
(

File Number S360-29

Form Y33-9010-0

Program Logic

IBM System/360
Disk and Tape Operating Systems
PL/ISubsetLanguage
Program Logic Manual
Program Numbers:
360 N-PL-464 (DOS)
360 N-PL-410 (TOS)

Volume 1 of 3

This publication provides information on the internal
logic of the IBM Systeml360 DOS/TOS PL/I compiler. It
is intended for use by persons involved in programming
maintenance and by system programmers who wish to alter
the program design. The information contained herein
is not required for the use of, and the operation with,
the PL/I compiler. Therefore, distribution of this
publication is restricted to users with the aforemen­
tioned requirements.

The publication is di~ided into three volumes. Vol­
ume 1 contains the description of the compiler phases;
volumes 2 and 3 contain the corresponding flow charts.
The form numbers of the three volumes are:

Volume 1: Y33-9010
Volume 2: Y33-9011
Volume 3: Y33-9012

All information regarding the library subroutines of
the DOS/TOS PL/I compiler is contained in the publica­
tion IBM System/360, Disk and Tape Operating Systems,
PL/I Subset-Library Routines, Program Logic Manual,
Form Y33-9013.

The reader must be thoroughly familiar with the IBM
System/360 Disk and ~ape Operating Systems and with the
PL/I Subset language.. A list of all publications that
provide pertinent information is contained in the
introduction to volume 1 of this PLM.

Restricted Distribution

RESTRICTED DISTRIBUTION: This publication is intended primarily for use
by IBM personnel and may not be made available to others without the
approval of local IBM management.

First Edition

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photp-offset printing were obtained from an IBM 1403
printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the
comments. If the form has been
IBM Laboratories~ programming
P.o. Box 210.

back of this publication for readers'
removed, comments may be addressed to
Publications, 103 Boeblingen/Germany,

C International Business Machines Corporation 1967

PL/I PLM 8

IBM Confidential

c

CONTENTS

HOW TO USE THIS PUBLIC~TION ••••

ORGANIZATION OF THE PUBLICATION.

IBM SYSTEM/360 DOS/TOS PL/I PLM.
Introduction.

7

8

9
9

LOGICAL PARTS OF THE COMPILER. • • 13

rHE TEXT STRING DURING COMPILATION • 18

COMPILER INTERFACE • • • • • • • • • • • 20
Interface Routines used by Compiler

Phases • • • • • • • • • • • • • • • 26
Logical IOCS for the TAPE Version • • 32
Logical IOCS for the DISK Versions. • 33

PHASES PL/IAOO, AOOD, A10
(INITIALIZATION) -- AR. •

PHASE PL/IA25 (REPLACEMENr OF
KEYWORDS) -- BA • • • • • • • • •

Description of Routines

PHASE PL/IA30 (REPLACEMENr OF
IDENTIFIERS) -- CA. • • •

Description of Routines

PHASE PL/IA35 (PICTURES) -- cz
Output Formats. • • • • • •
Elements of Picture Strings
Examples ••••••••••
Description of Routines • •

PHASE PL/IA45 (CHARACTER STRINGS) --

• 34

• 36
• 38

• 40
• 40

• 42
• 42
• 47
• 48

50

EM. • • • • • • • • • • • • • • • • 54
Description of Routines • • • • • 55

PHASE PL/IA50 (BLOCK STRUCTURE) -- FM. • 57
Description of Routines • • • • • 57

PHASES PL/IA60, A65 (SYNTAX CHECK I
AND II) -- GL, GW • • • •

Functional Description. • • • •
Description of Routines • • • •

PHASE PL/IB10 (DECLARATION SCAN I)
HM. • • • • • • • • • • •

Description of Routines

PHASE PL/IB15 (DECLARATION SCAN II) --
IM. • • • • •

Description of Routines •

PHASE P~/IB20 (SYMBOL TABLE
CONSTRUCTION I) -- KA • • • •

Description of Routines • •

PHASE PL/IB25 (FILE DECLARATIONS) --

• 62
• 63
• 64

• 67
• 67

• 70
• 70

• 73
• 74

L$. • • • • • • • • • • • • • • • . • • 79

PHASE PL/IB30 (SYMBOL TABLE
CONSrRUCTION II) -- MA. • • •

Description of Routines • •

PHASE PL/IB40 (STRUCTURE MAPPING)
MZ. • • • • •

Description of Routines

PHASE PL/IB70 (CONTEXTUAL

• • 84
• • 84

86
89

DECLARATIONS) -- OA • • • • • • • • • • 92
Communication with Other Phases • • • 92
Description of Routines • • • • • • • 94

PHASE PL/IB75 (EXTERNAL ENTRY NAMES
FOR IMPROPERLY GENERATED BUILT-IN
FUNCrrONS) -- OR •••••••••••• 98

Description of Routines • • • • • 98

PHASE PL/IB80 (IMPLICIT DECLARATIONS)
-- PA. • • • • • • • • • •

Description of Routines • •
Subroutines • • • • • • • •

PHASE PL/IB90 (PRESTATEMENT

• .100
• .101
• .103

GENERATION) -- QA • • • • • • • .107
Description of Routines. • • .107

PHASE PL/IB92 (ATTRIBUTE TABLE
COMPRESSION) -- RA ••••••••••• 109

Description of Routines •• 109

PHASE PL/IB95 (ARRAY TABLE
CONSrRUCTION) SA... • • • • • 111

Description of Routines

PHASE PL/IB97 (EXTERNAL NAME TABLE
CONSrRUCTION) -- SM • • •

Description of Routines • •
Subroutines • • • • • • • •

PHASE PL/ICOO (SYMBOL TABLE LISTING)
-- TM ••••

Description of Routines •

• • 111

• • 113
• .113
• • 114

• .116
• • 116

PHASE PL/IC25 (IF STATEMENT) -- TZ ••• 118
Statements and Macros put out by

C2 5. • • • • • • • • • • • • • 118
Description of Routines • • .120

PHASE PL/IC30 (PROCESSING CONSTANTS I)
-- ViA. • • • • • • • • • •

Description of Routines • • •

PHASE PL/IC35 (BLOCK SORTING) -- VA,
VB. • • • • •

Description of Routines • •

PL/IC50 (I/O SCAN I) -- XB, XC •
Description of Routines • •

• .123
• .124

• .127
• .127

• .131
• .132

PHASE PL/IC55 (I/O SCAN II) -- YA •••• 138
Description of Routines. • • .140

PL/I PLM 8

IBM Confidential

PHASE PL/IC60 (I/O SCAN III) -- YS, YT .144
Description of Routines. • .145

PHASE PL/IC65 (I/O SCAN IV) -- $A, $B •• 148
Description of Routines ••••••• 148

PHASE PL/IC85 (DO STATEMENT I) -- $0 •• 151
Description of Routines. • .153

PHASE PL/IC86 (DO STATEMENT III -- Z9 •• 155
Functional Description. • • .157
Description of Routines • • • • • 158

PHASE PL/IC95 (NEW INTERF~CE) -- AV ••• 161
New Interface • • • • • • • • • • 161

GENERAL DESCRIPTION OF PL/I PHASES 000
- 011 ••••••••

Input • . . • . • • . . • • • .
Common Service Routines • • • •
Buffer Concept and Phase Layout

PHASE PL/IDOO (STATEMENT
DECOMPOSITION) -- AZ, BA.

Description of Routines

PHASE PL/ID05 (CONVERSION, PRECISION,
STORAGE TYPE) DC • • • • • • •

Description of Routines • • • •

PHASE PL/ID10 (MACRO GENERATION I)
EP. • • •

Part 1 of 010 -- EP •••
Part 2 of 010 (PREMAC) -- GF ••
Part 3 of 010 •••••••••••

PHASE PL/Dll (MACRO GENERATION II)
HM. • • • •

Description of Routines •

PHASE PL/ID15 (EVALUATION OF
SUBSCRIPTS) -- JA • • • • •

Description of Routines •

PHASE PL/ID17 (LIBRARY CALLS FOR
BUILT-IN FUNCTIONS I) -- LA

Built-in Functions Processed ••
In-Line Functions • • • • • • •
Description of Routines • • • •

PHASE PL/ID20 (BUILT-IN FUNCTIONS II)
-- OK • • • • • • • • • •

Description of Routines

PHASE PL/ID40 (ON, SIGNAL,
STOP) -- OQ, OU • • • • •

FUnctional Description.
Description of Routines

REVERT, AND

PHASE PL/I 070 (PROCESSING CONSTANTS
II) -- PK • • • • • • • •

PHASE PL/ID75 (GENERATION OF I/O
MACROS I) -- QP • • • • • •

PHASE PL/ID80 (GENERATION OF I/O
MACROS II) -- RF. • • • • •

.163

.163

.172

.174

.175

.175

.180

.180

.188
• 188
.189
.194

.197

.198

.205

.209

.213

.214

.219

.220

.225

.226

.230

.230

.234

.238

.246

.249

PHASE PL/IE25 (ERROR DIAGNOSTIC) -- SA .251
Description of Routines ••••••• 252

GENERAL DESCRIPTION OF THE GENERATOR
PHASES (PL/IE50, PL/IE60, PL/IE61). • .254

Model-Instruction Dictionary ••••• 255
Format of the Instructions •••••• 258
The Macros and the Generated Code •• 259

PHASE PL/IE50 (CODE GENERATION I) --
TA. • • • • • • • • • • • • • .285

Description of Routines. • • .285

PHASE PL/IE60/61 (CODE GENERATION II)
-- UA, UB • • • • • • • • • .286

Description of Routines ••••• 286

PL/IF25 (SORTING CONSTANTS AND
VARIABLES) -- W9 • ••••••••••• 288

Description of Routines •• 289

PHASE PL/IF35 (OPTIMIZATION OF
CONSrANTS) -- YA. • • • •

Storage Areas • • • • • • •
Description of Routines • • •

PHASE PL/IF75 (STORAGE ALLOCATION)
yo.

Description of Routines

PHASE PL/IF90 (BUILDING OF OFFSET
TABLE) -- M. • • • • • •

Functional Description •
Description of Routines • •

GENERAL DESCRIPTION OF PHASES F95 -
G55 • • • • • • • •

Phases F95 - G15.
Phases G20 - G55.
Phases G20 - G55.

• .293
• .293
• .294

.296

.297

• .300
.300

• •• 301

.305

.305

.305

.306

PHASE PL/IF95 (HANDLING OF OFFSETS) --
AN. • • • • • • • • • • • • •

Functional Description.
Description of Routines •

• .307
• .308
• .310

PHASE PL/IGOO (LABEL HANDLING) -- BF •• 313
Description of Routines. • • .315

PHASE PL/IGOl (LABEL OFFSETS)

PHASE PL/IG15 (FINAL OFFSET
PREPARATION) -- CH.

CA.

PHASES PL/IG17, B, 0, E, R, S (FILE
GENERATION) -- OJ • • • • • • •

PL/IG17 (CARD, PRINT, UNBUFFERED
FILES). • • • • • • • •

Card Files.
Print Files
Unbuffered Tape Files
Unbuffered Disk Files •

PL/IG17B (Buffered Tape Files)

.319

• .320

• .328

• .329
• .329
• .330
• .330
• .331

• .331

PL/IG17D, E (Buffered Consecutive Disk
Files ••••••••••••••••• 333

PL/I PLM 8

IBM Confidential

PL/IG17R, S (Regional Disk Files) • .334

PHASE PL/IG20 (FILE MODULE) -- DP. .335

PHASE PL/IG25 (GENERATION OF ESD
CARDS) -- EH. • • • • • • •

Description of Routines •

PHASE PL/IG30 (GENERATION OF TXT AND
RLD CARDS) -- FH. • • • • •

.339

.340

.342

PHASE PL/IG31 (FINAL DIAGNOSTIC) -- GA .348

PHASE PL/IG40 (LISTING OF COMPILER
OUTPUT) -- GF ••••••••••••• 349

PHASE PL/IG55 (FINAL OUTPUT) -- HA • · .355

APPENDIX A. SYNTAX NOTATION OF PL/I
INPUr STREAM. · .358

APPENDIX B. SY'NrAX NOTATION OF PL/I
OUTPUT STREAM • · .366

APPENDIX C. LIBRARY ROUTINES • • .374

APPENDIX D. DTF TABLES • • • .376

INDEX •• .419

PL/I PLM 8

IBM Confidential

c\

In the majority of cases, a PLM is used to
analyze a specific error that caused a
compile-time dump or an erroneous result.
The following is therefore intended to
assist the programmer in obtaining from
this dump all information he requires to
locate the specific section of the PLM in
which he is interested. Using the descrip­
tive text, the flow charts, and the program
listing, he can then find out what error
caused the compiler to produce the dump or
the erroneous result so that he may take
the appropriate corrective action.

Conventions on Register Usage

1. If an interface routine is called,
registers 0 and 1 serve as parameter
registers (refer to the description of
the individual interface routines in
the section Compiler Interface) •

2. Register 9 serves as input area reg­
ister for IJSYSIN during phases AOO,
AOOD, and A25.

3. Register 10 serves as output area reg­
ister for IJSYSPH during phases AOO,
AOOD, and G55 (for punching) •

4. Register 11 serves as output area reg­
ister for IJSYSLS during all listing
phases.

5. Register 12 is used for any reference
to the communication region.

6. Register 13 is not used by the phases,
but as save area register for LIOCS.

7. Register 14 serves as return register
in case of subroutine calls.

8. Register 15 is used both as base reg­
ister in the phases and as entry point
register when calling a subroutine.

Entry Points in the Communication Region

Register 12 points to the beginning of the
communication region. The absolute address
of entry points in the communication region
can be found in the Linkage Editor storage
map.

The following entry points in the com­
munication region are of interest in case
of a compile-time dump:

~SAVE1: This area contains return addresses
of the last interface call in the
following order:

HOW TO USE THIS PUBLICATION

register 14: points to the routine
that was last active.

register 15
register 0
register 1
register 2z

This 8-byte area normally contains
the name of the phase currently in
storage. The phase name is stored
as follows:

P L / I x x x b
D7 D3 61 C9 yy yy yy 40

The last four bytes contain the
actual phase name, e.g., E25 or, in
hexadecimal notation, C5F2F540.
Phases DOO, D05, D10, and D11 form
an exception. For these phases,
the name can be found at X'108'
(register 12) •
It should be noted that the actual
phase currently in storage may be
either C95 or D11 if K5PH contains
the name C95. To determine which
phase is actually in storage,
locate the start address of the
phase and compare it with the list­
ing.

KTETA: If the contents of KTETA are less
than those of KTETA+4, SYS002 is
currently used as text input medium
and SYS003 as output medium.

IJKMTS: Contains the start address of the
table space.

IJKMBL: Contains the buffer length for text
I/O.

IJKMBS: Contains the start address of the
buffer area.

IJXA04: Is the address of the table direc­
tory (TAB TAB) •

For detailed information on the format
of the communication region refer to the
section Compiler Interface.

Note: The interface routines are used by
all phases. Therefore, they are not des­
cribed in each phase, but in the separate
section Compiler Interface. For a list of
all interface routines refer to Figures 7
and 8 of that section. The names of inter­
face routines start either with IJK or Z.

How to Use This Publication 7

PL/I PLM 8

IBM Confidential

ORGANIZATION OF THE PUBLICATION

Due to its size, this book has been divided
into three volumes. For the reader's con­
venience, volume 1 contains all of the
descriptive text, whereas volumes 2 and 3
contain the flow charts. Thus, the text
and the corresponding flow chart(s) may be
used synoptically. The form numbers of the
three volumes are as follows:

Volume 1: Y33-9010
Volume 2: Y33-9011
Volume 3: Y33-9012

The individual phases are presented in
the order of their appearance within the
compiler. The compiler interface (which,
most probably. will have to be looked up
quite frequently in many of the phases) is
described in a separate section to make it
stand out. The appendices provide ref­
erence information taken out of the corres­
ponding phase description to improve the
readability of the text and to make the
information easily accessible.

The heading of each phase description
gives the phase name, the fUnction (in
parentheses) , and -- separated by two dash­
es -- the identification of the correspond­
ing general flow chart, e.g.,

PHASE PL/IA45 (CHARACTER STRINGS) EM

In the description of the individual
routines of a phase, the flow chart for the
routine, if any, is indicated by the flow
chart identification, separated from the
routine name by two dashes, rom the routine
name by two dashes, e.g.,

INIT1 -- XY

The use of the individual flow chart
symbols is explained in detail at the
beginning of each of the flow chart
volumes.

Figures are numbered sequentially,
starting at 1 in each section.

Related Publications

PL/I Subset Language Specifications, Form
C28-6809

8

IBM System/360, Disk and Tape Operating
Systems, PL/I Programmers Guide, Form
C24-9005

IBM System/360, Disk and Tape Operating
Systems, PL/I Subset-Library Routines,
Program Logic Manual, Form Y33-9013

IBM System/360, Disk Operating System, PL/I
DASD Macros, Form C24-5059

IBM System/360, Disk Operating System,
System Control and System Service
Programs, Form C24-5036

IBM System/360, Tape Operating System,
System Control and System Service
Programs, Form C24-5034

IBM System/360, Disk Operating System,
Supervisor and Input/Output Macros,
Form C24-5037

IBM System/360, Tape Operating System,
Supervisor and Input/Output Macros,
Form C24-5035

IBM System/360, Disk Operating System,
System Generation and Maintenance,
Form C24-5033

IBM System/360, Tape Operating System,
System Generation and Maintenance,
Form C24-5015

IBM System/360, Disk Operating System,
Performance Estimates, Form C24-5032

IBM System/360, Tape Operating System,
Performance Estimates, Form C24-5020

IBM System/360, Disk Operating System,
Operating Guide, Form C24-5022

IBM System/360, Tape Operating System,
Operating Guide, Form C24-5021

PL/I PLM 8

IBM Confidential

c

INTRODUCTION

The DOS/TOS PL/I compiler is designed to
compile source programs written in the PL/I
Subset language. A set of library subrou­
tines that are part of the component is
used as control routine for the execution
of PL/I programs in the DOS/TOS environ­
ment.

The language implemented is the language
described in the SRL publication PL/I Sub­
set Language Specifications, Form C28-6809.
Further restrictions and imp1ementation­
defined features are listed in the SRL
publication IBM System/360 Disk and Tape
Operating Systems, PL/I Programmer's Guide,
Form C24-9005. This publication also des­
cribes the Disk and Tape operating Systems
as the environment of the PL/I compiler.

The DOS/TOS PL/I compiler is a multi­
phase, multi-pass compiler. Input to the
compiler is read from the logical unit
SYSIPT. The compiler output is produced on
the logical unit SYSLST. Object programs
are produced on SYSPCH or SYSLNK. Three
work files are used by the compiler. A.11
three work files may be either on tape (DOS
and TOS) or on disk (DOS only). On DOS, a
second compiler version that allows SYSIPT,
SYSLST, and SYSPCH to be 2311 DASD extents
is available. The version used is
determined at system generation time. The
compiler version that allows system logical
units to be DASD extents requires 12K of
main storage. Switching between tape and
disk work files on DOS is automatic at open
time.

Parts of the first phase (PL/I) remain
in main storage as a control routine during
execution of the other phases of the com­
piler. Their fUnction is the execution of
I/O operations for work files and inter­
phase communication. A special smaller
control routine is used during execution of
the extremely long phases 000 to 010 which
do not use the table file SYS001.

The PL/I library is a set of relocatable
routines and transient core-image library
routines. The library is used at object
time for:

1. Monitoring object program execution,

2. Performing input/output operations,

3. Performing object time conversions, and

4. Built-in functions.

IBM SYSTEMl360 DOS/TOS PL/I PLM

The re1ocatab1e library routines are
cataloged into the relocatable library and
loaded by the auto1ink feature. Six
library routines axe cataloged into the
core-image library. These routines are
loaded at execution time into a transient
area of the PL/I library to perform func­
tions that are not frequently used, e.g.,
opening of files, etc. Their phase names
start with $ to ensure storage in the pri­
vileged region of the core-image library.
An additional routine ($$BPLOSE) is to be
executed in the systems logical transient
area when closing PL/I files.

For detailed information on the library
subroutines refer to the library subrou­
tines PLM named on the cover page.

The storage used by the compiler is
divided into the following 4 parts (see
Figure 1):

1. Control routine
2. Compiler phases
3. Table area
4. Buffer area

o r-----------------------------------,
I I
I I
I Control Routine I
I I
I I
~-----------------------------------~
I I
I I
I Compiler Phases I
I I
I I

6.75K ~-----------------------------------~
I I I Table Area 6*256 bytes I

8.25K .-----------------------------------~
I I
I Buffer Area 7*256 bytes I
I I 10K L ___________________________________ J

Figure 1. Storage Used by PL/I Compiler

The last part of the control routine
area is the table directory. Part of this
area can be overlaid by the first phases
that use only a few of the tables. The
table area is used for processing by com­
piler phases that have no table handling.
Some phases use less than 7 buffers and can
therefore use part of the buffer area.

IBM System/360 DOS/TOS PL/I PLM 9

PL/I PLM 8

IBM Confidential

r-------T-------T--T------T-----T------T----T-----'
I Phase IPL/I IF u n c t ion IPhase IPhaselMaint. ITab.IBuff. I
I I Module I I I I I 1 I
I Name I Name I I Length I End I Area IUse INo. I
~-------+-------+--+------+-----+------+----+-----~
PL/I IIJXAOO IDOS control routine and initialization 15016 5016 11896 N I 0 I

IIJXAOODIDOS control routine and initialization 15426 5426 13534 N I 0 I
Iwith system files on disk I I I I

IIJXAOO ITOS control routine and initialization 14224 4224 12688 N 0 I
PL/IA10JIJXA10 10verlay for tape work files (DOS only) I 898 898 1 NA N 0 I
PL/IA251IJXA25 IElimination of blanks and comments, I I I

I Ireplacement of keywords 16004 9118 11280 N 44 I
PL/IA30IIJXA30 IReplacement of identifiers 13124 6238 1 674 T 7 I
PL/IA35IIJXA35 IPictures 15700 8256 I 704 N 5 I
PL/IA45IIJXA45 ICharacter-string replacement 13234 5950 I 962 T 7 I
PL/IA50IIJXA50 IScan block structure 13012 5728 11184 N 7 I
PL/IA60IIJXA60 ISyntax 1 15120 7676 1 772 N 7
PL/IA65IIJXA65 ISyntax 2 14748 7304 11144 N 7 I
PL/IB10IIJXB10 IDeclaration scan 1 12264 4980 11932 T 7 I

IPL/IB15IIJXB15 jDeClaration scan 2 13528 6244 1 668 T 7 I
IPL/IB20IIJXB20 . Symbol table construction 13704 6420 492 T 7 I
IPL/IB25IIJXB25 IFile declarations 13804 6484 I 428 T 7 I
IPL/IB30IIJXB30 ISymbol table construction 2 (diagnostic) 12592 5308 11604 T 7 I
IPL/ IB40 IIJXB40 ISymbol table construction 3 I I I
I I I (structures, etc.) 12604 15320 11592 T 7 I
IPL/IB70IIJXB70 ISymbol table construction 4 (contextual I I 1 I
I I Ideclaration~ 13660 16376 I 536 I T 7 I
IPL/IB75IIJXB75 IBUILTIN versus contextual declarations 11568 14284 12628 I T 7 I
IPL/IB8 0 IIJXB80 ISymbol table construction 5 (implicit 1 I I I
I I I declarations) 3492 16208 1 704 I T 7
IPL/IB90JIJXB90 IPrestatement generation 1 13072 t5788 1124 I T 7 I
IPL/IB92IIJXB92 IPrestatement generation 2 13196 5912 11000 IT 7 I
IPL/IB9 5 1IJXB95 IArray table construction 11736 14416 12304 I T 7 I
IPL/IB97IIJXB97 IExternal name table construction 2736 15452 11460 I T 7 I
IPL/ICOOIIJXCOO ISymbol table listing 13230 15946 I 966 I T 7 I
IPL/IC25IIJXC25 IIF scan 12956 15672 1280 I T 7
JPL/IC30IIJXC30 IConstant processing 13020 15736 1176 I T 7
IPL/IC35IIJXC35 IBlock sorting 13Q84 15764 956 I T 7
IPL/IC50 IJXC50 11/0 scan 1 13558 16274 638 T 7
IPL/IC55IIJXC55 11/0 scan 2 13684 16400 512 T 7
IPL/IC60jIJXC60 11/0 scan 3 13804 16520 392 T 7
PL/IC65IIJXC65 I/O scan 4 3748 16464 448 T 7
PL/IC85IIJXC85 IDO scan 1 3276 15956 956 T 7
PL/IC86IIJXC86 IDO scan 2 3676 16356 556 T 7
PL/IC95IIJXC95 ISwitch to small control routine 1032 13748 3164 T 7
PL/IDOOIIJXDOO IStatement decomposition 5472 16976 2368 1 N 3.5
PL/ID051IJXD05 I Conversion, precision, storage types 7400 18888 7121 N 2.5
PL/ID10IIJXD10 IMacro generation 1 6856 18360 984 1 N 3.5
PL/ID11IIJXD11 IMacro generation 2 4226 17026 2318 N 3.5
PL/ID15IIJXD15 IEvaluation of subscripts 3784 15500 12948 N 7
PL/ID17IIJXD17 IGeneration of linkage to library 5082 17798 11162 N 5
PL/ID20IIJXD20 ISpecial built-in functions 5184 17900 11060 N 5
PL/ID40IIJXD40 ION generation 3940 16656 12304 1 N 5
PL/ID70IIJXD70 Constant processing 2 (conversion) 4344 17060 I 620 T/2 7
PL/ID75IIJXD75 11/0 macro generation 1 3716 16432 12016 N 7

IPL/ID80IIJXD80 11/0 macro generation 2 2632 15348 13100 N 7 I
l ______ -~-------~-------_________________________________ ~ __ ~ ___ ~ _____ ~ ______ ~ ____ ~ _____ J

Figure 2. List of Phases (Part 1 of 21

10

PL/I PLM 8

IBM Confidential

c

c

r--------T-------T-------------------------------------T--------T-----T------T----T-----'
PL/IE25 IIJXE25 IMain Diagnostic 3762 6478 I 434 T 7 I
PL/IE25A/IJXE26 IMessages 1200 6470 I /
PL/IE25BIIJXE27 IMessages 1200 6470 I
PL/IE25CIIJXE28 IMessages 1200 6470 I
PL/IE25DIIJXE29 tMessages 1200 6470 I
PL/IE25EIIJXE30 IMessages 1200 6470 I
PL/IE25FIIJXE31 IMessages 1200 6470 I
PL/IE25GIIJXE32 IMessages 1200 6470 I
PL/IE25HIIJXE33 IMessages 1200 6470 I
PL/IE25IIIJXE34 IMessages 1200 6470 I
PL/IE25JIIJXE35 IMessages 960 6230 240 I
PL/IE50 IJXE50 ICode generation 5308 8024 424 N 7 I
PL/IE60 IIJXE60 ICode generation 2 4688 7404 10442 N 7 I
PL/IE60AJIJXE61 IMacro library (overlay) 2933 17217 1231 2 I
PL/IF25 IIJXF25 ISorting of variables and constants 3860 16576 592 T3 6 I

IPL/IF35 IIJXF35 IOptimization of constant~ 3032 15748 11164 T 7 I
PL/IF75 IIJXF75 IStorage allocation 2708 5424 11488 T 7 I
PL/IF90 IIJXF90 IConstruction of offset table 2214 4930 11982 T 7 I
PL/IF95 IIJXF95 ICode generation for offset> 4K 2360 5076 11836 T 7 I
PL/IGOO IIJXGOO IGOTO optimization 3914 6630 I 464 T 7 I
PL/IG01 IIJXG01 IInsertion of label offsets 2216 4896 12766 T 7 I
PL/IG15 IIJXG15 IFinal offset preparation 3488 5204 / 420 T 7 I
PL/IG17 IIJXG17 IFile generation 1 5060 7776 11952 N 2 I
PL/IG17BIIJXG17BIFil~ generation 2 (DTFMT) 4902 7618 12210 N 2
PL/IG17DIIJXG17DIFile generation 3 (DTFSD) 4854 7570 12258 N 2
PL/IG17E/IJXG17EIFile generation 4 (DTFSD) 3262 5978 13750 N 2
PL/IG17RIIJXG17RIFile generation 5 (REGIONAL(1)) 4770 7486 12234 N 2
PL/IG17SIIJXG17SIFile generation 6 (REGIONAL(3)) 5446 8162 /1566 N 2
PL/IG20 IIJXG20 IProduce file module, rearrange 1912 14628 12284 T 7

I ISYS001 1 I
PL/IG25 IIJXG25 IGenerate ESD 3148 15864 11048 T 7
PL/IG30 IIJXG30 IGenerate TXT, RLD, END 2624 15340 11572 T 7

IPL/IG31 IIJXG31 IFinal diagnostic 2838 15454 14170 N 1
IPL/IG40 IIJXG40 IObject code listing 4420 17136 11824 N 5
IPL/IG55 IIJXG55 Final output 4402 17118 11842 I N I 3
~--------~-------~-------------------------------------~--------~-----~------~----~-----~
11 Includes dynamic stack. I
12 Includes 10-byte parameter from PL/IE25. I
13 Shifted up one buffer. I
14 2 buffers are used by program at the beginning of the phase. I
l __ - ______ ----------------------------J
Figure 2. List of Phases (Part 2 of 2)

Figure 2 lists all phases including
their fUnction, length, and maintenance
area. The entry in the column Tab. Use
specifies whether the table area is used
for table handling (T) or for other purpos­
es iN). The number of 256-byte blocks used
as buffers is given in the last column.

The starting point of the compiler is
assumed to be zero in this list. The DOS
version not supporting system files on disk
is assumed in this table. The maintenance
area includes the area required for the
control routine.

If more than 10K are available to the
compiler, the remaining storage is used to
increase the table area (maximum used is

64K) and the buffer length (maximum 1536
bytes per buffer). This increases the
compiler performance considerably.

The I/O flow during compilation is shown
in Figure 3.

PL/I object programs including library
subroutines, IOCS modules, and static stor­
age form one or more phases. Automatic
storage is allocated beginning at the end
of the longest problem program phase up to
the end of storage available to background
programs. Start and end addresses of auto­
matic storage are taken from the DOS/TOS
communication region and are handled by a
PL/I library subroutine.

IBM System/360 DOS/TOS PL/I PLM 11

PL/I PLM 8

IBM Confidential

SYS~~l

Figure 3. 1/0 Flow During Compilation

12

Text &
Tables

S'.'S~~3

c

PLII PLM 8

IBM Confidential

c

c

The compiler is built up of about 70 phas­
es, which may be grouped into five logical
parts referred to as packages.

In this package, the programmer-written
source text is transformed into a text
string, the format of which is oriented to
the logical structure of a PLiI program.
rhis means that language elements such as
statements, prefixes, identifiers, delimi­
ters, etc. are translated into a represen­
tation that permits the relatively simple
recognition of that association.

Redundant information (blanks and
comments) is deleted from the text string.
The non-executable DECLARE statements are
also deleted. The information contained
therein is transferred to the corresponding
identifiers in the text string where they
occur.

The program string is syntactically
checked and diagnostie information for
errors, if any, is inserted.

The syntax of the PICTURE attribute is
checked and the information required either
for further processing or during execution
at object time is provided.

A symbol table is constructed. It is
listed if listing is specified in the
OPTION job control statement.

The compiler also constructs tables for
character constants, names, files, external
names, and arrays.

Package 2 (Phases C25 - C95L

AS the result of the processing in package
1, the source text is now a statement­
oriented text string.

This package of phases processes the IF,
1/0, and DO statements. Processing of this
group of statements requires special phases
since these statements all possibly contain
expressions, the handling of which involves
a considerable programming effort. The
above statements are scanned and the
expressions prepared for further processing
in package 3.

The IF statements are expanded into
simple statements that can be processed in
package 3. Branch and label-definition
macros are generated.

LOGICAL PARTS OF THE COMPIL~R

The 1/0 statements are semantically
checked, and DO loops are generated for
repetitive specifications. For all 1/0
statements containing the FILE option, the
identity of the information given in the
file declaration (from the FILE table) and
that in the FILE option is checked. The
1/0 statements are then prepared to be
sequentially processed in package 3.

The DO statements are decomposed into
Simple statements. Branch and label­
definition macros similar to those in the
IF phase are generated and inserted in the
program string.

In addition, blocks are ordered
sequentially in this package.

Packaqe 3 (Phases 000 - 080)

All executable statements are processed in
this package. The statements that were
preprocessed in package 2 are now finally
processed. The result of this processing
is a text string consisting of elements
that do not refer to statements but to
separate operations. The text elements
that represent these operations are called
macros.

Array and structure assignments are
decomposed.

Expressions are reordered in reverse
Polish notation. The necessity for data
type conversions is determined and the
conversions are prepared by macros. In
addition, macros are generated to give each
variable the storage type required for
particular operations, e.g., register,
working storage, etc. Registers are allo­
cated for operands that are to be reg­
isters. The appropriate library call macro
is generated for built-in functions imple­
mented by library routines.

Subscripts are evaluated. If the sub­
scripts are constants, they are evaluated
at compile time. Otherwise, the appropri­
ate macro is generated for use at object
time.

ON entries that contain the ON and pre­
fix information are generated to be includ­
ed in static storage.

Conversion of constants is performed at
compile time.

Logical Parts of the Compiler 13

PL/I PLM 8

IBM Confidential

If errors are detected in the program
string, the corresponding diagnostic messa­
ges are printed, if specified.

Assembler-type code is generated from
the macros. The selection of the macros
depends on the type of the macro, the stor­
age class of the operands of the macro, and
further information contained in the
macros.

A model instruction dictionary is used
to furnish additional information indepen­
dent of the information contained in the
macro.

Indirect addressing is assigned for
operands that have the attributes external,
parameter, or controlled.

~~ckage 5 (Phases F25-G551

This package is referred to as the assem­
bler of the compiler because its functions
are similar to those of an assembler.

14

St~rage is allocated for variables and
constants.

Constants are opti~zed.

Final machine instructions are generated
by changing the format of the assembler
instructions and by replacing the operands
of the assembler instructions by base reg­
ister and displacement.

Code for branches and addressing beyond
the scope of 4K-blocks is generated.

The required tables are generated for
each file.

Note: The logical flow of the compiler is
illustrated in Figure 1.

PL/I PLM 8

IBM Confidential

(\

'/

c'

•••• A1 ••••••••• · . • PL/I • ·

x :····:aa!iio····:
:iNiiiALij:Tio~-:
: NTER ACE :

X
••••• tl ••••• •• •••
• A25-.,30 • • _a_a_e_._e_e_a_a
.REPL. KIYNDRDS 0
• L1ST 10 T1F IERS.
• ELIM N TE 8L ••

...
01 w. • ••• 111)2 ••••••••••

• _ w. • A35 •
• _ w. yes .-a-a-a-a-a-a-a-.

•• PICTURES •••••••••• X. PROCESS •
w. ._ • PICTURES w.._ • •

w •• _ •••••••••••••••••
oNO

:X •••••••••••••••••••••••• :
x ·····EI ... ··· ... · , '45-,50 • . -.-.-.-.-.-.-.-.

• CHAR. STR INGS 0
•• LDCK STRUCTURE. ·

i ...
Gl •• • •••• G2 ••••••••••

•••• • 825 •
•• FILE •• YES .-.---.-.-.-.-.- •

•• ATTRIBUTES •••••••••• X. PROCESS •
•• •• •• •• : 0 ECL~A~~ IONS •

·ND

:X •••••••••••••••••••••••• :
x Hl······.· ..

• 81a-870 • . -.-.-.-.-.-.-.-.
• CONSTRUCTION

: T~'L~V7'~~1 0

i .•.
Jl •• • •••• J2 ••••••••••

•••• • 875 •

• :iN 'HA~JioNS·:.~~~ ..•..• :-·-·PROCESS·-·-:
•••• •••• : ~tllJ:lib=s :

·NO

:x .•••••••.••••••••••••••• :
x ·····lItl· 810-892 • . -.-.-.-.-.-.-.-.

:S;:mAl~~~~}5I:
• 11-21 •

. ··x
.0.

84 w. • •••• es ••••••••••
.- a. • 89' •

• - w. YES .-a-.-a-a_a_a_._.
w. ARRAVS •••••••••• X. CONSraUCT •

W. w. ._.- : A •• AY 'IllE • -.. -
·ND

:x•...... :
X

• •••• C4.· ••••••••
• 897 • a-a-.-a_a_._._a_ •
: ~~Nil:~T
• NAMl TABLE •

x ...
04 w. • •••• OS ••••••••••

.- w. • coo •
•• SYM •• YES .-.-.-.-.-.-.-.- •

• ••• OPTION •••••••••••• X: SY"8a%p~~BLE
oNO

. .

.X •••••••••••••••••••••••••
x E3.......... E4 ..

• C25" ••• •
• -.-.-.-.-.-.-.-. YES •• IF ••
• PROCESS oX •••••••••• STATEMENTS ••
• IF STATEMENTS. •• • • ·

·ND

: •••••••••••••••••••••••• X:
i ·····FIt···· •.• ··· • C3O-C35 •

:-cONsiANTS'·lj·-:
: BLOCK SORT NG :

.....

.A2 •
• 83 • . .

Figure 1. Logical Flow of the DOS/TOS PL/I Compiler (part of 3)

Logical Parts of the Compiler 15

PL/I PLM 8

IBM Confidential

X · e3····•.
:-.-.~~~~~~~.-.-:
• PROCESS
• GET/PUT ·

:x •••••••••••••••••••••••• :
i

••••• D3 ••••••••••
• C60 •
:-PROCESS-O;EN;-:
• CLOSE AND _
- FORMAT STMTS. _

i .' E2.......... £3 -.
• C6S. .__ • • -.-.-a-a-.-.-a-a YES •• _.
: REE~~~Ef'o :X•.• ~EB~I~LI~O ••••
-01 SPLAY ST"TS. - _.._ -.. -

-NO

. .
••••••••••••••••••••••••• X. x .-. : •••• ~iS!ci: •••• : ._ F3 a. _. :

:-·-·PROCESS·-·-:X ~~! .:* STAT~~ENTS *:.x :
• DO STATEMENlS • _. ._ · . -..-................. -.. -

-NO

: •••••••••••••••••••••••• X:
X

• •• ·.G3 ••••••••••
• C95 • a-a-a-a-a-a-a_a_a
- LOAD NEW _

INTERFACE --.................

i ·····H)······ • DOO-Oll _ .-a-a-.-.-a-.-.-.
- STATEMENT •
- OECOMPOS IT ION •
-LOAD OLD INTERF •

x
*A3 •
• 82-. -.

Figure 1. Logical Flow of the DOS/TOS PL/I Compiler (Part 2 of 3)

16

PL/I PLM 8

IBM Confidential

C:

c

..... -., .
• • I!-

i
••••••••••••••••• 82·-·-.
• 015. ..-• ... _e_e_e_e_e_e_e YES.- ARRAYS -.
O,YUCR.EVAlUA- oX •••••••• 0. VR •• : nll,,u.IN~"E: -. _. f LES._.-................. -...

• NO

: •••••••••••••••••••••••• Xi Cl.......... C2 -.
• 011. .--. e_e_e_e_tt-._e_e_e 'fE 5 •• aUI L '-I N e.
• CII!!STllt"AiROS .X.......... F~NCTION ••
: coa~k !:T'~N : e":. EREN'~~ •• -...

• NO

...
01 -. •

•• ILl MACORS· •• YES i
•• CON 5 TRue. TIED •••••••••••••••••••• -. .--. .--.. -.NO

x X El.......... E2
• 020 • • 040-010 • . -.-.-.-.-.-.-.-. .-.-.-.-.-.-.-.-.

fi~=m~l •........ X· ON CONDITIONS·

• MACROS: : cg20l'~~~N :
... Fl.......... F2 ..

• 015. ••• • . -.-a-.-.-.-.-.-. YES.. GET/PUT ••
• 110 MACROS 1 .X.. •••••••• FORMAT •• · ·

·Ne

: ~:
i

·····G2·····.· •••
• 080 • . -.-.-.-.-.-.-.-.
• 1/0 MACROS 2 • · ·

··· .. HI.·........ HZ··· ..
• E25. •••• . -.-.-.-.-.-a-.-. YES •• ••
• EMROR • x...•. fRRCRS ••

OIAGNOSTIC. ••••
·Ne

.' . X
J I •• • •••• J2 ••••••••••
•• • E50-G15 •

.•. ~l~~=~ ··:.~~ X:CCOE-GENE:ATicN:
•• •• .STORAGE ALlee ••
•••• • COTe OPTI"ll •• -.

·YES

.... · . · .,'" . · .

............ ;; ...
8" -. • •••• 85 ••••••••••

• -.- -. e. YES :-.-._.~~!._._._:
-. _. fiLlS ._ .-••••••••• : ~E"r~lE: : -..- . . e •• _ •••••••••••••••••

·NO

: •........................ :
i • •••• c.

• G20 • :-:EAR5f·SYfoji-:
: C~geLE~ I~ kNY :

i
•• ••• 0,. ••••••••••
• G25-G30 • .-.-.-.-.-.-.-.-.
• GENERATE

• °2~~~~ •
...

E It •• • •••• E5 ••••••••••
•• • (;31 •

•• NEW •• YES .-.-.-.-.-.-.-.-•
•• DIAGNOSTICS •••••••••• X. PUT OUT NEw

•• •• • DIAGNOSTIC
•••• • "ESSAGES •

·NO

. .

.X •••••••••••••••••••••••••
X . ..

Fit •• • •••• F5 ••••••••••
•••• • G40 •

.:. D~lf~~ ·:.!~~ x:-·Lisj-;iNAL-·-:
•• •• • CODE

·NO

:X •••••••••••••••••••••••• :
X ···.·G,,·········· • G55 • .-.-.-.-.-.-.-.-.

• PRODUCE FINAL •
• OUTPUT •

. ... · .. • H" •••• · .
i ····HIt ••••••••• · . • END OF •

• COMP IlA Tl ON •

Figure 1. Logical Flow of the DOS/TOS PL/I Compiler (Part 3 of 3)

Logical Parts of the Compiler 17

PL/I PLM 8

IBM Confidential

The general concept for the representation
of the text string is that the text string
consists of text elements whose first byte
(the key) contains the meaning of the ele­
ment. The keys may be either X'En' or
X'Fn'. X'En' is used for text elements
with fixed length; X'Fn' is used for text
elements with variable length. For the
latter category, the two following bytes
give the length of the element.

During compilation, the text passes the
following five main states:

1. Source text (phases A25 - B95)

2.

3.

Statement-oriented text (phases C25 -
E25)

Macros (phases E50 - E61)

4. Assembler code (phases F25 - G15)

5. Final output (phases G17 - G55)

This is the initial status of the text
string. The source program is taken as it
is written by the programmer.

After deleting redundant information,
e.g., blanks and comments, and translating
the machine-dependent external code into an
internal code, the individual language
elements are replaced. First, the iden­
tifiers that look like keywords are
replaced by 3-byte keys. The remaining
identifiers are replaced by 3-byte internal
names. Delimiters are replaced during the
syntax phases by their 3-byte keys.

DECLARE statements are deleted from the
text string. The information contained
therein is partially transferred to pre­
statements that are constructed to precede
the sta temen ts.

At this stage, a statement may consist of
the following items:

1. Each statement is introduced by a
6-byte statement identifier with the
key X'EO'.

2. The statement identifier may be
followed by a table that contains the
attributes of the declared variables.
The attribute table has the key X'F4'.

18

3. Items 1 and 2 fwhere item 2 is
optional) may be followed by a table of
the constants declared in the corres­
ponding statement. The constant table
has the key X'F3'.

4. The statement body consists of a
sequence of 3-byte elements, each of
which represents either an identifier
or a keyword.

5. Each statement is terminated by a
6-byte "end of statement" (EOS) has the
key X'EA'.

6. The statement (consisting of the
elements listed under items 1 through
5) may be followed by 2-byte error
indicators giving the errors that were
detected in the preceding statement.
The error indicator has the key X'EB'.

This form of the text string is changed
by deleting the statement attribute tables
and replacing each statement body by a
sequence of macros. The replacement of the
statement bodies is performed in several
steps. This means that specific phases
process only specific statements, whereas
the remaining statements are passed
unchanged to the next phase. At this
stage, the status of the text string is
therefore not uniform.

For some operations, generated variables
are used as additional required storage,
e.g., for the result of an operation.
Definitions of such generated variables
(with the key X'FO') are inserted into the
text string.

For a limited time, additional informa­
tion may be inserted into the text string,
e.g., to mark an element as interesting or
not interesting for some other phase(s).

Macros

The statement body is replaced by one or
more macros. Each macro represents a par­
ticular operation. Macros have the key
X'F2'. The format of the individual macros
is fiKed (see General Description of Phases
E50 - E61). The macros contain the infor­
matIOn-rBquired for generating the assem­
bler code.

The definition of the individual macros
is such that each macro is either associat­
ed with a fixed set of code, or the selec­
tion of the required code is possible only
by means of the operands of the macro.

PL/I PLM 8

IBM Confidential

c

The error indicators are deleted from
the text string at the same time the macros
are replaced by assembler code.

Assembler Code

After the assembler code has been generat­
ed, the text string consists of the follow­
ing:

1. Statement identifiers as just des­
cribed.

2. Assembler code.

3. Generated variables as just described.

4. Constant tables as just described.

5. End of statement as just described.

Assembler code elements have the key
X'F6'. Two types of instructions are used:
machine instructions and pseudo instruc­
tions for communication with the assembler
(phases F25 - G55). The machine instruc-
tions refer to the IBM System/360 machine
instructions, to which they are equal
except for the format of the operands. The
format of the assembler code is described
under General DescriE!ion of the Phases E50
::.~

The constant tables and generated varia­
bles are deleted from the text string after
storage allocation. The first three bytes
of all assembler code elements (X'F6xxxx')
are also deleted.

After storage has been allocated, it is
possible to replace the operands of the
assembler code by base register and dis­
placement. Thus, the assembler instruc­
tions are expanded by insertion of the
address of a symbolic given operand (base
and displacement) after the corresponding
operand. Most of the pseudo instructions
furnish information for this change and are
deleted after the expansion. Only the
instructions defining or reserving storage
(DC X, DS) remain in the text string.

The static storage for the program is
given a format similar to the pseudo
instructions and is joined to the program
string that consists of the assembler
instructions.

This format of the text string is the
last step on the way to the final output.

Final Output

The final output of the compiler consists
of two modules, each of which consists of
ESD, rXT, and RLD cards, and an END card.
The first module is produced for all of the
file declarations; the second module is
produced for the program with the static
storage. The TXT cards are generated from
the assembler instructions and the static
storage.

The system file accommodating the final
output of the compiler depends on the
options specified in the OPTION job control
statement.

The Text String During Compilation 19

PL/I PLM 8

IBM Confidential

COMPILER INTERFACE

The logical IOCS provided by the DOS/TOS is
used for input and output of data during a
compilation. For this purpose as well for
loading a new phase, the compiler control
routines (interface) are provided to com­
municate between the compiler phases and
the operating system. The interface mainly
consists of subroutines to be called by the
individual phases. Each subroutine causes
DOS/TOS to perform a specific fUnction
requested by a phase.

These subroutines form the main body of
the compiler control program, which con­
tains a communication region used by the
phases. Some of the subroutines, together
with the communication region, are part of
phase AOO/AOOD and reside in storage
throughout the compilation. (For excep­
tions refer to phase C95.) The main func­
tions of these subroutines are:

1. To load a new phase from the core-image
library on SYSRES.

2. To handle the input text stream on
SYS002 or SYS003;

3. To handle the output text stream on
SYS002 or SYS003;

4. To write information on SYS001 for
intermediate storage;

5. To read information intermediately
stored on SYS001.

Alternating from phase to phase, the
logical units SYS002 and SYS003 serve as
input or output medium. The three logical
units SYS001, SYS002, and SYS003 must
always be assigned to physical units of the
same device type (disk or tape). The
device type may be changed from job to job.

The internal communication area
(interphase communication region) provided
in the control program is used for communi­
cation between different phases.

Macro instructions may be used in a
compiler phase to branch throu~h a branch­
ing vector in the interphase communication
region to one of the interface routines in
the compiler control program.

Some compiler phases require data input
or output in addition to that mentioned
above. These functions pertain to the
input of the source program, output of
listings, writing the object module either
on SYSPCH or on SYSLNK for compile-and-go.

20

A special routine is provided for each of
these functions. It is assembled together
with the phase requesting the function.
The functions of these routines and the
names of the logical I/O units used are
listed below:

1. Input of PL/I source program from
SYSIPT;

2. Output listing of source program on
SYSLST;

3. output listing of the offset table on
S!{SLST;

4. Output listing of error messages on
S!{SLST;

5. Output listing of source program sym­
bols and external references on SYSLSTi

6. Output listing of generated object
program on SYSLSTi

7. Output of generated object module on
SYSLNK;

8. Output of generated object module on
SYSPCH.

The logical unit SYSLNK must always be
assigned to a physical unit of the same
device type as SYSRES (disk or tape). The
device type is fixed at system generation
time. SYSIPT, SYSLST, and SYSPCH may be
assigned to different device types. The
assignment of these three units may be
changed from job to job. The file specifi­
cations for these units are of the type
DTFCP, which provides device independence.
The user can control the bypassing of some
output for listings or object modules by
means of appropriate parameters in the
OPTION card.

Some special control routines can be
inserted into a compiler phase by means of
appropriate macro instructions. These
routines Serve for input and output of
table information on the device aSSigned to
SYS001 and for moving a record of any
length into the available storage area.

Storage Layout During Compilation

Storage allocation during compilation is
illustrated in Figure 1. It is assumed
that at least 10K (excluding the storage
required by the DOS/TOS) is available for
compilation of PL/I programs. The area
occupied by the DOS/TOS is followed by an

PL/I PLM 8

IBM Confidential

(-

()

c

area of 2.6K for the compiler control pro­
gram and logical IOCS routines used by it.
rhe table directory (184 bytes) which con­
tains information on tables used during
compilation is contained in this area. The
area provided for the compiler phases is 4K
bytes long. It is followed by the Table
Area and the Buffer Area. If more than 10K
bytes are available for the PL/I compiler,
the entire additional storage area is allo­
cated to the Table and Buffer Areas.

r-----------------------------------1
I I
J I
II I 16K DOS.(TOS
I I
I I

o I I

I II LIOCS
I I
I I

1. 5K ~-----------------------------------~
1 Table Directory (184 bytes) I

t-----------------------------------1
I Control Program I
I I
I I

2.7K ~-----------------------------------~
I I
I I
I Compiler Phases I
I I

6.7K I I
I Table Area I
I I
t I
I Buffer Area I
I I

10K I I l ___________________________________ J

Figure 1. Storage Layout During Compila­
tion (for 16K)

As shown in Figure 1, the begin address
of the Table Area is always 6.7K bytes
higher than the start address of the stor­
age available during compilation. The
length of the Table Area and the start
address of the Buffer Area are calculated
in the Initialization routine of this phase
as follows: The Buffer Area (see Figure 2)
is partitioned into seven buffers of equal
length. The first five buffers serve as
work areas for the compiler phases. The
remaining two buffers are used as input and
output areas for overlapped processing of
text information. The length of the Buffer
Area is the sum of the individual buffers
plus 8 bytes. (These 8 bytes serve a spe­
cial use during compilation.) The length
of a single buffer depends on the total
storage available during compilation. The
minimum length is 256 bytes, which results
in a minimum Buffer Area length of 256 x 7
+ 8 bytes 1800 bytes.

The minimum buffer length is always
taken for an available storage size from
10K to 14K. The minimum storage for both
the Table and the Buffer Area is: 10K -
2.5K - 4K - 184 bytes = 3.4K. Thus, the
minimum length of the Table Area is 3.4K -
1800 bytes ~ 1600 bytes.

For the tape version, the length of a
single buffer is extended by 256 bytes for
each additional 4K available storage until
the length reaches 1536 bytes (for 30K
storage). This is shown in Figure 3. If
more than 30K is available, the buffer
length remains at 1536 bytes and the entire
additional storage is allocated to the
Table Area to reduce the time required for
compilation.

For the disk version, the buffer length
increases similarly ~see Figure 3). To
avoid unused track space as far as possi­
ble, the maximum buffer length for the disk
version is 1536 bytes.

r----------------------~--1
I Overall Storage Requirements about 3.3K I
t--T--~
I Table Area I Buffer Area I
~--+----T----T----T----T----T---------T----T----~
I IWorklWorklWorklWorklWorkl II/O II/O I
I IArealArealArealArealAreal8 Bytes IArealAreal
I 111213141 5 I 1112 I l __ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ _________ ~ ____ ~ ____ J

Figure 2. Table and Buffer Areas

Compiler Interface 21

PL/I PLM 8

IBM Confidential

Length of Buffer Area and Table Area

~~ o -,
X ::J
, '

-iD
CD ::J

cE<9.
:f-:r

~~
CIt ~.
-, ::J

cE<e..
iDCD

g-g­
~~ CD ., ., ,.
......
o '" ., 01
co.
-g~ -o CD
::J VI

0..
Q.

iii'

" <
CD
Ul
o
::J
VI

-t
0
C

»
<
0

0'
0-
CD
VI -0 .,
0 co
CD

o
A

00
A

'" '" A

'" 0.
A

W
0
A

w
.j>..

A

w
00
A

.j>..

'" A

r»CD
CD ., C
::J CD

<9. 0 ;' :r .,

r»-t
CD ., 0
::J CD 0-

(Q 0
CD -:r

-t
0
-g

0
iii'

"

Figure 3. Partitioning of Storage for Buffer and Table Areas

The routines of the compiler interface that
remain in storage together with the inter­
phase communication region are called by
use of special macro instructions. The
expansion of each of these macro instruc­
tions contains a branch to the correspond­
ing routine through a branching vector in
the interphase communication region.

The main purpose of the communication
region is to accommodate information to be
exchanged between phases. It is part of
the control section IJXAOl in phase AOO or
AOOD and assembled by the macro instruction
IJKCO INTERF. If the parameter INTERF is
omitted, a dummy section for this region is
assembled. This is done in every compiler
phase to cause each symbol specified in the

22

communication region to be assembled in the
compiler phase without storage being
assigned to it. During the Initialization
routine, the start address of the communi­
cation region is loaded into register 12.
If a USING instruction is given at the
beginning of each phase, this register can
be used as base register for addressing the
communication region.

The interphase communication region
shown in Figure 4 can be logically divided
into four parts. The first part is the
branching vector that contains branch
instructions to the individual interface
routines always contained in storage. Most
of the macro instructions provided for use
in the compiler phases generate a branch to
this branching vector.

PL/I PLM 8

IBM Confidential

(.•.
r-------T---T---,

~-------t;--t~~~~~~:~~~~~~~~~~~-;~~~-;~~;-~~;~;-~~-~;;~~;-------------------------------1
IB IIJKAGO READ RECORD FROM TEXT OUTPT IN OVERLP I
IB JIJKANT GET RECORD IDENTIFICATION (I,O,T) I
IB IIJKAPH ROUTINE FOR END OF PHASE I
IB IIJKAPI WRITE RECORD ON TXT INPUT IN OVERLP I

IB IIJKAPO WRITE RECORD ON TEXT OUTPUT IN OVERLP I
B IIJKAPT ROUTINE FOR POINTW I

IB IIJKARN RESET END IDENTIFICATION FOR SYS001 I
IB IIJKAWT WAIT FOR COMPLETION (I,O,T) I
IB IIJKATIN READ RECORD FROM SYS001 IN NONOVERLP I
IB IIJKATOUT WRITE RECORD ON SYS001 IN NONOVERLP
IB IIJKAMN MOVE RECORD NORMALLY I
IB IIJKAGINO READ RECORD FROM TEXT INPUT IN NOOV I
IB IIJKAGONO READ RECORD FROM TEXT OUTPUT IN NOOV I
IB IIJKAPINO WRITE RECORD FROM TEXT INPUT IN NOOV I

I IB IIJKAPONO WRITE TEXT RECORD ON TXT OUTPUT IN NOOV I
I jB IIJKAPTR ROU'I'INE FOR POINTFl I
~-------+---+---~
I I I COMMUNICATION BYTES I
IIJKMLB IDC 18F'O' LIBRARY USAGE BYTES I
IIJKMBS IDS IF BUFFER AREA START ADDRESS I
IIJEMPR IDS IF BUFFER FOR PRINT REGISTER I
IIJKMPC IDS IF BUFFER FOR PUNCH REGISTER I
IIJKf.ilTT I DC I A (IJXAOJ) ADDRESS OF TABTAB I
IIJKMTS IDC IA{IJXAOM) ADDRESS OF TABLE SPACE I
~-------+---+---~
IIJKMJT IDC IF'O'JOB INFORMATION BITS I
I I I BIT 0 SYSIN HAS BEEN CALLED I
I I BIT 1 ERRORS IN CURRENT COMPILATION I
I I I BIT 2 ARRRAYS IN CURRENT COf.iIPILATION I
I I I BIT 3 STRUCTURES IN CURRENT COMPILATION I
I I I BIT 4 ARRAY EXPRESSIONS IN CURRENT COMPILATION I
I I I BIT 5 1/0 IN CURRENT COMPILATION I
I I I BIT 6 FILE ATTRIBUTE IN CURRENT COMPILATION I
I I I BIT 7 INITIAL ATTRIBUTE IN CURRENT COMPILATION I
I I I BIT 8 DEFINED ATTRIBUTE IN CURRENT COMPILATION I
I I I BIr 9 SYSPRINT BAS BEEN CALLED I
I I I BIT 10 PICTURE ATTRUBUTE IN CURRENT COMPILATION I
I I BIT 11 INDICATES ~~IN PROCEDURE I
I I I BIT 12 CALLS FOR LIBRARY ROUTINES IN COMPILATION I
j I I BIT 13 DO LOOPS IN CURRENT COMPILATION I

I I BIT 14 TABLE DICTIONARY ON SYS001 I
I I BIT 15 OUTPUT LISTING STARTED I
I I BIT 16 TYPE OF WORK FILE MEDIA DURING COMPILATION 0 FOR TAPE I
I I BIT 17 IF ON, SYS002 IS TBE CURRENT TEXT INPUT MEDIUM I
I I BIT 18 INDICATES ONSYSLOG I
I I BIT 19 FORMAT LABELS IN CURRENT COMPILATION I
I I BIT 20 BUILT-IN FUNCTIONS IN CURRENT COf.iWILATION I

I I BIT 21 NEED FOR INDIRECTLY CALLED LIBRARY ROUTINES I
I BITS 22 - 26: RESERVED I

I I BIT 27 SKIP BIT FOR PHASE C25 I

I I BIT 28 SKIP BIT FOR PHASES C50-C55 I
I BIT 29 SKIP BIT FOR PHASE C85 I

I I I BIT 30 SKIP BIT FOR PHASES C60-C65 I
I I I BIT 31 SKIP BIT FOR PHASE C65 I
.~------+---+---~
IIJKTAB IDC IA(O) RECORD IDENTIFIER FOR TAB TAB ON S~S001 I
IIJKMVC IDC IH'256' VARIABLE COUNTER I
IIJKMNN I DC I H' 0' INTERNAL NAME OF THE ADDRESS CONSTANT FOR THE ORIGIN OF COl1PILATION I

c
IIJKMWC JDC IH'O' COUNTER FOR GENERATED VARIABLES WITH UNKNOWN ATTRIBUTES I
IIJKCSL DC IH'O' LENGTH OF CHARACTER STIRNGS I
IIJKPAG DC IH'1' PAGE NUMBER FOR LISTING I
IIJKDCW IDC IY{O) DECLARED VARIABLE COUNTER INCL. CONST. I L _______ L ___ L ___ J

Figure 4. Assembly Listing of the Interface Communication Region (Part 1 of 2)

Compiler Interface 23

PL/I PLM 8

IBM Confidential

r-------T---T---,
IIJKMIP IDS 15H INTERPHASE COMMUNICATION BYTES 1
IIJKMBL IDC IY(256) BUFFER LENGTH 1
IIJKMBC IDC IX'OO' BLOCK COUNTER 1
IIJKMCH IDC ICL6'CL2-0' 1
~-------+---+---~
I I ITABLE KTErA FOR INTERFACE HOUSEKEEPING 1
I I ~---~
IKTETA IDC A (KSYS002) POINTER FOR TEXT INPUT 1
1 IDC A (KSYS003) P8INTER FOR TEXT OUTPUT 1
IKSYS0011DC A (IJSYS01) ADDRESS OF FILE TABLE FOR S~S001
I IDC F'O' RESERVED FOR LINE NUMBER. MAINTENANCE
I IDC F'O' END KEY FOR INFORMATION ON SYS001
I I DC X' 18000000' INDICES
IKSYS0021DC A (IJSYS02) ADDRESS OF FILE TABLE FOR S~S002
1 IDS F ADDRESS OF I/O AREA FOR SYS002
1 IDC F'O' END KEY FOR INFORMATION ON SYS002
1 I DC X' 18000000' INDICES
IKSYS0031DC A (IJSYS03) ADDRESS OF FILE TABLE FOR S~S003
I IDS F ADDRESS OF I/O AREA FOR SYS003
1 IDC F'O' END KEY FOR INFORMATION ON SYS003
1 I DC X' 18000000' INDICES
~-------+---+---~
I I I SAVE AREAS I
I I ~---~
I IDS 10D 1
I KSAVE1 IDS IF SAVE AREA FOR REGISTER 1
IKSAVE2 IDS IF SAVE AREA FOR REGISTER 1
IKSAVE3 IDS IF SAVE AREA FOR REGISTER 1
IKSAVE4 IDS IF SAVE AREA FOR REGISTER 1
IKSAVE5 IDS IF SAVE AREA FOR REGISTER I
IKSAVE6 IDS IF SAVE AREA FOR REGISTER I
IKSAVE7 IDS IF SAVE AREA FOR REGISTER I
IKSAVE8 IDS IF SAVE AREA 1
IKSAVE9 IDS IF SAVE AREA 1
~-------+---+---~
I 1 ISYMBOLIC NOTATION FOR REGISTERS I
I I ~---~
IZREGO IEQulO 1
IZREG11EQuI1 1
IZREG2 IEQuI2 1
IZREG3 IEQuI3 I
IZREG10 IEQuI10 I
IZREG111EQuI11 I
I ZREG 12 I EQU 112

ZREG14 IEQUI14 1
IZREG15 IEQUI15 1
~-------+---+--T----------------~
I I I TABTAB DESCRIPTION I I
I I I NAME TABLE DESCRIPTION I PHASE TO PHASE I
~-------+---+--+----------------~
IZTABOO IEQUIOOO CARTAB CHARACTER CONSTANT TABLE A45 G15 I
IZTAB01 IEQUI008 NAMTAB NAME TABLE A25 COO I
IZTAB02 IEQUI168 SYMTAB SYMBOL TABLE B10 F90 I
IZTAB03 EQU 024 FILTAB FILE TABLE B25 G17 I
IZTAB04 !EQU1032 EXTTAB EXTERNAL NAME TABLE B97 G25 I
IZTAB05 IEQuI040 ARYTAB ARRAY INFORMATION TABLE B95 D15 1
IZTAB07 IEQUI056 DSTAB DS TABLE F25 F90 I
IZTAB08 IEQUI064 CONTAB CONSTANT TABLE F35 G15 I
IZTAB11 IEQUI088 OFFTAB FINAL OFFSEr TABLE F90 G15 I
IZTAB16 IEQUI128 CARDS CARDS FOR FINAL OUTPUT G20 G55 I
IZTAB18 IEQUI144 FORMrAB FORMAT LABEL TABLE C60 D15 I
IZTAB21 IEQUI016 LITAB LIOCS TABLES AOO G55!
IZTAB19 IEQUI152 CONEQU EQUATE TABLE F35 F90
IZTAB19 IEQUI152 LABTAB LABEL OFFSET TABLE GOO G25 L _______ ~ ___ ~ __ ~ ________________ J

Figure 4. Assembly Listing of the Interface Communication Region (part 2 of 2) c
24

PL/I PLIvl. 8

IBM Confidential

c

The second part consists of communi­
cation bytes. These are various DC entries
where information is exchanged from phase
to phase. This part further includes
entries for the work buffer length, the
start address of the Table and Buffer
Areas, and the TABTAB address. The entry
IJKMJT contains job information bits which
indicate special features of the source
program to be compiled, e.g., structures,
etc.

The third part is a register save area
used by the individual interface routines.

The fourth part is a string of EQU
statements specifying register names and
offsets of TABTAB entries.

Note: The base register (register 15) is
saved by the subroutines. Therefore, no
reloading of the base address is required
in the compiler phase after a macro
instruction has been issued.

The functions of SYS002 and SYS003 (text
input and output, respectively) are normal­
ly switched at the end of a compiler phase.
This switching is done by means of the
table KTETA~ which is part of the communi­
cation region and contains file specifi­
cation information for SYS001, SYS002, and
SYS003. The format of this table is shown
in Figure 4. The table contains one 4-word
entry for each of the work files. The
contents of each 4-word entry are described
below.

The first word contains the address of
the file definition table. The second word
contains the address of the 1/0 area used
(for SYS002 and SYS003 only). For over­
lapped I/O operation~ the same I/O area is
always assigned to one of SYS002 and
SYS003. The third word contains the record
identifier for the last record written on
the file. It is changed whenever the end
key for the information written must be
saved. The first byte of the fourth word
contains housekeeping flag-bytes (see Fig­
ure 5). Bytes 3 and 4 are used to accommo­
date the available track length.

The first two words of KTETA contain
pointer addresses. Each address points to
one of the 4-word entries for SYS002 and
SYS003. The first one of these pointers
represents text input, the second rep­
resents text output. Switching of the I/O
functions for these units simply consists
of an exchange of these first two words in
KTETA.

The use of this table is discussed in
more detail in the description of the indi­
vidual control routines. One of the main

functions of the control routines is the
setting, resetting, and testing of flag
bits in KTETA.

r-------T---------------------------,
1 Bit 0 1 Index for writing 1
1 Bit 1 1 Index for end of file 1
1 Bit ~ 1 Index for first read call 1
1 Bit 3 t Index for rewinding 1
I Bit 4 Index for checking 1
1 Bit 5 , Index for POINTW 1
1 Bit 6 1 Index for NOTE 1
1 Bit 7 1 Index for POINTR 1 L _______ ~ ___________________________ J

Figure 5. Flag Bits Used in KTETA

The information to be exchanged between
phases is stored in the form of tables
written on SYS001. A communication table,
referred to as TABTAB and following the
Interface area, is provided for accessing
these tables. Each table is pointed to by
an 8-byte entry in TABTAB. Each entry
contains the information shown in Figure 6.

r-----T-----------------------------------,
1 BYTES 1 MEANING 1
~-----+-----------------------------------~
1 1 IBit 0 = 1 indicates that the table 1
1 1 is on SYS001 1
I IBit 1 indicates that that tablel
1 1 is in storage 1
1 IBit 2 1 indicates that transfer 1
lito or from SYSOO 1 has 1
1 I been started 1
12--4 Identifier of the first table 1
1 1 record on SYS001 1
15--6 INumber of records on SYS001 for thel
1 I table I
17--8 ILength of a record on SYS001 L _____ ~ ___________________________________ J

Figure 6. Format of Entries in TABTAB

Two special routines (ZTIN and ZTOUT)
are provided for reading and writing tables
or part thereof on SYS001. If these rou­
tines are to be used, the entry for record
length must have been specified by the
compiler phase. The housekeeping on the
other TAB TAB entries is explained in the
discussion of the individual routines.

Interface Structure for DOBATOS Versions

The structure of the interface differs
according to the DOS/TOS version used. The
differences are as follows:

1. The work files used for the tape ver­
sion are of the form DTFMT, MTMOD. The
same is used for the disk version if
the work files are assigned to tapes.
OrFSD, SDMOD is used if the work files
are assigned to disks. For the disk
version, file tables and modules for
OrFSD, SDMOD are loaded. During the

Compiler Interface 25

PL/I PLM 8

IBM Confidential

initialization, the type of work files
is tested and, if necessary, tables and
modules for tape work files are loaded
(phase A101 to overlay the previous

ones. Thus, the user may change his
assignments for work files on tape or
disk from job to job if he used the
disk version.

2. If the work files are assigned to disk,
a flag bit is set in the interphase
communication region 3uring Initializa­
tion, and a conditional branch instruc­
tion in the control routine for text
input (IJKAGII is changed to an uncond­
itional branch.

3. For the disk version, the file paramet­
er DISK=YES is always specified for the
file IJSYSLN. For the 32K disk ver~
sion, the same parameter DISK=YES is
specified for the files IJSYSIN, IJSYS­
IS, and IJSYSPH.

4. The output listing header lines differ
for the disk and tape versions. This
implies differences in the listing
phases.

LIOCS Modules Used ~the Interface

The logical LIOCS modules used by the com­
piler are included during the Linkage Edi­
tor run; they are not assembled together
with the phases.

The module name for the files IJSYSIN,
IJSYSLS, and IJSYSPH is IJJCPO for the tape
version and the 16K disk version; it is
IJJCPDO for the 32K disk version.

The module name for the file IJSYSLN is
IJJCPO for the tape version and IJJCPDO for
both disk versions.

The module name for work files is
IJGWZNZZ for disk work files, and IJFWZNZZ
for tape work files.

The work file module is always in stor­
age; the other modules are in storage only
together with the phases needing them, and
overlaid by other phases.

INTERFACE ROUTINES USED BY COMPILER PHASES

There are two classes of routines. The
first class comprises routines that remain
in storage during the entire compilation
(with the exceptions described in phase

C95). They are called by macro instruc­
tions in the compiler phases.

The names of the routines and the cor­
responding macro instructions are listed in
Figure 7.

26

r---------T-------------------------------,
I Routine ICalling Macro Instruction I
~---------+-------------------------------~
IIJKAWT IIJKWT I
~---------+-------------------------------i
IIJKANT IIJKNT I

ti;~~;;;;-ti;~;;;-------------------------1
IIJKAPT* IIJKPT I
~---------+-------------------------------~
IIJKAPH IIJKPH I
~---------+-------------------------------~
IIJKAGI* IIJKGI I
IIJKAGO* IIJKGO I
IIJKAGINO*IIJKRI I
IIJKAGONO*IIJKRO 1
IIJKAPI* IIJKPI
IIJKAPO* IIJKPO I
IIJKAPINO*IIJKWI I
IIJKAPONO*IIJKWO I
~---------+-------------------------------~
IIJKAMN IIJKMN I

ti;~~;i~--t~~~~~i~~d-i~-~;i~--------------1
I I (see Figure 8) I
~---------+-------------------------------~
IIJKATOUT IContained in ZTOUT I
I I (see Figure 8) I
~---------~-------------------------------~
1*=Routine with more than one entry point. I L ___ J

Figure 7. Interface Routines Called by
Macro Instructions

The routines listed in Figure 7 inter­
nally use the following subroutines: KGET­
NOTE, KREAD, KCHECK, and K2CHECK. (The
last two names are entry points of the same
routine.1

Note: KCHECK and K2CHECK are entry points
of the same routine.

The second class of routines comprises
all routines that can be assembl~d in the
phase either directly or by means of macro
instructions. These routines are call~d
inside the phases by appropriately branch­
ing to them. The names of these routines
and the corresponding macro instructions to
inclu3e them are listed in Figure 8.

r-----------T-----------------------------,
I Routine I' Macro for Assembly I
~-----------+-----------------------------~
I ZTIN I IJKTI I
I ZTOUT I IJKTO

