­
mal base. Arguments "p" and "q," when
specified, must be decimal integer con­
stants giving the precision of the decimal
result; "g" may be signed. The precision
of a fixed-point result is (p,q); the
precision of a floating-point result is
(p). If both "p" and "q" are omitted,
however, the precision of the result is
determined according to the standar~ rules
for data conversion. Note that "q" must be
omitted for floating-point arguments.

Result: The value returned by this fUnc­
tion is the decimal equivalent of the
argument "x." The scale and mode of this
value are the same as argument "x"; its
precision is given by "p" and "q."

DIVIDE Arithmetic ~~ilt-in Function

Definition: DIVIDE divides a given value
by another given value and returns the
quotient to the point of invocation. This
fUnction allows the programrrer to control
the precision of the result of a divide
operation.

Reference: DIVIDE (x,y,p[,q])

Appendix 1: Built-in Functions and Pseudo-Variables 159

Arguments: The argument, "x," is the divi­
dend and argument "y" is the divisor.
Arguments "p" and "q" ("q" is optional and
may be signed) must be decimal integer
constants specifying the precision of the
result. If the result is a fixed-point
value, "p" and "q" must both be specified;
if the result is a floating-point value,
only "p" must be specified. In either
case, "p" must not exceed ~.

Result: The value returned by this func­
tion is the quotient resulting from the
division of "x" by "y." The precision of
the result is determined by "p" and "q" as
described above; this precision is main­
tained throughout the~ execution of the
function.

FIXED ~rithmetic Built-in Function

Definition: FIXED converts a given value
to fixed-point scale and returns the con­
verted value to the ooint of invocation.
This function allows the programmer to
control the precision of the result of a
fixed-point conversion.

Reference: FIXED (x[,p[,q]])

Argument: The first argument, "x," rep­
resents the value to be converted to fixed­
point scale. Arguments "p" and "q," when
specified, must be decimal integer
constants ("q" can be signed) giving the
precision of the result, (p,q). If "q" is
omitted, zero is assumed. If both "p" and
"q" are omitted, precision of the result
will be default fixed-point precision for
the base of "x."

Result~ The value returned by this func­
tion is the fixed-point equivalent of the
argument "X"i its precision is (p,q).

FLOAT Arithmetic Built-in Function

Definition: FLOAT converts a given value
to floating-point scale and returns the
converted value to the point of invocation.
This function allows the programmer to
control the precision of the result of a
floating-point conversion.

Reference: FLOAT (x[,p])

Arguments: The first argument. "x," rep­
resents the value to be converted to
floating-point scale. The second argument,
tIp," when specified, must be a decimal
integer constant giving the precision of
the result. If "p" is omitted, precision

160

of the result will be floating-point
default precision for the base of "x."

Result: The value returned by this fUnc­
tion is the floating-point equivalent of
"X"i its precision is "p."

FLOOR Arithmetic Built-in Function

Definition: FLOOR determines the largest
integer that does not exceed a given value
and returns that integer to the point of
invocation.

Reference: FLOOR (x)

Argument: The argument, "x," must not be
complex.

Result: The value returned by this func­
tion is the largest integer that does not
exceed "x." The base, scale, mode, and
precision of this value are the same as
those of "x," with one exception: if "x" is
a fixed-point value of precision (p,q), the
precision of the result is:

(MIN(N,MAX(p-q+l,l»),O)

IMAG Arithmetic ~uilt-in Function

Definition: IMAG extracts the imaginary
part of a given complex number and returns
it to the point of invocation. (IMAG can
also be used-as a pseudo-variable.)

Reference: IMAG (x)

Argument: The argument, "x," is the com­
plex value whose imaginary part is to be
extracted,.

Result: The value returned by this func­
tion is the imaginary part of "x." The
base, scale, and precision of the imaginary
part are unchanged. The mode of the
returned value is real.

MAX Arithmetic Built-in Function

Definition: MAX extracts the highest­
valued expression from a given set of two
or more expressions and returns that value
to the point of invocation.

Arguments: Two or more arguments must be
gi ven. The arguments must not be complex .•

Result: T'he value returned by MAX is
value of the maximum-valued argument.
returned value is converted to conform
the highest characteristics of all
arguments that were specified. If
arguments are fixed-point values and
precisions:

the
The
to

the
the

have

then the precision of the result is as
follows:

(MIN(N, MAX (P:1. -q:L' ••• , Pn-qn) +
MAX (q:L,. ' .• ,qn» ,MAX (q:L, ••• qn»

