File Number S360-29
Form ¥33-9010-0

Program Logic

IBM Svstemn/360

Disk and Tape Operating Systems
PL/I Subset Language

Program Logic Manual

Program Numbers:
360 N-PL-464 (DOS)
360 N-PL-410 (TOS)

Volume 10f 3

This publication provides information on the internal
logic of the IBM System/360 DOS/TOS PL/I compiler. It
is intended for use by persons involved in programming
maintenance and by system programmers who wish to alter
the program design. The information contained herein
is not required for the use of, and the operation with,
the PL/I compiler. Therefore, distribution of this
publication is restricted to users with the aforemen-
tioned requirements.

The publication is divided into three volumes. Vol-
ume 1 contains the description of the compiler phases;
volumes 2 and 3 contain the corresponding flow charts.
The form numbers of the three volumes are:

Volume 1: Y33-9010
Volume 2: Y¥33-9011
Volume 3: ¥33-9012

All information regarding the library subroutines of
the DOS/TOS PL/I compiler is contained in the publica-
tion IBM System/360, Disk and Tape Operating Systems,
PL/1 Subset-Library Routines, Program Logic Manual,
Form ¥33-9013.

The reader must be thoroughly familiar with the IBM
System/360 Disk and Tape Operating Systems and with the
PL/I Subset language. A list of all publications that
provide pertinent information is contained in the
introduction to volume 1 of this PLM.

Restricted Distribution

RESTRICTED DISTRIBUTION: This publication is intended primarily for use
by IBM personnel and may not be made available to others without the
approval of local IBM management.

First Edition

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and 1line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for readers’
comments. If the form has been removed, comments may be addressed to

IBM Laboratories, Programming Publications, 703 Boeblingen/Germany,
P.O. Box 210.

© International Business Machines Corporation 1967

/

PL/I PLM 8

IBM Confidential

€

C

CONTENTS

HOW TO USE THIS PUBLICATION.
ORGANIZATION OF THE PUBLICATION. . . .

IBM SYSTEM/360 DOS/TOS PIL/I PLM. .
Introduction. « « o« « « « ¢ o o o &

LOGICAL PARTS OF THE COMPILER.
THE TEXT STRING DURING COMPILATION . .

COMPILER INTERFACE +. ¢« o« o o o o o o &«
Interface Routines used by Compiler
PhasSesS o« o o ¢« o ¢ o ¢ o o o o o &
Logical IOCS for the TAPE Version .
Logical IOCS for the DISK Versions.

PHASES PL/IA00, A00D, A10
(INITIALIZATION) == BRe ¢ o o o o o o

PHASE PL/IA25 (REPLACEMENT OF
KEYWORDS) == BA v o o « o « o« o o « «
Description of Routines

PHASE PL/IA30 (REPLACEMENT OF
IDENTIFIERS) == CA. o o o o o o o o «
Description of Routines . . « « «

PHASE PL/IA35 (PICTURES) -- CZ
Output FormatS. « « o o o o o o o @
Elements of Picture Strings
ExampleS. o + o o o o o o o o o o
Description of Routines

PHASE PL/IAU45 (CHARACTER STRINGS) --
EMe 2o o o o o o ¢ o o o o o o o o o @

Description of Routines

PHASE PL/IA50 (BLOCK STRUCTURE) -- FM.
Description of Routines

PHASES PL/IA60, A65 (SYNTAX CHECK I

AND II) -=- GL, GW o ¢ ¢ « o o o o o &«
Functional Description. . « . « « »
Description of Routines

PHASE PL/IB10 (DECLARATION SCAN I) =--
HMe o o o o o o o o o 2 o o o o o o «

Description of Routines

PHASE PL/IB15 (DECLARATION SCAN II) --
IMe & 4 e ¢ o o o o o o o o o o o o o

Description of Routines . . . « . .

PHASE PL/IB20 (SYMBOL TABLE
CONSTRUCTION I) == KA o ¢ o o o o o o
Description of Routines . . « « . o«

PHASE PL/IB25 (FILE DECLARATIONS) --

LEe o ¢ ¢ o ¢ o o o o o o o o o o o «

13
18
20
26

33

34

36
38

54
55

57
57

62
63
(L

67
67

70

73
74

79

PHASE PL/IB30 (SYMBOL TABLE
CONSTRUCTION II) -- MA. ¢ o« « o o «
Description of Routines

PHASE PL/IB4O (STRUCTURE MAPPING) --
MZe ¢« o o o ¢ o o o o o o o o o o o

Description of Routines

PHASE PL/IB70 (CONTEXTUAL
DECLARATIONS) == OA + ¢ o o o o o o
Communication with Other Phases .
Description of Routines

PHASE PL/IB75 (EXTERNAL ENTRY NAMES
FOR IMPROPERLY GENERATED BUILT-IN
FUNCTIONS) == OR:¢ o o o o o o o o o

Description of Routines

PHASE PL/IB80 (IMPLICIT DECLARATIONS)
“= PR i i it e e e e e e e e e e
Description of Routines
Subroutines ¢ ¢ ¢

PHASE PL/IB90 (PRESTATEMENT
GENERATION) == QA ¢ ¢ o o o o o o =«
Description of Routines

PHASE PL/IB92 (ATTRIBUTE TABLE
COMPRESSION) == RBue « o o o o o o o
Description of Routines

PHASE PL/IB95 (ARRAY TABLE
CONSTRUCTION) == SA o o o o o o o o
Description of Routines

PHASE PL/IB97 (EXTERNAL NAME TABLE
CONSTRUCTION) -- SM . o« & « &
Description of Routines
Subroutines . . . ¢ ¢ ¢ ¢ ¢ ¢ o .

PHASE PL/IC00 (SYMBOL TABLE LISTING)
"= TM ¢ ¢ e e e e e o e o o o o s

Description of Routines

PHASE PL/IC25 (IF STATEMENT) =-- TZ .
Statements and Macros put out by
C25. o o ¢ o o o o o o o o o o =
Description of Routines

PHASE PL/IC30
== WA ¢ ¢ ¢ o o o @
Description of Routines

PHASE PL/IC35 (BLOCK SORTING) -- VA,
VBe o o ¢ o o o o o o o o o o o o «

Description of Routines

PL/IC50 (I/O SCAN I) -- XB, XC . . .
Description of Routines

PHASE PI/ICS55 (I/0 SCAN II) --
Description of Routines

.

(PROCESSING CONSTANTS I)

.

. 86
. 89

. 92

. 98

.100
.101
.103

. 107
.107

.109
.109

<111
<111

.113
.113
<114

127
. 127

. 131
.132

.138
. 140

PL/I PLM 8

IBM Confidential

PHASE PL/IC60 (I/O SCAN III) -- ¥YS, YT
Description of Routines . « « « . .

PHASE PL/IC65 (I/0 SCAN IV) -- $A, $B.
Description of Routines . « « « «

PHASE PL/IC85 (DO STATEMENT I) -- $0 .
Description of Routines

PHASE PL/IC86 (DO STATEMENT II) -- 29.
Functional Description. « « « « . .
Description of Routines . « . « « &«

PHASE PL/IC95 (NEW INTERFACE) -- AV. .
New Interface . . « ¢« ¢ o ¢ o o o «

GENERAL DESCRIPTION OF PL/I PHASES D00
S D11 v 4 4 e e e et e e e e e e e
Input o ¢ o o o o ¢ ¢ o o o o o o
Common Service Routines
Buffer Concept and Phase Layout . .

PHASE PL/IDOO (STATEMENT
DECOMPOSITION) -- AZ, BA:. o« o « o« =«
Description of Routines

.

PHASE PL/ID05 (CONVERSION, PRECISION,
STORAGE TYPE) == DC ¢ o o« o« o o o &«
Description of Routines . . . « . .

PHASE PL/ID10 (MACRO GENERATION I) --
EPe o o o o o o o o o o o o o o o
Part 1 of D10 == EP v ¢ « o o «
Part 2 of D10 (PREMAC) -- GF. .
Part 3 0f D10 & ¢ ¢ o o o o « &

PHASE PL/D11 (MACRO GENERATION II) --
HMe ¢ o o o o o 6 o o o o o o o o o

Description of Routines

PHASE PL/ID15 (EVALUATION OF
SUBSCRIPTS) == JBA ¢ o o o o o o« o o @
Description of Routines . . « « .« &«

PHASE PL/ID17 (LIBRARY CALLS FOR
BUILT-IN FUNCTIONS I) -- LA . .
Built-in Functions Processed.
In-Line Functions . . « « « &
Description of Routines . . .

PHASE PL/ID20 (BUILT-IN FUNCTIONS II)
== OK & ¢ o ¢ e o o o o o o o o o o

Description of Routines . «. « « + &«

PHASE PL/ID4O (ON, SIGNAL, REVERT, AND
STOP) == 00, OU v v o o v v o« o o« « .
Functional Description.
Description of Routines . . . « . .

PHASE PL/I D70 (PROCESSING CONSTANTS
II) == PK ¢ o o o o o o o o o o« o o o

PHASE PL/ID75 (GENERATION OF I/0
MACROS I) == QP v v v o o o o o o « &«

PHASE PL/ID80 (GENERATION OF I/O
MACROS II) == RFe o o o o o o o o o o«

. 144
. 145

. 148
. 148

. 151
. 153

. 155
. 157
. 158

.161
.161

.163
.163
172
<174

175
175

. 180
. 180

.188
.188
.189
. 194

197
.198

.205
.209

.213
.214
.219
.220

.225
.226

.230
.230
.234

L4 238

246

.249

PHASE PL/IE25 (ERROR DIAGNOSTIC)

Description of Routines . .

GENERAL DESCRIPTION OF THE GENERATOR

-- sa

PHASES (PL/IES50, PL/IE60, PL/IE61).
Model-Instruction Dictionary.

Format of the Instructions.

The Macros and the Generated Code

PHASE PL/IE50 (CODE GENERATION I)

TRAe o o o o o o o o o o o o o

Description of Routines . .

PHASE PL/IE60/61 (CODE GENERATION II)

== UA, UB . ¢ ¢« ¢ o o ¢ o o« &
Description of Routines . .

PL/IF25 (SORTING CONSTANTS AND
VARIABLES) == W9. ¢ o « & « &
Description of Routines . .

PHASE PL/IF35 (OPTIMIZATION OF
CONSTANTS) == YAu o o o o o &
Storage Areds o« « o o o o o
Description of Routines . .

PHASE PL/IF75 (STORAGE ALLOCATION)

Y0uo o o ¢ o o o o o o o o o &«

Description of Routines . .

PHASE PL/IF90 (BUILDING OF OFFSET

TABLE) == BA. ¢ v o o o o o
Functional Description. . .
Description of Routines . .

GENERAL DESCRIPTION OF PHASES F95

G55 . .+ « .+ . .« .
Phases F95 - G15. . .
Phases G20 - G55. . .
Phases G20 - G55. . .

o o
e o
e o

3
.
.

.
.
3

PHASE PL/IF95 (HANDLING OF OFFSETS)

ANe o o e o e o o o o o o o «
Functional Description. . .
Description of Routines . .

PHASE PL/IGO0 (LABEL HANDLING)
Description of Routines . .

PHASE PL/IGO1 (LABEL OFFSETS)

PHASE PL/IG15 (FINAL OFFSET
PREPARATION) -- CH. .« « « « &

PHASES PL/IG17, B, D, E, R, S
GENERATION) -- DJ « « o « . .

PL/IG17 (CARD, PRINT, UNBUFFERED

FILES) « « o o « « o o o o « =
Card FileS. « o o o o «
Print Files . ¢« o« « « &
Unbuffered Tape Files .
Unbuffered Disk Files .

PL/IG17B {(Buffered Tape Files)

.

(FILE

.

-- BF

-- CA.

. .

¢ o o o

e s s o o

PL/IG17D, E (Buffered Consecutive Disk

FileS o o o o o o o o o o o «

251
.252

.254
.255
.258
.259

.285
.285

.286
.286

.288
.289

293
.293
294

.296
<297

.300
300
.301

.305
.305
.305
306

307
.308
310

.313
.315

-319

.320

.328

.329
329
330
330
.331

«331

333

R

PL/I PLM 8

IBM Confidential

PL/IG17R, S (Regional Disk Files). . . .334 PHASE PL/IG40 (LISTING OF COMPILER
OUTPUT) == GF « o« o o o o o « « o « o 2349

PHASE PL/IG20 (FILE MODULE) -~ DP. . . .335
PHASE PL/IGS5S (FINAL OUTPUT) -- HA . . .355

PHASE PL/IG25 (GENERATION OF ESD

CARDS) == EHe o « o o o o o o o o« o » 2339 APPENDIX A. SYNTAX NOTATION OF PL/I
Description of Routines 340 INPUT STREAM. o« « o o = o « o« o « « o 2358

PHASE PL/IG30 (GENERATION OF TXT AND APPENDIX B. SYNTAX NOTATION OF PL/I
RLD CARDS) == FHe 2 o o o o » o o« o« o« o3U2 OUTPUT STREAM o & o o o o o o o « « « 366
PHASE PL/IG31 (FINAL DIAGNOSTIC) -- GA .348 APPENDIX C. LIBRARY ROUTINES374

APPENDIX D. DTF TABLES . . . « «376

INDEX. . v v v 4 v v v v o o o o« o o o J419

~_

N

PL/I PLM 8

IBM Confidential

«

In the majority of cases, a PLM is used to
analyze a specific error that caused a
compile-time dump or an erroneous result.
The following is therefore intended to
assist the programmer in obtaining from
this dump all information he requires to
locate the specific section of the PLM in
which he is interested. Using the descrip-
tive text, the flow charts, and the program
listing, he can then find out what error
caused the compiler to produce the dump or
the erroneous result so that he may take
the appropriate corrective action.

Conventions on Register Usage

1. If an interface routine is called,
registers 0 and 1 serve as parameter
registers (refer to the description of
the individual interface routines in
the section Compiler Interface).

2. Register 9 serves as input area reg-
ister for IJSYSIN during phases A00,
AOOD, and A25.

3. Register 10 serves as output area reg-
ister for IJSYSPH during phases A00,
AOOD, and G55 (for punching).

4. Register 11 serves as output area reg-
ister for IJSYSLS during all listing
phases.

5. Register 12 is used for any reference
to the communication region.

6. Register 13 is not used by the phases,
but as save area register for LIOCS.

7. Register 14 serves as return register
in case of subroutine calls.

8. Register 15 is used both as base reg-
ister in the phases and as entry point
register when calling a subroutine.

Entry Points in the Communication Region

HOW TO USE THIS PUBLICATION

register 14: points to the routine
that was last active.

register 15

register O

register 1

register 2z
K5PH: This 8-byte area normally contains
the name of the phase currently in
storage. The phase name is stored
as follows:

P L / I x X x b
D7 D3 61 CY9 yy yy yy 40

The last four bytes contain the
actual phase name, e.g., E25 or, in
hexadecimal notation, CS5F2F540.
Phases D00, D05, D10, and D11 form
an exception. For these phases,
the name can be found at X*'108°
(register 12).

It should be noted that the actual
phase currently in storage may be
either C95 or D11 if KS5PH contains
the name C95, To determine which
phase is actually in storage,
locate the start address of the
phase and compare it with the list-
ing.

If the contents of KTETA are less
than those of KTETA+4, SYS002 is
currently used as text input medium
and SYS003 as output medium,

KTETA:

IJKMTS: Contains the start address of the
table space.

IJKMBL: Contains the buffer length for text
1/0.

IJKMBS: Contains the start address of the
buffer area.

IJXA0U4: Is the address of the table direc-

Register 12 points to the beginning of the
communication region. The absolute address
of entry points in the communication region
can be found in the Linkage Editor storage
map.

The following entry points in the com-
munication region are of interest in case
of a compile-time dump:

KSAVE1: This area contains return addresses
of the last interface call in the
following order:

tory (TABTAB) .

For detailed information on the format
of the communication region refer to the
section Compiler Interface.

Note: The interface routines are used by
all phases. Therefore, they are not des-
cribed in each phase, but in the separate
section Compiler Interface. For a list of
all interface routines refer to Figures 7
and 8 of that section. The names of inter-
face routines start either with IJK or Z.

How to Use This Publication 7

PL/I PLM 8

IBM Confidential

ORGANIZATION OF THE PUBLICATION

Due to its size, this book has been divided
into three volumes. For the reader's con-
venience, volume 1 contains all of the
descriptive text, whereas volumes 2 and 3
contain the flow charts. Thus, the text
and the corresponding flow chart (s) may be
used synoptically. The form numbers of the
three volumes are as follows:

Volume 1: ¥33-9010
Volume 2: ¥33-9011
Volume 3: ¥33-9012

The individual phases are presented in
the order of their appearance within the
compiler., The compiler interface (which,
most probably, will have to be looked up
quite frequently in many of the phases) is
described in a separate section to make it
stand out. The appendices provide ref-
erence information taken out of the corres-
ponding phase description to improve the
readability of the text and to make the
information easily accessible.

The heading of each phase description
gives the phase name, the function (in
parentheses) , and -- separated by two dash-
es -- the identification of the correspond-
ing general flow chart, e.g.,

PHASE PL/IA45 (CHARACTER STRINGS) -- EM

In the description of the individual
routines of a phase, the flow chart for the
routine, if any, is indicated by the flow
chart identification, separated from the
routine name by two dashes, rom the routine
name by two dashes, e.g.,

INIT1 -- XY

The use of the individual flow chart
symbols is explained in detail at the
beginning of each of the flow chart
volumes.

Figures are numbered sequentially,
starting at 1 in each section.

Related Publications

PL/I Subset Language Specifications, Form
C28-6809

IBM

IBM

IBM

IBM

IBM

IBM

IBM

IBM

IBM

IBM

IBM

IBM

IBM

/\\

~

System/360, Disk and Tape Operating
Systems, PL/I Programmers Guide, Form
C24-9005

System/360, Disk and Tape Operating
Systems, PL/I Subset-Library Routines,
Program Logic Manual, Form ¥33-9013

System/360, Disk Operating System, PL/I
DASD Macros, Form C24-5059

System/360, Disk Operating System,
System Control and System Service
Programs, Form C24-5036

System/360, Tape Operating System,
System Control and System Service
Programs, Form C24-5034

System/360, Disk Operating System,
Supervisor and Input/Output Macros,
Form C24-5037

S

System/360, Tape Operating System,
Supervisor and Input/Output Macros,
Form C24-5035

System/360, Disk Operating System,
System Generation and Maintenance,
Form C24-5033

System/360, Tape Operating System,
System Generation and Maintenance,
Form C24-5015

System/360, Disk Operating System,
Performance Estimates, Form C24-5032

System/360, Tape Operating System,
Performance Estimates, Form C24-5020

System/360, Disk Operating System,
Operating Guide, Form C24-5022

System/360, Tape Operating System,
Operating Guide, Form C24-5021

PL/I PIM 8

IBM Confidential

.

INTRODUCTION

The DOS/TOS PL/I compiler is designed to
compile source programs written in the PL/I
Subset language. A set of library subrou-
tines that are part of the component is
used as control routine for the execution
of PL/I programs in the DOS/TOS environ-
ment.

The language implemented is the language
described in the SRL publication PL/I Sub-
set Language Specifications, Form C28-6809.
Further restrictions and implementation-
defined features are listed in the SRL
publication IBM System/360 Disk and Tape
Operating Systems, PL/I Programmer's Guide,
Form C24-9005. This publication also des-
cribes the Disk and Tape Operating Systems
as the environment of the PL/I compiler,

The DOS/TOS PL/I compiler is a multi-
phase, multi-pass compiler. Input to the
compiler is read from the logical unit
SYSIPT. The compiler output is produced on
the logical unit SYSLST. Object programs
are produced on SYSPCH or SYSLNK. Three
work files are used by the compiler. all
three work files may be either on tape (DOS
and TOS) or on disk (DOS only). On DOS, a
second compiler version that allows SYSIPT,
SYSLST, and SYSPCH to be 2311 DASD extents
is available. The version used is
determined at system generation time. The
compiler version that allows system logical
units to be DASD extents requires 12K of
main storage. Switching between tape and
disk work files on DOS is automatic at open
time.

Parts of the first phase (PL/I) remain
in main storage as a control routine during
execution of the other phases of the com-
piler. Their function is the execution of
I/0 operations for work files and inter-
phase communication. A special smaller
control routine is used during execution of
the extremely long phases D00 to D10 which
do not use the table file SYS001.

The PL/I library is a set of relocatable
routines and transient core-image library
routines, The library is used at object
time for:

1. Monitoring object program execution,
2. Performing input/output operations,

3. Performing object time conversions, and

4., Built-in functions.

IBM SYSTEM/360 DOS/TOS PL/I PLM

The relocatable library routines are
cataloged into the relocatable library and
loaded by the autolink feature. Six
library routines are cataloged into the
core-image library. These routines are
loaded at execution time into a transient
area of the PL/I library to perform func-
tions that are not frequently used, e.g.,
opening of files, etc. Their phase names
start with $ to ensure storage in the pri-
vileged region of the core-image library.
An additional routine ($$BPLOSE) is to be
executed in the systems logical transient
area when closing PL/I files.

For detailed information on the library
subroutines refer to the library subrou-
tines PLM named on the cover page.

The storage used by the compiler is
divided into the following 4 parts (see
Figure 1):

1. Control routine
2. Compiler phases
3. Table area

4, Buffer area

(=]

r 1
| |
| |
| Control Routine |
| |
| [
I — 1
| |
[, |
| Compiler Phases |
| |
| |

6.75K ¢} -4
| |
| Table Area 6*256 bytes
|

8.25K ¢ 9
| |
| Buffer Area 7#256 bytes |
| |

10K t 4

Figure 1. Storage Used by PL/I Compiler

The last part of the control routine
area is the table directory. Part of this
area can be overlaid by the first phases
that use only a few of the tables. The
table area is used for processing by com-
piler phases that have no table handling.
Some phases use less than 7 buffers and can
therefore use part of the buffer area.

IBM Systems/360 DOS/TOS PL/I PLM 9

PL/I PLM 8

IBM Confidential

r it T == - - T Nk Saguieiat Suteiabei Sttt e |
| Phase |PL/I JFunction |Phase |Phase|Maint.|Tab.|Buff. |
| |Module | | | | | | I
| Name | Name | |Length|End |Area |Use |No. |
e O T fommmmm $==mmm o .
| PL/I |IJXA00 |DOS control routine and initialization |5016 |[5016 |1896 | N | 0 |
IJXA00D|DOS control routine and initialization |S5426 |5426 {3534 | N | O |
	with system files on disk						
	ITJXA00	TOS control routine and initialization	[4224	4224	2688	N	O
PL/IA10	IJXA10	Overlay for tape work files (DOS only)	898	898	NA	N	O
PL/IA25{IJXA25	Elimination of blanks and comments,						
		replacement of keywords 16004 19118 1280	N	44			
PL/IA30	IJXA30	Replacement of identifiers 13124	6238	674	T	7	
PL/IA35	IJXA35	Pictures 5700	[8256	704	N	5	
PL/IA45	IJXA4S5	Character-string replacement 13234 5950	962	T	7		
PL/ZIAS50	IJXA50	Scan block structure 13012 5728	1184	N	7		
PL/IA60	IJXA60	Syntax 1 15120 7676	772	N	7		
PL/IA65	IJXA65	Syntax 2 4748 7304 1144	N	7			
PL/IB10	IJXB10	Declaration scan 1 2264	4980	1932	T	7	
PL/IB15	IJXB15	Declaration scan 2 13528	6244 668	T	7		
PL/IB20	IJXB20	Symbol table construction 1 13704	6420 492	T	7		
PL/IB25	IJXB25	File declarations]3804	e6u8u4	428	T	7	
PL/IB30	IJXB30	Symbol table construction 2 (diagnostic) 2592	5308 [1e04	T	7		
PL/IB4O	IJXBU4O	Symbol table construction 3					
		(structures, etc.) ’2604 15320 1592	T	7			
PL/IB70	IJXB70	Symbol table construction 4 (contextual					
		declarations) 13660 6376	536	T	7		
PL/IB75	IJXB75	BUILTIN versus contextual declarations	1568 4284 2628	T	7		
PL/IB80	IJXB80	[Symbol table construction S5 (implicit :					
		declarations)	3u92 16208 704	T	7		
PL/IB90	IJXB90	Prestatement generation 1 13072 5788 (1124	T	7			
PL/IB92	IJXB92	Prestatement generation 2 13196 5912 1000	T	7			
PL/IB95	IJXB95	Array table construction 1736	4416 2304	T	7		
PL/IB97	IJXB97	External name table construction 2736	5452 1460	T	7		
PL/ICO00	IJXCO0	Symbol table listing 13230	5946	966	T	7	
PL/IC25	IJXC25	IF scan 12956	5672	1280	T	7	
PL/IC30	IJXC30	Constant processing 1	3020	5736	1176	T	7
PL/IC35	IJXC35	Block sorting 13084	[5764	956	T	7	
PL/IC50	IJXC50	I/0 scan 1	3558 6274	638	T	7	
PL/IC55	IJXC55	1/0 scan 2	3684	6400	512	T	7
PL/IC60{IJXC60	I/O scan 3	3804 6520	392	T	7		
PL/IC65	IJXC65	I/0 scan 4	3748	ou464	448	T	7
PL/IC85	IJXC85	[DO scan 1 13276	5956	356	T	7	
PL/IC86	IJXC86	DO scan 2	3676	6356	556	T	7
PL/ZIC95	IJXC95	Switch to small control routine 11032	3748	3164	T	7	
PL/ID0O	IJXDO0O	Statement decomposition	5472	6976	23681'	N	3.5
PL/IDOS5	IJXD05	Conversion, precision, storage types	7400	8888	712"	N	2.5
PL/ID10	IJXD10	Macro generation 1 16856	8360	9847	N	3.5	
PL/ID11	IJXD11	Macro generation 2	4226	7026 2318	N	3.5	
PL/ID15	IJXD15	Evaluation of subscripts 13784	5500 2948	N	7		
PL/ID17	IJXD17	Generation of linkage to library 15082	7798	1162	N	5	
PL/ID20	IJXD20	Special built-in functions	5184	7900	1060	N	5
PL/ID4O	IJXDUO	ON generation 13940	6656	23047	N	5	
PL/ID70	IJXD70 }{Constant processing 2 (conversion) 4344	7060	620	T/2	7		
PL/ID75	IJXD75	I/0 macro generation 1 13716	6432 (2016	N	7		
PL/ID80	IJXD80	I/O macro generation 2 12632	5348	3100	N	7	
b Lo S i Lo Lo Lot __ 4

Figure 2.

10

of Phases (Part 1 of 2)

.

C

PL/I PLM 8

IBM Confidential

- T L S T T T T T T 1
| PL/IE25 |IJXE25 |Main Diagnostic | 3762 6478 | 434 | T | 7 | |
| PL/IE25A|IJXE26 |Messages | 1200 |e6u470 | - [|
| PL/IE25B|IJXE27 |Messages | 1200 (6470 | - | - | - |
| PL/IE25C|IJXE28 |Messages | 1200 |eu470 | - | - 1 - |
| PL/IE25D|IJXE29 |Messages | 1200 6470 | - [|
| PL/IE25E|IJXE30 |Messages | 1200 (6470 | - [|
|PL/IE25F|IJXE31 |Messages | 1200 6470 | - | - | - |
| PL/IE25G|IJXE32 |Messages | 1200 6470 | - [|
| PL/IE25H|IJXE33 |Messages | 1200 |6470 | - (I |
| PL/IE25I |IJXE34 |Messages | 1200 |e6470 | - | = | - |
| PL/IE25J |IJXE35 |Messages | 960 6230 | 2480 | - | - |
|PL/IE50 |[IJXE50 |Code generation 1 | 5308 8024 | 424 | N | 7 |
|PL/IE60 |IJXE60 |Code generation 2 | 4688 |7404 |[10442 | N | 7 |
| PL/IE60A|IJXE61 |Macro library (overlay) | 2933 |7217 |12312 | - | - |
| PL/IF25 |IJXF25 |Sorting of variables and constants 3860 |6576 | 592 | T3 | 6 |
| PL/IF35 |IJXF35 |Optimization of constants ' 3032 |5748 [1164 | T | 7 |
| PL/IF75 |IJXF75 |Storage allocation 2708 |5424 |1488 | T | 7 |
|PL/IF90 |IJXF90 |Construction of offset table l 2214 |4930 |[1982 | T | 7 |
| PL/IF95 |IJXF95 |Code generation for offset > 4K | 2360 |5076 |1836 | T | 7 |
|PL/IGO0 |IJXGOO |GOTO optimization | 3914 16630 | u64 | T | 7 |
|PL/IGO1 |IJXGO1 |Insertion of label offsets | 2216 |u489%6 |2766 | T | 7 |
|PL/IG15 [IJXG15 |[Final offset preparation | 3488 |5204 | 420 | T | 7 |
|PL/IG17 |IJXG17 |File generation 1 | 5060 7776 |1952 | N | 2 |
|PL/(IG17B|IJXG17B|File generation 2 (DTFMT) | 4902 [7618 |2210 | N | 2 |
|PL/IG17D|IJXG17D|File generation 3 (DIFSD) | 4854 |7570 [2258 | N | 2

| PL/IG17E|IJXG17E|File generation 4 (DTFSD) | 3262 |5978 |3750 | N | 2 |
|PL/IG17R|IJXG17R|File generation 5 (REGIONAL (1)) | 4770 |7486 |2234 | N | 2

|PL/IG17S|IJXG17S|File generation 6 (REGIONAL (3)) | 5446 8162 |1566 | N | 2 |
| PL/IG20 |IJXG20 |Produce file module, rearrange | 1912 |4628 |2284 | T | 7

		SYS001					
PL/IG25	[IJXG25	Generate ESD	3148	5864 1048	T	7	
PL/IG30	IJXG30	Generate TXT, RLD, END	2624	5340	1572	T	7
PL/IG31	IJXG31	Final diagnostic	2838	5454	4170	N	1
PL/IGUO	IJXGUO	Object code listing	4420	7136	[1824	N	5
PL/IG55	IJXG55	Final output	4402 7118	1842	N	3	
________ 1 i ———— ——— ———d L L L L __.l							
* Includes dynamic stack.							
2 Includes 10-byte parameter from PL/IE25.							
2 Shifted up one buffer.							
“ 2 buffers are used by program at the beginning of the phase.							
Lo —————— - 4

Figure 2. List of Phases (Part 2 of 2)

Figure 2 lists all phases including
their function, length, and maintenance
area. The entry in the column Tab. Use
specifies whether the table area is used
for table handling (T) or for other purpos-
es (N) . The number of 256-byte blocks used
as buffers is given in the last column.

The starting point of the compiler is
assumed to be zero in this list. The DOS
version not supporting system files on disk
is assumed in this table. The maintenance
area includes the area required for the
control routine.

If more than 10K are available to the
compiler, the remaining storage is used to
increase the table area (maximum used is

64K) and the buffer length (maximum 1536
bytes per buffer). This increases the
compiler performance considerably.

The I/0 flow during compilation is shown
in Figure 3.

PL/I object programs including library
subroutines, IOCS modules, and static stor-
age form one or more phases. Automatic
storage is allocated beginning at the end
of the longest problem program phase up to
the end of storage available to background
programs. Start and end addresses of auto-
matic storage are taken from the DOS/TOS
communication region and are handled by a
PL/I library subroutine.

IBM System/360 DOS/TOS PL/I PLM 1

PL/I PLM 8

IBM Confidential

(SYSIPT

Source
Program

SYSRES >
\ Compiler

Tables

SYS@a

SYSLST (SYSPCH

A
Listings

Object

Program

Text &

Text &
Tables Tables
SY g2 S\ SpE3

Figure 3. I/0 Flow During Compilation

12

{ SYSLNK ‘
g’:"in | SYSLOG
orage Messages !

e

PL/I PLM 8

IBM Confidential

C

The compiler is built up of about 70 phas-
es, which may be grouped into five logical
parts referred to as packages.

Package 1 (Phases A25 - C00)

In this package, the programmer-written
source text is transformed into a text
string, the format of which is oriented to
the logical structure of a PL/I program.
This means that language elements such as
statements, prefixes, identifiers, delimi-
ters, etc. are translated into a represen-
tation that permits the relatively simple
recognition of that association.

Redundant information (blanks and
comments) is deleted from the text string.
The non-executable DECLARE statements are
also deleted. The information contained
therein is transferred to the corresponding
identifiers in the text string where they
occur.

The program string is syntactically
checked and diagnostie information for
errors, if any, is inserted.

The syntax of the PICTURE attribute is
checked and the information required either
for further processing or during execution
at object time is provided.

A symbol table is constructed. It is
listed if listing is specified in the
OPTION job control statement.

The compiler also constructs tables for
character constants, names, files, external
names, and arrays.

Package 2 (Phases C25 - C95)

As the result of the processing in package
1, the source text is now a statement-
oriented text string.

This package of phases processes the IF,
I/0, and DO statements. Processing of this
group of statements requires special phases
since these statements all possibly contain
expressions, the handling of which involves
a considerable programming effort. The
above statements are scanned and the
expressions prepared for further processing
in package 3.

The IF statements are expanded into
simple statements that can be processed in
package 3. Branch and label-definition
macros are generated.

LOGICAL PARTS OF THE COMPIL&R

The I/0 statements are semantically
checked, and DO loops are generated for
repetitive specifications. For all I/O
statements containing the FILE option, the
identity of the information given in the
file declaration (from the FILE table) and
that in the FILE option is checked. The
I/0 statements are then prepared to be
sequentially processed in package 3.

The DO statements are decomposed into
simple statements. Branch and label-
definition macros similar to those in the
IF phase are generated and inserted in the
program string.

In addition, blocks are ordered
sequentially in this package.

Package 3 (Phases D00 - D80)

All executable statements are processed in
this package. The statements that were
preprocessed in package 2 are now finally
processed. The result of this processing
is a text string consisting of elements
that do not refer to statements pbut to
separate operations. The text elements
that represent these operations are called
macros.

Array and structure assignments are
decomposed.

Expressions are reordered in reverse
Polish notation. The necessity for data
type conversions is determined and the
conversions are prepared by macros. In
addition, macros are generated to give each
variable the storage type required for
particular operations, e.g., register,
working storage, etc. Registers are allo-
cated for operands that are to be reg-
isters. The appropriate library call macro
is generated for built-in functions imple-
mented by library routines.

Subscripts are evaluated. If the sub-
scripts are constants, they are evaluated
at compile time. Otherwise, the appropri-
ate macro is generated for use at object
time.

ON entries that contain the ON and pre-
fix information are generated to be includ-
ed in static storage.

Conversion of constants is performed at
compile time.

Logical Parts of the Compiler 13

PL/I PLM 8

IBM Confidential

Package 4 (Phases E25-E61) Storage is allocated for variables and P
constants. S
If errors are detected in the program N~
string, the corresponding diagnostic messa-
ges are printed, if specified. Constants are optimized.
Assembler-type code is generated from
the macros. The selection of the macros
depends on the type of the macro, the stor- Final machine instructions are generated
age class of the operands of the macro, and by changing the format of the assembler
further information contained in the instructions and by replacing the operands
macros. of the assembler instructions by base reg-
ister and displacement.
A model instruction dictionary is used
to furnish additional information indepen-
dent of the information contained in the Code for branches and addressing beyond
macro. the scope of 4K-blocks is generated.
Indirect addressing is assigned for
operands that have the attributes external, The required tables are generated for
parameter, or controlled. each file.
Package 5 (Phases F25-G55)
Note: The logical flow of the compiler is
This package is referred to as the assem- illustrated in Figure 1.
bler of the compiler because its functions
are similar to those of an assembler.
N
N
LA
(e

14

PL/I P1IM 8

IBM Confidential

asscshleses
. .
- PL/L .
- .
sesescessscssse

Xe o000

:0000860:

o0 -0-9-0-0-0-0
olNl]lALliATlON .
- NTERFACE .

.
ssssnse sssscee

o® .,
.®

#. PICTURES
..

., -t
S, b
*NO

.

Xeceaan
.

X
0.0051.000.00...
< 5— 5 .

. .
CHAR.S NGS
IILOCK STRUCTUREI

ooouoo..oo;.oco.o

AN
seesee

sesesFlesssacanen
- .

.

Gl ..
X ..

o» F
*. ATTRIBUTES
L

., o*

..
e®ececesceX
-

eXeooeeonnsecoonen

..-..ulnf.-......
¢-870
0-0-0-0-.- P
0 CONSYRUCTION -
QF SYMBOL :
seesssacasssnssse

exe 0 b0

Jl 0.

. ¥
O-IN EUNCTION e £s
-

500-892

.
:‘}222%.}?%5%5”

oooon.oooo-onoo-o
.

Figure 1.

cooooDzuloonnouoo
5 -

-
PRDCESS .
PICTURES o

essseG2essnssnnne

825 .
-g-s—s-a-0-0-a—e
- PROCESS .
. FILE .
® DECLARATICNS &
Ssssssssussnsanse

-

.
cecscccee

sensnj2esnsncsans
-

Logical Flow of the DOS/TOS PL/I Compiler

seccscccccccccncs

escsesesscancsscsscsenscscsncscssacenons

o,

eXeoeoooccosacssancanccccas

sssnalioosssnnane
- B97 .
[T O ey Sy -y

EXTERNAL .
NAME TABLE .

sssssfElaencsencnnn
-

c-uoo—--o-c-o-o-: YES Q.. 1F
- PROCESS #Xeeecseoe®s STATEMENTS .o
« IF STATEMENTS e .
- - .. -®
susessessnanenane e o#

- «NO

-conoFAa!oonooooo
. 0—

. CDNSIANIS*}]
« BLOCK SORTING .
-

0.00...000.00.!.0

R N R R S R P R I R R S S S S N R R R R R R R Y

(Part 1 of 3)

Logical Parts of the Compiler

esccapSesancassss
. B93

. .. YES —e—e—esee-e-e-t
o t#eileceoXe CONSTRUCT o
© AKRAY TABLE »
-
LYY]

X
%,
D4 .. ssssaDSesncncnanse
o® . . O .
-t Y™ «, YES L e et Sl ol ot o
.. OPTION .0........!0 SYMBOL TABLE
. - ouTPUT

15

PL/I PLM 8

IBM Confidential

Figure 1. Logical Flow of the DOS/TOS

16

sesse
Hor 1
. o
-
X
-, ®,
83 .. B84 .,
o2 Ger/PUT "ol NO ~BPEN/CLOSE e NO
o2 sTRFEAENTs "1M0 kel Teeeee
.. ®RECORD [/C.e -
.. .o -
*. .8 -
*YES -
. .
. -
sise- : :
PROC - - -
GET/PU : . .
sacsssscsssncsnne . s
: . .
. - -
Xeceeeconcecnscacanccancan .
X .
sasssD3ensnsansve -
. 0 - -
—a—p 0 @ma— .
* PROCE: OPEN/ o -
CLO: AN -
* FORMAT STMTS. o .
R2E 2 T2 222222213 -
. .
. :
X .
-ty .
sssssE2esnsnn - E3 L .
- .. -
....... .-e YES .. .
ROCESS #Xeeecoscats RE Olg l/ﬂ .0 .
RECORD I/0 . S -
#DISPLAY STMTS, e .
LA RIS YY) -
. *NO .
Z . :
- .
R et :
¥, -
ssesaF2esssnnnnes F3 n. -
C85-C86 - -
L Y R ol St el YES . -
PROCESS 'X........!. STATEMENTS .-x.............................
DO STATEMENTS ‘e o
- - -
SessBNSREINERRREN e o @
- *NO
- -

. .
secsesceccccccccsccccsccaXe
e

X
ansseGle
-
.-.-.- - ee—

- 2 -
. lNT RFACE :
-
SER0NRGERRERRRES
.
X
00-0."300000.....
000-0D11 -
.~.’.—.—Q~.-.-.-.

AT
POSIVION

+ oedlnp
«LOAD OLOD lNTgRFo

cssscennsssanssne

PL/I Compiler (Part 2 of 3)

N

SN

N

()

(

PL/I PLM 8

IBM Confidential

. .

- canzv « YES .o" "ARRAYS ..
[®Xeeoosseaa®, -
-i?;ﬁ 1 ey . e, FILES .o
. 4 .. et

- oNC
:........................x;
-®,

oouooClooooooocoo CZ ..

- ..--ll:A o;-: ves .o ULLI IN '-..

g“ Y seesenesTe negeneucss.-'
"'21.. e et
°eNO
: :
X .
n.. -
o1 .
. ALt MACQRS e. YES X
° bhstk Eo Pecescsecsccscasana
. . :
e o .
oNO .
X X

sssseEloencsanenee
.
s—g-0—0-9-0-0-0

CONSTRUCT
REIAIN?%G
MACROS

Ssssasecsssconsuee sesssssnenssseane
X
o8,
sssseFlescscnccse F2 ..
. D15 . .* .
—n-e- ~a-o-e YES .¢ GET/PUT o,
® 1/0 MACROS 1 ®Xeceooaoo®e FORMAT .
. . . X
. .. .e
sesnsncasssnenses . .
- sNC

SRS S
ERROR
DIAGNOSTIC
feeeessescrenenes
X
Y
n e

e
.o SEVtﬁE
.. ERROR
*e -
.. .
o o8
oVES
:
eees
. -
* H4 o
A
“ose

Figure 1.

escesccsseccccncccsnaccsaake

eseHlasesnnneons
5

..
e. NO

-oucuGZu{cc-.loc.
. 8

g G-t 8—

.
e 1/0
-

- .
Sssssscnsssannsee

-
YES .o

cececsact, E
..

“ssecsescanennsne

assssEesccnccnne
.

D4

sannsg2e
€S

-

.
MACROS 2 o
-

exes 0000

..
RRCRS .
.»

eececccccccc i00cecsctessccccscccencctone

0.0 00000 500000000000 000000000000 80000000 00000000800 0080008 0000000000000 0000 00000000 IISIOIOIOISIOIIE

Logical Flow of the DOS/TOS PL/I Compiler

essecscscsans

X
.o
B84 -
-® -
. *. YES [l ‘
.. FILES *®ccceccaake GEN?RAI& .
e - . .
., - ® .
®. .0
*NO

eXeooecscsccsccscccnccnnnas
.

0....C605000000.l
. 20 [

ssse
»e
m
»
b
»

_0-0-.—.-0-.-0-.
3

-
.
. Gougglfi
- -
: E SS -

sssesssescssnses

.-oo.ssooc.......
G 1

.
cecsace

Fé4 .. oooocholn..o-oo.

-® ., - G4
. Lli'x ®. YES e-e-e-sZace-e-e-s
L2 opPTION e®eececscaXe llSI FIN‘L -
.. " o .

.. -

., .® -

«NO -

X
ssenesCGhonnsnssanse
a .

..... -
o PRDDUCE FINAL :
ooo.--o.ocooooooo
sses N
- . .
® H4 o,..,
. . .
sene -

X
essosHbssconsase
- -
. END OF .
e COMPILATION

sesessscessnnee

(Part 3 of 3)

Logical Parts of the Compiler

17

PL/I PLM 8

IBM Confidential

THE _TEXT STRING DURING COMPILATION

The general concept for the representation
of the text string is that the text string
consists of text elements whose first byte
(the key) contains the meaning of the ele-
ment. The keys may be either X'En' or
X'Fn'. X'En' is used for text elements
with fixed length; X'Fn' is used for text
elements with variable length. For the
latter category, the two following bytes
give the length of the element.

During compilation, the text passes the
following five main states:
1. Source text (phases A25 - B95)
2. Statement-oriented text (phases C25 -
E25)

3. Macros (phases ES50 - E61)

4, Assembler code (phases F25 - G15)

5. Final output (phases G17 -~ G55)

This is the initial status of the text
string. The source program is taken as it
is written by the programmer.

After deleting redundant information,
e.g., blanks and comments, and translating
the machine-dependent external code into an
internal code, the individual language
elements are replaced. First, the iden-
tifiers that look like keywords are
replaced by 3-byte keys. The remaining
identifiers are replaced by 3-byte internal
names, Delimiters are replaced during the
syntax phases by their 3-byte keys.

DECLARE statements are deleted from the
text string. The information contained
therein is partially transferred to pre-
statements that are constructed to precede
the statements.

Statement-oriented Text

At this stage, a statement may consist of
the following items:

1. Each statement is introduced by a
6-byte statement identifier with the
key X'EO'.

2. The statement identifier may be
followed by a table that contains the
attributes of the declared variables.
The attribute table has the key X'F4°',

18

fr

N

3. Items 1 and 2 (where item 2 is
optional) may be followed by a table of
the constants declared in the corres-
ponding statement. The constant table
has the key X'F3°',

4. The statement body consists of a
sequence of 3-byte elements, each of
which represents either an identifier
or a keyword.

5. Each statement is terminated by a
6-byte "end of statement" (EOS) has the
key X'EA'.

6. The statement éconsisting of the
elements listed under items 1 through
5) may be followed by 2-byte error
indicators giving the errors that were
detected in the preceding statement.
The error indicator has the key X'EB'.

This form of the text string is changed
by deleting the statement attribute tables
and replacing each statement body by a
sequence of macros. The replacement of the
statement bodies is performed in several .
steps. This means that specific phases
process only specific statements, whereas e
the remaining statements are passed
unchanged to the next phase. At this
stage, the status of the text string is
therefore not uniform.

For some operations, generated variables
are used as additional required storage,
e.g., for the result of an operation.
Definitions of such generated variables
(with the key X'F0') are inserted into the
text string.

For a limited time, additional informa-
tion may be inserted into the text string,
e.g., to mark an element as interesting or
not interesting for some other phase (s).

Macros

The statement body is replaced by one or
more macros. Each macro represents a par-
ticular operation. Macros have the key
X'F2', The format of the individual macros
is fixed (see General Description of Phases
E50 - E61) . The macros contain the infor-
mation required for generating the assem-
bler code.

The definition of the individual macros
is such that each macro is either associat- ™
ed with a fixed set of code, or the selec- wa
tion of the required code is possible only :
by means of the operands of the macro.

PL/I PLM 8

IBM Confidential

C

The error indicators are deleted from
the text string at the same time the macros
are replaced by assembler code.

Assembler Code

After the assembler code has been generat-
ed, the text string consists of the follow-
ing:

1. Statement identifiers as just des-
cribed.

2. Assembler code.

3. Generated variables as just described.
4, Constant tables as just described.

5. End of statement as just described.

Assembler code elements have the key
X'F6'. Two types of instructions are used:
machine instructions and pseudo instruc-
tions for communication with the assembler
(phases F25 - G55). The machine instruc-
tions refer to the IBM System/360 machine
instructions, to which they are equal
except for the format of the operands. The
format of the assembler code is described
under General Description of the Phases E50
- E61.

The constant tables and generated varia-
bles are deleted from the text string after
storage allocation. The first three bytes
of all assembler code elements (X'F6xxxx"')
are also deleted.

After storage has been allocated, it is
possible to replace the operands of the
assembler code by base register and dis-
placement. Thus, the assembler instruc-
tions are expanded by insertion of the
address of a symbolic given operand (base
and displacement) after the corresponding
operand. Most of the pseudo instructions
furnish information for this change and are
deleted after the expansion. Only the
instructions defining or reserving storage
(DC X, DS) remain in the text string.

The static storage for the program is
given a format similar to the pseudo
instructions and is joined to the program
string that consists of the assembler
instructions.

This format of the text string is the
last step on the way to the final output.

Final Output

The final output of the compiler consists
of two modules, each of which consists of
ESD, TXT, and RLD cards, and an END card.
The first module is produced for all of the
file declarations; the second module is
produced for the program with the static
storage. The TXT cards are generated from
the assembler instructions and the static
storage.

The system file accommodating the final
output of the compiler depends on the
options specified in the OPTION job control
statement.

The Text String During Compilation 19

PL/I P1IM 8

IBM Confidential

COMPILER INTERFACE

The logical IOCS provided by the DOS/TOS is
used for input and output of data during a
compilation. For this purpose as well for
loading a new phase, the compiler control
routines (interface) are provided to com-
municate between the compiler phases and
the operating system. The interface mainly
consists of subroutines to be called by the
individual phases. Each subroutine causes
DOS/TOS to perform a specific function
requested by a phase.

These subroutines form the main body of
the compiler control program, which con-
tains a communication region used by the
phases. Some of the subroutines, together
with the communication region, are part of
phase A0O/AO0OD and reside in storage
throughout the compilation. (For excep-
tions refer to phase C95.) The main func-
tions of these subroutines are:

1. To load a new phase from the core-image
library on SYSRES.

2. To handle the input text stream on
SYS002 or SYS003;

3, To handle the output text stream on
SYS002 or SYS003;

4, To write information on SYS001 for
intermediate storage;

5. To read information intermediately

stored on S¥YS001.

Alternating from phase to phase, the
logical units SYS002 and SYS003 serve as
input or output medium. The three logical
units SYS001, SYS002, and SYS003 must
always be assigned to physical units of the
same device type (disk or tape). The
device type may be changed from job to job.

The internal communication area
(interphase communication region) provided
in the control program is used for communi-
cation between different phases.

Macro instructions may be used in a
compiler phase to branch through a branch-
ing vector in the interphase communication
region to one of the interface routines in
the compiler control program.

Some compiler phases require data input
or output in addition to that mentioned
above, These functions pertain to the
input of the source program, output of
listings, writing the object module either
on SYSPCH or on SYSLNK for compile-and-go.

20

AN
N’
A special routine is provided for each of
these functions. It is assembled together
with the phase requesting the function.
The functions of these routines and the
names of the logical I/0 units used are
listed below:
1. Input of PL/I source program from
SYSIPT;
2, Output listing of source program on
SYSLST;
3. Output listing of the offset table on
SYSLST;
4, Output listing of error messages on
SYSLST;
5. Output listing of source program sym-
bols and external references on SYSLST;
6. Output listing of generated object
program on SYSLST;
7. Output of generated object module on
SYSLNK ; o
8. Output of generated object module on N

SYSPCH.

The logical unit SYSLNK must always be
assigned to a physical unit of the same
device type as SYSRES (disk or tape). The
device type is fixed at system generation
time., SYSIPT, SYSLST, and SYSPCH may be
assigned to different device types. The
assignment of these three units may be
changed from job to job. The file specifi-
cations for these units are of the type
DTFCP, which provides device independence.
The user can control the bypassing of some
output for listings or object modules by
means of appropriate parameters in the
OPTION card.

Some special control routines can be
inserted into a compiler phase by means of
appropriate macro instructions. These
routines serve for input and output of
table information on the device assigned to
SYS001 and for moving a record of any
length into the available storage area.

Storage Layout During Compilation

Storage allocation during compilation is
illustrated in Figure 1. It is assumed
that at least 10K (excluding the storage
required by the DOS/TOS) is available for
compilation of PL/I programs. The area
occupied by the DOS/TOS is followed by an

®

PL/I PLM 8

IBM Confidential

-

area of 2.6K for the compiler control pro-
gram and logical IOCS routines used by it.
The table directory (184 bytes) which con-
tains information on tables used during
compilation is contained in this area. The
area provided for the compiler phases is 4K
bytes long. It is followed by the Table
Area and the Buffer Area. If more than 10K
bytes are available for the PL/I compiler,
the entire additional storage area is allo-
cated to the Table and Buffer Areas.

16K DOS¢TOS

LIOCS

Table Directory (184 bytes)

——— e ——————————— e ———

Compiler Phases

Table Area

Buffer Area

Storage Layout During Compila-
tion (for 16K)

| Overall Storage Requ

As shown in Figure 1, the begin address
of the Table Area is always 6.7K bytes
higher than the start address of the stor-
age available during compilation. The
length of the Table Area and the start
address of the Buffer Area are calculated
in the Initialization routine of this phase
as follows: The Buffer Area (see Figure 2)
is partitioned into seven buffers of equal
length. The first five buffers serve as
work areas for the compiler phases. The
remaining two buffers are used as input and
output areas for overlapped processing of
text information. The length of the Buffer
Area is the sum of the individual buffers
plus 8 bytes. (These 8 bytes serve a spe-
cial use during compilation.) The length
of a single buffer depends on the total
storage available during compilation. The
minimum length is 256 bytes, which results
in a minimum Buffer Area length of 256 x 7
+ 8 bytes 1800 bytes.

The minimum buffer length is always
taken for an available storage size from
10K to 14K. The minimum storage for both
the Table and the Buffer Area is: 10K -
2.5K - UK - 184 bytes = 3.4K. Thus, the
minimum length of the Table Area is 3.4K -
1800 bytes = 1600 bytes.

For the tape version, the length of a
single buffer is extended by 256 bytes for
each additional 4K available storage until
the length reaches 1536 bytes (for 30K
storage) . This is shown in Figure 3.
more than 30K is available, the buffer
length remains at 1536 bytes and the entire
additional storage is allocated to the
Table Area to reduce the time required for
compilation.

If

For the disk version, the buffer length
increases similarly (see Figure 3). To
avoid unused track space as far as possi-
ble, the maximum buffer length for the disk
version is 1536 bytes.

irements about 3.3K |

Figure 2. Table and Buffer Areas

T [

| Buffer Area |

T T T T
|Work |Work|Work|Work|Work|
|Area|Area|Area|Area|Area|8 Bytes
v 2 (3 [& |5 |

Compiler Interface 21

PL/I PLM 8

IBM Confidential

Length of Buffer Area and Table Area

—_
zz R
g3
a0
%3 -
@ @ & —
> ~
Q9%
w 2,
2.3
3 a = —
o ® ~
o
g
-
an
T3
T e N
g N —
-\a -—f 7< —
-+ O 9 o
Q -
3T Q -3
< > =)
a < N
3 @ 3 o~ —+
o 2. =
Q. Q
(o =2
j o
) <4 w
@ o QS —
Ry a ~
3 Q
@)
o ©w
b R
o~ Ve
o
<
<
®
w
w
&S —
Vay
N
N |
Ve

Y Y

Figure 3.

Communication with the Control Routines

The routines of the compiler interface that
remain in storage together with the inter-
phase communication region are called by
use of special macro instructions. The
expansion of each of these macro instruc-
tions contains a branch to the correspond-
ing routine through a branching vector in
the interphase communication region.

The main purpose of the communication
region is to accommodate information to be
exchanged between phases. It is part of
the control section IJXA01 in phase A00 or
AOOD and assembled by the macro instruction
IJKCO INTERF. If the parameter INTERF is
omitted, a dummy section for this region is
assembled. This is done in every compiler
phase to cause each symbol specified in the

22

Partitioning of Storage for Buffer and Table Areas

communication region to be assembled in the
compiler phase without storage being
assigned to it. During the Initialization
routine, the start address of the communi-
cation region is loaded into register 12.
If a USING instruction is given at the
beginning of each phase, this register can
be used as base register for addressing the
communication region.

The interphase communication region
shown in Figure U4 can be logically divided
into four parts. The first part is the
branching vector that contains branch
instructions to the individual interface
routines always contained in storage. Most
of the macro instructions provided for use
in the compiler phases generate a branch to
this branching vector.

®

PL/I PLM 8

IBM Confidential

l. __ ———— _
READ RECORD FROM TEXT INPUT IN OVERLP
READ RECORD FROM TEXT OUTPT IN OVERLP

|
b T

r-————--- T
]

I |B
| |B
I IB
I |B
| |B
| B
b
I |B
| |B
I IB
| |B
I |B
| |B
I |B
I |B
I |B
I 1B
e t

| I

| IJKMLB |DC
|IJKMBS |DS
| IJKMPR |DS
| IJKMPC |DS
| IJKMTT |DC
| IJRMTS |DC
------- +

| IJKMIT |DC
| I

I I

I I

I I

I |

I [

I I

I l

I I

I I

[I

I I

I I

| I

I I

I |

I I

I [

I I

| I

I |

o

I

I I
.