I ZMO I IJKMO I
ZRCD I I

I ZPRNT I I
I ZLEDI I
I ZPCH I I L ___________ ~ _____________________________ J

Figure 8. Interface Routines Assembled
In-Line either Directly or by
Macro Instructions

~~~~~-- --------- -~---

c 



PL/I PUl. 8 

IBM Confidential 

( .. -' 
/ 

c 

o 

The source programs for ZRCD, ZPRNT, 
ZLEDI, and ZPCH are part of the correspond­
ing phase source program. 

The functions of all interface routines 
and the corresponding macro instructions 
are explained in the following sections. 

When this subroutine is called, register 0 
(KCHECK) or register 2 (K2CHECK) contains 
the address of a work file item in KTETA. 
If necessary, the subroutine issues a CHECK 
macro instruction for this work file. For 
correct housekeeping on the record iden­
tifier in the LIOCS, this CHECK macro 
instruction must be given only once after 
each read or write operation. The check 
index (a flag bit in KTET~) is used to 
check whether the CHECK macro instruction 
is required. 

KGETNOTE -- AF ----------
When this subroutine is called, register 2 
contains the address of a work file item in 
KrETA. The subroutine performs some house­
keeping and issues a NOTE macro instruc­
tion. If a first call is performed after a 
write operation, the record identifier 
obtained by NOTE is saved in KTETA together 
with the information for available track 
length. If a further call is performed 
after a write operation, no further NorE is 
issued, but the information saved in KTETA 
is returned as for the preceding call. If 
a call is performed just after reposition­
ing of the work file (in IJKAPH) , a zero is 
returned in register 1 for the record iden­
tifier. This zero, if used in calling 
IJKAPT or IJKAPTR, causes a POINTS macro 
instruction to be issued. 

KREAD -- AF 

KREAD merely is the expansion of a work 
file read macro instruction. 

This routine is called by a compiler phase 
to wait for the completion of a read or 
write operation on a work file. On return, 
all register contents are unchanged. The 
macro for calling is IJKWr with one of the 
parameters 1, O( or T. 

The parameters I, 0, and T specify text 
input, text output, and table medium, res­
pectively. The macro expansion is a load 
instruction loading the address of a work 
file item in KTETA into register 0, and a 
branch-and-link instruction that branches 
to the branching vector in the interphase 
communication region. An example for the 
macro expansion is: 

L 
BAL 

ZREGO,KTETA 
ZREG14,32 (ZREG12) 

IJKAWr performs the wait function by using 
the subroutine KCHECK. 

IJKANr -- AG -------
This routine is called to obtain the actual 
record identifier. This may be repeated 
several times after a read or write opera­
tion. On return, register 0 contains the 
available track length (useful after writ­
ing on disk only) , register 1 contains or 
the record identifier. The other registers 
remain unchanged. The macro for calling is 
IJKNT with one of the parameters I, 0, or 
T. 

The parameters I, 0, and T specify text 
input, text output, and table medium, res­
pectively. An example for the macro expan­
sion is: 

L ZREGO,KTETA+4 
BAL ZREG14,8 (ZREG12) 

IJKANr performs the NOTE function by using 
the sUbroutines KCHECK and KGETNOTE. 

IJKAE!EL-IJKAPT -- AG 

This routine performs a POINTW (IJKAPT), a 
POINTR (IJKAPTR) or a POINTS operation (see 
description below) on a work file. On 
return, all register contents are 
unchanged. The macro instructions for 
calling are either IJKPT or IJKPTR with one 
of the parameters I, 0, or T. 

The parameters I, 0, and T specify text 
input, text output, and table medium, res­
pectively. 

If one of these macros is given in a 
compiler phase, register 1 must contain the 
record identifier of the record to be 
pointed to (as obtained after a NOTE). If 
IJKPT is given, register 0 must contain the 
available track length only if a write 
command follows this pointing. An example 
for the macro expansion of IJKAPTR is: 

L ZREGO,KTETA+4 
BAL ZREG14,64 (ZREG12) 

The first instruction loads the address of 
a work file item in KTETA into register 0, 
the second instruction branches to the 
branching vector. An example for the macro 
expansion of IJKAPT is: 

STH ZREGO,KSAVE7 
L ZREGO,KTETA+4 

BAL ZREG14,24 (ZREG12) 

The first instruction saves the contents of 
register 0, which may be the available 

Compiler Interface 27 



PL/I PLM 8 

IBM Confidential 

track length. The two other instructions 
are as shown for IJKAPTR. 

The routine first calls the subroutine 
KCHECK. Then a test is made to determine 
whether the record identifier in register 1 
is zero. If it is zero, a POINTS is 
issued, otherwise a POINTR or a POINTW, 
depending on the calling macro instruction. 

Eventually, some flag bits are reset if 
a point was done with the actual end key 
stored in KTETA. 

IJKAPH, KREP -- AH 

The routine IJKAPH is normally used at the 
end of a compiler phase. It fetches a new 
compiler phase if requested by the calling 
program and repositions SYS001 and/or 
SYS002, if required. Moreover, the func­
tions of SYS001 and SYS002, as regards text 
input and output, can be switched. 

If rewinding or switching is requested 
by the calling program, register 0 must 
contain a specified number according to the 
following convention: 

<register 0> = 0 No rewinding, no switch-
ing 

<register 0> = 1 Rewind input medium, no 
switching 

<register 0> = 2 Rewind output medium, no 
switching 

<register 0> 3 Rewind both media, no 
switching 

<register 0> = 4 No rewinding, switching 
<register 0> = 5 Rewind input medium, 

switching 
<register 0> = 6 Rewind output medium, 

switching 
<register 0> 7 Rewind both media, 

switching 

If a new compiler phase has to be 
fetched, register 1 must contain the 
address of a 4-byte character string that 
contains the last three character bytes of 
the phase name (right-aligned). Note that 
all compiler phase names differ in the last 
three characters only. 

The routine first rewinds the text 
media, if necessary, using the subroutine 
KREP. It then switches their functions, if 
required. Finally( some housekeeping is 
done and a FETCH macro instruction is given 
if a new phase is required by the calling 
program. 

If a write operation was the last opera­
tion performed on a text medium, the actual 
end key for this medium is saved prior to 
rewinding. 

The routine IJKAPH can be called by the 
keyword macro instruction: 

28 

IJKPH NEWPH=,REW=ALLIIIO,SWITCH=NO 

If a new phase is required, the keyword 
NEWPH must be specified followed by an 
equal sign and the three ending characters 
of the phase name. If NEWPH is not speci­
fied, no phase is fetched, and the routine 
returns to the calling program. For rew­
inding, the keyword REW may be specified 
followed by an equal sign and one of the 
parameters NO, ALL, I, or O. The meaning 
of these parameters is: 

NO No medium must be rewound 
ALL Both media must be rewound 
I The actual input medium must be 

rewound 
o The actual output medium must be 

rewound 

If REW= with a parameter is not speci­
fied in the macro instruction, both media 
are automatically rewound. For switching 
of functions, the keyword SWITCH is speci­
fied followed by an equal sign and one of 
the parameters YES or NO. The meaning of 
these parameters is: 

YES Switching is performed 
NO Switching is not performed 

If SWITCH= with a parameter is not spec­
ified, switching is done automatically. 

IJKAGI,IJKAGO,IJKAGINO,IJKAGONO -- AI, AJ 

This routine is used to read records from a 
work file medium. It can be called by 
various macro instructions. Each macro 
instruction provides a branch to a specific 
entry point by means of the branching vec­
tor. The correspondence is: 

r--------·---,..-----------T-----------------, 
Ibcro I I I 

~=~:::~::~~~t~~:::-:~:~:t:~~~:~~~---------~ 
r IJKGI IIJKAGI I OVer lapped input I 
I I Ifrom text input I 
I I I medium. I 
IIJKGO IIJKAGO IOverlapped input I 
I I Ifrom text output I 
I I I medium. I 
IIJKRI IIJKAGINO Non-overlapped I 
I 1 linput from text I 
I I linput medium. I 
IIJKRO IIJKAGONO I Non-overlapped I 
I I linput from text I 
I I loutput medium. I l ___________ ~~ __________ ~ _________________ J 

When one of these macro instructions is 
given in a compiler phase, register 1 must 
contain the address of the area where the 
new record is required. For IJKRI and 
IJKRO, this is the input area for reading; 
for IJKGI and IJKGO, this is the work area. 
Note that overlapped input means that the 

c 



PL/I PLM 8 

IBM Confidential 

c 

c 

record is available after returning from 
this routine, whereas non-overlapped input 
means that reading in the indicated area is 
started on return from the routine. 

Some indices and pointers for KTETA are 
set first, depending on the entry point 
used. Then (only on the disk version, see 
Initializationl a test is made to determine 
whether a POINTW operation for the same 
file preceded this call. If so, a dummy 
read is performed to position the medium 
for reading. 

For overlapped working, a test is made 
to determine whether reading in the over­
lapped mode has already been started. If 
this is not the case, a first record is 
read into the input area. 

Before moving this record into the work 
area, the routine waits for completion of 
the preceding read operation. Finally, a 
new reading is started, and the routine 
returns to the calling program. 

For non-overlapped working, the routine 
checks for completion of any previous oper­
ation. Then, a new read operation into the 
input area indicated in register 1 is 
started. 

Note: Each starting of a new read opera­
tion is preceded by a test to determine 
whether the work file medium is positioned 
at the end of the information written on 
it. If it is, the routine returns without 
having started a new read operation. 

The entry point at box G2 in flowchart 
AI is used by the routine IJKATIN to read a 
table record from IJSYS001 in non­
overlapped mode. 

The routine normally returns with 
register 0 set to O. However, if no more 
records are available, register 0 contains 
a 1. All other registers are unchanged. 

IJKAPI, IJKAPO, IJKAPINO, IJKAPONO -- AK 

This routine writes records on a work file. 
It can be called by various macro instruc­
tions. Each macro instruction provides a 
branch to a specific entry point by means 
of the branching vector. The correspon­
dence is shown below. 

r-----------T-----------T-----------------, 
l~~::~ ______ +:~:::_~~=~:+~~~::=~~ _________ ~ 
fIJKPI IIJKAPI Overlapped output I 
I I on text input I 
I I medium. I 
IIJKPO IIJKAPO Overlapped output I 
I I on text output I 
I I medium. I 
IIJKWI IIJKAPINO Non-overlapped I 
I I output on text I 
I I input medium. I 
IIJKWO IIJKAPONO Non-overlapped I 
I I output on text I 
I I output medium. I l ___________ L ___________ L ________ ---------J 

When one of these macro instructions is 
given in a compiler phase, register 1 must 
contain the address of the area from where 
the new record has to be read. Each macro 
expansion is a branch-and-link instruction 
that branches to the branching vector. For 
IJKWO and IJKWI, this is the output area 
for writing; for IJKPI and IJKPO, this is 
the work area. 

Non-overlapped output means that writing 
from the output area is started on return 
from the routine. Overlapped output means 
that the output record is first moved from 
the work area to the output area used by 
the interface. Output is then started from 
there before returning. 

The routine sets some indices and pOin­
ters in the table KTETA depending on the 
entry point used. It checks for completion 
of any previous operation on the same file. 
A test is made to determine whether a 
POINTW is required for the file to position 
the medium at the end of the information 
actually written on it. If so, a POINTW is 
issued with the end key saved in KTETA. 
This end key is saved on each NOTE after a 
write operation. No POINTW is required if 
a write or rewind command was given last. 
This concept allows the compiler phases to 
interrupt the writing by some intermixed 
reading. 

After this test, a record is moved from 
the work area to the output area if over­
lapped working was requested. Writing is 
then started and the routine returns with 
all register contents Unchanged. 

IJKAMN -- AL 

This routine is used to move a record of 
any length from one area to another. Over­
lapping of the form that the start address 
of the TO area lies inside the FROM area is 
not allowed. The routine first moves sin­
gle 256-byte records until a field shorter 

Compiler Interface 29 



PL/I PLM 8 

IBM Confidential 

than 256 bytes remains to be moved. The 
residual moving length is then calculated 
and moving is performed. If the whole 
length on calling is zero, no moving is 
performed by the routine. 

IJKAMN can be called in the source pro­
gram of the compiler phase by the macro 
instruction IJKMN. The macro expansion 
consists of a branch-and-link instruction 
that branches to the branching vector in 
the interphase communication region, e.g.: 

ZREG14,44 (ZREG12) 
The following register contents must have 
been provided: 

register 0 - total field length, 
register 1 - start address of the TO field, 
register 2 - start address of the FROM 

field. 

On return from the 
and 2 contain the end 
corresponding fields. 
ister 0 is undefined. 
remain unchanged. 

IJKATIN -- AL 

routine, registers 1 
addresses +1 of the 

The content of reg­
All other registers 

This routine is called by ZTIN in the com­
piler phase to read a record from SYS001 in 
non-overlapped mode. On calling, the 
address of the input area is contained in 
register 1. This address and the maximum 
table record length are supplied to the 
subroutine KREAD. The routine then branch­
es to some entry point of IJKAGINO. There 
is no macro instruction to call this rou­
tine. 

IJKATOUT -- AL 

This routine is called by ZTOUT in the 
compiler phase to write a record on SYS001 
in non-overlapped mode. On calling, the 
address of the output area is contained in 
register 1, the length is contained in 
register O. The register contents are 
supplied to the routine IJKAWI. The rou­
tine then branches to some entry point of 
IJKAPINO. There is no macro instruction to 
call this routine. 

ZTIN -- AM 

The symbolic start address of this routine 
is ZTIN. It can be called into the source 
program of a compiler phase by the macro 
instruction IJKTI. On branching to the 
routine. the following register contents 
must have been provided: 

<register 0> = Number of records to be 
read, 

<register 1> = Start address of the read-in 
area of the records, 

<register 2> Relative address of the 
entry in TABTAB. 

30 

A table can be read from SYS001 in sev­
eral steps, i.e., by branching to ZTIN 
several times for the same table. If a 
table is to be read in from its beginning, 
bit 2 of the corresponding TABTAB entry 
must be set to zero prior to branching to 
the routine. In all other cases, it must 
be set to one. 

The routine first tests whether bit 2 of 
the TABTAB entry is zero. If it is, the 
following steps are performed: 

1. If a write operation was the last oper­
ation on SYS001, the last record writ­
ten is first identified by a NOTE macro 
instruction; the identifier is saved 
for writing on SYS001 at a later time. 

2. Bits 1 and 2 of the TABTAB entry are 
set to 1. 

3. SYS001 is repositioned according to the 
record identifier found in the TABTAB 
entry, provided that this record iden­
tifier is less than the identifier for 
the last record written on SYS001. If 
the record identifier is higher, com­
piling is terminated with an error 
dump. Then the reading of the single 
records is started. 

The routine normally returns to the 
calling program when reading of the last 
record has been started. Thus, a limited 
overlapping of I/O and processing is possi­
ble. 

A test is made for each record to be 
read to check that it is not located beyond 
the end of information written on SYS001. 
~f this test matches for each record, the 
routine returns with register 0 set to O. 
If this test does not match for a new read­
ing, ZTIN is terminated immediately and 
returns with register 0 set to 1. 

The routine ZTIN performs its I/O func­
tions by calling routines in the compiler 
control program. The record length is the 
physical record length for each record 
read. 

ZTOUT -- AN 

The symbolic start address of the routine 
is ZTOUT. It can be called into the source 
program of a compiler phase by the macro 
instruction IJKTO. On branching to the 
routine, the following register contents 
must have been provided: 

<register 0> End address of the output 
area+1, 

<register 1> = Start address of the output 
area, 

<register 2> Relative address of the 
entry in TABTAB. 

C 



PL/I PLM 8 

IBM Confidential 

() 

c 

If the beginning of a table is to be 
written on SYS001, bit 2 of the correspond­
ing TABTAB entry is set to zero prior to 
branching to ZTOUT. In this case, the 
identification for the first record written 
is saved in TABTAB after this record has 
been written on SYS001. In all other 
cases, bit 2 of the TAB TAB entry is set to 
1. 

Prior to starting the write operation, 
the routine checks whether the end address 
in register 0 is less than or equal to the 
start address or whether the record length 
RL stored in the TAB TAB entry is not in the 
range 18 < RL < 3500. The compilation is 
terminated with an error dump if these 
conditions occur. 

After the first record has been written 
on SYS001, bit 2 in the T~BTAB entry is 
checked for zero. If it is zero, the fol­
lowing is done prior to the next write 
operation: 

1. The record identification for the 
record just written is saved in the 
TABTAB entry; 

2. The number of records written for the 
table on SYS001 is set to 1 in the 
TAB TAB entry; 

3. Bits 0 and 2 of the flag byte in TABTAB 
are set to 1. 

The length of the records written is 
determined" by the TABTAB entry. The rou­
tine normally returns after having started 
the writing of the last record. The length 
of this record is at least 18 bytes. 

ZRCD -- AO 

This routine is used to read source cards 
and to print lines on SYSLST. Reading and 
printing is done in overlapped mode. 

This routine uses ZPRNT as a ubroutine 
for printing. Each line is 120 characters 
long. For reading, the routine contains 
the two I/O areas used for overlapped read­
ing. 

On each call but the first, the routine 
writes a line and then reads a card. On 
the first call, only the first card is 
read. On each return from the routine, 
register 10 points to the start address of 
an alternative input area where a card has 
been read in. Register 11 points to the 
start address of an alternative output area 
where the record for output on SYSLST can 
be built. 

The logical IOCS used for reading is of 
the type DTFCP, CPMOD. The branch address 

for the end-of-file condition is ELC010 in 
phase A25. 

ZLEDI -- AO 

This routine is used to write a record on 
SYSLNK in non-over~apped mode. Only one 
output area of the length 322 bytes is 
used. This output area is located in the 
Buffer Areas otherwise used as I~O areas 
for text input and output. Its start 
address is equal to the start address of 
the two Buffer Areas. Each output record 
is 322 bytes long (4 cards). The first two 
bytes of the output record contain the 
number of logical records 14) and the 
length of a single logical record (80), 
respectively. This control information is 
provided by the phase. 

On return from ZLEDI, the output is 
completed and a new record can be built in 
the output area. 

ZPCH -- AO 

This routine is used to produce a record on 
SYSPCH in overlapped mode. The length of 
each output record is 81 characters, the 
first character being a control character 
for stacker selection. 

Two 80-byte I/O areas are specified for 
overlapped output in the uppermost Buffer 
Area otherwise used as I/O area for text 
input and output. No text input or output 
is performed during execution of a phase 
that contains ZPCH. Register 10 is used to 
point to the ILO area where the next record 
for output on SYSPCH can be built by the 
phase. This register must not be changed 
by any phase using ZPCH. 

On each return from the routine, reg­
ister 10 points to an alternate I/O area. 

Prior to the first branch to ZPCH, the 
compiler phase must issue the macro 
instruction IP to load register 10 with the 
address of the first I/O area where the 
phase can build the first output record. 
The expansion of the IP macro instruction 
is: 

L ZREG10,IJKMPC 
LA Z REG 1 0 , 1 (ZREG 1 0) 

IJKMPC is an entry in the communication 
region and contains the output area address 
for the first output on SYSPCH. This 
address is stored during initialization. 

ZPRNT, HESUB -- AP 

The routine ZPRNT is used for any output on 
SYSLST. The routine automatical~y provides 
header lines and subheader lines on each 
page, using the subroutine HESUB. 

Compiler Interface 31 



PL/I PLM 8 

IBM Confidential 

Each header line contains compiler name, 
program number, change level, job name, and 
page number. The content of the subheader 
line depends on the compiler phase. 

Each line is 120 characters long. Writ­
ing of single lines is done in overlapped 
mode. Therefore, two I/O areas are speci­
fied in the fifth work buffer. Register 11 
is used as I/O register to point to the 
output area where the next record can be 
built by the phase for output on SYSLST. 
This register must not be changed by the 
phase containing ZPRNT. On each return 
from the routine, register 11 points to an 
alternate I/O area. The register content 
is saved in the entry IJKMPR in the inter­
phase communication region at the end of 
the initialization and at the end of any 
listing phase. 

Prior to the first branch to this rou­
tine, the compiler phase must issue the 
macro instruction IJKIL. The expansion of 
this macro instruction is: 

L ZREG11,IJKMPR 
LA ZREG11,1 (ZREG11) 
OI IJKMJT+1 wX' 01' 

The first instruction loads the register 
with the saved content. The register then 
points to the control character position. 
The second instruction causes the register 
to point to the first position of informa­
tion to be given out. The last instruction 
sets a flag bit for printing in the inter­
phase communication region, this flag bit 
is tested at phase end in the routine 
IJKAPH for end of phase. 

ZMO -- AQ 

This routine is used to move a record of 
any length from a FROM field to a TO field. 
The two fields may overlap. The routine is 
assembled in the source program of a com­
piler phase by the macro instruction IJKMO. 

It can be called in the phase by branch­
ing to ZMO. There is the following conven­
tion on register contents for calling: 

register 0 contains the field length, 
register 1 contains the start address of 

the TO field, 
register 2 contains the start address of 

the FROM fi eld. 

On return, registers 1 and 2 contain the 
end address+1 of the corresponding fields. 
The content of register 0 is undefined. 
All remaining registers are unchanged. 

The routine first tests whether the 
start address of the TO field is lower than 
that of the FROM field. In this case, the 
routine IJKMN is called for moving. If the 

32 

start address of the TO field is higher 
than that of the FROM field, the field is 
moved step by step from the Light to the 
left. The move length for a single step is 
thereby calculated according to the follow­
ing formula: Move Length = Min (256, field 
length, address difference). This move 
length implies a correct moving for any 
field overlapping. 

LOGICAL IOCS FOR THE TAPE VERSION 

Work Files SYSOOJ, SYS002 and SYS003 

The first control section of phase AOO 
contains the DTFMT tables for these work 
files. The name of this control section 
is IJXAOO. 

The file specifications are the same for 
all three work files, e.g., 

IJSYS01 DTFMT BLKSIZE 
DEVADDR 
EOFADDR 
NOTEPNT 
RECFORM 
TYPEFILE 
MODNAME 

3072 
SYS001 
K001EOF 
YES 
UNDEF 
WORK 
IJFWZNZZ 

For IJSYS002 and IJSYS003, the blocksize 
entry is BLKSIZE = 1536. 

The address of the input or output area 
is specified in the expansion of the res­
pective READ or WRITE macro instruction. 
The file specification implies non­
overlapped working. Thus, overlapping, if 
any, is done by the control routines. 

The logical IOCS module is not assembled 
in phase AOO; it is included during linkage 
editing. 

DTFCP Files for SYSLST, SYSIPT, SYSPCH and 
SYSLNK 

For device independence, the logical IOCS 
used for these files is of the type DTFCP, 
CPMOD. 

The file specifications for the print 
file IJSYSLS are assembled in phase AOO in 
the control section IJXA01. This DTFCP 
table remains in storage throughout the 
entire compilation (for exceptions see 
phase C95). The file specifications are: 

IJSYSLS DTFCP DEVADDR 
IOAREA1 
IOAREA2 
RECSIZE 
TYPEFLE 
IOREG 

SYSLST 
KTETA 
KTETA 
121 
OUTPUT 
11 

The module IJJCPO is included in all 
printing phases during linkage editing. 

c 



PL/I PLM 8 

IBM Confidential 

(; 

o 

The addresses of the two I/O areas are 
fixed in the Initialization routine. 
Output for listing is always done in over­
lapped mode, using two I/O areas and reg­
ister 11. 

The file specifications for the input 
file IJSYSIN are assembled in phase AOO in 
the control section IJXA06. This DTFCP 
table serves for input during phase A25. 
It is further used for closing the file 
IJSYSIN in the last compiler phase. It is 
therefore written on SYS001 in phase A30 in 
order to save storage during the other 
compiler phases. The file specifications 
are: 

IJSYSIN DTFCP DEVADDR 
IOAREA1 
IOAREA2 
RECSIZE 
EOFADDR 
TYPEFLE 
IOREG 

SYSIPT 
= KTETA 

KTETA 
81 
ELC010 
INPUT 
9 

The module IJJCPO for this input and for 
listing is included in phase AOO during 
linkage editing. It is not overlaid during 
phase A25. Input is done in overlapped 
mode using two input areas and register 9. 
The input areas are fixed in the Initiali­
zation routine. 

The file specifications for the punch 
output file IJSYSPH are assembled in the 
control section IJXA06. After this file is 
opened in the Initialization routine, the 
file table is written on SYS001 to save 
storage. It is reloaded into storage by 
phase G55 for punching and closing the 
file. The file specifications are: 

IJSYSPH DTFCP DEVADDR SYSPCH 
IOAREA1 KTETA 
IOAREA2 KTETA 
RECSIZE 81 
TYPEFLE = OUTPUT 
IOREG 10 

The module IJJCPO for this output is 
included in phase G55 during linkage edit­
ing. Output is done in overlapped mode 
using two output areas and register 10. 
The output areas are fixed in the Initiali­
zation routine. 

The file specifications for IJSYSLN are 
assembled in the control section IJXA06. 
After this file is opened in the Initiali­
zation routine, the file table is written 
on SYS001 to save storage. It is reloaded 
into storage by phase G55 for link file 
output and for closing the file. The file 
specifications are: 

IJSYSLN DTFCP DEVADDR 
IOAREA1 
RECSIZE 
TYPEFLE 

SYSLNK 
KTETA 
322 
OUTPUT 

The module IJJCPO for this file is the 
same as for the punch file. Output is done 
in non-overlapped mode. The address of the 
output area is fixed in the Initialization 
routine. The first two bytes of the output 
record contain the number of logical 
records (4) and the length of a single 
record (80), respectively. 

LOGICAL IOCS FOR THE DISK VERSIONS 

Work Files SYS001, SYS002 and SYS003 

Disks will normally be used as work files 
for the disk versions. Therefore, the 
first control section of phase AOO (DOS 
16K) or AOOD (DOS 32K) contains the DTFSD 
tables for these work files. This control 
section is named IJXAOO (DOS 16K) or 
IJXAOOD (DOS 32K) • 

The logical IOCS module named IJGWZNZZ 
and used for these work files on disk is 
not assembled in phase AOO or phase AOOD, 
but included during linkage editing. Dur­
ing the Initialization routine, the con­
figuration is tested for tape media for 
these work files. If tapes are specified, 
phase A10 is loaded at the location of the 
tables and the module for the work files 
(see phase A10). The file specifications 
are the same for all three disk work files, 
e.g., 

IJSYS001 DTFSD BLCKSIZE 
DEVICE 
EOFADDR 
NOTEPNT 
RECFORM 
TYPEFLE 
DELETFL 
MOD NAME 

3072 
2311 
K001EOF 
YES 
UNDEF 
WORK 
NO 
IJGWZNZZ 

For IJSYS002 and IJSYS003, the blocksize 
entry is BLCKSIZE = 1536. 

DTFCP Files for SYSIPT, SYSLST, SYSLNK, and 
SYSPCH 

The handling of these files is similar to 
that of the tape version. The exception is 
the parameter DISK = YES in some file 
specifications. This parameter is always 
given for the link file IJSYSLN. For the 
other three files, it is only entered for 
DOS 32K. Whenever I/O functions are 
requested for a file with the parameter 
DISK = YES, the module IJJCPDO instead of 
IJJCPO is included during linkage editing. 

Compiler Interface 33 



PL/I PLM 8 

IBM Confidential 

PHASES PL/IAOO, AOQ~A10 (INITIALIZATIOm -- AR 

The first phase loaded during a PL/I compi­
lation is either PL/IAOO (for DOS 16K and 
TOS) or PL/IAOOD (for DOS 32K). Phases AOO 
and AOOD contain 

the interphase communication region, 

the interface, and 

the initialization routine. 

Phases AOO and AOOD differ in the DTF 
tables and modules. 

The PL/I compilation starts with the 
Initialization routine that performs some 
preparation for the entire compilation. If 
the disk version is used and tape drives 
are assigned to work files SYS001, SYS002, 
and SYS003, the Initialization routine 
calls phase A10 to overlay the DTF tables 
and module for disk work files. 

Storage Map of Interface ADO for Disk 16K 

The object module of AOO consists of 3 
control sections. The first section 
(IJXAOO) contains the LIOCS tables for work 
files and the module IJGWZNZZ, which is 
called from the relocatable library by the 
Linkage Editor. 

The second section (IJXA01) contains the 
Save Area for LIOCS, the interphase com­
munication region, the control routines 
which are always in storage, the LIOCS 
table for SYSLST, the area reserved for 
TABTAB, and the CP module, which is called 
from the relocatable library by the Linkage 
Editor. 

The third section (IJXA06) contains the 
LIOCS tables for IJSYSIN, IJSYSPH, and 
IJSYSLN and the Initialization routine. 

After opening the files, the tables for 
IJSYSPH and IJSYSLN are written on SYS001 
during the initialization; tbey are reload­
ed into storage by the final output phases 
of the compiler. Thus, the storage area 
can be overlaid by all other compiler phas­
es. The same applies to the table for 
IJSYSIN after phase A25. 

The load point for most phases is IJXA05 
+ 4. Exceptions may be looked up in the 
Linkage Editor mapping for the compiler. 

For a schematic representation for the 
storage layout for phase AOO see Figure 1. 

34 

r-------T---------------------------------, 
IIJXAOO*ILIOCS tables for work files I 
I ~---------------------------------~ 
I ~---------------------------------~ 
I ISO module IJGWZNZZ** I 
I ~---------------------------------~ 
t-------+---------------------------------~ IJXAO 1 I Save area for LIOCS (72 bytes) I 
I ~---------------------------------~ I t=~~==:~:~=-:~~~~~::~~~~-==~~~~--1 
I I I 
I IControl routines that are always I 
1 1 in storage I 
I I 

I I 1 I .---------------------------------
fIJXA04 ILIOCS table for IJSYSLS 

I .---------------------------------~ 
IIJXA05 ITABTAB 1 
I .---------------------------------~ 
I ~---------------------------------~ 
I I CP module IJJCPO*** 1 
1 ~---------------------------------~ 
.-------+---------------------------------~ 
IIJXA06 ILIOCS table for IJSYSIN 1 
1 .---------------------------------~ 
1 ILIOCS table for IJSYSPH 1 
I ~---------------------------------~ 
1 ILIOCS table for IJSYSLN 1 

I t---------------------------------~ 
1 1 Initialization I 
1 I 1 
~-------~---------------------------------~ 
1* for 32K disk: AOOD 1 
1** for tape : MT module IJFWZNZZ 1 
1*** for 32K disk: IJJCPDO 1 L ___________________________________ ------J 

Figure 1. Storage Map of IJXAOO for 16K 
Disk 

Initialization for Tapes -- AS 

This routine has two principal functions: 
storage allocation during PLLI compilation 
and opening of files. Storage allocation 
and some housekeeping functions depend on 
the type of the work file. Therefore, the 
routine shown in flow chart AS is used both 
in the tape version and in the disk version 
with tape work files. Opening of files is 
identical for the disk and tape versions. 

For tape work files, the initialization 
begins with rewind commands for SYS001, 
SYS002, and SYS003. All program mask bits 
are set to 1; they will not be reset during 
the compilation. The buffer length is 
calculated and stored in the communication 

o 



PL/I PLM 8 

IBM Confidential 

(~I 

( ""'\ 
'. / 

c 

region entry IJKMBL. The formula for the 
calculation is as follows: 

Buffer length = 1536 if available core 
storage more than 30K 

AVC - 10K 
Buffer length = 256 (1+FLOOR ( --------- » 

4K 

where AVC is available core storage. 

The remaining part of the initialization 
is identical for the tape and disk ver­
sions. It is discussed here together with 
the disk versions. 

Initialization for Disk Versions -- AT, AU 

As mentioned under Initialization for 
!apes, part of this initialization is com­
mon to both the disk and the tape versions. 
The initialization has two principal func­
tions: storage allocation during PL/I com­
pilation and opening of files. 

If the work files are tapes, the routine 
flowcharted in AS is used for storage allo­
cation. If disks are used, the following 
is done: The program mask bits are set to 
1. They will not be reset during the com­
pilation. The buffer length is calculated 
and stored in the communication region 
entry IJKMBL. The rules for calculation 
are given below. 

r----------------------------T------------, 
IAvailable Core Storage (AVC) I Buffer I 
I I Length I 
~----------------------------+------------~ 
I AVC ~ 30K I 1536 I 
I 22K:::; AVC < 30K I 1024 I 
I 18K:::; AVC < 22K I 768 I 
I 14K:::; AVC < 18K I 512 I 

l 10K:::; AVC < 14K I 256 I ____________________________ ~ ____________ J 

Initialization for Tape and Disk Versions 
-- AU 

The addresses of the I/O areas for SYS002 
and S~S003 are calculated and stored in 
KTETA. These addresses depend on the 
uppermost available core storage address 
and the buffer length. The addresses for 
the files IJSYSLS, IJSYSIN, IJSYSPH and 
IJSYSLN are calculated and stored in the 
corresponding DTFCP tables. 

The addressing concept is as follows: 
The two output areas for printing lie in 
succession in the fifth work buffer, begin­
ning at its lower limit. The two input 
areas for reading lie in succession in the 
first output area otherwise used for 
SYS002. The output areas for the link and 
punch files lie in corresponding succession 
also in the first output area otherwise 
used for SYS002. The length of the tables 
depends on whether or not the parameter 
DISK = ~ES is specified. 

The address of the entire Buffer Area is 
then calculated and stored in the inter­
phase communication region entry IJKMBS. 

The opening of files depends on the Job 
Control options given for the list, punch, 
and link files. If none of the options for 
these files are given, the job is terminat­
ed and a warning message is produced on 
S~SLST. 

If any option is specified, the corres­
ponding files are opened with their work 
files. Before fetching the next compiler 
phase (A25), the contents of registers 10 
and 11 are saved in the communication 
region, and the LIOCS tables for the files 
IJSYSLN and IJSYSPH are written on SYS001. 

Phases PL/IAOO, AOOD, A10 35 



PL/I PLM 8 

IBM Confidential 

PHASE PL/IA25 (REPLACEMENT OF KEYWORDS) -- BA 

Phase A25 has the following functions: 

1. to read the PL/I source program into 
storage; 

2. to list the source program if the LIST 
option is on; 

3. to count the statements and to print 
the number of the first statement per 
printed line; 

4. to eliminate the comments from the 
source text and to replace them by one 
blank; 

5. to replace ~f the 48-character set is 
used) the combinations period-period 
and comma-period by colon and semico­
lon, respectively, and the alphabetic 
operators GT, GE, NE, NG, NL, LE, LT, 
NOT, OR, AND, and CAT by their 
60-character equivalents. No 
replacements are performed within 
quotes. Moreover, the combination 
comma-period is not replaced, i.e., not 
interpreted as an end-of-statement 
delimiter if it is followed by a digit; 

6. to translate the source text into the 
internal code shown in Figure 1; 

7. to replace all identifiers that physi­
cally look like PL/I keywords by 3-byte 
keys (all other identifiers are 
replaced in phase A30) ; 

8. to eliminate redundant blanks from the 
source text (the remaining blanks are 
eliminated in phase A30); and 

9. to terminate the source program by the 
3-byte end-of-program key (FFFFFF). 

Phase Input 

The input of this phase is the PL/I source 
program, which is provided in card-image 
format. Each card consists of 80 columns. 
Column 1 must be blank except for the last 
card, which is the DOS/TOS end-of-data-file 
card. Columns 2 to 72 are assumed to con­
tain the source text. Columns 73 to 80 are 
not used. 

Input Processing 

To translate the source text into the 
internal code, a translate table of 256 
bytes is used. This table describes an 

r----------T------------------------------------------T------, 
I leftl I I 
I I I I 
Ihalf-byte I I 
I I I I 
I right I 0 1 2 3 (I 5 6 7 8 9 ABC DIE F I 
~----------t------------------------------------------t------i o 0 G W b I I I 

1 1 H X I J 
2 2 I Y I 
3 3 J Z ( I 
4 4 K $ ) I 
5 5 L # I 
6 6 M @ I 
7 7 N + I 
880 I 
9 9 P , I 
A A Q " • I 
B B R • / I 
C C S ¢ = I 
DDT % > I 
E E U ? < I 

~---~------L~--~--~--~-------------------------------L-----i 
I~ The free space in this table may be occupied by an I 
lextended character set, e.g., KATAKANA. The characters EO J 
Ito FF are reserved for internal keys. I L _________________________________________________________ ---J 

Figure 1. Table Describing the Internal Code 

36 

c 



PL/I PLM 8 

IBM Confidential 

c 

isomorphism from the external into the 
internal code. 

The cards are read one by one into a 
card area. The source text is then scanned 
by means of several translate-and-test 
tables. An end-of-card mark (X'FF') is set 
in column 73. 

TRT table 1 contains non-zero function 
bytes for alphabetic characters, semicolon, 
quotation mark, slash, end-of-card mark and 
-- if the 48-character set is used -- for 
comma and period. This table is used to 
scan statements, the beginning of which has 
already been detected. 

TRT table 2 contains only one non-zero 
function byte for the end-of-card mark. It 
is used to scan for the end of a comment or 
a string constant. Function bytes for 
asterisk or quotation mark are moved into 
the table as required. 

TRT table 4 contains zero function bytes 
for all alphanumeric characters. All other 
bytes are I O. This table is used to scan 
for the end of an identifier. 

TRT table 5, which is used to find the 
first significant character of a statement, 
contains a zero function byte only for the 
blank. All other characters except slash 
and end-of-card mark are mapped into the 
same non-zero function byte. Blanks and 
comments are replaced by one blank. 

The Keyword Table 

Whether or not an identifier is a keyword 
is determined by means of the keyword 

table. All keywords of equal length are 
grouped together. The groups are arranged 
according to their lengths. Each group is 
preceded by two bytes that contain the 
length and the number of keywords the group 
consists of. The keyword table forms the 
first part of the identifier table and, due 
to its size, is divided into two records. 
Every keyword is assigned a current number, 
starting at one for each record. This 
number and the record number (0 or 1) are 
part of the key the keyword is replaced by. 
X'BO' is added to the current number if the 
keyword begins with the letter I - N. 

The contents of records 0 and 1 of the 
keyword table are shown in Figures 2 and 3. 
Some space is left open in the table for 
additional keywords. This space is filled 
with blanks. 

A table of the same format as the key­
word table is used to replace text written 
in the 4B-character set. 

Phase Output 

The text output is a continuous stream of 
delimiters, identifiers, constants, and 
keywords, the last being represented by 
3-byte keys of the following format: 

byte 0: identifier key = X'E1' 
byte 1: record number (0 or 1) 
byte 2: bit 0=1: the corresponding key­

word begins with the 
letter I,J,K,L,M, or N. 

bits 1-7: current number. Number-
ing starts at 1 for each 
record. 

r----------------------------------------------------------------------------, 
IFirst Record: I 
~------------T------------T------------T------------T------------T-----------1 
IB 00011KEY 0097 I LOW OOABISINH 003F ELSE 00511INDEX 00F41 
IE 00021SET 001BISUM 0029 I MARK OOCO SIZE 00521PRINT 00751 
IA 00031BIT 00191ALL 002A I CHAR 0041 READ 00531ROUND 00761 
IF 00041END 001AIANY 002BIHIGH 0042 OPEN 00541FIXED 0077 
IX 00061GET 00181 I BOOL 0043 EDIT 00551FLOAT 00781 
IL OOOBIPUT 001CISIGN 0034 I PROD 0044 PAGE 00571LABEL 00F91 
IV 00091ABS 0010lCEIL 0035 I POLY 0045 LINE 00D81ENTRY 007AI 
IR OOOAIMAX 009EILOG2 00B61DATE 0046INRO 00D91BEGIN 007BI 
IU OOOBIMIN 009FIATAN 0037 I FILE 0047 FROM 005AIKEYED OOFCI 
I I MOD OOAOITANO 003BITIME 004B SKIP 005DILEAVE OOFEI 
100 OOODIEXP 00221SIND 0039 I NULL 00C9 MAIN OOEOIWHILE 007FI 
IGO OOOEILOG 00A31COSO 003A I CALL 004A I I 
ITO OOOFITAN 0024 I TANH 003BIADOR 004B TRUNC 00701 I 
IBY 0010lSIN 00251SQRT 003CIGOTO 0040 LOG10 00F11 I 
IIF 00911COS 00261ERFC 003DITHEN 004E ATAND 00721 I 
ION 00211ERF 0027 I COSH 003EISTOP 0050 ATANH 00731 I L ____________ ~ ____________ ~ ____________ ~ ____________ ~ ____________ ~ ___________ J 

Figure 2. Contents of the Keyword Table (Record 0) 

Phase PL/IA25 37 



PL/I PLM 8 

IBM Confidential 

r-----------------------------------------------~---------------------------------------, 

~:=:~~~-~=:~:~:-------T---------------------T---------------------T---------------------~ ~ 
WRITE 01011NOSIZE 01A31BUFFERS 0141 1 PRECISION 01631 
CLOSE 01021MEDIUM 01A5 1 REWRITE 01421 BACKWARDS 01641 
INPUT 0183 1 CREATE 01261DISPLAY 01431KEYLENGTH 01E51 
BASED 0104 1 J 1 1 
REPLY 01051 FORMAT 01271 OPTIONS 01451 I 
ERROR 01071DIVIDE 0128 1 RETURNS 01461 SEQUENTIAL 0167 
FLOOR 01081SUBSTR 01291ENDFILE 01471 UNBUFFERED 01681 
LEAVE 01891REPEAT 012A KEYFROM 01C91ZERODIVIDE 01691 

ISYSIPT 012CIOVERLAY 014AICONVERSION 016AI 
UNSPEC 0110lSYSLST 012DIENDPAGE 014BINOOVERFLOW 01EBI 
VERIFY 01111SYSPCH 012EI I CONTROLLED 016CI 
STRING 01131COLUMN 012FIINTERNhL 01CC 1 
RECORD 01141 1 EXTERNhL 014DICONSECUTIVE 016FI 
LOCATE 01951 IREGIONhL 014FIENVIRONMENT 01701 
UPDATE 01J61DECIMAL 0135 1 ONSYSLOG 01501 NOUNDERFLOW 01F11 
STREAM 01181PICTURE 01261 OVERFLOW 01521 
BINARY 01191BUILTIN 0137 1 BUFFERED 0156 1 NOCONVERSION 01F31 
STATIC 011AIALIGNED 01381 TRANSMIT 0158 1 EXTENTNUMBER 01741 
PACKED 011BIINITIAL 01B91PhGESIZE 0159 1 NOZERODIVIDE 01F51 
OUTPUT 011CIINDEXED 01BAI I 1 
DIRECT 011DIDECLARE 013BICHARACTER 015E FIXEDOVERFLOW 01771 
SYSTEM 011FIPOINTER 013CIAUTOMATIC 015FIINDEXMULTIPLE 01F81 
RETURN 0120lDEFINED 013DIKEYLENGTH 01EOINOFIXEDOVERFLOW 01FBI 
REVERT 0121 1 NOLABEL 01BEIPROCEDURE 01611 1 
SIGNAL 01221 DYNDUMP 013FIUNDERFLOW 01621 1 L _____________________ ~ _____________________ ~ _____________________ ~ _____________________ J 

Figure 3. Contents of the Keyword Table ~ecord 1) 

DESCRIPTION OF ROUTINES 

Initialization --.BB 

This is the beginning of the main routine. 
It initializes pointers, switches, etc •• 
and reads in the first card of the source 
text. 

ELCO -- BC 

Secondary entry point: ELC010 

This is part of the main routine. It scans 
for the first significant character of the 
first or next statement (comments and 
blanks are bypassed). Control is trans­
ferred to FSTN after the first character 
has been found. 

Secondary entry point: ELC010 
This entry point is used if the DOS/TOS 
end-of-data-file card has been reached. 
The phase is terminated and IJKPH is called 
to read in the next phase. 

FSTN -- BD 

This is part of the main routine. It 
counts the statements and moves the number 
of the first statement per line into print 
positions 1 - 6, right-aligned. It per­
forms the scan over the statement by means 
of TRT table 1. When a non-zero function 

38 

byte is found, the preceding source text is 
moved into the output buffer, and control 
is transferred to one of the following 
routines depending on the character found. 

FSLA -- BE 

If a slash is found, the next character is 
tested for *. If it is not, the routine 
returns 'false' to 4 (LINK) • If it is an 
asterisk, the end of a comment is searched 
for. The comment is replaced by a blank 
and the routine returns 'true' to (LINK). 

FCOM -- BF 

This SUbroutine is called if the 
48-character set has been specified and a 
comma has been found in the source text. 
If the comma is followed by a period that 
is not followed by a digit, control is 
transferred to FSEM. Otherwise, control is 
returned to the calling program. 

Secondary entry point: FSEM 
This entry point is used to move a 
semicolon into the output area. Control is 
transferred to ELCO. 

FQUO -- BG 

The subroutine scans for the end of a 
string constant and moves the constant into 
the output buffer. 

c 



PL/I PLM 8 

IBM Confidential 

c FPER -- BH 

This subroutine is called if the 
48-character set has been specified and a 
period has been found in the source text. 
If the period is followed by another 
period, the two periods are replaced by a 
colon. 

FCMB -- BI 

Calling sequence: 

BAL LINK,FCME 
DC XL1'character l' 
DC XL2'character 2' 

Input parameter: 
R1 points to the card area (character 1). 

Output parameters: 
R1 points to the character following char­
acter 1 in the source text. 
RR = R1-1 if return 'false'. 

The routine tests if character 1 in the 
card area is followed by character 2. If 
necessary, a new card is read and character 
1 is moved into column 1 of the card area. 
The routine returns 'true' to 6 (LINK) if 
character 1 is followed by character 2. 
Otherwise, it returns 'false' to 2 (LINK) • 

FNCA -- BK 

Secondary entry points: ZRCD, FNCA05 

This subroutine reads a new card into the 
card area (if an end-of-data-file condition 
arises, control is transferred to ELC010) 
and prints the preceding card. The new 
card is moved into print positions 20 - 99. 
All other positions are cleared to blank. 
If column 1 of the new card does not con­
tain a blank, print positions 7 to 20 are 
filled with asterisks. Then pointers, 
switches, etc., are initialized, and con­
trol is returned to the calling routine. 

FKEW -- BL f BM 

This subroutine is called if the first 
character of an identifier has been found 
in the source text (card area). After the 
length of the identifier has been deter­
mined (if necessary, new cards are read 
in), the identifier is compared with all 
keywords of equal length. If a matching 
entry is found, the corresponding 3-byte 
key is moved into the output buffer. Oth­
erwise, the identifier is moved unchanged 
unless the 48-character set has been speci­
fied and the identifier is a 48-character 

operand. In the latter case, the 
60-character equivalent is moved into the 
output buffer. 

FTKW -- BN 

Input parameters: 
RLEN = length of identifier. 
PTAB = address of one of the two records of 

the keyword table or of the 
48-character operands table. 

PID = address of the identifier to be 
compared. 

Output parameters: 
RKEY = current number of the keyword the 

identifier matches with (if any 
match has been found) • 

PID = unchanged. 
RLEN unchanged. 

The subroutine compares the identifier with 
every keyword of equal length. If no 
matching entry is found, the routine 
returns 'false' to o (LINK) • Otherwise, it 
returns 'true' to 4 (LINK). RKEY is ini­
tialized with 1 and increased accordingly 
whenever a keyword or a group of keywords 
is skipped. 

FKBU -- BO 

Input parameters: 
RKEY: current number of the keyword (part 
of the 3-byte key the keyword is replaced 
with) • 
KEY: = X'E100 •• ' or X'E101 •• ' , depending 
on whether the keyword is contained in the 
first or the second record. 

RKEY is stored in the third byte of KEY, 
which is then moved into the output buffer. 

Secondary entry point: FWBU 
This entry point is used to move source 
text into the output buffer. If the entire 
text does not fit into the buffer, the 
buffer is filled with the first part of the 
text to be moved. The buffer is then put 
out on text medium. The remaining part of 
the text is moved into the buffer, left­
justified. 

Input 
RR 
R1 
POUT 
BULIM 

parameters: 
address of source text 
end address of source text + 1 

= pointer of output buffer 
= end address of output buffer 

Output parameters: 
RR = R1 
POUT = next free address in output buffer 

Phase PL/IA25 39 



PL/I PLM 8 

IBM Confidential 

PHASE PL/IA30 (REPLACEMENT OF IDENTIFIERS) -- CA 

Phase A30 has the following functions: 

1. To build the name table NAMTAB and to 
put it onto SYS001. 

2. To replace all identifiers that were 
not replaced in phase A25 by 3-byte 
keys. 

3. To eliminate all redundant blanks from 
the source text. 

4. To put out the LIOCS table for SYSIPT 
as the third record of LITAB (the first 
two records were put out in phase AOO) • 

Phase Input and .. Output 

The t.ext input is a continuous stream of 
delimiters, constants, and identifiers. 
The identifiers physically identical with 
keywords were replaced by 3-byte keys in 
phase A25. 

The text output is a continuous stream 
of delimiters (blanks have been 
eliminated), constants, and identifiers. 
The identifiers are represented by 3-byte 
keys of the following format: 

byte 0 
byte 1 

byte 2 

identifier key = X'E1' 
record number (0 or 1 if keyword, 
otherwise ~ 2) 
bit 0 = 1 : the corresponding 
identifier begins with one of the 
letters I-N 
bit 1-7 : current number starting 
at 1 for each record. 

Interface with Other Phases 

1. The begin and end address of the LIOCS 
table for SYSIPT is referred to by the 
external symbols IJKA06 and IJKA07, 
respectively. The table was generated 
by phase AOO and is still in storage. 

2. The addresses of the two records of the 
keyword table are referred to by the 
external symbols REC1 and REC2. The 
keyword table was generated by phase 
A25 and is still in storage. 

3. The third record of LITAB is noted and 
the information stored in KSAVE8. It 
is used in phase G55. 

4. The second record of NAMTAB is noted 
and the information stored in IJKMIP+4. 
It is used in phase B25. 

40 

5. If the keyword PICTURE appears in 
the source text, the job-information 
bit 10 is set to 1. 

6. Phase A35 is skipped if the keyword 
PICTURE does not appear in the source 
text. 

7. Phase A45 is skipped if there are no 
character strings in the source text. 

Format of the Name Table NAMTAB 

The name table consists of at least two 
records, each of which is 1024 bytes long. 
The first two records are the keyword table 
described in phase A25. All other records 
consist of up to 127 entries and are 
terminated by an end-of-record key (X'FF'). 
The individual entries have the following 
format (which differs from that of the 
first two records) : 

L = length of the following identifier - 1 
I = the identifier itself in internal code 

DESCRIPTION OF ROUTINES 

Initialization -- CB 

This is the beginning of the main routine. 
The LIOCS table for SYSIPT is put out on 
SYS001 as the third record of LITAB. IJKNT 
is called and the NOTE information is 
stored in KSAVE8. It is tested whether any 
option other than LIST is specified. If 
not, phase G31 is called to terminate the 
compilation. 

The keyword table is put out on SYS001 
as the first two records of NAMTAB. IJKNT 
is called and the NOTE information is 
stored in IJKMIP+4. Pointers, switches, 
etc., are initialized and two records of 
text input are read. The record informa­
tion table RECT is built up. It contains 
information on the records of NAMTAB which 
are built up in the table space. RECT has 
the format shown below: 
r----T----T----T----T----T----'--
IA IC IN IA IC IN I L ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ __ 

A = address of .the begin of one 
records 

-----T-' 
A IFI _____ ~_J 

of the 

C = current pointer (initial value = A. 
Subsequently it points to the next 
free entry within the record) • 

N = record number 
F = end of table = X'FF' 

The last A before F is used as end 
address of the last record. 

c 



PL/I PUI B 

IBM Confidential 

c 

c 

This is part of the main routine. The 
input is scanned by means of a TRT table 
for digits, letters, periods, blanks, quo­
tation marks, identifier keys, and end-of­
program key. All other characters are 
bypassed. If one of the characters listed 
is found, the bypassed text is moved into 
the output buffer. It is tested whether 
the input pointer points to an address of 
the first buffer (FPI~, and one of the 
following actions is taken depending on 
what character is found: 

1. End-of-program key: 
Control is passed to FEND. 

2. Quotation mark: 
The end of the string is searched for 
and the entire string is moved into the 
output buffer. The scan continues. 

3. Identifier key: 
The identifier key is moved unchanged 
into the output buffer. 

4. Blank: 
This and all following blanks are 
skipped. They are not moved into the 
output buffer. 

5. Letter: 
The identifier beginning with the let­
ter found is compared with all iden­
tifiers contained in the name table. 
If a matching entry is found, the iden­
tifier is replaced by the corresponding 
key. If not, the identifier is incor­
porated into the table and replaced in 
the source text by the identifier key. 
The current number of the identifier 
key is the number of the entry in the 
relative record. If the table space is 
full, the identifier is moved unchanged 
into the output buffer, and the over­
flow switch is set to 1. 

6. Digit: 
If the digit found is the first digit 
of a floating-point constant, the E is 
replaced by the corresponding 3-byte 
key. If it is followed by a B (binary 
constant) the B is replaced according­
ly. 

FEND CF 

This is the end of the main routine. It is 
called if the end-of-program key is found. 
The key is moved into the output buffer, 
and the buffer is put out on text output 
medium. The name table is put out on· 
SYS001 in records of 1024 bytes. 

If the overflow switch is on, e.g., if 
not all identifiers have been replaced yet, 
control is transferred to INIT04 for a 
further pass over the source text. If the 
overflow switch is off, the next phase is 
called. Phase A50 is called if there are 
no character strings in the source program. 
Phase A45 is called if the keyword PICTURE 
does not appear. Phase A35 is called in 
all other cases. 

FPIN -- CG ------
FPIN is called each time the input pointer 
is increased. This routine ensures that 
the input pointer always points to an 
address within the first of the two input 
buffers. Whenever the input pointer 
exceeds its range, the contents of the 
second buffer are moved into the first one, 
and a new record is read into the second 
buffer in overlapped mode. 

The end of a program is indicated by the 
end-of-program key X'FF'. If, however, the 
ending quotation mark of a string constant 
is missing, this key cannot be detected 
since a character string may contain any of 
the 256 characters. It is therefore neces­
sary to test for an end-of-file condition 
after every call of IJKGI. If the end of 
the file has been reached, the last record 
in the first buffer is processed and con­
trol is transferred to FEND the next time 
FPIN is invoked. 

FMBU -- CH 

Secondary entry point: FMBUS 

Input parameters: 
RR : (general register) address of source 

text. 
source text + 1. 
POUT: painter of output buffer. 
BULIM : end address of output buffer. Out­

put parameters: 

Output 
RR : 
POUT : 

parameters: 
R 1. 
points to the next free address in 
the buffer. 

This routine moves the source text into the 
output buffer. If not all the bytes to be 
moved fit into the buffer or if they do 
exactly fit, the buffer is filled with the 
first part of the text to be moved. The 
buffer is then put out on text output medi­
um and the rest, if any, is moved into the 
buffer, left-justified. 

Phase PL/IA30 41 



PL/I PLM 8 

IBM Confidential 

This phase, which is called by phase A30 if 
the identifier PICTURE is detected in the 
input stream, has the following functions: 

1. To check whether a picture is syntacti­
cally correct; 

2. To determine the precision and the 
attributes of the data item represented 
by the picture and to pass this infor­
mation to subsequent phases; 

3. To transform each decimal fixed-point 
and decimal floating-point picture into 
an "Edit Pattern" and a "Pseudo 
Program" and to produce additional 
information on precision, sign charac­
ters, etc., of the corresponding data 
item. This is done to considerably 
reduce the library subroutine require­
ments and to speed up the object time 
picture editing. 

The source text used as input is in the 
format described as output in phase A30. 
Thus, there are no blanks between syntacti­
cal units, and all identifiers are rep­
resented by 3-byte keys. 

OUTPUT FORMATS 

The output format of the individual PICTURE 
items is described in the following. 

Since character-string pictures can only 
contain the picture character X, it is 
possible to determine the length of the 
data item and then to eliminate the pic­
tUre. The output format of character­
string pictures is shown in Figure 1. 

Byte 1 I 2 I 3 4 5 I 6 I 7 8 

ElpJ15E 3 3 

I 
( 

'- -3 byte element 

CHARACTER 

W 3 4 

I 
) 

Len th of th g e data item in 
hexadecimal form 
(each byte of W contains one 
decimal digit in internal code) 

Figure 1. Output Format of Character­
String Pictures 

42 

Sterling Pictures 

The output format of sterling pictures is 
shown in Figure 2. 

Decimal Fixed Pictures (Zoned) 

If a decimal fixed picture contains the 
picture characters 9 and V only, it is 
possible to determine the precision of the 
data item and then to eliminate the 
picture. This data type is given the 
internal attribute ZONED. The output for­
mat of zoned decimal fixed pictures is 
shown in Figure 4. 

Decimal Fixed Pictures (Zoned (Tl) 

If a decimal fixed picture contains the 
picture characters 9, V, and T only, it is 
possible to determine the precision of the 
data item and then to eliminate the pic­
ture. This data type is given the internal 
attribute ZONED (Tl. The output format of 
zoned (Tl decimal fixed pictures is shown 
in Figure 5. 

Other Decimal Fixed Pictures 

The output format of decimal fixed pictures 
other than zoned or zoned (T) is shown in 
Figure 6. 

Decimal Float Pictures 

The output format of decimal float pictures 
is shown in Figure 8. 

c 



PL/I PUI 8 

IBM Confidential 

(", 

c 

c 

Byte 

11'1'141'1'171' I 
i-15 i-14Ii-13Ii-12 i-llli-I~1 i-9 

\\ : E 1 ~l 36: 33 : W : 34 : 36 : 36 El ~ 8~ El ~ 77 

I I ~ 
( ) 

i-8 

33 

I 
( 

i-7Ii-6I i -5 i-4 

M 35 

I 

i-3Ii-2Ii-l i 

N 34 

Number of 
fractional digits 

I 
) 

- Number of digits in the pounds 
field + number of fractional 
digits in the pence field + 3 

'- 3-byte element FIXED 

3-byte element STERLING 

- Final' of the picture 

L- Pi cture stra ng (for detools see Figure 3) 

.Width of the numeric field (in binory form) 

3-byte element PICTURE 

Figure 2. Output Format of Sterling Pictures 

Byte 
1 1

213141516 7 8 9 IL-5\L-4\L-3\L-2\L-l\ L 

~M~~N~W~L_-4~1%~ ____ ~t~~ ______ ~ 

II '- Sted; .. p;::.-.s.c.h-a-r-a·ct-e-rs---------... 

Length of picture (in binary form) 

Width of numeric field (in binary form) 

Number of fractional digits (in binary form) 

L Number of digits in the pounds field + number of fractional digits 
in the pence field + 3 (in binary form) 

Figure 3. String Format of Sterling Pictures 

Phase PL/IA35 43 



PL/I PLM 8 

IBM Confidential 

Byte 6 7 8 1~ 11 12 14 15 16 17 18 

El ~~ 81 El ~ n 33 M 35 N 34 El ~1 35 

I l 3-byte ele~"t 
DECIMAL 

Number of fractional digits 

Total number of digits 

3-byte element FIXED 

3-byte element ZONED 
Figure 4. Output Format of Zoned Decimal Fixed Pictures 

Byte 6 7 8 

El ~~ 83 El ~~ 77 33 M 

3-byte element FIXED 

3-byte element ZONED (T) 

1~ 11 12 

35 

14 15 16 18 

N 34 El ~1 35 

l 3-byte' element 
DECIMAL 

Number of fractional digits 

Total number of digits 

Figure 5. Output Format of Zoned (T) Decimal Fixed Pictures 

44 

0 

c 



PL/I PLM 8 

IBM Confidential 

( 

c 

c 

Byte 

Total number eX digih 

3-byte element FIXED 

----l l 3-byte element DECIMAL 

Final of the picture string 

Picture string (for details see Figure 7) 

Initial' of the picture string 

Width of numeric field 

3-byte element PICTURE 

Number of fractional digih 

Figure 6. Output Format of Decimal Fixed Pictures Other than Zoned or Zoned(T) 

Byte I 0 I: I :llc:sI 5 I 6 Il~..L.--L--+-"'---'---+-~\ 1;-21;-11 

l "--- ------" "---------............... ------
Edit ::tern Sign information Pseudo program 

Conditional digit select 

0- Fill character 

Width of numeric field = length of edit pattern (in binary form) 

o (number of digit positions + 2) / 2 (in binary form) 

Figure 7. String Format of Decimal Fixed Pictures Other than Zoned or Zoned (T) 

Phase PL/IA35 45 



PL/I PLM 8 

IBM Confidential 

Byte 1 I 2 I 3 4 5 1 6 1 7 8 9 11_111 12 13 14 15 161171181 

E1 " 78 33 M 34 E1 _1 36 33 W 34 36 t 35 

I I I 
( ) ( 

I .. 
) 

.... 

lFl~ l
3-byte element DECIMAL 

Final of the picture string 

ing-point picture. string 
etails see Figure 9) {for d 

'- Initial ' of the pi cture $tri ng 

'- Width of numeric field (in bin ary form) 

L- 3-byte element PICTURE 

'-- Number of digits before the r: or K 

-3 byte element FLOAT 

Figure 8. Output Format of Decimal Float Pictures 

ll ' . Edit pattern Sign 
inforrnotion 

Conditional digit select 

Fill character 

Width of numeric field (in binary form) 

D. = (number of digit pooition.+2) /2 (in binary form) 
........ ~ ./ 

of the fraction 

Offset: contains the value i (in binary form) 

Number of fractional digi .. (of the fraction) (in binary form) 

R = 2' (total number of digi .. of the fraction) + x (in binary form) 
X =, if there was a K in the picture 
X = 1 if there was an E in the picture 

Always X' fIC' 

Pseudo program 

Width of numeric field (in binary form) 

Sign 
information 

DE = (number of digit pooitians+2) / 2 (in binary form) 

.......... '-"" #"'" 

of the exponent 

Figure 9. String Format of Decimal Float Pictures 

46 

Pseudo program 

o 

c 



PL/I PLM 8 

IBM Confidential 

0 

ELEMENTS OF PICTURE STRINGS 

The fill character (FL, FLF, and FLE) is 
blank if the picture (subfield) contains no 
asterisk. It is asterisk if the picture 
(subfield) contains an asterisk. 

The conditional digit select character 
(CDS, CDSF, and CDS E) is X'20' if the pre­
cision (of the subfield) is even and blank 
if it is odd. 

Edit Pattern 

The edit pattern is used in EDMK instruc­
tions (at object time) in some library 
subroutines. 

Sign Information 

The sign information is a (pseudo) instruc­
tion specifying where to test for which 
sign. There are--5-dIfferent pseud-o---­
instructions containing sign information. 

1 • 

2. 

NSS - No Sign Specified 
The general format of the NSS pseudo 
instruction is shown below. 

byte 0 
bytes 1-2 

X'40' 
not relevant 

The instruction is generated if none of 
the picture characters S + - DB CR T I 
R appears. 

TSS - Test for Static Sign 
The general format of the TSS pseudo 
instruction is shown below. 

byte 0 
byte 1 

X'OO' 
offset of the last byte of the 
drifting string 

byte 2 - for $ 
b for + 
- for -
C for CR 
D for DB 

It is generated if a static sign 
appears in the picture. If C1 appears 
in the specified byte, it is assumed 
that the data is negative. Otherwise, 
it is assumed to be positive. 

3. TDM - Test for Drifting Minus 
The general format of the TDM pseudo 
instruction is shown below. 

byte 0 X'OO' 
byte 1 offset of the last byte of the 

drifting string 
byte 2 - for $ 

b for + 
- for -
C for CR 
D for DB 

It is generated if a string of drifting 
"-" appears in the picture. If "-" 
appears in the specified field, the 
data is assumed to be negative. Other­
wise, it is assumed to be positive. 

4. TOP - Test for Drifting Plus 
The general format of the TDP pseudo 
instruction is as shown for the TDM 
instruction, but with X'DO' in the 
first byte. It is generated if a 
string of drifting "+" appears in the 
picture. ,If "+" appears in the speci­
fied field, the data is assumed to be 
positive. Otherwise, it is assumed to 
be negative. 

5. TOS - Test for Overpunched Sign 
The general format of the TOS pseudo 
instruction is shown below. 

byte 0 X'FO' 
byte 1 specifies offset of sign byte 
byte 2 X'DO' for T 

X'FO' for I 
X'DO' for R 

It is generated if a T, I, or R appears 
in the picture. If the zone in the 
specified byte is identical to the zone 
in byte 3 of the instruction, the data 
is assumed to be negative. Otherwise, 
it is assumed to be positive. 

Pseudo Program 

The pseudo program is a series of (pseudo) 
instructions used by the library for edit­
ing (at object time). There are 5 differ­
ent pseudo instructions. 

1. IZR - Insert Zero 
The general format of the IZR pseudo 
instruction is shown below. 

byte 0 X'OO' 
byte 1 offset 

The instruction causes the insertion of 
a zero in the byte with the offset d. 

2. 1ST - Insert Static Character 
The general format of the 1ST pseudo 
instruction is shown below. 

byte 0 X'04' 
byte 1 offset 
bytes 2-3 C1 and C2 • 

For S C, = + C2 

+ : C, + C2 ::: b 
- : Ct = b C2 
S C, $ C2 $ 

The instruction inserts C1 into the 
specified byte if the data value is 
greater than or equal to zero. Other­
wise, it inserts C2. 

Phase PL/IA35 47 



PL/I PLM 8 

IBM Confidential 

3. IDR - Insert Drift Character 
The general format of the IDR pseudo 
instruction is as shown for the 1ST 
instruction, but with X'08' in the 
first byte. If the data value is 
greater than or equal to zero, C1 is 
inserted into the byte with the offset 
1. Otherwise, C2 is inserted. The 
value of 1 is determined as follows: if 
register 1 was set in an EDMK instruc­
tion, 1 is equal to the contents of 
register 1 minus 1. Otherwise, 1 is 
equal to address of the byte with the 
offset d. 

4. IZN - Insert Zone 
The general format of the IZN pseudo 
instruction is shown below. 

byte 0 X'OC' 
byte 1 offset 
bytes 2-3 Z1 and Z2. 

For T Z1 X'CO' Z2 X'DO' 
I : Z1 = X'CO' Z2 = X'FO' 
R : Z1 = X'FO' Z2 X'DO' 

If the data value is greater than or 
equal to zero, the zone of Zt is 
inserted into the zone of the specified 
byte. Otherwise, the zone of Z2 is 
inserted. 

5. EOP - End of Pseudo Program 

48 

The general format of the EOP pseudo 
instruction is X'14' if the picture 
does not contain 9, T, I, or R. X'10' 
is generated in all other cases. It 
indicates the end of the pseudo pro­
gram. If the byte contains X'14' and 
the data value is zero, the entire 
field is filled with the fill character 
FL (or FLF or FLE) • 

EXAMPLES 

The examples in Figure 11 show the original 
picture and the resulting edit pattern, 
sign information, pseudo program, fill 
character, and conditional digit select. 
The notation used in these examples is as 
shown in Figure 10. 

r------T----------------------------------, 
ISymbollMeaning I 

t--;~--t;i~i~-;~1~~~----------------------1 
I SS ISignificance start I 

t--~~~-t;;~~d~-i~;~~~~~i~~T---------------1 
I TSS IPseudo instructionlSign I 
I TDM IPseudo instructionlinformation J 
I TDP IPseudo instruction I I 
I TOS IPseudo instruction I I 
~------+------------------+---------------1 
I IZR IPseudo instructionllnstructions l 
lIST IPseudo instructionlfor the I 
I IDR IPseudo instructionlpseudo I 
I IZN IPseudo instructionlprogram I 
I 14 IPseudo instruction I I 
I 10 IPseudo instruction I I 
~------+------------------~---------------1 
I $ I I 
I 9 I I 
I V IPicture character I 
I I 
I I I 
~------+----------------------------------1 
I b IBlank I 
I 0 I 
I 1 10, 1, 2, • • • I 
I I l ______ ~ _________________________________ J 

Figure 10. Notation Used in Picture Exam­
ples 

o 

c 



'0 
~ 
PJ 
CJl 
(j) 

'0 
t-< 

" H 
;J:> 
W 
U1 

~ 

\.0 

h:J 
1-'. 

lQ 
>:: 
t-j 
(j) 

..... 

trI 
~ 
PJ 

~ 
I-' 
(]) 
CJl 

o 
H1 

'0 
1-'. 
() 
rt 
>:: 
t-j 
(]) 

1-3 
t-j 
PJ 
::l 
(Jl 

H1 
o 

~ 
rt 
1-'. 
o 
::l 

1-'. 
::l 

'0 
::r­
PJ 
rn 
(j) 

;J:> 
W 
U1 

~ 
'\ " 

ORIGINAL PICTURE 

IS1 9191·IV1 9191 

1$1$1$1$1 9191 

~ 

1* 1* I V 1*1 

191, I V 191 

OUTPUT 

Fill char. IT] 
Condo digit sel. [£D 
Edit pottern 1 b I ss I ss 1 . I ss I ss 1 
Sisn inform. I TSS 1 ,0' I - 1 
Pseudo program liST I ,0' I + I - IIZR I 1 11,0' I 

Fill char. [TI 
Cond. digit sel. [TI 
Edit pattern 1 b I OS 1 OS I ss I ss 1 ss 1 
Sign inform. INSSI 1 1 
Pseudo program I lOR 1 3 I $ 1$ 11,0' I 
Fill char. [TI 
Cond. digit sel. ~ 
Edit pottern I b lOS I OS 1 
Sign inform. ITOPI 2 I 2 1 
Pseudo program IIOR I 2 I + I - 114 1 

Fill char. D 
Condo digit .. I. ~ 
Edit pattern lOS lOS I OS 1 
Sign inform. INS~ I I 
Pseudo program 0 
Fill char. GJ 
Condo digit .. 1. ~ 

Edit pottern ISS 1 ISS I 
Sign inform. INSSI I I 
Pseudo program IIZR 1,0' 1,,0' I 

~. . .......... 
H '1:1 
ttl t-< 
;S; " H 
n 
0 '1:1 

ORIGINAL PICTURE OUTPUT ::l t-< 
H1 ;S; 
1-'. 

I $1*1*1 T 1 Fill char. [::J 
P, (Xl 
(j) 
::l 

li:ond. digit 581. [}] 

Edit pottern I b I OS I OS I OS 1 

rt 
1-'-
III 
I-' 

Sign inform. ITOSI 3 10,0' I 
Pseudo program liST I ,0' I $ I $ IIZRI 3 IIZ~ 3 I C.0' I 0,0'1 1,0' I 

1$1$1$1$1,191919IVI9191 Fill chor. IT] 
Condo digit sel. IT] 
Edit pattern I bib 1 OS 1 ss I ,ISS 1 ss 1 ss 1 ss I ss I 
Sign inform. I TSSI ,0' I - 1 
Pseudo program liST 1 ,0' 1 + 1 - IIOR 1 4 1 $ I $ 11,0' 1 

ISISISI,ISISISI·IVISISI Fill char. [IJ 
Condo digit sel. ITJ 
Edit pattern I b I OS lOS I ' I OS I OS I OS I . I 55 I 55 I 
Sign inform. ITO~ 7 17 1 
Pseudo program IIORI 7 I + I - IIZR I 8 114 I 

1+1+1+191 Fill char. eD 
Condo digit sel. eD 
Edit pottern I b I OS I ss I ss I 
Sign inform. I TOpl 2 I 2 I 
Pseudo program IIOR I 2 I ... I b 11,0' 1 

ISJSISIBI,IBISISI Fill cher. [U 
Condo digit sel. ~ 

Edit pattern I b I OS I OS I b 1 . I b I OS 1 OS I I 

S ig" inform. ITO~ 7 I 7 I 

I 
Pseudo program IIOR I 7 I + I - 114 I 



PL/I PLM 8 

IBM Confidential 

DESCRIPTION OF ROUTINES 

Pointers, Stora~Areas~nd Flags 

Phase A35 uses the following pointers, 
storage areas, and flags: 

PIN 
POUT, OPOINT 
WAP, XP, PUN 
PP 
EP 
PIP13 
EDIP 
PSEUP 
SIN 

Name of flag 

$ 
+ 

S 
T 
I 
R 
CR 
DB 
Z 

* 9 
V 
EK 
PCB 
Digpos 

H 

Sign 

u 
$ drift 

+ drift 

- drift 

S drift 

input pointer 
output pointer 
work area pointers 
pseudo program pointer 
edit pattern pointer 
contains expanded picture 
contains edit pattern 
contains pseudo program 
contains sign information 

Set on for 

$ 
+ 

S 
T 
I 
R 
CR 
DB 
Z 

* 
9 
V 
E or K 
period, comma, B 
scanned digit position 
character 
to check that a static S + 
- appears only to the left 
or right of a subfield or 
that a DB or CR appears 
only to the extreme right 
of a subfield 
sign character (S + - T I R 
CR or DB) 
zero suppression requested 
drifting string consists of 
$ 
drifting string consists of 
+ 
drifting string consists of 

drifting string consists of 
S 

Notation and Terms Used in Routine 
Descriptions 

M,m 

N,n 

W,w 
FL 
CDS 
"item code" 

50 

total number of digit posi­
tions 
number of digit positions 
after the (implied) decimal 
point 
width of numeric field 
fill character 
conditional digit select 
a number assigned toa pic­
ture character (for example: 

(Openl 

$ has the "item code" 1, + 
has the "item code" 2, etc.) 

A routine is called open if 
control is transferred to it 
by 

1. a simple B instruction, 
in which case control is 
also returned by a B 
instruction, or 

2. some in-line coding that 
requires a separate des­
cription. 

(Closed) A routine is called closed if 
control is transferred to it 
by a BAL instruction. Con­
trol is returned by a BR 
instruction in this case. 

PIP1 DA, DB 

PIP1 is the "master program" of this phase. 
It initializes pointers, registers, and 
other items and reads the first 2 records 
into input buffers 1 and 2. It scans the 
input stream until X'E1013636' (the inter­
nal representation of PICTURE') is encoun­
tered outside a character-string constant. 
EXPA stores the "expanded" picture in 
PIP13. 

If the picture is a character-string 
picture, STRI is called. If it is a sterl­
ing picture, STER is called. These rou­
tines process the pictures and return con­
trol to PIP1, which continues the scan. 

If the picture is a fixed-decimal pic­
ture, DEC is called. Control is then 
transferred to DEC. If DEC determines that 
the picture is ZONED or ZONED (T) (see 
Figures 4 and 5), the 3-byte element DECI­
MAL is put out, and the scan is continued. 
Otherwise, P2 is called and FIXED (M,N) is 
put out. P1 is then called and puts out 
PICTURE (W), quote, the first 2 bytes of 
the picture string, and -- indirectly (by 
calling other routines) -- the remainder of 
the picture string. The scan then contin­
ues. 

If the picture is a decimal-float pic­
ture, DEC is called which processes the 
fraction part of the picture. Control is 
then returned to PIP1 and the values m, n, 
w, and d of the fraction are stored. Then 
DEC732 is called which processes the expo­
nent part. After control has been returned 
to PIP1, M, W, and D of the exponent are 
stored and w of the entire picture is com­
puted. FLOAT (M) PICTURE (~ is put out. 
TPEP is called which transforms the frac­
tion part of the picture into an edit pat­
tern and a pseudo program. Then a quote 
and the first 6 bytes of the picture string 

~. o 

c 



PL/I PLM 8 

IBM Confidential 

(' 

('i / 

o 

are put out. PAT puts out the next 2 bytes 
of the picture string (see Figure 9), the 
edit pattern, the sign information, and the 
pseudo program of the fraction part. Con­
trol returns to PIP1, and d and w of the 
exponent are put out. TPEP is called again 
to process the exponent part. PAT is 
called, which puts out the next 2 bytes of 
the picture string, the edit pattern, the 
sign information, and the pseudo program of 
the exponent part. Then, DECIMAL is put 
out and the scan continues. 

~~NN (Closed) DZ 

The following i nstructi ons are stored in 
PSEUP: 

1 • 1ST (EP) $ $ if current picture 
character is $ 

2. 1ST (EP) + b if current picture 
character is + 

3. 1ST (EP) b if current picture 
character is -

4. 1ST (EP) + if current picture 
character is S 

The following sign information is stored: 

1 • NSS if current picture 
character is $ 

2. TSS (EP) b if current picture 
character is + 

3. TSS (EP) if current picture 
character is -

4. TSS (EP) if current picture 
character is S 

~~UE (Closed) -- DO 

Adds 1 to N if the V-flag is on. 

1. It checks whether a decimal fixed-point 
picture or a subfield of a decimal 
floating-point picture is syntactically 
correct. 

2. It determines the precision of the data 
item corresponding to the picture, 
determines the width of the numeric 
field, and computes D = (number of 
digit positions+2) 12. 

3. If the picture is a zoned decimal fixed 
picture, ZONED FIXED (m,n) is put out, 
and control is returned to PIP1. 

4. If the picture is a zoned (T) decimal 
fixed picture, ZONED (T) FIXED (m,n) is 
put out, and control is returned to 
PIP1. 

5. If the picture is not a deoimal fixed­
point picture or a subfield of a 
decimal floating-point picture, control 
is returned to PIP1. 

DPTE (Closed) DO 

Signals error if the Digpos-flag is off. 

DRIFT (Closed) -- DV 

1. Sets "drift switch" on. 

2. Sets "item code" to 

1 if currently scanned character is $ 
2 if currently scanned character is + 
3 if currently scanned character is -
4 if currently scanned character is 5 

3. Returns to (LINK) if it is none of the 
characters indicated under item 2. 

4. If the "drift switch" is on, the cur­
rently scanned character and the "item 
code" are stored. 

5. If the "drift switch" is off, ("item 
code"-l) *4 and the currently scanned 
item are stored. 

6. RetUrns to 4\O,LINK). 

ECAV (Open) DX 

1. Sets the 5S-flag on if the V-flag is 
off. 

2. If the V-flag is on and the SS-flag is 
off, it puts out an 1ST instruction for 
each period, comma, or B between the 
current PICTURE character and the V. 

3. Returns before setting the S-flag on. 

EXPA JOpen) -- LC, DD 

Expands a picture using replication fac­
tors. The expanded picture is stored in 
PIP13. An error is indicated if the 
expanded picture contains more than 255 
characters. After the expansion, the pic­
ture is converted to external representa­
tion. 

Examples: 

Unexpanded picture 

, (5) 9. V9' 
, (3) S,V (2) 9' 
, (O)Z{4)9' 

Expanded picture 

'99999.V9' 
'SSS, V99' 
'9999' 

A zero replication factor followed by a 
picture character is interpreted as shown 
in example 3. 

F(Y) (Closed) -- DR 

Scans the field "separator-1" if ROO. 
Scans the field "separator-2" if RO # O. 

Phase PL/IA35 51 



PL/I PLM 8 

IBM Confidential 

FPIN (Closed) -- EB 

Controls the reading of the input stream, 
i.e., FPIN is called each time the input 
pointer is increased (only exception: when 
scanning a replication factor). Two buf­
fers are used. If the input pointer passes 
the end of the first buffer, the contents 
of the second buffer are moved into the 
first, and a new record is read into the 
second buffer. The input pointer is modi­
fied accordingly. Additionally, all the 
input text (with the exception of pictures) 
is put out again. 

E~1L-FSI1-JClosed) -- DY 

1. Sets the FF-flag on. 

2. Adds a "Significance Start" character 
(X' 21') to the edit pattern. 

3. Adds an IZR ~P) to the pseudo program 
if the above "Significance Start" char­
acter is the first one in this edit 
pattern. 

HAM (Closed) -- DS 

1. Increases WAP by 1. Adds 1 to M and N 
if the currently scanned digit position 
character was preceded by a V. 

2. Returns to 4 (O,LINK) if the Z-flag is 
on. 

3. Returns to (LINK) if the Z-flag is off. 

HTE (Closed) -- DO 

Signals error if the H-flag is on. 

JTRNA 1 (Closed) -=_EC 

Output routine. Register BYZ contains the 
number of bytes to be put out, register PIN 
the starting address. One output buffer is 
used. 

If the string to be put out fits into 
the remaining free space of the output 
buffer, it is moved there, and BYZ is added 
to POUT (thus updating the output pointer) • 
If the string is too long, the string 
length required to fill the buffer is moved 
there. The contents of the buffer are 
written on the output medium, and POUT is 
reset to the begin address of the buffer. 
BYZ is reduced by the number of bytes moved 
into the buffer and PIN is added to that 
number. This procedure is continued until 
the entire string has been moved. 

PAT (Closed) 

rhis routine is called by PIP1. It puts 
out FL, CDS, Edit Pattern, Sign Informa­
tion, and Pseudo Program of a subfield. An 

52 

additional ' is putout if it is a decimal 
fixed-point field. 

RFDF (Closed) DS 

Signals error if any Drift flag and/or 
"normal" flag (specified by the "item 
code") is on. 

Examples: 

Error is signalled if 

1. the "item code" specifies $ and the 
$-flag is on. 

2. the "item code" specifies + and the $ 
drift-flag is on. 

RFT (Closed) -- DP 

Returns to (LINK) if the flag specified by 
the "item code" is on; otherwise, it 
returns to 4 (O,LINK) • 

SEAV (Closed) -- DO 

1. Scans for period and/or comma and/or B 
and/or V following a (potential) drift­
ing character. Stops scanning after 
the first non-editing character is 
encountered. 

2. Signals error if any editing character 
occurs without the Digpos-flag having 
been set on. 

3. The PCB-flag is set on if one or more 
of the editing characters have been 
detected. 

4. vrE is called if a V is encountered. 
If the Digpos-flag is off, the Q-flag 
is set on. Then HTE is called. 

SITE (Closed) DO 

Signals error if the sign-flag is on. Oth­
erwise, the sign-flag is set on. 

STER (Open) -- DI, DJ, DK, DL 

1. Checks whether a sterling picture is 
syntactically correct. 

2. Determines the precision of the data 
item corresponding to the picture: 

M number of digit positions in the 
pounds field + 3 + N. 

N = number of fractional digits in the 
pence field. 

3. Determines the width of the numeric 
field : W. 

4. Puts out PICTURE (W)' picture string' 
SrERLING FIXED (M,N). 

c 

c 



( 

PL/I PLM 8 

IBM Confidential 

Processes character-string pictures, e.g., 
pictures that only contain the picture 
character X. Puts out CHARACTER (W). 
Deletes the picture. 

SUP (Closed) -- DP 

1. Returns to the address in R1 if the 
character being scanned is neither * 
nor z. Otherwise, the *-flag or Z-flag 
is set one respectively. 

2. Signals error if any flag is on that 
represents a digit position character 
other than the one being scanned. 

~DS (Closed) -- EA 

VTE (Closed) -- DO 

Signals error if the V-flag is on. Other­
wise, the V-flag is set on and the U-flag 
is set off. 

WTE (Closed) -- DO 

Signals error if the W-flag is set on. 
Otherwise, it returns to (LINK). 

~losed) -- DQ 

1. Scans a shilling field or a pence 
field. 

2. Returns to 4 (O,LINK) if ZZ or Z9 or 99 
is detected. 

3. Returns to (LINK) if Z or 9 is detect-
Generates the sign information: ed. 

TDM (EP) 

TDP (EP) 

a if the currently scanned 
character is - or S. 

a if the currently scanned 
character is +. 

a = length of the drifting string - 1 

Transforms a decimal picture subfield into 
edit pattern, sign information, and pseudo 
program. 

The relationship between the input of 
TPEP and the output produced can be seen in 
the section Examples in the description of 
this phase. 

Note: If the routine detects an invalid 
pIcture character, all storage occupied by 
this phase is dumped. (The error will 
probably be in DEC, or in one of the rou­
tines called by DEC) • 

4. Signals error if the character being 
scanned is neither 9 nor Z. 

5. Sets the Z-flag off if a 9 is detected 
(provided the Z-flag was on). Signals 
error if the Z-flag is off and the 
character being named is a Z (if there 
is a Z in a sterling subfield, all 
digit position characters in the 
preceding subfield must be Zs) • 

Since there are more than 50 error possi­
bilities in a picture, only one error mes­
sage is produced by putting out a 3-byte 
element ERROR of the general hexadecimal 
format E10082. 

If an error is detected, processing of 
the picture is terminated. The message 
code 01 (declaration in error) will be 
given in the symbol table listing. 

Phase PL/IA35 53 



PL/I PLM 8 

IBM Confidential 

PHASE PL/IA45 (CHARACTER STRINGS) -- EM 

This phase has the following functions: 

1. To scan character string constants for 
correct format and precision; 

2. To eliminate character strings from the 
source text and to replace them by two 
3-byte keys; 

3. To retranslate the character strings 
(except the picture strings) from the 
internal to the external code, and to 
collect them in the character string 
table CARTAB which is written on 
SYS001 ; 

4. To optimize the character strings with­
in the limits of table space, e.g., to 
cause two identical character strings 
to appear only once in the table. 

This phase is skipped if no character 
strings appear in the source text. 

rhe text input is a continuous stream of 
delimiters, constants, an1 identifiers, the 
latter being represented by 3-byte keys. 

rhe character-string constants have the 
following format: 

r-- --, 
, r--------, , r--------------------------, 

, (I) , , 'character string', , L ________ J , L __________________________ J 

L__ __J 

I = decimal integer specifying replication 
(1 to 3 digits) • 

The character string is a sequence of at 
least one character. (A quotation mark is 
represented by two adjacent quotation 
marks.) All characters, except those of 
picture strings, are represented by the 
internal code. If the character-string 
constant is followed by a B (in the form of 
a 3-byte key), it is interpreted as a bit­
string constant. Picture strings appear in 
the following context: 

r---------T---T---------T---T-------------, 
, "length I I' character- I 
I PICTURE I ( lof field I ) I string' I L _________ i ___ i _________ i ___ i _____________ J 

Note: The field length must not be 
interpreted as a replication factor. 

54 

The text output is a continuous stream 
of identifiers (3-byte keys), delimiters, 
and constants. The character-string con­
stants are represented by two adjacent 
3-byte keys of the following format: 

r----T--------T----T----T----' 
'K I 0 I K I ElL I L ____ i ________ i ____ i ____ i ____ J 

K = character-string-constant key 
(1 byte) 

X'E3' 

o offset in the character string table (2 
bytes) 

E error byte: X'OO' = no error 
bit 0 = 1 : diagnostic 
message E0551 
bit 1 = 1 : diagnostic 
message E0561 
bit 2 = 1 : diagnostic 
message E0671 

Llength of the character string (1 
byte) • 

Note: The error byte is cleared in phase 
C30 so that the length occupies two bytes 
as follows: 

r----T--------T----T--------, 
I K I 0 I K I L I L ____ i ________ i ____ i ________ J 

The Character-String Table: 

The character string table (CARTAB, ZTABOO) 
is written on SYS001. The record length is 
equal to the buffer length. The last 
record may be shorter. The length of the 
table is stored in IJKCSL. 

The table consists of a continuous 
stream of characters (in external code) 
Each single character string can therefore 
be found by its address (offset) relative 
to the beginning of the table and by the 
length of the string. The character 
strinJs are optimized as shown below. 
Assume that the following 4 character­
strinJ constants appear in a source 
program: 

'SPAR3ELDER', 'GELD', 'ERBE', 'DERB'. 

This will cause the following character­
string table to be built: 

r-----------------------, 
IS PAR GEL D E R B EI L _______________________ J 

c 



PL/I PLM 8 

IBM Confidential 

c 

The character-string constants would be 
represented as follows: 

X'E30000E3000A' 
X'E30004E30004' 
X'E30008E30004' 
X'E30007E30004' 

DESCRIPTION OF ROUTINES 

Initialization -- EN --------------------
This is the beginning of the main routine. 
It initializes pointers, switches, etc., 
and reads input text into two buffers. 

FSCA EO ,EQ 

This is part of the main routine of this 
phase. It performs the scan over the 
source text by means of several TRT tables. 
If a marked character is found, the preced­
ing source text is moved into the output 
buffer. FPIN is called to check the input 
pointer, and control is transferred depend­
ing on the character found. 

FIDE -- EP 

This is part of the main routine. It is 
called if an identifier key has been found. 
If it is a PICTURE key that appears in the 
correct context of picture strings, all the 
text preceding the begin quote of the 
string is moved into the output buffer, the 
switch CONVSW is set to one to indicate 
that the string is not to be retranslated, 
and, after calling FPIN, control is tranS­
ferred to FSTR. All other keys are moved 
into the output buffer, FPIN is called, and 
the scan continues. If the key INITIAL is 
found, the entire INITIAL list is skipped. 

FREP -- ER ----------
This is part of the main routine. It is 
called if a left parenthesis has been found 
in the source text. If the parenthesis is 
followed by 1 to 3 digits, a right paren­
thesis, and a quote, i.e., if a replication 
factor is found, the decimal integer is 
converted to binary and control is trans­
ferred to FSTR05 to process the string 
constant. Otherwise, the left parenthesis 
is bypassed, and the scan continues. 

f~TR-=:. ES, ET 

Input parameter: 
R1 : Points to the beginning quotation mark 

of a character strin~ within the input 
text. 

The routine increases R1 by one, sets REPL 
to 1 and RLEN to O. REPL and RLEN are the 

parameters for the following routine seg­
ment labeled by FSTR05. 

Secondary entry point: FSTR05 

Input parameters: 
R1 address of the character string in 

the input text. 
REPL replication factor. 
RLEN number of digits specified for the 

replication factor + 2. RLEN equals 
zero if no replication factor has 
been specified. 

The input text is scanned by means of a TRT 
table for a quote indicating the end of the 
character string. If the string is a bit 
strin~, it is moved unchanged into the 
output buffer. The character string is 
moved into CHST. Strings exceeding the 
length of 255 are truncated on the right. 
For two successive quotes, one quote is 
moved into CHST. One blank is moved if the 
begin quote is immediately followed by the 
end quote. Control is then transferred to 
FCTA. 

FCTA EU,EV 

This is part of the main routine. 

Input 
REPL 
RLEN 
CONVSiif 

CTAB 

CTAB1 
ADABS 

TABE 

R1ST 

parameters: 
replication factor. 
length of basic string. 
switch to indicate whether the 
string must be retranslated (=0) 
or not (=1). 
address ~f the character-string 
table in storage. 
current pointer to this table. 
address that must be subtracted 
from CTAB1 to obtain the offset in 
the character-string table, a part 
of which may already have been put 
out on SYS001. 
end address of the character­
string table in storage. 
address of the end quote of the 
character string. 

If the replication factor is 0, it is 
ignored and set to one. If necessary, the 
basic string is retranslated into the 
external code. The string is expanded 
according to the replication factor. 
Strings exceeding the length of 255 are 
truncated on the right. 

The string is then compared with all 
sequences of characters of equal length in 
the character-string table. If a matching 
entry is found, the same offset is used in 
the key, which is moved into the output 
buffer. Otherwise, the string is moved 
into the table. If it does not fit into 
it, the table is filled by a first part of 
the string and put out on SYS001. ADABS is 
reduced by the length of this output, and 

Phase PL{IA45 55 



PL/I PLM 8 

IBM Confidential 

the remaining bytes of the string are moved 
to the beginning of the table. Control 
then returns to FSCA and the scan contin­
ues. 

This is the end of the main routine. The 
end-of-program key is moved into the output 
buffer, and the buffer is put out on text 
output medium. The character string table 
(or the last part of it) is put out on 

SYS001. The length of the character-string 
table is stored in IJKCSL. IJKPH is then 
called to fetch the next phase (A50). 

FPIN -- EX --------
FPIN is called each time the input pointer 
has been increased and ensures that the 
input pointer always points to an address 
within the first of the two input buffers. 
Whenever the input pointer exceeds its 
range, the contents of the second buffer 
are moved into the first one, and a new 
record is read into the second buffer. 

Note: The end of the pro3ram is indicated 
by the end-of-program key X'FF'. If, how­
ever, the end quote of a string constant is 
omitted. this key cannot be detected since 

56 

a character string may contain any of the 
256 characters. It is therefore necessary 
to test for end of file after every call of 
IJKGI. If the end of file has been 
reached, the last record in the first buf­
fer is processed, and FFIN is called the 
next time FPIN is invoked. 

FMBU -- EY 

Input parameters: 
RR : address of source. 
R1 : end address of source + 1. 
POUT: pointer of output buffer. 
BUFOL : end address of output buffer. 

Output parameters: 
RR : = R1. 
POUT : points to the next free address in 
the buffer. 

This routine moves text into the output 
buffer. If all bytes to be moved do not 
fit into the buffer or if they do exactly 
fit, the buffer is filled with the first 
part of the text to be moved and its con­
tents are written on output medium. The 
remaining bytes, if any, are moved to the 
begin of the bu~fer. 

c 



PL/I PLl"1 8 

IBM Confidential 

(-

c 

c 

This phase scans the block structure of the 
source program. Therefore, the statements 
PROCEDURE, BEGIN, IF, DO, and END as well 
as the keywords THEN and ELSE must be rec­
ognized. 

Each statement is given a 6-byte end-of­
statement (EOSt key, which contains a 
level, a block, and a statement number. 
Each assignment statement is given a 
special key (SET key) • 

All statement keywords are translated 
into internal representation (see Figure 
1). For the keyword THEN, an EOS key is 
generated. For the keyword ELSE, an "ELSE 
statement" containing a statement key and 
an EOS key is generated. 

If an error is found in the block struc­
ture (more PROCEDURE or BEGIN statements 
than END statements or vice versa), the 
source text is truncated after the last 
correct END statement. 

Internal Repre~ent~!iog of_Stat~nt 
Identifiers 

Each statement identifier is replaced by a 
3-byte key in internal code. This key has 
the following format: 

byte 0: EO 
byte 1: undefined 
byte 2: identification (see Figure 1) 

PHASE PL/IA50 (BLOCK STRUCTURE) -- FM 

DESCRIPTION OF ROUTINES 

Symbols used in flow charts 

POUT 
PCA 
IBUFL 
PIN 
BUFB1 

GROUT 
BUFEND 
PTA 
TABA 
TABE 

JEPLA1 

pointer output area 
pointer communication area 
length of the I/O buffers 
pointer input area 
start address of the first input 
buffer 
end address of the output buffer 
end address of the input area 
pointer table area 
start address of the table area 
end address of the table area + 

FO 

The routine skips the prefix lists and 
labels preceding a statement. It is tested 
whether a parenthesized list preceding a 
statement is followed by a colon. The 
prefix list is translated into a mask. The 
statement counter is increased according to 
the number of statements processed. The 
counter value is inserted into the EOS key. 

Entry parameter: 
PIN = address of the first byte of the 

statement 

Return parameters: 
HR4 address of the first byte of a state­

ment which is not yet put out. 
PIN address of the first byte after the 

first identifier of a statement. 

r-----------------------------------------T---------------------------------------------, 
I Byte 2 Statement I Byte 2 Statement I 
~-----------------------------------------+---------------------------------------------~ 

03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
OD 
OE 
OF 
10 
11 
12 
13 
20 

DUMP 
OVERLAY 
PROCEDURE 
BEGIN 
END (PROCEDURE) 
END (BEGIN) 
CALL 
GOTO 
ENTRY 
RETURN 
NOP 
SET 
EXPRESSION 
IF 
ELSE 
DO 
END (DO) 
SIGNAL 

21 
22 
23 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

I 42 
43 

I 44 

REVERT 
ON 
STOP 
CLOSE 
OPEN 
DISPLAY 
GET 
PUT 
FORMAT 
READ 
WRITE 
LOCATE 
REWRITE 
DECLARE 
INITIAL 
INITIAL 
FILE 
ARRAY 

SCALAR 
ARRAY 

l _________________________________________ i ____________________________________________ _ 

Figure 1. Contents of Byte 2 of the 3-Byte Statement Identifier Key 

Phase PL/IA50 57 



PL/I PLM 8 

IBM Confidential 

JASSA1 -- FP 

The program tests whether the actual state­
ment is an assignment statement. If so, 
the SET key is inserted before the state­
ment. 

If the identifier preceding the state­
ment is IF, control is transferred to JPIF. 
If the identifier is the statement keyword, 
it is replaced by the corresponding key. 
Otherwise, the SET key is generated. 

Entry parameters: 
PIN = address of the first byte after the 

first identifier of a statement. 
HR4 = address of the label identifier 

preceding the statement, if any. 

Return parameters: 
PIN = start address of the statement iden­

tifier. 
HR4 = address of the first byte of a state­

ment that is not yet put out. 

Secondary entry points: JSTAA3, JSTAE2, 
JSTAE4 

The routine compares the identifier preced­
ing a statement with a list of statement 
keywords contained in KEyrAB. This table 
contains a 4-byte entry for each keyword. 
The first two bytes contain the keyword 
itself; the other two bytes contain a rela­
tive branch address. 

If the identifier is one of the keywords 
PROCEDURE, BEGIN, ENTRY, IF, ELSE, DO, END, 
GOTO, or DECLARE, control is transferred to 
one of the routines JPRO, JENT, JPIF, JELS, 
JPDO, JEND, JGOT or JDLA. 

All statement identifiers are translated 
into internal representation by means of 
the table CODTAB, which contains a 4-byte 
entry for each keyword. The first two 
bytes contain the keyword itself; the sec­
ond two bytes contain the internal rep­
resentation of the statement identifier. 

Entry parameters: 
PIN = start address of the statement iden­

tifier. 
BYZ 0 or length of a parenthesized list 

follows the identifier. 
HR4 start address of the label identifier 

preceding the statement, if any; 
otherwise HR4 = PIN. 

JPROA1 -- FR 

Secondary entry point: JPROB1 

The routine is called by JSTA and processes 
the PROCEDURE and the BEGIN statement, 
respectively. The level counter is 

58 

increased by 1. It may not be greater than 
three because only three levels are 
allowed. The block counter is increased by 
1. It may not be greater than 63 because 
only 63 blocks are allowed. 

For each PROCEDURE, BEGIN, or DO state­
ment, a pointer ENDZ is increased by 1. 
Corresponding to the status of ENDZ, it is 
entered in a pUSh-down table ENDTAB, wheth­
er it is a begin block (0) or a DO group 
(1). The evaluation of this table and 
reducing of ENDZ by 1 is done by the rou-
tine JEND. 

Entry parameters: 
PIN start address of the statement iden­

tifier. 
HR4 = start address of the first label 

identifier, if any, preceding the 
statement. 

Return parameters: 
PIN unchanged. 
HR4 = start address of the label identifi­

er. If more than one label is given, 
the last label is pointed to. 

JENTA1 -- FS 

The routine is called by JSTAA1 and proc­
esses the ENTRY statement. Only the label 
preceding the statement is checked. Entry 
and return parameters are the same as in 
JPRO. 

JPIFA1 -- FT 

The program is called by JSTAA1 and proc­
esses the IF statement. An IF statement 
has the form: 

IF expression THEN unit 1 ELSE unit 2; 

An equal sign and parenthesized lists may 
occur in expression. Since there is no 
difference in appearance of the logical 
equal sign and the arithmetical equal sign, 
the IF statement can be differentiated from 
the assignment statement only by the key­
word rHEN. The statement identifier is 
replaced, by the internal representation. 
The keyword THEN is replaced by an EOS key. 

Entry parameters: 
PIN = start address of the statement iden­

tifier. 
HR4 start address of the label identifier 

preceding the statement. If there is 
no label, HR4 = PIN. 

Return parameters: 
PIN = address of the next byte after THEN. 
PIN = unchanged if no IF statement is 

encountered. 
c 



PL/I pur 8 

IBM Confidential 

( 

() 

c 

JELSA1 -- FU 

The routine is called by JSTAA1 and proc­
esses the keyword ELSE. ELSE is followed 
by a semicolon only if unit is a NOP state­
ment. To facilitate the statement scan for 
the following phases, the ELSE key is con­
cluded by an EOS key. 

An ELSE keyword has the form: 

statement; ELSE identifier or 
statement; ELSE JE~~fi~: identifier or 
statement; ELSE 

i.e., ELSE can only be followed by an iden­
tifier, a left parenthesis, or a semicolon. 
In the source text, the keyword ELSE is 
replaced by: 

Key 
EOS 

(6 bytes) 
(6 bytes) 

The statement number in EOS is the same as 
in the previous statement. 

Entry parameter: 
PIN = HR4 = start address of the identifier 

ELSE. 

Return parameter: 
PIN = address of the byte following the 

identifier. 

JPDOA1 -- FV --------
The routine is called by JSTAA1 and proc­
esses the DO statement. ~ DO statement 
must be recognized to be able to differen­
tiate the END statement into block ends and 
group ends. 

The statement identifier is replaced by 
the internal representation. In the inter­
nal buffer ENDTAB, a 1 for marking group 
end is entered. A zero is entered for 
block end. 

Entry parameters: 
PIN start address of the statement iden-

tifier. 
HR4 start address of the first label 

preceding the statement. 

Return parameters: 
PIN = Unchanged HR4 Unchanged 

JENDA1 -- FW 

The routine is called by JSTAA1 and proc­
esses the END statement. An END statement 
has the format: END; No other format is 
permitted in the DOS/TOS PL/I compiler. In 
the PL/I language, the END statement for a 
block end is the same as for a group end. 
Internally, the two types of END are coded 
differently. Pointer ENDZ points to the 
last entry in ENDT~B (see JPROA 1 -- FRj , 

thus showing the type of END. The level 
counter LEV is decreased by one at the end 
of a block. 

Entry parameters: 
PIN start address of the statement iden-

tifier. 
HR4 start address of the label identifi-

er, if any. 

Return parameter: 
PIN = address of the semicolon. 

JLACA1 -- FX 

The routine checks the label preceding a 
PROCEDURE or ENTRY statement. Only one 
label must precede each of these state­
ments. The following errors may appear: 

1. No label: pseudo label is inserted. 

2. More than one label: all labels except 
the last are ignored. 

Entry parameters: 
HR4 start address of the (possibly first) 

label. 
PIN start address of the statement iden­

tifier. If no label appears, HR4 = 
PIN. 

Return parameters: 
PIN unchanged. 
HR4 unchanged if no error is detected. 
HR4 PIN if error 1 is detected. HR4 = 

start address of the last label if 
error 2 is detected. 

JEOSA1 -- FY 

The routine is called at each statement 
end. It generates the EOS key and puts out 
an error list, if necessary. When JEOS is 
called, PIN points to the semicolon. The 
statement itself is already in the output 
area or on the output medium. 

On return, PIN points to the first byte 
of the new statement. If no more state­
ments follow, i.e., if the end of the 
source text is reached, PIN points to the 
end-of-source-text mark. 

It is tested whether PIN is still inside 
the first input buffer. If it is not, it 
is tested whether PIN is still inside the 
last buffer because incorrect statements 
can cause PIN to run out of the input area. 
In this case, an error message is given. 
Otherwise, the contents of buffers 2 - 4 
are moved into buffers 1 - 3 and a new 
recoid is read into buffer 4. It must 
therefore be avoided that a statement or a 
single identifier is divided by the end of 
the input area. This is done as long as 
PIN is outside the first buffer. 

Phase PL/IA50 59 



PL/I PLM 8 

IBM Confidential 

The EOS key has the following format: 

byte 0 
byte 1 
byte 2 
byte 3 
byte 4-5 

EOS key 
error indicator 
level number 
block number 
statement number 

If an incorrect statement is discovered, 
and error message is generated in the 
source text. The error message has the 
following format: The first bit of the 
error indicator in the EOS key is set to 1. 
Two bytes are inserted after the key for 
every error in the source text; byte 1 
contains the error key, byte 2 contains the 
error number. 

JERRA1 -- FZ 

The routine is called if an error is 
detected. Up to eight error messages per 
statement are stored. Additional errors 
are ignored. 

JEOSA1 puts out the error messages into 
the source text following the statement in 
error. The error table (ERRTAB) entries 
have the following format: 

byte 1 
byte 2 
bytes 3-10 = 

= error key (X" EB') 
number of errors 
special error keys 

Entry parameter: 
HRO = special error key (1 byte) 

MOVEA1 -- FO 

The subroutine moves any number of bytes 
from a FROM field to a TO field. The FROM 
and TO fields may overlap. 

Entry parameters: 
HRO number of bytes to be moved 
HR1 address of the TO field 
HR2 address of the FROM field 
B¥Z is used as auxiliary register. 

JCHAA1 -- F1 

The subroutine is used to find a character 
in the source text. Searching is performed 
up to the end of the statement. If the end 
is reached, PIN contains the address of the 
semicolon as return parameter. If the end 
of the source program is reached before the 
character is found, an. error message is 
given. An EOS key is inserted. 

Entry 
PIN 
B¥Z = 

60 

parameters: 
start address of the search region. 
character to search for (1 byte 
right-justified) • 

Return parameters: 
PIN address of the character found or of 

the end of statement. 
BYZ = PIN new - PIN old. 

JSKPA1 -- F2 

The subroutine searches for the end of a 
parenthesized expression. All internal 
pairs of parentheses are skipped. 

Entry parameter: 
PIN = address of the first left parenthe­

sis. 

Return parameters: 
PIN = address of the next byte after the 

last right parenthesis. 
HRO PIN old. 
BYZ = PIN new - PIN old. 

JTRNA1 -- F3 

The subroutine moves information into the 
output buffer and controls the pointer for 
this buffer. When the pointer exceeds the 
scope of the buffer, the text is put out on 
output medium. 

Entry parameters: 
PIN start address of the information to 

be put out. 
BYZ = length of the information. 
POUT = next free address in the output 

buffer. 

Return parameters: 
PIN new = PIN old + BYZ. 
POUT = next free address in the output 

buffer. 

JGOTA1 -- F4 

The routine is called by JSTA and processes 
the GOTO statement. The statement iden­
tifier for the GOTO statement may be writ­
ten with or without a blank between GO and 
TO. The key is the same for both forms. 

JDLAA1 -- F5 

The routine is called by JSTA and processes 
the DECLARE statement. If a label list 
prece~es the statement, it is removed from 
the source text. 

Entry parameters: 
PIN start address of the statement iden­

tifier. 
HR4 = start address of the label identifier 

preceding the statement. If there is 
no label, HR4 = PIN. 

Return parameters: 
PIN unchanged. 
HR4 = PIN. 

c 

c 



( 

PL/I PLM 8 

IBM Confidential 

JFIXA1 -- F6 ---------
The program scans the prefix lists and 
generates a mask. This mask has the fol-
lowing format: 

bit 0 0 NO ZERODIVIDE 
1 ZERODIVIDE 

bit 0 NO UNDERFLOW 
1 UNDERFLOW 

bit 2 0 NO OVERFLOW 
1 OVERFLOW 

bit 3 0 NOFIXEDOVERFLOW 
1 FIXEDOVERFLOW 

bit 4 0 NOCONVERSION 
1 CONVERSION 

bit S 0 NO SIZE 
1 SIZE 

bit 6 reserved 
bit 7 reserved 

Entry parameter: 
PIN = address of the left parenthesis. 

Return parameters: 
PIN = address of the colon after the prefix 

list. 
FIXMSK = mask. 

o 

JSSAAl -- F7 

The routine generates a statement attribute 
of 3 bytes and inserts it into the source 
text immediately after the statement iden­
tifier. The statement attribute contains 
the following information: 

byte 0 prefix mask (see JDLAA 1 -- FS) 
byte 1 number of the actual block 
byte 2 number of the embracing block 

Byte is set to zero in phase B90. 

JEOPAl -- F9 

This routine checks if the end of the 
source text has been reached. If it has, 
the end-counter ENDZ is checked, and the 
output area is cleared. 

Entry parameter: 
PIN = input pointer 

JBETA1 -- F8 

This routine generates the end-table. 

Phase PL/IA50 61 



PL/I PLM 8 

IBM Confidential 

The two syntax phases, A60 and A65, may be 
considered as one logical phase. 

The first syntax phase, A60, processes 
all statements except READ, WRITE, GET, 
PUT, FORMAT, which are processed by the 
second syntax phase A65. 

Phases A60 and A65 

• check each statement for syntactical 
errors (exception: DECLARE statement) • 

• substitute 3-byte keys for symbols as 
follows: 

byte 1: key S'E2' 
bytes 2-3: program-internal code for the 

respective symbol (see Figure 
1 in phase 11.25) • 

• sUbstitute elements of variable length 
for all constants (except character 
string constants) as shown in Figure 1. 

"Oe, , " , ',4 5 6 7 , 9 

'-.r--'~' v L L 0,;,;"0' 'O~'O"' 
length of element: L 

Constant key: F7 for decimal fixed 
Fa for decimal float 
F9 for blnary fixed 
FA for binary float 
FB for bit string 
FC for sterl ing 
FE for format integer 

Figure 1. Substitution of Variable-Length 
Elements for Constants 

The preceding phases have: 

1. eliminated all blanks and comments, 

2. substituted an end-of-statement del­
imeter for each semicolon as follows: 

62 

a. if no error has been detected in 
the statement: 

3. 

gy~ Contents 

1 
2 
3 
4 

5-6 

end-of-statement key X'EA' 
indicator no error X'OO' 
level number 
block number 
statement number 

b. if an error has been detected in 
the statement: 

Byte (s) 
1 
2 

3 
4 

5-6 
7 
8 
9 

10 

Contents 
end-of-statement key X'EA' 
error indicator X'40' 
or X'80' 
level number 
block number 
statement number 
error key X'EB' 
error number 
error key X'EB' 
error number, etc., 
(up to 8 errors) 

substituted an end-of-statement delimi­
ter for each keyword THEN; 

4. placed an end-of-statement delimiter 
after each keyword ELSE; 

5. 

6. 

substituted a special key for each 
character string constant as fOllows: 

2-3 

4 

5-6 

Contents 
character-string constant 
key X'E3' 
offset to begin of charac­
ter-string constant table 
character-string constant 
key X'E3' 
length of the constant 

substi tut.ed 6-byte elements for all 
statement identifiers as follows: 

2 
3 

Contents 

statement identifier 
key X'EO' 
not used in this phase 
number specifying the 
statement identifier 
prefix information 
not used in this phase 

7. placed a 6-byte element ASSIGN in front 
of each assignment statement as shoWn 
under item 6. 

8. substituted a 3-byte key for each pro­
gram element appearing as an identifier 
or keyword as follows: 

c 



( 

PL/I PLM 8 

IBM Confidential 

Contents 

identifier key X'E1' 
offset to a table 

9. processed and eliminated the prefix 
option lists. 

Note: Steps 3 and 4 have left the program 
non-recursive. All statements may now be 
processed independently of each other. 
Push-down stacks are reduced in size (since 
recursion only occurs in expressions) • 

Q~!E~!_of ~has~s A6Q~gd ~65 

with the exception of the DECLARE statement 
and the declarative portions of PROCEDURE 
and ENTRY statements, the output stream 
consists of 3-byte elements and variable­
length elements. Any ambiguities resulting 
from the fact that keywords are not 
reserved have been clarified. This is 
illustrated by the following example: 

DO IF=BEGIN TO END WHILE (DISPLAY) ; 
Since all identifiers making up the above 
statement are potential keywords, the syn­
tax phases must detect the real keywords 
(in this case DO, TO, WHILE). 

(; 
The first byte of each 3-byte element 

substituted for a keyword now contains 
X'EF' instead of X'E1' 

An error message is generated for each 
detected syntactical error. This message 
is attached in coded form to the end-of­
statement delimiter as shown in Figure 3. 

FUNCTIONAL DESCRIPTION 

1. ~~~~~gg_~y~!~~!~£~~~gits_J1~~g~~~tic 
~~gct~2nsL 
A "Linguistic Function" (abbreviation 
LF) is a routine which returns a 
Boolean value. The value of the LF is 
determined as follows: Within the LF, a 
"linguistic expression" is written, 
which syntactically describes a pattern 
of the source string. This linguistic 
expression is said to define the LF. 
During execution, the LF examines the 
source text for the occurrence of the 
pattern described by the LF's linguist­
ic expression. If the pattern is 
found, the LF yields a TRUE value; if 
not, it yields a FALSE value. 
(These are quotations from the SLANG 

Language Tutorial Manual. Edition 1, 
3-18-64, pages 36-3n. 

2. PrQ~~~~~~_~yg!~~!i~~_2~~!~ 
Whenever a syntactical unit has been 
recognized, 3-byte elements and 
variable-length-elements are 
substituted for symbols and constants. 

3. Detection of Syntactical Errors 
After a statement has been identified 
by scanning and comparing the statement 
identifier, it is checked for conform­
ing to the syntactical rules. If an 
error is detected, a message specifying 
the nature of the error is generated. 

The syntactical scan is based on the 
assumption that the complete statement is 
contained in the four input buffers. Two 
pushdown stacks, three pointers and three 
LF utility routines are used. 

Push-Down Stacks 

LPDL 

PPDL 

Pointers 

used to store the linkage. 

used to store the value of the 
input pointer 

-----

POLl 

PIN 

POUT 

A symbolic register used as a poin­
ter to LPDL and PPDL. This pOinter 
is moved by the routines BEGLF, 
EXTRUE, and EXFALS. 

A symbolic register used as input 
pointer. 

A symbolic register used as output 
pointer. 

The following 3 routines enable recursion 
during the syntactical scan (see flow 
charts HH and G~ • 

BEGLF Initiated upon entry into an LF. 
The current value of the input 
pointer PIN is saved and the lin­
kage information contained in LINK 
is stored. 

EXTRUE Initiated if an LF yields TRUE. 
This routine fetches linkage infor­
mation from LPDL, adds 4 to it, and 
returns to the resulting address. 

EXFALS Initiated if an LF yields FALSE. 
This routine restores PIN (i.e. 
fetches from PPDL the value which 
was stored there when the LF was 
initiated), fetches linkage infor­
mation from LPDL, and returns to 
the provided address. 

Note: After a TRUE exit, PIN points to the 
character following the examined syntacti­
cal unit. After a FALSE exit, PIN points 
to the same character it was pointing to 
when the LF was initiated. 

Phase PL/IA60,A65 63 



PL/I PLM 8 

IBM Confidential 

r----T--------------------------------T-------------------------------------------------, 0 
1. I INTEG BAL UrIL,BEGLF I Linguistic Utility Routine. , ' 
2. I ST PIN,INTEGl I Store begin of integer. 
3. I BAL LINK,DIGIT Digit? 
4. B EXFALS I No. Return FALSE. 
5. I INTEG2 BAL LINK, DIGIT I Yes. Another digit? 
6. I B INTEG3 I No. End of integer. 
7. B INTEG2 I Yes. Try again. 
8. I INTEG3 L Rl,PIN I Compute the address of 
9. I BCTR Rl,O I last digit of integer. 

10. I L R2,INTEGl I Load start address. 
11. I BAL LINK,STORIT I Call storing routine. 
12. I B EXTRUE. I Return TRUE 
~----~--------------------------------~-------------------------------------------------~ 
IStep 1: When initiating BEGLF, the symbolic register UTIL is used instead of LINK. I 
IThis saves LINK. I 
I I 
ISteps 3-7 comprise the "linguistic I 
I expression". I L _____________________________________________________________________________________ ~_J 

Figure 2. Linguistic Utility Routine 

An integer is assumed to be defined (using 
the Backus-Naur form (BNF)) as follows: 

This means an integer is a string consist­
ing of more than 0 digits. The above BNF 
definition gives the base for the 
"linguistic expression" as illustrated in 
the program shown in Figure which scans 
an integer, notes the address of the first 
digit, the address of the last digit and 
calls another routine with these addresses 
as parameters. 

~Q!~~ Although the BNF definition of an 
integer is recursive, the routine shown in 
Figure 7 is not recursive. This is correct 
because the integer could be defined as 
<integer> :: = min 1 <digit> by using an 
extended BNF. Recursion has been avoided 
to improve the phase performance. 

~lntactical Definition of Input and Output 
~t.~~!!! 

rhe syntactical definition (metalanguage) 
of the input and output stream is given in 
Appendices A and B. 

ro save compilation time, certain phases 
following the syntax phase are skipped if 
the statement which they process does not 
occur in the source program. Skipping of 
phases is prepared and specified by the 
syntax phases A60 and A65 as follows: 

Bits 3 to 7 of byte IJKMJT+3 specify 
skipping of certain subsequent phases. If 

64 

one of these bits is set to 0, the asso­
ciated phase is skipped. At the beginning 
of the syntax phase, all 5 bits are set to 
zero. The occurrence of specific state­
ments causes the syntax phases to set the 
associated bit to 1 as shown below. 

Statement --------

CLOSE 
DISPLA.Y 
FORMA.r 
GET 
IF 
LOCATE 
OPEN 
READ 
REWRIrE 

Bit No. Set to One: 

6 
6,7 
6 
4 
3 
6,7 
6 
6,7 
6,7 

DESCRIPTION OF ROUTINES 

(Open) 

(Closed) 

A routine is called open if 
control is transferred to it 
by 

1. a simple B instruction, 
in which case control is 
also returned by a B 
instruction, or 

2. some in-line coding that 
requires a separate des­
cription. 

A routine is called closed if 
control is transferred to it 
by a BAL instruction. Con­
trol is returned by a BR 
instruction in this case. 

c 



PL/I PLM 8 

IBM Confidential 

o 

o 

S~N1 -- GM 

rhis routine is the "master program" of the 
phase. 

1. PIN and POUT are initialized and the 
four input buffers are filled. 

2. POLl is reset. PIN is stored in 
CREAT1. PIN is moved until a statement 
identifier key (x'EO', is found. Then 
6 is added to PIN so that it points to 
the first character of the statement 
body. The statement-processing rou­
tines are activated. 

3. If the statement returns TRUE (entry 
S~N166 = statement conforms with syn­
tactical rulesl, it is tested whether 
PIN points to the end-of-statement 
(EOSI delimiter. 

4. If PIN points to the EOS delimiter, the 
last part of the statement (the start 
address is in CREAT1, the end address -
1 is in PIN) is put out, and EOST is 
called. S~N1 continues with step 2. 

If PIN does not point to the EOS delim­
iter, ERROR is called(the logical end 
of the statement body is not followed 
by an EOS). The last part of the 
statement is put out, and PIN is moved 
until an EOS or the end-of-program mark 
(EOP) is detected. If an EOS is 
encountered, EOST is called. SYN1 
continues with step 2. If an EOP is 
encountered, TEPHA is called to termi­
nate the phase. 

5. If the statement returns FALSE (the 
statement does not conform with syntac­
tical rules, or is not processed in 
this phasel , INPT is called. INPT 
moves PIN until an EOS or EOP is 
encountered. 

Note: Whenever control returns from EOST, 
PIN points to the first byte of the next 
statement. 

Puts out a string. The start address of 
this string is in CREAT1, the end address 
-1 is in PIN. 

CARFB (Closedl 

'rhis routine is called by several linguist­
ic functions. 

R1 contains the address of the 3-byte ele­
ment. If this element is not identical to 
that starting at 0 (PINI , the routine 
returns FALSE to (LINKI. Otherwise, the 

byte at 0 (PINI is replaced with X'EF' (key 
for "Keyword") and PIN is incremented by 3. 
BUBU is called. The routine returns TRUE 
to 4 (O,LINKI • 

EOST, JEOSA 1 (Closed) GQ 

Arran~es the contents of the input buffers 
1 to 4. The currently scanned EOS is 
located in input buffer 1 (this is done by 
movin~ and by reading new records). Puts 
out the EOS and the error codes attached to 
it. ~ny additionally generated error codes 
are also put out. 

INPT (Open) -- GN 

1. If PIN points to an EOS, control is 
passed to S~N157. (SYN157 is a label 
associated to SYN1 step 4 - see des­
cription of SYN1) • 

2. If PIN points to an EOP, TEPHA is 
called. 

3. If PIN points to an E-key, PIN is 
incremented by 3. 

4. If PIN points to an F-key, the contents 
of the two bytes following this F-key 
are added to PIN. 

5. Otherwise, PIN is incremented by 1 and 
INPT starts again with step 1. 

Tests the statement for excessive length. 
(The appropriate EOS must be located in the 
first 4 input buffers). If the statement 
exceeds the permitted length, the statement 
body is deleted. The statement now con­
sists of the statement identifier and the 
EOS attached with error codes. The next 
statement is positioned starting in input 
buffer 1. 

JTRNA1~10sed) -- GR 

Output routine. Register BYZ contains the 
number of bytes to be put out; register PIN 
contains the start address. 

One output buffer is used. 

1. If the (remaining) length of the output 
string does not exceed the available 
space of the output buffer, the com­
plete (remaining part of the) string is 
moved into the buffer. The output 
pointer is updated by adding BYZ to 
POUT. 

2. If the length of the output string 
exceeds the available buffer space, an 
appropriate part of the string is moved 
to the buffer. The contents of the 
buffer are written onto the output 

Phase PL/IA60,A65 65 



PL/I PLM 8 

IBM Confidential 

medium. POUT is reset to the start address 
of the buffer. BYZ is decremented by the 
number of bytes moved into the buffer. PIN 
is incremented by this number. JTRNA1 
starts again with step a. 

LKW (Closed) 

This routine is called by several linguist­
ic functions. 

Input parameters: 
R2: table address 
R3: address of the LF to be initiated if 

the search is successful. Must be 0 
if no LF is to be initiated. 

R4: length of source pattern 
R5: address of a 3-byte element 

Looks up the table (address defined by R2) 
for a pattern (length defined by R4) that 
is identical to that located in o (PIN) • 
Returns FALSE to o (LINK) if the search was 
unsuccessful. Otherwise, BUBU is called to 
put out a string. A 3-byte element is 
created by using the rightmost byte in R5 
as first byte and the "function value" of 
the table as second and third bytes. The 
3-byte element is put out. If R3 contains 
0, LKW returns TRUE to 4 (0, LINK) • If R3 
contains an address of an LF, this LF is 
initiated and depending on the value of the 
LF, LKW returns TRUE or FALSE. 

Example: 

DS 
TABLE DC 

DC 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

Parameters 

66 

OF 
X'2' 
X' 5' 

X' 3A3A' 
X'OAFA' 
X'393C' 
X'07EE' 
X'3E3C' 
X, 07F1' 
X, 3D3 C' 
X'07F2' 
X'4040' 
X'03EA' 
X'O' 

Length of pattern 
Number of elements 
in the table 
1st argument 
1st "function value" 
2nd argument 
2nd "function value" 

etc. 

end of table 

R2 
R3 
R4 
R5 

A (TABLE) 
A (0) 
A (2) 
X'OOOOOOE2' 

--.~-- -- -_ .. _- ---- -- -- ~--

Assumed input: 
r-----------------------------------------, 
I ---T----T--T--T--T--T--T--T--T--------- I 
I •• I •.•• IE 1 I 03 I 61 J3 D 13C I 01 I 05 I • . • • . . I 
I ---+----+--+--+--+-,+--i--+--+--------- I 
I AL->source pattern I 
I I I 
I r----------------J I 
I PIN points to this character I L _________________________________________ J 

In this case LKW performs the following: 

The table lookup is successful. BUBU is 
called to put out a string ending at X'61'. 
A 3-byte element is created (X'E207F2') and 
put out. PIN points to X'Ol'. LKW returns 
TRUE. 

TAR I 1 (Closed) 

This routine is called by several linguist­
ic functions. 

If the rightmost byte in R1 is identical 
with the byte at o (PIN) , BUBU is called. A 
3-byte element consisting of the leftmost 3 
bytes in Rl is put out. PIN is incremented 
by 1. TARI1 returns TRUE to 4 (0, LINK) • 

Otherwise, TART 1 returns FALSE to (LINK). 

TEPHA (Open) -- GP 

Puts out the contents of the output buffer. 
Further actions depend on the utilization 
of TEPHA. 

If the routine is used in phase A60, it 
returns control to the compiler control 
program, indicating the next phase to be 
initiated. This is A65 if one of the fol­
lowing statements occurred in the source 
program: READ, WRITE, GET, PUT, FORMAT. 
Otherwise, phase B10 IS initiated. 

If the routine is used in phase A65, it 
returns control to the compiler control 
program, indicating that the next phase to 
be initiated is B10. 

ERROB1~ JERRA1 (M) -- GS 

This routine fills an error table with up 
to 8 errors per statement. If the same 
error is detected more than once for one 
statement, the error appears only once in 
the error table. 

Each detected error causes an error 
message to be generated, represented inter­
nally as a one-byte number. This number is 
attached to the End-of-Statement delimiter. 

c 



PL/I PLM 8 

IBM Confidential 

(" 

() 

c 

In this phase( all declarations given 
explicitly in DECLARE statement parameter 
lists and label declaration lists are col­
lected in a declaration pool. The pool is 
written on SYS001. 

Declaration Pool 

In the declaration pool all declarations 
belonging to one block are collected in a 
group which is written on SYS001 if the end 
of the block is reached. 

Three block levels are allowed. For 
each level a buffer is defined in the table 
area. The declarations are collected in 
the buffer indicated by the level counter. 
If a buffer overflows, it is written before 
the end of the block is reached. 

The first four bytes in each buffer 
contain special information concerning the 
block. 

byte 0: block number 
byte 1: block level 
byte 2: block number of the embracing block 
byte 3: mark if the record is the last of 

the block. 

This information is put in front of each 
record. In phase B20 the records of the 
pool which are on SYS001 are ordered by 
ascending block number and written on 
SYS002 or SYS003. 

The information entered in the declara­
tion pool is classified in three groups: 

1. label declaration lists 

2. parameter lists 

3. DECLARE statements 

A label declaration list starts with an 
identifier key. A label constant or an 
entry name may be entered in such a list. 
A label constant consists of 4 bytes: 

byte 0: identifier key 
bytes 1-2: user name (coded in phase A2S) 
byte 3 colon 

An entry name consists of: 

byte 0 
bytes 1-2: 
bytes 3-4: 

identifier key 
user name (coded in phase A2S) 
attribute ENTRY (optionally, 
data attributes specified by the 
user as attributes describing 
the returned value) • 

PHASE PL/IB10 (DECLARATION SCAN I) -- HM 

The end of an entry name is indicated by 
an EOS key (6 bytes). 

A ~arameter list starts with a parameter 
key (1 byte). This key is followed by the 
internal representation of the left paren­
thesis (3 bytes). 

The user-defined parameter names follow 
(3 bytes each, coded in phase A25) sepa­
rated by the internal representation of the 
comma (3 bytes) and closed by the right 
parenthesis (3 bytes) • 

A DECLARE statement starts with a 
declare key (1 byte). The whole statement 
follows. It is scanned syntactically in 
phase B20. 

DESCRIPTION OF ROUTINES 

Note: The routines JERRA1, MOVEA1, JCHAA1, 
and JrRNAl are described in phase ASO. The 
corresponding flow charts are FZ, FO, Fl, 
and F3, respectively. 

Symbols used in flow charts: 

PCA 
EOS 
EOPR 
STATAB: 

pointer for communication area 
end-of-statement key 
end-of-program key 
table of addresses of routines that 
process PROCEDURE, BEGIN, ENTRY, 
DECLARE, and END 

BLZ block counter 
ERRCOD: error code 
LEV level counter 
EOSC end of record on SYSOOl 

Initiali~ation -- HN 

JELAAl -- HO 

This routine scans the statement labels. 
If a label is found, it is entered in the 
declaration pool. 

Entry parameter: 
PIN = address of the first byte of a state­

ment. 

Return parameter: 
PIN = address of the statement-identifier 

key. 

JSTBAl -- HP 

This routine scans the statement identifi­
ers and searches for the identifiers PROCE­
DURE, BEGIN, ENTRY, DECLARE, and END. If 
one of these identifiers is found, the 

Phase PL/IB10 67 



PL/I PLM 8 

IBM Confidential 

program branches to special routines that 
process these statements. All other state­
ments are written unchanged. 

Entry parameter: 
PIN = address of the statement-identifier 

key. 

JPCRA1 =-!!2 

Secondary entry pOint: JP2RE1 

This routine, called in JSTBA1, processes 
the PROCEDURE statement. The PROCEDURE 
statement opens a new block. Therefore, 
the level and block counter are increased 
b~ 1. 

The following information is entered 
into the declaration pool: 

1. The last label is given the attribute 
ENTRY. 

2. If the procedure has data attributes, 
they are associated with the last 
label. 

3. The end of this attribute list is indi­
cated by the EOS key. 

4. Four bytes of information concerning 
the block are entered in the declara­
tion pool. 

byte 0: block number 
byte 1: block level 
byte 2: block number of embracing block 
byte 3: indicates last record of block 

5. If the PROCEDURE has a parameter list, 
a key is entered in the pool. The list 
follows unchanged. 

The PROCEDURE statement, with the excep­
tion of the data attributes, is written 
unchanged. 

The first PROCEDURE statement in a 
source program may have the attribute 
OPTIONS followed by an option list in 
parentheses. The options in this list are 
separated by commas. 

The following options may appear: 

MAIN: It specifies the MAIN procedure. 
ONSYSLOG: It specifies that object time 
diagnostics will be written on SYSLOG. 

If these options appear, special bits in 
the communication area are set. 

A PROCEDURE statement with the attribute 
OPTIONS must not have a parameter list or 
data attributes. 

68 

JOPTA1 -- HR 

This routine processes the OPTIONS attri­
bute. 

JCPLA1 -- HS 

This routine checks the parameter list for 
identical parameters. 

Entry parameters: 
HR4 = PIN = address of the left parenthe­

sis. 
HR3 = O. 

Return parameters: 
PIN = address of the right parenthesis. 
HR3 = length of the parameter list. 

JENTA1 -- HT 

This routine is called in JSTBA1 and proc­
esses the ENTRY statement. 

An ENTRY statement differs from a PROCE­
DURE statement in that it does not open a 
new block. The entry name is internal to 
the embracing block. Therefore, the entry 
name ·is moved into the declaration pool of 
the embracing block. This is done in rou­
tine JELA. 

Entry parameter: 
PIN = start address of the statement iden­

tifier. 

Return parameter: 
PIN = address of the EOS key. 

JBEGA1 -- HU 

This routine is called in JSTBA1 and proc­
esses the BEGIN statement. For the scope 
of declarations, the BEGIN statement has 
the same function as the PROCEDURE state­
ment. 

Entry parameter: 
PIN = start address of the statement iden­

tifier. 

Return parameter: 
PIN = address of the EOS key. 

JDCSA1 -- HV 

This routine is called by JSTBA1 and proc­
esses the DECLARE statement. The entire 
statement is moved unchanged into the dec­
laration pool. 

JENDA1 -- HW 

This routine is called by JSTBA1 and proc­
esses the END statement. An END statement 
closes a block. 

c 



( 

PL/I PLM 8 

IBM Confidential 

The level counter (LEVI is decreased by 
one. When the end of a block is reached, 
three bytes containing X'FFFFFF' are moved 
into the declaration pool for that block, 
and the declaration pool is written on a 
work file. 

Entry parameter: 
PIN = start address of the statement iden­

tifier. 

Return parameter: 
PIN = address of the EOS key. 

JSLCA1 -- HX 

This routine checks the length of a state­
ment. A statement must not be longer than 
3 buffers. If a statement with an error 
message is detected, the statement is 
deleted except for the statement-identifier 
key and the EOS key. 

Entry parameter: 
PIN = address of the statement identifier. 

Return parameter: 
PIN = unchanged. 

Registers used: 
HRO, HR1, HR2, HR4. 

JEOSA1 -- HY 

This routine is called at the end of each 
statement. The error indicator contained 
in the EOS key is tested to determine if an 
error exists. An error list is written, if 
necessary. 

When JEOSA1 is called, PIN points to the 
first byte of the EOS key. The statement 

c 

itself except for the EOS key is already on 
the output medium or in the output buffer. 

When returning, PIN points to the first 
byte of the new statement. If no other 
statement follows, i.e., if the end of the 
source text is reached, PIN points to the 
end-of-source-text key. 

The program uses four buffers for the 
input stream. If PIN is beyond the first 
buffer, the remainder of the input stream 
is moved to the left, and a new record is 
read into the last buffer. 

Entry parameter: 
PIN = address of the first byte of the EOS 

key. 

Return parameter: 
PIN = address of the first byte of the new 

statement. 

Subroutine JDEPA1 -- HZ 

This routine checks the length of the dec­
laration pool. If necessary, the declara­
tion pool is written onto the work file. A 
record counter is increased by 1. 

Entry 
HR1 

BYZ 

parameters: 
start address of the information to 
be transferred into the pool. 
number of bytes to be transferred. 
PTA = address of the first free byte 
in the pool. 

Return parameter: 
PTA = address of the next free byte in the 

pool. 

Phase PL/IB10 69 



PL/I PLM 8 

IBM Confidential 

PHASE PL/IB15 (DECLARATION SCAN II~IM 

This phase scans the DECL~RE statements for 
syntactical errors. In phase B10, all 
declarations were collected in a declara­
tion pool and written on a work file. 
Phase B15 reads the pool, sorts the records 
according to ascending level numbers, and 
scans the DECLARE statements. The output 
is written onto TXTIN of the previous 
phase. 

For some declarations, special state­
ments are generated in the source text (see 
items 1 to 3 below). The previous phase 
leaves the last record of the source text 
in the output buffer. The output medium is 
not rewound.rherefore, the statements 
generated in this phase are attached to the 
end of the last record. 

1. ARRAY 

ASK array statement key 
VN variable name. 

If the array is a part of a 
structure, a full qualifi­
cation is made. 

CAN current array number 
bounds 

EOS end-of-statement key 

2. FILE 

FSK file statement key 
VN = variable name 
CFN = current file number 
file description 
EOS = end-of-statement key 

3. INI~ 

ISK 
VN 

LIL 

EOS 

initial statement key 
variable name 
If the initial item is a 
part of a structure, a full 
qualification is made. 
length of list 
initial list 
end-of-statement key 

(6 bytes) 
(3 bytes) 

(3 bytes) 
(9 bytes) 
(6 bytes) 

(3 bytes) 
(3 bytes) 
(3 bytes) 

uncoded 
(6 bytes) 

(6 bytes) 
(3 bytes) 

(3 bytes) 
uncoded 

(6 bytes) 

There are two ISK's, one for scalar and 
one for array initialization. 

The following is entered in the declara­
tion pool: 

1. ARRRAY - The array attribute followed 
by the current array number and the 
number of contained elements. 

2. FILE - The file attribute followed by 
the-current file number. 

3. INITIAL - rhe initial attribute only. 

70 

DESCRIPTION OF ROUTINES 

Symbols used .in flow charts 

PCA :pointer communication area 
FINO :current file number 
ZI :integer constant 
ERRCOD:error code 

Note: The following routines used in this 
phase are described as follows: 

MOVEA1 A50 
JERRA1 A50 

JCHAA1 A50 
JTRAA1 B90 

Initialization -- IN 

JSRTA1 -- 10 

This routine sorts the declaration pool. 
The sorted records are moved into the table 
area. After the syntactical scan of the 
DECLARE statements, they are written on the 
input work file of the previous phase. 
Each record starts with a special word: 

Byte 0: block number 
Byte 1 : level number 
Byte 2 : block number of the embracing block 
Byte 3 ; indicates if the record is the last 

of the block. 

The records are sorted in ascending 
order of level numbers. 

LVA actual level number 
LVM = maximum level number 

JSCNA1 -- IP 

This routine scans the declaration pool. 
The information entered in the declaration 
pool is classified in three groups: 

1. label declaration lists 
2. parameter lists 
3. DECLARE statements 

A label declaration list starts with an 
identifier key. A label constant or an 
entry name may be entered in such a list. 

A label constant consists of 4 bytes: 
byte 0: identifier key 
bytes 1-2: user name (coded in phaseA25) 
byte 3 colon 

An entry name consists of: 
byte 0 identifier key 
bytes 1-2: user name (coded in phase A25) 
bytes 3-4: attribute ~NTRY 

(Optionally): data attributes specified by 
the user as attributes describing the 
returned value. 

c 

r 
~ 

I 

C I I 



PL/I PLM 8 

IBM Confidential 

c 

An entry name is always closed by an EOS 
key (6 bytes) • 

A parameter list starts with a parameter 
key (1 byte). This key is followed by the 
internal representation of the left paren­
thesis (2 bytes) • 

The user-defined parameter names follow 
(3 bytes each, coded in phase A2S), sepa­
rated by the internal representation of the 
comma (3 bytes) and closed by the right 
parenthesis (3 bytes) • 

A DECLARE statement starts with a 
declare key (1 byte) which is followed by 
the declaration. It is scanned for syntac­
tical errors in routine JDECA1. 

Entry parameter: PST = start address of the 
pool. 

JDECA1 -- 12=!~ 

This routine is called in JSCNA1 and scans 
the DECLARE statement for syntactical 
errors. The identifiers are separated in 
programmer-defined names and attributes. 
Attributes are coded internally. Parenthe­
ses are separated in such that mark factor­
ization and such that include precisions or 
lists. Some attributes get a special 
treatment (see flow charts IQ-IW). If a 
syntactical error is detected, a NOP state­
ment followed by an error message is gener­
ated in the source text. 

Entry parameter: 
PST = address of the first byte to be proc­

essed. 

Return parameter: 
PST = address of the first byte after the 

end-of-statement key. 

The syntactical scan is performed by 
means of a two-dimensional matrix of 
addresses. Depending on the preceding 
symbol, the routine branches to correspond­
ing routines at a new symbol (see Figure 
1). The following routines may be called: 

JDE1A1 
JDE1A2 
JDE1A3 

JDE1A4JEODA1A1 
JDE2A1 JSEFA1 
JDE2A3 JDCDA1 

This subroutine recognizes the attributes 
and sets the internal representations of 
the attributes into the declaration pool. 

The external representation of all 
attributes is stored in a table (ATTAB). 
After each attribute there is a byte with 
the internal coding. This byte with a 
common attribute key is moved into the 
declaration pool. 

All data attributes have a 1 in the 
first four bits of the internal coding. 

Entry parameter: 
PST = start address of the attribute. 

Return parameters: 
PST = address of the first character after 
the attribute. 
ATKEY + 1 = internal coding of the actual 
attribute. 

Subroutine JSIPA1 -- IY 

This subroutine searches for the end of a 
parenthesized expression; all internal 
pairs of parentheses are skipped. 

Entry parameter: 
PST = address of the first left parenthe­
sis. 

Return parameters: 
PST = address of the next byte after the 
last right parenthesis. 
HRO = PST old. BYZ = PST new - PST old. 

JTRIA1 -- IZ 

This routine moves information into the 
output buffer and controls the pointer for 
this buffer. If the pointer exceeds the 
scope of the buffer, the contents of the 
buffer are written on the actual input work 
file. The output is made in the non­
overlapped mode. 

Entry parameters: 
HR1 start address of the information to 

be written. 
BYZ 
PIT 

= length of the information. 
next available address in the output 
buffer. 

BUFI 
POUTI= 

end address of the output buffer. 
start address of the output buffer. 

Return parameters: 
PLT = next available address in the output 
buffer 
BYZ O. 
HR1 = HR1 old + BYZ old. 

JCVTA1 -- JA 

This routine converts an unpacked decimal 
integer constant to binary representation. 
The decimal number may have up to 9 digits. 

Entry parameters: 
HR1 = start address of the decimal 

constant. 

Return parameters: 
HR1 value of the converted constant. 
HR2 = number of digits in the decimal con­

stant. 

Phase PL/IB15 71 



PL/I PLM 8 

IBM Confidential 

r--------;Tid~~~i:--T---------Tl~f~-----T;i;h~----T---------T---------l 
I Ifier I number Iparenthe-Iparenthe-Icomma I semicolon I c 
I I I Isis Isis I I I 
18 10 2 j4 16 18 110 I 
~---------+---------+---------+---------+---------+---------+---------~ 
lempty or I I I I I I I 
I comma I name Istructurelfactori- lerror I error I error I 
I I I Ization I I I I 
I I I I open I I I I 
I 018 = 2 J 18 = 6 I I I 
~---------+---------+---------+---------+---------+---------+---------~ 
Iname or I I I Ifactori- I I I 
I right lattri- I error I dimension I zation I delimiter lend of I 
Iparenthe-Ibute r I Iclose I I statement I 
I sis I I I I I I I 
I 21 8 =4 I 18=4 18=2 15=0 I I 
~---------+---------+---------+---------+---------+---------+---------~ 
I I I I Ifactori- I I I 
I attribute I attribute I error Iprecisionlzation Idelimiter/end of I 
I I I I close I I statement I 
I 418=4 I I 18=2 18=0 I I 
~---------+---------+---------+---------+---------+---------+---------~ 
Ileft I I Ifactori- I I I I 
Iparenthe-Iname Istructurelzation I error I error I error I 
Isis I I I open I I I I 
I 61 8 = 2 I 18 = 6 I I I I 
~---------~---------~---------~---------~---------~---------~---------~ 
IT = next symbol in the source program I 
18 = last symbol in the source program I l _____________________________________________________________________ J 

Figure 1. Two-dimensional Matrix of Addresses (8VlI'TAB) 

c 
72 



PL/I PLl'1 8 

IBM Confidential 

PHASE PL/IB20 (SYMBOL TABLE CONSTRUCTION II -- KA 

( 

c' 

This phase constructs the symbol table for 
all explicitly declared variables and label 
constants. The input for this phase is the 
declaration pool constructed in phase B15. 

The symbol table consists of n+1 parts, 
where n is the number of blocks in the 
source program. Each part is attached to 
one block and contains all items declared 
explicitly. The last part contains all 
items declared contextually and implicitly. 
rhis part is constructed in phases B70 and 
B80. 

The parts of the symbol table are sepa­
rated from each other by a scope chain 
which contains the number of the embracing 
block. The start addresses of the parts 
are entered in the scope table. If the 
symbol table is written on a work file, 
each part starts with a new record. The 
first record number of each part is also 
entered in the scope table. 

For each programmer-defined variable or 
label constant an entry of 20 bytes is made 
in the symbol table. The format of this 
entry is shown in Figure 1. The entries 
are used in phase B90 to build the state­
ment attribute table. 

Scope Table 

An entry of 6 bytes is entered in the scope 
table for each block. The format of this 
entry is as follows: 

Byte 0 

Bytes 1-3: 

Bytes 4-5: 

Number of records belonging to 
this block. 
NOTE information of the record 
in which the symbol table for 
this block starts. 
If the symbol table is in core 
storage, relative start address 
of the symbol table for this 
block. 

If a block has no declarations, the 
entry is given the data for the embracing 
block. Since the number of records belong­
ing to one block is restricted to 255 and 
each record contains the declarations for 
12 variables, the total number of declared 
variables for one block is restricted to 
3060. This restriction is valid only for 
the minimum configuration. If the t~ble 
space and the buffer area are increased, 
the number of declared variables increases 
at the same rate. 

r-----------------------------------------, 
I I 
I I 
IBytes 0 - 1: I 
I I 
IUser-defined name (coded in phase A301 I 
~-----------------------------------------i 
IBytes 2 - 3: I 
I' I 
IInternal representation of the name I 
~-----------------------------------------i 
IByte_~ I 
I I 
IBits 0-3: Reserved I 
IBits 4-7: Internal length of the variablel 

~-----------------------------------------i 
I Byte2.:.. I 
I I 
IBit 0: 1 STATIC 0 AUTO~illTIC I 
IBit 1: 1 CONTROLLED I 
IBit 2: 1 POINTER I 
IBit 3: 1 EXTERNAL 0 INTERNAL I 

I~i~ ~~ ~ : ~~!~~i~ER I 
IBit 6: 1 BUILTIN I 
IBit 7: 1 CONSTANT 0 = variable I 
IBit 7: 1 = contextual I 
I ENTRY 0 declared ENTRY' 
t-----------------------------------------i 
Byte_6: , 

Bits 

Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 

0-1:00 
01 
10 
11 

1 = 
1 = 
1 
1 
1 = 

not a structure element 
structure element 
minor structure 
major structure 

PACKED 
Array 
FILE 
LABEL 
ENTRY 

o = ALIGNED 

name 

, , , , , , , , 
, 
I 

Bit 7 1 = zoned decimal (T) , 

~-----------------------------------------i 
, Byte_7: 

IBit 0 
,Bit 1 
IBit 2 
IBit 3 
IBit Ii , 
IBit 5 
I Bit 6 
IBit 7 
I 

1 = 
1 
1 = 
1 = 
1 = 
1 = 
1 = 
1 

PICTURE 
sterling 
arithmetic data 
string data 
bit string; 
o = character string 
FIXED; 0 = FLOAT 
BINARY; 0 = DECIMAL 
zoned decimal 

IIf it is a structure, bits 4-7 contain 
Ithe lefthang. l ________________________________________ _ 

Figure 1. Entries in the Symbol Table for 
Programmer-defined Variables and 
Label Constants (Part 1 of 2) 

Phase PL/IB20 73 



PL/I PLM 8 

IBM Confidential 

r-----------------------------------------, 
Byte 8: 

If string: 

Bits 0-7: length of the string 

if arithmetic: 

scale 
or 
scale 

FLOAT 
FIXED BINARY: 
FIXED DECIMAL: 

bits 0-7: w 
bits 0-3: w 
bits 4-7: d 

~-----------------------------------------i 
IByte 9: I 

IBits 0-1: block level I 
IBits 2-7: block number I 

~-----------------------------------------~ 
IByte 10: I 
I I 
lif structure or element of structure: I 
Ilevel number I 
~-----------------------------------------i 
IByte 11: I 
I I 
lif structure: boundary of the structure I 
lif array : current array number I 
lif FILE : current file number I 
~-----------------------------------------i 
IBytes 12-13: I 
I I 
IIf array : number of array elements I 
lif structure: length of the structure I 

~-----------------------------------------i 
IBytes 14-15: I 
I' I 
lif DEFINED : name of the base variablel 
lif BASED : name of the pointer I 
I I 
lif minor structure or structure element I 
I : origin relative to the I 
I major structure I 

~-----------------------------------------i 
IBytes 16-17: I 
I I 
lif numeric field: offset of the I 
I picture string I 

~-----------------------------------------i 
IByte 18: I 
I I 
lif numeric field: length of the data I 

.-----------------------------------------i 
IByte 19: I 
I I 
INumber of actual block ~nly for checking I 
Jentry names in phases B30 and B40. It I 
I will not appear in the attribute table). J l _________________________________________ J 

Figure 1. Entries in the Symbol Table for 
Programmer-defined Variables and 
Label Constants (Part 2 of 2) 

Mask Table MSKTAB 

For each PL/I attribute, the mask table 
contains a mask of 8 bytes. Each mask is 

74 

divided into two parts. The first part 
declares which bits in the symbol table are 
to be set on or off if a variable is 
declared with some attribute. The second 
part is used to check conflicting attri­
butes. It contains a 1 in each position 
where a specific attribute may not appear. 

The mask-table is used as follows: The 
corresponding mask of an attribute is put 
togetner with all other masks of the attri­
butes previously declared for the same 
variable. The first part of a mask is put 
togetner by an OR instruction in register 
R1, tne second part in register R2. If the 
declaration of a variable is complete, 
i.e., if all given attributes are composed, 
the mask parts in R1 and R2 are landed l • 
The result is 0 if no conflicting attri­
butes have occurred. 

The format of the mask table is shown in 
Figure 2. The masks are shown in hexadeci­
mal notation. 

Treatment of Errors in Variable 
Declarations 

If an error occurs in a declaration, it is 
treated in the following manner: 

1. Tne name is given the value 00 as 
internal representation. 

2. If the name in the source text is 
replaced by the internal representation 
(see phase B80), all statements in 

wnich the name occurs are flagged. 

3. Tne name gets an error message in the 
symbol table listing (see phase COO) • 
Tnis message is entered in byte 11 of 
tne symbol table. 

DESCRIPTION OF ROUTINES 

JSC0A1 -- KC 

This routine processes the block heading. 
It is called if a new part of the symbol 
table is opened. In the declaration pool, 
constructed in phase B15, all declarations 
belonging to one block are collected in a 
group. Each group starts with a new record 
and may contain more than one record. At 
the beginning of each group, there are four 
bytes containing the following information: 

byte 0: block number 
byte 1: block level 
byte 2: block number of the embracing block 
byte 3: mark if the record is the last of 

the group. 

----,---,- - -

c 

c 



( 

PL/I PL[V! 8 

IBM Confidential 

r---T--T----------T-----------------------, 
I I I I Mask I 
I I I ~-----------T-- .... -------~_I 
I I IAttribute IFirst Part ISecond Partl 
~---+--+----------+--T--~-T--+--T--T--T--_I o 00 parameter 00 04100 00 0119AI001001 

8 01 FILE 00 00108 00 011EAIF6 FFI 
16 02 INITIAL 01 00100 00 0016EICE 001 
24 03 DEFINED 00 08100 00 011D610E 001 
32 04 dimension 00 00110 00 00l0218A 001 
40 05 CONTROLLED 00 40100 00 01 AAI08 001 
48 06 POINTER 00 20100 00 00 4212C FFI 
56 07 colon 00 01100 00 00 00133 001 
64 08 LABEL 00 00104 00 01 2AlAA FFI 
72 09 PICTURE 00 00100 80 00 2218C 081 
80 OA ALIGNED 00 00100 00 00 2212E E71 
88 DB ENTRY 00 00102 00 01 4AIFC 001 
96 DC BUILTIN 00 02100 00 01 FC FD FFI 

104 00 INTERNAL 00 00100 00 00 16 08 001 
112 DE EXTERNAL 00 10100 00 00 06 00 001 
120 OF PACKED 00 00120 00100 22 DE E71 
128 FO BINARY 00 00100 22100 22 DC 581 
136 Flj DECIMAL 00 00 I 00 20 100 22 OC 11AI 
144 F2 FIXED 00100100 24100 22 OC 181 
152 F31FLOAT 00100100 20100 22 OCI5CI 
160 F41BIT 00100100 18100 22 OCIE71 
168 F51CHARACTER 00100100 10JOO 22 OCI6FI 
176 161STATIC 00180100 00 00 4E 081001 
184171AUTOMATIC 00100000001 DE 081·001 
192 181precision 02100 00 00 00 00 001001 
200 191ERROR 10100 00 00 FF FF FFIFFI 
208 lAlnull 00 00 00 00 00 00 001001 
216 lBIZONED 00 00 00 01 00 22 8C 181 
224 lCIZONED(T) 00 00 01 00 00 22 8CIl81 
232 lDISTERLING 00 00 00 CO 00 22 8CI181 
240 lElmajor I I 

Istructure 00 00 Co 00 01 02 1EIFFI 
248 lFlminor I I 

Istructure 00 00 80 00 01 F2 7EIFFI 
1256 20lelement of I I 
I Istructure 00 00 40 00 00 02 A81001 
I larithmetic 00 00 00 20 I I 
I lerase data I I 
I I attribute FD OF FO 00 I I 
I I precision 02 00 00 00 I I I L ___ ~ __ ~ __________ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ J 

Figure 2. Format of Mask Table 

These four bytes are stored in an inter­
mediate storage SSCOPE. 

The actual pOSition of the pointer PST 
pointing to the symbol table is entered 
into the scope table. 

Abbreviations: 

PARAM = parameter-list key (1 byte) 
PARZ = counter for parameters (2 bytes) 
LAREC = key for last record (1 byte) 
EOREC = end-of-record key (3 bytes) 

JLABA1 -- KE 

This routine processes the statement-label 
constants and the entry names. 

A statement label has the form: 

Identifier (3 bytes) 
Colon ( 1 byte) 

An entry name has the form: 

Identifier (3 bytes) 
Attribute ENTRY (2 bytes) 

Optional data attributes: 

EOS key (6 bytes) 

JDCLAl -- KF 

Secondary entry points: JDCLD2, JDCLK2 

This routine processes the DECLARE state­
ment. Since attributes may be nested, a 
DECLARE statement is first scanned to the 
EOS key. At this time an intermediate 
table AHSTAB is constructed. The data is 
entered starting at the end of the table in 
range of its appearance. 

The following information may appear: 

1. User-defined names: 
Starting with the identifier key, 
length 3 bytes. Processing: (see Sub­
routine JNAMA1) • 

2. Structure level: 
Starting with a number, length up to 3 
bytes. Processing: The integer is 
converted from decimal to binary and 
saved in a current level storage. 

3. Attributes: 
Starting with an attribute key, length 
2 bytes. Processing: The two bytes are 
entered into AHSTAB. 

4. Precision: 
Starting with a left parenthesis. 
Processing: The precision is converted 
and entered into AHSTAB (see JPREA1) • 

5. Left parenthesis: 
Special key, length 1 byte. Process­
ing: A parenthesis counter is 
increased. The current level is stored 
in the internal buffer LEVPDS. The key 
is entered into AHSTAB. 

6. Right parenthesis: 
Special key, length 1 byte. Process­
ing: The parenthesis counter is 
decreased. The key is entered into 
AHSTAB. 

7. Comma: 
Special key, length 1 byte. Process­
ing: The actual level is reloaded from 
the internal buffer. 

Phase PL/IB20 75 



PL/I PLM 8 

IBM Confidential 

8. End of statement: 
Starting with an EOS key, length 6 
bytes. Processing: See JATAA1. 

JSATA1 -- KH 

This routine scans the attributes. Normal­
ly, only the attributes are entered into 
AHSTAB; however, some attributes are given 
a special treatment: 

1. ARRAY: code X'04' 
Four bytes following the attribute are 
entered in AHSTAB. 

2. FILE: code X'01' 
One byte following the attribute is 
entered in AHSTAB. 

3. PICTURE: code X'09' 
Nine bytes following the attribute are 
entered in AHSTAB. 

4. CONTROLLED: code X'05' 
Five bytes following the attribute are 
entered in AHSTAB. 

5. DEFINED: code X'03' 
Three bytes following the attribute are 
entered in AHSTAB. 

JPREA1 -- KI 

This routine converts the prec1s1on given 
in the source text to a 2-byte form and 
stores it in the intermediate table AHSTAB. 

A precision has one of the following 
forms: 

(w) or (s) or (s,d) 

where w, s, and d are unsigned decimal 
integer constants having the following 
range of values: 

1 S w S 255, 0 S s, d S 15. 

The result of the conversion has the 
following form: 

Byte 0: precision key 
Byte 1: binary value of the precision. 

The last bit of the key (byte 0) 
declares the form of the precision. 
form is (w) or (S), the bit = O. If 
form is (s,d), the bit = 1. 

Entry parameter: 

If the 
the 

PIN = address of the left parenthesis of 
the precision. 

Return parameter: 
PIN = address of the byte after the right 

parenthesis. 

76 

JATAA1 -- KJ - KN 

This routine processes the intermediate 
table AHSTAB and generates the symbol table 
SYMTAB. The items which may be entered in 
AHSTAB and their processing are described 
below. 

1. Attributes 
Representation: 2 bytes 

byte 0 
byte 1 

= attribute key 
= specification 

Byte 1 addresses an entry in a mask 
table MSKTAB (see Figure 2 in phase 
B20). Parts 1 and 2 of the mask are 
taken from MSKTAB and added with an OR 
instruction to the already existing 
information in registers 1 and 2. 

Some attributes get additional treat­
ment. 

a. Dimension 
Representation: additional 4 bytes 

byte 2 = reserved 
byte 3 = current array number 
bytes 4-5 = number of array 

elements 

Bytes 3-5 are stored in a special 
location. 

b. FILE 
Representation: additional 1 byte 

byte 2 = current file number 

Byte 2 is stored in a special loca­
tion. 

c. PICTURE 
Representation: additional 9 bytes 

byte 2 = left parenthesis 
byte 3 = binary length of data 
byte 4 = right parenthesis 
byte 5 = string constant key 
bytes 6-7 = offset of the string 

constant 
byte 8 = string constant key 
bytes 9-10= length of the string 

constant 

Bytes 3, 6 7, and 10 are stored in 
a special location. 

d. CONTROLLED 
Representation: additional 5 bytes 

byte 2 = left parenthesis 
byte 3 = identifier key 
bytes 4-5 = name of the pointer 

coded in phase A30 
byte 6 = right parenthesis 

c 

c 



PL/I PLM 8 

IBM Confidential 

( 

( '" 
. , 

Bytes 4 and 5 are stored in a spe­
cial location. 

e. DEFINED 

byte 

Representation: additional 3 bytes 

byte 2 
bytes 3-4 

= identifier key 
name of the base 
variable 

Bytes 3 and 4 are stored in special 
location. 

2. Precision 
Representation: additional 2 bytes 

= byprecision key 
byprecision in binary 

form 

There are two different 
the precision is of the 
bit 7 of the key is O. 
is (s, d), bit 7 is 1. 

3. Name 

keys. If 
form (w), 
If the form 

Representation:- additional 4 bytes 

0 identifier key 
bytes 1-2 = user-defined name 

coded in phase A30 
byte 3 = current structure 

level 1. 

First, if necessary, the default attri­
butes are added in routine JDFAA1. A 