Definition: MIN extracts the lowest-valued
expression from a given set of two or more
expressions and returns that value to the
point of invocation.

~~~~~nts: Two or more arguments must be 
gi ven. The argum~?nts must not be complex. 

Result: The value returned by MIN is the 
value-of the lowest-valued argument. The 
returned value is converted to conform to 
the highest characteristics of all the 
arguments that were specified. If the 
arguments are fixed-point values and have 
precisions: 

then the precision of the result is as 
follows: 

(MIN(N,MAX{p~-q:L, ••• ,Pn-qn)+ 
MAX (q:L, .... qn) ) , MA,X (q:L, •.. , qn) ) 

MOD Arithmetic Built-in Function 

Definition: MOD extracts the remainder 
resulting from the division of one real 
quantity by an01:her and returns it to the 
point of invocation. 

Arguments: Two arguments must be given. 
They must not be complex. Before the 
function is invoked, the base and scale of 
each argument are converted according to 
the standard rules for data conversion. 

Result: The valuE~ returned by MOD is the 
positive remainder resulting from the divi­
sion of "X:L" by "X2." If the result is in 

floating-point scale, its precision is the 
higher of the precisions of the arguments; 
if the result is in fixed-point scale, its 
precision is defined as follows: 

where (P:L,q:L) and (P2,q2) are the precision 
of "X:L" and "X2," respectively. 

MULTIPLY Arithmetic Built-in Function 

Definition: MULTIPLY -Finds the product of 
two given values and returns it to the 
poin.t of invocation. This function allows 
the programmer to control the precision of 
the result of a mUltiplication oneration. 

Arguments: Argument.s "X:L" and "X2" re?­
resent the values to be multiplied. Argu­
ments "pH an~ "g" ("g" is optional an~ ~ay 
be signe~) are decimal integer constants 
specifying the precision of the result. If 
the result is a fixed-ooint value, "p" and 
"q" must both be specifiea; if the result 
is a floating-point valne, only "0" must be 
specified. In either case, "p" must not 
exceed ~. 

Result: The value returned by this func­
tion is the proc111ct of "X:L" and "X2." The 
precision of the result is as specified: 
this precision is maintained throughout the 
execu~ion of the function. 

PRECISION Arithwetic Built-in Function 

Definition: P~ECISION converts a given 
value to a s~eci~ied precision and returns 
the converted value to the point of invoca­
tion. 

Reference: PRECISION (x,p[,q]) 

Arguments: The first argument, "x," rep­
resents the value to be converted to the 
specified precision. Arguments "p" and "q" 
("q" is optional and may be signed) are 
decimal integer constants specifying the 
precision of the result. If "x" is a 
fixed-point value, "p" and "q" must be 
specified; if "x" 1S a floating-point 
value, only "p" must be specified. 

Result: The value returned by this func­
tion is the va 1t.H~ of "x" converted to the 
specified precision. The base, scale, and 
mode of the returned value are the same as 
those of "x." 

Appendix 1: Built-in Functions and Pseudo-Variables 161 



REAL Arithmetic Built-in Function 

Definition: REAL extracts the real part of 
a given complex value and returns it to the 
point of invocation. (REAL can also be 
used as a pseudo-variable.) 

gefere~~e: REAL (x) 

Argument: The argument, "x," must be a 
complex expression. 

Result: The value returned by this func­
tion is the real part of the complex value 
represented by "x." The base, scale, and 
precision of the real part are unchanged. 

ROUND Arithmetic Built-in Function 

Definition: ROUND rounds a given value at 
a specified digit and returns the rounded 
value to the point of invocation. 

Referen~e: ROUND (expression,n) 

Arg~ment~~~ The first argument, 
"expression," is an element or array rep­
resenting the value (or values, in the case 
of an array expression) to be rounded; the 
second argument, "n," is a signed or 
unsigned decimal integer constant speci­
fying tbe digit at which the value of 
"expression" is to be rounded. If "n" is 
positive, rounding occurs at the nth digit 
to the right of the decimal (or binary) 
point in the value of "expression"; if "n" 
is negative, rounding occurs at the ,!lth 
digit to the left of decimal (or binary) 
point in the value of "expression." Note 
that the decimal (or binary) point is 
assumed to be at the left for floating­
point values. 

Result: For fixed-point values, ROUND 
returns the value of "expression" rounded 
at the ~th digit to the right of the 
decimal (or binary) point for positive "n" 
or to the left of the decimal (or binary) 
point for negative "n." Thus, when "n" is 
negative, the returned value is an integer .. 

If "expression" is a floating-point 
expression, the second argument is ignored, 
and the rightmost bit in the internal 
floating-point representation of the 
expression's value is set to 1 if it is O. 
If the rightmost bit is 1, it is left 
unchanged. 

If "expression" is a string, the 
returned value is the same string unmodi­
fied .. 

162 

The base, scale, mode, and precision of 
the returned value are those of the value 
of "expression," with one exception: if the 
value of "expression" is fixed-point of 
precision (p,q), the result is fixed-point 
of precision: 

(MIN(p+1,N),q) 

Note that the rounding of a negative 
quantity results in the rounding of the 
absolute value of that quantity. 

SIGN Arithmetic Built-in Function 

Definition: SIGN determines whether a 
value is positive, negative, or zero, and 
it returns an indication to the point of 
invocat.ion. 

Reference: SIGN (x) 

Argument: The argument, "x," must not be 
complex. 

Result: This function returns a real 
fixed-point binary value of default preci­
sion according to the following rules: 

1. If the argument is greater than 0, the 
returned value is 1. 

2. If the argument is equal to zero, the 
returned value is o. 

3. If the argument is less than zero, the 
returned value is -1. 

TRUNC Arithmetic Built-in Function 

Definition: TRUNC truncates a given value 
to an integer as follows: first, it deter­
mines whether a given value is positive, 
negative, or equal to zero. If the value 
is negative, TRUNC returns the smallest 
integer that is greater than that value; if 
the value is positive or equal to zero, 
TRUNC returns the largest integer that does 
not exceed that value. 

Reference: TRUNC (x) 

Argument: The argument, 
complex. 

"x," must not be 

Result: If "x" is less than zero, the 
value returned by TRUNC is CEIL(x). If "x" 
is greater than or equal to zero, the value 
returned by TRUNC is FLOOR(x). In either 
case, the base, scale, and mode of the 
result are the same as those of "x." If 
"x" is a floating-point value, the preci-



sion remains the same. If "x" is a fixed­
point value of precision (p,q), the 
precision of the result is: 

(MIN(N,MAX(p-q+l,l»,O) 

MATHEr.mTICAL BUILT- IN FUNCTIONS 

All arguments -to the mathematical built­
in functions should be in coded arithmetic 
form and in floating-point scale. Any 
argument that does not conform to this rule 
is converted to coded arithmetic and 
floating-point before the function is 
invoked" accordinq to the standard rules 
for data conversion. Note, therefore, that 
in the function descriptions below, a ref­
erence to an arqument always means the 
converted argument, if conversion was nec­
essary. 

In general, an argument to a mathemati­
cal built-jn function may be a scalar or 
aggregate expression (see "Built-in Func­
tions with Aggregate Arguments," in Chapter 
3) • 

Unless it is specifically stated other­
wise, an argument may be real or complex. 
Tables 3 and 4 at the end of this section 
provide a quick reference for those mathe­
matical functions that accept either real 
or complex arguments and those that accept 
only real arguments. 

All of the mathematical built-in fUnc­
tions return coded arithmetic floating­
point values. The m00e, base, and 
precision of these values are always the 
same as those of t:he arguments. 

ATAN Ma:t:he!natical Built-in Function 

Definition: ATAN finds the arctangent of a 
given vaIue and returns the result 
expresse0. in radians, to the point of 
invocationo 

Reference: ATAN (x[,y]) 

~!:'9Q.ments.!.. The argument, "x," must always 
be specified; the argument "y" is optional. 
If "y" is omitted~ "x" represents the value 
whose arctangent is to be found; in such a 
case, "x" may be real or complex, but if it 
is complex,. it must not be equal to ±li. 

If nyu is specified, then the value 
whose arctangent is to be found is taken to 
be the expression x/yo In this case, both 
"x" and "y" must be real, and both cannot 
be equal to 0 at the same time. 

Result: When "x" alone is specified, the 
value returned by ATAN depends on the mode 
of "x." If "x" is real, the returned value 
is the arctangent of "x," expressed in 
radians, where: 

-pi/2<ATAN(x) <pi/2 

If "x" is complex, the arctangent function 
is multiple-valued, and hence only the 
principal value can be returned. The prin­
cipal value of ATAN for a complex argument 
"x" is defined as follows: 

-i*ATANH (i*x) 

If both "x" and fly" are specified, the 
possible values returned by this function 
are defined as follows: 

1. If y>O, the value is arctangent (x/y) 
in radians. 

2. If x>O and y=O, the value is ( pi/2) 
radians. 

3. If x~O and y<O, the value is (pi+ 
arct.angent (x/y» radians. 

4. If x<O and y=O, the value is (-pi/2) 
radians. 

5. If x<O and y<O, the value is 
arctangent (x/y» radians. 

AT1\ND Mathematical Built-in Function 

(-pi+ 

Definition: ATAND finds the arctangent of 
a given real value and returns the result, 
expressed in degrees, to the point of 
invocation. 

Reference: ATAND (x[,y]) 

Arguments: Arguments "x" and "y" ("y" may 
be omitted) must be real values. If "y" is 
omitted, "x" represents the value whose 
arctangent is to be found. If "y" is 
specified, the value whose arctangent is to 
be found is represented by the expression 
x/y; in this case, both "x" and "y" cannot 
be equal to 0 at the same time. 

Result: If "y" is not specified, the value 
returned by this function is simply the 
arctangent of "x," expressed in degrees, 
where: 

-90<ATAND(x)<90 

If "y" is specified, the value returned 
by this function is AT AN (x,y), except that 
the value is expressed in degrees and not 

Appendix 1: Built-in Functions and Pseudo-variables 163 



in radians (see "ATAN Mathematical Built-in 
Function" in this section): that is, the 
returned value is defined as: 

ATAN(x,y) = (180/pi)*ATAN{x,y) 

ATANH Mathematical Built-in Function 

Definition: ATANH finds the inverse hyper­
bolic tangent of a given value and returns 
the result to the point of invocation. 

Reference: ATANH (x) 

Argume~t: The value whose inverse hyper­
bolic tangent is to be found is represented 
by "x." If "x" is real, the absolute value 
of "x" must not be greater than or equal to 
1; that is, for real "x," it is an error if 
ABS(x)~l. If "x" is complex, it must not 
be equal to ±1. 

Result: If "x" is real, the value returned 
by this function is the inverse hyperbolic 
tangent of "x." For complex "x," the 
inverse hyperbolic tangent is defined as 
follows: 

(LOG«1+x)/(1-x»)/2 

COS Mathematical Built-in Function 

Defini1:ion: COS finds the cosine of a 
given value, which is expressed in radians, 
and returns the result to the point of 
invocation. 

Reference: COS (x) 

Argument: The value whose cosine is to be 
found is given by "x"; this value can be 
real or complex and must be exp~essed in 
radians .• 

Result~ The value returned by this func­
tion is the cosine of "x." For complex 
argument "x," the cosine of "x" is defined 
below, where x = Y1+iY2: 

COSO Ma.thematical Built-in Function 

Definition: COSD finds the 
given real value, which is 
degrees, and returns the 
point of invocation. 

Referel!£e: COSO (x) 

164 

cosine of a 
expressed in 

result to the 

Argument: The value whose cosine is to be 
found is given by "x"; this value must be 
real and must be expressed in degrees. 

Result: The value returned by this fUnc­
tion is the cosine of "x." 

COSH Mathematical Built-in Function 

Definition: COSH finds the hyperbolic 
cosine of a given value and returns the 
result to the point of invocation. 

Reference: COSH (x) 

Argument: The value whose hyperbolic 
cosine is to be found is given by "x." 

Result: The value returned by this fUnc­
tion is the hyperbolic cosine of "x." For 
complex argument "x," the hyperbolic cosine 
of "x" is defined below, where x = Y1+iY2: 

ERF Mathematical Built-in Function 

Definition: ERF finds the error function 
of a given real value and returns it to the 
point of invocation. 

Reference: ERF (x) 

Argument: The value for which the error 
function is to be found is represented by 
"x"; this value must be real. 

Result: The value returned by this func­
tion is defined as follows: 

ERF(x)= 2!)C 
-- t 2 
"11 e- dt 

ERFC Mathematical Built-in Function 

Definition: ERFC finds the complement of 
the error function (ERF) for a given real 
value and returns the result to the point 
of invocation. 

Reference: ERFC (x) 

Argument: The argument, "x," represents 
the value whose error function complement 
is to be found; "x" must be real. 

Result: The value returned by this fUnc­
tion is defined as follows: 

ERFC(x) = l-ERF(x) 



EXP Mathematical Built-in Function 

Definition: EXP raises e (the base of the 
natural logarithm system) to a given power 
and returns the result to the point of 
invocation .. 

Reference: EXP (x) 

Argument: The argument., "x," specifies the 
power to which Q is to be raised. 

Result: The value returned by this func­
tion is .~ raised to the power of "x." 

LOG Mathematical Built-in Function 

Definition: LOG finds the natural logar­
ithm (i.e., base e) of a given value and 
returns it to the poInt of invocation. 

Reference: LOG (x) 

Argument.!.. The argument, "x," is the value 
whose natural logarithm is to be found. If 
"x" is real, it must not be less than or 
equal to 0; if '''x" is complex, it must not 
be equal to O+Oi. 

Result: The value returned by this func­
tion is the natural logarithm of "x." 
However, if "x" is complex, the function is 
multiple-valued; hence, only the principal 
value can be re·turned. The principal value 
has the form w := u±i*v, where ~ lies in the 
range: 

-pi<vspi 

LOG10 Mathematical Built-in Function 

Definiti.on: LOG10 finds the common logar­
ithm (f:e:-, base 10) of a given real value 
and returns it to the point of invocation. 

Reference: LOG10 (x) 

Argumen!.!.. The argument, "x," represents 
the value whose common logarithm is to be 
found; this value must be real and it must 
not be less than or equal to O. 

Result: The value returned by this func­
tion is the common logarithm of "x." 

LOG2 Mathematical Built-in Function 

Definition: LOG2 finds the binary (i.e., 
base 2) logarithm of a given real value and 
returns it to thE:! point of invocation. 

Reference: LOG2 (x) 

Arqument: The argument, "x," is the value 
whose bina.ry logarithm is to be found; it 
must be real and it must not be less than 
or equal to o. 

Result: The value returned to this fUnc­
tion is the binary logarithm of "x." 

SIN Mathematical Built-in Function 

Definition: SIN finds the sine of a given 
value, which is expressed in radians, and 
returns it to the point of invocation. 

Reference: SIN (x) 

Argument: The argument, 
whose sine is to be 
expressed in radians. 

"x," is 
found; 

Result: The value returned by 
tion is the sine of "x." 
argument "x," the sine of "x" 
below, where x = Y1+i*Y2: 

the value 
it must be 

this fUnc­
For complex 
is defined 

SIND Mathematic~} Built-in Function 

Definition: SIND finds the sine of a given 
real value, which is expressed in degrees, 
and returns the result to the point of 
invocation. 

Reference: SIND (x) 

Argument: The argument, "x," is the value 
whose sine is to be found; "x" must be real 
and it must be expressed in degrees. 

Result: The value returned by this func­
tion is the sine of "x." 

SINH Mathematical Built-in Function 

Definition: SINH finds the hyperbolic sine 
of a given value and returns the result to 
the point of invocation. 

Reference: SINH (x) 

Appendix 1: Built-in Functions and Pseudo-Variables 165 



Argument~ The argument, "x," is the value 
whose hyperbolic sine is to be found. 

Result: The value returned by this func­
tion is the hyperbolic sine of "x." For 
complex argument "x," the hyperbolic sine 
of "x" is defined below, where x = Y1+i*Y2: 

SQRT Mathematical Built-in Function 

Definition: SQRT finds the square root of 
a given value and returns it to the point 
of invocation. 

Argument:. The argument, "x," is the value 
whose square root is to be found. If "x" 
is real, it must not be less than o. 

Result: If "x" is real, the value returned 
by this function is the positive square 
root of "x." If "x" is complex, the square 
root function is multiple-valued; hence, 
only the principal value can be returned to 
the user. The principal value has the form 
w = u±i*v, where either u>O, or u=O and 
v2:0. 

TAN Mathematical Built-in Function 

Definition: TAN finds the tangent of a 
given value, which is expressed in radians, 
and returns it to the point of invocation. 

Reference: TAN (x) 

A.rgument: The argument, "x.," represents 
the value whose tangent is to be found; "x" 
must be expressed in radians. 

Result: 'rhe value returned by this func­
tion is the tangent of "x." 

TAND Mathematical Built-in Functions 

Definition: TAND 
given real value 

166 

finds 
which 

the tangent of a 
is expressed in 

degrees, and returns the result to the 
point of invocation. 

Reference: TAND (x) 

Argument: The argument, "x," represents 
the value whose tangent is to be found; "x" 
must be expressed in degrees. 

Result: The value returned by this func­
tion is the tangent of "x." 

TANH Mathematical Built-in Function 

Definition: TANH finds the hyperbolic tan­
gent of a glven value and returns the 
result to the point of invocation. 

Reference: TANH (x) 

Argument: The argument, "x," represents 
the value whose hyperbolic tangent is to be 
found. 

Result: The value returned by this func­
tion is the hyperbolic tangent of "x." 

Summary of Mathematical Functions 

Table 3 summarizes the mathematical 
built-in functions. In using it, the read­
er should be aware of the following: 

1. A complex 
defined as x 

argument, 
Y1+ i *Y2· 

"x," is 

2. The value returned by each function is 
always in floating-point. 

3. The error conditions are those defined 
by the PL/I Language. 

All arguments must be coded arithmetic 
and floating-point scale, or such that 
they can be converted to coded arith­
metic and floating-point. 



Table 3. Mathema1:ical Built-in Functions 
r------------------T-------------------T---------------------T--------------------------, 
I Function Reference I Argument Type 1 Value Returned , Error Conditions , 
~------------------+-------------------+---------------------+--------------------------~ 
~------------------+-------------------+---------------------+--------------------------~ 
I ATAN(x) 'real larctan(x) in radians , , 
, , 1- (pi/2) <ATAN (x) <pi/2 1 , 
1 ~-------------------+---------------------+--------------------------~ 
, 1 complex l-i*ATA.NH(i*x) I x = ±li 1 
t------------------+-------------------+---------------------+--------------------------~ 
I ATAN(x,y) t both real Isee function I error if I 
1 I I description 1 x=O and y=O , 
~------------------+-------------------+---------------------+--------------------------~ 
I ATAND (x) I rea 1 1 arctan (x) in degrees I 1 
I 1 1-90<ATAND (x) <90 I , 
t------------------+-------------------+---------------------+--------------------------~ 
1 ATAND(X,y) I both real ,see function I error if , 
I I ,description 1 x=O and y=O I 
t----------------·--+-------------------+---------------------+--------------------------~ 
1 ATANH(x) 1 real ,arctanh(x) I ABS(x);?:l I 
1 ~-------------------+---------------------+--------------------------~ 
I I complex I (LOG( (l+x)/(l-x) »/2, x = ±1 , 
t----------------·--+-------------------+---------------------+--------------------------~ 
I cos (x) I real I cosine (x) I 1 
1 x in radians t-------------------+---------------------+--------------------------~ 
I I complex Icos(Y3..)*cosh(Y2) 1 1 
1 I 1-i*sin(Y3..)*sinh(Y2) , I 
~----------------.--+-------------------+---------------------+--------------------------~ 
1 COSD (x) I real I cosine (x) I I 
I ~ in degrees I j I I 
t----------------·--+-------------------+---------------------+--------------------------~ 
I COSH (x) 1 real I cosh (x) I I 
I t-------------------+---------------------+--------------------------~ 
1 'complex I cosh (y3..)*COS(Y2) , , 
1 I l+i*sinh(Y3..)*sin(Y2) I 1 
~------------------+-------------------+---------------------+--------------------------~ 
, I 1_2_fx -t2 1 1 
I ERF (x) I rea 1 I v n 0 edt I - I 
t------------------+-------------------+---------------------+---------------------------~ 
I ERFC (x) I real 11 - ERF (x) I I 
t------------------+-------------------+---------------------+--------------------------~ 
I 1 1 x 1 I 
1 EXP (x) I rea lie I I 
1 t-------------------+---------------------+---------------------------~ 
I I , x I 1 
, I complex 1 e , I 
t------------------+-------------------+---------------------+--------------------------~ 
, LOG (x) I real Ilog (x) I xS;O I 
1 t-------------------+---------------------+--------------------------~ 
I 1 complex Ilog (x) = w 1 x=o I 
1 I ,where w = u±i*v I I 
1 I I and -pi<vS;pi I I 
t------------------+-------------------+---------------------+--------------------------~ 
I LOG10 (x) 1 real Ilog3.. (x) I xS;O I 
t------------------+-------------------+---------------------+--------------------------~ 
I LOG2 (x) I real Ilog2 (x) ,xS;O , l __________________ ~ ___________________ ~ _____________________ ~ __________________________ J 

Appendix 1: Built-in Functions .and Pseudo-Variables 167 



Table 3. Mathematical Built-in Functions (continued) 
r-------------------T-------------------T---------------------T--------------------------, 
\Function Reference! Argument Type \ Value Returned I Error Conditions I 
~-------------------+-------------------+---------------------+--------------------------~ 
r------------------t-------------------+---------------------+--------------------------~ 
I SIN(x) I real Isin{x) I I 
I ~ in radians ~-------------------+---------------------+--------------------------~ 
I I complex Isin(Y1)*cosh(Y2) I I 