I

I I

| I
e f-—-
| IJKTAB |DC
| IJKMVC | DC
| ITKMNN | DC
| ITKMWC | DC
| IJRCSL |DC
| IJRPAG {DC
IJKDCW |DC

Figure 4

. Assembly Listing of the Interface Communication Region

| ITKAGI
| ITKAGO
| ITKANT
| IJKAPH
| ITKAPT
| IJKAPO
| ITKAPT
| ITKARN
| ITKAWT

| ITJKAPINO WRITE RECORD FROM
| IOKAPONO WRITE TEXT RECORD

GET RECORD IDENTIFICATION

ROUTINE FOR END OF PHASE
WRITE RECORD ON TXT INPUT IN OVERLP

WRITE RECORD ON TEXT OUTPUT IN OVERLP
ROUTINE FOR POINTW
RESET END IDENTIFICATION FOR SYS001
WAIT FOR COMPLETION (I,0,T)
|IJKATIN READ RECORD FROM SYS001 IN NONOVERLP
| IJKATOUT WRITE RECORD ON SYSC01 IN NONOVERLP
|IJKAMN MOVE RECORD NORMALLY
|IJRKAGINO READ RECORD FROM TEXT INPUT IN NOOV
| IJKAGONO READ RECORD FROM TEXT OUTPUT IN NOOV

IJKAPTR ROUTINE FOR POINTR

|COMMUNICATION BYTES

LIBRARY USAGE BYTES
BUFFER AREA START ADDRESS
BUFFER FOR PRINT REGISTER
BUFFER FOR PUNCH REGISTER

[8F'0"
|F
|F
|F

|2 (IJXA0J)
| A (ITXA0M)

[
|
|
I
|
I
|
I
I
I
|
|
|
I
|
|
+

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BITS
BIT
BIT
BIT
BIT
BIT

WLoOoOJoOUEWN-=-O

ADDRESS OF TABTAB
ADDRESS OF TABLE SPACE

F'0'JOB INFORMATION BITS

(I,

0,T)

TEXT INPUT IN NOOV
ON TXT OUTPUT IN NOOV

SYSIN HAS BEEN CALLED

ERRORS IN CURRENT

COMPILATION

ARRRAYS IN CURRENT COMPILATION
STRUCTURES IN CURRENT COMPILATION

ARRAY EXPRESSIONS

IN CURRENT COMPILATION

I/0 IN CURRENT COMPILATION

FILE ATTRIBUTE IN
INITIAL ATTRIBUTE
DEFINED ATTRIBUTE
SYSPRINT HAS BEEN
PICTURE ATTRUBUTE

CURRENT COMPILATION

IN CURRENT COMPILATION
IN CURRENT COMPILATION
CALLED

IN CURRENT COMPILATION

INDICATES MAIN PROCEDURE

CALLS FOR LIBRARY

ROUTINES IN COMPILATION

DO LOOPS IN CURRENT COMPILATION
TABLE DICTIONARY ON SYS001
OUTPUT LISTING STARTED

TYPE OF WORK FILE

MEDIA DURING COMPIIATION (O FOR TAPE

IF ON, SYS002 IS THE CURRENT TEXT INPUT MEDIUM

INDICATES ONSYSLOG

FORMAT LABELS IN CURRENT COMPILATION
BUILT-IN FUNCTIONS IN CURRENT COMPILATION
NEED FOR INDIRECTLY CALLED LIBRARY ROUTINES

- 26: RESERVED

SKIP BIT FOR PHASE C25
SKIP BIT FOR PHASES C50-C55
SKIP BIT FOR PHASE C85
SKIP BIT FOR PHASES C60-C65
SKIP BIT FOR PHASE Cb5

A

|2 (0) RECORD IDENTIFIER FOR TABTAB ON SYS001%
VARIABLE COUNTER

|H' 256"

|H'0' INTERNAL NAME OF THE ADDRESS CONSTANT FOR THE ORIGIN OF

|H'0' COUNTER FOR GENERATED VARIABLES WITH UNKNOWN ATTRIBUTES
|H'0' LENGTH OF CHARACTER STIRNGS
|E'1' PAGE NUMBER FOR LISTING

|Y (0) DECLARED VARIABLE COUNTER INCL. CONST.
ES

(Part 1 of 2)

———— e ————— — e e e —

Compiler Interface 23

PL/I PILM 8

IBM Confidential

|lJKMIP
| IJKMBL
| ITKMBC
| IJRMCH

| KTETA

I
KSYS001
KSYS002

I
|
t
I
I
I
!
|KSYS003
I

I

I

I. _______
I

I

I

| KSAVE 1
| KSAVE2
| KSAVE3
| KSAVEY
| KSAVES
| KSAVEG
| KSAVE7

| KSAVES
| KSAVE9

[
|

I
| ZREGO
| ZREG1
| ZREG2
| ZREG3
| ZREG10
| ZREG11
ZREG12
ZREG14
| ZREG15

| ZTABOO
| ZTABO1
| ZTABO2
| ZTABO3
| ZTABOY
| ZTABOS
| ZTABO7
| ZTABOS
| ZTAB11
| ZTAB16
| ZTAB18
| ZTAB21
| ZTAB19
|ZTAB19

------- 5 sttt |
|DS |5H INTERPHASE COMMUNICATION BYTES |
|DC |Y (256) BUFFER LENGTH
|DC |X'00' BLOCK COUNTER |
|DC |CL6'CL2-0" |
et e - 1
| |TABLE KTETA FOR INTERFACE HOUSEKEEPING |
T e R 1
|DC |A (KSYS002) POINTER FOR TEXT INPUT
|DC |2 (KSYS003) POINTER FOR TEXT OUTPUT |
|DC |A(IJSYSO01) ADDRESS OF FILE TABLE FOR SYS001
DC	F'0' RESERVED FOR LINE NUMBER. MAINTENANCE
DC	F'0' END KEY FOR INFORMATION ON SYS001
DC	X'18000000* INDICES
DC	A (IJSYS02) ADDRESS OF FILE TABLE FOR SYS002
DS	F ADDRESS OF I/O AREA FOR SYS002
DC	F*0*' END KEY FOR INFORMATION ON SYS002
DC	X*18000000' INDICES
DC	A (IJSYS03) ADDRESS OF FILE TABLE FOR SYS003
DS	F ADDRESS OF I/O AREA FOR SYS003
DC	F'0' END KEY FOR INFORMATION ON SYS003
DC	X*18000000' INDICES
S 1	
	SAVE AREAS
T o	
DS	0D
DS	F SAVE AREA FOR REGISTER
DS	F SAVE AREA FOR REGISTER
DS	F SAVE AREA FOR REGISTER
DS	F SAVE AREA FOR REGISTER
DS	F SAVE AREA FOR REGISTER
DS	F SAVE AREA FOR REGISTER
DS	F SAVE AREA FOR REGISTER
DS	F SAVE AREA
DS	F SAVE AREA
S P v 1	
]	SYMBOLIC NOTATION FOR REGISTERS
T e ——— —m e -	
EQU	O I
EQU 1	
EQU	2
EQU	3
EQU	10
EQUI 1	
EQU	12
EQU	14
EQU	15
e e e 1	
	TABTAB DESCRIPTION
	NAME TABLE DESCRIPTION
e BT e t e f	
EQU	000 CARTAB CHARACTER CONSTANT TABLE
EQU	008 NAMTAB NAME TABLE

QU|168 SYMTAB SYMBOL TABLE | B10 F90
lEQUiO2H FILTAB FILE TABLE | B25 G17
{EQU| 032 EXTTAB EXTERNAL NAME TABLE | B97 G25 |
|EQU| 040 ARYTAB ARRAY INFORMATION TABLE | B95 D15
EQU	056 DSTAB DS TABLE	F25 F90
EQU	064 CONTAB CONSTANT TABLE I F35 G15	
EQU	088 OFFTAB FINAL OFFSET TABLE F90 G15	
EQU	128 CARDS CARDS FOR FINAL OUTPUT	G20 G55
EQU	144 FORMTAB FORMAT LABEL TABLE	C60 D15
EQU	016 LITAB LIOCS TABLES	A00 G55
EQU	152 CONEQU EQUATE TABLE I F35 F90	
EQU	152 LABTAB LABEL OFFSET TABLE GO0 G25	

____________________________ — ———— 1 ——— -1
. Assembly Listing of the Interface Communication Region (Part 2 of 2)

Flgure 4

24

-

PL/I PLM 8

IBM Confidential

The second part consists of communi-
cation bytes. These are various DC entries
where information is exchanged from phase
to phase. This part further includes
entries for the work buffer length, the
start address of the Table and Buffer
Areas, and the TABTAB address. The entry
IJRMJIT contains job information bits which
indicate special features of the source
program to be compiled, e.g., structures,
etc.

The third part is a register save area
used by the individual interface routines.

The fourth part is a string of EQU
statements specifying register names and
offsets of TABTAB entries.

Note: The base register (register 15) is
saved by the subroutines. Therefore, no
reloading of the base address is required
in the compiler phase after a macro
instruction has been issued.

Housekeeping on Work Files

The functions of SYS002 and SYS003 (text
input and output, respectively) are normal-
ly switched at the end of a compiler phase.
This switching is done by means of the
table KTETA, which is part of the communi-
cation region and contains file specifi-
cation information for SYS001, S¥YS002, and
SYS003. The format of this table is shown
in Figure 4. The table contains one U4-word
entry for each of the work files. The
contents of each U4-word entry are described
below.

The first word contains the address of
the file definition table. The second word
contains the address of the I/0 area used
(for SYS002 and SYS003 only). For over-
lapped I/0 operation, the same I/O area is
always assigned to one of SYS002 and
SYS003. The third word contains the record
identifier for the last record written on
the file. It is changed whenever the end
key for the information written must be
saved. The first byte of the fourth word
contains housekeeping flag-bytes (see Fig-
ure 5). Bytes 3 and 4 are used to accommo-
date the available track length.

The first two words of KTETA contain
pointer addresses. Each address points to
one of the U4-word entries for SYS002 and
SYS003. The first one of these pointers
represents text input, the second rep-
resents text output. Switching of the I/0
functions for these units simply consists
of an exchange of these first two words in
KTETA.

The use of this table is discussed in
more detail in the description of the indi-
vidual control routines. One of the main

functions of the control routines is the
setting, resetting, and testing of flag
bits in KTETA.

r - T 1
Bit 0	Index for writing
Bit 1	Index for end of file
Bit 2	Index for first read call
Bit 3 Index for rewinding	
Bit &4 Index for checking	
Bit 5	Index for POINTW
Bit 6	Index for NOTE
Bit 7	Index for POINTR
L —d_ _—
Figure 5. Flag Bits Used in KTETA

The information to be exchanged between
phases is stored in the form of tables
written on SYS001. A communication table,
referred to as TABTAB and following the
Interface area, is provided for accessing
these tables. Each table is pointed to by
an 8-byte entry in TABTAB. Each entry
contains the information shown in Figure 6.

f - - -1
| BYTES | MEANING |
p=—---1 -- 1
1	Bit 0 = 1 indicates that the table
	is on SYS001
	Bit 1 = 1 indicates that that table
	is in storage
	Bit 2 = 1 indicates that transfer
	to or from SYS001 has
been started	
2--4	Identifier of the first table
	record on SYS001
5--6	Number of records on SYS001 for the
	table
7--8	Length of a record on SYS001]
L 1 —— -
Figure 6. Format of Entries in TABTAB

Two special routines (ZTIN and ZTOUT)
are provided for reading and writing tables
or part thereof on S¥YS001. If these rou-
tines are to be used, the entry for record
length must have been specified by the
compiler phase. The housekeeping on the
other TABTAB entries is explained in the
discussion of the individual routines.

Interface Structure for DOSATOS Versions

The structure of the interface differs
according to the DOS/TOS version used. The
differences are as follows:

1. The work files used for the tape ver-
sion are of the form DTFMT, MTMOD. The
same is used for the disk version if
the work files are assigned to tapes.
DTFSD, SDMOD is used if the work files
are assigned to disks. For the disk
version, file tables and modules for
DIFSD, SDMOD are loaded. During the

Compiler Interface 25

PL/I PLM 8

IBM Confidential

initialization, the type of work files
is tested and, if necessary, tables and
modules for tape work files are loaded
(phase A10) to overlay the previous
ones. Thus, the user may change his
assignments for work files on tape orx
disk from job to job if he used the
disk version.

2. If the work files are assigned to disk,
a flag bit is set in the interphase
communication region during Initializa-
tion, and a conditional branch instruc-
tion in the control routine for text
input (IJKAGI) is changed to an uncond-
itional branch.

3. For the disk version, the file paramet-
er DISK=YES is always specified for the
file IJSYSLN. For the 32K disk ver-
sion, the same parameter DISK=YES is
specified for the files IJSYSIN, IJSYS-
IS, and IJSYSPH.

4. The output listing header lines differ
for the disk and tape versions. This
implies differences in the listing
phases.

LIOCS Modules Used by the Interface

The logical LIOCS modules used by the com-
piler are included during the Linkage Edi-
tor run; they are not assembled together
with the phases.

The module name for the files IJSYSIN,
IJSYSLS, and IJSYSPH is IJJCPO for the tape
version and the 16K disk version; it is
IJJICPDO for the 32K disk version.

The module name for the file IJSYSLN is
IJJICPO for the tape version and IJJCPDO for
both disk versions.

The module name for work files is
IJGWZNZZ for disk work files, and IJFWZNZZ
for tape work files,

The work file module is always in stor-
age; the other modules are in storage only
together with the phases needing them, and
overlaid by other phases.

INTERFACE ROUTINES USED BY COMPILER PHASES

There are two classes of routines. The
first class comprises routines that remain
in storage during the entire compilation
(with the exceptions described in phase
C95) . They are called by macro instruc-
tions in the compiler phases.

The names of the routines and the cor-

responding macro instructions are listed in
Figure 7.

26

i Kt e e 1
|Routine |Calling Macro Instruction |
___________ — -
| IOKANT |IJKWT I
e 4
| IJKANT | IJKRNT |
- - -
| IOKAPTR* |IJKPTR

| IJKAPT* |IJKPT |
[— ——— ——— -
| IOKAPH | IJKPH |
ot patetn -- -1
IOKAGI*	IJKGI
IJKASO*	IJKGO
IOKAGINO*	IJKRI
IJKASONO*	ITKRO

|IJKAPI* |IJKPI

IJKAPO*	IJKPO
IJKAP INO*	ITKWI
ITKAPONO*	ITKWO
_______________ _ -	
IJKAMN	IJKMN I
_______________ _— -4	
TIJKATIN	Contained in ZTIN
	(see Figure 8)
________________________ -	
IJKATOUT	Contained in ZTOUT
	(see Figure 8)
___________ —— _——- -	
*=Routine with more than one entry point.	
b ——— -

Interface Routines Called by
Macro Instructions

Figure 7.

The routines listed in Figure 7 inter-
nally use the following subroutines: KGET-
NOTE, KREAD, KCHECK, and K2CHECK. (The
last two names are entry points of the same
routine.)

Note: KCHECK and K2CHECK are entry points
of the same routine.

The second class of routines comprises
all routines that can be assembled in the
phase either directly or by means of macro
instructions. These routines are called
inside the phases by appropriately branch-
ing to them. The names of these routines
and the corresponding macro instructions to
include them are listed in Figure 8.

[T s 1
| Routine | Macro for Assembly |
e oo 1
| ZTIN | IJKTI
| zTouT | IJKTO
ZMO | IJKMO |
ZRCD | - |
| ZPRNT - |
| ZLEDI - |
| 2PCH [- |
L -1 S 3
Figure 8. Interface Routines Assembled

In-Line either Directly or by
Macro Instructions

PL/I PLM 8

IBM Confidential

C

The source programs for ZRCD, ZPRNT,
ZLEDI, and ZPCH are part of the correspond-
ing phase source program.

The functions of all interface routines

and the corresponding macro instructions
are explained in the following sections.

KCHECK, K2CHECK -- AF

When this subroutine is called, register 0
(KCHECK) or register 2 (K2CHECK) contains
the address of a work file item in KTETA.
If necessary, the subroutine issues a CHECK
macro instruction for this work file. For
correct housekeeping on the record iden-
tifier in the LIOCS, this CHECK macro
instruction must be given only once after
each read or write operation. The check
index (a flag bit in KTETA) is used to
check whether the CHECK macro instruction
is required.

KGETNOTE -- AF

When this subroutine is called, register 2
contains the address of a work file item in
KTETA. The subroutine performs some house-
keeping and issues a NOTE macro instruc-
tion. If a first call is performed after a
write operation, the record identifier
obtained by NOTE is saved in KTETA together
with the information for available track
length. If a further call is performed
after a write operation, no further NOTE is
issued, but the information saved in KTETA
is returned as for the preceding call. If
a call is performed just after reposition-
ing of the work file (in IJKAPH), a zero is
returned in register 1 for the record iden-
tifier. This zero, if used in calling
IJKAPT or IJKAPTR, causes a POINTS macro
instruction to be issued.

KREAD -- AF

KREAD merely is the expansion of a work
file read macro instruction.

IJKAWT -- AG

This routine is called by a compiler phase
to wait for the completion of a read or
write operation on a work file. On return,
all register contents are unchanged. The
macro for calling is IJKWI' with one of the
parameters I, O, or T.

The parameters I, O, and T specify text
input, text output, and table medium, res-
pectively. The macro expansion is a load
instruction loading the address of a work
file item in KTETA into register 0, and a
branch-and-1link instruction that branches
to the branching vector in the interphase
communication region. An example for the
macro expansion is:

L ZREGO,KTETA
BAL ZREG1L,32 (ZREG12)

IJKAWT performs the wait function by using
the subroutine KCHECK.

IJKANT -- AG

This routine is called to obtain the actual
record identifier. This may be repeated
several times after a read or write opera-
tion. On return, register 0 contains the
available track length (useful after writ-
ing on disk only), register 1 contains or
the record identifier. The other registers
remain unchanged. The macro for calling is
IJKNT with one of the parameters I, O, or
T.

The parameters I, O, and T specify text
input, text output, and table medium, res-
pectively. An example for the macro expan-
sion is:

L ZREGO,KTETA+U
BAL ZREG14,8 (ZREG12)

IJKANT performs the NOTE function by using
the subroutines KCHECK and KGETNOTE.

IJKAPIR, IJKAPT -- AG

This routine performs a POINTW (IJKAPT), a
POINTR (IJKAPTR) or a POINTS operation (see
description below) on a work file. On
return, all register contents are
unchanged. The macro instructions for
calling are either IJKPT or IJKPTR with one
of the parameters I, O, or T.

The parameters I, O, and T specify text
input, text output, and table medium, res-
pectively.

If one of these macros is given in a
compiler phase, register 1 must contain the
record identifier of the record to be
pointed to (as obtained after a NOTE). If
IJKPT is given, register 0 must contain the
available track length only if a write
command follows this pointing. An example
for the macro expansion of IJKAPTR is:

L ZREGO,KTETA+U
BAL ZREG14,6U (ZREG12)

The first instruction loads the address of
a work file item in KTETA into register O,
the second instruction branches to the
branching vector. An example for the macro
expansion of IJKAPT is:

STH ZREGO,KSAVE7
L ZREGO,KTETA+U4
BAL ZREG14,24 (ZREG12)
The first instruction saves the contents of
register 0, which may be the available

Compiler Interface 27

PL/I PLM 8

IBM Confidential

track length. The two other instructions
are as shown for IJKAPTR.

The routine first calls the subroutine
KCHECK. Then a test is made to determine
whether the record identifier in register 1
is zero. If it is zero, a POINTS is
issued, otherwise a POINTR or a POINTW,
depending on the calling macro instruction.

Eventually, some flag bits are reset if
a point was done with the actual end key
stored in KTETA.

IJKAPH, KREP -- AH

The routine IJKAPH is normally used at the
end of a compiler phase. It fetches a new
compiler phase if requested by the calling
program and repositions SYS001 and/or
SYsS002, if required., Moreover, the func-
tions of SYS001 and SYS002, as regards text
input and output, can be switched.

If rewinding or sSwitching is requested
by the calling program, register 0 must
contain a specified number according to the
following convention:

<register 0> = 0 No rewinding, no switch-

ing

<register 0> = 1 Rewind input medium, no
switching

<register 0> = 2 Rewind output medium, no
switching

<register 0> = 3 Rewind both media, no
switching

<register 0> = 4 No rewinding, switching

<register 0> = 5 Rewind input medium,
switching

<register 0> = 6 Rewind output medium,
switching

<register 0> = 7 Rewind both media,
switching

If a new compiler phase has to be
fetched, register 1 must contain the
address of a U-byte character string that
contains the last three character bytes of
the phase name (right-aligned). Note that
all compiler phase names differ in the last
three characters only.

The routine first rewinds the text
media, if necessary, using the subroutine
KREP. It then switches their functions, if
required, Finally, some housekeeping is
done and a FETCH macro instruction is given
if a new phase is required by the calling
program.

If a write operation was the last opera-
tion performed on a text medium, the actual
end key for this medium is saved prior to
rewinding.

The routine IJKAPH can be called by the
keyword macro instruction:

28

IJKPH NEWPH=,REW=ALL|I|O,SWITCH=NO

If a new phase is required, the keyword
NEWPH must be specified followed by an
equal sign and the three ending characters
of the phase name. If NEWPH is not speci-
fied, no phase is fetched, and the routine
returns to the calling program. For rew-
inding, the keyword REW may be specified
followed by an equal sign and one of the
parameters NO, ALL, I, or O. The meaning
of these parameters is:

NO No medium must be rewound
ALL Both media must be rewound

I The actual input medium must be
rewound

0] The actual output medium must be
rewound

If REW= with a parameter is not speci-
fied in the macro instruction, both media
are automatically rewound. For switching
of functions, the keyword SWITCH is speci-
fied followed by an equal sign and one of
the parameters YES or NO. The meaning of
these parameters is:

YES Switching is performed
NO Switching is not performed

If SWITCH= with a parameter is not spec-
ified, switching is done automatically.

IJRAGI, IJKAGO, IJKAGINO, ITJKAGONO -- AI, AJ

This routine is used to read records from a
work file medium. It can be called by
various macro instructions. Each macro
instruction provides a branch to a specific
entry point by means of the branching vec-

tor. The correspondence is:

r T T bl
| Macro | | |
|Instruction|Entry Point|Function j
t —1- t -
IJKGI	IJKAGI	Overlapped input
		from text input
		medium.
IJKGO	IJRAGO	Overlapped input
		from text output
	medium.	
IJKRI	IOKAGINO Non-overlapped	
		input from text
		input medium.
IIKRO	ITJKAGONO	Non-overlapped
		input from text
		output medium.
L i 1 J

When one of these macro instructions is
given in a compiler phase, register 1 must
contain the address of the area where the
new record is required. For IJKRI and
IJKRO, this is the input area for reading;
for IJKGI and IJKGO, this is the work area.
Note that overlapped input means that the

®

>

PL/I PLM 8

IBM Confidential

«

€

record is available after returning from
this routine, whereas non-overlapped input
means that reading in the indicated area is
started on return from the routine.

Some indices and pointers for KTETA are
set first, depending on the entry point
used. Then (only on the disk version, see
Initialization) a test is made to determine
whether a POINTW operation for the same
file preceded this call. If so, a dummy
read is performed to position the medium
for reading.

For overlapped working, a test is made
to determine whether reading in the over-
lapped mode has already been started. If
this is not the case, a first record is
read into the input area.

Before moving this record into the work
area, the routine waits for completion of
the preceding read operation. Finally, a
new reading is started, and the routine
returns to the calling program.

For non-overlapped working, the routine
checks for completion of any previous oper-
ation. Then, a new read operation into the
input area indicated in register 1 is
started.

Note: Each starting of a new read opera-
tion is preceded by a test to determine
whether the work file medium is positioned
at the end of the information written on
it. If it is, the routine returns without
having started a new read operation.

The entry point at box G2 in flowchart
AT is used by the routine IJKATIN to read a
table record from IJSYS001 in non-
overlapped mode.

The routine normally returns with
register 0 set to 0. However, if no more
records are available, register 0 contains
a 1. All other registers are unchanged.

IJKAPI, IJKAPO, IJKAPINO, IJKAPONO -- AK

This routine writes records on a work file.
It can be called by various macro instruc-
tions. Each macro instruction provides a
branch to a specific entry point by means
of the branching vector. The correspon-
dence is shown below.

r— -7 T - 1
|Entry Point|Function |

+ 1
| Overlapped output|
|on text input |
| | medium. |
| | Overlapped output|
| |on text output |
| | medium. |
| | Non-overlapped |
| |output on text |
| | input medium. |
| I
I |
I I
L -

+
| IJKAPI

IJKAPO
IJKAPINO

IJKAPONO | Non-overlapped
|output on text
|output medium.

When one of these macro instructions is
given in a compiler phase, register 1 must
contain the address of the area from where
the new record has to be read. Each macro
expansion is a branch-and-link instruction
that branches to the branching vector. For
IJRKWO and IJKWI, this is the output area
for writing; for IJKPI and IJKPO, this is
the work area.

Non-overlapped output means that writing
from the output area is started on return
from the routine. Overlapped output means
that the output record is first moved from
the work area to the output area used by
the interface. Output is then started from
there before returning.

The routine sets some indices and poin-
ters in the table KTETA depending on the
entry point used. It checks for completion
of any previous operation on the same file.
A test is made to determine whether a
POINTW is required for the file to position
the medium at the end of the information
actually written on it. If so, a POINTW is
issued with the end key saved in KTETA.
This end key is saved on each NOTE after a
write operation. No POINTW is required if
a write or rewind command was given last.
This conecept allows the compiler phases to
interrupt the writing by some intermixed
reading.

After this test, a record is moved from
the work area to the output area if over-
lapped working was requested. Writing is
then started and the routine returns with
all register contents unchanged.

IJKAMN -- AL

This routine is used to move a record of
any length from one area to another. Over-
lapping of the form that the start address
of the TO area lies inside the FROM area is
not allowed. The routine first moves sin-
gle 256-byte records until a field shorter

Compiler Interface 29

PL/I PLM 8

IBM Confidential

than 256 bytes remains to be moved. The
residual moving length is then calculated
and moving is performed. If the whole
length on calling is zero, no moving is
performed by the routine.

IJKAMN can be called in the source pro-
gram of the compiler phase by the macro
instruction IJKMN. The macro expansion
consists of a branch-and-link instruction
that branches to the branching vector in
the interphase communication region, e.g.:

ZREG14, 44 (ZREG12)
The following register contents must have
been provided:

register 0 - total field length,

register 1 - start address of the TO field,

register 2 - start address of the FROM
field. .

On return from the routine, registers 1
and 2 contain the end addresses +1 of the
corresponding fields. The content of reg-
ister 0 is undefined. All other registers
remain unchanged.

IJKATIN -~ AL

This routine is called by ZTIN in the com-
piler phase to read a record from SYS001 in
non-overlapped mode. On calling, the
address of the input area is contained in
register 1. This address and the maximum
table record length are supplied to the
subroutine KREAD. The routine then branch-
es to some entry point of IJKAGINO. There
is no macro instruction to call this rou-
tine.

IJKATOUT -- AL

This routine is called by ZTOUT in the
compiler phase to write a record on SYS001
in non-overlapped mode. On calling, the
address of the output area is contained in
register 1, the length is contained in
register 0. The register contents are
supplied to the routine IJKAWI. The rou-
tine then branches to some entry point of
IJKAPINO, There is no macro instruction to
call this routine.

ZTIN -- AM

The symbolic start address of this routine
is ZTIN. It can be called into the source
program of a compiler phase by the macro
instruction IJKTI. On branching to the
routine, the following register contents
must have been provided:

Number of records to be
read,

Start address of the read-in
area of the records,
Relative address of the
entry in TABTAB.

<register 0>

<register 1>

<register 2>

30

A table can be read from SYS001 in sev-
eral steps, i.e., by branching to ZTIN
several times for the same table. If a
table is to be read in from its beginning,
bit 2 of the corresponding TABTAB entry
must be set to zero prior to branching to
the routine. In all other cases, it must
be set to one.

The routine first tests whether bit 2 of
the TABTAB entry is zero., If it is, the
following steps are performed:

1. If a write operation was the last oper-
ation on SYS001, the last record writ-
ten is first identified by a NOTE macro
instruction; the identifier is saved
for writing on SYS001 at a later time.

2. Bits 1 and 2 of the TABTAB entry are
set to 1.

3. SYS001 is repositioned according to the
record identifier found in the TABTAB
entry, provided that this record iden-
tifier is less than the identifier for
the last record written on SYS001. If
the record identifier is higher, com-
piling is terminated with an error
dump. Then the reading of the single
records is started.

The routine normally returns to the
calling program when reading of the last
record has been started. Thus, a limited
overlapping of I/0 and processing is possi-
ble.

A test is made for each record to be
read to check that it is not located beyond
the end of information written on SYSO001.
If this test matches for each record, the
routine returns with register 0 set to O.
If this test does not match for a new read-
ing, ZTIN is terminated immediately and
returns with register 0 set to 1.

The routine ZTIN performs its I/0 func-
tions by calling routines in the compiler
control program. The record length is the
physical record length for each record
read.

ZTOUT -- AN

The symbolic start address of the routine
is 2TOUT. It can be called into the source
program of a compiler phase by the macro
instruction IJKTO. On branching to the
routine, the following register contents
must have been provided:

<register 0> = End address of the output
areatil,

<register 1> = Start address of the output
area,

<register 2> = Relative address of the
entry in TABTAB.

KJM

()

PL/I PLM 8

IBM Confidential

If the beginning of a table is to be
written on SYS001, bit 2 of the correspond-
ing TABTAB entry is set to zero prior to
branching to zZTOUT. In this case, the
identification for the first record written
is saved in TABTAB after this record has
been written on SYS001. In all other
cases, bit 2 of the TABTAB entry is set to
1.

Prior to starting the write operation,
the routine checks whether the end address
in register 0 is less than or equal to the
start address or whether the record length
RL stored in the TABTAB entry is not in the
range 18 < RL < 3500. The compilation is
terminated with an error dump if these
conditions occur.

After the first record has been written
on SYS001, bit 2 in the TABTAB entry is
checked for zero. If it is zero, the fol-
lowing is done prior to the next write
operation:

1. The record identification for the
record just written is saved in the
TABTAB entry;

2. The number of records written for the
table on SYS001 is set to 1 in the
TABTAB entry;

3. Bits 0 and 2 of the flag byte in TABTAB
are set to 1.

The length of the records written is
determined by the TABTAB entry. The rou-
tine normally returns after having started
the writing of the last record. The length
of this record is at least 18 bytes.

ZRCD --_AO

This routine is used to read source cards
and to print lines on SYSLST. Reading and
printing is done in overlapped mode.

This routine uses ZPRNT as a ubroutine
for printing. Each line is 120 characters
long. For reading, the routine contains
the two I/0 areas used for overlapped read-
ing.

On each call but the first, the routine
writes a line and then reads a card. On
the first call, only the first card is
read. On each return from the routine,
register 10 points to the start address of
an alternative input area where a card has
been read in. Register 11 points to the
start address of an alternative output area
where the record for output on SYSLST can
be built.

The logical IOCS used for reading is of
the type DTFCP, CPMOD. The branch address

for the end-of-file condition is ELCO10 in
phase A25,

ZLEDI -- AO

This routine is used to write a record on
SYSLNK in non-overlapped mode. Only one
output area of the length 322 bytes is
used. This output area is located in the
Buffer Areas otherwise used as I/O areas
for text input and output. Its start
address is equal to the start address of
the two Buffer Areas. Each output record
is 322 bytes long (4 cards). The first two
bytes of the output record contain the
number of logical records (4) and the
length of a single logical record (80),
respectively. This control information is
provided by the phase.

On return from ZLEDI, the output is
completed and a new record can be built in
the output area.

ZPCH -- AQ

This routine is used to produce a record on
SYSPCH in overlapped mode. The length of
each output record is 81 characters, the
first character being a control character
for stacker selection.

Two 80-byte I/0 areas are specified for
overlapped output in the uppermost Buffer
Area otherwise used as I/0 area for text
input and output. No text input or output
is performed during execution of a phase
that contains ZPCH. Register 10 is used to
point to the IZO area where the next record
for output on SYSPCH can be built by the
phase. This register must not be changed
by any phase using ZPCH.

On each return from the routine, reg-
ister 10 points to an alternate I/O area.

Prior to the first branch to ZPCH, the
compiler phase must issue the macro
instruction IP to load register 10 with the
address of the first I/O area where the
phase can build the first output record.
The expansion of the IP macro instruction
is:

L ZREG10, ITKMPC
LA ZREG10,1 (ZREG10)

IJKMPC is an entry in the communication
region and contains the output area address
for the first output on SYSPCH. This
address is stored during initialization.

ZPRNT, HESUB -- AP

The routine ZPRNT is used for any output on
SYSLST. The routine automatically provides
header lines and subheader lines on each
page, using the subroutine HESUB.

Compiler Interface 31

PL/I PLM 8

IBM Confidential

Each header line contains compiler name,
program number, change level, job name, and
page number. The content of the subheader
line depends on the compiler phase.

Each line is 120 characters long. Writ-
ing of single lines is done in overlapped
mode. Therefore, two I/0 areas are speci-
fied in the fifth work buffer. Register 11
is used as I/0 register to point to the
output area where the next record can be
built by the phase for output on SYSLST.
This register must not be changed by the
phase containing ZPRNT. On each return
from the routine, register 11 points to an
alternate I/0 area. The register content
is saved in the entry IJKMPR in the inter-
phase communication region at the end of
the initialization and at the end of any
listing phase.

Prior to the first branch to this rou-
tine, the compiler phase must issue the
macro instruction IJKIL. The expansion of
this macro instruction is:

L ZREG11,IJKMPR
LA ZREG11,1 (ZREG11)
0I IJKMIT+1,X'01"

The first instruction loads the register
with the saved content. The register then
points to the control character position.
The second instruction causes the register
to point to the first position of informa-
tion to be given out. The last instruction
sets a flag bit for printing in the inter-
phase communication region, this flag bit
is tested at phase end in the routine
IJKAPH for end of phase.

MO -- AQ

This routine is used to move a record of
any length from a FROM field to a TO field.
The two fields may overlap. The routine is
assembled in the source program of a com-
piler phase by the macro instruction IJKMO.

It can be called in the phase by branch-
ing to ZMO. There is the following conven-
tion on register contents for calling:

register 0
register 1

contains the field length,
contains the start address of
the TO field,

contains the start address of
the FROM field.

register 2

On return, registers 1 and 2 contain the
end address+1 of the corresponding fields.
The content of register 0 is undefined.

All remaining registers are unchanged.

The routine first tests whether the
start address of the TO field is lower than
that of the FROM field. In this case, the
routine IJKMN is called for moving. If the

32

start address of the TO field is higher
than that of the FROM field, the field is
moved step by step from the right to the
left. The move length for a single step is
thereby calculated according to the follow-
ing formula: Move Length = Min (256, field
length, address difference). This move
length implies a correct moving for any
field overlapping.

LOGICAL IOCS FOR THE TAPE VERSION

Work Files SYS00]1, SYS002 and SYS003

The first control section of phase a00
contains the DTFMT tables for these work
files . The name of this control section
is IJXA00.

The file specifications are the same for
all three work files, e.g.,

IJSYs01 DTFMT BLKSIZE = 3072
DEVADDR = SYS001
EOFADDR = KOO1EOF
NOTEPNT = YES
RECFORM = UNDEF
TYPEFILE = WORK
MODNAME = IJFWZINZZ

For IJSYS002 and IJSYS003, the blocksize
entry is BLKSIZE = 1536.

The address of the input or output area
is specified in the expansion of the res-
pective READ or WRITE macro instruction.
The file specification implies non-
overlapped working. Thus, overlapping, if
any, is done by the control routines.

The logical IOCS module is not assembled
in phase A00; it is included during linkage
editing.

DTFCP Files for SYSLST, SYSIPT, SYSPCH and
SYSLNK

For device independence, the logical IOCS
used for these files is of the type DTFCP,
CPMOD.

The file specifications for the print
file IJSYSLS are assembled in phase A00 in
the control section IJXA01. This DTFCP
table remains in storage throughout the
entire compilation (for exceptions see

phase C95) . The file specifications are:
IJSYSLS DTFCP DEVADDR = SYSLST
IOAREA1 = KTETA
IOAREA2 = KTETA
RECSIZE = 121
TYPEFLE = OUTPUT
IOREG = 11

The module IJJCPO0 is included in all
printing phases during linkage editing.

A

&

PL/I PLM 8

IBM Confidential

The addresses of the two I/0 areas are
fixed in the Initialization routine.
Output for 1listing is always done in over-
lapped mode, using two I/0 areas and reg-
ister 11.

The file specifications for the input
file IJSYSIN are assembled in phase A00 in
the control section IJXAO06. This DTFCP
table serves for input during phase A25.

It is further used for closing the file
IJSYSIN in the last compiler phase. It is
therefore written on SYS001 in phase A30 in
order to save storage during the other
compiler phases. The file specifications
are:

IJSYSIN DTFCP DEVADDR = SYSIPT
IOAREA1 = KTETA
IOAREA2 = KTETA
RECSIZE = 81
EOFADDR = ELCO10
TYPEFLE = INPUT
IOREG =9

The module IJJCPO for this input and for
listing is included in phase A00 during
linkage editing. It is not overlaid during
phase A25., Input is done in overlapped
mode using two input areas and register 9.
The input areas are fixed in the Initiali-
zation routine.

The file specifications for the punch
output file IJSYSPH are assembled in the
control section IJXA06. After this file is
opened in the Initialization routine, the
file table is written on SYS001 to save
storage. It is reloaded into storage by
phase G55 for punching and closing the

file. The file specifications are:

IJSYSPH DTFCP DEVADDR = SYSPCH
IOAREA1 = KTETA
IOAREA2 = KTETA
RECSIZE = 81
TYPEFLE = OUTPUT
IOREG = 10

The module IJJCPO for this output is
included in phase G55 during linkage edit-
ing. Output is done in overlapped mode
using two output areas and register 10.

The output areas are fixed in the Initiali-
zation routine.

The file specifications for IJSYSLN are
assembled in the control section IJXA06.
After this file is opened in the Initiali-
zation routine, the file table is written
on SYS001 to save storage. It is reloaded
into storage by phase G55 for link file
output and for closing the file. The file-
specifications are:

IJSYSLN DTFCP DEVADDR = SYSLNK
IOCAREA1 = KTETA
RECSIZE = 322
TYPEFLE = OUTPUT

The module IJJCPO for this file is the
same as for the punch file. Output is done
in non-overlapped mode. The address of the
output area is fixed in the Initialization
routine. The first two bytes of the output
record contain the number of logical
records (4) and the length of a single
record (80), respectively.

LOGICAL IOCS FOR THE DISK VERSIONS

Work Files SYS001, SYS002 and SYS003

Disks will normally be used as work files
for the disk versions. Therefore, the
first control section of phase A00 (DOS
16K) or AOOD (DOS 32K) contains the DTFSD
tables for these work files. This control
section is named IJXA00 (DOS 16K) or
IJXA00D (DOS 32K) .

The logical IOCS module named IJGWZNZZ
and used for these work files on disk is
not assembled in phase A00 or phase A00D,
but included during linkage editing. Dur-
ing the Initialization routine, the con-
figuration is tested for tape media for
these work files. If tapes are specified,
phase A10 is loaded at the location of the
tables and the module for the work files
(see phase A10). The file specifications
are the same for all three disk work files,

€.g.,

IJSYS001 DTFSD BLCKSIZE = 3072
DEVICE = 2311
EOFADDR = KOO1EOF
NOTEPNT = YES
RECFORM = UNDEF
TYPEFLE = WORK
DELETFL = NO
MODNAME = IJGWZNZZ

For IJSYS002 and IJSYS003, the blocksize
entry is BLCKSIZE = 1536.

DTFCP Files for SYSIPT, SYSLST, SYSLNK, and
SYSPCH

The handling of these files is similar to
that of the tape version. The exception is
the parameter DISK = YES in some file
specifications. This parameter is always
given for the link file IJSYSLN. For the
other three files, it is only entered for
DOS 32K. Whenever I/0O functions are
requested for a file with the parameter
DISK = YES, the module IJJCPDO instead of
IJJCPO is included during linkage editing.

Compiler Interface 33

PL/I P1IM 8

IBM Confidential

PHASES PLAIAQ0, A00D, A10 (INITIALIZATION)

-

AR

The first phase loaded during a PL/I compi-
lation is either PL/IA00 (for DOS 16K and
TOS) or PL/IAO0OD (for DOS 32K) . Phases A00
and AO0OD contain

the interphase communication region,

the interface, and
the initialization routine.

Phases A00 and AOOD differ in the DTF
tables and modules.

The PL/I compilation starts with the
Initialization routine that performs some
preparation for the entire compilation. If
the disk version is used and tape drives
are assigned to work files SYS001, S¥YS002,
and SYS003, the Initialization routine
calls phase A10 to overlay the DTF tables
and module for disk work files.

Storage Map of Interface A0O for Disk 16K

The object module of A00 consists of 3
control sections. The first section
(IJXA00) contains the LIOCS tables for work
files and the module IJGWZNZZ, which is
called from the relocatable library by the
Linkage Editor.

The second section (IJXA01) contains the
Save Area for LIOCS, the interphase com-
munication region, the control routines
which are always in storage, the LIOCS
table for SYSLST, the area reserved for
TABTAB, and the CP module, which is called
from the relocatable library by the Linkage
Editor.

The third section (IJXA06) contains the
LIOCS tables for IJSYSIN, IJSYSPH, and
IJSYSLN and the Initialization routine.

After opening the files, the tables for
IJSYSPH and IJSYSLN are written on SYS001
during the initialization; they are reload-
ed into storage by the final output phases
of the compiler. Thus, the storage area
can be overlaid by all other compiler phas-
es. The same applies to the table for
IJSYSIN after phase A25.

The load point for most phases is IJXAO05
+ 4, Exceptions may be looked up in the
Linkage Editor mapping for the compiler.

For a schematic representation for the
storage layout for phase A00 see Figure 1.

34

IJXA00*|LIOCS tables for work files
IS

r
L

t -
| SD module IJGWZINZZ**
- _— - -

4 ——

+
| Save area for LIOCS (72 bytes)

| Interphase communication region

IJIXA01

Control routines that are always
in storage

- —— e e e ey

|LIOCS table for IJSYSLS
t
r

| TABTAB
b-
[R -

|CP module IJJCPO***
l,____

-4 -

IJXA06 |LIOCS table for IJSYSIN

IJXA0U

IJXAa05

R e N S L S S T U S WS W WO S S S '}

|LIOCS table for IJSYSPH

JLIOCS table for IJSYSLN

|Initialization

———————t

| * for 32K disk
|** for tape MT module IJFWZNZZ

| ¥*¥* for 32K disk IJJCPDO
L— -

I
|
|
|
|
|
|
|
I
l
i
|
I
I
I
|
|
t
|
I
|
|
|
|
|
|
|

A00D

o o0 o0

| SN W —

Figure 1., Storage Map of IJXA00 for 16K

Disk

Initialization for Tapes -- AS

This routine has two principal functions:
storage allocation during PL/I compilation
and opening of files. Storage allocation
and some housekeeping functions depend on
the type of the work file. Therefore, the
routine shown in flow chart AS is used both
in the tape version and in the disk version
with tape work files. Opening of files is
identical for the disk and tape versions.

For tape work files, the initialization
begins with rewind commands for SYS00t1,
SYS002, and SYS003. All program mask bits
are set to 1; they will not be reset during
the compilation. The buffer length is
calculated and stored in the communication

®

N

(

PL/I PLM 8

IBM Confidential

C

region entry IJKMBL. The formula for the
calculation is as follows:

1536 if available core
storage more than 30K

Buffer length

Buffer length 256 (1+FLOOR (————===-=))

where AVC is available core storage.

The remaining part of the initialization
is identical for the tape and disk ver-
sions. It is discussed here together with
the disk versions.

Initialization for Disk Versions -- AT, AU

As mentioned under Initialization for
Tapes, part of this initialization is com-
mon to both the disk and the tape versions.
The initialization has two principal func-
tions: storage allocation during PL/I com-
pilation and opening of files.

If the work files are tapes, the routine
flowcharted in AS is used for storage allo-
cation. If disks are used, the following
is done: The program mask bits are set to
1. They will not be reset during the com-
pilation., The buffer length is calculated
and stored in the communication region
entry IJKMBL., The rules for calculation
are given below.

r T 1
|Available Core Storage (AVC) | Buffer |
| | Length |
pommm A .
AVC 2> 30K	1536
22K < AVC < 30K	1024
18K < AVC < 22K	768
14K < AVC < 18K	512
[10K < AVC < 14K | 256 |
e i 1

Initialization for Tape and Disk Versions
-- AU

The addresses of the I/0 areas for SYS002
and SYS003 are calculated and stored in
KTETA. These addresses depend on the
uppermost available core storage address
and the buffer length., The addresses for
the files IJSYSLS, IJSYSIN, IJSYSPH and
IJSYSLN are calculated and stored in the
corresponding DTFCP tables.

The addressing concept is as follows:
The two output areas for printing lie in
succession in the fifth work buffer, begin-
ning at its lower limit. The two input
areas for reading lie in succession in the
first output area otherwise used for
SYS002. The output areas for the link and
punch files lie in corresponding succession
also in the first output area otherwise
used for SYS002. The length of the tables
depends on whether or not the parameter
DISK = YES is specified.

The address of the entire Buffer Area is
then calculated and stored in the inter-
phase communication region entry IJKMBS.

The opening of files depends on the Job
Control options given for the 1list, punch,
and link files. If none of the options for
these files are given, the job is terminat-
ed and a warning message is produced on
SYSLST.

If any option is specified, the corres-
ponding files are opened with their work
files. Before fetching the next compiler
phase (A25), the contents of registers 10
and 11 are saved in the communication
region, and the LIOCS tables for the files
IJSYSLN and IJSYSPH are written on SYS001.

Phases PL/IA00, AOOD, A10 35

PL/I PLM 8

IBM Confidential

PHASE PL/IA25 (REPLACEMENT OF KEYWORDS) -- BA

Phase A25 has the following functions:

1. to read the PL/I source program into
storage;

2. to list the source program if the LIST
option is on;

3. to count the statements and to print
the number of the first statement per
printed line;

4, to eliminate the comments from the
source text and to replace them by one
blank;

5. to replace (if the U8-character set is
used) the combinations period-period
and comma-period by colon and semico-
lon, respectively, and the alphabetic
operators GT, GE, NE, NG, NL, LE, LT,
NOT, OR, AND, and CAT by their
60-character equivalents., No
replacements are performed within
quotes., Moreover, the combination
comma-period is not replaced, i.e., not
interpreted as an end-of-statement
delimiter if it is followed by a digit;

6. to translate the source text into the
internal code shown in Figure 1;

7. to replace all identifiers that physi-
cally look like PL/I keywords by 3-byte
keys (all other identifiers are
replaced in phase A30);

8. to eliminate redundant blanks from the
source text (the remaining blanks are
eliminated in phase A30); and

9. to terminate the source program by the
3-byte end-of-program key (FFFFFF) .

Phase Input

The input of this phase is the PLAI source
program, which is provided in card-image
format. Each card consists of 80 columns.
Column 1 must be blank except for the last
card, which is the DOS/TOS end-of-data-file
card. Columns 2 to 72 are assumed to con-
tain the source text. Columns 73 to 80 are
not used.

Input Processing

To translate the source text into the
internal code, a translate table of 256
bytes is used. This table describes an

r T --T 1
| left]| | |
| | |

|half-byte | |

| | | I
|right l]o 1 2 3 4 5 6 7 8 9 A B C DI|E F |
po—m—- L - t -1
0	0 G W b		
1	v H X ;		
2	2 I Y =		

|3 | 3 7 2 (| |
[4 | 4 K $) I I
| 5 | 5 L # , | |
| 6 | 6 M a | |
|7 | 7 N - + | I
| 8 l 8 0 - | |
| 9 9 p N [|
A	A Q@ " =*	
B	B R . /	
¢	C s ¢ =	
D	D T % >	
E	E U 2 <	
F 1 F v ! &		
b= o o {		
Note: The free space in this table may be occupied by an		
extended character set, e.g., KATAKANA. The characters EO0		
to FF are reserved for internal keys.		
o e e e e e e e e e e J

Figure 1, Table Describing the Internal Code

36

®

SN

PL/I PLM 8

IBM Confidential

isomorphism from the external into the
internal code.

The cards are read one by one into a
card area., The source text is then scanned
by means of several translate-and-test
tables. An end-of-card mark (X'FF') is set
in column 73.

TRT table 1 contains non-zero function
bytes for alphabetic characters, semicolon,
quotation mark, slash, end-of-card mark and
-- if the 48-character set is used -- for
comma and period. This table is used to
scan statements, the beginning of which has
already been detected.

TRT table 2 contains only one non-zero
function byte for the end-of-card mark. It
is used to scan for the end of a comment or
a string constant. Function bytes for
asterisk or gquotation mark are moved into
the table as required.

TRT table 4 contains zero function bytes
for all alphanumeric characters. All other
bytes are # 0. This table is used to scan
for the end of an identifier.

TRT table 5, which is used to find the
first significant character of a statement,
contains a zero function byte only for the
blank. All other characters except slash
and end-of-card mark are mapped into the
same non-zero function byte. Blanks and
comments are replaced by one blank.

The Keyword Table

table. All keywords of equal length are
grouped together. The groups are arranged
according to their lengths. Each group is
preceded by two bytes that contain the
length and the number of keywords the group
consists of. The keyword table forms the
first part of the identifier table and, due
to its size, is divided into two records.
Every keyword is assigned a current number,
starting at one for each record. This
number and the record number (0 or 1) are
part of the key the keyword is replaced by.
X'80' is added to the current number if the
keyword begins with the letter I - N,

The contents of records 0 and 1 of the
keyword table are shown in Figures 2 and 3.
Some space is left open in the table for
additional keywords. This space is filled
with blanks.

A table of the same format as the key-
word table is used to replace text written
in the 48-character set.

Phase Output

The text output is a continuous stream of
delimiters, identifiers, constants, and
keywords, the last being represented by
3-byte keys of the following format:

byte 0: identifier key = X'E1'

byte 1: record number (0 or 1)

byte 2: bit 0=1: the corresponding key-
word begins with the
letter 1,J3,K,L,M, Or N.

C

bits 1-7: current number. Number-
Whether or not an identifier is a keyword ing starts at 1 for each
is determined by means of the keyword record.
Tt 1
| First Record: |
I'_ T - T T T T _1|
|B 0001|KEY 0097 | LOW 00A8 | SINH 003F | ELSE 0051|INDEX OOFU4|
|E 0002|SET 0018|SUM 0029 | MARK 00CO | SIZE 0052 |PRINT 0075]
1a 0003|BIT 0019 |ALL 002A |CHAR 0041 |READ 0053 |ROUND 0076
|F 0004 |END 001A |ANY 002B |HIGH 0042 | OPEN 0054 |FIXED 0077
|X 0006 |GET 001B] | BOOL 0043 |EDIT 0055|FLOAT 0078]
|L 0008|PUT 001C | SIGN 0034 | PROD 0044 | PAGE 0057 |LABEL 00F9|
|V 0009 |ABS 001D |CEIL 0035 | POLY -0045 |LINE 00D8|ENTRY 007A]
IR 000Aa|MAX 009E | LOG2 00B6 | DATE 0046 | INRO 00D9|BEGIN 007B]
0 000B	MIN 009F	ATAN 0037	FILE 0047	FROM 005A	KEYED OOFC
	MOD 00AQ	TAND 0038	TIME 0048	SKIP 00S5D	LEAVE OOFE
DO 000D	EXP 0022	SIND 0039	NULL 00C9	MAIN OOEO	WHILE O0O07F
GO 000E	LOG 00A3	COSD 003A	CALL 00uA		
TO 000F	TAN 0024	TANH 003B	ADDR 004B	TRUNC 0070]	
BY 0010	SIN 0025	SQORT 003C	GOTO 004D	LOG10 00F1	
IF 0091	CoS 0026	ERFC 003D	THEN OO4E	ATAND 0072]	
ON 0021	ERF 0027	COSH 003E	STOP 0050	ATANH 0073}	
L—- - R PP & L 4 L J
Figure 2., Contents of the Keyword Table (Record 0)

Phase PL/IA25

37

PL/I PLM 8

IBM Confidential

{Second Record: } fh“

'l, —— T T Jl N

| WRITE 0101|NOSIZE 01A3 | BUFFERS 0141 | PRECISION 0163

| CLOSE 0102 | MEDIUM 01AS5 | REWRITE 0142] BACKWARDS 0164 |

| INPUT 0183 | CREATE 0126 | DISPLAY 0143 | KEYLENGTH 01E5|

| BASED 0104 | I [|

| REPLY 0105| FORMAT 0127| OPTIONS 0145]

| ERROR 0107 |DIVIDE 0128 | RETURNS 0146 | SEQUENTIAL 0167|

| FLOOR 0108 | SUBSTR 0129| ENDFILE 0147 | UNBUFFERED 0168]|

| LEAVE 0189 | REPEAT 012A| KEYFROM 01C9 | ZERODIVIDE 0169

| | SYSIPT 012C| OVERLAY 014A | CONVERSION 016A|

| UNSPEC 0110} SYSLST 012D | ENDPAGE 014B| NOOVERFLOW 01EB|

| VERIFY 0111]SYSPCH 012E| CONTROLLED 016C|

| STRING 0113 | COLUMN 012F| INTERNAL 01CC

| RECORD 0114] | EXTERNAL 014D | CONSECUTIVE 016F |

| LOCATE 0195] | REGIONAL 014F | ENVIRONMENT 0170]

| UPDATE 0116 | DECIMAL 0135]| ONSYSLOG 0150 | NOUNDERFLOW 01F1

| STREAM 0118 | PICTURE 0126 | OVERFLOW 0152]

| BINARY 0119|BUILTIN 0137 | BUFFERED 0156 | NOCONVERSION 01F3|

| STATIC 011A| ALIGNED 0138| TRANSMIT 0158 | EXTENTNUMBER 0174]

PACKED 011B| INITIAL 01B9| PAGESIZE 0159 | NOZERODIVIDE 01F5|

OUTPUT 011C| INDEXED 01BA| |

| DIRECT 011D | DECLARE 013B| CHARACTER 015E| FIXEDOVERFLOW 0177]

| SYSTEM 011F | POINTER 013C|AUTOMATIC 015F | INDEXMULTIPLE 01F8|

| RETURN 0120 | DEFINED 013D | KEYLENGTH 01E0 | NOFIXEDOVERFLOW O01FB|

| REVERT 0121| NOLABEL 01BE| PROCEDURE 0161] |

| SIGNAL 0122 | DYNDUMP 013F | UNDERFLOW 0162] |

| . Lo L 4L J

Figure 3. Contents of the Keyword Table (Record 1)

DESCRIPTION OF ROUTINES byte is found, the preceding source text is f/\
moved into the output buffer, and control N

Initialization —-- BB is transferred to one of the following
routines depending on the character found.

This is the beginning of the main routine.

It initializes pointers, switches, etc., FSLA -- BE

and reads in the first card of the source

text. If a slash is found, the next character is
tested for *. If it is not, the routine

ELCO -- BC returns 'false' to 4 (LINK). If it is an
asterisk, the end of a comment is searched

Secondary entry point: ELCO10 for. The comment is replaced by a blank
and the routine returns ‘'true' to (LINK).

This is part of the main routine. It scans

for the first significant character of the FCOM -- BF

first or next statement (comments and

blanks are bypassed) . Control is trans-

ferred to FSTN after the first character This subroutine is called if the

has been found. 48-character set has been specified and a
comma has been found in the source text.

Secondary entry point: ELCO10 If the comma is followed by a period that

This entry point is used if the DOS/TOS is not followed by a digit, control is

end-of-data-file card has been reached. transferred to FSEM. Otherwise, control is

The phase is terminated and IJKPH is called returned to the calling program.

to read in the next phase.
Secondary entry point: FSEM

FSTN -- BD This entry point is used to move a
semicolon into the output area. Control is
transferred to ELCO.

This is part of the main routine. It

counts the statements and moves the number FQUO -- BG

of the first statement per line into print X

positions 1 - 6, right-aligned. It per- The subroutine scans for the end of a AQ;:

forms the scan over the statement by means
of TRT table 1. When a non-zero function

38

string constant and moves the constant into
the output buffer.

PL/I PLM 8

IBM Confidential

(

FPER -- BH

This subroutine is called if the
48-character set has been specified and a
period has been found in the source text.
If the period is followed by another
period, the two periods are replaced by a
colon,

FCMB -- BI
Calling sequence:

BAL LINK,FCMB
DC XL1'character 1°
DC XL2'character 2°'

Input parameter:

R1 points to the card area (character 1).

Output parameters:

R1 points to the character following char-
acter 1 in the source text.

RR = R1-1 if return 'false’'.

The routine tests if character 1 in the
card area is followed by character 2. If
necessary, a new card is read and character
1 is moved into column 1 of the card area.
The routine returns 'true' to 6 (LINK) if
character 1 is followed by character 2.
Otherwise, it returns 'false' to 2 (LINK).

FNCA -- BK
Secondary entry points: ZRCD, FNCAO05

This subroutine reads a new card into the
card area (if an end-of-data-file condition
arises, control is transferred to ELCO10)
and prints the preceding card. The new
card is moved into print positions 20 - 99.
All other positions are cleared to blank.
If column 1 of the new card does not con-
tain a blank, print positions 7 to 20 are
filled with asterisks. Then pointers,
switches, etc., are initialized, and con-
trol is returned to the calling routine.

FKEW -- BL, BM

This subroutine is called if the first
character of an identifier has been found
in the source text (card area). After the
length of the identifier has been deter-
mined (if necessary, new cards are read
in), the identifier is compared with all
keywords of equal length. If a matching
entry is found, the corresponding 3-byte
key is moved into the output buffer. Oth-
erwise, the identifier is moved unchanged
unless the U48-character set has been speci-
fied and the identifier is a U48-character

operand. In the latter case, the
60-character equivalent is moved into the
output buffer.