test on conflicting attributes follows. 
If there are no conflicts, the entry in 
the symbol table is constructed. 
Finally, registers 1 and 2 are reloaded 
from the internal buffer. 

4. Right parenthesis: 
Representation: 1 byte 

A parenthesis counter is increased and 
the contents of registers 1 and 2 are 
moved into the internal buffer. 

5. Left parenthesis: 
Representation: 1 byte 

The parenthesis counter is decreased 
and the contents of registers 1 and 2 
are restored from the internal buffer. 

At points 4 and 5, the functions of the 
right and left parenthesis are reversed, 
because construction of AHSTAB in routine 
JDCLA1 begins at the bottom of the table 
and the processing sequence is inverted. 

Entry parameter: 
PAHS = address of the first byte in AHSTAB 
to be processed. 

JTRLA1 -- KO 

This routine processes the block trailing. 
It is called if a part of the symbol table 
is closed. 

If the end of a group in the declaration 
pool is reached, 4 bytes are moved into the 
symbol table. The first 2 bytes get a mark 
specifying the end of the part. The second 
2 bytes contain the number of the embracing 
block. 

If the source text contains file dec­
larations, or if a table overflow occurs, 
the part of the symbol table is written on 
a work file. 

Abbreviations used in this routine: 

PST 
IJKMTS 
SWTOV 
IJKMBC 
SSCOPE 
BSCOPE 
TTEXT 

SCOTAB 
IJKMTT 

Pointer symbol table 
Start address of table area 

= Switch table overflow 
= Block counter 

storage for scope information 
= S cope chain 

Relative TAB TAB entry for external 
table 

= Start address of scope table 
Start address of master table 
TABTAB. 

Subroutine JNAMA1 -- KP 

This subroutine moves the user-defined name 
and the current level number into AHSTAB. 
If no structure level is given, zero is 
inserted. 

Entry parameter: 
PIN = start address of the name. 

Return parameter: 
PIN new = PIN old + 3. 

Note: The total number of names declared 
in one DECLARE statement is restricted to 
65. rhis restriction is valid for the 
minimum machine configuration. If the 
table space is increased by 20 bytes, the 
number is increased by 1 name. 

Subroutine JAHSA1 -- KQ 

This subroutine transfers information to an 
intermediate table AHSTAB and controls the 
pointer PAT for this table. 

The table is built in the buffer area 
and uses three buffers. Construction of 
the table starts at the end. 

Since a DECLARE statement cannot be 
longer than three buffers and the AHSTAB 
cannot contain more than one statement, an 
overflow cannot occur. 

Phase PL/IB20 77 



PL/I PLM 8 

IBM Confidential 

Entry parameters: 
PIN = start address of the information to 

be transferred. 
BYZ = number of bytes 

Return parameter: 
PIN new = PIN old + BYZ. 

Subroutine JPCOA1 -- KR 

This subroutine controls the input pointer 
PIN and inserts a new record in the dec­
laration pool, if necessary. 

Generally, it is possible to process the 
information sequentially. But because 
identifiers or correlated expressions must 
not be divided by the buffer end, two input 
buffers are used. When pointer PIN reaches 
the second buffer, the contents of the 
second input buffer are moved into the 
first and a new record is read. 

JPUTA1 -- KS 

The routine writes the symbol table. It is 
called if a table overflow occurs or if the 
current source text contains a file dec­
laration. The symbol table is divided into 
parts. Each part contains all declarations 
given for one block of the source program. 

The scope table SCOTAB contains an entry 
for each part. 

78 

SCOTAB+4 = relative start address of a part 
SCOTAB+2 = relative end address of a part 

If the symbol table is written, each 
part starts with a new record. The follow­
ing information is moved into the scope 
table: 

SCOTAB+O = number of records belonging to 
this part (1 byte). 

SCOTAB+l = record identification for the 
record (3 bytes) 

SCOTAB+4 = 00 (2 bytes) 

JCWTAl -- KT 

This routine converts an unpacked decimal 
integer constant to binary representation. 
The decimal number may have up to 9 digits. 

Entry parameter: 
PIN = start address of the decimal con­

stant. 

Return parameters: 
HRl = value of the converted constant. 
HR2 = number of digits of the decimal con­

stant. 
PIN = address of the first byte after the 

decimal constant. 

c 

c 



PL/I PLM 8 

IBM Confidential 

c 

This phase has the following fUnctions: 

1. to perform the syntactical scan of the 
file declarations; 

2. to test the file declarations for con­
flicting or missing attributes and 
options; 

3. to build Up the file table FILTAB and 
to replace the file declaration state­
ments by NOP statements. 

Notes: Phase B25 is skipped if there are 
no file declarations in the source program. 
The information required to point to the 
third record of NAMTAB has been stored in 
IJKMIP+4 in phase A30. The internal name 
of the first file has been stored in IJKMIP 
in phase B20. 

Phase Input and Output 

The input is a string of 3-byte elements 
and/or elements of variable length. 

The file declaration statements have the 
following format: 

r-----T-----T-----T-----------------T-----' 
I FSK I VN I CFN I file description I EOS I L _____ ~ _____ ~ _____ ~ _________________ ~ _____ J 

where FSK file statement key = X'E00043' 
(3 bytes) 

VN = variable name (3 bytes) 
CFN current file number (3 bytes) 
EOS = end-of-statement key (6 bytes) 

The output differs from the input only 
in that the file declaration statements 
have been replaced by NOP statements. 

The File Table 

This table (FILTAB;ZTAB03) is written on 
SYS001 (recordsize = length of one entry = 
20 bytes). Each entry has the format shown 
in Figure 1. 

PHASE P~IB25 (FILE DECLARATIONS) L$ 

r-----T-----------------------------------, 
I BYTEIMEANING I 
~-----+-----------------------------------~ 
I 0-1 I internal name I 
~-----+-------T---------------------------~ 
I 2 I bit 011 RECORD, 0 = STREAM I 
I I bit 111 INPUT 1 
I I bit 211 = OUTPUT I 
1 1 bit 311 = UPDATE I 
I 1 bit 411 PRINT I 
I I bi t 5 11 STREAM I 
1 I bit 6 11 KEYED I 
I 1 bi t 7 11 BACKWARDS I 

t---3-t-bi~--ot1-:-~~;;~~~-O-:-~;Q;;~~~~-1 
1 I bit 11' CONSECUTIVE I 
I I bit 211 REGIONAL (1) 1 
I bit 311 = REGIONAL (3) 1 
I I bit4- 61 not used 1 
1 I bit 711 = UNBUFFERED, I 
I 1 I 0 BUFFERED I 
~-----+-------+---------------------------~ 
I 4 I bit 011 KEYLENGTH I 
I I bit 111 = F I 
I 1 bit 211 = V 1 
I 1 bit 3 11 = U I 
I I bit 411 BUFFERS (2) 1 
1 I 10 BUFFERS (1) I 
I I bit 5 11 LEAVE I 
I I bit 611 = NOLABEL I 
I 1 bit 711 = VERIFY I 
~-----+-------~---------------------------~ 
1 5 Ikeylength 1 
~-----+-----------------------------------~ 
I 6 1000 - 244 SYSOOO - SYS244 1 
1 I 251 = SYSIPT 1 
I I 252 = SYSLST 1 
I I 253 = SYSPCH I 
~-----+-----------------------------------~ 
I 7 1 X' 10' 2540 (card reader or punch) 1 
I IX'11' = 1442 (card reader or punch) I 
I I X, 12' 2520 (card reader or punch) I 
I IX'13' 2501 (card reader) I 
I IX'20' = 1403 (printer) I 
1 Ix'21' 1404 (printer) I 
I IX'22' = 1443 (printer) 
I IX'23' 1445 (printer) 1 
I IX'40' 2400 (tape) I 
I IX'80' 2311 (disk) 1 
~-----+-----------------------------------~ 
I 8- 91blocksize J 
110-11lrecordsize I 
112-191not used I L _____ ~ ___________________________________ J 

Figure 1. Format of File Table Entries 

Phase PL/IB25 79 



PL/I PLM 8 

IBM Confidential 

To scan the file declarations for con­
flicting attributes and options, every 
attribute is assigned to a bit position of 
a bit string of 32 bits. The mapping is 
identical to bytes 2-4 of the file table. 
The last byte contains the following: 

bit 0 1 F with recordsize 
bit 1 1 = card reader or punch 
bit 2 1 printer 
bit 3 1 = tape 
bit 4 1 = disk 
bit 5 not used 
bit 6 1 ENVIRONMENT 
bit 7 1 MEDIUM 

In addition, every attribute and option 
is assigned to a bit string consisting of 
two substrings of 32 bits. In the first 
substring, all bits except that of the 
characteristic bit position, which may be 0 
or 1, are zero. In the second bit string, 
a bit is set to 1 only if it is the charac­
teristic bit position of a conflicting 
attribute or option. ~ll the bit strings 
of attributes and options appearing in the 
file declaration are OR-ed. 

If the logical product (ANDI of the 
resulting two substrings is ~ 0, the file 
declaration contains conflicting attributes 
and/or options. Conflicts in attributes 
and/or options are illustrated in Figure 2 
(X means conflictl • 

Errors ----
Errors found in this phase may cause one of 
the error messages 188-216. For the indi­
vidual messages, refer to the SRL publica­
tion IBM System/360, Disk and Tape Operat­
ing Systems, PL/I Programmer's Guide, Form 
C24-9005. 

The name of a file is set to 0 in the 
file table if the corresponding file dec­
laration contains an error of the severity 
T. Statements in which incorrect file 
names occur are not flagged. 

Initialization -- LA 

This is the beginning of the main routine. 
It initializes pointers, switches, etc., 
and reads input text into 4 buffers. 

FSCN LB 

This is part of the main routine. It per­
forms the general scan over the source 
text. 

Note: A file declaration statement is not 
preceded by any label. 

80 

----------

FFIL LC 

This is part of the main routine. It scans 
the file-declaration statement for accepta­
ble attributes by means of an attribute 
table that has the following format: 

r------T-----------T-----------T----------, 
I K I 0000 1 BIB I L ______ ~__________ _ __________ ~ __________ J 

where K = last two bytes of the 3-byte key 
the keyword is represented by; 

B = bit string (see the section The 
File Tablel • 

The table is terminated by X'FF'. When 
the routine is entered, the general reg­
isters R4 and R5 are cleared. They are 
then OR-ed with every bit string of a file 
attribute found in the statement. Any 
element that is not a file attribute is 
ignored. FERR is called to note error 
messa~e 189. If the ENVIRONMENT attribute 
is found, control is passed to FENV. 
Reaching the EOS key causes control to be 
transferred to ~FIT. 

FENV LD 

This is part of the main routine. It scans 
the options of the ENVIRONMENT attribute by 
means of an options table that has the 
following format: 

r----T---------y---------T---------, 
I K I A I BIB I 
L __ ~-~---------L---------L---------J 

where K : last two bytes of the 3-byte key 
the keyword is represented by: 

A address relative to FENV of the 
routine proceSSing the option, 
i.e., 

FBUF for BUFFERS 
FMED for MEDIUM 
FFIX for F 
FUVN for U/V 
FREG for REGIONAL 
FKEL for KEYLENGTH 

B = bitstring (see the section The 
File Table) • 

The table is terminated by X'FF'. 

The bit strings of the option found are 
OR-ed into general registers R4 and R5. 
Then control is transferred to one of the 
abovementioned routines. Any element that 
is not an option found before reaching the 
right parenthesis of the ENVIRONMENT attri­
bute is ignored. FERR is called to note 
error message 189, and control is trans­
ferred to FNOP to bypass a possibly follow­
ing specification~ e.g., (14). 

c 



PL/I PLM 8 

IBM Confidential 

~ 
U 

I-- e 
Z ~ 

..... ..... :> 
C 0. Q. 

..J e '" ~ + « i= ..... ..... :x: w e ..J ..J .. I--i= 0 
... ... ..J Z :::l « « c ~ ..J GI (j w 

~ 
« u "'0 

::i:: e I-- w Z w u. Z 0 Z Z ~ '" w ::i:: 0 z ... I-- :::l I-- I-- e w ... u. w 
0 0 2 ... ... ?;: :::l !! .. « I-- u w :::l ... ... '" w w w :5 w 0 :::l a.. « :::l :..: .!! w I-- e Z w w u. ... w :> z a a . u. ...... ~ i'i2 C "E 8. 

..J ... U a.. :::l ... >- 0 u. Z U I-- 0 e e u. u. 0 e ..Y. >-I-- w Z a.. i'i2 w w :::l « >< z :::l :::l w ~ 0 ;t .. w 0 C w w w ~ 0 '" ... - :::l a.. :..: '" ... :::l ... w w U ... ... u. u. > :::l ... ... ..J Z > U :..: 

STREAM X X X X X X X X X X X X X 

RECORD X X 

INPUT X X X X 
OUTPUT X X X 

UPDATE X X X X X X X X 
PRINT X X X X X X X X -. 
DIRECT X X X X X X X X X X X X 

KEYED X X X X X 

SEQUENTIAL X X X X 

BUFFERED X X X 

UNBUFFERED X X X X X X X X X X X 

BACKWARDS X X X X X X X X 

EXTERNAL 

ENVIRONMENT 

CONSECUTIVE X X X X 

REGIONAL (1) X X X X X X X X X 

REGIONAL (3) X X X X X X X X 

F (8) X X X 

F (8, R) X X X X X X X X 

V X X X X X X X X X X 

U x x x X X X X X 

BUFFERS (1) X X 

BUFFERS (2) X x X 

LEAVE X X X 

NOLABEL X X X 

VERIFY X X X 

MEDIUM 

Card reader+punch X X X X X X X X X X X X X X X X X X 

Printer X X X X X X X X X X X X X X X X X X 

Tape X X X X X X X X X X 

Disk X X X X X X 

KEY LEN GTH 

c 
Figure 2. Conflicting File Attributes and Options 

Phase PL/IB25 81 



PL/I PLM 8 

IBM Confidential 

FSPE -- LE 

Secondary entry points: FSPE02, FSPE03 

This sUbroutine performs the syntactical 
scan of the options that must be followed 
by an integer enclosed in parentheses, 
e.g., KEYLENGTH(10). The integer is con­
verted to binary and returned in general 
register R3. 

If the option is not followed by a left 
parenthesis and a decimal digit, the rou­
tine returns false to (LINK), otherwise 
true to 4 (LINK) • 

FINT -- LF 

Input parameter: 
PIN: points to the first digit of the deci­
mal integer to be converted to binary. 

Output parameters: 
R3: converted integer. 
PIN: points to the first byte following the 
integer. 

This subroutine converts a decimal inte­
ger to binary. If the integer consists of 
more than 9 decimal digits, R3 is set to 
32,768 = maximum blocklength + 1. 

FBUF LG 

This is part of the main routine. It scans 
the BUFFERS option and OR-es the bit 
strings of BUFFERS (1) or BUFFERS (2) into R4 
and R5. 

FMED LK 

This is part of the main routine. It scans 
the MEDIUM option and inserts the number of 
the logical device and the key for the 
physical device type into the file table. 

FSYS -- LL 

Input parameters: 
PIN : points to the 3-byte key the logical 
device name has been replaced by. 
RSTNAM: number of a name table record that 
has already been read into storage 
(initialized with 0) • 

Output parameters: 
PIN : = PIN+3. 
R1: points to the name-table entry of the 
logical device name. 

This subroutine retrieves the logical 
device name from the name table. 

82 

FPDT -- LM 

This subroutine tests the number specified 
for the physical device type and inserts 
the respective device code into the file 
table. It OR-es the corresponding bit 
strings into R4 and R5. 

FBLO -- LN 

Secondary entry point: FBL002 
This subroutine checks whether the block­
size specification is greater than 32,767 
and inserts it into the file table if it is 
less or equal. 

FFIX LO 

This is part of the main routine. It scans 
theF option and OR-es the corresponding 
bit strings into R4 and R5 if blocksize ~ 
recordsize are specified. 

FUVN - =-..,g, 

This is part of the main routine. It calls 
FBLO to test the blocksize specification of 
the U or V option. 

FREG -- LQ 

This is part of the main routine. It scans 
the REGIONAL option and OR-es the corres­
ponding bit strings into R4 and R5 if 
REGIONAL (1) or REGIONAL (3) is specified. 

FKEL -- LR 

This is part of the main routine. It 
checks whether the KEYLENGTH specification 
is greater than 255 and inserts it into the 
file table if it is less or equal. It 
inserts 255 if it is high and notes error 
message 194. 

FNOP -~ 

Input parameter: 
OLP : number of open left parentheses. 

This is part of the main routine. It 
searches for right parenthesis (if OLP # 0) 
to transfer control to FENV10. 

If the end-of-statement key is found before 
a right parenthesis is detected f control is 
transferred to FFIT. 

FFIT -- LT, LU, LV, LW, LX 

This is part of the main routine. It adds 
default attributes or options, if neces­
sary, and builds up bytes 2-4 of the file 
table. It tests for: 

1. conflicting attributes or options by 
forming the logical product of R4 and 
R5 ; 

- ------------~------ ---- --- -- -----

, , C' 

c 



PL/I PLM 8 

IBM Confidential 

(~ 

c 

2. missing attributes or options; 

3. conflicts that cannot be detected by 
the general method; 

4. unpermitted combinations of function 
attributes or physical devices with 
logical system units; 

5. blocksize specifications that are out­
side of device depending limits or 
incompatible to the rules concerning 
division by recordsize or 8, respective 
lye 

At the end of the routine, FEOS is 
called. 

FERR - LY 

Input parameter: 
RO : error number 

This subroutine inserts the error number 
into the error table. After seven numbers 
have been inserted, error 215 with the 
severity code T is noted as 8th error. The 
end of statement is searched for, and con­
trol is transferred to FEOS. 

FEOS LZ 

This is part of the main routine. It 
inserts the file name into the file table 
and writes the table on S~S001. If errors 
of the severity code T have been detected, 

the file name is set to O. A NOP key is 
moved into the output buffer for the file 
declaration. Control is then transferred 
to FSCN35 to continue the general scan. 

JEOS --:- L1 

This subroutine positions the contents of 
input buffers 1-4 so that the currently 
scanned EOS is in input buffer 1 (this is 
done by moving and by reading in new 
records). It puts out the EOS and the 
error codes attached to it. If additional 
error codes have been generated, they are 
also put out. 

JTRN -- L2 

Input parameters: 
PIN : pOinter of source text. 
POUT: pointer of output buffer. 
BYZ : number of bytes to be moved. 

Output parameters: 
PIN: = PIN + BYZ. 
POUT: address of next free byte within the 

output buffer. 

If not all the bytes to be moved fit into 
the output buffer or if they do exactly 
fit, the buffer is filled with the first 
part of the text to be moved. The buffer 
contents are written on a work file and the 
remaining bytes, if any, are moved to the 
begin of the buffer. 

Phase PL/IB25 83 



PL/I PLM 8 

IBM Confideritial 

PHASE PL/IB30 (SYMBOL TABLE CONSTRUCTION II) -- MA 

This phase checks the symbol table con­
structed by phase B20. Each variable in 
the symbol table is tested for multideclar­
ation. 

Secondary entries in function procedures 
are tested to determine if they have the 
same attributes for return values as the 
main entry. 

If the attribute CONTROLLED or DEFINED 
is given, the internal representation of 
the pointer variable or base variable, 
respectively, is set into the symbol table. 

DESCRIPTION OF ROUTINES 

Note: The routines JTRNA1 and MOVEA1 are 
described in phase A50. The corresponding 
flow charts are F3 and FO. 

Initialization -- MB 

Phase B20 constructs the scope table SCOTAB 
(see phase B20) • 

If the source program has no file dec­
larations, i.e., if phase B25 is skipped, 
phase B20 leaves the scope table in the 
buffer area IJKMBS. Otherwise, the scope 
table is written onto a work file. 

JRSTA1 -- MC 

Secondary entry point: JRSTD2 
Phase B20 has constructed the first version 
of the symbol table. If no symbol table 
overflow occurred, the symbol table is 
still in storage and the routine only ini­
tializes the pointer PST with the start 
address of that part of the symbol table 
that belongs to the block to be processed. 
Otherwise, this routine reads in part of 
the symbol table and loads the start 
address into PST. 

Entry parameters: 
BLZ = number of block to be processed 
SCOTAB = scope table (see phase B20) 

Return parameter: 
PST = symbol table start address 

JCSTA1 -- M~ 

This routine checks the symbol table. If a 
variable has the attribute CONTROLLED or 
DEFINED, the internal representation of the 
pointer variable or base variable, respec­
tively, is moved into the symbol table. 

84 

-~ ----- - ~---.---- ---~----~ ---

For testing multi-declaration, each 
entry of the symbol table is compared with 
all other entries belonging to one block of 
the source text. Multi-declaration is 
given if two entries have the same name. 
In this way the internal representation of 
the pointer or base variable is set into 
the entry of the CONTROLLED variable and/or 
DEFINED variable, if both entries are in 
the table area at the same time. 

This is done in the following manner: 
Assume the variable compared with all oth­
ers is named A. The other is namedB. If 
B has the attribute CONTROLLED, it is det­
ermined if A is the corresponding pointer. 
This is possible if the pointer is declared 
in the same block earlier than the con­
trolled variable and the part of the symbol 
table belonging to this block is not longer 
than the table area. In this case, the 
internal representation is moved in and the 
movement is marked by a special bit. In 
the other case, if A has the attribute 
CONTROLLED and the entry is not marked, the 
pointer is searched by reading the symbol 
table for the current and the embracing 
blocks successively in a special area (in 
routine JSPOA1) • 

Entry parameters: 
PST = address of the actual entry in the 
symbol table. 
HR4 = number of records in the table area 
which have not yet been read. 

JNSTA1 -- MF 

This routine reads the next record of the 
symbol table if the whole table belonging 
to one block of the source text is not in 
the table area. 

Entry parameters: 
HR1 = address of the actual variable B (see 
Routine JCSTA1, PhaSeB30). 
GRADR = limiting address of the area con­

taining the symbol table. 
NOTES = note information for the first 

record not yet read. 
HR4 = number of records not yet read. 

Return parameter: 
HR1 = address of the next variable B. 

Subroutine JSPOA1 -- MG 

This subroutine searches for the pointer 
variable or base variable if they are not 
declared in the same block and earlier than 
the CONTROLLED or DEFINED variable, or if a 

c 

c 

c 



PL/I PLM 8 

IBM Confidential 

table overflow occurs due to the number of 
declarations. 

Entry parameter: 
PST = address of variable A (see Eouti~~ 

~CST) • 

JMDCA1 -- MH 
-----~---

This routine checks for multi-declaration. 
rhis is given if two or more identical 
names appear in one block. An exception 
from this rule is qualified names. It is 
possible for a name to refer to more than 
one variable or data aggregate if the iden­
tically named items are parts of different 
structures. In order to avoid any ambigui­
ty in referring to these identically named 
items, it is necessary to create a unique 
name. This is done by forming a qualified 
name. This means that the name common to 
more than one item is preceded by the name 
of the structure in which it is contained. 
rhis, in turn, can be preceded by the name 
of the structure in which it is declared, 
and so on. Multiple declaration for quali­
fied names is given if they have identical 
qualifications. The qualification for the 
first name compared is made in routine 
JQULA1 and stored in area QUALF1. For the 
second name, the qualification is stored in 
QUALF2. 

Entry parameters: 
PST address of the first name compared. 
HR; = address of the second name. 

JCHEA1 -- MI --------

Secondary entry point: JCHEDl 

rhis routine checks the ENTRY attribute. 

The first entry name in the outermost pro­
cedure has the block level O. All secon­
dary entry names have level 1. 

This routine assigns qualifications to 
structure items (see Routine JMDCA1) • 

A test is performed to determine if all 
bit string data contained in the data 
aggregates, i.e., arrays or structures, 
have the attribute ALIGNED. 

Entry parameter: 
PST = address of the name to be qualified. 

Return parameter: 
QUALF1 = qualification. 

JCCBAl -- MK --------
Secondary entry point: JCCBB2 

This routine checks the base identifier and 
changes the name of the base identifier or 
pointer into the internal representation. 
The program has two entries: 

Entry parameters: 

Main entry: 
HR1 address of the defined identifier 
PST = address of the base identifier 

Secondary entry: 
PST address of the defined identifier 
HR1 = address of the base identifier 

Return parameters: 
HR1 = unchanged. PST unchanged. 

Phase PL/IB30 85 



PL/I PLM 8 

IBM Confidential 

PHASE PL/IB~STRUCTURE ~APPING) -- MZ 

This phase calculates the storage require­
ments of structures. This calculation is 
referred to as structure mapping. 

A structure is a data aggregate contain­
ing items of different types that are 
grouped in a given order and in such a way 
that the overall storage requirement is a 
minimum. The individual structure items 
have different and independent requirements 
of length and positioning with respect to 
hardware boundaries. 

Each element of a structure has three 
mapping parameters: the alignment A, the 
length L, and the lefthang H. The values 
of the parameters depend on the declara.tion 
of the structure as shown in Figure 1. The 
alignment is identical to the hardware 
boundary requirement of the respective 
structure element. In DOS/TOS PL/I, there 
are three possible alignments levels: 1 = 
byte boundary, 4 = word boundary, and 8 = 
double-word boundary. The length is the 
length in bytes of the element. Data items 
are stored right-adjusted to their bounda­
ry. This implies the use of a third pro­
perty: the lefthang. The lefthang is the 
number of bytes of an element (or a combi­
nation of elements) that are to the left of 
the alignment point of that element. 

r---------------------T-T---------------T-' 
1 Data type I~I ~ I!!I 
.---------------------t-t---------------t-~ 
INumeric field 1 n 10 
IFloat decimal short 4 4 10 
IFloat decimal long 8 8 10 
[Float binary short 4 4 10 
IFloat binary long 8 8 10 
IFixed binary 4 4 10 
IFixed decimal numeric 1 
1 Field 1 n 10 
1 Fixed decimal (p, q) 1 Floor ((p+2) /2) 1 0 
1 Bit string 1 :eil (n/8) 10 
ICharacter string 1 n 10 
1 Pointer 4 3 13 
ILabel variable 4 8 10 L _____________________ ~_~ _______________ ~_J 

Figure 1. A, L, and H for Structure Items 

86 

Assume the following structure: 

1 S , 
2 S 1 CHARACTER (5), 
2 S2 FLOAr (16), 
2 S3 CHARACTER (2) ~ 

Figure 2 then shows the relationship 
between A, L, and H after the structure has 
been mapped. 

1 1 
1 <------------L------------> 1 
1 1 1 
1 <----H----> 1 
1 1 
1 1 
t-----------t------------T--T---
1 S1 1 S2 IS31 
L-----------t------------t--~--- 1 

1 <----A-----> 1 <---A----> 1 
1 1 1 

alignment alignment alignment 
point point pOint 

Figure 2. Relationship between A, L, and H 
after Mapping of a Structure 

Figure 2 shows that L is independent of 
A and H. The value of A has two meanings: 

1. The actual storage address of the byte 
immediately to the right of an align­
ment point (boundary) must be divisible 
by A~ 

2. The number of bytes between two align­
ments points (a boundary interval) is 
equal to A. 

The value of H is made unambiguous by 
the condition 

o SH <A 

To completely map a structure, all minor 
structures, if any, that contain only elem­
entary items or arrays must be mapped 
first. (Refer also to the discussion of 
structure mapping in the DOS/TOS PL/I 
Programmer's Guide.) The mapping begins 
with the first (leftmost) element, whose 
mapping parameters are taken from Figure 1. 
The next element is appended to the right. 
Assume that the mapping parameters of the 
left and the right element are A" Lt , H1 
and A2 , L2 , H2 , respectively (see Figure 3, 
step 1). Different situations will then 
occur depending on the relationship between 
the two sets of mapping parameters, and a 
resulting set of parameters A3 , L3 , H3 is 
generated that describes the mapping of the 
two elements as one compound item. 

c 

c 

c 



( 

PL/I PLM 8 

IBM Confidential 

DECLARE 1 M, 
2 v, 

3 X POINTER, 
3 Y BINARY FIXED (31) 
3 Z BIT (16) 

2 W, 
3 I CHARACTER (3), 
3 J DECIMAL FLOAT (16), 
3 K CHARACTER (3); 

Step 1. Mapping of the individual minor structures V and W results in: 

) 
o 8 

L =9 v 

12 < ) 
0 

HW=3, 

~ 

I I 
4 R 

The new alignment requirement of M (V and N mappen together) is: 

Am=MAX(Av ,Aw)=MAX(4,8)=8 

Aw=8, L =14 w 

J I K 

16 

~ = 8 

Step 2. To map V and W, V is put to the left of W at A 
and not the actual storage position is examine~, 
no interest as long as the boundary requirements 
Av is assumed to·be at byte 8 and ~ at byte 32. 

8. Since only the alignment boundary 
the actual location in storage is of 
are observed. In the following example, 

- - - - - - - - - - - PAD - - - - - - - -

J 

R = 12 PAD = 15 

Hv - R modulo Am = 3 - 12 + 2 8 = 7 

= PAD - R 15 - 12 = 3 
9+14+3 26 

Step 3. This results in the following structure map for M: 

,L. 

Y 

Figure 3. Structure Mapping Example 

1. Since items with lower boundary 
requirements can also be aligned at a 
higher boundary, but not vice versa, 
the following formula applies: 

2. It may happen that the two items so 
mapped are not contiguous, e.g., 

X, 
2 B BINARY FIXED, 
2 C POINTER; 

J I K i with the parameter 

40 44 ~ 8 

Hm 7 

Lm 26 

where PAD is in the region 

o :5 PAD < A3 

SI I I 
~---------~-----+---T-----------~ 
I B I SIC I 
~---------------+---~-----------~ 
I I I 

A=4 A A 

Figure 4. Inclusion of a Slack Byte S 

set: 

In this case, there is a slack byte S 
between Band C (see Figure 4). The 
area occupied by the slack byte must 
then be added to the resulting length 
L3: 

L3 = L~ + L2 + PAD 

3. If padding, i.e., inclusion of slack 
bytes, becomes necessary and A, is less 
than A2 , padding can possibly be minim­
ized by moving the left ele~ent to the 
right as close as possible to the right 
element. After the shift, boundary 
requirement A, must still be satisfied 
for the left element. 

Phase PL/IB40 87 



PL/I PLM 8 

IBM Confidential 

88 

This process can be described as fol­
lows: R is the amount of the right 
shift. Before shifting, the left ele­
ment can be assumed to be on boundary 
A3 with its (unmodified) lefthang Ht 

~ee Figure 3, stept 2). If the left 
element is then shifted R bytes to the 
right, the lefthang becomes: 

If Ht is less than R, one boundary 
interval (A3 bytesl on the left becomes 
unused and may now be disregarded. The 
lefthang is computed instead from the 
next boundary to the right by increas­
ing H1 by A3 • ForH. < R, the new 
lefthang is: 

Formulas (1) and (2) can be combined to 

where n is 1 if H1 is less than Ri 
otherwise n is zero. 

To have the left element adjusted at 
its proper boundary, R must fulfill the 
requirement: 

(4) 

The next formula gives the resulting 
padding reduction: 

(5) 0:::; PAD. = PAD - R < A1 

where PAD is the originally required 
padding (as described under item 2 
above) and PAD t is the (reduced) pad­
ding after the right shift. The formu­
la for L3 then changes to 

This is illustrated in step 3 of Figure 
3. 

The amount of padding (PAD or PAD.I can 
also be formalized. rhe offset at of 
the leftmost byte of the left element 
to the nearest boundary A3 is 

where n1 must be suitably chosen to 
satisfy 

(Multiples of A3 are of no interest 
because of the minimum condition 
PAD < A3 .) 

The padding PAD is then the difference 
between A3 - 0 1 ~he number of unused 

~ ... _--- ~--~ 

bytes up to the next boundary A3) and 
H2 • If H2 is larger than A3 - a" PAD 
becomes negative, i. e., there is not 
sufficient space to start the right 
element in the same boundary interval 
so that it must start in the same rela­
tive position in the next boundary 
interval to the right. This means that 
A3 is added to PAD. 

The multiples of A3 can be extracted by 
using modulo arithmetic. This results 
in 

PAD -01 - H2 (modulo A3) 
-L t + H. - H2 (modulo A3) or 

From formula (5) above we obtain 

(7) PAD1 + L1 - H1 + H2 = 0 (modulo A1) 

The value R defined by formula (3) can 
also be explained in modulo arithmetic. 
For convenience, its complement 

is developed here. Starting from for­
mulas (5) and (6) we obtain 

or, by applying formulas (3) and (8), 

(9) PAD1-T+L t -H 1 +H 2=O (modulo A3) 

Since A3 is divisible by A1 , comparison 
of (9) and (7) yields 

-T = 0 (modulo At) 

which is equivalent to the auxiliary 
condi tion (4). 

The next element to the right can now be 
mapped by taking the previously mapped 
compound item as the left element and so 
forth until all elements of the containing 
minor (or major) structure have been 
mapped. The structure itself is thereby 
reduced to a compound item. When all minor 
structures of the lowest level have so been 
reduced to compound items, mapping of the 
next-higher-level structure (which now 
contains elements and compound items only) 
can be started. This procedure is contin­
ued until the major structure has been 
mapped. 

Arrays are handled in a special way. If 
an array is not of type POINTER, A is as 
shown in Figure 1, H is zero, and L taken 
from Figure 1 is multiplied by the number 
of array elements. The array is then 
mapped in one single step like an elementa­
ry item. 

c 

c 

c 



( 

PL/I PL1"1 8 

IBM Confidential 

POINTER arrays differ due to their 
lefthang. Each element of a POINTER array 
except the first one must be preceded by a 
slack byte to satisfy the proper boundary 
requirements. This results in A = 4, H = 
3, and L = 4 *K-1, where K is the number of 
array elements. 

Structure mapping starts with elementary 
items and arrays and proceeds upwards to 
the major structure. Structure declara­
tions, however, are organized in the rev­
erse direction, starting with the major 
structure and going down to its elements. 
For this reason, the structure mapping 
algorithm described in Figure 5 must also 
start at the major structure. If the dec­
laration to be processed is not an elemen­
tary item or an array, the routine MAPP is 
called recursively to handle the next lower 
level (blocks B3 and B2 of Figure 5). On 
return from this recursive call, the 
appropriate structure has been reduced to a 
compound item. The routine MAPP has one 
input and four return parameters. The 
input parameter is a pointer S to the 
structure (major or minorl to be mapped. 
The return parameters are A, L, H, and the 
number of items N at any level contained in 
this structure. 

With each call of MAPP, initial values 
for A, L, and H are generated for accumula­
tion during the mapping process (blocks A2, 
H1, and H4). This initialization allows to 
program the mapping algorithm as an itera­
tive process. It is equivalent to adding a 
dummy element with length zero, lefthang 
zero, and minimum boundary requirements to 
the left of each structure (minor or 
major) • 

When the routine is called recursively, 
the old values A, L, H, and N are stacked. 
'rhey are available again (unchanged) after 
return from the recursive call. A, L, and 
H serve for the sets A" Lq , H. and A3 , L3 , 

H3 in the above description of the process, 
while AA, LL, HH work as right-side element 
sets A 2 , L2 , H2 • A global variable LV is 
used in this process; it contains the level 
at which mapping is momentarily being per­
formed. One variable PAD is used for both 
PAD and PAD,. The distinction between PAD 
and PAD. is made by a branch in block F2. 

Besides A, L, and H, the mapping algor­
ithm must provide the symbol table with the 
origin of each minor structure, array, and 
element relative to the beginning of the 
structure (block H2). Since all minor 
structures at the lowest level have been 
mapped independently, the relative origin 
of each such minor structure starts at 
zero. The relative origins must therefore 

be adjusted when minor structures are 
mapped as compound items (block J3). NN in 
block J4 is equal to the number of all 
items contained in a structure. 

DESCRIPTION OF ROUTINES 

Note: Subroutine MOVEA 
phase A50. 

JRSYA1 -- NC 

is described in 

This routine updates the symbol table. The 
respective entry is pointed to by PST. If 
the entry is a single item, the length of 
the item, i.e., the number of bytes occu­
pied at object time, is entered into the 
symbol table. If the entry is a structure, 
it is mapped. 

JPRSA1 -- ND 

This routine checks whether the entire 
structure is in storage. If required, it 
reads in the remaining part. After calling 
JMAPA1 which performs the actual structure 
mapping, A, L, and H are entered into the 
symbol table. All symbol table entries 
pertaining to the structure are put out. 

JPOSA1 -- NE 

Secondary entry point: JPOSA5 

This subroutine controls two output 
buffers. If the buffers are full, they are 
written out in overlapped mode. 

The secondary entry is used if a block 
end in the symbol table is reached. In 
this case, the buffer contents are written 
regardless of whether or not the buffer is 
full. 

The NOTE information of the first record 
of a block is entered into the scone table 
if the main entry is used for the first 
time and after each block end. 

Entry 
PST 

BYZ 
POUT 
BUFST1 
BUFST2 
BUFLIM 

STRECL 

parameters: 
= start address of symbol table to 

be written 
= number of bytes to be written 
= output area pointer 
= start address of first buffer 
= start address of second buffer 
= limiting address of buffer cur-

rently used 
= symbol table record length 

Return parameter: 
PST new = PST old + BYZ 

JMAPA1 -- NF 

This routine calculates the mapping of 
structures. It may be called recursively. 

Phase PL/IB40 89 



PL/I PLM 8 

IBM Confidential 

An internal buffer is used for storing 
and returning parameters. It consists of 
four 32-byte sections referred to as POSH1 
-PUSH4. Each buffer entry has a length of 
four bytes. The eight entries per buffer 
section represent the levels of the struc­
ture. Thus, each structure level has an 
entry in each of the four buffer sections. 
The entries have the following format: 

PUSH1 
byte 1 
bytes 2-4 

PUSH2 
byte 1 
bytes 2-4 

POSH3 
bytes 1-2 

bytes 3-4 

POSH4 
bytes 1-2 

bytes 3-4 

alignment (A) 
return address (LINK) 

lefthang (8) 
start address of the structure 
(S) being processed 

length (L) of the item being 
processed 
number of items (~ contained in 
the item being processed 

number of the item (I) being 
processed relative to the 
embracing structure 
reserved 

Level counter LV is used for addressing 
the internal buffer. 

Entry parameter: 
PST = start address of 

structure to be 
mapped 

Return parameters: 

POSH1 
PUSH2 
POSH3 
POSH3 

(4*LV) 
(4*LV) = 
(4*LV) = 
(4*LV+2) = 

alignment (A) 
lefthang (H) 
length of structure (L) 
number of items (N) con­
tained in item being proc­
essed 

ThiS routine calculates the padding and the 
lefthang of a structure. The padding PAD 
is defined as 

O~PAD<A and 

90 

(PAD+HH+L-H) modulo A = 0 

If HH+L-H = X, PAD can be defined as fol­
lows: 

(PAD+X) /A=CEIL (X/A) 
PAD=A*CEIL(X/A)-X 
PAD=A*FLOOR«X+A-1)/A)-X 

The increment T of the lefthang H is 
defined as 

o~r<AA and 

(PAD+HH+L-H-T) modulo AA = 0 

If Y = PAD+HH+L-H = PAD+X, T can be defined 
as follows: 

(Y-T) /AA=FLOOR (Y/AA) 

T=Y/AA*FLOOR(Y/AA) 

Entry parameters: 
PUSH3 (BYZ) = L = length of embracing 

structure 
POSH2+4 (BYZ) HH = lefthang of item being 

processed 
PUSH2 (BYZ) = H lefthang of embracing 

structure 
PUSH1+4 (BYZ) = AA = alignment of item being 

processed 
PUSH1 (BYZ) = A = alignment of embracing 

structure 
BYZ = (LV-1) *4 

JCANA1 -~ NH 

This routine calculates the number of items 
contained in a structure at any level. The 
symbOl table entries for all structure 
items are assumed to be stored in the table 
area. 

Entry parameter: 
PST = address of structure to be mapped 

Return parameters: 
PST = unchanged 
N = number of items (bytes 3-4 in PUSH3) 

JALHA1 -- NI 

This subroutine calculates A, L, and H. 

c 

(~ 
~ 

c 



( 

PL/I PL[V! 8 

IBM Confidential 

...• AI......... .: ••.. az ••••••••• : :··~:tlU~:;;·M··: 

:..'PI'CS.'.L.H.NI: •••••••• I: t:iLt.t : •••••••• 1:.. 'I MfE• DF : • ••••••••••••••• .: : :Liv rs CGIIT~ s: ................. . ............... . 
i···················································: ." 

Figure 5. 

: ••• !ft~.;I~J ••• : ._13 •• _. : ............... : 
• • NO ._ -. YES • CALCULAJE F •• 
• 'Hy~E.IS taE •••••••••••• SIII·ELEHE.T ••••• •••• ••• 511 • 
: M~.AL.: -. _. ._.- : AA,LL.IIN, : ................. ..... . ............... . 

X 
•••• -C2 ••• ••••••• · . • UT FDR SIll • 
:Tiii·k~A=~Ltli~ : · . ................. 

i •••• -c ••••••••••• 
: sF~ FIft slll : 
: sYJial:-¥Aii:1 : . ............... . 

i .'. · " ~ 
: NO •• ··'! .... •••••••••••••••••••••••••••••••••••••••••••••• EL E.T .' 
• -.AN RAY.-a. ._ 

a •• _ 
aYES 

i .•. · ..... E3.......... E4 -. 
• • • ._ a. 

1 • L~"')L' NO.' ~5 ' • ••••••••••••••••• • _1( IS M. R Of aX •• •••••• a. E MENt .-
• • EL EN S. _AN UnER •• . . -..-................. -.. -

.YES 

.:. X 
:SET.~la.iD.THAT: •• F2 •••• : •••• F ........... : 

: a LE :AD L" • :1 ••••• ~~!.:. AA GT A ·:.X •••••••••••••••••••••••••••••••••• : Lt~K~tt!l : 
• PAD+MH+L-H • •• •• •• 
• -0 (MOD.A) • •••• •• ••••••••••••••••• • .• Ne ••••••••••••••••• 

X ·····Gl.··· .. ···· • in T so THAT. 
: LE INbE AA : 

:" p~8:=g~~A~jT : ................. 

x ····11··········· :SElE ,iosfT T~IT: 
• AND • : ~';~:~Ar : ................. 

: •••• G5 ••••••••• : . 
1-1+1 : · . . ............... . 

1 

i i .•. .:.0 ..... Hl.......... . .... H'.......... H3 .. . .... H............ H5 .. 
: H-H+T: : IV=:~k I'XRLE : .Slj'.ELEMEHf •• VES: : •••• • ••• : A-AA : ........ X: l\lY.l~JIDoF : •••••••• X.... . •.•........ x: L-L+LL+PAD : •••••••• X.... I-N •••• · .. . -... . . ... . ................. ................. .. .. ................. . .. . 

• NO x .VES 

i 
....... 3 •••••• ,... : ...... 4 ••••••••• : 
: ~ORINAkLtlTITS :. • 
• NY lfVIL ••••••••• 1. 101 •• N • 
: R.~:?j).t.;AD :: : ................. . ............... . 

Structure Mapping Algorithm 

i 
: ...... 5 ••••••••• : · . • LV-LV-l • · . · . . ............... . 

X ···· .. 5········· · . : RETURN : ............... 

Phase PL/IB40 91 



PL/I PLM 8 

IBM Confidential 

PHASE PL/IB70 lCONTEXTUAL DECLARATIONS) -- OA 

Phase B70 adds all contextually declared 
identifiers to the symbol table SYMTAB. 
All identifiers that either occur in a CALL 
statement or precede a PROCEDURE statement, 
an ENTRY statement, or a ~arenthesized list 
are re~laced in the text string by their 
internal representation. 

All identifiers that are built-in func­
tions with arguments are replaced with the 
internal representation of the built-in 
functions in the text string. 

~hase Input 

1. Text string on TXTIN. All identifiers 
are identified by an E1-key. 

2. Symbol table SYMTAB on SYS001. For 
each explicitly declared identifier, 
SYMTAB contains an entry with the dec­
larations of the identifier and its 
internal representation. 

Phase Output 

1. The text string on TxrIN contains all 
identifiers that occur in a CALL state­
ment, or precede a PROCEDURE statement, 
an ENTRY statement, or a parenthesized 
list characterized by an EE-key and 
replaced by its internal representa­
tion. All built-in fUnctions with 
arguments are characterized by an EC­
key and replaced by their internal 
representation. All remaining 
identifiers are characterized by an 
E1-key. 

2. For each contextually declared iden­
tifier, block n+1 of SYMTAB in storage 
and/or on SYS001 contains an entry with 
the declaration of the identifier. 

COMMUNICATION WITH OTHER PHASES 

Scope Table 

The scope table SCOTAB (built and described 
in phase B20) contains an entry for each 
block of the symbol table. The format of 
this entry is as follows: 

Byte 0 
Bytes 1-3 

Bytes 4-5 

92 

Number of records of the block. 
Note key of the block on 
SYS001. 
Address of the block in storage 
relative to the beginning of 
the table space. If the block 
is not in storage, bytes 4-5 
are zero. 

IJKMIP 

If bit 0 of IJKMIP is on, all blocks of 
SYMTAB are in storage. If bit 1 of IJKMIP 
is on, some blocks of SYMTAB are in stor­
age. These blocks are in storage from the 
beginning of phase B70. 

WSLIS~ 

WSLIST is a list with an entry for each 
possible block level (3 entries). If block 
X with level number N is read, entry N of 
WSLIsr contains: 

Byte 0 

Byte 1 

Bytes 2- 3 

Bytes 4- 7 

Bytes 8-11 

Bytes 12-15 

Number of records of block X 
which are in storage. 
Number of records of block X 
which are not in storage. 
Entry of block X in the scope 
table. 
Begin address of block X in 
storage. 
End address of block X in 
storage. 
Note key of the part of block 
X which is not in storage. 
If the entire block X is in 
storage, bytes 12-15 are 
zero. 

The scope table and WSLIST contain the 
inf.ormation on the location of the blocks 
of SYMTAB. If either one of the first two 
bits of IJKMIP is on, information is 
retrieved from the scope table only. As 
soon as a block that is not in storage is 
required in phase B70 or B80, bit 1 of 
IJKMIP is reset and the control of blocks 
in storage passes to the entries in WSLIST. 

Classifying of Table Space 

At the beginning of phase B70, the table 
space is classified for storing blocks of 
SYMTAB in phases B70, B75, and B80. 

The table space is divided into three 
sections. The first section is used for 
storing blocks of SYMTAB. The number of 
records of SYMTAB that can be stored here 
is called MO. 

The second section (starting with AN1) 
is used to build up block n+1. Its length 
is equal to the record length of SYMTAB if 
not all blocks of SYMTAB (except block n+1) 
are in storage. If all blocks (except 
block n+1) are in storage, the free table 
space is used to build up block n+1. 

c 

c 



PL/I PLM 8 

IBM Confidential 

The third section (starting with ABS1) 
is called BS. This area consists of two 
buffers called BS1 and BS2. The length of 
each buffer is equal to record length of 
SYMTAB. BS is used for reading and scan­
ning records of SYMTAB if a block, or part 
of a block, cannot be stored in the first 
MO buffers of the table space without des­
troying other blocks that are also required 
for scanning. If the entire SYMTAB (except 
block n+1) is in storage, BS is also used 
to build up block n+1. 

The following terms are used for classify­
ing table space: 

MO 

K 

AN1 

ABS1 
ABS2 
AEBS2 
PSE 

AD 

WBSEN 

Number of records of SYMTAB that 
can be stored in the first section 
of the table space. 
Number of buffers in the table 
space that are used to build up 
block n+1. Normally, K = 1. 
Address of the area in which block 
n+1 is built up. 
Address of BS and BS1. 
Begin address of BS2. 
End address of BS2. 
Points to the location where the 
next entry of block n+1 is stored. 
Address of table space. 

Byte WBSEN contains the number of a block 
which is completely stored, or of which the 
last records are stored, in BS. If byte 
WBSEN is zero, no records are stored in BS. 

:§i.!:~of I~ 

Bit 20 of IJKMJT is set if a built-in func­
tion is detected in this phase. 

Error Code X'45' 

If an incorrectly declared identifier is 
found in this phase, the error code X'45' 
is inserted into the text string after the 
statement in which the incorrectly declared 
identifier is found. 

WCTAB and Switch B75 

Table WCTAB is used to indicate built-in 
functions coded in the text string as 
built-in functions, but declared by the 
user. If such a function is found, its 
matching bit in WCTAB and switch B75 are 
set, i.e., phase B75 will not be skipped. 

Internal Pointe~Switches, and Tables 

The following pointers and switches are 
used: 

PIN 

POUT 

points to the element in the input 
buffer which is scanned. 
indicates the address in the output 

buffer to which the next output will 
be moved. 

PSY points to the entry of SYMTAB which 
is scanned. 

Switch MS = Bit 0 of WSWIMS. Switch MS is 
set if an entry of the identifier is 
found in SYMTAB and the identifier 
is declared in this entry as a minor 
structure or as an element of a 
structure. If the identifier is 
declared as an array, the internal 
representation of it is stored. 
Scanning of the same block is con­
tinued, but embracing blocks are not 
scanned. 

LVLPT: points to the WSLIST entry for the 
required SYMTAB block. 

Scope pointer: points to the SCOTAB entry 
for the required SYMTAB block. 

The following tables are used: 

WBTAB is used to indicate the appearance of 
not explicitly declared built-in functions. 
If a not explicitly declared built-in fUnc­
tion is found in the text string, the cor­
responding bit in WBTAB is set. 

WTAB contains the masks for setting bits in 
WBTAB and WCTAB. 

WNRNR contains the number of the block and 
the number of the embracing block of the 
statement being tested. 

Input/Output of Text String 

Three contiguous buffers are used for read­
ing and writing of the text string. The 
first buffer is used as output buffer. The 
second buffer is the first input buffer: 
its address is contained in BUFB1. The 
third buffer is the second input buffer: 
its address is contained in BUFB2. The end 
address of the second input buffer is con­
tained in BUFEND. 

Output is performed under control of the 
output pointer POUT by the output routine 
JTRNAl as described in phase A50. 

The input pointer PIN points to the text 
string element to be scanned. After scan­
ning, PIN is increased by the length of the 
element. If PIN points to an element not 
contained in the first input buffer, output 
of the first input buffer is performed by 
JTRNA1. The contents of the second input 
buffer are moved to the first input buffer. 
PIN is decreased by the buffer length and 
the next record is read into the second 
input buffer. If PIN points to an element 
in the first input buffer, scanning is 
continued. 

Phase PL/IB70 93 



PL/I PLM 8 

IBM Confidential 

~unctional DeScrip!ion 

The following cases are checked in this 
phase by scanning the text string: 

1. An identifier precedes a PROCEDURE or 
ENTRY statement: This identifier is 
declared explicitly. Its entry is 
retrieved from SYMTAB and its internal 
representation is inserted into the 
text string. 

2. An identifier occurs in a CALL state­
ment: SYMTAB is searched for an entry 
of this identifier. If an entry is 
found, the identifier must be declared 
as an entry name, and its internal 
representation is inserted into the 
text string. If it is not declared as 
an entry name, X'EEOOOO' and an error 
message are inserted into the text 
string. 

If the identifier is not declared, it 
will be declared as an external entry 
.name in block n+1 of SYMTAB, and its 
internal representation is inserted 
into the text string. If the name of 
such an identifier is equal to a built­
in fUnction, and this built-in function 
is noted in WBTAB, i.e., the built-in 
function was previously used in the 
text string, it is also noted in WCTAB 
and switch B75 is set, i.e., phase B75 
will not be skipped. 

3. An identifier followed by a 
parenthesized list occurs. SYMTAB is 
searched for an entry of this identifi­
er. If an entry is found, the iden­
tifier must be declared as entry name, 
array, or built-in fUnction, and its 
internal representation is inserted 
into the text string. If the declara­
tion is not of this type,X'EEOOOO' and 
an error message are inserted into the 
text string. If the identifier is not 
declared, it is checked whether or not 
it is a built-in fUnction. If it is, 
the identifier is replaced in,the text 
string by the internal representation 
of the built-in function, and its 
appearance is noted in WBTAB. If the 
identifier is not a built-in fUnction, 
it will be declared as an external 
entry name in block n+1 of SYMTAB, and 
its internal representation is inserted 
into the text string. 

DESCRIPTION OF ROUTINES 

Note: The following subroutines are used 
in this phase but are described elsewhere: 

JERRA1 and JTRNA1 are described in phase 
A50. All of the remaining routines are 
described in phase 880: 

94 

waSOC1 
WCAM1 
WCLEAR 
WELSTl 

I'lELST3 
I'lGT21 
WGT22 
WSETSP 

Initialization -- OB 

Output pointer POUT is set to the beginning 
of the output buffer. Input pOinter PIN is 
set to the beginning of the first input 
buffer. The first two records of the text 
string are read into the input buffers. 
The begin addresses of the first and second 
input buffers and the end address of the 
second input buffer are stored in BUFB1, 
BUFB2, and BUFEND. 

The table space is classified as des­
cribed in the section Classifying of Table 
Space. MO, AN1, ABS1, ABS2, and AEBS2 are 
stored in WMO, WAN1, WABS1, WABS2, and 
WAEBS2, respectively. 

If there are blocks in storage from 
previous phases, bit 1 of IJKMIP is set. 
If there are blocks in storage that exceed 
the first MO buffers of the table space, 
the addresses of these blocks are cleared 
in the scope table. It is tested whether 
all blocks of SYMTAB are in storage. If 
they are not, K = 1. If all blocks are in 
storage, the address of the free table 
space is equal to AN1, K is equal to the 
number of free buffers, and ABS1 is equal 
to the address of the end of the table 
space. Pointer PSE is set to the beginning 
of the area used to build up block n+1. 

Search for Identifier in Source Text--OC 

The text string is scanned for begin of 
statement (statement identifier) { identifi­
er, and end of statement. 

If a begin of statement is found, the 
number of the block and the number of the 
embracing block of this statement are 
stored in WNRNR. If the statement is a 
CALL statement, and no OVERLAY or a DYNDOMP 
is called, switch CALL is set. If OVERLAY 
or DYNDUMP is called, this is indicated in 
the statement identifier and OVERLAY or 
DYNDUMP is deleted in the text string. 

Identifier in Source Text -- OD 

PIN points to the E1-key of an identifier. 
If this identifier is not part of a quali~ 
fied name, it is checked whether: 

1. The identifier precedes a PROCEDURE or 
ENTRY statement, or 

2. switch CALL is on, or 

3. The identifier is followed by a paren­
thesized list. 

. __ .. __ . __ ._-_. ---

c 

c 



PL/I PLM 8 

IBM Confidential 

(-\ 

( '" 
./ 

The actions performed in these cases are 
described in the section Functional Des­
cription. 

If the internal representation of an 
identifier is zero, error code X'45' is 
inserted into the text string by the error 
routine JERRA 1. 

Entry in SYMTAB -- OE 

PIN points to the identifier an entry of 
which is made in block n+1 of SYMTAB as 
external entry name. PSE points to the 
beginning of the entry. The internal rep­
resentation of the identifier is equal to 
the present value of the variable counter. 

If the first character of the user­
defined name of the identifier is I through 
N, the attributes FIXED BINARY and the 
length 15 are set into the entry of the 
identifier. Otherwise, the attributes 
FLOAT DECIMAL and the length 6 are set into 
the identifier entry. 

If this entry is the last possible entry 
in the buffer(s) used to build up block 
n+1, all entries of block n+1 which are in 
storage are written onto SYS001, and PSE is 
reset. If the first bit of IJKMIP is on, 
it is reset; the second bit of IJKMIP is 
set, and K is decreased by 2, i.e., BS is 
now used to accommodate the part of block 
n+1 which is not in storage. 

End of Statement or Phase -- OF 

PIN points to the EA-key of End of 
Statement. WR4 contains the begin address 
of the area which is moved into the output 
buffer. This area including End of State­
ment and possible error messages from pre­
vious phases are written by the output 
routine JTRNA1. If an incorrectly declared 
identifier was found in this statement, the 
error bit is set on and the new error 
message (s) is (are) added to the possible 
old one. The number of error messages 
after a statement is limited to 8. 

It is tested whether PIN points to the 
end of the text string. If it does, the 
part of the text string which is not yet on 
'TXTOUT is written and TXTOUT and TXTIN are 
rewound and exchanged. If switch B75 is 
on, phase B75 is called; otherwise, phase 
B80 is called. 

Check for Built-in Function -- OG 

Entry : WBUIN1 

Input parameter: 
PIN points to the identifier which is 
checked if it is a built-in function. 

WBTAB1 is a table which contains the 
second bytes of the internal representation 
of all built-in functions with arguments 
the names of which are declared in the 
first record of the name table NAMTAB. The 
second bytes are in the order of the com­
pressed names of the built-in functions. 
WBTAB2 is a table which contains the second 
bytes of both the compressed name and the 
internal representations of all built-in 
function with arguments the names of which 
are declared in the second record of NAM­
TAB. 

It is tested if the identifier is a 
keyword. If it is a keyword and it is 
declared in the first record of NAMTAB , it 
is checked if the keyword matches a built­
in function in WBTAB1. If it does, 
pointers are set to the entries of this 
function in WTAB, WBTAB, and WCTAB, and 
exit YES occurs. If the keyword is 
declared in the second record of NAMTAB, 
WBTAB2 is scanned for this keyword. If it 
is found, pOinters are set to the entries 
of this function in WTAB, WBTAB, and WCTAB, 
and exit YES occurs. 

Output parameters (for exit YES) : 
RO contains the internal representation of 
the built-in function. 
R1 points to WTAB entry, R2 points to WBTAB 
entry, and R3 points to WCTAB entry of the 
built-in function. 

Search for Identifier in SYMTAB -- OH-OL 

Entry point: WSIO 

Input parameter: 
PIN pOints to the identifier, an entry of 
which is searched for in SYMTAB. 

If an identifier is declared in SYMTAB, 
its internal representation is retrieved 
therefrom by WSIO. In addition, this sub­
routine attempts to keep blocks in storage 
as long as possible and reads only those 
blocks into storage that are required to 
scan for an entry for the identifier. 
Scanning is started in block X, i.e., in 
the block that contains the statement 
which, in turn c contains the identifier 
searched for. If the searched entry is not 
found in block X, scanning is continued in 
the embracing block of block X, etc. The 
outermost block is block n+1. 

If block X of the identifier is not in 
storage, all blocks in storage that are not 
embracing blocks of block X are cleared. 
If there are not enough contiguous free 
buffers in the table space to accommodate 
block X, embracing blocks of block X are 
cleared starting with block level 1. 

If the number MX of records of block X 
is not greater than MO, block X is stored 

Phase PL/IB70 95 



PL/I PLM 8 

IBM Confidential 

and scanned in the table space; otherwise, 
the first MO records of block X are stored 
and scanned in MO buffers of the table 
space. The remaining records of block X 
are read and scanned in BS. 

If scanning is continued in an embracing 
block of block X, block X remains in stor­
age. If the embracing block is not in 
storage and the maximum of contiguous free 
buffers in the table space is M1, the 
embracing block is stored in the M1 buffers 
unless the number of records of the embrac­
ing block is greater than M1. Otherwise, 
the first M1 records of the embracing block 
are stored and scanned in the M1 buffers of 
the table space. The remaining records are 
read and scanned in BS. 

If an entry of the identifier is found 
and the identifier is declared in this 
entry as an array in a structure, the 
internal representation of this entry is 
stored and scanning of the block is contin­
ued. If no other entry of the identifier 
is found in the same block, the internal 
representation of the array is retrieved. 
If another entry of the identifier is 
found, the internal represeptation of the 
new entry is retrieved if the identifier is 
not declared in this entry as a minor 
structure or as an element of a structure. 

If an entry of the identifier is found 
and the identifier is declared as a minor 
structure or as an element of a structure, 
but not as an array, scanning of the block 
is also continued. If no other entry is 
found in the same block, the error routine 
is initialized. 

If the identifier is not declared in 
SYMTAB, exit NOT of WSIO occurs. If it is 
declared and its internal representation is 
not zero, exit DECL occurs. If its inter­
nal representation is zero, the error rou­
tine is initialized. 

Output parameters: 
PIN points to the identifier in the text 
string. 
PSY points to the entry of the identifier 
in SYMTAB if exit DECL occurs. 

Bead and Scan Block X -- OM-ON 

Entry : WRBX1 

Input parameters: 

R1 contains the address A1 of the area 
in which block X can be stored. 

R3 contains the number M1 of records 
which can be stored in A1. 

R7 points to the entry of block X in the 
scope table. 

LVLPT points to the entry of block X in 
WSLIST. 

96 

WMX contains the number MX of records of 
block X. 

If MX is not greater than M1, the entire 
block X is stored and scanned in the table 
space. Otherwise, the first M1 records of 
block X are stored and scanned in the table 
space, and the remaining records of block X 
are read and scanned in BS. 

If an entry of the identifier is found 
and the identifier is not declared as a 
minor structure or as an element of a 
structure, the internal representation is 
tested for zero. 

If an entry of the identifier is found 
and the identifier is declared as an array 
in a structure, the internal representation 
of the array is stored. Scanning is con­
tinued. 

If no entry or only entries for iden­
tifiers declared as a minor structure or as 
an element of a structure are found, this 
subroutine is left via its normal exit. 

Output parameter: 
PSY points to the entry of the identifier 
in SYMTAB if the identifier is declared but 
not as a minor structure or as an element 
of a structure. 

Search for Identifier in BS -- 00 

Entry: WREAD1 

Input parameter: 
R3 contains the number of records of block 
X to be read and scanned in BS. 

Records are read and scanned in over­
lapped mode, i.e., while a new record is 
read into one buffer of BS, the record in 
the other buffer is scanned for an entry of 
the searched identifier. PSY points to the 
entry of SYMTAB which is scanned. 

If no entry of the searched identifier 
is found that is not declared as a minor 
structure or as an element of a structure, 
the routine is left via its normal exit. 

If an entry is found and the identifier 
is declared as a minor structure or as an 
element of a structure, switch MS is set. 
If the minor structure or element of a 
structure is an array, the internal rep­
resentation of the array is stored. Scan­
ning is continued. 

Output parameter: 
PSY points to the entry of the searched 
identifier unless this routine is left via 
its normal exit. 

c 



( 

( 

PL/I PLM 8 

IBM Confidential 

Entry: WeSC01 

If switch weSC02 is off, bytes 4 and 5 of 
all entries in the scope table are cleared. 
If switch wese02 is on, bytes 4 and 5 of 
all entries of the scope table are tested 
for zero. If a nonzero entry is found, it 

(.-

.' 

is tested whether the end address of this 
block is equal to or higher than AN1. If 
it is higher or equal, the begin address of 
this block in the scope table is cleared. 
If it is lower and the end address of this 
block is higher than the highest end 
address of previously found blocks in stor­
age, the end address of this block is 
stored. 

Phase PL/IB70 97 



PL/I PLM 8 

IBM Confidential 

~gASE PLYIB~JEXTE~NA~RY NAMES FOR IMPROPERLY 3ENERATED BUI~T-IN FUNCTIONS) -- OR 

If a subroutine reference in the text 
string is identical to the name of a built­
in function, the name of the identical 
function must be declared as an external 
entry name, provided the function has not 
been declared explicitly as a bUilt-in 
function. This phase replaces such a 
subroutine reference (which has been 
declared as a built-in function in phase 
B70) by its correct representation as an 
external entry name. If there is no such 
subroutine reference, phase B75 is skipped. 

1. The text string from rXTIN which con­
tains function references that have 
been incorrectly declared as built-in 
functions. 

2. Block n+1 of SYMTAB which contains all 
contextually declarations. 

In the text string, all sUbroutine referen­
ces that were improperly declared are now 
replaced by their proper internal represen­
tation and are characterized by an EE-key. 

Scope table 
IJKMIP 
WSLIST 
rable Space as classified in phase B70 
WSSEN 
Bit 20 of IJKMJT 
i'lCTAB 

The above areas, tables, and switches, 
as well as I/O handling are the same as 
described in phase B70. 

PIN 

POUT 

PSY 

EPSY 

points to the element being 
scanned in the input buffer. 
indicates the output buffer 
address to which the next output 
is to be moved. 
points to the entry of block n+1 
in SYMTAB, which is to be scanned. 
pOints to the end of the area that 
contains the entries of block n+1 
which are to be scanned. 

Switch 1 is on if records of block n+1 are 
stored in SS, but not in the first 
MO buffers of table space. 

98 

Switch 2 is on if records of block n+1 are 
stored in the first MO buffers of 
table space and in BS. 

WECLIST contains entries which consist of 
the compressed user name and the 
WCrAB entry for the built-in func­
tion. These entries are in 
ascending order by the internal 
representations of the built-in 
functions. 

DESCRIPTION OF ROUTINES 

Note: The subroutines listed below are 
used-by phase B75, but described elsewhere. 
For a description of these subroutines 
refer to the sections indicated. 

ITRNA 1 phase A50 

WBSOC phase B80 
WCLEAR phase B80 
WCSC01 phase B80 
WSETSP phase B80 

Initialization -- OS --------------------
The pointer POUT is set to point to the 

beginning of the output buffer. The poin­
ter PIN is set to point to the beginning of 
the first input buffer. The first two 
records of text string are read into the 
input buffers. 

The bit used to indicate the presence of 
built-in functions in the current compila­
tion is reset. 

If the table space contains only a por­
tion of that part of block n+1 which was 
built up during phase B70, the head of 
block n+1 is retrieved from SYS001. If the 
number' (MX) of records of block n+ 1 on 
SYS001 is not greater than MO+2, MX records 
of block n+1 are read into the table space; 
otherwise, the first MO records of block 
n+1 are stored in the first MO buffers of 
the table space and the begin of the 
remaining records on SYS001 is noted. 

Scan Source Text -- OT 

The text string is scanned for an End-of­
statement indication and for built-in 
functions not explicitly declared. 

Ifa built-in function is found which is 
not explicitly declared, the WCTAB area is 
tested to determine whether the function 
has been declared by the user. If not, a 

--- ---------- ------

o 

c 



( 

PL/I PLM 8 

IBM Confidential 

bit is set to indicate that the current 
compilation includes built-in functions. 

If the function has been declared by the 
user, the compressed name of this built-in 
function is obtained and the internal rep­
resentation of the user's fUnction is 
picked up in block n+l. rhe built-in func­
tion in the text string is replaced by the 
internal representation of the user's func­
tion and the key 'EE'. 

~~£~~e Internal Reeresentation of User 
Function -- OU 

Block n+l is scanned for the entry of the 
user's function. Scanning starts with 
those entries of block n+l which have been 
in storage at the beginning of this phase. 
Scanning continues with those entries of 
block n+l which have been stored in the 
table space during initialization of this 
phase. If not all records of block n+l are 
in storage, the head of the remaining 
records of block n+l is picked up and the 
entries of these records are read and 
scanned in BS. 

End of Statement or Phase -- OV 

Pointer PIN points to key 'EA' of the end 
of statement. WR4 contains the address of 
the area whose contents are moved into the 
output buffer. The processed text string, 
including end-of-statement and error messa­
ges (if any) from previous phases are writ­
ten on TXTOUT by the output routine JTRNA1. 

c 

If PIN points to the end of the text 
string, that part of the text string which 
is not yet on TXTOUT is written, TXTOUT and 
TXTIN are rewound and exchanged. The phase 
is terminated by calling phase B80. 

Search for Identifier Subroutine -- OW 

Entry point: WSEAR 

Input parameters: 

PSY 

EPSY 
Rll 

points to the area that contains the 
entries of block n+l that are to be 
scanned. 
points to the end of the same area. 
contains the compressed user's name 
of the function, the entry of which 
is to be searched for. 

PSY points to the entry of block n+l 
that is to be searched for the identifier. 
If the desired entry is found, the routine 
is left to replace the built-in function by 
the internal representation of the user's 
function in the text string. 

If PSY points to an address that is 
equal to or greater than the value of EPSY, 
this subroutine is left via the NO exit. 

Output parameter: 

PSY points to the desired entry of block 
n+1 if not left via the NO exit. 

Phase PL/IB75 99 



PL/I PLM S 

IBM Confidential 

PHASE PL/IBSO (IMPLICIT DECLARATIONS) -- PA 

This phase performs the following func­
tions: 

1. All implicitly declared identifiers are 
added to the symbol table SYMTAB. 

2. Identifiers in the text string that 
have an E1-key are replaced by their 
internal representations. 

3. Identifiers in the text string, which 
are built-in functions without argu­
ments, are replaced by the internal 
representation of the built-in func­
tions. 

Phase Input and OuiEut 

The input consists of the following: 

1. The text string from TXTIN containing 
all identifiers which are not replaced 
by the appropriate internal representa­
tion with an E1-key. 

2. Symbol table SYMTAB on SYS001 or in 
storage which contains an entry for 
each explicitly or contextually 
declared identifier. 

As output, the phase produces: 

1. The text string on TXTIN which contains 
a. the appropriate internal represen­

tation with an EE-key for all iden­
tifiers and 

b. the appropriate internal represen­
tation with an EC-key for all 
built-in functions. 

2. Block n+1 of SYMTAB on SYS001. This 
block contains one entry for each con­
.textually or implicitly declared iden­
tifier. 

Communication with Other Phases 

Scope Table 
IJKMIP 
WSLIST 
Table Space as classified in phase B70 
WBSEN 
Bit 20 of IJKMJT 
Error code X'4S' 
Error code X'44' 

Areas, tables, and switches under 1 
through 7, above are as described in phase 
B70. 

Error code X'44'. If an identifier of a 
qualified name is not declared in SYMTAB, 

100 

the error code X'44' is inserted into the 
text string after the statement in which 
the not declared qualified name was found. 

Internal Pointers, Switches, and Tables 

PIN 

POUT 

PSY 

LVLPT 

points to the element in the input 
buffer which is being scanned. 

indicates the output buffer address 
to which the next output is to be 
moved. 

points to the SYMTAB entry to be 
scanned. 

points to the entry in WSLIST for 
the required SYMTAB block. 

Scope points to the entry in the scope 
pointer table for the required SYMTAB 

block. 

WSWIMS switch MS is on if bit 0 of WSWIMS 
is 1. It is set whenever an entry 
of an identifier is found in SYMTAB 
and this identifier 
1. does not occur in a qualified 

name and 
2. is declared as a minor struc­

ture or an element of a struc­
ture in this entry. 

The internal representation con­
tained in this entry is stored, and 
scanning of the block is continued; 
however, embracing blocks are not 
scanned. 

WQUALS if WQUALS is X'01', switch QUAL is 
on; this indicates that a qualified 
name is to be tested. If WQUALS is 
X'S1', switches QUAL and MINOR 
STRUCT are on; this indicates that 
scanning for entries for the iden­
tifiers of a qualified name was 
started. 

WNRNR contains 
1. the number of the block con­

taining the statement being 
tested and 

2. the number of the embracing 
block. 

The level lists WLEVL, WQUANT, and WNTLL 
are used if scanning for a qualified name 
is performed. The lists WQUANT and WNTLL 
are only used when the records of SYMTAB, 
which are being scanned for the qualified 
name, are in BS. The contents of these 
tables follow: 

C··' .. 



PL/I PLM 8 

IBM Confidential 

( 
WLEVL 

Bytes 0-3: 

Byte 4: 

Byte 5: 

~OUANT 

Bytes 0- 7: 

Bytes 8-11: 

Bytes 12-15: 

WNTLL 

Pointer PSY of the identifier 
entry with smallest level 
number found while scanning 
for an identifier of a quali­
fied name was performed. 

LNR1 = level number + 1 of the 
identifier of a qualified name 
which precedes the identifier 
being scanne::i for. (= 1 if 
the first identifier is 
scanned.) 

LNR2 = level number of the 
entry which is referred to in 
bytes 0 through 3. 

NOTE information for the 
record currently in BS1. 

Not used. 

Number of records + 1 of block 
X that follow the record cur-
rently in BS1. 

(' 

Contents of WQUANT for the 
identifier referred to in 
WLEVL (bytes 0 through 3) • 

Functional Description 

If an identifier with an E1-key is found in 
the text string, subroutine WSIO is called 
to search SYMTAB for an entry for this 
identifier. The identifier mayor may not 
occur in a qualified name. 

1. The identifier does not occur in a 
qualified name. 

If the identifier is declared, its 
internal representation including the 
key 'EE' is inserted into the text 
string. If the identifier is not 
declared, it is determined whether or 
not it is a built-in function without 
arguments. 

In case of a built-in function without 
arguments, the internal representation 
of the built-in function including the 
key 'EC' is inserted into the text 
string. 

If it is not a built-in function, the 
identifier is declared as arithmetic in 
block n+1 of SYMTAB, and its internal 
representation including the key 'EE' 
is inserte::i into the text string. 

2. The identifier ocCUrS in a qualified 
name. 

The proper entry for each identifier 
contained in the qualified name is 
looked up in the block in which the 
qualified name is declared. All but 
the last identifier of the qualified 
name are deleted in the text string. 
When the correct entry of the last 
i::ientifier is found in SYMTAB, the 
internal representation of this iden­
tifier including the key 'EE' is 
inserted into the text string. Other­
wise, 'EEOOOO' and the error code X'44' 
(= qualified name not declared) are 
inserted in the text string. 

DESCRIPTION OF ROUTINES 

Note: Subroutines JERRA1 (error) and 
JTRNA 1 (output) are used by phase B80, but 
described in phase A50. 

Initialization -- PB 

Output pointer POUT is set to the beginning 
of the output buffer. Input pointer PIN is 
set to the beginning of the first input 
buffer. The first two records of the text 
string are read into the input buffers. 

Pointer PSE is set to the first availa­
ble byte position in block n+1 following 
the last entry made in phase B70. 

Search for Identifier in Source Text -- PC 

The text string is scanned for 

1 • the beginning of statements (statement 
i::ientifiers) , 

2. i::ientifiers with an E1-key, 

3. end of statements and 

4. explicitly declared built-in functions. 

In~ut and output of the text string is 
as described in phase B70. 

If the beginning of a statement is 
found, the numbers of the block containing 
the statement and of the embracing block 
are stored in WNRNR. 

If an identifier with an E1-key is 
found, WSIO is called to search SYMTAB for 
an entry for this identifier. If the iden­
tifier is declared, its internal represen­
tation with the key 'EE' is inserted into 
the text string. 

If the identifier is the first one of a 
qualified name, the text string is written 
out u~ to the beginning of the qualified 
name and switch QUAL is set before WSIO is 
called. 

Phase PL/IB80 101 



PL/I PLM 8 

IBM Confidential 

If an explicitly declared built-in func­
tion is found, the appropriate representa­
tion of the function (first byte of inter­
nal representation = O~ is inserted into 
the text string. The bit that indicates 
built-in functions in the current compila­
tion is set. 

Identifier not Declared --~ 

If an undeclared identifier is a built-in 
function without arguments, the internal 
representation of this function, including 
key 'EC', i~ inserted into the text string. 
The bit that indicates built-in functions 
in the current compilation is set. 

If the internal representation of the 
identifier is 0, X'EEOOOO' is inserted into 
the text string. In addition, the error 
code X'45' is inserted by calling JERRA1. 

Entry in SYMTAB -- PE 

PIN points to the identifier for which an 
entry with arithmetic attributes is built. 
rhis entry is then moved into .block n+1 of 
SYMTAB. PSE points to the address of the 
entry. 

The internal representation of the iden­
tifier equals the present value of the 
variable counter. 

If one of the characters I through N is 
used as the first letter of the user­
defined name of the identifier, attribute 
FIXED BINARY with a length of 15 is set 
into the entry for the identifier. If the 
first letter is a character other than I 
through N, FLOAT DECIMAL with a length of 6 
is set into the identifier entry. 

If this entry is the last possible entry 
in the buffer{s) used to build up block 
n+1, all entries of block n+1 that are in 
storage are written on SYS001. PSE is 
reset. If the first bit of IJKMIP is 1, 
this bit is reset, the second bit of IJKMIP 
is set, and K is decrease1 by 2, i.e., BS 
is used to retrieve that ~art of block n+1 
which is not yet in storage. 

End of Statement PF 

PIN paints to key 'EA' of End of Statement. 
WR4 contains the address of the area whose 
contents are to be moved into the output 
buffer by calling JTRNA1. 

If an improperly declared identifier or 
qualified name is foun1 in this statement, 
the error bit is set and the new error 
message {s~ are added to the old one. rhe 
number of error messages following a 
statement is limited to eight. 

102 

End of Phase -- PG 

That ~art of the text string which has not 
yet been written onto TXTOUT is written 
out. End of block n+1 is set and that part 
of block n+1 which is in storage is now 
written on SYS001. 

The number of records of, and the note 
information for, block n+1 are inserted 
into scope table entry O. If all of block 
n+1 is in storage, its address in relation 
to the table space is also set into the 
scope table. 

TxrIN and TXTOUT are rewound and 
exchanged. The phase is terminated by 
calling phase B90. 

Scangi~of Qualified Name -- PH 

This routine retrieves the proper entry in 
SYMTAB for the last identifier of a quali­
fied name. This is done under control of 
switch WQUALS and level lists WLEVL, WNTLL, 
and W~UANT. (WNTLL and WOUANT are used 
only when scanning of SYMTAB is done in 
BS.) 

In the text string, all but the last 
identifier of a qualified name are deleted. 
When the proper entry for the last iden­
tifier is found, the internal representa­
tion of this identifier, including key 
'EE', is inserted into the text string; 
otherwise 'EEOOOO' and the error code '44' 
{= qualified name not declared~ are insert-
ed into the text string. 

All identifiers of a qualified name are 
declared in the same block. Each identifi­
er of a qualified name has a level number 
which is greater than the level number of 
the preceding identifier. 

PIN points to the first identifier of 
the qualified name in the text string and 
PSY points to an entry of this identifier 
in block X when this routine is entered at 
WOUAL8. The entry that contains the lowest 
level number is searched for the identifier 
pointed to by PIN. Information about the 
entry which presently contains the lowest 
level number is stored in the level lists. 

Scanning for entries for the first iden­
tifier of the qualified name starts at the 
beginning of block X and stops when either 
an entry for this identifier with level 
number 1 or the end of the block is found. 
Scanning for the other identifiers starts 
at the entry that follows the entry with 
the lowest level number of the preceding 
identifier and stops when an entry with a 
level number is found that is either 

---""--- - -" --- ------- - -" - "-"""~.~ -

c 



( 

PL/I PLM 8 

IBM Confidential 

1. equal to the level number plus 1 or 

2. not higher than the level number of the 
preceding identifier. 

When the scanning is stopped, WLEVL 
contains PSY of the entry with the lowest 
level number of the identifier pointed to 
by PIN. 

If WLEVL 'is blank, i. e., an entry for 
the identifier was not found, the embracing 
block is scanned for the entry with the 
lowest level number of the first identifier 
of the qualified name, anj so on. If the 
embracing block is block n+1, scanning 
stops. In this case, the qualified name 
has not been declared. 

S[JBROUTINES 

Search for Identifier in SYMTAB -- PI - PM 

Entry point: WSIO 

Input Parameters: 

1. No qualified name: PIN points to the 
identifier for which an entry in SYMTAB 
is searchej. 

2. Qualified name: PIN points to the 
beginning of the qualified name. Bit 7 
of switch WQUALS is on. 

If an identifier is declared in SYMrAB, 
WSIO retrieves the internal representation 
of the identifier from SYMTAB. In addi­
tion, this subroutine attempts to keep 
blocks in storage as long as possible and 
reads into storage only those blocks that 
are required to scan for an entry for the 
identifier. 

If block X (the block that contains the 
statement which, in turn, contains the 
identifier searched for) is not in storage, 
all blocks in storage that are not embrac­
ing blocks of block X are cleared. If 
there are not enough contiguous free buf­
fers in the table space to accommodate 
block X, embracing blocks of block X are 
cleared starting with block level 1. If 
the number of records of block X is greater 
than MO, all blocks are cleared in storage, 
the first MO records of block X are stored 
in the MO buffers of the table space, and 
these records are scanned. The remaining 
part of block X is then read into, and 
scanned in, BS. 

(' 
If scanning is continued in an embracing 

block of block X, block X remains in stor­
age. If the embracing block is not in 
storage and the maximum number of connected 
buffers in the table space is equal to M1, 

the embracing block is stored in the M1 
buffers, provided the number of records of 
this block is not greater than M1; other­
wise, the first M1 records of the embracing 
block are stored and scanned in the M1 
buffers of the table space and the remain­
ing records are read into, and scanned in, 
BS. 

The remaining fUnctions of the subrou­
tine vary according to the type of iden­
tifier (qualified name or no qualified 
name) • 

No Qualified Name. Scanning is started in 
block X of the identifier. If the searched 
entry is not found in block X, scanning is 
continued in the embracing block of block 
X, etc. Block n+1 is the outermost embrac­
ing block of all blocks. 

If an entry for the identifier is found 
and a minor structure or an element of a 
structure is declared in this entry, the 
internal representation in this entry is 
stored and scanning of the block is 
continued. If no other entry for the iden­
tifier is found in the same block, the 
storej internal representation is used for 
the ijentifier; otherwise, the internal 
representation of the new entry is fetched, 
provided no minor structure or element of a 
structure has been declared in this entry. 

If the identifier is declared and its 
internal representation is not 0, the rou­
tine is left via the exit DECL. If the 
internal representation is 0, the routine 
is left via the error exit (to initialize 
the error routine). If the identifier is 
not declared, the routine is left via exit 
NOT. 

Qualified Name. Scanning is done as des­
cribed under Scanning of Qualified Name -­
PH. If the qualified name is not declared, 
the subroutine is left to initialize the 
error routine. 

The subroutine is left via the exit DECL 
if the internal representation in the entry 
with the smallest level number of the last 
identifier of the qualified name is not O. 
If the internal representation is 0, the 
routine is also left to initialize the 
error routine. 

Output Parameters: 
PIN points to the identifier (last iden­

tifier of qualified name) in the text 
string. 

PSY points to the entry of the identifier 
in SYMT~B if the routine is left via 
the exit DECL. 

Phase PL/IBBO 103 



PL/I PLM 8 

IBM Confidential 

Read and Scan Block X -- PN, PO 

Entry points: WRBX1, WSCX1, WSCX6 

Input Parameters: 
R1 contains the address A1 of the area 

into which block X (block to be 
scanned) can be stored. 

R3 contains the number M1 of records 
which can be stored in A 1. 

R7 points to the entry for block X in 
the scope table. 

LVLPT points to the entry for block X in 
WSLIST. 

WMX contains the number MX of records 
of block X. 

WQUALS indicates that scanning of a quali­
fied name was started if bit 0 is 
1 • 

If MX is not greater than M1, all of 
block X is stored in the table space and 
scanned; otherwise, the first M1 records of 
block X are stored and scanned in the table 
space and the remaining records of block X 
are read into, and scanned in, BS. 

The remaining functions of the subrou­
tine vary according to the type of iden­
tifier (qualified name or no qualified 
name) • 

No Qualified Name. If an entry for the 
identifier is found and the identifier is 
declared in this entry as a minor structure 
or an element of a structure, the subrou­
tine 

1. stores the internal representation in 
the entry, 

2. sets switch MS, and 

3. continues the scanning of the block. 

If no entry for the identifier is found, 
the SUbroutine is left via its normal exit. 

If an entry is found and the identifier 
in this entry is not declared as a minor 
structure or as an element of a structure, 
the subroutine is left to determine whether 
the internal representation is O. 

Qualified Name. If the scanned entry is 
not an entry for the searched identifier, 
the routine determines whether or not 
searching for entries for the identifier of 
the qualified name has to be continued. If 
not, control is transferred to continue 
scanning qualified names. If no entry for 
the identifier is found, this subroutine is 
left via its normal exit. 

104 

Output Parameters: 

1. No qualified name: 
PIN points to the entry for the iden­

tifier in SYMTAB if the identifier 
is declared as other than a minor 
structure or as an element of a 
structure. 

2. Qualified name: 
PIN points to an entry for the iden­

tifier if an entry was found. 

Search for Identifier in BS -- PP 

Entry points: WREAD1, WREAD5 

Input Parameters: 
R3 contains the number of records of block 
X to be read into BS and scanned. 
LVLPT points to the entry of block X in 
WSLIsr. 

The functions of this routine vary 
according to the type of identifier being 
searched for (part or not part of a quali­
fied name) • 

1. The identifier is not part of a quali­
fied name: 

Reading records into BS and scanning is 
done in overlapped mode, i.e., while a 
new record is read into one buffer of 
BS, the record in the other buffer is 
scanned for an entry of the identifier. 
PSY points to the SYMTAB entry being 
scanned. If no entry of the identifier 
is found, the routine is left via its 
normal exit. If an entry is found and 
it has been declared as a minor struc­
ture or as an element of a structure, 
switch MS is set and the internal rep­
resentation in this entry is stored. 
Scanning of the block is continued. 

2. The identifier is part of a qualified 
name: 

Two records are read into BS and the 
beginning of the first record is noted 
in level list WQUANT. Then, the two 
records are scanned. If the scanned 
entry is not an entry for the identifi­
er, a check is performed to determine 
if searching for entries for the iden­
tifier must be terminated. If no entry 
for the identifier is found, the rou­
tine gets the next two records of block 
X and starts scanning these records for 
entries for the identifier. If PSY 
points to the end of block, the routine 
is left via its normal exit. 

Output Parameter: 
PSY points to an entry for the identifier 
if this routine is not left via its normal 
exit. 

c 

c 



( 

PL/I PLl"1 8 

IBM Confidential 

Entry points: WGT21, WGT22 

Input 
WMX 

Parameters: 
contains the number of records of 
block X not yet in storage; 

R7 points to the entry for block X in 
the scope table; 

LVLPT (only used if the routine is entered 
via WGT21) points to the entry for 
block X in WSLIST. 

If entry WGT21 is used, this routine 
tests whether all embracing blocks of block 
X are in storage. If they are not, the 
routine is left via its NO exit. 

Otherwise, and if entry WGT22 is used, 
the routine determines whether the number 
of records of block X not yet in storage is 
less than or equal to two. If there are 
more than two records, the routine is left 
via its NO exit. If the number of records 
of block X not yet in storage is two or 
less than two, these records are read into 
BS and the presence of block X in BS is 
noted in WBSEN and, if the entire block X 
is in BS, in the scope table. The routine 
is left via its YES-exit. 

Entry point: WCAM1 

M1 is the maximum number of records of 
SYMTAB that can be stored contiguously in 
the table space without destroying other 
records of SYMTAB that are already in stor­
age and noted in WSLIST. This subroutine 
calculates M1 using the addresses of the 
blocks in storage as contained in WSLIST. 

The list below shows the meaning of the 
names used in this subroutine. 

ML = length of longest contiguous area not 
used by other blocks. 

If only one block is stored: 

AY Address of the block. 
AZ Address of end of the block. 
ML Max (AY-AO,AN1-AZ) 

If two blocks are in storage: 

AU Address of 1st block. 
AV Address of end of 1st block. 
AX Address of 2nd block. 
AY Address of end of 2nd block. 
ML Max (AO-AU,A-AV,AN1-AY) 

If no block is in storage, M1 MO; other­
wise: M1 = ML divided by record length of 
SYMTAB. 

Output Parameters: 
R1 contains the address A1 to which a block 
can be read. 
R3 contains the number M1 of records that 
can be read to A1. 

Clear WSLIST Entry Y -- PS 

Entry point: WCLEAR 

Input Parameter: 
R2 points to the WSLIST entry Y. 

WSLIST entry Y contains information 
about the level-Y block, which is in stor­
age. If this block is no longer needed for 
the searching of identifiers, the indica­
tion of the block (for being in storage) is 
cleared in both the scope table (bytes 4 
and 51 and in WSLIST ~yte 0). If the 
block or its end is stored in BS, the indi­
cation of the block is also cleared in 
WBSEN. 

Set Scope Pointer -- PT 

Entry point: WSETSP 

Input Parameter: 
R2 contains the number of the block. 

The scope pointer R4 is set to the scope 
table entry for the block indicated by R2. 

Output Parameter: 
R4 points to the entry for the block in the 
scope table. 

Clear BS -- PU ----------
Entry point: WBSQC1 

If {11 a block or the remainder of a block 
not yet in storage consists of no more than 
two records and (2) the first MO buffers of 
the table area are filled with other blocks 
which are still needed for scanning, the 
block or its remainder is stored in BS and 
WBSEN contains the number of the block. 

This subroutine clears WBSEN if a com­
plete block or the end of a block is stored 
in BS. If a complete block is stored in 
BS, the subroutine also clears the address 
of this block in the scope table. 

Entries in WSLIST and Scope Table -- PV 

Entry points: WELST1 used if the complete 
block is or will be in 
storage. 

WELST3 used if the end of the 
block is not in stor­
age. 

Phase PL/IB80 105 



PL/I PLM 8 

IBM Confidential 

Input parameters: 

WELST1: R1 points to the address of the 
block in storage. 

R4 points to the entry for the 
block in the scope table. 

R5 points to the entry for the 
block in WSLIST. 

PSY contains the number of records 
of the block. 

WELST3: RO contains the number of records 
of the block in storage. 

106 

R1 contains the address of the 
block in storage. 

R4 points to the entry for the 
block in the scope table. 

R5 points to the entry for the 
block in WSLIST. 

PSY contains the address of the 
end of the block in storage. 

When a new block is read into storage, 
this subroutine performs the necessary 
housekeeping functions in WSLIST and bytes 
4 and 5 of the scope table. If entry 
WELST3 is used, housekeeping in byte 1 and 
bytes 13 through 16 of WSLIST must be done 
before this subroutine is called. 

Clear Addresses in the Scope Table -- PW 

Entry point: WCSC01 

Bytes 4 and 5 of all entries in the scope 
table are cleared. 

c 



( 

PL/I PLl'!! 8 

IBM Confidential 

In this and the next phase~ a statement 
attribute table is generated in front of 
each statement. This table contains all 
attributes for each variable that occurs in 
the actual statement. If the statement is 
a PROCEDURE statement, the first entry of 
the attribute table contains the attribute 
belonging to the entry name of the proce­
dure. 

For the construction of the attribute 
table see phase B20. 

DESCRIPTION OF ROUTINES 

Note: The following routines are described 
elsewhere as follows: 

JSLCA1 
JEOSA1 
JERRA1 
MOVEA<'l 

B10 HX 
B10 HY 
A50 FZ 
A50 FO 

If a statement is preceded by a label, this 
routine generates a label macro. The gen­
erated macro has the following format: 

byte 
bytes 
byte 
bytes 

o 
1-2 

3 
4-6 

X'F2' 
X'0007' 
X'72 ' 
internal representation of the 
label identifier 

The label identifier in the source text 
is replaced by the label macro. The colon 
after the label identifier is deleted. 

If the statement is a PROCEDURE state­
ment, the symbol table entry for the entry 
name is set into the source text. 

Entry parameter: 
PIN start address of the statement to 

be processed 

Return parameters: 
ACBLO current block number 
EMBLO = embracing block number 

(For BLOT1 refer to routine JBLT) • 

This routine scans the source text and 
searches for identifiers. 

Entry parameter: 
PIN = start address of statement body 

~~AS~~~/IB~~JPRESTATEMENT GENERATION) 

JSAR Routines -- QD - QG 

Main entry point: JSAR 

Entry parameter: 
PIN = address of the name for which the 

symbol table entry is searched. 

QA 

The routine searches for an entry in the 
symbol table and sets it into the output 
area. The entries are ordered by their 
structure levels, i.e., first all entries 
with structure level 0 (no structures or 
elements of structures) are written out, 
followed by all entries with structure 
level 1 (major structures) , level 2, level 
3, ana so on. 

If the current entry is a major or minor 
structure, all entries belonging to the 
items of a given structure are inserted in 
the output area. 

If the actual entry is a minor structure 
or an element of a structure, the entry of 
the major structure is inserted in the 
output area immediately before the current 
entry. 

If the actual entry has the attribute 
CONTROLLED or DEFINED, the entry for the 
pointer or base identifier is set into the 
output area immediately before the current 
entry. For this reason, the routine JSAR 
may be called recursively. 

JRPS Routines -- QH, QI 

Main entry point: JRPS 
Secondary entry pOint: JCET 

Entry parameters: 
HR3 entry in scope table for block 

to be read 
TABEND end address of used part of 

table area 
TBREC1 = begin address of buffer area 

for reading the symbol table in 
overlapped mode. 

TBREC2 begin address of buffer area 2 

The program reads a part of the symbol 
table. 

This routine builds up the block table 
BLOT, which consists of 4-byte entries 
referred to as BLOTO - BLOT3. 

BLOTO is associated with the part of the 
symbol table that contains all declarations 

Phase PL/IB90 107 



PL/I PLM 8 

IBM Confidential 

given either implicitly or contextually. 
(For a description of the symbol table 
refer to phase B20.) 

BLOT 1 is associated with the part that 
contains all declarations given explicitly 
at block level 1. 

BLOT2 and BLOT3 are associated with all 
parts that contain declarations at block 
levels 2 and 3. 

The number of the current block is 
entered corresponding to the level indicat­
ed in the first byte of each entry in BLOT. 
The next three bytes contain the end 
address of the corresponding part of the 
symbol table. (The start address is con­
tained in SCOThB; see phase B20.) 

Entry 
EMBLO 
REBLO 
rl'>.BEND 

parameters: 
number of embracing block. 
number of block to be processed. 
end address of entire symbol table 
in storage. 

~£CC Routi~~~_==_Q~L_Q~ 

Entry points: JSCC and JSC1 

108 

Entry parameters: 
ThBEND address of last valid entry in 

the symbol table contained in 
the table storage 

SAVES 1 length of part of symbol table 
to be read 

IJKMBC number of blocks, i.e., number 
of entries 

The routine controls the scope table and 
erases all invalid entries. 

Entry parameters: 
HR1 start address of information to 

be written 
BYZ length of the information 
POUT next free address in the output 

buffer 

Return parameter: 
POUT next free address in the output 

buffer. 

In this routine, information is moved 
into the output buffer and the pointer for 
this buffer is controlled. If a buffer 
overflow occurs, the contents of the buffer 
are written out. 

c 

c 



PL/I PLM 8 

IBM Confidential 

( Prl~SE_PL/IB~~hTTRIBUTE T~BLE COMPRESSION) -- R~ 

(' 

(' 

This phase compresses the attribute table 
constructed in the previous phase. 

In phase B90, full-len~th 20-byte 
entries were made into the attribute table. 
If an identifier occurs m~re than once in 
one statement, more than ~ne identical 
entry has been generated for this identifi­
er in phase B90. Phase B92 deletes all 
identical entries except the first one and 
eliminates the redundant bytes of each 
entry. 

The internal representation of the vari­
able in the statement body is changed into 
a table lookup for the attribute table. 

Statement ~ttribute Table -------------------------

hn attribute table is assigned to each 
statement. It contains the attributes for 
all variables. This table is located in 
front of the statement in the source text. 
The internal representation of the variable 
is changed into an offset. 

The entries of the attribute table are 
of variable length depending on the attri­
butes contained in these entries. If the 
variable has the attribute PICTURE, the 
entry is 18 bytes long. If the variable 
has one of the attributes DEFINED or CON­
TROLLED, the entry is 14 bytes long. If 
the variable is a minor structure or an 
element of a structure, the entry is 14 
bytes long. If the variable has the attri­
bute ~RRAY or STRUCTURE, the entry is 12 
bytes long. If the variable has the attri­
bute FILE, the entry is 10 bytes long. For 
all other variables, the entry is 8 bytes 
long. 

The construction of the attribute table 
is the same as that of the symbol table, 
except that the first two bytes of the 
symbol table are not entered in the attri­
bute table. 

A statement has the following format 
after it has been processed by all syntax 
phases: 

A statement identifier key (1 byte) 
a = specification of statement 

identifier (2 bytes) 
B prefixes (1 byte) 
b statement flag bits (2 bytes) 
C = key for attribute table (1 byte) 
lc length of attribute table (2 bytes) 
D attribute table of declared 

variables (lc bytes) 
E = key for constant table (1 byte) 

1e length of the constant table (2 bytes) 
F constant table of declared 

constants (1e bytes) 
G statement body 
H endkey of statement ( 1 byte) 
I byte for error flags (1 byte) 
K level number ( 1 byte) 
L block number (1 byte) 
tJl statement number (2 bytes) 
N error key, if error (1 byte) 
0 error number if any error (1 byte) 

DESCRIPTION OF ROUTINES 

Note~ The following routines are described 
elsewhere as follows: 

JTR~~l 
MOVE~1 
JEOSA1 
JERRA1 

B90 QM 
A50 FO 
Bl0 HY 
A50 FZ 

JCATA1 -- RB, RC 

This subroutine generates the attribute 
table. 

JCIR -- RD 

This routine changes the internal represen­
tation of the variables into a table lookup 
for the attribute table. Note that the 
identifier key X'El' is not changed. 

Entry parameter: 
PIN = start address of the statement body 

JCES -- RE --------
Entry 
PIN 

parameters: 
begin address of the entry to be 
compressed 

PST = address of table area into which the 
entry is moved 

Return parameters: 
HR2 = PS'T old. If a table overflow occurs, 

HR2 = O. If the current entry is 
ignored, HR2 contains the address of 

PST 
HR1 

the previous one. 
next free address of table area 
o if the actual entry is ignored; 
otherwise HRl = O. 

The entry of the symbol table is com­
pressed and set into the table area. If 
the same entry was made previously, the 
current one is ignored. 

Phase PL/IB92 109 



PL/I PLM 8 

IBM Confidential 

JGOF -- RF 

Entry parameters: 
PIN = begin address of symbol table entry 

of the identifier 
HR2 = begin address of attribute table 

entry of the identifier 
PAT next free entry in the offset table 
HR1 = 0 if the current entry of the attri­

bute table is ignored 

Return parameters: 
PIN = unchanged 
HR2 = unchanged 
PAT new = next free entry in the offset 

table. 

An offset table (OFFTAB) is generated. 
An entry of this table has a length of 4 
bytes and contains the following informa­
tion: 

Bytes 0-1: internal representation of the 
identifier 

Bytes 2-3: begin address (relative to 
IJKMTS) of the entry in which 
the attributes given to the 
identifier are stored. 

If an offset table overflow occurs, this 
table is written onto SYS001. 

110 

JLEN -- RG 

Entry parameter: 
HR2 = begin address of attribute table 

entry 

Return parameters: 
HR2 = unchanged 
HR1 = length of the entry 

The length of an entry contained in the 
attribute table is calculated. 

JCPI -- RH 

Entry parameter: 
PIN = input pointer 

Return parameter: 
PIN new = PIN old + 20. 

The input pointer PIN is controlled. 
If, after an increase, PIN is outside the 
first buffer, the remainder is moved to the 
left and a new record is read into the last 
buffer. 

JBIPA1 - RI 

This routine changes the pointer or base 
identi f ier • 

----.. ~- .. ~~-.- --~---- .-~-- -.------.. --~ 

c 

c 



(' 

PL/I PLM 8 

IBM Confidential 

rhis phase constructs the array table ARY­
rAB. (The phase is skipped if the source 
program contains no arrays.) For each 
programmer-defined array, a 12-byte entry 
is incorporated in the table. ARYTAB is 
written on SYS001 at the end of the phase. 

Up to three dimensions may be specified 
for an array. The format of the 12-byte 
ARYTAB entry for 1-, 2-, and 3-dimensional 
arrays is shown in Figure 1 together with 
the corresponding declarations. The infor­
mation required for these entries is 
retrieved from the array statements built 
up in phase B15. 

The array statement consists of two 
parts that have the following format: 

E.~~t_l (variable length, depending on 
attributes) 

0- 5 Array statement key 

(' 6 
7- 8 
9-10 

11 

(X'E00044 ••• ') 
X'F4' 
Length of attributes 
Internal name 

12-14 
15 

16-17 
18 

19-20 
21- n 

Rightmost four bits contain the 
length of one element unless it is 
a character string 
Not used 
Length of one element if it is a 
character string 
Not used 
Current array number 
Nun~er of elements 
Other attributes 

E.~rt ~ (21 bytes) 

Byte (s) 

o 
1- 2 

3 
4- 5 

6 
7- 8 

9 
10-11 

12 
13-14 
15-20 

Contents 

X'E1' 
Offset to attribute table 
X'E9' 
Current array number 
X'E9' 
Bound 
X'E9' 
Bound 2 
X'E9' 
Bound 3 
EOS (X'EA ••• " 

When an entry is made in the array 
table, the required information is 
retrieved from the array statement and the 
latter is deleted in the source text. Some 
bounds may be missing if the array state­
ment was detected to be erroneous in phase 

PHASE PL/IB95 (ARRAY TABLE CONSTRUCTION) -- SA 

B15. In this case, the entry for the array 
is set to zero. 

Phase Input and Output 

The source text is read from TXTIN. The 
text output is written on TXTOUT. It con­
sists of the source text without the array 
statements. ARyrAB is written on SYS001, 
at the end of the phase, the functions of 
TXTIN and TXTour are exchanged. 

DESCRIPTION OF ROUTINES 

Sy~ols Used in Flow Charts: 

C (CP) 

C(CP+6), LENGTH 2 

Initialization -- SB 

contents of location 
pointed to by CP 
contents (length 2) of 
location pointed to by 
CP+6. 

The array table is cleared and the entry 
for the array table is made in TABTAB, 
i.e., the buffer length is set to 384 and 
the transfer bit is set to zero. BUFL is 
set to 3*IJKMBL and ENDTS is set to the end 
address of the array table area. The 
address of the output buffer is loaded into 
BO. rhe addresses of work buffer 1, 2, and 
3 are loaded into B1, B2, and B3. The 
begin and end address of the input buffer 
is loaded into B4 and B5, respectively. 
The output pointer OP1 is set to the begin 
address of the output buffer and input 
pointer CP is set to the beginning of the 
input buffer. 

Main Routine SC 

The input is scanned. If a normal F key is 
found, i.e., no end-of-program key, LENGrH 
is set to the value contained in the two 
bytes following the F key. If an EA key is 
found, LENGTH is set to 6. If an EB key is 
found, LENGrH is set to two. UPRO is 
called after LENGTH has been set. 

If an EO key for an array statement is 
found, the array handling routine is 
called; otherwise, LENGTH is set to 6 and 
UPRO is called. If the EOP key is detect­
ed, this key is written out. The last, not 
yet filled-up record is also written out, 
if required, and the array table that was 
built in the table area is written on 
SYS001. 

Phase PLlIB95 111 



PL/I PLM 8 

IBM Confidential 

r-------T-----------------------T---------------------------T---------------------------, 
I lOne Dimension ITwo Dimensions I Three Dimensions I 
I Byte (s) I DECLARE A (i) I DECLARE A (i, j) I DECLARE A (i, j, k) I 
~-------+-----------------------+-------------------------~-+---------------------------~ 

0-1 I Internal name IInternal name I Internal name I 
I I I I 

2-3 I Number of elements INumber of elements I Number of elements I 
I I I I 

4-5 I Length of one element \Length of one element I Length of one element I 
I I I I 

6-7 I X'OOOO' Ij I k I 
I I I I 

8-9 I X'OOOO' IX'OOOO' I j I 
I I I I 

10-11 I Negative value of INegative value of (length I Negative value of (length I 
I length of one element lof one element + length of I of one element + length of~ 
I lone element*j) lone element*k + length of I 
I I lone element*k*j) I _______ L _______________________ L ___________________________ L ___________________________ J 

Figure 1. Format of 12-Byte Entries in ARYTAB 

Entry point: C2B2 

This routine is called if an array state­
ment is detected in the main routine, and 
the corresponding entry in the array table 
is built. The array statement is deleted 
in the source text and, if the first bound 
is zero, it is replaced by an error mes­
sage. The entries in the array table are 
generated as described in Figure 1. 

Q~RO Input/Output g~ndling -- SG 

Entry point: C6B2 

At the beginning of this routine, a test is 
performed to determine whether the string 
to be written is contained in its full 
length in the work buffers. If it is not, 
LENGTH1 is set to the number of bytes not 
yet contained and LENGTH is set to the 
number of bytes that is contained in the 
work buffers. The move and the read rou­
tines are called, and LENGTH is set to 
LENGTH1. If the full string is contained 
in the work buffers, the move and read 
routines are called immediately. 

Entry point: C7B2 

112 

This routine moves the number of bytes 
specified in LENGTH from the buffer address 
pointed to by CP to the output buffer 
address pointed to by OP1. If the output 
buffer is full, the write routine is 
called. 

Write Routine -- SI 

Entry point: CBB2 

This routine checks whether the output 
buffer is full. If it is, the information 
is written on TXTOUT. The output pOinter 
OP1 is reset to the beginning of the output 
area. 

Read Routine -- SJ 

Entry point: C9B2 

If the input pointer CP is greater than the 
contents of B2, the contents of the last 
two work buffers and the input buffer are 
moved to the beginning of the work buffers. 
The input buffer is filled with the next 
record from TXTIN. CP is decreased by the 
buffer length and tested again. Processing 
of this routine is repeated until CP is 
lower than or equal to B2. 

c 



( 

( 

PL/I PLM 8 

IBM Confidential 

PH~SE PL/IB97 (EXTERNAL N~ME TABLE CONSTRUCTION) -- SM 

This phase constructs the external name 
table EXTTAB. This is done in two passes: 

1. A pretable PRET~B of the external name 
table is built up. All information to 
construct PRET~B is retrieved from 
entries in the symbol table SYMT~B that 
contain the attribute EXTERNAL. Each 
20-byte entry of the pretable contains 
the following: 

Byte 0 

Byte 

Byte 2 
Byte 3- 7 
Byte 8-19 

number of rec~rd in the name 
table that contains the user­
defined name of this identifier 
entry number in this record 
(the first bit must be ignored) 

FF 
blanks 
see external name table 

2. EXTTAB is constructed by replacing the 
first eight bytes of PRETAB by the 
user-defined name retrieved from the 
name table NAMT~B. 

The entry of NAMTAB pointed to by bytes 
o and 1 of PRETAB is searched, and the 
user-defined name is translated into the 
external code and inserte1 into bytes 0-7. 
If the name is shorter than 8 bytes, the 
remainder is filled with blanks. If the 
name is longer than 6 bytes, a warning 
message is generated. If the name is 
longer than 8 bytes, the rest is ignored 
and an error message is generated. These 
messages are inserted behind the first 
PROCEDURE statement of the source text. 

For a description of the information 
contained in the external name table, refer 
to phase G55. 

Input of the Phase: Symbol table SYMTAB on 
SYS001, name table NAMTAB on SYS001, and 
source text on TXTIN. 

Q~tEut_of the Phas~~ External name table 
EXTTAB on SYS001 and source text on TXTIN. 

!~~!!andlin5L2f. th~_Ph§!.se 

The symbol table is read from SYS001 into 
buffers B3 and B4. The table space and the 
buffers BO to B2 are divi1ed into sections 
that have the length of a bqffer. The 
entries built up for the pretable are moved 
into these sections. If an overflow 
occurs, the pretable is written onto 
rXTOUT. When the last symbol-table record 
is processed, two cases are to be distingu­
ished: 

1. The pretable is still in storage and 

a. the remaining storage is equal to 
or greater than 2048 bytes. (The 
name table has the record length of 
1024 bytes). The name table is 
read in overlapped mode from 
SYS001. 

b. the remaining storage is equal to 
or greater than 1024, but less than 
2048 bytes. The name table is also 
read in from SYS001, but not in the 
overlapped mode. 

The external name table is built in 
storage and, at the end of the phase, the 
table is written onto SYS001. 

2. A table overflow has occurred and the 
pretable is written onto TXTOUT. In 
this case, the records of the pretable 
are read from TXT OUT and the records of 
the name table, pointed to by byte 0 of 
the entries of the pretable, are read 
from SYS001. Each processed record of 
the pretable is written onto SYS001. 

If an external name longer than six 
bytes is detected, the source text is read 
from rXTIN, a warning or error message is 
inserted, and the text is written onto 
TXTOUT. 

DESCRIPTION OF ROUTINES 

Text in flow charts: 
C{GCP) := Contents in location GCP points to 

Symbols used in Flow Charts 

GBUFCOUN - contains number of records that 
fit into the table area. 

GCOUNrER - contains number of entries of 
one symbol-table record. 

GCOUNTl - see GCOUNTER. 
GCP - input pointer 
GEND - contains end address of pretable 

area. 
GLEN - contains number of table-area 

bytes available for use. 
GLENGrH - contains length of respective 

name in name table. 
GNUMELE - contains address in name table 

where the name to be searched 
can be found. 

GPTCOUN - contains number of buffers used 
for pretable area. 

GPUTCOUN - contains number of records writ­
ten onto TXTOUT. 

GREADR - contains number of records to 
of records read. 

Phase PL/IB97 113 



PL/I PLM 8 

IBM Confidential 

GREST1/2 - contains remainder. 
GTABLEA - contains the begin address of 

pretable area. 
GTP - table-area pointer, (i.e., 

points to the next available 
location) • 

GBn - contains address of buffer n. 
GWEI - if switch GWEI is on, input is 

done in non-overlapped mode. 
GWEICHE - if switch GWEI:HE is on, input 

is read into the buffer pointed 
to by GB4; otherwise, into the 
buffer pointed to by GB3. 

In this routine, some counters, switches, 
and buffers for values, addresses, and 
input/output handling are defined and set 
to their initial values. 

The symbol table is read and the entries 
with the attribute EXTERN~L are stored in 
the pretable. If an overflow of the preta­
ble occurs, pretable is written onto 
TXTOUT. 

This routine is called if all entries of 
the pretable are in stora~e. The first 
record of the name table is read. The 
pretable is scanned for entries pointing 
(by the first byte) to the current record 

of the name table. If an entry is found, 
the user-defined name (pointed to by the 
second byte of the pretable entry) is moved 
from the name table into the pretable entry 
and translated into the external code. If 
the end of the pretable is reached, the 
next record of the name table is read and 
the pretable is scanned once more. This 
process is repeated until the end of the 
name table is reached. When the end of the 
name table is reached, the pretable area 
contains the complete external name table, 
which is written onto SYS001. 

This routine is called if a pretable over­
flow has occurred in the PRETAB SYMTAB 
routine. The pretable is read from TXTOUT; 
the name table is read from SYS001. The 
record and the entry of the name table 
pointed to by the first two bytes of each 
pretable entry are searched and the con­
tents (the user-defined name) are inserted 
into the pretable and translated into the 
external code. If one record of the preta­
ble is processed, the record is moved into 
the output buffer and written onto SYS001. 

114 

SUBROOTINES 

The following subroutines used in this 
phase are described elsewhere as follows: 

r-------T--------------------T-------, 
I Entry I I I 
I Point I Name I Phase I 
~-------+--------------------+-------~ 
I C6B2 I UPRO {Input/Output I 895 I 
I I Handling) I I 
IC9B2 I Read Routine I B95 I L _______ i ____________________ i _______ J 

GWORK Routine -- SS 

Entry point: GB8A2 

If the record of the name table pOinted to 
by the first byte of the current pretable 
entry is found, this routine is called. It 
scans the name table for the user-defined 
name pointed to by the second byte of the 
current pretable entry. When found, its 
length is tested. If it is greater than 8, 
the ERROR switch is set on and the length 
of the name is set to eight. If it is 
greater than 6, a warning message is pre­
pared. The user-defined name is moved into 
the current pretable entry and the remain­
ing bytes are filled with blanks. 

PUT Routine -- ST 

Entry point: GB9A2 

This routine writes the external name table 
onto SYS001. 

Move Routine -- SU 

Entry point: GBAB2 

This routine moves the contents of the 
symbol table used for the external name 
table into the corresponding pretable 
entry. 

Entry point: GB3A2 

This routine is called by the PRE TAB SYMTAB 
routine 

1. when the area reserved for the pretable 
is filled and one more record must be 
moved into the pretable area and 

2. when the end of the symbol table is 
reached and a pretable overflow has 
occurred. 

GBOFCOON contains the number of records 
of PRETAB, which are written by this rou­
tine onto TXTour. 

---------._--- ._--_. __ ._- --

c 

c 



( 

PL/I PLM 8 

IBM Confidential 

Entry points: GB4h2, GB4A5 

This routine is used in the PRETAB SYMrAB 
routine to read the symbol table and in the 
PRETAB-in-Storage routine to get the 
records of the name table. 

Entry point: GB4A2 is used (1) to read the 
first two records of a table while the 
following records are reaj in overlapped 
mode, and (2) to read all records of a 
table that are not to be read in an over­
lapped mode. 

Entry point: GB4A5 is usej to read the 
third and all following records in over­
lapped mode. The input buffers are B3 and 
B4, and the buffer handling is controlled 
by the switch GWEICHE. 

c 

End-of-Phase Routine -- SX 

If the error or warning switch is on, the 
error handling routine is called. Phase 
COO is called and the text files are 
exchanged. Otherwise, one of the phases 
COO, C25 or C30 is called. 

Error Handling -- SY, SZ 

Entry point: COB2 

This routine is called if an error or warn­
ing message is to be generated. The source 
text is scanned for the first EA-key, 
(i.e., the Eh-key of the PROCEDURE 
statement). The warning or error message 
is inserted behind this key. All other 
text remains unchanged. 

Phase PLlIB97 115 



PL/I PLM 8 

IBM Confidential 

This phase prints the symbol table, which 
contains all identifiers with their expli­
citly, contextually, and implicitly 
declared attributes. The listing is 
arranged according to the block numbers. 

This phase is skipped if the Job Control 
SYM option is not active. However, it is 
not skipped in that case if (11 an incor­
rectly declared variable is detected, (2) a 
qualified name is not declared, or (3) an 
external name is longer than 6 characters. 
~t the end of this phase, phase C25 is 
called if the source program contains IF 
statements. If no IF statements are to be 
processed, phase C30 is called. 

All messages to be printed (except the 
user-defined namel are retrieved from SYM­
TAB. The user-defined name is retrieved 
from N~MTAB according to the compressed 
name in SYMTAB (bytes 0-11. If the inter­
nal representation of a name is zero, if a 
name is longer than 31 characters, or if an 
external name is longer than 8 characters, 
only the user-defined name and an error 
message are printed. 

The number of NAMT~B records that can be 
stored in the work area (see the section 
Initialization -- TN) is referred to as K. 
If NAMTAB does-not contain more than K 
records, each block of SYMTAB has to be 
scanned only once. 

If NAMTAB has more than K records, SYM­
T~B is first written onto TXTOUT. The 
beginning of each SYMT~B block is noted 
simultaneously. When scanning the iden­
tifiers of one SYMT~B block, all parts of 
N~MTAB must be successively moved into the 
work area until all entries of the block 
have been listed. 

The input used by this phase consists of 
the tables SYMTAB and NAMTAB (contained on 
SYS0011. The format of the symbol table 
listing is described in detail in the PL/I 
Programmer's Guide. 

Buffers and Switches 

Buffers 1 - 3 are used as the last part of 
the work area. 

Buffer 4 = buffer A 
Buffer 5 buffer B and print buffer 
Buffer 6 buffer C 
Switch NAMIN is set if the entire NAMT~B 

can be stored in the work area. 

116 

DESCRIPTION OF ROUTINES 

Initialization -- TN 

The work area is used to store NAMTAB or 
parts thereof. Space S accommodates parts 
of the phase (beginning with WBEG1), the 
table space, and the first three buffers. 

If NAMTAB can be entirely stored in 
space S, the work area is equal to space S. 
If not, the note information on the begin­
ning of each SYMTAB block is stored in the 
beginning of space S. The remaining space 
of space S is used as work area. 

Note Blocks of SYMTAB -- TO 

SYMTAB is read into buffers A and Band 
written onto TXTOUT. The beginning of each 
SYMT~B block on TXTOUT is noted. 

Store K Records of NAMTAB in Turn -- TP 

Up to K NAMTAB records are read into the 
work area each time. The smallest and 
greatest number of NAMTAB records in stor­
age are noted in MIN and MAX. Scanning of 
a SYMTAB block starts with MIN=1 and MAX=K. 
The records of a SYMTAB block are read into 
buffer A and scanned for entries the names 
of which are in the part of NAMTAB that is 
in the work area. 

If the buffer pointer points to the end 
of the SYMT~B block and all entries of the 
block have been listed, scanning of the 
next SYMT~B block is started. Otherwise, 
MAX and MIN are increased by K. The next 
records of NAMT~B are read into the work 
area, and scanning of the same SYMTAB block 
starts again. 

Store Entire NAMTAB -- TQ 

switch NAMIN is set and the entire NAMTAB 
is read into the work area. SYMTAB is 
successively read from SYS001 into buffers 
A and C. 

User-Defined Name, Error Message -- TR 

The entry of a user-defined name is 
retrieved from the work area. The name is 
moved into the print buffer and translated 
from internal code into EBCDIC. If the 
name is longer than 31 characters or if its 
internal representation is zero, the name 
is printed with an error message. 

c 

c 



( 

PL/I PLM 8 

IBM Confidential 

rhe entry of the identifier in SYMTAB is 
scanned for attributes. If the identifier 
is an external name of more than 8 charac­
ters in length, the name and an error mes­
sage are printed. If the identifier is a 
built-in fUnction, only the name as well as 
the block and level number are printed. In 
all other cases, the internal representa­
tion and the block and level number of the 
identifier are moved into the print buffer. 
It is tested whether the identifier is an 
array, a structure, or an entry name. 

Arithmetic and String_=- T! 

Base, scale, and precision of an arithmetic 
identifier are moved into the print buffer. 
Types and length of a string identifier are 
also moved into the print buffer. 

Fetching of attributes of the identifier 
from its entry in SYMTAB is terminated. 

Subroutines -- TV 

Work ~E-Erecision w or length 1 
Entry point: WSRB01 

Input parameters: 
R3 points to the entry of the identifier in 
SYMTAB. R11 points to the print buffer. 

Precision w or length 1 is retrieved 
from the entry of the identifier in SYMTAB, 
converted to its decimal value, and moved 
unpacked into the print buffer. 

~ress leading zeros 
Entry point: WSRB02 

Input parameter: 
R2 points to the number to be checked. 

Leading zeros of the number to be checked 
are replaced by blanks. 

Phase PL/ICOO 117 



PL/I PLM 8 

IBM Confidential 

rhis phase is called if the source program 
contains IF statements. Phase C25 

• analyzes all IF nests, 

• replaces all IF statements with IFF~LSE 
statements, 

• generates certain macros, 

• detects any incorrect IF nesting or any 
incorrect use of ELSE. 

rhe input is a string of unambiguous 3-byte 
elements and elements of variable length 
(see output of phases ~60/A65). During 
phases A60/A65, IF statements were made 
non-recursive by replacin~ each THEN by an 
EOS (End of Statement) and by placing an 
EOS after each ELSE, thus making ELSE a 
"statement." 

The output is similar to the input 
except that few additional types of state­
ments and/or macros have been added or 
substituted. 

STATEMENTS AND MACROS PUT OUT BY C25 

The IFFALSE Statement 

Meaning of the IFFALSE statement: 

If expression yields F~LSE, go to nL. 

This statement is sUbstituted for each 
IF statement and is of the following for­
mat: 

r-------T-----------T----------T---' 
I IFFALSE I statement lexpressionlEOSI 
I lattr. table I I I L _______ ~ ___________ ~ __________ ~ ___ J 

where IFFALSE is the statement identifier, 
identical to the statement identifier IF. 
nL is a generated label of the following 
format: 

1 key X'EE' 
2-3 number of the generated label. It 

is obtained by adding 1 to counter 
IJKMVC each time the label gener­
ating routine is called. 

4 key X'EE' 
5-6 X'0069' (indicates that the gener­

ated label is a label constant) 

118 

expre~sion is the original expression 
transformed into 3-byte elements and/or 
elements of variable length. 

The DEFINE LABEL Macro 

The definition-point of a generated label 
is indicated by a DEFINE LABEL macro. The 
format of the DEFINE LABEL macro is as 
follows: 

Byte(sL Contents 

1 
2-3 

4 

5 

6-7 

macro key X'F2' 
length of the macro 
key X'72' indicating that this 
macro is of the type DEFINE LABEL 
key X'BB' (in DEFINE LABEL macros, 
generated label constants have the 
key X'BB' instead of X'EE') 
number of the generated label 

The BRANCH Macro 

Meaning of the BRANCH macro: branch to the 
generated label specified in bytes 6 to 8 
of the macro. 

The format of the BRANCH macro is as 
follows: 

Byte(sL Contents 

1 macro key X'F2' 
2-3 length of the macro 

4 key X'70' indicating that this 
macro is of the type BRANCH 

5 X'OF' (code for unconditional 
branch) 

6 key X'EE' 
7-8 number of the generated label 
9-11 modifiers (here always 0) 

Sampl~ InEut and Output of Phase C25 

• Statements have statement identifiers 
consisting of capital letters (for 
instance: IFFALSE, SET, READ, etc.) 

• Macros are identified by lower case 
letters (for instance: define label, 
branch) • 

• Generated labels are written like 1L, 
2L, 3L etc. 

Note that the input and the output 
actually consists of a string of 3-byte o 



( 

(' 

(' 

PL/I PLM 8 

IBM Confidential 

elements ana/or elements of variable 
length. 

1 

2 

3 

4 

5 

6 

IF exl ; 
SET A=B; 

ELSE; 
SET C=D; 

IF exl; 
SET A=B; 

SET C=D; 

IF exl ; 
IF ex2; 

IF ex3; 
SET C=D; 

IF ex1; 
IF ex2; 

SET A=B; 
ELSE; 

SET 

IF exl ; 
BEGIN 
alpha 
END ; 

SET A=B ; 

DO ; 
IF exl 

BEGIN 
alpha 
END ; 

ELSE ; 
BEGIN 
beta 

END 

gamma 
END ; 

C=D; 

IFFALSE lL exl ; 
SET A=B; 
branch 2L 
define label lL 
NOP; 
SET C=D; 
define label 2L 

IFFAISE lL exl 
SET A=B; 
define label lL 
NOP; 
SET C=D; 

IFFALSE 1L ex1 ; 
IFFALSE 2L ex2; 
IFFALSE 3L ex3; 
SET C=D; 
define label 3L 
NOP; 
define label 2L 
NOP; 
define label lL 
NOP; 

IFFALSE lL ex1; 
IFFALSE 2L ex2; 
SET A=B; 
branch 3L 
define label 2L 
NOP ; 
define label 1L 
SET C=D ; 
define label 3L 

IFFALSE lL exl 
BEGIN 
alpha 
END ; 
define label 1L 
SET A=B ; 

DO 
IFFALSE 1L exl 
BEGIN 
alpha 
END ; 
branch 2L 
define label lL 
NOP ; 
BEGIN 
beta 
END ; 
define label 2L 
gamma 
END ; 

Phase Performance: 

Each encountered statement is tested to 
determine whether it 

• is an "End of Unit 1", or 

• is immediately following an "End of Unit 
1", or 

• is an "End of Unit 2". 

If the statement is of the "End of Unit 
l"-type, the last entry in the symbol stack 
(presumably IFPH4, standing for "IF") will 

be replaced by IFPH3 ~tanding for "End of 
Unit 1"). If there are several consecutive 
IFPH4 entries in the stack, each of them 
will be replaced by an IFPH3. Then the 
statement will be put out. 

If the statement immediately follows an 
"End of Unit 1", as many macros, define 
labels, and FALSE labels are put out as 
there are consecutive IFPH3 entries in the 
symbol stack. rhe FALSE labels will be 
taken from the label stack. Then the 
statement will be put out, or new state­
ments are generated for IF and ELSE. 

If the statement is of the "End of Unit 
2"-type. the statement will be put out. now 
followed by a macro. a define label, and an 
EXIT label. The EXIT label is taken from 
the label stack. 

Processing of the Input Stream 

If a DO or BEGIN statement is encountered. 
the corresponding one-byte symbol IFPHl or 
IFPH2 is entered into the symbol stack. 
Then the statement is tested and processed 
as described in Phase Performance. 

If an END of group or END of block is 
encountered, the corresponding symbol IFPHl 
or IFPH2 is eliminated from the symbol 
stack. Then the statement is tested and 
processed as described in Phase Perfor­
mance. 

If an IF statement is encountered. the 
symbol IFPH4 is entered into the symbol 
stack and the statement is then processed 
as described in Phase Performance. A label 
KL is generated, entered into the label 
stack, and the statement --IFFALSE KL 
expression;-- is put out. 

If an ELSE statement is encountered, the 
last entry in the symbol stack is replaced 
by IFPH5. a label nL is generated, a -­
branch nL;-- is put out, the last entry in 
the label stack mL is used to put out 
define label mL, and the generated label nL 
is entered into the label stack. 

Phase PL/IC25 119 



PL/I PLM 8 

IBM Confidential 

An END of procedure is sUbject to a 
specific test, for it may never be used as 
a "Unit 1" or "Unit 2" in an IF statement. 
In this case an error message is given. 

Tables and Pointers 

Two push down stacks are used: a symbol 
stack and a label stack. 

The symbol stack IFPH86 consists of 100 
one-byte elements. IFPH86 is used to store 
the following symbols: 

IFPH1 
IFPH2 
IFPH3 
IFPH4 
IFPH5 

for DO 
BEGIN 
"End of Unit 1" 
IF 
ELSE 

The pointer to IFPH86 is the symbolic 
register R7. 

The label stack IFPH87 consists of 100 
half-word elements, and is used to store 
generated labels (FALSE labels as well as 
EXIT labels). The pointer to IFPH87 is the 
symbolic register R6. 

DESCRIPTION OF ROUTINES 

~ote: A routine is called 'open' if it 
gets control by a B instruction. A routine 
is called 'closed' if it gets control via a 
BAL instruction, and if control is returned 
by a BR instruction. 

This is the "master program" of phase C25. 
IFPH initializes pointers, registers, etc. 
and reads the first 4 records into input 
buffers 1 to 4. 

IFPH scans the input until a statement 
identifier is found. Upon this, the Define 
Label macros (which may precede the 
statement), the statement identifier, and 
the statement attribute table are put out. 
Depending on the encountered statement, one 
of the following routines is called: 

Statement: 
IF 
BEGIN 
DO 
END (of BEGIN block) 
END ~f DO grou~ 
ELSE 

~ny other statement: 

Called routine: 
IFIF-------
BEBE 
DODO 
BLBL then EOST 
GR3R 
ELEL 

VIRGO, 
then NSNS, 
then EOST. 

~fter return of control to IFPH, the 
scan is continued. If the end of program 
is reached, TEPHA is called. 

120 

BEBE, DODO ~- UN (Closed) 

BEBE puts IFPH2 (symbol for "BEGIN") into 
the symbol stack. If this is the first 
entry into the symbol stack, the statement 
body is put out and the program returns. 
Otherwise, the preceding entry in the sym­
bol stack is tested. If this is IFPH3 
(symbol for "end of unit 1"), FOUT is 
called to put out a HDefine Label" macro. 
The operand of this macro is the last entry 
in the label stack. Then IFPH3 is replaced 
by IFPH2. The stack pointer R7 is decre­
mented by 1, the statement body is put out, 
and the symbol stack entry currently 
selected by R7 is tested as described. 

If the tested entry in the symbol stack 
is not IFPH3, the statement body is put out 
and the program returns. 

DODO performs the same as BEBE but uses 
IFPH1 instead of IFPH2. 

The last entry in the symbol stack is test­
ed. If this entry is IFPH3 (symbol for 
"end of unit 1"), a Define Label macro is 
generated. The operand of this macro is 
the label stack entry selected by label 
stack pointer R6. Then R7 is decremented 
by 1 and R6 is decremented by 2. Then the 
symbol stack entry currently selected by 
pointer R7 is tested as described. 

If the tested entry in the symbol stack 
is IFPH4 (symbol for "IF"), it is replaced 
by IFPH3. R7 is decremented by 1. Then 
the symbol stack entry currently selected 
by pointer R7 is tested as described. 

If the tested entry in the symbol stack 
is IFPH5 (symbol for "ELSE"), the statement 
body and a DEFINE LABEL are put out. The 
operand of the DEFINE LABEL is the label 
stack entry selected by R6. 

BSAC_JClosed) -- UF 

The routine initiates output of the state­
ment attribute table for the currently 
processed statement. 

BYPA (Closed) -- UD 

The routine puts out either the one part of 
the statement attribute table that contains 
attributes of variables, or the other part 
which contains attributes of constants. 
Then the statement body is positioned to 
start in input buffer 1. 

DPDS (Closedl -- UJ 

DPDS compares the symbol stack entry cur­
rently selected by R7 with the argument in 
R4. R4 contains a symbol (either IFPH1 for 

c 

c 



( 

( 

PL/I PU1 8 

IBM Confidential 

"DO" or IFPH2 for "BEGIN",). If the symbol 
stack entry matches the argument in R4, the 
entry is deleted and pointer R7 is decre­
mented by 1. 

If entry and argument jo not match, the 
search continues until a ~atching entry is 
encountered. Then the matching entry is 
deleted. All symbol stack entries at a 
higher level than the matching entry are 
moved down one position. Pointer R7 is 
decremented by 1. 

ELEL generates a label and puts out a 
Branch macro with the generated label as 
operand. The generated label is stored in 
ELEL2. Then a Define Label macro with the 
last entry in the label stack as operand, 
followed by NOP, is put out. The latest 
Label Stack entry is replaced by the label 
stored in ELEL2. IFPH5 (symbol for "ELSE") 
is entered into the symbol stack. Finally, 
a NOP statement is put out. 

This routine is described in phase A35. 

The routine arranges the contents of the 
input buffers 1 to 4 so that the currently 
scanned EOS is in input buffer 1. This is 
done by moving and reading new records. It 
puts out the EOS and the attached error 
codes. Any additionally generated error 
codes are also put out. 

The routine puts out a Define Label macro. 
The operand of this macro is the last entry 
of the label stack. Stack pointer R6 is 
decremented by 2. 

The routine moves the input pointer PIN 
until an EOS is encountered. The address 
of the byte preceding this EOS is stored in 
IFPH96. 

Entry point to BLBL. 

GSN moves the statement identifier of the 
current statement into GSN4. It returns to 
4 (O,LINK) if the statement is correct. 
Otherwise, it returns to (LINK). 

IFIF ::- UL.l£losed) 

IFIF tests the symbol stack entry currently 
selected by R7. If this entry is IFPH3 
(symbol for "end of unit 1 "), a Define 
Label macro is generated. The operand of 
the Define Label macro is the label stack 
entry currently selected by R5. Then R7 is 
decremented by 1 and R5 is decremented by 
2. The symbol stack entry currently 
selected by R7 is tested as described. 
Otherwise, a label is generated, stored in 
the label stack, and put out followed by 
the statement body (see description of 
IFFALSE statement) • 

IPDS JClosed) -- UL 

IPDS increments stack pointer R7 by 1 and 
enters the rightmost byte in RO into the 
symbol stack. 

JTRN~!-1£losed} -- UQ 

This is the output routine. Register BYZ 
contains the number of bytes to be put outi 
register PIN contains the start address. 
One output buffer is used. 

If the remaining portion of the string 
to be put out is smaller than the remaining 
unoccupied space of the output buffer, the 
string is moved into the buffer. BYZ is 
added to POUT to update the output pOinter. 

If the string to be put out exceeds the 
unoccupied space, an appropriate portion of 
the string is moved to fill the output 
buffer to its capacity. Then the contents 
of the buffer are written onto the output 
medium. POUT is reset to the start address 
of the buffer. BYZ is decremented by the 
number of bytes moved into the buffer, and 
PIN is incremented by that number. Then 
JTRNA1 is repeated until output is complet­
ed. 

LGEN J£losed) -- UC 

LGEN generates a label and enters it right­
justified into register Rl. The format of 
the generated label is shwon in Figure 1. 

This routine puts out 

1. Label list 
2. Statement identifier 
3. Statement qttribute table 

Entry point to BLBL. 

Phase PL/IC25 121 



PL/I PLM 8 

IBM Confidential 

EOB (Closed~ UF 

When POB is called, R2 contains the start 
address and R1 the end ad~ress of a string 
to be put out. POB is an "interface" to 
the routine JTRNA1 which requires the start 
address and the length of a string to be 
put out. POB performs the necessary 
transformations. 

srEP (Close~=- UE 

SrEP tests the high-order 4 bits of the 
byte selected by PIN. If these bits are 
set to X'E', PIN is incremented by 3. If 
these bits are set to X'F', PIN is incre­
mented by the contents of the two bytes 
following the byte selected by PIN. If 
these bits are set to any other value, a 

122 

compiler error occurred and a dump is ini­
tiated. 

VIRGO -- UM (Closed) 

The symbol stack entry currently selected 
by R7 is tested. If this entry is IFPH3 
(symbol for "end of unit 1"" a Define 
Label macro is generated. The operand of 
this macro is the label stack entry cur­
rently selected by R6. R7 is decremented 
by 1 and R6 is decremented by 2. Then the 
symbol stack entry currently selected by R7 
is tested as described. If the selected 
entry is not IFPH3, VIRGO returns to either 
4 (O,LINK" if only one test has been per­
formed, or (LINK) if more than one test has 
been performed. 

c 



( 

( 

PL/I PLIVl B 

IBM Confidential 

rhis phase performs the following func­
tions: 

1. It scans all constants for acceptable 
precision. 

2. It replaces the external format of the 
constants by an intermediate one. 

3. It builds up the constant tables as 
part of the statement attribute tables. 

Note: The character strings have already 
been-processed in phase A45. 

If a constant is preceaed by a prefix 
plus or minus, this sign is removed from 
the source text, and a corresponding sign­
bit is set in the constant table. 

rhe text input consists of a sequence of 
statements terminated by the end-of-program 
key. Each statement is composed of the 
following elements: 

1. The statement identifier key (6 bytes) 
which may be preceeded by one or more 
label macros. 

2. The symbol table, if there are any 
variables in the statement. 

3. The statement body. 

4. The end-of-statement key (6 bytes) 
which may be followed by one or more 
error-keys (2 bytes) • 

The statement body consists of elements 
which formally may be distinguished by 
E-keys (3 bytes) and F-keys (variable 
lengt~. The constants are interspersed 
within the statement body and contain the 
following information: 

• one of the six constant keys, the dif­
ference depending on the type of con­
stant: 

X'F7' 
X'FB' 
X'F9' 
X'FA' 
X'FB' 
X'FC' 

decimal fixed-point constant 
decimal floating-point constant 
binary fixed-point constant 
binary floating-point constant 
bit-string constant 

= sterling constant 

• the length of the constant (2 bytes) , 
and 

• the constant. 

PHASE PL/IC30 JPROCESSING CONSTANTS I) -- WA 

The character strings have already been 
processed in phase A45 and are collected in 
the character-string table on SYS001. 
Within the statement body they are replaced 
by a reference key that consists of the 
following: 

• Key 'character string' = X'E3' 

• Offset, relative to the start of the 
character string table (2 bytes) 

• Key 'character string' = X'E3' 

• Error-byte 

X'OO' if no error 
bit 0 set to if error 55 
bit 1 set to if error 56 (see phase 

A45) 
bit 2 set to if error 67 

• length of the character string (1 byte) 

Like the input, the output consists of a 
sequence of statements, terminated by the 
end-of-program key. Each statement is 
composed of the following elements: 

1. The statement identifier key (6 bytes) 
which may be preceded by one or more 
label macros. 

2. rhe symbol table, if there are any 
variables in the statement. 

3. The constant table, if there are any 
constants in the statement. 

4. The statement body. 

5. The end-of-statement key (6 bytes) 
which may be followed by error-keys (2 
bytes) • 

The constant table consists of the fol­
lowing: 

• Constant-table key = X'F3' (1 byte), 

• Length of the constant table (2 bytes) 
and 

• one or more constant entries. 

Each entry of the constant table con­
tains the following: 

• Internal name of the constant (2 bytes) 
(N = IJKMVC, which is increased by 1 for 
every constant) • 

Phase PL/IC30 123 



PL/I PLM 8 

IBM Confidential 

• Attributes of the constant (inserted and 
used by following phases, here initial­
ized with X'10') (1 byte). 

• Type of the constant (1 byte) 

X'60' 
X' 61 ' 
X'62' 
X'63 ' 
X'67' 

= binary float 
= binary fixed 

decimal float 
= decimal fixed 

bit string 

Note: Sterling constants are stored as 
decimal fixed-point pence. 

• Precision of the constant (1 byte) 

if binary float: P(0<P~53) 
if binary fixed: P(0<P~31) 
if decimal float: p< (0<P~17) 
if bit string: P(0<LS64) 
if decimal fixed, bits 0-3: P(0<PS15) 

bits 4-7: Q(O<QSP ) 

• Three bytes containing zeros, used by 
following phases for "new type and pre­
cision." The first bit is set to 1, if 
the constant is preceded by a prefix 
minus. 

• Length of the intermediate representa­
tion of the constant (2 bytes) • 

• Intermediate representation of the con­
stant, depending on the type of con­
stant: 

124 

binary float 

binary inte~er contained in a field of 4 
bytes (if P~21) or 8 bytes (if P>21) I 

followed by a binary integer (2 bytes) 
representing the binary exponent. 

decimal float 

decimal integer in packed decimal format 
(length of field = FLOOR (P+2/2)), fol­

lowed by a binary inte~er (2 bytes) 
representing the decimal exponent. 

binary fixed 

32-bit binary format (see IBM 
~y~!em/3~_Prig£!Eles of operation, 
Form A22-6821) 

decimal fixed 

packed decimal format 1see ~ 
~~tem/3~Prin£!El~QK-QQgra!~Qg, 
Form A22-6821). Length of field = FLOOR 
(P+2/2) • 

~otg: rhe position of the decimal point 
is recorded by the scale factor Q. 

bit string 

byte-aligned, one binary digit per bit. 

Within the statement body, the constant 
has been replaced by the reference key. 
This key consists of the following: 

• 

• 

Key 'constant reference' = X'E9' (1 
byte) • 

Internal name of the constant (see con­
stant table) (2 bytes) 

The character strings are referenced by 
a key containing the following: 

• Key 'character string' = X'E3' (1 byte). 

• Offset relative to the start of the 
character string table (2 bytes) • 

• Key 'character string' = X' E3' (1 byte). 

• Length of the character string (2 
bytes) • 

DESCRIPTION OF ROUTINES 

Initialization -- WB 

This is the beginning of the main routine. 
It initializes pointers, switches etc. 
Then it .reads in four buffers of input 
text. 

This is part of the main routine. It per­
forms a general scan over t.he source text. 
The labels, the statement identifier, and 
the attribute table are moved into the 
output buffer. The length of the attribute 
table is saved in STABLi the begin address 
of the statement body is saved in PINS. 
The statement body is scanned for con­
stants, which are processed in FCON. If 
errors are detected in the character 
strin~s, the corresponding error codes are 
moved into the error table. When the end­
of-statement key has been reached, control 
is transferred to FEST. 

FEST -- WE -------
Input parameter: 
PINS = address of the beginning of the 

statement body. 

This is part of the main routine. It moves 
the constant table (if constants exist in 
this statement) into the output buffer. 
The constant table is followed by the 
statement body in which the constants are 
replaced by 3-byte reference keys. 

c 

C· . " 



( 

PL/I PLM 8 

IBM Confidential 

Routine FCON -- WG ------------------
Input parametErs: 
RLEN (register) length ~f external rep-

PIN 
PI'A.B 
TABL 

Output 
PIN 
PTAB 

TABL 

resentation of constant. 
(register) address of constant key. 
(register) constant table pointer. 
(half-word) length of constant table 

+ length of symbol table. 

parameters: 
PIN + length of constant key. 
points to the next available byte in 
the constant table. 
TABL + length of the last entry 
processed. 

By means of one of the called routines, 
the constant is scanned f~r acceptable 
precision. Type and precision are entered 
in the constant table with the constant 
itself in its intermediate representation. 
The constant table entry is completed by 
entering the internal name, the attribute 
byte, the three O-bytes, and the length of 
the intermediate representation. 

If IJKMVC is greater than 232 _2, it is 
reset to 0, and an error nessage is pro­
duced. The same error message is generated 
in the case of a table-space overflow (TAtlL 
must not be greater than the table spac~ , 
furthermore, PTAB and TABL are not 
increased. 

Finally the constant key is replaced by 
the constant reference key and as many 
blanks as are needed to overlay the con­
stant in its external format. These blanks 
are eliminated in FEST. If the constant is 
preceded by a prefix plus or minus, the 
minus sign is taken into account by setting 
the first bit of the 3 zero-bytes to 1. 
The prefix signs are then removed from the 
source text by overlaying them with the 
constant key and replacing all bytes of the 
constant by blanks. 

Input parametErs: 
R1 address of the constant in its 

external format 
RLEN 
PTAB 

Output 
PTAB 
RLEN = 

length of the external format 
pointer to the constant table 

parameters: 
unchanged 
length of the intermediate represen­
tation of the constant 

This routine processes the binary 
floating-point constants. The precision of 
the constant is determined in FPFL. If 
there are more than 53 binary digits (error 
number 58), the constant is truncated on 
the right, the exponent is increased 
accordingly, and JERR is called. The expo-

nent ~f the intermediate representation is 
obtained by subtracting the number of 
digits specified after the binary pOint 
from the exponent specified by the program­
mer. The binary digits of the external 
format (each digit occupying one byte) are 
condensed to a bit string (each digit 
occupying one bit) in FBIN. The constant 
is st~red in the constant table. 

Routine FBFI -- WM 

Parameters: same as in FBFL. 

This routine processes the binary fixed­
point constants. If there are more than 31 
digits (error number 62), the constant is 
truncated on the right, and JERR is called. 
The binary digits of the external format 
(each digit occupying one byte) are con-

densed to a bit string (each digit occupy­
ing one bit) by means of FBIN. 

Routine FDFL -- fiK ------------------
Parameters: same as in FBFL. 

This routine processes the decimal 
floating-point constants. The constant is 
stored as a decimal integer followed by an 
exponent. This exponent is obtained by 
reducing the exponent specified by the 
programmer by the number of digits after 
the decimal point. If there are more than 
16 digits (error number 58), the number is 
truncated on the right and the exponent is 
increased by the number of digits being 
truncated. 

Routine FDFI -- WN ------------------
Parameters: same as in FBFL. 

This routine processes the decimal 
fixed-point constants. If there are more 
than 15 digits (error number 63), the con­
stant is truncated on the right. 

Routine FBST -- WL 

Parameters: same as in FBFL. 

This routine processes the bit string 
constants. If a replication factor greater 
than 1 has been specified, the bit string 
is expanded accordingly. Bits exceeding 64 
are truncated (error number 56) • 

Parameters: same as in FBFL. 

This routine processes sterling con­
stants. The constant is converted to and 
stored as decimal fixed-pOint pence. The 
conversion is done by the instructions ADD 
and MuLTIPL~ DECIMAL; if, however, the 
decimal feature is not available, these 

Phase PL/IC30 125 



PL/I PLM 8 

IBM Confidential 

instructions must be simulated. The preci­
sion of the constant is taken from the 
converted number; leading zeros are 
ignored. If more than 15 significant 
digits have been obtained (error number 
61), the decimal fixed-point pence number 
is truncated on the right. 

Routine FPFL -- WI 

Input parameters: 
R1 address of the constant in its 

external format 
RLEN = length of the external format 

parameters: 
unchanged 

output 
R1 = 
REXP 
RLEN = 
RQ 

exponent specified by the programmer 
number of digits specified for 
fixed-point portion of constant (P) 
number of digits specified after 
decimal (binary) point (Q) 

This routine scans the precision and 
exponent of a floating-point constant. 
the specified exponent e~ceeds 3 digits 
(error number 57), the remaining digits 
truncated. 

Routine FPFI -- WI 

rhis is a secondary entr~ point of FPFL. 

Input parameters: 
R1 address of the constant in its 

external format 

the 
If 

are 

RLEN = length of the external format (of a 
fixed-point constant) 

Output 
R1 
RLEN 

RQ 

parameters: 
unchanged 
number of digits of decimal fixed­
point constant (P) 
nUmber of digits specified after 
decimal (binary) point (Q) 

This routine scans the precision of a 
fixed-point constant. 

Input parameters: 
R1 address of the constant in its 

external format 
RLEN = length of the external format 

Output 
R1 
RLEN 
REPL 

parameters: 
address of the basic string 
length of basic string 
replication factor 

Converts the replication factor of a 
bit-string constant to binary. If no 
replication factor is specified, REPL is 
set to 1. A zero replication factor is 
ignored (error number 55) and REPL is set 
to 1. 

126 

Routine FBIN -- WL 

Input parameters: 
R1 = address of the first digit of the 

constant 
RLEN = number of digits 
Output paramters: 
(R4, R5) resulting bit string (binary 

number) , right-aligned 

This routine condenses a character 
string of zeros and ones to a bit string. 

This routine positions the contents of 
input buffers 1-4 so that the currently 
scanned EOS is in input buffer 1 (this is 
done by calling JMIB). The EOS and the 
error codes attached to it are written on 
the text output file. If additional error 
codes are generated, they are also put out. 

This routine moves input text to the left 
and reads in new records. 

This routine determines if a statement is 
too long (i.e., if its EOS key is in the 
first 4 input buffers). If so, the state­
ment body is deleted so that the statement 
consists only of the statement identifier 
and the EOS (with error codes). The fol­
lowing statement is positioned So that it 
begins in input buffer 1. If the statement 
is not too long, this routine returns to 
the calling routine. 

Input parameters: 
PIN pointer for source text 
POUT pointer for output buffer 
BYZ number of b:z·tes to be moved 

Output 
PIN 
POUT = 

parameters: 
PIN+BYZ 
address of next available byte with­
in the output buffer 

If all the bytes to be moved do not fit 
into the output buffer (or if it is com­
pletely filled), the buffer is filled by 
the first part of the text to be moved and 
then written on the text output work file. 
The remaining bytes, if any, are moved to 
the beginning of the buffer. 

Routine JERR -- WQ 

This routine checks whether the error table 
is full and returns in that case. If the 
error table is not full, the number of 
errors is increased by one and the corres­
ponding error key is inserted. 

c 



( 

PL/I PLM 8 

IBM Confidential 

The main task of this phase is to sort the 
blocks arising in the source program. The 
input is on TXT IN. Three different cate­
gories are to be distinguished. 

1. The source program consists of only one 
block. Therefore, only one scan of the 
input string is required. The block 
with the level number zero is written 
onto TXTOUT. 

2. The source program consists of blocks 
with the level numbers zero and one. 
This requires the input string to be 
scanned twice: 

a. The block with the level number 
zero is extracted and written onto 
TXTOUT. The blocks with the level 
number one are written onto SYS001. 

b. The input is on SYS001 and written 
unchanged onto TXTOUT. 

(" 
3. The source program consists of blocks 

with the level numbers zero, one, and 
two. This requires the input string to 
be scanned three times: 

a. The block with the level number 
zero is extracted and written onto 
TXTOUT. The blocks with the level 
numbers one and two are written 
onto SYS001. 

b. The input is on SYS001. The blocks 
with the level nunber one are 
extracted and written onto TXTOUT. 
The blocks with the level number 
two are written onto TXTIN. 

c. The input is on TXTIN and written 
unchanged onto TXTOUT. 

If, in the nth scan, a BEGIN statement 
is found that opens a block with level 
number n, a label is generated in front and 
the block with the label is written onto 
SYS001 or TXTOUT. Instead of the BEGIN 
block a CALL macro containing the new label 
is generated. If the BEGIN statement is in 
an embracing BEGIN block, the statement is 
additionally changed to NEW BEGIN. 

If a PROCEDURE statement is found, eith­
er the entire attribute table or the first 
18 bytes of the attribute table are stacked 
depending on the length of the table. 

If an END (procedure) statement is 
found, the last entry in the stack is 
cleared. 

PHASE PL/IC35 (BLOCK SORTING) -- V~VB 

If a RETURN statement is found, the 
contents of the last entry in the stack are 
inserted after the first 8 bytes of the 
RETURN statement. 

The contents of the attribute table of 
each statement are translated into a new 
form by the translate subroutine. 

Six buffers are used: five buffers, i.e., 
output buffer 1, three work buffers, and 
one input buffer, are in the I/O area, and 
output buffer 2 is defined in the table 
area. 

DESCRIPTION OF ROUTINES 

Symbols used in flow charts: 

C (B) 
C (B+1) 

contents of location pointed to by B 
contents (length 2 bytes) of loca­
tion pointed to by B+1 

A (B) address of B 

Initialization VC 

The following items are defined and set to 
their initial values: 

ALEVEL 
CLEVEL 
MAXCL 
ZAEHL 
ZAEHL2 
COUNTER 
COUNTER2 
ML 
.t:lISPEI 
BEGINBIT 
NEWBE:;IN 
NBEGIN 
OUTPUT 
TATTRIB 
ATTRIB 

Pointers: 
B6 
BO 

B1 
B2 
B3 
B4 
B5 

Registers: 

actual level (0) 
current level (-1) 
maximum value of CLEVEL (-1) 
I/O record counter (0) 
I/O record counter (0) 
I/O record counter (0) 
I/O record counter (0) 
mOVe-instruction length (4) 
intermediate storage for address 
switch 
key of changed BEGIN (X'17') 
key of changed BEGIN (x'16') 
temporary buffer 
attribute table stack 
address of TATTRIB+3*21 

start address of output buffer 2 
IJKMBS = start address of output 
buffer 1 
start address of work buffer 
B1 + buffer length 
B2 + buf·fer length 
start address of input buffer 
B4 + buffer length 

OP2 pointer for 
set to B6 

output buffer 2 is 

OP1 pointer for 
set to BO 

output buffer is 

Phase PL/IC35 127 



PL/I PLM 8 

IBM Confidential 

CP 

LENGTH 

current pointer in work buffer is 
set to B5 
counter used for text output 

rhe main routine scans the current input 
string for some special keys and calls the 
appropriate subroutines. 

Entry point: VEB2 

rhis routine is called when a label macro 
is found. The label macro is written out 
if it is not followed by a PROCEDURE state­
ment. 

If it is followed by a PROCEDURE state­
ment, the subroutine CLEV~AX increases the 
current level CLEVEL, and if CLEVEL is not 
zero, a library bit is inserted. Then the 
label and the beginnin~ of the PROCEDURE 
statement are written out. 

If the PROCEDURE statement is detected 
during the first scan through the input 
string, some additional actions are 
required, e.g., the attribute table must be 
stacked, translated, and written out. 

~g~n Handling -- VG 

Entry point: VGB2 

rhis routine is called when a BEGIN state­
ment is found in the input string. At 
first the current level CLEVEL is increased 
by one in the routine CLEVMAX and is then 
compared to the actual level ALEVEL. 

If the current level is equal to the 
actual level and the actual level is one, 
the switch BEGINBIT is set to one. 

If the current level is not equal to the 
actual level, the difference between the 
actual level and the current level is test­
ed. If the difference is one, some poin­
ters are changed to move the label macro 
into the OP2 buffer. 

The label macro is 7 bytes long and 
contains the following information: 