I I l+i*cos(Y1)*sinh{Y2) I I 
r------------------+-------------------+---------------------+--------.------------------~ 
I SIND (x) I real I sin (x) I I 
I ~ in degrees I I I I 
~------------------+-------------------+---------------------+--------------------------~ 
I SINH (x) I real I sinh (x) I I 
I ~-------------------+---------------------+--------------------------~ 
I I complex lsinh(Y1)*cos(Y2) I I 
I I l+i*cosh(Y1)*sin(Y2) I I 
r------------------+-------------------+---------------------+--------------------------~ 
I SQR,]~(x) I real I\lX I x<O I 
1 r-------------------+---------------------+---------------------------~ 
I I complex I x =yw I I 
I , Iwhere w = u±i*v I I 
, I I and either u>O, or I I 
, I lu=O and v~O I I 
r------------------+-------------------+---------------------+--------------------------~ 
I TAN (x) I real I tangent (x) I I 
I ~ in radians r-------------------+---------------------+--------------------------~ 
I I complex I tangent (x) I I 
r------------------+-------------------+---------------------+--------------------------~ 
I TAND (x) I real I tangent (x) I I 
I ~ in degrees I I I I 
r--------·----------+-------------------+-------------------:....-+--------------------------~ 
I TANH (x) I real I tanh (x) I I 
I r-------------------+---------------------+-------------------------~~ 
I I complex I tanh (x) I I L __________________ ~ ___________________ ~ _____________________ ~ __________________________ J 

ARRAY MANIPULATION BUILT-IN FUNCTIONS 

The built-in functions described here 
may be used for the manipulation of arrays. 
All of these functions require array argu­
ments (which may be expressions) and return 
single element values. Note that since 
these functions return element values, a 
function reference to any of them is con­
sidered an element expression. 

ALL Array-Manipulation Function 

Definition: ALL tests all bits of a given 
bit-string-array and returns the result, in 
the form of an element bit-string, to the 
point of invocation. The element bit­
strinq indicates whether or not the 
corre~ponding bits of given array elements 
are all ones. 

Referen~e: ALL (x) 

Argument: The argument, "x," is an array 
of bit strings. If the elements are not 

168 

bit strings, they are converted to bit 
strings. 

Result: The value returned by this func­
tion is a bit string whose length is equal 
to the length of the longest element in "x" 
an~ whose bit values are determined by the 
following rt.1Ie: 

If the ith bits of all of the elements 
in "x" exist and are 1, then the ith bit 
of the result is 1; otherwise, the ith 
bit of the result is O. 

ANY Array Manipulation Function 

Definition: ANY tests the bits of a given 
bit-string array and returns the result, in 
the form of an element bit-string, to the 
point of invocation. The element bit­
string indicates whether or not at least 
one of the corresponding bits of the given 
array elements is set to 1. 

Reference: ANY (x) 



Argument: The argument, "x," is an array 
of bit strings. If the elements are not 
bit strings, they are converted to bit 
strings. 

Result: 'rhe value returned by this func­
tion is a bit st:ring whose length is equal 
to the length of the longest element in '''x'' 
and whose bit values are determined by the 
following rule: 

If the ith bit of any element in "x" 
exists and is 1, then the ith bit of the 
result is 1; otherwise, the ith bit of 
the result is O. 

DIM Array_~~~ipulation Function 

Definition: DIM finds the current extent 
for a spe~Ified dimension of a given array 
and returns it to the point of invocation. 

Reference: DIM (x,n) 

Arguments: The argument "x" is the array 
to be inv~stigated; "n" is the dimension of 
"x," the E~xtent of which is to be found. 
If "n" is not a binary integer, it is 
converted to a binary integer of default 
precision. It is an error if "x" has less 
than "n" dimensions, if "n" is less than or 
equal to 0, or if "x" is not currently 
allocated. 

Result: The value returned by this fUnc­
tion is a binary integer of default preci­
sion, giv'ing the current extent, of the ~th 
dimension of "x." 

HBOUND Arr~ Manipulation Function 

Definition: HBOUND finds the current upper 
bound for a specified dimension of a given 
array and returns it to the point of 
invocation. 

Reference: HBOUND (x,n) 

Arguments: The argument "x" is the array 
to be investigated; "n" is the dimension of 
"x" for which 1:he upper bound is to be 
found. If "n" is not a binary integer, it 
is converted to a binary integer of default 
precision. It is an error if "x" has less 
than "n" dimensions, if "n" is less than or 
equal to 0, or if "x" is not currently 
allocated. 

Result.,!. The value returned by this func­
tion is a binary integer of default preci­
sion givinq the current upper bound for the 
nth dimension of wx ." 

LBOUND Array Manipulation Function 

Definition: LBOUND finlfs the current lower 
bound for a specified dimension of a given 
array and returns it to the point of 
invocation. 

Reference: LBOUND (x,n) 

Arguments: The argument "x" is the array 
to be investigated; "n" is the dimension of 
"x" for which the lower bound is to be 
found. If "n" is not a binary integer, it 
is converted to a binary integer of default 
precision. It is an error if "x" has less 
than "n" dimensions, if "n" is less than or 
equal to 0, or if "x" is not currently 
allocated. 

Result: The value returned by this func­
tion is a binary integer of default preci­
sion giving the current lower bound of the 
nth dimension of "'x." 

POLY Array Manipulation Function 

Definition: POLY forms a polynomial from 
two given arguments and returns the result 
of the evaluation of that polynomial to the 
point of invocation. 

Reference: POLY Ca,x) 

Arguments: Arguments 
one-simensional arrays 
defined as follows: 

a(m:n) 

x(p:q) 

"a" and "x" must be 
(vectors). They are 

where (m:n) and (p:q) represent the bounds 
of "a" and "x," respectively. 

Result: The value returned by this func­
tion is defined as: 

n-m 
a(m)+ I: (a(m+j) * 

j=l 

j-1 
II x(p+i» 
i=O 

If (q-p)«n-m-l), then x(p+i)=x(q) for 
(p+i»q. If m=n, then the result is a(m). 

If "x" is an element variable, it is 
interpreted as an array of one element, 
i.e., x(l), and the result is then: 

n-m 
L a(m+j)*x**j 

j=O 

Appendix 1: Built-in Functions and Pseudo-Variables 169 



PROD Array Manipulation Function 

Definition: PROD finds the product of all 
of the elements of a given array and 
returns that product to the point of invo­
cation. 

Reference: PROD (x) 

Argument: The argument, "x," should be an 
array of coded arithmetic floating-point 
elements 0 If it is not, each element is 
converted to coded arithmetic and floating­
point before being multiplied with the 
previous product. 

Result: The value returned by this 
function is the product of all of the 
elements in "x." The scale of the result 
is floating-point, while the base, mode, 
and precision are those of the converted 
elements of "x." 

SUM Array-Manipulation Function 

Definition: SUM finds the sum of all of 
the elements of a given array an~ returns 
that sum to the point of invocation. 

Argu~ent: The argument, "x," should be an 
array of coded arithmetic floating-point 
elements. If it is not, e~ch element is 
converted to coded arithmetic and floating­
point before beinq summed with the previou3 
total. 

Result: The value 
function is the sum of 
in "x." The scale 
floating-point, while 
precision are those of 
ments of the argument. 

returned by this 
all of the elements 
of the result is 

the base, mode, and 
the converte~ ele-

CONDITION BUILT-IN FUNCTIONS 

The condition built-in functions allow 
the PL/I programmer to investigate inter­
rupts that arise from enabled ON­
conditions. None of these functions 
requires arguments. Each condition built­
in function returns the value described 
only when executed in an on-unit {or a 
block activated directly or indirectly by 
an on-unit} that is entered as a result of 
an interrupt caused by one of the ON­
conditions for which the function can be 
used. Such an on-unit can be one specific 
to the condition, or it can be for the 
ERROR or FINISH condition when these 

170 

conditions are raised as standard system 
action. If a condition built-in function 
is used out of context, the value returned 
is as described for each function. 

The on-units in which each function can 
be used are given in the function defini­
tion. 

DATAFIELD Condition Built-in Function 

Definition: Whenever the NAME condition is 
raised, DATAFIELD may be used to extract 
the contents of the data field that caused 
the condition to be raised. It can be used 
only in an on-unit for the NAME condition 
or in an ERROR or FINISH condition raised 
as a result of standard system action for 
the NAME condition. 

Reference: DATAFIELD 

Result: The value returned by this func­
tion is a varying-length character string 
giving the contents of the data field that 
caused the NAME condition to be raised. If 
DATAFIFLD is used out of context, a null 
string is rpturned. 

ONCHAR Condition Built-in Function 

Definition: Whenever the CONVERSION condi­
tion is raised, O~CHAR may be used to 
extract the character the caused that con­
dition to be raised. It can be used only 
in an on-unit for the CONVERSION con~ition 
or in an on-unit for an ERROR or FINISH 
condition raised as standard system action 
for the CONVERSION condition. <ONCHAR can 
also be used as a pseudo-variable.} 

Reference: ONCHAR 

Result: The value returned by this fUnc­
tion is a character string of length 1, 
containing the character that caused the 
CONVERSION condition to be raised. This 
character can be modified in the on-unit by 
the use of the ONCHAR or ON SOURCE pseudo­
variables. If ONCHAR is used out of 
context, a blank is returned. 

ONCODE Condition Built-in Function 

Definition: ONCODE can be used in any 
on-unit to determine the type of interrupt 
that caused the on-unit to become active .• 

Reference: ONCODE 



Result: ONCODE returns a binary integer of 
default precision. This "code" defines the 
type of interrupt that caused the entry 
into the currently active on-unit. If 
ONCODE is used out of context, an 
implementation-defined binary integer of 
default precision is returned. 

ONCOUNT Cqndition Built-In Function 

Definition: ONCOUNT can be used in any 
on-unit -entered due to the abnormal 
completion of an input/output event to 
determine the number of interrupts 
(including the current one) that remain to 
be handlE~d when a multiple interrunt has 
resulted from that abnormal completio~. 

Reference: ONCOUNT 

Result: ONCOUNT returns a binary value of 
default precision. If ONCrnJNT is used in 
an on-unit entered as part of a multiple 
interrupt, this value specifies the corres­
ponding number of equivalent single inter­
ru~ts (including the current one) that 
remain to be handled; if ONCOUNT is used in 
any other case, the returned value is zero. 

ONFlLE Condition Built-in Function 

Definition: ONFILE determines the name of 
the file .-for which an input/outnut or 
CONVERSION condition was raised and returns 
that name to the point of invocation. This 
function can be used in the on-unit for any 
input/output or CONVFRSIO~ condition; it 
also can be used in an on-unit for an ERROR 
or FINISH condition raised as standard 
system action for an input/output or CON­
VERSION condition. 

Refe~nce: ONFILE 

Result: The value returned by this fUnc­
tion is a varying-length character string 
consisting of the name of the file for 
which an input/output or CONVERSION condi­
tion was raised. In the case of a CONVER­
SION condition, if that condition is not 
associated with a file, the returned value 
is the null string. 

ONKEY Condition Built-in Function 

Definition: ONKEY extracts the value of 
the key for the record that caused an 
input/output condition to be raised.. It 
also extrac·ts the key of a record in which 

a CONVERSION condition occurred during 
assignment specified hy a KEYTO option. 
This function can be used in the on-unit 
for an input/output condition or a CONVER­
SION condition; it can also be used in an 
on-unit for an ERROR or FINISH condition 
raised as standard system action for one of 
the above conditions. 

Reference: ONKEY 

Result: The value returned by this fUnc­
tion is a varying-length character string 
giving the value of the key for the record 
that caused an input/output or CONVERSION 
condition to be raised. If the interrupt 
is not associated with a keyed record, the 
returned value is the null string. 

ONLOC Condition Built-in Function 

Definition: Whenever an ON-condition is 
raised, ONLOC may be used in the on-unit 
for that condition to determine the entry 
point to the procedure in which that condi­
tion was raised. ONLOC may be used in any 
on-unit. 

Reference: ONLOC 

Result: The value returned by this fUnc­
tion is a varying-Ienqth character string 
giving the name of t~e entry point to the 
procedure in which the ON-condition was 
raised. If ONLOC is used out of context, a 
null string is returned. 

ONSOURCE CondJ-tion_Built-in Function 

Definition: Whenever the CONVERSION condi­
tion is raised, ONSOURCF may be used to 
extract the contents of the field that was 
being processed t\,hen the condition was 
raised. This function can be used in the 
on-unit for a CONVERSION condition or in an 
on-unit for an ERROR or FINISH condition 
raised as standard system action for a 
CONVERSION condition. (ONSOURCE can also 
be used as a pseudo-variable.) 

Reference: ON SOURCE 

Result: The value returned by this func­
tion is a varying-length character string 
giving the contents of the field being 
processed when CONVERSION was raised. This 
string may be modified in the on-unit by 
use of the ONCHAR or ONSOURCE pseudo­
variable. If ONSOURCE is used out of 
context, a null string is returned. 

Appendix 1: Built-in Functions and Pseudo-Variables 171 



BASED STORAGE BUILT-IN FUNCTIONS 

The based storage built-in functions 
generally return special values to program 
control variables concerned in the use of 
based storage and list processing. 

ADDR Based Storage Built-in Function 

Definit.ion: ADDR finds the location at 
which a given variable has been allocated 
and returns a pointer value to the point of 
invocation~ The pointer value identifies 
the location at which the variable has been 
allocated. 

Reference: ADDR (x) 

Argument: The argument" "x, " is the 
variable whose location is to be found. It 
can be any variable that represents an 
elemen"t, an array which is not interleaved, 
a structure, an area, an element of an 
array, a minor structure, or an element of 
a structure. It can be of any data type 
and storage class. 

Result: ADDR returns a pointer value iden­
tifying the location at which "x" has been 
allocated. If "x" is a parameter, the 
returned value identifies the corresponding 
argument (dummy or otherwise). If "x" is 
an unallocated controlled variable, a null 
pointer value is returned. 

EMPTY Based Storage Built-in Function 

Definition: EMPTY clears an area of stor­
age defined by an area variable~ by effec­
tively freeing all the allocations con­
tained within the area. The area can then 
be used for a new set of allocations. 

Reference: EI-iPTY 

Resul·t: EMPTY returns an area 
size, containing no allocations, 
point of invocation. When this 
assigned to an area variable, 
allocations contained within the 
freed,. 

of zero 
to the 

value is 
all the 
area are 

Note: The value of the EMPTY built-in 
function is automatically assigned to all 
area variables when they are allocated. 

172 

NULL Based Storage Built-in Function 

Definition: NULL returns a null pointer 
value (that is, a pointer value that cannot 
identify any allocation) so as to indicate 
that a pointer variable does not currently 
identify an allocation,. 

Reference: NULL 

Arguments: None 

Result: The value returned by this func­
tion is a null pointer value. This value 
cannot be converted to offset type. 

NULLO Based Storage Built-in Function 

Definition: NULLO returns a null offset 
value (that is, an offset value that cannot 
identify any relative location of a based 
variable allocation) so as to indicate that 
an offset variable does not currently iden­
tify an allocation. 

Reference: NULLO 

Arguments: None 

Result: The value returned by this func­
tion is a null offset value. This value 
cannot be converted to pointer type. 

OFFSET Based Storage Built-in Function 

Definition: 
relative to 
area. 

OFFSET returns an offset value 
the beginning of a specified 

Reference: OFFSET (p"a) 

Arguments: The argument, "p," is a scalar 
pointer expression; "a" is a scalar area 
expression tha.t may be qualified and/or 
subscripted. The value of "p" must iden­
tify an allocation in "a." 

Result: The value returned by the OFFSET 
built-in function is an offset value that 
identifies an allocation in "a," relative 
to the beginning of "am" 

POINTER Based Storage Built-in Function 

Definition: POINTER returns a pointer 
value that identifies an allocation in a 
specified area. 



Reference: POINTER (o,a) 

Argument:s: The! argument; "0," is an offset 
expression; "a" is a scalar area expression 
that may be qua.lified and/or subscripted. 
The value of "0" must identify an equival­
ent allocation in some area, but not neces­
sarily in "a." 

Result: The value returned by the POINTER 
built-in funct.ion is a pointer value that 
identifies, in "a,," a generation equivalent 
to the allocation originally identified by 
the offset "0." 

MULTITASKING BUILT-IN FUNCTIONS 

The multitasking built-in functions are 
used during multitasking and during asyn­
chronous input/output operations. They 
allow t:h~ programmer to investigate the 
relative priority of a task or the current 
state of execution of a task or asynchron­
ous input/output operation. They all 
require arguments, which may be scalar 
variables or aggregates. 

COMPLETION Multitasking Built-in Function 

Definition: COMPLETION determines the com­
pletion--Value of a given event variable. 
(COMPLE,]~ION can also be used as a pseudo­
variablE~. ) 

Referen~~ COMPLETION (event-name) 

Argument:: The~ argument, "event-name, " 
represents the~ event (or events) whose 
completion value is to be determined. The 
event Gan be associated wi.th completion of 
a task;, or with completion of an 
input/output operation, or it can be user­
defined.. It can be active or inactive,. 

Result: The value returned by this 
function is ;t 0 t B if the event is incom­
plete,'l;' B if the event is complete. 

PRIORITY Multitasking Built-in Function 

Definition: PRIORITY determines the rela­
tive priority of a given task. (PRIORITY 
can also be use~d as a pseudo-variable.) 

Reference: PRIORITY (task-name) 

Argument:: The argument, "task-name," rep­
resents the task whose relative priority is 
to be d~~termine!d. 

Result: The value returned by this task is 
a fixed binary value of precision (n,O), 
where n is implementation-defined. The 
value 1S the priority value of the named 
task, relative to the priority of the task 
eva.luating the function. No other task can 
interrupt and gain control during evalua­
tion of the priority. 

STATUS Multitasking Built-in Function 

Definition: STATUS determines the status 
value of a given event variable. (STATUS 
can also be used as a pseudo-variable.) 

Reference: STATUS (event-name) 

Argument: The argument, "event-name", rep­
resents the event (or events) whose status 
value is to be determined. The event can 
be associated with completion of a task, or 
with completion of an input/output opera­
tion, or it can be user-defined. It can be 
active or inactive. 

Result: T~e value returned by this fUnc­
tion is a fixed binary value of default 
precision,. It is zero if the event is 
normal, or nonzero if abnormal. 

MISCELLANEOUS BUILT-IN FUNCTIONS 

The functions described in this section 
have little in common with each other and 
with the other categories of built-in func­
tions,. Some require arguments and others 
do not. 

ALLOCATION Buil!~in Function 

Definition: ALLOCATION determines whether 
or not storage has been allocated for a 
given controlled variable and returns an 
appropriate indication to the point of 
invocation. 

Reference: ALLOCATION (x) 

Arqument: The argument, "x," 
level 1 unsubscripted controlled 

must be a 
variable,. 

Result: The value returned by this func­
tion is defined as follows: if an alloca­
tion of "x" is known in the current task, 
the returned value is ~ltB; if no alloca­
tion is known, the returned value is '10 1 B .. 

Appendix 1: Built-in Functions and PseudO-Variables 173 



COUNT Built-in Function 

Lefinition: COUNT determines the number of 
data items that were transmitted during the 
last GET or PUT operation on a given file 
and returns the result to the point of 
invocation .• 

Reference: COUNT (file-name) 

Arqument: The argument, "file name," rep­
resents the file to be investigated. This 
file must have the STREAM attribute. 

Result: The value returned by this func­
tion is a binary fixed-point integer of 
default precision specifying the number of 
element data items that were transmitted 
during the last GET or PUT operation on 
"file name." Note that if an on-unit or 
procedure is entered during a GET or PUT 
operation, and within that on-unit or pro­
cedure a GET or PUT is executed for the 
same file, the value of COUNT is reset for 
the new operation and is not restored when 
the original GET or PUT is continued. 

DATE Built-in Function 

Definition: DATE returns the current date 
to the point of invocation. 

Reference: DATE 

Arguments: None 

Result: The value returned by this func­
tion is a character string of length six, 
in the form yymmdd, where: 

yy is the current year 

mm is the current month 

dd is the current day 

LINENO Built-in Function 

Definition: LINENO finds the current line 
number ~or a file having the PRINT attri­
bute and returns that number to the point 
of invocation. 

Reference: LINENO (file-name) 

Argument :, The 
be the name of 
attribute. 

argument, "file name," must 
a file having the PRINT 

Result: The value returned by this func­
tion is a binary fixed-point integer of 

17Q. 

default precision specifying the current 
line number of "file name." 

TIME Built-in Function 

Definition: TIME returns the current time 
to the point of invocation. 

Reference: TIME 

Arguments: None 

Result: The value returned by this func­