FTKW -- BN

Input parameters:

RLEN = length of identifier.

PTAB = address of one of the two records of
the keyword table or of the
48-character operands table.

address of the identifier to be
compared.

PID

Output parameters:

RKEY = current number of the keyword the
identifier matches with (if any
match has been found).

unchanged.

unchanged.

PID
RLEN

The subroutine compares the identifier with
every keyword of equal length. If no
matching entry is found, the routine
returns 'false' to 0 (LINK). Otherwise, it
returns 'true' to 4 (LINK). RKEY is ini-
tialized with 1 and increased accordingly
whenever a keyword or a group of keywords
is skipped.

FKBU -- BO

Input parameters:

RKEY: current number of the keyword (part
of the 3-byte key the keyword is replaced
with) .

KEY: = X'E100..' or X'E101..* , depending
on whether the keyword is contained in the
first or the second record.

RKEY is stored in the third byte of KEY,
which is then moved into the output buffer.

Secondary entry point: FWBU

This entry point is used to move source
text into the output buffer. If the entire
text does not fit into the buffer, the
buffer is filled with the first part of the
text to be moved. The buffer is then put
out on text medium. The remaining part of
the text is moved into the buffer, left-
justified.

Input parameters:
RR = address of source text

R1 = end address of source text + 1
POUT = pointer of output buffer

BULIM = end address of output buffer
Output parameters:

RR = R1

POUT = next free address in output buffer

Phase PL/IA25 39

PL/I PLM 8

IBM Confidential

PHASE PL/IA30 (REPLACEMENT OF IDENTIFIERS)

ca

Phase A30 has the following functions:

1. To build the name table NAMTAB and to

put it onto SYS001.

2. To replace all identifiers that were
not replaced in phase A25 by 3-byte
keys.

3. To eliminate all redundant blanks from
the source text.

4, To put out the LIOCS table for SYSIPT

as the third record of LITAB (the first
two records were put out in phase A00).

Phase Input and Output

The text input is a continuous stream of
delimiters, constants, and identifiers.
The identifiers physically identical with
keywords were replaced by 3-byte keys in
phase A25,

The text output is a continuous stream
of delimiters (blanks have been
eliminated) , constants, and identifiers.
The identifiers are represented by 3-byte
keys of the following format:

byte 0 : identifier key = X'E1'

byte 1 : record number (0 or 1 if keyword,
- otherwise 2 2)

byte 2 : bit 0 = 1 : the corresponding

identifier begins with one of the
letters I-N

bit 1-7 : current number starting
at 1 for each record.

Interface with Other Phases

1. The begin and end address of the LIOCS
table for SYSIPT is referred to by the
external symbols IJKA06 and IJKAO7,

respectively. The table was generated

by phase A00 and is still in storage.

The addresses of the two records of the
keyword table are referred to by the
external symbols REC1 and REC2. The
keyword table was generated by phase
A25 and is still in storage.

The third record of LITAB is noted and
the information stored in KSAVES8. It
is used in phase G55.

The second record of NAMTAB is noted

and the information stored in IJKMIP+U4.
It is used in phase B25.

40

®

If the keyword PICTURE appears in
the source text, the job-information
bit 10 is set to 1.

Phase A35 is skipped if the keyword
PICTURE does not appear in the source
text.

7. Phase AU45 is skipped if there are no
character strings in the source text.

Format of the Name Table NAMTAB

The name table consists of at least two
records, each of which is 1024 bytes long.
The first two records are the keyword table
described in phase A25. All other records
consist of up to 127 entries and are
terminated by an end-of-record key (X'FF').
The individual entries have the following
format (which differs from that of the
first two records) :

length of the following identifier - 1
the identifier itself in internal code

L
I

o

DESCRIPTION OF ROUTINES

Initialization -- CB

This is the beginning of the main routine.
The LIOCS table for SYSIPT is put out on
SYS001 as the third record of LITAB. IJKNT
is called and the NOTE information is
stored in KSAVE8. It is tested whether any
option other than LIST is specified. If
not, phase G31 is called to terminate the
compilation.

The keyword table is put out on SY¥S001
as the first two records of NAMTAB. IJKNT
is called and the NOTE information is
stored in IJKMIP+4., Pointers, switches,
etc., are initialized and two records of
text input are read. The record informa-
tion table RECT is built up. It contains
information on the records of NAMTAB which

are built up in the table space. RECT has
the format shown below:

r— T T T T T 1= T1
a2 | C | N | A | C | N | A |F|
L 1 1 L 4 L — ————d]
A = address of the begin of one of the

records
C = current pointer (initial value = A.

Subsequently it points to the next
free entry within the record).
record number

end of table = X'FF'

The last A before F is used as end
address of the last record.

o)
nn

@:;

PL/I PLM 8

IBM Confidential

C

FIDE -- CC, CD, CE

This is part of the main routine. The
input is scanned by means of a TRT table
for digits, letters, periods, blanks, quo-
tation marks, identifier keys, and end-of-
program key. All other characters are
bypassed. If one of the characters listed
is found, the bypassed text is moved into
the output buffer. It is tested whether
the input pointer points to an address of
the first buffer (FPIN), and one of the
following actions is taken depending on
what character is found:

1. End-of-program key:
Control is passed to FEND.

2. Quotation mark:
The end of the string is searched for
and the entire string is moved into the
output buffer. The scan continues.

3. Identifier key:
The identifier key is moved unchanged
into the ocutput buffer.

4. Blank:
This and all following blanks are
skipped. They are not moved into the
output buffer.

5. Letter:
The identifier beginning with the let-
ter found is compared with all iden-
tifiers contained in the name table,
If a matching entry is found, the iden-
tifier is replaced by the corresponding
key. If not, the identifier is incor-
porated into the table and replaced in
the source text by the identifier key.
The current number of the identifier
key is the number of the entry in the
relative record. If the table space is
full, the identifier is moved unchanged
into the output buffer, and the over-
flow switch is set to 1.

6. Digit:
If the digit found is the first digit
of a floating-point constant, the E is
replaced by the corresponding 3-byte
key. 1If it is followed by a B (binary
constant) the B is replaced according-
ly.

FEND -- CF

This is the end of the main routine. It is
called if the end-of-program key is found.
The key is moved into the output buffer,
and the buffer is put out on text output
medium. The name table is put out on.
SYS001 in records of 1024 bytes.

If the overflow switch is on, e.g., if
not all identifiers have been replaced yet,
control is transferred to INITO4 for a
further pass over the source text. If the
overflow switch is off, the next phase is
called. Phase A50 is called if there are
no character strings in the source program.
Phase AU45 is called if the keyword PICTURE
does not appear. Phase A35 is called in
all other cases.

FPIN -- CG

FPIN is called each time the input pointer
is increased. This routine ensures that
the input pointer always points to an
address within the first of the two input
buffers. Whenever the input pointer
exceeds its range, the contents of the
second buffer are moved into the first one,
and a new record is read into the second
buffer in overlapped mode.

The end of a program is indicated by the
end-of -program key X'FF'. If, however, the
ending quotation mark of a string constant
is missing, this key cannot be detected
since a character string may contain any of
the 256 characters. It is therefore neces-
sary to test for an end-of-file condition
after every call of IJKGI. If the end of
the file has been reached, the last record
in the first buffer is processed and con-
trol is transferred to FEND the next time
FPIN is invoked.

FMBU -- CH
Secondary entry point: FMBUS

Input parameters:
RR : (general register) address of source
text.
source text + 1.
POUT : pointer of output buffer.
BULIM : end address of output buffer. Out-
put parameters:

Output parameters:

RR : = R1.

POUT : points to the next free address in
the buffer.

This routine moves the source text into the
output buffer. If not all the bytes to be
moved fit into the buffer or if they do
exactly fit, the buffer is filled with the
first part of the text to be moved. The
buffer is then put out on text output medi-
um and the rest, if any, is moved into the
buffer, left-justified.

Phase PL/IA30 41

PL/I PLM 8

IBM Confidential

PHASE PL/IA35 (PICTURES) -- C%

This phase, which is called by phase A30 if
the identifier PICTURE is detected in the
input stream, has the following functions:

1. To check whether a picture is syntacti-
cally correct;

2. To determine the precision and the
attributes of the data item represented
by the picture and to pass this infor-
mation to subsequent phases;

3. To transform each decimal fixed-point
and decimal floating-point picture into
an "Edit Pattern" and a "Pseudo
Program" and to produce additional
information on precision, sign charac-
ters, etc., of the corresponding data
item. This is done to considerably
reduce the library subroutine require-
ments and to speed up the object time
picture editing.

Phase Input

The source text used as input is in the
format described as output in phase A30.
Thus, there are no blanks between syntacti-
cal units, and all identifiers are rep-
resented by 3-byte keys.

OUTPUT FORMATS

The output format of the individual PICTURE
items is described in the following.

Character-String Pictures

Since character-string pictures can only
contain the picture character X, it is
possible to determine the length of the
data item and then to eliminate the pic-
ture. The output format of character-
string pictures is shown in Figure 1.
Byte 1|2|3 4 5|6|7 8

E1815E(33 W 34

| |

()

Length of the data item in
hexadecimal form
(each byte of W contains one

3-byte element
CHARACTER

decimal digit in internal code)

Figure 1. Output Format of Character-

String Pictures

42

Sterling Pictures

The output format of sterling pictures is
shown in Figure 2.

Decimal Fixed Pictures (Zoned)

If a decimal fixed picture contains the
picture characters 9 and V only, it is
possible to determine the precision of the
data item and then to eliminate the
picture. This data type is given the
internal attribute ZONED. The output for-
mat of zoned decimal fixed pictures is
shown in Figure 4.

Decimal Fixed Pictures (Zoned (T))

If a decimal fixed picture contains the
picture characters 9, V, and T only, it is
possible to determine the precision of the
data item and then to eliminate the pic-

ture. This data type is given the internal
attribute ZONED (T) . The output format of
zoned (T) decimal fixed pictures is shown

in Figure 5.

Other Decimal Fixed Pictures

The output format of decimal fixed pictures
other than zoned or zoned (T) is shown in
Figure 6.

Decimal Float Pictures

The output format of decimal float pictures
is shown in Figure 8.

L/

PL/I PLM 8

IBM Confidential

e |1 | 2| 3] 4] s]e] 7] 8] [isfi-ra]iaafi-re]in i-1g]i-9]i-8|i-7]i-6]i-5]i-4 i-3fi-2]i1]
Bl g 36| 33|w|34]3 Wlse|e mw so|er @ 77| 3 M 35 N 34

| | | | |

() ()

Figure 2.

Number of
fractional digits

‘— Number of digits in the pounds
field + number of fractional
digits in the pence field + 3

‘— 3-byte element FIXED

-— 3-byte element STERLING

— Final ’ of the picture

L— Picture string (for details see Figure 3)

'~ Width of the numeric field (in binary form)

— 3-byte element PICTURE

Output Format of Sterling Pictures

pye |1 | 2|3 |45 || 7]8]9] !L-5|L—4|L-3|L—2|L—l| L
M| N| w|L-4] 19
\ _’-\~
G Sterling pictures characters

Length of picture (in binary form)

L Width of numeric field (in binary form)

L Number of fractional digits (in binary form)

L Number of digits in the pounds field + number of fractional digits

in the pence field + 3 (in binary form)

Figure 3.

String Format of Sterling Pictures

Phase PL/IA35

43

PL/I PLM 8

IBM Confidential

Byte | 1 |2|3 4|5|6 7 s|9|1¢ N 12|13|14 15 16|l7|l8
El g8 81 | E1 g8 77 | 33 M 35 N 4| BT g1 o35
() 3-byte element
DECIMAL
Number of fractional digits
— Total number of digits
L 3-byte element FIXED
L 3-byte element ZONED
Figure 4. Output Format of Zoned Decimal Fixed Pictures
Byte 1|2|3 AEIE 8|9|w n 2]]e]s 16|l7|18
E1 pgg 83 El g8 77 | 33 M 35 N 4|1 E1 A 35
() 3-byte element
DECIMAL
Number of fractional digits
L— Total number of digits
L 3-byte element FIXED
L 3-byte element ZONED (T)
Figure 5. Output Format of Zoned (T) Decimal Fixed Pictures

Ly

AT

PL/I PLM 8

IBM Confidential

Byte 1|2|3 als]e|l7]s]s]w|n]]n|u]is]e]iz]is]iw]o]a]2] i-4]i-a]i-2]i-1] s
B @ 77| 3 M 3 N Bl g 36]|33|w|ae]3s %l m

|

)

35

-—|e

3-byte element DECIMAL
Final of the picture string

Picture string (for details see Figure 7)

'— Initial ’ of the picture string

L Width of numeric field

L 3-byte element PICTURE

“— Number of fractional digits

L—Total number of digits

L 3-byte element FIXED

Figure 6. Output Format of Decimal Fixed Pictures Other than Zoned or Zoned (T)

Bye | 1| 2| 3] 4] s l 6 | | L |ier|oeefirsfurafies|ire|iez] [i-2]i-1]

f o | w]|FL|cos

S ———————_—— I S —————_ ——

Edit pattern Sign information Pseudo program

Conditional digit select

-— Fill character

L— Width of numeric field = length of edit pattern (in binary form)

L— D = (number of digit positions +2) / 2 (in binary form)

Figure 7. String Format of Decimal Fixed Pictures Other than Zoned or Zoned (T)

Phase PL/IA35 45

PL/I PLM 8

IBM Confidential

Byre | 1| 2] 3] 4 s|e|l 7| s]o]w|n]z|a]u|is|ie]rz]is] |i-s]i-2]i-1] s
B g 78|33 M ule ;o 3|33 wlae]a Hls]la g 35
| | I I e |
() () 3-byte element DECIMAL
Final of the picture string
Floating-point picture string
(for details see Figure 9)
— Initial * of the picture string
L Width of numeric field (in binary form)
'— 3-byte element PICTURE
L— Number of digits before the E or K
- 3-byte element FLOAT
Figure 8. Output Format of Decimal Float Pictures
Byte 2| 3]als]|s|l7]e]>s ||¢|7 | . L+1[L+2!L+3 L+4| | i [in]is2]ies|iva]ies|ivs] | 3 Js41]s42]srafasa|ses|ave]ser| K
gc | R [Ne| i [or | we[rLefeosd 1 A De | Wi | FLefcDss \
[— | ~————— ~ - — _ | N ———
Edit pattern Sign Pseudo program Edit pattern Sign Pseudo program
information information

Figure 9.

46

L— Always X’ giC’

Conditional digit select

Fill character

Width of numeric field (in binary form)

L_Dr = (number of digit positions+2) /2 (in binary form)

of the fraction

L— Offset: contains the value i (in binary form)
L~ Number of fractional digits (of the fraction) (in binary form)

LR = 2* (total number of digits of the fraction) + x (in binary form)
X =g if there was a K in the picture
X =1 if there was an E in the picture

String Format of Decimal Float Pictures

Conditional digit select

Fill character

Width of numeric field (in binary form)

of the exponent

L DE = (number of digit positions+2) /2 (in binary form)

®

PL/I PLM 8

IBM Confidential

(@

C

ELEMENTS OF PICTURE STRINGS

The fill character (FL, FLF, and FLE) is
blank if the picture (subfield) contains no
asterisk. It is asterisk if the picture
(subfield) contains an asterisk.

The conditional digit select character
(CDS, CDSF, and CDSE) is X'20' if the pre-
cision (of the subfield) is even and blank
if it is odd.

Edit Pattern
The edit pattern is used in EDMK instruc-
tions (at object time) in some library

subroutines.

Sign Information

The sign information is a (pseudo) instruc-
tion specifying where to test for which
sign. There are 5 different pseudo
instructions containing sign information.

1. NSS - No Sign Specified
The general format of the NSS pseudo
instruction is shown below,

X'40°
not relevant

byte 0
bytes 1-2

The instruction is generated if none of
the picture characters S + - DBCR T I
R appears.

2. TSS - Test for Static Sign
The general format of the TSS pseudo
instruction is shown below.

byte 0 X'00°
byte 1 offset of the last byte of the
drifting string

byte 2 - for $
b for +
- for -
C for CR
D for DB

It is generated if a static sign
appears in the picture. If C1 appears
in the specified byte, it is assumed
that the data is negative. Otherwise,
it is assumed to be positive.

3. TDM - Test for Drifting Minus
The general format of the TDM pseudo
instruction is shown below.

byte 0 X'00°
byte 1 offset of the last byte of the
drifting string
byte 2 - for $
b for +
- for -
C for CR
D for DB

It is generated if a string of drifting
"-" appears in the picture. If "-"
appears in the specified field, the
data is assumed to be negative. Other-
wise, it is assumed to be positive.

4, TDP - Test for Drifting Plus
The general format of the TDP pseudo
instruction is as shown for the TDM
instruction, but with X'D0' in the
first byte. It is generated if a
string of drifting "+" appears in the
picture. , If "+" appears in the speci-
fied field, the data is assumed to be
positive. Otherwise, it is assumed to
be negative.

5. TOS - Test for Overpunched Sign
The general format of the TOS pseudo
instruction is shown below.

byte 0 X'FO'
byte 1 specifies offset of sign byte
byte 2 X'D0' for T

X'FO' for I
X*'D0* for R

It is generated if a T, I, or R appears
in the picture. If the zone in the
specified byte is identical to the zone
in byte 3 of the instruction, the data
is assumed to be negative. Otherwise,
it is assumed to be positive.

Pseudo Program

The pseudo program is a series of (pseudo)
instructions used by the library for edit-
ing (at object time). There are 5 differ-
ent pseudo instructions.

1. IZR - Insert Zero
The general format of the IZR pseudo
instruction is shown below.

X'00"
offset

byte 0
byte 1

The instruction causes the insertion of
a zero in the byte with the offset 4.

2. IST - Insert Static Character
The general format of the IST pseudo
instruction is shown below.

byte 0 x'oy’
byte 1 offset
bytes 2-3 C4, and C,.
FOI‘S:C“=+ C2=-
+:Cﬂ=+ C2=b
-:C«':b C2=-
S:C =83 Cx=3%

The instruction inserts C1 into the
specified byte if the data value is
greater than or equal to zero. Other-
wise, it inserts C2.

Phase PL/IA3S 47

PL/I PLM 8

IBM Confidential

3.

48

IDR - Insert Drift Character

The general format of the IDR pseudo
instruction is as shown for the IST
instruction, but with X'08' in the
first byte. If the data value is
greater than or equal to zero, C4 is
inserted into the byte with the offset
1. Otherwise, C, is inserted. The
value of 1 is determined as follows: if
register 1 was set in an EDMK instruc-
tion, 1 is equal to the contents of
register 1 minus 1. Otherwise, 1 is
equal to address of the byte with the
offset d.

IZN - Insert Zone
The general format of the IZN pseudo
instruction is shown below.

byte 0 x'oc’
byte 1 offset

bytes 2-3 Z4 and Z,.
For T : Zq = X'CO" Z2 = X'DO"
I: %2, = X'CO" Z, = X'FO°'
R: Z4 = X'FO' %Z, = X'DO"'

If the data value is greater than or
equal to zero, the zone of Z,4 is
inserted into the zone of the specified
byte. Otherwise, the zone of zZ, is
inserted.

EOP - End of Pseudo Program

The general format of the EOP pseudo
instruction is X'14' if the picture
does not contain 9, T, I, or R. X'10°
is generated in all other cases. It
indicates the end of the pseudo pro-
gram. If the byte contains X'14' and
the data value is zero, the entire
field is filled with the fill character
FL (or FLF or FLE).

EXAMPLES

The examples in Figure 11 show the original
picture and the resulting edit pattern,
sign information, pseudo program, fill
character, and conditional digit select.
The notation used in these examples is as
shown in Figure 10.

F 1
| Symbol |[Meaning |
F —+-- -
| DS |Digit select 1
| SS |Significance start |
b= = Fomm oo 1
| NSS |Pseudo instruction|

| TSS |pseudo instruction|Sign |
| TDM |Pseudo instruction|information I
| TDP |Pseudo instruction| |
| TOS |Pseudo instruction| |
e t 1
IZR	Pseudo instruction	Instructions
IST	Pseudo instruction	for the
IDR	Pseudo instruction	pseudo
IZN	Pseudo instruction	program
14	Pseudo instruction	

| 10 |Pseudo instruction] |
o 1 -1
I s | |
9 | |
[iPicture character |
- |
- | |
t -+-- -1
| b iBlank |
| O |
| 1 10, 1, 2, « « «

e

L- i -

Figure 10. Notation Used in Picture Exam-
ples

@

AT

®

N S

*LL 2Inbta

ORIGINAL PICTURE OUTPUT ORIGINAL PICTURE OUTPUT
Bnn-nn Fill char. IE n‘“ Fill chor. B
Cond. digit sel. Eond. digit sel. [b |
Edit pattern [Jss]ss]. ss{ss] Edit pattern nmmm

Sign inform. . Sign inform.
Pseudo program [1sT [# [+ [- Tizr] 1 [ug | Pseudo program [1sT[g [§$ [§ [1zr[3 [1zN 3 [ca Tog]1g]

4
o]
B

8 WId I/1d

TeT3uspTIUCD WHI

s[s[s]s[o[5] Fill char. (STSTSIsT. ToTololvIoI2] | Fitt char.

][]
djait

Cond. digit sel. Cond. digit sel.
Edit pattern [b [Ds [Ds s [ss [ss | Editpatten [b | b [DS[SS] , |55]S [ss[ss [ss]
Sign inform. Sign inform. n-

Pseudo program

=
=
-
—
l—
-:—4
o
]

Pseudo program

[4]s]8]w]

GEY 9Seyd UT UOTIRWIOISURI] 2In3dTd JO saTdwexd

SEYI/I4d 9seud

6t

Fill char. [sTs[sT. [s[s[s]-Tv]s]s] | Fincher.

Bl ﬁ@
-]
-]
|

7]][]

Cond. digit sel. Cond. digit sel.
Edit patten [b | DS[Ds] Editpattern [b [Ds]os [, Jos[os[os] . Jss[ss]
Sign inform. Sign inform.

Pseudo program Pseudo program

5]
=

~

+

- ize] 8 14]

T Iv]] Fill char. [+]+]+] 7] Fill chor. [v]
Cond. digit sel. Cond. digit sel. II]
Edit pattern DS | DS | DS Edit pattern
Sign inform. Sign inform.

Pseudo progrom Pseudo program

)
b

[o]. Iv]s] Fill char.

Bl | 3]

q
=12 | E [B 0 (B E]
i | [E] s
4] (] HiS
B

S{sS{S[B}|,|B|S|S Fill char.
Cond. digit sel. Cond. digit sel.
Edit pattern Edit pattern | b I DS l DSJJ L]_[DJ [U
Sign inform. Sign inform.

=
o
!H
'H

p2
o

Pseudo program Pseudo program

PL/I PLM 8

IBM Confidential

DESCRIPTION OF ROUTINES $ has the "item code"

has the "item code" 2,

1, +
etc.)
Pointers, Storage Areas, and Flags

(Open) A routine is called open if
Phase A35 uses the following pointers, control is transferred to it
storage areas, and flags: by
PIN input pointer 1. a simple B instruction,
POUT, OPOINT output pointer in which case control is
WAP, XP, PUN work area pointers also returned by a B
PP pseudo program pointer instruction, or
EP edit pattern pointer
PIP13 contains expanded picture 2. some in-line coding that
EDIP contains edit pattern requires a separate des-
PSEUP contains pseudo program cription,
SIN contains sign information

(Closed) A routine is called closed if

control is transferred to it
by a BAL instruction. Con-

Name of flag Set _on for

O

N

$ $ trol is returned by a BR
+ + instruction in this case.
S S PIP1 -- DA, DB
T T
I I PIP1 is the "master program" of this phase.
R R It initializes pointers, registers, and
CR CR other items and reads the first 2 records
DB DB into input buffers 1 and 2. It scans the
Z Z input stream until X'E1013636' (the inter-
* * nal representation of PICTURE') is encoun-
9 9 tered outside a character-string constant.
v v EXPA stores the "expanded" picture in
EK E or K PIP13.
PCB period, comma, B
Digpos scanned digit position If the picture 1s a character-string
character picture, STRI is called. If it is a sterl-
H to check that a static S + ing picture, STER is called. These rou-
- appears only to the left tines process the pictures and return con-
or right of a subfield or trol to PIP1, which continues the scan.
that a DB or CR appears
only to the extreme right If the picture is a fixed-decimal pic-
of a subfield ture, DEC is called. Control is then
Sign sign character (S + - T I R transferred to DEC. If DEC determines that
CR or DB) the picture is ZONED or ZONED (T) (see
U zero suppression requested Figures 4 and 5), the 3-byte element DECI-
$ drift drifting string consists of MAL is put out, and the scan is continued.
Otherwise, P2 is called and FIXED (M,N) is
+ drift drifting string consists of put out., P1 is then called and puts out
+ ‘ PICTURE (W), guote, the first 2 bytes of
- drift drifting string consists of the picture string, and -- indirectly (by
- calling other routines) -- the remainder of
S drift drifting string consists of the picture string. The scan then contin-

S ues.

If the picture is a decimal-float pic-
ture, DEC is called which processes the
fraction part of the picture. Control is
then returned to PIP1 and the values m, n,

Notation and Terms Used in Routine
Descriptions

M, m total number of digit posi- w, and d of the fraction are stored. Then
tions DEC732 is called which processes the expo-
N,n number of digit positions nent part. After control has been returned
after the (implied) decimal to PIP1, M, W, and D of the exponent are
point stored and w of the entire picture is com-
W,w width of numeric field puted. FLOAT (M) PICTURE (W) is put out.
FL £ill character TPEP is called which transforms the frac-
CDhsS conditional digit select tion part of the picture into an edit pat-

"item code" a number assigned to a pic-

ture character (for example:

tern and a pseudo program. Then a quote
and the first 6 bytes of the picture string

50

PL/I PLM 8

IBM Confidential

are put out. PAT puts out the next 2 bytes
of the picture string (see Figure 9), the
edit pattern, the sign information, and the
pseudo program of the fraction part. Con-
trol returns to PIP1, and d and w of the
exponent are put out. TPEP is called again
to process the exponent part. PAT is
called, which puts out the next 2 bytes of
the picture string, the edit pattern, the
sign information, and the pseudo program of
the exponent part. Then, DECIMAL is put
out and the scan continues.

BANN (Closed) -- DZ

The following instructions are stored in
PSEUP:

1. IST (EP) $ $ if current picture
character is $

if current picture
character is +

if current picture
character is -

if current picture
character is S

2. IST (EP) + b
3. IST (EP) b -

4., IST (EP) + -

The following sign information is stored:
1. NSS if current picture
charactexr is $
if current picture
character is +
if current picture
character is -
if current picture
character is S

2. TSS (EP) b
3. TSS (EP) -

4. TSS (EP) -

BLUE (Closed) -- DO

Adds 1 to N if the vV-flag is on.

DEC (Closed) -- DE, DF, DG, DH

1. It checks whether a decimal fixed-point
picture or a subfield of a decimal
floating-point picture is syntactically
correct.

2. It determines the precision of the data
item corresponding to the picture,
determines the width of the numeric
field, and computes D = (number of
digit positions+2) /2.

3. If the picture is a zoned decimal fixed
picture, ZONED FIXED (m,n) is put out,
and control is returned to PIP1.

4, If the picture is a zoned (T) decimal
fixed picture, ZONED (T) FIXED (m,n) is
put out, and control is returned to
PIP1.

5. If the picture is not a decimal fixed-
point picture or a subfield of a
decimal floating-point picture, control
is returned to PIP1.

DPTE (Closed) -- DO

Signals error if the Digpos-flag is off.

DRIFT (Closed) -- DV

1. Sets "drift switch" on.
2. Sets "item code" to

if currently scanned character is
if currently scanned character is
if currently scanned character 1is
if currently scanned character is

FEWN -
0Nt ++

3. Returns to (LINK) if it is none of the
characters indicated under item 2.

4., If the "drift switch" is on, the cur-
rently scanned character and the "item
code" are stored.

5. If the "drift switch" is off, ("item
code"-1) *4 and the currently scanned
item are stored.

6. Returns to 4$0,LINK).

ECAV_(Open) =-- DX

1. Sets the SS-flag on if the V-flag is
of f£.

2. If the V-flag is on and the SS-flag is
off, it puts out an IST instruction for
each period, comma, or B between the
current PICTURE character and the V.

3. Returns before setting the S-flag on.

EXPA (Open) -- LC, DD

Expands a picture using replication fac-
tors. The expanded picture is stored in
PIP13. An error is indicated if the
expanded picture contains more than 255
characters. After the expansion, the pic-
ture is converted to external representa-
tion.

Examples:

Unexpanded picture Expanded picture

' (5)9.V9" '99999,.v9"
'(3) S,V (2 9 'S$S5,V99"
'Oz (w9 '9999"

A zero replication factor followed by a
picture character is interpreted as shown
in example 3.

F(¥) (Closed) -- DR

Scans the field "separator-1" if RO

= 0.
Scans the field "separator-2" if RO # O.

Phase PL/IA3S 51

PL/I P1LM 8

IBM Confidential

FPIN (Closed) -- EB

Controls the reading of the input streanm,
i.e., FPIN is called each time the input
pointer is increased (only exception: when
scanning a replication factor). Two buf-
fers are used. If the input pointer passes
the end of the first buffer, the contents
of the second buffer are moved into the
first, and a new record is read into the
second buffer. The input pointer is modi-
fied accordingly. Additionally, all the
input text (with the exception of pictures)
is put out again.

FSI, FSI1 (Closed) -- DY

1. Sets the FF-flag on.

2. Adds a "Significance Start" character
(X*'21') to the edit pattern.

3. Adds an IZR (EP) to the pseudo program
if the above "Significance Start" char-
acter is the first one in this edit
pattern.

HAM (Closed) -- DS

1. Increases WAP by 1. Adds 1 to M and N
if the currently scanned digit position
character was preceded by a V.

2. Returns to 4 (0,LINK) if the Z-flag is
on.

3. Returns to (LINK) if the Z-flag is off.

HTE (Closed) -- DO

Signals error if the H-flag is on.

JTRNA1 (Closed) =~- EC

Output routine. Register BYZ contains the
number of bytes to be put out, register PIN
the starting address. One output buffer is
used.

If the string to be put out fits into
the remaining free space of the output
buffer, it is moved there, and BYZ is added
to POUT (thus updating the output pointer).
If the string is too long, the string
length required to fill the buffer is moved
there. The contents of the buffer are
written on the output medium, and POUT is
reset to the begin address of the buffer.
BYZ is reduced by the number of bytes moved
into the buffer and PIN is added to that
number. This procedure is continued until
the entire string has been moved.

PAT (Closed)

This routine is called by PIP1. It puts
out FL, CDS, Edit Pattern, Sign Informa-
tion, and Pseudo Program of a subfield. An

52

additional ' is put out if it is a decimal
fixed-point field.

RFDF (Closed) -- DS

Signals error if any Drift flag and/or
"normal" flag (specified by the "item
code") is on.

Examples:

Error is signalled if

1. the "item code" specifies $ and the
$-flag is on.

2. the "item code" specifies + and the §
drift-flag is on.

RFT (Closed) -- DP

Returns to (LINK) if the flag specified by
the "item code" is on; otherwise, it
returns to 4 (0,LINK) .

SEAV (Closed) -- DO

1. Scans for period and/or comma and/or B
and/or V following a (potential) drift-
ing character. Stops scanning after
the first non-editing character is
encountered.

2. Signals error if any editing character
occurs without the Digpos-flag having
been set on.

3. The PCB-flag is set on if one or more
of the editing characters have been
detected.

4., VTE is called if a V is encountered.
If the Digpos-flag is off, the Q-flag
is set on. Then HTE is called.

SITE (Closed) -- DO

Signals error if the sign-flag is on. Oth-
erwise, the sign-flag is set on.

STER (Open) -- DI, DJ, DK, DL

1. Checks whether a sterling picture is
syntactically correct.

2. Determines the precision of the data
item corresponding to the picture:

M = number of digit positions in the
pounds field + 3 + N.
N = number of fractional digits in the

pence field.

3. Determines the width of the numeric
field : W.

4. Puts out PICTURE (W) 'picture string’
STERLING FIXED (M,N).

ym N
Y

PL/I PLM 8

IBM Confidential

(“\

STRI (Open) -- DN

Processes character-string pictures, e.g.,
pictures that only contain the picture
character X. Puts out CHARACTER (W) .
Deletes the picture.

SUP (Closed) -- DP

1. Returns to the address in R1 if the
character being scanned is neither *
nor Z. Otherwise, the *-flag or Z-flag
is set on, respectively.

2. Signals error if any flag is on that
represents a digit position character
other than the one being scanned.

TDS (Closed) -- EA

Generates the sign information:
TDM (EP) a 1if the currently scanned
character is - or S.

if the currently scanned
character is +.

TDP (EP) a

a = length of the drifting string - 1

TPEP (Closed -- DT, DU, DV, DW

Transforms a decimal picture subfield into
edit pattern, sign information, and pseudo
program.

The relationship between the input of
TPEP and the output produced can be seen in
the section Examples in the description of
this phase.

Note: If the routine detects an invalid
picture character, all storage occupied by
this phase is dumped. (The error will
probably be in DEC, or in one of the rou-
tines called by DEC) .

VITE (Closed) -- DO

Signals error if the V-flag is on. Other-
wise, the V-flag is set on and the U-flag
is set off.

WTE (Closed) -- DO

Signals error if the W-flag is set on.
Otherwise, it returns to (LINK).

Z9 (Closed) -- DO

1. Scans a shilling field or a pence
field.

2. Returns to 4 (0,LINK) if ZZ or Z9 or 99
is detected.

3. Returns to (LINK) if Z or 9 is detect-
ed.

4, Signals error if the character being
scanned is neither 9 nor 2.

5. Sets the Z-flag off if a 9 is detected
(provided the Z-flag was on). Signals
error if the Z-flag is off and the
character being named is a Z (if there
is a Z in a sterling subfield, all
digit position characters in the
preceding subfield must be Zs).

Error -- DM

Since there are more than 50 error possi-
bilities in a picture, only one error mes-
sage is produced by putting out a 3-byte
element ERROR of the general hexadecimal
format E10082.

If an error is detected, processing of
the picture is terminated. The message
code 01 (declaration in error) will be
given in the symbol table listing.

Phase PL/IA35 53

PL/I PLM 8

IBM Confidential

PHASE PL/IALS5 (CHARACTER STRINGS) -- EM

This phase has the following functions:

1. To scan character string constants for
correct format and precision;

2. To eliminate character strings from the
source text and to replace them by two
3-byte keys;

3. To retranslate the character strings
(except the picture strings) from the
internal to the external code, and to
collect them in the character string
table CARTAB which is written on
S5YS001;

4, To optimize the character strings with-
in the limits of table space, e.g., to
cause two identical character strings
to appear only once in the table.

This phase is skipped if no character
strings appear in the source text.

Phase Input and Output

The text input is a continuous stream of
delimiters, constants, and identifiers, the
latter being represented by 3-byte keys.

The character-string constants have the
following format:

I = decimal integer specifying replication
(1 to 3 digits).

The character string is a sequence of at
least one character. (A quotation mark is
represented by two adjacent quotation
marks.) All characters, except those of
picture strings, are represented by the
internal code. If the character-string
constant is followed by a B (in the form of
a 3-byte key), it is interpreted as a bit-
string constant. Picture strings appear in
the following context:

Note: The field length must not be

interpreted as a replication factor.

54

The text output is a continuous stream
of identifiers (3-byte keys), delimiters,
and constants. The character-string con-
stants are represented by two adjacent
3-byte keys of the following format:

K = character-string-constant key = X'E3"

(1 byte)
O = offset in the character string table (2
bytes)
E = error byte : X'00*' = no error
bit 0 = 1 : diagnostic
message EO055I
bit 1 = 1 : diagnostic

message E056I
bit 2 = 1 : diagnostic
message E067I

L = length of the character string (1
byte) .

Note: The error byte is cleared in phase
C30 so that the length occupies two bytes
as follows:

The Character-String Table:

The character string table (CARTAB, ZTAB0O)
is written on SYS001. The record length is
equal to the buffer length. The last
record may be shorter. The length of the
table is stored in IJKCSL.

The table consists of a continuous
stream of characters (in external code).
Each single character string can therefore
be found by its address (offset) relative
to the beginning of the table and by the
length of the string. The character
strings are optimized as shown below.
Assume that the following 4 character-
string constants appear in a source
program:

'SPARSELDER', 'GELD', 'ERBE', 'DERB'.
This will cause the following character-

string table to be built:

S PARGELDERBE

L— —_—— — —_—

fm=— - s oo ——o———————— 1
| |

C)

PL/I PLM 8

IBM Confidential

The character-string constants would be
represented as follows:

X'E30000E3000A"
X'E30004E30004"

X'E30008E30004"
X'E30007E30004"

DESCRIPTION OF ROUTINES

Initialization -- EN

This is the beginning of the main routine.
It initializes pointers, switches, etc.,
and reads input text into two buffers.

FSCA -- EO ,EQ

This is part of the main routine of this
phase. It performs the scan over the
source text by means of several TRT tables.
If a marked character is found, the preced-
ing source text is moved into the output
buffer. FPIN is called to check the input
pointer, and control is transferred depend-
ing on the character found.

FIDE --_ EP

This is part of the main routine. It is
called if an identifier key has been found.
If it is a PICTURE key that appears in the
correct context of picture strings, all the
text preceding the begin guote of the
string is moved into the output buffer, the
switch CONVSW is set to one to indicate
that the string is not to be retranslated,
and, after calling FPIN, control is trans-
ferred to FSTR. All other keys are moved
into the output buffer, FPIN is called, and
the scan continues. If the key INITIAL is
found, the entire INITIAL list is skipped.

FREP -- ER

This is part of the main routine. It is
called if a left parenthesis has been found
in the source text. If the parenthesis is
followed by 1 to 3 digits, a right paren-
thesis, and a quote, i.e., if a replication
factor is found, the decimal integer is
converted to binary and control is trans-
ferred to FSTROS5 to process the string
constant. Otherwise, the left parenthesis
is bypassed, and the scan continues.

FSTR -- ES, ET

Input parameter:

R1 : Points to the beginning quotation mark
of a character string within the input
text.

The routine increases R1 by one, sets REPL
to 1 and RLEN to 0. REPL and RLEN are the

parameters for the following routine seg-
ment labeled by FSTROS.

Secondary entry point: FSTRO0S5S

Input parameters:

R1 : address of the character string in
the input text.

replication factor.

number of digits specified for the
replication factor + 2. RLEN equals
zero if no replication factor has
been specified.

REPL
RLEN

The input text is scanned by means of a TRT
table for a quote indicating the end of the
character string. If the string 1is a bit
string, it is moved unchanged into the
output buffer. The character string is
moved into CHST. Strings exceeding the
length of 255 are truncated on the right.
For two successive quotes, one quote is
moved into CHST. One blank is moved if the
begin quote is immediately followed by the
end quote. Control is then transferred to
FCTA.

FCTA -- EU,EV

This is part of the main routine.

Input parameters:

REPL : replication factor.

RLEN : length of basic string.

CONVSN : switch to indicate whether the
string must be retranslated (=0)
or not (=1).

CTAB : address vf the character-string
table in storage.
current pointer to this table.
address that must be subtracted
from CTAB1 to obtain the offset in
the character-string table, a part
of which may already have been put
out on SYS001.

TABE : end address of the character-
string table in storage.

R1ST : address of the end quote of the
character string.

CTAB1
ADABS

e e

If the replication factor is 0, it is
ignored and set to one. If necessary, the
basic string is retranslated into the
external code. The string is expanded
according to the replication factor.
Strings exceeding the length of 255 are
truncated on the right.

The string is then compared with all
sequences of characters of equal length in
the character-string table. If a matching
entry is found, the same offset is used in
the key, which is moved into the output
buffer. Otherwise, the string is moved
into the table. If it does not fit into
it, the table is filled by a first part of
the string and put out on SYS001. ADABS is
reduced by the length of this output, and

Phase PL(IALS 55

PL/I PLM 8

IBM Confidential

the remaining bytes of the string are moved
to the beginning of the table. Control
then returns to FSCA and the scan contin-
ues.,

FFIN -- EW

This is the end of the main routine. The
end-of-program key is moved into the output
buffer, and the buffer is put out on text
output medium. The character string table
(or the last part of it) is put out on
SYS001. The length of the character-string
table is stored in IJKCSL. IJKPH is then
called to fetch the next phase (A50).

FPIN is called each time the input pointer
has been increased and ensures that the
input pointer always points to an address
within the first of the two input buffers.
Whenever the input pointer exceeds its
range, the contents of the second buffer
are moved into the first one, and a new
record is read into the second buffer.

Note: The end of the program is indicated
by the end-of-program key X'FF'. If, how-
ever, the end quote of a string constant is
omitted, this key cannot be detected since

56

a character string may contain any of the
256 characters. It is therefore necessary
to test for end of file after every call of
IJKGI. If the end of file has been
reached, the last record in the first buf-
fer is processed, and FFIN is called the
next time FPIN is invoked.

FMBU -- EY

Input parameters:

RR : address of source.

R1 : end address of source + 1.

POUT : pointer of output buffer.
BUFOL : end address of output buffer.

Output parameters:

RR : = R1.

POUT : points to the next free address in
the buffer.

This routine moves text into the output
buffer. If all bytes to be moved do not
fit into the buffer or if they do exactly
fit, the buffer is filled with the first
part of the text to be moved and its con-
tents are written on output medium. The
remaining bytes, if any, are moved to the
begin of the buffer.

:ﬂ\
N

P

g

PL/I PLM 8

IBM Confidential

«

This phase scans the block structure of the
source program. Therefore, the statements
PROCEDURE, BEGIN, IF, DO, and END as well
as the keywords THEN and ELSE must be rec-
ognized.,

Each statement is given a 6-byte end-of-
statement (EOS) key, which contains a
level, a block, and a statement number.
Each assignment statement is given a
special key (SET key).

All statement keywords are translated
into internal representation (see Figure
1) . For the keyword THEN, an EOS key is
generated. For the keyword ELSE, an "ELSE
statement" containing a statement key and
an EOS key is generated.

If an error is found in the block struc-
ture (more PROCEDURE or BEGIN statements
than END statements or vice versa), the
source text is truncated after the last
correct END statement.

Internal Representation of Statement
Identifiers

Each statement identifier is replaced by a
3-byte key in internal code. This key has
the following format:

byte 0: EO
byte 1: undefined

byte 2: identification (see Figure 1)

PHASE PL/IA50 (BLOCK STRUCTURE) -- FM

DESCRIPTION OF ROUTINES

Symbols used in flow charts

POUT = pointer output area

PCA = pointer communication area

IBUFL = 1length of the I/0 buffers

PIN = pointer input area

BUFB1 = start address of the first input
buffer

GROUT = end address of the output buffer

BUFEND = end address of the input area

PTA = pointer table area

TABA = start address of the table area

TABE = end address of the table area + 1

JEPLA1_--_FO
The routine skips the prefix lists and
labels preceding a statement. It is tested
whether a parenthesized list preceding a
statement is followed by a colon. The
prefix list is translated into a mask. The
statement counter is increased according to
the number of statements processed. The
counter value is inserted into the EOS key.

Entry parameter:
PIN = address of the first byte of the
statement

Return parameters:

HRU4 = address of the first byte of a state-
ment which is not yet put out.

PIN = address of the first byte after the
first identifier of a statement.

ettt ettt -= T e - - =1
| Byte 2 Statement | Byte 2 Statement

pommm- ——m oo e - e
| 03 DUMP | 21 REVERT I
o4 OVERLAY	22 ON
05 PROCEDURE	23 STOP
06 BEGIN	30 CLOSE
[07 END (PROCEDURE)	31 OPEN
08 END (BEGIN)	32 DISPLAY I
09 CALL	33 GET
0a GOTO	34 PUT
0B ENTRY	35 FORMAT
oc RETURN	36 READ
I 0D NOP	37 WRITE [
OE SET 38 LOCATE	
OF EXPRESSION } 39 REWRITE	

| 10 IF | 40 DECLARE |
I 11 ELSE | 41 INITIAL SCALAR |
] 12 DO 42 INITIAL ARRAY |
[13 END (DO) 43 FILE |
| 20 SIGNAL | uy ARRAY I
L—— e _— S e e 1

Figure 1. Contents of Byte 2 of the 3-Byte

Statement Identifier Key

Phase PL/IAS50 57

PL/I PLM 8

IBM Confidential

JASSA1 -- FP

The program tests whether the actual state-
ment is an assignment statement. If so,
the SET key is inserted before the state-
ment.

If the identifier preceding the state-
ment is IF, control is transferred to JPIF.
If the identifier is the statement keyword,
it is replaced by the corresponding key.
Otherwise, the SET key is generated.

Entry parameters:

PIN = address of the first byte after the
first identifier of a statement.

HRU4 = address of the label identifier
preceding the statement, if any.

Return parameters: .

PIN = start address of the statement iden-
tifier,

HR4 = address of the first byte of a state-
ment that is not yet put out.

JSTAA1 -- FQ

Secondary entry points:
JSTAEL

JSTAA3, JSTAE2,

The routine compares the identifier preced-
ing a statement with a list of statement
keywords contained in KEYTAB. This table
contains a U4-byte entry for each keyword.
The first two bytes contain the keyword
itself; the other two bytes contain a rela-
tive branch address.

If the identifier is one of the keywords
PROCEDURE, BEGIN, ENTRY, IF, ELSE, DO, END,
GOTO, or DECLARE, control is transferred to
one of the routines JPRO, JENT, JPIF, JELS,
JpDO, JEND, JGOT or JDLA.

All statement identifiers are translated
into internal representation by means of
the table CODTAB, which contains a u4-byte
entry for each keyword. The first two
bytes contain the keyword itself; the sec-
ond two bytes contain the internal rep-
resentation of the statement identifier.

Entry parameters:

PIN = start address of the statement iden-
tifier.

BYZ = 0 or length of a parenthesized list
follows the identifier.

HRU4 = start address of the label identifier
preceding the statement, if any;
otherwise HR4 = PIN,

JPROA1 -- FR
Secondary entry point: JPROBI1
The routine is called by JSTA and processes

the PROCEDURE and the BEGIN statement,
respectively. The level counter is

58

increased by 1. It may not be greater than
three because only three levels are
allowed. The block counter is increased by
1. It may not be greater than 63 because
only 63 blocks are allowed.

For each PROCEDURE, BEGIN, or DO state-
ment, a pointer ENDZ is increased by 1.
Corresponding to the status of ENDZ, it is
entered in a push-down table ENDTAB, wheth-
er it is a begin block (0) or a DO group
(1) . The evaluation of this table and
reducing of ENDZ by 1 is done by the rou-
tine JEND.

Entry parameters:

PIN = start address of the statement iden-
tifier.

HRY4 = start address of the first label
identifier, if any, preceding the
statement.

Return parameters:

PIN = unchanged.

HR4 = start address of the label identifi-
er. If more than one label is given,
the last label is pointed to.

JENTA1 -- FS

The routine is called by JSTAA1 and proc-
esses the ENTRY statement. Only the label
preceding the statement is checked. Entry
and return parameters are the same as in
JPRO.

JPIFAl -- FT

The program is called by JSTAA1 and proc-
esses the IF statement. &aAn IF statement
has the form:

THEN wunit 1 ELSE unit 2;

IF expression
An equal sign and parenthesized lists may
occur in expression. Since there is no
difference in appearance of the logical
equal sign and the arithmetical equal sign,
the IF statement can be differentiated from
the assignment statement only by the key-
word THEN. The statement identifier is
replaced by the internal representation.
The keyword THEN is replaced by an EOS key.

Entry parameters:

PIN = start address of the statement iden-
tifier,

HRU4 = start address of the label identifier
preceding the statement. If there is
no label, HR4 = PIN.

Return parameters:

PIN address of the next byte after THEN.

PIN unchanged if no IF statement is
encountered.

//(‘“b\‘
N

N

C

PL/I PLM 8

IBM Confidential

JELSA1 -- FU

The routine is called by JSTAA1 and proc-
esses the keyword ELSE. ELSE is followed
by a semicolon only if unit is a NOP state-
ment. To facilitate the statement scan for
the following phases, the ELSE key is con-
cluded by an EOS key.

An ELSE keyword has the form:

statement; ELSE (prefix): identifier or
statement; ELSE ;

i.e., ELSE can only be followed by an iden-
tifier, a left parenthesis, or a semicolon.
In the source text, the keyword ELSE is
replaced by:

Key (6 bytes)
EOS (6 bytes)

The statement number in EOS is the same as
in the previous statement.

Entry parameter:
PIN = HR4 = start address of the identifier
ELSE.

Return parameter:
PIN = address of the byte following the
identifier.

JPDOA1 -= FV

The routine is called by JSTAA1 and proc-
esses the DO statement. A DO statement
must be recognized to be able to differen-
tiate the END statement into block ends and
group ends.

The statement identifier is replaced by
the internal representation. In the inter-
nal buffer ENDTAB, a 1 for marking group
end is entered. A zero is entered for
block end.

Entry parameters:

PIN = start address of the statement iden-
tifier.

HRU4 = start address of the first label
preceding the statement.

Return parameters:
PIN = Unchanged HR4 = Unchanged

JENDA1 -- FW

The routine is called by JSTAA1 and proc-
esses the END statement. An END statement
has the format: END; No other format is
permitted in the DOS/TOS PL/I compiler. In
the PL/I language, the END statement for a
block end is the same as for a group end.
Internally, the two types of END are coded

differently. Pointer ENDZ points to the
last entry in ENDTAB (see JPROA1 -- FR),

thus showing the type of END. The level
counter LEV is decreased by one at the end
of a block.

Entry parameters:

PIN = start address of the statement iden-
tifier.

HRY4 = start address of the label identifi-
er, if any.

Return parameter:
PIN = address of the semicolon.

JLACAT1 -- FX

The routine checks the label preceding a
PROCEDURE or ENTRY statement. Only one
label must precede each of these state-
ments. The following errors may appear:

1. No label: pseudo label is inserted.

2. More than one label: all labels except
the last are ignored.

Entry parameters:

HR4 = start address of the (possibly first)
label.

PIN = start address of the statement iden-
tifier. If no label appears, HRA4 =
PIN.

Return parameters:

PIN = unchanged.

HR4 = unchanged if no error is detected.

HRU4 = PIN if error 1 is detected. HRU =
start address of the last label if
error 2 is detected.

JEOSA1 -- FY

The routine is called at each statement
end. It generates the EOS key and puts out
an error list, if necessary. When JEOS is
called, PIN points to the semicolon. The
statement itself is already in the output
area or on the output medium.

On return, PIN points to the first byte
of the new statement. If no more state-
ments follow, i.e., if the end of the
source text is reached, PIN points to the
end-of -source-text mark.

It is tested whether PIN is still inside
the first input buffer. If it is not, it
is tested whether PIN is still inside the
last buffer because incorrect statements
can cause PIN to run out of the input area.
In this case, an error message is given.
Otherwise, the contents of buffers 2 - 4
are moved into buffers 1 - 3 and a new
reco¥d is read into buffer 4. It must
therefore be avoided that a statement or a
single identifier is divided by the end of
the input area. This is done as long as
PIN is outside the first buffer.

Phase PL/IAS50 59

PL/I PLM 8

IBM Confidential

The EOS key has the following format:

byte 0 EOS key

byte 1 error indicator
byte 2 level number
byte 3 block number
byte U4-5 statement number

If an incorrect statement is discovered,
and error message is generated in the
source text. The error message has the
following format: The first bit of the
error indicator in the EOS key is set to 1.
Two bytes are inserted after the key for
every error in the source text; byte 1
contains the error key, byte 2 contains the
error number,

JERRA1 -- FZ

The routine is called if an error is
detected. Up to eight error messages per
statement are stored. Additional errors
are ignored.

JEOSA1 puts out the error messages into
the source text following the statement in
error., The error table (ERRTAB) entries
have the following format:

byte 1 = error key (X'EB')
byte 2 = number of errors
bytes 3-10 = special error keys

Entry parameter:
HRO = special error key (1 byte)

MOVEA1 -- FO

The subroutine moves any number of bytes
from a FROM field to a TO field. The FROM
and TO fields may overlap.

Entry parameters:

HRO = number of bytes to be moved
HR1 = address of the TO field

HR2 = address of the FROM field
BYZ is used as auxiliary register.

JCHAA1 -- F1

The subroutine is used to find a character
in the source text. Searching is performed
up to the end of the statement. If the end
is reached, PIN contains the address of the
semicolon as return parameter. If the end
of the source program is reached before the
character is found, an error message is
given. An EOS key is inserted.

Entry parameters:

PIN start address of the search region.

BYZ character to search for (1 byte
right-justified) .

60

Return parameters:

PIN = address of the character found or of
the end of statement.

BYZ = PIN new - PIN old.

JSKPA1l -= F2

The subroutine searches for the end of a
parenthesized expression. All internal
pairs of parentheses are skipped.

Entry parameter:
PIN = address of the first left parenthe-
sis.

Return parameters:

PIN = address of the next byte after the
last right parenthesis.

PIN old.

PIN new - PIN old.

HRO
BYZ

JTRNAT -- F3

The subroutine moves information into the
output buffer and controls the pointer for
this buffer. When the pointer exceeds the
scope of the buffer, the text is put out on
output medium.

Entry parameters:

PIN = start address of the information to
be put out.

BYZ = length of the information.

POUT = next free address in the output

buffer.

Return parameters:

PIN new = PIN old + BYZ.

POUT = next free address in the output
buffer.

JGOTA1 ~-- FU4

The routine is called by JSTA and processes
the GOTO statement. The statement iden-
tifier for the GOTO statement may be writ-
ten with or without a blank between GO and
TO. The key is the same for both forms.

JDLAAT -~ F5

The routine is called by JSTA and processes
the DECLARE statement. If a label list
precedes the statement, it is removed from
the source text.

Entry parameters:

PIN = start address of the statement iden-
tifier.

HR4 = start address of the label identifier
preceding the statement. If there is
no label, HRY4 = PIN.

Return parameters:
PIN = unchanged.
HR4 = PIN.

™

PL/I PLM 8

IBM Confidential

JFIXA1 -- F6

The program scans the prefix lists and
generates a mask. This mask has the fol-
lowing format:

bit 0 : 0 = NO ZERODIVIDE
1 = ZERODIVIDE
bit 1 : 0 = NO UNDERFLOW
1 = UNDERFLOW
bit 2 : 0 = NO OVERFLOW
1 = OVERFLOW
bit 3 : 0 = NOFIXEDOVERFLOW
1 = FIXEDOVERFLOW
bit 4 : 0 = NOCONVERSION
1 = CONVERSION
bit 5 : 0 = NO SIZE
1 = SIZE
bit 6 : reserved
bit 7 : reserved

Entry parameter:
PIN = address of the left parenthesis.

Return parameters:

PIN = address of the colon after the prefix
list.

FIXMSK = mask.

JSSAAl -- F7

The routine generates a statement attribute
of 3 bytes and inserts it into the source
text immediately after the statement iden-
tifier. The statement attribute contains
the following information:

byte 0 prefix mask (see JDLAA1 -- F5)
byte 1 number of the actual block
byte 2 number of the embracing block

Byte 1 is set to zero in phase B90.

JEOPA1 -- F9

This routine checks if the end of the
source text has been reached. If it has,
the end-counter ENDZ is checked, and the
output area is cleared.

Entry parameter:
PIN = jinput pointer

This routine generates the end-table.

Phase PL/IAS50 61

PL/I PIM 8

IBM Confidential

PHASES PL/IA60, A65 (SYNTAX CHECK I AND II)

-- GL,

GW

The two syntax phases, A60 and A65, may be
considered as one logical phase.

The first syntax phase, A60, processes
all statements except READ, WRITE, GET,
PUT, FORMAT, which are processed by the
second syntax phase A65.

Phases A60 and A65

Byte

check each statement for syntactical
errors (exception: DECLARE statement) .

substitute 3-byte keys for symbols as
follows:

byte
bytes 2-3:

1 : key S'E2"

1 in phase A25).

substitute elements of variable length
for all constants (except character
string constants) as shown in Figure 1.