~~~L 

1
2
3
4
5

6-7

128

Contents -------

F2 - macro key
00
07
72 : label
E1
variable counter

Switch BEGINBIT is tested and if BEGIN­
BIT = 1, the BEGIN key is replaced by the
contents of NEWBEGIN.

The pre statement is moved into the OP2
buffer. Thereafter, any existing labels
located behind the prestatement are moved
into the OP1 buffer followed by the CALL
statement.

The call macro is 19 bytes long and
contains the following information:

~teJ:2.L

1
2
3

4-6
7
8
9

10
11

12-13
14

15--19

EO
FF
09
refer to the BEGIN statement
macro key
00
07
AD
E1
variable counter IJKMVC
EA
refer to BEGIN statement.

The variable counter IJKMVC is increased
by one. When the value X'FFFF' is reached,
an error message is generated.

Return Handling -- VH and VI

Entry point: VHB2

This routine is called when the beginning
of a RETURN statement is found. The poin­
~er LENGTH is increased by six and the
input/output subroutine is called. Unless
this routine is not called during the first
scan through the input stream, (ALEVEL = 0)
the end of the routine is reached. Other­
wise, the attribute table is processed. It
an F4-key is found, the translate routine
is called and the translated attributes are
moved into the output buffer. Thereafter,
the constant table, if there is one, is
moved and the last entry of the attribute
stack (made by detecting the last PROCEDUR~
statement and pointed to by ATTRIB) is
inserted. Then, RETKON is moved into the
output area. RETKON is 6 bytes long and
contains the following information:

Byte(sL Contents

1 E1
2-3 RErURNL

4 E2
5 00
6 EB

Figure 1 shows the format of the RETURN
statement at the end of this routine.

c

c

(

(.

PL/I PLM 8

IBM Confidential

~I EO I OO---lI'--OC...,L.I---II,---,-I---!lf-o-F4 II_eng_th.&.....J1 {{ I F311ength I (\ I F411engthl ~ (I Ell RETURN LI E21 001 EB I unchanged)

° 1 6 7 9 ~~ __ ~v~ ______ A~ ______ ~y~I ____ ~A~ ______ ~v~ ________ ~J

l

exists not in all
cases

Figure 1.
RETURN L

Format of RETURN Statement

§~~LJ!:;:ocedurel Han~li!lSL:.- VK

Entry point: VKB2

This routine is called when an END
(procedure) statement is found. First,

hLEVEL is tested. If it is zero, the last
entry of the attribute-table stack is
cleared.

The following actions are also performed
by the END (begin) Handling routine:

The beginning of the statement is writ­
ten out, the routine Label Handling is
called, the statement end with error keys,
if any, is written out, and CLEVEL is
decreased by one before the end of the
routine is reached.

§~~{Beginl Handling -- VL

Entry point: VLB2

This routine is called when an END (begin)
statement in the source text is found. If
hLEVEL and CLEVEL contain one, the BEGINBIT
is set to zero before branching to the END
(procedure) Handling routine.

Entry point: VMB2

This routine is called when generated
labels are found in the prestatement.
These labels are moved into the output
buffer and the counter CLEVEL is increased
by one.

§~£-2EQgra~~_VN ~~~~Q

Entry point: VNB2

This routine is called if the end-of­
program key is detected.

If IJKMBC contains one, the end of the
source text is written out and the next
phase is called. Otherwise, the next scan

I

Attribute of
the PROCEDURE

RETKON

J

through the input stream is started.
Depending on MAXCL and ALEVEL, the text is
processed. If MAXCL equals ALEVEL, the
Endlevel routine is called. The output
(text unchanged) of the last scan is moved
onto rXTOUT and the end of the phase is
reached, otherwise, the routine returns to
the initialization routine of this phase,
and a new scan begins.

Translate Routine -- VP - vs

Entry points:
VPB2 (tra.nslate routine 1)

TRANSLAT (translate routine 2) •

The subroutine Translate translates the
attributes in the variable entry into the
following l-byte form:

Bit 0

Bits 1-3

Bits 4-7

o
1

000

001

010
all
100

101

not controlled,
controlled
Scalar variable without
picture
Scalar variable with
picture
Array without picture
Array with picture
ENTRY name or function
name without picture
Function name with pic­
ture
Constant

== Binary float
Binary fixed
Decimal float
Decimal fixed
Zoned decimal
Zoned decimal (~
Character string
Bit string
Sterling

110
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010 ==
1100
1101 ==
1110
1111

Label
Pointer
Major Structure
Minor Structure
Others
File

PhaSe PL/IC35 129

PL/I PLM 8

IBM Confidential

Input parameter:
RPOI (4 bytes) contains the address of the
variable entry in the prestatement to be
translated.

Output parameter:
ELENG (1 byte) contains the entry length of
the declared variable.

Endlevel Routine -- VT

Entry point: VTB2

rhis routine reads the output of the last
scan of the text from SYS001 or TXTIN and
writes it unchanged on TXrOUT.

CLEVMAX Routine -- VU

Entry point: VUB2

rhe current level CLEVEL is increased by
one and compared with MAXCL. If CLEVEL is
greater than MAXCL, MAXCL is set to CLEVEL.

Entry point: VWB1

This routine controls the buffer handling.
It is called when a string of the source
program is to be written out. At first, a
test is performed to determine whether the
string is contained in its full length in
the buffer area.

If it is, the move routine is called
where the string is moved into the output
area. Then, the read routine is called
where the input buffer is filled, if
required, and this routine returns.

If the string is not contained in its
full length in the buffer area, the section
of the string contained in the buffer area

130

is moved, and the input and work buffers
are filled. rhen the remainder of the
string is moved and written out, and the
routine returns.

Read Routine -- VX

Entry point: VXB1

The input and work buffers are filled if
required. Therefore, CP is compared to B2.
If CP is lower than B2, the routine
returns. Otherwise, the contents of the
buffers B2, B3, and B4 are moved into the
buffers B1, B2, and B3, respectively. The
buffer B4 is filled with the next record
from rXTIN or SlS001.

Move Routine -- VY

Entry point: VYB2

This routine is called if a string has to
be moved into the output area. Depending
on the contents of ALEVEL and CLEVEL, buf­
fer BO or B6 is used. The entire string or
part of it is moved into the buffer area
depending on the length of the string and
the number of free bytes in the buffers. A
full buffer is written out by the write
routine, if required.

Write Routine -- VZ

Entry point: VZB2

Depending on the contents of ALEVEL and
CLEVEL, OP1 or OP2 are compared to B1 or
BO. If the result of this comparison is
not equal, the routine returns without
further actions. Otherwise, the contents
of the buffers BO or B6 are written onto
TXTOUr,rXTIN, or SYS001 depending on ALEV­
EL.

c

(

PL/I PLM 8

IBM Confidential

The I/O scan is performed in this phase and
the phases C55, C60, and 265. These phases
process all liD statements. The functions
of these phases are:

1. to check the statements for errors that
are not detected by phases h60 and A65.

2. to prepare the statements for process­
ing in later phases:

a. to generate DO statements for the
repetitive specifications in the
data lists, and

b. to arrange the statements and
include information required to
permit sequential processing of the
statements in later phases when the
appropriate I/O macros are to be
generated.

3. to generate assignment and expression
statements for expressions contained in
some options and lists.

Phase C50 is used to perform part of the
processing required for GET and PUT state­
ments. The options FILE, STRING, PAGE,
LINE, and SKIP are checked for errors.
Assignment statements are generated as
required.

Repetitive specifications in the data
lists are checked for number and nesting
depth. A DO and an END statement are gen­
erated for each repetitive specification.

Phase Input and Output

The input for the phase is the program text
on TXTIN and the file table on SYS001.

Phases C55, C60, and C65 also process
the program text from rXTIN and C60 and C65
the aforeementioned file table.

Program Text on TXTIN. Each syntactical
element of the text string begins with an
'E'-or an 'F'-key. Elements with an E-key
have a fixed length. Elements with an
F-key are of variable length. Bytes 2 and
3 of an F-element indicate the length of
the element.

This phase and the other liD-scan phases
CC55, C60, and C65} process elements with

one of the following keys:

c EO Statement identifier
E1 Reference to declared variable
E2 Delimiter

E3
E4
E9

EA
EB
EC
ED
EF
FO
F2
F3
F4
FE
FF

Reference to character-string constant
Reference to generated variable
Reference to constants other than
character-string
End of statement
Error
Reference to library names
liD-intermediate key
Keyword
3enerated variable table
Macro
Constant table
Declared variable table
Format integer constants
End of program

The text string consists of statements
that appear in the same order as in the
source program, except that nesting blocks
are resolved, i.e., the blocks are now
ordered serially.

Each statement begins with a statement­
identifier key which is followed by the
declared variable and/or constant table.
These tables contain the attributes of the
variables and the attributes and values of
the constants, respectively. (See phases
B90 and 892 for the format of a variable
table and phase C30 for the format of a
constant table.} The syntax of the
statement body which follows the table(s}
is described in phases A60 and A6.5. The
end-of-statement key terminates the state­
ment, the end-of-program key the entire
text string. A statement may have one or
more labels which are in the form of inter­
nal macros. Such labels may precede either
the statement identifier or the statement
body.

The declared variables in the text
string do not appear with their actual
internal name, but with their offset in the
declared-variable table.

File rable on Table File. There is one
record in the file table for each file name
and file name parameter. The file number
is identical with the record number in the
file table. Each record contains the
attributes and options for the appropriate
file name or file-name parameter. For the
format of a file-table record refer to
phase B25.

Output~ This phase and the other I/O scan
phases cause

1. the liD statments from TXTIN to be
processed and

Phase PLlIC50 131

PL/I PLM 8

IBM Confidential

2. additional (generate~ statements to be
inserted into the input statements.
The end of the I/O statement is sig­
nalled by setting bit seven in the
second byte of the last end-of­
statement key to 1.

To optimize the object code that is
generated on account of the I/O statements,
it is necessary that the inserted
statements do not destroy the contents of
specific registers. Preserving the con­
tents of these registers is ensured by
setting the appropriate bits in byte four
of the end-of-statement key. Bits 0 to 7
correspond to registers fourteen to five.

If an error is detected during one of
the I/O scan phases, bit 1 in IJKMJT is set
to 1.

General control, initialization of the
phase, and scanning for the I/O statements
is the same for all I/O scan phases.

Text inputloutput is performed in over­
lapped mode under control of the inter­
face (see phase ADO). Five buffers are
used by the I/O scan phases: one buffer as
output buffer and four contiguous buffers
as input buffers. During the processing of
an I/O statement, the input string is
always adjusted in such a manner that the
next end-of-statement key is fully in the
input buffer area. Thus, no further con­
trol for reaching end-of-buffer is
required.

The variable and constant tables
required during processing of the 1/0
statements are read into the table space.

After the input buffers have been
filled, the statement key is checked to
determine if it is an I/O key. If it is
not, the statement concerned is skipped and
the input buffers are filled again, if
necessary.

When an I/O key is found, the statement
identifier key is saved and the statement
attribute table is placed into the table
space, and the statement is scanned for the
end-of-statement key.

Only correct statements (without T- or
S-type errors) are processed. When an
incorrect end-of-statement key is found,
the statement is deleted from the text
string except for the end-of-statement key.

Correct statements are written out by
the appropriate I/O routine. The end-of­
statement routine causes the errors, if
any, to be indicated in the end-of-

132

statement key and the error number to be
written out.

Interface with Other Phases

The second byte of the statement-identifier
key is used to pass on information about
the type of the statement (used in the
phases D75 and DBO) •

The bits are set to 1 to indicate the
following:

Bit 0
1
2
3
4
5
6
7

PAGE option
SKIP option
LINE option
Statement refers to a PRINT file
LIST option
STRING option
GET statement
PUT statement

If a data list contains a repetitive
specification, bit 29 in IJKMJT is set.

If standard input file is assumed, bit
54 in IJKMLB is set; if standard output
file is assumed, bit 55 in IJKMLB is set.

DESCRIPTION OF ROUTINES

Note: The symbols RO, RA through RM, BASE
and RETURN are references to general
registers.

Symbols used in flow charts:

AT2BurE

BGRTBPO

BGSTPO
BIFIMSK
BLBYTE

BLPOS

CATBYrE

CONBG

COUNT
CSTRMSK
CUBL
DASPB3
DO
EDATT1\.
EDRTBPO

EDSTPO
ENDBUE'
EOP
EOS
ERFBr

ERFLA:;
ERRTAB

Position of string bits in
entry of attribute table
Address of repetitive specifi­
cation table
Address of parenthesis stack
Mask to test for binary fixed
Position of block byte in EOS
key
Position of block byte in
GENVAD
Work byte to build up the
GENVAR attribute byte
Address of declared-constant
table
Count register
Test-mask for character string
Current block number
Address of data specification
DO delimiter element
End of declared-variable table
End of repetitive specifi­
cation table
End of parenthesis stack
End of input buffers +1
End-of-program key
End-of-statement key
Mask for setting the error bit
in IJKMJT
Error flag byte
Error table

c

PL/I PLM 8

IBM Confidential

FIBL

(FIOEMSK
FILMSK
FLBYTE

FNBYTE

GENVAO
GENVAR
GEPMSK

GETMSK
GEVAR
IJKMBL

IJKMBS

IJKMJT

IJKMTS

IJKMTT

IJKMVC
INBUF
INPO
IOMSK

ISTKEY

KELEN
LCB5
LEBYTE (--
LEOS
LEEL
LEGEOS
LEIN
LELPAR
LENGTH

LENGTH1
LENGTHV
LEPAR
LERR
LETEL
LEVPOS
LE1BYTE

LE2BYTE

LIBG
LIBUF1
LIBUF2
LIBUF3
LINMSK
LISMSK
MOMAC
N
NATBYT

NATByrE

C:' OUBUF
OUPO
PABG

File-block area
Mask to test for fixed decimal
Mask for testing the file bit
Position of flag byte in end­
of-statement key
Relative position of file­
number byte in attribute table
Generated variable definition
Generated variable reference
Mask to set register-preserve
bits for GET/PUT
Mask for setting the GET bit
Generated-variable reference
Buffer length (entry in
communication area)
Address of buffer area (entry
in communication area)
Job information bytes (in
communication area)
Address of table space (entry
in communication area)
Address of T~BTAB (entry in
communication area)
Variable counter in interface
Address of input buffers
Input pointer
Mask to set I/O bit in END-of­
statement key
Internal equal sign for
assignment statement
Length of key
Offset for the CB5 skip bit
Address of precision byte in
entry of the variable table
Length of generated variable
Length of one E-key element
Length of end-of-statement key
Length of internal name
Left list parenthesis
Length of area to be written
out
Current length
Maximum length of GENVAD
Left parenthesis
Length of error key
Length of two E-key elements
Position of level byte in EOS
Address of length byte for
character string data in
attribute table entry
Address of length byte for
non-character string data in
attribute table entry
Begin of LINE option
Address of second input buffer
Address of third input buffer
Address of fourth input buffer
Mask for setting the LINE bit
Mask for setting the LIST bit
Move-macro area
Counter
Position of scalar/array bits
in entry of attribute table
Address of attribute byte in
entry of variable table
Address of output buffer
Output pointer
Begin of PAGE option

PALMSK
PRINMSK
PRINTMSK
PSTMSK

PUSTMSK

PUTMSK
REGByrE

RILPAR
RIPAR
RTBPO

SATByrE

SAVIO

SAVMSK
SBC85

SCAMSK
SEOS
SKIBG
SKIMSK
SRIMSK

STAByrE
STAID

STAKEY

STIMSK

STIMMSK
STKELE
STOMSK

STOUMSK
STPO
STRXBYTE

STRSAV1

T
TBPO
TEBYTE

Mask for setting the PAGE bit
PRINT mask
Mask for setting the PRINT bit
Mask to test for PUT STRING
statement
Mask to test for PUT STRING
statement
Mask for setting the PUT bit
Position of register-preserve
byte in statement key
Right list parenthesiS
Right parentheSiS
Pointer for repetitive speci­
fications
Position of statement attri­
bute byte in statement key
Area for saving statement
identifier
Mask for preserving registers
Mask for setting the C85 skip
bit
Mask for
Area for
Begin of
Mask for
Mask for
bit

testing on scalars
end-of-statement key
SKIP option
setting the SKIP bit
setting the STRING

Statement-attribute byte
Position of statement iden­
tification in statement key
Area used to build the state­
ment key
Mask for setting the standard
input-file bit
Stream-input mask
Length of statement key
Mask for setting the standard
output-file bit
Stream-output mask
Pointer for parentheSiS stack
Position of structure byte in
attribute-table entry

(2,3) Save area 1 (2, 3) for GEASS
parameter
Table file
Pointer in table space
rest byte to indicate current­
statement file declarations

TINP01 (2,3) Temporary input pointer 1 (2,
3)

TTMSK

VARBG

ZTAB2

Mask to zero bit 2 in TABTAB
entry
Address of declared-variable
table
Relative entry in TABTAB of
file table

The statements are processed in two
passes over the text string. The
operations performed in each pass are des­
cribed separately.

The file or the string option, if pre­
sent, is the first option. If there is no
file or string option, a standard system
file is assumed.

Phase PL/IC50 133

PL/I PLM 8

IBM Confidential

If the string option is present, the
option identifier is examined to determine
if this is a character string. In this
case, an assignment statement is generated
for a subscripted variable. This assign­
ment statement is placed into the string
option for a GET statement or behind the
original I/O statement for a PUT. The sub­
scripted variable in the string option is
replaced by a generated variable, which
also constitutes the left or right side in
the assignment statement for a GET or PUT,
respectively.

If the file option is present, the
appropriate file block is fetched from the
table file and the file options are checked
to determine if they are consistent with
the type of statement.

For a file-name parameter, an internal
move macro is generated. The object code
generated by this macro causes the file­
name argument to be inserted into the
parameter list at object time.

In a PUT statement, the PAGE and/or
LINE, or SKIP options may appear ahead of
the data specification.

For the expression in the LINE or SKIP
option, an assignment statement to a binary
fixed generated variable is generated and
placed ahead of the pur statement. The
expression in the option is replaced by the
generated variable.

The data list is scanned for repetitive
specifications. Each left-list parenthe­
sis, except the data list parenthesis
itself, indicates the beginning of a repet­
itive specification. rhe pointer value for
this parenthesis is placed into a parenthe­
ses stack. On a DO following a list ele­
ment, the updated input p~inter, the poin­
ter to the end of the repetitive specifi­
cation (next right-list parenthesis), and
the last entry in the parenthesis stack are
placed into the repetitive specification
table and the last entry in the parenthesis
stack is cleared.

Format of a repetitive-specification
table entry:

r-----------T----------------T-----------,
I Begin of I Address of ele-I End of I
I Rep.Spec. I ment after DO I Rep.Spec. I l ___________ ~ ________________ ~ ___________ J

5 9

rhe input statement is written onto TXTOUT
in this order: statement key, statement
attribute table, internal macro generated
f~r a file-name parameter, and PAGE (SKIP
or LINE) option, if present.

134

The data specifications are written out
with the following changes: The format list
or lists in the data specification are
written ahead of the data lists. For each
left list parenthesis of a data list,
except the first one, a DO statement is
generated. rhe pointer to the appropriate
text after the DO is fetched from the
repetitive-specification table and is found
by comparing the input pointer with the
stacked pointer. (First address in each
entry of the repetitive-specification
table) •

When a DO is encountered, an END is
generated to close the DO group.

Each generated statement
format as described above.
attribute table is the same
GET/PUT statement.

has the same
The statement
as that for the

The generated variables are defined as
automatic. Whenever possible, the same
definition is used for successive
variables. If a new definition is required
(for example, if a new block is reached) ,
the old definition is written out. This is
also jone at the end of the program text
when, in addition, an end-of-statement key
is written out following the variable defi­
nition.

Initialization and Scan -- XD, XE

The fUnctions of this routine are explained
under Initialization, Scan (General). The
following registers are used: RO, RA
through RI, RL and RETURN. RF contains the
pointer for the table space. RG contains
the length of the declared variables or the
constant table. RH contains a temporary
input pOinter in number of bytes:

The main purpose of this routine is to test
for the presence of the GET (or PUT)
options and to set the bit configuration of
the second byte of the statement- identifi­
er key (see Interface with other Phases.)
In the CONTEB subroutine, which is called
by this routine, the bit configuration of
the test byte TEBYTE is set. The meaning
of the bits of this byte is shown below.

Bit No.
-0=2-

3-4
5

6

7

Meaning
o PRINT file
1 file other than PRINT

not used
o file option contains no file

name parameter
file option contains a file
name parameter

o = stream input file
1 file other than stream input
o stream output file
1 file other than stream output

c

(

PL/I PLM 8

IBM. Confidential

SCADAL1 -- XG

rhis routine is used to build up the repet­
itive specification table.

rhe routine processes the GET (or PUT)
options and causes them to be written out.

SCADAL2 -- XJ -----------
This routine causes the DO statements to be
rearranged and completed. Also, END state­
ments are generated. rhese statements are
written out on the text output file.

When the subroutine is entered, INPO points
to the internal file-name in the text
string.

The subroutine loads the nth file block
of the file table into storage (n = file
number of the current file). If the name
in the file option is a file-name paramet­
er, an internal move macro is generated and
the file-name parameter in the file option
is replaced by an 'ED'-key with a new
internal name. If the name in the file
option is not a file-name parameter, the
offset in the variable table of the file­
name is replaced by the actual internal
file-name in the text.

The internal file-name is checked for
validity. If the file-nane is invalid (0
as internal name), the subroutine is left
via the error exit.

CONTEB -- XL --------
This subroutine causes the proper bit
configuration to be set in TEBYTE, which is
used in the CHECKST routine to determine if
the current statement is consistent with
the file declaration.

INPUT -- XM --------
This subroutine causes the input buffers to
be filled as determined by the current
value of the input pointer. When this
subroutine is left, at least three input
buffers are filled. The input pointer is
adjusted.

The subroutine uses re~ister RL as
return register.

OUTPur -- XN --------
Input parameters:
Register RC contains the address of the
area to be written out.
Register RD indicates the length of the
area.

This subroutine causes

1. the contents of an area of arbitrary
length to be moved into the output
buffer and

2. the da.ta in the output buffer to be
written on the text output file when
the buffer is filled. The pointer in
the output buffer is updated and the
register pointing at the area whose
contents are to be written out is
increased by the length of the area.

The secondary entry points OUTPUT1,
OUTPUr2, and OUTPUT3 are used to set param­
eters: OUrpUr1 is used if the end of the
area to be written out is determined by
INPO; OUTPUT2 is used if an area of the
length of one 'E'-key element is to be
written out; OUTPUT3 is used if an area of
the length of two 'E'-key elements is to be
written.

Output parameter:
Register RC contains the input address plus
the length of the area that has been writ­
ten.

SKIST!\ -- Xo --------
This subroutine increases the input pOinter
until either

1. an EOS is found or

2. the sum of the input pointer and the
length of the next element exceeds the
upper limit of the input buffers.

SKILl -- XP --------
This subroutine increments the input poin­
ter until it points to the position immedi­
ately after the list. A list is a number
of elements enclosed by a pair of normal or
list parentheses. When the subroutine is
entered, the input pointer pOints to the
left parenthesis of the pair.

SKIEX -- ~

Input parameter:
The input pointer INPO points to the begin­
ning of the current expression.

Output parameters:
INPO points to end of expression plus 1:
RA contains 0 if end is a comma,

4 if end is a right-list paren­
thesis,

8 if end is DO.

This sUbroutine increments the input
pointer until it points to the position
immediately after the current expression.
For the purpose of this subroutine, an
expression is a string of 'E'-key elements

Phase PL/IC50 135

PL/I PLM 8

IBM Confidential

delimited by a comma, a DO key, or a right
list parenthesis which are not enclosed in
a pair of parentheses.

COMOMA.O -- XR ----------
rhis subroutine generates an internal move
macro and inserts an 'ED' key element with a
new internal name into the text string.
This new name is used as the name of the
constant in the parameter list into which
the argument for the file-name parameter is
moved at object time.

Format of the move macro:
r----T------T-------T----------T----------,
1 F2 1 Length 1 X'76' 1 Operand 11 Operand 21
1 1 = 16 1 1 1 1 l ____ ~ ______ ~ _______ ~ __________ ~ __________ J

Input parameter:
Register RA points to the entry for the
file-name parameter in the declared varia­
ble table.

The subroutine is called when an end-of­
statement is reached or a skip to the next
EOS is required.

The subroutine causes the EOS to be
written on the text output file and error
keys to be added if any errors have been
encountered during the processing of the
statement. The subroutine causes the input
buffers to be refilled and INPO to be reset
to point to the beginning of a new
statement.

If an end-of-program key is found to
follow the EOS, the end-of-phase routine is
called.

EOPH XS

This subroutine is called when an end-of­
program key is reached.

The sUbroutine causes the definitions of
the last generated variables to be written
out. These definitions are followed by an
end-of-statement key and the end-of­
program key.

The contents of the output buffer are
written out on text output file and phase
C55 is fetched using the interface routine
IJKAPH (calling macro IJKPH) •

Input parameter:
Register RA contains the special error key.

The errors detected during the process­
ing of a statement are placed into an error
table.

136

The error table is 10 bytes long. Its
format is as follows:

ByteJ§.L

1
2

3-10

Error key
Number of errors in current
statement
Special error keys

A maximum of eight errors per statement
(one special error key per error) is placed
into the error table for a statement.

The subroutine causes the error bit to
be set in the communication routine.

GEASS L GEQOSTL GEENO -- XU

Input parameters:
Register RF contains one of the following:

X'OE'
~' 12'
X '13'

for an assignment statement
for a DO statement
for an END (~O) statement.

This subroutine which is referenced in
the various flow charts to phase C50 by
either of the names GEASS, GEDOST, and
GEENO, generates either an assignment, or a
DO, or an END (~O) statement as determined
by the contents of RF. The prefix mask of
the statement key is taken from the state­
ment key inside which the statement is
generated. The bits used to preserve reg­
isters are set by means of the bit configu­
ration of the SAVMSK byte.

The statement attribute table for the
input statement is used for all statements
to be generated and inserted in the input
statement, except the END statement.

The statement body for the assignment
statement consists of a generated variable
contained in GENVAR, an 1ST-key, and the
expression pointed to by TINPO (begin) and
INPO (end + 1). For the DO statement, the
statement body consists of the repetitive
specification, the beginning and end of
which is found in the repetitive specifi­
cation table (INPO points to the left list
parenthesis of the repetitive element). No
statement body is needed for the END state­
ment.

At the beginning and end of the state­
ment, an EOS is generated which is that of
the processed (proper) statement.

The generated variable (reference) is
written out whenever an assignment state­
ment is generated. The variable is written
out ahead of the assignment statement for a
GET and following the assignment statement
for a PUT.

c

c

(

(

PL/I PLI>1 8

IBM Confidential

This subroutine causes the declared­
variable and constant tables to be written
out.

Input parameter:
Register RG contains:

4 when the subroutine is tro use the
attributes of the element to which INPO
is pointing,

8 when the desired attributes are binary
fixed and precision 8.

This subroutine builds up both generated
variable definitions (GEV~D) and generated
variable references (GEVAR).

When the subroutine is entered the first
time for a program, the value in the varia­
ble counter in the communication region is
inserted in GEVAD and GEV~R as an internal
value. The block and level numbers are
obtained from the EOS of the current state­
ment and also inserted in GEVAD.

When a new block is reached, GEVAD is
written out (by calling OUTGEV) before the
above described operations are performed
for the new block.

When the subroutine is entered for the
second and subsequent times and a new block
has not yet been reached, the same internal
name is used and, therefore, the same stor­
age is used for these variables. The

length count is updated to maintain a count
of the highest value of all variables. The
attributes of GEVAD are character string
and automatic. The attributes of GEVAR are
indicated by register RG.

Output parameters:
A generated variable of the following for­
mat is constructed:

r--T------T--T------T--T------T--T--------,
IE4IInternIE4IAttri-jE4 IPreci-IE4IPict.name
I jName I Ibutes I ISion I lor 0 I l __ ~ ______ .L __ ~ ______ .L __ .L ______ .L __ .L.-________ J

OUTGEII -- xx --------

This subroutine causes the generated varia­
ble definition (GEVAD) to be written out.
CEIL (N/8) variables of length eight are
made available for output (= maximum length
require~. The first variable definition
is assigned the previously processed inter­
nal name, all other variable definitions
are assigned an internal name of O.

A qenerated variable definition made
available for output has the following
format:

r--T------T-------T----T-----T-----T------,
jFOILengthIIntern.lzerolx'10' IX'08'IBlock I
I I I Name I I I ILevel I l __ ~ ______ ~ _______ ~ ____ ~ _____ ~ _____ ~ ______ J

The portion of the text string beginning
with 'internal name' is repeated as often
as necessary with an internal name of o.

Phase PL/IC50 137

PL/I PLM 8

IBM Confidential

rhis phase processes the ~ata lists of
GET/PUT statements. Each data list item is
examined for structure an~ validity.
Assignment and expression statements are
generated as required.

In the output text, each data list item
is preceded by a characteristic. Some of
this information is used in phases 075 and
080.

The GET/PUT statements are scanned for
their data lists. The list items are
scanned for the information listed below,
and this information, if present, is evalu­
ated by this phase.

1. The item is scalar, array, or struc­
ture.

2. The item either contains an operator, a
subscript, a function call, or a pseudo
variable, or the item requires no cal­
culation.

3. The item contains a numeric field other
than floating point or a variable with
zoned decimal attributes.

4. The subsequent item is the first item
of or following an iteration group.
This item is referred to as "special
i tern. ,I-

The information is summarized in the
FLAG byte with the following format:

Bit No.
o 1

2 0
1

3 1
4 1
5 1

6
7

=

Meaning
An expression or an assignment
statement must be generated.
Presence of an operator or a
constant not allowed for input.
Scalar.
Array.
Special item.
Structure.
Numeric field other than float­
ing point or zoned decimal.
SUBSTR or UNSPEC.
Wrong element; neither arithmet­
ic nor string type.

The bit configuration of the above flag
byte is evaluated when the output informa­
tion is processed. Invalid data items,
variables not of type string or arithmetic,
array and structure expressions, pseudo
arrays and pseudo structures are not writ­
ten out on the text output file. Struc­
tures are reduced to their basic elements
and each element is written out in the same
way as other single data items.

138

Each data item is preceded by a charac­
teristic which has the following format:

r--------T--------T--------,
I ED Inot usedl Flag i l ________ ~ ________ ~ ________ J

An expression statement is generated
whenever there is an operator in the data
item or a fUnction in a PUT statement.

An assignment statement is generated for
pseudo variables in input lists, scalar
numeric fields (other than float), scalar
zoned-decimal variables and subscripted
variables. An assignment statement for a
GET' is generated with the data item to the
left of the equal sign; for a PUT, the data
item is on the right side of the equal
sign. On the other side of the equal sign,
there is always a generated variable, the
attributes of which are derived from the
attributes of the pseudo variable or the
subscripted variable. The generated varia­
bles are decimal fixed for numeric fields
and zoned decimal variables.

The generated variables are written out
ahead of the assignment statement in case
of a GET and following the assignment
statement in case of a pur.

For a numeric field array (except float)
and for a zoned decimal array, the assign­
ment statement is preceded by a loop-begin
and followed by a loop-end macro. The
loop-begin and loop-end macros generate an
object time loop which causes each array
element to be read in or written out.

The abovementioned assignment statement
consists of

1. a generated decimal-fixed variable as
for a scalar numeric field and

2. a generated pointer variable with data
attributes of the array that points
consecutively to each array element in
the loop. All other single variables
and character string constants are
written out unchanged.

A constant reference is expanded from
three bytes to twelve bytes. The E9-key is
repeated for each 3-byte group. The addi­
tional bytes have the same contents as
those of the generated variables. The
constant definition for the appropriate
constant is also written out.

c

~\
I

o

(

PL/I PLI>1 8

IBM Confidential

DESCRIPTION OF ROUTINES

Note: The following routines used in this
phase are described in phase C50;

INPUT
OUTPUT
SKlSTA
SKILl
SKIEX

ALByrE
ANBYTE

ARAMSK
ARBI'r
ARRMSK

ATBYTE
ATPO
AT2BYTE

BISTMSK

BLBYTE

BLPOS
CACOKEY

CATBYTE

CHAR

CHKMSK
CONAR1

CONAR2

CONATT

CONBG

CONLE

CONLEN1

CONLEN2

COPO

CORKEY
CSTRMSK

CUBL
DARMSK

DBEMSK

DEFIMSK

DELMSK
EDATTA

ENDBUF

EOST
ERROR
OUTTAB
OUTGEV

Length position in LOEDM
Position of number of elements
in attribute table
Mask to test for array
Mask to test for array bit
Mask to test for array expres­
sions
Position of attribute byte
Pointer for attribute table
Position of string-attribute
byte in attribute table
Mask to set bit string in GEN­
VAR
Block byte in end-of-statement
key
Block byte in GENVAD
Key for character-constant
string
Byte to generate the GENVAR
attribute byte
Area to build characteristic of
element
Mask to check data-list item
Address of constant definition
with table key
Address of constant definition
without table key
Area to build attributes and
precisions for the constant
reference
Address of declared-constant
table
Length of constant element
(fixed)

Length of constant definition
with table key and without
length bytes
Length of constant definition
with table key and length bytes
Pointer for constant-attributes
table
Constant reference key
Mask to test for character
string
Current block number
Mask to reset array bit in
CATBYTE
Mask to set the special-item
bit in SPEMSK
Mask to set decimal fixed in
GENVAR
Mask to zero the delete bit
End of variable-attributes
table
End of input buffer +1

EOS
EXPMSK

FEADD

FLAG

FLAG 1
GENVAD
GENITAR
GEPMSK

GEP8R

GEVAR
IJKMBL

IJKMBS

IJKMTS

IJK~VC

ILBYTE

IL2BYTE

INBUF
lNPMSK
INPO
IOMSK

lSTKEY

KELEN
LABBYTE
LAEBYTE
LEBYTE

LEEL
LEGEOS
LEIN
LENGTHV1
LEN:; TV
LEPAR
LETEL
LEV
LEVPOS

LE1BYTE

LE2BYTE

LIBUF1
LIBUF2
LIBUF3
LISMSK
LOBGM

LOEDM
N
NAMBYTE
NATBYTE

NEBYTE

End-of-statement key
Mask to test whether an expres­
sion statement must be generat­
ed
Address of entry in variable­
attributes table
Expression flag byte indicating
characteristics
Flag byte to control output
Generated-variable definition
Generated-variable reference
Mask to test for pseudo
variables
Area for generated pointer
reference
Generated-variable reference
Buffer length (entry in com­
munication area)
Address of buffer area (entry
in communication area)
Address of table space (entry
in communication area)
Variable counter in communi­
cation area
Internal-length position in
attribute table
Internal-length position in
character string
Address of input buffers
Mask to set CHKMSK for GET
Input pointer
Mask to test and set I/O bit in
EOS
Equal sign element in assign­
ment statement
Length of key
Position of label in LOBGM
Position of label in LOEDM
Position of length byte in
constant
Length of E-key element
Length of EOS key
Length of internal name
Intermediate length of GENVAD
Maximum length of GENVAD
Left parenthesis
Length of two E-key elements
Level of tested structure
Level byte in end-of-statement
key
Character-string length-byte in
attribute-table entry
Length-byte in attribute-table
entry for non-character-string
data
Address of second input buffer
Address of third input buffer
Address of fourth input buffer
Mask to test for the LIST bit
Area to generate loop-begin
macro
Area to generate loop-end macro
Counter
Name position in LOBGM
Position of attribute byte in
variable-attributes table
Position of number of elements
in LOBGM

Phase C55 139

PL/I PLM 8

IBM Confidential

OUBUF
OUPMSK
OUPO
PICBIT
PICTMSK

POBYTE
POIMSK
POINAM

PSAMSK
PSSMSK

PUTMSK
RECLEV
REGBYTE

RILPAR
RIPAR
SATBYTE

SAVIO
SAVMSK
SEOS
SPEMSK

SPVMSK

SRCDMSK

SRIMSK
STABYTE

STAID

STAKEY

STKELE
STRMSK

Address of output buffer
Mask to set CHKMSK for PUT
Output pointer
Mask to test for picture bit
Mask to test for the picture
bit
Pointer position in LOBGM
Mask to reset pointer in GENVAD
Pointer-name position of entry
in attribute table
Mask to test for pseudo arrays
Mask to test for pseudo struc­
tures
Mask to test for PUT bit
Recursion switch
Position of register-preserve
byte in statement key
Right list parenthesis
Right parenthesis
position of flag byte in state­
ment identifier
Statement-identifier save area
Register-preserve mask
Save area for EOS
Mask to set the special item
bit in the FL~G byte
Mask to test for subscripted
variables
Mask to set the register­
preserve bits for RC and RD
Mask to test for STRING
Save area for statement flag­
byte
Position of statement
identification in statement key
Area to build the statement­
identifier key
Length of statement key
Mask to test for structure
expressions

STUMSK Mask to test for structure
variables

TBPO Pointer in table space area
TINPOI (II) Temporary input pointer I (II)
TINPO Temporary input pointer
TINP01-3) Temporary input pointer (2,

3)
VARBG Address of declared-variable

table

INISC2 -- YB

This routine initializes the phase .and
controls the scanning of the input text.

GEPUII -- YC, YD

rhis subroutine causes the data list items
of GET/PUT statements to be evaluated and
either processed and written out or written
out unchanged. Erroneous data list items
are skipped.

SKISTAT -- YE

Input parameter:
INPO points to the preceding EOS (if entry

140

SKIST~T1 is used) or to the statement
identifier key (if entry SKISTAT2 is used) •

This subroutine causes a statement to be
skipped and written on the text output
file. Entry point SKISTAT1 is used if the
preceding and the following EOS are written
out, too. Entry point SKISTAT2 is used if
the statement is to be written out without
the EOS's.

Output parameter:
INPO points to the position following EOS
(if entry SKISTAT1 is used) or to the EOS

of the current statement (if entry SKISTAT2
is used) • .

EOPH -- YF

This routine is called when an end-of­
program key is encountered.

Those definitions of generated variables
which are not yet written out are now
written out on the text output file fol­
lowed by an end-of-statement key and the
end-of-program key. Phase C60 is fetched
by calling the interface routine IJKAPH
using the calling macro IJKPH.

IDEXPR -- YG

Input parameter:
INPO points to the beginning of a data list
item.

This sUbroutine tests a data list item
for specific characteristics and causes
appropriate indicator bits to be set in the
FLAG byte. All bits of the FLAG byte,
except bit 3 are set to 1 if the appropri­
ate characteristics are encountered.

Output parameters:
INPO points behind data list item;
TINPO points to the beginning of data list
item;
FEADD contains entry from variable­
attributes table if first element of data
list item is a variable;
FLAG contains a bit configuration that
reflects the processing performed in this
subroutine.

TEEL -- YH

Input parameter:
ATPO points to the entry in the attribute
table for the variable to be tested.

This subroutine sets bits 5 and 7 of the
FLAG byte to 1 if the appropriate data-item
characteristics are encountered. For
pointer variables, bit seven of this byte
is not set to 1 because these variables may
appear in a valid expression of a PUT
statement.

c

(

(

PL/I PLM 8

IBM Confidential

Output parameter:
FLAG contains a bit configuration that
reflects the processing performed in this
subroutine.

rESTR -- YI

Input parameter:
ATPO points to a structure or to an element
of a structure in the variable-attributes
table.

This routine updates Arpo. The secon­
dary entry point TESTR1 is used if, when
the routine is entered, ATPO points to an
element of a structure.

Output parameters:
AT PO points to the next element or a struc­
ture or to the position following the last
element of the structure.
RH contains 0 if no further element of the
structure is present.
RH contains 4 if the next element is found.
GEEXP1,GEASSl -- YJ

Input parameters:
RF contains X'OF' if an expression state­
ment is to be generated and X'OE' if an
assignment statement is to be generated.
This routine generates an expression or an
assignment statement as determined by the
contents of RF. The prefix mask of the
statement key is taken from the statement
key of the input statement into which the
generated statement is inserted. The
register-preserve bits in the statement
flag byte are set by means of the SAVMSK
byte.

To generate the insertion statement, the
routine uses the statement-attribute table
for the input statement into which the
expression or assignment statement is
inserted.

The statement body for the assignment
statement consists of the generated varia­
ble in GEVAR and the expression pointed to
by TINPO (begin) and INPO (end+l). For an
expresion statement, the statement body
consists of the expression only. At the
beginning and end of the assignment
(expression) statement, an EOS is generat­
ed. This is the EOS of the currently proc­
essed statement. If an assignment state­
ment is generated, the generated-variable
reference is written out. It is written
ahead of the assignment statement for a GET
and following the assignment statement for
a PUT.

OUTSVC -- YK

This subroutine causes a single variable or
a single constant in a data list to be
written on the text output file. The
address of the item to be written out is

contained in TINPOi for a variable, the
entry in the variable-attribute table is
contained in FEADD.

In case of a pointer-type variable, the
routine returns to an error call in GEPUII.
Otherwise, the variable is written out as
it appears in the input stream. The same
is done for a character-string constant.

For a constant other than character
string, the constant definition is written
out as it appears in the constant­
attributes table, but with the DELETE bit
set off. The constant reference is written
out in a format as follows:

r--T--------T--T-------T--T-------T--T----'
I I Intern. I I Attri-I I Pre- I I I
IE91 name IE91 butes IE91 cisionlE91 0 I L __ ~ ________ ~ __ ~ _______ ~ __ ~ _______ ~ __ ~ ____ J

OUTCOND -- YK

Input parameter:
RC contains the value of FEADD.

This subroutine generates a constant
definition in the form of a constant­
attribute table entry. This definition is
generated for a constant, the address of
which is contained in RC. The delete bit
is set to 0 and the definition is written
out on the text output file.

OUTSTR -- YL

Input parameter:
FEADD contains the address of the entry in
the structure-attributes table.

This subroutine causes a structure to be
written out element by element. Each
element is tested for validity, and for
each element a characteristic is built up
and written out. The subroutine returns
control to GEPUII for an error call if an
invalid element is found.

OUTPcr -- YM

This subroutine writes out a single numeric
field with attributes other than float.
The address of the numeric field is con­
tained in FEADD. The subroutine generates
a variable with the attributes decimal
fixed and an aSSignment statement.

If the numeric field is an array, a
pointer is generated in addition. This
pointer replaces the numeric field in the
assignment statement. One each internal
loop macro is generated to precede and
follow the aSSignment statement when this
is written out. Those bits in SAVMSK that
have been set prior to the generation of
the aSSignment statement are reset before
control is returned from this subroutine.

Phase C55 141

PL/I PLM 8

IBM Confidential

OUTSBST and OUTSPV -- YB

When entered via entry point OUTSBST, the
subroutine writes out pseudo variables that
appear in a data list of a GET statement.
For pseudo variables in a PUT statement, an
expression statement is generated and con­
trol is returned immediately to the
appropriate point inGEPUII.

For SUBSTR, a variable is generated with
the attributes of the first argument in the
substring variable. For UNSPEC, a length
of 64 bits is generated. Then, an assign­
ment statement is generated for both.

The subroutine is entered via OUTSPV for
subscripted variables. A variable and an
assignment statement are generated.

CONLBE -- YO

This routine generates the internal loop­
begin and loop-end macros for an array, the
address of which is contained in FEADD.
The bits (in SAVMSK) to preserve registers
RC and RD are set to 1.rhe generated
loop-begin macro is written out on the text
output file.

GEVWGEPOI -- YP

This routine builds up both the generated
variable definition (GENV~D) and the
generated variable reference (GENVAR).

When this subroutine is entered the
first time for a program, the value con-

142

tained in the variable counter in the com­
munication region is used as internal name
and inserted in GENVAD and GENVAR. The
block and level numbers are obtained from
the EOS of the current statement and
inserted in GENVAD.

When a new block is reached or when
specified by RG, GENVAD is written out (see
OUTGEV) before the above described opera­
tions are performed.

In all other cases, the same internal
name is used and, hence, the same storage
area is used for these variables. The
length is updated to indicate the length
value of the longest variable so far proc­
essed. GENVAD has the attributes CHARACTEE
and AUTOMATIC. The attributes of GENVAR
are indicated by register RG.

If the entry point GEPOI is used, a
pointer variable is generated.

Input parameter:
Register RG contains:

4 to indicate that the subroutine is to
use the attribute of the element whose
address is in FEADD;

8 if a pointer variable is to be gener­
ated a new GENVAD is to be used;

12 to indicate that the desired attri­
butes are coded decimal (length must
be derived from the variable whose
address is in FEADD); and

16 to indicate a bit string of a length
of 64 bits.

, " 0,

(

PL/I PLM 8

IBM Confidential

PHASE PLlIC60 JI/O SCAN II.~I~) __ ~Y~S~,~Y=T

In this phase, the format list of the
GET/PUT statement, the FORMAT, OPEN and
CLOSE statements are processed.

The format list items are checked for
validity. For a remote format item, a move
macro may be generated.

The OPEN/CLOSE options are checked for
errors and in some cases, assignment state­
ments are generated.

The second byte of the statement iden­
tifier key is set to X'4F' in a CLOSE and
to X'8F' in an OPEN statement. This infor­
mation is used by the phases 075 and 08~.

The GET/PUT statement is scanned for the
format list, the preceding part of the
statement is written out and a checking
routine is entered. After the check, a
test is performed to determine if the
length of the list is not greater than
three buffer lengths. In that case, an
error message is given and a dummy format
list is written out. Otherwise, the format
list is written out without further chan­
ges. The process is repeated if further
format lists are present.

There is a difference between
programmer-specified labels (format labels)
and generated labels in the FORMAT state­
ment. The generated labels are written out
as they appear in the text input; the for­
mat labels are handled as described below.

First, the list of the FORMAT statement
is tested in the same routine as the
GET/PUT format list. Then, a test is per­
formed to determine if the statement is
preceded by at least one format label and
if the list is not greater than three buf­
fer lengths. If an error occurs, a message
is written and the statement is deleted
from the text string. Otherwise, the
statement is written out until the end-of­
statement key excluding the labels. The
format labels are written out behind the
list in the form:

byte 0 key X'ED'
bytes 1-2 internal name

The names are also summarized in the
format label table which is written out
with record length 32 (16 names). A test
is performed to determine if no more than
127 format labels appear in a program.

The format lists of a GET/PUT and of a
FORMAr statement are processed by the same
checking routine. As the validity of some
format items is dependent on the type of
the file to which the statement belongs, an
actual check is possible only for the
GET/POT statement. The statement flag byte
which is used for this check is set in such
a way that the check is always right for a
FORMAr statement.

For control format items (except X) the
statement is tested if it refers to a PRINT
file.

The nesting depth of iteration groups,
(i.e., an iteration factor followed by
enclosed format items or by a single format
item) is examined to determine if it is not
greater than five or two for GET/PUT or
PORMAr statements. The depth of a group
containing a remote format item is examined
to determine if it is not greater than two.

If A and B format items appear in a GET
statement, a test is performed to determine
if a field-length constant follows.

If a remote format item appears in a
FORMAr statement, the processing of the
statement is terminated with an error call,
and the statement is deleted from the text
string. In a GET/PUT statement, the label
designator in a remote format item is
examined first to determine if it is a
constant. In this case, the label is exam­
ined if it is internal to the same block as
the GET/PUT statement. For each remote
format item with label variable, an inter­
nal name is reserved which replaces the
name of the label variable in the remote
format item. Also, a move macro is gener­
ated and written out which will effect the
storing of the label variable value in a
generated constant with the reserved name
which is generated by the macro generation
phase for a remote format item.

In the OPEN/CLOSE statement, the name in
the file option is examined first to deter­
mine if it is a file name or file-name
parameter.

For a file name or file-name parameter,
the appropriate file block is fetched from
the table file, and a test byte and a flag
byte of the following format are construct­
ed:

Test ~yte~ The bits are set to 1 to indi­
cate the following or are not used.

Phase PL/IC60 143

PL/I PLM 8

IBM Confidential

Bit 0-4
5
6
7

always zero
1 if PRINT is specified
zero
always 1

~!~te. The bits are set to 1 to indi­
cate the following or are not used.

Bit 0-3
4

5
6
7

always zero
1 if neither INPUT, nor OUTPUT,
nor UPDATE and B~CKWARDS
1 if PRINT
zero
1 if INPUT, OUTPUT, or UPDATE is
specified

If the INPUT option is present, bit 4 of
the flag byte is reset. If INPUT or OUTPUT
is present, bit 7 of the flag byte is con­
verted. If PAGESIZE is present, bit 5 of
the flag byte is set.

After all bits have been set, the flag
and test bytes must contain the same bit
configuration. Otherwise, an error message
is written out. For the PAGESIZE expres­
sion, an assignment statement is generated
with a generated binary-fixed variable as
left side. This is inserted into the PAGE­
SIZE option and written out followed by the
generated variable. This process is
repeated for each file group. The state­
ments are written out in the sequence the
input became available with assignment
statements possibly included.

DESCRIPTION OF ROUTINES

~Q~e: For the description of SKISTAT refer
to phase C55. For the descriptions of the
following routines, refer to phase C50:

INPUT
QUTPUT
SKISTA

SKILl
EOST
ERROR

OUT TAB
GEVAO
OUTGEV

Symbols used in flow charts:

ATBYTE

AT2BYTE

BLBYTE

CHAR
COMOMA

CONBG

CONTB

COUNT
COVAMS

CUBL
EDATTA

144

position of attribute byte in
variable table entry
position of attribute byte in
variable table entry
Position of block number in
variable table entry
ED-KEY field with label name
Routine for constructing move
macro
Begin of declared constants
table
Routine for constructing test
byte
Counter for format labels
Mask for testing label con­
stant
Current block number
End of declared variables
table

EDFLT~

ENDBUF
EOS
EOST
ERROR
FEFIBL

FIBL
FILMSK
FLBYTE
FOLAT~

FORMAr

FORLI
FORMSK

GEASS3

GEPUF

GEPUMS
GEVA

GEVAR

IIOKEY
IJKMBS

IJKMBL

IJKMTr

IJKMTS

IJKMN
IJKMJr

IJKMVC

IJKPO
IJKPH

INBUF
INPO
INPUT

INPUT
I OMSK
ISTKEY

LABMSK

LABYTE

LC65,LC85

LEDLM
LEEL
LEGEOS

LEIN
LELPAR
LETEL
LIBUF1
LIBUF2
LIBUF3
MOMAC

End of format label table
End of input buffers+1
End-of-statement key
End-of-statement routine
Error handling routine
Routine for reading in
appropriate file block
File block area
Mask for testing file name
Flag byte position in EOS
Format label table
Routine for processing format
statements
Dummy format list
Mask for setting flag byte
for format statement
Routine for generating
assignment statements
Routine for processing
GET/PUT statement
Mask for testing GET/PUT
Routine for generating varia­
bles
Generated variable
(reference)

ED-key
Begin of buffer area; entry
in communication area
Buffer length, entry in com­
munication area
Begin of TABTAB, entry in
communication area
Begin of table space, entry
in communication area
Interface move routine
Job information bits
(communication area)

Variable counter, entry in
communication area
Interface output routine
Interface routine for fetch­
ing a new phase
Begin of input buffers
Input pointer
Routine for filling input
buffers
Input Routine
Mask for testing I/O bit
Internal equal sign for
assignment statement
Mask for testing label varia­
ble
Position of attribute byte in
variable table entry
Position of C65 and of C85,
skip bit in communication
area
Length of label macro
Length of E-key element
Length of end-of-statement
key
Length of internal name
Left list paranthesis
Length of two E-key elements
Begin of second input buffer
Begin of third input buffer
Begin of fourth input buffer
Move macro area

(

PL/I PLM 8

IBM Confidential

NAMBYTE

NEWPH
OPCLO

OUBUF
OUPO
OUTPUT, 1
OUTTAB

OUTGEV

POINAM

PRINTMSK
PUTMSK
RILPAR

SATBYTE

SAVIO

SBC65,SBC85

SCAFO

SEOS

SKISTA

SKISTAT1,2

SKIDLI

SKILl
SKIEX3

SKISTAT1

SrAKEY

SrBYTE
STKELE

STRBYTE

rBPO
TBYTE1
TINPO,1,2,3,4
rINP01

rINP02

rINP03

rINP04

VARBG

zrAB18

ZTOUT

position of internal name in
label macro
Parameter for IJKPH
Routine for processing
OPEN/CLOSE statements
Address of output buffer
Output pointer
Output routine
Routine for writing out vari­
able and constant table
Routine that writes out gen­
erated variable definitions
Position of pointer name in
variable table entry
Mask for testing print files
Mask for testing PUT
Right list parenthesis

Position of statement flag
byte in statement identifier
key
Statement identifier save
area
Skip bit for IJXC65 and for
IJXC85 in communication area
Routine for scanning format
list
End-of-statement key save
area
Routine for skipping to EOS
or end of buffer
Routine for skipping and
writing out statements
Routine for skipping data
list
Routine for skipping lists
Routine for skipping expres­
sions
Routine for skipping state­
ments
Area for building the entire
statement key
Statement flag byte save area
Length of statement identifi­
er key
Position of attribute byte in
variable table entry

Pointer in table space
Test byte
Temporary input pointers
Temporary input pointer
pointing to begin of format
labels
Temporary input pointer
pointing to end of statement
Temporary input pointer
pointing to begin of state­
ment
Temporary input pointer
pointing to end of format
labels
Begin of declared variable
table
Entry in TAB TAB for format
label table
Routine that writes onto
table file (interface macro)

Initialization and Scan -- YU - YV

The functions of this routine are the same
as in phase C50.

GEPUF -- YX --------
This routine causes the processing of GET
and PUT statements.

FORMAT -- YY

This subroutine processes FORMAT state­
ments.

This routine checks the format lists of
FORMAr and GET/PUT statements. In case of
an error, an error message is written out
and the scan proceeds. If an R format item
is detected in a FORMAT statement, the
routine returns to the initialization and
scan routine, and the wrong FORMAT state­
ment is deleted from the text string.

OPCLO -- ZA

This subroutine processes OPEN and CLOSE
statements.

The bits for INPUT, OUTPUT, UPDATE, BACK­
WARDS, PRINT are set in the flag and test
bytes according to the declaration.

COMOM -- ZC

This routine causes a move macro for a file
name parameter and a label variable in an R
format item to be constructed, and an ED­
key element with a new internal name in the
text string to be inserted. The macro is
written out onto the text output file. The
new name is used as the name of the
constant in the parameter list into which
the argument -- corresponding to the file
name parameter or current value of the
label variable -- is moved at object time.

The move macro has the following format:
r----T-------T-------T---------T----------,
1 F2 1 Length=1 X'76' IOperand 1 1 Operand 2 1
1 116 1 1 1 1 L ____ i _______ i _______ i _________ i __________ J

Input Parameter:
RG points to the entry of the file name
parameter or label variable in the de1ared
variables table.

SKIDLI ZD

A data list which may contain entire state­
ments is skipped.

Phase PL/IC60 145

PL/I PLM 8

IBM Confidential

SKIEX3 -- ZE

rhe input pointer is set to the address
behind an expression. An expression means
a string of E- and F-key elements delimited
by an end-of-statement key or by a right
list parenthesis.

Input Parameter:
INPO points to the begin address of an
expression.

Output Parameters:
INPO points to the end of an expression;
RA - zero if end is EOS, or four if end is
right list parenthesis.

rhis routine is called after reaching an
end-of-program key. First, the last gener­
ated variables (their definitions) are
written out followed by an end-of-statement
key and the end-of-program key. If format
labels appeared in the program, the last
record of the format-label table is written

146

out on the table file. The output buffer
is written out on the text output file.
Phase C65, C85, or DOO is called via the
interface routine IJKPH depending on the
skip bits in IJKMJT.

GEASS3 -- ZG

In this routine, an assignment statement is
generated. The statement identifier key is
provided by RF; the prefix mask of the
statement key is taken from the input
statement in which the statement is gener­
ated. The statement attribute table is
that of the statement in which the state­
ment is built. The statement body is a
generated variable (GEVAR), and 1ST-key,
and the expression pointed to by TINPO
(begin) and INPO (end + 1).

The generated variable is also written
out after the end-of-statement key of the
assignment statement.

Input Parq.meter:
RF - X'OE', key for assignment statement.

--- ---- ---- - - -

c

o

(

PL/I PLM S

IBM Confidential

~gASE PL/IC~JI/O SCAN IVL-== $A, $B

In this phase, all record-oriented I/O
statements, i.e., READ, WRITE, LOCATE, and
REWRITE and the DISPLAY statement are proc­
essed.

In the second byte of the statement
identifier key, information about the spe­
cial type of the statement is made availa­
ble for the phases 075 an~ DSO. The right­
most four bits of the byte contain the
following:

X'OO' if READ SET
X'01' if READ SET KEY
X'03' if READ INTO
X' 04' if READ INTO KEY
X'06' if REWRITE
X'07' if REWRITE FROM
X'OS' if REWRITE FROM KEY
X'Og' if WRITE FROM
X'OA' if WRITE FROM KEYFROM
X'OB' if LOCATE SET
X'OF' if DISPLAY

The leftmost four bits contain the fol­
lowing:

o for consecutive buffered files,
1 for consecutive unbuffered files,
2 for regional files.

gecord.I/O Statements -=-1~

All record-oriented I/O statements are
processed in one routine. For the same
option appearing in any statement, the same
action is taken.

The record variable is tested for valid­
ity. If the variable in the SET option is
subscripted, an aSSignment statement is
generated.

For the KEY/KEYFROM expression, an
assignment statement is also generated.
The statements are written out with the
options in a fixed order and with included
assignment statements, if any.

During processing, a FLAG and a TEST
byte are constructed depending on the file
declaration and the format of the state­
ment.

'I'he TEST byte contains the following:

bit o - 1 if READ
2 - 1 if KEY/KEYFROM
3 - 1 if WRITE
4 - 1 if LOCATE
5 - 1 if REWRITE
6 - 1 if DIRECT
7 - 1 if DIREcr

The FLAG byte contains the following:

bit o - if INPUT or UPDATE or UNBUFFERED
without INPUT, OUTPUT, UPDATE

2 - 1 if DIRECT
3 - 1 if OUTPUT or DIRECT/UPDATE or

UNBUFFERED without
INPUT/OUTPUT/UPDATE

4 - 1 if BUFFERED OUTPUT
5 - 1 if UPDATE
6 - 1 if KEY/KEYFROM
7 - 1 if FROM/INTO

The condition code resulting from the
instruction TM FLAG, TEST must be 1.

Displ~Y-JGenerall -- $B

In the DISPLAY statement, for an expression
other than a single, unsubscripted variable
that needs no conversion or other than
constant, an assignment statement is gener­
ated. In addition, for a subscriped name
in the REPLY option, if present, an assign­
ment statement is generated.

The statements are written out in the
sequence the input became available, i.e.,
with assignment statements inclUded.

DESCRIPTION OF ROUTINES

~ The routine SKISTAT is described in
phase C55; the following routines are des­
cribed in phase C50:

SKIEX
INPUT
OUTPUr
SKISTA

SKILl
EOST
COMOMAO

ERROR
OUTGEV
OUTTAB

Symmbols used in flow charts:

ATBYTE

AT2BYI'E

CKREVA

CONBG

CONTBR

COUNT

CSTRMSK

CSTMSK

Relative position of attribute
byte in variable table entry
Relative position of second
attribute byte in variable
table entry
Routine for checking record
variable for validity
Begin of declared constant
table
Routine for setting test and
flag bits appropriate to the
file
Field for constructing second
half of statement identifier
flag
Mask for testing character
string
Mask for constructing charac­
ter string

Phase PL/IC65 147

PL/I PLM 8

IBM Confidential

EDATTA
ENDBUF
EOST
EOS
ERROR
FEFIBL

FIBL
FILMSK
FLAG, 2
GEASSR,1,2

GENVAR
GEVARE

GEVAR
IJKMBS

IJKMBL

IJKMTS

IJKMN
IJKMVC

IJKPO

IJKMJT

IJKPH

INBUF
INFRAD
INPO
INPUT
ISTKEY

KELEN
KEYAD

KEYTAD
LC8S

LEEL
LEGEOS
LENGTHV1
LENGTHV
LEPAR
LETEL
LIBUF1
LIBUF2
LIBUF3
MOMAC

NEWPH
OTSEKT

OUBUF
OUPO
OUTGEV

OUTPUT, 1,2,3
OUTTAB

148

End of declared variable table
End of input buffers+1
End-of-statement routine
End-of-statement key
Error handling routine
Routine for reading file block
from table file
File block area
Mask for testing file
Flag byte
Routine for generating assign­
ment statements
Generated variable
Routine for generating varia­
bles
Generated variable reference
Begin of buffer area, entry in
communication area
Buffer length, entry in com­
munication area
Begin of table area, entry in
communication area
Move routine interface
Variable counter in communi­
cation region
Interface routine for writing
onto the text output file
Job control bits, communi­
cation area
Interface routine for fetching
a new phase
Begin of input buffer
Holds begin of INTO/FROM
Input pointer
Input routine
Internal equal sign for
assignment statement
Length of E-key
Holds begin of KEY/KEYFROM
option
Holds begin of KEYTO option
Position of C8S, skip bit in
IJKMJT
Length of E-key element
Length of end-of-statement key
Intermediate length of GENVAD
Maximum length of GENVAD
Left parenthesis
Length of two E-key elements
Begin of second input buffer
Begin of third input buffer
Begin of fourth input buffer
Area for constructing move
macro
New internal name
Relative position of attribute
byte in variable table entry
Parameter for IJKPH
Routine for writing out SET
and KEYTO option
Address of output buffer
Output pointer
Routine for writing out gener­
ated variable definitions
Entries in output routines
Routine for writing out
declared variable and constant
table

PICBH

POIMSK
PTMSK
REW
RILPAR
RIPAR
SAVIO

SBC8S
SEOS
SETAD
SETID

SKISTAT2

SKISTA

SKILl
SKIEX

STKELE

STRSAV1-6

STRByrE

SWITCH
TBPO

Mask for testing numeric
fields
Mask for constructing pointer
Mask for testing pointer
Parameter for IJKPH
Right list parenthesis element
Right parenthesis element
Statement-identifier key save
area
Skip bit for C8S
EOS save area
Holds begin of SET
Area for constructing the
assignment statement key
Routine for skipping state-
ments
Routine for skipping to EOS or
end of buffer
Routine for skipping lists
Routine for skipping expres­
sions
Length of statement identifier
key
Save areas for generated vari­
able and expression for con­
structing assignment statement
Offset of file identification
byte in variable table entry
Parameter for IJKPH
Declared variable and constant
table pointer

TEBYTE Test byte
TINPO,1,2,3,STemporary input pointers
VARBG Begin of declared variable

table

Initialization, Scan -- $C , $D

The fUnctions of this routine are the same
as in phase CSO.

Recor~-Oriented ~/O Routine -- $E - $G

See section Record I/O Statements.

CKREVA -- $H

This routine tests the record variable for
validity. The record variable must not
have the attribute DEFINED, and must not be
a parameter, nor an entry name; the record
variable must be a level 1 variable.
Structures must begin on double-word boun­
daries. The length of the record variable
must not be greater than the block size of
the appropriate file. If the appropriate
file has variable length records, the
length of the record variable divided by 8
must yield a remainder of four.

If the appropriate file has fixed-length
records, the length of the record variable
must be equal to record size.

Input Parameters:
INPO must point to the record variable.
FIBL contains the appropriate file block.

c

(

(

PL/I PLM 8

IBM Confidential

In this routine, the SET and the KEYTO
option parameter are written out.

If the variable is subscripted, a varia­
ble with the same attributes is generated
except the storage class which is static.
rhis generated variable is written out as
option parameter. rhe position of the
original variable and the generated varia­
ble are saved and used to construct an
assignment statement at the end of the
statement.

Input Parameter:
RG: if four, routine entered from SET

option;
if eight, routine entered from KEYTO
option.

CONTBR -- $J

In this routine, all bits in the TEST and
FLAG byte and in the first half of the
statement-identifier flag byte are set
according to the appropriate file declara­
tion.

Input Parameter:
FIBL contains the appropriate file block.

Output Parameters:
Some bits in TEST, FLAG, and SAVIO.

DISPLAY -- $K

GEVARE -- $L

In this routine, both the generated varia­
ble definition (GENVAO) and the generated
variable reference (GENVAR) are created.

If the name field in GENVAD is zero, an
internal name is fetched from the variable
counter in the communication region and
inserted into GENVAD and GENVAR. If RG is
zero, the variable created earlier is writ­
ten out at the beginning of the routine and
the variable just being created is written
out at the end of the routine. Otherwise,
the same internal name is used. Thus, the
same amount of storage will be used for
these variables. The length is updated to
hold the greatest value of all variables.

GENVAD has the attributes character
string and static. The attributes of GEN­
~AR are specified by RG.

Input Parameter:
RG if zero or eight, a character string is

generated, the length of which is speci-

fied in KEYLEN
if four, a pointer is generated.

The output parameters GENVAR and GENVAD
have the following format:

r--T-----T--T-----T--T-----T--T-----'
I lInt. I I I I I I I
IE41Name IE4IAttr.IE4IPrec.IE4Izero 1 L __ ~ _____ ~ __ ~ _____ ~ __ ~ _____ ~ __ ~ _____ J

GENVAR

r--T------T------T--T--T--T--T--T--'
I I lInt. I I 1 I I 1 I
IFOI Length 1 Name 1001801001101081001 L __ ~ ______ ~ ______ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ J

GENVAD

The part of GENVAD beginning with Inter­
nal Name is repeated as often as needed
with the internal name = zero.

GEAS§B~EASSR1 and 2 -- $M

In this routine, an assignment statement is
generated. The prefix mask of this state­
ment key is taken from the input statement
in which the assignment statement is gener­
ated. The statement attribute table is
taken from the input statement in which the
assignment statement is built.

The statement body for GEASSR consists
of a ~enerated variable contained in GEN­
VAR, an 1ST-key, and an expression pointed
to by TINPO and INPO. In GEASSR2, the
order of the generated variable and the
expression is changed.

In GEASSR 1, the statement body consists
of an expression pointed to by either
STRSA~3 and STRSAV2, or STRSAV6 and STRAVS,
respectively, an 1ST-key, and a generated
variable, located in either STRSAV1 or
STRSA~4.

At the beginning and at the end of the
statement, an EOS is generated which is
that of the processed statement and which
must be correct. The first EOS written out
by GEASSR1 has the I/O bit inserted.

This routine is called when an end-of­
program key is reached. First, the last
generated variables, i.e., their
definitions, are written out followed by an
end-of-statement key and the end-of-program
key. The output buffer is written out on
the text output file.

Phase C8S or C95 is called via the
interface routine IJKPH as determined by
IJKMJr.

Phase PL/IC65 149

PL/I PLM 8

IBM Confidential

This phase is called if the source program
contains DO, GET, or POT statements. It
replaces certain DO statements and END (of
grou~ statements with macros and other
statements, which are then processed in a
subsequent phase.

The DO statements processed in this
phase are of the following form:

1.

2.

DO scalar = C1 TO C2;
DO scalar C1 TO C2 WHILE

(expression4) ;
DO scalar = C1 TO C2 BY C3;
DO scalar C1 TO C2 BY C3 WHILE

(expression4) ;
DO scalar C1 BY C3 TO C2;
DO scalar C1 BY C3 ro C2 WHILE

(expression4) ;

C1, C2, C3 must be constants (either
binary fixed or decimal fixed with
scale factor 0). The scalar must be
binary fixed. The decimal fixed con­
stants are converted to binary fixed to
minimize object time conversions.

DO scalar

DO scalar

expression 1 TO expression
2 BY C3;
expression 1 TO expression
2 BY C3 WHILE
(expression4) ;

C3 must be an (optionally signed)
arithmetic constant.

The END (of group) statements proces~ed
in this phase are those associated to DO
statements listed above.

Phase Input and Output

The input is a string of 3-byte elements
and/or elements of variable length.

The output is similar to the input,
except that macros and new statements
replace DO statements and END (of group)
statements. Substituted statements and
macros are:

• The IFFALSE statement generated when a
TO and/or WHILE occurs in a specifi­
cation. (See description of phase C25
for more details.)