tion is a character string of length nine, 
in the ~orm hhmmssttt, where: 

hh is the current hour of the day 

mm is the number of minutes 

ss is the number of seconds 

ttt is the number of milliseconds 

PSEUDO-VARIABLES 

In general, pseudo-variables are certain 
built-in functions that can appear wherever 
other variables can appear in order to 
receive values. In short, they are built­
in functions used as receiving fields. A 
pseudo-variable may appear on the left of 
the equal sign in an assignment or DO 
statement; it may appear in the data list 
of a GET statement; it may appear as the 
string name in the KEYTO, STRING and REPLY 
options. 

Since all pseudo-variables have built-in 
function counterparts, only a short 
description of each pseudo-variable is 
given here; the discussion of the corres­
ponding built-in function should be con­
sulted for the details. Note that pseudo­
variables cannot be nested; for example, 
the following statement is invalid: 

UNSPEC(SUBSTR(A,1,2»='OO'B; 

COMPLETION PseudO-Variable 

Reference: COMPLETION (event-name) 

Description: The named scalar or aggregate 
event variable must be inactive and is as 
described for the COMPLETION built-in 
function. The value received by this 
pseudo-variable is a bit-string of length 
1. This value sets the completion status 



of the "'~vent variable." A value of '0' B 
specifies that the event associated with 
the "event variable" is incomplete; a value 
of '1'3 specifies that the event is com­
plete. Assignment to the pseudo-variable 
is uninterruptible. 

COMPLEX Pseudo-Variable 

Referenc~~: COMPLEX (a, b) 

Description: Only complex values can be 
assigned to this pseudo-variable. The real 
part of the complex value is assigned to 
the variable "a"; the imaginary part is 
assigned to the variable "b." The attri­
butes of "a" and "b" need not be the same. 
Either or both arguments may be aggregates. 

ReferencE~: IMAG (c) 

Description: Real or complex values may be 
assigned to this pseudo-variable. The real 
value or the real part of the complex value 
is assigned to the imaginary part of the 
complex variable tIc," which may be an 
element variable or an array variable. 

ONCHAR Pseudo-Variable 

Descriotion: ONCHAR can be used in the 
on-unit for a CONVERSION condition or in 
the on-unit for an ERROR or FINISH condi­
tion raised as standard systeP.l action for a 
CONVERSION condition; it can also be used 
in a block directly or indirectly activated 
by such an on-unit. If ONCHAR is used in 
some other context, it is an error. 

The e}(pression being assigned to ONCHAR 
is evaluated, converted to a character 
string of length 1, and assigned to the 
character that caused the error. The new 
character will displace the current value 
of the ON CHAR built-in function, and will 
be used when the conversion is re­
attempted, upon ·the resumption of execution 
at the point of interrupt. 

ONSOURCE Pseudo-Variable 

Refe~~ ONSOURCE 

Description: ONSOURCE can be used in the 
on-unit for a CONVERSION condition or in an 
on-unit for an ERROR or FINISH condition 
raised as standard system action for a 
CONVERSION condition; it can also be used 
in a block directly or indirectly activated 
by such an on-unit. If ONSOURCE is used in 
some other context, it is an error. 

The expression being assigned to 
ON SOURCE is evaluated, converted to a char­
acter string, and assigned to the string 
that caused the CONVERSION condition to be 
raised. The string will be padded with 
blanks, if necessary, to match the length 
of the string that caused the error. This 
new string displaces the current value of 
the ONSOURCE built-in functjon and will be 
used when the conversion is re-attempted, 
upon the resumption of execution at the 
point of interrupt. 

PRIORITY Pseudo-Variable 

Reference: PRIORITY [(task-name)] 

Description: The "task-name" is as des­
cribed for the PRIORITY built-in function, 
but need not be specified. The value 
received by this pseudo-variable is a 
fixed-point binary value ~ of preciSion 
(n,O), where n is implementation-defined. 
The priority value of ihe named task varia-
ble is adjusted so that it becomes ~ 
relative to the priority that the current 
task had prior to the assignment. If an 
active task is associated with the named 
task variable, its priority is given the 
same value as the task variable. 

If "task-nawe" is not specified, the 
task variable associated with the current 
task (if there is such a variable) is 
implied, and the priority of this variable 
is mOdified; hence, the priority of the 
current task is modified. 

Assignment to the PRIORITY pseudo­
variable is uninterruptible. 

REAL Pseudo-Variable 

Reference: REAL (c) 

Description: Real or complex values may be 
assigned to this pseudo-variable. The real 
value or the real part of the complex value 
is assigned to the real part of the complex 
variable "c," which may be an element 
variable or an aggregate variable. 

Appendix 1: Built-in Functions and Pseudo-Variables 175 



STATUS Pseudo-Variable 

Reference: STATUS (event-name) 

Description: The named event variable or 
aggregate of event variables can be active 
or inactive, and is as described for the 
STATUS built-in function. The value 
received by this pseudo-variable is a fixed 
point binary value of default precision. 
Assignment to the pseudo-variable is unin­
terruptible. 

SUBSTR Pseudo-variable 

Reference: SUBSTR (string~i[,j]) 

Description: The value being assigned to 
SUBSTR is assigned to the substring of the 
character- or bit-string variable "string," 

176 

as defined for the built-in function 
SUBSTR. If "string" is an aggregate, i 
and/or j may be aggregates.. The remainder 
of "string" remains unchanged. 

UNSPEC Pseudo-Variable 

Reference: UNSPEC (v) 

Description: The letter "v" represents an 
element or aggregate variable of arithmet­
ic, string, locator, or area type. The 
value being assigned to UNSPEC is evaluat­
ed, converted to a bit string (the length 
of which is a function of the charac­
teristics of "v" -- see the UNSPEC built-in 
function), and then assigned to "v," with­
out conversion to the type of "v." If "v" 
is a string of varying length, its length 
after the assignment will be the same as 
that of the bit string assigned to it. 



Picture specification characters appear 
in either the PICTURE attribute or the P 
format item for edit-directed input and 
cutput. In either case, an individual 
character has the same meaning. The PIC­
TURE at'tribute is described in Chapter 4 
and the P format item is described in 
Chapter 7 of this publication. 

Picture characters are used to describe 
the attributes of the associated data item, 
whether it is the value of a variable or a 
data itE~m to be transmitted between the 
Irogram and external storage. 

A pictuIe specification always describes 
a character representation that is either a 
character-string data item or a numeric 
character data item or a bit representation 
that is d numeric bit data item. A pic­
tured ch~!:~ct.§.£:.§.t!:i!,!g ite!!! is one that can 
consist of alphabetic characters, decimal 
digits, and other special characters. A 
~ictured numeric character item is one in 
which the data itself can consist only of 
decirral digits, a decimal point and, 
cptionally, a plus or minus sign. Other 
characters generally associated with arith­
wetic data, such as currency symbols, can 
also be specified, but they are not a part 
cf the a!ithmetic value of the numeric 
character variable., although the characters 
are stored with the digits and are consid­
ered to be part of the character-string 
value of the variable. A pictured ~~Ei£ 
bit item is one in which the data itself 
can-consIst only of binary digits, either 
signed or in l's or 2's complement form, 
with an assumed binary point. 

Arithmetic data assigned to a numeric 
character variable is converted to charac­
ter reprE~sentation. '8di ting, such as zero 
suppression and the insertion of other 
characters, can be specified for a numeric 
character data item. Editing cannot be 
specified for pictured character-string 
data. 

Data assigned to a variable declared 
with a numeric picture specification, eith­
er decimal or binary, (or data to be 
~ritten with a numeric picture format item) 
must ce either internal coded arithmetic 
data or data that can be converted to coded 
arithmetic. Thus, assigned data can con­
tain only digits and, optionally, a decimal 
point and a sign. It should not contain 
any other character, even though that char­
acter (for example, a currency symbol) is 

APPENDIX 2: PICTURE SPECIFI£~1!QB~HARACTERS 

specified in the picture specification and 
is to be inserted into the data as part of 
its character-string value; if it does, the 
CONVERSION condition is raised. 

Data assigned to a variacle declared 
with a character-string picture specifi­
cation (or data to be written with a 
character-string picture format item) 
should conform, character cy character (or 
be convertible, character by character) to 
the picture specification: if it does not, 
the CONVERSION condition is raised. 

Only three picture characters can be 
used in character-string picture specifi­
cations: 

x specifies that the associated position 
can contain any character whose internal 
bit configuration can ce recognized by 
the computer in use. 

A specifies that the associated position 
can contain any alphabetic character or 
a blank character. 

9 specifies that the associated position 
can contain any decimal digit or a blank 
character. 

No insertion characters can be specified. 
At least one A or X mUEt appear. 

PICTURE CHARACTERS FOR NUMERIC CHARACTER 
DATA 

Numeric character data rrust represent 
numeric values; therefore, the associated 
picture specification cannet contain the 
characters X or A. The picture characters 
for numeric character data can specify 
detailed editing of the data. 

A numeric character variacle can be 
considered to have two different kinds of 
value, depending upon its use. ~hey are 
(1) its arithmetic value and (2) its 
character-string value. 

The arithmetic value is the value 
expressed by the decimal digits of the data 
item, the assumed location of a decimal 

Appendix 2: Picture specification Characters 177 



point, and possibly a sign. The arithmetic 
value of a numeric character variable is 
used whenever the variable appears in an 
expression that results in a coded arith­
metic value or whenever the variable is 
assigned to a coded arithmetic, numeric 
character, or bit-string variable. In such 
cases, the arithmetic value of the numeric 
charactel~ variable is converted to internal 
coded arithmetic representation. 

The character-string value is the value 
expressed by the decimal digits of the data 
item, as well as all of the editing and 
insertion characters appearing in the pic­
ture specification. The character-string 
value does not, however, include the 
assumed location of a decimal point, as 
specified by the picture character V. The 
character-string value of a numeric charac­
ter variable is used whenever the variable 
appears in a character-string expression 
operation or in an assignment to a 
character-string variable, whenever the 
data is printed using list-directed or 
data-directed output, or whenever a ref­
erence is made to a character-string varia­
ble that is defined on the numeric charac­
ter variable. In such cases, no data 
conversion is necessary. 

The picture characters for numeric char­
acter specifications may be grouped into 
the following categories: 

• Digit and Point Specifiers 

• Zero suppression Characters 

• Insertion Characters 

• Signs and Currency Symbol 

• Credit, Debit, and Overpunched Signs 

• Exponent Specifiers 

• Scaling Factor 

• Sterling Picture Characters 

The picture characters in these groups 
may be used in various combinations. Con­
sequently, a numeric character specifi­
cation can consist of two or more parts 
such as a sign specification, an integer 
subfield, a fractional subfield and, for 
floating--point, an exponent field. A 
sterling picture specification contains 
separate fields for pounds, shillings, and 
pence; the pence field can have an integer 
subfield and a fractional subfield. 

A major requirement of the picture 
specification for numeric character data is 
that each field must contain at least one 
picture character that specifies a digit 
position. This picture character, however, 

178 

need not be the digit character 9. Other 
picture characters, such as the zero 
suppression characters (Z or * or Y), also 
specify digit positions. At least one of 
these characters must be used to define a 
numeric character specification. 

DECIMAL DIGIT AND POINT SPECIFIERS 

The picture characters 9 and V are used 
in the simolest form of decimal numeric 
character specifications that represent 
fixed-point decimal values. 

9 specifies that the associated position 
in the data item is to contain a decimal 
digit. 

v specifies that a qecimal point is 
assumed at this position in the asso­
ciated data item. However, it does not 
specify that an actual decimal point is 
to be inserted. The integer and frac­
tional parts of the assigned value are 
aligned on the V character; therefore, 
an assigned value may be truncated or 
extended with zero digits at either end. 
(Note that if significant digits are 
truncated on the left, the result is 
undefined and a SIZE interrupt will 
occur, if SIZE is enabled.) If no V 
character appears in the picture speci­
fication of a fixed-point decimal value 
(or in the first field of a picture 
specification of a floating-point deci­
mal value), a V is assumed at the right 
end of the field specification. This 
can cause the assigned value to be 
truncated, if necessary, to an integer. 
The V character cannot appear more than 
once in a picture specification. The V 
is considered to be a subfield delimiter 
in the picture specification; that is, 
the portion preceding the V and the 
portion following it (if any) are each a 
subfield of the specification. 

BINARY DIGIT AND POINT SPECIFIERS 

The picture characters 1, 2, 3, and V 
are used in numeric bit specifications to 
represent binary digits and a binary point. 

1 specifies that the associated position 
in the data item is to contain a 
binary digit. 

2 specifies that the associated position 
in the 2's complement data item is to 
contain a binar; digit. 



3 specifies that the associated position 
in the l's complement data item is to 
contain a binary digit. 

v specifies that a binary point is 
assumed a1: this position in the asso­
ciated data item. Its effect is the 
same as that described above for the V 
picture character, as used in a numer­
ic character picture specification. 

ZERO SUPPRESSION CHARACTERS 

The zero suppression picture characters 
specify conditional digit positions in the 
character-string value and may cause lead­
ing zeros to be replaced by asterisks or 
blanks and nonleading zeros to be replaced 
by blanks. Leading zeros are those that 
occur in the leftmost digit positions of 
fixed-point numbers or in the leftmost 
digit positions of the two parts of 
floating-point numbers, that are to the 
left of -the assumed position of a decimal 
point, and that are not preceded by any of 
the digits 1 through 9. The leftmost 
nonzero digit in a number and all digits, 
zeros or not, to the right of it represent 
significant digits. Note that a floating­
point number can also have a leading zero 
in the exponent field. 

Z specifies a conditional digit position 
and causes a leading zero in the 
associated data position to be replaced 
by a blank character. When the asso­
ciated data position does not contain a 
leading zero, the digit in the position 
is not replaced by a blank character. 
The picture character Z cannot appear in 
the same subfield as the picture charac­
ter ., nor can it appear to the right of 
a drifting picture character or any of 
the picture characters 9, T, I, or R in 
a field .. 

• specifies a conditional digit position 
and is used t:he way the picture charac­
ter Z is used, except that leading zeros 
are replaced by asterisks. The picture 
character • cannot appear with the pic­
ture character Z in the same subfield, 
nor can it appear to the right of a 
drifting picture character or any of the 
picture characters 9, T, I, or R in a 
field. 

Y specifies a conditional digit position 
and causes a zero digit, leading or 
nonleading, in the associated position 
to be replaced by a blank character. 
When the associated position does not 
contain a zero digit, the digit in the 
position is not replaced by a blank 
character. 

Note: If one of the picture characters Z 
or • appears to the right of the picture 
character V, then all fractional digit 
positions in the specification, as well as 
all integer digit positions, must employ 
the Z or • picture character, respectively. 
When all digit positions to the right of 
the picture character V contain zero 
suppression picture characters, fractional 
zeros of the value are suppressed only if 
all positions in the fractional part con­
tain zeros and all integer positions have 
been suppressed. The entire character­
string value of the data item will then 
consist of blanks or asterisks. No digits 
in the fractional part are replaced by 
blanks or asterisks if the fractional part 
contains any significant digit. 

INSERTION CHARACTERS 

The picture characters comma (,), point 
(.), slash (/), and blank (B) are insertion 
characters; they cause the specifiej 
character to be inserten into the associat­
ed position of the numeric character data. 
They do not indicate digit positions, but 
are inserted between jigits. Each does, 
however, actually represent a character 
position in the character-string value, 
whether or not the character is suppressed. 
The comma, point, and slash are conditional 
insertion characters; within a string of 
zero suppression characters, they, too, may 
be suppressed. The blank (B) is an uncond­
itional insertion character; it always spe­
cifies that a blank is to appear in the 
associated position. 

Note: Insertion characters are applicable 
only to the character-string value. They 
specify nothing about the arithmetic value 
of the data item. 

causes a comma to be inserted into the 
associated position of the numeric char­
acter data when no zero suppression 
occurs. If zero suppression does occur, 
the comma is inserted only when an 
unsuppressed digit appears to the left 
of the comma position, or when a V 
appears immediately to the left of it 
and the fractional part contains any 
significant digits. I~ all other cases 
where zero suppression occurs, one of 
three possible characters is inserted in 
place of the comma. The choice of 
character to replace the comma depends 
upon the first picture character that 
both precedes the comma position and 
specifies a digit position: 

• If this character position is 
asterisk, the comma position 
assigned an asterisk .• 

Cln 
is 

Appendix 2: Picture Specification Characters 179 



• If this character position is a 
drifting sign or a drifting currency 
symbol (discussed later), the drift­
ing string is assumed to include the 
comma position, which is assigned the 
drifting character. 

• If this character position is not an 
asterisk or a drifting character, the 
comma position is assigned a blank 
character .• 

is used the same way the comma picture 
character is used, except that a point 
(.) is assigned to the associated posi­
tion. This character never causes point 
alignment in the picture specifications 
of a fixed-point decimal number and is 
not a part of the arithmet.ic value of 
the data item. That function is served 
solely by the picture character V. 
Unless the V actually appears, it is 
assumed to be to the right of the 
rightmost digit position in the field, 
and point alignment is handled accord­
ingly, even if the point insertion char­
acter appears elsewhere. The point (or 
the comma or slash) can be used in 
conjunction with the V to cause inser­
tion of the point (or comma or slash) in 
the position that delimits the end of 
the integer portion and the beginning of 
the fractional portion of a fixed-point 
(or floating-point) number, as might be 
desired in printing, since the V does 
not cause printing of a point. The 
point must immediately precede or 
immed.i.ately follow the V. If the point 
precedes the V, it will be inserted only 
if a significant digit appears to the 
left of the V, even if all fractional 
digits are significant. If the point 
immediately follows the V, it will be 
suppressed if all digits to the right of 
the V are suppressed, but it will appear 
if there are any fractional digits 
(along with any interveni'ng zeros). 

/ is used the same way the comma picture 
character is used, except that a slash 
(/) is inserted in the associated posi­
tion. 

B specifies that a blank character always 
be inserted into the associated position 
of the character-string value of the 
numeric character data. 

SIGNS AND CURRENCY SYMBOL 

The picture characters S, +, and 
specify signs in numeric character data. 
The picture character $ specifies a curren­
cy symbol in the character-string value of 
numeric character data. 

180 

These picture characters may be used in 
either a static or a drifting manner. A 
drifting character is similar to a zero 
suppression character in that it can cause 
zero suppression. However, the character 
specified by the drifting string is always 
inserted in the position specified by the 
end of the drifting string or in the 
position immediately to the left of the 
first significant digit. 

The static use of these characters spe­
cifies that a sign, a cu:rency symbol, or a 
blank always appears 1n the associated 
position. The drifting use specifies that 
leading zeros are to be suppressed. In 
this case, the rightmost suppressed posi­
tion associated with the picture character 
will contain a sign, a blank, or a currency 
symbol. 

A drifting character is specified by 
multiple use-of that character in a picture 
field. Thus, if a field contains one 
currency symbol ($), it is interpreted as 
static; if it contains more than one, it is 
interpreted as drifting. The drifting 
character must be specified in each digit 
position through which it may drift. 

Drifting characters must appear in 
strings. A string is a sequence of the 
same drifting character, optionally con­
taining a V and one of the insertion 