1

p 3 4 5,6 ,7 4849 L1, L

program-internal code for the
respective symbol (see Figure

Original constant
length of element : L

Constant key : F7 for decimal fixed
F8 for decimal float
F9 for binary fixed
FA for binary float
FB for bit string
FC for sterling
FE for format integer

Figure 1. Substitution of Variable-Length

Elements for Constants

The preceding phases have:

62

eliminated all blanks and comments,

substituted an end-of-statement del-
imeter for each semicolon as follows:

Ae

if no error has been detected in
the statement:

Byte (s) Contents

end-of-statement key X'EA'
indicator no error X'00°
level number
block number

6 statement number

P EWN =

5

b. if an error has been detected in
the statement:

Byte (s) Contents
1 end-of-statement key X'EA'
2 error indicator X*'40°
or X'80°
level number
block number
statement number
error key X'EB'
error number
error key X'EB'
error number, etc.,
(up to 8 errors)

w

QWO ! FW
o

sy

substituted an end-of-statement delimi-
ter for each keyword THEN;

placed an end-of-statement delimiter
after each keyword ELSE;

substituted a special key for each
character string constant as follows:

Byte (s) Contents
1 character-string constant
key X'E3'
2-3 offset to begin of charac-
ter-string constant table
4 character-string constant
key X'E3!
5-6 length of the constant

substituted 6-byte elements for all
statement identifiers as follows:

Byte (s) Contents
1 statement identifier
key X'EO?
2 not used in this phase
3 number specifying the
statement identifier
4 prefix information
5~6 not used in this phase

placed a 6-byte element ASSIGN in front
of each assignment statement as shown
under item 6.

substituted a 3-byte key for each pro-
gram element appearing as an identifier
or keyword as follows:

RN

PL/I PLM 8

IBM Confidential

Byte (s) Contents
1 identifier key X'E1"'
2-3 offset to a table

9. processed and eliminated the prefix
option lists.

Note: Steps 3 and 4 have left the program
non-recursive. All statements may now be
processed independently of each other.
Push-down stacks are reduced in size (since
recursion only occurs in expressions).

Output of Phases A60 and A65

With the exception of the DECLARE statement
and the declarative portions of PROCEDURE
and ENTRY statements, the output stream
consists of 3-byte elements and variable-
length elements. Any ambiguities resulting
from the fact that keywords are not
reserved have been clarified. This is
illustrated by the following example:

DO IF=BEGIN TO END WHILE (DISPLAY) ;
Since all identifiers making up the above
statement are potential keywords, the syn-
tax phases must detect the real keywords
(in this case DO, TO, WHILE) .

The first byte of each 3-byte element
substituted for a keyword now contains
X'EF' instead of X'E1*

An error message 1s generated for each
detected syntactical error. This message
is attached in coded form to the end-of-
statement delimiter as shown in Figure 3.

FUNCTIONAL DESCRIPTION

1. Scanning Syntactical Units (Linguistic
Functions)
A "Linguistic Function" (abbreviation

LF) is a routine which returns a
Boolean value. The value of the LF is
determined as follows: Within the LF, a
"linguistic expression" is written,
which syntactically describes a pattern
of the source string. This linguistic
expression is said to define the LF.
During execution,the LF examines the
source text for the occurrence of the
pattern described by the LF's linguist-
ic expression. If the pattern is
found, the LF yields a TRUE value; if
not, it yields a FALSE value.

(These are quotations from the SLANG
Language Tutorial Manual. Edition 1,
3-18-64, pages 36-37).

2. Processing Syntactical Units
Whenever a syntactical unit has been
recognized, 3-byte elements and
variable-length-elements are
substituted for symbols and constants.

3. Detection of Syntactical Errors
After a statement has been identified
by scanning and comparing the statement
identifier, it is checked for conform-
ing to the syntactical rules. If an
error is detected, a message specifying
the nature of the error is generated.

The syntactical scan is based on the
assumption that the complete statement is
contained in the four input buffers. Two
pushdown stacks, three pointers and three
LF utility routines are used.

Push-Down Stacks

LPDL used to store the linkage.

PPDL used to store the value of the
input pointer

Pointers

PDLI A symbolic register used as a poin-
ter to LPDL and PPDL. This pointer
is moved by the routines BEGLF,
EXTRUE, and EXFALS.

PIN A symbolic register used as input
pointer.

POUT A symbolic register used as output

pointer.

LF Utility Routines

The following 3 routines enable recursion
during the syntactical scan (see flow
charts HH and GT) .

BEGLF Initiated upon entry into an LF.
The current value of the input
pointer PIN is saved and the lin-
kage information contained in LINK
is stored.

EXTRUE 1Initiated if an LF yields TRUE.
This routine fetches linkage infor-
mation from LPDL, adds 4 to it, and
returns to the resulting address.
EXFALS Initiated if an LF yields FALSE.
This routine restores PIN (i.e.
fetches from PPDL the value which
was stored there when the LF was
initiated) , fetches linkage infor-
mation from LPDL, and returns to
the provided address.

Note: After a TRUE exit, PIN points to the
character following the examined syntacti-
cal unit. After a FALSE exit, PIN points
to the same character it was pointing to
when the LF was initiated.

Phase PL/IA60,A65 63

PL/I PLM 8

IBM Confidential

I et T T T T T T T T T T T T T 1 .
| 1. | INTEG BAL UTIL,BEGLF | Linguistic Utility Routine. | ()
| 2. | ST PIN, INTEG1 Store begin of integer. I A
| 3. BAL LINK,DIGIT Digit? |
| 4. l B EXFALS | No. Return FALSE.
| 5. | INTEG2 BAL LINK,DIGIT | Yes. Another digit? |
| 6. B INTEG3 | No. End of integer. |
| 7. ‘ B INTEG2 | Yes. Try again.
| 8. | INTEG3 L R1,PIN | Compute the address of
| 9. | BCTR R1,0 | last digit of integer. |
|10, | L R2,INTEG1 | Load start address.
111 | BAL LINK,STORIT | Call storing routine. |
112, | B EXTRUE. | Return TRUE |
b U i
|Step 1: When initiating BEGLF, the symbolic register UTIL is used instead of LINK. |
|This saves LINK. |
| I
|Steps 3-7 comprise the "linguistic |
| expression". |
b e 1
Figure 2. Linguistic Utility Routine
Example for Syntactical Scan one of these bits is set to 0, the asso-

ciated phase is skipped. At the beginning
An integer is assumed to be defined (using of the syntax phase, all 5 bits are set to
the Backus-Naur form (BNF)) as follows: zero. The occurrence of specific state-

ments causes the syntax phases to set the
<integer> ::= <digit>]|<integer><digit> associated bit to 1 as shown below.
This means an integer is a string consist-
ing of more than 0 digits. The above BNF Statement Bit No. Set to One: .
definition gives the base for the !
"linguistic expression" as illustrated in e
the program shown in Figure which scans CLOSE 6
an integer, notes the address of the first DISPLAY 6,7
digit, the address of the last digit and FORMAT 6
calls another routine with these addresses GET 4
as parameters. IF 3

LOCATE 6,7
Note: Although the BNF definition of an OPEN 6
integer is recursive, the routine shown in READ 6,7
Figure 7 is not recursive. This is correct REWRITE 6,7
because the integer could be defined as
<integer> :: = min 1 <digit> by using an
extended BNF. Recursion has been avoided
to improve the phase performance.

DESCRIPTION OF ROUTINES
Syntactical Definition of Input and Output (Open) A routine is called open if
Stream control is transferred to it

by
The syntactical definition (metalanguage)
of the input and output stream is given in 1. a simple B instruction,
Appendices A and B. in which case control is
also returned by a B
Skipping of Phases instruction, or
To save compilation time, certain phases 2. some in-line coding that
following the syntax phase are skipped if requires a separate des-
the statement which they process does not cription.
occur in the source program. Skipping of
phases is prepared and specified by the (Closed) A routine is called closed if
syntax phases A60 and A65 as follows: control is transferred to it -
by a BAL instruction. Con- @;?
Bits 3 to 7 of byte IJKMJT+3 specify trol is returned by a BR

skipping of certain subseguent phases. If instruction in this case.

6L

PL/I PLM 8

IBM Confidential

¢

SYN1 -- GM

This routine is the "master program" of the
phase.

1. PIN and POUT are initialized and the
four input buffers are filled.

2. PDLI is reset. PIN is stored in
CREAT1. PIN is moved until a statement
identifier key (x'EO0') is found. Then
6 is added to PIN so that it points to
the first character of the statement
body. The statement-processing rou-
tines are activated.

3. If the statement vreturns TRUE (entry
SYN166 = statement conforms with syn-
tactical rules), it is tested whether
PIN points to the end-of-statement
(EOS) delimiter.

4. If PIN points to the EOS delimiter, the
last part of the statement (the start
address is in CREAT1, the end address -
1 is in PIN) is put out, and EOST is
called. SYN1 continues with step 2,

If PIN does not point to the ECS delim-
iter, ERROR is called (the logical end
of the statement body is not followed
by an EOS). The last part of the
statement is put out, and PIN is moved
until an EOS or the end-of-program mark
(EOP) is detected. If an EOS is
encountered, EOST is called. SYNI1
continues with step 2. If an EOP is
encountered, TEPHA is called to termi-
nate the phase.

5. If the statement returns FALSE (the
statement does not conform with syntac-
tical rules, or is not processed in
this phase) , INPT is called. INPT
moves PIN until an EOS or EOP is
encountered.

Note: Whenever control returns from EOST,
PIN points to the first byte of the next
statement.

BU EU

(Closed) -- GO

Puts out a string. The start address of
this string is in CREAT1, the end address
-1 is in PIN.,

CARFB_(Closed)

This routine is called by several linguist-
ic functions.

R1 contains the address of the 3-byte ele-
ment. If this element is not identical to
that starting at 0 (PIN), the routine
returns FALSE to (LINK). Otherwise, the

byte at 0 (PIN)
for "Keyword")
BUBU is called.
to 4 (0,LINK) .

is replaced with X'EF' (key
and PIN is incremented by 3.
The routine returns TRUE

EOST, JEOSA1 (Closed) -- GO

Arranges the contents of the input buffers
1 to 4. The currently scanned EOS 1is
located in input buffer 1 (this is done by
moving and by reading new records). Puts
out the EOS and the error codes attached to
it. Any additionally generated error codes
are also put out.

INPT (Open) == GN

1. If PIN points to an EOS, control is
passed to SYN157. (SYN157 is a label
associated to SYN1 step U4 - see des-
cription of SYN1).

2. If PIN points to an EOP, TEPHA is
called.

3. If PIN points to an E-key, PIN is
incremented by 3.

4. If PIN points to an F-key, the contents
of the two bytes following this F-key
are added to PIN.

5. Otherwise, PIN is incremented by 1 and
INPT starts again with step 1.
JSLCA1

(Open) -- GU

Tests the statement for excessive length.
(The appropriate EOS must be located in the
first 4 input buffers). If the statement
exceeds the permitted length, the statement
body is deleted. The statement now con-
sists of the statement identifier and the
EOS attached with error codes. The next
statement is positioned starting in input
buffer 1.

JTRNA1

(Closed) -- GR

Output routine. Register BYZ contains the
number of bytes to be put out; register PIN
contains the start address.

One output buffer is used.

1. If the (remaining) length of the output
string does not exceed the available
space of the output buffer, the com-
plete (remaining part of the) string is
moved into the buffer. The output
pointer is updated by adding BYZ to
POUT.

2. If the length of the output string
exceeds the available buffer space, an
appropriate part of the string is moved
to the buffer. The contents of the
buffer are written onto the output

Phase PL/IA60,A65 65

PL/I P1IM 8

IBM Confidential

medium. POUT is reset to the start address
of the buffer. BYZ is decremented by the
number of bytes moved into the buffer. PIN
is incremented by this number. JTRNA1
starts again with step a.

LKW_ (Closed)

This routine is called by several linguist-
ic functions.

Input parameters:

R2: table address

R3: address of the LF to be initiated if
the search is successful, Must be 0
if no LF is to be initiated.

R4: 1length of source pattern

R5: address of a 3-byte element

Looks up the table (address defined by R2)
for a pattern (length defined by RY4) that
is identical to that located in 0 (PIN).
Returns FALSE to O (LINK) if the search was
unsuccessful. Otherwise, BUBU is called to
put out a string. A 3-byte element is
created by using the rightmost byte in RS
as first byte and the "function value" of
the table as second and third bytes. The
3-byte element is put out. If R3 contains
0, LKW returns TRUE to 4 (0,LINK). If R3
contains an address of an LF, this LF is
initiated and depending on the value of the
LF, LKW returns TRUE or FALSE.

Example:
DS oF
TABLE DC X'zt Length of pattern
DC X'5¢ Number of elements
in the table
DC X'3Aa3a’ 1st argument
DC X*0AFA" 1st "function value"
DC X'393cC* 2nd argument
DC X'07EE" 2nd "function value"
DC X*3E3C! etc.
DC X*07F1"
DC X'3Dp3C!
DC X'07F2"
DC X'4040°
DC X' 03EA"
DC X'0° end of table
Parameters R2 : A (TABLE)
R3 : A (0)
R4 : A(2)
R5 : X'000000E2"

66

Assumed input: P

B e ! B

T T T~-T"
eeleees|E1[03]61|3D|3C[01[05]ceunn..
4 4 1 L L L

i 4 L

c
[

|

| ———

| Al->source
} |

| PIN points to this character
[,

pattern

b e e e s e e

In this case LKW performs the following:

The table lookup is successful. BUBU is
called to put out a string ending at X'61°'.
A 3-pyte element is created (X'E207F2') and
put out. PIN points to X'01'. LKW returns
TRUE.

TARI1 (Closed)

This routine is called by several linguist-
ic functions.

If the rightmost byte in R1 is identical
with the byte at 0 (PIN), BUBU is called. A
3-byte element consisting of the leftmost 3
bytes in R1 is put out. PIN is incremented
by 1. TARI1 returns TRUE to 4 (0,LINK) .

Otherwise, TART1 returns FALSE to (LINK).

TEPHA (Open) -- GP

Puts out the contents of the output buffer. (f\f
Further actions depend on the utilization p—g
of TEPHA.

If the routine is used in phase A60, it
returns control to the compiler control
program, indicating the next phase to be
initiated. This is A65 if one of the fol-
lowing statements occurred in the source
program: READ, WRITE, GET, PUT, FORMAT.
Otherwise, phase B10 IS initiated.

If the routine is used in phase A65, it
returns control to the compiler control
program, indicating that the next phase to
be initiated is B10.

ERROR{M) , JERRA1 (M) -- GS

This routine fills an error table with up
to 8 errors per statement. If the same
error is detected more than once for one
statement, the error appears only once in
the error table.

Each detected error causes an error
messaje to be generated, represented inter-
nally as a one-byte number. This number is
attached to the End-of-Statement delimiter.

PL/I PLM 8

IBM Confidential

In this phase, all declarations given
explicitly in DECLARE statement parameter
lists and label declaration lists are col-
lected in a declaration pool. The pool is
written on SYS001.

Declaration Pool

In the declaration pool all declarations
belonging to one block are collected in a
group which is written on SYS001 if the end
of the block is reached.

Three block levels are allowed. For
each level a buffer is defined in the table
area. The declarations are collected in
the buffer indicated by the level counter.
If a buffer overflows, it is written before
the end of the block is reached.

The first four bytes in each buffer
contain special information concerning the
block.

byte 0: block number

byte 1: block level

byte 2: block number of the embracing block
byte 3: mark if the record is the last of

the block.

This information is put in front of each
record. In phase B20 the records of the
pool which are on SYS001 are ordered by
ascending block number and written on
SYS002 or SYS003.

The information entered in the declara-
tion pool is classified in three groups:

1. label declaration lists
2. parameter lists
3. DECLARE statements
A label declaration list starts with an
identifier key. A label constant or an

entry name may be entered in such a list.
A label constant consists of 4 bytes:

byte 0 : identifier key
bytes 1-2: user name (coded in phase A25)
byte 3 : colon

An entry name consists of:

byte 0 : identifier key
bytes 1-2: user name (coded in phase A25)
bytes 3-4: attribute ENTRY (optionally,

data attributes specified by the
user as attributes describing
the returned value).

PHASE PL/IB10_ (DECLARATION SCAN I) -- HM

The end of an entry name is indicated by
an EOS key (6 bytes).

A parameter list starts with a parameter
key (1 byte). This key is followed by the
internal representation of the left paren-
thesis (3 bytes).

The user-defined parameter names follow
(3 bytes each, coded in phase A25) sepa-
rated by the internal representation of the
comma (3 bytes) and closed by the right
parenthesis (3 bytes) .

A DECLARE statement starts with a
declare key (1 byte). The whole statement
follows. It is scanned syntactically in
phase B20.

DESCRIPTION OF ROUTINES

Note: The routines JERRA1, MOVEA1, JCHAA1,
and JTRNA1 are described in phase A50. The
corresponding flow charts are Fz, FO, F1,

and F3, respectively.

Symbols used in flow charts:

PCA : pointer for communication area

EOS : end-of-statement key

EOPR : end-of-program key

STATAB: table of addresses of routines that
process PROCEDURE, BEGIN, ENTRY,
DECLARE, and END

BLZ : block counter

ERRCOD: error code

LEV : level counter

EOSC : end of record on SYS001

Initialization -- HN

JELAA1 -- HO

This routine scans the statement labels.
If a label is found, it is entered in the
declaration pool.

Entry parameter:
PIN = address of the first byte of a state-
ment.

Return parameter:
PIN = address of the statement-identifier
key.

JSTBA1 -- HP
This routine scans the statement identifi-
ers and searches for the identifiers PROCE-

DURE, BEGIN, ENTRY, DECLARE, and END. If
one of these identifiers is found, the

Phase PL/IB10 67

PL/I P1IM 8

IBM Confidential

program branches to special routines that
process these statements. All other state-
ments are written unchanged.

Entry parameter:
PIN = address of the statement-identifier
key.

JPCRA1 -- H
Secondary entry point: JPCRE1

This routine, called in JSTBA1, processes
the PROCEDURE statement. The PROCEDURE
statement opens a new block. Therefore,
the level and block counter are increased
by 1.

The following information is entered
into the declaration pool:

1. The last label is given the attribute
ENTRY.

2. If the procedure has data attributes,
they are associated with the last
label.

3. The end of this attribute list is indi-
cated by the EOS key.

4., Four bytes of information concerning
the block are entered in the declara-
tion pool.

byte 0: block number

byte 1: block level

byte 2: block number of embracing block
byte 3: indicates last record of block

5. 1If the PROCEDURE has a parameter list,
a key is entered in the pool. The list
follows unchanged.

The PROCEDURE statement, with the excep-
tion of the data attributes, is written
unchanged.

The first PROCEDURE statement in a
source program may have the attribute
OPTIONS followed by an option list in
parentheses. The options in this list are
separated by commas.

The following options may appear:

MAIN: It specifies the MAIN procedure.
ONSYSLOG: It specifies that object time
diagnostics will be written on SYSLOG.

If these options appear, special bits in
the communication area are set.

A PROCEDURE statement with the attribute

OPTIONS must not have a parameter list or
data attributes.

68

JOPTA1 -- HR P
This routine processes the OPTIONS attri-
bute.

JCPLAT -~ HS

This routine checks the parameter list for
identical parameters.

Entry parameters:

HR4 = PIN = address of the left parenthe-
sis.

HR3 = 0.

Return parameters:
PIN = address of the right parenthesis.
HR3 = length of the parameter list.

JENTA1 -- HT

This routine is called in JSTBA1 and proc-
esses the ENTRY statement.

An ENTRY statement differs from a PROCE-
DURE statement in that it does not open a
new block. The entry name is internal to
the embracing block. Therefore, the entry
name ‘is moved into the declaration pool of
the embracing block. This is done in rou-
tine JEIA. Pl

Entry parameter:
PIN = start address of the statement iden-
: tifier.

Return parameter:

PIN = address of the EOS key.
JBEGA1 -- HOU

This routine is called in JSTBA1 and proc-
esses the BEGIN statement. For the scope
of declarations, the BEGIN statement has

the same function as the PROCEDURE state-
ment.

Entry parameter:
PIN = start address of the statement iden-
tifier.

Return parameter:

PIN = address of the EOS key.
JDCSA1 -- HV

This routine is called by JSTBA1 and proc-
esses the DECLARE statement. The entire
statement is moved unchanged into the dec-
laration pool.

JENDA1 -- HW

7

This routine is called by JSTBA1 and proc-
esses the END statement. An END statement
closes a block.

PL/I PLM 8

IBM Confidential

The level counter (LEV) is decreased by
one. When the end of a block is reached,
three bytes containing X'FFFFFF' are moved
into the declaration pool for that block,
and the declaration pool is written on a
work file.

Entry parameter:
PIN = start address of the statement iden-
tifier.

Return parameter:
PIN = address of the EOS key.

JSLCA1 -- HX

This routine checks the length of a state-
ment. A statement must not be longer than
3 buffers. If a statement with an error
message is detected, the statement is
deleted except for the statement-identifier
key and the EOS key.

Entry parameter:
PIN = address of the statement identifier.

Return parameter:
PIN = unchanged.

Registers used:
HRO, HR1, HR2, HRU4.

JEOSA1 -- HY

This routine is called at the end of each
statement. The error indicator contained
in the EOS key is tested to determine if an
error exists. An error list is written, if
necessary.

When JEOSA1 is called, PIN points to the
first byte of the EOS key. The statement

itself except for the EOS key is already on
the output medium or in the output buffer.

When returning, PIN points to the first
byte of the new statement. If no other
statement follows, i.e., if the end of the
source text is reached, PIN points to the
end-of -source-text key.

The program uses four buffers for the
input stream., If PIN is beyond the first
buffer, the remainder of the input stream
is moved to the left, and a new record is
read into the last buffer.

Entry parameter:
PIN = address of the first byte of the EOS
key.

Return parameter:

PIN = address of the first byte of the new
statement.

Subroutine JDEPA1 -- HZ

This routine checks the length of the dec-
laration pool. If necessary, the declara-
tion pool is written onto the work file. A
record counter is increased by 1.

Entry parameters:

HR1 = start address of the information to
be transferred into the pool.

BYZ = number of bytes to be transferred.
PTA = address of the first free byte
in the pool.

Return parameter:

PTA = address of the next free byte in the
pool.

Phase PL/IB10 69

PL/I PLM 8

IBM Confidential

PHASE PL/IB15 (DECLARATION SCAN II) -- IM

This phase scans the DECLARE statements for
syntactical errors. In phase B10, all
declarations were collected in a declara-
tion pool and written on a work file.

Phase B15 reads the pool, sorts the records
according to ascending level numbers, and
scans the DECLARE statements. The output
is written onto TXTIN of the previous
phase.

For some declarations, special state-
ments are generated in the source text (see
items 1 to 3 below). The previous phase
leaves the last record of the source text
in the output buffer. The output medium is
not rewound. Therefore, the statements
generated in this phase are attached to the
end of the last record.

1. ARRAY
ASK = array statement key (6 bytes)
VN = variable name. (3 bytes)

If the array is a part of a
structure, a full qualifi-
cation is made.

CAN = current array number (3 bytes)
bounds (9 bytes)
EOS = end-of-statement key (6 bytes)
2. FILE
FSK = file statement key (3 bytes)
VN = variable name (3 bytes)
CFN = current file number (3 bytes)
file description uncoded
EOS = end-of-statement key (6 bytes)
3. INITIAL
ISK = initial statement key (6 bytes)
VN = variable name (3 bytes)
If the initial item is a
part of a structure, a full
qualification is made.
LIL = length of 1list (3 bytes)
initial list uncoded
EOS = end-of-statement key (6 bytes)

There are two ISK's, one for scalar and
one for array initialization.

The following is entered in the declara-
tion pool:
1. ARRRAY - The array attribute followed
by the current array number and the

number of contained elements.

2. FILE - The file attribute followed by
the current file number.

3. INITIAL - The initial attribute only.

70

DESCRIPTION OF ROUTINES

Symbols used in flow charts

PCA :pointer communication area
FINO :current file number

ZI :integer constant

ERRCOD: error code

Note: The following routines used in this
phase are described as follows:

MOVEA1 ASO JCHAA1 AS0
JERRA1 AS50 JTRAA1T B90
Initialization -~ IN
JSRTA1 -- IO

This routine sorts the declaration pool.
The sorted records are moved into the table
area. After the syntactical scan of the
DECLARE statements, they are written on the
input work file of the previous phase.

Each record starts with a special word:

Byte 0: block number
Byte 1: level number
Byte 2: block number of the embracing block
Byte 3; indicates if the record is the last

of the block.

The records are sorted in ascending
order of level numbers.

LVA = actual level number
LVM = maximum level number
JSCNA1 -- IP

This routine scans the declaration pool.
The information entered in the declaration
pool is classified in three groups:

1. 1label declaration lists
2. parameter lists
3. DECLARE statements

A label declaration list starts with an
identifier key. A label constant or an
entry name may be entered in such a list.

A label constant consists of 4 bytes:
byte 0 : identifier key

bytes 1-2: user name (coded in phaseA2S5)
byte 3 : colon

An entry name consists of:

byte 0 : identifier key

bytes 1-2: user name (coded in phase A25)
bytes 3-4: attribute ENTRY

(Optionally) : data attributes specified by

the user as attributes describing the
returned value.

PL/I PIM 8

IBM Confidential

An entry name is always closed by an EOS
key (6 bytes).

A parameter list starts with a parameter
key (1 byte). This key is followed by the
internal representation of the left paren-
thesis (2 bytes).

The user-defined parameter names follow
(3 bytes each, coded in phase A25), sepa-
rated by the internal representation of the
comma (3 bytes) and closed by the right
parenthesis (3 bytes).

A DECLARE statement starts with a
declare key (1 byte) which is followed by
the declaration. It is scanned for syntac-
tical errors in routine JDECAT1.

Entry parameter: PST = start address of the
pool.

JDECA1 -- IO-IW

This routine is called in JSCNA1 and scans
the DECLARE statement for syntactical
errors. The identifiers are separated in
programmer-defined names and attributes.
Attributes are coded internally. Parenthe-
ses are separated in such that mark factor-
ization and such that include precisions or
lists. Some attributes get a special
treatment (see flow charts IQ-IW). If a
syntactical error is detected, a NOP state-
ment followed by an error message is gener-
ated in the source text.

Entry parameter:
PST = address of the first byte to be proc-
essed.

Return parameter:
PST = address of the first byte after the
end-of-statement key.

The syntactical scan is performed by
means of a two-dimensional matrix of
addresses. Depending on the preceding
symbol, the routine branches to correspond-
ing routines at a new symbol (see Figure
1) . The following routines may be called:

JDE1A1 JDE1A4LJEODA1A1
JDE1A2 JDE2A1 JSEFA1
JDE1A3 JDE2A3 JDCDA1

Subroutine JATRA1 -- IX

This subroutine recognizes the attributes
and sets the internal representations of
the attributes into the declaration pool.

The external representation of all
attributes is stored in a table (ATTAB) .
After each attribute there is a byte with
the internal coding. This byte with a
common attribute key is moved into the
declaration pool.

All data attributes have a 1 in the
first four bits of the internal coding.

Entry parameter:
PST = start address of the attribute.

Return parameters:

PST = address of the first character after
the attribute.

ATKEY + 1 = internal coding of the actual
attribute.

Subroutine JSIPA1 -- 1Y

This subroutine searches for the end of a
parenthesized expression; all internal
pairs of parentheses are skipped.

Entry parameter:
PST = address of the first left parenthe-
sis.

Return parameters:

PST = address of the next byte after the
last right parenthesis.

HRO = PST old. BYZ = PST new - PST old.

JTRIAT -- IZ

This routine moves information into the
output buffer and controls the pointer for
this buffer. If the pointer exceeds the
scope of the buffer, the contents of the
buffer are written on the actual input work
file. The output is made in the non-
overlapped mode.

Entry parameters:

HR1 = start address of the information to
be written.

BYZ = length of the information.

PIT = next available address in the output
buf fer.

BUFI = end address of the output buffer.

POUTI= start address of the output buffer,

Return parameters:
PLT = next available address in the output
buffer

BYZ = 0.
HR1 = HR1 old + BYZ old.
JCVTAl -- JAa

This routine converts an unpacked decimal
integer constant to binary representation.
The decimal number may have up to 9 digits.

Entry parameters:
HR1 = start address of the decimal
constant.

Return parameters:

HR1 = value of the converted constant.

HR2 = number of digits in the decimal con-
stant.

Phase PL/IB15 71

PL/I PLM 8

IBM Confidential

- T. . T T . T T 1
| T|identi- T |left |right | | | |
| | fier | number | parenthe- | parenthe-|comma |semicolon|
| | |sis |sis | | |
|S 10 2 |u |6 |8 |10
3 -—1 -ttt +-- + .|
| empty or | o | | | | | |
| comma | name | structure|factori- |error |error |error |
| | | |zation | | | |
| | | |open | | |
| 0]s = 2 | |S =6 | | |
b -1 e -+ . T t 1
| name or | | | |factori- | |
lright |attri- error |dimension|zation |delimiter|end of |
| parenthe- | bute | |close | | statement |
|sis [| | | | |
| 21S = 4 | |S =14 |S =2 1S =0 |
b -1 fommmmmmeet P t {
| | | |factori- | | |
|attribute|attribute|error | precision|zation [delimiter|end of |
| | | |close | | statement|
| 4|s = 4 | | Is = [S =0 | 1
G fmmm s e + — - + {
|left | | |factori- | | | |
| parenthe- | name | structure|zation |error |error |error |
|sis | | | open | | | |
| 6]s = 2 | |s =6 | | I |
l, ______ L —d L -4 i L {
|T next symbol in the source program }
d

|S = last symbol in the source program

Figure 1.

72

Two-dimensional Matrix of Addresses (SWITAB)

=
%

PL/I PLM 8

IBM Confidential

PHASE PL/IB20 (SYMBOL TABLE CONSTRUCTION I) -- KA

This phase constructs the symbol table for
all explicitly declared variables and label
constants. The input for this phase is the
declaration pool constructed in phase B15.

Symbol Table

The symbol table consists of n+1 parts,
where n is the number of blocks in the
source program. Each part is attached to
one block and contains all items declared
explicitly. The last part contains all
items declared contextually and implicitly.
This part is constructed in phases B70 and
B8O.

The parts of the symbol table are sepa-
rated from each other by a scope chain
which contains the number of the embracing
block. The start addresses of the parts
are entered in the scope table. If the
symbol table is written on a work file,
each part starts with a new record. The
first record number of each part is also
entered in the scope table.

For each programmer-defined variable or
label constant an entry of 20 bytes is made
in the symbol table. The format of this
entry is shown in Figure 1. The entries
are used in phase B90 to build the state-
ment attribute table.

Scope Table

An entry of 6 bytes is entered in the scope
table for each block. The format of this
entry is as follows:

Byte 0 : Number of records belonging to
this block.

Bytes 1-3: NOTE information of the record
in which the symbol table for
this block starts.

Bytes 4-5: If the symbol table is in core
storage, relative start address
of the symbol table for this
block.

If a block has no declarations, the
entry is given the data for the embracing
block. Since the number of records belong-
ing to one block is restricted to 255 and
each record contains the declarations for
12 variables, the total number of declared
variables for one block is restricted to
3060. This restriction is valid only for
the minimum configuration. If the table
space and the buffer area are increased,
the number of declared variables increases
at the same rate.

|Bytes 0 - 1:

|User-defined name (coded in phase A30)

[e o e e e e e o e e o e e e o o e e e e {
r
|Bytes 2 - 3: |
| [
|Internal representation of the name |
- —- ---- =
|Byte b: |
I {
|Bits 0-3: Reserved |
|Bits 4-7: Internal length of the variable|
; - — -1
}
[Byte 5: |
I I
|Bit 0: 1 = STATIC 0 = AUTOMATIC |
|Bit 1: 1 = CONTROLLED |
|Bit 2: 1 = POINTER |
[Bit 3: 1 = EXTERNAL 0 = INTERNAL I
Bit 4: 1 = DEFINED
Bit 5: 1 = PARAMETER
|Bit 6: 1 = BUILTIN]
|Bit 7: 1 = CONSTANT 0 = variable |
|Bit 7: 1 = contextual |
| ENTRY 0 = declared ENTRY|
e —mmmmm oo {
|Byte 6: !
| I
|Bits 0-1:00 = not a structure element |
| 01 = structure element |
| 10 = minor structure |
| 11 = major structure |
I I
|[Bit 2 : 1 = PACKED 0 = ALIGNED |
|Bit 3 : 1 = Array |
|Bit 4 : 1 = FILE |
|Bit 5 : 1 = LABEL
|Bit 6 : 1 = ENTRY name
|Bit 7 : 1 = zoned decimal (T) |
- ---- - -4
|Byte 7: I
|
|Bit 0 : 1 = PICTURE |
|IBit 1 : 1 = sterling |
IBit 2 : 1 = arithmetic data |
|[Bit 3 : 1 = string data |
|JBit 4 : 1 = bit string; |
| 0 = character string |
|Bit 5 : 1 = FIXED; 0 = FLOAT |
|Bit 6 : 1 = BINARY; O = DECIMAL |
|IBit 7 : 1 = zoned decimal |
| |
|If it is a structure, bits 4-7 contain |
| the lefthang. |
L _— —_——— -4

Figure 1. Entries in the Symbol Table for
Programmer-defined Variables and

Label Constants (Part 1 of 2)

Phase PL/IB20 73

PL/I PLM 8

IBM Confidential

Byte 9:

|Bits 0-1: block level
|Bits 2-7: block number

|Byte 10:
I

r 1
|Byte 8: I
I |
|Lf string: |
| |
|Bits 0-7: length of the string |
| I
|if arithmetic: |
[|
| scale FLOAT |
|ox FIXED BINARY: bits 0-7: w |
|scale FIXED DECIMAL: bits 0-3: w |
| bits 4-7: 4 |
! -
r

| |
I

|if structure or element of structure:
| level number

s —
|Byte_11:
|

|if structure: boundary of the structure
|if array : current array number
|if FILE : current file number

|Bytes 12-13:
[

|If array : number of array elements
|if structure: length of the structure

| Bytes 14-15:
|

|1f DEFINED : name of the base variable
|if BASED : name of the pointer
|
|if minor structure or structure element
: origin relative to the
major structure

s _16-17:

r&u
o
o

if numeric field: offset of the
picture string

ct
o
t

if numeric field: length of the data

o o e e s e e e e e e Y e
w |
o+
o
—-—
(¥
!
|
|

| Number of actual block (only for checking
|entry names in phases B30 and B40., It
|will not appear in the attribute table).
t

b e e c—— o iy S— — — . c— — — — D — — — — — —— — i —— — — i — c— — —— i — — c—— i, ca—

Figure 1., Entries in the Symbol Table for
Programmer-defined Variables and

Label Constants (Part 2 of 2)

Mask Table MSKTAB

For each PL/I attribute, the mask table
contains a mask of 8 bytes. Each mask is

74

divided into two parts. The first part
declares which bits in the symbol table are
to be set on or off if a variable is
declared with some attribute. The second
part is used to check conflicting attri-
butes, It contains a 1 in each position
where a specific attribute may not appear.

The mask-table is used as follows: The
corresponding mask of an attribute is put
together with all other masks of the attri-
butes previously declared for the same
variable. The first part of a mask is put
together by an OR instruction in register
R1, the second part in register R2. If the
declaration of a variable is complete,
i.e., if all given attributes are composed,
the mask parts in R1 and R2 are 'anded'.
The result is 0 if no conflicting attri-
butes have occurred.

The format of the mask table is shown in
Figure 2. The masks are shown in hexadeci-
mal notation.

Treatment of Errors in Variable
Declarations

If an error occurs in a declaration, it is
treated in the following manner:

1. The name is given the value 00 as
internal representation.

2. If the name in the source text is
replaced by the internal representation
(see phase B80), all statements in
which the name occurs are flagged.

3. The name gets an error message in the
symbol table listing (see phase C00).
This message is entered in byte 11 of
the symbol table.

DESCRIPTION OF ROUTINES

JSCOA1 _-- KC

This routine processes the block heading.
It is called if a new part of the symbol
table is opened. In the declaration pool,
constructed in phase B15, all declarations
belonging to one block are collected in a
group. Each group starts with a new record
and may contain more than one record. At
the beginning of each group, there are four
bytes containing the following information:

byte 0: block number

byte 1: block level

byte 2: block number of the embracing block

byte 3: mark if the record is the last of
the group.

PL/I PLM 8

IBM Confidential

r T T -7 === 1
A A - —
TmTm T 1
| | |Attribute |First Part |Second Part|
S ot I Tt P Fe T ot e et o
| 0]00|parameter |00}j04]j00}00]01]9A|00}00]
[8|01|FILE }00|00j08|00|01|EA|F6 |FF|
| 16|02 |INITIAL]01]00{00}00] 00| 6E|CE|00]
| 2u|03|DEFINED]00]08|00]00|01}D6|OE|OO]
| 32|04 |dimension |00]00|10[00|00|02]|8A|00]
| 40]05|CONTROLLED|00|40|00}00]01|AA|08|00]
| 48]06 | POINTER 100]20]00]00]|00]42]|2C|FF|
| 56|07 |colen 100]01]00}00|00]00|33|00]
| 64|08 |LABEL |00]00|04[00|01]2A|AA|FF|
| 72|09 |PICTURE]00]00|00}80|00]22]8C|08}
| 80|OA|ALIGNED |00[00{00|00|00|22|2E|E7]|
| 88| 0B|ENTRY]00|00]02|00|01|4A|FC|00]
96	0C	BUILTIN	100]02]00}00	01	FC	FD	FF	
104	OD	INTERNAL	00]00	00{00	00]	16]08	00]	
112	0E	EXTERNAL	[00}10	00]00	/00	06	00(00]
120	OF	PACKED]00]00[20}§00	00]	22	0E	E7		
128	F0	BINARY 100]100	00]22]00}	22	0C	58]		
136	F1	DECIMAL	00]00[{00	20]00]22	0C	1A}		
144	F2	FIXED	00]00j00]	24]00	22	0C	18]	
152	F3	FLOAT	00]100]00	20}00]22]	0C	5C]		
160	F4	BIT 100/00]00]18	00]	22	0C	E7		
{168	F5	CHARACTER [00]00	00]10]00	22	0C	6F		
176]16	STATIC	00]80	00	00	00	4E	08]00]	
[184117	AUTOMATIC [00	/00	00	00	01	DE	08]00]	
1192]18	precision {02]00]00]00]00]00	00]00]						
{20019	[ERROR [10J00	00	00	FF	FF	FF	FF	
208	1A	null 100(00]	00]00]00	00	00]}00]			
1216	1B	ZONED]00]00	00}01]00]22	8C	18]			
[224	1C	ZONED(T) [00[{00[01[{00]00	22]8C	18]				
232	1D	STERLING [00	00]	00	C0	00]22]	8C	18
[240	1E	major SN N TN DU DR R						
		structure	00	00	CO[00	{01	02]	1E
248	1F	minor SRR R T R						
		structure	[00	00	80J00	01	F2	7E
256	20	element of						
		structure [00]00j40}00	00	D2]	A8]	00}		
	Jarithmetic	00]00j00}20						
		erase data]						
	Jattribute	FD	DF	FOj00]				
		precision (02]	00	00j00				
Ll 1 4 i I S 1 4 L dad

Figure 2. Format of Mask Table
These four bytes are stored in an inter-
mediate storage SSCOPE.

The actual position of the pointer PST
pointing to the symbol table is entered
into the scope table.

Abbreviations:

PARAM = parameter-list key (1 byte)
PARZ = counter for parameters (2 bytes)
LAREC = key for last record (1 byte)
EOREC = end-of-record key (3 bytes)
JLABA1 -- KE

This routine processes the statement-label
constants and the entry names.

A statement label has the form:

Identifier
Colon

(3 bytes)
(1 byte)

An entry name has the form:

Identifier
Attribute ENTRY

(3 bytes)
(2 bytes)

Optional data attributes:

EOS key (6 bytes)

JDCLA1 -- KF
Secondary entry points: JDCLD2, JDCLK2

This routine processes the DECLARE state-
ment. Since attributes may be nested, a
DECLARE statement is first scanned to the
EOS key. At this time an intermediate
table AHSTAB is constructed. The data is
entered starting at the end of the table in
range of its appearance.

The following information may appear:

1. User-defined names:
Starting with the identifier key,
length 3 bytes. Processing: (see Sub-
routine JNAMA1) .

2. Structure level:
Starting with a number, length up to 3
bytes. Processing: The integer is
converted from decimal to binary and
saved in a current level storage.

3. Attributes:
Starting with an attribute key, length
2 bytes. Processing: The two bytes are
entered into AHSTAB.

4, Precision:
Starting with a left parenthesis.
Processing: The precision is converted
and entered into AHSTAB (see JPREA1).

5. Left parenthesis:
Special key, length 1 byte. Process-
ing: A parenthesis counter is
increased. The current level is stored
in the internal buffer LEVPDS. The key
is entered into AHSTAB.

6. Right parenthesis:
Special key, length 1 byte. Process-
ing: The parenthesis counter is
decreased. The key is entered into
AHSTAB.

7. Comma:
Special key, length 1 byte. Process-
ing: The actual level is reloaded from
the internal buffer.

Phase PL/IB20 75

PL/I PLM 8

IBM Confidential

8. End of statement: JATAAY -- KJ - KN
Starting with an EOS key, length 6 o
bytes. Processing: See JATAA1. This routine processes the intermediate

table AHSTAB and generates the symbol table
SYMTAB. The items which may be entered in

JSATA1 -- KH AHSTAB and their processing are described
below.

This routine scans the attributes. Normal-

ly, only the attributes are entered into

AHSTAB; however, some attributes are given 1. Attributes

a special treatment: Representation: 2 bytes

1. ARRAY: code X'04°* byte 0 = attribute key
Four bytes following the attribute are byte 1 = specification

entered in AHSTAB.
Byte 1 addresses an entry in a mask

2. FILE: code X'01' table MSKTAB (see Figure 2 in phase
One byte following the attribute is B20). Parts 1 and 2 of the mask are
entered in AHSTAB. taken from MSKTAB and added with an OR
instruction to the already existing
3. PICTURE: code X'09' information in registers 1 and 2.
Nine bytes following the attribute are
entered in AHSTAB. Some attributes get additional treat-
ment.
4, CONTROLLED: code X'05'
Five bytes following the attribute are a. Dimension
entered in AHSTAB. Representation: additional 4 bytes
5. DEFINED: code X'03' byte 2 = reserved
Three bytes following the attribute are byte 3 = current array number
entered in AHSTAB. bytes 4-5 = number of array
elements
JPREA1 -- KI Bytes 3-5 are stored in a special o
location. N
This routine converts the precision given
in the source text to a 2-byte form and b. FILE
stores it in the intermediate table AHSTAB. Representation: additional 1 byte
A precision has one of the following byte 2 = current file number
forms:
Byte 2 is stored in a special loca-
(w) or (s) or (s,d) tion.
where w, s, and d are unsigned decimal c. PICTURE
integer constants having the following Representation: additional 9 bytes
range of values:
byte 2 = left parenthesis
1 <w< 255, 0 <s, dc< 15, byte 3 = binary length of data
byte 4 = right parenthesis
The result of the conversion has the byte 5 = string constant key
following form: bytes 6-7 = offset of the string
constant
Byte 0: precision key byte 8 = string constant key
Byte 1: binary value of the precision. bytes 9-10= length of the string
constant
The last bit of the key (byte 0)
declares the form of the precision. If the Bytes 3, 6 7, and 10 are stored in
form is (w) or (s), the bit = 0. If the a special location.
form is (s,d), the bit = 1.
de CONTROLLED
Entry parameter: Representation: additional 5 bytes
PIN = address of the left parenthesis of
the precision. byte 2 = left parenthesis
byte 3 = identifier key
Return parameter: bytes 4-5 = name of the pointer @:;
PIN = address of the byte after the right coded in phase A30 4
parenthesis. byte 6 = right parenthesis

76

PL/I PLM 8

IBM Confidential

C

Bytes U4 and 5 are stored in a spe-
cial location.

e. DEFINED

Representation: additional 3 bytes

byte 2
bytes 3-4

identifier key
name of the base
variable

Bytes 3 and U4 are stored in special

location.
2. Precision
Representation: additional 2 bytes

byprecision key
byprecision in binary
form

There are two different keys. If
the precision is of the form (w),
bit 7 of the key is 0. If the form
is (s,d), bit 7 is 1.

3. Name
Representation: additional 4 bytes

byte 0 = identifier key
bytes 1-2 = user-defined name
coded in phase A30
current structure
level 1.

]

byte 3

First, if necessary, the default attri-
butes are added in routine JDFAA1. A
test on conflicting attributes follows.
If there are no conflicts, the entry in
the symbol table is constructed.
Finally, registers 1 and 2 are reloaded
from the internal buffer.

4, Right parenthesis:
Representation: 1 byte

A parenthesis counter is increased and
the contents of registers 1 and 2 are
moved into the internal buffer.

5. Left parenthesis:
Representation: 1 byte

The parenthesis counter is decreased
and the contents of registers 1 and 2
are restored from the internal buffer.

At points 4 and 5, the functions of the
right and left parenthesis are reversed,
because construction of AHSTAB in routine
JDCLA1 begins at the bottom of the table
and the processing sequence is inverted,

Entry parameter:
PAHS = address of the first byte in AHSTAB
to be processed.

JTRLA1 -- KO

This routine processes the block trailing.
It is called if a part of the symbol table
is closed.

If the end of a group in the declaration
pool is reached, 4 bytes are moved into the
symbol table. The first 2 bytes get a mark
specifying the end of the part. The second
2 bytes contain the number of the embracing
block.

If the source text contains file dec-
larations, or if a table overflow occurs,
the part of the symbol table is written on
a work file.

Abbreviations used in this routine:

PST = Pointer symbol table

IJKMTS = Start address of table area

SWTOV = Switch table overflow

IJKMBC = Block counter

SSCOPE = Storage for scope information

BSCOPE = Scope chain

TTEXT = Relative TABTAB entry for external
table

SCOTAB = Start address of scope table

IJRMIT = Start address of master table
TABTAB.

Subroutine JNAMA1 -- KP

This subroutine moves the user-defined name
and the current level number into AHSTAB.
If no structure level is given, zero is
inserted.

Entry parameter:
PIN = start address of the name.

Return parameter:
PIN new = PIN old + 3.

Note: The total number of names declared
in one DECLARE statement is restricted to
65. This restriction is valid for the
minimum machine configuration. If the
table space is increased by 20 bytes, the
number is increased by 1 name.

Subroutine JAHSA1 -- KO

This subroutine transfers information to an
intermediate table AHSTAB and controls the
pointer PAT for this table.

The table is built in the buffer area
and uses three buffers. Construction of
the table starts at the end.

Since a DECLARE statement cannot be
longer than three buffers and the AHSTAB
cannot contain more than one statement, an
overflow cannot occur.

Phase PL/IB20 77

PL/I PLM 8

IBM Confidential

Entry parameters:

PIN = start address of the information to
be transferred.

BYZ = number of bytes

Return parameter:
PIN new = PIN old + BYZ.

Subroutine JPCOA1 =-- KR

This subroutine controls the input pointer
PIN and inserts a new record in the dec-
laration pool, if necessary.

Generally, it is possible to process the
information sequentially. But because
identifiers or correlated expressions must
not be divided by the buffer end, two input
buffers are used. When pointer PIN reaches
the second buffer, the contents of the
second input buffer are moved into the
first and a new record is read.

JPUTA1 -- KS

The routine writes the symbol table. It is
called if a table overflow occurs or if the
current source text contains a file dec-
laration. The symbol table is divided into
parts. Each part contains all declarations
given for one block of the source program.

The scope table SCOTAB contains an entry
for each part.

78

SCOTAB+4
SCOTAB+2

relative start address of a part
relative end address of a part

If the symbol table is written, each
part starts with a new record. The follow-
ing information is moved into the scope
table:

SCOTAB+0 = number of records belonging to
this part (1 byte).

SCOTAB+1 = record identification for the
record (3 bytes)

SCOTAB+4 = 00 (2 bytes)

JCWTA1 -- KT

This routine converts an unpacked decimal
integer constant to binary representation.
The decimal number may have up to 9 digits.

Entry parameter:
PIN = start address of the decimal con-
stant.

Return parameters:

HR1 = value of the converted constant.

HR2 = number of digits of the decimal con-
stant.

address of the first byte after the
decimal constant.

PIN

1

®

VAN
\'“t.)/

PL/I PLM 8

IBM Confidential

C

This phase has the following functions:

1.

2.

Notes:

to perform the syntactical scan of the
file declarations;

to test the file declarations for con-
flicting or missing attributes and
options;

to build up the file table FILTAB and
to replace the file declaration state-
ments by NOP statements.

Phase B25 is skipped if there are

no file declarations in the source program.
The information required to point to the
third record of NAMTAB has been stored in

IJKMIP+4 in phase A30.

The internal name

of the first file has been stored in IJKMIP
in phase B20.

Phase Input and OQutput

The input is a string of 3-byte elements
and/or elements of variable length.

The file declaration statements have the

following format:

S S B S T 1
f FSK | VN | CFN T file description| EOS |
L 4 R 4 —— L J
where FSK = file statement key = X'E00043'
(3 bytes)

VN = variable name (3 bytes)

CFN = current file number (3 bytes)

EOS = end-of-statement key (6 bytes)

The output differs from the input only

in that the file declaration statements
have been replaced by NOP statements.

The File Table

This table (FILTAB;ZTABO3)
SYS001
20 bytes) .

is written on
(recordsize = length of one entry =
Each entry has the format shown

in Figure 1.

PHASE PLAIB25 (FILE DECLARATIONS) -- L$
r - - -1
| BYTE | MEANING |
Rt T -
| O-1]internal name |
e e -4
2	bit 0	1 = RECORD, 0 = STREAM
	bit 1	1 = INPUT
	bit 2	1 = OUTPUT
	bit 3	1 = UPDATE
	bit 4	1 = PRINT
	bit 5]1 = STREAM	
	bit 6	1 = KEYED
	bit 7)1 = BACKWARDS	
R e PR !

3 | bit 0]1 = DIRECT, 0 = SEQUENTIAL |
| | bit 1|1 = CONSECUTIVE |
| bit 2|1 = REGIONAL (1)
| l bit 3|1 = REGIONAL (3) [
	bitu-6]	not used
	bit 7	1 = UNBUFFERED,
		0 = BUFFERED
R 1 -4		
4	bit 0	1 = KEYLENGTH
	bit 1	1 =F
	bit 2	1 =V
	bit 3	1 =10
	bit 4	1 = BUFFERS (2)
I	0 = BUFFERS (1)	
	bit 5	1 = LEAVE
	bit 6	1 = NOLABEL
	bit 7	1 = VERIFY [
L ——— L —— -		
p---m=t 1		
{ 5	keylength j	
I _— _— -		
6	000 - 244 = SYS000 - Sys244	
	251 = SYSIPT	
	252 = SYSLST	
	253 = SYSPCH	
b —- -4		
{ 7	X*10' = 2540 (card reader or punch)	
JX*11* = 1442 (card reader or punch)		
	X*12' = 2520 (card reader or punch)	
{	X*13' = 2501 (card reader)	
	X*20' = 1403 (printer)	
	x'21' = 1404 (printer)	
	X*'22' = 1443 (printer)	
	X*23' = 1445 (printer)	
	X*'40* = 2400 (tape)	
	X*80' = 2311 (disk)	
pommmm f - 1		
8- 9	blocksize]	
]10-11	recordsize	
12-19	not used	
L L —_— |
Figure 1. Format of File Table Entries

Phase PL/IB25 79

PL/I PLM 8

IBM Confidential

To scan the file declarations for con-
flicting attributes and options, every
attribute is assigned to a bit position of
a bit string of 32 bits. The mapping is
identical to bytes 2-4 of the file table.
The last byte contains the following:

bit 0 : 1 = F with recordsize
bit 1 : 1 = card reader or punch
bit 2 : 1 = printer

bit 3 : 1 = tape

bit 4 : 1 = disk

bit 5 not used

bit 6 : 1 = ENVIRONMENT

bit 7 : 1 = MEDIUM

In addition, every attribute and option
is assigned to a bit string consisting of
two substrings of 32 bits. In the first
substring, all bits except that of the
characteristic bit position, which may be 0
or 1, are zero. In the second bit string,
a bit is set to 1 only if it is the charac-
teristic bit position of a conflicting
attribute or option. All the bit strings
of attributes and options appearing in the
file declaration are OR-ed.

If the logical product (AND) of the
resulting two substrings is # 0, the file
declaration contains conflicting attributes
and/or options. Conflicts in attributes
and/or options are illustrated in Figure 2
(X means conflict).

Errors

Errors found in this phase may cause one of
the error messages 188-216. For the indi-
vidual messages, refer to the SRL publjica-
tion IBM System/360, Disk and Tape Operat-
ing Systems, PL/I Programmer's Guide, Form
C24-9005.

The name of a file is set to 0 in the
file table if the corresponding file dec-
laration contains an error of the severity
T. Statements in which incorrect file
names occur are not flagged.

Initialization -=- LA

This is the beginning of the main routine.
It initializes pointers, switches, etc.,
and reads input text into 4 buffers.

FSCN -- LB
This is part of the main routine. It per-

forms the general scan over the source
text.

Note: A file declaration statement is not
preceded by any label.

80

FFIL -- LC o~
This is part of the main routine. It scans s
the file-declaration statement for accepta-

ble attributes by means of an attribute

table that has the following format:

r =TT T T 1

0000 l B | B |

1 J

where K = last two bytes of the 3-byte key
the keyword is represented by;

B = bit string (see the section The

File Table) .

The table is terminated by X'FF'. When
the routine is entered, the general reg-
isters RU and R5 are cleared. They are
then OR-ed with every bit string of a file
attribute found in the statement. Any
element that is not a file attribute is
ignored. FERR is called to note error
message 189. If the ENVIRONMENT attribute
is found, control is passed to FENV.
Reaching the EOS key causes control to be
transferred to FFIT.

FENV -- LD
This is part of the main routine. It scans

the options of the ENVIRONMENT attribute by
means of an options table that has the

following format: '
S

-) B T -7 -1

I X | A I B | B |

L L L 1 -

where K = last two bytes of the 3-byte key
the keyword is represented by:

A = address relative to FENV of the
routine processing the option,
i.e.,

FBUF for BUFFERS
FMED for MEDIUM
FFIX for F

FUVN for U/V

FREG for REGIONAL
FKEL for KEYLENGTH

B = bitstring (see the section The
File Table) .

The table is terminated by X'FF'.

The bit strings of the option found are
OR-ed into general registers R4 and R5.
Then control is transferred to one of the
abovementioned routines. Any element that
is not an option found before reaching the
right parenthesis of the ENVIRONMENT attri-
bute is ignored. FERR is called to note .
error message 189, and control is trans- 4::
ferred to FNOP to bypass a possibly follow-
ing specification, e.g., (14).

PL/I PLM 8

IBM Confidential

C

]
— c
2 lelsl |2]E]2]2 £ .
SANHEIFIHEIEE S 3 5
HHAREMAREHEHHEERERE THMEEHHE z
glol2|5(8|Z|2|s|ale|2|8|E|S|2|0|0a|s ElElZ|alZ|2| 2|2 el«l>
G 2(Z(3|5(2|5|8(%(2(3(|2(%|2(8|g|&|C|2]>|o]2]2|5|2|8 2| 5|£]8(2|%
STREAM X X X[x{x[x|x|x x|x| [x X
RECORD X X
INPUT X | x X
OUTPUT x| |x X
UPDATE x| [x[x]| [x X x| x| x
PRINT X|x| [x X X X X
DIRECT X | x [x [x X x| x [x X X | x| x
KEYED X X x [x|x
SEQUENTIAL X X X [x
BUFFERED X % X
UNBUFFERED X X X x[{x| [x X | x X | x
BACKWARDS X X | x [x x| x| [x
EXTERNAL
ENVIRONMENT
CONSECUTIVE X X | x X
REGIONAL (1) X x| [x x| [x x| x|x| [x
REGIONAL (3) X x| [x x| x x| x| x
F (8) X X
F (8,R) X X X X X X | x
\" X X | X X | X XX X X | X
U X X | x X | x X | x
BUFFERS (1) X X
BUFFERS (2) X X X
LEAVE X | X X
NOLABEL x| x| [x
VERIFY x| x| x
MEDIUM
Card reader+punch XX | XX X | X X | X X X XXX X|X|X|[X
Printer X x| [x[x x | x x|x| |x X X [x| x X x| x |x
Tape x| [|x[x x [x X x| x| [x|x
Disk X X | x x| x| x
KEYLENGTH

Figure 2, Conflicting File Attributes and Options

Phase PL/IB25

81

PL/I PIM 8

IBM Confidential

FSPE -- LE
Secondary entry points: FSPE02, FSPEO3

This subroutine performs the syntactical
scan of the options that must be followed
by an integer enclosed in parentheses,
e.g., KEYLENGTH (10) . The integer is con-
verted to binary and returned in general
register R3,

If the option is not followed by a left
parenthesis and a decimal digit, the rou-
tine returns false to (LINK), otherwise
true to 4 (LINK) .

FINT -- LF

Input parameter:
PIN: points to the first digit of the deci-
mal integer to be converted to binary.

Output parameters:

R3: converted integer.

PIN: points to the first byte following the
integer.