• The Begin of DO-Head statement, and the
End of DO Head statement. These two
statements indicate that all statements
and macros included by them belong to
one DO-Head. Since the only function of
these statements is to indicate the

150

PHASE PL/IC85 (DO STATEMENT I) $0

beginning or ending of a DO Head, no
statement body is required. The format
of these two statements is as follows:

Byte(~ Contents

1
2-3

4-6
7

8-12

statement identifier key X'EO'
X'0001' for Begin of DO Head
X'0101' for End of DO Head
not relevant
EOS key X'EA'
not relevant

• The Define Label macro,

• The Branch macro, and

• Generated label constants.
(For details, see description of phase

C25.)

Generated temporaries (generated variables
with unknown attributes) are used to hold
the 'frozen' values of expression 1 and
expression 2 (see PL/I Language
Specifications) •

These temporaries are not defined by
macros like generated labels and generated
label variables, but solely by their occu­
rence in a statement referencing them.
Storage for these temporaries is assigned
in subsequent phases. The format of gener­
ated temporaries is as follows:

Byte(s) Contents

key X'E8' for generated temporar-
ies

2-3 X'OOOO' for expression (1T in
examples)
X'OOOC' for expression 2 (2T in
examples)

Examples for Input/Output of Phase C85

Legend to the examples:

Statements (as opposed to macros) have
statement identifiers consisting of capital
letters (for instance: IFFALSE, SET, READ
etc.)

Macros are identified by lower case letters
(for instance: define label, branch etc.)

Generated labels are written like 1L, 2L,
3L etc.

Note: The input as well as the output is a
string of 3-byte elements and/or elements
of variable length.

c

(

PL/I PLM 8

IBM. Confidential

1. DO I=C1 TO C2;

alpha

END;

2. DO I=C1 TO C2
WHILE ex4;

alpha

END;

3. DO I=C1 TO C2
BY C3;

alpha
(--

END;

4. DO I=C1 TO C2
BY C3
WHILE ex4;

alpha

END;

5. DO I=ex1 TO ex2
BY C3;

alpha

END;

BEGIN OF DO-HEAD;
SET I=C1;
branch 1L
:'iefine label 2L
SET 1=1+1;
:'iefine label 1L
IFFALSE 3L I<=C2;
END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET I=C1;
branch 1L
define label 2L
SET 1=1+1 i
:'iefine label 1L
IFFALSE 3L I<=C2;
IFFALSE 3L ex4;
END OF DO-HEAD;

alpha

branch 2L
jefine label 3L

BEGIN OF DO-HEAD;
SET I=C1 i
branch 1L
define label 2L
SET I=I+C3;
:'iefine label 1L
IFFALSE 3L I<=C2;*
END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET I=C1
branch 1L
jefine label 2L
SET I=I+C3i
define label 1L

IFFALSE 3L ex4;
END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET 1T=ex1;
SET 2T=ex2;
SET I=1Ti
branch 1L
define label 2L
SET I=I+C3;
define label 1L
IFFALSE 3L I<=2T;*

6. DO I=ex1 TO ex2
BY C3
WHILE (ex4);

alpha

END;

END OF DO-HEAD;

alpha

branch 2L
define label 3L

BEGIN OF DO-HEAD;
SET 1T=ex1;
SET 2T=ex2;
SET I=1T;
branch 1L
define label 2L
SET I=I+C3;
define label 1L
IFFALSE 3L I<=2Ti*
IFFALSE 3L (ex4);
END OF DO-HEAD;

alpha

branch 2L
define label 3L

*If C3 is positive, I <= C2 is used.
If C3 is negative, I >= C2 is used.

Phase Performance

The input stream is scanned for DO state­
ments and END (of group) statements. All
other statements are bypassed and put out
unchanged. If a DO statement is encoun­
tered, the type of the statement is tested.
If the statement is to be processed by this
phase, a 1 is entered into STACK and the
statement is processed. If the statement
is to be bypassed, a 0 is entered into
STACK. The pointer to STACK is incremented
by 1.

If an END (of group) statement is
encountered, the pointer to STACK is decre­
mented. by 1, and the last entry in STACK is
tested. If this entry is a 1, the state­
ment is processed. If this entry is a 0,
the statement is bypassed.

The statement attribute tables of the
statements processed in this phase are
stored. in the table space for later use.
The appropriate table stored in the table
space will be attached at the beginning of
each statement. Note that the macros gen­
erated in this phase are not prefixed by a
table. ---

Tables and Pointers

STACK (with pointer STAP) consists of 15
elements, each 1 byte long. A=1 in
such an element means that the asso­
ciated DO statement has been proc­
essed and that the current END (of
group) statement must be processed.
A=O means: bypass this statement.

Phase PL/IC85 151

PL/I PLM 8

IBM Confidential

KELLER (with pointer KEP) consists of 15
elements, each 1 word long. The
first half-word of each element
contains a 'start label', the second
half-word contains an 'exit label'.
(A "start label" is the generated
label 2L in 1/0 examples 1 to 4; an
"exit label" is the generated label
3L in 1/0 examples 1 to 4.) The
information stored in this stack is
used when processing END (of group)
statements.

PIN, IPOINT, POINT are input pointers
POUT, OPOINT are output pointers

DESCRIPTION OF ROUTINES

(Open)

(Closed)

A routine is called open if
control is transferred to it
by

1. a simple B instruction,
in which case control is
also returned by a B
instruction, or

2. some in-line coding that
requires a separate des­
cription.

A routine is called closed if
control is transferred to it
by a BAL instruction. Con­
trol is returned by a BR
instruction in this case.

RO, R1, •• Rn: symbolic registers.

DOPH ---E

This is the "master" routine of this phase.
DOPH sets pointers, loads registers, etc.
and reads the first 4 records into input
buffers 1 to 4.

DOPH scans and puts out the input stream
until a specific DO statement or an asso­
ciated END statement is encountered. In
this case, the statement attribute table is
stored in the table area. If DOPH encoun­
tered a DO statement, ANDOST is called.
ANEND is called if DOPH encountered an END
(of group) statement. Before ANEND is
called, the statement identifier END (of
group) is replaced by the statement iden­
tifier NOP. The scan continues until the
end-of-program key is encountered.

ANDOST (Open) -- $Q - $S

This routine processes specific DO state­
ments. The code put out by this routine is
described in the 110 examples.

If a DO statement contains errors or if
the table space is not large enough to hold
additional entries to the attribute table,
the statement is passed on unchanged to the
next phase.

152

ANEND (Ope~ -- $T

ANEND is called only if the associated DO
statement has been processed in this phase.
It decrements KEP by 4 and puts out the
macros

branch 'Start Label'
define label 'Exit Label'

'Start Label' is taken from o (KEP) •
'Exit Label' is taken from 2 (KEP) •

BSAC (Open) -- $T

The routine stores the statement attribute
table for variables and constants in the
table area.

BYPA JClosed) $U

The routine stores either the statement
attribute table for variables or the state­
ment attribute table for constants in the
table area. Upon exit, BSAC7 contains the
address of the next unoccupied byte in the
table area, the statement body begins in
input buffer 1, and BSAC6 contains the
address of the first byte of the attribute
table for constants in the table space.

COSC (Closed) -- $V

The routine determines whether an expres­
sion in a DO statement consists of a sin­
gle, optionally signed BINARY FIXED con­
stant or of a DECIMAL FIXED constant with a
scale factor of O. If the expression is of
any other type, COSC branches to UNSUC. If
one of the above specified expressions is
encountered, all prefix operators (+ and -)
are reduced to one. Example: + --- +
results in -.

If the expression is a BINARY FIXED
constant, the corresponding attribute table
entry is stored in ENTRI, PIN is increment­
ed by 3, and the program returns.

If the expression is a DECIMAL FIXED
constant with a scale factor of 0, the
expression is tested for being greater than
2147483647 (= 2**31 - 1). If yes, the
program branches to UNSUC. If no, OLD is
set to 1, the DECIMAL FIXED constant is
converted to BINARY FIXED, a new attribute
table entry is created in ENTRI, PIN is
increased by 1, and the program returns.
Upon return, PIN points to the next byte
following the constant.

ENDX (Closed) -- $W

Upon entry, R1 contains the start address
of an expression. Upon return, R1 contains
the end address of an expres~ion.

c

(

(

PL/I PLI-1 8

IBM Confidential

The routine arranges the contents of input
buffers 1 to 4 so that the currently
scanned EOS is in input buffer 1 (this is
done by moving and by reading in new
records). It puts out the EOS and the
error codes attached to it. Any addition­
ally generated error codes are also put
out.

ERROR, JERRA1 (Closed) --!!

This routine is described in phase A35.

§~OS (Closed) -~

rhe routine moves the input pointer PIN
until the last byte of the statement body
is reached. It stores the value of PIN in
IFPH96.

GSN (Open) :..:.J~

This routine checks for error-free state­
ments. If the bit checked is on, the
statement contains an error and the routine
returns without any further action. If the
bit is off, the end-of-statement delimiter
is stored in GSN4 and the routine returns.

This is the output routine. Register BYZ
contains the number of bytes to be put out;
register PIN contains the start address of
these bytes. One output buffer is used.
If the string to be put out fits into the
remaining unoccupied space of the output
buffer, the string is moved into the buf­
fer. BYZ is added to POUT to update the
output pointer.

If the string to be put out it too big,
an appropriate part of the string is moved
to fill the output buffer to its capacity.
Then the contents of the buffer are written
onto the output medium. POUT is reset to
the start address of the buffer. BYZ is
decremented by the number of bytes moved
into the buffer. PIN is incremented by
that number. Then JTRNA1 is repeated until
output is completely accomplished.

LGEN (Closed) -- $X

LGEN generates a label constant of the
following format:

byte 0

bytes 1-2

key for generated label constant
X'EE'
number of the constant

The number in bytes 1 and 2 of the label
constant is obtained by adding 1 to the
counter IJKMVC each time LGEN is called.
Upon exit, the generated label constant is
stored right justified in R1.

IJKMVC is the "variable and constant
counter" of the compiler. If its value
exceeds 65534, an error is indicated.

STEP (Closed) -- $X

STEP tests the high-order 4 bits of the
byte selected by PIN. If these 4 bits are
set to X'E', PIN is incremented by 3. If
these bits are set to X'F', PIN is incre­
mented by the contents of the two bytes
following the byte to which PIN is point­
ing. If these bits are set to any other
value, a compiler error occurrs and a dump
is initiated.

Phase PL/IC85 153

PL/I PLM 8

IBM Confidential

This phase is called if the source program
contains at least one DO, GET, or PUT
statement. All DO and END (of groupl
statements, bypassed by the first DO phase,
are now processed.

Phase C86 performs the following func­
tions:

• It analyzes all DO nests,

• replaces all DO statements and END (of
grou~ statements by macros and other
statements which are then processed by
subsequent phases, and

• checks whether the restrictions on the
nesting of DO statements and on the
number of repetitive specifications are
obeyed.

Phase Input and Output

The input is a string of 3-byte elements
and/or elements of variable length. The
complete DO or END (of groupl statement
body must be available in the input buf­
fers.

The output is similar to the input,
except that macros and new statements are
substituted for DO and END {of groupl
statements. The following new statements
may be substituted:

• The IFFALSE statement.
This statement is generated whenever a
TO or WHILE occurs in a specification.
IFFALSE is discussed in a subsequent
section of this publication.

• The "begin of DO head" statement.

• The "end of DO head" statement.
These two statements indicate that all
statements and macros included by them
are associated and thus belong to one
"DO head". These statements require no
statement body, because they only signal
the beginning or ending of a "DO head".
The format of these statements is as
described in phase C85.

• Assignment statement with special oper­
ands.

154

If a DO statement contains more than 1
repetitive specification, an assignment
statement as shown below is generated.
The only difference between a label
assignment written by a programmer and
one generated by the DO phase is that in
the generated label assignment two oper-

---- -------_._---

•

•

PHASE PL/IC86 (DO STATEMENT III -- Z9
i

ands are followed by the 3-byte element
X'EE0009' or X'EE0069'. The format of
the assignment statement is as follows:

Byt~ Contents

1-3
4-6

7
8-9

10-12

13-15
16

17-18
19-20

22-27

statement identifier X'EOOOOE'
not relevant
key X'EE' for generated label
name of generated label
X'EE0009' indicating a generated
label variable
3-byte element "=": X'E200FB'
key X'EE' for generated label
name of generated label constant
X'EE0069' indicating a generated
label constant
EOS delimiter X'EA •••• '

The 'Define Label' macro

The 'Branch' macro

• The 'DO-Branch' macro
This macro is generated if a DO state­
ment contains more than one repetitive
specification. The 'DO-branch' macro
initiates a branch to the address con­
tained in the generated label variable
nV. The format of this macro is as
follows:

~~~ Contents 

1 
2- 3 

4 
5 

6- 7 
8-10 

macro key X'F2' 
length of macro 
X'81' forDO branch 
X'E4' for generated label variab 
name of generated label variable 
not relevant 

• Generated label constants. 

• Generated label variables. 
The label variables are used to hold the 
values of generated label constants. To 
allocate storage (8 bytes for 1 generat­
ed label variablel, the macro 'Define 
Generated Variable' is generated as 
follows: 

Byt~ Contents 

1 

2- 3 
4- 5 
6-10 

11 

key X'FO' for "define generated 
label variable" 

length (overall) 
name of generated label variable 
attributes of the generated 
label variable (arranged as in 
the statement attribute tablel 

bits 0-1: level number 
bits 2-7: block number 

I~' 

o 



( 

PL/I PLlv:! 8 

IBM Confidential 

• Generated temporaries (i.e. generated 
variables with unknown attributes) • 
These temporaries are used to hold the 
"frozen" values of expression 1, expres­
sion 2 and expression 3 (see PL/I_~~ngu 
age Specifications, Form C28-6809. Gen­
erated temporaries are not defined by 
special macros like generated labels and 
generated label variables. They are 
defined only by their occurrence in a 
statement referencing them. Storage for 
generated temporaries is assigned in 
later phases. The format of the gener­
ated temporaries is as follows: 

Byt~ Co!!ten!§. 

1 key X'E8' 
2 X'OO' 
3 X'OO' for expression (IT in 

examples) 
X'OC' for expression 2 (2T in 
examples) 
X'18' for expression 3 (3T in 
examples) 

• Specification separator. 
Specification separators are used to 
separate 2 repetitive specifications and 
consist of 2 macros as slhown below: 

X'FD0004ES' 
X'FD0004DS' 

macro 1 
macro 2 

Examples for the InEut to the DO Phase and 
:the PrQ.duced O~tEu! 

Legend to the examples: 

• Statements have statement identifiers 
consisting of capital letters ,e.g., 
IFFALSE, SET, READ etc. 

• Macros are identified by lower case 
letters, e.g., define label, branch, 
etc. 

• Generated labels are of the form lL, 2L, 
3L, etc:--------

• Generated label variables are written 
like lV, 2V, etc. 

• Generated temporaries (variables with 
unknown attributes) are of the form IT, 
2T, 3T. 

Note that in reality the input as well as 
the output is a string of 3-byte elements 
and/or elements of variable length. 

1. DO; 

alpha 

BEGIN OF DO-HEAD; 
NOP; 
END OF DO-HEAD 

END; 

2. DO I=exl; 

alpha 

END; 

3. DO WHILE ex4; 

alpha 

END; 

4. DO I=exl 
WHILE ex4; 

alpha 

END; 

S. DO'I=exl 
BY ex3; 

alpha 

END; 

6. DO I=exl 
BY ex3 
WHILE ex4; 

alpha 

END; 

7. DO I=ex1 
TO ex2; 

alpha 

END; 

alpha 

BEGIN OF DO-HEAD 
SET I=exl; 
END OF DO-HEAD 

alpha 

BEGIN OF DO-HEAD 
define label lL 
IFFALSE 2L ex4; 
END OF DO- HEAD ; 
alpha 
branch 1L 
define label 2L 

BEGIN OF DO-HEAD; 
SET I=exl; 

IFFALSE lL ex4; 
END OF DO-HEAD; 

alpha 

define label lL 

BEGIN OF DO-HEAD; 
SET IT=exl; 
SET 3T=ex3; 
SET I=lT; 
branch lL 
define label 2L 
SET I=I+3T; 
define label lL 
END OF DO-HEAD; 

alpha 

branch 2L 

BEGIN OF DO-HEAD; 
SET IT=exl; 
SET 3T=ex3; 
SET I=lT; 
branch lL 
define label 2L 
SET I=I+3T; 
define label lL 
IFFALSE 3L ex4; 
END OF DO-HEAD; 

alpha 

branch 2L 
define label 3L 

BEGIN OF DO-HEAD; 
SET IT=exl; 
SET 2T=ex2; 
SET I=lT; 
branch lL 
define label 2L 
SET I=I+1; 
define label 1L 

Phase PL/IC86 155 



PL/I PLM 8 

IBM Confidential 

8. DO I=ex1 
TO ex2 
WHILE ex4; 

alpha 

END; 

9. DO I=ex1 
TO ex2 
BY ex3 

alpha 

END; 

10. DO I=ex1 
TO ex2 
BY ex3 
WHILE ex4; 

alpha 

END; 

11. DO I=ex1, 
ex2, ex3; 

156 

IFF~LSE 3L I<=2T; 
END OF DO-HEAD; 

alpha 

branch 2L 
define label 3L 

BEGIN OF DO-HEAD; 
SET 1T=ex1; 
SET 2T=ex2; 
SET I=lT; 
branch 1L 
define label 2L 
SET 1=1+1; 
define label 1L 
IFF~LSE 3L I<=2T; 
IFFALSE 3L ex4; 
END OF DO-HEAD; 

alpha 

branch 2L 
define label 3L 

BEGIN ~F DO-HEAD; 
SET 1T=ex1; 
SET 2T=ex2; 
SET 3T=ex3; 
SET I=1T; 
branch 1L 
define label 2L 
SET I=I+3T; 
define label 1L 
IFF~LSE 3L (3T>=O) & 

(I<=2T) I (3T<0) & 
(I>=2T) ; 

END OF DO-HEAD; 

alpha 

branch 2L 
define label 3L 

BEGIN OF DO-HEAD; 
SET 1T=ex1; 
SET 2T=ex2; 
SET 3T=ex3; 
SET I=1T; 
branch 1L 
define label 2L 
SET I=I+3T; 
define label lL 
IFFALSE 3L (3T>=0)& 

(I<=2T) I (3T<0) & 
(I>==2T) ; 

IFFALSE 3L ex4; 
END OF DO-HEAD; 

alpha 

branch 2L 
define label 3L 

BEGIN OF DO-HEAD; 
define 1V 
SET 1V=1L; 
SET I=ex1; 

alpha 

END; 

12. DO I=ex1 
TO ex2 BY ex3 
ex4 TO ex5 
BY ex6; 

alpha 

END; 

branch 2L 
define label 1L 
specification separator 
SET 1V=3L; 
SET I=ex2; 
branch 4L 
define label 3L 
specification separator 
SET 1V=5L; 
SET I=ex3; 
branch 6L 
define label 6L 
define label 4L 
define label 2L 
END OF DO-HEAD; 

alpha 

DO-branch 1V 
define label 5L 

BEGIN OF DO-HEAD; 
define 1V 
SET 1V=1L; 
SET 1T=ex1; 
SET 2T=ex2; 
SET 3T=ex3; 
SET I=1T; 
branch 3L 
define label 1L 
SET 1=I+3T; 
define label 3L 
IFFALSE 2L (3T>=0) & 

(I<=2T) I (3T<0) & 
(I>=2T) ; 

branch 4L 
define label 2L 
specification separator 
SET 1V=5L; 
SET 1T=ex4; 
SET 2T=ex5; 
SET 3T=ex6; 
SET I=1T; 
branch 7L 
define label SL 
SET I=I+3T 
define label 7L 
IFFALSE 6L (3T>=0) & 

(I <=2T) I (3T<0) & 
(I>=2T) ; 

branch 8L 
define label 8L 
define label 4L 
END OF DO-HEAD ; 

alpha 

DO-branch 1V 
define label 6L 

FUNCTIO~L DESCRIPTION 

The input stream is scanned for DO and END 
(of DO group) statements. All other state­

ments are bypassed and put out unchanged. 
If a DO statement is encountered, its 
statement attribute table and its constant 
table is stored in the table storage for 

c 

c 



( 

( 

PL/I PLM 8 

IBM Confidential 

later use. The DO statement is analyzed 
and statements and/or macros are put out, 
depending on the structure of the DO state­
ment (see examples). The attribute and 
constant tables are added to each generated 
statement. Macros generated in this phase 
are not prefixed by these tables. 

If an END (of DO group) statement is 
encountered, the type of code being gener­
ated depends on the structure of the cor­
responding DO statement. The required 
information is stored in 5 push-down 
stacks. The two stacks AND05 and AND06 
have a capacity of one element per level. 
The remaining three (AND01, AND02, and 
AND03) have a capacity of more than one 
element per level. In each push-down 
stack, the element size is one half-word. 
The stack pointers are the symbolic reg­
isters R6 and R7. 

AND01 
(stack pointer R7) contains 'start labels'. 
(In examples 5 to 10, '2L' is a start 
label) • 

AND02 
(stack pointer R7) contains 'exit labels'. 

An exit label is the generated label of a 
statement to which control is transferred 
after the execution of the DO group has 
been terminated. (In examples 6 to 10, 
'3L' is an exit label.) 

AND03 
(stack pointer R7) contains "G-Iabels". 
G-Iabels are generated only if the DO 
statement contains more than one specifi­
cation. A G-Iabel is a generated label to 
which a branch is directed when the state­
ments representing one specification have 
been executed. (In example 12, '4L' and 
'SL' are G-Iabels.) 

AND05 
(stack pointer R6) contains generated label 
variables. (In examples 11 and 12, "lV" is 
a generated label variable.) 

AND06 
(stack pointer R6) is used to store the 
number of specifications per DO statement. 

PIN, IPOINT, POINT are input pointers 
(symbolic registers); pour, OPOINT are 
output pointers (symbolic registers) • 

DESCRIPTION OF ROUTINES 

(Open) A routine is called open if 
control is transferred to it 
by 

1. a simple B instruction, 
in which case control is 
also returned by a B 
instruction, or 

2. some in-line coding that 
requires a separate des­
cription. 

(Closed) A routine is called closed if 
control is transferred to it 
by a BAL instruction. Con­
trol is returned by a BR 
instruction in this case. 

Rl, R2, ••• are symbolic registers. 

This is the "master program" of this phase. 
DOPH initializes pointers, registers, etc. 
and reads the first 4 records into input 
buffers 1, 2, 3, and 4. It scans and puts 
out the input stream. If a DO or END (of 
grou~ statement is encountered, the state­
ment attribute table is stored in the Table 
Area. ANDO is called if a DO statement has 
been encountered, or ANEN if an END (of 
group) statement occurred. (See descrip­
tion of ANDO and ANEN.) Before ANDO is 
called, a-oBegin of DO head' statement is 
put out. Before ANEN is called, the state­
ment identifier END (of group) is replaced 
by the statement identifier NOP. 

The scan is continued until the end-of­
program key is encountered. 

ANDO - - AB, AC, AD (Open) 

Analyzes and processes DO statements. If 
the DO statement contains errors, a NOP 
statement is put out, EOST is called, and 
control returns to DOPH which continues the 
scan. 

If the DO statement is correct, a series 
of macros and statements is generated (see 
examples). The attribute table stored in 
the table area is attached to each 
generated statement. 

Error messages are produced if the DO 
nest is deeper than 12, and if there are 
more than 50 specifications in one DO nest. 

ANEN - - AE (Open) 

Puts out macros and statements, depending 
on the structure of the corresponding DO 
statement. (See examples.) 

BSAC - - AG (Open) 

This routine stores the statement attribute 
table and the statement constant table in 
the table area. 

Phase PL/IC86 157 



PL/I PLM 8 

IBM Confidential 

BYBY -- AO (Closed) 

'rhis routine is called only if the specifi­
cation contains a BY. It generates the 
following: 

SET 3T = expression 3; 
SET SCALAR = 1T; 
branch NL 
define label ML 
SET SCALAR = SCALAR + 3T; 
define label NL 

BYPA -- AH (Closed) 

Stores either the statement attribute table 
for variables or the statement attribute 
table for constants in the Table Area. 
Upon exit, BSAC7 contains the address of 
the next free byte in the Table Area, and 
the statement body begins in input buffer 
1 • 

CON -- AI< (Closed) 

CON may be considered as an entry to LGEN. 

Generates a 'name' for constant 0 or 1 and 
puts it into R1. The 'name' is a 3-byte 
element. The first byte of this element 
contains X'E9'; the sUbsequent two bytes 
contain the number of the constant. 

Retrievement of the constant number is 
discussed in the description of LGEN. 

ERROR, JERRA1 -- AS lQ!ose£L 

This routine is described in phase A35. 

~QST, JEOSA 1 

Arranges the contents of input buffers 1 to 
4. The currently scanned EOS is moved to 
input buffer 1. This is accomplished by 
moving and by reading in new records. Puts 
out EOS and the error codes attached to it. 
Any additionally generate~ error codes are 
also put out. 

GEOS -- AI (Closed) 

Moves the input pointer PIN until the last 
byte of the statement body is reached. 
Stores the value of PIN in IFPH96. 

GSN -- AJ (OpenL 

This routine is described in phase C85. 

INC1 -- AL (ClosedL 

INC1 is called only if the specification 
contains a TO clause but not a BY clause. 
It generates the following: 

SET scalar = 1T; 
branch nL 

158 

define label mL 
SET scalar = Scalar + 1; 
define label nL 
IFFALSE oL scalar < = 2T; 

Generates an entry for the constant 1 in 
the statement attribute table for con­
stants. 

JTRNA 1 -- AQ (Closed) 

Output routine. Register BYZ contains the 
number of bytes to be put out, register PIN 
the starting address. One output buffer is 
used. 

If the (remaining portion of the) string 
to be put out fits into the remaining unoc­
cupied space of the output buffer, the 
string is moved into this space. BYZ is 
added to POUT to update the output pointer. 

If the string to be put out is too big, 
the output buffer is filled to capacity by 
a part of the string, and the contents of 
the buffer are written onto the output 
medium. POUT is reset to the start address 
of the buffer. BYZ is reduced by the num­
ber of bytes moved into the buffer. PIN is 
incremented by that number. Then JTRNA1 is 
repeated until the output is completely 
accomplished. 

KRAFT -- AM (Closed) 

Puts out: SET Scalar = 1T; 
branch nL 
define label mL 

LGEN -- AK (Closed) 

Generates a label constant of the following 
format: 

byte 0 

bytes 1-2 

X'EE', key for generated label 
constant 
number 

The number in bytes 2 and 3 of the con­
stant is obtained by adding 1 to the coun­
ter IJKMVC each time the routine is called. 
Upon exit, the generated label constant is 
stored right-justified in R1. IJKMVC is 
the "variable and constant counter" of the 
compiler. If the value of IJKMVC exceeds 
65534, an error is indicated. 

LVGE -- AK (Closed) 

LVGE may be considered as an entry to LGEN. 

The routine generates a label variable of 
the following format: 

byte 0 

bytes 1-2 

X'E4', key for generated label 
variable 
number 

c 

o 



( 

PL/I PLM 8 

IBM Confidential 

The number in bytes 2 and 3 of the label 
variable is obtained by adding 1 to the 
counter IJKMVC each time the routine is 
called. Upon exit, the generated label 
variable is stored right-justified in R1. 
IJKMVC is the "variable and constant 
counter" of the compiler. If the value of 
IJKMVC exceeds 65534, an error is indicat­
ed. 

The high-order 4 bits of the byte pointed 
to by PIN are tested. If these bits con­
tain X'E', PIN is incremented by 3. If 
they contain X'F', PIN is incremented by 
the contents of the two bytes following 
next. If these bits contain any other 

value, a compiler error has occurred and a 
dump is initiated. 

TTS1 AP (Closed) 

Puts an entry for the decimal fixed con­
stant 1 into the statement attribute table 
for constants. If no available space is 
found in this table, an error message is 
given and the proceSSing of the current 
statement is terminated. 

Called only if a WHILE appears in a speci­
fication. The routine puts out IFFALSE mL 
expression4; 

phase PL/IC86 159 



PL/I PLM 8 

IBM Confidential 

This phase initiates the new interface used 
by the phases 000, DOS, and 010. This 
interface has only some of the capabilities 
of the main interface (see phase AOO) and, 
therefore, is shorter. The storage saved 
is used by the phases using this interface. 

Both the old interface, which is located 
after the register save area and pointed to 
by register 12, and the LIOCS table for 
S~S001 are written on SYS001 and replaced 
by the new interface. 

All items of the communication region 
which are used by phases 000, DOS, and 010 
are saved in the communication region of 
the new interface. 

The new interface uses an automatic 
end-of-file branch on the text work files. 
Therefore, the address of the end-of-file 
routine of the new interface is inserted 
into the LIOCS tables. 

Phase 000 is called by the EOPH routine 
of the new interface. An end-of-file indi­
cator is written on the current text output 
work file and the functions of the input 
and output work files are switched. 

S~mbols used in flow charts: 

IJKMJT 

TEXTIN 

TEXTOUT 

KSYS001 
KSYS002 
KSYS003 
ZTOUT 

TASAVA 
ZTAB07 

IJKWT 
T 
IJKMTT 

rABLEM 
NOTEF 

POINTW 
BEGINT 
WRITEI 

ENOl NT 
TABLEN 
INTTABEN: 

AR 

160 

Job communication bytes (old 
interface) 
Contains address of text input 
work file table 
Contains address of text output 
work file table 
Contains information on IJS~S01, 
IJSYS02, and 
IJSYS03 in old interface 
Subroutine for reading table 
records 
Area for saving the SYS001 table 
TABTAB entry for OS table (not 
used at this point) 
Wait routine in old interface 
SYS001 
Begin of TAB'TAB, entry in old 
communication region 
Contains address of SYS001 table 
Area for building NOTE/POINT 
information 
LIOCS macro instruction 
Begin of old interface 
Begin of LIOCS write macro 
instruction 
End of old interface 
Length of LIOCS table 
Begin of communication region in 
new interface 
Begin and 

PHASE PL/IC95 (NEW INTERFACE) -- AV 

LE Length of area written 
NEOFAO Address of new end-of-file rou­

tine 
EOFADO Relative address of end-of-file 

entry in LIOCS table for disk 
EOFADr and for tape work files 
DUMPS~VE: Save area for old end-of-file 

address 
IJKMVC Variable counter, entry in old 

communication region 
IJKMNN Name of address constant for 

origin of compilation, entry in 
old communication region 

IJKMBL Block length on text work files, 
entry in old communication region 

IJKMN Move routine of old interface 
NINTL Length of new interface 
INTBE~ Begin of new interface 
TABLE Begin of communication region in 

new interface 
EOPH End-of-phase routine in new 

interface. 

NEW INTERFACE 

Only three routines are provided by the new 
interface. A fourth entry is used inter­
nally for handling the end-of-file condi­
tion. 

As in the old interface, the interphase 
linkage is established by a DSECT in the 
phases and with register 12 as base reg­
ister. 

Read/Write -- AW 

Only a non-overlapped input/output on the 
text work files is provided, the same macro 
area is used for both. Therefore, the 
command code must be stored in the 
READ/WRITE macro instruction. Register 1 
is set to text input or text output before 
entering the common part. Prior to execut­
ing the READ macro instruction, the READ 
routine checks whether the end-of-file was 
reached and returns if this condition 
occurs. The length of the area to be read 
is inserted into the READ/WRITE macro 
instruction in the READ routine only 
because a READ always precedes a WRITE. It 
must be inserted because the EOPH routine 
may modify this parameter. After the 
read/write macro a check macro is given for 
the respective medium. 

The calling sequence is: 

LA 1,area 
BAL 14,READ/WRITE 

where area is the input or output area. 

c 



( 

PL/I PLM 8 

IBM Confidential 

EOPH -- AW 

The end-of-phase routine writes an end-of­
file indicator on the current output work 
file. This is done for tape work files by 
giving a control macro instruction and for 
disk work files by using the write routine 
with the length parameter zero. The end­
of-file indicator is set to zero, the text 
work files are reset to their beginning by 
POINTS macro instructions, and the 
functions of the text input and output work 
files are switched. At the end, a load 
macro instruction is given with the new 
phase name and a branch to register 1. 

The calling sequence is: 

L 1 , =C • DXXb' 
BAL 14,EOPH 

where DXX is the suffix of the phase name 
to be called. 

EOF -- AW ------
This routine sets the end-of-file indicator 
on. It is automatically entered when an 
end-of-file indicator on the input work 
file is detected. 

Communication Regi2Q 

The entries IJKMVC, IJKMNN, IJKMBL, and 
IJKMWC are the same as in the old inter­
face. 

IJKMJT has a length of only two bytes. 
The first 12 bits have the same meaning as 
in the old interface, bits 12-15 have the 
following meaning: 

bit 12 0: tape work files 
= 1 : disk work files 

bit 13 1 : GOTO library routine must be 
called 

bit 14 = 1 : built-in functions in current 
compilation 

ADLIBI is one word of the library usage 
bytes matching bytes 5 through 8 of IJKMLB. 

Symbobs used in flow charts: 

EOFIND 
CHECK 
TEXTI 

REWR 
INTTAB 
READI 
WRITE 
SAV01 
TEXTOU 

PHASEN 
CNTRL 
CCWOFF 

POINTS 
LOAD 

End-of-file indicator 
LIOCS macro 
Holds address of text input work 
file table 
Area of read/write macro 
Begin of communication region 

LIOCS macros 
Register 1 save area 
Holds address of text output work 
file table 
Phase name area 
LIOCS control macro 
Offset in module where CCW chain 
bit is set into table 
LIOCS macro 
DOS/TOS macro 

Phase PL/IC95 161 



PL/I PLM 8 

IBM Confidential 

These phases process the following state­
ments: 

PROCEDURE 
BEGIN 
END (PROCEDURE) 
END (BEGIN) 
CALL 

GOTO 
ENTRY 
RETURN 
NOP 
SET 

EXPRESSION 
IF 
CALL OVERLAY 
CALL DYNDUMP 

If conversion is required, the appropri­
ate macro instructions are generated. The 
subscripted variables, fixed- and floating­
point registers, and the working storage 
required during execution are determined 
and optimized. Note that DO loops have 
been replaced by assignment and IF state­
ments during the phases C85 and C86. The 
compound statement IF was expanded to sim­
ple statements in phase C25. 

An expression statement is generated 
during the I/O scan 1 (phases C50 - C65) to 
allow the evaluation of expressions con­
tained in these statements. 

The phases DOO - D11 use similar main, 
error handling, initialization, and data 
manipulation routines and the same I/O 
concept. 

162 

GENERAL DESCRIPTION OF PL/I PHASES DOO - D11 

INPUT 

Phases DOO - D11 are fetched after the 
first I/O scan (phases C50 - C65) and the 
phases decomposing the DO and IF state­
ments. The input is the program string, 
which consists of statement bodies preceded 
by the statement key and the attributes of 
the variables and constants contained ther­
ein. 

The statement body is followed by the 
corresponding EOS key and flags for the 
errors detected during previous phases. 
Label macro instructions and generated 
variable definitions may also appear in the 
program string but not inside the statement 
body. 

The program string input or output con­
sists of syntactical units that can be 
identified according to the preceding key, 
which may be X'Fn', XEn', X'On', or X'1n', 
where n is a hexadecimal digit in the range 
from 0 to F. The keys and their meaning in 
the input string for the phases DOO - D11 
are shown in Figures 1 through 3. 

-- --------------------~~~ 

c 

c 



PL/I PLM 8 

IBM Confidential 

( 

I EOI I I I I. I ·statement identifier 

number of embracing block 
'---- current block number 

'--- prefix mask 
L..- statement identification 

L..-X'OO' or X' FF' 

I E1 I I I 
'---v--

reference to declared variables 

Loffset in the prestatement 

~ 
delimiters 

delimiter identification 
stack priority 

1'30'31 ~ reference to character string constant L =: length of cha .. cte"t,;n, 
not used 

offset in character string table 

! E4! name I E41 00 IAttribute! E4 ! p I q ! E4 ! ! reference to generated variables 

'---picture offset 

E5,E6, and E7 are not available 

~ reference to variables with unknown 
attributes 

X' 00' , X' C' or X' 18' 

I E91 I I reference to constants included 
'-v--' in the prestatement 

Lname of constant 

Figure 1. Input for Phase DOO (Part 1 of 2) 

Phases DOO-Dll (General) 163 



PL/I PLM 8 

IBM Confidential 

lEAl I I I I. I 
level number 

'---block number 
-not used in D-phases 

'--statement number 
'-- error masks 

~ error number 

I Eel I I 
'---y-J 

L name of built-in function 

I ED, I I 
~ 

Lany 

I EE' , 'EE , I I 

EF 

FO 

Fl 

F2 

F3 

F4 

~ 

L name of generated label constant 

F5 to FD 

FE 

FF 

Figure 1. Input for Phase DOO (Part 2 of 2) 

164 

end of stQtement 

error messages 

reference to built-in function 

I/O intermediate key 

reference to generated label constant 

not avai lable 

generated variable declaration 

not available 

macro 

table of constants 

table of declared variables 

not avai lable 

constant in format statement 

end of program string. 

o 

c 

() 



PL/I PLM 8 

IBM Confidential 

( 

I EO 100 I I III statement identifier 

number of embracing block 
"--- current block number 

'-- prefix mask 
'-- statement identifier 

I Ell name Imodifierl I I Lip I q I I I reference to declared variables 

L pi cture offset 
"---- Attribute 2 

""---- Attribute 1 

~ 
operations 

operation 
number of operands 

(-- ~ 
statements operations 

statement operation 
number of operands 

I E41 I I I E71 I I I I E71 I I define initial value for working 

L Lnm~d L name of 

storage of block 

WS2'** 
name of WS1'** 

-block number 
""-- level number 

"---- initial value for working storage** 

* on byte boundary 
** on double-word boundary 

~ 
function call 

not used 
number of arguments 

~ 
evaluate subscript 

current array number 
number of subscripts 

Figure 2. Input for Phase DOS (Part 1 of 4) 

Phases 000-011 (General) 165 



PL/I PLM 8 

IBM Confidential 

I E71 name I offset I 00 I tip I q I 

= An,;bute 2 
I I ,;0' ... 0_ indirect reference (array assignment} 

I E71 register I 0050 I FF I LiP I q I = A",;bute 2 
I I ,k' ... of .... ' 

reference to returned value 

~ 
reference to variable with unkown 
attributes 

X'O', X'C', X'18' 

I E91 similar to E1 (17 bytes) \ 

I the constant ) ~ itself as in prestatement (22 bytes) ~ 

1 EAI 1 1 1 1.1 end of statement 

statement number 
~ block number 

L...--Ievel number 
~not used in D05 

"--error mask 

~ 
error message 

error number 

~ 
reference to built-in functions 

name of built-in function 
number of available arguments 

I EDI similar to declared variable ~ reference to character string constant 

EE and EF are not available. o 
Figure 2. Input for Phase DOS (Part 2 of 4) 

166 



PL/I PLM 8 

IBM Confidential 

( 
FO generated variable declaration 

I Fli 00 I 03 1 UNSPEC function 

F2 macro instruction 

I F31-00 1- 03 1 string function 

I F41 00 I 03 1 UNSPEC pseudo variable 

1 FSI 00 1 03 1 string pseudo variable 

F6 assembler macro instruction 

F7 not interesting program string 

I Fa l001031 array function argument (ALL ,ANY 
PROD, SUM) 

F9 not avai lable 

I FAIOO 103 1 array function argument (target) 
(PROD,SUM) 

IFBl001031 array function argument (target) 
(ALL,ANY) 

FC function reference (array function) 

FD DO separator 

FE not available 

FF end of program 

OOtolF is array name and have the same 

(~.' 
./ 

format as X'EI' 

Figure 2. Input for Phase 005 (Part 3 of 4) 

Phases 000-011 (General) 167 

-------------------.-.--~~~-----~,~-- .. --~ .~ 



PL/I PLM 8 

IBM Confidential 

c 
STATEMENT IDENTifiER OPERATIONS 

I E31 nn I 03 1 dyndump 

I E31 01 104 1 overlay 

,-- prologue macro l ~I 

I E3 1 nn I 05 1 f2 I l 
I I procedure and entry 

, ... prologue macro l ~I 

IE31ool061f21 l I I begin 

IE31ool071 end procedure 

IE3 100 loa I end begin 

I E31 nn 109 1 call 

I E31 01 lOA 1 GOTO 

I E3 I nn I 08 1 f2 I l I I entry (prologue) (similar to procedure) 

IE310210EI SET 

I E31 01 I Of I expression 

IE310l1101 If 

Where nn is the number of operands. 

Figure 2. Input for Phase D05 (Part 4 of 4) 
c 

168 

----------- .. - ----



PL/I PLlIIj 8 

IBM Confidential 

( 

lEO I I I I I I I statement identifier 

no embracing block 

'---no actual block 

i.....--prefix 

'---statement identification 

X'OQ' or X' FF' 

I K I n I operand of macros and functions 

I~ 18 bytes .1 
K may be: X'El' 

X'E7' 
X'E8' 
X'EF' , 

for detai I see I n~ut for the Routine PREMAC in phase D10 

( 
I E31 I I end of block 

I E41 I I I I E71 I I I I I E71 I I define initial value for working . l Lblook ~""bet~ n1me of WS2 
storage of block 

'-level num~er not used 

Lname of WSl 

initial value for working storage 

WSl is the name for the working storage on double word boundary and 

WS2 is the name for the working storage on byte boundary. 

I E51 ~K11K21K31 
- number of operands following the E5 key 

premacros 

I E91 72 ~I constants 

14 40 bytes 

for details see ~~ut for the Routine PREMAC in phase D10 

Figure 3. Input for Phase 010 (Part 1 of 2) 

Phases 000-011 (General) 169 



PL/I PLM 8 

IBM Confidential 

lEAl I I I I I end of statement 

I EBI I error indicator 

I EC I n I K1 I K21 K31 function call 

Lnumber of operands following the EC key 

I EE I lL I 'operands(s) to be requested 

I~ 18 bytes ~I 
for details see .!.n~ut for the Routine PREMAC in phase D10 

IFK I e I I F-keys 

I~ e bytes ~I 
any key F' X' except X' FF' 

@] end of text stri n9 

Figure 3. Input for Phase 010 (Part 2 of 2) 

c 
170 

~----.~--------------------



(-

PL/I PLl>1 8 

IBM Confidential 

'rhe attributes of variables and constants 
are packed into one byte as X'mn'. The 
meanings of m and n are shown in Figure 4. 

r---T-------------------------------------, 
I m I Attributes* I 
~---+-------------------------------------~ 
I 0 I Scalar variable without picture I 
I 1 I Scalar variable with picture I 
I 2 I Array without picture I 
I 3 I Array with picture I 
I 4 I ENTRY name or function name without I 
I I picture I 
I 5 I Function name with picture I 
I 6 I Constant I 
I 7 I Format label I 
~---~-------------------------------------~ 
I*The high-order bit of the half-byte m isl 
I 1 in case of controlled variables. Oth- I 
I erwise it is O. I 
~---T-------------------------------------~ 
I n I Attributes I 
~---+-------------------------------------~ o I Binary float I 

1 I Binary fixed I 
2 I decimal float I 
3 I Decimal fixed I 
4 Zoned decimal I 
5 Zoned decimal (T) I 
6 CS aligned I 
7 BS aligned I 
8 Sterling I 
9 Label I 
A Pointer I 
B BS packed I 
C Major structure I 
D Minor structure I 
E Free I 

I F File I l ___ ~ _____________________________________ J 

Figure 4. Format of Attribute Byte 

Phases 000 - D11 fetch the input ele­
ment by element and call the appropriate 
action according to the switch table 
EFACTION (32 bytes). The actions are 
numbered from 0 - 31. A~TIONn refers to 
the key X'En' ~r X'F(n-16)' if n greater 
than 16. The switch table contains the 
displacement of the actions 0 - 31 rela­
tive to the origin action divided by 2. 
Division by 2 is performed in order to 
make each displacement fit into one byte. 
Each action corresponds to a routine to 
be activated if the respective key is 
detected in the input stream. The FE'rCH 
routine fetches the address of the action 
to be taken and stores it in R10. 

Since tne routines may be recursively 
activated, the return addresses are 
dynamically saved and restored. The 
principle of push-down store is extended 
by coupling it with the chain and list­
processing technique to facilitate 
optimizing the use of registers and work­
ing storage. 

COMMON SERVICE ROUTINES 

The service routines shared by phases 
000-D11 are briefly described in the 
following. 

Saver -- OA 

This routine dynamically saves the rela­
tive return address of a subroutine in an 
automatic save area. Base register BASE1 
always points to this save routine. The 
link register LINK is assumed to contain 
the return address to be saved when the 
routine is entered. Upon return from the 
routine, LINK contains the computed rela­
tive address that was saved. The routine 
is called as follows: 

BALR R4,SAVER 

SAVER, which always contains the return 
address (entry of XXXX), is equated with 
BASE1. 

RETURN -- DB 

This routine is used to dynamically 
return to the calling routine. It fetch­
es the return address from the automatic 
save area and modifies the corresponding 
pointer by decreasing it by 2. The 
return routine is called as follows: 

BCR CON, RETURNER 

where CON is any condition code. RETUR­
NER, which always contains the address of 
the entry point of the RETURN routine, is 
equated with BASE2. 

ERROR -- DE 

The error routine is activated by: 

BAL LINK,ERROR 
DC X'mmnn' 

where nn is the error number and mm is 
the severity code. The routine skips the 
statement in error up to the end of the 
statement and inserts the error into the 
text after the statement end. 

ADMVC -- DF 

This routine generates names used during 
compilation. rhe routine fetches the 
current name from the communication area 
IJKMVC and loads it into register O. An 
error is indicated if the name fetched is 
0, i.e., if the number of names is great­
er than 32K-1. If the name fetching is 
successful, IJKMVC is incremented by one. 
No arguments are required. The routine 
is called as follows: 

BAL LINK,ADMVC 

Phases 000-011 (General) 171 



PL/I PLM 8 

IBM Confidential 

Data Manipulation Routines -- A3 

A general move routine MOVE is provided 
to move data between storage, work files, 
and table area. This routine is activat­
ed by one of six routines that pass the 
required parameters for source and tar­
get. The names and functions of these 
routines are given in Figure 5. New 
routines may be provided for additional 
requirements. The general instruction 
sequence of the routines listed in Figure 
5 is as follows: 

BALR 
BAL 
DC 
DC 
DC 
DC 
DC 

R4,SAVER 
RZ,MOVE 
AL2 (LS-Z) 

saves return address 
calls MOVE routine 

AL2 (LT-Z) 
X'1RS2RTRS1RT2' 
AL1 (AX-A1) 
AL1 (AY-A1) 

r--------T-------T------T--------T--------, 
I Froml I I I I 
I'ro I Input I Output I Table I Storage I 
~--------+-------+------+--------+--------~ 
I Input I MOVEIII I I I 
I Output I MOVEIOI I MOVE TO I MOVESO I 
I Table I MOVE IT I I I I 
I Storage I MOVEIS I I I L ________ ~ _______ ~ ______ ~ _______ ~ ________ J 

Figure 5. Names and Functions of Data 
Manipulation Routines 

Definition of parameters: 

Z name of parameter list 
LS currently available source length 
Lr currently available target length 
RS register containing source address 
RT register containing target address 
AX action to be taken if source length 

has been exhausted (can be A1 or A4) 
A~ action to be taken if length of target 

has been exhausted 
A 1 (can be A2 or A3) 
A1 origin of A-action routines. 

l'he general move routine assumes that RZ 
points to Z. 

Parameters used in the different MOVE 
routines. 

MOVEIT 

Z is VIT 
LS is IL 

L·r is TL 

RS is 6 

RT is 8 

AX is A1 
A~ is A3 

172 

currently available input 
length 
currently available table 
length 
register containing input 
address 
register containing table 
address 
read input 
load new table pointer to RY 

MOVETO 
zrs-VTO 
LS is TL 

LT is OL 

RS is 8 

RT is 7 

AX is A4 
AY is A2 

MOVEIO 

Z is VIO 
LS is IL 

LT is OL 

RS is 6 

RT is 7 

AX is A1 
AY is A2 

MOVEII 

Z is VII 
LS is IL 

LT is IL 

RS is 6 

RT is 6 

AX is A1 
AY is A3 

l<lOVESQ 

Z is VSO 
LS is TL 

LT is OL 

RS is 1 

RT is 7 

AX is A4 
AY is A2 

MOVEIS ----
Z is VIS 
LS is IL 

LT is TL 

RS is 6 

RT is 

AX is A1 
AY is A3 

currently available table 
length 
currently available output 
length 
register containing table 
address 
register containing output 
address 
load new table pointer to RX 
write output 

currently available input 
length 
currently available output 
length 
register containing input 
address 
register containing output 
address 
read input 
write output 

currently available length of 
input 
currently available length of 
input 
register containing input 
address 
register containing input 
address 
read input 
load new table pointer to RY 

currently available table or 
storage length 
currently available output 
length 
register containing storage 
address 
register containing output 
address 
load new table pointer to RX 
Write output 

currently available input 
length 
currently available table or 
storage length 
register containing input 
address 
register containing storage 
address 
read input 
load new table pointer to RY. 

c 

c 



( 

PL/I PLM 8 

IBM Confidential 

Actions Taken in MOVE: A1,A2,A3,A4 -- A4 

Routine A1. This routine is activated if 
the length available in the current input 
buffer is exhausted. One record is read 
and the length available for the input 
buffer as well as the corresponding input 
pointer PIN are initialized. 

Routine A2. This routine is activated if 
the length of the output buffer is 
exhausted. The following actions are 
performed: 

1. One record is put out; 

2. The available length and the output 
pointer are initialized; 

3. The routine waits for completion of 
the output operation. 

Routine A3. This routine is called if the 
table area is full. The initial value 
X'7FFF' is moved into the corresponding 
target length. 

Routine A4. This routine differs from A3 
only in that it moves the initial value 
X'7FFF' into the source length. 

ACTION31 

This routine is called if the end of the 
program is detected in the input stream. 
It terminates the current phase and calls 
the next phase. 

BUFFER CONCEPT AND PHASE LAYOUT 

The read and write buffers (one of each) 
are located in adjacent storage areas (see 
Figure 6). The first record of the string 
to be processed is read into L2 of the 
read buffer and then scanned accordingly. 
If the beginning of L4 is detected, the 
contents of L4 are moved into L1 and the 
next record of the string to be processed 
is read into L2 in non-overlapped mode. 
The pointer is set to the beginning of L1, 
and scanning is continued. This process 
is repeated until the entire string has 
been processed. For the write buffer, the 
procedure is the same. 

This buffer concept eliminates the 
necessity for using the NOTE and POINT 
macro instructions. 

~1~~----------------------------8UFFERAREA----------------------------~~~1 

,.1111"11"111111111111111111111111111111"11"11"111111111111111111111111111111"11"111 srorage 

Ll 

I 
~-----------~ ------------~~ ~I~..------ L6 

L 1 - secondary read buffer 1 
L2 - read buffer 
L4 - secondary read buffer 2 

LS - secondary write buffer 1 
L6 - write buffer 
L7 - secondary write buffer 2 

L 1 = L4 (may be zero) 
LS = L7 (may be zero) 

Figure 6. Buffer Organization 

length differs from phase to phase, but is fixed in each phase 
length depends on available storage 
same as for L 1 

same as for L 1 
same as for L2 
same as for L 1 

Phases 000-011 (General) 173 



PL/I PLM 8 

IBM Confidential 

PHASE PL/IDO~ (STATEMENT DECOMPOSITIOm AZ, BA 

'rhis phase performs the following major 
functions: 

1. 

2. 

3. 

It reorders the input stream in rev­
erse polish notation. 

It decomposes the array and structure 
assignments. 

It generates the prologue macro 
instructions. 

4. It processes and deletes the prestate­
mente 

The input stream consists of state­
ments, each statement being preceded by 
its corresponding prestatement and fol­
lowed by the end of statement. The input 
stream may be considered as a continuous 
number of syntactical units, each unit 
being defined by its first byte (keYI. 
This key may be X'En' or K'Fn'. Depending 
on the key found, one of a group of rou­
tines (named ACTIONO through ACTION31, 
i.e., ACTIONn for key X'En' or ACTION 
(n+161 for key X'Fn'l is activated. 

The output is similar to the input, 
except that some of the syntactical units 
have a different format and meaning. 

The table and work areas, which are 
preceded by the area occupied by the I/O 
buffers, are dynamically allocated. 

Operator Priorities 

·rhe operators that may appear in a PL/I 
source program are ordered by relative 
priority, the lowest priority being zero. 
Within statements, operations with a high­
er priority are performed before opera­
tions with a lower priority preceding 
them. Expressions and assignment state­
ments are evaluated from left to right. 
Exceptions are exponentiation, negation, 
prefix plus, and prefix NOT (logical NOTI , 
which are evaluated from right to left. 
The operations that may ap~ear in a PL/I 
source program and the corresponding 
priorities are listed in Figure 1. 

DESCRIPTION OF ROUTINES 

~ote: the following routines are des­
cribed in the section @~ral 2escription 
of Phases 000 - 011. 

I\.DMVC 
ERROR 

174 

MOVESO 
MOVETO 

MOVEU 
SAVER 

Symbols used in flow charts: 

PIN 
TP 
SP 
INP 
STP 

SORG 
STROR:; 

-input pointer 
-table pointer 
-stack pointer 
-priority of input element 
-priority of element on top of 
stack 

-stack origin 
-structure origin 

Fetch -- BC 

The routine computes the length of the 
current element in the input stream and 
loads the address of the appropriate 
action into registers RL and R10, respec­
tively. It uses the current value of the 
input pointer PIN as argument and the 
table ACTION as switch table for the indi­
vidual actions. If the current element 
has an F-key, the length is fetched from 
the two bytes following the key. Other­
wise, the length is computed from LETAB. 
The routine is activated as follows: 

BI\.L LINK, FETCH 

Init1 -- BB 

This routine is used to initialize the 
stack pointer and the table pointer. 

ACTIONO -- BD 

This routine is activated when a statement 
identifier is detected in the input 
stream. The stack and table pointers are 
initialized after checking the necessity 
for output from the table area. If the 
statement is a DO header or DO trailer, it 
is replaced by X'F20004DS' or X'F20004ES', 
respectively. If the statement is a CALL 
statement replacing a BEGIN statement, it 
is put out unchanged. In all other cases, 
the statement is checked to determine 
whether it is one of the statements to be 
processed by the phases 000 through 020. 
These statements have the internal rep­
resentation X'E00002' through X'E00010'. 
If the current statement is one of these 
statements, switch SW1 is set to X'FF'. 
Otherwise, it is set to X'OO'. 

ACTION1L-3, 4, 6, 8, 9, 30 

This routine is called when a variable 
name is detected. It moves the current 
input element into the table area. 

o 

c 



(-

PLII PLM 8 

IBM Confidential 

1 Internal IPriority IType of 1 
1 1 Delimiter IRepresentationlin StringlOperation 1 
l--+----------------------------+--------------+---------+------------------------------~ 
1 01- 1 1 1 I 
I 11- 1 I 1 I 
1 21- I I I I 
I 3lBuilt-in bracket 1 E200E3 1 IOperand dependent I 
1 41Entry bracket 1 E200E4 I IOperand dependent I 
I 51Subscripted variable bracket 1 E200E5 1 IOperand dependent I 
I 61 Prologue ( 1 E200E6 1 I I 
1 71) I E200E7 1 1 I 
I 81 Comma I E200E8 1 1 I I 
~--+----------------------------+--------------+---------+------------------------------~ 
1 10 1 1 E203EA 1 3 1 String I 
1111 I E204EB I 4 tBit I 
1121& 1 E205EC 1 5 IBit I 
~--t----------------------------+--------------+---------+------------------------------~ 
1131= I E207ED 1 7 I Comparison I 
1141= 1 E207EE 1 7 I Comparison I 
1151< 1 E207EF 1 7 I Comparison I 
1161> I E207FO I 7 I Comparison I 
1171<= I E207F1 I 7 I Comparison I 
1181>= 1 E207F2 I 7 1 Comparison I 
~--+----------------------------+--------------+---------+------------------------------~ 
1191infix + 1 E208F3 I 8 I Arithmetic 1 
120linfix - 1 E208F4 1 8 I Arithmetic I 
1211* I E209F5 I 9 1 Arithmetic 1 
12211 ~ E209F6 I 9 I Arithmetic I 
1 231prefix + I E20AF7 I 11 I Arithmetic I 
12 4 1prefix - 1 E20AF8 1 11 1 Arithmetic 1 
~--+----------------------------+--------------+---------+------------------------------~ 
1 25 E20AF9 11 I Bit 1 
126 ** E20AFA 11 1 Arithmetic 1 
127 statement identifier EOOOmn I Any 1 
128 PROCEDURE E00005 I I 
129 BEGIN E00006 I 1 
130 END (PROCEDURE) E00007 1 1 
131 END (BEGIN) E00008 1 I 
132 CALL E00009 1 Any 1 
133 GOTO EOOOOA I Label I 
134 ENTRY EOOOOB IAny I 
135 RETURN EOOOOC IAny I 
136 NOP EOOOOD 1 I 
137 SET EOOOOE IAny I 
138 EXPRESSION EOOOOF IAny I 
139 IF E00010 IBit I 
140 OVERLAY E00004 I Character f 
141 DYNDUMP I E00003 I Any I 
l __ L __ --------------------------~--------------~------___ ~ ______________________________ J 

Figure 1. Operations and Corresponding Priorities 

Action5, 7,13,15,17,21-28 

These routines are not available because 
the corresponding keys cannot occur in the 
text string. 

ACTION2 -- BF 

This routine processes the delimiters in 
the input stream and sets the delimiter 
switch CUR to X'FF'. If the input is an 
equal sign, the routine returns after 
setting CUR to X'FF'. If the input is any 
delimiter other than open parenthesis, 
close parenthesis, or comma, the input 

priority is compared with the priority of 
the element on top of the stack. If it is 
higher, the current input element is 
stacked, the stack pointer SP is decreased 
by 3, and the routine is left. Otherwise, 
the elemen~ on top of the stack is moved 
to the table. Both the stack and the 
table pointer are then incremented by 3. 

The routine continues processing by 
comparing the input priority with the 
priority of the new element on top of the 
stack. 

Phase PL/IDOO 175 



PL/I PLM 8 

IBM Confidential 

If the input element is a (, the pre­
vious element is checked to determine 
whether it is a delimiter. If it is a 
delimiter (PREV switch is X'FF'), the ( is 
stacked. If it is not (PREV switch is 
X'OO'), a list parenthesis ~'E200E51 is 
stacked. 

If the input element is a comma, the 
elements in the stack are unstacked until 
a (or a comma is found. 

If the input element is a ), the list 
counter is set to 1 and the delimiter in 
the stack is checked. The following 
actions are taken depending on the element 
found: 

1. If the stacked element is a comma, the 
list counter is increased by 1. 

2. If the stacked element is a (, both 
parentheses are deleted and the rou­
tine is left. 

3. If the stacked element is a list 
parentheses, the counter value is 
stored in the second byte, the paren­
thesis in the stack is unstacked, and 
the routine is left. 

ACTION1 0 -- BE 

This routine is activated if the end of 
statement is detected in the input stream. 
If the statement contains error(s) with a 
severity code other than W, the entire 
statement is skipped. The end of state­
ment is put out together with the corres­
ponding error message(s). Otherwise, 
control is transferred to STATEN. 

The error in the input stream is put out 
unchanged. 

ACTION14 

The delimiter switch CUR is set to X'FF'. 
Processing is as in ACTION1. 

ACTION16, 18, 29 

rhe delimiter switch CUR is set to X'FF' 
and the element is moved to the output 
medium. 

ACTION19 

Pointer TP is loaded with the origin of 
the constant table in the prestatement. 

ACTION20 

If the current statement is not an expres­
sion, the element is moved to the table 
area. Otherwise, the delimiter switch CUR 

176 

is set to X'FF' and the element is moved 
to the table area. 

This routine checks for elements in the 
table area that must be moved into the 
output buffer. 

STATEN -- BG --------
This routine is called by ACTION10 if an 
end of statement is detected in the input 
stream. It determines whether the source 
program contains arrays or structures. 
PUTour is called if neither is present. 

If the current statement is an assign­
ment statement and the source program 
contains arrays and/or structures, the 
statement is checked for array or struc­
ture assignment. Depending on the type of 
statement, either ARROUT or STROUT is 
called to put out the statement. 

AC1 - AC6 ------
After the statement end has been found in 
routine STATEN, the information stored in 
the table area is scanned again, element 
by element. For the individual text ele­
ments (keys EO - EF) one of the routines 
AC1 through AC6 is called. Table T1 
(Figure 2) gives the routine called for 
the corresponding key. 

r-------T-----------, 
I Key I Routine I 
~-------+-----------~ 

EO I AC6 I 
E1 I AC2 I 
E2 I AC1 I 
E3 I AC3 I 
E4 I AC3 I 
E5 I AC5 I 
E6 I AC5 I 
E7 I AC5 I 
E8 I AC3 I 
E9 I AC3 I 
EA I AC4 I 
EB 1 AC5 I 
EC I AC3 I 
ED I AC5 I 
EE 1 AC3 I 
EF I AC3 I 

~----___ ~ ___________ J 

Figure 2. Format of Table T1 

AC1 -- BR 

This routine is called for delimiters. If 
the delimiter indicates an array, a struc­
ture, or a mixed array and structure 
expression, one of the routines ARRAY, 
CHAIN, or ARRCH is called. 

c 

c 



PL/I PLM 8 

IBM Confidential 

AC2 -- BQ 

This routine is called for declared varia­
bles. 

AC3 -- ~ 

This routine is called for operands that 
are not declared variables. The stack 
pointer is decreased by 4. 

This routine is called if the end of 
~tatement is detected again. One of the 
~outines DYNDUMP, ARROUT, STROUT, or 
PUTOUT is called. 

This routine is not available since the 
corresponding element cannot occur. 

AC6 -- BR 

rhis routine is called for a statement 
identifier. It is identical with part of 
AC1. 

CHECKSP -- BB 

rhis routine modifies and checks the stack 
pointer. Error 142 is indicated if a 
stack overflow occurs. 

This routine puts out the array assignment 
statement and the corresponding header and 
trailer macros. PUTOUT is called. 

This routine puts out the structure 
assignment statements. PUTOUT and ARROUT 
may be called several times to put out the 
statement after it has been modified. 

~RRAY, ARRAYQ, -- BS 

rhis routine is called by AC1 or STROUT to 
process an array operand. If the operand 
was previously used, no action is 
required. The array is compared with 
other arrays in the statement, if any, for 
identical number of elements. 

rhis routine is called by AC1 for process­
ing structure operands. 

rhis routine is called when mixed array 
and structure expressions are found in 
AC1. The routine consists of a call of 
the error routine ERROR. 

LENGTH -- BU 

The routine computes the internal length 
(in bytes) of a variable or constant. In 
case of arrays, the length of the element 
is computed. 

PUTour -- BH 

When this routine is entered, the state­
ment being checked is contained in the 
table area in reverse Polish notation. It 
is preceded by the corresponding attribute 
table and followed by the end-of­
statement. The statement attribute table 
is used only to fetch the attributes of 
the variables and constants that appear in 
the source text. 

The routine scans the statement body 
element by element and activates the 
appropriate action (one of the routines EO 
through EF) via the switch table TAB10. 
Routine En refers to key En. 

If a prologue is required, one of the 
routines E005, E006, or EOOB is called. 
The appropriate routine is selected as 
described in EO. 

EO -- BI -----
This routine processes the "operation" 
statement identifier. One of the subrou­
tines E003 - E010 is called. Routine EOnn 
refers to the text element EOOOnn, which 
represents the statement shown in Figure 
1 • 

E003, E004, EOOA, EOOE, EO OF, E010 -- BI 

The library bit is set to 1, if required, 
and the 3-byte operation is put out. 

E005, E006, EOOB -- BJ 

These routines generate the prologue 
macros. An additional branch around the 
prologue is generated for ENTRY state­
ments. 

EOOC -- BI 

If a RETURN statement returns a function 
value, an assignment X'3020E' and a cor­
responding return macro are put out. In 
all other cases, only the return macro is 
put out. 

E007 -- BI 

A return macro is put out for the end of 
block. X'E00007' is also put out. 

EOOD 

The element is skipped. 

Phase PL/IDOO 177 



PL/I PLM 8 

IBM Confidential 

E009 -- BI 

If the CALL statement has no arguments, 
the corresponding CALL macro is generated. 
Otherwise, the number of arguments is 
retrieved from the previous element 
(function bracket) and inserted in the 
second byte of X'EOnn09'. 

The routine constructs and puts out the 
12-byte element by calling E1GEN and MOVE­
SO. 

E1GEN -- BK --------

In the 12-byte field 0, the routine con­
structs the operand to be put out. TP 
points to the operand in the statement 
body. After return from E1GEN, field 0 
contains the following information: 

0-2 
3-4 

5 
6 
7 
8 
9 

10-11 

name 
modifier 
storage class (attribute 1) 
data attributes (attribute 2) 
L = internal length in bytes 
p 
q 
offset of picture if numeric field 

The routine determines the number of oper­
ands, inserts this number in the second 
byte of the delimiter, and puts out 
X'E2nnkk'. 

The routine puts out 12 bytes for 
character-string constants. Prior to 
output, the key is modified to ED. 

E4 -- BN 

The routine puts out 12 bytes for generat­
ed variables. 

178 

E5 -- BM 

The routine puts out a 12-byte operand for 
the indirect target for the RETURN state­
ment. 

Since the corresponding text elements 
cannot occur at this point, these routines 
are not available. 

E8 -- BM 

The routine puts out X'E800xx' unchanged 
for variables with unknown attributes. 

E9 -- BN 

A 12-byte operand is put out (in a format 
similar to a declared variable) for con­
stants appearing in the statement body. 

The corresponding entry in the pres­
tatement is also put out with the maximun 
possible length (22 bytes) • 

EA -- BM 

The routine puts out the six bytes for the 
end of statement. 

EC -- BM 

The routine puts out the fUnction name 
(except for the NULL function). In the 
latter case, the name for the NULL func­
tion (12 bytes) is put out instead of the 
function name. 

EE -- BM -----
The routine constructs a 12-byte operand 
for a label constant or label variable. 

EF -- BM -----
The routine constructs and puts out 
12-byte operands for return values. If 
the RETURN statement refers to a main 
procedure, the ERROR routine is called. 

This routine is called by E2 for checking 
the number of arguments. ERROR is called 
for any number other than 3. 

c 



PL/I PLM 8 

IBM Confidential 

(-

This phase: 

1. determines the required conversions. 
The type of conversion depends on the 
operation and on the data types of the 
operands given. 

2. determines the resulting precision 
after conversion. 

3. determines the resulting precision of 
each operation. 

4. determines the macro keys for the 
operations. The macro key depends on 
the operation and the data type of the 
operand after execution of the 
required conversions described under 
item 1. An operation may be one of 
the following: 

a. Built-in function 
b. Statement identifier 
c. Subscript .evaluation 
d. Function call 
e. String operation 
f. Arithmetic operation 

5. constructs intermediate macro instruc­
tions. 

6. determines the necessity of working 
storage fixed-point and floating-point 
registers. 

7. determines the type of operands 
(fixed-point register, floating-point 
register, working storage, etc.). 
This is machine dependent. 

The tables and work areas are 
dynamically allocated (push-down technique 
is used •• The I/O buffers are located in 
front of the dynamic area. 

The input stream is already ordered in 
reverse Polish notation. It consists of 
syntactical units that can be identified 
by the first byte of each element, which 
may be X'En' or X'Fn', where n is a hexa­
decimal digit from 0 to F. One of the 
actions 0 - 31 is activated depending on 
the key found. 

The output is similar to the input, 
only that some of the syntactical units 
have different formats and meanings. 

DESCRIPTION OF ROUTINES 

MAIN -- DJ -------
The main routine initializes the stack and 
table pointers (SP and TP) , activates the 
skip routine, fetches the program string 
element by element, and calls the corres­
ponding action (ACTIONO to ACTION31) 
ACTION(n) refers to key X'EO'+n. 

FETQl ~DD 

The routine computes the length of the 
current element in the input stream and 
loads the address of the corresponding 
action into register R10. When the key n 
is detected, the address of 
ACTION (n-X'EO') is loaded. If the current 
input element undicates an array, ACTION1 
is prepared to be called. 

CHECKSP -- DJ 

The routine fetches an 18-byte entry into 
the stack. The fetched entry is cleared 
and overlap of the table (constant ~tack) 
and the variable stack is checked. Error 
142 is given in case of stack overflow. 

ACTIONO (Begin of Statement) -- DK 

This action is called when an EO-element 
is detected in the input string. The 
stack and table pointers are initialized, 
and the 6-byte input element is moved from 
input to output. 

The routine is called when a constant or 
variable is fetched. The routine stacks 
the input element together with the cor­
responding attributes. CHECKSP is called 
to get and clear an 18-byte stack entry. 

ACTIO~~Operation) -- DK 

The routine is called when an operation is 
detected. The routine branches to the 
EXPONENT routine if the detected operation 
is an exponentation. Otherwise, the 
address of the switch table (T20 - X'EA') 
is loaded into register R5. The output 
switch is set to X'E4' and the routine 
branches to ACTIONCO which is common for 
functions and operations. 

ACTION3 -- DL 

This routine is called if a statement 
identifier is detected in the input 

Phase PL/ID05 179 



PL/I PLM 8 

IBM Confidential 

string. Using byte 2 of the input string 
as a switch, this action activates the 
corresponding routine (E302 - E310) for 
each statement. Routine E3nn refers to 
the input element E300nn. The switch 
table ACTTAB3 (15 bytes) is used for this 
purpose. Each byte of this table contains 
the displacement of the corresponding 
routine divided by 2. Division by 2 is 
performed to make the displapement fit 
into one byte. 

ACTION4 (Define Initial Value for Working 
~:!::QrageL..) __ =D.:.:N 

The current element is put out unchanged 
after saving the current block number and 
level number. 

ACTION5 -- DM 

A function call is generated. The routine 
moves 2 to ACT56+2 in order to allows 
saving of all floating-point registers, if 
necessary. The call switch CALLSW is set 
to 0 in order to pass a result argument. 
rhe current element is skipped and 
ACTION50 is called to process similar to 
the CALL statement. 

ACTION50 DO 

The routine processes a CALL statement or 
function call. The arguments are checked 
and assignments to dummy variables are 
generated, if necessary (e.g., constant, 
variable inclosed between brackets 
••• etc.). In case of function calls the 
target field in which the function value 
is to be returned is generated. 

ACTIeN6 -- DN 

The routine converts the subscripts to 
binary integer, constructs the correspond­
ing inermediate macro instruction, and 
puts it out together with additional 
request O. The result which has the same 
data characteristic as the type of array 
is stacked and the indirect bit is set in 
the stack. 

The operand is moved from input to stack 
(3 bytes). If a value is already assigned 
to the operand, the corresponding attri­
butes are moved from DO to the stack and 
the routine continues similar to ACTION1. 
Otherwise, the routine is completed. 

rhe action for constants is similar to the 
action for declared variables (ACTION1). 
In addition, the 22 bytes following the 

180 

constant reference are stacked in the 
constant table area. 

ACTION10 -- DK 

The 6-byte end-of-statement is moved from 
input to output. 

ACTION11 -- DK 

The error message is moved from input to 
output. 

ACTION12 -- DP ----------
The action is activated to process built­
in fUnctions. If the built-in fUnction is 
a substring pseudo-variable, the routine 
3030 is called. Otherwise, R5 is set to 
point to the data table for built-in 
fUnctions. The output switch ACTION1+1 is 
set to X'E3'i F1 is set to X'13', and 
ACTIONCO which is common to ACTION2 and 
ACTION120 is called. 

Action14, 25, 30 

These routines are not available since the 
corresponding text elements cannot occur. 

ACTION15 -- DK 

Similar to ACTION1, but the key X'EF' is 
replaced by X'ES' • 

ACTION16, -22, -23, -28 -- DR 

The input element is moved to output. 

The routine processes the UNSPEC function. 

ACTION18, ACTION29 -- DS 

The input element is moved to output. The 
routine checks if the element is a DO 
header, DO trailer or none of both. If it 
is a DO header, the DO stack is initial­
ized by clearing it to zero. If it is a 
DO trailer, the required DO variables are 
generated. Otherwise, it is put out 
unchanged. 

ACTION19 

This routine processes the STRING func­
tion. It is similar to ACTION17 except 
that the bit switch is set to X'06' •. 

The routine processes the UNSPEC pseudo 
variable. 

c 

c 



f 

PL/I PLM 8 

IBM Confidential 

ACTION21 

This routine processes the string pseudo 
variable. 

ACTION24 -- DR 

The 3-byte element is skipped and the 
following 12-byte element is stacked. 

ACTION26 -- DR 

The operand X'E800600000' is moved to the 
stack as source. The current input ele­
ment is moved from input to output. 

ACTION27 -- DR 

The operand X'E100090000' is moved to the 
stack as source. The current input ele­
ment is moved from input to output. 

ACTION31 

This routine is called if the end of the 
program is detected. It terminates the 
current phase and calls the next phase. 

ACTIONCO -- DP 

(- This routine is used for constructing 
premacros (key X'ES' or X'EC'I. It con­
sists of a sequence of subroutine calls. 
The following routines may be called: 

MOVEII to skip the current element in 
the input stream. 

MOVEDATA to determine N-1, N+1, M, M-18, 
and M+18, where N is the number 
of operands and M is the current 
value for the stack pointer. 

CHECKENT to check if anyone of the oper­
ands is a function without argu­
ments. The routine modifies the 
preceding key to X'61' if it is. 

ACTION2C to determine the required con­
version and the precision 
resulting from this conversion. 

DETERMIN to determine the precision of 
the result. 

FINDKEY to determine the appropriate 
macro instruction key for the 
operation. 

PUTOUTFCI to put out the intermediate 
PUTOUTES macro instruction. 

In case of a comparison operation, a 
SET TRUE macro is put out in addition. 

PQ -- DZ 

'The routine computes the values p, q, L, 
and p-q and stores the results in R4, RS, 
R3, and R2, respectively. The routine 
assumes that R1 points to the operand on 
top of the stack. 

PQ1 -- DZ 

The routine 
one operand 
the results 
pectively. 

computes p, q, L, and p-q for 
on top of the stack and stores 
in P1, Q1, LL1 and LMQ1, res­
The routine then calls PQ. 

The routine computes p, q, L, and p-q for 
the two operands on top of the stack by 
calling PQ1 twice. The computed values 
are stored in the fields P1, Q1, LL1, 
LMQ1, P2, Q2, LL2, and LMQ2, respectively. 

The routine checks whether the available 
key or function name is to be modified 
according to the data type of the result 
and performs the modification, if neces­
sary. The routine assumes that the field 
RESULT contains the type of the result of 
the current operation. 

The routine computes N, N-1, N+1, N*18 
(N-11*18, and (N+1) *18 and stores the 
results in NO, N1, N2, MO, M1, and M2, 
respectively. N is the number of operands 
for the current operation. If N>12, an 
error is indicated (149). 

This routine is used for putting out the 
output elements that refer to the opera­
tion processed. The output consists of a 
S-byte element (with the key ES), followed 
by the operands of the operation (18 bytes 
for variables, 40 bytes for constants) , 
and terminated by an 18-byte EE element 
giving the additional requests. For 
details refer to the section Input for the 
Routine PREMAC in phase D10. 

This routine is used for putting out the 
output elements that refer to the function 
processed. Except for the first S bytes, 
the output has the same format as in the 
routine PUTOUTES. 

ARITH1 -- EI 

This routine moves attributes from a 
result of an operation or function to the 
RESULT field. 

ARITH2 -- EI 

After determining which operand represents 
the result of an operation, this routine 
moves the attributes of the result to the 
RESULT field. 

Phase PL/IDOS 181 



PL/I PLM 8 

IBM Confidential 

This routine is used to compute the length 
of a result. 

EXPONENT -- EN 

'rhis routine is used for exponentiation 
operations. After changing the operation 
key to a fUnction key, the routine deter­
mines the type of exponentiation and the 
corresponding function name. 

The routine generates the intermediate 
macro instruction for the substring pseudo 
variable assignment. The data type of the 
substring (bit or character) is moved from 
the target field to the data vector. 

E303 (CALL DYNDUMPL-==_DU 

The routine generates the intermediate 
macro instruction for the DYNDUMP state­
ment. E303 branches to ACTION12. 

E304 (CALL OVERLAY) -- DU 

rhe routine calls ACTION2 to generate the 
intermediate macro instruction for the 
CALL OVERLAY statement. 

~305, E306, E30B -- DU 

No action is required. 

E307,E308 DU 

These routines are called when an END 
statement is encountered. The end-of­
block element E3xxxx is put out. 

~~Q2-J£ALL Statement with Arguments) -- DO 

The routine calls ACTION50 after setting 
the CALLSWITCH to GENTAR1-GENTAR in order 
to suppress the generation of the target 
field. 

~30~GOTO Statement) -- DT 

rhe routine checks whether the target is a 
label constant or label variable. If it 
is neither or both, a diagnostic is 
produced. If it is a label variable, a 
branch-to-Iabel-variable intermediate 
macro instruction is generated. If it is 
a label constant and the level number of 
the label and the block containing the 
GOTO statement are identical, a simple 
branch macro instruction is generated. 
Otherwise, a label assignment is generated 
and a branch-to-Iabel-variable macro 
instruction is generated. If a branch to 
'label variable' is generated, the library 
GOTO bit is set to 1. 

182 

E30E -- DV 

The routine generates the assignment macro 
instruction. If the operand on the left­
hand side of the equal sign is a constant 
or entry name, an error message (54) is 
generated. If the operand on the left­
hand side is a DO variable, the attributes 
given on the right-hand side are stacked 
in the DO variable stack. 

E30F -- DU 

This routine is called for expressions. 
The routine continues with routine E303 
after clearing the picture byte. 

E310 -- DW 

The routine checks whether or not a 
comparison operation has been generated 
prior to the current IF and generates a 
branch-on-condition macro or a branch-if­
true macro, respectively. 

Example 

a) IF A>B THEN GOTO L; 
Compare A,B 

L1 
L 

BNH L1 
B L 

b) IF A THEN GOTO L; 

L1 
L 

E30C, E30D 

Convert A to bit 
OC A' ,A' 
BZ L1 
B L 

These routines are not available since the 
corresponding elements cannot occur. 

ACTION2C 

This routine is common for ACTION12 and 
ACTION2 which are called by ACTIONCO. The 
routine fetches the corresponding 
characteristic data for the operation or 
fUnction from the T-table and stores this 
data in DATA+3. The routine calls the 
routines COMMON and CONVERT to determine 
the data and storage type required for 
each operand. 

DSGEN -- DW 

The routine generates OS instructions for 
working storage in the current block. RO 
contains the length to be generated. To 
ensure that the generated working storage 
lies in the first 4K, the area is generat-

c 

c 



( 

(-

PL/I PLM 8 

IBM Confidential 

ed as a multiple of OS of length 8 
(double-word). If the length is 0, no 
working storage is generated. 

MOVE CON -- EM 

'rhe routine tests whether the operand is a 
variable or a constant. If it is a con­
stant integer, it is converted to binary 
integer in register RO and swi.tch CON is 
set to O. Otherwise, CON is set to X'FF'. 
SP points to the argument in the variable 
stack and TP points to the constant value 
in the constant stack. If the sign bit is 
1, the two's complement of the integer 
constant is loaded into RO. 

The routine fetches the appropriate sub­
routine according to the matrix FROTO (see 
Figure 1) to compute the precision result­
ing from a specified conversion. R3, 
which contains the type available, and R5, 
which contains the type required, are 
passed as arguments. The resulting P, Q, 
and L are stacked in 15 ~1), 16(Rl), and 

14 (R 1) , respectively. The routine uses 
the tables FROTO, TYPER, and TYPEC and the 
group of routines PREC. 

CHECKENT -- EE 

This routine is called by ACTIONCO. It 
checks whether the operand is an entry 
name without arguments. If an operand is 
an entry name (function value) , this is 
noted by replacing the El-key by 61 to 
allow the generation of a dummy variable 
as well as the appropriate function call 
in phase 010. 

CONVERT -- OX 

The routine computes the data type for n 
operands required by an operation. 

The conversion matrix MATRIX (see Fig­
ure 2) is used to determine the data type 
required for the result. The required 
data type is a function of the type of 
operation and the data type of the oper­
ands. An example of how the required data 
type is determined is given below. 

r--------·-------T------T------T-------------T------T---------------------T---------, 
1 101112 1 3 1 4 151 
1 ~------+------+-------------+------+---------------------+---------~ 
1 TO/FROM 1 1 I I 1 Decimal 1 I 
1 1 1 1 Decimal 1 1 fixed, zoned, I 1 
I IBinarylBinarylfloat, float 1 Izoned(T), 1 1 
1 Ifloat Ifixed Inumeric fieldlBit Idecimal numeric field I Character 1 
.----------------+------+------+-------------+------+---------------------+---------~ 
10 Binary float 1 IPREC3 IPREC6 IPREC151PREC9 1 1 
11 Binary fixed IPREC1CI IPREC? IPREC161PREC10 I I 
12 Decimal float IPREC201 jPREC11 I IPRECll I 1 
13 Bit IPRECl IPREC4 IPREC? I IPREC12 IPREC1B 1 
14 Binary integeriPREC2 IPREC2 IPREC2 IPREC161PREC2 I 1 
15 Decimal fixed IPREC231PREC261PREC23 IPREC251PREC18 if not I 1 
I I 1 I 1 Idecimal fixed 1 1 
16 Character 1 1 1 PRECl? if 1 PREC13I PRECl? if 1 1 
1 1 1 Inumeric fieldl Inumeric field 1 1 • ________________ ~ ______ L_ _____ ~ _____________ ~ ______ ~ _____________________ ~ _________ ~ 

Each of the routines PRE2. computes the precision resulting from the data type 1 
conversion. For details on the rules for computing these precisions refer to the 1 
SRL publication PL/I Subset Language Specifications, Form C28-6809. The precisions 1 
not defined in the language are as follows: I 

Binary float to binary fixed PREC1C 
P = min (P, 3 1) Q = 0 

Decimal float to binary fixed PREC? 
P = min (CEIL (P*3. 32) ,31) Q = 0 

Binary float to decimal float PREC20 
P = CEIL (p/3.32) Q = 0/1 

Binary float to decimal fixed PREC23 
P = 5 Q = 0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

P, Q, and L of the source data are passed as parameters in RP, RQ, and RL. The 1 
Iresulting values are returned in the same registers. I L _____________________________________ - _____________________________________________ J 

Figure 1. Matrix FROTO Used to Determine the Routine for Computing the Precision after 
Conversion 

Phase PL/ID05 183 



PL/I PLM 8 

IBM Confidential 

- - - -w t..) - 0 -0 00 

6' b a.."TI :::J "TI _. co :::J VI 
(1) -. C :::J -. c it o x .... :::J 3 3 ~ 5' [ -. (1) (1) Q ... 

it 3 a.. (1) cg~ ~. ;= ... ... !:L o· ... oco 
:::J ...... :!': c iii' "(1) 

3 c:: (1) a.. ... o· 
:!': 
(1) 

c:: 

0 Binary "TI "TI 0 0 0 
float 

1 Binary "TI "TI - - -
fixed 

2 Comparison 0 "TI W t..) -
3 Decimal 

"TI w W w 
fixed 

"TI 

4 Float "TI "TI t..) t..) 0 

5 Fixed "TI "TI W W -
6 Character "TI "TI 0- 0- "TI 

7 Bit -n -n 'J 'J 'J 

8 String -n -n 0- 0- -n 

9 
Binary -n 
integer 

-n - - -
10 Binary -n -n - 0 -
11 Decimal -n -n w t..) w 

12 Label -n () "TI -n -n 

13 Pointer 0 -n -n -n -n 

14 Any 0 () 0:1 > -0 

Coded -n w t..) -0 15 -n 
arithmetic 

Figure 2. Conversion Matrix MATRIX 

Assume an addition of two operands is to 
be performed. The first operand is of the 
type bit (X'FA' which corresponds to line 7 
in MATRIX), the second operand is of the 
type numeric field floating point (X'A' 
which corresponds to line 10 in MATRIX) • 
The common data type to which both operands 
must be converted is then determined as 
follows: 

184 

0 

-
W 

w 

t..). 

W 

0-

'J 

0-

-
-
w 

-n 

-n 

00 

W 

'J 0- 01 .j>.. W t..) - 0 

~ () a..N a..N :!':O ::?O ~~ ...... co 
8" 5' .... ~ (1) 0 (1) 0 x (1) 8 (1) 

Q !!. :::J !!. :::J (1) 0 0 (1) :::J 

Q 3 (1) 3 (1) a.. -. .... -. a..~ .... ~ 
!:La.. Q a.. 3 3 

0 
!:L !:!.. .... 

(1) ....... ... 
.=:! 

0 "TI 0 0 0 0 0 0 0 

- "TI - - - - - - -
-0 00 W W W t..) - 0 t..) 

W "TI W W W W W W w 

0 "TI t..) t..) t..) t..) 0 0 .j>.. 

- "TI W W W W - - 01 

0- 0- 0- 0- "TI "TI "TI "TI 0-

'J 'J 'J 'J 'J 'J 'J 'J 'J 

'J 0- 0- 0- "TI -n "TI "TI 00 

- -n - - - - - - -0 

- -n - - - 0 - 0 -0 

w -n w w w t..) w t..) --
-n "TI -n "TI -n -n -n " -t..) 

--n "TI -n -n -n "TI "TI "TI w 

'J 0- 01 .j>.. W t..) - 0 -.j>.. 

-0 "TI W W W -t..) - 0 01 

The addition implies that the operation 
type required is coded arithmetic (column 
15 in MATRIX) • 

For the first operand, column 15 of line 
7 in MATRIX points to 9, which is binary 
integer. For the second operand, column 15 
of line 10 points to 2, which is decimal 
float. 

c 

o 



( 

(-

PL/I PLI-:I. 8 

IBM Confidential 

If an operation 0 of type to has n oper­
ands of type t" t2 ••••••••• tn, the common 
type required (~ is: 

t = MATRIX (tl,tO) & 
MATRIX (t2,tO) & 

• 
• 
• 
• 

MATRIX (tn, to) • 

In order to determine the common data 
type of both operands, the values found 
(X'09' and X'02') are anded and yield a 
result of zero. Thus, the data type to 
which both operands must be converted is 0 
= binary float. 

rhis routine determines the data type 
required for each operand for a specified 
operation according to the information 
contained in DATA. The routine further 
determines the data type of the result and 
stores it in RESULT. rhe routine PRECSION 
is called n times to determine the preci­
sion and length of each operand after con­
version. R3 and R5, which contain the type 
available and the type required for each 
operand, are passed as arguments. 

DETERMIN -- ED 

This routine is called by ACTIONCO. It 
selects one of a group of routines provided 
for computing the resulting precision of an 
operation of fUnction. The actions per­
formed for operations by the individual 
routines are shown in flow chart ED. A 
special group of routines is called for 
functions. These routines have the stand­
ard label P followed by the internal name 
of the function in decimal notation. For a 
list of all functions and their internal 
names refer to Appendix C. 

The routines store the characteristics 
of the result in the 6-byte field RESULT, 
whose format is as follows: 

bytes 0-1 data attribute 
byte 2 length (in bytes) of the 

result 
bytes 3-4 precision P and Q of the 

result 
byte 5 Zero 

~Qte: The type of the result is already 
determined and stored in the result field 
prior to calling anyone of these routines. 
rhe routines may determine a new key by 
calling KEY4MOD and move it to DATA+2, if 
required. 

This is a group of routines; the descrip­
tions of the routines follow. P(NA) refers 
to the function with the internal decimal 
name NA. Functions other than those des­
cribed below cannot occur as input for this 
phase. After phase 005, the set of possi­
ble function names is expanded by separat­
ing long and short float functions. 

The function length and precision 9 are 
moved into RESULT+2. 

P81 (DATE) 

The same as P80. Land Pare 6. 

P82, P184 (NULL and ADDRESS) 

The attributes for pointer results are 
moved into RESULT. The pointer switch 
(MVCRES1+1) is set to X'20'. 

P84 - P116 -------
After conversion to float, if necessary, 
these functions have the same attributes as 
the argument. 

Pl18 (ATAN (Radiant)) -- EK 

The routine checks the number of arguments 
and modifies the name accordingly. If only 
one argument is available, ARITHl is 
called. Otherwise, ARITH2 is called. 

The routine is similar to P118. The keys 
are different. 

The routine computes the length of the bit 
or character string resulting from the 
REPEAr function. 

L = (N+l) *p 

P1260 -- EK 

This routine is used by routine P126 for 
computing and storing the length L of the 
result field. 

The result is binary integer with the pre­
cision (15,0). The routine modifies the 
key, if necessary, to 129 if the argument 
is of the type character. 

Phase PL/ID05 185 



PL/I PLM 8 

IBM Confidential 

P130 (SUBSTEL 

The length of the substring is checked and 
converted to binary integer. The resulting 
(L, P, Q) are determined by calling P1260. 

P132 (BOOL) 

RESULT (L, P, Q) = max (L1' P 1 , Qq), (L;z, 
P;z, Q;z) ; For this reason, P132 calls GET­
MAXPQ after modifying R1 and R2 to point to 
the first and second argument of the func­
tion. 

The routines compute the precision result­
ing from these functions. The precision 
rules are given in the SRL publication PL/I 
Subset Language, Form C28-6809. The func­
tion name is modified according to the 
resulting data attribute. 

P1344 

The routine computes P-Q in R4 and Q in R5 
for fixed-scale data. The parameter R1 
points to the 18-byte argument. 

P146 short float ** integer 
P147 long float ** integer 
P148 decimal fixed ** integer 
P149 binary fixed ** integer 
P150 short float ** short float 
P151 long float ** long float 

These routines compute the precision of 
exponentation results. For P146 and P147, 
P is identical with the base. The preci­
sion for P148 and P149 is previously deter­
mined in the routine EXPONENT. P150 com­
putes the precision of the floating-point 
result as max (P1, P2). 

El~ABS) -- EL 

rhe routine determines the key for the 
individual ABS functions (4 are available) 
and computes the resulting precision. If 
the argument is float, the result has the 
same precision as the argument. If the 
argument is fixed, the resulting precision 
is (P+1 ,Q) • 

rhe routine computes the precision of the 
SIGN fUnction. 

'rhese routines compute 

P = max «(P-Q+1), 1) and 
Q = 0 

in case of fixed scale, and P in case of 
floating-point. 

186 

P165 (TRUNC) -- EL 

After moving the initial key for TRUNC to 
KEY4MOD+3, processing is identical to P162 
and P163. 

P168 (ROUND) -- EL 

The routine computes the precision of the 
result and mOdifies the fUnction name 
according to the resulting data type. 

P166 
P167 
P169 
P170 

BIT 
CHAR 
BINARY 
DECIMAL 

P171 
P172 
P173 

FLOAT 
FIXED 
PRESISIO 

These routines are identical. They 
generate assignments for the above func­
tions. rhe precision of the target may be 
specified by the programmer. If the preci­
sion is not specified, the rules for data 
type conversion are applied. 

P174 {MOD) 

The routine computes the precision of the 
result and modifies the fUnction name 
according to the resulting data type. 

P175 
P176 
j?177 

ADD 
MULTIPLY 
DIVIDE 

The routines are identical. The calling 
sequence is generated either in phase D20 
or in phase 017. The preciSions, if speci­
fied by the programmer, will be selected. 
If no precision is specified, the rules for 
the addition, multiplication, and division 
are applied. 

P178 JHIGH), P179 (LOW) 

The two routines are identical. 

P180 
P181 
P182 
P183 

SUM 
PROD 
ALL 
ANY 

These four functions are identical. 

KEY4MOD 

The routine modifies the function name 
according to the data type of the result. 
The initial key is moved into KEY4MOD+3, 
and the routine assumes that the result has 
already been determined in RESULT. 

Note: The following routines are described 
in the section General Description of Phas­
es DOO - D11. 

ERROR 
ADMVC 

MOVEIO 
MOVEII 

MOVESO 
SAVER 

MOVErs 

c 

c 



f 

(-

PL/I PLIY.! 8 

IBM Confidential 

This phase is built up of three logical 
parts: 

1. Scan (ACTIONO - ACTION31) 

2. Determination of registers and working 
storage. 

3. Generation of interme~iate and conver­
sion macros. 

The communication among the three parts 
is as follows: 

r------------, 
V V 

r--------, r--------, r--------, 
I Part 1 I I Part 2 I I Part 3 I L ________ J L ________ J L ________ J 

1\ 1\ l ____________ J 

Symbols used in flow charts: 

PIN 
OPR 
SP 
TP 
INP 
STP 
SORG 
STRORG: 
SPB 

SPA 
TABORG: 

input pointer 
output pointer 
stack pointer 
table pointer 
priority of input element 
priority of element on top of stack 
stack origin 
structure origin 
stack pointer (occupied stack 
chain) 
= SP = stack pointer (f~ee chain) 
table origin 

Note: The following routines, which are 
used in this phase, are described in the 
section General Description of the Phases 
000 - 020. 

~DMVC 

SAVER 
MOVESO (=MOVSTO) 
MOVEIT 

PART 1 OF 010 -- EP 

Part_1 scans the input, element by element, 
and calls the appropriate routine 
(ACTION (x) ). ACTION (xl refers to text 
elements with the key X'EO'+x. There are 
as many actions as there are elements 
(ma~ked by keys) to be processed in this 
phase. However, actions may be represented 
by the same coded routine. The subroutines 
ACTION (x) are the only subroutines used by 
part 1 of phase 010. 

Operands are moved from input into a 
dynamic area (stack. 

The pointers for the register table, the 
stack, and the table area are initialized. 
If the current statement is an expression 
statement, a store macro instruction for 
the registers is generated, if required, 
and a switch is set for generating the 
corresponding restore macro instruction 
when processing of the statement is com­
pleted. 

ACTIO~1L--7, -8, 14 

The element is moved to the table area. 

The element is skipped and the working 
storage required in the current block is 
generated. 

ACTION4 

The initial values and the names of the 
byte-aligned and double-word-aligned work­
ing storage are retrieved from the input 
stream and stored. The input element is 
moved into the field INITIAL. 

ACTIO~~~CTION12 -- EQ 

The 5-byte element is moved to the table 
area. The corresponding operands are 
fetched from the input stream and also 
moved to the table area. If an operand is 
an intermediate result, it is retrieved 
from the stack. After all operands have 
been fetched, PRE MAC is called to generate 
the necessary macro instructions for con­
version and for the operation, if required. 

ACTIQ~~-13, -20, -21, -2, 17 

These actions are not available since the 
corresponding text elements cannot occur. 

ACTION9 

The constant value is moved into the con­
stant area. The constant operand is moved 
into the operand area. The negative offset 
value of the constant value in the constant 
area is moved into bytes 10-11 of the oper­
and. 

This routine is called if the end-of­
statement is detected in the input stream. 
A load-multiple macro instruction for these 
I/O registers is generated if registers 

Phase PL/IOIO 187 



PL/I PLM 8 

IBM Confidential 

were saved at the beginning of the 
statement. The length of the working stor­
age required in the current statement is 
compared with that of the current block. 
The greater of the two values is saved as 
working area of the block. 

rhe input element is skipped. 

ACTION15 

This routine is called if the input element 
replaces an intermediate result (EF-key). 
The element is moved to the variable area 
and the corr'esponding stack address is 
evaluated and moved into bytes 2-5 of the 
variable. 

ACTION25 

Switch ACT10SW is set to and the routine 
proceeds similar to ACTION29. 

~CTION2~CTIQN27 

The output is modified for array functions 
and the element is skipped. 

ACTION29 

'rhe input element is skipped. 

~CTION30 

The specified registers are freed (by call­
ing ACOMAX) if they are occupied. 

ACTION31 

When the end of the text string is detect­
ed, this routine terminates phase 010 and 
calls the interface macro IJKPH to fetch 
phase 011. 

PART 2 OF 010 (PREMAC) -- GF 

Part 2 of phase 010 (entry point PREMAC) is 
called if an operation is detected in the 
input stream. It prepares the macro 
instructions. This includes the processing 
of assignments, conversion of the operands 
to the required data types, moving of oper­
ands to the required storage types, conver­
sion of floating-point operands from short 
float to long float, and to make requests 
for additional required operands. The 
routines called for performing the indivi­
dual functions are discussed in later sec­
tions. 

The general input format of this routine 
is as follows: 

188 

(1) (1) (1) (1) (1) (18) 
r---'---T---T---T---T----'---
I KIN I K 1 I K 2 I K 3 I OP 1 I L ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ____ J __ _ 

(18) (11 (1) (2) (2) 
---r----T---T---T---'--- ---T---T---' 

IOPn lEE 1M IAR11 IARml I 
---L----~---~---~---J-~-----~---~---1 

K 

N 
OP 

L ______________ V ____________ J 

18 bytes 

X'E5' for macro instructions 
X'EC' for functions 
Number of operands 
Operand (see detailed description 
below) 
X'EE' 
Number of additional requests 
Additional request 

EE 
M 
AR 
The format of the operands is: 

Byte{~L Contents 

1 
2-3 
4-5 

6 

7 

8 
9 

10 
11-12 

13 

14 

15 

16 

17 

18 

Operand key 
Name of the operand 
Modifier 
Attribute byte = byte 5 of SYMTAB 
entry 
Attribute byte specifying data 
type of operand 
Length of the operand 
Precision of operand, or length in 
byte s (bi tsl f or char a cter (bi tl 
string 
Scale factor of operand 
Offset in constant table pointing 
to corresponding constant if oper­
and key E9 or 69. 
Offset in character string point­
ing to corresponding EO if byte 13 
contains 8, 10, or 11. 
Name of corresponding DEO if byte 
13 contains 4 or 5. 
Number giving available data type 
of operand. 
Number giving required data type 
of operand. 
Length of operand required after 
conversion 
Precision of operand required 
after conversion 
Scale factor of operand required 
after conversion 
Required storage type 

The output of the routine PREMAC may 
consist of the following: 

1. Macro instructions 

lh:te(sL 
1 

2-3 
4 

Contents 
key X'F2' 
length of macro instruction. 
key; for the format of the 
following bytes see phase E50 
for the respective key. 

c 

c 



( 

(' 

PL/I PLM 8 

IBM Confidential 

2. Assembler instructions 

Byte (s) 
1 

2-3 
4-5 

3. Constants 

Contents 
keyX'F6' 
length of instruction 
key1, key2i for format see 
phase E50 for the respective 
keys. 

Byte(sL Co!!te!!!:2 
1 key X'FD' 

2-3 length of constanti constant 
itself is taken unchanged from 
output of phase 005. 

4. Premacros 

g~2L Contents 

1 key X'F5' or X'FC' 
2-3 length fo premacroi 1 = 12 

(N+l) +22 C 
4 number of operands 

5-7 Kl, K2, K3 (see input) 
8-12 not used 

Each of the following operands is 12 
bytes long. A constant (22 bytes) may be 
appended to each operand. 

r-----T-----T-----T-----T-----T------T----T-----T------T-----T-----T-----' 
10 11 12 13 14 15 16 17 18 19 110 111 I 

r------+-----+-----+-----+-----+-----+------+----+-----+------+-----t-----t-----~ 
I IBIN. IBIN. IDEC. IDEC. IZONEDIZONED ICHARIBIT ISTERL.IBIN. IFLOATIFIXEDI 
I I FLOAT I FIXED I FLOATIFIXEDIDEC. IDEC(T)ISTR.ISTR. IN.F. lINT. IN.F. IN.F. I 

r--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
I 0IBIN. 1 - 14/13 11/3 14/15 1319 13/10 1010 10/28 14/19 1017 15/23 15/24 I 
I I FLOAT I I I / I I I I I I I I I 
~--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
I lIBIN. 14/12 1- 11/3 14/15 /3/9 13/10 10/0 10/28 14/19 /1/12 15/23 15/24 I 
I I FIXED I I I I I I I I I I I I I 
.--+------t-----+-----t-----t-----t-----t------t----+-----+------+-----+-----+-----~ 
12I DEC. 11/2 14/13 I - 14/151 3 / 9 13/10 10/010/2814/19 1017 15/231 5/24 I 
I I FLOAT I I 1 I I I I I 1 I I I I 
~--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
13IDEC. 1112 14/1414/14 1- 13/9 13/10 1°/°1°/2814/19 17/181 4/2115/24 I 
I I FIXED I I I I I I I I I I I I I 
.--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
I 41Z0NED 11/2 14/13 14/14 13/5 1- 11/30 1010 10/28 14/19 17/18 15/23 15/24 I 
I I DEC. I l I 1 I I I I I I I I I 
.--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
I 51Z0NED 11/2 14/13 14/14 13/6 11/29 1- 10/0 10/28 14/19 17/18 15/23 15/24 I 
I I DEC (TIll ~ I I I I I I I I I I 
~--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
I 61 CHAR. 1010 1010 10/0 1010 1lt'1 11/1 1- 14/17 11/1 1010 11/1 11/1 I 
I I STRING I I I I I I I I I I I I I 
~--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
I 71BIT 14/12 10/11 11/3 1214 13/9 13110 14/161 - 14/19 1718 14/22 15/24 I 
I I STRING I I I I I / I I I I 1 I I 
.--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
I 8I STERL.ll/2 14/13 14/14 16/27 13/9 13/10 1010 10/28 I - 17/18 15/23 t5/24 I 
I I N.F. I I I I I I I I I I I I I 
.--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
I 9IBIN. 14/12 10/11 11/3 1214 13/9 13/10 1010 10/28 14/19 1- 14/22 15/24 I 
I I INT. 1 I I 1 I I I I I I I I I 
~--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
110lFLOAT 11/2 14/1316/2514/1513/9 13/10 1%1°/281 4/19 1017 1- 15/24 I 
I I N.F. I I I I I I J I / I I I I 
~--+------+-----+-----+-----+-----+-----+------+----+-----+------+-----+-----+-----~ 
I 11 I FIXED 11/2 14/13 14/14 16/26 13/9 13110 10/0 10/28 14/19 17/18 15/23 I - I 
I IN.F. I I I I I ~ I I I I I I I l __ ~ ______ ~ _____ ~ _____ ~ _____ i _____ i _____ i ______ i ____ i _____ i ______ i _____ i _____ i _____ J 

Figure 1. Conversion Table COTAB 

Phase PL/IDIO 189 



PL/I PLM 8 

IBM Confidential 

r---T--~------------------------T---------T-------T-----T-------T----------, 
INR.ICONVERSION 1 Type 1 New. IMacrolRoutinelInd. Rout. 1 
1 1 Ireturned*IAttr·**IKey 1 Name I Name I 
.---+---------------------------+---------+-------+-----+-------+----------~ 

c 
I 11 ZONED DEC. -CH~R.STR. I 6 1 6 1 I / / 
.---+---------------------------+---------+-------+-----+-------+----------~ 
12IBIN.FL. -DEC. FL. I 2 121 I I I 
.---+---------------------------+---------+-------+-----+-------+----------~ 
I 3/DEC. FL. - BIN. FL. I 0 I 0 I I I I 
.---+---------------------------+---------+-------+-----+-------+----------~ 
I 4 I DEC. FIX - BI N. I NT • I 9 I 1 I 50 I / I 
.---+---------------------------+---------+-------+-----+-------+----------~ 
I 51 DEC. FIX - ZON. DEC. I 4 I 4 1 52 I 1 I 
.---+---------------------------+---------+-------+-----+-------+----------~ 
I 6 I DEC. FIX - ZON. DEC. (T) I 5 I 5 I 5 1 / 1 I 
.---+---------------------------+---------+-------+-----+-------+----------~ 
1 7IBIN. INT - BIN. FL. 1 0 1 0 1 53 1 / 1 
.---+---~-----------------------+---------+-------+-----+-------+----------~ 
1 81 BIN. INT - BIT. STR 1 7 I 7 1 54 1 / 1 
.---+----,-----------------------+---------+-------+-----+-------+----------~ 
/ 9 I ZON. DEC - DEC. FIX 1 3 1 3 1 55 I / 1 
.---+-----~---------------------+---------+-------+-----+-------+----------~ 
1 101Z0N. DEC T - DEC. FIX 1 3 I 3 1 55 1 1 1 
.---+---------------------------+---------+-------+-----+-------+----------~ 
I 111 BIN. FIX - BIN. INT I 9 1 1 1 06 1 1 I 
.---+---------------------------+---------+-------+-----+-------+----------~ 
I 12IBIN. FL. - BIN. FIX ~ 1 1 1 1 41 1 64 I 1 
1 IBIN. INT. - BIN. FIX 1 1 1 06 1 1 1 
.---+----------~----------------+---------+-------+-----+-------+----------~ 
1 131 BIN. FIX - BIN. IFL 1 0 1 0 / 41 I 65 I 1 
.---+---------------~-----------+---------+-------+-----+-------+----------1 
I 14IDEC. FL - DEC. FIX 1 3 I 3 I 41 I 41 I 51 I 
.---+---------------------------+---------+-------+-----+-------+----------~ 
1 15IDEC. FIX - DEC. FL I 2 I 2 1 41 I 42 I 50 I 
t---+---------------~-----------+---------+-------+-----+-------+----------1 
I 16ICHAR.STR. - B;IT. STR I 7 I 7 I 41 I 45 I I 
.---+---------------------------+---------+-------+-----+-------+----------1 
I 171 BIT. STR - CHAR. STR 1 6 I 6 1 41 1 46 1 1 
.---+---------------------------+---------+-------+-----+-------+----------1 
I 18IBIN.INT -DEC. FIX 1 3 I 3157 I I 1 
.---+---------------------------+---------+-------+-----+-------+----------1 
I 19 I STERL. N.F. - DEC. FIX 1 3 I 3 I 41 1 67 1 1 
.---+---------------------~-----+---------+-------+-----+-------+----------~ 
I 21 1 FLOAT N.F. - DEC. FtX 1 3 I 3 141 1 43 I 51 1 
.---+---------------------~-----+---------+-------+-----+-------+----------~ 
I 221FLOAT N.F. - BIN. INU' 1 9 1 1 141 1 43 1 49 1 
.---+---------------------------+---------+-------+-----+-------+----------~ 
1 231FLOAT N.F. - DEC. FL. 1 2 1 2 1 41 I 43 1 50 I 
.---+---------------------------+---------+-------+-----+-------+----------~ 
1 24IFIX. N.F. - DEC. FIX. I 3 1 3 1 42 1 68 1 1 
.---+---------------------------+---------+-------+-----+-------+----------1 
1 25IDEC. FL. - FLOAT. N.F. I 10 1 12 I 41 1 41 1 52 1 
.---+---------------------------+---------+-------+-----+-------+----------~ 
1 26IDEC. FIX - FIX. N.F. r 11 1 13 1 42 1 69 I 1 
.---+---------------------------+---------+-------+-----+-------+----------1 
1 27IDEC. FIX - STERL. NF 1 8 I 18 1 42 1 70 I 1 
.---+-------------------~-------+---------+-------+-----+-------+----------1 
1 281 BIT. STR. - BIN. INT 1 9 1 1 1 56 1 1 I 
.---+---------------------------+---------+-------+-----+-------+----------~ 
1 291Z0N. DEC. - ZON. DEC(T) I 5 I 5 1 1 I 1 
.---+---------------------------+---------+-------+-----+-------+----------~ 
1 301Z0N. DEC (T) - ZON •. DEC I 4 I 4 I B6 I I 1 
.---+---------------------------+---------+-------+-----+-------+----------~ 
I o I ERROR 1 0 I 1 1 I 1 • ___ i ___________________________ i _________ i _______ i ___ --i-------i----------1 
1 *Identical with ROUT~B. **Identical with ATAB. 1 l __________________________________________________________________________ J c 
Figure 2. Routine Table 

190 



PL/I PLM 8 

IBM Confidential 

CONVERT -- GG 

This routine performs the conversion of 
operands from available to required data 
type. Most of the conversions are per­
formed in single steps. 

The conversion table COTAB (see Figure 
1) is used to determine the conversion 
steps required. The elements V and W in 
column Y and row X in COTAB give the first 
conversion step for a conversion from avai­
lable data type (Y) to required data type 
(X). V indicates the routine of this part 
of the phase (CACTION(V» that handles the 
required conversion step. W refers to the 
routines that represent the individual 
conversion steps. The data type Y' 
obtained after conversion step W is given 
as element (~ of ROUTAB. The new attri­
bute of the operand is given as element (~ 
of ATAB. ROUTAB and ATAB are identical 
with columns 3 and 4 of the routine table 
(see Figure 2) • 

The conversion is continued with further 
conversion steps until the new data type Y' 
equals the required data type Xw 

rhis routine determines P, Q, and L of the 
target depending on the routine number w. 
The table shown in Figure 3 gives the for­
mulas to be evaluated for the routines. 

LS, PS, QS 
LT, PT, QT 
LC, LB 

L, P, Q of the source 
L, P, Q of the target 
length of character or bit 
string (for source (S) and 
target (T), respectively. 

The routine number specified in the 
lefthand colUmn of Figure 3 is the same as 
the number specified in the lefthand column 
of Figure 2. 

r------T----------------------------------, 
I Rout. I EVALUATION OF LT, PT, QT I 
I number I I 
~------t----------------------------------~ 
I 3 Ina evaluation (error) I 
~------t----------------------------------~ 
I , I LCT=PS, LT=LCT I 
~------t----------------------------------~ 
I 2 IPT=CEIL ~S/3.32) I 
I I if PT > 6: LT=8,QT=X' 58' I 
I I if PT S 6: LT=4, QT=X' 00' l 
~------t----------------------------------1 
I 3 IPT=MIN ~EIL~S*3.32) ,31 I 
I I if PT > 21: LT=8, QT=X'58' I 
I I if PT S 21: LT=4, QT=X'OO' I 
~------t----------------------------------1 
I 4 IPT=31, LT=4, QT=O I L ______ ~ __________________________________ J 

Figure 3. Evaluation of L, P, and Q of 
Target (Part 1 of 2) 

r------T----------------------------------, 
I 5 IPT=PS, QT=QS, LT=PT I 
~------t----------------------------------~ 
I 6 IPT=PS, QT=QS, LT=PT I 
~------t----------------------------------~ 
I 7 IPT=PS, QT=O, LT=4 I 
r------t----------------------------------t 
I 8 ILBT=PS, LT=CEIL (LBT/8) I 
r------t----------------------------------~ 
I 9 I PT=PS, QT=QS, LT=FLOOR (PT + 2) /2) I 
~------t----------------------------------~ 
I 10 I PT=PS, QT=QS, LT=FLOOR (PT+2) /2) I 
~------+----------------------------------~ 
I 11 I PT=31, QT=O, LT=4 I 
~------t----------------------------------~ 
I 12 IPT=PS, QT=O, LT=4 I 
t------t----------------------------------~ 
r 13 IPT=PS ! 
I I if PT > 21: LT = 8, QT =X'58' I 
I I ifPTS21:LT=4,QT=X'OO' I 
~------t----------------------------------~ 
I 14 IPT=PS, QT=O, LT=FLOOR(PT+2)/2) I 
r------t----------------------------------1 
I 15 IPT=PS I 
I I if PT > 6: LT = 8, QT = X' 58' I 
t I if PT S 6: LT = 4, QT = X'OO' I 
r------t----------------------------------~ 
I 16 ILBT=MIN(LCS*8,64), LT=MIN(LS,8) I 
r------t----------------------------------~ 
I 17 tLCT=LBS, LT= LeT I 
r------t----------------------------------~ 
I 18 IPT=CEIL (PS/3.32) + 1, I 
I I QT=O, LT=FLOOR (PT+ 2) /2) I 
~------t----------------------------------~ 
I 19 IPT=PS, QT=QS LT=FLOOR (PT+2) /2) I 
r------t----------------------------------1 
I 20 Ino evaluation (no routine) I 
r------+----------------------------------~ 
I 21 IPT=PS, QT=O, LT=FLOOR(PT+2)/2) I 
r------t----------------------------------1 
I 22 IPT=31, QT=O, LT=4 I 
r------t----------------------------------~ 
I 23 IPT=PS I 
I I ifPT>6:LT=8,QT=X'58' I 
I I ifPTS6:LT=4,OT=X'OO' I 
r------+----------------------------------~ 
I 24 !PT=PS, QT=QS, LT=FLOOR(PT+2) 12) I 
~------+----------------------------------~ 
I 25 Imust be assignment, I 
I 26 IPT, QT, LT are given I 
I 27 I I 
r------t----------------------------------t 
I 28 IPT=3', QT=O, LT=4 I L ______ ~ __________________________________ J 

Figure 3. Evaluation of L, P, and Q of 
Target (Part 2 of 2) 

ADASSI (0), -{2) -- GI 

The routine processes assignments to binary 
float (X = 0) and decimal float (X = 2) • 

~!'J.lL -- GJ 

The routine processes assignments to binary 
fixed. If the source alas has the attri­
butes binary' fixed, the assignment is iden­
tical with conversion CV36. 

Phase PL/IDIO 191 



PL/I PLM 8 

IBM Confidential 

ADASSI (3) -- GK 

The routine processes assigments to decimal 
fixed. If the source also has the attri­
butes decimal fixed, processing is contin­
ued by the part of the phase that prepares 
the input for the macro generation. The 
final assignment macro is then constructed 
in the following phase. 

ADASSI (4), -5, -8, -11 GL 

This routine processes the assignments to 
zoned decima·l (X = 4), zoned decimal T (X 
5), sterling numeric field (X = 8), and 
fixed numeric field (X = 11). The assign­
ment is performed in two steps: first to 
decimal fixed and then final assignment to 
the required data type. 

If the initial assignment was 

where ATT = 0, 1, 11 
ATS = 4, 5, 8, or 11 

it is separated into 

GWO(3,LGWO,PT,QT) =S(ATS,LS,PS,QS) 
T(ATT,LT,PT,QT)=GWO(3,LGWO,PT,QT) 

where LGWO = FLOOR ( (P+2) /2) 

The switch ADASCO separates the first 
assignment (GWO = S) and the second assign­
ment (T = GWO). The initial value of the 
switch is zero. Thus, the NO-branch refers 
to the first and the YES-branch to the 
second assignment. 

If the attributes of source and target 
are equal, the assignment is identical to a 
character-string assignment. 

The routine processes assignments to char­
acter string (X = 6) and bit string (X = 
7) • 

ADASSI(9) , -10 -- GN 

The routine processes assignments to binary 
integer (X = 9) and floating-point numeric 
field (X: 10). If source and target have 
the attributes floating-point numeric 
field, the assignment is identical to 
action (4) of the conversion routine after 
setting the parameters V and Wand changing 
a SECTAB entry. 

ADTEE6 -- GO 

The subroutine is used for replacing indi­
rectly given operands. If the macro 
instruction M (OP) has the operand OP, OP 
may be one of the following: 

1. a normal operand (no action required) 

192 

2. a variable or constant that must be 
taken only by its value. 
The instruction 

MVC X (L), OP 

is generated and OP is replaced by X. 

M COP) M (X) 

3. a call without parameters. The call 
macro 

CALL (OP, RE) 

where OP = entry name and RE = return 
value is generated and OP is replaced 
by RE. 

M (OP) M (RE) 

ADCOB3 -- GP 

This routine is used for initializing poin­
ters. Z1 points to the start address of 
the text element with an E5 key. Z2 points 
to the first operand. N specifies the 
number of operands. 

CACTIONO -- GQ 

The routine performs three conversion 
steps. Parameter W specifies the type of 
conversion. W = 0 indicates an invalid 
conversion. For W greater than zero see 
the routine table (Figure 3). ADMVC is a 
subroutine used for increasing and testing 
the variable counter IJKMVC. 

CV36 -- GR 

This sUbroutine is used for the construc­
tion of binary assignment macros. If the 
preceding statement identifier contained an 
indication that size overflow must be 
checked, the macro key X'05' is used. Oth­
erwise, the key X'06' is used. 

CACTION1 -- GS 

This routine performs the conversion steps 
that require no transfer of the operand to 
another address. Thus, the requested tar­
get field may be freed. For the individual 
conversion steps refer to the routine table 
(see Figure 3) • 

CACTION2 -- GT 

This routine converts from decimal fixed to 
binary integer. 

CACTION3 -- GU 

This routine performs the conversion steps 
between zoned decimal (T) ,and decimal 
fixed. Refer to the routine table in Fig­
ure 3. 

c 

c 



( 

PL/I PLM 8 

IBM Confidential 

CACTION4, -5, -6 -- GV-GX 

This routine performs the conversion steps 
that use library routines. Two types of 
macro instructions may be constructed: 

1 • (1) (2) (1) (1) (1) (6) (6) (2) (2) 
r--T----T---T---T---~--T---T----T----l 

IF210016141 I I IRN IOP110P21DED11DED21 l __ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ____ L ____ J 

2. (1) (2) (1) (1) (1) (6) (6) (2) 
r--T----T---T---T---T---T---T---' 
IF21 001 4 142 I I IRN IOP11oP21DEDI l __ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ L ___ J 

Format 1 refers to CACTION4 and is used 
for calling library routines that require 
two DEDs. 

Format 2 refers to CACTION5 and 
CACTION6. For CACTION5, DEO must be the 
DED of OP1. For CACTION6, DED must be the 
DED of OP2. RN is the routine name. 

In addition to the construction of the 
required macro instruction, the routine 
sets the bits for the routine name and for 
the indirectly used library routine. The 
routine name and the name of the indirectly 
used library routine are given in columns 5 
and 6 of the routine table (see Figure 3) • 

DEROUTO-3,-6,-7 -- GY 

These routines generate the DEDs. For 
coded arithmetic and string data the DEDs 
differ in their length and key (L and K) 
only. 

CACTION7 -- GZ 

This routine performs two conversion steps 
(see routine table in Figure 3) • 

ACOMA -- HA-HC 

This part of the program is no subroutine 
but a narrative description of that part of 
PREMAC that constructs the premacros (the 
YES-tree after the decision box 03 in flow 
chart GF. The following actions may be 
required: 

1. Additional request. 
Besides the operands, some macros and 
functions require additional registers 
or working storage. This additional 
storage must be "requested". 

2. Conversion of float operands. 
Floating-point operands of float macros 
or float fUnctions must have the same 
length. If one of the operands is long 
float, all other float operands that 
are not long float must therefore be 
converted to long float. 

3. Storage type conversion. 
Byte 17 of the specifies the required 
storage type. The operand gets the 
required storage type. This may cause 
a conversion if the operand already was 
assigned some storage type. 

4. Putting out premacros. 
The premacros are put out in the format 
described under Output of PREMAC. 

ADCOST -- HD 

This subroutine converts operands from 
short float to long float. 

This SUbroutine is used to determine the 
sign of a scale factor. 

PART 3 OF D10 

Part 3 of phase 010 consists of a collec­
tion of subroutines called by part 2 to 
determine the operands required to con­
struct the macro instructions. It checks 
the storage type required for the 
operand(s). If required, registers are 
freed and working storage is generated. 

The technique applied is the so-called 
stack technique. This technique assumes 
that two stack chains exist at any moment 
during processing: a free chain ahd an 
occupied chain. If stacking is required, 
the last item of the free chain is deleted 
and added (with the corresponding 
information) as the last item to the occu­
pied chain. Unstacking is the reverse 
procedure of stacking. 

The individual subroutines forming part 
3 are discussed in the following. 

SOURCEJ.!l. 

SOURCE (I) may be one of 0, 1, 2, 3, and 4. 
The routines are called if a source operand 
is to be converted to a required storage 
type. The routines merely provide the 
parameters for the routine SOURCE. The 
required storage type for SOURCE and the 
corresponding parameters for the individual 
routines are listed in the following table: 

Routine 

SOURCE 0 
SOURCE 1 

SOURCE 2 
SOURCE 3 
SOURCE4 

Required 
Storage Type 

Any of 1, 2, 3, 4 
Declared or working 
storage . 
Fixed register 
Float register 
Working storage 

Parameter 

X, OFOO' 
X'OCOO' 

X'0100' 
X'0207' 
X'0400' 

Phase PL/IDIO 193 



PL/I PLM 8 

IBM Confidential 

TARGET (I) 

TARGET (I) may be one of 0, 1, 2, 3, and 4. 
The routines are called if a target operand 
is to be converted to a required storage 
type. The routines merely provide paramet­
ers for the routine TARGET. The required 
storage type for TARGET and the correspond­
ing parameters for the individual routines 
are analogous to those of SOURCE (I) • 

SOURCE 

The routine evaluates the operand to be 
used in an operation as a reference to a 
source field. It may be called from one of 
the routines SOURCED through SOURCE4 as 
follows: 

BAL LINK, SOURCE 
DC X'mmnn' 

where mm and nn are the parameters required 
for the routine GETOP, which performs the 
main part of the processing. 

TARGET 

This routine is called by one of the rou­
tines TARGETO through TARGET4 and is simi­
lar to SOURCE. The operands are used tar­
get fields. 

The main part of the processing is per­
formed by the called routine GETOP. 

GETOP -- EX 

This routine determines an operand with 
specified storage type (working storage, 
fixed-point register, or floating-point 
register). The routine checks if the type 
required and the type currently available 
are identical. If they are, the routine is 
left. Otherwise, REQUEST is called to 
generate an operand that has the required 
storage type and to store the contents of 
the current operand in the generated oper­
and. 

This routine is called by SOURCE as 
follows: 

BAL LINK, GETOP 
DC X'mmnn' 

where mm may be 

X'OF' 
X'OC' 
X' 01 ' 
X'02' 
X'04 ' 

any type 
no register type 
fixed-point register 
floating-point register 
working storage 

and nn is either X'07' (floating-point 
register) or X' 00' (all other cases) • 

194 

FREE -- ET 

The routine frees an operand in the occu­
pied stack chain and adds it to the free 
stack chain. 

FREEING 

This routine is called after the macro 
generation for each operation. It frees 
all operands used as source fields during 
the respective operation if these operands 
are work areas that have entries in the 
occupied staok chain. 

REQUEST -- ES 

This routine is called to get the work 
area, which may be specified as working 
storage, fixed-point register, or floating­
point register. It is called as follows: 

BAL 
DC 

LI NK , REQUEST 
X'mmnn' 

where rom is one of the following: 

00 single fixed-point register 
01 double fixed-point register 
02 short floating-point register 
03 long floating-point register 
04 full-word 
05 double-word 
06 byte-aligned working storage 
07 specified single fixed-point register 
08 specified double fixed-point register 
09 not used 
OA specified short floating-point register 
OB specified long floating-point register 

nn is the specified register or the length 
in bytes of the required storage. 

GETST -- ER 

The routine deletes the last item in the 
free stack chain and adds it to the 
occupied stack chain. 

FETCHA, FETCH 1 -- EU 

This routine is called by REQUEST to select 
the parameters for the current request. 
Selection is performed using the tables D 
and P. The table P consists of 9-byte 
entries that have the following format: 

byte 0 mask for searching in REGTAB 
byte 1 successful condition code during 

searching 
byte 2 successful action displacement 
byte 3 unsuccessful action displacement 
byte 4 mask to reserve in REGTAB 
byte 5 mask to free in REGTAB 
byte 6 macro instruction key if storage 

change is required 
bytes 7-8 request, if required. 

c 

C 



( 

PL/I PLM 8 

IBM Confidential 

The register and working storage table 
REGTAB consists of full-word entries of the 
following format: 

byte 0 

byte 1 
bytes 2-3 

search mask (key). It may be 
one of the following: 

X'03' fixed-point register 
X'OC' floating-point 

register 
X'10' double-word 
X'OE' byte-aligned 

displacement in QTAB 
either register pair or offset 
if storage 

The table QTAB contains the relative 
displacement (1 byte) for entries in RTAB. 
The entries in RTAB have the following 
format: 

byte 0 

byte 

bytes 2-3 

byte 4 

byte 5 

byte 6 

displacement of operand format 
relative to SOO 
displacement (relative to R012) 
of routine to construct and 
return the operand. The routine 
is executed. 
the required request parameters 
(if available and required type 
are not identical) 
macro instruction key if storing 
is required (if available and 
required type are not identical) 
available storage type X'mn', 
where m and n have the following 
meaning: 
n 1 fixed-point register 
n = 2 - floating-point register 
n = 4 - working storage 
n = 8 - declared variable 
m = 0 - short 
m = 1 - long 
m = 2 - byte-aligned 
X' , for floating-point data 
X, , in all other cases 

The communication between the reference 
to the working area and the tables REGTAB, 
QTAB, and RTAB is as shown in Figure 2. 

ACTIO (R5) 

The selection of the routine to be used 
depends on the address contained in reg­
ister 5. One of the four routines des­
cribed in the following may be selected. 

SACTIONX -- EU 

This routine is called if the required and 
available types of an operand are identical 
(successful action, see format of the P 
table). In this case, the operand is a 
register or working storage. 

SACTIONZ -- EV 

This routine is called if an operand is 
required as register, but it is currently 
contained in storage. In this case, a 
register (or a pair of registers) is 
r~quested by calling REQUEST with the 
appropriate parameters, and a load macro 
instruction is generated. 

FACTIONY -- EU 

This routine is called if working storage 
on full-word or double-word boundary is 
required and this is not available in REG­
TAB. 

SACTION7 -- EW 

This routine is called if a specified reg­
ister is required. 

Phase PL/IDIO 195 



PL/I PLM 8 

IBM Confidential 

First Part 

The first part of phase 011 restores the 
old interface for use by this and the fol­
lowing phases. The new communication 
region is saved. The old interface and the 
saved LIOCS table for SYS001 are read from 
SYS001. The interface is read into the 
appropriate storage area, whereas the LIOCS 
table must be moved. If tape work files 
are used, a back-space record command is 
given to synchronize the tape position with 
the information in the table. 

All items of the old communication 
region that may have been changed in the 
new communication region by phases 000, 
005, or 010 are set to the new values. The 
text input medium is read to the end of 
information, and the NOTE information on 
that point is set into the old communi­
cation region. The medium is reset with a 
POINTS macro instruction. The old end-of­
file address is set into the appropriate 
entries of the work file tables. 

Symbols used in flow charts 
TABLE Contains address of SYS001 in new 

interface 
TABLEM Save area in phase 011 for 

information required from new 
interface 

INTTABEN: Begin of saved new communication 

EOFAOO 

EOFAOT 
TEXTIN 

NEOFAO 

POINTR 
T 
CHECK 
REAO 
EXCP 
BSR 
TASAVA 

WAIT 
IJKMVC 

IJKMLB 

ADLIBIN 
IJKMJT 

REAO 
IJKMBL 

NOTE 

196 

region 
Relative address of end-of-file 
entry in LIOCS table for disk 
and for tape work files 
Contains address of input work 
file table 
Address of end-of-file routine 
used in this phase 
LIOCS macro instruction 
SYS001 
LIOCS macro instruction 
LIOCS macro instruction 
PIOCS macro instruction 
Backspace record 
Area where SYS001 table is read 
in 
PIOCS macro instruction 
Variable counter, entry in old 
interface 
Library usage bytes, entry in old 
interface 
Part of IJKMLB in new interface. 
Job communication bytes, entry in 
old communication region 
LIOCS macro instruction 
Block on work files, entry in old 
communication region 
Contains information on input 
work file in old interface 

PHASE PL/011 (MACRO GENERATION II) -- HM 0 

POINTS 
OUMPSAVE: 

TEXTOlJT 

IJKMWC 

LREAD 

LWRITE 

PIN 
OPR 
CURBUF 
K 
MA1 
AA30 
AAP3 

Main Part 

LIOCS macro instruction 
Save area for old end-of-file 
routine 
Contains address of output work 
file table. 
Length of dynamic work space used 
in 000-010, entry in old inter­
face 
Length that can be read regard­
less of buffer boundaries 
Length that can be written 
regardless of buffer boundaries 
Input pointer 
Output pointer 
Current buffer index 
Key 
Area used for macro construction 
Area containing the premacro 
Area containing P and Q of oper­
ands 

The second part of phase 011 generates 
macros. The input of the phase contains 
so-called premacros, which furnish the 
information required for generation of the 
macros. The format of the generated macroS 
must be the same as required by the code 
generation phases ESO and E60. The phase 
also generates compiler constants. 

Input 

The input to phase 011 may include the 
following elements: 

1. Statement identifier (6 bytes) with the 
key X'EO'. 

2. I/O text (12 bytes) with the key X'E1' 
or X'E4'. 

3. End of statement (6 bytes) with the key 
X, EA'. 

4. Error indicator (2 bytes) with the key 
X, EB'. 

5. Prernacros 

Byte(s) Contents 

2- 3 

K = key X'FS' or X'FC'. If K = 
X'FC' and K2 is greater than 
X'40', the text element rep­
resents a function and is moved 
unchanged into the output buf­
fer. 
Length of premacro 1 = 12 
1N+1) +22 C, where C = number of 
constants. 

o 

.~ .. 
I~ 

c 



( 

PL/I PLM 8 

IBM Confidential 

4 
5 
6 
7 

8-12 

Number of operands (N) • 
K1 
K2 
K3 
Not used 

These 12 bytes are followed by the 
operands, each of which has a length of 
12 bytes. Each operand may be followed 
by a 22-byte constant. 

6. Permutable text elements 

Byte(s) Contents 

1-12 
13 

14-16 
17-28 

Text element 
Key X'FE' 
Not used 
Text element 2 

Text element 1 is exchanged for text 
element 2. 

7. End of text string, key X'FF'. 

S. Further F keys 

Byte(s) Contents 

F-key other than those des­
cribed above. 

( 
2-3 Length to be skipped (including 

bytes 1-3). 
4-n Element to be skipped. 

The output of phase D11 contains the same 
number of elements as the input. However, 
the following additions and permutations 
have been gerformed: 

1. After the statement identifier indicat­
ing an entry statement, the assembler 
code CNOP 0,4 has been inserted into 
the text string. 

Format of the code: 

X'F60007S0C00004' 

2. After the end of block statement, the 
assembler code 

END OF BLOCK CNOP 0,4 

has been inserted into the text string. 
Format of the code; 

X'F6000380C60000S0C00004' 

3. The text element following the FE-key 
is exchanged with the text element 
preceding the FE-key. The FE-key has 
been changed to X' F7' • (See Input.) 

4. Premacros (see Inpu~ have been proc­
essed to macros and constants. 

Format of the macros 

Byte(s) Contents 

1 X'F2' 
2-3 Length to be skipped 
4-n Element to be skipped 

Format of the constants 

Byte(S) Contents 

X'F3' 
Length to be skipped 
Constant to be skipped 

5. Compiler constants have been inserted 
at the beginning of the text string. 

DESCRIPTION OF ROUTINES 

First, the phase evaluates the buffer 
addresses and the buffer lengths. Then the 
input buffer is filled with input text. 
The first output moved into the output 
buffer consists of compiler constants. For 
the scan of the text string the routine 
FETCH is used. The processing of the indi­
vidual input elements is performed by the 
corresponding ACTION routines. 

The routine MOVESO is discussed in the 
description of phase DOO. 

Symbols used in flow charts: 

LREAD 

LWRITE 

PIN 
OPR 
CURBUF 
K 
MA 1 
AA30 
AAP3 

Length that can be read regard­
less of buffer boundaries 
Length that can be written 
regardless of buffer boundaries 
Input pointer 
Output pointer 
Current buffer index 
Key 
Area used to construct the macro 
Area containing the premacro 
Area containing P and Q of the 
operands 

FETCH -- HN 

The routine FETCH scans the text string, 
and determines the subscript for calling 
the appropriate ACTION routine for the 
individual input elements. 

ADMVC -- HO 

ADMVC increments and tests the variable 
counter of the compiler. If more than 
641536 variables are counted, the current 
statement is skipped and an error message 
is inserted into the text string. 

Phase PL/IDll 197 

'ntnt, 



PL/I PLM 8 

IBM Confidential 

ACTIONO -- HP 

The statement identifier is saved by STIN. 
If this statement identifier indicates an 
END statement, switch ACT10 is set to zero. 
If this statement identifier indicates an 
entry statement, CNOP 0,4 is generated. 

ACTION1, -4 -- ~ 

The text element is either an operand 
(which is moved unchanged into the output 
buffer) or information on I/O statements 
(which is required for the routine ADIOST 
(see MASU (X) ) • 

ACTION2, 3, 5-9, 12-15, 25, 27 

These routines are not available sincethe 
corresponding text elements cannot occur in 
the text string. 

ACTION10 - HR 

This routine is used when the end of a 
statement is detected. The text element is 
moved unchanged into the output buffer. If 
the statement was an end-of-block 
(ACT10=0), the assembler code 

'END OF BLOCK' CNOP 0,4 

is generated. 

ACTIONll, 16-20, 22-24, 26, 29 

The text element is moved unchanged into 
the output buffer. 

ACTION28 -- HS 

The text element is either a fUnction call 
(moved unchanged into the output buffer) or 

a decimal arithmetic macro (processed like 
in ACTION21) 

ACTION30 -- HT 

The permutable text element is exchanged as 
described under Input. 

ACTION31 -- HU 

This routine detects the end of the input 
text and initiates the calling of the next 
12hase • 

ACTION21 -- HV, HW 

ACTION (21) performs the main objective of 
phase Dl1, the generation of macros. 

198 

HV/D3 

HV/F4 

HV/H4 

HV/J4 

HV/Jl 

HW/B3 

HW/B4 

If the macro to be generated is the 
decimal compare macro, the number of 
operands N will be set to 3. The 
premacro contains two operands but 
the macro must have three. The 
third operand OPl must not contain 
any information. 
The pointers are set: Pl pOinter to 
the macro generation area, P2 poin­
ter to the premacro (input), P3 
pointer to P-Q-save area. 
Byte 8 of the operand is extended to 
one word and stored in P3. 
Byte 9 of the operand is extended to 
one word and stored in P3+4. 
If SWY is unequal to 0, OP1 was 
followed by a constant Or the macro 
contains more than one operand. If 
OP(l) is not followed by a constant, 
the bytes addressed by P2+7 and 
AA30+31 must have the same contents: 
because in the routine MASU(X) 
AA30+31 will be used for P2+7. If 
the contents of these bytes are not 
identical to each other, one byte is 
moved. 
SW1=15: a decimal macro is generat­
ed. 
Normally, the operands of the prema­
cro are given in the sequence OP(N), 
OP(2) I OP1. The operands of the 
decimal premacros are given in the 
sequence 

OP (1), OP (N) OP (2) (N = 2 or 3) • 

Therefore, the operand in the macro 
generation area and P, Q in P-Q-save 
area must be rearranged. 

HW/E3 X is determined by using table TAB1. 
If X exceeds 18, the appropriate 
element of TABl contains an offset 
pointing to routine MASU~), which 
then constructs the macro. If X 
does not exceed 18, the appropriate 
element of TABl contains the length 
of the macro. 

ADMACO -- HX 

Routine ADMACO moves the constants follow­
ing the operands of a premacro into the 
output buffer. 

MASU (X) 

The routines MASU(X) refer to several macro 
keys. The relation between the macro key 
and the routine name is given by the table 
TAB1 shown in Figure 1. 

.~--~--- ---- --------

c 



PL/I PLM 8 

IBM. Confidential 

r----------T----------------------------T------------------------------------, 
( I I I I 

I M.acro Key I MASU (X) I MACRO I 
~----------+----------------------------+------------------------------------~ o I DC AL1(ADBASC-MASU) BINARY ADDITION I 

1 I DC AL1 (ADBASC-MASU) BINARY SUBTRACTION I 
2 I DC AL1 (16) BINARY MULTIPLICATION WITH O.C. I 
3 I DC ALl (ADBOIV-MASU) BINARY DIVISION I 
4 I DC ALl (10) BINARY NEGATION I 
5 I DC AL1 (ADASSI-MASU) ASSIGNMENTS I 
6 I DC AL1 (4) BINARY ASSIGNMENT WITHOUT O.C. I 
7 I DC AL1 (4) BINARY EXPONENTIATION I 
8 I DC ALl (ADBASC-MASU) BINARY COMPARISON I 
9 I DC AL1 (ADMULI-MASU) BINARY MULTIPLICATION WITHOUT O.C. I 

1 0 I DC AL 1 14) FREE I 
11 I DC AL1 (4) FREE I 
12 I DC AL 1 (ADIOST-MASU) I 
13 I DC AL1 (4) FREE 
14 I DC AL1 (4) FREE 
1 5 I DC AL 1 (4) FREE 
16 DC ALl (ADDARI-MASU) DECIMAL ADDITION 
17 DC ALl (ADDARI-MASU) DECIMAL SUBTRACTION 
18 DC AL1 (ADDMUU-MASU) DECIMAL MULTIPLICATION 
19 DC ALl (ADDIV-MASU) DECIMAL DIVISION 
20 DC AL1 (ADDNEG-MASU) DECIMAL NEGATION ONE OPe 
21 DC ALl (ADDSHI-MASU) DECIMAL ASSIGNMENT 
22 DC ALl (ADNEG1-MASU) DECIMAL NEGATION, TWO OPe 
23 DC ALl (4) DECIMAL EXPONENTIATION 
24 DC ALl (ADDARI-MASU) DECIMAL COMPARISON 
25 DC ALl (4) FREE 
26 DC ALl (4) FREE 
27 DC ALl (4) FREE 
28 DC ALl (4) FREE 
29 DC ALl (4) FREE 
30 DC ALl (4) FREE 

(-
31 DC ALl (ADUNA-MASU) UNARY PLUS 
32 DC ALl (16) SHORT FL.~DDITION 
33 DC AL 1 (16) SHORT FL. SUBTRACTION 
34 DC ALl (16) SHORT FL.MULTIPLICATION 
35 DC ALl (16) SHORT FL. DIVISION 
36 DC ALl (16) SHORT FL.NEGATION,20P. 
37 DC ALl (10) SHORT FL. NEGATION, 1 OP. 
38 DC ALl (16) SHORT FL.~SSIGNMENT 
39 DC ALl (4) SHORT FL. EXPONENTIATION 
40 DC AL1 (16) SHORT FL. COMPARISON 
41 DC ALl (4) SHORT FL.GENERAL EXPONENTIATION 
42 DC ALl (4) FREE 
43 DC ALl (4) FREE 
44 DC ALl (4) FREE 
45 DC ALl (4) FREE 
46 DC ALl (4) FREE 
47 DC ALl (4) FREE 
48 DC ALl (16) LONG FL.ADDITION 
49 DC ALl (16) LONG FL.SOBTRACTION 
50 DC ALl (16) LONG FL.MOLTIPLICATION 
51 DC ALl (16) LONG FL.DIVISION 
52 DC ALl (16) LONG FL.NEGATION,2 OP. 
53 DC ALl (10) LONG FL. NEGATION lOP. 
54 DC ALl (16) LONG FL.ASSIGNMENT 
55 DC ALl (4) LONG FL. EXPONENTIATION 
56 DC ~Ll (16) LONG FL.COMPARISON 
57 DC ALl (4) LONG FL. GENERAL EXPONENTIATION 
58 DC ALl (4) FREE 
59 DC ALl (4) FREE 
60 DC ALl (4) FREE 
61 DC ALl (4) FREE 

I 62 DC ALl (4) FREE I l __________ L ____________________________ L ____________________________________ J 

Phase PL/ID11 199 



PL/I PLM 8 

IBM Confidential 

r----------T----------------------------T------------------------------------, 
I 63 I DC ALl (4) FREE I 
I 64 I DC ALl (ADCHOP-MASU) CHAR.STR.CONCATENATION I 
I 65 I DC ALl (4) CONVERSION,ACTION 4 I 
I 66 I DC ALl (4) CONVERSION,ACTION 5 I 
I 67 I DC ALl (4) CONVERSION, ACTION 6. 
I 68 I DC ALl (4) FREE 
I 69 I DC ALl (4) FREE 
I 70 I DC ALl (4) FREE 
I 71 DC ALl (4) FREE 
I 72 DC ALl (4) FREE 
I 73 DC ALl (4) FREE 
I 74 DC ALl (4) FREE 
I 75 DC ALl (4) FREE 
I 76 DC ALl (4) FREE 
I 77 DC ALl (4) FREE 
I 78 DC ALl (4) FREE 
I 79 DC ALl (4) FREE 
I 80 DC ALl (4) CONVERSION 0 
I 81 DC ALl (4) CONVERSION 1 
I 82 DC ALl (4) CONVERSION 2 
I 83 DC ALl (4) CONVERSION 3 
I 84 DC ALl (4) CONVERSION 4 
~ 85 DC ALl (4) CONVERSION 5 

86 DC ALl (4) CONVERSION 6 
87 DC ALl (4) CONVERSION 7 
88 DC ALl (ADCHAP-MASU CHAR, STR, COMPARISON 
89 DC ALl (16) SHIFT AR.SINGLE RIGHT 
90 DC ALl (16) SHIFT AR.SINGLE LEFT 
91 DC ALl (16) SHIFT AR.DOUBLE RIGHT 
92 DC ALl (16) SHIFT AR. DOUBLE LEFT 
93 DC ALl (4) 
94 DC ALl (4) FREE 
95 DC ALl (4) FREE 
96 DC ALl (4) FREE 
97 DC ALl (4) FREE 
98 DC ALl (4) FREE 
99 DC ALl (ADBSIP-MASU) BIT STR.NOT,2 OP. 

100 DC ALl (ADDING-MASU) BIT STR.NOT,l OP. 
101 DC ALl (ADBISA-MASU) BIT STR.ASSIGNMENT 
102 DC ALl (ADBSOP-MASU) BIT STR.AND 
103 DC ALl (ADBSOP-MASU) BIT STR.OR 
104 DC ALl (ADBASA-MASU) BIT STR.COMPARISON 
105 DC ALl (16) SHIFT LO.SINGLE RIGHT 
106 DC ALl (16) SHIFT LO.SINGLE LEFT 
107 DC ALl (16) SHIFT LO.DOUBLE RIGHT 
108 DC ALl (16) SHIFT LO.DOUBLE LEFT 
109 DC ALl (4) FREE 
110 DC ALl (4) FREE 
111 DC ALl (4) FREE 
112 DC ALl (4) BRANCH ON CONDITION 
113 DC ALl (ADRTLC-MASU) RETURN TO LABEL CONSTANT 
114 DC ALl (7) DEFINE LABEL 
115 DC ALl (4) FREE 
11 6 DC AL 1 (4) FREE 
117 DC ALl (ADRTLC-MASU) ASSIGN LABEL CONST. 
118 DC ALl (16) POINTER ASSIGNMENT 
119 DC ALl (4) FREE 
120 DC ALl (16) POINTER COMPARISON 
121 DC ALl (4) FREE 
122 DC ALl (ADIF-MASU) IF-MACRO 
123 DC ALl (4) FREE 
124 DC ALl (4) FREE 
125 DC ALl (ADUNA-MASU) UNARY PLUS 
126 DC ALl (4) FREE 
127 DC ALl (4) FREE" 
128 DC ALl (11) RETURN TO 1.VARIABLE 

c 
----------~----------------------------~------------------------------------

200 



PL/I PLI".l 8 

IBM Confidential 

r----------T----------------------------T------------------------------------, 
129 DC ALl (10) RETURN TO 1.VARIABLE 
130 DC ALl (4) FREE (" 
131 DC ALl (16) FREE 
132 DC ALl (16) FREE 
133 DC ALl (11) ASSIGNLABEL/. 
134 DC ALl (ADBASA-MASU) ASSIGN CHAR.STR. 
135 DC AL 1 (4) FREE 
136 DC ALl (4) FREE 
137 DC ALl (4) FREE 
138 DC ALl (4) FREE 
139 DC ALl (4) FREE 
140 DC ALl (4) INITIAL 
141 DC ALl (4) FORMAT 
142 DC ALl (4) LOAD TRANSMIT 
143 DC ALl (4) FREE 
144 DC ALl (ADCALL-MASU) CALL 
145 DC ALl (4) RETURN 
146 DC ALl (4) PROLOGUE 
147 DC ALl (16) STM 
148 DC AL 1 (16) STD 
149 DC ALl (16) MOVE ADDRESS 
150 DC AL 1 (4) DO BEGIN 
1 5 1 DC AL 1 (4) DS 
152 DC ALl (4) ARRAY EXPR.BEGIN 
153 DC AL 1 (4) FREE 
154 DC ALl (4) FREE 
155 DC AL 1 (4) FREE 
156 DC ALl (4) LOAD VARIABLE 
157 DC ALl (4) SET BYTE 
1 58 DC AL 1 (4) MOVE 
159 DC ALl (4) FREE 
160 DC ALl (4) LIBRARY CALL (1) 

(- 161 DC ALl (4) RETURN FUNCTION VALUE 
162 DC AL 1 (ADOVLA-MASU) OVERLAY 
163 DC ALl (16) L 
164 DC ALl (16) LE 
1 65 DC AL 1 (1 1) MVI 
166 DC ALl (4) DO END 
167 DC ALl (4) DC 
168 DC ALl (4) ARRAY EXPR.END 
1 69 DC AL 1 (4) FREE 
170 DC ALl (4) FREE 
171 DC AL 1 ,4) FREE 
172 DC ALl (4) LOAD DED 
173 DC ALl (4) LOAD SCAL~R 
174 DC ALl (4) LOAD ARRA~ 
175 DC ALl (4) FREE 
176 DC ALl (4) LIBRARY C~LL (2) 
177 DC AL(~DSECO-MASU) SET TRUE ON CONDo 
178 DC ALl (4) FREE 
1 79 DC AL 1 (1 6) LM 
180 DC ALl (16) LD 
181 DC ALl (4) DEF.RESULr 
1 82 DC AL 1 (4) FREE 
183 DC AL 1 f4) FREE 
184 DC AL 1 (4) FREE 
185 DC ALl (4) FREE 
186 DC AL 1 (4) FREE 
187 DC ALl (4) FREE 
188 DC ALl (4) LOOP BEGIN 
189 DC ALl (4) LOOP END I __________ ~ ____________________________ ~ ____________________________________ J 

(: Figure 1. Table TABl Used to Find MASU(X) 

Phase PL/IDll 201 



PL/I PLM 8 

IBM Confidential 

Routines Listed in TAB' 

They generate the individual macros. 

L 
n 
R1 
R2 
R3 
R4 
LABEL 
SO 

Length of the macro 
Number of operands 
Precision of the (n-1)-th operand 
Scale factor of (n-1)-th operand 
Precision of the n-th operand 
Scale factor of the n-th operand 
Label taken from IJKMVC 
The location after the n operands 
of the macro 

{R 1-R2} ---> SO (2 bytes) 

AD BASe ----

means R1-R2 will be inserted with 
a length of two bytes into loca­
tion SO. 

Used for binary addition, subtraction, and 
comparison 

L = 18 
{R 1-R2} ---> SO (2 bytes) 

Used for binary division 

L = 18 
{R3+1} ---> SO (2 bytes. 

ADASSI ----
Used for assignments except the decimal 
fixed, the bit string, and the label 
assignment. No macro will be constructed. 
The premacro is used only for generation of 
constants if necessary. 

ADMULI 

Used for binary multiplication 

a. if overflow must be checked: 
Macro key: X'02' L = 16 

b. if overflow must not be checked: 
Macro key X'09' L = 16 

if OP1 is given by a register R, the 
preceding register R-1 is used as the 
operand. 

ADIOST 

No macro but a text element which must be 
generated in connection with I/O state­
ments. The element has the format 

bytes 0 F7 
1-2 0010 

3 10 
4-5 name 

6 E4 
7-8 modifier 

9 E4 

202 

ADDARI 

10-11 
12 
13 
14 

attributes 
E4 
P 
Q 

Used for decimal addition, subtraction, 
comparison. 

L = 28 
{FLOOR «R3+2) /2)}---> SO 
{FLOOR «R 1+2) /2)} ---> SO+1 
{Byte (3) from stmnt. identifier}---> SO+4 
{N-R4} ---> SO+2 
{N-R2} ---> SO+3 
{LE} ---> SO+5 
N is given by AAP3+20 
LE is given by AA30+19. 

Used for decimal multiplication 
L = 27 
{FLOOR «R3+2) /2)}---> SO 
{FLOOR «R 1 +2) /2)} ---> SO+ 1 
{Byte (3) from stmnt. identifier}---> SO+4 
{LE} ---> SO+2 

Used for decimal division 
L = 25 
{FLOOR «R3+2) /2)}---> SO 
{FLOOR «R 1+2) 12)} ---> SO+ 1 
{Byte (3) from stmnt. identifier}---> SO+4 
{15-R3} ---> SO+2 

ADDNEG 

Used for decimal negation with one operand, 
overlay, and if-macros. 
L = 11. 
{LE} ---> SO 
LE is given by AA30+19 

ADDSHI 

Used for decimal assignment 
L = 21 
{FLOOR (R3+2) 12)}---> SO 
{FLOOR «R 1+2) /2)} ---> SO+ 1 
{Byte (3) from stmnt. identifier}---> SO+4 
{R4-R2} ---> SO+2 

AD NEG 1 

Used for decimal negation with two operands 
L = 18 
{FLOOR «R3+2) /2)}---> SO 
{FLOOR «R1+2) /2)}---> SO+1 

ADUNA 

Used for prefix plus. No macro will be 
generated. 

c 

Ci 



(-

PL/I PLlvI 8 

IBM Confidential 

ADCHOP 

Used for character string concatenation 
L = 24 
{R3} ---> SO 
{R 1} ---> SO+ 1 

Used for character string comparison 
{R3} ---> SO 
{R1} ---> SO+l 

a. if R1 = R3 
L = 18 

b. if Rl t- R3 
L = 24 
third operand GWO 
{GWO} ---> SO+2 (6 bytes) 

ADBSIP ----
Used for 'bit string not' with two operands 

L = 19 
{L1} ---> SO 
{M} ---> SO+2 
L1 is given by AA30+31 
M is a mask depending on R3. 

Used for 'bit string not' with one operand 
L = 13 
{L1} ---> SO 
{M} ---> SO+2 
L1 is given by AA30+19 
M is a mask depending on R1. 

Used for bit string assignment 
L = 19 
{L2} ---> SO+ 1 
L2 is given by AA30+19 
Otherwise identical to ADBSIP. 

Used for bit string 'and' and 'or' 
L = 18 
a. if R1 does not exceed R3 

{L1} ---> SO 
{L2} ---> 50+1 

b. if Rl exceeds R3 
{L 1} ---> SO+ 1 
{L2} ---> SO 
OP1 and OP2 are exchanged. 

L1 is given by AA30+31 
L2 is given by AA30+19. 

ADBASA 

Used for bit string comparison and charac­
ter string assignment 
L = 18 
{L1} ---> SO 
{L2} ---> SO+ 1 

ADRTLC 

Used for return to label constant and 
assign label constant. 
L = 25. 

ADIF 

Used for IF macro. 
L = 17. 
Otherwise identical to ADDNEG. 

AD CALL 

Used for the CALL macro 

1. The number of parameters N is inserted 
preceding the operands. 

2. The macro identification =X'90' is 
inserted. 

3. The length of the macro is calculated 
(L = (N+2) *6 - 1) and inserted. 

4. The second operand is also used as the 
(n+ 1) -th operand. 

5. If the first operand is extern, OP1 DC 
V(OP1) is generated. 

AD5ECO 

Used for the set true on condition macro 
L = 14 
{LABEL} ---> SO (2 bytes) 
Byte AA30+6 will be inserted preceding the 
operands. 

Phase PL/IDll 203 



PL/I PLM 8 

IBM Confidential 

This phase evaluates the subscripts. If 
the subscripts are constants, evaluation is 
optimized as far as possible. In addition, 
this phase generates the macro instructions 
required for the format label assignments. 
The phase is skipped if there are no arrays 
and no format labels in the source program. 

Phase Input 

The text input string may contain informa­
tion marked by one of the keys listed 
below. The input string is skipped or 
processed depending on the key found (see 
Figure 1). 

r------T---------------T------------------, 
IKey I Meaning ISkippable Length I 
I I lif not Processed I 
~------+---------------+------------------~ 
fEO IBegin of state-I I 
I Iment I Implied: 6 bytes I 
EA lEnd of state- I I 

Iment I Implied: 6 bytes I 
EB I Error informa- I I 

Ition I Implied: 2 bytes I 
F2 IPossible formatlProcessed. For I 

Ilabel assign- Istring format see I 
Iment IFigure 2. I 

FC I Array IProcessed. For I 
I Istring format see I 
I IFigure 3. I 

FFFF lEnd of program I I 
Other IOf no interest ISkippable length 1 
F-keysl Icontained in the 1 

1 12 bytes following 1 
I I Ithe key. I L ______ ~ _______________ ~ __________________ J 

Figure 1. Keys Scanned in the Input Text 
String 

PHASE PL/ID15 (EVALUATION OF SUBSCRIPTS) -- JA 

I ARRAY NUMBER 

TARGET 
must be always 
a register 

~ _________ S_U_B_S_CR_I_PT_3 ____________ ~I~~~~~~;T~] 

~ __________ SU_B_S_c_RI_n_2 ____________ ~I~~i~~~~~J 

~ _________ S_U_B_SC_R_IP_T_I ____________ ~I~-.5~;~~~-J 

ARRAY NAME 

Figure 3. Format of Input String Marked by 
FC-Key 

Phase Output 

During the scan through the text, the 
information marked by an FC-key is checked 
for subscripts. If subscripts are found, 
the corresponding maCro instructions are 
generated and put out. If a label assign­
ment macro instruction is detected, it is 
modified to format label assignment if the 
label operand is a format name. This is 
checked by searching the corresponding name 
table. All other information is put out 
unchanged. 

OPl OP2 OP3 OP4 

Figure 2. Format of Input String Marked by F2-Key 

204 

c 

c 



( 

PL/I PLM 8 

IBM Confidential 

Generated Macro Instructions 

1. Multiply Half-word -- MHkAK 

OP1 

Calling Sequence: ME R,OP1 

2. Add -- AMAK 

I F21 .121~1 OPl OP2 

Calling Sequence: 

a. if OP2 register 
AR OP1, OP2 

b. if OP2 storage 
A OP1, OP2 

3. Load LMAK 

R OP2 

Calling Sequence: 

If OP2 = register 

LR R,OP2 

if OP2 storage 

L R,OP2 

4. Move Address -- MOVMAK 

OP1 OP2 

Calling sequence: 

a. if OP1 = register 
LA OP1,OP2 

b. if OP1 = storage 
LA S,OP2 
ST S,OP1 

S. Format label assignment macro instruc­
tion 

I F2111J61J1 195 I OP1 OP2 

For a description see the generator 
phases ESO-E61. 

1. ~~with~ime!!si0!l!.. 

In the input string, the subscript 
appears in the form shown in Figure 4. 

TARGET REGISTER 

~ _____ S_U_B_S_C_RI_PT_X _____ ---,[~~N~T;~J 

ARRAY NAME 

Figure 4. Input String (1-Dimensional 
Array) 

A = array number (used to find the 
corresponding entry in the array 
table) • The array table entry has the 
format shown in Figure S. 

IN NE L 11 11 

11 

1 
2 

t 
4 t 6 8 111 

.. c: 
J!! ~ c: 

>- ~ ~ 
0 I) 

c I) >-
0 "'ii g 

'S >-
~ 0 

~ a I) 
c: 

0, 'S 
0 

c: 'S 
D j E -£ 

E ~ 1? :l 
oS Z ~ 

Figure S. Format of Array Table Entry 
for 1-Dimensional Array 

The element A (X) is determined as fol­
lows: 

A (X) = A(1) + Fa + L * X 

F1I 

.... 

If X is a constant, L * X is computed 
during compilation and added to Fa. In 
this case, the code produced is: 

LA REG,A (1) 
A REG,FO 

Otherwise, the code produced is: 

L REG,X 
MH REG,L 
A REG,FO 
LA RS,A (1) 
AR REG,RS 

Phase PL/IDIS 205 

12 



PL/I PLM 8 

IBM Confidential 

2. Arrays with 2 dimensions: 

If there are two subscripts, the input 
string has the format shown in Figure 
6. 

TARGET REGISTER 

ARRAYNAME 

Figure 6. Input String (2-Dimensional 
Array) 

The corresponding entry in the array 
table has the format shown in Figure 7. 

IN NE L 

1 I t ... 
c: 

l! ~ c: 
~ 

CD 
>- "'ii g ..!! >-
II CD g 

'0 >- II 

A (X, Y) =A (1, 1) +FO+L (Y+B2*X) 

The code produced is: 

L 
MH 
A 
MH 
A 
LA 
AR 

REG,X 
REG,B2 
REG,Y 
REG,L 
REG,FO 
R5,A (1,1) 
REG,R5 

b. X = constant, Y = variable 

A (X,Y)=A(1,1)+FO+L*B2*X+L*Y 

L * B2 * X is computed during com­
pilation and added to FO. 

The code produced is: 

L REG,Y LR if Y register 
MH REG,L 
A REG,FO 
LA R5,A (1,1) 
AR REG,R5 

c. Y = constant, X = variable 

A(X,Y)=A(1,1)+FO+L*Y+L*B2*X 

L * Y is computed during compila­
tion and added to FO. 

The code produced is: 

L REG,X 
MH REG,L*B2 
A REG,FO 
LA R5,A(1,1) 
AR REG,R5 

d. X and Y = constants 
g 

~ II ! 
II 

~ A(X,Y)=A(1,1)+FO+L*Y+L*B2*X 
II '0 c: '0 
ti 

.. 
CD -:S E i ~ .!! ::I 

..5 Z ~ 

Figure 7. Format of Array Table Entry 
for 2-Dimensional Array 

The code produced for evaluation of 
A(X,Y) depends upon the subscripts X 
and Y. The following 4 cases are pos­
sible: 

a. X and Y = variable2 

206 

.... 
..: .... 

L * Y and L * B2 * X are computed 
during compilation and added to FO. 

The code produced is: 

LA 
A 

REG,A(1,1) 
REG,FO 

3. Arrays with 3 dimensions: 

If there are 3 subscripts, the input 
string has the format shown in Figure 
8. 

c 



( 

PL/I PLM 8 

IBM Confidential 

TARGET REGISTER 

~ __________ S_U_8_SC_R_I_~_Z ____________ ~I-c~~~~~~ 

~ __________ S_U_8S_C_R_IP_T_Y __________ ~I~~;~~N!~] 

~ __________ S_U_8S_C_R_IP_T_X __________ ~I~~~~_~~ 

ARRAY NAME 

Figure 8. Input string (3-Dimensional 
Array) 

The corresponding entry in the array 
table has the format shown in Figure 9. 

IN NE L 

b. X = constant( Y and Z = variables 

A(K,Y,Z)=A(1,1,1)+FO+L*B3*B2*X+L(Z+B3*Y) 

c. 

L * B3 * B2 * X is computed during 
compilation and added to FO. 

The code produced is: 

L REG,Y 
MH REG,B3 
A REG,Z 
MH REG,L 
A REG, FO 
LA R5 , A (1 , 1 , 1) 
AR REG,R5 

Y = constant, X and Z = variables 

A (X, Y, Z) =A (1,1,1) +FO+ 
L*B3*Y+L(Z+B3*B2*X) 

L * B3 * Y is computed during com­
pilation and added to FO. 

The code produced is: 

(-' 

1 
t t 

L 
MH 
A 
MH 
A 
LA 
AR 

REG,X 
REG,B3*B2 
REG,Z 
REG,L 
REG,FO 
R5,A(1,1,1) 
REG,R5 

c 
~ 

...!! 
GI 

J:! >-. c g 
~ 0 
GI .. "'ii c 

'0 
0 

'0 
j -£ 
E !!I " Z GI .... 

Figure 9. Format of ~rray Table Entry 
for 3-Dimensional Arrays 

The code produced to evaluate the ele­
ment A(X,Y,Z) is optimized as follows: 

a. X, Y, and Z = variables 

...... 
~ d. Z = constant, X and Y = variables 

.... 
+ 
Sf 
.... 
+ .... 

~(X,y,Z)=A(1,1,1)+FO+L*Z+L*B3(Y+B2* X) 

L * Z is computed during compila­
tion and added to FO • 

Code produced is: 

L REG,X 
MH REG,B2 
A REG,Y 
MH REG,L * B3 
A REG,FO 
LA R5 , A (1 , 1 , 1) 
AR REG,R5 

e. X and Y = constants, Z = variable 

A(X,Y,Z)=A(1,1,1)+FO+L*B3*Y+L*B3*B2*X+L*Z 
A (X, Y, Z) =A (1 ,1, 1) + FO+L (Z+B3 (Y+B2*X) 

The 
L 
MH 
A 
MH 
A 
MH 
A 
L~ 

AR 

code produced is: 
REG,X 
REG,B2 
REG,Y 
REG,B3 
REG,Z 
REG,L 
REG,FO 
R5,A(1,1,1) 
REG,R5 

L * B3 * Y and L * B3 * B2 * X are 
computed during compilation and 
added to FO. 

The code produced is: 

L REG,Z 
MH REG,L 
A REG,FO 
LA R5,A(1,1,1) 
AR REG,R5 

Phase PL/ID15 207 



PL/I PLM 8 

IBM Confidential 

f. X and Z = constants, Y = variable 

A(X,Y,Z)=A(1,1,1)+FO+L*Z+L*B3*B2*X+L*B3*Y 

L * Z and L * B3 * B2 * X are com­
puted during compilation and added 
to FO. 

The code produced is: 

L REG,Y 
MH REG,L*B3 
A REG,FO 
LA R5,A(1,1,1) 
AR REG,R5 

g. Y and Z = constants, X = variable 

A(X,Y,Z)=A(1,1,1)+FO+L*Z+L*B3*Y+L*B3*B2*X 

h. 

L * Z and L * B3 * Yare computed 
during compilation and added to FO. 

The code produced is: 

L REG,X 
MH REG,L*B3*B2 
A REG,FO 
LA R5,A(1,1,1) 
AR REG,R5 

x, Y, and Z = ~tants 

A(X,y,Z)=A(1,1,1)+FO+~!~+~!B3!X+L*B3!~~*X 

The underlined expressions are 
computed during compilation and 
added to FO. 

The code produced is: 

LA 
A 

REG,A (1,1,1:) 
REG,FO' 

DESCRIPTION OF ROUTINES 

rhe text input string is read into the 3 
consecutive input buffers IBU1, IBU2, and 
IBU3. The array table has a maximum length 
of 384 bytes and is read into the area 
IBU1-384. The format label table has a 
maximum length of 256 bytes and is read 
into the area following the input buffer 
IBU3. The main routine (see general flow 
chart J~ controls the scan of the input 
string and calls the corresponding process­
ing routine. The following symbols are 
used in the individual routines: 

IBU1, 2, 3 
OBU1, 2 
INPT 
OPT 

208 

Input buffers 1, 2, 3 
Output buffers 1, 2 
Input pointer 
Output pointer 

IREC 

OREC 

ONSWlr 

EOS 
BUFFL 
SLENG 
SAVRO, T 
COLE 
ADBL 
TRBYT 

STABL 

FDCO 

AMAK 
MHMAK 

INIT1 -- JB --------

Switch indicating the number 
of records to be read 
Switch indicating the number 
of records to be put out 
Switch which is set to one if 
phase D17 must be called 
End of statement 
Buffer length 
Skippable length 
Save buffers for registers 
Constant length 
Pointer to array name 
1-byte entry used to hold 
type of subscripted Variable 
Contains frame for X'E9' 
operand 
Contains frame for X'FD' 
operand 
Add macro 
Multiply-halfword macro 

The routine tests for arrays or format 
labels in the current compilation. If an 
array or format label is found, the corres­
ponding routine is called in order to read 
in the array table and/or the format label 
table. The addresses for the 3 input buf­
fers and the 2 output buffers are computed 
and the input and output pointers are set 
to their initial values. 

Input: INPT points to an EO-key. 

The routine resets the error switch 
ERRSW and clears the error stack ERROSTK. 
The begin of statement (6 bytes) is put out 
and the input pointer is adjusted. 

EAACT -- JD 

Input: The input pointer INPT points to an 
EA-key. 

The key EA indicates the end of state­
ment. If the error switch ERRSW is not 
zero, a bit is set to indicate that execu­
tion is to be deleted, and both the end-of­
statement and the error stack ERROST are 
put out. Otherwise, only the end of state­
ment is put out. 

The error message marked by the EB-key is 
put out and the input pointer is increased. 

ASKIP -- JF 

This routine is required to move input 
information to the output. It increases 
the input pointer by means of the skip 
routine SKIP. 

c 

c 



PL/I PLM 8 

( 

(-

IBM Confidential 

Input parameter: Reg 0 contains the length 
by which the input pointer is to be 
increased. 

The input pointer is increased by the 
specified length and checked as follows: 

r---------T---------T---------, 
I Bufferl I Buffer2 I Buffer3 I L _________ ~ _________ ~ _________ J 

A A A A 
I I I I 
I I I I 

IBOl 1B02 1803 OBOl 

If the input pointer points to one of 
the buffers 2 or 3, the buffers 2 or/and 3 
are shifted to the left and the input poin­
ter is updated accordingly. Then, the next 
records are read into the buffers 2 or/and 
3. 

READIN -- JH ---------
Input parameter: IREC (1 by tel indicates 
the number of records to be read into the 
input buffers. 

This subroutine controls the reading of 
the input string into the input buffers. 

MOV31 -- J1 

The subroutine moves the contents of the 
input buffer IBU3 into IB01. 

MOV21 -- JI 

The subroutine shifts the contents of the 
two input buffers by one buffer length to 
the left in the first input buffer. 

The subroutine moves the contents of the 
second output buffer into the first output 
buffer. 

Input parameters: REGO contains the length 
to be moved. REGl contains the address of 
the field to be moved. 

The routine moves the input string or 
the data specified in REGO and REGl into 
the output buffer and transfers control to 
the routine OUT. 

DOT -- JK -----
RO contains the length by which the output 
pointer OPT is to be increased. The rou­
tine updates the output pointer and, if the 
buffer is full, the record is written. 

EOPAC! -- JL 

The input pointer INPT points to the end­
of-program (EOPI key. The routine writes 
the last record onto the work file and 
tests whether or not the next phase 017 is 
to be called. Phase 040 is called if phase 
017 is skipped. 

IJKNN -- JH -------
The routine fetches a name from IJKMVC in 
the communication region and stores it in 
NAME. The name counter is increased by 1 
and restored into the communication region. 
If the name counter becomes greater than 
64K, an error message is generated. 

The routine reads the array table from the 
work file into the area following the 
output buffers. 

FORMT!\B -- JO 

The format label table is read from the 
work file into storage. 

LABELAS -- JP 

The macro instruction is tested for label 
assignment. If it is a label assignment, 
the label operand is tested for format 
label by searching the format label table. 
When the label name is found in the label 
table, the macro instruction is modified to 
a format label macro instruction. 

The subroutine controls the evaluation of 
subscripted variables. It calls the error 
check routines and the routines that gener­
ate the macro instructions. 

INITSOB -- JR ---------
The subroutine initializes the evaluation 
of subscripts. The array number is used to 
find the corresponding entry in the array 
table. (See the description of the input 
string .1 

OIMCHK -- JS --------
oepen~ing on the number of subscripts, the 
routine calls the appropriate routine to 
test the array table entry. 

CHECK~~, 5 -- JT 

The routines test the array table entry. 
If it contains an invalid number of dimen­
sions, the error routine is called. 

Phase PL/I015 209 



PL/I PLM 8 

IBM Confidential 

rRACT5 -- JU ---------
rhe routine calls one of 8 possible actions 
in the case of 3 dimensions (see the sec­
tion ~~al~~!ion of_~ub~criEted Variables) • 

rRACT4 -- JV 

Calls the corresponding action in the case 
of 2 dimensions (see the section Evaluation 
of SubscriEted Variables). 

rRACT3 -- JW 

Calls the corresponding action in the case 
of 1 dimension (see the section Evaluation 
of SubscriEted Variables). 

rests if the subscripts X, Y, and Z are 
constants. 

If X=constant, bit 7 in TRBYT is set to 1. 
If Y=constant, bit 6 in TRBYT is set to 1. 
If Z=constant, bit 5 in TRBYT is set to 1. 

SACT50 -- JY 

Evaluates A(X,Y,Z) where X,Y,Z = variables 
A(X,Y,Z)=A(l,l,l)+FO+L(Z+K(Y+J*X» where 

L length of array element 
K bound 3 of declared array 

A (I, J ,K) 
J = bound 2 of declared array 

A(I,J,K) 
FO = - (CO+Cl+C2) 

where CO = L 
C1 = L * K 
C2 = L * K * J 

S~CT51 -- JZ 

Evaluates A(X,y,Z) where X 
and Z = variables. 

S~CT52 -- JZ --------
Evaluates A(X,Y,Z) where Y 
and Z = variables. 

constant, Y 

constant, Y 

Evaluates A(X,Y,Z) where Z = constant, X 
and Y = variables. 

Evaluates A(X,Y,Z) where X and Y = con­
stants, Z = variable. 

S~CT55 ~ 

Evaluates A(X,Y,Z) where X and Z 
stants, Y = variable. 

210 

con-

SACT56 -- K~ 

Evaluates A(X,Y,Z) where Y and Z 
stants, X = variable. 

SACT57 -- KA 

con-

Evaluates A(X,Y,Z) where X, Y, and Z 
constants. 

The routine puts out the constant specified 
by R4 and moves the internal name of the 
constant into the area MAK87. 

CVFIS2H -- KD 

R4 points to the argument to be converted. 
The routine calls the conversion routine 
and returns the converted constant to R4. 

PMAK87 -- KE 

The routine puts out the constant FO and 
moves its internal name into the area 
MAK87. (For a description of FO see 
SAC 50) • 

The routine generates the macro instrUC­
tions according to the number N in the area 
MAK87. The contents of MAK87 are shown in 
Figure 10. 

MAKS71 F21 fI13c IS71><) N I Esl REG 
6 

VI Al 

IS 

V2 A2 

V3 A3 

42 

54 

Figure 10. Contents of MAK87 

The code produced is: 

1. if N = 0: LA REG,AO 
A REG,FO 

2. if N 1: L REG,V1 LR if V1 register 
MH REG,A1 
A REG,FO 
LA R5,AO 
AR REG,R5 

c 



( 

PL/I PLM 8 

IBM Confidential 

3. if N 2: L REG,V1 LR if V1 register 
MH REG,A1 
A REG,1T2 AR if V2 register 
MH REG,A2 
A REG,FO 
LA R5,AO 
AR REG,R5 

4. if N 3: L REG,1T1 LR if 1T1 register 
MH REG,A1 
A REG,1T2 AR if V2 register 
MH REG,A2 
A REG,1T3 AR if V3 register 
MH REG,A3 
A REG,FO 
LA R5,AO 
AR REG,R5 

Evaluates A (X,Y) where X and Y = variables. 
A(X,~=A(1,1) +FO+L(Y+J*X) 

where: L 
J 

FO 

length of array element 
bound 2 in the declared 
array A (I, J,) 
- (L + L * J) 

Evaluates A (X,Y) where X = constant, 
~ = variable. 
A (X, Y.) =A (1, 1) +FO+L*J*X+L*Y 

L*J*X is computed and added to FO. 

SACT42 -- KG 

Evaluates A(X,y) where Y = constant, 
X = variable. 
A(X,Y)=A(1,1)+FO+L*~+L*J*X 

L * Y is computed during compilation and 
added to FO. 

(-

Evaluates A(X,Y) where X and Y = constants. 
A (X,Y,) =A(1,1) +FO+L*J*X+L*X 

L * J * X and L * Yare computed during 
compilation and added to FO. 

LJX -- KH 

computes L * K * X and adds the result to 
FO. (For a description of L, K, X and FO 
see SACT40) • 

computes L * Y and adds the result to FO. 

SACT30 -- KI 

Evaluates A(X) where X variable. 

A (X) 
L 
FO 

= A(1) + FO + L * X where 
= length of array element 

-L 

SACT31 KI --------
Evaluates A (X) where X = constant. 
A(~ = A(1) + FO + L * X 

L * X is computed during compilation and 
added to FO. 

FISCH KJ KL - KO 

The routine converts constants from their 
intermediate representation to binary inte­
ger. The input parameter PIN contains the 
address of the constant entry that contains 
the constant to be converted. Output par­
ameter PIN remains unchanged. The result 
is stored in CONS (4 bytes). 

Phase PL/ID15 211 



PL/I PLM 8 

IBM Confidential 

PHASE PL/ID17 lbIBRARY CALLS FOR BUILT-IN FUNCTIONS IL -- LA ~ 

The function of this phase is to generate 
macro instructions for the linkage required 
to call the library built-in functions. 
However, in some cases, the fUnctions are 
evaluated in line, i.e., not via the 
library. If the compilation contains no 
built-in functions, this phase is skipped. 

The text string may contain information 
marked by E or F keys. The formats of the 
various types of information are shown 
below. The E or F key is always contained 
in the first byte of the particular string 
of information. 

1. Begin of statement (six bytes): EO 

2. End of statement (six bytes) : EA 
Last byte contains statement number 

3. Error information (two bytes): EB 

4. Information string containing a library 
built-in function indicated by an FC 
key and X'13' in byte 4. The format of 
the string is as follows: 

byte a X'FC' 
bytes 1-2 skippable length 
byte 3 number of arguments 

including target 
byte 4 X' 13' 
byte 5 internal name 
bytes 6-12 not used 

The arguments may be constants, varia­
bles, or registers. Variables and 
registers appear in the following form: 

byte 
bytes 
bytes 
bytes 
byte 
byte 
bytes 

a 
1-2 
3-4 
5-6 

7 
8-9 

10-12 

E-key 
internal name 
modifier 
attributes 
length at obj.ect time 
precision (P, Q) 
not used 

Constants are marked by an E9-key and 
contain the following additional infor­
mation: 

bytes 
bytes 
bytes 
bytes 

0-1 
2-7 
8-9 

10-22 

internal name 
attributes 
length of constant 
intermediate form of 
constant (left-aligned) 

5. End-of-program key (FFFF). 

Note: F-keys other than FC (indicating 

212 

a library built-in function) and FF 
(end of program) are skipped. 

All information marked by E and F keys 
(except FC) is written out unchanged. When 

a statement is marked by an FC key, the 
routine determines the library function and 
either generates an appropriate internal 
macro instruction or causes (1) the infor­
mation to be written out unchanged and (2) 
phase 020 to be called. Which of the 
actions is performed is determined by the 
type of library function involved. If the 
input text does not contain functions that 
are to be processed by phase D20, that 
phase is skipped and phase 040 is called. 
The internal macros that may be generated 
during this phase are listed below. In 
addition, the format of the information 
string written out by this phase and the 
cal·ling sequence generated are shown for 
each of the possible macros. 

Internal macros are identified by an F2 
key in the first byte and a macro identifi­
cation in the fourth. The second and third 
bytes indicate the skippable length. 

1. LIBRARY CALL: 

r----T----T----T----T----T----' 
I F2 100071 BA I E9 I 00 I LIBI L ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J 

Calling sequence: 
L 15,LIB-name 
BI\LR 14,15 

2. 01: 

r--~-T----T----T---------T----' 

I F2 1000BI B6 I OP1 I M I L ____ ~ ____ ~ ____ ~ _________ ~ ____ J 

Calling sequence: 
01 P01,M 

3. MV1: 

r----T----T----T---------T----' 
I F2 1000BI A5 I OP1 I M I L ____ ~ ____ ~ ____ ~ _________ ~ ____ J 

Calling sequence: 
MV1 OP1,M 

4. MOVE MAK9E: 

r----T----T----T--------T--------T----' 
I F2 1001 1 1 9E I OP1 I OP2 I L I L ____ ~ ____ ~ ____ ~ ________ ~ ________ ~ ____ J 

o 

c 



( 

( 

PL/I PLM 8 

IBM Confidential 

Calling sequence: 

MITC OP1 (L), OP2 

5. MOVE MAK86: 

r----T----T----T-----T-----T----T----' 
1 F2 100121 86 1 OP1 1 OP2 I L1 I L2 I l ____ ~ ____ ~ ____ ~ _____ ~ _____ ~ ____ ~ ____ J 

Calling sequence: 

a. if L1 ~ L2: 
MVC OP1 (L1) ,OP2 

b. if L1 > L2: 
MVI OP1,X'40' 
MVC OP1+1 (L1-1) ,OP-1 
MVC OP 1 (L2) ,OP2 

6. MOVE ADDRESS MAKO: 

r----T----T----T---------T---------, 
I F2 10010195 I OP1 I OP2 I l ____ ~ ____ ~ ____ ~ _________ ~ _________ J 

Calling sequence: 

a. if OP1 = register 
LA OP1, OP2 

b. if OP1 = storage 
LA 5,OP2 
ST 5,OP1 

7. SUBSTR MAK88: 

r----T----T----T---------T---------, 
I F2 100101 88 I OP1 I OP2 I l ____ ~ ____ ~ ____ ~ _________ ~ _________ J 

calling sequence: 

LA. 5,OP1 
A 5,OP2 (or AR 5,OP2) 
BCTR 5,0 

BUILT-IN FUNCTIONS PROCESSED 

The table shown in Figure 1 is a listing of 
all built-in fUnctions processed by this 
phase. In addition, this table shows the 
names of the modules called for the built­
in function at object time, the internal 
representation generated for the built-in 
function, and the type of linkage used to 
transfer control to the appropriate module. 

r-------------------------------------------T--------T---------------T----------, 
I Built-in Function I Module I Internal Name I Link Typel 
I I Name t-------T-------~ I 
1 I I Dec I Hex I I 
r-------------------------------------------t--------t-------t-------t----------~ 

TIME I STMM 80 I 50 S I 
DATE I SDTM 81 I 51 S I 
SQUARE ROOT (SHORr) I QQSM 84 I 54 A I 
SQUARE ROOT (LONG) I QQLM 85 I 55 A I 
EXP (SnORr) I QASM 86 56 A I 
EXP (LONG) I QALM 87 57 A I 
LOG (SHORr) I QLSA 88 58 A I 
LOG (LONG) I QLLA 89 59 A I 
LOG2 -(SHORr) I QLSC 90 5A A I 
LOG2 (LONG) I QLLC 91 5B A I 
LOG 10 (SHORr) t QLSB 92 5C A I 
LOG10 (LONG) QLLB 93 5D A I 
SINE (SHORr) QSSD 94 5E A I 
SINE (LONG) QSLD 95 5F A I 
SINE-DEGREE (SHORr) QSSC 96 60 A I 
SINE-DEGREE (LONG) QSLC 97 61 A I 
COSINE (SHORr) QSSB 98 62 A I 
COSINE (LONG) QSLB 99 63 A I 
COSINE-DEGREE (SHORr) QSSA 100 64 A I 
COSINE-DEGREE (LONG) QSLA 101 65 A I 
TAN (SHORr) QTSB 102 66 A I 
TAN (LONG) QTLB 103 67 A I 
TAN-DEGREE (SHORr) QTSA 104 68 A I 
rAN-DEGREE (LON~ QTLA 105 69 A I 
SINH (SHORT) QCSA 106 6A A I 
SINH (LONG) QCLA 107 6B A I 
COSH (SHORr) QCSB 108 6C A I 
COSH (LONG) QCLB 109 6D A I 
TANH (SHORT) QDSA I 110 6E I A I ___________________________________________ ~ _______ ~~ _______ ~ _______ ~ __________ J 

Figure 1. Table of Built-in Functions during Phase D17 (Part 1 of 2) 

Phase PL/ID17 213 



PL/I PLM 8 

IBM Confidential 

r-------------------------------------------T--------T-------T-------T----------, 
I TANH (LONG! QDLA 111 6F I A I 
I ATANH (SHORT) QBSA 112 70 A I 
I ATANH (LONG! QBLA 113 71 A I 
I ERF (SHORT) QRSB 114 72 A I 
I ERF (LONG! QRLB 115 73 A I 

ERFC (SHORT) QRSA 116 74 A I 
ERFC (LONG) QRLA 117 75 A I 
ATAN (SHORT) QNSD 118 76 A I 
ATAN (LONG! QNLD 119 77 A 
ATAN-DEGREE (SHORT) QNSC 120 78 A 
ATAN-DEGREE (LON~ QNLC 121 79 A 
ATAN- (X/Y) {SHORT) QNSB 122 7A B 
ATAN- (X/Y) (LONG) QNLB 123 7B B 
ATAN-DEGREE (X/Y) (SHORT) QNSA 124 7C B 
ATAN- DEGREE (X/Y) (LONGI QNLA 125 7D B 
REPEAT BIT RBRB 126 7E C 
BIT CONCATENATION RBKA 127 7F D 
INDEX BIT RBIM 128 80 D 
INDEX CHARACTER RGIM 129 81 D 
BOOL RBBM 132 84 E 
REPEAT CHARACTER RGKM 133 85 D 
MAX. (FLOAT SHORT) RMSX 134 86 F 
MAX. (FLOAT LONG) RMLX 135 87 F 
MAX. (BIN FIXED) RMBX 136 88 F 
MAX. (DEC FIXED) RMPX 137 89 F 
MIN. (FLOAT SHORT) RMSN 138 8A F 
MIN. (FLOAr LONG) RMLN 139 8E F 
MIN. (BIN FIXED) RMPN 140 8C F 
MIN. (DEC FIXED) RMPN 141 8D F 
SUBSTR BIT (RIGHr) 142 8E H 
SUBSTR CHAR (RIGHr) 143 8F in-line 
SUBSTR BIT (LEFTI 144 90 H 
SUBSTR CHAR (LEFTI 145 91 in-line 
EXP (FLOAr SHORT + INTEGER) RESM 146 92 I 
EXP (FLOAT LONG + INTEGER) RELM 147 93 t I 
EXP (DEC + INTEGER) REPM 148 94 I J 
EXP ~IN FIX + INTEGE~ REBM 149 95 I K 
EXP (GENERAL SHORT) RXSA 150 96 I L 
EXP (GENERAL LONG) RXLM 151 97 I L 
HIGH 178 B2 I in-line 
LOW 179 B3 I in-line 
ADDRESS 184 B8 I in-line 
DYNDUMP SDMP 194 C2 I M 
FLOOR (FLOAr SHORT) RTSM 200 C8 I A 
FLOOR (FLOAT LONG) RTLM 201 C9 I A 
FLOOR (BIN FIXEDt RTBM 202 CA I N 
FLOOR (DEC FIXED) RTPM 203 CB I 0 
CEIL (FLOAr SHORT) RVSM 204 CC I A 
CEIL (FLOAr LONG) RVLM 205 CD I A 
CEIL (BIN FIXED) RVBM 206 CE I N 
CEIL (DEC FIXED) RVPM 207 CF I 0 
MOD (FLOAT SHORT) RSSM 208 DO I B 
MOD (F.LOAr LONG) RSLM 209 D1 I B 
MOD (BIN FIXED) RSBM 210 D2 I P 
MOD (DEC FIXED) RSPM 211 D3 I Q 
ROUND (FLOAT SHORT) RUSM 212 D4 I in-line 
ROUND (FLOAr LONG) RULM 213 D5 I in-line 
ROUND (BIN FIXED) RUBM 214 D6 I R 
ROUND {DEC FIXED) RUPM 215 D7 I R 
TRUNC (FLOAT SHORT) RWSM 216 D8 I A 
TRUNC (FLOAr LONG) RWLM 217 D9 I A 
TRUNC (BIN FIXED) RWBM 218 DA I N 
TRUNC (DEC FIXED) RWPM 219 DB I 0 

-------------------------------------------~--------~-------~-------~---------- c 
Figure 1. Table of Built-in Functions Processed during Phase D17 (Part 2 of 2) 

214 



( 

( 

PL/I PLM 8 

IBM Confidential 

The various types of linkages are 
described below. 

~:hnkage Type A 

R1 contains the address of a parameter 
block (PBL) as shown below. 

r-----------------------------------------l 
I Address of Source I 
~-----------------------------------------~ 
I Address of Target I L _________________________________________ J 

The compiler generates one of four pos­
sible variations of a coding sequence. 
Which of the four variations is generated 
is determined by the type of storage 
(static or dynamic) that contains the 
source and target data: 

1. If both SOURCE and TARGET are STATIC, 

2. 

the compiler generates: 

PBL 

LA R1,PBL 
L R15,LIB 
BALR R14,R15 

DC 
DC 

A (SOURCE) 
A (TARGET) 

If only SOURCE is STArIC, 
generates: 

PBL 

LA 
LA 
ST 
L 
BALR 

DC 
DC 

R1, PBL 
R5,TARGEr 
R5,PBL+4 
R 15 ,LIB 
R14,R15 

A (SOURCE) 
XL4'O' 

the compiler 

3. If only TARGET is STArIC, the compiler 
generates: 

PBL 

LA R1,PBL 
LA R5,SOURCE 
ST R5,PBL 
L R15,LIB 
BALR R14,R15 

DC 
DC 

XL4'O' 
A (TARGET) 

4. If neither SOURCE nor TARGET is STATIC, 
the compiler generates: 

LA R1,GWS 
LA R5,SOURCE 
ST R5,GWS 
LA R5,TARGET 
ST R5,GWS+4 
L R15,LIB 
BALR R14,R15 

where GWS = general working storage in 
the outermost block. 

R1 contains the address of a parameter 
block (PBL) as shown below. 

r-----------------------------------------l 
I Address of X I 
~-----------------------------------------~ 
I Address of Y I 
~-----------------------------------------~ 
I Address of Target I L _________________________________________ J 

The compiler generates a coding sequence 
as determined by the type of storage 
(static or dynamic) that contains the argu­

ments X and Y and the target data. The 
process of generating the coding sequence 
is as for type-A linkages. 

Linkaqe T~ 
R1 contains the address of a parameter 
block (PBL) as shown below. 

r----T------------------------------------l 
I L I Address of Bit String I 

~----+------------------------------------~ 
I N I Address of Target I 

L ____ ~ ______ ------------------------------J 
where L = length of bit string and 

N = repetition factor. 

The compiler generates a coding sequence 
as determined by the type of storage 
(static or dynamic) that contains the bit 
string and the target. The process of 
generating the coding sequence is as for 
type-A linkages. However, Land N must be 
inserted into the PBL before control is 
transferred. This is ensured by two MVI 
instructions as shown in the example below, 
which is a sequence for both bit string and 
target data in STATIC storage: 

PBL 

LA 
MVI 
MVI 
L 
BALR 

R1, PBL 
PBL,L 
PBL+4,N 
R 15, LIB-name 
R14,R15 

DC A (BITSTRING) 
DC A (TARGET) 

Linka3".e Type D 

R1 points to a parameter block (PBL) as 
shown below. 

r----T------------------------------------l 
I L1 I Address of String1 I 

~----+------------------------------------~ 
I L2 I Address of String2 I 
~----~------------------------------------~ 
I Address of Target I L _________________________________________ J 

where L1 = length of string 1 
L2 = length of string 2 

Phase PL/IDl7 215 



PL/I PLM 8 

IBM Confidential 

The compiler generates a coding 
sequence. The process of generating the 
coding sequence follows the same rules that 
apply to type-~ linkages. L1 and L2 must 
be inserted into the PBL before control is 
transferred. rhis is accomplished by MVI 
instructions as are used to the insert L 
and N into PBL for a type-C linkage. 

R1 points to a parameter block (PBLI as 
shown below. 

r----T------------------------------------l 
I L1 I ~ddress of String1 I 
~----t------------------------------------~ 
I L2 I ~ddress of String2 I 
~----~------------------------------------~ 
I ~ddress of Mask I 
~----T------------------------------------~ 
I L I ~ddress of Target I L ____ ~ ____________________________________ J 

where L1 = length of string 1 (1=1,21 
L = max (L1,L21 

The compiler generates a coding 
sequence. The process of generating the 
coding sequence follows the same rules that 
apply to type-~ linkages. L1, L2, and L 
must be inserted into the PBL before con­
trol is transferred. rhis is accomplished 
by MVI instructions as are used to the 
insert Land N into the PBL for a type-C 
linkage. 

R1 points to a parameter block (PBLI as 
shown below. 

r-----------------------------------~-----l 
I Address of O~erand1 I 
~-----------------------------------------~ 
I ~ddress of DED{Operand11 * I 
~-----------------------------------------~ 
I ~ddress of O~erandn I 
~-----------------------------------------~ 
I ~ddress of DED (Operandn)* I 
~-----------------------------------------~ 
I ~ddress of Target I 
~-------T---------------------------------~ 
I X'8Q' I Address of DED(Target) * I L _______ ~ _________________________________ J 

* The format of DEDs is shown under 1i~kage 
!~-~ 

If all operands and the T~RGET data are 
in ST~TIC storage, the compiler generates: 

216 

LA 
MVI 
L 
BALR 

R1,PBL 
PBL+8n,X'80' 
R15,LIBN~ME 
R14,R15 

PBL DC A (OPERAND 1) 
DC A (DED1) 

DC ~ (OPER~NDn) 

DC ~ (DEDn) 
DC A (T~RGET) 
DC A (DED OF T~RGET) 

For each operand in DYNAMIC storage, the 
address is determined by means of code and 
stored in PBL as shown: 

L~ 

ST 
R5,OPEAANDi 
R5,PBL+4 (i-1) 

where i = operand identification. 

Linkage T~ 

R1 contains the address 
R2 contains the address 
R3 contains the address 
R4 contains the address 

* Format of the OED: 

r----T ----T----l 
I 25 I J I I I L ____ ~ ____ ~ ____ J 

where J = length, 
I = offset. 

The compiler generates: 

of 
of 
of 
of 

L~ 

L~ 

LA 
LA 
L 
BALR 

R 1, SOURCE 
R2,SOURCE DED 
R3,TARGET 
R4,TARGET DED 
R15,LIBname 
R14,R15 

Link~3:~~!. 

R1 contains the address of 
R2 contains the address of 
R3 contains the address of 

The compiler generates: 

LA R1,X 
LA R2,N 
LA RQ,T~RGET 

L R15,LIBname 
BALR R14,R15 

Linka3:e TYEe J 

R1 contains the address of 
R2 contains the address of 
R3 contains the address of 
R4 contains the address of 
R5 contains the address of 

SOURCE. 
OURCE DEO.* 
T~RGET. 

T~RGET DEO.* 

argument X. 
exponent N. 
T~RGET. 

argument X. 
DED (X) • 
exponent N. 
TARGET. 
TARGET DED. 

C 

c 



( 

( 

PL/I PU1 8 

IBM Confidential 

The DEDs have the following format: 

1. FIXED BINARY: 

r----T----T-------, 
I 0 I P I Q+ 1 2 8 I L ____ ~ ____ ~ _______ J 

2. DECIMAL FIXED: 

r----T----T-------, 
I 8 I P I Q+ 1 28 I L ____ ~ ____ ~ _______ J 

3. FLOAT: 

r----T----' 
I 4 I P I L ____ ~ ____ J 

The format used for the generation of 
DEDs is determined by the type of data to 
be described. The compiler generates: 

LA 
LA 
LA 
LA 
LA 
L 
BALR 

R1,X 
R2 ,DED (XI 
R3,N 
R4,TARGET 
R5,TARGET DED 
R15,LIBname 
R14,R15 

R1 contains the address of argument X 
R3 contains the address of exponent N 
R4 contains the address of TARGET 

The compiler generates: 

LA R1,X 
LA R3,N 
LA R4,TARGET 
L R15,LIBname 
BALR R14,R15 

~!.gkagg~e L 

R1 contains the address of exponent 'l 
R2 contains the address of argument X 
R3 contains the address of TARGET 

rhe compiler generates: 

LA R1,Y 
LA R3,X 
LA R3,TARGET 
L R15,LIBname 
BALR R14,R15 

~!.gkage~e M 

RO points to a parameter block (PBL11 as 
follows: 

r----T----T- -T----T---------, 
I L1 I L2 I I Ln I X I FFFF I I 
L ____ ~ ____ ~_ _~ ____ ~ _________ J 

R1 points to an address block (PBL2) as 
follows: 

r-----------------------------------------, 
I Address of Argument 1 I 
~-----------------------------------------~ I Address of Argument 2 1 
~-----------------------------------------~ 
I Address of Argument n I L _________________________________________ J 

The compiler generates: 

LA 
LA 
L 
BALR 

R,PBL1 
R1,PBL2 
R15,LIBname 
R14,R15 

R1 contains the address of a parameter 
block (PBL) as shown below: 

r-------T---------------------------------, 
I Q+128 I Address of Argument X I 
~-------~---------------------------------~ 
I Address of Target I L _________________________________________ J 

The compiler generates a coding 
sequence. The process of generating the 
coding sequence follows the same rules that 
apply to type-A linkages. The value of 
Q+128 must be inserted into the PBL before 
control is transferred. This is accom­
plished by an MVI instruction (refer to 
Linkale T~f.. 

R1 points to a parameter block (PBLI as 
shown below. 

r-----------------------------------------, 
I Address of Source I 
~-----------------------------------------~ 
I Address of Target I 
~-----------------------------------------~ 
I Address of DED* I L _________________________________________ J 

* Format of the DED: 

r-------------T-------T-------------, 
I P of Source I Q+128 I P of Target I 
L _____________ ~ _____ ~-~-------------J 

The compiler generates a coding 
sequence. The process of generating the 
coding sequence follows the same rules that 
apply to type-A linkages. 

Phase PL/IDl7 217 



PL/I PLM 8 

IBM Confidential 

!!;hnkage Type P 

R1 contains the address of a parameter 
block (PBL) as shown below: 

r--------T--------------------------------, 
I Q1+128 I Address of Argument X I 
~--------+--------------------------------~ 
I Q2+128 I Address of ~rgument Y I 
~--------~-----------------~--------------~ 
I Address of Target I l _________________________________________ J 

The compiler generates a coding 
sequence. The process of generating the 
coding sequence follows the same rules that 
apply to type-A linkages. The value of 
Q+128 must be inserted into the PBL before 
control is transferred. rhis is accom­
plished by MVI instructions as are used to 
the insert Land N into the PBL for type-C 
linkages. 

R1 contains the address of a parameter 
block (PBL} as shown below. 

r-----------------------------------------, 
I Address of X I 
~-----------------------------------------~ 
I Address of Y I 
~-----------------------------------------~ 
I Address of Target I 
~-----------------------------------------~ 
I Address of OED * I l _________________________________________ J 

*Format of the OED: 

r--------T--------------T--------,---
I P of X I ~ of X} +128 I P of Y I l ________ ~ ______________ ~ ________ J __ _ 

---r--------------T--------------, 
I (Q of Y}+128 I P of rarget I ___ l ______________ ~ ______________ J 

The compiler generates a coding 
sequence. The process of generating the 
coding sequence follows the same rules that 
apply to type-A linkages. 

R1 contains the address of a parameter 
block (PBL) as shown below. 

r-----------------------------------------, 
I Address of X I 
~-----------------------------------------~ 
I Address of Target I 
~-----------------------------------------~ 
I Address of DED * I l _________________________________________ J 

218 

* Format of the OED: 

r----T-------T----' 
I P I Q+128 I N I l ____ ~ _______ ~ ____ J 

The compiler generates a coding 
sequence. The process of generating the 
coding sequence follows the same principle 
rules that apply to type-A linkages. 

R1 contains the address of TARGET. 
compiler generates: 

LA 
L 
BALR 

R1,TARGET 
R15,LIBname 
R14,R1S 

IN-LINE FUNCTIONS 

The 

This section describes the operations per­
formed on built-in functions that are gen­
erated in-line. 

Substring Built-in Function 

A substring function may appear in either 
of the following two formats: 

1. X = SUBSTR (CS, I, J) 

2. SOBSTR (CS, I, J) = X 

If the function appears in the first of 
the two formats, the compiler generates: 

LA 
A 
BCTR 
MVC 

R5,CS 
RS,I 
RS,1 
X (J) ,0 (RS) 

otherwise,. the compiler generates: 

LA 
A 
BCTR 
MVC 

R5,CS 
R5,I 
RS,O 
O(J,R5),X 

However, if J exceeds the length of X, 
the compiler generates the following three 
instructions for the MVC instruction in the 
above sequences: 

MVI 
MVC 
MVC 

o (RS) ,X'40' 
1 (J-1 ,R5) ,0 (R5) 
o (L,R5) , X 

where L = length of X. 

The following condition is tested for 
during compile time: 

1 ::; J ::; K 

where K = length of CS. In case of an 
error, J is replaced by K. 

c 

c 



( 

(' 

PL/I PU!l 8 

IBM Confidential 

Code generated for T = HIGH (X) 
or T = LOW (X) is: 

1. If X either MVI TARGET, X' FF' 
or MVI TARGET,X'OO' 

2. If X t- 1 either MVI TARGET,X'FF' 
or MVI TARGET,X'OO' 

and MVC TARGET+ 1 (LT-l) , 
TARGET 

where LT = length of target 

If argument X is FLOAT, the compiler gener­
ates: 

MVC 
01 

where L 
LI 

TARGET(L) ,SOURCE 
TARGET+LI, x: , 01 , 

length of source 

LI = 
3 if short floating point 
7 if long floating point. 

~QQR(XL Built-in Function 

For the address function, ~he compiler 
generates the macro instruction MOVE 
ADDRESS. This is described in the section 
~Qas~lnpui_~~~-2~iE~i· 

DESCRIPTION OF ROUTINES 

Three input buffers are available to read 
the input text string. Two output buffers 
are used to write out the output informa­
tion. 

The text string is scanned and the 
information is written out unchanged as 
long as no E or F keys are encountered. 
When an FC key is encountered, the 
appropriate Macro-Generation routine is 
called. 

The saving and restoring the link reg­
ister on entering and leaving nested sub­
routines is done by a save and a return 
routine. The various routines of this 
phase are described in the following. 

~lmbols used in flow charts: 

EOP 
IBUl 
IBU2 
IBU3 
INPT­
OBUl 
OB02 
OBU3 
OPT 
EDS 
SLENG 
IREC 

End of program 
Text input buffers 

Input pointer 
Text output buffers 

Output pointer 
End-of-statement key 
Skippable length 
Number of input records desired 

OREC 
ADBL 

Number of output records desired 
Stack containing pointers to argu­
ments 

GWS8 Internal name of general working 
storage 

tvlAKO 
ADCO 
DED 
LIBC 

Move-Address macro instruction 
Contains address for address macro 
Data element descriptor 
Library call macro 

D17 -- LA -------
This is the main routine. It controls the 
input, the output, and the processing of 
the text string. The various E- and F-keys 
are translated and the appropriate subrou­
tines are called. 

INITl -- LB -------
This routine determines the addresses of 
the three input buffers IBU1, IBU2, and 
IBU3 and the two output buffers OBUl and 
OBU2. The input pointer (INPT) and the 
output pointer (OPT) are set to their ini­
tial values. 

EOACT -- LC --------
Input parameter: INPT points to an EO-key. 

The routine resets the error switch ERRSW 
and clears the error stack ERROSTK. The 
begin statement is written out and INPT is 
updated. In addition, the error counter 
ERRCT (set to indicate previously detected 
errors) is set to zero. 

EAACT -- LD --------
Input parameter: INPT pOints to an EA-key. 

An EA key indicates the end of the current­
ly processed statement. If the error 
switch ERRSW is not 0, a bit is set to 
indicate that (1) execution is to be sup­
pressed and (2) the end of the statement 
and the error stack ERROSTK are to be writ­
ten out. Otherwise, only the end of state­
ment is written out. 

EBACT -- LE 

The error message marked by an EB key is 
written out and INPT is increased. 

ASKI~L SKIPF7, INCRE LF 

This routine is used to move input informa­
tion to the output area. The routine uses 
the routine SKIP to increase the constants 
of INPT. 

SKIP -- LG 

Input parameter: 
Register 0 contains the length by which 
the input pointer INPT is to be increased. 

Phase PL/ID17 219 



PL/I PLM 8 

IBM Confidential 

INPT is increased by the specified 
length and checked to determine which of 
the buffers (1, 2, and 3) INPT points to. 
If INPT points to buffer 2 or 3, buffers 2 
and/or 3 are shifted to the left and INPT 
is updated accordingly. rhe following 
records are read into buffers 2 and/or 3. 

READIN -- LH 

Input parameter: 
IREC (1 byte) indicates the number of 
records to be read into the input buffers. 

'rhis routine controls the reading of the 
input string into the input buffers. 

Routine MOV31 moves the contents of input 
buffer IBU3 into IBU1. Routine MOV21 
shifts the contents of input buffers 2 and 
3 to the left by one buffer length. Rou­
tine MOV021 moves the contents of the sec­
ond output buffer into the first output 
buffer. 

MOVOUT -- LJ 

Input parameters: 
REGO contains the length of the data to be 
moved; 
REG1 contains the address of the area that 
contains the data to be moved. 

The routine moves the input string or 
data as determined by registers REGO and 
REG1 into the output buffer. Control is 
then transferred to the OOT routine. 

OUT -- LK 

Input parameter: 
RO contains the value by which OPT is to be 
increased. 

The routine updates OPT and, if the buffer 
is fUll, writes a record. 

EOPACT -- LL ---------
Input parameter: 
INPT points to the end-of-program key 
(EOP) • 

The routine causes the last record to be 
written on TXTOUT and determines whether or 
not the next phase (D20) is to be called. 
If phase D20 is not to be called, phase D40 
is called. 

IJKMNN -- LM ---------
rhis routine fetches a name from the com­
munication region IJKMVC and stores this 
name in NAME. The name counter is 
increased by 1. If the value in the name 
counter exceeds 64K, an error message is 

220 

passed oni otherwise, the name counter is 
restored. 

INTREST LN 

When an FC-key is found. the main routine 
calls the appropriate macro generation 
routine. A translate table is used to 
determine the proper macro generation rou­
tine. 

Before the selected routine is entered, 
the number of arguments is checked. If an 
improper number of arguments is provided, 
control is returned to the main program. 