characters comma, point, slash, or B. Any 
of the inserti.on characters slash, comma, 
point, or B following the last drifting 
symbol of the string is considered part of 
the drifting string. However, a following 
V terminates the drifting string and is not 
part of it. A field of a picture specifi­
cation can contain only one drifting 
string. A drifting string cannot be 
preceded by a digit position. The picture 
characters * and Z cannot appear to the 
right of a drifting string in a field. 

The position in the data associated with 
the characters slash, comma, point, and B 
appearing in a string of drifting charac­
ters will contain one of the following: 

• slash, comma, point" 
significant digit has 
left 

or blank 
appeared to 

if a 
the 

• the drifting symbol, if the next posi­
tion to the right contains the leftmost 
significant digit of the field 

• blank, if ~he leftmost significant digit 
of the field is more than one position 
to the right 

If a drifting string contains the drift­
ing character n times, then the string is 
associated with n-1 conditional digit posi­
tions. The position associated with the 



leftmost driftinq character can contain 
only the drifting character or blank, never 
a digit. If a drifting string is specified 
for a field, the other potentially drifting 
characters can appear only once in the 
field, i .. e., the other character represents 
a static sign or currency symbol. 

If a drifting string contains a V within 
it, the V delimits the preceding portion as 
a subfield, and all digit positions of the 
subfield following the V must also be part 
of the drifting string that commences the 
second subfield,. 

Only one type of sign character can 
appear in each field. An S, +, or used 
as a static character can appear to the 
left of all digi"ts in the mantissa and 
exponent fields of a floating-point speci­
fication and either to the right or left of 
all digit positions of a fixed-point speci­
fication. 

In the case in which all digit positions 
after the V contain drifting characters, 
suppression in the subfield will occur only 
if all of the integer and fractional digits 
are zero. The resulting edited data item 
will then be all blanks, except for the 
rightmost digit position, which will con­
tain the drifting character. If there are 
any signi.ficant fractional digits, the 
entire fractional portion will appear 
unsuppressed. 

$ specifies the currency symbol. If this 
charact:er appears more than once, it is 
a drifting character~ otherwise it is a 
static character. The static character 
specifies that the character is to be 
placed in the associated position. The 
static character must appear either to 
the left of all digit positions in a 
field of a specification or to the right 
of all digit positions in a specifi­
cation. See details above for the 
drifting use of the character. 

S specifies the plus sign character (+) if 
the data value is ~O, otherwise it 
specifies the minus sign character (-). 
The character may be drifting or static. 
The rriles are identical to those for the 
currency symbol. The picture S is the 
only sign symbol that can be used in a 
binary picture specification, and it can 
be used only with the character 1. 

+ specifies the plus sign character (+) if 
the data value is ~O, otherwise it 
specifies a blank. The character may be 
drifting or static. The rules are iden­
tical to those for the currency symbol. 

specifies the minus sign character (-) 
if the data value is <0, otherwise it 
specifies a blank. The character may be 

drifting or static. The rules are iden­
tical to those for the currency symbol. 

CREDIT, DEBIT, AND OVERPUNCHED SIGNS 

The character pairs CR (credit) and DB 
(debit) specify the signs of real numeric 
character data items and usually appear in 
business report forms. 

Any of the picture characters T, I, or R 
specifies an overpunched sign in the asso­
ciated digit pOSition of numeric character 
data. It indicates the sign of the arith­
metic data item. Only one overpunched sign 
can appear in a specification for a fixed­
point number. A floating-point 
specification can contain two, one in the 
mantissa field and one in the exponent 
field. The overpunch character can, howev­
er, be specified for any digit pOSition 
within a field. The overpuncheo number 
then will appear in the specified digit 
position. 

Note: When an overpunch character occurs 
in a P format item for edit-directed input, 
the corresponding character in the input 
stream may contain an overpunched sign. 

CR specifies that the associated positions 
will cont.ain the letters CR if the 
value of the data is less than zero. 
Otherwise, the positions will contain 
two blanks. The characters CR can 
appear only to the right of all digit 
positions of a field. 

DB is used the same way that CR is used 
except that the letters DB appear in 
the associated positions. 

T specifies that the associated position, 
on input, will contain a digit over­
punched with the sign of the data. It 
also specifies that an overpunch is to 
be indicated in the character-string 
value. 

I 

R 

specifies that the associated position, 
on input, will contain a digit over­
punched if the value is ~O~ otherwise, 
it will contain the digit with no 
overpunching. It also specifies that 
an overpunch is to be indicated in the 
character-string value if the data 
value is ~O. 

specifies that the associated position~ 
on input, will contain a digit over­
punched if the value is <0; otherwise, 
it will contain the digit with no 
overpunching. It also specifies that 
an overpunch is to be indicated in the 
character-string value if the data 
value is <0. 

Appendix 2: Picture Specification Characters 181 



Note: The oicture characters CR, DB, T, I, 
and -K carmot be used with any other sign 
characters in the same field. 

EXPOtffiNT SPECIFIERS 

The oicture characters K and E delimit 
the ex;onent fiel~ of a numeric character 
specifi~ation that describes floating-point 
decimal num~ers. The ex~onent field is 
always the last fiel~ of a numeric charac­
ter floating-point picture specification. 
The picture charact~rs KanA E cannot 
appear in the same specification. 

K specifies 
ai)pears to 
position. 
acter in 
iteJT1. 

that the exponent field 
the right o~ t~e associated 
It does not specify a char­

the nuroeric character data 

E specifies ttat the associate~ position 
contains the letter E, which indicates 
the start of the exponent field. It 
cannot appear in a binary r;>icture 
specification. 

The value of the exponent is adjusted in 
the character-strinq value so that the 
first siqnificant digit of the first field 
(the rnanfissa) appe~rs in the position 
associat_ed with the first digit specifier 
of the specification [even if it is a zero 
suppression character). 

SCALING FACTOR 

The picture character F specifies a 
scaling factor for fixed-point decimal num­
bers. It apgears at the right enc of the 
picture specification and is used in the 
following format: 

F 

182 

F ([+1-] decimal-integer-constant) 

specifies that the optionally signed 
decimal integer constant enclosed in 
parentheses is the scaling factor. The 
scaling factor specifies that the deci­
mal point in the arithmetic value of 
the -variable is that number of places 
to the right (if the scaling factor is 
positive) or to the left (if negative) 
of its assumed position in the 
character-string value. 

STEPLING PICTURES 

The following picture characters are 
used in picture specifications for sterling 
data: 

8 

? 

6 

G 

H 

specifies the position of a shilling 
digit in BSI single-character represen­
tation. 

specifies the position of a pence digit 
in ~SI single-character representation. 

specifies the position of a pence diqit 
in IBM single-character representation. 

specjfies that the associated position 
contains the pence character D. 

specifies the start of a sterling oic­
ture. It does not specify a character 
in the numeric character data ite~. 

specifi~s that the associated position 
contains the shilli~q character s. 

M specifies the start of a field. It 
does not specify a character in the 
numeric character data item. 

sterling data items are considered to be 
real fjxed-point decimal data. When 
involved in arithmetic operations, they are 
converted to a value representing fixed­
point pence. Sterling pictures have the 
general form: 

PICTURE 

'G (editing-character-1J 

M pounds-field 

M (sE'Darator-1] 
~ shillings-field 

M (separator-2] ... 
pence-field 

(editing-character-2] 

"Editing character 1" can be one or more 
of the following static picture characters: 

$ + S 

The "pounds field" can contain the 
following picture characters: 

z y * 9 T I R , $ + - S 

The last four characters ($ + S) must 
be drifting characters. The comma can be 
used as an insertion character. 



"Separator 1" can be one or more of the 
following picture characters: 

/ B 

The "shillings field" can be: 

(99 I YY I ZZ 1 Y9 I Z9 I YZ I 8} 

One of the nine$ can be replaced by T, I, 
or R, jf no other sign indicator appears in 
any of the fields of the specification. 

"Separator 2" can be one or more of 
picture characters: 

/ "? H 

The "pence field" takes the form: 

{991YYIZZIY9 17 IZ 9 IYZI6} 

[[VIV.I.V] 9IZ1Y] ..• 

the 

One of the nines can be replaced by T, I, 
or R, if no other sign indicator appears in 
any of the fields of the specification. 

"Editing character 2" can be one or more 
of the picture characters $, +, -, or Sand 
one or more of B or D, or CR or DB. A siqn 
character or CR or DB can appear only if no 
other sign indicator apnears in any of the 
fields of the soecification. 

The pounds, shillinqs, and pence fields 
must each contain at least one digit posi­
tion. 

Zero suppression in sterling pictures is 
performed on th~ total data item, not 
separately on each of t.he pOnn(lS, shill­
inqs, and pence fiel~s. The Z picture 
ch~racter is-not allcwe~ to the right of a 
6, 7, 8, or q nicture character in a 
sterling sppcification. In sterling pic­
tures, t~e fiel~ sevarator characters slash 
(/), poirt (.), 5, ana H are never sup­
t'ressed. 

Appendix 2: Picture sgecification Characters 183 



APPENDIX 3: ON-CONDITIO~S 

The ON-conditions are those conditions 
that may be specified in the ON statement. 
These conditions are also specified in 
SIGNAL and REVERT statement.s. 

For each condition name, the description 
in this appendix includes the circumstances 
under which the condition occurs, the 
standard system action that would be taken 
in the absence of programmer-specified 
action, and, where applicable, the result. 
("Standard system action" does not refer to 
any operating system but to standard action 
prescribed for the lanquage.) 

For the conditions OVEl1FLOH, UNDERFLOV-J, 
ZERODIVIDE, CONVERSION, or FIXEDOVERFLO'il, 
an interrupt action will always take place 
on occurrence of the conGition unless the 
occurrence is in a calculation lying within 
the scope of a prefix specifying NOQVSR­
FLOW, NOUNDERFLOW, NOZERODIVIDE, NOCONVE~­

SION, or NOFIXEDOVERFLOW. ~or the condi­
tions SIZE, STRINGRANGF, SH:3SCRIPTRANGE, or 
CHECK (identifier list), an interrupt will 
not take place on occurrence of the condi­
tion unless the occurrence is in a calcula­
tion lying within the scope of a prefix 
specifying the condition. (See "Prefixes," 
in Chapter 1). 

For any other condition, whose name may 
not be used in a prefix, an interrupt 
always will result from the occurrence of 
the condition. 

A multiQle interrupt can occur only for 
an input/output operation that has been 
associated with an event variable. It 
occurs during the execution of the WAIT 
statement naming that event variable, if 
the event completed abnormally (i.e., if 
one or more conditions occurred during the 
operation). Since conditions for an 
input/output event are raised at the execu­
tion of the WAIT for that event, the 
interrupts for these conditions also occur 
at this time. It is possible for more than 
one interrupt to occur for an input/output 
event. The aggregate of interrupts for an 
input/output event is coIled a multiple 
interrupt. 

When an input/output event completes 
abnormally, the order in which the condi­
tions are raised, and therefore, the order 
in which the interrupts for these condi-

184 

tions occur, is irorlementation-defined. If 
the on-unit for such a condition issues a~ 
abnorwal retur~, then 011 unprocessed con­
ditions (i.e., rernainina interruuts of the 
multiple interrupt) a~e ignored; if an 
on-unit issues a normal return, the next 
con~ition is rrocessed. If an on-unit has 
not been establishe~ for such a con~ition 
(or if thp o~-unit is SYSTEM), the next 
con~ition outstanding will be processed 
only if the stan1ard system action is to 
comment ana continue; i~ the standard sys­
tem action is otherwise, all remaining 
interrupts in the wultinle interrunt will 
be ignored. 

CLASSIFICATION OF CON~ITIONS 

The ON-conjitions are classified as ~ol-
10~7S : comDutat i ana 1 conCl it ions, 
input/output condi tj ons, progra m-creckont 
conditions, list ?rocessinq_ conditions, 
prograwmer-na:'Ttei conditions, an<4 system­
action conditjons. 

The computational _ conr}itions are 
associated with data hanelling, expression 
evaluation, and cOITuutation. 

The inQut/output conditions are asso­
ciated with data transroission. 

The program-checko~t conditions facili­
tate debugging of programs. 

The list processi~co~ditions are asso­
ciated with area usage. 

The ~ammer-named _ conditions permit 
the programmer to use conditions of his own 
naming. These conditions are raised only 
by a SIGNAL statement. 

The system-action conditions provide 
facilities to the ?rogrammer to extend the 
standard syste~ action taken after the 
occurrence of a condition or at the comple­
tion of a program. 

COMPUTATIONAL CONDITIONS 

CONVERSION: This condition is raised 
whenever an illegal conversion is attempted 
on character string data, either internally 
or during input or output. The condition 
will be raised for such errors as charac-



t.ers other than 0 or 1 in conversion to bit 
string, characters not permitted in conver­
sion to numeric field, or illegal charac­
ters in conversion to arithmetic. The 
conversion is carried out character by 
character, ana the condition is raised for 
each illegal conversion. This condition 
may also be raised when the number of 
digits in a floatjng-point exponent exceeds 
the number allow'ed by an implementation. 
On return from the on-unit for this condi­
tion, the conversion will be reattempted. 

Result: When CONVERSION occurs, results of 
the ent.ire result.field are undefined. 

£~anda~_d __ ~~stem ~ction: Comment and raise 
the ERROR condition. 

~IX~DO~~~FJ~Q~~ This condition occurs dur-
1ng fixed-point arithmetic operations if 
the results of these operations exceed N, 
the maximum field width as defined by the 
implementation. See SIZ~ for a relate1 
condition that occurs on assignment. 

Result: Result of the invalid fixed-point 
operation is undefined. 

Stand::=J.~Q System Action: Comment and raise 
the ERROR condition. 

Q~ERFLOW~ This connition occurs when the 
exponent of a floating-point number exceeds 
the permi t1:ed maximum, as defined by the 
implement.a1:ion. 

Result: The value of such an invalid 
floating-point T'urnber is undefiner'l. 

§.ta!2dar£~~!:.~~.l\ction~ Comment ano. raise 
the ERROR conoition. 

SIZE : Thi~) condition is ra is ed by conver­
sions between data types, or between dif­
fering bases, scales, or precisions. The 
condition arises \\7hen a value is assigned 
to a data item or during input/output, with 
a loss of high-order bits or digits. 

The SIZE condition should be distingu­
ished from FIXEDOVERFLOW that occurs during 
arithmetic calculations. A value too large 
for the field to which it is assigned will 
raise a SIZE condition on assignment, 
regarrtless of whether there was a FIXEDOV­
ERFLOW in the calculation of the value. 

. FIXEDOVERFLOW depends upon the size of 
fixed-point numbers allowed in the implem­
entation. SIZE depends upon the declared 
size or implementation-restricted size of 
the item of data receiving a value. 

Result: The contents of the receiving 
field are undefined. 

Standard SY§.tem Action: Comment ana raise 
the ERROR condition. 

UNDERFI;OH: This condition occurs when the 
exponent of a flo.::Jting-?oint number is 
~:m~aller t han the Dermi t t_E·j roi nimum, as 
defined by the implementation. 

The condition does not occur when equal 
numhers are subtracte0 (often call signifi­
cance error). 

Result: The valu.e of the floating-point 
number is set to zero. 

Standard System A~tion: Comment and con­
tinue execution. 

ZERODIVIDE: This connition occurs on an 
attempt to divide by zero. The condition 
does not distinguish between fixen-point 
and floating-point division; either can 
cause it. 

Result: The result of division by zero is 
undefined. 

Standard Syst~~~!tQD..!. Comment and raise 
the ERROR condition. 

INPUT/OUTPUT CONDITIONS 

The following con1itions are always ena­
bled and cannot anDear in prefix lists. If 
the same file is kno~n in a program by more 
than one name (for examDle, i'l file paramet­
er and its associated file argument), these 
names constitute a set of equivalent filen­
ames. A condition specified for one filen­
ame applies to all names of the set. ~.n 
on-unit established using one filename of 
the set can be overridden by specifying an 
on-unit for another filename of the set. 

ENDFILE (filename): 
raised during any 
and is caused by an 
file delimiter. It 
no more data on the 

This condition may be 
GET or READ o~eration, 

attempt to read past a 
indicates that there is 
file. 

The end-of-file status remains until the 
file is closed. Subsequent GET or READ 
statements wjll immediately raise the con­
dition. On return from the on-unit, proc­
essing will continue at the next statement. 
If this condition is raised by an 
input/output statement using the EVENT 
option, the interrupt does not take place 
until the execution of a subsequent WAIT 
statement for that event in the same task. 

Standard System Action: comment and raise 
the ERROR condi.tion. 

ENDPAGE(filename): This condition is raised 
by a PUT statement when an attempt is made 
to start a new line beyond the limit 
specified for the current page by the 

Appendix 3: ON-Conditions 185 



PAGESIZE option in an OPEN statement. This 
attempt may be made during data transmis­
sion (with associated format items, if 
edit-directed transmission), by the LINE 
option, or by the SKIP option. It is 
raisea only once per page. 

If this condition is raised during data 
transmission, then, on return from the 
on-unit, the data is written on the current 
line, which may have been changed by the 
on-unit. If it is raised by a LINE or SKIP 
option, then, on return from the on-unit, 
the action specified by LINE or SKIP is 
ignored. 

Hhen ENDPAGE is raised, the current line 
number is one greater than that speci~ied 
by the PAGESIZF option. During the execu­
tion of the on-unit for this condition, or 
after return from the on-unit without a 
PAGE option or PAGE format it~m having been 
specified, the line nunber may increase 
in('lefinitely. Howe"rer, expcut~_on of a LI:'-JE 
option or a LINE ~ormat item specifying a 
line number less th?n or:- er:rual to t~e 
current line number will c~use a result 
equi valent to t_hat cc. 1J.sed hy the execution 
of a PAGE option. In this case, ENDPAGE 
will not be raised; however, since the 
C 11rrent ] ine is now onp, ENDPAGE can be 
raise~ again. 

TRANSMIT (filename): T~is condition may he 
raised· during any input/out?ut operation, 
and is caused by a perroanent transmission 
error on the specified file. In ST~EAM 
input, it is raised after assignment to 
each data item or recorc which is poten­
tially of incorrect value because of the 
transmission error. On return from the 
on-unit, processing will continue as if no 
error has occurred. 

If this condition is raised by an 
input/output statement USiLq the EVENT 
option, the interrupt does not take place 
until the execution of a subsequent WAIT 
stateroent for that event in the same task. 

§.tandar:Q_~ystem Action: Comment and raise 
the ZRROR condition. 

UNDEFI~EnFILE (filename): This condition is 
raised whenever an attempt to open a file 
is unsuccessful. If the attempt is ma~e 
through an OPEN statement, attempts to open 
all other files in that statement will be 
made before this condition is raised. If 
this condition is raised for more than one 
file in the same OPEN statement, on-units 
will be executed according to the order of 
appearance (taken from left to right) of 
the filenames in that OPEN statement. On 
return from the final on-unit, processing 
w~ll continue with the next statement. 

186 

If this condition is raised by an impli­
cit file opening in an input/output state­
ment without the EVENT option, then upon 
normal return from the on-unit, processing 
continues with the rerroainder of the inter­
rupted input/output statement. If tr.e file 
was not opened in the on-unit, then the 
statement cannot be continued and the FRROR 
condition is raised. 

If this conditio~ is raised by an impli­
cit file openinq in an input/output state­
ment having an. EVBNT option, then the 
intprrupt occurs bpfore the event variable 
is initialized. Ir. other words, the event 
variable retains its previous value and 
remains inactive. On normal return from 
the o~-unit, the event variable is initial­
ized, that is, it is made active and its 
completion value is set to 'O'B (provided 
the file has been openen in the on-unit). 
Processino then continues with the remain­
der of the interrupted statement. However, 
if the file has not been opened in the 
on-unit, the event variable remains unini­
tialized, the statement cannot be contin­
ued, ann. the ERROR condition is raised. 

Standard System Action: Comment and raise 
the ERROR condition. 

NA~ (=ilename): This condition may be 
raised on data-directed GET statements. It 
is caused by an unrecognizable identifier 
in the input or by an identifier not in the 
associated data list. The condition is 
raised at t~e time the error occurs. On 
return from the on-unit, the execution of 
the GET statement is resumed with the next 
data field in the stream. 

By using the DATAFIELD built-in function 
in the ON unit, the programmer may access 
the data field which contained the incor­
rect name. 

Standard System Action: 
and comment. 