This subroutine converts a decimal inte-
ger to binary. If the integer consists of
more than 9 decimal digits, R3 is set to
32,768 = maximum blocklength + 1.

FBUF -- 1G

This is part of the main routine. It scans
the BUFFERS option and OR-es the bit

strings of BUFFERS (1) or BUFFERS (2) into R4
and RS.

FMED -- LK

This is part of the main routine. It scans

the MEDIUM option and inserts the number of
the .logical device and the key for the
physical device type into the file table.

FSYS -- LL

Input parameters:

PIN : points to the 3-byte key the logical
device name has been replaced by.

RSTNAM: number of a name table record that
has already been read into storage
(initialized with 0) .

Output parameters:

PIN : = PIN+3,

R1: points to the name-table entry of the
logical device name.

This subroutine retrieves the logical
device name from the name table.

82

FPDT -- LM

This subroutine tests the number specified
for the physical device type and inserts
the respective device code into the file
table. It OR-es the corresponding bit
strings into R4 and RS.

FBLO -~ LN

Secondary entry point: FBLO02

This subroutine checks whether the block-
size specification is greater than 32,767
and inserts it into the file table if it is
less or equal.

FFIX -- LO

This is part of the main routine. It scans
the F option and OR-es the corresponding
bit strings into R4 and R5 if blocksize and
recordsize are specified.

FUVN -- LP

This is part of the main routine. It calls
FBLO to test the blocksize specification of
the U or V option.

FREG -- LQ

This is part of the main routine., It scans
the REGIONAL option and OR-es the corres-
ponding bit strings into R4 and R5 if
REGIONAL (1) or REGIONAL (3) is specified.

FKEL -- LR

This is part of the main routine. It
checks whether the KEYLENGTH specification
is greater than 255 and inserts it into the
file table if it is less or equal. It
inserts 255 if it is high and notes error
message 194,

FNOP_-- LS

Input parameter:
OLP : number of open left parentheses.

This is part of the main routine. It
searches for right parenthesis (if OLP # 0)
to transfer control to FENV10.

If the end-of-statement key is found before
a right parenthesis is detected, control is
transferred to FFIT.

FFIT -- LT, LU, LV, LW, LX

This is part of the main routine. It adds
default attributes or options, if neces-
sary, and builds up bytes 2-4 of the file
table. It tests for:

1. conflicting attributes or options by
forming the logical product of R4 and
R5;

r

C

PL/I PLM 8

IBM Confidential

2. missing attributes or options;

3. conflicts that cannot be detected by
the general method;

4., unpermitted combinations of function
attributes or physical devices with
logical system units;

5. blocksize specifications that are out-
side of device depending limits or
incompatible to the rules concerning
division by recordsize or 8, respective
ly.

At the end of the routine, FEOS is
called.

FERR - LY

Input parameter:
RO : error number

This subroutine inserts the error number
into the error table. After seven numbers
have been inserted, error 215 with the
severity code T is noted as 8th error. The
end of statement is searched for, and con-
trol is transferred to FEOS.

FEOS -- LZ

This is part of the main routine. It

inserts the file name into the file table
and writes the table on SYS001, If errors
of the severity code T have been detected,

the file name is set to 0. A NOP key is
moved into the output buffer for the file
declaration. Control is then transferred
to FSCN35 to continue the general scan.

JEOS -- 1.1

This subroutine positions the contents of
input buffers 1-4 so that the currently
scanned EOS is in input buffer 1 (this is
done by moving and by reading in new
records). It puts out the EOS and the
error codes attached to it. If additional
error codes have been generated, they are
also put out.

JTRN -- L2

Input parameters:

PIN : pointer of source text.

POUT : pointer of output buffer.
BYZ : number of bytes to be moved.

Output parameters:

PIN : = PIN + BYZ.

POUT: address of next free byte within the
output buffer.

If not all the bytes to be moved fit into
the output buffer or if they do exactly
fit, the buffer is filled with the first
part of the text to be moved. The buffer
contents are written on a work file and the
remaining bytes, if any, are moved to the
begin of the buffer.

Phase PL/IB25 83

PL/I PLM 8

IBM Confidential

PHASE PL/IB30 (SYMBOL TABLE CONSTRUCTION II) -- MA

This phase checks the symbol table con-
structed by phase B20. Each variable in
the symbol table is tested for multideclar-
ation.

Secondary entries in function procedures
are tested to determine if they have the
same attributes for return values as the
main entry.

If the attribute CONTROLLED or DEFINED
is given, the internal representation of
the pointer variable or base variable,
respectively, is set into the symbol table.

DESCRIPTION OF ROUTINES

Note: The routines JTRNA1 and MOVEA1 are
described in phase AS50. The corresponding
flow charts are F3 and FO.

Initialization =-- MB

Phase B20 constructs the scope table SCOTAB
(see phase B20) .

If the source program has no file dec-
larations, i.e., if phase B25 is skipped,
phase B20 leaves the scope table in the
buffer area IJKMBS. Otherwise, the scope
table is written onto a work file.

JRSTA1 -- MC

Secondary entry point: JRSTD2

Phase B20 has constructed the first version
of the symbol table. If no symbol table
overflow occurred, the symbol table is
still in storage and the routine only ini-
tializes the pointer PST with the start
address of that part of the symbol table
that belongs to the block to be processed.
Otherwise, this routine reads in part of
the symbol table and loads the start
address into PST.

Entry parameters:
BLZ = number of block to be processed
SCOTAB = scope table (see phase B20)

Return parameter:
PST = symbol table start address

JCSTA1 -- ME

This routine checks the symbol table. If a
variable has the attribute CONTROLLED or
DEFINED, the internal representation of the
pointer variable or base variable, respec-
tively, is moved into the symbol table.

84

For testing multi-declaration, each
entry of the symbol table is compared with
all other entries belonging to one block of
the source text. Multi-declaration is
given if two entries have the same name.

In this way the internal representation of
the pointer or base variable is set into
the entry of the CONTROLLED variable and/or
DEFINED variable, if both entries are in
the table area at the same time.

This is done in the following manner:
Assume the variable compared with all oth-
ers is named A. The other is named B. If
B has the attribute CONTROLLED, it is det-
ermined if A is the corresponding pointer.
This is possible if the pointer is declared
in the same block earlier than the con-
trolled variable and the part of the symbol
table belonging to this block is not longer
than the table area. In this case, the
internal representation is moved in and the
movement is marked by a special bit. In
the other case, if A has the attribute
CONTROLLED and the entry is not marked, the
pointer is searched by reading the symbol
table for the current and the embracing
blocks successively in a special area (in
routine JSPOA1).

Entry parameters:

PST = address of the actual entry in the
symbol table.

HR4 = number of records in the table area
which have not yet been read.

JNSTA1 -- MF

This routine reads the next record of the
symbol table if the whole table belonging
to one block of the source text is not in
the table area.

Entry parameters:

HR1 = address of the actual variable B (see

Routine JCSTA1, Phase B30).

GRADR = limiting address of the area con-
taining the symbol table.

NOTES = note information for the first
record not yet read.

HR4 = number of records not yet read.

Return parameter:
HR1 = address of the next variable B.

Subroutine JSPOA1 -- MG

This subroutine searches for the pointer
variable or base variable if they are not
declared in the same block and earlier than
the CONTROLLED or DEFINED variable, or if a

®

PL/I PLM 8

IBM Confidential

table overflow occurs due to the number of
declarations.

Entry parameter:

JCST) .
JMDCA1_-- MH

This routine checks for multi-declaration.
This is given if two or more identical
names appear in one block. An exception
from this rule is qualified names. It is
possible for a name to refer to more than
one variable or data aggregate if the iden-
tically named items are parts of different
structures. In order to avoid any ambigui-
ty in referring to these identically named
items, it is necessary to create a unique
name. This is done by forming a qualified
name. This means that the name common to
more than one item is preceded by the name
of the structure in which it is contained.
This, in turn, can be preceded by the name
of the structure in which it is declared,
and so on. Multiple declaration for quali-
fied names is given if they have identical
gqualifications. The qualification for the
first name compared is made in routine
JQULA1 and stored in area QUALF1. For the
second name, the qualification is stored in
QUALF2.

Entry parameters:

PST = address of the first name compared.
HR; = address of the second name.
JCHEA1 -= MI

Secondary entry point: JCHED1

This routine checks the ENTRY attribute.

The first entry name in the outermost pro-
cedure has the block level 0. All secon-
dary entry names have level 1.

JQULAl _-- MJ

This routine assigns qualifications to
structure items (see Routine JMDCA1) .

A test is performed to determine if all
bit string data contained in the data
aggregates, i.e., arrays or structures,
have the attribute ALIGNED.

Entry parameter:
PST = address of the name to be qualified.

Return parameter:
QUALF1 = qualification.

JCCBA1 -- MK

Secondary entry point: JCCBB2

This routine checks the base identifier and
changes the name of the base identifier or
pointer into the internal representation.
The program has two entries:

Entry parameters:

Main entry:
HR1 = address of the defined identifier
PST = address of the base identifier

Secondary entry:
PST = address of the defined identifier
HR1 = address of the base identifier

Return parameters:

HR1 = unchanged. PST = unchanged.

Phase PL/IB30 85

PL/I PLM 8

IBM Confidential

PHASE PL/IB4O (STRUCTURE MAPPING) -- MZ

This phase calculates the storage require-
ments of structures. This calculation is
referred to as structure mapping.

A structure is a data aggregate contain-
ing items of different types that are
grouped in a given order and in such a way
that the overall storage requirement is a
minimum. The individual structure items
have different and independent requirements
of length and positioning with respect to
hardware boundaries.

Each element of a structure has three
mapping parameters: the alignment A, the
length L, and the lefthang H. The values
of the parameters depend on the declaration
of the structure as shown in Figure 1. The
alignment is identical to the hardware
boundary requirement of the respective
structure element. In DOS/TOS PL/I, there
are three possible alignments levels: 1
byte boundary, 4 = word boundary, and 8
double-word boundary. The length is the
length in bytes of the element. Data items
are stored right-adjusted to their bounda-
ry. This implies the use of a third pro-
perty: the lefthang. The lefthang is the
number of bytes of an element (or a combi-
nation of elements) that are to the left of
the alignment point of that element.

- I B Attt T
|Data_type [a] L [H]
- o =1
| Numeric field 111 n 10]
| Float decimal short |U4] 4 10]
| Float decimal long 18] 8 1 0]
|Float binary short |4 4 10]
| Float binary long | 8] 8 10]
| Fixed binary | 4] 4 10]
|Fixed decimal numeric| | | 1
| Field | 1] n |0}
| Fixed decimal (p, gq) |1|Floor ((pt+2)/72) {0}
|Bit string |11Ceil (n/8) 10|
| Character string |11 n 10]
| Pointer | 4] 3 |31
| Label variable (X 8 10}
L Lol 14

Figure 1. A, L, and H for Structure Items

Assume the following structure:

18,

2 S1 CHARACTER (5),
2 S2 FLOAT (16),

2 S3 CHARACTER (2) ;

86

Figure 2 then shows the relationship
between A, L, and H after the structure has
been mapped.

| |
| <——=————— L >
| I I
| <=——=H——==>|
| |
| |
b to——m ToT
| S1 | S2 1S3]
b pommm e po—to—m |
| <m=mmBmm e > | <m==A———=>|
| I |
alignment alignment alignment
point point point
Figure 2. Relationship between A, L, and H

after Mapping of a Structure

Figure 2 shows that L is independent of
A and H., The value of A has two meanings:

1. The actual storage address of the byte
immediately to the right of an align-
ment point (boundary) must be divisible
by A;

2. The number of bytes between two align-
ments points (a boundary interval) is
equal to A.

The value of H is made unambiguous by
the condition

0 <H <A

To completely map a structure, all minor
structures, if any, that contain only elem-
entary items or arrays must be mapped
first. (Refer also to the discussion of
structure mapping in the DOS/TOS PL/I
Programmer's Guide.) The mapping begins
with the first (leftmost) element, whose
mapping parameters are taken from Figure 1.
The next element is appended to the right.
Assume .that the mapping parameters of the
left and the right element are A,, L,, H,
and A,, L,, H,, respectively (see Figure 3,
step 1) . Different situations will then
occur depending on the relationship between
the two sets of mapping parameters, and a
resulting set of parameters A5, Li, Hs is
generated that describes the mapping of the
two elements as one compound item.

®

PL/I PLM 8

IBM Confidential
DECLARE 1 M,
2

~

POINTER,
BINARY FIXED (31)
BIT (16)

N X

-

CHARACTER (3),
DECIMAL FLOAT (16),
CHARACTER (3);

A—
N
WWwwIwww<

ROH

Step 1. Mapping of the individual minor structures V and W results in:
Hv=3, Av=4, Lv=9 Hw=3, Aw=8' Lw=14
d

L Tx] v]+1) r ; %

[¢) 8 12 o 4 8 16

The new alignment requirement of M (V and W mapped together) is:

Am=MAX(AV,Aw)=MAX(4,8)=8 A =8

Step 2. To map V and W, V is put to the left of W at A_ = 8. Since only the alignment boundary

=—— and not the actual storage position is examineﬂ, the actual location in storage is of
no interest as long as the boundary reaquirements are observed. In the following example,
A, is assumed to-be at byte 8 and A, at byte 32.

' 7Y » J 4
) I X Y 7 I J K | {
(0] L 12 16 20 21 78 32 I0 17
e -
R = 12 PAD = 15
Hm = Hv - R modulo A= 3-12 +2 8 =7 Hm =17
PAD1 = PAD - R =15 - 12 = 3
“*‘ L, =L, +PAD; + L =9 + 14 + 3 = 26 L, = 26
Step 3. This results in the following structure map for M:
¥
Eﬁ l X | v z lPADl I I | J I K | i} with the parameter set:
16 20 2 32 40 44 A = 8
Bo= 7
L. = 26

Figure 3. Structure Mapping Example

1. Since items with lower boundary
requirements can also be aligned at a
higher boundary, but not vice versa,

where PAD is in the region

the following formula applies: 0 < PAD < Aj
S| | |
Az = MAX (A4,A2) t - t-—-71 -—
| B Il s ¢ |
2. It may happen that the two items so } ——— + L - |
mapped are not contiguous, e.g., | |
A=l A A
1 X,
2 B BINARY FIXED, Figure 4. Inclusion of a Slack Byte S

2 C POINTER;
3. If padding, i.e., inclusion of slack
In this case, there is a slack byte S bytes, becomes necessary and A, is less
between B and C (see Figure U4) . The than A,, padding can possibly be minim-

area occupied by the slack byte must
then be added to the resulting length
L3:

L3=L1| + L, + PAD

ized by moving the left element to the
right as close as possible to the right
element. After the shift, boundary
requirement A, must still be satisfied
for the left element.

Phase PL/IBU4O 87

PL/I PLM 8

IBM Confidential

88

This process can be described as fol-
lows: R is the amount of the right
shift. Before shifting, the left ele-
ment can be assumed to be on boundary
A3 with its (unmodified) lefthang H,
(see Figure 3, stept 2). If the left
element is then shifted R bytes to the
right, the lefthang becomes:

() Hs = Hy - R

If Hy is less than R, one boundary
interval (A3 bytes) on the left becomes
unused and may now be disregarded. The
lefthang is computed instead from the
next boundary to the right by increas-
ing Hy by As. For Hy < R, the new
lefthang is:

(2) Hs = Hq - R + A3

Formulas (1) and (2) can be combined to

(3) Hs = Hy - R + n*A,

where n is 1 if H, is less than R;
otherwise n is zero.

To have the left element adjusted at
its proper boundary, R must fulfill the
requirement:

(t) MOD(R,Aq) =0

The next formula gives the resulting
padding reduction:

(55 0 < PAD, = PAD - R < A,

where PAD is the originally required
padding (as described under item 2
above) and PAD, is the (reduced) pad-
ding after the right shift. The formu-
la for Ls then changes to

L3 = L1 + L2 + PADq

This is illustrated in step 3 of Figure
3.

The amount of padding (PAD or PAD4) can
also be formalized. The offset 04 of
the leftmost byte of the left element
to the nearest boundary Aj; is

04 = Ly - Hqy - nq*A5

where n, must be suitably chosen to
satisfy

0 £ 04 < B,
(Multiples of A3 are of no interest

because of the minimum condition
PAD < Aj.)

The padding PAD is then the difference
between A; - O4 (the number of unused

bytes up to the next boundary As) and
H,. If H, is larger than A3 - O,, PAD
becomes negative, i. e., there is not
sufficient space to start the right
element in the same boundary interval
so that it must start in the same rela-
tive position in the next boundary
interval to the right. This means that
A; is added to PAD.

The multiples of A, can be extracted by
using modulo arithmetic. This results
in

PAD = -0, - H,
-Ls + Hy

(modulo Aj)
- H, (modulo Aj) or

(6) PAD + Ly - Hq + H, = 0 (modulo Aj)
From formula (5) above we obtain

(7) PAD1 + L1 - Hqy + Hy = O(mOdulO A,q)
The value R defined by formula (3) can
also be explained in modulo arithmetic.
For convenience, its complement

(8) T = Hs - H,q

is developed here.
mulas (5) and (6)

Starting from for-
we obtain
PAD,+R+L,-H,+H,=0 (modulo A,)
or, by applying formulas (3) and (8),
(9) PAD,-T+L4-H,+H,=0 (modulo As)

Since A5 is divisible by A,,
of (9) and (7) yields

comparison

-T = 0 (modulo A,)
which is equivalent to the auxiliary
condition (4).

The next element to the right can now be
mapped by taking the previously mapped
compound item as the left element and so
forth until all elements of the containing
minor (or major) structure have been
mapped. The structure itself is thereby
reduced to a compound item. When all minor
structures of the lowest level have so been
reduced to compound items, mapping of the
next-higher-level structure (which now
contains elements and compound items only)
can be started. This procedure is contin-
ued until the major structure has been
mapped.

Arrays are handled in a special way. If
an array is not of type POINTER, A is as
shown in Figure 1, H is zero, and L taken
from Figure 1 is multiplied by the number
of array elements. The array is then
mapped in one single step like an elementa-
ry item.

AN

o

PL/I PLM 8

IBM Confidential

POINTER arrays differ due to their
lefthang. Each element of a POINTER array
except the first one must be preceded by a
slack byte to satisfy the proper boundary
requirements. This results in A = 4, H =
3, and L = 4 *K-1, where K is the number of
array elements.

Structure mapping starts with elementary
items and arrays and proceeds upwards to
the major structure. Structure declara-
tions, however, are organized in the rev-
erse direction, starting with the major
structure and going down to its elements.
For this reason, the structure mapping
algorithm described in Figure 5 must also
start at the major structure. If the dec-
laration to be processed is not an elemen-
tary item or an array, the routine MAPP is
called recursively to handle the next lower
level (blocks B3 and B2 of Figure 5). On
return from this recursive call, the
appropriate structure has been reduced to a
compound item. The routine MAPP has one
input and four return parameters. The
input parameter is a pointer S to the
structure (major or minor) to be mapped.
The return parameters are A, L, H, and the
number of items N at any level contained in
this structure.

With each call of MAPP, initial values
for A, L, and H are generated for accumula-
tion during the mapping process (blocks A2,
H1, and HU4) . This initialization allows to
program the mapping algorithm as an itera-
tive process. It is equivalent to adding a
dummy element with length zero, lefthang
zero, and minimum boundary requirements to
the left of each structure (minor or
major) .

When the routine is called recursively,
the o0ld values A, L, H, and N are stacked.
They are available again (unchanged) after
return from the recursive call. A, L, and
H serve for the sets A,, Ly, Hy and A3, Ls,
Hs in the above description of the process,
while AA, LL, HH work as right-side element
sets A,, L, Hy. A global variable LV is
used in this process; it contains the level
at which mapping is momentarily being per-
formed. One variable PAD is used for both
PAD and PAD,. The distinction between PAD
and PAD, is made by a branch in block F2.

Besides A, L, and H, the mapping algor-
ithm must provide the symbol table with the
origin of each minor structure, array, and
element relative to the beginning of the
structure (block H2). Since all minor
structures at the lowest level have been
mapped independently, the relative origin
of each such minor structure starts at
zero. The relative origins must therefore

be adjusted when minor structures are
mapped as compound items (block J3).
block J4 is equal to the number of all
items contained in a structure.

NN in

DESCRIPTION OF ROUTINES

Note: Subroutine MOVEA 1 is described in
phase A50.

JRSYA1 -- NC

This routine updates the symbol table. The
respective entry is pointed to by PST. If
the entry is a single item, the length of
the item, i.e., the number of bytes occu-
pied at object time, is entered into the
symbol table. If the entry is a structure,
it is mapped.

JPRSA1 -- ND

This routine checks whether the entire
structure is in storage. If required, it
reads in the remaining part, After calling
JMAPA1 which performs the actual structure
mapping, A, L, and H are entered into the
symbol table. All symbol table entries
pertaining to the structure are put out.

JPOSA1 -- NE
Secondary entry point: JPOSAS

This subroutine controls two output
buffers. If the buffers are full, they are
written out in overlapped mode.

The secondary entry is used if a block
end in the symbol table is reached. 1In
this case, the buffer contents are written
regardless of whether or not the buffer is
full.

The NOTE information of the first record
of a block is entered into the scone table
if the main entry is used for the first
time and after each block end.

Entry parameters:

PST = start address of symbol table to
be written

BYZ = number of bytes to be written

POUT = output area pointer

BUFST1 = start address of first buffer

BUFST2 = start address of second buffer

BUFLIM = limiting address of buffer cur-
rently used

STRECL = symbol table record length

Return parameter:
PST new = PST old + BYZ

JMAPA1 -- NF
This routine calculates the mapping of

structures. It may be called recursively.

Phase PL/IB4O 89

PL/I PLM 8

IBM Confidential

An internal buffer is used for storing
and returning parameters. It consists of
four 32-byte sections referred to as PUSH1
-PUSH4. Each buffer entry has a length of
four bytes. The eight entries per buffer
section represent the levels of the struc-
ture. Thus, each structure level has an
entry in each of the four buffer sections.
The entries have the following format:

PUSH1

byte 1 alignment (A)

bytes 2~4 return address (LINK)

PUSH2

byte 1 lefthang (H)

bytes 2-4 start address of the structure
(S) being processed

PUSH3

bytes 1-2 1length (L) of the item being
processed

bytes 3-4 number of items (N) contained in
the item being processed

PUSHY

bytes 1-2 number of the item (I) being
processed relative to the
embracing structure

bytes 3-4 reserved

Level counter LV is used for addressing
the internal buffer.

Entry parameter:
PST = start address of
structure to be
mapped

Return parameters:

PUSH1 (4*LV)
PUSH2 (4*LV)
PUSH3 (4*LV)
PUSH3 (4*LV+2)

alignment (A)

lefthang (H)

length of structure (L)
number of items (N) con-
tained in item being proc-
essed

wnnn

JPADA1 =-- NG

This routine calculates the padding and the
lefthang of a structure. The padding PAD
is defined as

0<PAD<A and

90

(PAD+HH+L-H) modulo A = 0

If HH+L-H = X, PAD can be defined as fol-
lows:

(PAD+X) /A=CEIL (X/A)
PAD=A*CEIL (X/A) -X
PAD=A*FLOOR ((X+A-1) /Aa) -X

The increment T of the lefthang H is
defined as

0<T<AA and
(PAD+HH+L-H-T) modulo AA = 0

If Y = PAD+HH+L-H = PAD+X, T can be defined
as follows:

(Y-T) /AA=FLOOR (Y/AA)
T=Y/AA*FLOOR (Y /AA)

Entry parameters:

PUSH3 (BYZ) = L = length of embracing
structure

PUSH2+4 (BYZ) = HH = lefthang of item being
processed

PUSH2 (BYZ) = H = lefthang of embracing
structure

PUSH1+4 (BYZ) = AA = alignment of item being
processed

PUSH1 (BYZ) = A = alignment of embracing
structure

BYZ = (LV-1) *4

e e ey e

This routine calculates the number of items
contained in a structure at any level. The
symbol table entries for all structure
items are assumed to be stored in the table
area.

Entry parameter:
PST = address of structure to be mapped

Return parameters:

PST = unchanged

N = number of items (bytes 3-4 in PUSH3)
JALHA1 -- NI

This subroutine calculates A, L, and H.

PL/I PLM 8

IBM Confidential

> Ade
secoAlense . . H CA{'&I&“E N e
[. 3 L:b 1= . .
:ﬂA"l$.A.L'N'Il:- -.-l: t'.'.mt : .ION 'E El OF 0
LIYTYTYTTYYYTTYY 3 . é :m = S
.o
-
eecos 83 0. oBiee : :
. . -
. YES H CALCULATE FOR o -
[i eccccs
H “hﬂ.eﬂtll‘ “®ee l' Algkl.!m. M :
. ‘e o’ . -
. 0 8, o8 0 rYYYYY . -
. . .
. . .
. . -
. . -
. .
oooooczog : ootbo! : :
.
FOR S‘ t o SET F ‘i"é . -
I. M C e 3 . -
-rne HT : sVhedl 'Y H <
.O....'.......... 0800000000000 000 :
. . .
. . M
. 3 :
o®e -
: 04 o, -
. . -
. NO .o * -
:X............-..............-....-.-u..-u'...‘slgii}; ...0 :
- .0. .o -
. “e¥ES .
. H <
. . .
. X -
. e .
. sseseElensonsssse E4 o, -
P
X L =Ke! . NO .o S - -
. K 1 b‘ k OF eX. ea Ebﬁﬂ NY .e .
. BENEn E H e TV 11198 :
. . . . o .
- - 0088 . B, o -
. *YVES .
. - -
; ; :
esssafFlaccsassnss Fz' '0. sssncF4annsnsnces :
SSETLE R LTS ves .o7") Lt . :
. ®Xeosesaeews AAGT A c@Xeeuo ceoecccesanas RS S .
H PAD+HE4L=H H o .- M .
.......'.Q;...'.. .C. &e' assse .e :
. . .
X X
LT I2T oooooo.:o: :IE ogiscgeoo’n‘:;: :0000650000000 :
.
: LE E AA : :3 LE ?AD LT AA o M : elel :
=
:P=8:=aﬂ.;:-'1 : : PA ONHOk-' . : °
0D« - -
sencsusnsssssnsen sesssessecnncesas 000!00.0;0.000000
X X .. oo
assssHleseossonse -oooouic;o;ouonoo H3 ., sseasHéssnee .. HS e
. . 3 - -
. HaHeT . a"‘ﬂ L ?‘E .Stll‘ELENENT'- YES . . -8 ° e
. As=AA O-...-o.-l’ SI. ORlﬁs OF ®ceccccacocXe e®ccccccecXs LsL+LL4PAD ®cocecccaXe, I=N -
. T)=L+PAD . .. X3 . - o
. 0 - . ® - .. ®
., o0 EYITTITYYY Y Y Y XYY T 8. of
*NO ®YES
X . X
. sessepese sssssj4nssssnssse sesseiS5enncasanas
. L ;1:‘5 - o - . .
. (1) AT o . . -
. l.fvfl. .o-oonooax. I=1+NN . . Ly=Ly-1 .
- Jis . . -
* Re J)4LePAD o 0 3 . -
SNSRI RININGENES
X
sseeKSecsscnnces
.
. RETURN 3
- -
e0sssssacssnnsse

Figure 5. Structure Mapping Algorithm

Phase PL/IBUO 91

PL/I PLM 8

IBM Confidential

PHASE PL/IB70 (CONTEXTUAL DECLARATIONS) -- OA 4“\
uuﬂ
Phase B70 adds all contextually declared IJKMIP
identifiers to the symbol table SYMTAB.
All identifiers that either occur in a CALL If bit 0 of IJKMIP is on, all blocks of
statement or precede a PROCEDURE statement, SYMTAB are in storage. If bit 1 of IJKMIP
an ENTRY statement, or a parenthesized list is on, some blocks of SYMTAB are in stor-
are replaced in the text string by their age. These blocks are in storage from the
internal representation. beginning of phase B70.
All identifiers that are built-in func-
tions with arguments are replaced with the WSLIST
internal representation of the built-in
functions in the text string. WSLIST is a list with an entry for each
possible block level (3 entries). If block
Phase_ Input X with level number N is read, entry N of
WSLIST contains:
1. Text string on TXTIN. All identifiers
are identified by an E1-key. Byte 0 : Number of records of block X
which are in storage.
2. Symbol table SYMTAB on SYS001. For Byte 1 : Number of records of block X
each explicitly declared identifier, which are not in storage.
SYMTAB contains an entry with the dec- Bytes 2= 3 : Entry of block X in the scope
larations of the identifier and its table.
internal representation. Bytes U4~ 7 : Begin address of block X in
storage.
Phase Output Bytes 8-11 : End address of block X in
I storage.
1. The text string on TXTIN contains all Bytes 12-15 : Note key of the part of block
identifiers that occur in a CALL state- X which is not in storage. [
ment, or precede a PROCEDURE statement, If the entire block X is in N’

an ENTRY statement, or a parenthesized
list characterized by an EE-key and
replaced by its internal representa-
tion. All built-in functions with
arguments are characterized by an EC-
key and replaced by their internal

representation. All remaining
identifiers are characterized by an
E1-keYQ

2. For each contextually declared iden-
tifier, block n+1 of SYMTAB in storage
and/or on SYS001 contains an entry with
the declaration of the identifier.

COMMUNICATION WITH OTHER PHASES

Scope_Table

The scope table SCOTAB (built and described
in phase B20) contains an entry for each
block of the symbol table. The format of
this entry is as follows:

Byte 0 : Number of records of the block.
Bytes 1-3 : Note key of the block on
SYS001.

Address of the block in storage
relative to the beginning of
the table space. If the block
is not in storage, bytes 4-5
are zero.

Bytes 4-5

92

storage, bytes 12-15 are
zero.

The scope table and WSLIST contain the
information on the location of the blocks
of SYMTAB. If either one of the first two
bits of IJKMIP is on, information is
retrieved from the scope table only. As
soon as a block that is not in storage is
required in phase B70 or B80, bit 1 of
IJKMIP is reset and the control of blocks
in storage passes to the entries in WSLIST.

Classifying of Table Space

At the beginning of phase B70, the table
space is classified for storing blocks of
SYMTAB in phases B70, B75, and B8O.

The table space is divided into three
sections. The first section is used for
storing blocks of SYMTAB. The number of
records of SYMTAB that can be stored here
is called MO.

The second section (starting with AN1)
is used to build up block n+1. Its length
is equal to the record length of SYMTAB if
not all blocks of SYMTAB (except block n+1)
are in storage. If all blocks (except
block n+1) are in storage, the free table
space is used to build up block n+1.

PL/I PLM 8

IBM Confidential

The third section (starting with ABS1)
is called BS. This area consists of two
buffers called BS1 and BS2. The length of
each buffer is equal to record length of
SYMTAB. BS is used for reading and scan-
ning records of SYMTAB if a block, or part
of a block, cannot be stored in the first
MO buffers of the table space without des-
troying other blocks that are also required
for scanning. If the entire SYMTAB (except
block n+1) is in storage, BS is also used
to build up block n+1.

The following terms are used for classify-
ing table space:

MO : Number of records of SYMTAB that
can be stored in the first section
of the table space.

K : Number of buffers in the table
space that are used to build up
block n+1. Normally, K = 1.

AN1 : Address of the area in which block
n+1 is built up.

ABS1 : Address of BS and BS1.

ABS2 : Begin address of BS2.

AEBS2 : End address of BS2.

PSE : Points to the location where the
next entry of block n+1 is stored.

AO : Address of table space.

WBSEN

Byte WBSEN contains the number of a block
which is completely stored, or of which the
last records are stored, in BS. If byte
WBSEN is zero, no records are stored in BS.

Bit 20 of IJRKMJT

Bit 20 of IJKMJT is set if a built-in func-
tion is detected in this phase.

Error Code X'45°

If an incorrectly declared identifier is
found in this phase, the error code X'45°
is inserted into the text string after the
statement in which the incorrectly declared
identifier is found.

WCTAB and Switch B75

Table WCTAB is used to indicate built-~in
functions coded in the text string as
built-in functions, but declared by the
user. If such a function is found, its
matching bit in WCTAB and switch B75 are
set, i.e., phase B75 will not be skipped.

Internal Pointers, Switches, and Tables

The following pointers and switches are
used:

PIN : points to the element in the input
buffer which is scanned.
POUT : indicates the address in the output

buffer to which the next output will
be moved.

points to the entry of SYMTAB which
is scanned.

PSY

Switch MS = Bit 0 of WSWIMS. Switch MS is
set if an entry of the identifier is
found in SYMTAB and the identifier
is declared in this entry as a minor
structure or as an element of a
structure. If the identifier is
declared as an array, the internal
representation of it is stored.
Scanning of the same block is con-
tinued, but embracing blocks are not
scanned.

LVLPT: points to the WSLIST entry for the
required SYMTAB block.

Scope pointer: points to the SCOTAB entry
for the required SYMTAB block.

The following tables are used:

WBTAB is used to indicate the appearance of
not explicitly declared built-in functions.
If a not explicitly declared built-in func-
tion is found in the text string, the cor-
responding bit in WBTAB is set.

WTAB contains the masks for setting bits in
WBTAB and WCTAB.

WNRNR contains the number of the block and

the number of the embracing block of the
statement being tested.

Input/Output of Text String

Three contiguous buffers are used for read-
ing and writing of the text string. The
first buffer is used as output buffer. The
second buffer is the first input buffer:;
its address is contained in BUFB1. The
third buffer is the second input buffer;
its address is contained in BUFB2. The end
address of the second input buffer is con-
tained in BUFEND.

Output is performed under control of the
output pointer POUT by the output routine
JTRNA1 as described in phase A50.

The input pointer PIN points to the text
string element to be scanned. After scan-
ning, PIN is increased by the length of the
element. If PIN points to an element not
contained in the first input buffer, output
of the first input buffer is performed by
JTRNA1. The contents of the second input
buffer are moved to the first input buffer.
PIN is decreased by the buffer length and
the next record is read into the second
input buffer. If PIN points to an element
in the first input buffer, scanning is
continued,

Phase PL/IB70 93

PL/I PIM 8

IBM Confidential

Functional Description

The following cases are checked in this
phase by scanning the text string:

1. An identifier precedes a PROCEDURE or
ENTRY statement: This identifier is
declared explicitly. Its entry is
retrieved from SYMTAB and its internal
representation is inserted into the
text string.

2, An identifier occurs in a CALL state-
ment: SYMTAB is searched for an entry
of this identifier. If an entry is
found, the identifier must be declared
as an entry name, and its internal
representation is inserted into the
text string. If it is not declared as
an entry name, X'EE0000' and an error
message are inserted into the text
string.

If the identifier is not declared, it
will be declared as an external entry
name in block n+1 of SYMTAB, and its
internal representation is inserted
into the text string. If the name of
such an identifier is equal to a built-
in function, and this built-in function
is noted in WBTAB, i.e., the built-in
function was previously used in the
text string, it is also noted in WCTAB
and switch B75 is set, i.e., phase B75
will not be skipped.

3. An identifier followed by a
parenthesized list occurs., SYMTAB is
searched for an entry of this identifi-
er. If an entry is found, the iden-
tifier must be declared as entry name,
array, or built-in function, and its
internal representation is inserted
into the text string. If the declara-
tion is not of this type,X'EE0000' and
an error message are inserted into the
text string. If the identifier is not
declared, it is checked whether or not
it is a built-in function. If it is,
the identifier is replaced in the text
string by the internal representation
of the built-in function, and its
appearance is noted in WBTAB. If the
identifier is not a built-in function,
it will be declared as an external
entry name in block n+1 of SYMTAB, and
its internal representation is inserted
into the text string.

DESCRIPTION OF ROUTINES

Note: The following subroutines are used
in this phase but are described elsewhere:

JERRA1 and JTRNA1 are described in phase

A50. All of the remaining routines are
described in phase B80:

94

WBSOC1 WELST3
wCaM1 WGT21
WCLEAR WGT 22
WELST1 WSETSP
Initialization -- OB

Output pointer POUT is set to the beginning
of the output buffer. Input pointer PIN is
set to the beginning of the first input
buffer. The first two records of the text
string are read into the input buffers.

The begin addresses of the first and second
input buffers and the end address of the
second input buffer are stored in BUFBI1,
BUFB2, and BUFEND.

The table space is classified as des-
cribed in the section Classifying of Table
Space. MO, AN1, ABS1, ABS2, and AEBS2 are
stored in WMO, WAN1, WABS1, WABS2, and
WAEBS2, respectively.

If there are blocks in storage from
previous phases, bit 1 of IJKMIP is set.
If there are blocks in storage that exceed
the first MO buffers of the table space,
the addresses of these blocks are cleared
in the scope table. It is tested whether
all blocks of SYMTAB are in storage. If
they are not, K = 1., If all blocks are in
storage, the address of the free table
space is equal to AN1, K is equal to the
number of free buffers, and ABS1 is equal
to the address of the end of the table
space. Pointer PSE is set to the beginning
of the area used to build up block n+1.

Search for Identifier in Source Text--0C

The text string is scanned for begin of
statement (statement identifier), identifi-
er, and end of statement.

If a begin of statement is found, the
number of the block and the number of the
embracing block of this statement are
stored in WNRNR. If the statement is a
CALL statement, and no OVERLAY or a DYNDUMP
is called, switch CALL is set. If OVERLAY
or DYNDUMP is called, this is indicated in
the statement identifier and OVERLAY or
DYNDUMP is deleted in the text string.

Identifier in Source Text -- OD

PIN points to the El-key of an identifier.
If this identifier is not part of a quali-
fied name, it is checked whether:

1. The identifier precedes a PROCEDURE or
ENTRY statement, or

2. switch CALL is on, or

3. The identifier is followed by a paren-
thesized list.

()

PL/I PLM 8

IBM Confidential

The actions performed in these cases are
described in the section Functional Des-

cription.

If the internal representation of an
identifier is zero, error code X'45' is
inserted into the text string by the error
routine JERRA1.

Entry in SYMTAB -- OE

PIN points to the identifier an entry of
which is made in block n+1 of SYMTAB as
external entry name. PSE points to the
beginning of the entry. The internal rep-
resentation of the identifier is equal to
the present value of the variable counter.

If the first character of the user-
defined name of the identifier is I through
N, the attributes FIXED BINARY and the
length 15 are set into the entry of the
identifier. Otherwise, the attributes
FLOAT DECIMAL and the length 6 are set into
the identifier entry.

If this entry is the last possible entry
in the buffer (s) used to build up block
n+1, all entries of block n+1 which are in
storage are written onto SYS001, and PSE is
reset. If the first bit of IJKMIP is on,
it is reset; the second bit of IJKMIP is
set, and K is decreased by 2, i.e., BS is
now used to accommodate the part of block
n+1 which is not in storage.

End of Statement or Phase -- OF

PIN points to the EA-key of End of
Statement. WRU4 contains the begin address
of the area which is moved into the output
buffer. This area including End of State-
ment and possible error messages from pre-
vious phases are written by the output
routine JTRNA1. If an incorrectly declared
identifier was found in this statement, the
error bit is set on and the new error
message (s) is (are) added to the possible
0old one. The number of error messages
after a statement is limited to 8.

It is tested whether PIN points to the
end of the text string. If it does, the
part of the text string which is not yet on
TXTOUT is written and TXTOUT and TXTIN are
rewound and exchanged. If switch B75 is
on, phase B75 is called; otherwise, phase
B80 is called.

Check for Built-in Function -- 0OG

Entry : WBUINT

Input parameter:
PIN points to the identifier which is
checked if it is a built-in function.

WBTAB1 is a table which contains the
second bytes of the internal representation
of all built-in functions with arguments
the names of which are declared in the
first record of the name table NAMTAB. The
second bytes are in the order of the com-
pressed names of the built-in functions.
WBTAB2 is a table which contains the second
bytes of both the compressed name and the
internal representations of all built-in
function with arguments the names of which
are declared in the second record of NAM-
TAB.

It is tested if the identifier is a
keyword. If it is a keyword and it is
declared in the first record of NAMTAB , it
is checked if the keyword matches a built-
in function in WBTAB1. If it does,
pointers are set to the entries of this
function in WTAB, WBTAB, and WCTAB, and
exit YES occurs. If the keyword is
declared in the second record of NAMTAB,
WBTAB2 is scanned for this keyword. If it
is found, pointers are set to the entries
of this function in WTAB, WBTAB, and WCTAB,
and exit YES occurs.

Output parameters (for exit YES):

RO contains the internal representation of
the built-in function.

R1 points to WTAB entry, R2 points to WBTAB
entry, and R3 points to WCTAB entry of the
built-in function.

Search for Identifjer in SYMTAB -- OH-OL

Entry point: WSIO

Input parameter:
PIN points to the identifier, an entry of
which is searched for in SYMTAB.

If an identifier is declared in SYMTAB,
its internal representation is retrieved
therefrom by WSI0O. In addition, this sub-
routine attempts to keep blocks in storage
as long as possible and reads only those
blocks into storage that are required to
scan for an entry for the identifier.
Scanning is started in block X, i.e., in
the block that contains the statement
which, in turn, contains the identifier
searched for. If the searched entry is not
found in block X, scanning is continued in
the embracing block of block X, etc. The
outermost block is block n+1.

If block X of the identifier is not in
storage, all blocks in storage that are not
embracing blocks of block X are cleared.

If there are not enough contiguous free
buffers in the table space to accommodate
block X, embracing blocks of block X are
cleared starting with block level 1.

If the number MX of records of block X
is not greater than MO, block X is stored

Phase PL/IB70 95

PL/I PLM 8

IBM Confidential

and scanned in the table space; otherwise,
the first MO records of block X are stored
and scanned in MO buffers of the table
space. The remaining records of block X
are read and scanned in BS.

If scanning is continued in an embracing
block of block X, block X remains in stor-
age. If the embracing block is not in
storage ‘and the maximum of contiguous free
buffers in the table space is M1, the
embracing block is stored in the M1 buffers
unless the number of records of the embrac-
ing block is greater than M1. Otherwise,
the first M1 records of the embracing block
are stored and scanned in the M1 buffers of
the table space. The remaining records are
read and scanned in BS.

If an entry of the identifier is found
and the identifier is declared in this
entry as an array in a structure, the
internal representation of this entry is
stored and scanning of the block is contin-
ued. If no other entry of the identifier
is found in the same block, the internal
representation of the array is retrieved.
If another entry of the identifier is
found, the internal representation of the
new entry is retrieved if tge identifier is
not declared in this entry as a minor
structure or as an element of a structure.

If an entry of the identifier is found
and the identifier is declared as a minor
structure or as an element of a structure,
but not as an array, scanning of the block
is also continued. If no other entry is
found in the same block, the error routine
is initialized.

If the identifier is not declared in
SYMTAB, exit NOT of WSIO occurs. If it is
declared and its internal representation is
not zero, exit DECL occurs. If its inter-
nal representation is zero, the error rou-
tine is initialized.

Output parameters:

PIN points to the identifier in the text
string.

PSY points to the entry of the identifier
in SYMTAB if exit DECL occurs.

Read and Scan Block X -- OM-ON

Entry : WRBX1

Input parameters:

R1 contains the address A1 of the area
in which block X can be stored.

R3 contains the number M1 of records
which can be stored in A1.

R7 points to the entry of block X in the

scope table.
LVLPT points to the entry of block X in
WSLIST.)

96

WMX contains the number MX of records of
~block X.

If MX is not greater than M1, the entire
block X is stored and scanned in the table
space. Otherwise, the first M1 records of
block X are stored and scanned in the table
space, and the remaining records of block X
are read and scanned in BS.

If an entry of the identifier is found
and the identifier is not declared as a
minor structure or as an element of a
structure, the internal representation is
tested for zero.

If an entry of the identifier is found
and the identifier is declared as an array
in a structure, the internal representation
of the array is stored. Scanning is con-
tinued.

If no entry or only entries for iden-
tifiers declared as a minor structure or as
an element of a structure are found, this
subroutine is left via its normal exit.

Output parameter:

PSY points to the entry of the identifier
in SYMTAB if the identifier is declared but
not as a minor structure or as an element
of a structure.

Search for Identifier in BS -- 00

Entry: WREADI1

Input parameter:
R3 contains the number of records of block
X to be read and scanned in BS.

Records are read and scanned in over-
lapped mode, i.e., while a new record is
read into one buffer of BS, the record in
the other buffer is scanned for an entry of
the searched identifier., PSY points to the
entry of SYMTAB which is scanned.

If no entry of the searched identifier
is found that is not declared as a minor
structure or as an element of a structure,
the routine is left via its normal exit.

If an entry is found and the identifier
is declared as a minor structure or as an
element of a structure, switch MS is set.
If the minor structure or element of a
structure is an array, the internal rep-
resentation of the array is stored. Scan-
ning is continued.

Output parameter:

PSY points to the entry of the searched
identifier unless this routine is left via
its normal exit.

®

PL/I PLM 8

IBM Confidential

Clear Addresses in Scope Table -- OP

Entry: WCSCO1

If switch WCSCO2 is off, bytes 4 and 5 of
all entries in the scope table are cleared.
If switch WCSCO2 is on, bytes 4 and 5 of
all entries of the scope table are tested
for zero. If a nonzero entry is found, it

is tested whether the end address of this
block is equal to or higher than AN1. If
it is higher or equal, the begin address of
this block in the scope table is cleared.
If it is lower and the end address of this
block is higher than the highest end
address of previously found blocks in stor-
age, the end address of this block is
stored.

Phase PL/IB70 97

PL/I PLM 8

IBM Confidential

PHASE PL/IB75 (EXTERNAL ENTRY NAMES FOR IMPROPERLY SENERATED BUILT-IN FUNCTIONS)

-- OR

If a subroutine reference in the text
string is identical to the name of a built-
in function, the name of the identical
function must be declared as an external
entry name, provided the function has not
been declared explicitly as a built-in
function., This phase replaces such a
subroutine reference (which has been
declared as a built-in function in phase
B70) by its correct representation as an
external entry name. If there is no such
subroutine reference, phase B75 is skipped.

Phase Input

1. The text string from TXTIN which con-
tains function references that have
been incorrectly declared as built-in
functions.

2. Block n+1 of SYMTAB which contains all
contextually declarations.

Phase Output

In the text string, all subroutine referen-
ces that were improperly declared are now
replaced by their proper internal represen-
tation and are characterized by an EE-key.

Communication with Other Phases

Scope table

IJKMIP

WSLIST

Table Space as classified in phase B70
WBSEN

Bit 20 of IJKMJT

NCTAB

The above areas, tables, and switches,
as well as I/0 handling are the same as
described in phase B70.

Internal Pointers, Switches, and Tables

PIN points to the element being
scanned in the input buffer.
POUT indicates the output buffer

address to which the next output
is to be moved.
PSY points to the entry of block n+1
in SYMTAB, which is to be scanned.
points to the end of the area that
contains the entries 0f block n+1
which are to be scanned.

EPSY

Switch 1 is on if records of block n+1 are
stored in BS, but not in the first
MO buffers of table space.

98

Switch 2 is on if records of block n+1 are
stored in the first MO buffers of
table space and in BS.

WECLIST contains entries which consist of

the compressed user name and the

WCTAB entry for the built-in func-

tion. These entries are in

ascending order by the internal
representations of the built-in
functions.

DESCRIPTION OF ROUTINES
Note: The subroutines listed below are
used by phase B75, but described elsewhere.
For a description of these subroutines
refer to the sections indicated.

ITRNA1 phase A50
WBSO0C phase B80
WCLEAR phase B80
WCSCO01 phase B80
WSETSP phase B8O
Initialization -- OS

The pointer POUT is set to point to the
beginning of the output buffer. The poin-
ter PIN is set to point to the beginning of
the first input buffer. The first two
records of text string are read into the
input buffers.

The bit used to indicate the presence of
built-in functions in the current compila-
tion is reset.

If the table space contains only a por-
tion of that part of block n+1 which was
built up during phase B70, the head of
block nt+1 is retrieved from SYS001. If the
number (MX) of records of block n+1 on
SYS001 is not greater than MO0+2, MX records
of block n+1 are read into the table space;
otherwise, the first MO records of block
n+1 are stored in the first MO buffers of
the table space and the begin of the
remaining records on SY¥YS001 is noted.

Scan Source Text -- OT

The text string is scanned for an End-of-
Statement indication and for built-in
functions not explicitly declared.

If a built-in function is found which is
not explicitly declared, the WCTAB area is
tested to determine whether the function
has been declared by the user. If not, a

»

s

'S
%_/

PL/I PLM 8

IBM Confidential

bit is set to indicate that the current
compilation includes built-in functions.

If the function has been declared by the
user, the compressed name of this built-in
function is obtained and the internal rep-
resentation of the user's function is
picked up in block n+1. The built-in func-
tion in the text string is replaced by the
internal representation of the user's func-
tion and the key 'EE'.

Pick up Internal Representation of User
Function -- QU

Block n+1 is scanned for the entry of the
user's function. Scanning starts with
those entries of block n+1 which have been
in storage at the beginning of this phase.
Scanning continues with those entries of
block n+1 which have been stored in the
table space during initialization of this
phase. If not all records of block n+1 are
in storage, the head of the remaining
records of block n+1 is picked up and the
entries of these records are read and
scanned in BS.

End of Statement or Phase -- 0OV

Pointer PIN points to key 'EA' of the end

of statement. WRHU contains the address of
the area whose contents are moved into the
output buffer. The processed text string,

including end-of-statement and error messa-
ges (if any) from previous phases are writ-
ten on TXTOUT by the output routine JTRNAT1.

If PIN points to the end of the text
string, that part of the text string which
is not yet on TXTOUT is written, TXTOUT and
TXTIN are rewound and exchanged. The phase
is terminate@ by calling phase B80.

Search for Identifier Subroutine -- OW

Entry point: WSEAR

Input parameters:

PSY points to the area that contains the
entries of block n+1 that are to be
scanned.

EPSY points to the end of the same area.

R11 contains the compressed user's name

of the function, the entry of which
is to be searched for.

PSY points to the entry of block n+1
that is to be searched for the identifier.
If the desired entry is found, the routine
is left to replace the built-in function by
the internal representation of the user's
function in the text string.

If PSY points to an address that is
equal to or greater than the value of EPSY,
this subroutine is left via the NO exit.

Output parameter:

PSY points to the desired entry of block
nt1l if not left via the NO exit.

Phase PL/IB75 99

PL/I PIM 8

IBM Confidential

PHASE PL/IB80 (IMPLICIT DECLARATIONS) —-- PA

This phase performs the following func-
tions:

1. 2ll implicitly declared identifiers are
added to the symbol table SYMTAB.

2. Identifiers in the text string that
have an El-key are replaced by their
internal representations.

3. Identifiers in the text string, which
are built-in functions without argu-
ments, are replaced by the internal
representation of the built-in func-
tions.

Phase Input and Output

The input consists of the following:

1. The text string from TXTIN containing
all identifiers which are not replaced
by the appropriate internal representa-
tion with an El-key.

2. Symbol table SYMTAB on SYS001 or in
storage which contains an entry for
each explicitly or contextually
declared identifier.

As output, the phase produces:

1. The text string on TXTIN which contains
a. the appropriate internal represen-
tation with an EE-key for all iden-
tifiers and
b. the appropriate internal represen-
tation with an EC-key for all
built-in functions.

2. Block n+1 of SYMTAB on SYS001. This
block contains one entry for each con-
textually or implicitly declared iden-
tifier.

Communication with Other Phases

Scope Table

IJKMIP

WSLIST

Table Space as classified in phase B70
WBSEN

Bit 20 of IJRMJT

Error code X'u45'

Error code X'u4:*

Areas, tables, and switches under 1
through 7, above are as described in phase .
B70.

Error code X'u44*', If an identifier of a
qualified name is not declared in SYMTAB,

100

the error code X'Uu4' is inserted into the
text string after the statement in which
the not declared qualified name was found.

Internal Pointers, Switches, and Tables

PIN points to the element in the input

buffer which is being scanned.
POUT indicates the output buffer address
to which the next output is to be
moved.

PSY points to the SYMTAB entry to be
scanned.

LVLPT points to the entry in WSLIST for

the required SYMTAB block.

Scope points to the entry in the scope
pointer table for the required SYMTAB
block.
WSWIMS switch MS is on if bit 0 of WSWIMS
is 1. It is set whenever an entry
of an identifier is found in SYMTAB o
and this identifier ,
1. does not occur in a qualified M
name and
2. 1is declared as a minor struc-
ture or an element of a struc-
ture in this entry.
The internal representation con-
tained in this entry is stored, and
scanning of the block is continued;
however, embracing blocks are not
scanned.
WQUALS if WQUALS is X'01', switch QUAL is
on; this indicates that a qualified
name is to be tested. If WQUALS is
X*'81', switches QUAL and MINOR
STRUCT are on; this indicates that
scanning for entries for the iden-
tifiers of a qualified name was
started.
WNRNR contains
1. the number of the block con-
taining the statement being
tested and
2. the number of the embracing
block.

The level lists WLEVL, WQUANT, and WNTLL
are used if scanning for a qualified name
is performed. The lists WQUANT and WNTLL
are only used when the records of SYMTAB,
which are being scanned for the qualified
name, are in BS. The contents of these
tables follow:

PL/I PIM 8

IBM Confidential

WLEVL

Pointer PSY of the identifier
entry with smallest level
number found while scanning
for an identifier of a quali-
fied name was performed.

Bytes 0-3:

Byte 42 LNR1 = level number + 1 of the
identifier of a qualified name
which precedes the identifier
being scanned for. =11if
the first identifier is
scanned.)

Byte 5: LNR2 = level number of the
entry which is referred to in
bytes 0 through 3.

WOUANT

Bytes 0- 7: NOTE information for the
record currently in BS1.

Bytes 8-11: Not used.

Bytes 12-15: Number of records + 1 of block
X that follow the record cur-
rently in BS1.

WNTLL Contents of WQUANT for the

identifier referred to in

WLEVL (bytes 0 through 3).

Functional Description

If an identifier with an El1-key is found in
the text string, subroutine WSIO is called
to search SYMTAB for an entry for this
identifier. The identifier may or may not
occur in a qualified name.

1. The identifier does not occur in a
qualified name.

If the identifier is declared, its
internal representation including the
key 'EE' is inserted into the text
string. If the identifier is not
declared, it is determined whether or
not it is a built-in function without
arguments.

In case of a built-in function without
arguments, the internal representation
of the built-in function including the
key 'EC' is inserted into the text
string.

If it is not a built-in function, the
identifier is declared as arithmetic in
block n+1 of SYMTAB, and its internal
representation including the key ‘'EE"
is inserted into the text string.

2. The identifier occurs in a qualified
name.

The proper entry for each identifier
contained in the qualified name is
looked up in the block in which the
qualified name is declared. All but
the last identifier of the qualified
name are deleted in the text string.
When the correct entry of the last
identifier is found in SYMTAB, the
internal representation of this iden-
tifier including the key 'EE' is
inserted into the text string. Other-
wise, 'EEO000' and the error code X'44:
(= qualified name not declared) are
inserted in the text string.

DESCRIPTION OF ROUTINES

Note: Subroutines JERRA1 (error) and
JTRNA1 (output) are used by phase B80, but
described in phase A50.

Initialization -- PB

Output pointer POUT is set to the beginning
of the output buffer. Input pointer PIN is
set to the beginning of the first input
buffer. The first two records of the text
stringy are read into the input buffers.

Pointer PSE is set to the first availa-
ble byte position in block n+1 following
the last entry made in phase B70.

Search for Identifier in Source Text -- PC

The text string is scanned for

1. the beginning of statements (statement
identifiers),

2. identifiers with an El-key,
3. end of statements and
4. explicitly declared built-in functions.

Input and output of the text string is
as described in phase B70.

If the beginning of a statement is
found, the numbers of the block containing
the statement and of the embracing block
are stored in WNRNR.

If an identifier with an El-key is
found, WSIO is called to search SYMTAB for
an entry for this identifier. If the iden-
tifier is declared, its internal represen-
tation with the key 'EE' is inserted into
the text string.

If the identifier is the first one of a
qualified name, the text string is written
out up to the beginning of the qualified
name and switch QUAL is set before WSIQ is
called.

Phase PL/IB80 101

PL/I PLM 8

IBM Confidential

If an explicitly declared built-in func-
tion is found, the appropriate representa-
tion of the function (first byte of inter-
nal representation = 0) is inserted into
the text string. The bit that indicates
built-in functions in the current compila-
tion is set.

Identifier not Declared -- PD

If an undeclared identifier is a built-in
function without arguments, the internal
representation of this function, including
key 'EC', is inserted into the text string.
The bit that indicates built-in functions
in the current compilation is set.

If the internal representation of the
identifier is 0, X'EE0000' is inserted into
the text string. In addition, the error
code X'45' is inserted by calling JERRA1.

Entry in SYMTAB -- PE

PIN points to the identifier for which an
entry with arithmetic attributes is built.
This entry is then moved into .block n+1 of
SYMTAB. PSE points to the address of the
entry.