~~~3, N4, N6 -- LO 

The routine checks the number of arguments
specified by the user. In case of an
error, the error routine SETERR is called.

SETERR -- LP

This routine moves the error message into
the error stack and increases the error
pointer ERRSW.

FUNCT~ -- LQ

This routine generates the parameter block
for the linkage. An internal macro is
generated to load the address of the param­
eter block into register 1.

If all arguments are in automatic stor­
age, the parameter block is generated in
the general working storage of the outer­
most block. Otherwise, the parameter block
is generated in static storage.

If the parameter block is generated in
the general working storage of the outer­
most block, an address is calculated and
inserted for each parameter in the paramet­
er block during object time. If the param­
eter block is generated in static storage,
an address constant is generated for each
of the parameters.

Abbreviations used in the flow chart:
ADBL = Stack containing the pointers to

the arguments.
GWS8 Internal name of general working

storage.
MAKO Move-Address macro instruction.

See the description of macro
instructions in the section
Phase Input and Output.

REPROUN LR

REPROUN is a secondary entry point of the
FUNCT~ routine. It exchanges the pointers
to the arguments in block ADBL to permit
the linkages for the REPEAT and ROUND fUnc­
tions to be handled in the same way as for
other fUnctions.

c

(

PL/I PLM 8

IBM Confidential

ARGADR -- LS

When this routine is entered, INPT points
to the FC-key of a function. The routine
scans the function and stores the pointers
to the arguments in reverse order of their
appearance in block ADBL. In addition, the
arguments are checked to determine if they
are in static storage.

GENADCO -- LT

Input parameter:
R5 points to the argument.

The routine generates an address con­
stant and moves it into the output buffer.
rhe address constant has the following
format:

(1) (2) (2) (1) (2) (2) (2)
r----T----T-----T---T----T----T-----'
I I lInt. I I IInt·1 I
I FD 1000CIName 160 100041 NameiModi f i L ____ i ____ i _____ i ___ i ____ i __ ~_i _____ J

Bytes 8 through 12 are the name and the
mOdifier of the argument for which the
address constant is to be generated. Bytes
3 and 4 contain the name of the parameter
block if it is the argument in the block;
otherwise, these bytes contain O.

GENCO -- LU

Input parameter:
R5 points to the argument.

The routine generates a 4-byte constant
which is not optimizable. If it is the
first constant in the parameter block, the
name of the constant is obtained from the
name counter in the communication region.
Otherwise, the name field of the constant
is set to O.

PMAKO -- LV

rhis routine writes out the internal macro
MAKO. For the format and the calling
sequence of this macro refer to the section
~hase Input and Output.

POCO -- LV

Input parameter:
R4 contains the address of a 34-byte entry
for the constant.

If the argument is a constant required
during object time, the skippable length is
calculated and the constant is written out
with an FD-key.

SPECFON -- LW

rhe routine determines if the function
concerned is one without standard linkage.

If so, the routine calls the corresponding
linka~e-generating routine to generate the
additional linkage information.

BOOLF -- LX

For the BOOL function the internal MVI
macros are generated in addition to the
standard linkage i'n order to store the
lengths of strings in the parameter block.
See the description of type-E linkages in
the section Built-in Functions Processed.

MAMIFI Routine -- LY

The function key is tested to determine if
it is for a MAX or a MIN function. If it
is a function key for a MAX or a MIN fUnc­
tion, the DEDs for the arguments are gener­
ated and the address constants for the DEDs
are passed on.

INCHARF -- LZ

This routine generates internal MVI macros
and stores the lengths of arguments in the
parameter block for the INDEX and REPEAT
(BIT) functions.

HIGHLOW -- MA

This routine generates the required inter­
nal macros for the functions:

TARG = HIGH (X) and
TARG = LOW (X) •

Code produced is:

1. if X = 1:
MVI TARGET.X'FF' or X'OO'

2.. if X ~ length of target:
MVI TARGET,X'FF' or X'OO'
MVC TARGET+l (LT-l) ,TARGET

3. if 1 < X < length of target:
MVI TARGET, X' 40'
MVC TARGET+l (LT-l) ,TARGET
MVI TARGET,X'FF' or X'OO'
MVC TARGET+ 1 (X-l) , TARGET

ADDRF -- MB

This routine generates an internal Move
Address macro for the address function.
For the code produced, refer to the des­
cription of the MOVE ADDRESS MAKO macro in
the section Phase Input and Output.

This routine generates internal MVI macros
that store the scale factor in the first
byte of each of the addresses in the param­
eter block. Refer to the description of
type-Q linkages in the section Built-in
Functions Processed.

Phase PL/IDl7 221

PL/I PLM 8

IBM Confidential

FLCEILF -- NB

This routine generates an internal MVI
macro that stores the scale factor Q+128 in
the first byte of the source address.
Refer to the description of type-N linkages
in the section Built-in Functions Proc­
~ssed.

FLCLDF -- NC

This routine generates the DED (Data Ele­
ment Descriptor) for a function that
requires a type-O linkage. Refer to the
description of type-O linkages in the sec­
tion Built-in Functions Processed.

GENDEDI\D -- ND

Input parameter:
NI\ME (two bytes) contains the name of the
DED.

rhe routine generates an address constant
for the DED.

MODDF -- NE

This routine generates the DED for a func­
tion that requires a type-Q linkage. Refer
to the description of type-Q linkages in
the section Built-_in Functions Processed.

This routine generates the DED for a func­
tion that requires a type-R linkage. Refer
to the description of type-R linkages in
the secti~n ~!li:!g-KQnct!on~_proc~ss~Q.

CONVN -- NG

Input parameter:
R4 points to the 34th byte of argument N;
N is converted to a binary integer.

The.routine is entered if the programmer
has specified a decimal integer. This
decimal integer is converted to binary
fixed and stored in N (one byte).

REPE -- NH

rhis routine generates internal MVI macros
for the REPEAT function.

The MVI macros are generated to store,
at object time, the length of the bit
string and the repetition factor N in the
parameter block. Refer to the description
of type-C linkages in the section Built-in
]Unctions Processed.

This routine generates internal Move­
Address macros to properly pass on the
parameters. Refer to the description of

222

type-I linkages in the section Built-in
Functions Progessed.

PARG -- NJ

This routine writes out the internal Move
Address macro and determines whether or not
the argument pointed to by R4 is a
constant. If so, the constant is written
out using the routine PUCO.

EXPOB -- NK

This routine generates the linkage for a
general exponentiation. Refer to the des­
cription of type-J linkages in the section
Built-in Functions P~ocessed.

This routine fetches an internal name for
the DED from the communication region and
generates an internal MOVe-Address macro in
order to pass on the address of the DED.

DEDGEN -- NM

Input parameters:
R4 points to a 12-byte entry;
NAME (two bytes) contains the internal name
to be given to the DED.

The routine generates the DED according
to the type specified in the 12-byte entry
and writes out the DED constant.

DYNDUMP -- NN

This routine generates the linkage for the
DYNDUMP library module. Refer to the des­
cription of type-M linkages in the section
Built-in Functions Processed.

PLENG -- NO

The length of the currently processed argu­
ment is normally fetched from byte 7 of the
entry. If the argument is an array or a
structure, the length is fetched from bytes
10 and 11 and then stored in the length
block LBLOCK.

TIMDAr -- NP

The routine generates (1) an internal LA­
macro to pass on the address of the target
and (2) an internal Library-Call macro for
the functions TIME and/or DI\TE.

FLTRO -- NQ

The routine generates the internal macros
for the ROUND (float) function. Refer to
the description of the ROUND built-in
function for floating point in the section
IN-Line.Functions.

c

(

PL/I PLM 8

IBM Confidential

An internal MAK9E macro is generated to
cause the generation of the MVC instruc­
tion. An 01 macro causes the generation of
the 01 instruction. For formats of the
macros, refer to the section Phase Input
and Output.

LIBCALL -- NR

The routine generates the library macro
instruction for the appropriate built-in
function and calls the BITSET routine.

The routine sets the appropriate bit in the
library bit string of the communication
region.

TSCSIJ -- NT

This routine evaluates: T = SUBSTR (CS, I,J)
where CS = character string.

For the code produced and the format of
the internal SUBSTR MAK88 macro which pro­
duces the MVC instruction to move the
substring to T, refer to the description of
the SUBSTR MAK88 macro in the section Phase
Input and Output. -----

CHECKJK -- NU

The routine determines whether or not the
following requirement for the SUBSTR func­
tion is met: 1 < j < k

If the requirement has not been met, an
error message is produced.

SCSIJT -- NV

This routine evaluates SUBSTR(CS, I, J) =
X. The generated calling sequence is:

LA
A
BCTR

R5,CS
R5,I
R5,O

For the format of the internal macro
MOVE MAK88 which is generated to produce
the MVC instruction(s) that moves X into
the substring area, refer to the descrip­
tion of the MOVE MAK88 macro in the section
Phase Input and Output.

TBSBST -- NW'

This routine evaluates: T SUBSTR(BS, I,
J) and. SUBSTR (BS, I, J) T
where BS = bit string.

For the code produced as a calling
sequence, refer to the description of type­
H linkages in the section Built-in
FUnctions Processed.

TSUBsr -- NX

This routine generates the DED for the
source if T = SUBSTR(BS,I,J)
or for the target if SUBSTR(BS,I,J) = X.

SUBSTr -- NY

The routine generates the DED for the tar­
get if T = SUBSTR (BS I I, J)
or for the source if SUBSTR(BS,I,J) = X.

EXCHP -- NZ

The routine exchanges the pointers to the
arguments if SUBSTR(BS,I,J) = X.

Phase PL/IDI7 223

PL/I PLM 8

IBM Confidential

rhis phase scans the input stream for func­
tions not processed in phase D17. When an
FC-statement key is detected, the appropri­
ate subroutine (selected according to a
special key in the Fe-statement) is called
for processing the function. Upon comple­
tion of processing, the FC-statement is
skipped and scanning continues. All state­
ments that do not have an Fe key are either
moved unchanged into the output stream or
skipped.

Input and output handling of this phase
is the same as that of phase D17. If no Fe
key was detected in phase D17, this phase
is skipped.

rhe built-in functions processed in this
phase have one to four source arguments and
one target. The source and target argu­
ments follow·one another in inverse order
of the function F=F(X1,X2,X3,X4). The
standard input format is as follows:

FC statement -- 12 bytes
Target operand -- 12 bytes
Argument Xn{n4) -- 12 bytes

Argument X1 -- 12 bytes

~ote: If one of the arguments is a con­
stant, the 12-byte argument is immediately
followed by the information on the con­
stant.

Format of the Fe Statement

byte 0
bytes 1-2

byte 3

byte 4

byte 5

bytes 6-12

statement key
skippable length (includes the
12 bytes of the FC statement +
12 x number of arguments)
number of arguments (including
target)
X'13' (indicates that this is
a library function)
internal library function name
(00 - FF)
not used

rhe format of variable and register argu­
ments is as follows:

byte

bytes

224

o key: E1 refers to a declared
variable; E5 refers to a reg­
ister pointing to data.

1-2 internal name (number of reg­
ister or internal number used
for variablel

PHASE PL/ID20 (BUILT-IN FUNCTIONS II) -- OK

bytes 3-4 modifier: refers to internal
name

byte 5 attributes 1
byte 6 attributes 2
byte 7 object-time length in bytes
byte 8 precision
byte 9 scale factor
bytes 10-11 not used

If the argument is a constant, the fol­
lowing information is appended to the
12-byte argument:

bytes 12-13
bytes 14-17
bytes 18-19
bytes 20-31

internal name
attributes
length of constant
intermediate form of constant
(left-aligned)

·The array functions SUM, PROD, ALL, and
ANY use the following non-standard input:

bytes 0-11
bytes 12-22

byte 23
bytes 24-nn

Phase Output

FC statement
array statement. It has the
same format as the other
arguments (with the exception
of the last byte - see byte 23
belo~. The array elements
are converted to equal base
and scale. The array argument
is the source of conversion.
number of array elements
conversion macro instructions
of the length xx. The F8 key
of the following statement
indicates the end of the con­
version macro instruction and
the end of the function input.
The F8 statement contains the
information on the target of
conversion. The conversion
macro instructions are moved
into the output as part of the
function output.

With the exception of the library functions
processed in this phase (identified by an
FC key) , all statements are moved unchanged
into the output stream. Constants in the
argument operands cause the generation of a
constant with an F3 key. For the string
array functions ALL and ANY, a string vari­
able is generated to accommodate the provi­
sional res·ult.

The generated output macro instructions
(except for the F2 key, the skippable
lengtn, and the special macro instruction
KEY) generally have a target and source
operands. These operands are identical to

(

PL/I PLM 8

IBM Confidential

the first six bytes of the input operand.
Label, length, and precision information is
added to the macro instruction as required.
Length and precision are taken from the
attributes of the input operands. The
output formats for the individual libary
functions are as follows:

byte 0
bytes 1- 2
byte 3

bytes 4- 9
bytes 10-15

byte 0
bytes 1- 2
byte 3

bytes 4- 9
bytes 10-15
bytes 16-17
bytes 18-19

ABS

X'F2'
skippable length
key: 3B - long float

2B - short float
1B - decimal fixed
OB - binary fixed

target argument
source argument

SIGN

X'F2'
skippable length
key: 2A - float

1A decimal fixed
OA - binary fixed

target
source
label
length ~nserted only if
source is decimal fixed

the

(.. ·rhe standard macro instructions ASSIGN,
ADD, MULTIPLY, and DIVIDE are used for
these fUnctions. The number, order, and
type of the macro instructions used depend
on the scale and precision of the arguments
and on the arithmetic operation. The
ASSIGN macro instruction is used to assign
one or two arguments to a register or work­
ing storage. The result of the arithmetic
operation is always stored in a .register.
If required, the register is assigned to
the target.

~~PROD

An example of the output format (and the
generated code) for these functions is
shown in Figure 1.

&~~L_AN!

An example of the output format (and the
generated code) for these functions is
shown in Figure 2.

DESCRIPTION OF ROUTINES

Subroutines Described in 017

INT1

EOACT

Initialization routine (get buffer
length, set buffer pointer)
Action for EO key (reset error
switches, output of statement

EAACT

EBACT

ASKIP

READIN

begin) •
Action for end-of-statement key
(move out error stack, output of
statement end) •
Action for EB key (move out error
message) •
Increase input pointer (move input
into output area) •
Read records into input buffer.

A special macro instruction (see the macro
generator phases E50-E60) is provided for
these fUnctions. ThUS, only base and scale
must be tested to obtain the correct macro
instruction. The operands are moved
unchanged from the input stream into the
macro instruction.

ADD, MULTIPLY, DIVIDE -- OB, OC

These fUnctions are not used in version
of this compiler.

EOPAcr -- OE

This SUbroutine terminates the phase after
all input has been processed. It generates
the string variables and register save
areas required for the array built-in func­
tions processed in this phase. Finally, it
loads phase 040.

INTRE~T -- 00

This subroutine is called if the FC key
indicates a built-in function to be proc­
essed in this phase. The appropriate proc­
essing routine is selected by means of the
function key, which is part of the input.
The output of the code macro is part of the
processing routine for the respective func­
tion. On return from this routine, the
input pointer is increased and the next
statement is scanned.

SUM, PROD, ALL, ANY -- OF

Because of their similar output, these
array functions are handled in nearly the
same way. They differ in their key and in
the length of the macro instructions only.

The string variable in the string array
functions ALL and AN~ replaces the
floating-point register to hold the partial
result. The initialization values for the
individual functions are as follows:

SUM - zero
PROD - floating-point
ALL - all ones
ANY - all zeros

Phase PL/ID20 225

PL/I PLM 8

IBM Confidential

ASGN -- 01

Depending on the attributes of source and
target, this subroutine generates the
appropriate assign macro instruction. (For
a detailed description of the macro
instructions refer to the macro generator
phases E50/E60.) The following five cases
may occur:

decimal to decimal
binary fixed to binary fixed
short float to short float
long float to long float
short float to long float

Source and target (pointed to by reg­
isters 5 and 6, respectively) must have the
same base and scale. The macro instruction
key is determined by means of the source
attributes (base and scale) and the preci­
sion. The field width is calculated by
means of the precision and the scale fac­
tor. The generated macro instruction is
moved into the output stream.

This subroutine is called as follows:

BAL LR, ASGN

This subroutine sets pointers to one or two
source and one target arguments in the
input stream. R5 is used to point to one
source argument; R6 and R5 are used to
point to the first and second source argu­
ment, respectively; R4 is used to point to
the target argument.

Precision arguments are disregarded; the
precision is always taken from the argument
attributes. Contrary to argument con-

226

stants, precision constants contained in
the input stream are skipped. The two
types of constants are differentiated by
their appearance in the input stream.
Therefore, every function calling this
sUbroutine fUrnishes the parameters for the
expected minimum and maximum number of
arguments. An error message is produced if
the actual number of arguments in the FC
statement is either lower than the minimum
or hi~her than the maximum. The subroutine
is called as follows:

BAL LR, SETPNT

Parameters:

RO = number of required arguments
R1 = number of actual,arguments
R2 = maximum number of arguments permitted

in this function.

This subroutine moves a character string
into the output buffer. RO contains the
length and R1 the begin address of the
string.

This subroutine.fetches a label name from
the variable counter. The counter is
increased each time a label is generated.
If the counter overflows, an error message
is produced and the counter is reset.

This subroutine stores the error number
(ERRNR) in the error stack up to a maximum
of 8.

c

c

PL/I PLM 8

IBM Confidential

SUM:

PRO 0:

(

1 F21 00112131 I Esl 00 106100 100 I 00 1 Esl 00 I 06100 100 I 00 Q
I F61 00 I oclssl681 061 00 I El 1001 OC I 00 100 100 I J

I Generated Code

it : .} : : : I

I LA 1,AR

LAO ,N

5 T M

o FLOATl)

RAY

array N I LABEL I LABEL conyers on

number of array elements

conversion macro instructions

,.
r--

~{~~}
I I 30 I I

6 , target

. I F21 00 12 32 ES 00 06 00 00 00 Itarget of conversion I 6 , target

20 6 , target

~ 6 , target ... I
I L A , L (1

I F21 00 081801 2lABEL I I B C T 0 , LAB E L
I

Ion'" 01 anay .I.~nt
I
I
I
I

Note: LABEL represents the same label name in each case.

Figure 1. Example of Output Format for SUM and PROD

Phase PL/ID20 227

PL/I PLM 8

IBM Confidential

{
IF 2~ 0 1 216 * 4000 91S * I 0002 0 0 0 00010 S 0 SI} ALL

IF 2 0 0 I 216 * 4 0 0 0 * olE 4 0 0 0 9 SOlO S 0 SI ANY

OC STRING(S),=X' FFF •••• F'

xc STRING(S),STRING

LA 4,ARRAY

LA 3,N

IF 2 0 0 0 E 7 BIA R RAY I N I LABEL I LABEL: CONVERSION

CONVERSION
MACROS

Figure 2. Example of Out~ut for ~LL and ANY

228

MACROS

{
NC
OC

I length ?fter I ~w.,~

STRING(L), TARGET}

LA 4,S(4)
BCT 3,LABEL

c

c

(

PL/I PLM 8

IBM Confidential

rhe input text stream for this phase con­
sists of source statements in internally
coded form, and of both E-key and F-key
items generated and inserted into the text
by previous phases.

ON, REVERT, SIGNAL, and STOP statements
are in the output format of phase A65.
Some I/O statements are still in an inter­
mediate format and are to be processed
later by the subsequent compiler phases 075
and 080.

Each statement in thE source program
results in thE following input to phase
040: statement identifier key X'EO', end­
of-statement key X'EA', and, if any, error
keys X'EB'; located between each of these
begin- and end-of-statement keys are either
E- or F-keys representing the function of
the statement, or the statement in inter­
nally coded form.

Blocks in the input text are not neste6..
All procedure blocks or begin blocks have
been filed one after the other in phase
C35.

rhe following elements have been processed:

Block description table for static stor-
age,

Prologue macro,
Certain F-key elements,
Statement prefixes,
ON statement,
REVERT statement,
SIGNAL statement,
STOP statement

Appropriate macros have been substituted
for each ON, SIGNAL, REVERT, or STOP state­
ment. Certain entries in each prologue
macro have been made. A Block Description
Table for each program block has been
inserted into the text.

Macros have been inserted for each
statement with an individual prefix, sig­
naling these statements during execution.

c No input/output action on SYS001 occurs
in this phase. The processing of the pro­
logue macro and of the RE~ERT statement
require two text scans in phase 040.

FUNCTIONAL DESCRIPTION

The Block Description Table generated dur­
ing this phase is part of the static stor­
age during object program execution. Each
compilation block is represented in this
table by a single block description in the
format shown in Figure 1.

<----------------4 bytes------------------>
r--------------------T--------------------,
I OFFSET I PREFIX I
t--------------------~--------------------~
I A (ENTRY1) I
t---~
I A (ENTRY2) I
I I
I I
I I
t---~
I A (ENTRYn) I
t---~
I ON ENTRY1 I
t---~
I ON ENTRY2 I
t---~
I I
I I
I I
t---~
I ON ENTRYn I
t---------T-------------------------------~
I I I
I OFFSET jContains offset to first ON I
I I entry, if present. Otherwise I
I I ignored. I
I PREFIX loynamic and static prefix byte I
I jas described in the library I
I Icontrol routine. I
I A (ENTRY1) I Address of the first entry I
I Ipoint of the block. I
I A (ENTRYn) I Address of the nth entry point I
I lof the block. I
ION ENTRYn/Present for each ON condition I
I Imentioned in the block. I l _________ ~ _______________________________ J

Figure 1. Format of Block Description
Table

Each block description entry is gener­
ated during scanning of the corresponding
block in the text stream.

The half-word for PREFIX consists of a
dynamic and a static prefix byte.