Ignore the field 

KEY (filename): This condition may be 
raised by any keyed record operation. It 
is raised in the following cases: 

1. A RFAD for which the key is not found 

2. A WRITE or LOCATE for which the key 
alrea dy exists 

3. A RBWRITE for which the key is not 
found 

4. A DELETE for which the key is not 
found 

5. Specification of the character strinq 
representing the key is in conflicf 
with the format prescribed by the 
implementation 



If this condition is raised by an 
input/output statement 11sing the EVENT 
option, the interrupt does not take place 
until the execution of a subsequent WAIT 
statement for that event in the same task. 

On return from the on-unit, no further 
action is attempted, and control passes to 
the next statement. 

St~ndar~~ystem Action: Comment and raise 
the ERROR condition. 

RECORD (filename):: This condition may be 
raised by any HEAn or REWRITE operation. 
It is raised when the record contains more 
or less data than the soecified variable 
(i.e., the size of the variable differs 
from the actual record size). It may be 
raised on a WRITE when the implementation 
cannot execute the statement. 

If this condition is raised 
input/output statement using the 
option, the interrupt does not take 
until the execution of a subsequent 
statement for that event in the sa~e 

by an 
EVENT 
place 

WAI'r 
task. 

The ONCODE built-in function returns an 
indication of whether the record variable 
was less than or greater than the record in 
size. 

Before the on-unit is invoked, the fol­
lowing action takes place: 

1. If the variable cannot contain the 
record, the excess data of the record 
is lost. 

2. If the variable is greater than the 
record in size, the excess data in the 
variable is not transmitted on output 
and is unaltered on input. 

stagQ..2!.!:g __ !=)ystem l\ction: COITmcnt and raise 
the ERROR condition. 

PROGRAM CHECKOUT CONDITIONS 

SUBSCRIPTR.ANGE: ']~his condition occurs when 
asubscrIpt is evaluated and founel to lie 
outside its specified boun1s. 

The condition does not 
between values that are too 
values that are too small. 

distinguish 
large and 

Note that if more than one subscript is 
associated with an identifier, e.g., 
A(I,J~K), the occurrence of a SUBSCRIPT­
R~NGE condition is signalled after each 
subscript has been checked. 

standard System Action: Comment and raise 
the ERROR condition. 

STRINGRANGE: This condition way be raised 
by any re::erence to the SUBSTR built-in 
function or ~seudo-variable if the length 
specified for the substring is less than 
zero or if the substring does not lie 
entirely within (or correspond to) the 
specjfie1 string. 

The condition can be raised only once 
for each scalar SUBSTR reference. 

Result: On normal return from an on-unit, 
execution continues with a revised SUBSTR 
reference whose value is defined as 
follows: 

Let k be the length of the first argu­
ment (after execution of the 
on-unit): the other two arguments 
are represented by i and j 

If i is greater t.hiln t, the value is 
the null string 

If i is less than or equal to k, the 
value is that substring begInning 
with the ~th character or hit of 
the first-nrgument, ano exteniing 
n characters or bits, where ~ and 
~ are oe£ineo by: 

m MP-X (i , 1) 

n = M~X(O,MIN(j+MIN(i,l)-l, 
k-m+l) ) 
if j is specified 

n k-m+1 
if j is not specifieo 

The values of i and j are established 
before entry to the on-unit; they are 
not reevaluateo on return from the 
on-unit. 

standard System )\ction: Revise the SUBSTR 
reference, as described under "Result," 
comf'1ent, and c01'").tinue. 

CHECK (identifier-list): A statement prefix 
specifying this condition may only be 
applied to PROCEDURE or BEGIN statements. 

In the identifier list, each identifier 
is one of the following: 

a statement label constant 
an unsubscripted variable name rep­

resenting a scalar, array, or 
structure 

an entry la bel 

Appen~ix 3: ON-Conditions 187 



Note: The identifier list cannot contain 
based variables, parameters, or data having 
the DEFINED attribute. 

Each item in the list is, in effect, 
enabled independently. It follows, there­
fore, that each item in the list can also 
be disabled independently. In ether words, 
a REVERT statement can be used to change 
the ON action for one or more items in the 
identifier list. 

If a structure identifier or an array of 
structures identifier appears in the iden­
tifier list of a CHECK prefix, such a 
prefix is equivalent to a CHECK prefix 
whose list contains, in the order in which 
they were declared, the base elements of 
that structure or array of structures. For 
example, if P is <l.efined by 

DECLARE lP,2Q,2R,2S; 
then 

CHECK (P) 

is equivalent to 
CBE CK ( Q , R, S) 

statement Label Constant: For a statement­
label -constan~he--condition is raised 
prior to the execution of the statement to 
which the label is prefixed. If the label 
is prefixed to a non-executable statement, 
no condition will be raised. 

Variables: For identifiers representing 
variables, the condition is raised whenever 
the value of the variable, or any 
generation of any part of the variable, has 
a value assigned to it by any statement 
within the scope of the prefix. 

The condition will he raised by the 
explicit reference to an identifier ID in 
the circumstances listed below, where ID 
is: 

an identifier in the list 
an iae~tifier representing a structure 

or element contained by, or con­
taining, an identifier in the list 

The reference to ID may be subscripted 
or qualified. 

The condition will be raised for ID only 
if: 

1. ID appears on the left hand side of an 
assignment statement. (This applies 
to assignment BY NAME even if the 
identifier mentioned does not appear 
in the final expansion of the state­
ment. ) 

2. ID is set as a result of its appear­
ance as an argument of a pseudo­
variable that is used in a context for 
which CHECK is raised. 

188 

3. ID appears as the control variable of 
a DO statement (or ID is set as a 
result of a pseudo-variable appearing 
as the control variable of a DO loop). 

4. ID appears in 
edit-directed 
statement. 

the data list of an 
or list-directed GET 

5. ID is assigned a value by data­
directed input. If ID is a structure, 
CHECK will be raised each time an 
element of that structure is assigned 
a value. 

6. ID is specified as the receiving field 
in a REPLY, STRING, SET, INTO, or 
KEYTO option. If the statemp~t 

specifying this option also has an 
EVENT option, the CHECK condition is 
raised for i·t at the time the WAIT 
statement is executed. Note that this 
applies to implied SET options, as 
well. 

7. ID is passed as an argument, with no 
dummy creat ed, and control ret.urns to 
the invoking block other than by a GO 
TO statement. 

However, the condition is NOT raised 
under any of the following circumstances: 

1. 

2. 

If the value 
upon. ID or upon 
value in any 
above. 

of a variable defined 
part of ID changes 

of the ways described 

If a parameter or based varia.ble which 
represents ID changes value. 

3. If ID is set by the INITIAL attribute. 

Each condition is raised after the 
statement v,1hich ca used it to be raised has 
been executed. (Note that an IF statement 
is considered terminated just prior to the 
execution of the THEN or ELSE clause, and 
an ON statement just prior to the ON-unit 
specification.) If the statement has a 
t~sk option, the condition is raised when 
the attaching task regains control. If the 
statement is a DO statement, the condition 
is raised each time control proceeds 
sequentially to the statement following the 
DO statement. If the DO specifies itera.­
tion, the condition is raised once for 
every iteration. 

If a statement causes a CHECK condition 
to be raised for several identifiers, then 
the conditions will be raised in the left­
to-right order of anpearance of the 
identifiers in the statement. 

Entry Names: For an entry name, the condi­
tion is raised prior to each invocation of 
the entry name. The condition is raised 



only if the entry name used in the invoca­
tion has CHECK enabled for it. 

RE.sult: Continue. The statement is exe­
cutec normally. 

standard System Action: If the identifier 
is a statement label constant or a label, 
task, event, pointer, offset, or area vari­
able or an entry name, only the identifier 
is printed on a debugaing file. 

If the identifier represents data other 
than that mentioned above, the i~entifier 
and. its new value are both orintef\ on a 
debugging Tile in the format of data­
directed output. 

LIST PROCFSSI~G CONDITIONS 

The following condition 
enabled and may not ap?ear in 
prefix. 

is always 
a condition 

l\REP_l. Thi s con..:!.i tion is raised when an 
attempt is made to allocate storage 'rlithin 
an area defined by an area variable, and 
sufficient storage does not remain within 
the area. It can be raised by an ALLOCATE 
or assignment statement. 

Eesult: On normal return from the on-unit, 
the reference to the area is reevaluated. 
Allocation is then attempted in this area. 

standard System Action: The ERROR condi­
tion is raised. 

PROGRAMfJ!.ER-NAMED CONDITIONS 

CONDITION (identifier): This condition is 
always enat>led and may not appear in a 
condition prefix. The identifier is speci­
fied by t~he programmer, an~ is EXTERNAL. 
The condition is raiseo by the execution of 
a SIGNAL st:atement having the same iden­
tifier. 

standard ~~yst~Action: Comment and con­
tinue. 

SYSTEM ACTION CONDITIONS 

The :!:ollowing conditions are always ena­
ble0 and cannot appear in a condition 
prefix. 

FINISH: This condition is raised by pxecu­
tion of a statement that would cause termi­
nation of the major task of a PL/I program, 
that is, by a STOP in any task, an EXIT in 
the maior task, or a RETURN or E~D jn the 
initiai external procedure of the major 
task. The condition also is raised by a 
SIGNAL FINISH statement in any task. The 
interrupt occurs in the task in which the 
statement is executed, and anyon-unit 
specifiea for the condition is executed as 
part of that task. 

An abnormal return from a FINISH on-unit 
will avoid any subsequent task termination 
processes and permit the interrupted task 
to continue. 

On normal return £row a FINISH on-unit, 
execution of the interr1.1Dtea statement is 
resumed. 

Standard Syst.ew -,-:~c_t:iop!.. Fxecut ion 0 f the 
interrupted statement is resumed. 

Note: When the FINISH condition is raise1 
by execution of a ~IGNAL FINISH stateroent, 
normal return from t re FPHSH on-unit (or 
standard system action, if no on-unit is 
established) will cause execution to con­
tinue with the statement following the a 
SIGNAL FINISH statement. 

ERROR: This condition is raised either by 
a SIGNAL FF.RO~ or by some error situation 
in the execution of the program. The 
abilities of different implementations to 
detect execution-time errors will vary; 
therefore, some of the conditions under 
~rlhich ERROR will be raised are implementa­
tion defined. An abnormal return from an 
ERROR on-unit will permit the interrupted 

I task to continue execution. The action for 
normal return, however, is implementation 
defined. 

I Standard System Action: 
implementation defined. 

This action is 

Appendix 3: ON-Conditions 189 



Abbreviations are provided for certain 
keywords. Tte abbreviations themselves are 
keywords an~ will be recognized as synono­
mous in e-..;rery respect with the full key­
words. The abbreviated keyworas are shown 
to the right of the full keywords in the 
following list. 

ABNom'U\.L ABtH, 
AC'rrVATE ACT 
]).UTOfVIATIC 1\ TJ TO 
BIN1\RY BIN 
BUFFEREI: BUF 
CHARACTER CHA~ 

COLUMN COL 
COJ:IIPLETION CPLN 
COMPLEX CPLX 
CONT"ROLI,ED CTL 
CONV"SR.SION CONV 
DEACTIV1\TE DEACT 
DECIl'1l>.L DEC 
DECLAP.E DCL 
DEFINED DFF 
ENVIRONt/lEl'TT FNV 
EXCLUSIVE EXCI. 
EXTERNAL FXT 
FIXEDOVFRFLOW FOFL 
INITIAL INIT 
IWrERNAL INT 
IRPEDUCIBLE IRRED 
OVERFLOW OFL 
PICTURE PIC 
rOINTER PTR 
POSITION POS 
"PRECISION "PUBC 
PROCEDUPE "PROC 
RSDUCIBLE RED 
SEQUENTI A T.J SEQL 
STRINGRANGE STRG 
SUBSCRIPTRANGE SUBRG 
UNALIGNED UNAL 
UNBUFFERED UNBUF 
UNDEPFLOW UFL 
UNDEFINEDFILE UND? 
VJ1.PYING VA"Q. 
ZERODIVIDE ZDIV 

190 



The characters that make up the 
48-character set are the same as those that 
make up thE~ 60- character set except for 
certain restrictions. 

The following 
included: 

characters are 

Percent~ 

Colon 

Not 

Or 

And 

Greater Than 

Less Than 

Break character 

Semicolon 

Number sign 

Commercial At sign 

Question mark 

The following three 
replaced as indicated: 

60-Character set 

, 
% 

% 

, 

& 

> 

< 

# 

@ 

? 

characters are 

48-Character Set 

, ,. 
// 

The two periods which replace the colon 
must be immediately preceded by a blank if 
the preceding character is a period. The 
two slashes that replace the percent symbol 
must be immediately preceded by a blank if 
the preceding character is an asterisk, or 
immediately follm.;red by a blank if the 
following charact.er is an asterisk. The 
sequence "comma pE!riod" represents a semi­
colon except when it occurs in a comment or 

APPENDIX 5: THE 48-CHARACTER SET 

character string, or when it is immediately 
followed by a digit. 

The following character combinations, as 
used in the 60-character set, are replaced 
in the 48-character set by alphabetic equi­
valents as indicated: 

60-Character Set 48-Character Set 

> GT 

,> NG 

>= GE 

,= NE 

<= LE 

< LT 

,< NL 

, NOT 

OR 

& AND 

II CAT 

-> PT 

The above words are "reserved" in the 
48-character set; that is, they must not be 
used as programmer-specified identifiers. 

In each case, one or more blanks must 
immediately precede the alphabetic operator 
if the preceding character would otherwise 
be alphameric, and one or more blanks must 
immediately follow if the following charac­
ter would otherwise be alphameric.. Thus, 
to indicate the comparison of the variables 
A6 and BQ2Y for inequality, one would write 
A6 NE BQ2Y, but notA6NEBQ2Y, A6 NEBQ2Y, or 
A6NE BQ2Y. As the equal symbol is usable, 
however, the comparison of these two varia­
bles for equality may be written A6=BQ2Y. 

The break character, commercial at-sign, 
and number sign are not used and conse­
quently may not be employed in identifiers .• 

Appendix 5: The 48-Character Set 191 



192 



+ picture characte!r 70 
- picture character 70 
* picture characte!r 70 
$ picture characte!r 70 

~CTIVATE statement 149~145 
%DEACTIVATE statement 149.146 
%DECLARE statement~ 148-151,,145 
%DO statement 151 
%END statement 148,145 
%GO TO statement 151,148 
%IF statement 152.148 
CJ{INCLUDE s·tatement~ 152 
%PROCEDURE statement 148 
%symbol 

identification of compile-time 
statemt~nts 145 

in character-st.ring 145 

A format item 109 
A picture characte!r 67 
Abbreviations of keywords 190 
ABNORMAL attribute! 47 

as attribute of' cell identifier 53 
assumptions when specified 51,60 
default for TASK type identifiers 42 

Abnormal terminati.on (see Termination) 
ABS built-in funct~ion 158 
ACTIVATE (compile-time) statement 149.145 
Activation 

by %ACTlVE or %DECLARE statement 145 
of blocks 82 

Acti ve block 82 
ADD buil t- in funct;ion 158 
Additive file attributes 96 
ADDR built·-in function 172 

providing a pointer value 66~87 
variable as argument of 84 
variables declared with 49 

Aggregate 
expressions 34 
generation of ~rariable 84 
order of evaluaLtion of expressions 36 
types 21 

ALIGNED attribute 47 
as default attribute 42,,60 
assumptions whem specified 51 
LIKE attribute expansion 66 
simple defining 54 
with RE~rURNS at~tribute 72 

ALL built-in funct~ion 168 
ALLOCATE statement. 116,,86 

allocating bas€!d variable storage 
48,49,,87 

allocating cell storage 53 
context1i.BI declaration as area variable 

40 
contextual declaration as pointer 
variable 40 

creatinq based generation 84 

setting value of locator variable 67 
specifying controlled variable bounds 

57 
specifying size of controlled area 
variable 48 

with task variable 74 
Allocation 

of a variable 84 
of data and storage classes 85 
of parameters 181 
of storage 48~49.83 

ALLOCATION built-in function 173 
task variables as argument of 74 

Alphabetic 
characters 13 
extenders 13.41 
list of attributes 47 

Alphameric characters 13 
Alternative file attribute 96 
Ambiguous references 39 
ANY built-in function 168 
AREA attribute 48 

assumption for variable in OFFSET 
attribute 67 

default attributes for area type 
identifier 42 

in DECLARE statement 38 
with CELL attribute 53 
with GENERIC attribute 61 
with RETURNS attribute 72 

AREA condition 189 
based variable allocation 118 

Area size 
in ENTRY attribute 58,79 
in ALLOCATE statement 117 
in DECLARE statement 117 
in REFER option 50 
of simple defined a=ea 55 
parameters and arguments 79.80 

Area variable 29 
as target variable 120 
contextual declaration as 40.67 
generation of 84 
invalid format of INITIAL attribute 63 

Argument 
aggregate 35 
as subscripted variable 77 
correspondence with parameters 79 
dummy (see Dummy argument) 
entry name as 78 
in procedure reference 77 
of arithmetic built-in functions 158 
of mathematical built-in functions 163 
of string built-in functions 155 

Arithmetic attributes 44 
default attributes 42 
parameter defaults 75 
with RETURNS attribute 72 

Arithmetic conversions 31 
complex 118 
to bit string and character string 34 

Arithmetic data 25 

Index 193 



coded (see Coded arithmetic data) 
in list-directed input 101 

Arithmetic operators 
list: of 14 

Arithmetic operations 30,147 
Arithmetic built-in functions 158 
Arithmetic variable 27 

implict declaration of identifier as 41 
attributes of 44 

Array 21 
array variable in USES or SETS list 73 
as data-list elements 100 
bounds (see ~rray bounds) 
cross sections of 23 
dimension attribute S6 
expressions 34,35 
generation of variable 84 
interleaved '36 
label array 65 
list-directed input form~t 101 
manipulation built-in functions 168 
parameters 80 
of structures 22 
subscripted names 23 
table of operands and results 3'3 

Array bounds 21, 56 
assumed for parameter 79 
declared with basei vari3ble 50 
in ALLOCATE statement 117 
in DECLARE statement 117 
in ENTRY attribute 58,79 
specified by REFER options 50 

Assignment (compile-time) statement 
150,148 

Assignment statement 119,16,115 
aggregate expressions 35 

Asterisk 
for bounds specifications 57,50,56 
in cross sections of arrays 21,56 
in dimension attribute 56 
in ENTRY attribute 79 
in INITIAL attribute 62 
in interleaved arrays S6 
in iSUB defining 55 
in simple defining 55 
in USES or SETS attrihlltF' 73 
parameters 75 
specifying bit an1 character length 52 
specifying parameters anj controlled 
variables 52 

specifyinq storage area size 48 
Asynchronous operations 87 

compile-time input/output ~perations 
173 

data set accessed directly 114 
data set accessed sequentially 114 

ATAN built-in function 163 
ATMID built-in function 163 
ATANH built-in function 164 
Attached task 89 
Attaching task 89 
Attributes 44,15 

194 

alphabetic list of 47 
assignment to indentifiers 41 
default assumptions 41 
evaluated on entry to a block 83 
fact:oring of 39 
of a file 45,96,97 

of structures 23 
wit~ compile-time statements 146,147 

AurOM~rIC attribute 49 
default for arithmetic type identifier 

42 
default for event name 58 
invalid with parameter 75 

~utomatic storage 49,85 
Automatic variable 49 

shared between tasks 90 

B bit-string specifier 25 
B format item 109 
B picture character 
BACKWARDS attribute 51 

implied attributes 97 
invalid with OUTPur and UPDATE 
attributes 64 

BACKWARDS option 135 
Base 

arithmetic data characteristic 25 
conversion table 32 
FIXED attribute assumed 61 
in arithmetic operations 30,31 

BASED attribute 49,87 
causing contextual declaration as 
pointer variable 40,66,67 

in DECLARE statement 38 
invalid with parameter 75 
with a structure 23 

Based-defined item 
in SETS and USES list 73 

Based storage 49,87 
built-in functions 172 

Based variable 49-51,87~111 
aliqnment attributes 48 
allocation of 116,133 
locator qualification 29 
reserving storage for 48 
termination of task 89 
with locator variable 66 

Basic language structu~e 13 
Basic program structure 16 
Begin blocks 

(see Block) 
BEGIN statement 123 

activation of begin block 82 
scope of condition prefix 91 

BINARY attribute 51 
as default attribute 42,41,61,72 

Binary constants 26 
Binary diqits 13 

picture characters 68-70,178 
Bit 13 
BIr attribute 51 
BIT built-in function 155 
Bit-class data 56 

UNALIGNED default attribute 47 
Bit string 27 

concatenation 33 
conversions 33,34 
defaults for string type identifiers 42 
format item 109 
list-directed input 101 
list-directed output 103 
operations 32 
operators 14,32 



overlay defining 55,47 
repetition factor 27,62,63 
varying 33 

Bit-string format item (A) 109 
Blanks, use of 16 
Block 18 

activat~ion 82 
activat~ion environment 83 
attributes evaluated on entry to 83 
causing procedure irreducibility 46 
condition pseudo-variables within 

blocks 95 
declaration in 37 
generations established on entry to 
inheritance of condition built-in 
functions 95 

recursive activation 85 
termination 82,85,132 

BOOL built-in function 155 
Bounds of arrays 

(see Array bounds) 
Braces 11 
Brackets 12 
BUFFERED attribute 52 

implied attributes 97 
BUFFERED option 135 
BUILTIN at:tribute 52 

identifier contextually declared with 
40 

invalid with ENTRY attribute 58,62 
Built-in function 76,154 

alignment attribute default 48 
BUILTIN attribute 52 
condition built-in functions 95 
contextual declaration as 40 
implicit declarabion as name of 41 
name 15 
with aggregate arguments 35 

BY clause 126.127 
BY NAME option of assingment statement 

121,122 

C format item 109 
CALL option of INITIAL attribute 

subroutine reference 76 
62,67 

CALL statement 123,52 
context:ual declaration as event 
context:ual declaration as task 
creating tasks 89 
EVENT option 58,59 
initiating new control of task 
sequence of control 116 
subroutine reference 76 
TASK option 74~40 
task variable priority 28 
USES a t:tribute 73 

CEIL built-in function 159 
Cell 29 

initial attribute 62 
paramet:er 80 

CELL attribute 52 
CHAR built:-in function 155 
CHARACTER attribute 51 

in DECLARE statement 38 
Character-class data 56 

UNALIGNED default attribute 47 
Character picture specification 65 

58 
40 

90 

83 

Characters 
alphabetic 13 
alphameric 13 
special 13 

Character sets 
60-character set 13 
48-character set 191 

Character string 27 
concatenation 33 