The internal representation of the iden-
tifier equals the present value of the
variable counter.

If one of the characters I through N is
used as the first letter of the usexr-
defined name of the identifier, attribute
FIXED BINARY with a length of 15 is set
into the entry for the identifier. If the
first letter is a character other than I
through N, FLOAT DECIMAL with a length of 6
is set into the identifier entry.

If this entry is the last possible entry
in the buffer (s) used to build up block
n+1, all entries of block n+1 that are in
storage are written on SYS001. PSE is
reset. If the first bit of IJRMIP is 1,
this bit is reset, the second bit of IJKMIP
is set, and K is decreased by 2, i.e., BS
is used to retrieve that part of block n+1
which is not yet in storage.

End of Statement -- PF

PIN points to key 'EA' of End of Statement.
WRU contains the address of the area whose
contents are to be moved into the output
buffer by calling JTRNA1.

If an improperly declared identifier or
qualified name is found in this statement,
the error bit is set and the new error
message (s) are added to the old one.
number of error messages following a
statement is limited to eight.

The

102

End of Phase -- PG

That part of the text string which has not
yet been written onto TXTOUT is written
out. End of block n+1 is set and that part
of block n+1 which is in storage is now
written on SYS001.

The number of records of, and the note
information for, block n+1 are inserted
into scope table entry 0. If all of block
n+1 is in storage, its address in relation
to the table space is also set into the
scope table.

TXTIN and TXTOUT are rewound and
exchanged., The phase is terminated by
calling phase B90.

Scanning of Qualified Name -- PH

This routine retrieves the proper entry in
SYMTAB for the last identifier of a quali-
fied name. This is done under control of
switch WQUALS and level lists WLEVL, WNTLL,
and WQUANT. (WNTLL and WOUANT are used
only when scanning of SYMTAB is done in
BS.)

In the text string, all but the last
identifier of a qualified name are deleted.
When the proper entry for the last iden-
tifier is found, the internal representa-
tion of this identifier, including key
'‘EE', is inserted into the text string;
otherwise 'EE0000' and the error code '44°
(= qualified name not declared) are insert-
ed into the text string.

All identifiers of a qualified name are
declared in the same block. Each identifi-
er of a qualified name has a level number
which is greater than the level number of
the preceding identifier.

PIN points to the first identifier of
the qualified name in the text string and
PSY points to an entry of this identifier
in block X when this routine is entered at
WOUAL8. The entry that contains the lowest
level number is searched for the identifier
pointed to by PIN. Information about the
entry which presently contains the lowest
level number is stored in the level lists.

Scanning for entries for the first iden-
tifier of the qualified name starts at the
beginning of block X and stops when either
an entry for this identifier with level
number 1 or the end of the block is found.
Scanning for the other identifiers starts
at the entry that follows the entry with
the lowest level number of the preceding
identifier and stops when an entry with a
level number is found that is either

O
N

N

PL/I PLM 8

IBM Confidential

1. equal to the level number plus 1 or

2. not higher than the level number of the
preceding identifier.

When the scanning is stopped, WLEVL
contains PSY of the entry with the lowest
level number of the identifier pointed to
by PIN.

If WLEVL is blank, i.e., an entry for
the identifier was not found, the embracing
block is scanned for the entry with the
lowest level number of the first identifier
of the qualified name, and so on. If the
embracing block is block n+1, scanning
stops. In this case, the qualified name
has not been declared.

SUBROUTINES

Search for Identifier in SYMTAB -- PI - PM

Entry point: WSIO
Input Parameters:

1. No qualified name: PIN points to the
identifier for which an entry in SYMTAB
is searched.

2. Qualified name: PIN points to the
beginning of the qualified name.
of switch WQUALS is on.

Bit 7

If an identifier is declared in SYMTAB,
WSIO retrieves the internal representation
of the identifier from SYMTAB. In addi-
tion, this subroutine attempts to keep
blocks in storage as long as possible and
reads into storage only those blocks that
are required to scan for an entry for the
identifier.

If block X (the block that contains the
statement which, in turn, contains the
identifier searched for) is not in storage,
all blocks in storage that are not embrac-
ing blocks of block X are cleared. If
there are not enough contiguous free buf-
fers in the table space to accommodate
block X, embracing blocks of block X are
cleared starting with block level 1. If
the number of records of block X is greater
than MO, all blocks are cleared in storage,
the first MO records of block X are stored
in the MO buffers of the table space, and
these records are scanned. The remaining
part of block X is then read into, and
scanned in, BS.

If scanning is continued in an embracing
block of block X, block X remains in stor-
age. If the embracing block is not in
storage and the maximum number of connected
buffers in the table space is equal to M1,

the embracing block is stored in the M1
buffers, provided the number of records of
this block is not greater than M1; other-
wise, the first M1 records of the embracing
block are stored and scanned in the M1
buffers of the table space and the remain-
ing records are read into, and scanned in,
BS.

The remaining functions of the subrou-
tine vary according to the type of iden-
tifier (qualified name or no qualified
name) .

No Qualified Name. Scanning is started in
block X of the identifier. If the searched
entry is not found in block X, scanning is
continued in the embracing block of block
X, etc. Block n+1 is the outermost embrac-
ing block of all blocks.

If an entry for the identifier is found
and a minor structure or an element of a
structure is declared in this entry, the
internal representation in this entry is
stored and scanning of the block is
continued. If no other entry for the iden-
tifier is found in the same block, the
stored internal representation is used for
the identifier; otherwise, the internal
representation of the new entry is fetched,
provided no minor structure or element of a
structure has been declared in this entry.

If the identifier is declared and its
internal representation is not 0, the rou-
tine is left via the exit DECL. If the
internal representation is 0, the routine
is left via the error exit (to initialize
the error routine). If the identifier is
not declared, the routine is left via exit
NOT.

Qualified Name. Scanning is done as des-
criped under Scanning of Qualified Name --
PH. If the qualified name is not declared,
the subroutine is left to initialize the
error routine.

The subroutine is left via the exit DECL
if the internal representation in the entry
with the smallest level number of the last
identifier of the qualified name is not 0.
If the internal representation is 0, the
routine is also left to initialize the
error routine.

Output Parameters:

PIN points to the identifier (last iden-
tifier of qualified name) in the text
string.

PSY points to the entry of the identifier

in SYMTAB if the routine is left via
the exit DECL.

Phase PL/IB80 103

PL/I PLM 8

IBM Confidential

Read and Scan Block X -- PN, PO

Entry points: WRBX1, WSCX1, WSCX6

Input Parameters:

R1 contains the address A1 of the area
into which block X (block to be
scanned) can be stored.

R3 contains the number M1 of records
which can be stored in A1l.

R7 points to the entry for block X in
the scope table.

LVLPT points to the entry for block X in
WSLIST.

WMX contains the number MX of records
of block X.

WQUALS indicates that scanning of a quali-

fied name was started if bit 0 is
1.

If MX is not greater than M1, all of
block X is stored in the table space and
scanned; otherwise, the first M1 records of
block X are stored and scanned in the table
space and the remaining records of block X
are read into, and scanned in, BS.

The remaining functions of the subrou-
tine vary according to the type of iden-
tifier (qualified name or no gqualified
name) .

No Qualified Name. If an entry for the
identifier is found and the identifier is
declared in this entry as a minor structure
or an element of a structure, the subrou-
tine

1. stores the internal representation in
the entry,

2. sets switch MS, and
3. continues the scanning of the block.

If no entry for the identifier is found,
the subroutine is left via its normal exit.

If an entry is found and the identifier
in this entry is not declared as a minor
structure or as an element of a structure,
the subroutine is left to determine whether
the internal representation is 0.

Qualified Name. If the scanned entry is
not an entry for the searched identifier,
the routine determines whether or not
searching for entries for the identifier of
the qualified name has to be continued. If
not, control is transferred to continue
scanning qualified names. If no entry for
the identifier is found, this subroutine is
left via its normal exit.

104

Output Parameters:

1. No qualified name: C:;
PIN points to the entry for the iden-
tifier in SYMTAB if the identifier
is declared as other than a minor
structure or as an element of a
structure.

2. Qualified name:
PIN points to an entry for the iden-
tifier if an entry was found.

Search for Identifier in BS -- PP

Entry points: WREAD1, WREADS

Input Parameters:

R3 contains the number of records of block
X to be read into BS and scanned.

LVLPT points to the entry of block X in
WSLIST.

The functions of this routine vary
according to the type of identifier being
searched for (part or not part of a quali-
fied name) .

1. The identifier is not part of a quali-
fied name:

Reading records into BS and scanning is
done in overlapped mode, i.e., while a
new record is read into one buffer of (
BS, the record in the other buffer is R
scanned for an entry of the identifier.

PSY points to the SYMTAB entry being

scanned. If no entry of the identifier

is found, the routine is left via its

normal exit. If an entry is found and

it has been declared as a minor struc-

ture or as an element of a structure,

switch MS is set and the internal rep-
resentation in this entry is stored.

Scanning of the block is continued.

N

2. The identifier is part of a qualified
name:

Two records are read into BS and the
beginning of the first record is noted
in level list WQUANT. Then, the two
records are scanned. If the scanned
entry is not an entry for the identifi-
er, a check is performed to determine
if searching for entries for the iden-
tifier must be terminated. If no entry
for the identifier is found, the rou-
tine gets the next two records of block
X and starts scanning these records for
entries for the identifier. If PSY
points to the end of block, the routine
is left via its normal exit.

Output Parameter:

PSY points to an entry for the identifier
if this routine is not left via its normal
exit.

PL/I PLM 8

IBM Confidential

Get Records to BS -- P

Entry points: WGT21, WGT22

Input Parameters:

WMX contains the number of records of
block X not yet in storage;
R7 points to the entry for block X in

the scope table;

(only used if the routine is entered
via WGT21) points to the entry for
block X in WSLIST.

LVLPT

If entry WGT21 is used, this routine
tests whether all embracing blocks of block
X are in storage. If they are not, the
routine is left via its NO exit.

Otherwise, and if entry WGT22 is used,
the routine determines whether the number
of records of block X not yet in storage is
less than or equal to two. If there are
more than two records, the routine is left
via its NO exit. If the number of records
of block X not yet in storage is two or
less than two, these records are read into
BS and the presence of block X in BS is
noted in WBSEN and, if the entire block X
is in BS, in the scope table. The routine
is left via its YES-exit.

Calculate M1 -- PR

Entry point: WCAM1

M1 is the maximum number of records of
SYMTAB that can be stored contiguously in
the table space without destroying other
records of SYMTAB that are already in stor-
age and noted in WSLIST. This subroutine
calculates M1 using the addresses of the
blocks in storage as contained in WSLIST.

The list below shows the meaning of the
names used in this subroutine.

ML = length of longest contiquous area not
used by other blocks.

If only one block is stored:

AY = Address of the block.
AZ = Address of end of the block.
ML = Max (AY-A0,AN1-AZ)

If two blocks are in storage:

AU = Address of 1st block.
AV = Address of end of 1st block.
AX = Address of 2nd block.
AY = Address of end of 2nd block.
ML = Max (AO-AU,A-AV,AN1-AY)

If no block is in storage, M1 = M0O; other-
wise: M1 = ML divided by record length of
SYMTAB.

Output Parameters:

R1 contains the address A1 to which a block
can be read.

R3 contains the number M1 of records that
can be read to A1l.

Clear WSLIST Entry Y -- PS

Entry point: WCLEAR

Input Parameter:
R2 points to the WSLIST entry Y.

WSLIST entry Y contains information
about the level-Y block, which is in stor-
age. If this block is no longer needed for
the searching of identifiers, the indica-
tion of the block (for being in storage) is
cleared in both the scope table (bytes 4
and 5) and in WSLIST (byte 0). If the
block or its end is stored in BS, the indi-
cation of the block is also cleared in
WBSEN.

Set Scope Pointer -- PT

Entry point: WSETSP

Input Parameter:
R2 contains the number of the block.

The scope pointer R4 is set to the scope
table entry for the block indicated by R2.

Output Parameter:

R4 points to the entry for the block in the
scope table.

Clear BS -- PU

Entry point: WBS(QC1

If (1) a block or the remainder of a block
not yet in storage consists of no more than
two records and (2) the first MO buffers of
the table area are filled with other blocks
which are still needed for scanning, the
block or its remainder is stored in BS and
WBSEN contains the number of the block.

This subroutine clears WBSEN if a com-
plete block or the end of a block is stored
in BS. If a complete block is stored in
BS, the subroutine also clears the address
of this block in the scope table.

Entries in WSLIST and Scope Table -- PV

Entry points: WELST1 used if the complete
block is or will be in
storage.

WELST3 used if the end of the
block is not in stor-
age.

Phase PL/IB80 105

PL/I PLM 8

IBM Confidential

Input parameters:

WELST1: R1 points to the address of the

block in storage.

R4 points to the entry for the
block in the scope table.

R5 points to the entry for the
block in WSLIST.

PSY contains the number of records

of the block.

contains the number of records

of the block in storage.

R1 contains the address of the
block in storage.

R4 points to the entry for the
block in the scope table.

R5 points to the entry for the
block in WSLIST.

NELST3: RO

106

PSY contains the address of the
end of the block in storage. A

When a new block is read into storage,
this subroutine performs the necessary
housekeeping functions in WSLIST and bytes
4 and 5 of the scope table. If entry
WELST3 is used, housekeeping in byte 1 and
bytes 13 through 16 of WSLIST must be done
before this subroutine is called.

Clear Addresses in the Scope Table -- PW

Entry point: WCSCO1

Bytes 4 and 5 of all entries in the scope
table are cleared.

PL/I PLM 8

IBM Confidential

C

In this and the next phase, a statement
attribute table is generated in front of
each statement. This table contains all
attributes for each variable that occurs in
the actual statement. If the statement is
a PROCEDURE statement, the first entry of
the attribute table contains the attribute
belonging to the entry name of the proce-
dure.

For the construction of the attribute
table see phase B20.

DESCRIPTION OF ROUTINES

_____ The following routines are described
elsewhere as follows:

JSLCA1 B10 HX
JEOSA1 B10 HY
JERRA1 A50 FZ
MOVEA1 A50 FO

If a statement is preceded by a label, this
routine generates a label macro. The gen-
erated macro has the following format:

byte 0 X'F2°"

bytes 1-2 X'0007*

byte 3 X'72°

bytes U4-6 internal representation of the

label identifier

The label identifier in the source text
is replaced by the label macro. The colon
after the label identifier is deleted.

If the statement is a PROCEDURE state-
ment, the symbol table entry for the entry
name is set into the source text.

Entry parameter:
PIN = start address of the statement to
be processed

Return parameters:
ACBLO = current block number
EMBLO = embracing block number

(For BLOT1 refer to routine JBLT) .

This routine scans the source text and
searches for identifiers.

Entry parameter:
PIN = start address of statement body

PHASE PL/IB90 (PRESTATEMENT GENERATION) -- QA

JSAR Routines -- 0D - QG

Main entry point: JSAR

Entry parameter:
PIN = address of the name for which the
symbol table entry is searched.

The routine searches for an entry in the
symbol table and sets it into the output
area. The entries are ordered by their
structure levels, i.e., first all entries
with structure level 0 (no structures or
elements of structures) are written out,
followed by all entries with structure
level 1 (major structures), level 2, level
3, and so on.

If the current entry is a major or minor
structure, all entries belonging to the
items of a given structure are inserted in
the output area.

If the actual entry is a minor structure
or an element of a structure, the entry of
the major structure is inserted in the
output area immediately before the current
entry.

If the actual entry has the attribute
CONTROLLED or DEFINED, the entry for the
pointer or base identifier is set into the
output area immediately before the current
entry. For this reason, the routine JSAR
may be called recursively.

JRPS Routines -- QH, OI

Main entry point: JRPS
Secondary entry point: JCET

Entry parameters:

HR3 = entry in scope table for block
to be read

TABEND = end address of used part of
table area

TBREC1T = begin address of buffer area 1
for reading the symbol table in
overlapped mode.

TBREC2 = Dbegin address of buffer area 2

The program reads a part of the symbol
table.

JBLT -- QJ

This routine builds up the block table
BLOT, which consists of 4-byte entries
referred to as BLOTO - BLOT3.

BLOTO0 is associated with the part of the
symbol table that contains all declarations

Phase PL/IB90 107

PL/I PLM 8

IBM Confidential

given either implicitly or contextually. Entry parameters: P
(For a description of the symbol table TABEND = address of last valid entry in QL};
refer to phase B20.) the symbol table contained in]
the table storage
BLOT1 is associated with the part that SAVES1 = 1length of part of symbol table
contains all declarations given explicitly to be read
at block level 1. IJKMBZ = number of blocks, i.e., number

of entries
BLOT2 and BLOT3 are associated with all

parts that contain declarations at block The routine controls the scope table and
levels 2 and 3. erases all invalid entries.
The number of the current block is JTRA -- OM

entered corresponding to the level indicat-
ed in the first byte of each entry in BLOT. Entry parameters:

The next three bytes contain the end HR1 = start address of information to
address of the corresponding part of the be written
symbol table. (The start address is con- BYZ length of the information

nn

tained in SCOTAB; see phase B20.) poUT next free address in the output
buffer
Entry parameters:
EMBLO = number of embracing block. Return parameter:
REBLO = number of block to be processed. POUT = next free address in the output
TABEND = end address of entire symbol table buffer.
in storage.
In this routine, information is moved
into the output buffer and the pointer for
JSCC Routines -- QOK, OL this buffer is controlled. If a buffer
overflow occurs, the contents of the buffer
Entry points: JSCC and JSC1 are written out.

TN

N

108

PL/I PLM 8

IBM Confidential

PHASE PL/IB92

(ATTRIBUTE TABLE COMPRESSION) -- RA

This phase compresses the attribute table
constructed in the previous phase.

In phase B90, full-length 20-byte
entries were made into the attribute table.
If an identifier occurs more than once in
one statement, more than one identical
entry has been generated for this identifi-
er in phase B90. Phase B92 deletes all
identical entries except the first one and
eliminates the redundant bytes of each
entry.

The internal representation of the vari-
able in the statement body is changed into
a table lookup for the attribute table.

Statement Attribute Table

An attribute table is assigned to each
statement. It contains the attributes for
all variables. This table is located in
front of the statement in the source text.
The internal representation of the variable
is changed into an offset.

The entries of the attribute table are
of variable length depending on the attri-
butes contained in these entries. If the
variable has the attribute PICTURE, the
entry is 18 bytes long. If the variable
has one of the attributes DEFINED or CON-
TROLLED, the entry is 14 bytes long. If
the variable is a minor structure or an
element of a structure, the entry is 14
bytes long. If the variable has the attri-
bute ARRAY or STRUCTURE, the entry is 12
bytes long. If the variable has the attri-
bute FILE, the entry is 10 bytes long. For
all other variables, the entry is 8 bytes
long.

The construction of the attribute table
is the same as that of the symbol table,
except that the first two bytes of the
symbol table are not entered in the attri-
bute table.

A statement has the following format
after it has been processed by all syntax
phases:

A = statement identifier key (1 byte)
a = specification of statement

identifier (2 bytes)
B = prefixes (1 byte)
b = statement flag bits (2 bytes)
C = key for attribute table (1 byte)
1c = length of attribute table (2 bytes)
D = attribute table of declared

variables (1c bytes)
E = key for constant table (1 byte)

e = length of the constant table (2 bytes)
F = constant table of declared

constants (1e bytes)
G = statement body
H = endkey of statement (1 byte)
I = byte for error flags (1 byte)
K = level number (1 byte)
L = block number (1 byte)
M = statement number (2 bytes)
N = error key, if error (1 byte)
O = error number if any error (1 byte)

DESCRIPTION OF ROUTINES

Note: The following routines are described
elsewhere as follows:

JTRAAT B90 OM
MOVEA1 A50 FO
JEOSA1 B10 HY
JERRAT A50 FZ

JCATA1 -- RB, RC

This subroutine generates the attribute
table.

JCIR -- RD

This routine changes the internal represen-
tation of the variables into a table lookup
for the attribute table. Note that the
identifier key X'E1' is not changed.

Entry parameter:
PIN = start address of the statement body

JCES -- RE

Entry parameters:

PIN = begin address of the entry to be
compressed

PST = address of table area into which the
entry is moved

Return parameters:

HR2 = PST old. If a table overflow occurs,
HR2 = 0. If the current entry is
ignored, HR2 contains the address of
the previous one.

next free address of table area

0 if the actual entry is ignored;
otherwise HR1 = 0.

PST
HR1

The entry of the symbol table is com-
pressed and set into the table area. If
the same entry was made previously, the
current one is ignored.

Phase PL/IB92 109

PL/I PLM 8

IBM Confidential

JGOF RF JLEN RG P
\ J
Entry parameters: Entry parameter: S
PIN = begin address of symbol table entry HR2 = begin address of attribute table
of the identifier entry
HR2 = begin address of attribute table
entry of the identifier Return parameters:
PAT = next free entry in the offset table HR2 = unchanged
HR1 = 0 if the current entry of the attri- HR1 = length of the entry
bute table is ignored
The length of an entry contained in the
attribute table is calculated.
Return parameters:
PIN = unchanged
HR2 = unchanged JCPI -- RH
PAT new = next free entry in the offset
table. Entry parameter:
PIN = input pointer
An offset table (OFFTAB) is generated.
An entry of this table has a length of 4 Return parameter:
bytes and contains the following informa- PIN new = PIN old + 20.
tion:
The input pointer PIN is controlled.
Bytes 0-1: internal representation of the If, after an increase, PIN is outside the
identifier first buffer, the remainder is moved to the
Bytes 2-3: begin address (relative to left and a new record is read into the last
IJKMTS) of the entry in which buffer.
the attributes given to the
identifier are stored. JBIPA1 - RI
If an offset table overflow occurs, this This routine changes the pointer or base
table is written onto SYS001. identifier.
Vol
N

110

«

PL/I PLM 8

IBM Confidential

This phase constructs the array table ARY-
TAB. (The phase is skipped if the source
program contains no arrays.) For each
programmer-defined array, a 12-byte entry
is incorporated in the table. ARYTAB is
written on SYS001 at the end of the phase.

Up to three dimensions may be specified
for an array. The format of the 12-byte
ARYTAB entry for 1-, 2-, and 3-dimensional
arrays is shown in Figure 1 together with
the corresponding declarations. The infor-
mation required for these entries is
retrieved from the array statements built
up in phase B15.

The array statement consists of two
parts that have the following format:

Part 1 (variable length, depending on

attributes)

Byte (s) Contents

0- 5 Array statement key
(X*EOOOLU...")
6 X'F4"
7- 8 Length of attributes
9-10 Internal name
11 Rightmost four bits contain the
length of one element unless it is
a character string

12-14 Not used
15 Length of one element if it is a
character string
16-17 Not used
18 Current array number
19-20 Number of elements
21- n Other attributes

Part 2 (21 bytes)

Byte (s) Contents

0 X'E1!

1- 2 Offset to attribute table
3 X'E9"

4- 5 Current array number
6 X'E9!

7- 8 Bound 1
9 X'E9"

10-11 Bound 2
12 X'E9"

13-14 Bound 3

15-20 EOS (X'EA...")

When an entry is made in the array
table, the required information is
retrieved from the array statement and the
latter is deleted in the source text. Some
bounds may be missing if the array state-
ment was detected to be erroneous in phase

PHASE PL/IB95 (ARRAY TABLE CONSTRUCTION) -- SA

B15. 1In this case, the entry for the array
is set to zero.

Phase Input and Output

The source text is read from TXTIN. The
text output is written on TXTOUT. It con-
sists of the source text without the array
statements. ARYTAB is written on SYS001,
at the end of the phase, the functions of
TXTIN and TXTOUT are exchanged.

DESCRIPTION OF ROUTINES

Symbols Used in Flow Charts:

C (CP) : contents of location
pointed to by CP

C (CP+6) , LENGTH 2 : contents (length 2) of
location pointed to by
CP+6.

Initialization -- SB

The array table is cleared and the entry
for the array table is made in TABTAB,
i.e., the buffer length is set to 384 and
the transfer bit is set to zero. BUFL is
set to 3*IJKMBL and ENDTS is set to the end
address of the array table area. The
address of the output buffer is loaded into
BO. The addresses of work buffer 1, 2, and
3 are loaded into B1, B2, and B3. The
begin and end address of the input buffer
is loaded into B4 and B5, respectively.

The output pointer OP1 is set to the begin
address of the output buffer and input
pointer CP is set to the beginning of the
input buffer.

Main Routine -- SC

The input is scanned. If a normal F key 1is
found, i.e., no end-of-program key, LENGTH
is set to the value contained in the two
bytes following the F key. If an EA key is
found, LENGTH is set to 6. If an EB key is
found, LENGTH is set to two. UPRO is
called after LENGTH has been set.

If an EO key for an array statement is
found, the array handling routine is
called; otherwise, LENGTH is set to 6 and
UPRO is called. If the EOP key is detect-
ed, this key is written out. The last, not
yet filled-up record is also written out,
if required, and the array table that was
built in the table area is written on
SYS001.

Phase PL/IB95 111

PL/I PLM 8

IBM Confidential

r— N it Bt T~ === ==
| | One Dimension |Two Dimensions | Three Dimensions

| Byte (s) | DECLARE A (i) | DECLARE A (i, j) | DECLARE A (i,j,k) |
r oo fom oo oo 1
| 0-1 | Internal name |Internal name | Internal name |
I | [I
| 2-3 | Number of elements | Number of elements | Number of elements

| | | [
| 4-5 | Length of one element |Length of one element | Length of one element |
I I | | I
| 6-7 | X'0000" 13 | k |
| | I | I
8-9	X*0000°*]X*'0000°	3	
10-11	Negative value of	Negative value of (length	Negative value of (length
	length of one element	of one element + length of	of one element + length of}
		one element#*j)	one element*k + length of
			one element*k*j)
A O Lo _— e]			

Figure 1. Format of 12-Byte Entries in ARYTAB

Array Handling -- SD - SF

Entry point: C2B2

This routine is called if an array state-
ment is detected in the main routine, and
the corresponding entry in the array table
is built., The array statement is deleted
in the source text and, if the first bound
is zero, it is replaced by an error mes-
sage. The entries in the array table are
generated as described in Figure 1.

UPRO Input/Output Handling -- SG

Entry point: C6B2

At the beginning of this routine, a test is
performed to determine whether the string
to be written is contained in its full
length in the work buffers. If it is not,
LENGTH1 is set to the number of bytes not
yet contained and LENGTH is set to the
number of bytes that is contained in the
work buffers. The move and the read rou-
tines are called, and LENGTH is set to
LENGTH1. If the full string is contained
in the work buffers, the move and read
routines are called immediately.

Move Routine -- SH

Entry point: C7B2

This routine moves the number of bytes
specified in LENGTH from the buffer address
pointed to by CP to the output buffer
address pointed to by OP1. If the output
buffer is full, the write routine is
called.

Write Routine -- SI

Entry point: C8B2

This routine checks whether the output
buffer is full. If it is, the information
is written on TXTOUT. The output pointer
OP1 is reset to the beginning of the output
area.

Read Routine -- SJ

Entry point: C9B2

If the input pointer CP is greater than the
contents of B2, the contents of the last
two work buffers and the input buffer are
moved to the beginning of the work buffers.
The input buffer is filled with the next
record from TXTIN. CP is decreased by the
buffer length and tested again. Processing
of this routine is repeated until CP is
lower than or equal to B2.

®

AN

N

-

PL/I PLM 8

IBM Confidential

PHASE PL/IB9Y7

(EXTERNAL NAME TABLE CONSTRUCTION) -- SM

This phase constructs the external name
table EXTTAB. This is done in two passes:

1. A pretable PRETAB of the external name
table is built up. All information to
construct PRETAB is retrieved from
entries in the symbol table SYMTAB that
contain the attribute EXTERNAL. Each
20-byte entry of the pretable contains
the following:

Byte 0 : number of record in the name
table that contains the user-
defined name of this identifier

Byte 1 : entry number in this record
(the first bit must be ignored)

Byte 2 : FF

Byte 3- 7 : blanks

Byte 8-19 see external name table

2. EXTTAB is constructed by replacing the
first eight bytes of PRETAB by the
user-defined name retrieved from the
name table NAMTAB.

The entry of NAMTAB pointed to by bytes
0 and 1 of PRETAB is searched, and the
user-defined name is translated into the
external code and inserted into bytes 0-7.
If the name is shorter than 8 bytes, the
remainder is filled with blanks. If the
name is longer than 6 bytes, a warning
message is generated. If the name is
longer than 8 bytes, the rest is ignored
and an error message is generated. These
messages are inserted behind the first
PROCEDURE statement of the source text.

For a description of the information
contained in the external name table, refer
to phase G55.

Input of the Phase: Symbol table SYMTAB on
SYS001, name table NAMTAB on SYS001, and
source text on TXTIN,

Output of the Phase: External name table
EXTTAB on SYS001 and source text on TXTIN.

I/0 Handling of the Phase

The symbol table is read from SYS001 into
buffers B3 and B4. The table space and the
buffers BO to B2 are divided into sections
that have the length of a buyffer. The
entries built up for the pretable are moved
into these sections. If an overflow
occurs, the pretable is written onto
TXTOUT. When the last symbol-table record
is processed, two cases are to be distingu-
ished:

1. The pretable is still in storage and

a. the remaining storage is equal to
or greater than 2048 bytes. (The
name table has the record length of
1024 bytes) . The name table is
read in overlapped mode from
SYs001.

b. the remaining storage is equal to
or greater than 1024, but less than
2048 bytes. The name table is also
read in from SYS001, but not in the
overlapped mode.

The external name table is built in
storage and, at the end of the phase, the
table is written onto SYS001.

2. A table overflow has occurred and the
pretable is written onto TXTOUT. In
this case, the records of the pretable
are read from TXTOUT and the records of
the name table, pointed to by byte 0 of
the entries of the pretable, are read
from SYsS001. Each processed record of
the pretable is written onto SYS001.

If an external name longer than six
bytes is detected, the source text is read
from TXTIN, a warning or error message is
inserted, and the text is written onto
TXTOUT.

DESCRIPTION OF ROUTINES

Text in flow charts:
C{GCP) := Contents in location GCP points to

Symbols used in Flow Charts

GBUFCOUN - contains number of records that
fit into the table area.

GCOUNTER - contains number of entries of
one symbol-table record.

GCOUNT1 - see GCOUNTER.

GCP - input pointer

GEND - contains end address of pretable
area.

GLEN - contains number of table-area
bytes available for use.

GLENGTH - contains length of respective
name in name table.

GNUMELE - contains address in name table
where the name to be searched
can be found.

GPTCOUN - contains number of buffers used
for pretable area.

GPUTCOUN - contains number of records writ-

ten onto TXTOUT.
GREADR - contains number of records to
of records read.

Phase PL/IB97 113

PL/I PLM 8

IBM Confidential

GREST1/2
GTABLEA

contains remainder.

contains the begin address of

pretable area.

GTP - table-area pointer, (i.e.,
points to the next available
location) .

GBn - contains address of buffer n.

GWEI if switch GWEI is on, input is

done in non-overlapped mode.

if switch GWEICHE is on, input

is read into the buffer pointed

to by GBU4; otherwise, into the

buffer pointed to by GB3.

'

GWEICHE

Initialization -- SN

In this routine, some counters, switches,
and buffers for values, addresses, and
input/output handling are defined and set
to their initial values.

PRETAB SYMTAB Routine -- SO

The symbol table is read and the entries
with the attribute EXTERNAL are stored in
the pretable. If an overflow of the preta-
ble occurs, pretable is written onto
TXTOUT.

Pretable-in-Storage Routine -- SP and SQ

This routine is called if all entries of
the pretable are in storage. The first
record of the name table is read. The
pretable is scanned for entries pointing
(by the first byte) to the current record
of the name table. If an entry is found,
the user-defined name (pointed to by the
second byte of the pretable entry) is moved
from the name table into the pretable entry
and translated into the external code. If
the end of the pretable is reached, the
next record of the name table is read and
the pretable is scanned once more. This
process is repeated until the end of the
name table is reached. When the end of the
name table is reached, the pretable area
contains the complete external name table,
which is written onto SYS001.

Pretable-not-in-Storage Routine -- SR

This routine is called if a pretable over-
flow has occurred in the PRETAB SYMTAB
routine. The pretable is read from TXTOUT;
the name table is read from SYS001. The
record and the entry of the name table
pointed to by the first two bytes of each
pretable entry are searched and the con-
tents (the user-defined name) are inserted
into the pretable and translated into the
external code. If one record of the preta-
ble is processed, the record is moved into
the output buffer and written onto SYS001.

114

SUBROUTINES

The following subroutines used in this
phase are described elsewhere as follows:

—————— T BN Bt
|Entry | | |
|Point | Name | Phase |
_______ ¥ fomm e
C6B2	UPRO (Input/Output	B95
	Handling)	
C9B2	Read Routine	B9S
R i___ J
GWORK Routine -- SS

Entry point: GB8A2

If the record of the name table pointed to
by the first byte of the current pretable
entry is found, this routine is called. It
scans the name table for the user-defined
name pointed to by the second byte of the
current pretable entry. When found, its
length is tested. If it is greater than 8,
the ERROR switch is set on and the length
of the name is set to eight. If it is
greater than 6, a warning message is pre-
pared. The user-defined name is moved into
the current pretable entry and the remain-
ing bytes are filled with blanks.

PUT Routine —- ST

Entry point: GB9A2

This routine writes the external name table
onto SYS001,

Move Routine -- SU

Entry point: GBAB2

This routine moves the contents of the
symbol table used for the external name
table into the corresponding pretable
entry.

Write Routine -- SV

Entry point: GB3A2

This routine is called by the PRETAB SYMTAB
routine

1. when the area reserved for the pretable
is filled and one more record must be
moved into the pretable area and

2. when the end of the symbol table is
reached and a pretable overflow has
occurred.

GBUFCOUN contains the number of records
of PRETAB, which are written by this rou-
tine onto TXTOUT.

PL/I PLM 8

IBM Confidential

Read Routine -- SW

Entry points: GBU4A2, GBUAS

This routine is used in the PRETAB SYMI'AB
routine to read the symbol table and in the
PRETAB-in-Storage routine to get the
records of the name table.

Entry point: GBUA2 is used (1) to read the
first two records of a table while the
following records are read in overlapped
mode, and (2) to read all records of a
table that are not to be read in an over-
lapped mode.

Entry point: GBU4AS5 is used to read the
third and all following records in over-
lapped mode. The input buffers are B3 and
B4, and the buffer handling is controlled
by the switch GWEICHE.

End-of -Phase Routine -- SX

If the error or warning switch is on, the
error handling routine is called. Phase
C00 is called and the text files are
exchanged. Otherwise, one of the phases
C00, C25 oxr C30 is called.

Error Handling -- SY, SZ

Entry point: COB2

This routine is called if an error or warn-
ing message 1s to be generated. The source
text is scanned for the first EA-key,

(i.e., the EA-key of the PROCEDURE
statement) . The warning or error message
is inserted behind this key. All other
text remains unchanged.

Phase PL/IBY97 115

PL/I P1IM 8

IBM Confidential

PHASE PL/ICOQ0 (SYMBOL TABLE LISTING) -- TM

This phase prints the symbol table, which
contains all identifiers with their expli-
citly, contextually, and implicitly
declared attributes. The listing is
arranged according to the block numbers.

This phase is skipped if the Job Control
SYM option is not active. However, it is
not skipped in that case if (1) an incor-
rectly declared variable is detected, (2) a
qualified name is not declared, or (3) an
external name is longer than 6 characters.
At the end of this phase, phase C25 is
called if the source program contains IF
statements. If no IF statements are to be
processed, phase C30 is called.

All messages to be printed (except the
user-defined name) are retrieved from SYM-
TAB. The user-defined name is retrieved
from NAMTAB according to the compressed
name in SYMTAB (bytes 0-1 . If the inter-
nal representation of a name is zero, if a
name is longer than 31 characters, or if an
external name is longer than 8 characters,
only the user-defined name and an error
message are printed.

The number of NAMTAB records that can be
stored in the work area (see the section
Initialization -- TN) is referred to as K.
If NAMTAB does not contain more than K
records, each block of SYMTAB has to be
scanned only once.

If NAMTAB has more than K records,
TAB is first written onto TXTOUT. The
beginning of each SYMTAB block is noted
simultaneously. When scanning the iden-
tifiers of one SYMTAB block, all parts of
NAMTAB must be successively moved into the
work area until all entries of the block
have been listed.

SYM-

Phase Input and Output

The input used by this phase consists of
the tables SYMIAB and NAMI'AB (contained on
SYS001) . The format of the symbol table
listing is described in detail in the PL/I
Programmer's Guide.

Buffers and Switches

Buffers 1 - 3 are used as the last part of
the work area.

Buffer 4 = buffer A
Buffer 5 = buffer B and print buffer
Buffer 6 = buffer C

Switch NAMIN is set if the entire NAMTAB
can be stored in the work area.

116

DESCRIPTION OF ROUTINES

Initialization -- TN

The work area is used to store NAMTAB or
parts thereof. Space S accommodates parts
of the phase (beginning with WBEG1) , the
table space, and the first three buffers.

If NAMTAB can be entirely stored in
space S, the work area is equal to space S.
If not, the note information on the begin-
ning of each SYMTAB block is stored in the
beginning of space S. The remaining space
of space S is used as work area.

Note Blocks of SYMTAB -- TO

SYMTAB is read into buffers A and B and
written onto TXTOUT. The beginning of each
SYMTAB block on TXTOUT is noted.

Store K Records of NAMTAB in Turn -- TP

Up to K NAMTAB records are read into the
work area each time. The smallest and
greatest number of NAMTAB records in stor-
age are noted in MIN and MAX. Scanning of
a SYMTAB block starts with MIN=1 and MAX=K.
The records of a SYMTAB block are read into
buffer A and scanned for entries the names
of which are in the part of NAMTAB that is
in the work area.

If the buffer pointer points to the end
of the SYMTAB block and all entries of the
block have been listed, scanning of the
next SYMTAB block is started. Otherwise,
MAX and MIN are increased by K. The next
records of NAMTAB are read into the work
area, and scanning of the same SYMTAB block
starts again.

Store Entire NAMTAB -- TQ

is set and the entire NAMTAB
the work area. SYMTAB is

Switch NAMIN
is read into

successively read from SYS001 into buffers
A and C.
User-Defined Name, Error Message -- TR

The entry of a user-defined name is
retrieved from the work area. The name is
moved into the print buffer and translated
from internal code into EBCDIC. If the
name is longer than 31 characters or if its
internal representation is zero, the name
is printed with an error message.

e,

PL/I PLM 8

IBM Confidential

Start Fetching Attributes -- TS

The entry of the identifier in SYMTAB is
scanned for attributes., If the identifier
is an external name of more than 8 charac-
ters in length, the name and an error mes-
sage are printed. If the identifier is a
built-in function, only the name as well as
the block and level number are printed. 1In
all other cases, the internal representa-
tion and the block and level number of the
identifier are moved into the print buffer.
It is tested whether the identifier is an
array, a structure, or an entry name.

Arithmetic and String -- TT

Base, scale, and precision of an arithmetic
identifier are moved into the print buffer.
Types and length of a string identifier are
also moved into the print buffer.

End of Fetching Attributes -- TU

Fetching of attributes of the identifier
from its entry in SYMTAB is terminated.

Subroutines -- TV

Work up precision w or length 1
Entry point: WSRBO1

Input parameters:
R3 points to the entry of the identifier in
SYMTAB. R11 points to the print buffer.

Precision w or length 1 is retrijeved
from the entry of the identifier in SYMTAB,
converted to its decimal value, and moved
unpacked into the print buffer.

Suppress leading zeros
Entry point: WSRBO2

Input parameter:
R2 points to the number to be checked.

Leading zeros of the number to be checked
are replaced by blanks.

Phase PL/ICO0O0 117

PL/I PIM 8

IBM Confidential

PHASE PL/IC25 (IF_STATEMENT) -- TZ

This phase is called if the source program
contains IF statements. Phase C25

e analyzes all IF nests,

e replaces all IF statements with IFFALSE
statements,

e generates certain macros,

e detects any incorrect IF nesting or any
incorrect use of ELSE.

Phase Input and Output

The input is a string of unambiguous 3-byte
elements and elements of variable length
(see output of phases A60/A65) . During
phases A60/A65, IF statements were made
non-recursive by replacing each THEN by an
EOS (End of Statement) and by placing an
EOS after each ELSE, thus making ELSE a
"statement."

The output is similar to the input
except that few additional types of state-
ments and/or macros have been added or
substituted.

STATEMENTS AND MACROS PUT OUT BY C25

The IFFALSE Statement

Meaning of the IFFALSE statement:
If expression yields FALSE, go to nL.
This statement is substituted for each

IF statement and is of the following for-
mat:

- -7 B B T-—-1
IFFALSE|statement |expression]|EOS]|

|attr. table] | |
R —— Lo__1

——

where IFFALSE is the statement identifier,
identical to the statement identifier IF.
nL is a generated label of the following
format:

Byte (s) Contents
1 key X'EE'
2-3 number of the generated label. It
is obtained by adding 1 to counter
IJKMVC each time the label gener-
ating routine is called.
4 key X'EE'
5-6 X'0069' (indicates that the gener-

ated label is a label constant)

expression is the original expression
transformed into 3-byte elements and/or
elements of variable length.

The DEFINE LABEL Macro

The definition-point of a generated label
is indicated by a DEFINE LABEL macro. The
format of the DEFINE LABEL macro is as
follows:

Byte (s) Contents

1 macro key X'F2°'

2-3 length of the macro

4 key X'72' indicating that this
macro is of the type DEFINE LABEL

5 key X'BB' (in DEFINE LABEL macros,
generated label constants have the
key X'BB' instead of X'EE')

6-7 number of the generated label

The BRANCH Macro

Meaning of the BRANCH macro: branch to the
generated label specified in bytes 6 to 8
of the macro.

The format of the BRANCH macro is as
follows:

Byte (s) Contents

1 macro key X'F2°'

2-3 length of the macro

4 key X'70' indicating that this
macro is of the type BRANCH

5 X'0F*' (code for unconditional
branch)

6 key X'EE'

7-8 number of the generated label

9-11 modifiers (here always 0)

Sample Input and Output of Phase C25

e Statements have statement identifiers
consisting of capital letters (for
instance: IFFALSE, SET, READ, etc.)

e Macros are identified by lower case
letters (for instance: define label,
branch) .

e Generated labels are written like 1L,
2L, 3L etc.

Note that the input and the output
actually consists of a string of 3-byte

®

PL/I PLM 8

IBM Confidential

elements and/or elements of variable

length.

Input

IF ex1;

SET A=B;
ELSE;

SET C=D;

IF ex1;
SET A=B;
SET C=D;

IF ex1;
IF ex2;
IF ex3;
SET C=D;

IF ex1;
IF ex2;
SET A=B;
ELSE;
SET C=D;

IF ex1 ;
BEGIN
alpha
END ;

SET A=B ;

DO ;

IF ex1 ;
BEGIN ;
alpha
END ;

ELSE ;
BEGIN ;
beta

END ;

gamma
END ;

Output

IFFALSE 1L ex1;
SET A=B;

branch 2L
define label 1L
NOP;

SET C=D;

define label 2L

IFFALSE 1L ex1
SET A=B;

define label 1L
NOP;

SET C=D;

IFFALSE 1L ex1;
IFFALSE 2L ex2;
IFFALSE 3L ex3;

SET C=D;
define label 3L
NOP;

define label 2L
NOP;
define label 1L
NOP;

IFFALSE 1L ex1;
IFFALSE 2L ex2;
SET A=B;

branch 3L
define label 2L
NOP ;

define label 1L
SET C=D ;
define label 3L

IFFALSE 1L ex1 ;
BEGIN ;

alpha

END ;

define label 1L
SET A=B ;

DO

IFFALSE 1L ex1 ;
BEGIN ;

alpha

END ;

branch 2L
define label 1L
NOP ;

BEGIN ;

beta

END ;

define label 2L
gamma

END ;

Phase Performance:

Each encountered statement is tested to
determine whether it

e is an "End of Unit 1", or

e is immediately following an "End of Unit
1", or

e is an "End of Unit 2".

If the statement is of the "End of Unit
1"-type, the last entry in the symbol stack
(presumably IFPHU4, standing for "IF") will
be replaced by IFPH3 (standing for "End of
Unit 1"). If there are several consecutive
IFPHU4 entries in the stack, each of them
will be replaced by an IFPH3. Then the
statement will be put out.

If the statement immediately follows an
"End of Unit 1", as many macros, define
labels, and FALSE labels are put out as
there are consecutive IFPH3 entries in the
symbol stack. The FALSE labels will be
taken from the label stack. Then the
statement will be put out, or new state-
ments are generated for IF and ELSE.

If the statement is of the "End of Unit
2"-type, the statement will be put out, now
followed by a macro, a define label, and an
EXIT label. The EXIT label is taken from
the label stack.

Processing of the Input Stream

If a DO or BEGIN statement is encountered,
the corresponding one-byte symbol IFPH1 or
IFPH2 is entered into the symbol stack.
Then the statement is tested and processed
as described in Phase Performance.

If an END of group or END of block is
encountered, the corresponding symbol IFPHI1
or IFPH2 is eliminated from the symbol
stack. Then the statement is tested and
processed as described in Phase Perfor-
mance.

If an IF statement is encountered, the
symbol IFPHU4 is entered into the symbol
stack and the statement is then processed
as described in Phase Performance. A label
KL is generated, entered into the label
stack, and the statement --IFFALSE KL
expression;-- 1is put out.

If an ELSE statement is encountered, the
last entry in the symbol stack is replaced
by IFPH5, a label nL is generated, a --
branch nL;-- is put out, the last entry in
the label stack mL is used to put out
define label mL, and the generated label nL
is entered into the label stack.

Phase PL/IC25 119

PL/I PLM 8

IBM Confidential

An END of procedure is subject to a
specific test, for it may never be used as
a "Unit 1" or "Unit 2" in an IF statement.
In this case an error message is given.

Tables and Pointers

Two push down stacks are used:
stack and a label stack.

a symbol

The symbol stack IFPH86 consists of 100
one-byte elements. IFPH86 is used to store
the following symbols:

IFPHI1 for DO

IFPH2 BEGIN

IFPH3 "End of Unit 1"
IFPHU IF

IFPHS ELSE

The pointer to IFPH86 is the symbolic
register R7.

The label stack IFPH87 consists of 100
half-word elements, and is used to store
generated labels (FALSE labels as well as
EXIT labels) . The pointer to IFPH87 is the
symbolic register R6.

DESCRIPTION OF ROUTINES

Note: A routine is called 'open' if it
gets control by a B instruction. A routine
is called ‘'closed' if it gets control via a
BAL instruction, and if control is returned
by a BR instruction.

This is the "master program" of phase C25.
IFPH initializes pointers, registers, etc.
and reads the first 4 records into input
buffers 1 to 4.

IFPH scans the input until a statement
identifier is found. Upon this, the Define
Label macros (which may precede the
statement) , the statement identifier, and
the statement attribute table are put out.
Depending on the encountered statement, one
of the following routines is called:

Statement: Called routine:
IF IFIF
BEGIN BEBE
DO DODO
END (of BEGIN block) BLBL then EOST
END (of DO group) GRGR :
ELSE ELEL
Any other statement: VIRGO,

then NSNS,

then EOST.

After return of control to IFPH, the
scan is continued. If the end of program
is reached, TEPHA is called.

120

BEBE, DODO =- UN (Closed)

BEBE puts IFPH2 (symbol for "BEGIN") into
the symbol stack. If this is the first
entry into the symbol stack, the statement
body is put out and the program returns.
Otherwise, the preceding entry in the sym-
bol stack is tested. If this is IFPH3
(symbol for "end of unit 1"), FOUT is
called to put out a "Define Label" macro.
The operand of this macro is the last entry
in the label stack. Then IFPH3 is replaced
by IFPH2. The stack pointer R7 is decre-
mented by 1, the statement body is put out,
and the symbol stack entry currently
selected by R7 is tested as described.

If the tested entry in the symbol stack
is not IFPH3, the statement body is put out
and the program returns.

DODO performs the same as BEBE but uses
IFPH1 instead of IFPH2.

BLBL -- UO (Closed)

The last entry in the symbol stack is test-
ed. If this entry is IFPH3 (symbol for
"end of unit 1"), a Define Label macro is
generated. The operand of this macro is
the label stack entry selected by label
stack pointer R6. Then R7 is decremented
by 1 and R6 is decremented by 2. Then the
symbol stack entry currently selected by
pointer R7 is tested as described.

If the tested
is IFPH4 (symbol
by IFPH3. R7 is
the symbol stack
by pointer R7 is

entry in the symbol stack
for "IF"), it is replaced
decremented by 1. Then
entry currently selected
tested as described.

If the tested entry in the symbol stack
is IFPH5 (symbol for "ELSE"), the statement
body and a DEFINE LABEL are put out. The
operand of the DEFINE LABEL is the label
stack entry selected by R6.

BSAC (Closed) -- UF

The routine initiates output of the state-
ment attribute table for the currently
processed statement.

BYPA (Closed) -- UD

The routine puts out either the one part of
the statement attribute table that contains
attributes of variables, or the other part
which contains attributes of constants.
Then the statement body is positioned to
start in input buffer 1.

DPDS (Closed) =-- UJ

DPDS compares the symbol stack entry cur-
rently selected by R7 with the argument in
R4. RU contains a symbol (either IFPH1 for

PL/I PLM 8

IBM Confidential

"DO" or IFPH2 for "BEGIN"). If the symbol
stack entry matches the argument in R4, the
entry is deleted and pointer R7 is decre-
mented by 1.

If entry and argument do not match, the
search continues until a matching entry is
encountered. Then the matching entry is
deleted. All symbol stack entries at a
higher level than the matching entry are
moved down one position. Pointer R7 is
decremented by 1.

ELEL -- UK _(Closed)

ELEL generates a label and puts out a
Branch macro with the generated label as
operand. The generated label is stored in
ELEL2. Then a Define Label macro with the
last entry in the label stack as operand,
followed by NOP, is put out. The latest
Label Stack entry is replaced by the label
stored in ELEL2. IFPH5 (symbol for "ELSE")
is entered into the symbol stack. Finally,
a NOP statement is put out.

ERROR, JERRA1 (Closed) -- US

This routine is described in phase A35.

EOST, JEOSA1 (Closed) -- UR

The routine arranges the contents of the
input buffers 1 to 4 so that the currently
scanned EOS is in input buffer 1. This is
done by moving and reading new records. It
puts out the EOS and the attached error
codes. Any additionally generated error
codes are also put out.

FOUT (Closed) -- UB

The routine puts out a Define Label macro.
The operand of this macro is the last entry
of the label stack. Stack pointer R6 is
decremented by 2.

GEOS (Closed) -- UG

The routine moves the input pointer PIN
until an EOS is encountered. The address
of the byte preceding this EOS is stored in
IFPH96.

GRGR _-- UO_(Closed)

Entry point to BLBL.

GSN (Closed) -- UH

GSN moves the statement identifier of the
current statement into GSN4. It returns to
4 (0,LINK) if the statement is correct.
Otherwise, it returns to (LINK).

IFIF -- UI (Closed)

IFIF tests the symbol stack entry currently
selected by R7. If this entry is IFPH3
(symbol for "end of unit 1"), a Define
Label macro is generated. The operand of
the Define Label macro is the label stack
entry currently selected by R5. Then R7 is
decremented by 1 and R5 is decremented by
2. The symbol stack entry currently
selected by R7 is tested as described.
Otherwise, a label is generated, stored in
the label stack, and put out followed by
the statement body (see description of
IFFALSE statement) .

IPDS (Closed) -- UL

IPDS increments stack pointer R7 by 1 and
enters the rightmost byte in RO into the
symbol stack.

JTRNA1 (Closed) -- UQ

This is the output routine. Register BYZ
contains the number of bytes to be put out;
register PIN contains the start address.
One output buffer is used.

If the remaining portion of the string
to be put out is smaller than the remaining
unoccupied space of the output buffer, the
stringy is moved into the buffer. BYZ is
added to POUT to update the output pointer.

If the string to be put out exceeds the
unoccupied space, an appropriate portion of
the string is moved to f£ill the output
buffer to its capacity. Then the contents
of the buffer are written onto the output
medium. POUT is reset to the start address
of the buffer. BYZ is decremented by the
number of bytes moved into the buffer, and
PIN is incremented by that number. Then
JTRNA1 is repeated until output is complet-
ed.

LGEN (Closed) -- UC

LGEN generates a label and enters it right-
justified into register R1. The format of
the generated label is shwon in Figure 1.

MAMA (Closed) -- UT

This routine puts out

1. Label list

2. Statement identifier

3. St&tement attribute table

NSNS _-- UO (Closed)

Entry point to BLBL.

Phase PL/IC25 121

PL/I PLM 8

IBM Confidential

POB (Closed) =-- UF

When POB is called, R2 contains the start

address and R1 the end address of a string

to be put out. POB is an "interface" to

the routine JTRNA1 which requires the start

address and the length of a string to be
put out. POB performs the necessary
transformations.

STEP (Closed) -- UE

STEP tests the high-order 4 bits of the
byte selected by PIN. If these bits are
set to X'E', PIN is incremented by 3. If
these bits are set to X'F', PIN is incre-
mented by the contents of the two bytes
following the byte selected by PIN. If
these bits are set to any other value, a

122

compiler error occurred and a dump is ini-
tiated.

VIRGO -- UM (Closed)

The symbol stack entry currently selected
by R7 is tested. If this entry is IFPH3
(symbol for "end of unit 1"), a Define
Label macro is generated. The operand of
this macro is the label stack entry cur-
rently selected by R6. R7 is decremented
by 1 and R6 is decremented by 2.

is tested as described. If the selected

entry is not IFPH3, VIRGO returns to either

4 (0,LINK), if only one test has been per-
formed, or (LINK)
been performed.

Then the
symbol stack entry currently selected by R7

if more than one test has

®

PL/I PLM 8

IBM Confidential

This phase performs the following func-
tions:

1. It scans all constants for acceptable
precision.

2. It replaces the external format of the
constants by an intermediate one.

3. It builds up the constant tables as
part of the statement attribute tables.

Note: The character strings have already
been processed in phase AU5.

If a constant is preceded by a prefix
plus or minus, this sign is removed from
the source text, and a corresponding sign-
bit is set in the constant table.

Phase Input and Output

The text input consists of a sequence of
statements terminated by the end-of-program
key. Each statement is composed of the
following elements:

1. The statement identifier key (6 bytes)
which may be preceeded by one or more
label macros.

2. The symbol table, if there are any
variables in the statement.

3. The statement body.

4. The end-of-statement key (6 bytes)
which may be followed by one or more
error-keys (2 bytes).

The statement body consists of elements
which formally may be distinguished by
E-keys (3 bytes) and F-keys (variable
length) . The constants are interspersed
within the statement body and contain the
following information:

e one of the six constant keys, the dif-
ference depending on the type of con-

stant:

X'F7' = decimal fixed-point constant
X'F8' = decimal floating-point constant
X'F9' = binary fixed-point constant
X'FA' = binary floating-point constant
X'FB' = bit-string constant

X'FC' = sterling constant

e the length of the constant
and

(2 bytes) ,

e the constant.

PHASE PL/IC30_ (PROCESSING CONSTANTS I) -- WA

The character strings have already been
processed in phase AU45 and are collected in
the character-string table on SYS001.
Within the statement body they are replaced
by a reference key that consists of the
following:

e Key 'character string' = X'E3'

e Offset, relative to the start of the
character string table (2 bytes)

e Key 'character string' = X'E3'

e Error-byte

X'00' if no error

bit 0 set to 1 if error 55

bit 1 set to 1 if error 56
AL 5)

bit 2 set to 1 if error 67

(see phase

e length of the character string (1 byte)
Like the input, the output consists of a
sequence of statements, terminated by the
end-of -program key. Each statement is
composed of the following elements:

1. The statement identifier key (6 bytes)
which may be preceded by one or more
label macros.

2. The symbol table, if there are any
variables in the statement.

3. The constant table, if there are any
constants in the statement.

4., The statement body.

5. The end-of-statement key (6 bytes)
which may be followed by error-keys (2
bytes) .

The constant table consists of the fol-
lowing:
e Constant-table key = X'F3' (1 byte),

e Length of the constant table
and

(2 bytes),

e one or more constant entries.

Each entry of the constant table con-
tains the following:

e Internal name of the constant (2 bytes)

(N = IJRKMVC, which is increased by 1 for
every constant) .

Phase PL/IC30 123

PL/I PLM 8

IBM Confidential

124

Attributes of the constant (inserted and
used by following phases, here initial-

ized with X'10') (1 byte).
Type of the constant (1 byte)
X'60" binary float

X'61°
X'62"
X'63"
X'67"'

binary fixed
decimal float
decimal fixed
bit string

Note: Sterling constants are stored as
decimal fixed-point pence.