The static prefix byte will be set up
during phase D40 according to the prefix
status at the beginning of the block.
Whenever a single statement in the source
program of the compilation is prefixed,

Phase PL/ID40 229

PL/I PLM 8

IBM Confidential

certain macros are inserted into the text
stream, providing a corresponding status
of the dynamic prefix byte during execu­
tion of this statement. (See pertinent
section on prefixes) •

If an entry point for a block is
encountered during scanning of the input
text stream, an address constant is gener­
ated and added to the block description
entry. This address constant contains the
name of the entry in internally coded
form.

Each generated block description entry
is named internally. rhese names form a
string of labeling numbers, used for
designating single block descriptions.
Each individual name is created by adding
1 to the current value of the communi­
cation region entry IJKMNN. Each block
description entry will be keyed in such a
form that a contiguous portion of the
static storage in the object program is
occupied by the entries.

Generation of single ON entries in the
block description is discussed in the
section dealing with ON statements.

~~Q£~~~ing_Q1-!Q~_~~Q1Q~~_Ma£fos. A
prologue macro has been generated during
preceding phases for each entry point to a
begin or procedure block. The format of
these prologue macros is discussed in the
description of phase E50. During phase
040, three entries in each prologue macro
are completed:

1. The entry name of the block in inter­
nally coded form. This entry name is
contained in the last label macro
preceding the prologue macro.

2. The internal name of the Block Des­
cription Table. This entry is com­
pleted during the second text scan.

3. X'03' is entered into a reserved byte
of the prologue macro, if the block
includes ON statements. X'01' is
entered, if no ON statements are
included. This entry is completed
during the second text scan, after the
block has been checked for ON state­
ments during the first scan.

~li~i~~!i~g_§E~ci~l_~~~~_~le~~nts~ The
input text includes X'F7' keys, which
served to exclude statements from process­
ing during preceding phases. These keys
are eliminated. Certain types of pre­
viously excluded statements may now be
processed.

Label macros of the form
X'F2000772 •••••• ' are eliminated during
the first text scan because they are now

230

--- ~--~---. -

obsolete. These label macros, located
outside the associated block, specified
block names.

proc~~sing of Prefixes. Each statement
contains the prefix mask assigned to it
according to the prefix lists in the
source program.

If a PROCEDURE or BEGIN statement is
encountered, the associated prefix mask
becomes the static prefix byte in the
Block Description Table for the corres­
ponding block. Certain special macros are
inserted into the text stream whenever the
prefix of a single statement differs from
the prefix of the whole block. These
macros are inserted a~ the beginning of a
statement (following the label, if any)
and at the end of the prefix scope. The
macro inserted at the beginning of the
statement initiates modification of the
dynamic prefix byte of the Block Descrip­
tion rable in the static storage. The
macro inserted at the end of the prefix
scope initiates restoring of the block
prefix mask to the preceding status. Nor­
mally, the end of a statement is also the
end of a prefix scope, if the statement
has its own prefix. However, GOTO, IF,
CALL, and RETURN are an exception to this
rule •.

For GOrO, the prefix mask must be
restored before the macro branch. This is
done by a scan performed before branChing.
Similar procedures are provided for CALL
and RETURN.

Into each IF statement an end-of­
statement key is inserted after the
evaluation of the scalar expression. The
scope of the condition prefix ends at this
key. However, certain branch macros
inside the evaluation of the scalar
expression branch to an address beyond the
condition scope. For this reason, the
condition is reset before branching, and
set again after the branch macro with one
exception: If the branch macro is followed
by an end-of-statement key, the statement
prefixes are not restored after the branch
macro. In any case, the block prefix is
reset at the end-of-statement.

Proc~~sing of ON Statements. In the PL/I
source program, the ON statement defines
the action to be performed if an interrupt
occurs for the specified condition. To
provide this action during object program
execution, the following code is generat­
ed:

1. For each condition specified in an ON
statement inside a block, a so-called
ON-doubleword is set up in the Block
Description Table for this block.

c

c

()

(

PL/I PLM 8

IBM Confidential

2. Specific macros are inserted into the
text where the ON statement is locat­
ed. These macros modify the contents
of the ON-doubleword in the Block
Description Table.

If an interrupt occurs during execution
of the PL/I program, a library routine
called 'interrupt handler' scans the sta­
tic storage for the ON-doubleword corres­
ponding to the condition in the actual
block. The performed interrupt action
depends on the presence and contents of
this ON-doubleword.

The format of the ON-doubleword in the
Block Description Table is as follows:

bytes
bytes
byte
bytes

X' 01'
X'03'
X'04'
X'05'
X'06'
X'09'
X'OA'
K'OB'
X'OC'
X'OD'
X'OE'

bit
bit
bit
bit
bit
bits

0-1
2-3

4
5-7

ON code
file address or not used
flags
printer to address constant
for label

OVERFLOW

o
1
2
3
4

5-7

ZERODIVIDE
FIXEDOVERFLOW
SIZE
CONVERSION
ERROR
ENDFILE
ENDPA.GE
TRANSMIT
KEY
RECORD

if on: last ON entry of the block
if off: ON statement not executed
reserved
if on: ON mark
if on: ON mark
reserved

system action
GOTO statement

('

rhis second field is used exclusively for
1/0 conditions: ENDFILE, ENDPAGE, TRANS­
Mlr, KEY, and RECORD. The field is res­
erved to contain the address of the cor­
responding DTF table. If an I/O condition
is mentioned in an ON statement, the file
name named together with this condition
may designate either a file constant or a
file variable. If the file name desig­
nates a file constant, a macro for the
file address is generated and inserted to
point to the file address constant of the
form A.L3(file DTF) in the double word. If
the file name designates a file parameter,
the file address required in the ON entry
depends upon the value of this parameter.
For this reason, the actual file address
value is moved into the ON entry whenever
an ON statement concerning an 1/0 condi-

tion with this file name is encountered.
The macro for this move instruction is
generated by this phase.

~Byte Field

Flag bit 0 is set to either 0 or 1 by this
phase in generating the ON entries. The
flag bits 1, 3, 4 are set during the ex€­
cution of the object program: a macro for
a MVI instruction is inserted for each ON
statement, taking into consideration the
setting of flag bit o.

Pointer Field ----------
The last field in the second word is used
if the ON unit is a GOTO statement. The
branch of the GOTO statement may be
directed to a label variable or a label
constant. If the branch is directed to a
label variable, a macro for an address
constant of this label variable has been
generated by a preceding phase. If the
branch is directed to a label constant, a
macro for such an address constant is
generated and inserted into the text. The
format of this address constant is dis­
cussed in IB~§ystem/360, Disk and Ta~
Qperating_Systems, PL/I Subset Library
Routi~~ Program Logic Manual, Form
Y33-900S. The address of the label
address constant is moved into the pointer
field of the ON-doubleword in the Block
Description Table. If a GOTO statement is
encountered, the invocation count is moved
from the QSA. into the second word of the
label address constant. (The invocation
count is discussed in the description of
the library routines) •

The following is generated during proc­
essing of ON statements:

The ON-doubleword (ON-code, flag bit 0,
and -- if the file name is a constant -­
file address) •

Macros for processing during execution (if
the file name is a parameter, move file
address, - move flag bits. If a GOTO
statement is encountered, move label con­
stant address and invocation count) •

A. macro for a label variable, if a GOTO
statement branches to a label constant.

Processing of REVERT Statements. REVERT
statements are used to nullify the effect
of the last executed ON statement and to
cause the action specification to be
restored to its status in the immediate,
dynamically encompassing block. To achieve
this, flag bit 1 of t,he corres ponding ON­
doubleword in the Block Description Table
is set to 1.

Phase PL/ID40 231

PL/I PLM 8

IBM Confidential

There is a particular housekeeping for
the addresses of the individual ON entries
in this phase. The ON conditions in a
REVERT statement which do not have a
counterpart in the ON statement are
ignored.

For each REVERT statement associated
with an ON statement in the same block, a
macro is inserted into the text stream,
providing an OI instruction for setting
flag bit 1 of the ON-doubleword to 1.

Processing of SIGN~L Statements. The SIG­
N~L statement simulates the occurrence of
an ON condition. For each SIGN~L statement
a macro calling the library "ON-handler",
is inserted into the text stream. The
called library routine requires one or two
parameters. Register 1 must point to a
constant of the form ~L1 (ON Code, 0). For
signaled I/O conditions, the address of a
file address constant must be moved into
the library work space IJKZWSA. If the
file address refers to a file name con­
stant, the address constant is generated
and inserted into the text (for static
storage). If the file address refers to a
file name parameter, the address constant
has already been generated.

~~££es~inq of ~TOP_£ta!emegts~ The STOP
statement initiates termination of a pro­
gram. A macro calling the library stop
routine is inserted into the text stream.

'Data-Housekee~inq'. Three work buffers
are used for text input and output. Work
buffer 3 is used for overlapped text out­
put, work buffers 4 and 5 are used for
overlapped text input.

At the beginning of a text scan, two
records are read in overlapped mode into
work buffers 4 and 5. The scan starts at
work buffer 4. The text is scanned sequen­
tially from left to right. Routine KTESCA
is called to move the scan pointer to the
next text element. If the scan pointer
eventually reaches the 5th work buffer, the
following action is initiated:

The contents of work buffer 5 are moved
to work buffer 4, the scan pOinter is
decremented by the buffer length, and a new
record is read into work buffer 5 in over­
lapped mode.

The scan now points again to the first
text element in work buffer 4, and process­
ing continues.

Text output is performed in both text
scans by the routine KONSrOUT. This rou­
tine is called whenever an element is to be
moved to the text output. KONSTOUT moves
this element to the 3rd ~rk buffer. If
this work buffer is eventually completely

232

filled, the contents of the buffer are put
out in overlapped mode by the current text
output medium.

Tables

The core storage area from the end of the
second work buffer down to the phase end is
occupied by the following three tables:

ON/REVERT Table: Adjacent to the second
work buffer, a table is established during
the first text scan for all ON conditions
stated in ON or REVERT statements of indi­
vidual blocks. Each individual table entry
has a length of 4 bytes. The format of the
entry is shown below.

byte 0 flag byte
bit 0 on last condition men-

tioned in block
bit on = condition mentioned

in REVERT statement
only

bit 2 off no ON statements in
the current block
~sed in the first
table entry of a
block only)

byte condition code

The boundaries of blocks are indicated
by the status of flag bit O. Note that
only one entry is generated for each ON
condition and the associated file name,
though they may occur together in several
ON or REVERT statements. After the macros
for the Block Description Table have been
generated during the first text scan, all
entries with flag bit 1 set to 0 are
removed from the ON/REVERT table. The
remaining entries are grouped together to
be used again during the second scan.
These entries now contain all conditions
that occur in REVERT statements, but not in
ON statements of the same block. An excep­
tion to this rule is the first entry for a
block if its flag bit 2 is set to 0 and its
flag bit 0 is set to 1.

During the second scan, the condensed
ON/ REVERT table serves to recognize all
those REVERT statements which must be
treated as Null statements. The first
entry of each block is preceded by a two­
byte field containing the number of differ­
ent ON conditions in this block. During
the second scan, this number leads to the
last ON-doubleword in the Block Description
Table.

Entry Name Table: This table is created
for the entry names of a block, beginning
at the phase end. The entry names are
retrieved from the label macros preceding a
prologue macro. Each entry name consists
of a number, 2 bytes long. If the end of

c

c

(-

PL/I PU1 B

IBM Confidential

an input text block is reached during the
scan, this table contains all entry names.
For each entry to a block, a macro is gen­
erated as part of the Block Description
rable macro to obtain the address constant
of this entry name. The symbolic address
of this address constant is the entry name:
E DC A (E)

This address constant is correct because
the name will be treated differently
depending on whether it is the name or the
value of the address constant. (See the
description of phase G4 O.J

The Entry Name Table is used during the
first scan only, and is overwritten during
the second scan.

ON-Entry Reference Table: This table is
used for the calculation of ON-doubleword
addresses. It is created during the second
text scan, beginning at the phase end and
overwriting the Entry Name Table. Each
table entry is 3 bytes long. The first
byte contains an ON condition code, bytes 2
and 3 contain either zero, or a file name
occurring together with an ON condition in
an ON or REVERT statement. This table is
used to address the ON-doublewords in the
Block Description Table. Calculation of
ON-doubleword addresses is based on the
location of the associated entry in the
ON-entry Reference Table because the
sequence of the entries reflects the
sequence of ON-conditions as they occur in
the text.

During the first scan, each Block Des­
cription Table receives as its symbolic
address the current value of IJKlIlNN in the
communication region. IJKMNN is increment­
ed by 1 each time a new block is encoun­
tered. At the beginning of the first text
scan, the current value of IJKMNN is saved
in an internal buffer called KMNN. During
the second scan, KMNN is incremented by 1
each time a new block is encountered, and
thus contains the internally coded, symbol­
ic address of the currently corresponding
Block Description Table. The address of an
individual ON-doubleword is calculated as
follows:

Address = Table symbol + Contents of the
1st half-word of table + B L (L =
sequential number of entry in ON-entry
Reference Table, starting with 0) •

DESCRIPTION OF ROUTINES

During the first text scan, macros are
generated to create the Block Description
Table. The individual routines, used only
during this scan, are:

• Main part

• ProceSSing of the prologue macro,

• Insertion of the Block Description
Table,

• Processing of the ON and REVERT state­
ments.

Certain SUbroutines, used in both text
scans, are discussed in the section Subro~
tines.

Main Part of First Scan -- OQ

This routine sets certain pointers to text
input and output areas and to the tables in
static storage. The first two records are
read in from the input text. The routine
then enters a loop for scanning the text.
During this scan, certain keys are select­
ed, and the appropriate routines for proc­
essing these keys are called. A label
macro outside a program block encountered
is omitted in the output. Text output is
accomplished by subroutine KTESCA.

Proce~sin~ the Prologue Macro -- OR

The prologue macro specifies either the
beginning of a new block (Main Entry) or an
ENTRY statement in a block.

If the prologue macro specifies the main
entry, the following processing is per­
formed: The previous statement prefix is
saved as the new block prefix and used in
testing each statement of the current block
for an individual condition prefix. For
the second and all following blocks, the
subroutine to insert the Block Description
Table is called. The beginning of the next
block is marked in the ON/REVERT Table. An
initial length of 12 bytes is assigned to
the macro for the Block Description Table.
The counter for the ON conditions occurring
in this block is set to zero. The name for
the Block Description rable of the new
block is moved from IJKMNN into the macro.
IJKMNN is then incremented by 1.

All other prologue macros are processed
as follows: The name of the Block Descrip­
tion Table is moved into the prologue
macro. The ON offset in this table macro
is incremented by 4, and a new entry name
(2 bytes) is provided. The length of the

Block Description Table macro is then
incremented by 9. This macro contains
items for each address constant of an entry
name.

A test is performed to detect whether a
secondary entry point to the block has a
condition prefix different from the block
prefix. In this case, a warning message is
entered into the text.

Phase PL/ID40 233

PL/I PLM 8

IBM Confidential

rhis routine inserts the macro for the
first part of the Block Description Table,
including all address constants for entry
names. The value of the ON counter is
stored in the ON/REVERT table of the block.
A macro is inserted into the text to gener­
ate an ON doubleword for each ON-condition
occurring in an ON statement. The ON con­
ditions and file names are retrieved from
the aNy REVERT table in static storage. All
entries for ON conditions occurring in
REVERT statements only remain in the table,
but are rearranged for the second scan.

Processing ON and REVERT -- OT

A table is assembled. It contains the
format of the condition code in the input
text (2 bytes) and in the ON-doubleword (1
byte) for each encountere~ ON condition.

Subroutine KONLOOK is called to set the
appropriate pointers to this table, and to
set certain pointers to the ON or REVERT
statement string of the input text. (The
format of this statement string is dis­
cussed in the description of the syntax
phases). A test is performed to detect
whether the ON/REVERT table includes an
entry for this condition/file name. If
not, a new entry is made into the table for
this condition/file name, and the ON coun­
ter is incremented. Flag bits are set in
the table entry correspon~ing to the ON or
REVERT statement. The ON unit in an ON
statement is checked for a correct GOTO,
and, if applicable, an error message code
is inserted into the text stream. The
format of the ON/REVERT statements in the
text stream is not changed by this routine.

Main Part of Second Scan -- OU

During the second text scan, processing of
the ON, REVERT, SIGNAL, and STOP is com­
pleted. The macros for the function of
these statements are inserted into the text
stream and the condition prefixes of indi­
vidual statements are processed. The indi­
vidual routines, used only during this
scan, are:

• Main part of second scan,

• Processing of the prologue macro,

• Statement selection

• Processing of the REVERT statements,

• Processing of the SIGNAL and STOP state-
ments,

• Processing of the condition prefixes,

• Processing of the ON statement.

234

After the end of the input text has been
reached, a final text output is performed.
Then a test is made to detect whether the
first or the second scan is completed.

After the second scan, phase D70 is
initiated.

After the first scan, both work files
are rewound and switched in their function.
Certain pointers are reset and the first
two records are read in overlapped mode.
The scan then starts by checking for DO
statements having an own condition prefix.
If such a DO statement is encountered, the
statement prefix is set for the scope of
the DO header, i.e., the appropriate macros
to set and reset the prefix code in the
Static Storage Table are inserted. A
statement key X'EO' and an F2-macro are
tested and the corresponding routines are
calle~. Then subroutine KTESCA is called
to scan the current text input.

Processing of the Prologue Macro -- OV

This routine sets the flag bits in the
prologue macro indicating the presence or
absence of ON statements in the current
block. If the prologue macro signals the
beginning of a new block, the pointer for
the ON/REVERT table in the upper part of
the Table Area is decremented to the next
block limit. KMNN is incremented by 1,
enabling correct addressing of the Block
Description Table. (The value of KMNN is
the symbolic address of the Block Descrip­
tion Table). For each new block, an On­
Entry reference table is created in the
lower part of the Table Area during the
scan. The pOinter to the current table is
set when a new block is encountered.

The block prefix is saved to be compared
to subsequent statement prefixes of the
block.

Statement Selection - OW

This routine distinguishes three classes of
statements:

1. ON, REVERT, SIGNAL, STOP statements are
processed by the appropriate routines.

2. Statements headed by a prefix macro are
processed by a special routine.

3. All other statements are bypassed. No
interrupt may occur during execution of
these statements.

processing the REVERT Statements -- OX

Subroutine KONLOOK is called to set certain
pOinters both in the tables and in the text
stream. Then the On-Entry reference table
is scanned to detect whether the condition

c

(

PL/I PU1 8

IBM Confidential

associated to the statement already
occurred in the same block. This test is
based on numbering and correct addressing
in the Block Description rable. If the
condition did not occur previously, the
ON/REVERT table is scanned for a dummy
entry. If this statement has no corres­
ponding ON statement in the same block, the
key for a warning message is inserted into
the text stream. If the statement has a
corresponding ON statement, a new element
is added to the table in the lower part of
the Table Area and a macro is inserted into
the text stream to set the flag bit of the
ON-doubleword in the Block Description
rable.

If a SIGNAL statement is encountered', sub­
routine KONLOOK is called to set certain
pointers to the text stream. Then macros
are generated and inserted into the text
stream to call the library interrupt han­
dler. Some of these macros prepare param­
eters for the ON condition code and, if
necessary, for the file name address.

If a STOP statement is encountered, a
macro is inserted into the text stream to
call the library STOP routine.

For each SIGNAL or STOP statement, a
corresponding call bit is set in the inter­
phase communication region to provide the
appropriate library routine in a later
compiler phase.

f~ocess~of £Qndition Prefixes - OZ

This routine is called if a statement has
an individual condition prefix and if this
condition can occur during execution of the
statement. One macro has already been
inserted to set the statement prefix in the
Block Description Table. rhis routine
inserts the macro for resetting the prefix
byte into the text string. For assignment
statements, SET statements, dynamic state­
ments, and I/O statements, the correct
position to insert this macro is the end of
statement key X'EA'.rhe condition prefix
scope ends here.

For CALL, GOTO, and RErURN statements,
the condition prefix is reset if a branch
macro is encountered and before branching.

c

For IF statements, the scope of the
prefix ends together with the evaluation of
the JF expression. However, one or more
branch macros are encountered during evalu­
ation. The length of the text stream for
the evaluation may exceed the buffer
length. For this reason, a reset macro is
inserted to precede each branch macro of
this evaluation. Another macro to set the
statement prefix is inserted after each

branch macro, with one exception: if the
branch macro is followed by an end-of­
statement key, nothing is inserted. This
procedure ensures that the block prefix is
reset after expression evaluation.

Processing of ON Statements - 01, 02

Subroutine KONLOOK is called to set poin­
ters to both tables and in the text stream.
The On-Entry reference table is looked up
to detect whether the condition occurred
already in the same block. If the condi­
tion has not yet occurred, a new entry for
this condition and file name is made in the
table.

If a file parameter occurs in the ON
statement, a macro is inserted into the
text stream to move the file address into
the corresponding ON-doubleword.

The ON unit is tested and the appropri­
ate flag bits for the ON-doubleword are
prepared. If the ON unit is a GOTO state­
ment with a label constant, two macros
concerning the label constant are inserted
into the text stream. The first macro
provides a label address constant, the
second macro moves the address of the label
address constant into the ON-doubleword.
If the ON unit is a GOTO statement with a
label variable, the address constant macro
for this label variable has already been
inserted in a previous phase. In this
case, tbe label name designates this
address constant. Only the second macro is
inserted to move the address into the ON­
doubleword.

The macro to set the flag bits in the
ON-doubleword is inserted into the text
stream. If a null statement is used in the
ON unit for an ENDFILE, KEY, or CONVERSION
condition, an error code is inserted into
the text stream.

KTESCA -- 03, 04

This routine moves the text scan pointer
and performs certain tests. If an E-key
element is encountered, the pOinter is
modified by a fixed length depending on
this E-key.

If an F-key signaling the end of text is
encountered, the main part of the second
scan is called (if not yet processed) •

If any other F-key element is
encountered, several tests are made. Cer­
tain macros are selected which require
setting of a special prefix byte in the
Block Description Table. The object code
of these macros may cause a fixed overflow
interrupt which is to be interpreted as a
SIZE condition by the library interrupt
handler.

Phase PL/ID40 235

PL/I PLM 8

IBM Confidential

To signal the SIZE conjition to the
library interrupt handler, a second macro
is inserted preceding the macro causing the
interrupt. This inserted macro sets bit 7
in the dynamic prefix byte of the Block
Description Table to one. A third macro is
inserted after the interrupt-causing macro.
The third macro resets bit 7 to zero.

If the F-key element is of the form
X·F7 •••• ·, the byte containing X'F7' and
the three bytes following it are eliminat­
ed.

If the F-key element does not begin with
X'F7', the length for modifying the scan
pointer is retrieved from bytes 2 and 3 of
the element. If this length exceeds the
buffer length, pointer modification is
accomplished in several steps.

This subroutine checks whether the scan
pointer reached the second text input area.
In this case, the following steps are per­
formed:

1. The scanned text is put out. The con­
tents from the second text buffer are
moved into the first text buffer.

2. A new record is read in overlapped mode
into the second text buffer.

3. The scan pointer is decremented by the
buffer length.

Before this subroutine is called, register
1 must contain the start address of the
information to be added to the output text
and register 2 must contain the end. address
+ 1 of this information. Output is done in
one or several steps, depending on the
length of the information area and on the
available space in the output area. The
information to be put out is accumulated in

236

the text output area. If this area is
eventually filled to capacity, output is
accomplished in overlapped mode. Another
portion of information is then accumulated
in the output area.

KINTERL-!OTE -- 07

If the program is too big, one of the
tables in the Table Area will eventually
overflow. In this case, KINTER is called
to enter a severity error code and to trun­
cate the text at the current position of
the scan. Compilation is terminated.

Subroutine KOTE is called when text is
to be put out. Text output is accomplished
in portions beginning at the current text
start address and ending at the current
position of the scan pointer.

KONLOOK -- 08,09

This subroutine is called whenever an ON,
SIGNAL, or REVERT statement is encountered.
These statements may have a corresponding
prestatement table. KONLOOK sets pointers
to the begin and to the end of this pres­
tatement table. Other pointers to be set
by KONLOOK are:

1. Pointer to the ON condition table of
this phase,

2. pOinter to I/O conditions in the ON
condition table, and

3. pointer to the ON/REVERT table in the
upper part of the Table Area.

If an I/O condition is posted in the
statement, a test for correct file name
reference is performed. If the file name
is incorrect (symbol for file name does not
reference a file) an error code is inserted
into the text and elimination of the state­
ment is initiated. If KONLOOK is called
during the first text scan, this elimina­
tion is nullified by the calling routine.

c

c

(

PL/I PLM 8

IBM Confidential

This phase does the following:

1. It performs the conversion of constants
from the base, scale, and precision
specified by the programmer to the
base, scale, and precision needed at
object time. The "new type and
precision" of the constants are deter­
mined in phase DOS.

2. To get the internal representation of
the decimal and binary floating-point
constants, i.e., to perform the conver­
sion from base decimal and binary to
hexadecimal.

In previous phases, the source text is
converted into a stream of elements
(macros, statement-identifier keys, end-of­
statement keys, error-keys, and constant
tablesl •

The constant tables consist of the
following:

•

•

•

X'F3' = key for constant-table,

length of table (2 bytesl ,

One or more constant entries. These
entries consist of the following:

Interna£ name of the constant (2 bytes).

Attributes of the constant (1 by tel :

Bits 2·d:
00 optimizable
01 delete
10 constant is not optimizable but

containing block is optimizable
11 constant should not be deleted

• Old type of constant (1 byte; see phase
C351 •

• Old precision of constant (1 byte; see
phase C35) •

• New type of constant (1 byte).

Bit 0-1: negation
Bits 4-7: 0= float

1 binary fixed
2 float
3 decimal fixed (packedl
4 decimal fixed (zone~
5 decimal fixed (zoned r)
6 character string
7 bit string

• New precision of constant (2 bytes)
Byte 0: P if arithmetic constant

L if character string or bit
string

Byte 1: Q if fixed point constant. If
floating point constant:

0= short, # 0 = long.

• Length of the following intermediate
representation of the constant (2
bytes) •

• Constant (intermediate representationl •

Note: NT = 0 and NP = 0 means: NT = OP
and NP = OP, i.e. no conversion takes
place unless OT = binary or decimal float.

The individual entries of the constant
tables prepared for output have been
reduced to the following:

• Internal name of constant (2 bytes)

• Attribute of the constant (1 byte)

• Length of constant that follows

With the exception
numbers, the internal
constants is the same
one (see phase C35) •
constants contain the

• (1 byte)

of floating-point
representation of the
as the intermediate
The floating-point
following.

bit 0 : sign: 1 = neg., 0 = pos.
bits 1-7 : hexadecimal exponent (excess
64 number)

• (variablel :hexadecimal fraction of 6 or
14 hexadecimal digits depending on
whether it is a short or long fraction,
respectively. (See m!:L§.ystem/360 Prin­
Qieles of Oeeration, Form A22-6821) •

The decimal fixed-point ZONED constants
are stored as unsigned integers, each digit
occupying one byte, in ZONED T constants
the zone of the rightmost digit is replaced
by the sign. (See IBM System/360 Princi­
~of Operation, Form A22-6821) •

Initialization -- PL

This routine initializes pointers, switch­
es, etc., and reads in two buffers of input
text.

This is part of the main routine of the
phase. It scans the input stream, bypasses

Phase PL/ID70 237

PL/I PLM 8

IBM Confidential

and moves all program elements, except
end-of-program-keys and constant tables,
into the output buffer. Each new constant
table is built up in the table space, and,
after all constants of the corresponding
old table have been processed, it is moved
into the output buffer. Constants with the
delete-bit on and the optimizable-bit off
are deleted from the table. Constants
which do not have to be converted are moved
unchanged into the new constant table; only
the 5 bytes including types and precisions
are deleted.

If the table space is filled and there
are still some constants to be processed,
the new constant table is written onto the
text output file and a second one is built
up. When the end-of-program key is found,
it is moved into the output buffer, which
is written onto the text output work file.
Control is passed to IJKPH to call phase
075 or 080 depending on whether the job­
information-bit (bit 28) is on or off.

FEOS -- PP ---------

This routine is part of the main routine.
It is called when an end-of-statement key
is found during the scan of the input text.
If it terminates an erroneous statement
(i.e., if bits 8-11 of the EOS key are not
all zeros) the job-information bit (bit 1)
is set on. Before doing this, bits 8-11 of
the EOS key have been OR-ed by the
severity-code bits of any errors occuring
during conversion of a constant belonging
to this statement. The error-tail of the
end-of-statement key is extended by the
error key(s), and the respective error
number(s) is stored in the error table. A
macro is generated to signal the SIZE con­
dition at object time.

Note: Only an end-of-statement key with
bit 15 on indicates the termination of an
1/0 statement.

JTRN -- PO -------
Input parameters:
PIN = contains address of source
POUT = pointer of output buffer
BYZ number of bytes to be moved

Output
PIN
POUT =

parameters:
PIN+BYZ
address of the next available byte
in the output buffer.

This routine loads the output buffer.
If all the bytes to be moved do not fit
into the output buffer or if they do exact­
ly fit, the buffer is filled by the first
part of the text to be moved. The buffer
is written onto the text output work file.
The remaining bytes, if any, are moved into
the buffer (left-aligned).

238

FERR -- PQ.

This routine prepares parameters to note
error number 64 (CONSTANT CONVERSION UNDE­
FINED DUE TO SIZE-ERROR) in the error
table.

This routine is branched to if a conversion
to character string other than from bit
string is requested. It prepares paramet­
ers to note error number 146 (ILLEGAL CON­
VERSION OR COMBINATION OF DATA TYPES) and
deletes the constant.

Input parameter:
RO = error number

This routine notes up to 8 errors in the
error table.

FPIN -- PR ------
Input parameters:
PIN input pointer
PIN contains the address of the first

byte of the input text which is to
be moved into the output buffer.

This routine is called each time the
input pointer is increased. It updates the
input pointer so that it points always to
an address within the first of the two
input buffers. When the input pointer goes
beyond this range, all source text from
PINS up to PIN is moved into the output
buffer. If not all the text can be read in
one move, several steps are used. If nec­
essary, the input text is moved to the left
so that the input pointer points to an
address within the first buffer.

Secondary Entry Point: FPINX
This part of the routine moves the input
text to the left and reads in a new record
without moving any text into the output
buffer.

FCON -- PS

Input parameter:
PIN = points to the constant-table entry

of the constant to be converted.

This routine prepares the parameters for
one of the conversion routines. The con­
version routines convert the old type and
precision of the constant to the new type
and precision. The conversion routines
are:

FBSL
FBIL
FBLL

bit string to float
binary fixed to float
binary float (intermediate
representation) to float

c

c

PL/I PLM 8

IBM Confidential

(-'

FSBI
FBIl

FSOI
FBIO
FOOl

FSCS
FBLS

FBIS
FBSS

FNOI

FLDI
FNBI

FOIS
FOIL
FOFL

FOLS

FOLB

FLBI
FOIB
FOLD

bit string to binary fixed
binary fixed (change and check for
precisionl
bit string to decimal fixed
binary fixed to decimal fixed
decimal fixed (change and check for
precisionl
bit string to character string
binary float (intermediate
representationl to bit string
binary fixed to bit string
bit string (change and check for
precisionl
binary float (intermediate
representationl to decimal fixed
float to decimal fixed
binary float (intermediate
representationl to binary fixed
decimal fixed to bit string
decimal fixed to float
decimal float (intermediate
representationl to float
decimal float (intermediate
representationl to bit string
decimal float (intermediate
representationl to binary fixed
float to binary fixed
decimal fixed to binary fixed
decimal float (intermediate
representationl to decimal fixed

FBSL -- PT --------

Input parameters:
PIN address of constant-table entry
CONS = (double wordl contains the bit

string left-aligned.

This routine converts the bit string to
float. The bit string is first converted
to binary fixed (precision (31,0). Then
control is transferred to FBIL.

FBIL -- PT --------
This is a secondary entry point of FBSL.

Input parameters:
PIN = address of constant-table entry
CONS = (fullwordl contains the binary

fixed-point constant.
RBFI R5 (general register) same as CONS.

The routine converts binary fixed point
constants to floating point. The paramet­
ers are transformed into parameters for
FBLL, i.e., the constant is interpreted as
a binary floating point constant
(intermediate representationl with exponent

= O. Then control is transferred to FBLL.

FBLL -- PU ------
This is a secondary entry point of FBSL.

Input parameters:
PIN address of constant-table entry
CONS = (double wordl contains the binary

integer (precision (53,0)
REXP (general register) contains the

binary exponent
LIND = (general register) switch to indi­

cate whether FBLL has been called by
another conversion routine (10) or
by FCON (=0)

Output
PIN
CONS
RLEN

parameters:
unchanged
result of the conversion
4 if short fraction, 8 if
tion.

long frac-

This routine converts binary float
(intermediatel to float.

After having been shifted left by
(REXP- (FLOOR (REXP/4»*4) the binary inte­
ger is interpreted as the fraction of an
unnormalized floating- point constant with
the hexadecimal exponent
(64+FLOOR(REXP/41) •

To normalize the constant, the fraction
is shifted left as many hexadecimal digit
positions as necessary, and the exponent is
reduced accordingly.

If the exponent is less than 0 or great­
er than X'7F', the constant is set to 0 or
to the largest hexadecimal value (entry
points FBLL30 or FBLL35, respectivelYI, and
error numbers 59 or 58, respectively, are
put into the error table.

Finally, if LIND 1 0, control is trans­
ferred to the calling conversion routine.
Otherwise, if the sign is minus, it is
taken into account by setting the leftmost
bit of the constant to 1.

Secondary entry points: FBLL10, FBLL30,
FBLL35, FBLL25

FSBI -- PV -------
Input parameters:
PIN = address of constant-table entry
CONS = (double wordl contains the bit

string left-aligned.

This routine converts from bit string to
binary fixed. The constant is loaded into
a pair of general registers and right­
aligned by a double shift. The result is
interpreted as a binary fixed point
constant (precision (31,01), and signifi­
cant binary digits exceeding 31 are trun­
cated. Control is then transferred to
FBIl.

This is a secondary entry point of FSBI.

Input parameters:
PIN = address of constant-table entry

Phase PL/ID70 239

PL/I PLM 8

IBM Confidential

CONS (fullword) contains the
binary fixed-point constant

RBFI
LIND

R5 - (general register) same as CONS
switch to indicate whether FBII has
been called by another conversion
routine (~O) or by FCON (=0)

Output parameters:
PIN = unchanged
CONS result of conversion
RLEN = 4

The constant is shifted as many binary
digit positions as specified by the target
scale factor (note that scale of source is
always 0), left or right depending on
whether the scale factor is positive or
negative. If there are more significant
digits than specified for the precision of
the target, the constant is truncated to
the left, and FERR is called.

If LIND ~ 0, control is transferred to
the calling conversion routine. Otherwise,
the sign specified for the constant is
taken into account, i.e., the constant is
complemented if the sign is minus.

Secondary entry point: FBII03

FSDI -- PX

Input parameters:
PIN address of constant-table entry
CONS = (double word) contains the bit

string left-aligned.

This routine converts from bit string to
decimal fixed. The bit string is first
converted to binary fixed (precision
(31,0) I , and control is transferred to

FBID.

This is a secondary entry point of FSDI.

Input parameters:
PIN address of
RBFI = (gen.reg.)

stant

constant-table entry
binary fixed-point con-

This routine converts from binary fixed
to decimal fixed. The binary fixed -point
constant is converted to decimal
(precision(15,0)), and control is trans­
ferred to FOOl.

This is a secondary entry pOint of FSDI.

Input parameters:
PIN address of constant-table entry
CONS = (double word) contains the decimal

fixed point constant.

240

Output
PIN
CONS =
RLEN

parameters:
unchanged
result of conversion, left-aligned
length of result in bytes

This routine converts packed decimal
fixed to decimal fixed, packed or zoned or
(zonej (T) format.

Seconj entry point: FODIX

Input parameters: as above
RO = scale factor of source

Third entry point: FDOI45

The constant is shifted as many decimal
digit positions as the difference between
the scale factor of target and the source.
It is shifted left or right depending on
whether the difference is positive or nega­
tive.

If there are more significant digits
than specified for the precision of the
target, FERR is called and the excess
2*CETL(P+2/2)-1 or P left digits are trun­
cated on the left, depending on whether
packed or zoned format is called for.

The constant is left-aligned in CONS and
supplied with the appropriate sign bits as
specified by the target.

If zoned or zoned (TI format is called
for, the constant is unpacked and the sign
replaced by the zone or left unchanged,
respectively.

FSCS -- PZ

Input parameters:
PIN = address of constant-table entry
CONS (double word) contains the bit

string left-aligned
PTAB pointer of new constant table.

Output parameters:
PIN unchanged
PTAB = pOints to the next entry.

This routine converts bit strings to
character strings. The character string is
built one character at a time in the new
constant table. If the length of the tar­
get exceeds the length of the source, the
character string is expanded with blanks.

FBLS - =---ill!

Input parameters:
PIN = address of constant-table entry
CONS (double word) contains the binary

integer (precision (53,0)) C'

REXP (register) contains the binary expo-
nent.

PL/I PLM 8

IBM Confidential

(

(-

c

Binary float (intermediate) is converted
to bit string. The routine calls FNBI
which converts the binary float constant
(intermediate representation) to binary
fixed (precision = min(31,P(sourc~). Con­
trol is then transferred to FBIS.

FSIS --~

This is a secondary entry point of FBLS.

Input parameters:
PIN address of constant-table entry
RBFI = (register) contains binary fixed-

point constant

This routine converts binary fixed to
bit string. The binary fixed-point con­
stant is interpreted as a bit string of
length P(source), i.e., RBFI is shifted
left (32-P) bit positions. Then control is
transferred to FBSS.

FBSS --~

rhis is a secondary entry point of FBLS.

Input parameters:
PIN address of constant-table entry
CONS = (double word) contains the left-

Output
PIN
CONS
RLEN =

aligned bit string (expanded on the
right by 0' s)

parameters:
unchanged
target string, left-aligned
length of target in bytes = CEIL
(length of target in bi ts/8)

This routine truncates or expands bit
strings according to the new precision.
string. string. If the target sign is
negative, the string is inverted.

FNDI -- OB -------

Input parameters:
PIN address of constant-table entry
CONS (double word) contains the binary

integer
REXP (register) contains the binary expo-

nent

This routine converts binary float
(intermediate) to decimal fixed. FBLL is
called to convert the binary float number
(intermediate form) to hexadecimal float.
rhen control is tranferrej to FLDI.

FLDI -- OB --------

rhis is a secondary entry point of FNDI.

Input parameters:
CONS = (double word) hexadecimal floating

point number

Output parameter:
CONS = decimal integer (precision (15,0))

RO=RSCF: scale factor

This routine converts hexadecimal float
to decimal fixed. If the source is zero,
FDDI is called to generate a decimal zero.
If the excess 64 hexadecimal exponent is
78, the hexadecimal fraction of 14 digits
may be interpreted as a binary integer
(precision (56,0)). This binary integer is
converted to decimal (precision(17,0)). If
the result consists of more than 15 signi­
ficant digits, the result is truncated and
shifted right one or two decimal digit
positions, and the scale factor
(initialized with 0) is reduced according­
ly. FDDIX is called to process the decimal
fixed-point numbers.

If the source exponent is not 78, the
hexadecimal fraction may be interpreted as
a binary integer which is to be multiplied
by 16**y (y = source exponent-78) •

D = 10 * 16**y

this is equivalent to

D/l0**X=IO*16**y/l0**y=Il*16**0
if 16**y/l0**X=1, i.e.,

16**y=10**X, i.e.,
x=y* In16/1nl0

This means: the source is to be divided
by 10**x to get an integer result which may
be converted to decimal. The target result
is the decimal integer and the scale factor
X.

To get the hexadecimal (binary) integer,
the source is divided by 10**Xl or multi­
plied by 10**-Xl, depending on whether Xl
is positive or negative. Xl = min(78,
FLOOR «y*19728+8192) 16384)
(19728/16384=ln 16/ln 10 ; 8192 =

rounding), and the scale factor is
increased by X1. This is repeated until
the exponent of the result is 78.

Input parameters:
PIN = address of constant-table entry
CONS (double word) contains the binary

integer
REXP = (register) contains the binary expo­

nent
LIND (register) switch to indicate wheth­

er FNBI has been called by another
conversion routine (~O) or by FCON
(=0)

Output
PIN
CONS
RLEN =

parameters:
unchanged
result of conversion
4

Phase PL/ID70 241

PL/I PLM 8

IBM Confidential

This routine converts binary float
(intermediate) to binary fixed. The binary
integer is shifted as many binary digit
positions as the sum of the exponent and
the scale factor of the target. It is
shifted left or right depending on whether
the SUm is positive or negative.

If there are more significant digits
than specified for the precision of the
target, FERR is called, and the number is
truncated on the left.

If LIND ~ 0, control is passed to the
calling conversion routine, if LIND = 0,
the sign specified for the target is taken
into account, i.e., the constant is comple­
mented if the sign is minus.

Input parameters:
PIN address of constant-table entry
CONS = (double word) contains the decimal

fixed-point constant.

This routine converts decimal fixed to
bit string. The decimal fixed point con­
stant is converted to binary fixed, preci­
sion min (31, CEIL ((P-Q) /3,32)). FBIS is
called to perform the conversion from
binary fixed to bit string.

If P-Q = 0, a string of length 1, value
o is generated in CONS. FBSS is called to
process the bit string.

FDIL --~

Input parameters:
PIN address of constant-table entry
CONS = (double word) contains the decimal

fixed-point constant.

This routine converts decimal fixed to
float. The input parameters are trans­
formed into input parameters for FDLL (REXP
= -scale factor). Control is transferred
to FDLL.

FDLL (FDFL) -- QE

Input parameters:
PIN address of constant-table entry
FINT (= CONS (double word)- 1): decimal

integer (prec. 17)
REXP decimal exponent

Output parameter:
CONS = hexadecimal floating-point constant.

This routine converts decimal float
(intermediate) to float. The decimal inte­
ger is converted to binary (precision
56,0), after having been left-aligned and
REXP having been reduced accordingly. The
binary integer may be interpreted as the
fraction of a normalized floating point

242

number with the excess 64 hexadecimal expo­
nent of 78.

If the integer is zero, the result is
set to a true floating-paint zero. If the
integer is not zero and if REXP is greater
than 59, FBLL is called to set the constant
to the highest floating-point number

The normalized hexadecimal number is
multiplied by 10**X (X = REXP) if REXP is
pOSitive, or divided by 10**'X' if REXP is
negative. If the result is zero, i.e., in
the case of an exponent underflow (the
interrupt having been masked off) , FBLL30
is called to set the constant to zero.
FBLL10 is then called to process the
floating-point constant.

Input parameters:
PIN = address of constant-table entry
FINT (= CONS (double word) -1): decimal

integer (precision 17)
REXP = decimal exponent

This routine converts decimal float to
bit string. By means of FDLB the source is
converted to binary integer (precision
min (31 , CEIL (P (Source) *3,32)). FBIS is
called to perform the conversion from
binary fixed to bit string.

Input parameters:
PIN address of constant-table entry
FINT = (=CONS (double word)-1): decimal

integer (precision 17)
REXP decimal exponent

This routine converts decimal float to
binary fixed. By means of FDLL the source
is converted to hexadecimal float, then
control is transferred to FLBI.

This is a secondary entry point of FDLB.

Input parameter:
CONS = (double word) floating-point number

This routine converts float to binary
fixed. The fraction of the floating paint
numer is interpreted as a binary integer
which is to be divided by 16**X(X =
78-hexadecimal exponent). The fraction is
shifted left by RSHI = (78-exp) *4-scale
factor of target. FBII03 is called to
process the binary fixed-point number.

If RSHI is negative or greater than 56,
CONS is set to O. When RSHI is negative,
FERR is also called.

c

c

PL/I PLM 8

IBM Confidential

(-

Input parameters:
PIN address of constant-table entry
CONS = (double word) decimal integer

This routine converts decimal fixed to
binary fixed. If the scale factor of the
target is *0, by means of FDIL, the source
is converted to hexadecimal float. FLBI is
called to perform the conversion from float
to binary fixed.

If the conversion is to binary integer,
the fractional digits of the source are
truncated, and the resulting decimal
integer is converted to binary.

If the resulting binary integer is
greater than or equal to 2**31, FERR. is
called and CONS is zeroized. Otherwise,
FBI I is called to process the binary fixed­
point number.

Routine FDLD --~

Input parameters:
PIN address of constant-table entry
FINT = (= CONS (double word) - 1); decimal

integer (precision 17)
REXP decimal exponent

This routine converts decimal float to
decimal fixed. By means of FDLL, the
source is converted to hexadecimal float.
FLDI is called to perform the conversion
from float to decimal fixed.

DIFL --~

Performs the simulation of a floating-point
division.

Input parameters:
R1 = address of dividend
R2 = address of divisor

Output parameters:
CONS = result of division
R1 = unchanged

~Q!~: 1. Dividend and divisor are assumed
to be positive, normalized, long
floating-point numbers.

2. The divisor is not 0.

3. An exponent underflow cannot
occur.

Tris routine simulates floating-point
division. The exponent of the result is
obtained by subtracting the exponent of the
divisor from that of the dividend and
adding the difference to 64. To get the
result fraction, the fractions of dividend
and divisor are interpreted as two binary
integers, which are divided by means of the

Euclidean algorithm, i.e., the subtraction
method. Before this is done, the integer
belonging to the divisor is multiplied by
16, and the exponent is increased by 1 if
the dividend fraction is greater than the
divisor fraction. If the dividend fraction
is 0, the result is a true 0.

Performs the simulation of a floating-point
multiplication

Input parameters:
R1 address of multiplicand
R2 address of multiplier

Output parameters:
CONS result of multiplication
R 1 unchanged

Note: 1. Both operands are assumed to be
positive, normalized, long
floating-point numbers.

2. An exponent-overflow or underflow
cannot occur.

The sum of the exponents of the two
operands -64 form the exponent of the
intermediate result. To get the fraction
of the intermediate result, the fractions
of both operands are interpreted as two
binary integers (precision 56) that are to
be multiplied. To do this, both integers
are split into two parts (precision of A2
and B2 = 31; preciSion of A 1 and B1 = 25) :

A*B= (A1*2**31+A2) * (B1*2**31+B2)
= A1*B1*2**62+A1*B2*2**31

+ A2*B1*2**31

The result (precision 112) is derived
from shifting the bits and adding the 4
results obtained in the 4 multiplications
(A2 * B2, A2 * B1, A1 * B2, and A1 * B1),

as shown in Figure 1.

The result has a maximum of 56 digits
and is truncated on the right.

To normalize the intermediate result,
the fraction is shifted left as many hexa­
decimal digit positions as necessary, and
the exponent is reduced accordingly.

If one of the two operands is 0, the
result is a true 0.

This routine performs the floating-point
multiplication and division. If no
floating-point feature is available, the
simulation routines MUFL or DIFL are
called, respectively.

Phase PL/ID70 243

PL/I PLM 8

IBM Confidential

112 87 62 56 31
I I ~ I I I L _________ ~ ______ ~ ___ ~ __________ ~ _________ J

r------------------------l
I ~2 * B2 (62 digits) I L ________________________ J

+
r---------------------l
I ~2 * B1 (56 digits) I L _____________________ J

+
r---------------------l
I ~1 * B2 (56 digits) I L _____________________ J

+
r--------------------l
I ~1 * B~ (50 digits) I L ____________________ J

r--------------------T--------------------l
I ~ * B (56 digits) I (truncated) I L ____________________ ~ ____________________ J

Figure 1. Sample Floatin~-point Multi­
plication

244

c

(

PL/I PLM 8

IBM Confidential

This phase processes the first group of 110
statements, GET, PUT, and FORMAT state­
ments. GET and PUT statements are tran­
slated into several macros, each of which
will result in library calls and corres­
ponding parameters. Both macros and param­
eters are generated in accordance with the
elements and options of the statement proc­
essed. Also, macros and parameters that
effect the insertion of values into the
calling sequence at object time are pro­
duced. For FORMAT statements, only param­
eters (format strings) are generated, one
for each label of the FORMAT statement.
All other parts of the text, even if embed­
ded in the statements processed, are
skipped and remain unchan~ed. Error andlor
warning indications are generated on varia­
ble counter overflow, incorrect data, or
incorrect format item.

The input for this phase is obtained from
TXTIN. The input text consists of:

1. Program text that is already translated
into the macro langua~e.

2. 110 statements other than GET, PUT, and
FORMAT as delivered by the compiler
phases C50 - C6S.

3. GET, PUT, and FORMAT statements as
delivered by the compiler phases CSO -
C6S.

4. End-of-program key.

The output for items 1, 2, and 4 above
appears in unchanged form in the output
text. The output for statements of item 3
are transformed as described above.

Characterizations of statements, options,
data list elements, end-of-statements
belonging to 110 statements, and file par­
ameters are obtained from phases CSO - C6S.
These are necessary for the sequential
processing of this phase. The presence of
errors is indicated in the communication
region for use by the dia~nostic phase.
For each library routine occurring, a bit
is set in the library bitstring in the
communication region for use by phase 080.

The input text string is scanned by the
search routine. All elements belonging to

the groups described under items 1 and 2 of
the section Phase Input and Output are
written out unchanged into th~ output text.
When an element of the group described
under item 3 of the section Phase Input and
Outp~~ is found, the search routine branch­
es to the appropriate processing routine.
After a GET, PUT, or FORMAT statement has
been processed, control is transferred back
to the search routine. After the end-of­
program key has been found, the
corresponding library bits of the communi­
cation region are set. Theend-of-program
key is edited and phase 080 is called.

SEARCH -- Q8

After the error indication is cleared and
the buffers (using the input routine) are
filled, elements of the input string are
tested successively. Only elements with
EA, ES, EO, and F-keys are expected to be
found. All elements, except the end-of­
program keys, GET, PUT, and FORMAT
statement keys, are skipped with their
appropriate length and are written using
the skip routine. When a not-skippable key
is found, an appropriate exit out of this
routine is performed.

Subroutines -- QS

STR (~tep_A4L~ If RA (register 1) points
to the name of a variable in the table
space, when this subroutine is entered, the
name of the major structure, the pointer,
or the base will be found if the variable
is an element of a structure, or is con­
trolled or defined. All possible combina­
tions are allowed. If the variable is an
element of a structure, also the offset and
for variables that are controlled or
defined, the attribute byte of the pointer
(with special flag) or of the base is
inserted.

SKIP JSte~~ In this routine, the input
pointer is updated by the number contained
in re~ister RG. The contents of the input
buffers passed by the input pointer are
written using the output routine. Before
the end of the buffer area is reached, the
buffers are always filled, the input poin­
ter is repositioned accordingly (input
routine), and the procedure is continued.

COUN!_(Step F3). This routine increases
the variable counter by one and tests it
for overflow. If an overflow has occurred,
an error indication is stored in an error
byte or a switch.

Phase PL/ID7S 245

PL/I PLM 8

IBM Confidential

This routine has two entries. When entry
is used, the input pointer (Register INPO)
is moved to the next syntactical unit
belonging to the statement itself and all
embedded syntactical units with the keys
Fa, F2, F3, F6, EB, and also end-of­
statements (key EA) are skipped if the
latter are not flagged as belonging to the
I/O statement processed. After each
skipped unit, the input buffers are filled
again if required (input routine). Using
entry 2, the input pointer, is first moved
three bytes ahead before performing the
function as described above.

When a GET or a PUT statement is found, the
search routine branches to this routine.
First, the flag byte (2nd byte of the
statement identifier) which indicates that
the options are saved, and the statement
attribute table are moved into the table
space using the move routine. Macros and
constants are generated for calling the
initialization library routine. These will
be different for file or string options and
for GET or PUT statements and EDIT or LIST
options. If, for a file option, a file
parameter is present which is indicated by
the first byte of the file name, a dummy
name is inserted and the constant is
labeled. Thus, provisions are made for
inserting the actual file name at object
time by code prepared in the phases C50 -
C65. For the string option, the string
variable is examined and passed to the
library routine in a similar manner as for
da ta Ii st elements (as des cribed below) •

After the macros and constants for the
initialization have been written, the flag
byte is examined for the various options if
file option has been found. When options
of a PUT statement are found, macros and
constants are generated for the necessary
library calls and eventually for object
code to insert values at object time. The
format list, if present, is translated into
a format string and written as one or more
constants using the build-format-string
routine. The data list is processed next;
macros and constants for library calls are
generated corresponding to one library call
for each data element. For this purpose,
the characteristic of the current data
element is saved. This indicates whether
it is scalar or array and whether it is the
first element of a group (special ite~ •

For each data element, a DED (data ele­
ment descriptor) is constructed for library
use. If more adjacent data elements have
the same DED, it is constructed and loaded
only once. The construction of the DED and
the name part of the macro belonging to a

246

given data element is different for charac­
ter string constant, declared variable, and
generated variable elements.

For declared variables, the name and
characteristics of the variable are found
in the variable table stored in the table
space. If it is found to be an element of
a structure, controlled and/or defined, the
name part of the macro is modified accord­
ingly using the structure sUbroutine. If
the declared variable is an array, the
macro is modified to produce a suitable
loop. For a generated variable that is
non-integer binary fixed, macros and con­
stants are also generated for the call of a
binary fixed/binary float conversion
library routine.

If more format and data lists follow in
the statement, the above processing of
these lists is repeated as often as
required. The scanning of the statement is
performed by the set input pointer subrou­
tine, which skips and edits in unchanged
form all embedded elements not belonging to
the statement itself.

When a variable counter overflow, incor­
rect data, or incorrect format items are
found, these indications are stored and
suitable warning and/or error codes are
produced in the output after reaching the
end-of-statement key. The error test is
made for counter overflow by the count
routine, for format items by the build
format string routine.

~ote: Auxiliary routines for generating
initialization macros, parameters, and move
macros are: GENIM, GENPAR, and GENMO.
These routines belong to GETPUT, and their
function is described with that routine.

The elements of the format list are succes­
sively translated into elements of a format
constant which is built in the input buf­
fer. When a remote format item is reached,
the partial format constant built until
this point is written out and a construc­
tion of a new constant is started because
of the difference in constant types
(hexadecimal versus address constants). If
the remote format item has a label variable
rather than a label constant, prOVision is
made for inserting the actual value at
object time in a similar manner as for file
parameters (see description above) •

FORMAT -- RB

When a FORMAT statement is found, the
search routine branches to this routine
which causes the format list to be tran­
slated into a format string using the build
format string subroutine. This string is

c

c

(

(

PL/I PLM 8

IBM Confidential

written as a constant (once for each label
of the statement) with the current label as
the name.

INPUT -- RC --------
This routine causes the input buffers to be
filled using the IJKAGI external routine
depending on the current position of the
input pointer (INPO). After control is
transferred from the routine, at least
three of the four input buffers are filled.
I'he input pointer is adjusted.

Output of text is accomplished via this
routine. When the standard entry is used,
register RC must be loaded with the address
and register RD with the length of the

output area. An additional entry (OPWSP)
serves for automatic loading of register RC
with the address of the work space. The
routine uses one output buffer, whose poin­
ter (register OUPO) is adjusted in course
of the output function. For physical out­
put, the IJKAPO external routine is used.

This routine is used by the input and out­
put routines and for moving the pre­
statement into the table space. Moving of
the contents of a source area into a target
area is performed (these areas must not
overlap). Address and length of the source
area are to be loaded into registers RC and
RA, respectively; the address of the target
area into register RB.

Phase PL/ID75 247

PL/I PLM 8

IBM Confidential

PHASE PL/ID80 (GENERATION OF I/O MACROS III -- RF

OPEN, CLOSE, DISPLAY, and record-oriented
I/O statements of the input text string are
selected and replaced by macros that
generate the required library calls and
parameters belonging to these calls. Both
macros and parameters are generated in
accordance to the elements and options of
the statement processed. Macros and param­
eters that effect the insertion of values
into the calling sequence at object time
are also produced. All other parts of the
text, even if embedded in the statements
processed, are skipped and remain
unchanged. After having scanned the input
text, the library bit string in the com­
munication region is completed, address
constants are generated from it and edited
for library use. Error indication is gen­
erated when a counter overflow is detected.

rhe input for this phase is obtained from
TXTIN. The input text consists of:

1. Program text already translated into
the macro language.

2. OPEN, CLOSE, DISPL~Y, and record­
oriented I/O statements as delivered by
the phases C50 - C65.

3. End-of-program key.

The output for the program text and the
end-of-program key (items 1 and 3 above)
appears in unchanged form in the output
text. The output for statements listed
under item 2 above is transformed as
described in the statement processing rou­
tine.

The text output is followed by the
library address constants as described in
theend-of-program processing routine.

Characterizations of statements, options,
file attributes, end-of-statements belong­
ing to I/O statements and file parameters
are obtained from the phases C50 - C65.
rhese are necessary for the sequential
processing of this phase. The presence of
an error is indicated in the communication
region for the use of the diagnostic phase.

Bits set by previous phases and this
phase in the library bit string in the
communication region are used to generate
address constants that cause object-time
loading of the required library routines.

248

Phase Description -- RF

The input text string is scanned by the
search routine. All elements belonging to
the group described under item 1 of the
section Phase Input and Output are written
out unchanged into the output text. When
an element of the group described under
item 2 of the section Phase .Input and Out­
put is found, control is transferred to the
statement processing routine.

After a statement has been processed,
control is transferred back to the search
routine. When an end-of-program key is
found, control is transferred to the EOP
processing routine. When control returns
from this routine, phase E25 or E50 is
called. Which one of these phases is
called depends on whether or not an error
has been indicated in the communication
region.

SEARCB: -- RF

After the buffers (using the input routine)
are filled, elements of the input string
are tested successively. Only elements
with EA, EB, EO, and F-keys are expected to
be found. All elements, except end-of­
program keys of statements to be processed
in this phase, are skipped with their
appropriate length and are edited using the
skip routine. When a not-skippable key is
found, an appropriate exit out of this
routine is made.

Statement processing Routine -- RG-RK

When a statement to be processed by this
phase is found, the search routine branches
to the statement processing routine.
First, the flagbyte (2nd byte of the state­
ment identifier) which describes the state­
ment and the options is saved and the
statement attribute table is moved into the
table space by means of the MOVE routine.
For OPEN-CLOSE and record-oriented state­
ments. the first part of the library par­
ameter is built. For this purpose, an
address constant for the file name is con­
structed. If a file parameter rather than
a file name is present, which is indicated
by the first byte of the file-name symbol,
a dummy name is inserted and the constant
is labeled. This way, provision is made
for inserting the actual file name at
object time by code prepared by the phases
C50 - C65. The first byte (flag byte) of
the library parameter is constructed in
accordance with the stored information of
statement type and options.

c

(

(

PL/I PLlVl B

IBM Confidential

For record-oriented statements, the
length of the record variable and various
address constants belonging to the SET,
FROM, INTO, KEY, and KEYFROH options are
built into the library parameter. These
options may appear in any order in the
original statement, but the corresponding
address constants and also the length of
the record variable have a predetermined
place in the library parameter.

For a declared variable in the options,
the name and characteristics of the varia­
ble are found in the variable table stored
in the table space. If it is found to be
an element of a structure, controlled
and/or defined, the address constant is
modified accordingly using the structure
subroutine. If the variable is found to
have the storage class dynamic, a load­
variable macro is produced which serves for
object-time insertion of the actual
address. Finally, an initialization macro
is generated that will produce the
appropriate library call. The key for the
library routine is obtained from the file
declarations stored from the statement flag
byte, (i.e., second byte of the statement
identifier) •

For an OPEN or CLOSE statement, the
library parameter consists of a series of
combinations of a flag byte, (i.e., charac­
terizing the statement, the options and
whether it is the last element of the
series) , and adjacent-file-address con­
stant. Each element of the series corres­
ponds to an options group of the statement.
When a file parameter or a PAGESIZE option
is found, the series is completed and a new
series is started. For each series, one
single initialization macro is generated
(different variant for OPEN and CLOSE)
which itself will produce the appropriate
library call. For a PAGESIZE option, a
separate library parameter with a move
macro to generate code for object-time
insertion of the actual value, and an ini­
tialization macro for the library call are
produced immediately after the library call
relating to the corresponding file option.

The DISPLAY statement is processed in a
separate section of this phase. First, a
DED (data element descriptor), load-DED­
macro, load-transmit macro, and load-scalar
macro for the given expression are

generated. These are required for the
object-time call of the appropriate library
routine. Building of these elements is
different for character-string constants,
declared or generated variables in much the
same way as for the data-list elements of
stream-oriented data-transmission described
in phase D75. If a REPLY option is pre­
sent, the same procedure is repeated for
the REPLY variable with the library routine
code changed accordingly.

When a variable counter overflow during
the statement processing is found, the
count routine sets a switch which causes
the output of an error indication with the
end-of-statement. For each library rou­
tine, a bit is set in the library bit
string in the communication region for the
use by the end-of-program processing rou­
tine in this phase. The scanning of the
statement is performed by the set INPO
subroutine which skips and writes out in
unchanged form all embedded elements not
belonging to the statement itself.

EOP -- RK RL ------~

When an end-of-program key is found, the
search routine branches to the end-of­
program processing routine. First, the
library bit string in the communication
region is updated. Thereafter, it is
scanned bit by bit from the end to the
beginning, and for each bit set, an address
constant with the same name that corres­
ponds to a library routine is generated.
For the bits corresponding to the conver­
sion routines (numbers 40-55), special
address constants with a single common name
are generated. Having done this, addition­
al bits in the library bit string are set
that correspond to primary entry pOints of
routines whose secondary entry points are
already incorporated. Finally, the rest of
the output text in the output buffer is
edited.

Note: Descriptions of the following sub­
routines used or called for in this phase
can be found in phase D75:

STR
SKIP
SETINl
SETIN2
OPWSP

COUNT
MOVE
INPUT
OUTPUT

Phase PL/ID80 249

PL/I PLM 8

IBM Confidential

rhis phase is used only if one or more
errors are detected in the preceding phases
of the compiler. It collects and sorts the
errors detected by the preceding phases,
and prints these errors in a standard for­
mat. Three kinds of errors are distingu­
ished:

1. Errors causing an interruption of the
compilation;

2. Errors causing the deletion of the
execution but allowing a continuation
of the compilation;

3. Errors allowing a continuation of the
compilation and the execution of the
compiled program.

If errors causing the termination of the
compilation are detected, the diagnostic
phase is the last phase of the compilation.

Format of the Error Codes

Errors detected in a statement are inserted
behind the statement. The end-of-statement
keys, which introduce a sequence of error
codes, are recognized in particular bit
positions in the error-indicator byte. The
format of the error codes behind the end­
of-statement key is shown below.

r---------T---------T---------T---------,
I I Error I I I
IEOS I IndicatorILev.tilo. IB1.No. I l _________ ~ _________ ~ _________ ~ _________ J

r---------T-----T-----T-----T-----'--------
IStatementIERRORIE.No.I ERROR I E.No.I
I No. I I I I I l _________ ~ _____ ~ _____ ~ _____ ~ _____ J _______ _

Error indicator (1 byte) contains
information on whether or not an error is
present and information about the severity
of the error.

Bit 8 = 1 : the sequence of errors contains
at least one error causing the termination
of the compilation.

Bit 9 = 1 : the sequence of errors contains
at least one error not causing a close of
the compilation, but causing the deletion
of the execution. Bit 10 = 1, the sequence
of errors contains at least one error not
causing a close of the compilation and not
causing the deletion of the execution of
the compiled program. (Bit 11 to 16, free
for information in the preceding phases) •

Statement No. The number of the statement
as described in preceding phases.

250

PHASE PL/IE25 (ERROR DIAGNOSTIC) -- SA

ERROR~ A fixed key (EB) indicating an
error. The number of EB's is equal to the
number of errors in a statement.

E.NO. The number which corresponds to an
error comment.

Format of the Error List

During the first diagnostic phase an error
list is printed out. The list has the
format shown in Figure 1.

Logical Flow

The algorithm of this phase is separated
into the following parts:

1. Storage allocation for the phase.
2. Scan of the text string.
3. Storing of error comments.
4. Sorting of error comments.
5. Printing of the error list.

The error messages are printed by
ascending statement-numbers. For printing
the error list, the error comments must be
present in storage. Since only limited
storage capacity is available, only a part
of all error comments can be stored. This
part consists of the error comments that
are needed first in order to begin printing
error messages in sequence of the statement
numbers.

Suppose the maximum number of error
comments that can be in storage at one time
is NX. It must then be determined which NX
different error numbers appear first in the
text string. In the second part of the
phase (scan of the text string), the number
of different errors N is counted.

If the scan is interrupted (i.e., when
the end of the text string is reached or
when til is equal to NX), the comments refer­
ring to the detected error numbers must be
loaded into core storage. Before the need­
ed error comments are loaded into core
storage, all errors comments must be stored
on SYS 001 (storing of error comments). The
needed error comments are then stored from
SYS001 (sorting of error comments) •

If the detected errors are printed
(printing of error list), the interrupted

second part of the program (scan of text
string) is continued until the next NX
different errors or the end of source text
are detected.

--- -~-~ --- -~------- ~-- -- - -- --- -- ~--~ ~-~ ------

c

(

(

PL/I PLl'1 8

IBM Confidential

r---~
'DIAGNOSTIC MESSAGES 1
~---~

5E error no (1) Ib statement no (1) b error comment (1) 1
SE error no (2) Ib statement no (1) b error comment (2) 1
SE error no (3) Ib statement no (1) b error comment (3) 1
• • • • • •
• • • • • •
• • • • • •

SE error no (i) Ib statement no (1) b error comment (1)
SE error no (i+1) Ib statement no (2) b error comment (i+1)
SE error no (i + 2) Ib statement no (2) b error comment (i + 2)
• • • • • •
• • • • • •
• • • • • •

1
1
I
I
I
I
I
I
I

SE error no (~Ib statement no (k) b error comment (m) I
~---~ ,1. Words written in lower case letters in the actual list are replaced by their I
1 actual values. I
, r
,2. The letter 'b' stands for blanks. I
I I
13. The 'error no' consists of three decimal digits. I
I I
14. The 'statement no' consits of four decimal digits. I
I I
IS. The 'error comment' may consist of a maximum of 61 characters. I
I I L ___ J

Figure 1. Format of PL/I Diagnostic Messages

DESCRIPTION OF ROUTINES

TSP
LLENO:
LCOM
PHSP
NO

NX

ERRS
SrNO
ENO
N
AO

co

Length of table space
Length of list LENO
Length of comment
Free space in this phase
Number of error comments that can be
stored at one time
Maximum number of error comments
that can be stored at one time
Bit in the communication region
Statement number
Error number
Counted number of errors
Number of error comments in one
phase overlay
Start address of comment storage
area

BO Start address buffer 1
B1 Start address buffer 2
B2 End address buffer 2

The number of different error comments that
can be in storage at one time depends on
the available storage. The comments may be
stored in the phase storage (the available
storage is then fixed and equal to 4K
reduced by the program space), or they may
be stored in the table storage (the avail­
bale storage will then be the table storage
reduced by the table storage reduced by

space for LENO). Which storage is used for
the comments must be determined in phase
E2S itself, because the table storage is of
variable length.

Text Scan and Error Counting -- SC, SD

Input for phase E2S may consist of:

1. End-of-statement keys with or without
errors.

2. Macro instructions.

3. Statement identifiers with prefixes.

4. Declared and generated variables.

S. Constants.

The error codes, identified by their
key, are searched for in the text string.
The error numbers of all detected errors
together with the statement numbers are
entered in a list LSTNO. The errors are
ordered by sequence of the statement num­
bers which is equal to the sequence of
their occurrence. Each detected error is
noted again in a second table LENO which is
arran~ed by sequence of the error numbers;
each element of the table refers to one
error number.

The number of different errors N is
counted. The scan of the text string is

Phase PL/IE2S 2S1

PL/I PLM 8

IBM Confidential

interrupted if N is equal to NX. The scan
is terminated if the end-of-source-text key
is detected.

~~QE~g~ of_ErrQE_£Q~~~gts =- S§

Before phase G25 is called, the error com­
ments are stored on SYSRES as a part of the
phase (or phase overlay). The comments are
called one at a time and in consecutive
order.

In order to .get the possibility of mul­
tiple use of the same error comment, the
comments must be stored in another place.
If only a small number of different errors
is detected, the corresponding comments are
stored in the table storage. If the number
of different errors is greater than NX, all
comments are stored on SYS001. This part
of the phase is passed only once.

This part is used only if the error com­
ments are stored on SYS001 and not in the
table storage. (Storing of comments in the
table storage is compounded with sorting.)
rhe required error comments (referring to
the detected error numbers) are selected
from SYS001 and stored in the phase stor­
age. The detected error numbers are
entered in the list LENO. After moving an
error comment, the element of the list LENO
is replaced by the new address of the com­
ment.

Printing of the Error List -- SH

rhe error messages must be printed in the
same sequence as the list LSTNO. The error

252

number and the statement number given in
this list must be converted from binary to
decimal representation and inserted in the
error message. The address of the corres­
ponding error comment is given in the list
LENO by the element referring to the error
number. The error comment must also be
inserted in the message.

After printing one message, the next
element of the list LSTNO is taken. The
interrupted scanning of the text string is
continued if the messages for all detected
errors have been printed and the end-of­
source-text key has not been detected.

End of Text String -- SG

This part is called when the end-of-source­
text key is detected. Control is passed to
part 4 (sorting of error comments) unless
the end of the source text occurs before NX
errors are counted in the text string. If
there are less than NX errors, this routine
sorts the error comments from the phase
overlays of phase E25 and stores them
simultaneously in the table space.

HERH -- SJ, SK

The routine HERH is used for skipping with­
in the input text with respect to the buf­
fer boundaries. The buffers are filled
with new text if a buffer boundary is
passed.

LOAD

This is a supervisor macro used in this
phase.

c

(

(

PL/I PLM 8

IBM Confidential

@~~ER~~ DE2CR!~TION OF THE GENERATOR ~HASES (PL/IESO, PL/IE60, PL/IE61)

The objective of the generator phases is
the generation of object code. Before the
generator phase, the algorithm to be rep­
resented by this code is ~iven by macros.
The definition of the different macros is
such that either each macro is associated
with a fixed set of code or the selection
of the needed code is possible only by
means of the operands of the macro.

The input text for the generator phases
contains macros and other information which
is not used in the generator phases.

The code to be insertej for a macro is
partially prepared in the model-instruction
dictionary. Because the macros consist
only of an identification and operands,
additional information about the macros
(not in the macro instructionl is given in
the model-instruction jictionary. The
information in the model-instruction dic­
tionary is either a subroutine in machine
language or a set of predefined instruc­
tions for frequent operations. The predef­
ined instructions are internally defined;
they are decoded by the generator phases.

The generated code consists of machine
instructions and pseudo instructions for
communication to the assembler. Except for
the format of the operands, the machine
instructions referred to are the IBM
System/360 Assembler Language machine
instructions.

Because it is not possible to store the
complete model-instruction dictionary in
the phase, multiple passes over the text
string are necessary to generate the code.
For each pass another part of the model­
instruction dictionary is stored, and the
macros referring to this part can be
processed.

rhe input text string consists of the fol­
lowing elements {the number of bytes of a
part of the element is given in parentheses
over the boxes; the number of bits is given

2.

3.

4.

S'

6.

under the boxes) : 7.

1. Statement identifiers with prefixes

(11
r----T-----------------------,
I EO I I L ____ ~ _______________________ J

EO = statement-identifier key. The
statement identifier is 6 bytes long.

8.

Declared variables

(11 (21
r----T--------T------------- -----,
IF4 I lc I I L ____ i ________ i_____________ _ ____ J

F4 key for attribute table
Ie length of attribute table

Constants

(1) (2)

r----T--------T------------- -----,
IF3 I Ie I I L ____ i ________ ~_____________ _ ____ J

F3 key for constant table
Ie length of constant table

Generated variables

(1) (21
r----T---------------------- -----,
IFO I If I L ____ ~ ___________________________ J

FO key for attribute table
If length of attribute table

End-of-statement

(1) (2) (1) (1)

r---T--------T---T----T----- ---------,
lEA IS bytes IEB I 0 I EB 0 EB 01
L ___ i ________ ~ ___ ~ ____ i _____ _________ J

E~ key for end-of-statement
EB key for error
o error number

Assembler code

(1) (2)

r----T--------T----- -----,
I F6 I 1I I I L ____ i ________ i _____ _____ J

F6 key for assembler code =
1I length of code

END of program

1 byte, hexadecimal FF

Macros

(1) (21 (1) (3) (2) (1)

X'F6'

r---T---T---T-----T----T----'-----
IF2 11m I C IOP(1)IM{1) IB(1) 1---> L ___ i ___ ~ ___ i _____ ~ ____ i ____ J ____ _

Phases PL/IESO-61 (General) 253

PL/I PLM 8

IBM Confidential

(3) (2) (1)
---T-----T----T----'

/ OP (n) / M (n) / B (n) / ___ ~ _____ ~ ____ ~ ____ J

F2
1m
C
OP (1)
M (1)
B (1)

= macro key X'F2'
length of the macro
identification of the macro
operand (1)
modifier for operand (1)
byte 5 from S~MTAB entry
referring to operand (1)

The maximum length of the macros is 200
bytes. The format of the operands may
differ from the format shown above.

MODEL-INSTRUCTION DICTIONARY

The model-instruction dictionary contains
the prepared code and information about the
macro which is not given in the macro
instruction. Each macro refers to the
particular part of the mOdel-instruction
dictionary (referred to as the macro
definitions). A macro definition, or parts
of macro definitions, may be common to more
than one macro.

The cod~ generated from a macro instruction
depends on the identification (operation
code) and the parameters (operands) of the
macro. For a macro definition, the gener­
ated code depends only on the information
contained in operands of the macro instruc­
tion. If a macro definition is common to
more than one macro instruction, the iden­
tification is treated as operand in order
to determine certain instructions which
must be altered to generate the code for a
particular macro.

A macro definiton contains a macro defi­
nition header and one or more model­
instruction sets.

The relation between the operands and
the code generated is given in the first
part of the macro, the macro definition
header. The macro definition header
indicates the model-instruction set t~ be
used. A model-instruction set consists of
code instructions and information which
gives the location where the several oper­
ands of the macro must be inserted into the
code.

The macro definition header contains the
information required for selecting the
needed model-instruction sets. The infor­
mation may be in machine language or may
consist of special instuctions. Since many
conditions and operations used for the

254

selection are unique for most of the
macros, these conditions and operations may
be represented by special instructions.
These special instructions are interpreted
by the generator phases.

Conditions -------
The conditions represented by special
instructions are:

1. Compare

r--T--T----T----'
/C /K / P1 / P2 / l __ ~ __ ~ ____ ~ ____ J

o q 8 16 2q

K
C

= Key for compare = 0
= Condition code

P1, P2 Indicate locations in the
operand list of the macro.

Byte (P1) of the operand list of the
macro is logically compared with byte
(P2). If the result is in accordance

with the condition code C, the condi­
tion is accepted.

2. Compare Immediate

r--T--T----T----'
/C lK / I / P / l __ ~ __ ~ ____ ~ ____ J

o q 8 16 2q

K Key for compare immediate = 1
C Condition code
P Indicates a location in the

operand-list of the macro
I = Immediate data

Byte (P) of the operand list of the
macro is logically compared with I. If
the result is in accordance with the
condition code C, the condition is
accepted.

3. Test Under Mask

r--T--T----T----·'
/e /K I I / P / l __ ~ __ ~ ____ ~ ____ J

o q 8 16 24

K = Key for test under mask = 3
C = Condition code
P = Indicates a location in the operand

list of the macro
I Immediate data.

Byte (P) of the operand list is tested
under the mask I. If the result is in
accordance with the condition code C,
the condition is accepted.

c

c

(

PL/I PLM 8

IBM Confidential

rhe Result Word ----------
rhe work done on a sequence of conditions
is given in a result word W as follows:

1. The initial value for the result word
is zero (W = 0) •

2. The work done on a condition modifies
the result word. If the condition is
satisfied, the result word is multi­
plied by two and then increased by one.

W=2*W+1

If the condition is not satisfied, the
result word is multiplied by two.

W = 2 * W

rhere are additional special instructions
to indicate operations referring to the
operand list of the macro or macro defini­
tion header:

1. Macro subroutine

r----T---------,
I K I A I L ____ J. _________ J

o 8 24

K = Key 01
A Address

The treatment of the macro definition
header is continued in a subroutine
given by the address ~.

2. Set pseudo operand

3.

r----T----T----'
I K II I P I
L ____ J. ____ J. ____ J

o 8 16 24

K Key 02
I Immediate data
P Indicates a location in the operand

list of the macro.

The immediate data I is stored as a
pseudo operand in byte (PI of the oper­
and list.

End-of-Condition Sequence

r-----T-----T-----T------ ---T----'
I K I S I A (1 I I A (2 I IA(n) I L _____ J. _____ J. _____ J. _____ _ _ __ J. ____ J

o 8 16 24

K Key 03
S Address in macro definition

(~',
header

A (1) = Address of
set (1) •

model-instruction

The work done on the condition sequence
is interrupted. The treatment of the
macro is continued in a model­
instruction set.

The subscript of the model-instruction
set is given by the determined result
word. The address of the model­
instruction set has the same subscript.
If A(1) equals 0, no model-instruction
set is taken. After inserting the
determined model-instruction set, the
treatment of the macro is continued in
the macro definition header at the
address S. S = 0 indicates the end of
the macro definition header.

The number of addresses A in the
instruction must be equal to the maxi­
mum value possible for the result word.

4. Take saved result word (1 byte: X'04')

The result word W is taken from the
value saved at an earlier time.

5. End-of-Condition sequence.

Save result word (1 byte: X'OS')

The work done on the condition sequence
is interrupted. The result word deter­
mined in the condition sequence is
saved.

6. Conditional Branch

r----T----T----T----'
I 06 I WX I A I S I L ____ J. ____ J. ____ J. ____ J

o 8 16 24 32

WX = Value to be compared with the
result word

A Address of a model-instruction

S

a)

set
= Address in macro definition

header.

W WX:

The work done on the condition
sequence is interrupted. The treat­
ment of the macro is continued in
the model-instruction set at the
address A. If A equals 0, no model­
instruction set is taken. After
inserting the model-instruction set,
the treatment of the macro is con­
tinued in the macro definition head­
er at the address S. S = 0 indi­
cates the end of the macro defiti­
tion header.

b) W 'I WX:

No action is performed.

phases PL/IE50-6l (General) 255

PL/I PLM 8

IBM Confidential

7. Unconditional Branch

r----T----'
I K I S I l ____ .l. ____ J

o 8 16

K Key 07
S Address in macro definition header.

The treatment of the macro is con­
tinued in the macro definition
header at address S.

Model-Instruction Sets

Model-instruction sets contain prepared
code together with information on where to
insert the several operands or pseudo oper­
ands of the macro. The information on the
operands has the format:

r----T----T----'
I P I M I LM I l ____ .l. ____ .l. ____ J

o 8 16 24

P

LM

M

Indicates a location in the operand
list of the macro.
Indicates the location in the model­
instruction set where the operand has
to be inserted.
Gives a modification or length
specification of the operand

M=K, K~5: the operand has a length of K
bytes.

M=6: the operand has a length of two
bytes and the absolute value of
the operand is taken.

M=7: the operand has a length of one
byte. The operand is decreased
by 1 before it is inserted.

M=19: the operand has a length of three
bytes and must be inserted with
indirect addressing.

M=21: the operand has a length of five
bytes and must be inserted with
indirect addressing.

Some values of P have the following special
meaning:

1.

2.

256

(1) (1) (1)
r----T----T---'-'
I 0 I I ILM I l ____ .l. ____ L ____ J

The immediate data I is inserted at
location LM.

(1) (1)

r----T----'
I 1 IDLM I l ____ .l. ____ J

The location counter of the model­
instruction set is increased by DLM.

3.

4.

5.

6.

(1) (1) (1)

r-----T-----T-----T-----'
I 224 IOP.,C.1 P1 I P2 I
L _____ .l. _____ .l. _____ .l. _____ J

The RR instruction given by the
operation code 'OP.C.' has to be
formed. The registers are given in P1
and P2.

If 208 ~ Pi < 224 (Pi=P1 and/or P2) ,
the immediate data Pi-208 is inserted.

(1) (1) (1) (1) (1)

r-----T-----T-----T-----T-----'
1225 IOP.C.1 P1 I P2 I P3 I L _____ .l. _____ .l. _____ .l. _____ .l. _____ J

The RX, RS, or SI instruction given by
the operation code 'OP.C.' has to be
formed. The operands are given in P1,
P2, and P3. A test is performed on P3
to determine whether or not it must be
indirectly addressed.

If 208 ~Pi <224 (Pi =P1 and/or P2), the
immediate data Pi-208 is inserted.

(1) (1) (1) (1) (1) (1)
r-----T-----T-----T-----T-----T-----'
I 226 IOP.C I P1 I P2 I P3 I P4 I L _____ .l. _____ .l. _____ .l. _____ .l. _____ .l. _____ J

The SS instruction given by the opera­
tion code 'OP.C.' has to be construct­
ed. The operands are given in P1, P2,
P3, and P4.

The operands referring to P3 and P4 a.re
tested to determine whether or not they
must be indirectly addressed.

If 208 ~Pi <224 (Pi = P1 or P2), the
immediate data Pi-208 is inserted.

Behind the information with P ~226, the
code is given. The code has the for­
mat:

(1) (2)
r-----T----------T-----T--- ---T-----'
I L I 11 I IN (1) I lIN (n) I L _____ .l. __________ .l. _____ .l. __ _ _ __ .l. _____ J

L
11
IN (1)

= Key for assembler code F6
= length of the code

Instruction (1)

The format of the instruction is des­
cribed on the following pages.

Not only the operands of the instruc­
tions but all parts of the model­
instruction set may be changed by
inserting operands or pseudo operands
of the macro.

c

c

(

PL/I PLM 8

IBM Confidential

FORMAT OF THE INSTRUCTIONS

The code (the output of the generator
phasesl consists of machine instructions
and pseudo instructions for communication
with the Assembler.

Machine Instructions

Except for the format of the operands,
machine instructions refer to the IBM
System/360 Assembler Language machine
instructions.

rhere are five basic machine formats:

1.

2.

RR format

(11 (1) (11 (1)

r----T----T----T----'
188 IOp.CIR1 IR2 I L ____ ~ ____ ~ ____ ~ ____ J

The first byte contains the key for the
machine instructions, the second byte
contains the operation code, and the
following two bytes contain the oper­
ands.

RX format

(1) (1) (1) (1) (3) (2)

r---T----T---T---T---T---'
188 IOp.CIR1 IX2 I N I M I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ J

R1 = General register containing
first operand

X2 = General register referring to
second operand

N = Name of second operand
M = Modifier for second operand.

3. RS format

(1) (1) (1). (1) (3) (2)

r---T----T---T---T---T---'
188 IOp.CIR1 IR3 IN 1M I L ___ ~ ____ ~ ___ ~ ___ ~ ___ L ___ J

R1 and R3 are general registers

Nand M specify the second operand as
in the RX format.

4. SI format

(1) (1) (1) (1) (3) (2)

r---T-----T-----T---T---T---'
188 IOp.C.IX'OO'112 I N I M I L ___ ~ _____ ~ _____ ~ ___ ~ ___ ~ ___ J

12 is an immediate operand; Nand M
specify the second operand as in the RX
format.

5. SS format

(1) (1) (1) (1) (3) (2) (3) (2)

r---T-----T---T---T---T---T---T---'
188 IOp.C.IL1 IL2 IN1 IM1 IN2 1M2 I L ___ ~ _____ ~ ___ ~ ___ L ___ L __ ~L ___ L ___ J

L, Nand M give the lengths, names, and
modifiers of the operands, respective­
ly. The L1 field contains zeros if
only one length is present.

Pseudo Instructions

1. CNOP

(1) (1) (1) (1)
r----T----T----T----'
I 80 I CO I b I W I L ____ L ____ L ____ L ____ J

The CNOP instruction allows alignment
of an instruction at a specific bounda­
ry without breaking the instruction
flow, should any bytes be skipped for
alignment. CO is the code for the
instruction CNOP.

Operand b specifies to which byte in a
word or double-word the location coun­
ter is to be set. Operand W specifies
whether the byte b is in a word or a
double-word.

2. OC AL3

(1) (1) (3) (2)

r----T----T------------T--------,
180 I C1 I N I M I L ____ L ____ L ____________ L ________ J

N = Name
M == Modifier

3. OC X

(1) (1) (21
r----T----T--------T-----
180 I C2 I L I W L ____ L ____ ~ ________ ~ ____ _

W - hexadecimal constant
L - Length of W

4. os

(1) (1) (2)
r----T----T--------,
180 I C3 I L I L ____ L ____ L ________ J

-----,
I _ ____ J

The OS instruction is used to reserve
storage areas. L is the length of the
storage to be reserved. The OS model
instruction has a meaning different
from the IBM System/360 Assembler
instruction OS. The model instruction
does not align on boundaries.

Phases PL/IE50-6l (General) 257

PL/I PLM S

IBM Confidential

5.

6.

LABEL
(1) (1) (2)

r----T-~--T--------,
ISO IC4 I NAME I l ____ ~ ____ ~ ________ J

The LABEL instruction allows the set­
ting of a label in the program.

BEGIN
(1) (1) P) (1) (2)

r----T----T----T----T--------,
ISO IC5 IB1~ I LIN I l ____ ~ ____ ~ ____ ~ ____ ~ _______ J

The BEGIN instruction marks the begin­
ning of a procedure or block.

B1. - Block number
L - Level number
N - Name of procedure or label

referring to a begin block.

7. END (Procedure or Block)
(1) (1) (2)

r----T----T--------,
ISO IC6 Inot usedl l ____ ~ ____ ~ ______ -_J

S. DC 'length of block'

9.

(1) (1) (1) (1)
r----T----T----T----'
ISO IC7 IBI. IL. I l ____ ~ ____ ~ ____ ~ ____ J

This DC instruction is used to indicate
that the length of the block (4 bytes)
must be inserted into the text string.

B1. = Block number
L. Level number

OPT
(1) (1) (2)

r----T----T--------,
ISO ICS I LABEL I
l ____ ~ ____ ~ _____ ---J

The OPT instruction is used in connec­
tionwith optimizab1e branch instruc­
tions (see description of phase GOO) •
The assembler replaces the OPT instruc­
tion with a machine instruction. rhe
LABEL given by the apr instruction
refers to the branch address in the
following branch instruction.

10. DC A (STATIC)

258

(1) (1) (2)

r----T----T--------,
I SO I C9 I not usedl l ____ ~ ____ ~ ________ J

This DC instruction is used to indicate
that the start address of the static
storage (4 bytes) must be inserted into
the text string.

11. INDIVISIBLE CODE (LI
(1) (1) (1) (1)

r----T----T----T----'
I SO I CA I L1 I L2 I l ____ ~ ____ ~ ____ ~ ____ J

The instruction is used toiridicate
that the following code cannot be
divided by additional instructions. At
object time the length of the. code is
L2 bytes. The length of the assembler
code is L1 bytes.

12. USED REGISTER (R)

(1) (1) (2)
r----T----T--------,
I SO I CB I R I l ____ ~ ____ ~ _______ -J

The instruction is used to inform the
Assembler which registers are used for
indirect addressing.

R = 5 - register 5 is used in addition
to the register used until now.

R = 6 - register 6 is used in addition
to the register used until now.

R = 0 - no register is used~ registers
5 and 6 are free.

Treatment of the Macros

Code cannot be generated from the macros in
one pass over the text string, due to the
size of the model-instruction dictionary.
Therefore, the model-instruction dictionary
is divided into smaller parts. Each part
of the model-instruction dictionary corres­
ponds to one pass over the text string.

Two phases are used for the generation
of code from the macros. In the first
generator phase, one pass is made over the
text string. All further passes are made
in the second generator phase.

THE MACROS AND THE GENERATED CODE

In the following, the different macros are
described in detail. The description of
each macro consists of the following items:

Format of the Macro. OP1, OP2... OP(I)
are operands of the standard format des­
cribed above. Differing operands have
different names. The meaning of the oper­
ands with the use of the macros in special
cases are not described. This section
deals only with the meaning of the operands
that determine the generated code.

The Generated Code. The generated code is
shown for all possible cases. Indirect
addressing is not considered. This is
described under Treatment of Indirect
AddreSSing in the description of phase E60.

c

c

(

PL/I PLM 8

IBM Confidential

The code shown also includes Assembler
instructions (e.g., USED REGISTER) des­
cribed under Pseudo Instructions. In some
cases, the code generated for a macro con­
tains submacros (e.g., SHIFT), which are
described elsewhere in this section.

Fixed Binary Addition

1. Format of the macro

(1) (2) (1) (6) (6) (2)

r---T----T---T---T---T---'
IF2 10012100 IOP110P21s-ql L ___ ~ ____ ~ ___ ~ ___ ~ __ ~ ___ J

2. Generated code

r------T------------T-----------T---'
I IOP1=REGISTERIOP1=STORAGEI I
~------+------------+-----------+---~
lOP 2 I AR R 1 , R2 I L 4, S 1 I I
I =REG. I I AR 4 , R2 I I
I I 1ST 4,S1 I I
~------+------------+-----------~* I
IOP2 I IL 4,S1 I I
I=STOR.IA R1,S2 II\. 4,S2 I I
I I 1ST 4,S1 I I
~------+------------+-----------+---~
IOP2 ISLA R1,s-q IL 4,S1 I I
I=REG. IAR R1,R2 ISLA 4,s-q I I
I I II\.R 4, R2 I I
I I 1ST 4, S 1 I I
~------+------------+-----------i** I
IOP2 ISLA R1,s-q IL 4,S1 I I
I=STOR.IA R1,S2 ISLA 4,s-q I I
I I II\. 4,S2 I I
I I 1ST 4, S 1 I I
~------+------------+-----------+---~
IOP2 ISLA R2,q-s IL 4,S1 1 I
I=REG. IAR R1,R2 ISLA R2,q-s l I
I I I AR 4 , R2 I I
I I 1ST 4,S1 I I
~------+------------+-----------~***I
IOP2 IL 4,S2 /L 4,S2 I I
I=STOR.ISLA 4,q-s ISLA 4,q-s I I
I IAR R1,4 IA 4,S1 I I
I I 1ST 4,S1 I I
~------~------------~-----------~---~ 1* s-q = 0 I
1** s-q > 0 I
1*** s-q < 0 I L ___________________________________ J

OP1 and OP2 may be indirectly
addressed.

Fixed, Binary Subtraction

1. Format of the macro

(1) {2) (1) (6) (6) (2)

r---T----T---T---T---T---'
IF2 10012101 IOP11 0 P21 s -ql L ___ ~ ____ ~ ___ ~ ___ ~ ___ L ___ J

2. Generated code

r------T------------T-----------T---'
I IOP1=REGISTERIOP1=STORAGEI I
~------+------------+-----------+---~
IOP2 I IL 4,S1 I I
I=REG. ISR R1,R2 ISR 4,R2 I I
I I 1ST 4,S1 I I
~------+------------+-----------i* I
IOP2 I IL 4,S1 I I
I=STOR.IS R1,S2 IS 4,S2 I I
I I 1ST 4,S1 I I
~------+------------+-----------+---i
IOP2 ISLA R1,s-q IL 4,S1 1 I
I=REG. ISR R1,R2 ISLA 4,s-q I I
I I ISR 4,R2 I I
I I I ST 4 , S 1 I I
~------+------------+-----------i** I
IOP2 ISLA R1,s-q IL 4,S1 I I
I=STOR.IS R1,S2 ISLA 4,s-q I I
I I IS 4, S2 I J
I I 1ST 4, S1 I I
~------+------------+-----------+---i
IOP2 ISLA R2,q-s IL 4,S1 I I
I=REG. ISR R1,R2 ISLA R2,q-s I I
I I I SR 4 , R2 I I
I I 1ST 4,S1 I I
~------+------------+-----------~***I
IOP2 IL 4,S2 IL 4,S2 I I
I=STOR.ISLA 4,q-s ISLA 4,q-s I I
I tAR R 1 , 4 I S 4 , S 1 I I
I I ILCR 4,4 I I
I I 1ST 4, S 1 I I
~------~------------~-----------~---i 1* s-q = 0 I
1** s-q > 0 I
1*** s-q < 0 I L ___________________________________ J

OP1 and OP2 may be indirectly
addressed.

Fixed Binary Multiplication with Overflow
Check

1. Format of the macro
{1) (2) (1) (6) (6)

r---T----T---T---T---'
IF2 10010102 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J

2. Generated code
r-----T-----------------T-----------------,
I IOP1=REGISTER IOP1=STORAGE I
~-----+-----------------+-----------------~
I ILR 5,R2 IL 5,S1 I
IOP2= IUSED REGISTER (0) I USED REGISTER (0) I
IREG. IMR 4,R1 IMR 4,R2 I
I ISLDA 4,32 ISLDA 4,32 I
I I USED REGISTER (0) I USED REGISTER (0) I
I I LR R 1 , 4 I ST 4, S 1 I
~-----+-----------------+-----------------1
I IL 5,S2 IL 5,S2 I
IOP2= fUSED REGISTER (0) I USED REGISTER (0) I
ISTOR.IMR 4,R1 1M 4,S1 I
I ISLDA 4,32 ISLDA 4,32 I
I IUSED REGISTER(O) I USED REGISTER (0) I
I ILR R1,4 1ST 4,S1 I L _____ L _______ --________ L _________________ J

OP1 and OP2 may be indirectly addressed.

Phases PL/IESO-6l (General) 259

PL/I PLM 8

IBM Confidential

~ixed Binary DivisioU

1. Format of the macro

(1) (2) (1) (6) (6) (2)
r---T----T---T---T---T---'
IF2 10012103 IOP110P21P+11 L ___ L ____ L ___ L ___ L ___ L ___ J

2. Generated code

r-----T-----------------T-----------------,
I IOP1 = REGISTER IOP1 = STORAGE I
~-----+-----------------+-----------------~
I ISR 5,5 ISR 5,5 I
I I USED REGISTER (5) I USED REGISTER (5) I
IOP2= ILR 4,R1 IL 4,S1 I
IREG. ISRDA 4,P+1 ISRDA 4,P+1 I
I I USED REGISTER (0) I(JSED REGISTER (0) I
I IDR 4,R2 lOR 4,R2 I
I I USED REGISTER (0) I USED REGISTER (0) I
I ILR R1,5 1ST 5,S1 I
~-----+-----------------+-----------------~
I ISR 5,5 ISR 5,5 I
I I USED REGISTER (5) I (JSED REGISTER (5) I
IOP2= ILR 4,R1 IL 4,S1 I
ISTOR.ISRDA 4,P+1 ISRDA 4,P+1 I
I IUSED REGISTER (0) IUSED REGISTER (0) I
I ID 4,S2 ID 4,S2 I
I IUSED REGISTER (0) IUSED REGISTER (0) I
I ILR R1,5 1ST 5,S1 I L _____ L _________________ L-________________ J

OP1 and OP2 may be indirectly addressed.

FIXED BINARY NEGATION

1. Format of the macro

(1) (2) (1) (6)

r---T----T---T---'
IF2 1000AI04 IOP11 L ___ L ____ L ___ L ___ J

2. Generated code

r--------------T-------------,
IOP1 = REGISTERIOP1 = STORAGE I
~--------------+-------------i
1 IL 4,S1 I
I LCR R 1, R 1 I LCR 4 , 4 I
I 1ST 4,S1 I L ______________ L _____________ J

OP1 may be indirectly addressed.

Fixed Binary Assignment with Overflow Check

1. Format of the macro

(1) (2) (1) (6) (6) (2) (2) (2)
r---T----T---T---T---T-----T---T---'
IF2 10016105 IOP110P21 LABELIX IY I L ___ L ____ L ___ L ___ L ___ L _____ L ___ L ___ J

2. Generated code

a. Y ~ 0, Y ~ X

260

r-----T------------T-----------------,
I I OP1=REGISTERI OP1=STORAGE I
~-----t------------+-----------------~
IOP2= ILR R1,R2 ISLA R2,y I
IREG ISLA R1,Y ISRA R2,X I
I ISRA R1,X 1ST R2,S1 I
~-----+------------+-----------------~
IOP2= IL R1,S2 IL 5,S2 I
ISTOR ISLA R1,Y IUSED REGISTER (0) I
I ISRA R1,X ISLA 5,Y I
I I ISRA 5,X I
I I 1ST 5,S1 I L _____ L ____________ L _________________ J

All shift instructions are deleted if
the number to be shifted is O.

OP1 and OP2 may be indirectly
addressed.

b. Y ~ 0, Y < X

r-----T---------------T---------------,
I IOP1=REGISTER I OP1=STORAGE I
~-----+---------------+---------------~
I ILR 4,R2 I LPR 4,R2 I
I I LPR R 1 , 4 I SLA 4, Y I
IOP2= ISLA R1,Y I SRA 4,X I
IREG. ISRA R1,X I LTR R2,R2 I
I ILTR 4,4 I BC 10,LABELI
I IBC 10,LABELI LCR 4,4 I
I ILCR R1,R1 I LABEL: I
I I LABEL: I ST 4,S1 I
~-----+--~------------+---------------i
I IL 4,S2 I L 4,S2 I
I ILPR R1,4 I LPR 5,4 I
IOP2= ISLA R1,y I SLA 5,Y I
ISTOR.ISRA R1,X I SRA 5,X I
I ILTR 4,4 I LTR 4,4 I
I IBC 10,LABELI BC 10,LABELI
I ILCR R1,R1 I LCR 5,5 I
I I LABEL: r LABEL: I
I I I ST 5, S 1 I
L _____ L ______________ ~L---------------J

c. Y < 0

r-----T---------------l'---------------,
I IOP1=REGISTER I OP1=STORAGE I
~-----+---------------+---------------i
I ILR 4,R2 I LPR 4,R2 I
I ILPR R1,4 I SRA 4,X-Y I
IOP2= ISRA R1,X-Y I LTR R2,R2 I
I=REG.ILTR 4,4 I BC 10,LABELI
I IBC 10,LABELI LCR 4,4 I
I ILCR R1,R1 I LABEL: I
I I LABEL: i ST 4,S1 I
~-----+---------------+---------------~
I IL 4,S2 I L 4,S2 I
I ILPR R1,4 I LPR 5,4 I
IOP2= ISRA R1,X-Y I SRA 5,X-Y I
I S TOR. I LTR 4 , 4 I LTR 4, 4 I
I IBC 10,LABELI BC 10, LABELl
I I LCR R 1 , R 1 I LCR 5,5 I
I I LABEL: I LABEL: I
I I I ST 5,S1 I L _____ L _______________ L _______________ J

(

(

PL/I PLM 8

IBM Confidential

1. Format of the macro

(1) (2) (1) (6) (6) (2) (2)
r---T----T---T---T---T-----T---'
IF2 10014106 IOP110P21 LABELIX I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ____ -~ ___ J

2. Generated code

a. X < 0

r-----T--------------T-------------,
I IOP1=REGISTER IOP1=STORAGE I
~-----+--------------t-------------i
IOP2= ILR R1,R2 ISLA R2,-X I

~~~~:-t:~--~~~::----t:~---~~~:~---~ 
I IL R1,S2 IL 5,S2 I 
IOP2= )SLA R1,-X ISLA 5,-X I 
ISTOR.I 1ST 5,S1 I L _____ ~ ______________ ~ _____________ J 

b. X = 0 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 

t~;2:-t~;---;1~;2----t~;---;2~~1---1 
I REG. I I I 
~-----+--------------t-------------~ 
IOP2= IL R1,S2 IL 5,S2 I 
ISTOR.I 1ST 5,S1 I 
L _____ ~ _________ -----~-------------J 

c. X > 0 

r-----T---------------T---------------, 
I IOP1=REGISTER I OP1=STORAGE I 
~-----+---------------t---------------i 
I ILR 4,R2 I LPR 4,R2 I 
I ILPR R1,4 I SRA 4,X I 
IOP2= ISRA R1,X I LTR R2,R2 I 
I REG. I LTR 4 , 4 I BC 10, LABEL I 
I IBC 10,LABELI LCR 4,4 I 
I I LCR R 1 , R 1 I LABEL: I 
I I LABEL: I ST 4,S1 I 
~-----t---------------t---------------i 
I IL 4,S2 1 L 4,S2 I 
I I LPR R 1 ,4 I LPR 5, 4 I 
IOP2= ISRA R1,X I SRA 5,X I 
ISTOR ILTR 4,4 I LTR 4,4 I 
I I BC 10 , LABEL I BC 10, LABEL I 
I ILCR R1,R1 I LCR 5,5 I 
I I LABEL: I LABEL: I 
I I I ST 5,S1 I L _____ ~ _______________ ~ _______________ J 

OP1 and OP2 may be indirectly 
addressed. 

(' [ixed Binary Comparison 

1. Format of the macro 

(1) (2) (1) (6) (6) (2) 
r---T----T---T---T---T---' 
IF2 10012108 IOP110P21 s -ql L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

r-----T----·--------T------------T----' 
I IOP1=REGISTER I OP1=STORAGEI 1 
~-----t-------------t------------+----~ 
IOP2 I I L 4, S1 I I 

~~~~:-+:~---~~~~~---t-:~---~~~~--~ * I 
IOP2 J I L 4,S1 I I
ISTOR IC R1,S2 I C 4,S2 I I
~-----+-------------+------------+----~
I IlL 4, S1 I 1
IOP2 ISLA Rl,s-q I SLA 4,s-q I I
IREG. ICR Rl,R2 I CR 4,R2 1 I
~-----+-------------t------------~ ** I
ION IlL 4,Sl 1 1
ISTOR.ISLA Rl,s-q ISLA 4,s-q I I
I I C R 1 , S2 I C 4 , S2 1 I
~-----+-------------+------------+----~
IOP2 I I L 4,Sl I I
IREG. ISLA R2,q-s I LSA R2,q-sl I

~-----t:~---~~~~~---+-:~---~~~~--~ ***1
IOP2 I L 4, S2 I L 4, S2 I l
ISTOR SLA 4,q-s I SLA 4,q-s I I
I ICR R1,4 I L 5,S1 I I
I I I CR 4,5 I I
~-----~-------------~------------~----i 1* s-q = 0 1
1** s-q > 0 ~
1*** s-q < 0 1 L _____________________________________ J

Fixed_Binary Exponentiation

1. Format of the macro
(1) (2) (1) (6) (6) (6)

r---T----T---T---T------T---'
IF2 10016107 IX ITARGETIN 1 L ___ ~ ____ ~ ___ ~ ___ ~ ___ ---~ ___ J

2. Generated code
LA 1,X
LA 3,N
LA 4, TARGET
L 15,N'95'
BALR 14,15

X and TARGET may be indirectly
addressed.

Fixed_Binary Multiplication without
Overf!.~Check

1. Format of the macro
(1) (2) (1) (6) (6)

r---T----T---T---T---'
IF2 10010109 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J

Phases PL/IE50-61 (General) 261

PL/I PLM 8

IBM Confidential

2. Generated code

r-----T-------------T---------------.--,
I IOP1=REGISTER IOP1=STORAGE I
~-----+-------------+-----------------~ I I IL 5,Sl I
IOP2= I IUSED REGISTER (0) I
IREG. IMR Rl,R2 IMR 4,R2 I
I I I USED REGISTER (0) I
I I 1ST 5,Sl I
~-----+-------------+-----------------~
I I IL 5,Sl . I
IOP2= I IUSED REGISTER (0) I
ISTOR.IM Rl,S2 1M 4,S2 I
I I 1ST 5,Sl I L _____ ~ _____________ ~ _________________ J

OP' and OP2 may be indirectly
addressed.