conversions 34 
defaults for string type identifiers 42 
defining formats with PICTURE attribute 

67 
drifting string 70 
format item 109 
list-directed input 101 
list-directed output 103 
overlay def ining 55,47 
picture characters 177 
repetition factor 27,62,63 
varying 33 

Character-string format item (A) 109 
CHECK condition 187,92.184 

enabled by programmer 92 
limitations 17,50 
raised after assignment 121 
scope 91 

CLOSE statement 124 
file with RECORD attribute 72 
file with STREAM attribute 71 

Coded arithmetic data 25,102 
conversion in list-directed transmission 

101,102,103 
in arithmetic operations 30 

Collating sequence in PL/I 15 
COLUMN format item 110 
Comments 16 
Comparison operations 33 
Comparison operators 14 
Compile-time 145 

expressions 147 
loop expression 146 
null statement 147 
operands 147 
procedures 148 
procedure statements 145 
statements 149 
SUBSTR built-in function 149 
variables 146,147 

COMPLETION built-in function 173 
accessing completion value of event 
variable 58,88 

COMPLETION condition 142 
COMPLETION pseudo-variable 174 

erroneous use 59 
to set completion value of inactive 

event variable 59 
Completion value 58,88 

EVENT option of DELETE statement 125 
EVENT option of DISPLAY statement 126 
EVENT option of READ statement 139 
EVENT option of REWRITE statement 141 
EVENT option of WRITE statement 144 
on execution of CALL statement 124 
on return from FINISH on-unit 129 
on task termination 89,124 
on sub-task termination 140 

Complex argument 166 

Index 195 



COMPLEX attribute 54 
FLOAT attribute assumed 61 
with numeric character data 68 

COMPLEX built-in function 159 
complex format item (e) 109 
COMPLEX pseudo-variable 175 
compound statements 17 
Computational built-in functions 155 
computational conditions 184 
Concatenation operations 33 
CONDITION condition 189,94 

conb~xtual declaration as condition 
name 40 

Condition built-in functions 95.,170 
Condition name 17 

contextual declaration as 40 
EXTERNAL attribute assumed 60 

Condition prefixes 17 
invalid with ENTRY statement 129 
purpose 91 
scope of 91 
to IF statement 133 

Condition pseudo-variables 95 
Condition type of identifier 

default attribute 42 
Conditions 16 

(see also ON conditions) 
CONJG built-in function 159 
Constant 21 

arithmetic 26,27 
initialization 60 
notation 11 
statement-label 28 

contextual declarations 40 
Control 

format items 110 
of a program 82 
of statement sequence 116 
passed to procedure at entry point 75 
transfer of by GO TO 44,132 

Control format items 110 
Control statement 115 
CONTROLLED attribute 49 

as assumption of ENTRY attribute 58 
as structure attribute 23 
with parameter 75 

Controlled storage 49,86 
Controlled variable 

allocation of 116 
shared between tasks 90 
termination of task 89 

Conversion 

196 

arithmetic to bit-string 34 
arithmetic to character-string 34 
base 30,32 
bit-string to arithmetic 34 
bit-string to character-string 33 
character-string to arithmetic 34 
character-string to bit-string 34 
coded arithmetic 102,103 
floating-point to fixed-point 32 
form 30 
in arithmetic operations 30 
in bit-string operations 32 
in comparison operations 33 
in concatenation operations 33 
in exponentiation operations 31 
integer 32 

list-directed input and output 101,102 
mode 30,31 
numeric to coded arithmetic 30 
offset to pointer 66 
pointer to offset 67 
scale 30,32 
type 33 

CONVERSION condition 184,170 
disabled by programmer 93 
raised by picture specification 177 

COpy option 131 
Correspondence 

of parameters and arguments 79 
COS built-i.n function 164 
COSD built-in function 164 
COSH built-in function 164 
COONT built-in function 174 
CR picture character 181 
Creation of tasks 89 
Credit sign picture character 181 
Cross sections of arrays 23 
Currency symbol picture character 180 

Data 21 
aggregates 21 
area 29 
arithmetic 25 
attributes 44 
attributes permitted with PROCEDURE 
statement 136 

attributes with an ENTRY attribute 129 
cell 29 
character set 15 
declaration statement (see DECLARE 

statement) 
description 37-74 
elements 21-29 
event 28 
format items 107 
label 28 
list (see Data list) 
locator 28 
manipulation 30-36 
naming 23 
organization 21 
problem 25 
program control 28 
set 96 
sharing between tasks 90 
sterling data variable 70 
storage allocation for data variables 

49,85 
specifications 99 
specification statements 115 
stream transmission 98 
string 27 
task 28 
transmission statements 115 

Data-directed 
data lists 99 
input 104 
length of data fields 105 
output 105 
specification 104 
transmission 98,104 

DATAFIELD built-in function 95,170 
Data list 99 



data-directed transmission 98 
edit-directed transmission 99 
list-directed transmission 98 

DATE built-in function 174 
DB picture character 181 
CEACTIVATE (compile-time) statement 
149,146 

Debit sign picture character 181 
Debugging 

statements 115 
DECIMAL attribute 51 

as default attribute 41;42,58,60,72 
DECIMAL built-in function 159 
Decimal constants 26 
Decimal digits 13 

picture character 67-70,178 
Declarations 35 

built-in 41 
contextual 40 
explicit 37 
external 42,46 
implicit 41 
multiple 41 
of structures 38 
priority of 41 
scope of 42 

DECLARE (compile-time) statement 
148-151,145 

DECLARE statement 38 
explicit declarations 37 
factoring 39 
parameter attributes 75 
pointer variable declaration 66 
sequence of control 116 
specifying file attributes 41 
with EVENT attr:Lbute 58 
with REFER option 50 
wi th RETURNS a"ttribute 72 

Default attributes 41 
in PROCEDURE statement 137 
parameter 75 

DEFINED attribute 54 
assumptions when specified 51 
distinction from CELL attribute 52 
invalid with parameter 75 
parameter as base i1entifier 75 
with AREA attribute 48 

Defining 
INITIAL attribute invalia for define1 
variables 62 

iSUB 5,5,47 
order of evaluation 56 
parameter as base identifier 75 
simple 54,47 
string overlay 55,47 

Definitions (see Index of Definitions) 
DELAY statement 125 
DELETE statement 125 

attributes de1uced 97 
execution in locking task ~f 60 
SEQUENTIAL files 113 

Delimiters 14 
Descendance, dynamic 83,90 
Designator, statememt-label 28 
Digit and point specifiers 178 
Digits, binary an1 1ecimal 13 
DIM built-in function 169 
Dimens ion attribu,te 56 

assumptions when specified 51,58, 
in ENTRY parameter attribute list 57 
what it specifies 21 

Dimensions 
of array (see Dimension attribute) 
of cell 53 

DIRECT attribute 57 
file 113 
implied attributes 97 
implied by EXCLUSIVE 60 
implies KEYED 65 

DIRECT option 135 
DISPLAY statement 126 

associated with event variables 88 
DIVIDE built-in function 159 
DO (compile-time) statement 151 
DO group 18 

go to statement 132 
in compile-time procedure 148 

DO statement 126,18 
sequence of control 116 

Drifting picture characters 70,180 
Dummy argument 77 

aggregate type 35 
allocation 79 
correspondence with parameters 79 
for array-label variable parameter 80 
for array parameter 80 
in compile-time procedure 149 
invalid with task variable 74 
specified by ENTRY attribute 57 
unmatched alignment attributes 48 

Dummy iSUB variables 55 
Dummy variable 

(see Dummy argument) 
Dynamic 

allocation of storage 85 
descendance 83,89 
encompassing 83 
program structure 82 

E format item 108 
E picture character 68,182 
Edit-directed transmission 

data lists 99 
FORMAT statement 129 
input and output 106 
specification 106 
transmission 99 

E1iting characters 68-70 
Element 

data 21-29,47 
data items 21 
of a structure 22 
of an array 21,22 
program 18 
variables 21 

ELSE clause 
in %IF statement 
in IF statement 133 

EMPTY built-in function 172 
Encompassing, dynamic 83 

reestablishing action specification 140 
END (compile-time) statement 148,145 
END statement 128,19 

as RETURN statement 140 
sequence of control 116 

Index 197 



terminating begin block 82 
terminating procedure block 83 
terminating subroutine procedure 77 
terminating task 89 
use of 19 

ENDFILE condition 185 
ENDPAGE condition 185,138 
ENTRY attribute 57 

declaration by label prefix 39 
defaults for ENTRY type identifier 42 
describing various parameters 79,80 
implied by SETS and USES attributes 73 
specifying generic entry names 62 
task variable as parameter 74 

Entry name 18,58 
as argument in procedure reference 

78,77 
assumed attributes 60 
attributes 45 
contextual declaration 40 
generic 76 
GENERIC attribute 61 
in compile-time procedure 148 
optimization attributes 64.72 
PROCEDURE statement 136 
RETURNS entry name attribute 72 
with BUILTIN attribute 52 

Entry parameter 75,80 
Entry point 

activation of procedure block 82 
generic entry name 76 
parameter lists 75 
primary 18,136 
secondary 18 
secondary defined by ENTRY statement 75 
use of ENTRY attribute 57 

ENTRY statement 129 
attribute assumptions 39,58 
defining secondary entry points 18,75 
identifier in parameter list 40 
parameters 75 
RETURNS attribute list 72 
sequence of control 116 
specifying attributes for function 
value 76 

task variable as parameter 74 
Environment 

of block activation 83 
of label constant 84 

ENVIRONMENT attribute 58 
Equivalence 

storage 52 
data 52 

ERF built-in function 164 
ERFC built-in function 164 
ERROR condition 189,170 

event 88 
GET statement 131 
PUT statement 137 

Evaluation 
of argument subscripts 77 
of ENTRY attribute expressions 58,79 
of expressions 35,26,82 
of RETURNS attribute specifications 

£Vent 88 
termination of task 89 

EVENT attribute 58 

72 

defaults for EVENT type identifier 42 

198 

EVENT option 
contextual declaration as event 
variable 40,58 

creation of tasks 89 
in CALL statement 123 
in DELETE statement 125 
in DISPLAY statement 126 
in READ statement 138 
in REWRITE statement 141 
in NRITE statement 143 
setting event active then incomplete 88 

Event variable 28,58 .. 59,88 
as target variable 121 
completion value (see Completion value> 
contextual declaration 40 
status value (see Status value> 

EXCLUSIVE attribute 59,114 
implied attributes 97 
locked records 114 

EXCLUSIVE option 135 
EXIT statement 129 

sequence of control 116 
terminating a task 59,82,89 
terminating subroutine procedure 77 

EXP built-in function ~65 
Explicit opening of file 96 
Exponent picture characters 182 
Exponent specifiers 182 
Exponentiation 

in fixed-point arithmetic operations 31 
in numeric picture specification 68 

Expression 30 
aggregate 34,36 
as argument in procedure reference 77 
evaluation of 35,26 
prologue evaluation 82 
scalar 30 

Extenders alphabetic 13,41 
EXTERNAL attribute 60,42 

as implied attribub.~ 39 
as structure attribute 23 
as default for ENTRY type identifier 42 
invalid use 50,54 

External declaration 42,46 
External name 19 

attributes of 38 
scope of 42,43 

External procedure 19 
invoked by procedure reference 75 
irreducible and reducible 64 

F format item 108 
F picture character 68,182 
Factor 

iteration 62 
repetition 67,68 
scale 25,68 

Factoring of attributes 39 
invalid factoring with ENTRY attribute 

58 
Fields 

numeric 25,30 
picture character 67 
sterling picture specification 70 

File 
attributes 45,96-98 
closing 124 



function of 63 
kinds of data transmission 
list-directed output tabs 
openin9 96 
parameter 75,81 
prepara tion st:atements 115 
sharing between tasks 90 
termination of task 89 

FILE attribute 60 
File name 96 

for 
101 

71 

as argument in procedure reference 77 
contextual declaration 40 
EXTERNAL attribute assumed 60 

FILE option 
contextual declaration as file name 

40,60 
in CLOSE statE~ment 124 
in DELETE statement 125 
in GET statement 131 
in LOCATE stat.ement 133 
in OPEN statement 135 
in PUT statement 137 
in READ statement 138 
in REWRITE statement 141 
in UNLOCK statement 142 
in WRITE statE:!ment 143 

FINISH condition 189,170 
raised by EXIS[' statement 129 
raised by RETURN statement 140 
raised by STOP statement 142 

FIXED attribute 60 
as defa ul t attribute 41, 42.51, 72 

FIXED built-in function 160 
FIXEDOVERFLOW condition 185,184 

disabled by programmer 93 
Fixed-point arithmetic data 25,26,31 

precision of results 31 
Fixed-point format item (F) 108 
FLOAT attribute 60 

as default attribute 41,42.51,58,72 
FLOAT built-in function 160 
Floating-point format item (E) 108 
Floating-point data 25 

constants 26 
conversion to fixed-point data 32 
results 31 
FLOOR built-in function 160 

Form conversion 30 
Format items 107,110,111 
Format list 107~99,111 
Format of PL/I program 13 
FORMAT statement 129,110 

sequence of control 116 
FREE statement 130,86 
contextual declaration of area variable 

40 
freeing based variables 49,87 
freeing cell storage 53 

FROM option 
in REWRITE statement 141.113 
in WRITE stab::!ment 143 

Function 
(see Function procedure) 

Function, built-in 154 
Function procedure 76,77 

termination :140 
Function reference 76 

contextual declaration as entry name 40 
compile-time 145.148 

G picture character 70,182 
Generation 

established on entry to a block 83 
of a variable 84 

GENERIC attribute 61 
defining generic procedure name 76 
entry name 58 

Generic entry name 76 
GET statement 131,96 

attributes deduced 97 
without file or string option 114 

GO TO (compile-time) statement 151,148 
GO TO statement 132 

invalid to transfer control to FORMAT 
statement 130 

terminating a block 83 
transfer of control 44,77,116 
transfering control to statement in DO 

group 128 
Graphics 

for alphabetic characters 13 
for operators 14 
for separators and other delimiters 14 

Group 17 

H picture character 182 
HBOUND built-in function 169 
Heading statement 18 
HIGH built-in function 156 

I imaginary constant representation 27 
I picture character 70,181 
I through N identifier initial letters 

implicit declarations 41,42,60 
Identification of compile-time statements 

145 
Identifiers 15,37 

allocation of 117 
as parameters 40,41 
assignment of attributes 41 
contextual declarations 40,58 
implicit declarations 41 
unqualified 40 

IF (compile-time) statement 152,148 
IF statement 133 

scope of condition prefix 91 
IGNORE option 138,113 
IMAG built-in function 160 
IMAG pseudo-variable 175 
Imaginary arithmetic constant 27 
Imaginary number 

in COMPLEX attribute 54 
Implementation-defined 

area size default value 48 
area size expression 48 
binary value 58 
PL/I collating sequence 15 
entry point identified by OPTIONS 
option 82 

evaluation order of based variable 
bounds, lengths, and sizes 118 

ENVIRONMENr attribute 58 

Index 199 



length of identifiers .15 
lengths and sizes 118 
order of conditions and interrupts 184 
order of initialization for based 
variables 118 

precision attribute defaults 71 
precision of event variable fixed binary 
value, 58 

PRIORITY option evaluated precision 124 
syntax of OPTIONS option-list 136 
tabs for PRINT files 101 
task priority value precision 74 

Implicit declaration 41 
Implicit opening of file 97 

by DELETE statement 125 
IN option 117 

based variable storage 48 
context ual declaration as area variable 

40,49 
with FREE statement 130 

INCLUDE (compile-time) statement 152 
INDEX built-in function 156 
Infix operators 30 

with aggregate operands 34 
INITIAL attribute 62 

assumptions when specified 51,60 
contextual declaration as entry name 40 
in DECLARE and ALLOCATE statements 118 
in locator declarations 67 
initialization of REFER option 
variables 50 

invalid use 54,65 
with area variables 48 
with based variable 50 
with CELL attribute 53 
with LIKE attribute 66 

Initial letter of identifier 
default attributes 41 

Initialization 
(see INITIAL attribute) 

INPUT attribute 63 
Input format 

list-directed 101 
INPUT option 135,96 
Input/output 96 

conditions 185.184 
state:ments 115 

Insertion picture characters 179 
Interleaved arrays 56' 
INTERNAL attribute 60,41 

as default attribute 42 
assumed for parameters 75 
label prefixes 40 
major structure names 23 

Internal name 43 
declaration of 35 

Internal procedure 19 
invoked by procedure reference 75 

Interrupts 91 
CHECK condition 92 
error control and debug statements 115 
investigation of 95~170 
multiple 184 
ON statement 92 

INTO option 138.112.,113 
IRREDUCIBLE attribute 64,46 

200 

as default for ENTRY type identifier 42 
ENTRY attribute implied 57 

with SETS and USES attributes 73 
Irreducible procedure 46 
iSUB defining 55~54 

alignment attributes 47 
parameter as base identifier 75 
with AREA attribute 48 

Iteration 
factor 62 
in format list 107 
specification 62 

K picture character 68,69.,182 
Key 

direct and sequential files 57 
KEY condition 186 
KEY option 

in DELETE statement 125 
in READ statement 138 
in REWRITE statement 114~141 
in UNLOCK statement 142 
specified by KEYED attribute 64 

KEYED attribute 64 
implied by EXCLUSIVE attribute 60 
RECORD attribute implied 97 
SEQUENTIAL and DIRECT files 113 
with direct and sequential files 57 

KEYED option 135 
KEYFROM option 

in LOCATE statement 133 
in WRITE statement 114,143 
specified by KEYED attribute 64 

KEYTO option 138,64 
Keywords 15 

abbreviations of 190 
separating keywords 15 

Known names and labels 44 

Label 17 
array 65 
constant environment 84 
following END statement 18,,128 
prefixes 17#37.39 
statement 28_17.65 
with ENTRY statement 129 
with FORMAT statement 129 

LABEL attribute 65 
defaults for LABEL type identifier 42 

Label variable 65 
as target variable 121 
in GO TO statement 132 
parameter and argument correspondence 

80 
with INITIAL attribute 63 

LBOUND built-in function 169 
Length 

of data directed data fields 106 
(see also String length) 

Length attribute 51 
evaluation with RETURNS attribute 72 

LENGTH built-in function 156 
Levels 

of cells 29,53 .. 
of structures 22.38,66 

LIKE attribute 65 
LINE format item 110 
LINE option 137 



with PRINT attribute 71 
LINENO built-in function 174 
LINESIZE option 135,136 
List of parameters 75 
List- directed 

data lists 99 
input conversion 102 
input format 101 
output format 101 
specification 101 
transmission 98 

List-processing conditions 189~184 
Ioca tor da.ta 28 

defaults for locator type identifiers 
42 

invalid conversion 67 
LOCATE sta.tement 133 

allocating based variable in buffer 87 
attributes deduced 97 
contex1:ual declaration as pointer 
variable 40 

creating based generation 84 
freein9 based variable in buffer 87 
RECORD attribu.te assumed 72 
SEQUENTIAL attribute assumed 57 
setting value of locator variable 67 

Locator qualifier 29,87 
context: U3.1 declaration as pointer 
variable 40,67 

reference to based variable 49,66 
Locator variable 66 

identifying allocated based variable 
generation 118 

invalid format of INITIAL attribute 63 
operators and operands 33 
reference to based variable 50 
setting the value 67 

Locking records 59,114 
READ statement 139 

LOG built-in func·tion 165 
LOG10 built-in function 165 
LOG2 built-in function 165 
LOW built-in function 156 
Lower bound 21,56 

M picture characb~r 70,182 
Major structure 22,23,38 
Major task 

(see Task) 
Manipulation of data 30-36 
Mathematical buiI1:-in functions 163 

as argument in procedure reference 77 
MAX buil t- in func1::ion 160 
Merging of file attributes 97 
MIN built-in function 161 
Minor structure 22,23,38 
Minus sign (-) picture character 70 
Miscellaneous built-in functions 173 
Mixed characteristics in arithmetic 

operations 30 
MOD built-in funct~ion 161 
Mode 26 

assumed attributes 61 
COMPLEX and REA.L attributes 5j 
conversion 30,31 

Modification of source program 
(compile-1:ime) 145 

Multiple allocations 
of same controlled variable 49 

Multiple declarations 39 
Multiple interrupts 184 
MULTIPLY built-in function 161 
Multitasking built-in functions 173 

Name 
assignment of attributes 41 
basic rule on use of 44 
built-in function 15,40 
cell (see Cell) 
condition (see Condition name) 
declared in compile-time procedure 148 
entry (see Entry name) 
establishing identifier as a name 37 
external (see External name) 
file (see File name) 
generic entry 76 
internal (see Internal name) 
Known 44 
procedure 18 
Qualified (see Qualified name) 
Simple 23 
Subscripted 23 
subscripted qualified 24 
to specify scope of 6° 

NAME condition 186,170 
data-directed transmission 104 

Naming 
(see Name) 

NO with condition names 17,91 
NOLOCK option 60,138,139 
NORMAL attribute 47 

as default for various identifier 
classes 42 

assumptions when specified 51,60 
Notation 

constant 11 
syntax 11 
variable 11 

NULL built-in function 172 
providing a pointer value 66 

Null field 
in list-directed input format 101 

Null statement 134,153 
Null string 27 

assigned when no data set user label 
124 

in condition built-in functions 95 
NULLO built-in function 172 

providing an offset variable value 66 
Numeric bit data 67,68 

picture characters 177 
Numeric character data 67,68 

list-directed output 103 
picture characters 177 
precision 70 

Numeric field 25 
conversion to coded form 30 

Numeric picture specification 67 

Object program 
optimization using LABEL attribute 65 

OFFSET attribute 66 
OFFSET built-in function 172 

Index 201 



Offset variable 28,111 
as target variable 121 
contextual declaration as 40,49 
parameter 80 
(see also Locator variable) 

ON condi.tions 184.91 
built.-in functions 170 
in REVERT statement 140 
programmer defined 91,94 
standard action 93 

ON statE!ment 134,92 
contextual declaration of FILE 
attribute 60 

scope of condition prefix 91 
sequence of control 116 
to test action specification 141 

ONCHAR built-in function 170,95 
ONCHAR pseudo-variable 175 
ONCODE built-in function 170.,95 
ONCOUNT built-in function 171.95 
ONFILE built-in function 171,95 
ONKEY built-in function 171,95 
ONLOC built-in function 171.95 
ONSOURCB built-in function 171,95 
ONSOURCE pseudo-variable 175 
On-unit 134 

environment of an activation of 84 
return from 89 

OPEN sta.terrent 135.39,,96 
file attributes in option list 45 
file with RECORD attribute 72 

Opening a file 96 
Operand types 

priority and conversion 33 
Operations 

arithmetic 30,147 
asynchronous 58,87 
bit-string 32 
comparison 33 
concatenation 33 
interrupt 91 
prefix 31 
record transmission 113 
synchronous 87 

Operators 14 
aggregate operands 32 
infix 30 
locator variable operands 67 
prefix 30,31 
priority o~ 36 

Optimization attributes 45 
Option 16 
OPTIONS option 

in BEGIN statement 123 
in PROCEDURE statement 136 

Order 
of evaluation (defining) 56 
row-major 62 

Organization of data 21 
output 

(see Input/output) 
OUTPUT attribute 63 

implied by PRINT attribute 71 