Precision of the constant (1 byte)
if
if
if
if
if

binary float:
binary fixed: P (0<P<31)
decimal float: P< (0<P<17)
bit string: P (0<L<6U)
decimal fixed, bits 0-3:
bits 4-7:

P (0<P<53)

P (0<P<15)
Q (0<Q<P)

Three bytes containing zeros, used by
following phases for "new type and pre-
cision." The first bit is set to 1, if
the constant is preceded by a prefix
minus.

Length of the intermediate representa-
tion of the constant (2 bytes).

Intermediate representation of the con-
stant, depending on the type of con-
stant:

binary float

binary integer contained in a field of 4
bytes (if P<21) or 8 bytes (if pP>21),
followed by a binary integer (2 bytes)
representing the binary exponent.

decimal float

decimal integer in packed decimal format
(length of field = FLOOR (P+2/2)), fol-
lowed by a binary integer (2 bytes)
representing the decimal exponent.

binary fixed
32-bit binary format (see IBM

System/360, Principles of Operation,
Form A22-6821)

decimal fixed

packed decimal format f{(see IBM
System/360, Principles of Operation,

Form A22-6821). Lengtn of field = FLOOR
(P+2/2) .
Note: The position of the decimal point

is recorded by the scale factor Q.

bit string

&

byte-aligned, one binary digit per bit.

Within the statement body, the constant
has been replaced by the reference key.
This key consists of the following:

e Key ‘'constant reference' =
byte) .

X'E9' (1
e 1Internal name of the constant (see con-
stant table) (2 bytes)

The character strings are referenced by
key containing the following:

[}

e Key 'character string' = X'E3' (1 byte).

e Offset relative to the start of the
character string table (2 bytes).

e Key ‘character string' = X'E3' (1 byte).

e Length of the character string (2
bytes) .

DESCRIPTION OF ROUTINES

Initialization -- WB

This is the beginning of the main routine. T
It initializes pointers, switches etc. o,
Then it reads in four buffers of input

text.

FCSC_-- WC, WD

This is part of the main routine. It per-
forms a general scan over the source text.
The labels, the statement identifier, and
the attribute table are moved into the
output buffer. The length of the attribute
table is saved in STABL; the begin address
of the statement body is saved in PINS.

The statement body is scanned for con-
stants, which are processed in FCON.
errors are detected in the character
strings, the corresponding error codes are
moved into the error table. When the end-
of-statement key has been reached, control
is transferred to FEST.

If

FEST -- WE

Input parameter:
PINS = address of the beginning of the
statement body.

This is part of the main routine. It moves
the constant table (if constants exist in
this statement) into the output buffer.

The constant table is followed by the
statement body in which the constants are
replaced by 3-byte reference keys.

L

PL/I PLM 8

IBM Confidential

Routine FCON -- WG

Input parameters:

RLEN = (register) length of external rep-
resentation of constant.

PIN = (register) address of constant key.

PTAB = (registek) constant table pointer.

TABL = (half-word) length of constant table

+ length of symbol table.

Output parameters:

PIN = PIN + length of constant key.

PITAB = points to the next available byte in
the constant table.

TABL + length of the last entry
processed.

TABL

By means of one of the called routines,
the constant is scanned for acceptable
precision. Type and precision are entered
in the constant table with the constant
itself in its intermediate representation.
The constant table entry is completed by
entering the internal name, the attribute
byte, the three 0O-bytes, and the length of
the intermediate representation.

If IJKMVC is greater than 232-2, it is
reset to 0, and an error message is pro-
duced. The same error message is generated
in the case of a table-space overflow (TABL
must not be greater than the table space),
furthermore, PTAB and TABL are not
increased.

Finally the constant key is replaced by
the constant reference key and as many
blanks as are needed to overlay the con-
stant in its external format. These blanks
are eliminated in FEST. If the constant is
preceded by a prefix plus or minus, the
minus sign is taken into account by setting
the first bit of the 3 zero-bytes to 1.

The prefix signs are then removed from the
source text by overlaying them with the
constant key and replacing all bytes of the
constant by blanks.

Routine FBFL -- BI

Input parameters:

R1 = address of the constant in its
external format

RLEN = length of the external format

PTAB = pointer to the constant table

Output parameters:

PTAB = unchanged

RLEN = length of the intermediate represen-
tation of the constant

This routine processes the binary
floating-point constants. The precision of
the constant is determined in FPFL. If
there are more than 53 binary digits (erxror
number 58) , the constant is truncated on
the right, the exponent is increased
accordingly, and JERR is called. The expo-

nent of the intermediate representation is
obtained by subtracting the number of
digits specified after the binary point
from the exponent specified by the program-
mer. The binary digits of the external
format (each digit occupying one byte) are
condensed to a bit string (each digit
occupying one bit) in FBIN. The constant
is stored in the constant table.

Routine FBFI -- WM

Parameters: same as in FBFL.

This routine processes the binary fixed-
point constants. If there are more than 31
digits (error number 62), the constant is
truncated on the right, and JERR is called.
The binary digits of the external format
(each digit occupying one byte) are con-
densed to a bit string (each digit occupy-
ing one bit) by means of FBIN.

Routine FDFL -- WK

Parameters: same as in FBFL.

This routine processes the decimal
floating-point constants. The constant is
stored as a decimal integer followed by an
exponent. This exponent is obtained by
reducing the exponent specified by the
programmer by the number of digits after
the decimal point. If there are more than
16 digits (error number 58), the number is
truncated on the right and the exponent is
increased by the number of digits being
truncated.

Routine FDFI -- WN

Parameters: same as in FBFL.

This routine processes the decimal
fixed-point constants. If there are more
than 15 digits (error number 63), the con-
stant is truncated on the right.

Routine FBST -- WL

Parameters: same as in FBFL.

This routine processes the bit string
constants. If a replication factor greater
than 1 has been specified, the bit string
is expanded accordingly. Bits exceeding 64
are truncated (error number 56) .

Routine FSTL -- WJ

Parameters: same as in FBFL.

This routine processes sterling con-
stants. The constant is converted to and
stored as decimal fixed-point pence. The
conversion is done by the instructions ADD
and MJOLTIPLY DECIMAL; if, however, the
decimal feature is not available, these

Phase PL/IC30 125

PL/I PLM 8

IBM Confidential

instructions must be simulated. The preci- Routine FBIN -- WL AN
sion of the constant is taken from the N/
converted number; leading zeros are Input parameters:

ignored. If more than 15 significant R1 = address of the first digit of the

digits have been obtained (error number constant

61) , the decimal fixed-point pence number RLEN = number of digits

is truncated on the right. Output paramters:

(R4, RS5) resulting bit string (binary
number) , right-aligned

Routine FPFL -- WI
This routine condenses a character
Input parameters: stringy of zeros and ones to a bit string.
R1 = address of the constant in its
external format Routine JEOS -- WP

RLEN = length of the external format
This routine positions the contents of

Output parameters: input buffers 1-4 so that the currently
R1 = unchanged scanned EOS is in input buffer 1 (this is
REXP = exponent specified by the programmer done by calling JMIB) . The EOS and the
RLEN = number of digits specified for error codes attached to it are written on
fixed-point portion of constant (P) the text output file. If additional error
RQ = number of digits specified after codes are generated, they are also put out.
decimal (binary) point (Q)
Routine JMIB -- WQ
This routine scans the precision and the
exponent of a floating-point constant. If This routine moves input text to the left
the specified exponent exceeds 3 digits and reads in new records.
(exrror number 57), the remaining digits are
truncated. Routine JSLC -- WR
Routine FPFI -- WI This routine determines if a statement is
too long (i.e., i1f its EOS key is in the
This is a secondary entry point of FPFL. first 4 input buffers). If so, the state- N
ment body is deleted so that the statement N
Input parameters~ consists only of the statement identifier
R1 = address of the constant in its and the EOS (with error codes) . The fol-
external format lowing statement is positioned so that it
RLEN = length of the external format (of a begins in input buffer 1. If the statement
fixed-point constant) is not too long, this routine returns to

the calling routine.
Output parameters:

R1 = unchanged Routine JTRN -- WO
RLEN = number of digits of decimal fixed-
point constant (P) Input parameters:
RQ = number of digits specified after PIN = pointer for source text
decimal (binary) point (Q) POUT = pointer for output buffer
B8YZ = number of bytes to be moved
This routine scans the precision of a
fixed-point constant. Output parameters:
PIN PIN+BYZ
Routine FREP -- WL POUT = address of next available byte with-

in the output buffer
Input parameters:

R1 = address of the constant in its If all the bytes to be moved do not fit
external format into the output buffer (or if it is com-
RLEN = length of the external format pletely filled), the buffer is filled by
the first part of the text to be moved and
Output parameters: then written on the text output work file.
R1 = address of the basic string - The remaining bytes, if any, are moved to
RLEN = length of basic string the beginning of the buffer.
REPL = replication factor
Routine JERR -- WQ
Converts the replication factor of a
bit-string constant to binary. If no This routine checks whether the error table
replication factor is specified, REPL is is full and returns in that case. If the @::
set to 1. A zero replication factor is error table is not full, the number of %
ignored (error number 55) and REPL is set errors is increased by one and the corres-
to 1. ponding error key is inserted.

126

PL/I PLM 8

IBM Confidential

The main task of this phase is to sort the
blocks arising in the source program. The
input is on TXTIN. Three different cate-
gories are to be distinguished.

1. The source program consists of only one
block. Therefore, only one scan of the
input string is reguired. The block
with the level number zero is written
onto TXTOUT.

2. The source program consists of blocks
with the level numbers zero and one.
This requires the input string to be
scanned twice:

a. The block with the level number
zero is extracted and written onto
TXTOUT. The blocks with the level
number one are written onto SYS001.

b. The input is on SYS001 and written
unchanged onto TXTOUT.

3. The source program consists of blocks
with the level numbers zero, one, and
two. This requires the input string to
be scanned three times:

a. The block with the level number
zero is extracted and written onto
TXTOUT. The blocks with the level
numbers one and two are written
onto SYS001.

b. The input is on SYS001. The blocks
with the level nunber one are
extracted and written onto TXTOUT.
The blocks with the level number
two are written onto TXTIN.

c. The input is on TXTIN and written
unchanged onto TXTOUT.

If, in the nth scan, a BEGIN statement
is found that opens a block with level
number n, a label is generated in front and
the block with the label is written onto
SYS001 or TXTOUT. Instead of the BEGIN
block a CALL macro containing the new label
is generated. If the BEGIN statement is in
an emnbracing BEGIN block, the statement is
additionally changed to NEW BEGIN.

If a PROCEDURE statement is found, eith-
er the entire attribute table or the first
18 bytes of the attribute table are stacked
depending on the length of the table.

If an END (procedure) statement is
found, the last entry in the stack is
cleared.

PHASE PL/IC35 (BLOCK SORTING) -- VA, VB

If a RETURN statement is found, the
contents of the last entry in the stack are
inserted after the first 8 bytes of the
RETURN statement.

The contents of the attribute table of
each statement are translated into a new
form by the translate subroutine.

I/0 Handling (Buffers)

Six buffers are used: five buffers, i.e.,
output buffer 1, three work buffers, and
one input buffer, are in the I/0 area, and
output buffer 2 is defined in the table
area.

DESCRIPTION OF ROUTINES

Symbols used in flow charts:

C (B) contents of location pointed to by B

C (B+1) contents (length 2 bytes) of loca-
tion pointed to by B+1

A (B) address of B

Initialization -- VC

The following items are defined and set to
their initial values:

ALEVEL actual level (0)

CLEVEL current level (-1)

MAXCL maximum value of CLEVEL (-1)

ZAEHL I/0 record counter (0)

ZAEHL2 I/0 record counter (0)

COUNTER I/0 record counter (0)

COUNTER2 I/0O record counter (0)

ML move-instruction length (4)

HISPEI intermediate storage for address

BEGINBIT switch

NEWBESIN key of changed BEGIN (X'17"')

NBEGIN key of changed BEGIN (X'16"')

ouTpPUT temporary buffer

TATTRIB attribute table stack

ATTRIB address of TATTRIB+3#*21

Pointers:

B6 start address of output buffer 2

BO IJKMBS = start address of output
buffer 1

B1 start address of work buffer

B2 B1 + buffer length

B3 B2 + buffer length

B4 start address of input buffer

B5 B4 + buffer length

Registers:

0op2 pointer for output buffer 2 is
set to B6

opr1 pointer for output buffer 1 is
set to BO

Phase PL/IC35 127

PL/I PLM 8

IBM Confidential

CP current pointer in work buffer is
set to B5
LENGTH counter used for text output

Main Routine -- VD

The main routine scans the current input
string for some special kesys and calls the
appropriate subroutines.

Procedure Handling -- VE and VF

Entry point: VEB2

This routine is called when a label macro
is found. The label macro is written out
if it is not followed by a PROCEDURE state-
ment.

If it is followed by a PROCEDURE state-
ment, the subroutine CLEVMAX increases the
current level CLEVEL, and if CLEVEL is not
zero, a library bit is inserted. Then the
label and the beginning of the PROCEDURE
statement are written out.

If the PROCEDURE statement is detected
during the first scan through the input
string, some additional actions are
required, e.g., the attribute table must be
stacked, translated, and written out.

Begin Handling -- VG

Entry point: VGB2

This routine is called when a BEGIN state-
ment is found in the input string. At
first the current level CLEVEL is increased
by one in the routine CLEVMAX and is then
compared to the actual level ALEVEL.

If the current level is equal to the
actual level and the actual level is one,
the switch BEGINBIT is set to one.

If the current level is not equal to the
actual level, the difference between the
actual level and the current level is test-
ed. If the difference is one, some poin-
ters are changed to move the label macro
into the OP2 buffer.

The label macro is 7 bytes long and
contains the following information:

Byte (s) Contents
1 F2 - macro key
2 00
3 07
4 72 : label
5 E1)
6-7 variable counter

128

Switch BEGINBIT is tested and if BEGIN- AT
BIT = 1, the BEGIN key is replaced by the
contents of NEWBEGIN.

The prestatement is moved into the OP2
buffer. Thereafter, any existing labels
located behind the prestatement are moved
into the OP1 buffer followed by the CALL
statement.

The call macro is 19 bytes long and
contains the following information:

Byte (s) Contents
1 EO
2 FF
3 09
4-6 refer to the BEGIN statement

7 macro key
8 00
9 07
10 A0
1 E1

12-13 variable counter IJKMVC
14 EA

15-19 refer to BEGIN statement.

The variable counter IJKMVC 1is increased
py one. When the value X'FFFF' 1is reached,
an error message is generated.

TN
\ v

Return Handling -- VH and VI

Entry point: VHB2

This routine is called when the beginning
of a RETURN statement is found. The poin-
ter LENGTH is increased by six and the
input/output subroutine is called. Unless
this routine is not called during the first
scan through the input stream, (ALEVEL = 0)
the end of the routine is reached. Other-
wise, the attribute table is processed. If
an Flu-key is found, the translate routine
is called and the translated attributes are
moved into the output buffer. Thereafter,
the constant table, if there is one, is
moved and the last entry of the attribute
stack (made by detecting the last PROCEDURE
statement and pointed to by ATTRIB) is
inserted. Then, RETKON is moved into the

output area. RETKON is 6 bytes long and
contains the following information:

Byte (s) Contents
1 E1
2-3 RETURNL
4 E2
5 00
6 EB

Figure 1 shows the format of the RETURN
statement at the end of this routine.

PL/I PLM 8

IBM Confidential

E0|j 00| 0OC F4 | length {{ F3| length {& F4] length S{ E1| RETURN L| E2] 00| EB unchangedg
01 6 7 9
|
exists not in all Attribute of RETKON
cases the PROCEDURE
. J
v
not changed
\ ~ J
RETURN L

Figure 1. Format of RETURN Statement

End (Procedure) Handling -- VK

Entry point: VKB2

This routine is called when an END
(procedure) statement is found. First,
ALEVEL is tested. If it is zero, the last
entry of the attribute-table stack is
cleared.

The following actions are also performed
by the END (begin) Handling routine:

The beginning of the statement is writ-
ten out, the routine Label Handling is
called, the statement end with error keys,
if any, is written out, and CLEVEL is
decreased by one before the end of the
routine is reached.

END (Begin) Handling -- VL

Entry point: VLB2

This routine is called when an END (begin)
statement in the source text is found. If
ALEVEL and CLEVEL contain one, the BEGINBIT
is set to zero before branching to the END
(procedure) Handling routine.

Label Handling -- VM

Entry point: VMB2

This routine is called when generated
labels are found in the prestatement.
These labels are moved into the output
buffer and the counter CLEVEL is increased
by one.

End program -- VN and VO

Entry point: VNB2

This routine is called if the end-of-
program key is detected.

If IJKMBC contains one, the end of the
source text is written out and the next
phase is called. Otherwise, the next scan

through the input stream is started.
Depending on MAXCL and ALEVEL, the text is
processed. If MAXCL equals ALEVEL, the
Endlevel routine is called. The output
(text unchanged) of the last scan is moved
onto TXTOUT and the end of the phase is
reached, otherwise, the routine returns to
the initialization routine of this phase,
and a new scan begins.

Translate Routine -- VP - VS

Entry points:

VPB2 (translate routine 1)
TRANSLAT (translate routine 2) .

The subroutine Translate translates the

attributes in the variable entry into the
following 1-byte form:

Bit 0 0 = not controlled,
1 = controlled
Bits 1-3 : 000 = Scalar variable without
picture
001 = Scalar variable with
picture
010 = Array without picture
011 = Array with picture
100 = ENTRY name or function
name without picture
101 = Function name with pic-
ture
110 = Constant
Bits 4-7 : 0000 = Binary float
0001 = Binary fixed
0010 = Decimal float
0011 = Decimal fixed
0100 = Zoned decimal
0101 = Zoned decimal (T)
0110 = Character string
0111 = Bit string
1000 = Sterling
1001 = Label
1010 = Pointer
1100 = Major Structure
1101 = Minor Structure
1110 = Others
1111 = File

PhaSe PL/IC35 129

PL/I PIM 8

IBM Confidential

Input parameter:

RPOI (4 bytes) contains the address of the
variable entry in the prestatement to be
translated.

Output parameter:
ELENG (1 byte) contains the entry length of
the declared variable.

Endlevel Routine -- VT

Entry point: VTB2

This routine reads the output of the last
scan of the text from SYS001 or TXTIN and
writes it unchanged on TXTOUT.

CLEVMAX Routine -- VU

Entry point: VUB2

The current level CLEVEL is increased by
one and compared with MAXCL. If CLEVEL is
greater than MAXCL, MAXCL is set to CLEVEL.

I/0 Handling -- VW

Entry point: VWB1

This routine controls the buffer handling.
It is called when a string of the source
program is to be written out. At first, a
test 1s performed to determine whether the
string is contained in its full length in
the buffer area.

If it is, the move routine is called
where the string is moved into the output
area. Then, the read routine is called
where the input buffer is filled, if
required, and this routine returns.

If the string is not contained in its

full length in the buffer area, the section
of the string contained in the buffer area

130

is moved, and the input and work buffers
are filled. Then the remainder of the
stringy is moved and written out, and the
routine returns.

Read Routine -- VX

Entry point: VXB1

The input and work buffers are filled if

required. Therefore, CP is compared to B2.
If CP is lower than B2, the routine
returns. Otherwise, the contents of the

buffers B2, B3, and B4 are moved into the
buffers B1, B2, and B3, respectively. The
buffer B4 is filled with the next record
from TXTIN or SYS001.

Move Routine -- VY

Entry point: VYB2

This routine is called if a string has to
be moved into the output area. Depending
on the contents of ALEVEL and CLEVEL, buf-
fer BO or B6 is used. The entire string or
part of it is moved into the buffer area
depending on the length of the string and
the number of free bytes in the buffers. A
full buffer is written out by the write
routine, if required.

Write Routine -- VZ

Entry point: VZB2

Depending on the contents of ALEVEL and
CLEVEL, OP1 or OP2 are compared to B1 or
BO. If the result of this comparison is
not egual, the routine returns without
further actions. Otherwise, the contents
of the buffers B0 or B6 are written onto
TXTOUT, TXTIN, or SYS001 depending on ALEV-
EL.

)

C

PL/I PLM 8

IBM Confidential

The I/0 scan is performed in this phase and
the phases C55, C60, and C65. These phases
process all I/0 statements. The functions

of these phases are:

1. to check the statements for errors that
are not detected by phases A60 and A65.

2. to prepare the statements for process-
ing in later phases:

a. to generate DO statements for the
repetitive specifications in the
data lists, and

b. to arrange the statements and
include information required to
permit sequential processing of the
statements in later phases when the
appropriate I/0 macros are to be
generated.

3. to generate assignment and expression
statements for expressions contained in
some options and lists.

Phase C50 is used to perform part of the
processing required for GET and PUT state-
ments. The options FILE, STRING, PAGE,
LINE, and SKIP are checked for errors.
Assignment statements are generated as
required.

Repetitive specifications in the data
lists are checked for number and nesting
depth. A DO and an END statement are gen-
erated for each repetitive specification.

Phase Input and Output

The input for the phase is the program text
on TXTIN and the file table on SYS001.

Phases C55, C60, and C65 also process
the program text from IXTIN and C60 and C65
the aforeementioned file table.

Program Text on TXTIN. Each syntactical
element of the text string begins with an
'E'-or an 'F'-key. Elements with an E-key
have a fixed length. Elements with an
F-key are of variable length. Bytes 2 and
3 of an F-element indicate the length of
the element.

This phase and the other I/O-scan phases
(C55, C60, and C65) process elements with
one of the following keys:

EO Statement identifier
E1 Reference to declared variable
E2 Delimiter

PL/IC50 (I/O SCAN I) -- XB, XC

E3 Reference to character-string constant

E4 Reference to generated variable

E9 Reference to constants other than
character-string

EA End of statement

EB Error

EC Reference to library names

ED I/0-intermediate key

EF Keyword

FO Generated variable table

F2 Macro

F3 Constant table

Fu Declared variable table

FE Format integer constants

FF End of program

Tha text string consists of statements
that appear in the same order as in the
source program, except that nesting blocks
are resolved, i.e., the blocks are now
ordered serially.

Each statement begins with a statement-
identifier key which is followed by the
declared variable and/or constant table.
These tables contain the attributes of the
variables and the attributes and values of
the constants, respectively. (See phases
B90 and B92 for the format of a variable
table and phase C30 for the format of a
constant table.) The syntax of the
statement body which follows the table (s)
is described in phases A60 and A65. The
end-of-statement key terminates the state-
ment, the end-of-program key the entire
text string. A statement may have one or
more labels which are in the form of inter-
nal macros. Such labels may precede either
the statement identifier or the statement
body.

The declared variables in the text
stringy do not appear with their actual
internal name, but with their offset in the
declared-variable table.

File Table on Table File. There is one
record in the file table for each file name
and file name parameter, The file number
is identical with the record number in the
file table. Each record contains the
attributes and options for the appropriate
file name or file-name parameter. For the
format of a file-table record refer to
phase B25.

Olitput. This phase and the other 1/0 scan
phases cause

1. the I/O statments from TXTIN to be
processed and

Phase PL/ICS50 131

PL/I P1IM 8

IBM Confidential

2. additional (generated) statements to be
inserted into the input statements.
The end of the I/0 statement is sig-
nalled by setting bit seven in the
second byte of the last end-of-
statement key to 1.

To optimize the object code that is
generated on account of the I/0 statements,
it is necessary that the inserted
statements do not destroy the contents of
specific registers. Preserving the con-
tents of these registers is ensured by
setting the appropriate bits in byte four
of the end-of-statement key. Bits 0 to 7
correspond to registers fourteen to five.

If an error is detected during one of
the I/0 scan phases, bit 1 in IJKMJT is set
to 1.

Initialization, Scan (General) -- XA

General control, initialization of the
phase, and scanning for the I/0O statements
is the same for all I/0 scan phases.

Text input/output is performed in over-
lapped mode under control of the inter-
face (see phase A00) . Five buffers are
used by the I/O scan phases: one buffer as
output buffer and four contiguous buffers
as input buffers. During the processing of
an I/0 statement, the input string is
always adjusted in such a manner that the
next end-of-statement key is fully in the
input buffer area. Thus, no further con-
trol for reaching end-of-buffer is
required.

The variable and constant tables
required during processing of the I/O
statements are read into the table space.

After the input buffers have been
filled, the statement key is checked to
determine if it is an I/O key. If it is
not, the statement concerned is skipped and
the input buffers are filled again, if
necessary.

When an I/O key is found, the statement
identifier key is saved and the statement
attribute table is placed into the table
space, and the statement is scanned for the
end-of-statement key.

Only correct statements (without T- or
S-type errors) are processed. When an
incorrect end-of-statement key is found,
the statement is deleted fram the text
string except for the end-of-statement key.

Correct statements are written out by
the appropriate I1I/0 routine. The end-of-
statement routine causes the errors, if
any, to be indicated in the end-of-

132

statement key and the error number to be
written out.

Interface with Other Phases

The second byte of the statement-identifier
key is used to pass on information about
the type of the statement (used in the
phases D75 and D80) .

The bits are set to 1 to indicate the
following:
Bit 0 PAGE option
SKIP option
LINE option
Statement refers to a PRINT file
LIST option
STRING option
GET statement
PUT statement

NOUVEWN=

If a data list contains a repetitive
specification, bit 29 in IJKMJT is set.

If standard input file is assumed, bit
54 in IJKMLB is set; if standard output
file is assumed, bit 55 in IJKMLB is set.
DESCRIPTION OF ROUTINES
Note: The symbols RO, RA through RM, BASE
and RETURN are references to general

registers.

Symbols used in flow charts:

AT2BUTE Position of string bits in
entry of attribute table

BGRTBPO Address of repetitive specifi-
cation table

BGSTPO Address of parenthesis stack

BIFIMSK Mask to test for binary fixed

BLBYTE Position of block byte in EOS
key

BLPOS Position of block byte in
GENVAD .

CATBYTE Work byte to build up the
GENVAR attribute byte

CONBG Address of declared-constant
table

COUNT Count register

CSTRMSK Test-mask for character string

CUBL Current block number

DASPB3 Address of data specification

DO DO delimiter element

EDATTA End of declared-variable table

EDRTBPO End of repetitive specifi-
cation table

EDSTPO End of parenthesis stack

ENDBUF End of input buffers +1

EOP End-of-program key

EOS End-of-statement key

ERFBT Mask for setting the error bit
in IJKMJT

ERFLAS Error flag byte

ERRTAB Error table

®

TN

C

PL/I PLM 8

IBM Confidential

FIBL
FIDEMSK
FILMSK
FLBYTE

FNBYTE

GENVAD
GENVAR
GEPMSK

GETMSK
GEVAR
IJKMBL

IJKMBS
IJRKMJT
IJKMTS
IJKMTT

IJKMVC
INBUF
INPO
IOMSK

ISTKEY

KELEN
LC85
LEBYTE

LEDS
LEEL
LEGEOS
LEIN
LELPAR
LENGTH

LENGTH1
LENGTHV
LEPAR
LERR
LETEL
LEVPOS
LE1BYTE

LE2BYTE

LIBG
LIBUF1
LIBUF2
LIBUF3
LINMSK
LISMSK
MOMAC
N
NATBYT

NATBYTE
OUBUF

OU0PO
PABG

File-block area

Mask to test for fixed decimal
Mask for testing the file bit
Position of flag byte in end-
of -statement key

Relative position of file-
number byte in attribute table
Generated variable definition
Generated variable reference
Mask to set register-preserve
bits for GET/PUT

Mask for setting the GET bit
Generated-variable reference
Buffer length (entry in
communication area)

Address of buffer area (entry
in communication area)

Job information bytes (in
communication area)

Address of table space (entry
in communication area)
Address of TABTAB (entry in
communication area)

Variable counter in interface
Address of input buffers
Input pointer

Mask to set I/0 bit in END-of-
statement key

Internal equal sign for
assignment statement

Length of key

Of fset for the C85 skip bit
Address of precision byte in
entry of the variable table
Length of generated variable
Length of one E-key element
Length of end-of-statement key
Length of internal name

Left list parenthesis

Length of area to be written
out

Current length

Maximum length of GENVAD

Left parenthesis

Length of error key

Length of two E-key elements
Position of level byte in EOS
Address of length byte for
character string data in
attribute table entry

Address of length byte for
non-character string data in
attribute table entry

Begin of LINE option

Address of second input buffer
address of third input buffer
Address of fourth input buffer
Mask for setting the LINE bit
Mask for setting the LIST bit
Move-macro area

Counter

Position of scalar/array bits
in entry of attribute table
Address of attribute byte in
entry of variable table
Address of output buffer
Output pointer

Begin of PAGE option

PALMSK
PRINMSK
PRINTMSK
PSTMSK

PUSTMSK

PUTMSK
REGBYTE

RILPAR
RIPAR
RTBPO

SATBYTE
SAVIO

SAVMSK
SBC85

SCAMSK
SEOS
SKIBG
SKIMSK
SRIMSK

STABYTE
STAID

STAKEY
STIMSK
STIMMSK
STKELE
STOMSK
STOUMSK

STPO
STRXBYTE

Mask for setting the PAGE bit
PRINT mask

Mask for setting the PRINT bit
Mask to test for PUT STRING
statement

Mask to test for PUT STRING
statement

Mask for setting the PUT bit
Position of register-preserve
byte in statement key

Right list parenthesis

Right parenthesis

Pointer for repetitive speci-
fications

Position of statement attri-
bute byte in statement key
Area for saving statement
identifier

Mask for preserving registers
Mask for setting the C85 skip
bit

Mask for testing on scalars
Area for end-of-statement key
Begin of SKIP option

Mask for setting the SKIP bit
Mask for setting the STRING
bit

Statement-attribute byte
Position of statement iden-
tification in statement key
Area used to build the state-
ment key

Mask for setting the standard
input-file bit

Stream-input mask

Length of statement key

Mask for setting the standard
output-file bit

Stream-output mask

Pointer for parenthesis stack
Position of structure byte in
attribute-table entry

STRSAV1 (2,3) Save area 1 (2, 3) for GEASS

T
TBPO

TEBYTE
TINPO1 (2,3)
TTMSK

VARBG

ZTAB2

parameter

Table file

Pointer in table space

Test byte to indicate current-
statement file declarations
Temporary input pointer 1 (2,
3)

Mask to zero bit 2 in TABTAB
entry

Address of declared-variable
table

Relative entry in TABTAB of
file table

The statements are processed in two
passes over the text string. The
operations performed in each pass are des-
cribed separately.

The file or the string option, if pre-

sent, is the first option.

If there is no

file or string option, a standard system
file is assumed.

Phase PL/IC50 133

PL/I P1LM 8

IBM Confidential

If the string option is present, the
option identifier is examined to determine
if this is a character string. In this
case, an assignment statement is generated
for a subscripted variable. This assign-
ment statement is placed into the string
option for a GET statement or behind the
original I/O statement for a PUT. The sub-
scripted variable in the string option is
replaced by a generated variable, which
also constitutes the left or right side in
the assignment statement for a GET or PUT,
respectively.

If the file option is present, the
appropriate file block is fetched from the
table file and the file options are checked
to determine if they are consistent with
the type of statement.

For a file-name parameter, an internal
move macro i1s generated. The object code
generated by this macro causes the file-
name argument to be inserted into the
parameter list at object time.

In a PUT statement, the PAGE and/or
LINE, or SKIP options may appear ahead of
the data specification.

For the expression in the LINE or SKIP
option, an assignment statement to a binary
fixed generated variable is generated and
placed ahead of the PUT statement. The
expression in the option is replaced by the
generated variable.

The data list is scanned for repetitive
specifications. Each left-1list parenthe~
sis, except the data list parenthesis
itself, indicates the beginning of a repet-
itive specification. The pointer value for
this parenthesis is placed into a parenthe-
ses stack. On a DO following a list ele-
ment, the updated input pointer, the poin-
ter to the end of the repetitive specifi-
cation (next right-list parenthesis), and
the last entry in the parenthesis stack are
placed into the repetitive specification
table and the last entry in the parenthesis
stack is cleared.

Format of a repetitive-specification
table entry:

| Ittt ToTTTT T T 1
| Begin of | Address of ele-| End of |
| Rep.Spec. | ment after DO | Rep.Spec. |
___________ Y [
1 5 9

Pass 2

The input statement is written onto TXTOUT
in this order: statement key, statement
attribute table, internal macro generated
for a file-name parameter, and PAGE (SKIP
or LINE) option, if present.

134

The data specifications are written out
with the following changes: The format list
or lists in the data specification are
written ahead of the data lists. For each
left 1list parenthesis of a data list,
except the first one, a DO statement is
generated. The pointer to the appropriate
text after the DO is fetched from the
repetitive-specification table and is found
by comparing the input pointer with the
stacked pointer. (First address in each
entry of the repetitive-specification
table) .

When a DO is encountered, an END is
generated to close the DO group.

Each generated statement has the same
format as described above. The statement
attribute table is the same as that for the
GET/PUT statement.

The generated variables are defined as
automatic. Whenever possible, the same
definition is used for successive
variables. If a new definition is required
(for example, if a new block is reached),
the 0ld definition is written out. This is
also done at the end of the program text
when, in addition, an end-of-statement key
is written out following the variable defi-
nition.

Initialization and Scan -- XD, XE

The functions of this routine are explained
under Initialization, Scan (General). The
following registers are used: RO, RA
through RI, RL and RETURN. RF contains the
pointer for the table space. RG contains
the length of the declared variables or the
constant table. RH contains a temporary
input pointer in number of bytes:

The main purpose of this routine is to test
for the presence of the GET (or PUT)
options and to set the bit configuration of
the second byte of the statement- identifi-
er key (see Interface with other Phases.)
In the CONTEB subroutine, which is called
by this routine, the bit configuration of
the test byte TEBYTE is set. The meaning
of the bits of this byte is shown below.

Bit No. Meaning
0-2 0 = PRINT file
1 = file other than PRINT
3-4 not used
5 0 = file option contains no file
name parameter
1 = file option contains a file
name parameter
6 0 = stream input file
1 = file other than stream input
7 0 = stream output file
1 = file other than stream output

»

C

PL/I

PLM 8

IBM Confidential

SCADAL1 -- XG

This routine is used to build up the repet-
itive specification table.

CHECKST -- XH, XI

The routine processes the GET (or PUT)
options and causes them to be written out.

SCADAL2 -- XJ

This routine causes the DO statements to be
rearranged and completed. Also, END state-
ments are generated. These statements are
written out on the text output file.

FEFIBL -- XK

W#hen the subroutine is entered, INPO points
to the internal file-name in the text
string.

The
of the
number

subroutine loads the nth file block
file table into storage (n = file
of the current file). If the name
in the file option is a file-name paramet-
er, an internal move macro is generated and
the file-name parameter in the file option
is replaced by an 'ED'-key with a new
internal name. If the name in the file
option is not a file-name parameter, the
offset in the variable table of the file-
name is replaced by the actual internal
file-name in the text.

The internal file-name is checked for
validity. If the file-name is invalid (0
as internal name) , the subroutine is left
via the error exit.

CONTEB -- XL

This subroutine causes the proper bit
configuration to be set in TEBYTE, which is
used in the CHECKST routine to determine if
the current statement is consistent with
the file declaration.

INPUT -- XM

This subroutine causes the input buffers to
be filled as determined by the current
value of the input pointer. When this
subroutine is left, at least three input
buffers are filled. The input pointer is
adjusted.

The subroutine uses register RL as
return register.

OUTPUT -- XN

Input parameters:

Register RC contains the address of the
area to be written out.

Register RD indicates the length of the
area.

This subroutine causes

1. the contents of an area of arbitrary
length to be moved into the output
buffer and

2. the data in the output buffer to be
written on the text output file when
the buffer is filled. The pointer in
the output buffer is updated and the
register pointing at the area whose
contents are to be written out is
increased by the length of the area.

The secondary entry points OUTPUTI1,
OUTPUTr2, and OUTPUT3 are used to set param-
eters: OUTPUT1 is used if the end of the
area to be written out is determined by
INPO; OUTPUT2 is used if an area of the
length of one 'E'-key element is to be
written out; OUTPUT3 is used if an area of
the length of two 'E'-key elements is to be
written.

Output parameter:

Register RC contains the input address plus
the length of the area that has been writ-
ten.

This subroutine increases the input pointer
until either

1. an EOS is found or

2. the sum of the input pointer and the
length of the next element exceeds the
upper limit of the input buffers.

This subroutine increments the input poin-
ter until it points to the position immedi-
ately after the list. A list is a number
of elements enclosed by a pair of normal or
list parentheses. When the subroutine is
entered, the input pointer points to the
left parenthesis of the pair.

SKIEX --_XQ

Input parameter:
The input pointer INPO points to the begin-
ning of the current expression.

Output parameters:
INPO points to end of expression plus 1:
RA contains 0 if end is a comma,
4 if end is a right-list paren-
thesis,
8 if end is DO.

This subroutine increments the input
pointer until it points to the position
immediately after the current expression.
For the purpose of this subroutine, an
expression is a string of 'E'-key elements

Phase PL/IC50 135

PL/I PLM 8

IBM Confidential

delimited by a comma, a DO key, or a right
list parenthesis which are not enclosed in
a pair of parentheses.

COMOMAO -- XR

This subroutine generates an internal move
macro and inserts an 'ED'key element with a
new internal name into the text string.
This new name is used as the name of the
constant in the parameter list into which
the argument for the file-name parameter is
moved at object time.

Format of the move macro:

Input parameter:

Register RA points to the entry for the
file-name parameter in the declared varia-
ble table.

The subroutine is called when an end-of-
statement is reached or a skip to the next
EOS is required.

The subroutine causes the EOS to be
written on the text output file and error
keys to be added if any errors have been
encountered during the processing of the
statement. The subroutine causes the input
buffers to be refilled and INPO to be reset
to point to the beginning of a new
statement.

If an end-of-program key is found to
follow the EOS, the end-of-phase routine is
called.

EOPH -- XS

This subroutine is called when an end-of-
program key is reached.

The subroutine causes the definitions of
the last generated variables to be written
out. These definitions are followed by an
end-of-statement key and the end-of-
program key.

The contents of the output buffer are
written out on text output file and phase
C55 is fetched using the interface routine
IJKAPH (calling macro IJKPH) .

ERROR == XT

Input parameter:
Register RA contains the special error key.

The errors detected during the process-

ing of a statement are placed into an error
table.

136

The error table is 10 bytes long. Its
format is as follows:
Byte (s) Contents
1 Error key
2 Number of errors in current
statement
3-10 Special error keys

A maximum of eight errors per statement
(one special error key per error) is placed
into the error table for a statement.

The subroutine causes the error bit to
be set in the communication routine.

GEASS, GEDOST, GEEND -- XU

Input parameters:
Register RF contains one of the following:

X'0E' for an assignment statement
X'12* for a DO statement
X'13' for an END (DO) statement.

This subroutine which is referenced in
the various flow charts to phase C50 by
either of the names GEASS, GEDOST, and
GEEND, generates either an assignment, or a
DO, or an END (DO) statement as determined
by the contents of RF. The prefix mask of
the statement key is taken from the state-
ment key inside which the statement is
generated. The bits used to preserve reg-
isters are set by means of the bit configu-
ration of the SAVMSK byte.

The statement attribute table for the
input statement is used for all statements
to be generated and inserted in the input
statement, except the END statement.

The statement body for the assignment
statement consists of a generated variable
contained in GENVAR, an IST-key, and the
expression pointed to by TINPO (begin) and
INPO (end + 1) . For the DO statement, the
statement body consists of the repetitive
specification, the beginning and end of
which is found in the repetitive specifi-
cation table (INPO points to the left 1list
parenthesis of the repetitive element). No
statement body is needed for the END state-
ment.

At the beginning and end of the state-
ment, an EOS is generated which is that of
the processed (proper) statement.

The generated variable (reference) is
written out whenever an assignment state-
ment is generated. The variable is written
out ahead of the assignment statement for a
GET and following the assignment statement
for a PUT.

&

PL/I PLM 8

IBM Confidential

OUTTAB -- XV

This subroutine causes the declared-
variable and constant tables to be written
out.

GEVAO -- XW

Input parameter:
Register RG contains:

4 when the subroutine is to use the
attributes of the element to which INPO
is pointing,

8 when the desired attributes are binary
fixed and precision 8.

This subroutine builds up both generated
variable definitions (GEVAD) and generated
variable references (GEVAR) .

When the subroutine is entered the first
time for a program, the value in the varia-
ble counter in the communication region is
inserted in GEVAD and GEVAR as an internal
value. The block and level numbers are
obtained from the EOS of the current state-
ment and also inserted in GEVAD.

When a new block is reached, GEVAD is
written out (by calling OUTGEV) before the
above described operations are performed
for the new block.

When the subroutine is entered for the
second and subsequent times and a new block
has not yet been reached, the same internal
name is used and, therefore, the same stor-
age is used for these variables. The

length count is updated to maintain a count
of the highest value of all variables. The
attributes of GEVAD are character string
and automatic. The attributes of GEVAR are
indicated by register RG.

Output parameters:
A generated variable of the following for-
mat is constructed:

r T T-T
|E4|Intern|E4|Attr1—|E4|Pre01—|Eu|P1ct name
| |Name | |butes | |sion | |or O |
[. 11 I .

OUTGEV_--_ XX

This subroutine causes the generated varia-
ble definition (GEVAD) to be written out.
CEIL (N/8) variables of length eight are
made available for output (= maximum length
required) . The first variable definition
is assigned the previously processed inter-
nal name, all other variable definitions
are assigned an internal name of 0.

A generated variable definition made
available for output has the following
format :

S Satinbte Seetent St Sl St R 1
|F0|Length|1ntern |Zero|X 10'|X 08‘|Block |
| | Name | | t | Level |
[T N Lo___1 Lo Lo J

The portion of the text string beginning
with 'internal name' is repeated as often
as necessary with an internal name of 0.

Phase PL/IC50 137

PL/I PLM 8

IBM Confidential

PHASE PL/IC55 (I/O SCAN II) -- YA

This phase processes the data lists of
GET/PUT statements. Each data list item is
examined for structure and validity.
Assignment and expression statements are
generated as required.

In the output text, each data list item
is preceded by a characteristic. Some of
this information is used in phases D75 and
D8O.

The GET/PUT statements are scanned for
their data lists. The list items are
scanned for the information listed below,
and this information, if present, is evalu-
ated by this phase.

1. The item is scalar, array, or struc-
ture.

2. The item either contains an operator, a
subscript, a function call, or a pseudo
variable, or the item requires no cal-
culation.

3. The item contains a numeric field other
than floating point or a variable with
zoned decimal attributes.

4. The subsequent item is the first item
of or following an iteration group.
This item is referred to as "special
item."™

The information is summarized in the
FLAG byte with the following format:

Bit No. Meaning

0 1 = An expression or an assignment
statement must be generated.

1 1 = Presence of an operator or a
constant not allowed for input.

2 0 = Scalar.

1 = Array.

3 1 = Special item.

4 1 = Structure.

5 1 = DNumeric field other than float-
ing point or zoned decimal.

6 1 = SUBSTR or UNSPEC.

7 1 = Wrong element; neither arithmet-

ic nor string type.

The bit configuration of the above flag
byte is evaluated when the output informa-
tion is processed. 1Invalid data items,
variables not of type string or arithmetic,
array and structure expressions, pseudo
arrays and pseudo structures are not writ-
ten out on the text output file. Struc-
tures are reduced to their basic elements
and each element is written out in the same
way as other single data items.

138

Each data item is preceded by a charac-
teristic which has the following format:

| rT===""-"" b k]
| ED |not used| Flag |
L_ S ——d i

An expression statement is generated
whenever there is an operator in the data
item or a function in a PUT statement.

An assignment statement is generated for
pseudo variables in input lists, scalar
numeric fields (other than float), scalar
zoned-decimal variables and subscripted
variables. An assignment statement for a
GET is generated with the data item to the
left of the equal sign; for a PUT, the data
item is on the right side of the equal
sign. On the other side of the equal sign,
there is always a generated variable, the
attributes of which are derived from the
attributes of the pseudo variable or the
subscripted variable. The generated varia-
bles are decimal fixed for numeric fields
and zoned decimal variables.

The generated variables are written out
ahead of the assignment statement in case
of a GET and following the assignment
statement in case of a PUT.

For a numeric field array (except float)
and for a zoned decimal array, the assign-
ment statement is preceded by a loop-begin
and followed by a loop-end macro. The
loop-begin and loop-end macros generate an
object time loop which causes each array
element to be read in or written out.

The abovementioned assignment statement
consists of

1. a generated decimal-fixed variable as
for a scalar numeric field and

2. a generated pointer variable with data
attributes of the array that points
consecutively to each array element in
the loop. All other single variables
and character string constants are
written out unchanged.

A constant reference is expanded from
three bytes to twelve bytes. The E9-key is
repeated for each 3-byte group. The addi-
tional bytes have the same contents as
those of the generated variables. The
constant definition for the appropriate
constant is also written out.

AN

AN

@:D

PL/I PLM 8

IBM Confidential

DESCRIPTION OF ROUTINES

Note:

The following routines used in this

phase are described in phase C50:

INPUT
OUTPUT
SKISTA
SKILI
SKIEX

EOST
ERROR
OUTTAB
OUTGEV

Symbols used in flow charts:

ALBYTE
ANBYTE

ARAMSK
ARBIT
ARRMSK
ATBYTE
ATPO
AT2BYTE
BISTMSK
BLBYTE

BLPOS
CACOKEY

CATBYTE
CHAR

CHKMSK
CONAR1

CONAR2

CONATT

CONBG
CONLE

CONLEN1

CONLEN2
COPO

CORKEY
CSTRMSK

CUBL
DARMSK

DBEMSK
DEFIMSK

DELMSK
EDATTA

ENDBUF

Length position in LOEDM
Position of number of elements
in attribute table

Mask to test for array

Mask to test for array bit
Mask to test for array expres-
sions

Position of attribute byte
Pointer for attribute table
Position of string-attribute
byte in attribute table

Mask to set bit string in GEN-
VAR

Block byte in end-of-statement
key

Block byte in GENVAD

Key for character-constant
string

Byte to generate the GENVAR
attribute byte

Area to build characteristic of
element

Mask to check data-list item
Address of constant definition
with table key

Address of constant definition
without table key

Area to build attributes and
precisions for the constant
reference

Address of declared-constant
table

Length of constant element
(fixed)

Length of constant definition
with table key and without
length bytes

Length of constant definition
with table key and length bytes
Pointer for constant-attributes
table

Constant reference key

Mask to test for character
string

Current block number

Mask to reset array bit in
CATBYTE

Mask to set the special-item
bit in SPEMSK

Mask to set decimal fixed in
GENVAR

Mask to zero the delete bit
End of variable-attributes
table

End of input buffer +1

EOS
EXPMSK

FEADD
FLAG

FLAG1

GENVAD
GENVAR
GEPMSK

GEPOR

GEVAR
IJKMBL

IJKMBS
IJKMTS
IJKMVC
ILBYTE
IL2BYTE

INBUF
INPMSK
INPO
IOMSK

ISTKEY

KELEN
LABBYTE
LAEBYTE
LEBYTE

LEEL
LEGEOS
LEIN
LENGTHV 1
LENGTV
LEPAR
LETEL
LEV
LEVPOS

LE1BYTE

LE2BYTE

LIBUF1
LIBUF2
LIBUF3
LISMSK
LOBGM

LOEDM
N
NAMBYTE
NATBYTE

NEBYTE

End-of-statement key

Mask to test whether an expres-
sion statement must be generat-
ed

Address of entry in variable-
attributes table

Expression flag byte indicating
characteristics

Flag byte to control output
Generated-variable definition
Generated-variable reference
Mask to test for pseudo
variables

Area for generated pointer
reference

Generated-variable reference
Buffer length (entry in com-
munication area)

Address of buffer area (entry
in communication area)
Address of table space (entry

in communication area)
Variable counter in communi-
cation area

Internal-length position in
attribute table
Internal-length position in
character string

Address of input buffers

Mask to set CHKMSK for GET
Input pointer

Mask to test and set I/0 bit in
EOS

Equal sign element in assign-
ment statement

Length of key

Position of label in LOBGM
Position of label in LOEDM
Position of length byte in
constant

Length of E-key element

Length of EOS key

Length of internal name
Intermediate length of GENVAD
Maximum length of GENVAD

Left parenthesis

Length of two E-key elements
Level of tested structure
Level byte in end-of-statement
key

Character-string length-byte in
attribute-table entry
Length-byte in attribute-table
entry for non-character-string
data

Address of second input buffer
Address of third input buffer
Address of fourth input buffer
Mask to test for the LIST bit
Area to generate loop-begin
macro

Area to generate loop-end macro
Counter

Name position in LOBGM
Position of attribute byte in
variable-attributes table
Position of number of elements
in LOBGM

Phase C55 139

PL/I PLM 8

IBM Confidential

OUBUF Address of output buffer

OUPMSK Mask to set CHKMSK for PUT

OUPO Output pointer

PICBIT Mask to test for picture bit

PICTMSK Mask to test for the picture
bit

POBYTE Pointer position in LOBGM

POIMSK Mask to reset pointer in GENVAD

POINAM Pointer-name position of entry
in attribute table

PSAMSK Mask to test for pseudo arrays

PSSMSK Mask to test for pseudo struc-
tures

PUTMSK Mask to test for PUT bit

RECLEV Recursion switch

REGBYTE Position of register-preserve
byte in statement key

RILPAR Right list parenthesis

RIPAR Right parenthesis

SATBYTE Position of flag byte in state-
ment identifier

SAVIO Statement-identifier save area

SAVMSK Register-preserve mask

SEOS Save area for EOS

SPEMSK Mask to set the special item
bit in the FLAG byte

SPVMSK Mask to test for subscripted
variables

SRCDMSK Mask to set the register-
preserve bits for RC and RD

SRIMSK Mask to test for STRING

STABYTE Save area for statement flag-
byte

STAID Position of statement
identification in statement key

STAKEY Area to build the statement-
identifier key

STKELE Length of statement key

STRMSK Mask to test for structure
expressions

STUMSK Mask to test for structure
variables

TBPO Pointer in table space area

TINPOI (II) Temporary input pointer I (II)

TINPO Temporary input pointer
TINPO1-3) Temporary input pointer 1 (2,
3)
VARBG Address of declared-variable
table
INISC2 -- YB

This routine initializes the phase and
controls the scanning of the input text.

GEPUII -- YC, YD

This subroutine causes the data list items
of GET/PUT statements to be evaluated and
either processed and written out or written
out unchanged. Erroneous data list items
are skipped.

SKISTAT -- YE

Input parameter:
INPO points to the preceding EOS (if entry

140

SKISTAT1 is used) or to the statement
identifier key (if entry SKISTAT2 is used).

This subroutine causes a statement to be
skipped and written on the text output
file. Entry point SKISTAT1 is used if the
preceding and the following EOS are written
out, too. Entry point SKISTAT2 is used if
the statement is to be written out without
the EOS's.

Output parameter:

INPO points to the position following EOS
(if entry SKISTAT1 is used) or to the EOS
of the current statement (if entry SKISTAT2
is used).

EOPH -- YF

This routine is called when an end-of-
program key is encountered.

Those definitions of generated variables
which are not yet written out are now
written out on the text output file fol-
lowed by an end-of-statement key and the
end-of -program key. Phase C60 is fetched
by calling the interface routine IJKAPH
using the calling macro IJKPH.

IDEXPR_--_YG

Input parameter:
INPO points to the beginning of a data list
item.

This subroutine tests a data list item
for specific characteristics and causes
appropriate indicator bits to be set in the
FLAG byte. All bits of the FLAG byte,
except bit 3 are set to 1 if the appropri-
ate characteristics are encountered.

Output parameters:

INPO points behind data list item;

TINPO points to the beginning of data list
item;

FEADD contains entry from variable-
attributes table if first element of data
list item is a variable;

FLAG contains a bit configuration that
reflects the processing performed in this
subroutine.

TEEL -- YH

Input parameter:
ATPO points to the entry in the attribute
table for the variable to be tested.

This subroutine sets bits 5 and 7 of the
FLAG byte to 1 if the appropriate data-item
characteristics are encountered. For
pointer variables, bit seven of this byte
is not set to 1 because these variables may
appear in a valid expression of a PUT
statement.

/ﬁN
",

PL/I PLM 8

IBM Confidential

Output parameter:

FLAG contains a bit configuration that
reflects the processing performed in this
subroutine.

TESTR -- ¥YI

Input parameter:

ATPO points to a structure or to an element
of a structure in the variable-attributes
table.

This routine updates ATPO. The secon-
dary entry point TESTR1 is used if, when
the routine is entered, ATPO points to an
element of a structure.

Output parameters:

ATPO points to the next element or a struc-
ture or to the position following the last
element of the structure.

RH contains 0 if no further element of the
structure is present.

RH contains 4 if the next element is found.
GEEXP1,GEASS1 -- ¥YJ

Input parameters:

RF contains X'OF' if an expression state-
ment is to be generated and X'0OE' if an
assignment statement is to be generated.
This routine generates an expression or an
assignment statement as determined by the
contents of RF. The prefix mask of the
statement key is taken from the statement
key of the input statement into which the
generated statement is inserted. The
register-preserve bits in the statement
flag byte are set by means of the SAVMSK
byte.

To generate the insertion statement, the
routine uses the statement-attribute table
for the input statement into which the
expression or assignment statement is
inserted.

The statement body for the assignment
statement consists of the generated varia-
ble in GEVAR and the expression pointed to
by TINPO (begin) and INPO (end+1). For an
expresion statement, the statement body
consists of the expression only. At the
beginning and end of the assignment
(expression) statement, an EOS is generat-
ed. This is the EOS of the currently proc-
essed statement. If an assignment state-
ment is generated, the generated-variable
reference is written out. It is written
ahead of the assignment statement for a GET
and following the assignment statement for
a PUT.

QUTSVC_-- YK

This subroutine causes a single variable or
a single constant in a data 1list to be
written on the text output file. The
address of the item to be written out is

contained in TINPO; for a variable, the
entry in the variable-attribute table is
contained in FEADD.

In case of a pointer-type variable, the
routine returns to an error call in GEPUII.
Otherwise, the variable is written out as
it appears in the input stream. The same
is done for a character-string constant.

For a constant other than character
string, the constant definition is written
out as it appears in the constant-
attributes table, but with the DELETE bit
set off. The constant reference is written
out in a format as follows:

YT T YT YT T TTTTT YT T YT T T T TTT YT T TTTT T

| | Intern. Attri-| | Pre- | | |
|E9| name butes |E9| cision|E9| 0 |

OQUTCOND =~ YK

Input parameter:
RC contains the value of FEADD.

This subroutine generates a constant
definition in the form of a constant-
attribute table entry. This definition is
generated for a constant, the address of
which is contained in RC. The delete bit
is set to 0 and the definition is written
out on the text output file.

OUTSTR _-=- YL

Input parameter:
FEADD contains the address of the entry in
the structure-attributes table.

This subroutine causes a structure to be
written out element by element. Each
element is tested for validity, and for
each element a characteristic is built up
and written out. The subroutine returns
control to GEPUII for an error call if an
invalid element is found.

OUTPCT -- ¥YM

This subroutine writes out a single numeric
field with attributes other than float.

The address of the numeric field is con-
tained in FEADD. The subroutine generates
a variable with the attributes decimal
fixed and an assignment statement.

If the numeric field is an array, a
pointer is generated in addition. This
pointer replaces the numeric field in the
assignment statement. One each internal
loop macro is generated to precede and
follow the assignment statement when this
is written out. Those bits in SAVMSK that
have been set prior to the generation of
the assignment statement are reset before
control is returned from this subroutine.

Phase C55 141

PL/I PIM 8

IBM Confidential

OUTSBST and_ OUTSPV_-- YN

When entered via entry point OUTSBST, the
subroutine writes out pseudo variables that
appear in a data list of a GET statement.
For pseudo variables in a PUT statement, an
expression statement is generated and con-
trol is returned immediately to the
appropriate point in GEPUII.

For SUBSTR, a variable is generated with
the attributes of the first argument in the
substring variable. For UNSPEC, a length
of 64 bits is generated. Then, an assign-
ment statement is generated for both.

The subroutine is entered via OUTSPV for
subscripted variables. A variable and an
assignment statement are generated.

CONLBE -- YO

This routine generates the internal loop-
begin and loop-end macros for an array, the
address of which is contained in FEADD.

The bits (in SAVMSK) to preserve registers
RC and RD are set to 1. The generated
loop-begin macro is written out on the text
output file.

GEVA/GEPOI -- YP

This routine builds up both the generated
variable definition (GENVAD) and the
generated variable reference (GENVAR).

When this subroutine is entered the
first time for a program, the value con-

142

tained in the variable counter in the com-
munication region is used as internal name
and inserted in GENVAD and GENVAR. The
block and level numbers are obtained from
the EOS of the current statement and
inserted in GENVAD.