Output format. list-directed 101 
OUTPUT option 135 
OVERFLOW condition 185,184 

disabled by programmer 93 

202 

Overlay defining" string 55 
Overpunch picture characters 70,181 

P format item 138,109 
PAGE format item (P) 138,109 
PAGE option 137 

with PRINT attribute 71 
PAGESIZE option 135~136,138 

with PRINT attribute 71 
Parameter 75 

allocation 81 
area 80 
array 80 
array bounds 57 
array-label variable 80 
as argument 77 
attributes of entry point 57 
cell 80 
correspondence with arguments 79 
entry 80 
explicit declaration as 40~37 
file 81 
label variable 65,80 
offset-variable 80 
pointer-variable 80 
scalar 79 
scalar-label variable 80 
structure 80 

Parameter 1 ist· 
(see Parameter) 

Parentheses 14 
contextual declaration as file name 40 
evaluation of expressions 36 

Pence field 70,183 
PICTURE attribute 67 

instead of CHARACTER attribute 52 
invalid use 51.52~60~71,68 
with RETURNS attribute 72 

Picture characters 177 
(see also PICTURE attribute) 

Picture format item (P) 109 
Picture separators 70 
Plus sign (+) picture character 70 
Point specifier for pictures 178 
POINTER attribute 66 

contextual declaration 51 
providing a pointer value 66 

POINTER built-in function 172 
freeing pointer-qualified variable 130 

Pointer qualifier 66 
Pointer variable 28.49,111 

contextual declaration as 40 
parameter 80 
pointer value assigned 133 
as target variable 120 
(see also Locator variable> 

POLY built-in function 169 
"popped up" storage 49~85.86J117 
POSITION attribute 55,54 
Positioning format items 110 
Positioning statements 139 
Pounds field 7C,182 
Precision 71 

apparent precision 26 
default for arithmetic type identifier 

42 
in arithmetic operations 30.31 



numeric field 25 
of ari,thmetic data 26 
of numeric character variable 
of sterling numeric character 

Precision attribute 71 
PRECISION built-in function 161 
Prefix 

label 17,37,39 

70 
data 

condition (see Condition prefixes) 
operators 30~31,32 

Preprocessor 145 
Primary entry poi.nt 18 
PRINT attribute 71 

as default 11.4 
implied attributes 97 
invalid use 64,72 

PRINT fil(= 
list-directed output tabs 101 

PRINT option 13!:. 
Printing format items 110 
Priority 

of establishment of declarations 41 
of operand types 33 
of operators 36 
of tasks 74,28,89 
value in task variable 74 

PRIORITY built-in function 173,74 
PRIORITY option 

creation of tasks 89 
in CALL statement 123 

PRIORITY pseudo-variable 175,28,74 
task priority 89 

Problem data 25 
attributes 44 

Proced ure 75 
blocks (see Block) 
enviro!~ent of activation of 84 
external 19,75 
function 76 
internal 19,75 
name 18 
recursi ve 49,81 
reference 75 
subrout:ine 76 
termination 139 

PROCEDURE (compile-time) statement 148 
PROCEDURE statement 136 

70 

assumpt~ions due to label prefixes 39,58 
explici.t declaration of parameters 75 
scope of condition prefix 91 
sequence of control 116 
specifying a list of parameters 75 
specifying attributes for function 
value 76 

task variable as parameter 74 
Processing 

asynchronous 28 
PROD built-in function 170 
Program 20 

control 82 
control data 28,42 
dynamic program structure 82 
element 16,18 
execution initiated 82 
interrupt 17 
region 18 
structure 16 
structure stat,ements 116 

switches (event names) 58 
testing 92 

Program checkout conditions 187.184 
Programmer-defined 

entry name as argument 77 
interrupts 92,93 
ON-conditions 91.94,184,189 
ON statement 134 

Programmer-named 
(see Programmer-defined) 

programmer-written function 
returns scalar value 30 

Prologue 82 
pseudo-variables 174 

condition pseudo-variable 95 
push-down stack 86 
"pushed-down" storage 49,85,86,117 
PUT statement 137,96 

attributes dedu,~ed 97 
without file or string option (SYSIN) 

114 

Qualified name 24,39 
subscripted 24 

Qualifier 
locator (see Locator qualifier) 
pointer 66 

R format item 110,130 
R picture character 70,181 
Range of a variable 21 
READ statement 138,96 

allocating based variable 87 
attributes deduced 97 
contextual declaration as pointer 
variable 40 

creating based generation 84 
file with RECORD attribute 72 
IGNORE option 113 
INTJ option 138,112,113 
positioning SEQUENTIAL files 113 
referring to EXCLUSIVE file record 60 
setting value of locator variable 67 
with EXCLUSIVE file 114 

Real arithmetic constant 26 
precision of 26 

REAL attribute 54 
as default attribute 41,42,51,58,61,72 

REAL built-in function 162 
Real number 54 
REAL pseudo-variable 175 
RECORD attribute 71 

associated with event variables 88 
implied by DIRECT and SEQUENTIAL 57 
implied by EXCLUSIVE 60 
transmission of area data 48 

RECORD condition 187 
RECORD input/output 96,111 
RECORD option 135 
Record status statements 115 
Record transmission 111 

operations 113 
statements 112 

RECURSIVE option 81.136 
Recursive procedure 49,81 
REDUCIBLE attribute 64,46 

Index 203 



as default for ENTRY type identifier 42 
ENTRY attribute implied 57 

Reducible procedure 46 
REFER option 50, 

specifying a bound 57 
with ALLOCATE statement 118 

Reference 85 
ambiguous 39 
defined 56 
function 76 
procedure 75 
subroutine 76 
to a qualified name 39 

Region of program (scope) 18 
Release of storage 49.85 
Remote format item 110 
REPEAT built-in function 157 
Repetition factor 

in numeric picture specifications 68 
string 27,62-63 
with picture characters 67 

Repetitive specification in data lists 99 
REPLY option 126 
Rescanning and replacement 145 
Results 

of aggregate operations 34 
of arithmetic operations 30 

RETURN statement 139 
conversion of value specified in 137 
invalid use in ON statement 134 
sequence of control 116 
terminating function procedure 76 
terminating procedure block 83 
terminating subroutine procedure 77 
terminating task 89 

RETURNS attribute 72 
ENTRY attribute implied 57 

REVERT statement 140,94 
REWRITE statement 141,114 

attributes deduced 97 
execution in locking task ~f 60 
RECORD attribute assumed 72 
SEQUENTIAL files 113 
statement sequence in UPDArE file 64 

ROUND built-in function 162 
Row-rna jor order 

assignment of initial constant values 
62 

S picture character 70 
Scalar 

expressions 30 
items 21 
parameter 79 
variables 21 

Scale 
conversion 30,32 
differing operands 30,31 
FIXED and FLOAT attributes 60 
invalid use of PICTUHE attribute 68 
of arithmetic data 25 
of arithmetic variables 60 

Scale factor 25,71 
FIXED and FLOAT attributes 60 

Scaling factor (F) 68,182 
Scanning compile-time proceJures 148 
Scope 

204 

of compile-time name 147 
of condition prefix 91 
of declarations 42,41 
of declarations within a block 
of external names 42 
of names 42,60 

Scope attributes 46,60 
as attributes of data 44 
AUTOMATIC as default attribute 
INTERNAL default for event names 
invalid with parameter 75 

SECONDARY attribute 72 

83 

51 
58 

assumptions when specified 51,58 
Secondary entry point 18 
Self-defining data 

using REFER option 50 
separating keywords 15 
Separators 14,182 
Sequence of statement control 116 
SE2UENTIAL attribute 57 

file 113 
implied by BACKWARDS attribute 51 
RECORD attribute implied 97 
with UPDATE attribute 64 

SEQUENTIAL option 135 
SEr option 

allocating based variable 87 
assumed to specify locator variable 118 
contextual declaration as pointer 
variable 66,40 

in LOCATE statement 133 
in READ statement 138 
setting value of locator variable 67 

SETS attribute 72,46 
defaults for ENrRY type identifier 42 
ENTRY attribute implied 57 
with GENERIC attribute 61 
with optimization attributes 64 

Shillings field 70,183 
SIGN built-in function 162 
Sign characters in numeric picture 
specification 68~69,180 

Signed constant 21 
SIGNAL statement 141,115 

contextual declaration as 
condition-name 40 

sequence of control 116 
Significant allocations 48 
Simple name 23 
Simple defining 54 

alignment attributes 47 
parameter as base identifier 75 
with AREA attribute 48 

SIN built-in function 165 
SIND built-in function 165 
SINH built-in function 165 
Size (see Area size) 
SIZE condition 185,184 

enabled by programmer 92 
SKIP format item 110 
SKIP option 131 

in GET statement 131 
in PUT statement 137 

SNAP option 134 
Spacing format item (X) 110 
Special characters 13 
Specifiers 

picture character 178 



SQRT built-in function 166 
Standard system action 93,184-189 

conditions 189,~ 184 
reestablishinq action specification 140 
storage allocation 116 
stream transmission 111 

statements 13,,16,115 
alphabetic list of 116 
assignment 16,,115 
classification 115 
compile-time 148 
compound 17 
control 115 
data declaration (see DECL~RE 

statement) 
data specification 
data t.ransmisaion 
error control and 
file preparation 
heading 18 
identifier 15,,16 
input/output 115 
label data 28.17 
null :l6 
positioning 1.39 

115 
115 

debug 
115 

program struct~ure 116 
record status 115 
record transmission 112 
sequence of control 116 
simple 16 

STATIC attribute 49 

115 

defaul1:. for aZ:'ithmetic type identifier 
42 

invalid use of INITIAL attribute 63,,65 
invalid with parameter 75 
use with label variables 65#63 
with a string 52 
with al~ray bounds 57 
wi th i t:eration factor 62 

Static storage 49,,85 
allocation of 85 
specification of area size 48 

static variable 49 
shared between tasks 90 

STATUS bui.lt-in function 173 
accessing status value of event 
variable 58,88 

STATUS ps€!Udo-variable 176 
as target variable 121 
to set status value of inactive event 
variable 59 

Status value 58,88 
on execution of CALL statement 124 
on file closure 124 
on return from FINISH on-unit 129 
on sub-task termination 140 
on task: termination 89,,124 

sterling pictures 70,182 
fixed-point constants 26 

STOP statement 11~2 
sequence of control 116 
terminating subroutine procedure 77 
terminating task 83~89 

Storage 
ALIGNED and UNALIGNED attributes 47 
allocation of 48.49,83 
allocation statements 116 
AREA att:ribute 48 

attributes (see Storage class 
attributes) 

CELL attribute 52 
classes 85 
control of allocation of 85 
economy 47 
efficient storage not required 72 
equivalence 52 
for allocation of based variables 48 
"popped-up" 49 
"pushed-down" 49 
release 49,,85 
SECONDARY attribute 72 
speed of access 47 
to specify 49 
stacking 49 

storage class attributes 49,85 
assumptions when specified 61 
for a cell at level 1 53 
structures 23 

Stream 
data specifications 99 
transmi s sion 98 
transmission statements 111 

STREAM attribute 71 
STREAM input/output 96.,111 

data specifications 99 
STREAM option 135 
STRING built-in function 157 
String data 27 

attributes 44 
String data 27 

attributes 44 
(see also Bit attribute., Bit string., 
Character attribute., Character string> 

String handling built-in functions 155 
String length 51,27 

asterisk in ENTRY attribute 79 
declared with based variable 50 
evaluation in ENTRY attribute 58.,.79 
evaluation in RETURNS attribute 72 
in ALLOCATE statement 117 
in DECLARE statement 117 
invalid use of STATIC attribute 49 
parameters and arguments 79 
of simple defined string 55 

STRING option 
in GET statement 131 
in PUT statement 137 

string variables 28 
STRINGRANGE condition 187",184 

enabled by programmer 92 
in defined data 54 

Structure 22 
ABNORMAL and NORMAL attributes 47 
arrays of 22 
as data-list element 100 
attributes of 23 
declaration of 38 
default attributes 42 
evaluation of expressions 36 
expressions 34 
generation of variable 84 
INITIAL attribute 62 
list-directed input format 101 
param et er 80 
storage class attributes 23,,49 
table of operands and results 35 

Index 205 



variable in USE or SETS list 73 
with LIKE attribute 65 

Structure (basic) of a program 16 
Structure (basic) of PL/I 13 
Subfield 

of picture specification 67,68 
Subroutine 

procedure 76 
reference 76 
termination 77 

Subscripted name 23 
qualified 24 

SUBSCRIPTRANGE condition 187,184 
enabled by programmer 92 
in defined data 54 

Subscripts 23 
SUBSTR built-in function 147,157 
SUBSTR pseudo-variable 176 
'Sub-task. (see Task) 
EUM built-in function 170 
Suppression characters 68-70 
SWitches (event names) 58 
Synchronizing asynchronous operations 88 
Synchronous operations 87 
Syntax notation 11 
SYSIN 114 

assumed in GET statement 131 
SYSPRINT 114 

assumed in PUT statement 137 
System 

action (see Standard system action) 
interrupt 93 

SYSTEM i.nterrupt action specification <)3 

T picture character 70,181 
~~N built-in function 166 
TAND built-in function 166 
TANH built-in function 166 
Target variable 119 
Task 88 

asynchronous 87 
attached task 89 
attaching task 89 
creat.ion of 89 
dynamic descendance of 90 
EVENT attribute 58 
identifier default attrihutes 42 
locking 59,114 
options 89 
setting value of active event variable 

59 
sharing data 90 
sharing files 90 
protection from simultaneous updating 

114 
suspended execution of controllinq task 

125 
tprmination of 83,89,129 (EXIT) 
to investigate current state of 58,173 
variable 28, 40 

TASK attribute 74 
TASK option 

in CALL statement 123 
contextual declaration as task variable 

It 0 
creation of tasks 89 

Termination 

206 

of blocks 82,85,132(GO TO) 
of data-directed data 104 
of list-directed data 101 
of preprocessor scan 145 
of procedure 139 
of tasks 89,129,142 

Testing a program 92 
THEN clause 

in %IF statement 
in IF statement 133 

TIME built-in function 174 
TITLE option 96,135 
To clause 126,127 
Transfer of control by GO TO statement 

44,47 
by GO TO statement 44,77 

Transmission 
data-directed 98 
edit-directed 99 
list-directed 98 
of data-list elements 99 
record 111 
statements 111 
stream 98 

TRANSMIT condition 186 
TRUNC built-in fUnction 162 
Type conversion 33 

UNALIGNED attribute 47 
as default attribute 42 
assumptions when specified 51,60 
LIKE attribute expansion 66 
simple defining 54 
with RETURNS attribute 72 

UNBUFFERED attribute 52 
UNBUFFERED option 135 
UNDEFINEDFILE condition 186,97 
UNDERFLOW condition 185,184 

disabled by programmer 93 
Unierlining of language elements 12 
UNLOCK statement 142,60,114 

attributes deduced 97 
implies RECORD 72 

Unlocking records 142,60,114 
CLOSE statement ~24 

DELETE statement 125 
READ statement 13q 
termination of task 89 

Unsigned constant 21 
UNSPEC built-in function 158 
UNSPEC oseudo-variable 176 
Unqualified identifiers 40 
UPDATE attribute 63 

implied by EXCLUSIVE 60 
RECORD implied 97 

UPDATE option 136 
Update-in-place mode 64 
Upper bound 21,56 
USES attribute 72,46 

defaults for ENTRY type identifier 42 
ENTRY attribute implied 57 
with GENERIC attribute 61 
with optimization attributes 64 

V picture character 68,69 
Value 



completion .28,58 
function 76 
of condition built-in functions 95 
statuB 28,58 

Variables 
abnormal 45 
allocation of 84 
altering values of 47 
area (see Area' variable) 
arithmetic (see Arithmetic variable) 
array (see Arrays) 
automatic (see Automatic variable) 
based (see Based variable) 
compile-time 146,147 
controlled (see Controlled variable) 
defined (see Defining) 
dummy (see Dummy argument) 
element 21 
event (see Ev'ent variable) 
generation of 84 
label (see Label variable) 
locator (see Locator variable) 
notation 11 
offset (see Offset variable) 
pointer (see Pointer variable) 
prologue 82 
range of 21 
scalar 21 
statement-label 28 
static (see Static variable) 
string (see String data and string 

leng1:h) 
structure (see Structure) 
targe1: 119 
task 28,40,74 
tRrmination of task 89,90 
type of storage allocation for 49 

VARYING attribute 49 
concatenation 33 
invalid for based variable 50,54 

invalid with defined items 54 
string scalar assignment rules 120 

WAIT statement 142 
completion of event 59,88,89 
contextual declaration as event 
variable 40,58 

multiple interrupts 184 
synchronizing asynchronous operations 

88 
WHILE clause 126,128 
WRITE statement 143,96,114 

attributes deduced 97 
freeing based variable in buffer 87 
in locking task 60 

x format item 110 
X picture character 67 

Y picture character 70 

Z picture character 70 
Zero suppression characters 68,70,179 
ZERODIVIDE condition 185,184 

disabled by programmer 93 

1 picture character 68,69 
2 picture character 68,69 
3 picture character 68,69 
48-character set 191 
60-character set 13 
6 picture character 182 
7 picture character 182 
8 picture character 182 
9 picture character 67,68,70 

Index 207 



208 



Abnormal variable 45 
Action specification 93 
Activation 82 
Active event variable 59 
Pdditive attributes 96 
Aggregate expressions 34 
Allocation 83 
Allocated variable 84 
Alphabetic characters 13 
Alphameric characters 13 
Alternative attributes 96 
l\rea 48 
Area variable 29 
Argument 77 
Arithmetic conversion 31 
Arithmetic data item 25 
Arithmetic operators 14 
Arithmetic variable 21 
Array 21 
Array of structures 22 
Assignment statement 119 
Asynchronous operations 97 
Attached task 89 
Attaching task 89 
Attribute 15 
Automatic storage 49 

Base 25 
Based storage 49 
Begin block 18 
Bit 13 
Bit string data 27 
Bit string operators 14 
Block 18 
Bounds 56 
Buil t-in function 76 

Call 124 
Cell 29 
Character string 27 
Coded arithmetic data 25 
comment 16 
Comparison operaitors 33 
Compile time 14'5 
Complex 54 
Compound statement 17 
Concatenation 33 
Conditions 16 
Cond i tion name 17 
Condition prefix 17 
Constant 21 
Constant statement-label 28 
Contextual declaration 40 
Controllled storage 49 
Conversion 30 
Cross section of an array 23 

Data 21 
Data-directed data 104 

INDEX OF DEFINITIONS 

Data-directed transmission 
Data item 21 
Data list 99 
Data set 96 
Deactivate 149 
Declaration 35 
Default 41 
Delimiter 14 

98 

Designator, statement label 28 
Digit and point specifier 178 
Drifting character 180 
Dummy argument 77 
Dynamic descendance 83 
Dynamic encompassing 83 

Edit-directed data 106 
Edit-directed transmission 
Element data item 21 
Element variable 21 
Entry name 18 
Entry point 18 
Event 88 
Event variable 28 
Explicit declaration 37 
Exponent specifier 182 
Expression 30 
External declaration 42 
External name 19 
External proce1ure 19 

Field, numeric 2S 
File name 45 
Format item 107 
Format list 107 
Function procedure 76 
Function, built-in 154 
Function referencp 76 

Generation of a block 83 
Generation of a variable 84 
Generic name 76 
Group 17 

Identif i er 15 

99 

Imaginary arithmetic constant 27 
Implicit declaration 41 
Inactive event variable 59 
Infix operation 30 
Input/output 96 
Insertion character 179 
Interleaved array S6 
Internal procedure 19 
Internal name 43 
Internal procedure 19 
Interrupt 91 
Invoking 123 
Iteration factor 62_107 
Iteration specification 62 

Index of Definitions 209 



Key 57 
Keyword 15 
Known 44 

Label 17 
Leve 1 number 22 
List-directed data 101 
List-directed transmission 98 
Locator data 28 

Major structure 22 
Major task 88 
Minor structure 22 
lVjode 26 
Multiple declaration 39 
Multitasking 88-91 

Name 23 
N8tation constant 11 
Notation variable 11 
Null string 27 
Numeric bit data 67 
Numeric character data 67 
Numeric field 25 

Offset variable 28 
On-condition 91 
On-unit 134 
Operand 30 
Cperators 14 
option 16 

Parameter 7f) 
Pict ure 67 
Pointer variable 28 
"popped up" 86 
Precision 71 
Prefix 17 
Prefix operation 30 
Preprocessor 145 
Primary entry point 
Problem data 2f) 
Procedure 75 
Procedure block 18 
Procedure name 18 
Procedure reference 
Program 20 
Program control data 
Prologue 82 
Pseudo-variable 174 
Push-down stack 86 
"pushed down" 86 

210 

18 

75 

28 

Qualified name 24 

Range of a variable 21 
Record 71 
Recursive procedure 81 
Repetitive specification 99 

Scalar expression 30 
Scalar item 21 
Scaling factor 182 
Scale of arithmetic data 25 
Scope of declaration 42 
Scope of external name 42 
scope of name 42 
Secondary entry point 18 
Simple oefining 54 
Simple name 23 
Simple statement 16 
Standard system action 93 
Statement 16 
Statement identifier 15 
Statement-label data 28 
Statement-label designator 28 
statement-label variable 28 
static storage 49 
sterling pictures 182 
Storage class 85 
stream 71 
String 27 
string length 27 
String variable 28 
structure 22 
Subroutine procedure 
Subroutine reference 
Subscript 23 
Subscripted name 23 
Subscrirtei qualified 
Sub-task 88 
Synchronous operati ons 

Task 88 
Task variable 88 
Termina t. ion of blocks 
Termination of tasks 
Type conversion 33 

Variable 21 
Varying length 51 

76 
76 

name 

87 

82 
89 

Zero suppression character 

2ft 

179 



READER'S COMMENT FORM 

IBM Sysb~m/360 

PL/I Lan9uage Specifications 

• How did you use this publication? 

As a reference source 
As a classroom text 
As a self-study text 

D 
D 
D 

• Based on your own experience, rate this publication ... 

As a reference source: 

As a text: 

• What is your occupation? 

Very 
Good 

Very 
Good 

Good Fair 

Good Fair 

Poor 

Poor 

Very 
Poor 

Very 
Poor 

Y33-6003-0 

• We would appreciate your other comments; please give specific page and line references 
where appropriate. If you wish a reply, be sure to include your name and address. 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



Y33-6003-0 

YOUR COMMENTS PLEASE .... 

This SRL bulletin is one of a series which serves as reference sources for systems analysts, programmers 
and operators of IBM systems. Your ans'wers to the questions 01'1: the back of this form, together with your 
comments, will help us produce better publications for your use. Each reply will be carefully reviewed by 
the persons responsible for writing and publishing this material. All comments and suggestions become 
the property of IBM. 

Please note: requests for copies of publications and for assistance in utilizing your IBM system should be 
directed to your IB~1 representative or to the IBM sales office serving your locality. 

fold fold 
••••• 0 ................................................................................................................. . 

Attention: Department 813 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY .. 

IBM CORPORATION 

112 EAST POST ROAD, 

WHITE PLAINS, N.Y. 10601. 

FIRST CLASS 
PERMIT NO. 1359 

WHITE PLAINS, N.Y. 

....................................... "41 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• : 

fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.l06ot 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 

fold 
:p 
5' 
CD 
Q. 

5' 

~ 
CJ 
?' 

~ 
(.., 
I 

0-

8 
C'.IJ 
I 

0 



Y33-6003-0 

® 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 

~ 
eM 
I 

0-

§ 
I 
o 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	replyA
	replyB
	xBack