When a new block is reached or when
specified by RG, GENVAD is written out (see
OUTGEV) before the above described opera-
tions are performed.

In all other cases, the same internal
name is used and, hence, the same storage
area is used for these variables. The
length is updated to indicate the length
value of the longest variable so far proc-
essed. GENVAD has the attributes CHARACTER
and AUTOMATIC. The attributes of GENVAR
are indicated by register RG.

If the entry point GEPOI is used, a
pointer variable is generated.

Input parameter:
Register RG contains:

4 to indicate that the subroutine is to
use the attribute of the element whose
address is in FEADD;

8 if a pointer variable is to be gener-
ated a new GENVAD is to be used;

12 to indicate that the desired attri-
butes are coded decimal (length must
be derived from the variable whose
address is in FEADD) ; and

16 to indicate a bit string of a length
of 64 bits.

™
o

PL/I PLM 8

IBM Confidential

PHASE PL/IC60 (I/0 SCAN III) -- ¥YS, YT

In this phase, the format list of the
GET/PUT statement, the FORMAT, OPEN and
CLOSE statements are processed.

The format list items are checked for
validity. For a remote format item, a move
macro may be generated.

The OPEN/CLOSE options are checked for
errors and in some cases, assignment state-
ments are generated.

The second byte of the statement iden-
tifier key is set to X'U4F' in a CLOSE and
to X'8F' in an OPEN statement. This infor-
mation is used by the phases D75 and D8O0.

The GET/PUT statement is scanned for the
format 1list, the preceding part of the
statement is written out and a checking
routine is entered. After the check, a
test is performed to determine if the
length of the 1list is not greater than
three buffer lengths. 1In that case, an
error message is given and a dummy format
list is written out. Otherwise, the format
list is written out without further chan-
ges. The process is repeated if further
format lists are present.

There is a difference between
programmer-specified labels (format labels)
and generated labels in the FORMAT state-
ment. The generated labels are written out
as they appear in the text input; the for-
mat labels are handled as described below.

First, the list of the FORMAT statement
is tested in the same routine as the
GET/PUT format list. Then, a test is per-
formed to determine i1f the statement is
preceded by at least one format label and
if the list is not greater than three buf-
fer lengths. If an error occurs, a message
is written and the statement is deleted
from the text string. Otherwise, the
statement is written out until the end-of-
statement key excluding the labels. The
format labels are written out behind the
list in the form:

byte 0
bytes 1-2

key X'ED'
internal name

The names are also summarized in the
format label table which is written out
with record length 32 (16 names). A test
is performed to determine if no more than
127 format labels appear in a program.

The format lists of a GET/PUT and of a
FORMAT statement are processed by the same
checking routine. As the validity of some
format items is dependent on the type of
the file to which the statement belongs, an
actual check is possible only for the
GET/PUT statement. The statement flag byte
which is used for this check is set in such
a way that the check is always right for a
FORMAT statement.

For control format items (except X) the
statement is tested if it refers to a PRINT
file.

The nesting depth of iteration groups,
(i.e., an iteration factor followed by
enclosed format items or by a single format
item) is examined to determine if it is not
greater than five or two for GET/PUT or
FORMAT statements. The depth of a group
containing a remote format item is examined
to determine if it is not greater than two.

If A and B format items appear in a GET
statement, a test is performed to determine
if a field-length constant follows.

If a remote format item appears in a
FORMAT statement, the processing of the
statement is terminated with an error call,
and the statement is deleted from the text
string. In a GET/PUT statement, the label
designator in a remote format item is
examined first to determine if it is a
constant. In this case, the label is exam-
ined if it is internal to the same block as
the GET/PUT statement. For each remote
format item with label variable, an inter-
nal name is reserved which replaces the
name of the label variable in the remote
format item. Also, a move macro is gener-
ated and written out which will effect the
storing of the label variable value in a
generated constant with the reserved name
which is generated by the macro generation
phase for a remote format item.

In the OPEN/CLOSE statement, the name in
the file option is examined first to deter-
mine if it is a file name or file-name
parameter.

For a file name or file-name parameter,
the appropriate file block is fetched from
the table file, and a test byte and a flag
byte of the following format are construct-
ed:

Test byte. The bits are set to 1 to indi-
cate the following or are not used.

Phase PL/IC60 143

PL/I PLM 8

IBM Confidential

Bit 0-4 always zero
5 1 if PRINT is specified
6 zero
7 always 1

Flag byte. The bits are set to 1 to indi-
cate the following or are not used.

Bit 0-3 always zero
4 1 if neither INPUT, nor OUTPUT,
nor UPDATE and BACKWARDS
5 1 if PRINT
6 zZexro
7 1 if INPUT, OUTPUT, or UPDATE is
specified

If the INPUT option is present, bit 4 of
the flag byte is reset. If INPUT or OUTPUT
is present, bit 7 of the flag byte is con-
verted. If PAGESIZE is present, bit 5 of
the flag byte is set.

After all bits have been set, the flag
and test bytes must contain the same bit
configuration. Otherwise, an error message
is written out. For the PAGESIZE expres-
sion, an assignment statement is generated
with a generated binary-fixed variable as
left side. This is inserted into the PAGE-
SIZE option and written out followed by the
generated variable. This process is
repeated for each file group. The state-
ments are written out in the sequence the
input became available with assignment
statements possibly included.

DESCRIPTION OF ROUTINES
Note: For the description of SKISTAT refer

to phase C55. For the descriptions of the
following routines, refer to phase C50:

INPUT SKILI OUTTAB
QUTPUT EOST GEVAOQ
SKISTA ERROR OUTGEV

Symbols used in flow charts:

ATBYTE Position of attribute byte in
variable table entry

AT2BYTE Position of attribute byte in
variable table entry

BLBYTE Position of block number in
variable table entry

CHAR ED-KEY field with label name

COMOMA Routine for constructing move
macro

CONBG Begin of declared constants
table

CONTB Routine for constructing test
byte

COUNT Counter for format labels

COVAMS Mask for testing label con-
stant

CUBL Current block number

EDATTA End of declared variables

table

144

EDFLTA
ENDBUF
EOS
EOST
ERROR
FEFIBL

FIBL

FILMSK
FLBYTE
FOLATA
FORMAT

FORLI
FORMSK

GEASS3
GEPUF

GEPUMS
GEVA

GEVAR

IIOKEY
IJKMBS

IJKMBL
IJKMTT
IJKMTS

IJKMN
IJKMJT

IJRMVC

IJKPO
IJKPH

INBUF
INPO
INPUT

INPUT
IOMSK
ISTKEY

LABMSK
LABYTE

LC65,LC85

LEDLM
LEEL
LEGEOS

LEIN
LELPAR
LETEL
LIBUF1
LIBUF2
LIBUF3
MOMAC

End of format label table
End of input buffers+1
End-of-statement key
End-of-statement routine
Error handling routine
Routine for reading in
appropriate file block

File block area

Mask for testing file name
Flag byte position in EOS
Format label table

Routine for processing format
statements

Dummy format list

Mask for setting flag byte
for format statement

Routine for generating
assignment statements
Routine for processing
GET/PUT statement

Mask for testing GET/PUT
Routine for generating varia-
bles

Generated variable
(reference)

ED-key

Begin of buffer area; entry
in communication area

Buffer length, entry in com-
munication area

Begin of TABTAB, entry in
communication area

Begin of table space, entry
in communication area
Interface move routine

Job information bits
(communication area)
Variable counter, entry in
communication area

Interface output routine
Interface routine for fetch-
ing a new phase

Begin of input buffers

Input pointer

Routine for filling input
buffers

Input Routine

Mask for testing I/O bit
Internal equal sign for
assignment statement

Mask for testing label varia-
ble

Position of attribute byte in
variable table entry
Position of C65 and of C85,
skip bit in communication
area

Length of label macro

Length of E-key element
Length of end-of-statement
key

Length of internal name

Left list paranthesis

Length of two E-key elements
Begin of second input buffer
Begin of third input buffer
Begin of fourth input buffer
Move macro area

®

®

PL/I PLM 8

IBM Confidential

NAMBYTE

NEWPH
OPCLO

OUBUF
OUPO
ouTPUT, 1
OUTTAB
OUTGEV
POINAM
PRINTMSK
PUTMSK
RILPAR

SATBYTE

SAVIO
SBC65,SBC85
SCAFO

SEOS
SKISTA
SKISTAT1,2
SKIDLI

SKILI
SKIEX3

SKISTAT1
STAKEY

STBYTE
STKELE

STRBYTE

TBPO

TBYTE1
TINPO,1,2,3,4
TINPO1

TINPO2

TINPO3

TINPO4

VARBG
ZTAB18

ZTOUT

Position of internal name in
label macro

Parameter for IJKPH

Routine for processing
OPEN/CLOSE statements
Address of output buffer
Output pointer

Output routine

Routine for writing out vari-
able and constant table
Routine that writes out gen-
erated variable definitions
Position of pointer name in
variable table entry

Mask for testing print files
Mask for testing PUT

Right list parenthesis

Position of statement flag
byte in statement identifier
key

Statement identifier save
area

Skip bit for IJXC65 and for
IJXC85 in communication area
Routine for scanning format
list

End-of-statement key save
area

Routine for skipping to EOS
or end of buffer

Routine for skipping and
writing out statements
Routine for skipping data
list
Routine
Routine
sions
Routine
ments
Area for building the entire
statement key

Statement flag byte save area
Length of statement identifi-
er key

Position of attribute byte in
variable table entry

for
for

skipping lists
skipping expres-

for skipping state-

Pointer in table space

Test byte

Temporary input pointers
Temporary input pointer
pointing to begin of format
labels

Temporary input pointer
pointing to end of statement
Temporary input pointer
pointing to begin of state-
ment

Temporary input pointer
pointing to end of format
labels

Begin of declared variable
table

Entry in TABTAB for format
label table

Routine that writes onto
table file (interface macro)

Initialization and Scan -- YU - YV

The functions of this routine are the same
as in phase C50.

This routine causes the processing of GET
and PUT statements.

FORMAT -~ YY

This subroutine processes FORMAT state-
ments.

SCAFO_-- YZ

This routine checks the format lists of
FORMAT and GET/PUT statements. In case of
an error, an error message is written out
and the scan proceeds. If an R format item
is detected in a FORMAT statement, the
routine returns to the initialization and
scan routine, and the wrong FORMAT state-
ment is deleted from the text string.

OPCLO_--_ZA

This subroutine processes OPEN and CLOSE
statements.

CONTB_--_ 7B

The bits for INPUT, OUTPUT, UPDATE, BACK-
WARDS, PRINT are set in the flag and test
bytes according to the declaration.

COMOM -~ ZC

This routine causes a move macro for a file
name parameter and a label variable in an R
format item to be constructed, and an ED-
key element with a new internal name in the
text string to be inserted. The macro is
written out onto the text output file. The
new name is used as the name of the
constant in the parameter 1list into which

the argument -- corresponding to the file
name parameter or current value of the
label variable -- is moved at object time.

The move macro has the following format:
Attt Sttt T
| F2 |Length=| X'76'
| |16 |
[S —— T —

T _—_——— -
|Operand 1|Operand 2 |
| | l

IS, —_4 -4

Input Parameter:

RG points to the entry of the file name
parameter or label variable in the delared
variables table.

SKIDLI -~ ZD

A data list which may contain entire state-
ments is skipped.

Phase PL/IC60 145

PL/I P1IM 8

IBM Confidential

SKIEX3 -- ZE

The input pointer is set to the address
behind an expression. BAn expression means
a string of E- and F-key elements delimited
by an end-of-statement key or by a right
list parenthesis.

Input Parameter:
INPO points to the begin address of an
expression.

Output Parameters:

INPO points to the end of an expression;
RA - zero if end is EOS, or four if end is
right list parenthesis.

EOPH -- ZF

This routine is called after reaching an
end-of-program key. First, the last gener-
ated variables (their definitions) are
written out followed by an end-of-statement
key and the end-of-program key. If format
labels appeared in the program, the last
record of the format-label table is written

146

out on the table file. The output buffer
is written out on the text output file.
Phase C65, C85, or D00 is called via the
interface routine IJKPH depending on the
skip bits in IJKMJT.

GEASS3 -- 7G

In this routine, an assignment statement
generated.
provided by RF; the prefix mask of the
statement key is taken from the input
statement in which the statement is gener-
ated. The statement attribute table is
that of the statement in which the state-
ment is built. The statement body is a
generated variable (GEVAR), and IST-key,
and the expression pointed to by TINPO
(begin) and INPO (end + 1).

The generated variable is also written
out after the end-of-statement key of the
assignment statement.

Input Parameter:
RF - X'0E', key for assignment statement.

is
The statement identifier key is

(::

AT

PL/I PLM 8

IBM Confidential

PHASE PL/IC65 (I/0 SCAN IV) -- $A, $B

In this phase, all record-oriented I/O
statements, i.e., READ, WRITE, LOCATE, and
REWRITE and the DISPLAY statement are proc-
essed.

In the second byte of the statement
identifier key, information about the spe-
cial type of the statement is made availa-
ble for the phases D75 and D80. The right-
most four bits of the byte contain the
following:

x'00° if READ SET

X'01°* if READ SET KEY
X*'03"' if READ INTO

xrou if READ INTO KEY
X'06" if REWRITE

X'07°' if REWRITE FROM
Xx'08" if REWRITE FROM KEY
X'09° if WRITE FROM

X'0A* if WRITE FROM KEYFROM
X'0B" if LOCATE SET

X*'0F"' if DISPLAY

The leftmost four bits contain the fol-
lowing:
0 for consecutive buffered files,
1 for consecutive unbuffered files,
2 for regional files.

Record I/O Statements -=- $A

All record-oriented I/0 statements are
processed in one routine. For the same
option appearing in any statement, the same
action is taken.

The record variable is tested for valid-
ity. If the variable in the SET option is
subscripted, an assignment statement is
generated.

For the KEY/KEYFROM expression, an
assignment statement is also generated.
The statements are written out with the
options in a fixed order and with included
assignment statements, if any.

During processing, a FLAG and a TEST
byte are constructed depending on the file
declaration and the format of the state-
ment.

The TEST byte contains the following:

bit 0 - 1 if READ
2 - 1 if KEY/KEYFROM
3 - 1 if WRITE
4 - 1 if LOCATE
5 - 1 if REWRITE
6 - 1 if DIRECT
7 - 1 if DIRECT

The FLAG byte contains the following:

bit 0 = 1 if INPUT or UPDATE or UNBUFFERED
without INPUT, OUTPUT, UPDATE

2 - 1 if DIRECT

3 - if OUTPUT or DIRECT/UPDATE or
UNBUFFERED without
INPUT/OUTPUT/UPDATE

4 - 1 if BUFFERED OUTPUT

5 - 1 1if UPDATE

6 - 1 if KEY/KEYFROM

7 -1 if FROM/INTO

The condition code resulting from the
instruction TM FLAG, TEST must be 1.

Display (General) -- $B

In the DISPLAY statement, for an expression
other than a single, unsubscripted variable
that needs no conversion or other than
constant, an assignment statement is gener-
ated. In addition, for a subscriped name
in the REPLY option, if present, an assign-
ment statement is generated.

The statements are written out in the
sequence the input became available, i.e.,
with assignment statements included.

DESCRIPTION OF ROUTINES
Note: The routine SKISTAT is described in

phase C55; the following routines are des-
cribed in phase C50:

SKIEX SKILI ERROR
INPUT EOST OUTGEV
OUTPUT COMOMAO OUTTAB
SKISTA

Symmbols used in flow charts:

ATBYTE Relative position of attribute
byte in variable table entry
Relative position of second
attribute byte in variable
table entry

Routine for checking record
variable for validity

Begin of declared constant
table

Routine for setting test and
flag bits appropriate to the
file

Field for constructing second
half of statement identifier
flag

Mask for testing character
string

Mask for constructing charac-
ter string

AT2BYTE

CKREVA
CONBG

CONTBR

COUNT

CSTRMSK

CSTMSK

Phase PL/IC65 147

PL/I PIM 8

IBM Confidential

EDATTA
ENDBUF
EOST
EOS
ERROR
FEFIBL

FIBL
FILMSK
FLAG,2
GEASSR, 1,2

GENVAR
GEVARE

GEVAR
IJKMBS

IJKMBL
IJKMTS

IJKMN
IJKMVC

IJKPO
IJKMJT
IJKPH

INBUF
INFRAD
INPO
INPUT
ISTKEY

KELEN
KEYAD

KEYTAD
LC85

LEEL
LEGEOS
LENGTHV 1
LENGTHV
LEPAR
LETEL
LIBUF1
LIBUF2
LIBUF3
MOMAC

N
NATBYTE

NEWPH
OTSEKT

OUBUF
OUPO
OUTGEV

OUTPUT, 1,2,3
OUTTAB

148

End of declared variable table
End of input buffers+1
End-of-statement routine
End-of-statement key

Error handling routine

Routine for reading file block
from table file

File block area

Mask for testing file

Flag byte

Routine for generating assign-
ment statements

Generated variable

Routine for generating varia-
bles

Generated variable reference
Begin of buffer area, entry in
communication area

Buffer length, entry in com-
munication area

Begin of table area, entry in
communication area

Move routine interface
Variable counter in communi-
cation region

Interface routine for writing
onto the text output file

Job control bits, communi-
cation area

Interface routine for fetching
a new phase

Begin of input buffer

Holds begin of INTO/FROM

Input pointer

Input routine

Internal equal sign for
assignment statement

Length of E-key

Holds begin of KEY/KEYFROM
option

Holds begin of KEYTO option
Position of C85, skip bit in
IJKMIT

Length of E-key element

Length of end-of-statement key
Intermediate length of GENVAD
Maximum length of GENVAD

Left parenthesis

Length of two E-key elements
Begin of second input buffer
Begin of third input buffer
Begin of fourth input buffer
Area for constructing move
macro

New internal name

Relative position of attribute
byte in variable table entry
Parameter for IJKPH

Routine for writing out SET
and KEYTO option

Address of output buffer
Output pointer

Routine for writing out gener-
ated variable definitions
Entries in output routines
Routine for writing out
declared variable and constant
table

PICBIT Mask for testing numeric AN
fields N
POIMSK Mask for constructing pointer ”
PTMSK Mask for testing pointer
REW Parameter for IJKPH
RILPAR Right list parenthesis element
RIPAR Right parenthesis element
SAVIO Statement-identifier key save
area
SBC85 Skip bit for C85
SEOS EOS save area
SETAD Holds begin of SET
SETID Area for constructing the
assignment statement key
SKISTAT2 Routine for skipping state-
ments
SKISTA Routine for skipping to EOS or
end of buffer
SKILI Routine for skipping lists
SKIEX Routine for skipping expres-
sions
STKELE Length of statement identifier
key
STRSAV 1-6 Save areas for generated vari-
able and expression for con-
structing assignment statement
STRBYTE Offset of file identification
byte in variable table entry
SWITCH Parameter for IJKPH
TBPO Declared variable and constant
table pointer
TEBYTE Test byte
TINPO,1,2,3,5Temporary input pointers s
VARBG Begin of declared variable Lo,
table -
Initialization, Scan -- $C , $D

The functions of this routine are the same
as in phase C50.

Record-Oriented 1/0 Routine -- $E - 3G

See section Record I/O Statements.

CKREVA -- $H

This routine tests the record variable for
validity. The record variable must not
have the attribute DEFINED, and must not be
a parameter, nor an entry name; the record
variable must be a level 1 variable.
Structures must begin on double-word boun-
daries. The length of the record variable
must not be greater than the block size of
the appropriate file. If the appropriate
file has variable length records, the
length of the record variable divided by 8
must yield a remainder of four.

If the appropriate file has fixed-length
records, the length of the record variable
must be equal to record size.

Input Parameters: @:;
INPO must point to the record variable.
FIBL contains the appropriate file block.

PL/I PLM 8

IBM Confidential

OTSEKT -- $I

In this routine, the SET and the KEYTO
option parameter are written out.

If the variable is subscripted, a varia-
ble with the same attributes is generated
except the storage class which is static.
This generated variable is written out as
option parameter. The position of the
original variable and the generated varia-
ble are saved and used to construct an
assignment statement at the end of the
statement.

Input Parameter:

RG: if four, routine entered from SET
option;
if eight, routine entered from KEYTO
option.

CONTBR --_$J

In this routine, all bits in the TEST and
FLAG byte and in the first half of the
statement-identifier flag byte are set
according to the appropriate file declara-
tion.

Input Parameter:
FIBL contains the appropriate file block.

Output Parameters:
Some bits in TEST, FLAG, and SAVIO.

DISPLAY -+ $K

See section Display (General).

GEVARE -- $L

In this routine, both the generated varia-
ble definition (GENVAD) and the generated
variable reference (GENVAR) are created.

If the name field in GENVAD is zero, an
internal name is fetched from the variable
counter in the communication region and
inserted into GENVAD and GENVAR. If RG is
zexro, the variable created earlier is writ-
ten out at the beginning of the routine and
the variable just being created is written
out at the end of the routine. Otherwise,
the same internal name is used. Thus, the
same amount of storage will be used for
these variables. The length is updated to
hold the greatest value of all variables.

GENVAD has the attributes character
string and static. The attributes of GEN-
VAR are specified by RG.

Input Parameter:
RG if zero or eight, a character string is
generated, the length of which is speci-

fied in KEYLEN
if four, a pointer is generated.

The output parameters GENVAR and GENVAD
have the following format:

[DR R - TTT T T 1
| |Int. | | (. | |
|E4|Name |EU|Attr.|EU4|Prec.|EL4]|Zero |
[N I WY [SUNVN IS U WUV SIS |
GENVAR

[y T T T T T T T T T T T
| [Inte | | | | | | |
|FO]Length|Name |00|80{00]10{08]00|
| PN I I 1 4 1 i 1_1__1
GENVAD

The part of GENVAD beginning with Inter-
nal Name is repeated as often as needed
with the internal name = zero.

GEASSR, GEASSR1 and 2 -- $M

In this routine, an assignment statement is
generated. The prefix mask of this state-
ment key is taken from the input statement
in which the assignment statement is gener-
ated. The statement attribute table is
taken from the input statement in which the
assignment statement is built.

The statement body for GEASSR consists
of a generated variable contained in GEN-
VAR, an IST-key, and an expression pointed
to by TINPO and INPO. In GEASSR2, the
order of the generated variable and the
expression is changed.

In GEASSR 1, the statement body consists
of an expression pointed to by either
STRSAV3 and STRSAV2, or STRSAV6 and STRAVS,
respectively, an IST-key, and a generated
variable, located in either STRSAV1 or
STRSAVY .,

At the beginning and at the end of the
statement, an EOS is generated which is
that of the processed statement and which
must be correct. The first EOS written out
by GEASSR1 has the I/O bit inserted.

EOPH --_ $N

This routine is called when an end-of-
program key is reached. First, the last
generated variables, i.e., their
definitions, are written out followed by an
end-of-statement key and the end-of-program
key. The output buffer is written out on
the text output file.

Phase C85 or C95 is called via the

interface routine IJKPH as determined by
IJKMJT.

Phase PL/IC65 149

PL/I PLM 8

IBM Confidential

This phase is called if the source program
contains DO, GET, or PUT statements. It
replaces certain DO statements and END (of
group) statements with macros and other
statements, which are then processed in a
subsequent phase,

The DO statements processed in this
phase are of the following form:

C1 TO C2;

C1 TO C2 WHILE
(expressionl) ;

C1 TO C2 BY C3;

C1 TO C2 BY C3 WHILE
(expressionl) ;

C1 BY C3 TO C2;

C1 BY C3 TO C2 WHILE
(expressiont) ;

1. DO scalar
DO scalar

DO scalar
DO scalar

DO scalar
DO scalar

C1, C2, C3 must be constants (either
binary fixed or decimal fixed with
scale factor 0). The scalar must be
binary fixed. The decimal fixed con-
stants are converted to binary fixed to
minimize object time conversions.

2. DO scalar = expression 1 TO expression
2 BY C3;
DO scalar = expression 1 TO expression
2 BY C3 WHILE
(expressionl) ;

C3 must be an (optionally signed)
arithmetic constant,

The END (of group) statements processed
in this phase are those associated to DO
statements listed above.

Phase Input and Output

The input is a string of 3-byte elements
and/or elements of variable length.

The output is similar to the input,
except that macros and new statements
replace DO statements and END (of group)
statements., Substituted statements and
macros are:

e The IFFALSE statement generated when a
TO and/or WHILE occurs in a specifi-
cation. (See description of phase C25
for more details.)

e The Begin of DO-Head statement, and the
End of DO Head statement. These two
statements indicate that all statements
and macros included by them belong to
one DO-Head. Since the only function of
these statements is to indicate the

150

PHASE PL/IC85 (DO STATEMENT I) -- 3$0
beginning or ending of a DO Head, no
statement body is required. The format

of these two statements is as follows:

Byte (s) Contents
1 statement identifier key X'EO'
2-3 X'0001*' for Begin of DO Head
X'0101* for End of DO Head
4-6 not relevant
7 EOS key X'EA'
8-12 not relevant

e The Define Label macro,
e The Branch macro, and

e Generated label constants.
(For details, see description of phase
C25.)

Generated temporaries (generated variables
with unknown attributes) are used to hold
the 'frozen' values of expression 1 and
expression 2 (see PL/I Langquage
Specifications) .

These temporaries are not defined by
macros like generated labels and generated
label variables, but solely by their occu-
rence in a statement referencing them.
Storage for these temporaries is assigned
in subsequent phases, The format of gener-
ated temporaries is as follows:

Byte (s) Contents

1 key X'E8' for generated temporar-
ies
2-3 X*'0000* for expression 1
examples)
X'000C' for expression 2 (2T in
examples)

(1T in

Examples for Input/Output of Phase C85

Legend to the examples:

Statements (as opposed to macros) have
statement identifiers consisting of capital
letters (for instance: IFFALSE, SET, READ
etc.)

Macros are identified by lower case letters
(for instance: define label, branch etc.)

Generated labels are written like 1L, 2L,
3L etc.

Note: The input as well as the output is a
string of 3-byte elements and/or elements
of variable length.

A

(:
\
; /

PL/I PLM 8

IBM Confidential

1. DO I=C1 TO C2;

alpha

END;

2. DO I=C1 TO C2
WHILE exl;

alpha

END;

3. DO I=C1 TO C2
BY C3;

alpha

END;

4. DO I=C1 TO C2
BY C3
WHILE exl;

alpha

END;

5. DO I=ex1 TO ex2
BY C3;

alpha

END;

BEGIN OF DO-HEAD;
SET I=C1;

branch 1L

define label 2L
SET I=I+1;

define label 1L
IFFALSE 3L I<=C2;
END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET I=C1;

branch 1L

define label 2L
SET I=I+1;

define label 1L
IFFALSE 3L I<=C2;
IFFALSE 3L exl;
END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET I=C1;

branch 1L

define label 2L
SET I=I+C3;

define label 1L
IFFALSE 3L I<=C2;*
END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET I=C1

branch 1L

define label 2L
SET I=I+C3;
define label 1L

IFFALSE 3L exl;
END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET 1T=ex1;

SET 2T=ex2;

SET I=1T;

branch 1L

define label 2L
SET I=I+C3;

define label 1L
IFFALSE 3L I<=2T;*

END OF DO-HEAD;
alpha

branch 2L
define label 3L

6. DO I=ex1 TO ex2 BEGIN OF DO-HEAD;
BY C3 SET 1T=ex1;
WHILE (exl); SET 2T=ex2;

. SET I=1T;

alpha branch 1L

. define label 2L
o SET I=I+C3;
END; define label 1L

IFFALSE 3L I<=2T;*
IFFALSE 3L (exH);
END OF DO-HEAD;

alpha

branch 2L
define label 3L

*If C3 is positive, I <= C2 is used.
If C3 is negative, I >= C2 is used.

Phase Performance

The input stream is scanned for DO state-
ments and END (of group) statements. All
other statements are bypassed and put out
unchanged. If a DO statement is encoun-
tered, the type of the statement is tested.
If the statement is to be processed by this
phase, a 1 is entered into STACK and the
statement is processed. If the statement
is to be bypassed, a 0 is entered into
STACK. The pointer to STACK is incremented
by 1.

If an END (of group) statement is
encountered, the pointer to STACK is decre-
mented by 1, and the last entry in STACK is
tested. If this entry is a 1, the state-
ment is processed. If this entry is a 0,
the statement is bypassed.

The statement attribute tables of the
statements processed in this phase are
stored in the table space for later use.
The appropriate table stored in the table
space will be attached at the beginning of
each statement. Note that the macros gen-
erated in this phase are not prefixed by a
table.

Tables and Pointers

STACK (with pointer STAP) consists of 15
elements, each 1 byte long. A=1 in
such an element means that the asso-
ciated DO statement has been proc-
essed and that the current END (of
group) statement must be processed.

A=0 means: bypass this statement.

Phase PL/IC85 151

PL/I PLM 8

IBM Confidential

KELLER (with pointer KEP) consists of 15
elements, each 1 word long. The
first half-word of each element
contains a 'start label', the second
half-word contains an ‘exit label".
(A "start label" is the generated
label 2L in I/O examples 1 to 4; an
"exit label" is the generated label
3L in I/O examples 1 to 4.) The
information stored in this stack is
used when processing END (of group)
statements.

PIN, IPOINT, POINT are input pointers

POUT, OPOINT are output pointers

DESCRIPTION OF ROUTINES

A routine is called open if
control is transferred to it

by

(Open)

1. a simple B instruction,
in which case control is
also returned by a B
instruction, or

2. some in-line coding that
requires a separate des-
cription.

A routine is called closed if
control is transferred to it
by a BAL instruction. Con-
trol is returned by a BR
instruction in this case.

(Closed)

RO, R1,..

DOPH --_ $P

This is the "master" routine of this phase.
DOPH sets pointers, loads registers, etc.
and reads the first 4 records into input
buffers 1 to 4.

Rn: symbolic registers.

DOPH scans and puts out the input stream
until a specific DO statement or an asso-
ciated END statement is encountered. 1In
this case, the statement attribute table is
stored in the table area. If DOPH encoun-
tered a DO statement, ANDOST is called.
ANEND is called if DOPH encountered an END
(of group) statement. Before ANEND is
called, the statement identifier END (of
group) is replaced by the statement iden-
tifier NOP. The scan continues until the
end-of-program key is encountered.

ANDOST (Open) -- $0 - $S

This routine processes specific DO state-
ments. The code put out by this routine is
described in the I/O examples.

If a DO statement contains errors or if
the table space is not large enough to hold
additional entries to the attribute table,
the statement is passed on unchanged to the
next phase.

152

ANEND (Open) =-- $T

ANEND is called only if the associated DO
statement has been processed in this phase.
It decrements KEP by 4 and puts out the
macros

'*Start Label'
'Exit Label!'

branch
define label

'Start Label' is taken from O (KEP) .
'Exit Label' is taken from 2 (KEP) .

BSAC (Open) -- $T

The routine stores the statement attribute
table for variables and constants in the
table area.

BYPA (Closed) =-- $U

The routine stores either the statement
attribute table for variables or the state-
ment attribute table for constants in the
table area. Upon exit, BSAC7 contains the
address of the next unoccupied byte in the
table area, the statement body begins in
input buffer 1, and BSAC6 contains the
address of the first byte of the attribute
table for constants in the table space.

COSC_(Closed) -- 3V

The routine determines whether an expres-
sion in a DO statement consists of a sin-
gle, optionally signed BINARY FIXED con-
stant or of a DECIMAL FIXED constant with a
scale factor of 0. If the expression is of
any other type, COSC branches to UNSUC. If
one of the above specified expressions is
encountered, all prefix operators (+ and -)
are reduced to one. Example: + -~- +
results in -.

If the expression is a BINARY FIXED
constant, the corresponding attribute table
entry is stored in ENTRI, PIN is increment-
ed by 3, and the program returns,

If the expression is a DECIMAL FIXED
constant with a scale factor of 0, the
expression is tested for being greater than
2147483647 (= 2**31 - 1). If yes, the
program branches to UNSUC. If no, OLD is
set to 1, the DECIMAL FIXED constant is
converted to BINARY FIXED, a new attribute
table entry is created in ENTRI, PIN is
increased by 1, and the program returns.
Upon return, PIN points to the next byte
following the constant.

ENDX (Closed) =-- $W

Upon entry, R1 contains the start address
of an expression. Upon return, R1 contains
the end address of an expression.

PL/I PLM 8

IBM Confidential

EOST, JEOSA1 (Closed) =-- $Y

The routine arranges the contents of input
buffers 1 to 4 so that the currently
scanned EOS is in input buffer 1 (this is
done by moving and by reading in new
records) . It puts out the EOS and the
exror codes attached to it. Any addition-
ally generated error codes are also put
out.

ERROR, JERRAI1

(Closed) --_ $X

This routine is described in phase A35.

GEOS (Closed) -- $W

The routine moves the input pointer PIN
until the last byte of the statement body
is reached. It stores the value of PIN in
IFPH96.

GSN (Open) =-- $W

This routine checks for error-free state-
ments. If the bit checked is on, the
statement contains an error and the routine
returns without any further action. If the
bit is off, the end-of-statement delimiter
is stored in GSN4 and the routine returns.

JITRNA1 (Closed) -- 372

This is the output routine. Register BYZ
contains the number of bytes to be put out;
register PIN contains the start address of
these bytes. One output buffer is used.

If the string to be put out fits into the
remaining unoccupied space of the output
buffer, the string is moved into the buf-
fer. BYZ is added to POUT to update the
output pointer.

If the string to be put out it too big,
an appropriate part of the string is moved
to fill the output buffer to its capacity.
Then the contents of the buffer are written
onto the output medium. POUT is reset to
the start address of the buffer. BYZ is
decremented by the number of bytes moved
into the buffer. PIN is incremented by
that number. Then JTRNA1 is repeated until
output is completely accomplished.

LGEN (Closed) -- $X

LGEN generates a label constant of the
following format:

byte 0 key for generated label constant
X'EE'
bytes 1-2 number of the constant

The number in bytes 1 and 2 of the label
constant is obtained by adding 1 to the
counter IJKMVC each time LGEN is called.
Upon exit, the generated label constant is
stored right justified in R1.

IJKMVC is the "variable and constant
counter" of the compiler. If its value
exceeds 65534, an error is indicated.

STEP (Closed) -- 3$X

STEP tests the high-order 4 bits of the
byte selected by PIN. If these 4 bits are
set to X'E', PIN is incremented by 3. If
these bits are set to X'F', PIN is incre-
mented by the contents of the two bytes
following the byte to which PIN is point-
ing. If these bits are set to any other
value, a compiler error occurrs and a dump
is initiated.

Phase PL/IC85 153

PL/I PLM 8

IBM Confidential

This phase is called if the source program
contains at least one DO, GET, or PUT

statement.

All DO and END (of group)

statements, bypassed by the first DO phase,
are now processed.

Phase C86 performs the following func-

tions:

It analyzes all DO nests,

replaces all DO statements and END (of
group) statements by macros and other
statements which are then processed by
subsequent phases, and

checks whether the restrictions on the
nesting of DO statements and on the
number of repetitive specifications are
obeyed.

Phase Input and Output

The input is a string of 3-byte elements
and/or elements of variable length. The

complete DO or END (of group)

statement

body must be available in the input buf-
fers.

The output is similar to the input,

except that macros and new statements are
substituted for DO and END (of group)

statements.

The following new statements

may be substituted:

154

The IFFALSE statement.

This statement is generated whenever a
TO or WHILE occurs in a specification.
IFFALSE is discussed in a subsequent
section of this publication.

The "begin of DO head" statement.

The "end of DO head" statement.

These two statements indicate that all
statements and macros included by them
are associated and thus belong to one
"DO head". These statements require no
statement body, because they only signal
the beginning or ending of a "DO head".
The format of these statements is as
described in phase C85.

Assignment statement with special oper-
ands.

If a DO statement contains more than 1
repetitive specification, an assignment
statement as shown below is generated.
The only difference between a label
assignment written by a programmer and
one generated by the DO phase is that in
the generated label assignment two oper-

PHASE PL/IC86 (DO STATEMENT II) -- 279
U

ands are followed by the 3-byte element
X'EE0009' or X'EE0069'. The format of
the assignment statement is as follows:

Byte (s) Contents

1-3 statement identifier X'EOOOOE’
4-6 not relevant

7 key X'EE' for generated label

8-9 name of generated label
10-12 X'EE0009' indicating a generated

label variable .
13-15 3-byte element "=": X'E200FB'

16 key X'EE' for generated label
17-18 name of generated label constant
19-20 X'EE0069' indicating a generated

label constant
22-27 EOS delimiter X'EA....'

The 'Define Label' macro
The 'Branch' macro

The 'DO-Branch' macro

This macro is generated if a DO state-
ment contains more than one repetitive
specification. The 'DO-branch' macro
initiates a branch to the address con-
tained in the generated label variable
nvV. The format of this macro is as
follows:

Byte (s) Contents

1 macro key X'F2°'
2- 3 length of macro

4 X'81* for DO branch

5 X'EL4' for generated label variab
6- 7 name of generated label variable
8-10 not relevant

Generated label constants.

Generated label variables.

The label variables are used to hold the
values of generated label constants. To
allocate storage (8 bytes for 1 generat-
ed label variable), the macro 'Define
Generated Variable' is generated as
follows:

Byte (s) Contents
1 key X'F0*' for "define generated
label variable"
2- 3 length (overall)
4- 5 name of generated label variable
6-10 attributes of the generated

label variable (arranged as in

the statement attribute table)
11 bits 0-1: level number
bits 2-7: block number

A
\k/,,

PL/I PLM 8

IBM Confidential

C

Generated temporaries (i.e. generated
variables with unknown attributes).
These temporaries are used to hold the
"frozen" values of expression 1, expres-
sion 2 and expression 3 (see PL/I_Langu
age Specifications, Form C28-6809. Gen-
erated temporaries are not defined by
special macros like generated labels and
generated label variables. They are
defined only by their occurrence in a
statement referencing them. Storage for
generated temporaries is assigned in
later phases. The format of the gener-
ated temporaries is as follows:

Byte (s) Contents

1 key X'E8'

2 X*'00°

3 X'00' for expression 1
examples)
X'0C' for expression 2
examples)
X'18' for expression 3
examples)

(1T in
(2T in
(3T in
Specification separator.

Specification separators are used to
Sseparate 2 repetitive specifications and

consist of 2 macros as shown below:

X'FDOOO4ES"
X'FDOOO4DS"

macro 1
macro 2

Examples for the Input to the DO Phase and

the Produced Output

Legend to the examples:

Statements have statement identifiers
consisting of capital letters ,e.g.,
IFFALSE, SET, READ etc.

Macros are identified by lower case
letters, e.g., define label, branch,
etc.

Generated labels are of the form 1L, 2L,
3L, etc.

Generated label variables are written
like 1V, 2V, etc.

Generated temporaries (variables with
unknown attributes) are of the form 1T,
2T, 3T.

Note that in reality the input as well as
the output is a string of 3-byte elements
and/or elements of variable length.

1.

Input Output

DO; BEGIN OF DO-HEAD;
. NOP;

. END OF DO-HEAD
alpha .

END;

DO I=exl;

alpha

END;
DO WHILE exl;
alpha

END;

DO I=ex1
WHILE ext;

alpha

END;

DO/ I=ex1
BY ex3;

alpha

END;

DO I=ex1
BY ex3
WHILE exl;

alpha

END;

DO I=ex1
TO ex2;

alpha

alpha

BEGIN OF DO-HEAD
SET I=exl;
END OF DO-HEAD

alpha

BEGIN OF DO-HEAD
define label 1L

IFFALSE 2L exl;

END OF DO-HEAD;

alpha

branch 1L

define label 2L

BEGIN OF DO-HEAD;
SET I=ex1;

IFFALSE 1L exl;
END OF DO-HEAD;

alpha
define label 1L

BEGIN OF DO-HEAD;
SET 1T=ex1;

SET 3T=ex3;

SET I=1T;

branch 1L

define label 2L
SET I=I+3T;
define label 1L
END OF DO-HEAD;

alpha
branch 2L

BEGIN OF DO-HEAD;
SET 1T=ex1;

SET 3T=ex3;

SET I=1T;

branch 1L

define label 2L
SET I=I+3T;
define label 1L
IFFALSE 3L exl;
END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET 1T=ex1;

SET 2T=ex2;

SET I=1T;

branch 1L

define label 2L
SET I=I+1;

define label 1L

Phase PL/IC86

155

PL/I PLM 8

IBM Confidential

8. DO I=exl
TO ex2
WHILE exl;

alpha

END;

9. DO I=ex]
TO ex2
BY ex3

alpha

END;

10. DO I=ex1
TO ex2
BY ex3

WHILE exUl;

alpha

END;

11. DO I=ex1,

ex2, ex3;

156

IFFALSE 3L I<=2T;
END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET 1T=ex1;

SET 2T=ex2;

SET I=1T;

branch 1L

define label 2L
SET I=I+1;

define label 1L
IFFALSE 3L I<=2T;
IFFALSE 3L exl;
END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET 1T=ex1;

SET 2T=ex2;

SET 3T=ex3;

SET I=1T;

branch 1L

define label 2L
SET I=I+3T;
define label 1L

alpha

END;

12. DO I=ex1

TO ex2 BY ex3
exlt TO ex5

BY ex6;

alpha

.

END;

IFFALSE 3L (3T>=0) &
(I<=2T) | (3T<0) &

(I>=2T) ;
END OF DO-HEAD;
alpha
branch 2L

define label 3L

BEGIN OF DO-HEAD;
SET 1T=ex1;

SET 2T=ex2;

SET 3T=ex3;

SET I=1T;

branch 1L

define label 2L
SET I=I+3T;
define label 1L

IFFALSE 3L (3T>=0) &
(I<=2T) | (3T<0) &

(I>=27) ;
IFFALSE 3L exl;
END OF DO-HEAD;

;lpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
define 1V
SET 1V=1L;
SET I=ex1;

branch 2L

define label 1L
specification separator
SET 1V=3L;

SET I=ex2;

branch 4L

define label 3L
specification separator
SET 1V=5L;

SET I=ex3;

branch 6L

define label 6L

define label 4L

define label 2L

END OF DO-HEAD;

alpha

DO-branch 1V
define label 5L

BEGIN OF DO-HEAD;

define 1V

SET 1V=1L;

SET 1T=ex1;

SET 2T=ex2;

SET 3T=ex3;

SET I=1T;

branch 3L

define label

SET 1=1+3T;

define label 3L

IFFALSE 2L (3T>=0) &
(I<=2T) | (3T<0) &
(I>=2T) ;

branch 4L

define label 2L

specification separator

SET 1V=5L;

SET 1T=exl;

SET 2T=ex5;

SET 3T=ex6;

SET I=1T;

branch 7L

define label 5L

SET I=I+3T

define label 7L

IFFALSE 6L (3T>=0) &
(I<=2T) | (3T<0) &
(I>=2T) ;

branch 8L

define label 8L

define label 4L

END OF DO-HEAD;

1L

N

alpha

DO-branch 1V
define label 6L

FUNCTIONAL DESCRIPTION

The input stream is scanned for DO and END

(of DO group)

statements.
ments are bypassed and put out unchanged.
If a DO statement is encountered,

All other state-

its

C

statement attribute table and its constant
table is stored in the table storage for

PL/I PLM 8

IBM Confidential

later use. The DO statement is analyzed
and statements and/or macros are put out,
depending on the structure of the DO state-
ment (see examples). The attribute and
constant tables are added to each generated
statement, Macros generated in this phase
are not prefixed by these tables.

If an END (of DO group) statement is
encountered, the type of code being gener-
ated depends on the structure of the cor-
responding DO statement. The required
information is stored in 5 push-down
stacks. The two stacks ANDO5 and ANDO6
have a capacity of one element per level.
The remaining three (ANDO1, ANDO2, and
ANDO03) have a capacity of more than one
element per level. In each push-down
stack, the element size is one half-word.
The stack pointers are the symbolic reg-
isters R6 and R7.

ANDO1

(stack pointer R7)
(In examples 5 to 10,
label) .

contains 'start labels"'.
'2L' is a start

ANDO2

(stack pointer R7) contains ‘'exit labels’'.
An exit label is the generated label of a
statement to which control is transferred
after the execution of the DO group has
been terminated. (In examples 6 to 10,
'3L' is an exit label.)

ANDO3

(stack pointer R7) contains "G-labels".
G-labels are generated only if the DO
statement contains more than one specifi-
cation. A G-label is a generated label to
which a branch is directed when the state-
ments representing one specification have
been executed. (In example 12, '4L' and
*8L' are G-labels.)

ANDOS
(stack pointer R6) contains generated label
variables. (In examples 11 and 12, "1V" is

a generated label variable.)

ANDO6
(stack pointer R6) is used to store the
number of specifications per DO statement.

PIN, IPOINT, POINT are input pointers
(symbolic registers); POUT, OPOINT are
output pointers {(symbolic registers).

DESCRIPTION OF ROUTINES
A routine is called open if

control is transferred to it
by

(Open)

1. a simple B instruction,
in which case control is
also returned by a B
instruction, or

2. some in-line coding that
requires a separate des-
cription.

A routine is called closed if
control is transferred to it
by a BAL instruction. Con-
trol is returned by a BR
instruction in this case.

(Closed)

R1, R2,... are symbolic registers.

DOPH -- AR

This is the "master program" of this phase.
DOPH initializes pointers, registers, etc.
and reads the first 4 records into input
buffers 1, 2, 3, and 4. It scans and puts
out the input stream. If a DO or END (of
group) statement is encountered, the state-
ment attribute table is stored in the Table
Area. ANDO is called if a DO statement has
been encountered, or ANEN if an END (of
group) statement occurred. (See descrip-
tion of ANDO and ANEN.) Before ANDO is
called, a 'Begin of DO head' statement is
put out. Before ANEN is called, the state-
ment identifier END (of group) is replaced
by the statement identifier NOP.

The scan is continued until the end-of-
program key is encountered.

ANDO -- AB, AC, AD (Open)

Analyzes and processes DO statements. If
the DO statement contains errors, a NOP
statement is put out, EOST is called, and
control returns to DOPH which continues the
scan.

If the DO statement is correct, a series
of macros and statements is generated (see
examples) . The attribute table stored in
the table area is attached to each
generated statement.

Error messages are produced if the DO
nest is deeper than 12, and if there are
more than 50 specifications in one DO nest.

ANEN -- AE (Open)

Puts out macros and statements, depending
on the structure of the corresponding DO
statement. (See examples.)

BSAC ~-- AG (Open)

This routine stores the statement attribute
table and the statement constant table in
the table area.

Phase PL/IC86 157

PL/I PLM 8

IBM Confidential

BYBY -- AO (Closed)

This routine is called only if the specifi-
cation contains a BY. It generates the
following:

SET 3T = expression 3;
SET SCALAR = 1T;

branch NL

define label ML

SET SCALAR = SCALAR + 3T;
define label NL

BYPA -- AH (Closed)

Stores either the statement attribute table
for variables or the statement attribute
table for constants in the Table Area.

Upon exit, BSAC7 contains the address of
the next free byte in the Table Area, and
the statement body begins in input buffer
1.

CON -- AK (Closed)

CON may be considered as an entry to LGEN.

Generates a 'name' for constant 0 or 1 and
puts it into R1. The 'name' is a 3-byte
element. The first byte of this element
contains X'E9'; the subseguent two bytes
contain the number of the constant.

Retrievement of the constant number is
discussed in the description of LGEN.

FRROR, JERRA1 -- AS (Closed)

This routine is described in phase A35.

EOST, JEOSA1 -- AR _(Closed)

Arranges the contents of input buffers 1 to
4., The currently scanned EOS is moved to
input buffer 1. This is accomplished by
moving and by reading in new records. Puts
out EOS and the error codes attached to it.
Any additionally generated error codes are
also put out.

GEOS -- AI (Closed)

Moves the input pointer PIN until the last
byte of the statement body is reached.
Stores the value of PIN in IFPH96.

GSN -- AJ (Open)

This routine is described in phase C85.

INC1 -- AL (Closed)

INC1 is called only if the specification
contains a TO clause but not a BY clause.
It generates the following:

SET scalar = 1T;
branch nL

158

define label mL
SET scalar = Scalar + 1;
define label nL
IFFALSE oL scalar < = 2T;

Generates an entry for the constant 1 in

the statement attribute table for con-
stants.

JTRNA1 -- AQ (Closed)

Output routine. Register BYZ contains the
number of bytes to be put out, register PIN
the starting address. One output buffer is
used.

If the (remaining portion of the) string
to be put out fits into the remaining unoc-
cupied space of the output buffer, the
string is moved into this space. BYZ is
added to POUT to update the output pointer.

If the string to be put out is too big,
the output buffer is filled to capacity by
a part of the string, and the contents of
the buffer are written onto the output
medium. POUT is reset to the start address
of the buffer. BYZ is reduced by the num-
ber of bytes moved into the buffer. PIN is
incremented by that number. Then JTRNA1 is
repeated until the output is completely
accomplished.

KRAFT -- AM (Closed)

Puts out: SET Scalar = 1T;
branch nL

define label mL

LGEN -- AK (Closed)

Generates a label constant of the following
format:

byte 0 X'EE', key for generated label
constant
bytes 1-2 number

The number in bytes 2 and 3 of the con-
stant is obtained by adding 1 to the coun-
ter IJKMVC each time the routine is called.
Upon exit, the generated label constant is
stored right-justified in R1. IJKMVC is
the "variable and constant counter" of the
compiler. If the value of IJKMVC exceeds
65534, an error is indicated.

LVGE -- AK (Closed)

LVGE may be considered as an entry to LGEN.

The routine generates a label variable of
the following format:

byte 0 X'E4', key for generated label
variable
bytes 1-2 number

“/"\

PL/I PLM 8

IBM Confidential

The number in bytes 2 and 3 of the label
variable is obtained by adding 1 to the
counter IJKMVC each time the routine is
called. Upon exit, the generated label
variable is stored right-justified in R1.
IJKMVC is the "variable and constant
counter" of the compiler. If the value of
IJKMVC exceeds 65534, an error is indicat-
ed.

STEP -- AF (Closed)

The high-order 4 bits of the byte pointed
to by PIN are tested. If these bits con-
tain X'E', PIN is incremented by 3. If
they contain X'F', PIN is incremented by
the contents of the two bytes following
next. If these bits contain any other

value, a compiler error has occurred and a
dump is initiated.

TTS1 -- AP (Closed)

Puts an entry for the decimal fixed con-
stant 1 into the statement attribute table
for constants. If no available space is
found in this table, an error message is
given and the processing of the current
statement is terminated.

WHY -- AN (Closed)

Called only if a WHILE appears in a speci-
fication. The routine puts out IFFALSE mL
expressiont;

Phase PL/IC86 159

PL/I PLM 8

IBM Confidential

This phase initiates the new interface used
by the phases D00, D05, and D10. This
interface has only some of the capabilities
of the main interface (see phase A00) and,
therefore, is shorter. The storage saved
is used by the phases using this interface.

Both the old interface, which is located
after the register save area and pointed to
by register 12, and the LIOCS table for
SYS001 are written on SYS001 and replaced
by the new interface.

All items of the communication region
which are used by phases D00, D05, and D10
are saved in the communication region of
the new interface.

The new interface uses an automatic
end-of-file branch on the text work files.
Therefore, the address of the end-of-file
routine of the new interface is inserted
into the LIOCS tables.

Phase D00 is called by the EOPH routine
of the new interface. An end-of-file indi-
cator is written on the current text output
work file and the functions of the input
and output work files are switched.

Symbols used in flow_charts:

IJKMJT : Job communication bytes (old
interface)

TEXTIN : Contains address of text input
work file table

TEXTOUT : Contains address of text output
work file table

KSYS001 : Contains information on IJSYSO01,

KSYS002 : IJSYsS02, and

KSYS003 : IJSYS03 in old interface

ZTOUT : Subroutine for reading table
records

TASAVA : Area for saving the SYS001 table

ZTABO7 : TABTAB entry for DS table (not
used at this point)

IJRWT : Wait routine in o0ld interface

T : SYS001

IJKMTT : Begin of TABTAB, entry in old
communication region

TABLEM : Contains address of SYS001 table

NOTEF : Area for building NOTE/POINT
information

POINTW : LIOCS macro instruction

BEGINT : Begin of o0ld interface

WRITEI = : Begin of LIOCS write macro
instruction

ENDINT : End of old interface

TABLEN : Length of LIOCS table

INTTABEN: Begin of communication region in
new interface
AR : Begin and

160

PHASE PL/IC95 (NEW INTERFACE) -- AV

LE : Length of area written

NEOFAD : Address of new end-of-file rou-
tine

EOFADD : Relative address of end-of-file

entry in LIOCS table for disk

EOFADT : and for tape work files

DUMPSAVE: Save area for old end-of-file
address

IJKMVC : Variable counter, entry in old
communication region

IJKMNN : Name of address constant for
origin of compilation, entry in
0ld communication region

IJKMBL : Block length on text work files,
entry in old communication region

IJKMN : Move routine of old interface

NINTL : Length of new interface

INTBEG : Begin of new interface

TABLE : Begin of communication region in
new interface

EOPH : End-of-phase routine in new

interface.
NEW INTERFACE

Only three routines are provided by the new
interface. A fourth entry is used inter-
nally for handling the end-of-file condi-
tion.

As in the old interface, the interphase
linkage is established by a DSECT in the
phases and with register 12 as base reg-
ister,

Read/Write -- AW

Only a non-overlapped input/output on the
text work files is provided, the same macro
area is used for both. Therefore, the
command code must be stored in the
READ/WRITE macro instruction. Register 1
is set to text input or text output before
entering the common part. Prior to execut-
ing the READ macro instruction, the READ
routine checks whether the end-of-file was
reached and returns if this condition
occurs. The length of the area to be read
is inserted into the READ/WRITE macro
instruction in the READ routine only
because a READ always precedes a WRITE. It
must be inserted because the EOPH routine
may modify this parameter. After the
read/write macro a check macro is given for
the respective medium.

The calling sequence is:

LA 1,area
BAL 14,READ/WRITE

where area is the input or output area.

s
N

PL/I PLM 8

IBM Confidential

EOPH -- AW

The end-of-phase routine writes an end-of-
file indicator on the current output work
file. This is done for tape work files by
giving a control macro instruction and for
disk work files by using the write routine
with the length parameter zero. The end-
of-file indicator is set to zero, the text
work files are reset to their beginning by
POINTS macro instructions, and the
functions of the text input and output work
files are switched. At the end, a load
macro instruction is given with the new
phase name and a branch to register 1.

The calling sequence is:

L 1,=C'DXXb"
BAL 14,EOPH

where DXX is the suffix of the phase name
to be called.

EOF -- AW

This routine sets the end-of-file indicator
on. It is automatically entered when an
end-of-file indicator on the input work
file is detected.

Communication Region

The entries IJKMVC, IJKMNN, IJKMBL, and
IJKMWC are the same as in the o0ld inter-
face.

IJKMJT has a length of only two bytes.
The first 12 bits have the same meaning as
in the o0ld interface, bits 12-15 have the
following meaning:

bit 12 = 0: tape work files
= 1: disk work files
bit 13 = 1: GOTO library routine must be
called
bit 14 = 1: built-in functions in current
compilation

ADLIBI is one word of the library usage
bytes matching bytes 5 through 8 of IJKMLB.

Symbols used in flow charts:

EOFIND : End-of-file indicator

CHECK : LIOCS macro

TEXTI : Holds address of text input work
file table

REWR : Area of read/write macro

INTTAB : Begin of communication region

READ/

WRITE : LIOCS macros

SAvO01 : Register 1 save area

TEXTOU : Holds address of text output work
file table

PHASEN : Phase name area

CNTRL : LIOCS control macro

CCWOFF : Offset in module where CCW chain
bit is set into table

POINTS : LIOCS macro

LOAD : DOS/TOS macro

Phase PL/IC95 161

PL/I PLM 8

IBM Confidential

These phases process the following state-
ments:

PROCEDURE GOTO EXPRESSION
BEGIN ENTRY IF

END (PROCEDURE) RETURN CALL OVERLAY
END (BEGIN) NOP CALL DYNDUMP
CALL SET

If conversion is required, the appropri-
ate macro instructions are generated. The
subscripted variables, fixed- and floating-
point registers, and the working storage
required during execution are determined
and optimized. Note that DO loops have
been replaced by assignment and IF state-
ments during the phases C85 and C86. The
compound statement IF was expanded to sim-
ple statements in phase C25.

An expression statement is generated
during the I/0 scan 1 (phases C50 - C65) to
allow the evaluation of expressions con-
tained in these statements.

The phases D00 - D11 use similar main,
error handling, initialization, and data
manipulation routines and the same I/O
concept.

162

GENERAL DESCRIPTION OF PL/I PHASES DOO - D11 q::

INPUT<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>