SIGN, Fixed Binary

1. Format of the macro

(1) (2) (1) (6) (6) (2)

r---T----T---T---T---T-----'
IF2 1001210A IOP11 0 P21LABELI L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ _____ J

2. Generated code

r-----T--------------T--------------,
I IOPl = REGISTERIOPl = STORAGE I

~-----+--------------+--------------~
I ILTR Rl,R2 ILTR 5,R2 I
IOP2= IOPT LABEL IOPT LABEL I
IREG. IBC 8,LABELIBC 8,LABELI
I ILA Rl,l ILA 5,' I
I I OPT LABEL IOPT LABEL I
I BC 2,LABEL BC 2,LABELI
I I LCR R 1 , R 1 I LCR 5, 5 I
I I LABEL I LABEL I
I 1ST 5,Sl I
~-----+--------------+--------------~
I IL Rl,S2 IL 5,S2 I
I ILTR Rl,Rl ILTR 5,5 I
IOP2= IOPT LABEL IOPT LABEL I
ISTOR IBC 8,LABELIBC 8,LABELI
I LA R 1 , 11 LA 5, 1 I
I I OPT LABEL IOPT LABEL I
I IBC 2,LABELIBC 2,LABELI
I ILCR Rl,Rl ILCR 5,5 I
I I LABEL I LABEL I
I I 1ST 5,S1 I L _____ ~ ______________ ~ ______________ J

OPl and OP2 may be indirectly
addressed.

~~~ixed Bina~ 

1. Format of the macro 

(1 ) (2) (1) (6) (6) 
r---T----T---T---T---' 
IF2 1001010B IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

262 

2. Generated code 

r-----T--------------T----------------, 
I IOPl = REGISTERIOP1 = STORAGE I 
~-- .... --+--------------+-----·-----------1 
IOP2= I I LPR R2,R2 I 
IREG ILPR R2,Rl 1ST R2,Sl I 
~-----+------.-------+----------------~ 
IOP2 IL Rl,S2 JL 5,S2 I 
ISTOR.ILPR Rl,Rl IUSED REGISTER (0) I 
I I I LPR 5,5 I 
I I 1ST 5,S1 I L _____ ~ ______________ ~ ____ ... ----... ------J 
OFl and OP2 may be indireptly 
addressed. 

Fixed Decimal Addition 

1. Format of the macro 

(1) (2) (1) (6) (6) (6) (1) (1) 

(1) (1) (1) (1) 

---T---T---T---T---' 
IA IB IS IL I ___ ~--~---~---~---J 

2. Generated code 

SHIFT 
SHIFT 
AP 

GWO (16) ,S2 (L2),A * 
GWO+16 (16) ,S3 (L3) ,13 •• 
GWO (16) ,GWO+16 (16) •• 

* if A=O, OP2,L2,A is changed to 
OP3,L3,B. 

** if B=O, the instructions are 
replaced by AP GWO (16) , S3 (L3) • 

if S = X'30': 

ZAP Sl (L) ,GWO (16) else: 
MIlC Sl (L) ,GWO+16-L 

OP1, OP2. and OP3 may be indirectly 
addressed. SHIFT is a submacro des­
cribed below. 

SHIFT X (LX) , Y(LYI, Z 

1. Sequence of the operands if the subma-' 
cro is called: 

(6) (6) (1) (1) (1) 

r---T---T---T---T---' 
IX IY ILX ILY IZ I L ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

T = TRUN «Z-l) /2) 

a. Z = 0: 

ZAP X (LX) , Y (LY) 

c 



( 

( 

(\ 

PL/I PLM 8 

IBM Confidential 

b. Z < 0 and odd and ITI<LY: 

MVO X (LX) ,!{ (LY+T) 
MVN X+LX-1 (1) ,Y+LY-1 

c. Z < o and even ana ITI<LY: 

MVO X (LX) ,!( (LY+T) 
MVN X+LX-1(1) ,Y+LY-1 
MVO X (LX) ,x: (LX-1) 

d. Z > o and odd and T<LX: 

MVO X (LX-TI I Y (LY) 
XC X+LX:-T-1 (T+1) ,X+LX-T-1 
MVN X+LX-1 (1) ,Y+LY-1 

e. Z > o and even and T<LX: 

MVO X (LX -TI , Y (LY) 
XC X+LX-T-1 (T+ 1) ,X+LX-T-1 
MVN X+LX-1 (1) ,Y+LY-1 
MVO X (LX) ,x: (LX-1) 

f. ez < 0 and I TI >Ly) or 
T>LX) 

ZAP X (LX) ,=0 (1) 

Fixed Decimal Subtrection 

1. Format of the macro 

(1) (2) (1) (6) (6) (6) 

(Z > 0 

(1) (1) 

and 

r---T----T---T---T---T---T---T---l---
IF2 1001CI11 IOP110P210P31L2 IL3 I l ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J __ _ 

(1) (1) (1) (1) 
---T---T---T---T---' 

IA IB IS IL I ___ l ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

SHIFT 
SHIFT 
SP 

GWO (16) ,S2 (L2),A 
GWO+16 (16) ,S3 (L3) B * 
GWO(16) ,GWO+16(16) * 

if S = X'30' 

ZAP S1 (Ll ,GWO (16) 

all other cases: 

MVC S1 (L) ,GWO+16-L 

P01, P02, and OP3 may be indirectly 
addressed. 

The submacro SHIFT is described after 
FIXED DECIMAL ADDITION. 

* if B=O, the instructions will be 
replaced bytSP GWO (16) ; S 3 (L3) •• 

Fixed Decimal MultipI~cation 

1. Format of the macro 

(1) (2) (1) (6) (6) (6) (1) (1) (1) (1) 

r--T----T---T---T---T---T---T---T--T--' 
IF21001BI12 IOP 1iOP210P31L2 IL3 IL IS I l __ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ __ ~ __ J 

2. Generated code 

Z1\.P GWO (16) ,S2 (L2) 
MP GWO(16),S3(L3) 

if S=X' 30' 

ZAP S1 (L) ,GWO (16) 

all other cases: 

MVC S1(L) ,GWO+16-L 

OP1, OP2, and OP3 may be indirectly 
addressed. 

The submacro SHIFT is described after 
DECIMAL FIXED ADDITION. 

Fixed Decimal Division 

1. Format of the macro 

(1) (2) (1) (6) (6) (6) (1) (1) (1) 

r---T----T---T---T---T---T---T-~-T---' 

IF2 10019113 IOP110P210P31L2 IAL31 A I l ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

SHIFT 
DP 
MVC 

GWO (L3+8) , S2 (L2) ,A 
GWO (L3+ 8) , S3 (3) 
S1 (8) ,GWO 

OP1, OP2, and OP3 may be indirectly 
addressed. 

The submacro SHIFT is described after 
DECIMAL FIXED ADDITION. 

Fixed Decimal Negation, Operand 

1. Format of the macro 

(1) (2) (1) (6) (1) 
r---T----T---T---T---' 
IF2 1000BI14 IOP11L I L __ -L ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

XI S1+L-1,X'01' 

OP1 may be indirectly addressed. 

Fixed Decimal Assignment 

1. Format of the macro 

Phases PL/IESO-6l (General) 263 



PL/I PLM 8 

IBM Confidential 

(11 (21 (1) (6) (6) (1) (11 (1) (1) (1) 

r--T----T---T---T---T---T---T--T--T---' 
IF210015115 IOP110P21L1 IL2 IA I -IS I L __ ~ ____ ~ ___ ~ ___ ~ ___ ~ __ ~ ___ ~ __ ~ __ ~ ___ J 

2. Generated code 

a. S '" 4 : SHIFT S 1 (L 11 , S2 (L21 , A 

b. S=4,A<0: 
SHIFT GWO (16) ,82 (L2) ,A 
ZAP 81 (L1) ,GWO (16) 

c. S=4,A>0: A is odd: 
SHIFT GWO (161 ,S2 (L2) ,A 
ZAP S1 (L1) ,GWO (16) 

d. S=4,A>0: A is even: 
SHIFT GWO (16) ,S2 (L2) ,A+1 
ZAP GWO+16-L1 (L1) ,GWO (16) 
MVO 81 (L1) ,GWO+16-L1 (L1-1) 
MVN 1+L1-1 (1) ,GWO+15 

OP1 and OP2 may be indirectly 
addressed. 

[ixed Decimal Negation, 2 Operands 

1. Format of the macro 

(1) (2) (1) (6) (6) (1) (1) 
r---T----T---T---T---T---T---' 
IF2 10012116 IOP110P21L1 IL2 I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

ZAP 
XI 

81 (L1) ,82 (L2) 
S1+L1-1,X'01' 

OP1 and OP2 may be indirectly 
addressed. 

Fixed Decimal Exponentiation 

1. Format of the macro 

2. 

264 

(1) (2) (1) (6) (6) (6) (2) (2) 

r--T----T---T---T---T---T-----T-------, 
IF21001CI17 I X ITRGI N IDED XIDED TRGI L __ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ _____ ~ _______ J 

Generated code 

LA 1,X 
LA 3,N 
LA 4,TARGET 
USED REGISTER (5) 
LA 2,DED X 
LA 5,DED TARGET 
L 15,N'94' 
BALR 14,15 
X and TARGET may be indirectly 
addressed. 

Fixed Decimal Comparison 

1. Format of the macro 

(1) (2) (1) (6) (6) (6) (1) (1) 
r---T----T---T---T---T---T---T---'-----
IF2 1001CI18 1- IOP210P31L2 IL3 I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J ____ _ 

(1) (1) (1) (1) 

----T---T---T---T---' 
I A I B I SIC I ____ L ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

88IFT 
S8IFT 
CP 

GWO (16) ,S2 (L2),A 
GWO+16 (16) ,S3 (L3) ,B 
GWO (16) ,GWO+16 (16) 

If A=B, the following code is generat­
ed: 

CP S2 (L2) , S3 (L3) 

OP2 and OP3 may be indirectly 
addressed. 

SIGN, Fixed Decimal 

1. Format of the macro 

(1) (2) (1) (6) (6) (2) 
r---T----T---T---T---T-----' 
I F2 1001211A I OP11 OP21 LABELl L __ ~ ____ ~ ___ ~ ___ ~ ___ ~ _____ J 

Toe modifier of OP2 must be increased 
by L-1 (L= length of OP1) if the macro 
is used for the SIGN function. 

2. Generated code 

r------------------T------------------, 
IOP1=REGISTER IOP1=STORAGE I 
~------------------+------------------~ 
18R R1,R1 ISR 5,5 I 
~ZAP S2 (1) ,S2 (1) I ZAP S2 (1) ,S2 (1) I 
IOPT LABEL IOPT LABEL I 
IBC 8, LABEL IBC 8,LABEL I 
ILA R1,1 ILA 5,1 I 
IOPT LABEL IOPT LABEL I 
IBC 2, LABEL IBC 2, LABEL I 
ILCR R1,R1 ILCR 5,5 I 
I LABEL I LABEL I 
I 1ST 5,S1 I L __ ---_____________ ~ __________________ J 

OP1 and OP2 may be indirectly 
addressed. 

c 

c 



( 

( 

PL/I PLlv1 8 

IBM Confidential 

1. Format of the macro 

(1) (2) (1) (6) (6) (2) 

r---T----T---T---T---T---' 
IF2 1001211B IOP110P21 L r L ___ ~ ____ L ___ L ___ L ___ L ___ J 

L is the length of the operands. 

2. Generated code 

ZAP OP1 (L) ,OP2 (L) 
NI OP1+L-1,X'FE' 

OP1 and OP2 may be indirectly 
addressed. 

Short Float Addition 

1. Format of the macro 

(1 ) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010120 IOP110P21 L ___ L ____ L ___ L ___ L ___ J 

2. Generated code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE 1 
~-----+--------------+-------------~ 
I 1 ISTD O,GNO 1 
IOP2= IAER R1,R2 ILE 0,S1 I 
IREG. 1 IAER 0,R2* I 
I I 1ST 0,S1 ~ 
1 1 ILD O,GNO 1 
~-----+--------------+-------------~ 
1 1 ISTD O,GNO 1 
I I ILE 0,S1 I 
IOP2= tAE R1,S2 IAE 0,S2 I 
ISTOR. ISTE 0,S1 1 
I ILD O,GNO J L _____ L ______________ L _____________ J 

*R2 mu.st not be O. 

OP1 and OP2 may be indirectly 
addressed. 

Short Float SUE!Ee£tio~ 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010121 IOP110P21 L ___ L ____ L ___ L ___ L ___ J 

2. Generated code 

r-----T--------------T-------------, 
1 IOP1=REGISTER IOP1=STORAGE I 

t-----t--------------ts;~--O~;;o---1 
IOP2= ISER R1,R2 ILE 0,S1 I 
IREG. I ISER 0,R2* 1 
1 I 1 STE 0, S 1 1 
1 I I LD 0, GWO 1 
~-----+--------------+-------------~ 
J 1 ISTD O,GNO 1 

I I ILE 0,S1 I 
OP2= ISE R1,S2 ISE 0,S2 I 

1 STORe I 1 STE 0,S1 I 
I 1 I LD 0, GNO I L _____ L ______________ L _____________ J 

*R2 must not be O. 

OP1 and OP2 may be indirectly 
addressed. 

Short Float Multiplication 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010122 IOP110P21 L ___ L ____ L ___ L ___ L ___ J 

2. Generated code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----+--------------+-------------~ 
I I ISTD O,GNO I 
IOP2= IMER R1,R2 ILE 0,S1 I 
IREG. I 1 MER 0,R2* I 
I I 1ST 0,S1 1 
1 1 I LD 0, GNO 1 
~-----+--------------+-------------~ 
I I ISTD O,GNO I 
I I ILE 0,S1 I 
IOP2= IME R1,S2 IME 0,S2 1 
ISTOR.I ISTE 0,S1 I 
I I ILD O,GNO I L _____ L ______________ L _____________ J 

*R2 must not be O. 

OP1 and OP2 may be indirectly 
addressed. 

Short Float Division 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010123 IOP110P21 L ___ L ____ L ___ L ___ L ___ J 

Phases PL/IE50-6l (General) 265 



PL/I PLM 8 

IBM Confidential 

2. Generated code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----t--------------t-------------~ 
I I I STD 0, GWO I 
IOP2= IDER R1,R2 ILE 0,S1 I 
IREG. I IDER 0,R2 I 
I I ISTE 0,S1 I 
I I ILD O,GWO I 
~-----t--------------t------------~~ 
I I ISTD O,GWO I 
I I ILE 0,S1 I 
IOP2= DE R1,S2 IDE 0,S2 I 
ISTOR.I ISTE 0,S1 I 
I I ILD O,GWO I L _____ ~ ______________ ~ _____________ J 

* R2 must not be O. 

OP1 and OP2 may be indirectly 
addressed. 

1. Format of the macro 

(1) (2) (1) t6) (6) 

r---T----T---T---T---' 
IF2 10010124 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----t--------------t-------------~ 
IOP2= ILCER R1,R2 ISTE R2,S1 I 
IREG. I IXI S1,X'80'1 
~-----t--------------t-------------~ 
I I MVC GWO (4) , S21 MVC S1 (4) , S21 
IOP2= IXI GWO,X'80'IXI S1,X'80'1 
ISTOR.ILE R1,GWO I I L _____ ~ ______________ ~ _____________ J 

OP1 and OP2 may be indirectly 
addressed. 

Short Float Negation, Operand 

1. 

2. 

266 

Format of the macro 

(1) (2) (1) (6) 

r---T----T---T---' 
IF2 1000AI25 IOP11 L ___ ~ ____ ~ ___ ~ ___ J 

Generated code 

r--------------T-------------, 
IOP1=REGISTER IOP1=STORAGE I 
~--------------t-------------~ 
I I I 
ILCER R1,R1 IXI S1,X'80' I L ______________ ~ _____________ J 

OP1 may be indirectly addressed. 

Short Float Assignment 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010126 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ __ J 

2. Generated code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----t--------------t-------------~ 
IOP2= I LER R 1 , R2 I STE R2, S 1 I 
I REG. I I I 
~-----t--------------t-------------~ 
IOP2= I LE R 1, S2 I MVC S1 (4) , S21 
I STORe I I I L _____ ~ ______________ ~ _____________ J 

OP1 and OP2 may be indirectly 
addressed. 

Short Float Exponentiation (Integer) 

1. Format of the macro 

2. 

(1) (2) (1) (6) (6) (6) 
r---T----T---T---T------T---' 
IF2 10016127 I X I TARGET I 1NI L ___ ~ ____ L ___ L ___ ~ ______ L ___ J 

Generated code 

LA. 1, X 
LA. 2, N 
LA. 3, TARGET 
L 15,N'92' 
BA.LR 14,15 

X and TARGET may be indirectly 
addressed. 

Short Float Comparison 

1. Format of the macro 
(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010128 IOP110P21 L ___ ~ ____ L ___ ~ ___ ~ ___ J 

2. Generated code 
r-----T--------------T-------------, 
I IOP1=REGISTER I·OP1=STORAGE I 
~-----t--------------t-------------~ 
I I I STD 0, GWO I 
IOP2= ICER R1,R2 ILE O,S1 I 
I REG. I I CER 0,R2* I 
I I ILD O,GWO I 
~-----t--------------t-------------~ 
I I ISTD O,GWO I 
IOP2= I ILE 0,S1 I 
ISTOR.ICE R1 ICE 0,S2 I 
I I ILD O,GWO I L _____ ~ ______________ ~ _____________ J 

*R2 must not be O. 

OP1 and OP2 may be indirectly 
addressed. 

c 



( 

(' 

PL/I PLl'4 8 

IBM Confidential 

~!oat General Exponentiation 

1. Format of the macro 

(1) (2) (1) {6) (6) (6) 
r---T----T---T---T------T---' 
IF2 10016129 I X I TARGET I Y I L ___ ~ ____ ~ ___ ~ ___ ~ ______ ~ ___ J 

2. Generated code 

LA 1,Y 
LA 3, TARGET 
LA 2,X 
L 15,N'96' 
BALR 14,15 

1. Format of the macro 

(1) (2) (1) (6) (6) (2) 
r---T----T---T---T---T-----' 
IF2 1001212A IOP110P21LABELI L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ _____ J 

2. Generated code 

r-----T--------------T--------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----+--------------+--------------~ 
I I SR R 1 , R 1 I SR 5,5 I 
I ILTER R2,R2 ILTER R2,R2 I 
I I OPT LABEL I OPT LABEL I 
IOP2= IBC 8,LABELIBC 8,LABELI 
I REG. I LA R 1,1 I LA 5,1 I 
I IOPT LABEL IOPT LABEL I 
I IBC 2,LABELIBC 2,LABELI 
I lLCR R1,R1 ILCR 5,5 I 
I fLABEL I LABEL I 
I I 1ST 5,S1 I 
~-----+--------------+--------------~ 
I IL R1,S2 IL 5,S2 I 
I I LTR R 1 , R 1 I LTR 5, 5 I 
I IOPT LABEL IOPT LABEL I 
IOP2= IBC 8,LABELIBC 8,LABELI 
ISTOR.ILA R1(1 ILA 5,1 I 
I I OPT LABEL I OPT LABEL I 
I BC 2,LABELIBC 2,LABELI 
I ILCR R1,R1 ILCR 5,5 I 
I I LABEL I LABEL I 
I I 1ST 5,S1 I L _____ ~ ______________ ~ __________ ----J 

OP1 and OP2 may be indirectly 
addressed. 

ABS, Short Float 

1. Format of the ma~ro 

2. 

(1 ) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 1001012B IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

Generated. code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----+--------------+-------------~ 
IOP2= I ISTE R2,S1 I 
IREG. ILPER R1,R2 INI S1,X'7F'1 
~-----+--------------+-------------~ 
IOP2= ILE R1,OP2 IMVC S1 (4) ,S21 
ISTOR.ILPER R1,R1 INI S1,X'7F'1 L _____ ~ ______________ ~ _____________ J 

OP1 and OP2 may be indirectly 
addressed. 

Long Float Addition 

1 • 

2. 

Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010130 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

Generated code 

r-----T-------------T--------------, 
I IOP1=REGISTER I OP1=STORAGE I 
~-----+-------------+--------------~ 
I I I STD 0, GWO I 
IOP2= IADR R1,R2 I LD 0,S1 I 
I REG. I I ADR 0,R2* I 
I I 1 STD 0,S1 I 
I I 1 LD O,GWO I 
~-----+-------------+--------------~ 
I I I STD 0 , GWO I 
IOP2= I I LD 0,S1 I 
ISTOR.IAD R1,S2 I AD 0,S2 I 
I I 1 STD 0,S1 1 
I I I LD 0, GWO I L _____ ~ _____________ ~ ______________ J 

*R2 must not be O. 

OP1 and OP2 may be indirectly 
addressed. 

Phases PL/IE50-6l (General) 267 



PL/I PLM S 

IBM Confidential 

~Qn~bat Subtraction 

1. Format of the macro 

(1 ) (2) (1) (6) (6) 

r---T----T---T---T---l 
IF2 10010131 IOP11 0P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----+--------------t-------------~ 
I I ISTD O,GWO I 
IOP2= ISDR R1,R2 ILD 0,S1 1 
IREG. I ISDR 0,R2* I 
I I ISTD 0,S1 I 
I I ILD O,GWO I 
~-----+--------------t-------------~ 
I I ISTD O,GWO I 
IOP2= I ILD 0,S1 I 
ISTOR.ISD R1,S2 ISD 0,S2 I 
I I ISTD 0,S1 I 
I I ILD O,GWO I L _____ ~ ______________ ~ _____________ J 

*R2 must not be O. 

OP1 and OP2 may be indirectly 
addressed. 

~Q~loat Multiplicatign 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010132 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

268 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----t--------------t-------------~ 
I I ISTD O,GWO I 
IOP2= IMDR R1,R2 ILD 0,S1 I 
IREG. I IMOR 0,R2* I 
I I ISTD 0,S1 I 
I I I LD 0, GWO I 
~-----t--------------t-------------~ 
I I ISTD O,GWO I 
IOP2= I ILD 0,S1 I 
ISTOR.IMD R1,S2 IMD 0,S2 I 
I I ISTD 0,S1 I 
I I ILO O,GWO I 
L _____ ~ ______ --------L-------------J 
*R2 must not be O. 

OP1 and OP2 may be indirectly 
addressed. 

Long Float Division 

1. Format of the macro 

2. 

( 1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010133 IOP110P21 L ___ L ____ ~ ___ ~ ___ ~ ___ J 

Generated code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP=STORAGE I 
~-----+--------------t-------------i 
I I ISTD O,GWO I 
IOP2= IDOR R1,R2 ILD 0,S1 I 
IREG. I IDDR 0,R2* I 
I I ISTD 0,S1 I 
I I ILD O,GWO I 
~-----t--------------t-------------i 
I I ISTD O,GWO I 
I I ILD 0,S1 I 
IOP2= 100 R1,S2 IDD 0,S2 I 
ISTOR.I ISTD 0,S1 I 
I 1 ILD O,GWO I L _____ ~ ______________ ~ _____________ J 

*R2 must not be O. 

OP1 and OP2 may be indirectly 
addressed. 

Long [loa~gation, 2 Operands 

1 • Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010134 IOP11 0P21 L ___ L ____ L ___ L ___ ~ ___ J 

2. Generated code 

r-----T---------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----+---------------+-------------i 
IOP2= ILCDR R1,R2 ISTD R2,S1 I 
IREG. I IXI S1~X'SO'1 

~-----+---------------+-------------i 
IOP2= IMV'C GWO (S) ,S2IMV'C S1 (S) ,S21 
ISTOR.IXI GWO,X'SO'IXI S1,X'SO'1 
I ILD R1,GWO I I L _____ L _______________ L _____________ J 

OP1 and OP2 may be indirectly 
addressed. 

c 

c 



( 

PL/I PLM 8 

IBM Confidential 

1. Format of the macro 

(11 (21 (11 (61 
r---T----T---T---' 
IF2 1000AI35 IOPll L ___ ~ ____ ~ ___ ~ ___ J 

2. Generated code 

r--------------T-------------, 
IOP1=REGISTER IOP1=SrORAGE I 
~--------------+-------------~ 
I LCDR Rl,RlIXI Sl,X'80' 1 L ______________ ~ _____________ J 

OPl may be indirectly addressed. 

1. Format of the macro 

(11 (21 (11 (61 {61 
r---T----T---T---T---l 
IF2 10010136 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

r-----T--------------T-------------1 
I IOP1=REGISTER IOP1=STORAGE I 

t~;2:-t--------------t-------------1 
IREG. ILDR Rl,R2 ISTD R2,Sl I 
~-----+--------------+-------------~ 
IOP2= I I I 
I STOR.I LD Rl,S2 1 MVC Sl {81 ,S21 L _____ ~ ________ ~ _____ ~ _____________ J 

OPl and OP2 may be indirectly 
addressed. 

1. Format of the macro 

{11 {21 {11 {61 (61 {61 
r---T----T---T---T------T---' 
IF2 10016137 I X I TARGET 1 N I L ___ ~ ____ ~ ___ ~ ___ ~ ______ ~ ___ J 

2. Generated code 

LA 1,X 
LA 2,N 
LA 3,TARGET 
L 15,N'93' 
BALR 14,15 

X and TARGET may be indirectly 
addressed. 

E!£~~_~omp~risog 

1. Format of the macro 

(1) (2) (11 (6) {61 
r---T----T---T---T---' 
IF2 10010138 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE 1 
~-----+--------------+-------------~ 
I I ISTD O,GWO I 
IOP2= ICDR Rl,R2 ILD 0,S1 1 
IREG. I ICDR 0,R2* 1 
1 I I LD 0, GWO I 
~-----+--------------+-------------~ 
I I ISTD O,GWO I 
IOP2= I ILD 0,51 I 
ISTOR.ICD Rl,S2 ICD 0,S2 I 
I I ILD O,GWO I L _____ ~ ______________ ~ _____________ J 

*R2 must not be O. 

OPl and OP2 may be indirectly 
addressed. 

Long Float General Exponentiation 

1. Format of the macro 

(1 ) {2) (11 (6) (6) (6) 
r---T----T---T---T------T---' 
IF2 10016139 I X I TARGET I Y I L ___ ~ ____ ~ ___ ~ ___ ~ ______ ~ ___ J 

2. Generated code 

L/\ 1, Y 
LA 3, TARGET 
LA 2,X 
L 15,N'97' 
BALR 14,15 

ABS,_!!ong Float 

1. Format of the macro 

(11 {21 (11 (6) (6) 
r---T----T---T---T---' 
IF2 1001013B IOP 1 10P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----+--------------+-------------~ 
IOP2= I ISTD R2,Sl I 
IREG. ILPDR R1,R2 INI Sl,X'7F'1 
~-----+--------------+-------------~ 
IOP2= ILD Rl,OP2 IMVC Sl (81 ,S21 
ISTOR.ILPDR Rl,Rl INI Sl,X'7F'1 L _____ ~ ______________ ~ _____________ J 

OPl and OP2 may be indirectly 
addressed. 

Phases PL/IE50-6l (General) 269 



PL/I PLM 8 

IBM Confidential 

1. Format of the macro 

(1) (2) (1) (6) (6) (6) (1) {1) 
r---T----T---T---T---T---T---'---, 
IF2 10018140 IOP 1 10P210P31L1 IL2 I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

MVC 
MVC 

51 (L1),52 
51+L1 (L2) ,53 

OP2 and OP3 may be indirectly 
addressed. 

CONVER5ION CV5 

1. Format of the macro 

2. 

(1) (2) (1) (1) (1) (6) (6) (2) 

r---T----T---T---T---T---T---T---' 
IF2 10014142 I I IRN IOP 1 10 P21D I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ + ___ ~ ___ J 

Generated code 
LA 
LA 

if I=O: LA 
if I=1: LA 

L 
BALR 

1,52 
2,51 
3,D 
3,N'3'+D 
15.N'RN' 
14,15 

OP1 and OP2 may be indirectly 
addressed. 

CONVER5ION CV4 

1. Format of the macro 

(1) (2) (1) (1) (1) (6) (6) (2) (2) 
r---T----T---T---T---T---T---T---T---' 
IF2 )0016141 I I IRN IOP110P21D1 ID2 I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

LA 1,52 
if I 0 or 1: LA 2,D2 
if I 2 or 3: LA 2,N'3'+D2 

LA 3,51 
if I 0 or 2: LA 4,D1 
if I 1 or 3: LA 4,N'3'+D1 

L 15,N'RN' 
BALR 14,15. 

OP1 and OP2 may be indirectly 
addressed. 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T--~T---T---l 

IF2 10010146 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

270 

2. Generated code 

r-----T--------------T-------------, 
I IOP1 = REGI5TERIOP1 = STORAGE I 
~-----+--------------+-------------~ 
IOP2= 15DR R1,R1 IXC 51(8),511 
IREG. ILER R1,R2 15TE R2,S1 I 
~-----+--------------+-------------~ 
IOP2= 15DR R1,R1 IXC 51 (8) ,511 
ISTOR.ILE R1,52 IMVC 51 (4) ,521 L_____ _ _____________ ~ _____________ J 

OP1 and OP2 may be indirectly 
addressed. 

Decimal Fixed to Binary Integer Conversion 
CV30 

1. Format of the macro 

( 1) (2) (1) (6) (6) (1) (1) 
r---T----T---T---T---T---T---' 
IF2 10012150 IOP110P21 LIZ I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

5HIFT GWO (8) ,52 (L) , Z 
CVB R1,GWO 

~he submacro 5HIFT is described after 
FIXED DECIMAL ADDITION. 

OP2 may be indirectly addressed. 

Decimal Fixed to Zoned Decimal. (T) 
Conversion, CV31 

1. Format of the macro 

( 1) (2) (1) (6) (6) (1) (1) 

2. Generated code 

UNPK 51 (L1) ,52 (L2) 

OP1 and OP2 may be indirectly 
addressed. 

Decimal Fixed to Zoned Decimal Conversion, 
CV32 

1. Format of the macro 

(1) (2) (1) (6) (6) (1) (1) 
r---T----T---T---T---T---T---' 
IF2 10012152 IOP11 0P21Ll IL2 I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

UNPK 51 (L1) ,52 (L2) 
OI 51+L1-1,X'FO' 

OP1 and OP2 may be indirectly 
addressed. 

c 

c 



( 

( 

(, 

PL/I PLM 8 

IBM Confidential 

1. Format of the macro 

(1 ) (2) (1) (6) (6) (2) 
r---T----T---T---T---T-----, 
IF2 10012153 IOP11 0 P21LABELI L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ _____ J 

2. Generated code 
SR 4,4 
LPR 5,R2 
STM 4,5,GWO 
MVI GWO,X'4E' 
LTR R2,R2 
BC 2,LABEL 
MVI GWO,X'CE' 

LABEL: LD R1,GWO 
AD R1,=(0) 

1. Format of the macro 

(1) (2) (1) (6) (6) (1) 
r---T----T---T---T---T~--' 

IF2 10011154 IOP11 0 P21 Z I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

r-----T--------------T-------------, 
I IOP1=REGISTER IOP1=STORAGE I 
~-----+--------------+-------------~ 
I ILPR R2,R2 lLPR R2,R2 1 
IOP2= ILR Rl,R2 ISLL R2,Z I 
IREG. ISLL Rl,Z 1ST R2,Sl I 
~-----+--------------+-------------~ 
IOP2= IL Rl,S2 IL 5,S2 I 
I ILPR Rl,R1 I LPRR R5,R5 I 
ISTOR.' I SLL 5,Z I 
I ISLL R1,Z 1ST 5,Sl I L _____ ~ ______________ ~ _____________ J 

OPl and OP2 may be in::iirectly 
addressed. 

£Q~£_Qeci~~!_J!L_!Q_Q~cim~±_Fixed 
QQgY~E2ionL~~~~ 

1. Format of the macro 

(1) (2) (1) (6) (6) (1) (1) 
r---T----T---T---T---T---T---' 
IF2 10012155 IOP11 0P21L1 IL2 I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

PACK S1 (L1) ,S2 (L2) 

OP1 and OP2 may be indirectly 
addressed. 

Bit_§~Ein~ to Binary Integer Conversion, 
CV36 

1. Format of the macro 
(1) (2) (1) (6) (6) (1) 

r---T----T---T---T---T---' 
IF2 10011156 IOP 1 10 P21L I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

MITC GWO (4) ,52 
L R 1 ,GWO 
SRL R1,MIN(32-L,1) 

OP2 may be indirectly addressed. 

BinaEY Integer to Decimal Fixed l CV37 

1 • Format of the macro 

( 1 ) (2) (1 ) (6) (6) (1) 
r---T----T---T---T---T---' 
IF2 10011157 IOP11 0 P21 L I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

R2,S1 CITD 
MITC 51 (L) , S1+8-L 

OP1 may be indirectly addressed. 

Character String Comparison 

1. Format of the macro 

(1) (2) (1) (6) (6) (1) (1) (6) 
r---T----T---T---T---T---T---T---' 
, ,00121 I I I I I I 
IF2 10018158 IOP110P2\L1 IL2 IOP31 L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

If L1=L2, the length of the macro is 18 
bytes instead of 24 bytes. 

2. Generated code 

a. L1=L2: CLC S1 (L1) ,S2 

b. L1<L2: MVI S3,X'40' 
MVC S3+1 (L2-1) ,S3 
MVC S3 (L1) ,S 1 
CLC S3 (L2) ,S2 

c. L1>L2: MVI S3,X'40' 
MVC S3+1 (L1-1) ,S3 
MVC S3 (L2) , S2 
CLC S1 (L1) ,S3 

OP1 and OP2 may pe indirectly 
addressed. 

Phases PL/IE50-6l (General) 271 



PL/I PLM 8 

IBM Confidential 

Shift Right Arithmetic Single 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010159 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

r--------------T-------------, 
IOP1=REGISTER IOP1=SrORAGE I 
~--------------+-------------~ 
I IL 4,Sl I 
ISRA R1,S2 ISRA 4,S2 I 
I 1ST 4 r S1 I L ______________ ~ _____________ J 

OP1 may be indirectly addressed. 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 1001015A IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

r--------------T-------------, 
IOPl = REGISTERIOPl = STORAGE I 
~--------------+-------------~ 
I IL 4,S1 I 
ISLA R1,S2 ISLA 4,S2 I 
I 1ST 4,S1 I L ______________ ~ _____________ J 

OP1 may be indirectlY addressed. 

1. Format of the macro 

(1 ) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 1001015B IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

r--------------T-------------, 
IOP1=REGISTER IOP1=SrORAGE 1 
~--------------+-------------~ 
I ILM 4,5,S1 I 
ISRDA R1,S2 ISRDA 4,S2 I 
I ISTM 4,5,Sl I L ______________ ~ _____________ J 

OP1 may be indirectly addressed. 

Shift Left Arithmet!£_Q~!~ 

1. Format of the macro 

272 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 1001015C IOp110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2.0 Generated Code 

r--------------T-------------, 
IOP1=REGISTER IOP1=STORAGE I 
~--------------+-------------~ 
l ILM 4,5,Sl I 
ISLDA Rl,S2 ISLDA 4,S2 I 
I ISTM 4,5,Sl I L ______________ ~ _____________ J 

OPl may be indirectly addressed. 

Bit String NOT, 2 Operands 

1. Format of the macro 

2. 

(1) (2) (1) (6) (6) (1) (1) (1) 

r---T----T---T---T---T---T---T---' 
I F 2 I 00131 63 I OP 1 I OP 2 I L I I M I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

Generated Code 

xc Sl (L) , S2 
NI Sl+L-l,M 

OP1 and OP2 may be indirectly 
addressed. 

Bit String Assignment 

1. Format of the macro 

(1) (2) (1) (6) (6) (1) (1) (1) 
r---T----T---T---T---T---T---T---' 
IF2 10013165 IOP110P21L1 IL2 1 M 1 L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

a. L1>L2: XC Sl (L 1) , Sl 
MVC S1 (L2) ,S2 

b. L1~L2: MVC S1 (Ll) ,S2 
NI S1+Ll-1,M 

OPl and OP2 may be indirectly 
addressed. 

Bit String NOT, °Eerand 

1 • Format of the macro 

( 1) (2) (1) (6) ( 1) ( 1) 
r---T----T---T---T---T---' 
IF2 1000DI64 IOPll L 1M I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ J 

---- ---------~~~ 

C" 
" 



( 

PL/I PLM 8 

IBM Confidential 

2. Generated code 

XC 
NI 

S 1 (L) ,N' 2' 
S 1+L-1, M 

OP1 may be indirectly addressed. 

Bit String AND 

1. Format of the macro 

2. 

1. 

2. 

(1) (2) (1) (6) (6) (1) (1) 

r---T----T---T---T---T---T---' 
IF2 j0012166 IOP110P21L1 IL2 I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

Generated code 

NC 
XC 

S1 (L2) ,S2 and if L2<L1 
S1+L2 (L1-L2) ,Sl+L2 

OP1 and OP2 may be indirectly 
addressed. 

Format of the macro 

(1) (2) (1) (6) (6) (1) (1) 
r---T----T---T---T---T---T---' 
IF2 10012167 IOP11 0P21 IL2 I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

Generated code 

OC 81 (L2) ,S2 

OP1 and OP2 may be inairectly 
addressed. 

Bit String Comparison 

1. Format of the macro 

2. 

(1) (2) (1) (6) (6) (1) (1) 

r---T----T---T---T---T---T---' 
IF2 10012168 IOP110P21L1 IL2 I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

Generated code 

a. If L1=L2: CLC S1 (L1) ,S2 

b. If L1<L2: XC GifO+80 (16) ,GWO+80 
MVC GWO+80L1) ,S1 
CLC GWO+80L2) ,S2 

c. If L1>L2: XC GWO+80 (16) ,GWO+80 
MVC GWO+80 (L2) ,S2 
CLC S1 (L11 ,GWO+80 

OP1 and OP2 may be indirectly 
addressed. 

------ ._------

1. Format of the macro 

(1 ) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010169 IOP110P21 L ___ L ____ L ___ ~ ___ ~ ___ J 

2. Generated code 

r--------------T-------------, 
IOP1=REGISTER IOP1=STORAGE I 
~--------------+-------------~ 
I IL 4,S1 I 
ISRL R1,S2 ISRL 4,S2 I 
1 1ST 4,S1 I L ______________ ~ _____________ J 

OP1 may be indirectly addressed. 

Shift Left Logical Single 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 1001016A 10P110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

r--------------T-------------, 
IOP1 :::: REGISTERIOP1 :::: STORAGE I 
~--------------+-------------~ 
I IL 4,S1 I 
ISLL R1,S2 ISLL 4,S2 I 
I 1ST 4,S1 I L ______________ ~ _____________ J 

OP1 may be indirectly addressed. 

Shift Right Logical Double 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010[6B IOP11 0P21 L ___ L ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

r--------------T-------------, 
IOP1 :::: REGISTERIOP1 :::: STORAGE I 
~--------------+-------------~ 
I ILM 4,5,S1 I 
ISRDL R1,S2 ISRDL 4,S2 I 
I ISTM 4,5,S1 I L ______________ ~ _____________ J 

OP1 may be indirectly addressed. 

Phases PL/IE50-6l (General) 273 



PL/I PLM 8 

IBM Confidential 

1. Format of the macro 

(1 ) (2) (1)(6) (6) 
r---T----T--~T---T---' 
IF2 1001016C IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

r--------------T-------------, 
IOP1 = REGISTERIOP1 = STORAGE I 
~--------------+-------------~ 
I ILM 4,5,S1 I 
ISLDL R1,S2 ISLDL 4,S2 I 
I ISTM 4,5,Sl I L ______________ ~ _____________ J 

OPl may be indirectly addressed. 

1. Format of the macru 

(1) (2) (1) (1) (6) 

r---T----T---T---T---' 
IF2 1000BI70 I C IOPll L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

OPT 
BC 

OPl 
C,OP1 

Return to Label Constant 

1. Format of the macro 

(1) (2) (1) (6) (6) (6) (1) (2) 
r---T----T---T---T---T---T---T---' 
IF2 10019171 IOP110P210P31E5 IREGI L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

OP3: DC label 
MVC 
MVC 
LA 
L 
BR 

(OP2) 
Sl (8) ,OP3 
S1+4 (2) ,72 (REG) 
1,Sl 
15,N'13' 
15 

Define Label Constant 

1. Format of the macro 

(1) (2) (1;) (2) 
r----T--------T----T--------, 
1 F2 10007 I 72 ILhBEL I L ____ ~ ________ ~ ____ ~ ________ J 

2. Generated Code 

LhBEL: 

274 

Assign Label Constant 

1. Format of the macro 

(1) (2) (1) (6) (6) (6) (1) (2) 

r---T----T---T---T---T---T---T---' 
IF2 10019175 IOP110P210P31E5 IREGI L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

OP 3: DC label (OP2) 
MVC S1 (8) ,OP3 
MVC S 1+4 (2) ,72 (REG) 

Pointer Assignment 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010176 IOP110P21 l ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

IF 

a. OP2 is a pointer (bit 6 of byte 15 
is set on) 

b. 

MVC Sl+1 (3) ,S2+1 

OP2 is 
LA 
ST 
MVC 

not a pointer 
0,S2 
0,GWO+80 
Sl+l (3) ,GWO+81 

1. Format of the macro 

(1) (2) (1) (6) (6) (1) 
r---T----T---T---T---T---' 
IF2 10011~7h IOP110P21 L I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

r------------------T------------------, 
I OP2=REGISTER I op2=storage I 
~------------------+------------------~ 
I or R2,R2 1 QC S2 (L) ,S2 I 
I OPT OPl I OPT OPl 1 
I BC 8,OPl 1 BC 8,OPl I L __________________ ~ __________________ J 

OP2 may be indirectly addressed. 

Point~r Comparison 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010178 IOP 1 10P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J c 



( 

(~ 

PL/I PLM S 

IBM Confidential 

2. Generated Code 

a. 

b. 

Sum 

OP2 is a pointer (bit 6 of byte 15 
is set on) 

CLC S 1 + 1 (3) , S 2 + 1 

OP2 is 
LA 
ST 
CLC 

not a pointer 
0,S2 
O,GWO+SO 
S1+1 (3) ,3WO+S1 

1. Format of the macro 
(1) (2) (1) (6) (1) (2) 

r---T----T---T---T---T-----' 
IF2 1000EI7B 10Pli N I LABELl L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ _____ J 

2. Generated Code 
LA 4,OPl 
LA 3,N 
LABEL: 
OPl may be indirectly addressed. 

g~!~fg_to babe1 vaf~ab1~ 

1 • Format of the macro 
(1 ) (2) (1) (1) (6) 

r-- -T----T---T---T---' 
IF2 1000BISO I 10Pli L ___ ~ ____ ~ ___ ~ ___ ~ ___ j 

2. Generated Code 

LA 1,Sl 
L 15,N'13' 
BR 15 

DO Branch 

1. Format of the macro 
(1) (2) (1) (6) 

r--~----T---T---' 

IF2 IOOOAIS1 IOP11 L ___ ~ ____ ~ ___ ~ ___ J 

2. Generated Code 

LA 
L 
BR 

1,Sl 
15,N'13' 
15 

~~sigg_Label V~riaQ1~ 

1. Format of the macro 
(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010lS5 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

MVC Sl (S) ,S2 

OPl and OP2 may be indirectly 
addressed. 

Store 

1 • Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010lS3 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

sr Rl,S2 

OP2 may be indirectly addressed. 

Store Short 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010lS4 IOP110P2l 
l ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

SrE Rl,S2 

OP2 may be indirectly addressed. 

Character String Assignment 

1. Format of the macro 

(1) (2) (1) (6) (6) (1) (1) 

r---T----T---T---T---T---T---' 
IF2 100121S6 IOP11 0P21 L l IL2 I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

a. Ll ~ L2: 

MVC 51 (Ll) ,S2 

b. Ll > L2: 

MVI Sl,X'40' 
MVC S 1 + 1 (L 1-1) , S 1 
MVC Sl (L2) ,S2 

OPl and OP2 may be indirectly 
addressed. 

Subscfipted Variable 

1. Format of the macro 

(1) (2) (1) (1) (1) (6) (6) (6) (6) 
r---T-~--T---T---T---T---T---T---T---T-

IF2 1003CIS7 1 I N IOP110P210P310P41 L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~_ 

(6) (6) (6) (6) (6) 
---T---T---T---T---T---' 

IOP51 0 P610P71 0PS IOP91 ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

Phases PL/IE50-6l (General) 275 



PL/I PLM 8 

IBM Confidential 

2. Generated Code 

a. N=O: LA R 1, S8 
A. R 1, S9 

b. N=1: L R ~,S2 
MH R 1, S3 
A. R 1 ,S9 
LA. 5,S8 
A.R R 1,5 

c. N=2: L R 1, S2 
MH R 1, S3 
A. R 1 ,S4 
MH R 1 ,S5 
A. R 1 ,S9 
LA. 5,S8 
A.R R 1,5 

d. N=3: L R 1 ,S2 
MH R 1 ,S3 
A. R 1, S4 
MH R 1 ,S5 
A. R 1 ,S6 
MH R 1 ,S7 
A. R 1 ,S9 
LA. 5,S8 
A.R R 1,5 

A.II operands may be indirectly 
addressed. 

1. Format of the macro 

(11 (2) (11 (6) (6) 
r---T----T---T---T---' 
IF2 10010188 IOP110P21 l ___ ~ ____ ~ ___ ~ ___ ~ ___ j 

2. Generated Code 

if OP2=STORA.GE 

LA 5,S1 
USED REGISTER (0) 
A. 5,S2 
BCTR 5,0 

or, if OP2 REG: 

LA. 5,S1 
USED REGISTER (0) 
A.R 5,R2 
BCTR 5,0 

OP1 and OP2 may be indirectly 
addressed. 

1. Format of the macro 

276 

(1) (2) (1) (6) (1) 
r---T----T---T---T---' 
IF 2 I 0 OOB I, BA. lOP 1 I N I l ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

a. N=O: MVI OP1,X'FF' 

b. N<O: MVI OP1,X'FF' 
MVC OP1+ 1 (N) ,OP1 

OP1 may be indirectly addressed. 

Load A.ddress of ON Block --.,.. 
1. Format of the macro 

(1) (2) (1) (6) (1) 
r---T----T---T---T---' 
IF2 1000BI8B IOP11 R I l ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

LA. 
Ali 

R,OP1 
R, 0 ~RI 

OP1 may be indirectly addressed. 

1. Format of the macro 

(1) (2) (1) (2) (2) 
r---T----T---T---T---' 
IF2 1000818C I A I B I l ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated Code 

LA. 
L 
BA.LR 

1 ,A. 
15,B 
14,15 

1. Format of the macro 

(1) (2) (1) (2) 
r---T----T---T---' 
IF2 10006180 I A. I l ___ ~ ____ ~ ___ ~ ___ J 

2. Generated Code 

LA. 
L 
BA.LR 

1, A. 
15, N' 21 • 
14, 15 

c' 



( 

PL/I PLM 8 

IBM Confidential 

Load Transmit 

1. Format of the macro 

(1) (2) (1) (2) 

r---T----T---T---' 
IF2 1000618E I A I L ___ ~ ____ ~ ___ ~ ___ J 

2. Generated Code 

L 15,A 

Call 

1. Format of the macro 
(1) (2) (1) (1) (6) (6) 

r---T-----T---T---T---T---T-----' 
IF2 IN*6+5190 I N IOPll IOP+l I L ___ ~ _____ ~ ___ ~ ___ ~ ___ ~ ___ ~ _____ J 

2. Generated code 

a. N~8: 

b. N>8: 

STM 
LA 
LA 
LA 

LA 
STM 
L 
LR 
LA 
BALR 

STM 
LA 
LA 
LA 
LA 
LA 
LA 
LA 
STM 
LA 
LA 
LA 

LA 
STM 
LM 
L 
LR 
LA 
BALR 

0,4,Gi'l0+80 
14,S3 
15,S4 
0,S5 

RX, SN+ 1 * 
14, RX, GWO 
15,Sl ** 
O,RS ** 
1,GWO 
14,15 

0,4,GWO+80 
14,S3 
15,S4 
0,85 
1,86 
2,87 
3,88 
4,89 
14,4,GWO 
14,S10 
15,S11 
0,812 

RX,SN+l * 
14,4,:;WO+28 
0,4,GWO+80 
15,S1 ** 
O,RS ** 
1,GWO 
14. 15 

3. Format of the operands 

The general format of the parameters is 

(1 ) (2) (2) 

r---T----T---T---l 
IEl INAMEIMODIAr I L ___ ~ ____ ~ ___ i ___ J 

or 

(1) (2) (1) (1) (1) 
r---T----T---T---T---' 
IEl I NAME I X I Y IAT 1 L ___ i ____ ~ ___ ~ ___ ~ ___ J 

if the parameter is an entry name. 

* This instruction is deleted if the 
name is X'OOOO'. If the parameter is 
an entry name, the instruction is 
replaced by: 

MITC 
LA 
ST 
BLOCK: 

BLOCK (4) ,S (I) 
RX,BLOCK 
RS,BLOCK+4 only if RS 
DS 2F 

o 

**If the entry name is a parameter, 
this instruction is replaced by: 

L 
LM 

5,81 
15,0,0 (5) 

If RS=O, the instruction LR O,RS is 
deleted. 
R8 depends on X and Y as follows: 

r--------T--------T---------T---------, 
I I X=OI X=l I X=2 I 

t-~-:-1--t-;~-:-o-t-;~-:-13-t-;~-:-o--1 
~--------+--------+---------+---------~ 
I Y = 2 I RS = 0 I RS = 11 I RS = 13 I 
~--------+--------+---------+---------~ 
I Y = 3 I R8 = 0 I RS = 11 I RS = 10 I L ________ i ________ i _________ i _________ J 

1. Format of the macro 

(1) (2) (1) (1) 

r---T----T---T---' 
IF2 10005191 I I I 
L ___ i ____ i ___ i ___ J 

2. Generated code 

a. I=O: L 13,4 (13) 
LM 14,12,12(13) 
BR 14 

b. I=l : LR 13,11 
L 13,4 (13) 
LM 14,12,12(13) 
BR 14 

c. I=2: LR 13,10 
L 1 3,4 (13) 
LM 14,12,12(13) 
BR 14 

d. I=3: same as I=O. 

Phases PL/IE50-6l (General) 277 



PL/I PLM 8 

IBM Confidential 

1. Format of the macro 

2. 

278 

(1) (2) (1) (6) (6) (1) (1) (1) 

(1) (1) (1) (2) (6) (6) 

---r---T---T---T---~-T---T---T---' 
I E I I IFL IL~BELIPl I IPN I ___ L ___ i ___ i ___ i _____ i ___ i ___ i ___ J 

OPl - Entry name 
OP2 - gives the address of the ON 

block 
LN - Level number 
BN - Block number 
N - Number of parameters 
E indicates whether main entry or 

secondary entry 
I - indicates whether internal, 

external (1) or external (2) 
FL - ON-flags 
L~BEL - a label-name used in the prolo­

gue. 
Pl, P2, ••• PN - Parameters. 

Generated code 

a. Main ENTRY of MAIN PROCEDURE 
(E=O, 1=1) 

BALR 
BEGIN 
NOPR 
BAL 
DC 
L 
LR 
LR 

15,0 
(BN,LN,OP1) 

14,10(15) 
~(ST~rIC) 

12,0 (14) 
9,15 
3,1 

if ONSYSLOG: 
L 15,N'10' 

else 
L 

BALR 
LA 
BALR 
DC 
DC 
DC 

15,N'11' 

14,0 
14,14(14) 
1,15 
X'FL' 
AL3 (OP2) 
XL4'LENGrH OF DS~' 

if indirect library 
compilation 

routines in 

L 1,N'5' 
L 15,N'16' 
BALR 14,15 

ifN > 0 
MVC PN (4) ,0 (3) * 
MVC P (N-l) (41 ,4 (3) * 
MVC P (1) (4) ,4* (N-1) (3) * 
MVC Pl (4) ,4* (N-l) (3) * 
MVC 80 (4,13) ,4*N(3) 

b. Secondary ENTRY of MAIN PROCEDURE 
(E=l, 1=1) 

CNOP 
INDIVISIBLE 
BALR 
BAL 
DC 
L 

LABEL+l: 
L 
LR 

if ONSYSLOG: 
L 

else 
L 

BALR 
LA 
BALR 
DC 
DC 
DC 

if indirect 
compilation 

L 
L 
BALR 

if N > 0: 

2,4 
CODE (17,10) 
15,0 
14,8 (15) 
A (STATIC) 
12,0 (14) 

9,LABEL 
3,1 

15,N'10' 

15,N'11' 

14,0 
14,14(14) 
1,15 
X'FL' 
~L3 (OP2) 
XL4'LENGTH OF DSA' 

library routines in 

1 ,N' 5' 
15,N'16' 
14,15 

MVC 
MVC 
MVC 
MVC 

PN (4) ,0 (3) 

MVC 

P (N-1) (4) ,4 (3) 
P (I) (4) ,4* (N-I) (3) 
Pl (4) ,4* (N-1) (3) 

80 (4, 13) , 4*N (3) 

for STATIC STORAGE: 
LABEL 
DC A of segment origin (LABEL+l) 

c. Main ENTRY of no MAIN PROCEDURE 
(E=O, 1=0 or 2) 

BEGIN 
STM 
CNOP 
INDIVISIBLE 
BAL 
DC 
L 
LR 
LR 
L 
BALR 
LA 
BALR 
DC 
DC 
DC 

(BN, LN, OP 1) 
14,12,12 (13) 
0,4 
CODE (22,12) 
14,12 (15) 
A (STATIC) 
12,0(14) 
9,15 
3,1 
15,N'12' 
14,0 
14,14 (14) 
1,15 
X'FL' 
~L3 (OP2) 
XL4'LENGTH OF DSA' 

if level 1, LN=T: 
L 11,76(13) 

- - ---~"--"---~-"--------"--"- - ""-

* 
* 
* 
* 

c 



( 

PL/I PLM 8 

IBM Confidential 

if level 2, LN=2: 
L 10,76(13) 
L 11,76 (10) 

if external, 1=2 and indirect 
library routines in compilation 

L 1,N'5' 
L 15,N'16' 
BALR 14,15 

if N>O: 
MVC 
MVC 
MVC 
MVC 

PN (4) ,0 (3) 
P(N-l) (4),4 (3) 
P (I) (4) ,4* (N-I) (3) 
Pl (4) ,4* (N-l) (3) 

MVC 80 (4,13) , 4*N (3) 

d. Secondary ENTRY of no MAIN PROCE 
DURE 
(E=l, 1=0, or 2) 

STM 
CNOP 
INDIVISIBLE 
BAL 

14,12,12 (13) 
0,4 
CODE (22, 12) 
14,12(15) 

DC 
L 

LABEL+1: 
L 
LR 
L 
BALR 
LA 
BALR 
DC 
DC 
DC 

if level 
L 

if level 
L 
L 

1 , 

2, 

A (SrATIC) 
12,0 (14) 

9,LABEL 
3,1 
15,N'12' 
14,0 
14,14(14) 
1,15 
X'FL' 
AL3 (OP2) 
XL4'LENGTH OF DS~' 

LN=1 : 
11,76 (13) 

LN=2: 
10,76(13) 
11,76 (10) 

if external, 1=2 and indirect 
library routines in compilation 

L 1,N'5' 
L 15,N'16' 
BALR 14,15 

if N > 0: 
MVC 
MVC 
MVC 
MVC 

PN (4) ,0 (3) 
P (N-l) (4) ,4 (3) 
P (I) (4) ,4* (N-I) (3) 
P1 (4) ,4* (N-1) {3) 

MVC 80(4,13),4*N(3) 

( '.'." 

,/ 

for STATIC STORAGE: 
LABEL DC A of SEGMENT ORIGIN 
(LABEL+ 1) 

* 
* 
* 
* 

* 
* 
* 

1. Format of the macro 

2. 

(1) (2) P) (6) (6) 

r---T----T---T---T---' 
IF2 10010193 IOP110P21 
l ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

Generated code 

srM R1,Rl+l,S2 

OP2 may be indirectly addressed. 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010194 IOP110P21 l ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

1 • 

2. 

srD Rl, S2 

OP2 may be indirectly addressed. 

Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 1@010195 IOP110P21 
l ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

Generated code 

r--------------T----------------------, 
I OP1=REGISTER I OP1=STORAGE I 
~--------------+----------------------~ 
I I LA 5,S2 I 
I LA R 1, S2 I USED REGISTER (0) I 
I I ST 5,Sl I l ______________ ~ ______________________ J 

OPl and OP2 may be indirectly 
addressed. 

Arra~_Expression Begin 

1 • Format of the macro 

(1 ) (1) (3) (3) (2) (2) 

r---T------T---T---T-----T---T---'--
IF2 114+N*6198 I A I LABELl N I M I l ___ ~ ______ ~ ___ ~ ___ ~ _____ ~ ___ ~ ___ J __ 

f6) (6) 

-- r---T---T---' 
IOP11 IOPNI __ l ___ ~ ___ ~ ___ J 

Phases PL/IESO-6l (General) 279 



PL/I PLM 8 

IBM Confidential 

2. 

1. 

2. 

Generated code 

a. N ~ 7: STM 
LA 
LA 
LA 

b. 

LABEL: 

N > 7: 

LA 
STM 
LM 
LA 
ST 

STM 
LA 
LA 
LA 
LA 
LA 
LA 
LA 
STM 
LA 
LA 
LA 

LA 
STM 
LM 
LA 

LABEL: ST 

14,4,GWO+80 
14,S1 
15,S2 
0,S3 

RX,SN 
14,RX,A 
14,4,3WO+80 
4,M 
4,DSA+84 

14,4,3WO+80 
14,S1 
15,S2 
0,S3 
1, S4 
2,S5 
3,S6 
4,S7 
14,4,1-\. 
14,S8 
15,S9 
0,S10 

RX,SN 
14,RX,A+28 
14,4,GWO+80 
4,M 
4,DSA+84 

All operands (OP1, OP2, ••• OPNI may 
be indirectly addressed. 

Format of the macro 

(1) (2) (1) (6) (1) 

r---T----T---T---T---' 
IF2 1000BI9A IOPll NI l ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

Generated 

a. N=O: 

b. N>O: 

code 

MVI OP1,X'OO' 

MVI OP1,X'OO' 
MVC OP1+1(N),OPl 

OPl may be indirectly addressed. 

1. Format of the macro 

(1) (2) (1) (6) (2) (2) 
r---T----T---T---T---T---' 
IF2 1000EI9C IOPll A I B I l ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ J 

280 

2. Generated code 

LI-\. 1, S 1 
sr 1,A+B 

OPl may be indirectly addressed. 

Set Byte 

1. Format of the macro 

(1) (2) (1) (6) (1) 
r---T----T---T---T---' 
IF2 1000BI9D IOPll M I l ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

MVI Sl,M 

OPl may be indirectly addressed. 

Return FUnction Value 

1 • Format of the macro 

(1) (2) (11 (1) (6) (1) 
r---T----T---T---T---T---' 
IF2 1000CIAl I I IOPll L I l ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

a. I=O: 

b. I=l: 

c. I=2: 

d. I=3: 

USED 
L 
MVC 
USED 
L 
LM 
BR 

USED 
L 
MVC 
USED 
LR 
L 
LM 
BR 

USED 
L 
MVC 
USED 
LR 
L 
LM 
BR 

REGISTER (5) 
5,80(13) 
o (L, 5) ,Sl 
REGISTER (0) 
13,4(13) 
14,12,12 (13) 
14 

REGISTER (5) 
5,80(11) 
o (L,5) ,S1 
REGISTER (0) 
13,11 
13,4 (13) 
14,12,12 (13) 
14 

REGISTER (0) 
5,80 (10) 
o (L,5) , S 1 
REGISTER (0) 
13,10 
13,4(13) 
14,12,12(13) 
14 

same as I = O. 

OPl may be indirectly addressed. 

c 



( 

( 

PL/I put! 8 

IBM Confidential 

1. Format of the macro 

(1 ) (2) (1) (6) 

r---r----T---T---T---' 
IF2 1000BIA2 IOP11 L I L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

a. L<8: 

b. L~8: 

MVI 
MVC 
MVC 
SR 
LA 
SVC 

MVC 
SR 
LA 
SVC 

GWO,X'40' 
GWO+ 1 (7) , GWO 
GWO (L) ,S1 
0,0 
1 , GiiO 
4 

GWO(L) ,S1 
0,0 
1 , GiiO 
4 

OP1 may be indirectly addressed. 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---r----T---T---T---' 
IF2 10010lA3 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

L R1,S2 

OP2 may be indirectly addressed. 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010lA4 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

LE R1,S2 

OP2 may be indirectly addressed. 

Move Immediate 

(1) (2) (1) (6) (1) 
r---T----T---T---T---' 
IF2 1000BIA5 IOP11M I L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

MVI S1,M 

OP1 may be indirectly addressed. 

Array Expression End 

1. Format of the macro 

( 1) (2) (1) (3) (3) (2) (2) 
r---T------T---T---T-----T---T---'---
IF2 114+N*2IA8 IA ILABELIN 1M I L ___ ~ ______ ~ ___ ~ ___ ~ _____ ~ ___ ~ ___ J __ _ 

(2) (2) (2) (2) 

---r---T---T---T---' 
IC1 IC2 I ICN I ___ L ___ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

a. N S; 7: STM 
LM 
LA 
LA 
LA 
A 
LA 

LA 
STM 
LM 
OPT 
BCT 

b. N > 7: STM 
LM 
LA 
LA 
LA 
A 
LA 
LA 
LA 
LA 
STM 
LM 
LA 
LA 
LA 
A 
LA 

LA 
STM 
LM 
OPT 
BCT 

14,4,GWO+80 
14,4,A 
14,C1 (14) 
15,C2 (15) 

0,C3(0) 
0,A+8 
1,C4 

RX,CN 
14,RX,A 
14,4,GWO+80 
(LABEL) 

4, LABEL 

14,4GWO+80 
14,4,A 
14.C1 (14) 
15,C2 (15) 
0,C3(0) 
0,A+8 
1,C4(1) 
2, C5 (2) 
3,C6 (3) 
4,C7 (4) 

14,4,A 
14,4,A+28 
14,C8(14) 
15,C9 (15) 

0,C10 (0) 
0,A+36 
1 ,Cll (1) 

RX, CN ~RX) 
14,RX,A+28 
14,4,GWO+80 
(LABEL) 
4, LABEL 

Repeat 

1. Format of the macro 

(1) (2) (1) (6) (6) (1) (1) 
r---T----T---T---T---T---T---' 
IF2 100121AA IOP110P21L II I L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ J 

Phases PL/IE50-6l (General) 281 



PL/I PLM S 

IBM Confidential 

2. 

1 • 

2. 

Generated code 

MITC Sl (Ll ,S2 
MIlC Sl+L (I*L) ,Sl 

OP1 and OP2 may be indirectly 
addressed. 

Format of the macro 

(1) (2) (1) (6) 

r---T----T---T---' 
IF2 1000AIAC IOPll l ___ ~ ____ ~ ___ ~ ___ J 

Generated code 

LA 2,Sl 

OP1 may be indirectly addressed. 

!!Qad Scalar 

1. Format of the macro 

(1) (2) (1) (6) 

r---T----T---T---' 
IF2 1000AIAD IOPll l ___ ~ ____ ~ ___ ~ ___ J 

2. Generated code 

LA 1,S1 
BALR 14,15 

OPl may be indirectly addressed. 

1. Format of the macro 

2. 

(1) (2) (1) (6) (2) (2) (2) 

r---T----T---T---T---T---T-----' 
IF2 10010lAE IOPll A I B I LABELl l ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ _____ J 

Generated 
LA 
LA 
LA 

LABEL BALR 
AR 
OPT 
BCT 

code 
3(B 
O,A 
1, S 1 
14,15 
1,0 
(LABEL) 
3, LABEL 

OPl may be indirectly addressed. 

1. Format of the macro 

(1) (2) (1) (3) (1) (1) (1) 

r---T----T---T---T---T---T---' 
IF2 1000AIBO ISl I X I Y IAT I l ___ ~ ____ ~ ___ L ___ L ___ L ___ L ___ J 

282 

2. Generated code 

L 
LR 
BALR 
or if 

L 
LM 
BALR 

15,Sl 
O,RS 
14,15 

AT indicates 

5,Sl 
15,0,0(5) 
14,15 

a parameter 

RS depends on X and Y as follows: 

r------T------T-------T-------, 
I I X=O I X=l I X=2 I 
~------+------+-------+-------1 
IY=l I RS=O I RS=13 I RS=O I 
~------+------+-------+-------~ 
IY=2 I RS=O I R£=11 I RS=13 I 
~------+------+-------+-------1 
IY=3 I RS=O I RS=11 I RS=10 I l ______ ~ ______ ~ _______ ~ _______ J 

Set True on Condition 

1. Format of the macro 

(1) (2) (1) (1) (6) (2) 
r---T----T---T---T---T-----' 
IF2 1000EIBl I C IOPllLABELI l ___ ~ ____ ~ ___ ~ ___ ~ ___ L _____ J 

2. Generated code 

Mill 
OPT 
BC 
MIT I 
LABEL 

Sl,X'SO' 
(LABEL) 

C,LABEL 
Sl,X'OO' 

OPl may be indirectly addressed. 

Load Multiple 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010lB3 IOP110P21 l ___ L ____ L ___ ~ ___ ~ ___ J 

2. Generated code 

LM Rl,Rl+1,S2 

OP2 may be indirectly addressed. 

Load Long 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010lB4 IOP11 0P21 l ___ L ____ L ___ L ___ L ___ J 

... ---------_._---- ------- ._--------

c 



( 

(-

PL/I PU1. 8 

IBM Confidential 

2. Generated code 

LO R 1 ,S2 

OP2 may be indirectly addressed. 

1. Format of the macro 

(1) (2) (1) (6) (6) 

r---T----T---T---T---' 
IF2 10010lB5 IOP110P21 L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

1. 

a. OP2 = REGISTER: 
STC R2,Sl 

b. OP2 = STORAGE: 
mc S 1 (1) , S2+3 

OPl and OP2 may be indirectly 
addressed. 

Format of the macro 

(1) (2) (1) (6) (1) 

r---T----T---T---T---' 
IF2 1000BIB6 10Pli M I L ___ ~ ____ ~ ___ ~ ___ ~ ___ J 

2. Generated code 

01 Sl,M 

OPl may be indirectly addressed. 

~ultiply Halfword 

1. Format of the macro 

(1) (2) (1) (6) (1) 

r---T----T---T---T---' 
IF2 1000BIB8 IOP 11 R I L ___ L ____ L ___ L ___ L ___ J 

2. Generated code 

MH R,OP1 

OP1 may be indirectly addressed. 

Call Library Routine 

1. Format of the macro 

( 1) (2) (1) (3) 
r---T----T---T----' 
IF2 100071BA I NAME I L __ -L ____ ~ ___ ~ ____ J 

2. Generated code 

L 
BA.LR 

LOOp Begin 

15,NAME 
14,15 

1. Format of the macro 

(1) (2) (1) (6) (6) (2) (2) 
r---T----T---T---T---T---T-----' 
IF2 100141BC IOP110P21 N I LABELl L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ _____ J 

2. Generated code 

LA 
LA 

LA.BEL ST 

3,N 
4,Sl 
4,S2 

OPl and OP2 may be indirectly 
addressed. 

LOOp End 

1. Format of the macro 

(1) (2) (1) (2) (2) 
r---T----T---T---T-----' 
IF2 100081BO I L I LABELl L ___ ~ ____ ~ ___ L ___ ~ _____ J 

2. Generated code 

LA. 
OPT 
BCT 

4,L(4) 
(LAB'EL) 
3, LABEL 

Phases PL/IE50-61 (General) 283 



PL/I PLM 8 

IBM Confidential 

Generally, the generation code from the 
macros can be made using the same algorithm 
for different macros. There are only a few 
macros which require special handling. 
These special macros are processed in the 
first generator phase. 

Further objectives of the first phase are: 

1. To translate the macr~ key and the 
macro code to a key and an address in 
the model instruction dictionary. 

2. To build a table giving the passes 
needed in the second phase. 

3. To change the text string, the state­
ment identifiers, the attribute tables 
for declared variables, and the END OF 
ST~TEMENT's are eliminated from the 
text string. 

4. To generate code that is independent of 
the macros. The first instructions of 
the text string must be the address 
constants for storage blocks. 

L'4 ' DC AL2 (0) 0 
DC ~L2 (4096) 4K 
DC ~L2 (8192) 8K 
DC ~L2 (12288) 12K 
DC ~L2 (16348) 16K 
DC ~L2 (18396) ~ 18K 
DC AL2 (20480) 20K 
DC ~L2 (22528) = 20K 
DC AL2 (24576) ~ 24K 
DC AL2 (26624) 26K 
DC AL2 (28672) 28K 
DC AL2 (30720) ~ 30K 

L'6' DC AL2 (0) 
DC ~L2 (0) 

DESCRIPTION OF ROUTINES 

Note: The routines HUI and HUE are des­
cribed in phase E60. 

~fter initialization, filling of the buf­
fers, and the generation of the address 
constants for the storage blocks (OK, 4K, 
8K, etc.), the text is scanned for macros. 
Each macro key detected is translated into 
an address Wand an integer Z. If Z ~ 0, 
i.e., if the macro is to be processed in 
this phase, W gives the address of the 
routine that determines the code to be 
generated. 

284 

PHASE PL/IE50 (CODE GENERATION I) -- TA ~ 

The individual routines are shown in 
flow charts TD - TT. Table MATAB showing 
the macro key, the routine name, and the 
corresponding flow chart, is given in Fig­
ure 1. The code generated by each of the 
routines is described in the section The 
~2s and the Generated Code. ---

r-----T----------------------------T------, 
I Macro I Routine Name I Flow I 
I Key I (W~routine address) I Chart I 
~-----+----------------------------+------~ 
IX'10' I decimal ADDITION TH I 
IX'11' I SUBTRACTION TH I 
I X, 12' MULTIPLICATION TH I 
IX'13'1 DIVISION TJ I 
I X, 14' I NEGATION (1 oprnd.) TK I 
IX'15' I ~SSIGNMENT TL I 
IX'16' I NEGATION (2 oprnds.) TK I 
IX'18' I COMPARISON TH I 
IX'50' I conversion CV30 TM I 
IX'56' [conversion CV38 TN I 
IX'90'I CALL TR I 
IX'92' I PROLOGUE TD I 
IX'98' I ARray EXpression HEader TP I 
IX'A8' I ARray EXpression ENd TQ I 
I X ' AA' l REPEAT TO I 
I X'BO' I CALL (3) TR I L _____ ~____________________________ _ _____ J 

Figure 1. Macro Keys and Corresponding 
ProceSSing Routines (MATAB) 

SHIFT_~ 

This is a SUbroutine used by the decimal 
arithmetic macros. For details refer to 
the section The Macros and the Generated 
Code. 

LAREG -- TS ----------
This is a submacro used by the routines 
AREXHE and CALL. It causes the generation 
of a sequence of "u REG,OP" instructions. 

HEINS 

This routine is used for inserting operands 
in a fixed set of code and moving this code 
onto the text output medium. The code to 
be generated is also given in the flow 
charts. 

HMOCO 

This routine is used to move a given set of 
code onto the text output medium. 

o 

c 



( 

( 

PL/I PLM 8 

IBM Confidential 

UA, UB 

Most of the macros are processed in the 
second generator phase. rherefore, the 
phase may make multiple passes over the 
text string and include multiple changes of 
the model-instruction dictionary. In the 
first generator phase, the needed passes of 
the second generator phase are determined 
and noted in a table. Only the phase over­
lays given by this table are used in the 
second generator phase. 

Phase E60 processes only those macros 
that allow a single algorithm for handling 
indirect addressing, code generation, and 
inserting of the operands. 

The needed code is determined by the 
work done on the macro-definition header. 
If a set of code is determined, a branch is 
made from the macro-definition header to a 
model-instruction set. The model­
instruction set gives the information for 
inserting the operand and for the treatment 
of indirect addressing. 

The algorithm for the second generator 
phase may be separated into several parts: 

1. Determination of the phase overlays.O 
The phase overlays (phase E61) contain 
parts of the model-instruction 
dictionary. These phase overlays may 
not all be necessary. In the first 
generator phase the needed parts of the 
model-instruction dictionary are noted 
in a table. The table is used for the 
determination of the phase overlays. 

2. Scan of text string. 
The number of different elements is 
reduced in the first generator phase. 
In the second generator phase, the text 
string may consist of: 

a. Macros 

b. Code 

c. Variable tables 

d. Constant tables 

DESCRIPTION OF ROUTINES 

~~Qol~ Usgg_!~-K!Q~_£~art~ 
X input pointer 
~ output pointer 
S buffer index 
B(S) start address of buffer(S) 
L length of text element 
RC condition code set by the machine 
R register used for indirect addressing 

HDETER -- UC, UD 

After a macro is detected, it must be det­
ermined whether the macro can be generated 
in the current pass or not. If the macro 
can be generated, the code required for the 
macro is determined by the work done on the 
macro-definition header. The macro­
definition header consists of instructions, 
(described in the section The Macro 
Defi~~$i2n He~def) giving information for 
selectlng model-instruction sets. The code 
generated for one macro may consist of more 
than one model-instruction set. 

INSERr -- UE, UF 

A model-instruction set determined by the 
macro definition header contains no com­
plete cod.e. Some operands of the instruc­
tions must be taken over from the operand 
list of the macro. The information for 
this process is given in the model­
instruction set, too. After inserting the 
operands, the generation is continued in 
the macro-definition header. 

Secondary entry point: HOPEI 

This routine is used for moving the 
operands depending on the three parameters 
P, M, and LM. For details on these 
parameters refer to the section Model 
Instruction Sets. The routine HINAD is 
callej for operands that refer to variables 
or constants. 

HINDAD -- UH 

A requirement for the use of indirect 
addressing is indicated in byte 6 of the 
corresponding operand. The significant 
bits of this byte are: 

Bit 1: 
Bit 3: 
Bit 5: 

1 = 
1 
1 

CONrROLLED 
EXTERNAL 0 = INTERNAL 
PARAMETER (formal) 

If an operand OPX is controlled by B 
(OPX CONTROLLED (B», OPX is replaced by B. 

The corresponding byte (6) is also changed; 
however, bit 1 is not changed. 

Code Used with Indirect Addressing 

Suppose that in the code there appears an 
instruction A WR,OPX where OPX requires 
indirect addressing. The code which repla­
ces the above instruction is shown in Fig­
ure 1. 

Phases PL/IE60-61 285 



PL/I PLM 8 

IBM Confidential 

r--------------T--------------------------, 
I OPX= I CODE I 
~--------------+--------------------------1 
I PARAMETER I L REG, OPX I 
I I A WR, 0 (REG) I 
~--------------+--------------------------1 
I EXTERNAL I L REG, AOP I 
I I A WR, 0 (REG) I 
I I I 
I I I 
I I I 
I' , 
I I AOP DC A (OPX) I 
~--------------+--------------------------1 
,CONTROLLED (B), L REG, B I 
I I A WR, 0 (REG) I 
~--------------+--------------------------~ 
I CONTROLLED (B) , L REG, OPX I 
I and B = I L REG, 0 (REG) I 
I PARAMETER , A WR, 0 (REG) I 
~--------------+--------------------------1 
I CONTROLLED (B) I L REG, AOP I 
land B = I L REG, 0 (REG) I 
'EXTERNAL I A WR, 0 (REG) I 
I' I I I , 

" I 
" I , I AOP DC A ~-1) , 
~--------------~--------------------------~ 
,Note: The following cases are invalid: I 
, I 
I OPX = PARAMETER an~ EXTERNAL , 
I = EXTERNAL and PARAMETER I 
I = PARAMETER an~ CONTROLLED I 
I = CONTROLLED (B) where B I 
I itself is CONTROLLED I L _________________________________________ J 

Figure 1. Code Used with Indirect Address­
ing 

HUE -- UJ, UK 

The routine has four entry points: 

286 

HUES used for skipping in the input 
text. 

HUEI used for moving from input buffers 
to any location except output buf­
fer. 

HUEO used for moving from any location 
except the input buffers into the 
putput buffer. 

HUElO :used for moving from the input 
buffers into the output buffer. 

The following parameters are used: 

X =FROM address 
Y =TO address 
L =length of text to be moved or 

skipped 
B(S) or BS = index of buffer being used 
BUFL = length of buffers 

HMOVE -- UL 

This routine is called by HUE for moving L 
bytes of information from address X to 
address Y. L may be greater than 256 
bytes. 

At this point, control is transferred to 
the address contained in the address con­
stant. For details, refer to General Des­
cription of the Generator Phases, under 
Operations, macro subroutine. 

The routines branched to handle all 
cases that occur rarely and are not handled 
by operations and instructions contained in 
the model instruction set. 

This is a slipervisor macro, which is used 
in this phase. 

c 



( 

PL/I PLM 8 

IBM Confidential 

~~LIF~~~RTING CONST~NTS ~ND VARIABLES) -- W9 

rhis phase performs the functions discussed 
in the subsequent paragraphs. For further 
details refer to Q~~~E~ptiQ~Qf Rout~ne~ 
below. 

Text Scan. The text-input string is 
scanned~or constants and generated varia­
bles. When constants or generated varia­
bles are found, they are written onto a 
work file as the prestatement table PRETAB. 
Assembler instructions are written onto the 
text-output file TXTOUr. 

~E~~~~_Sc~g~ PRETAB is scanned for gener­
ated variables. These variables are con­
verted to entries for DSTAB. A DSTAB entry 
contains the following information: 

0-1 Internal name of the variable. 
2-3 Length of the variable during object 

time. 
4 Block and level number 
5 Attributes as follows: 

Bit Indication 
-0- --O-;-AUTOMArIC 

1 = STA'rIC 
1-3 000 = Scalar variable 

001 STRUCTURE 
010 = ARRAY 
100 Pointer 
111 Parameter 

4-7 Left-hang bits if STRUCTURE 

DSTAB entries are written on TXTOUT as 
the output buffer is filled. 

Any constants in PRETAB are written on 
the text input file (TXTIN) following the 
assembler instructions. 

~!~~~~_Scan~ (For generation of the symbol 
table, refer to phase B20.) SYMTAB is 
scanned for variables for which STATIC or 
~UTOMATIC storage is to be allocated. 
These variables are converted to DST~B 
entries as described above and written on 
TXTOUT. 

DSTAB entries for the abovementioned 
variables are also written, as table DSTAB, 
on the work file. 

Sorting Constants. The constants written 
on TxrIN during the PRETAB scan are sorted 
in the following order: 

1. Constants or address constants that are 
not optimizable. 

2. Optimizable address constants. 

3. Optimizable 8-byte constants. 

4. Optimizable 4-byte constants. 

5. Optimizable 2-byte constants. 

6. Other optimizable constants. 

The sorting of constants is accomplished 
by 6 scans through the unsorted constants 
on TXT IN. The first scan is for constants 
and address constants which cannot be 
optimized. Any such constants are written 
on the work file. 

The second scan is for optimizable 
address constants, and these constants are 
written on the work file. This procedure 
is continued for the remaining types of 
constants as shown above. At the end of 
the sixth scan, all constants are written 
on the work file in the abovementioned 
order. 

Phase Input and Output 

The input for this phase is a text string 
containing Assembler code, constants, and 
generated variables. 

Assembler Instructions. The format of 
these instructions is as follows: 

r-----T-------------------T----------------
IKey ILength of following I One or more 
IX'F6' I instructions + 3 [Assembler 
I I I instructions L _____ ~ ___________________ ~ _______________ _ 

Generated Variables. These entries have a 
fixed length of eight bytes and appear in 
the text string in a format as follows: 

Phase PL/IF25 287 



PL/I PLM 8 

IBM Confidential 

r-----T-------------------T----------------
IKey I Length of followinglOne or more 
IX'FO'lentries + 3 18-byte entries L _____ i ___________________ i _______________ _ 

Each entry contains the following infor­
mation: 

~~te(s) Contents 

0-1 Internal representation of the name. 
2 Bit Indic~~iQ~ 

0-3 Reserved. 
4-7 Internal length of the varia­

ble. 
3 0 0 = AUTOMATIC 

1 = STATIC 
1 not used 
2 1 = POINTER 

3-5 not used 
6 1 = DELETE 
7 1 = CONSTANT 0 VARIABLE 

4 0-4 not used 
5 1 = LABEL 

6-7 not used 
5 0-2 not used 

3 1 string data 
4 1 = BIT string 

o = CHARACTER string 
5 1 FIXED 

o FLOAT 
6 1 = BINARY 

o = DECIMAL 
7 not used 

6 If character-string type data: 
length of string. 

7 0-1 block level 
2-7 block number 

Constants. Constants that are to be allo­
cated-storage in STATIC storage during 
object time appear in the following format: 

r-----T-------------------T----------------
IKey I Length of followingjOne or more 
IX'F3'Iconstants + 3 I constants L _____ i ___________________ i ___________ -----

Each constant has the following format: 

0-1 Internal name of the constant 
2 Attributes as follows: 

Bit Indication ----------

0-1 00 X-type DC 
01 = A-type DC 
10 = V-type DC 
11 AL3-type DC 

2-3 00 Optimizable 
01 To be deleted 
10 Not optimizable, but 

containing block is 
optimizable 

11 Not to be deleted. 

288 

4 1 = v-type constants of a 
length of three bytes 

5 1 = word boundary if not 
optimizable. 

6-7 00 = not used 
01 A-type DC for label 

assignment 
10 = A-type DC for an entry 

point 
11 double-word boundary if 

not optimizable 
3-4 Length of constant (if an address 

constant, the length must be four 
bytes) • 

5-n Internal representation of constant 
or, if an address constant, name and 
modifier. 

Symbol Table SYMTAB. The entries of this 
table have a fixed length of 20 bytes each. 
For further information about table SYMTAB 
see the description of the generation of 
the table in the preceding phases. 

Output of the Phase: 

1. A text string on TXTIN containing 
Assembler code only. 

2. Table DSTAB on a work file. This table 
contains generated and declared varia­
bles, for which STATIC or AUTOMATIC 
storage is to be allocated. 

3. Constant table CONTAB on the work file. 
This table contains the constants in 
sorted order. 

DESCRIPTION OF ROUTINES 

Symbo!s used in flow charts: 

INPT 
INPO 
BUFFL 
BULE 
EOP 
OPT1 
OPT2 
REC 

RECLE 
COMPL 
RECN 
LENGTH: 
DSTA 

input pointer for text 
input pointer for text 
buffer length 
buffer length 
end of program 
output pointer for text 
output pointer for text 
number of records required 
text input 
record length 
length of available input 
record counter for DSTAB 
length of variable 
buffer for DSTAB entry 

from 

area 

Text Scan -- XA through XF 

The text string to be scanned contains 

1- Assembler code (key = X'F6'), 

2. generated variables (key = X'FO') 

3. constants (key = X' F3') , and 

4. end-of-program key X'FF'. 
C 



( 

PL/I PLM. 8 

IBM. Confidential 

Each key, except the end-of-program key, 
is followed by 2 bytes containing the skip­
pable length. When the text scan is com­
pleted, a text string containing Assembler 
code, excluding keys and skippable length 
indications, on TXT OUT an:! the table .PRETAB 
on the work file are provided for further 
processing. 

The text string is consecutively read 
into input buffers BUFF1 and BUFF2 and 
processed as follows: 

1. Assembler instructions (key X'F6' and 
no skippable lengthl are moved into 
OBUF1 and written on TXTOUT. 

2. A constant or a generated variable 
causes the program to branch to the 
subroutine CONVAR. This routine moves 
the string of constants (or generated 
variablesl into OBUF2 and writes them 
on the work file as table PRETAB. 

3. When the end-of-program key is encoun­
tered, the records in OBUF1 and OBUF2 
are written out and control is passed 
to the routines that cause the table 
PRE TAB to be scanned. 

INITIAL1 -- XB 

rhis subroutine sets the input and output 
pointers (INPT, OPT1, and OPT2 to 0 and 
calculates the buffer addresses. 

This subroutine reads text from TXTIN into 
the input buffers as determined by paramet­
er REC. 

This subroutine tests whether or not the 
next text record is ready for processing. 
If not, the subroutine loops until the I/O 
instruction is completely executed. 

ASSCODE -- XD 

rhis subroutine causes Assembler code, 
excluding the key X'F6' and the skipp~ble­
length value to be moved into OBUF1. 

If OBUF1 are full, its contents is 
written on TXTOUT, output pointer OPT1 is 
reset to zero, and Assembler code is moved 
into the next buffer. If OBUF1 is not 
full, the routine only increases OPT1 by 
the length of the Assembler code moved into 
the buffer. 

This subroutine writes the contents of 
OBUF1 on TXTOUT. OBUF1 contains Assembler 
code. OPT1 is reset to o. 

CONVAR -- XE 

Entry point: PRET. 
This subroutine controls the writing of 
constants and of generated variables on a 
work file. If the length of the string to 
be written exceeds the length of the input 
buffer, the string is written out in sec­
tions. 

PRET XF 

This sUbroutine cauSes the constants or 
generated variables to be moved from the 
input buffers into OBUF2. If the length of 
the constants (or variable) string to be 
moved exceeds the length of OBUF2, the 
strin~ must be written out in sections. 

Constants or variables are moved into 
OBUF2 until this output buffer is full. 
The output buffer is then written onto the 
work file. 

PUTPRE -- XF 

This subroutine writes the contents of 
OBUF2 on the work file and resets OPT2 to 
O. 

SKIPIN -- XG 

This subroutine increases INPT by the skip­
pable length. If necessary, read-in of the 
next record into input buffer 2 is initiat­
ed. 

PRETAB Scan -- XH throuqh XO 

The data contained in PRETAB (on a work 
filel is scanned. This data consists of 
constants and generated variables. The 
format of the PRETAB entries is the same as 
described for constants and general varia­
bles under Phase Input and Output) • 

The End-of-PRETAB key is X'FF'. 

When the PRETAB scan is completed, one 
6-byte DSTAB entry is provided for each 
entry in PRETAB. In addition, all con­
stants are written (unsorted) on TXTIN 
following the program string. 

The data contained in PRETAB is consecu­
tively read from the work file into the 
input buffers. Each generated variable is 
converted to a 6-byte DSTAB entry by the 
subroutine GENVAR and written on TXTOUT. 
Constants are written on TXTIN. When the 
End-of-PRETAB key is encountered, control 
is transferred to the routines that scan 
$YMTAB. 

INITIAL2 -- XI 

This subroutine calculates the addresses 
for the input and output buffers. The 

Phase PL/IF25 289 



PL/I PLM 8 

IBM Confidential 

input and output pointers are set to 0 and 
the parameters for the input and output 
routines are set to their initial values. 

GETPRE -- XJ 

rhis subroutine reads PRErAB from the work 
file into the input buffers as determined 
by parameter REC. 

WAIT2 -- XJ 

This subroutine controls the processing of 
input buffer BUFF1 and loops until the I/O 
operation to fill buffer BUFF2 is complet­
ed. 

GENVAR -- XK -----------

rhis subroutine converts the entry for the 
generated variable in PRErAB to a 6-byte 
DSTAB entry. 

This subroutine determines if the next 
PRETAB record is to be read or if a waiting 
loop is to be entered to wait for the com­
pletion of the preceding I/O instruction. 

OPT -- XM ------
'rhis subroutine causes the DSTAB entry for 
the variable to be moved into the output 
buffer area and OPT1 to be increased by 6. 
If OPT' is greater than the buffer length, 
subroutine DSPUT is called. 

DSPUT -- XM ---------
rhis subroutine causes the contents of 
OBUF1 to be written on TXrOUT. The con­
tents of OBUF2 are moved to OBUF1. Opr1 is 
updated. 

CONSTA -- XN 

rhis subroutine controls the writing of the 
constants on TXTIN. 

The subroutine causes the constants to be 
moved from the input area to the output 
buffer area. Additional control functions 
are required for strings greater than the 
buffer area. 

PUTCO -- XO 

This subroutine causes the contents of the 
output buffer which contains constants to 
be written on TXTIN. 

Input pointer INPT is increased by buffer 
length and set to the next key in PRETAB. 

290 

PRETEND -- XO ---------
The end key X'FFF' of the constant table is 
moved into the output buffer and the last 
record of constants is written on TXTIN. 

SYMTAB Scan -- XP through XY 

Symbol table SYMTAB is consecutively read 
into input buffers BUFF1 and BUFF2 and 
processed as follows: 

1. Variables, for which no storage will be 
allocated in STATIC or AUTOMATIC stor­
age, are skipped. 

2. Variables for which storage must be 
allocated cause the following informa­
tion to be moved into the output buf­
fer: 

a. Internal name of the variable. 
This name is contained in bytes 2 
and 3 of the SYMTAB entry. 

b. Length of the variable. In case of 
a character string, the length is 
contained in byte 8. Otherwise in 
byte 4 (bits 4 through 7). For 
structures, the length is contained 
in bytes 12 and 13. For arrays, 
the length of the array element 
must be multiplied by the number of 
array elements. 

c. Block and level number. 
d. Special attributes required during 

storage allocation. 

3. If an ·end-of-block key is encountered, 
a new record must be read because the 
next SYMTAB entry is in the new record. 

4. When the end key of SYMTAB is encoun­
tered, the TXTOUT tape is rewound and 
the 6-byte entries are read into BUFF1 
and written on the work file as table 
DSTAB. 

INITIAL3 -- X2 

This subroutine causes the parameters 
required to perform the SYMTAB scan to be 
set to their initial values. 

GET$YM -- XQ 

This sUbroutine causes SYMTAB to be read 
into the input buffers as determined by 
parameter REC. 

INCR -~ 

Input pointer INPT is increased by the 
length of the SYMTAB entry. If the value 
of INPT exceeds the buffer length, the 
contents of BUFF2 are moved to BUFF1 and 
the next SYMTAB record is read. 

c 



( 

PL/I PLM 8 

IBM Confidential 

The subroutine tests the SYMTAB entry. If 
it is a variable for which storage must be 
allocated in STATIC or AUrOMATIC storage, 
the subroutine ALLVAR is called. Other­
wise, the entry is skippea. 

ALLVAR -- XS ----------
rhis subroutine generates a DSTAB entry for 
the variables in SYMTAB that require stor­
age to be allocated. For the information 
contained in a DSTAB entry, refer to the 
introductory paragraphs of this section. 

DSEND -- XT --------

'rhis subroutine causes (1) the end-of-DSTAB 
key (X'FFFF') to be moved into the output 
buffer and (2) the last DSTAB record to be 
written on TXTOUT. 

rhis subroutine reads DST!\.B from TXTour 
into the input buffer and causes the 
entries to be written out on the work file. 

All constants that are included in the text 
string from TXTIN are sorted in the order 
described in the introductory paragraphs of 
this section. For the format of the con­
tents and the type of information they 
contain, refer to ~Q~~~-1~~~nd O~tE~~. 
rhe overall fUnctions for the sorting of 
constants are as follows: 

1. The TXTIN tape is rewound and the table 
of constants is scanned for constants 
that cannot be optimized and for 
address constants. The constants are 
read consecutively from TXTIN into 
BUFF1 and BUFF2; the attribute byte is 
tested and, if the constant cannot be 
optimized, moved into the output buffer 
(see subroutine OUT PUr) from which 
blocks of sorted constants are written 
on the work file. If the attribute 
byte indicates that the constant can be 
optimized, control is transferred to 
the subroutine SKIP in order to skip 
the constant by increasing the value of 
INPT accordingly. 

2. When the end-of-constant key is encoun­
tered, the TXTIN tape is rewound and 
the table of constants is scanned for 
optimizable address constants. 

3. This procedure of rewinding the 
TXTIN tape and scanning the table of 
constants for a specific type of con­
stants is repeated until all constants 
have been written on the work file in 
the desired order. 

Flow charts XU and XV show the main 
functions to be performed to properly sort 
the constants. 

INITIAL4 -- XW ----------
This subroutine causes (1) the buffer 
addresses to be calculated and (2) the 
parameters required to write out the sorted 
constants on the work file to be set to 
their initial values. 

GETIN -- XW 

This subroutine causes (1) the TXTIN tape 
to be rewound to the beginning of the first 
constant by means of a POINT macro and (2) 
the subroutine GECON to be called. 

GECON -- XW 

The input buffers are filled as determined 
by the value of REC. 

OUTPur -- xx 

This subroutine tests the constant to 
determine if the DELETE bit is set. If 
this bit is set, the constant is skipped. 
If the delete bit is not set, the subrou­
tine causes the constant to be moved into 
the output buffer and OPT1 to be increased 
by the length of the constant. If the 
value of OPT1 is greater than the buffer 
length, the contents of the output buffer 
are written out on the work file. 

COUT -- xx 

This subroutine writes the contents of the 
output buffers on the work output buffers 
to be written on the work file. 

SKIP XY 

INPT is increased by the length of the 
constant. If its value is greater than the 
buffer length, the next record is read from 
TXTIN. 

CONEND -- XY 

The end key for the constant table CONTAB 
is moved into the output buffer and the 
recoras in the output buffer that have not 
yet been written out are written on the 
work file. 

Phase PL/IF25 291 



PL/I PLM 8 

IBM Confidential 

PHASE PL/IF35 (OPTIMIZATION OF. CONSTANTS) -- YA 

During phase PL/I F25, the constants were 
sorted into the table CONrAB in this order: 

1. Constants and address constants that 
are not optimizable. 

2. Optimizable address constants. 

3. Optimizable 8-byte constants. 

4. Optimizable 4-byte constants. 

5. Optimizable 2-byte constants. 

6. Other optimizable constants. 

Constants that are not optimizable are 
allocated storage in the order as they are 
written in the table. 

Constants are compared for identity. 
two constants are equal, storage is allo­
cated only to one constant and an equate 
entry is made for the other. An equate 
entry has following format: 

§.:tte (s) Contents 

0-1 Name of equated constant. 
2-3 Name of based constant (storage 

allocated) • 
4-5 Modifier of based constant. 

The modifier indicates an offset as 
shown by the example below: 

Constant (A) : 
Constant (B) : 

DC C'ABCDEFGH' 
DC C'EFGH' 

Constant B is contained in constant A. 

If 

In this case, constant B is flagged by the 
DELETE bit and an equate entry B EQU A+4 is 
generated. 

The constants are read from the work 
file into the table space. If the con­
stants do not fit into the table space, the 
constants are optimized only within the 
limits of this area. 

The equate entries are moved into the 
output buffers and are written on TXTOUT. 
After all constants contained in the table 
area have been tested for identity, these 
constants are written on rXTIN following 
the program string. The next part of CON­
TAB is read into the table space and proc­
essed as described above. This procedure 
is repeated until the end of C0NTAB is 
reached. 

292 

All equate entries that have been gener­
ated are read from TXTOUT into the input 
buffers and written as table CONEQU on the 
work file. 

Those constants which were written out 
on TxrIN are (1) read into the input buf­
fers, (2) moved into the output buffers if 
they do not have a DELETE bit, and (3) 
written on the work file as new constant 
table CONTAB. 

Phase Input and OutEut 

The input for this phase are the constants 
contained in the table CONTAB on the work 
file. These constants are sorted in the 
order as described in phase F25. 

1 • 

2. 

The output consists of the following: 

Equate table CONEQU on the work file. 
This table contains 6-byte entries as 
follows: 

Byte(s) Contents 

0-1 Name of equated constant. 
2-3 Name of based constant (for 

which storage is allocated) • 
4-5 Modifier of based constant. 

Constant table CONTAB on the work file 
containing only those constants for 
which storage must be allocated. The 
format of the constants in this new 
CONTAB is the same as for the constants 
in the input table CONSTA. 

STORAGE AREAS 

The subsequent paragraphs describe the 
storage areas used during this phase. Fig­
ure 1 shows the layout of these areas. The 
following symbols are used: 

TS 
TS1 
B(JFF1 
TS8 
TSE 

OBUF1 

Begin-address of table-space area 
TS + one buffer-length 
Begin-address of buffer area 
TS + 12 buffer-lengths 
TS + 13 buffer-lengths (end of 
table-space area 
Begin-address of first of two 
output buffers (same as TSE) 

The constant table CONTAB is read from 
the work file into the table space TS up to 
TSE. 

During initialization, INPT1 is set to 
point to the first constant, i.e., to TS. 

c 



PL/I PLM. 8 

IBM Confidential 

r-------------------------------, 
'1'S --->1 1 

1 1 

--->t---- I ---- ----~ 

TSl 

I Table 1 
~---- ----~ 
1 space 1 
~---- ----~ 
1 1 t---- ----1 
~---- ------------~ 
1 1 
~---- ----~ 
1 1 
~---- ----~ 
1 1 
~---- ----~ 
1 1 

BUFFl --->~---- ----~ 
1 1 
~---- ----1 
1 1 

TS8 --->~---- ----~ 
TSE --->~-------------------------------~ 
(OBUF1) I I 

~---- Output buffers ----~ 

1 1 L _______________________________ J 

Figure 1. Layout of Storage Areas 

The constants in the table-space area 
are then compared with each other. If 
identical constants are found, an Equate 
entry is generated and written on TXTOUT. 
If all constants in the table-space area 
are optimized, these constants are written 
on TXTIN following the en~ of the program 
string. The constants between TS8 and TSE 
are moved to TS, INPTl is updated and, if 
not all of the constants have yet been 
processed, the table-space area is filled 
with the following part of CONTAB beginning 
at TS. This procedure is repeated until 
all constants have been optimized. 

DESCRIPTION OF ROUTINES 

LCON 
INPT : 
INPO : 
REPOl : 
REP02: 
OPT 
TSO 
TSl 

Length of table CONTAB 
input pOinter 
input pointer 
Record counter 
Record counter 
Output pointer 
Pointer in table space 
Pointer in table space 

INITIAL -- YB 

l'his subroutine calculates the addresses of 
the input and output buffers and sets the 
pointers to their initial values. 

This subroutine reads from the work file 
into the table space. This causes eight or 
nine buffers to be filled with constants 
from CONTAB. 

SAVE -- YC 

INPT2 is set to INPTl + 5 + the length of 
the constant; thus, INPT2 points to the 
address of the next constant. This address 
is stored. 

TEST -- YC 

This subroutine determines the type of the 
constant INPTl points to and transfers 
control to the appropriate subroutine. 

NOTopr -- YO 

This subroutine scans the table space for 
optimizable blocks of constants. If two 
blocks of constants compare equal, an 
equate entry is generated. 

ADCON -- YE 

This subroutine scans the table space for 
identical address constants. Two address 
constants are equal if (1) they have ident­
ical types and (2) they are identical in 
bytes 5 through 9. In this case, the 
equate information is moved into the output 
buffer and written on TXTOUT when the out­
pu,t buffer is full. 

This subroutine compares the base constant 
with all constants that have a length of 
eight bytes or less. The base constant is 
pointed to by INPT1. Constants of a length 
of two, four or eight bytes are compared 
only for identical boundary alignment. The 
compare operation is terminated when the 
end of CONTAB or the end of the table space 
is reached. 

OPTIM4 -- YG 

Constants of a length of less than five 
bytes are compared with the base constant. 
The base constant, which is pointed to by 
INPT2, has a length of four bytes. Con­
stants of a length of two bytes are com­
pared only for identical boundary align­
ment. Also, the constants are compared 
only within the limits of the table space. 
If an identical constant is found, control 
is transferred to the subroutine EQU. 

MOD -- YG 

This subroutine updates the input pointer 
INPro and the modifier MODIF. 

Phase PL/IF35 293 



PL/I PLM 8 

IBM Confidential 

When this subroutine is entered, INPT1 
points to a 2-byte base constant. INPT2 
points to the constants the base constant 
is compared with. 

If a subsequent constant has a length of 
two bytes or only one, this constant is 
compared with the base constant. If the 
two constants compare equal, a DELETE bit 
is set and an equate entry is moved into 
the output buffer. 

The compare operation is terminated when 
the end of the table space or the end of 
CONTAB is reached. 

OPTIM -- YI --------

Constants of a length other than eight, 
four, or two bytes are compared with each 
other. 

TwO constants are considered to be equal 
if they are identical in length and if 
their internal representations are the 
same. In this case, an equate entry is 
moved into the output buffer and control is 
transferred to the subroutine EQU. 

The compare operation is terminated when 
the end of CONTAB or the end of the table 
space is reached. 

The subroutine causes the equate informa­
tion, i.e., the name of the equated con­
stant, the name of the base constant, and 
the modifier, to be moved into the output 
buffers. The output pointer OPT is 
increased by 6 and, if the value of OPT 
exceeds the buffer length, control is 
transferred to the subroutine. 

EQUOUT -- YJ 

The contents of OBUF1 are written on 
TXTOUT. OBUF2 is moved to OBUF1 and OPT is 
updated. 

294 

CONOUr -- YK 

This subroutine causes the constants con­
tained in the table space to be written on 
TXTIN following the end of the program 
string. 

EQUSR -- YK 

The TXTOUT tape is rewound and the equate 
entries are read from TXTOUT into the input 
buffer and then written on the work file as 
table CONEQO. 

CONSCR -- YL 

This subroutine causes the TXTIN tape to be 
positioned to the beginning of constants 
following the program string. The con­
stants are read into the input buffers and 
tested for DELETE bits. Constants without 
a DELETE bit are moved to the output buf­
fers and written on the work file. Con­
stants with a DELETE bit are skipped. 

The input pointer INPT is increased by the 
length of the constant. If the value of 
INPT exceeds the buffer length, BUFF2 is 
moved to BUFF1. The next block of records 
is read from TX'TIN and INPT is updated. 

PUTOUT -- YM 

The subroutine causes the output pointer 
OPT to be increased by the length of the 
constant. If the value of OPT exceeds the 
buffer length, the contents of OBUF1 are 
written on the work file. The contents of 
OBUF2 are moved to OBUFl and OPT is updat­
ed. 

PUT -- YM 

This subroutine causes the records con­
tained in OBOF2 and not yet written out to 
be written on the work file. 

GETCON -- YN 

This subroutine causes constants from CON­
TAB to be read into the table space. 

c 



( 

( 

PL/I PLM 8 

IBM Confidential 

Storage to be allocated may be STATIC or 
AUTOMATIC. This section jescribes how 
STATIC or AUTOMATIC stora~e is arranged and 
how these types of storage are allocated. 

At object time, STATIC data is arranged as 
shown in Figu~e 1. 

r-----------------------------------------l 
I Not Optimizable Constants I 
~-----------------------------------------~ 
I Optimizable Constants I 
~-----------------------------------------~ 
I Simple variables I 
~-----------------------------------------~ 
I Arrays I 
~-----------------------------------------~ 
I Structures I l _________________________________________ J 

Figure 1. Arrangement of STATIC Storage 

Each invocation of a procedure or BEGIN-END 
block at object time requires a DSA 
(Dynamic Storage Area). The DSA consists 
of a block of storage ali~ned at a double­
word boundary. The size of DSA is deter­
mined by the size of its fields. Figure 2 
shows the arrangement of ~ DSA. 

r-----------------------------------------l 
I Fixed Area I 
~-----------------------------------------~ 
I Parameters I 
~-----------------------------------------~ 
I Variables and Work Storage I 
~-----------------------------------------~ 
I Arrays I 
~-----------------------------------------1 
I Structures I l _________________________________________ J 

Figure 2. Arrangement of a DSA 

The fixed area contains the length of 
DSA and a register save area. The length 
of the fixed area is always 88 bytes. 

~t2~~~~ AI!2£~t~2~ 

Storage is said to be allocated for a vari­
able or a constant when a certain region of 
storage is assigned to the variable (or 
constant) • 

Stor~le Allocation for Constants from 
CONTAB ----
The constant table CONTAB (for generation 
see phase F35) is consecutively read into 
the input buffers. The location counter 
for STATIC storage (LCST) is set to 0 
before the allocation of storage is started 
for the first string of data from CONTAB. 

For each constant, an entry for the 
offset table OFFTAB1 is generated and moved 
into the ouptut buffer. The format of an 
OFFTAB1 entry is as follows: 

0-1 Internal name of constant. 
2-3 Offset (= location counter LCST) • 

4 Attribute byte (for constants, this 
byte contains only the STATIC bit, 
i. e. , bit 2 = 1) • 

Before the value of the location counter 
is moved into the output buffer, this value 
is set to a specific boundary, if required. 
Following the move operation, the location 
counter is increased by the length of con­
stant and the OFFTAB1 entry for the next 
const~nt is generated. This procedure is 
repeated until one OFFTAB1 entry has been 
gener~ted for all constants in CONTAB. The 
generated OFFTAB1 entries are written on 
TXTOUT as the output buffer is filled. 

Stor~le Allocation for Character-String 
Constants in CARTAB 

These constants, which are contained in the 
work file, are chained together and handled 
as one constant. The name of this constant 
is a reserved name and has the internal 
representation 3. The length of CARTAB is 
contained in the interphase communication 
region. 

To allocate storage for these constants, 
an OFFTAB1 entry is moved into the output 
buffer and the location counter is 
incre~sed by the length contained in the 
communication region. 

Stor~le Allocation for STATIC and AUTOMATIC 
Variables ------
The table DSTAB contains entries for the 
STATIC and AUTOMATIC variables. These 
entries are not sorted. In order to allo­
cate the variables in the order as des­
cribej above, several passes through DSTAB 
are required. In the first pass, storage 
is allocated for parameters; passes 2 

Phase PL/IF75 295 



PLII PLM 8 

IBM Confidential 

through 5 allocate storage for 8-byte, 
4-byte, 2-byte, and other scalar variables. 
Pass 6 allocates storage for arrays and 
pass 7 for structures. 

The number of procedures or BEGIN-END 
blocks in the compilation was stored in the 
interphase communication region during 
phase A50. 

At the outset of storage allocation, 
location counters are provided for each 
block. These location counters (LC1 
through LCn) are initially set to 88, which 
is the length of the fixed area in a DSA. 
During the first pass, DSTAB entries are 
consecutively read into the input buffers. 
For each parameter encountered, an OFFTAB1 
entry is generated as follows: 

0-1 Internal name of parameter 
2-3 Offset (value of location counter 

for the block) 
4 Attributes: 

Bit Indication 
0-1 Level number 

2 1 = STATIC, 
o = AUTOMATIC 

3-7 Set to O. 

The information contained in bytes 0, 1, 
and 5 is taken from the DSTAB entry. In 
addition, the DSTAB entry contains the 
block number used to find the proper loca­
tion counter. 

After the OFFTABl entry has been moved 
into the output buffer, the value of the 
location counter is increased by the length 
of the parameter and the next variable is 
tested for being a parameter. This proce­
dure is continued until the end of DSTAB is 
reached. The generated OFFTAB1 entries are 
written on TXTOUT as the output buffer is 
filled. 

During the second pass, the DSTAB is 
scanned for 8-byte variables. Each 8-byte 
variable encountered is tested to determine 
whether it is STATIC or AUTOMATIC. If it 
is STATIC, the value of the location coun­
ter LCST for STATIC storaqe is moved into 
the OFFTABl entry; otherwise, the value of 
the location counter for the associated 
block is moved into the OFFTAB1 entry. 

Before the value of the location counter 
is moved into the output buffer, this value 
is set to the next double-word boundary, if 
necessary. 

The format of an OFFTABl entry for an 
8-byte variable is the same as for an 
OFFTAB1 entry for a parameter. 

296 

After the OFFrABl entry has been moved 
into the output buffer, the value of the 
location counter is increased by the length 
of the variable and the next DSTAB entry is 
tested. 

When the end of DSTAB is reached, the 
next pass is started to allocate storage 
for the 4-byte variables. 

The remaining passes handle storage 
allocation in the same way as the second 
pass. Each time, all DSTAB entries are 
tested for the desired type of variable, 
and the OFFTAB1 entries for variables, 
arrays, or structures are moved into the 
output buffer and written on TXTOUT. 

Phase_Input and Output 

1. Constants 
The constant table CONTAB, which was 
written on the work file during the 
preceding phase. CONTAB contains all 
declared and generated constants, 
except user-defined character-string 
constants. CONTAB is used to allocate 
storage for the constants. The format 
of CONTAB is described in phase F25. 

2. Character String 
The user-defined character-string con­
stants were gathered in one string and 
written on the work file as table CAR­
l'AB during a phase A45. For storage 
allocation. only the length of the 
character string is required. The 
length is stored in the interphase 
communication region. 

3. Variables 
During phase F25, the table DSTAB was 
built up. This table contains one 
entry for each variable for which stor­
aqe is to be allocated in STATIC or 
AUTOMATIC storage. For a description 
of this table see the section describ­
ing phase F25. 

Output.:.. 

1. Offset table OFFTABl on TXTOUT. The 
format of OFFTAB1 entries has already 
been described. 

2. Block table BLTAB on the work file. 
This table contains the lengths of 
DSA's aligned at double-word boundary. 

DESCRIPTION OF ROUTINES 

Flow chart ZA shows the main functions for 
the allocation of storage for constants; 
flow chart ZH for the allocation of storage 
for variables. 

--- - -- --- ----

c 



( 

(0 

PL/I PLl'1 8 

IBM Confidential 

~~mbols used in flow charts: 

INPT 
OPT 
BtJFFL 
LCST 
LOCO 
REC 

input pointer 
output pointer 
buffer length 
location counter for static storage 
location counter for static storage 
number of work file records request­
ed 

~~QE~e Allocation for Constants -- ZA-ZG 

CONTAB is read consecutively into input 
buffers BUFF1 and BUFF2. At the beginning, 
input pointer INPT points to the first 
constant. The location counter LCST for 
STATIC storage is set to O. 

For each constant, an 8FFTAB1 entry is 
generated and moved into the ouput buffer. 
The value of the location counter LCST, the 
name of the constant, and the STATIC bit 
are moved into the output buffer. The 
value of the location counter may have to 
be set to the required boundary before the 
move operation is executed. The value of 
the location counter is increased by the 
length of the constant and the next con­
stant is processed. The 8FFTAB1 entries 
are written out on TXTOUT. When the end of 
CONTAB is reached, an OFFTAB1 entry is 
produced for CARTAB. The length of CAR TAB 
is contained in the communication region. 

INITIAL1 -- ZB 

The addresses of the input and output buf­
fers are calculated and the pointers are 
set to O. Bit 2 in the TABTAB entry for 
CONTAB is set to 0 to start reading the 
CONTAB entries. 

CONTAB -- ZB -----------
This subroutine causes one or two records 
of CONTAB to be read from the work file 
into the input buffer(s). 

This sUbroutine causes the value of the 
location counter, the internal name of the 
constant, and the STATIC bit to be moved 
into the output buffer. Control is then 
transferred to the subroutine OFF OUT to 
write the OFFTAB1 entries on TXTOUT. The 
value of the location counter is increased 
by the length of the constant before con­
trol is returned. 

Before the value of the location counter is 
moved into the output buffer, the constant 
is tested to determine if it requires a 
boundary. This subroutine tests the con­
stant for the required alignment. 

The sUbroutine causes the value of the 
location counter LOCO to be set to the 
boundary specified by AL8, AL4, or AL2. 

The subroutine LINCR determines if the 
constant is an address constant of a length 
of three bytes. If it is, the length spec­
ified in bytes 3 and 4 of the constant is 
changed to 3 because the location counter 
is to be increased by 3. 

OPT is increased by 5. If its value 
exceeds the buffer length, the contents of 
OBUF1 are written on TXTOUT. The contents 
of OBtJF2 are moved to OBUF1 and OPT is 
updated. 

The input pOinter INPT is increased by the 
length of the constant. If the value of 
INPT exceeds the buffer length, the con­
tents of the input buffer BUF2 is moved to 
BUF1 and the next CONTAB record is read 
into SUFF2. INPT is updated. 

CARTAS -- ZG 

This subroutine generates an OFFTAB1 entry 
for the character string table CARTAB. The 
value of the location counter is increased 
by the length of CARTAB (obtained from the 
interphase communication region) • 

RERRTEST -- ZG 

The location counter is tested and, if its 
value is greater than or equal to 64K-1, an 
error bit is set in the compiler communi­
cation region in the field IJKMWC and the 
diagnostic phase G31 is called. 

~[e Allocation for Variables -- ZH-ZL 

Seven passes of scanning the DSTAB entries 
are required to properly sort the variables 
and to allocate storage to them. 

When the desired type of variable is 
encountered£ control is transferred to 
OFFSET. That subroutine causes an 
appropriate OFFTAB1 entry to be generated 
and written on TXTOUT. 

A 2-byte location counter for each proce­
dure or BEGIN-END block is reserved in the 
table space. These location counters are 
set to their initial values, i.e., the 
length of the fixed area in the DSA (19 
words) • 

Phase PL/IF75 297 



PL/I PLM 8 

IBM Confidential 

PICK -- ZI ---------
This subroutine initiates the reading of 
the data table DSTAB from the work file. 
The input pointer INPT is set to O. 

DSTAB -- ZI ---------
The subroutine causes (1) the data table 
DSTAB to be read into the input buffers and 
(2) INPT to be updated. 

OFFSET -- ZJ ---------
This subroutine causes the offset value, 
the internal name, and the attributes to be 
moved a into the output buffer. In addi­
tion, this subroutine uses various other 
subroutines to complete the generation of 
and the writing out of the OFFTAB1 entry. 

GETLOC -- ZJ ---------
For an AUTOMATIC variable, the appropriate 
location-counter value is taken from the 
table space and moved to LOCO. For a STA­
TIC variable, the value in location counter 
LCST is moved to LOCO. 

PUTLOC -- ZK -----------

For an AUTOMATIC variable, the value in 
LOCO is returned to the table space BLTAB 
of the block concerned. For a STATIC vari­
able, LOCO is returned to LCST. 

298 

LEFTH -- ZK 

The appropriate location counter value is 
moved to LOCO using the subroutine GETLOC. 
The value in LOCO is then adjusted as det­
ermined by the lefthang of structure. 

SKIPV -- ZK --------

This subroutine skips to the next DSTAB 
entry by increasing INPT. If the value in 
INPT becomes greater than the buffer 
length, the subroutine DSTAB is called to 
read the next record. 

LAST -- ZL -------

The end-of-OFFTAB1 key (X'FFFF') is moved 
into the output buffer, and offset table 
entries not yet written out are written on 
TXTOUT. 

When this subroutine is entered, the loca­
tion counters in TS contain the lengths of 
the generated DSA's. These lengths are 
adjusted to double-word boundaries and 
written on the work file as table BLOCK1. 
The length of STATIC storage (in LCST) is 
stored in the compiler communication 
region. 

c 



( 

( 

PL/I PU1 8 

IBM Confidential 

PHASE PL/IF90 lBUILDINS OF OFFSET TABLE) -- AA 

This phase builds up the final offset table 
OFFTAB which contains all offsets of data 
in the following form: 

bytes 0 -
byte 2 

offset 
attributes 

The entries are sorted in ascending order 
of their interal names. 

'The input used by this phase is 

symbol table SYMTAB on SYS001 
equate table CONEQU on SYS001 
off set table OFFTAB 1 (built up and des­
cribed in phase F75) on TXTOUT 

Output is the final offset table OFFTAB 
on SYS001 or in storage. It contains all 
offsets of data in ascending order of their 
internal names. 

Switches 

Switches are located in byte WSWITCH: 

bits 0 - 5 not used 
bit 6 = 0 switch CON off: SYMTAB must be 

retrieved 
switch CON on : CONEQU must be 

retrieved 
bit 7 0 switch TXT off: EQUTAB is on 

SYSS001 
switch TXT on : EQUTAB is on 

TXTIN. 

!~~CO!!~I2! 

Two adjacent buffers, referred to as buf­
fers A and B, are used as I/O buffers. The 
beginning of a table is read into both 
buffers. The individual entries of the 
table are processed sequentially from left 
to right (beginning in buffer A). The 
buffer pointer R3 is increased each time by 
the entry length until it points to an 
entry in buffer B. If necessary, buffer A 
is moved into the output buffer in order to 
put it onto TXTIN, TXTOUT or SYS001. Buf­
fer B is moved into buffer A and the buffer 
pointer is reset to the next entry to be 
processed. The next record will be read 
into buffer B in overlapped mode. 

Communication with Other Phases 

The address of the table space is decreased 
in this phase by the length of TABTAB. The 
number N2 of records of OFFTAB that can be 
stored in the area between the new begin-

ning of the table space and the end of the 
seconj I/O buffer is stored in IJKMIP+2. 
If OFFTAB does not exceed N2 records, it 
remains in storage at the end of this phase 
and the beginning of OFFTAB is identical to 
the new beginning of the table space. 

FUNCTIONAL DESCRIPTION 

This phase performs three main functions: 
gathering of equates, sorting of offsets 
and c~lculating the offsets of equates, and 
inserting equate offsets into the offset 
table. 

~~!herinLQf Equates 

Equate table EQUTAB1 is built up. Each 
entry contains the following information: 

bytes 0-1 : Internal name of defined varia­
ble or equated constant 

bytes 2-3 

bytes 4-5 

internal name of based variable 
or based constant 

modifier (0 if defined 
variable) 

Variables with the attribute DEFINED are 
handled as equates. SYMTAB is scanned and, 
if a jefined variable is found, an entry in 
EQUTAB 1 is made. 

Equate table CONEQU contains all equated 
const~nts in the following form: 

bytes 0-1 : Internal name of equated con­
stant. 

bytes 2-3 internal name of the based 
constant. 

bytes 4-5 : modifier. 

All entries of CONEQU are appended to 
EQUTAB1. If the source text contains no 
defined variables, gathering of equates is 
skipped and CONEQU is used as EQUTAB1. 

~_. __ ~QIti!!~of Offsets and Calculating the 
Offsets of Equates 

If the offset table entries are sorted in 
ascenjing order of their internal names, no 
internal name is required within the entry 
since an entry in the final offset table 
OFFTAB can be found by using the internal 
name as relative address in the offset 
table. 

Phase PL/IF90 299 



PL/I PLM 8 

IBM Confidential 

Offset table OFFTAB1 contains all 
entries in unsorted order. An entry con­
sists of: 

bytes 0-1 
bytes 2-3 
byte 4 

internal name 
offset 
attributes 

rhe format of the entries in the final 
offset tabel OFFTAB is as follows: 

bytes 0-1 
byte 2 

offset 
attributes 

'rhe area in which OFFT1I.B is built up is 
called work area. The number of OFF TAB 
entries that fit into the work area is 
called M. MIN is equal to the smallest 
internal name of an entry that fits into 
the work area; MAX is equal to the internal 
name greater than the greatest internal 
name of an entry that fits into the work 
area. 

Sorting of offsets starts with MIN=O and 
MAX=M. OFFTAB1 is read successively into 
the input buffers. The offsets and attri­
butes of all entries of OFFTAB1 whose 
internal names are greater than or equal to 
MIN and less than M1I.X are stored in the 
work area in ascending order of their 
internal names. After scanning of OFFTAB1, 
EQUTAB1 is read successively into the input 
buffers. Entries of EQUT1I.B1 with internal 
names of based data greater than or equal 
to MIN and less than MAX are processed, 
e.g., the internal names of based data of 
these entries are replaced by their offsets 
retrieved from the work area. The modifier 
is added to each retrieved offset. The 
first byte of the modifier is replaced by 
the attributes of the based data. If 
EQUTAB1 is read from TXTIN, the processed 
EQUTAB1 is written onto S~S001 and vice 
versa. 

The offset table built up in the work 
area is named OFFTAB2. The entries and 
length of OFFTAB2 are the same as those of 
OFFTAB. The two tables differ in that 
OFFTAB2 contains gaps to be replaced by the 
entries of equated data in OFFTAB. If 
OFFTAB2 is completely stored in the work 
area, the offsets are stored and the off­
sets of equates are calculated in one pass. 
Otherwise, the part of OFFTAB2 that is in 
the work area is written on TXTOUT. MIN 
and MAX are increased by M and sorting of 
offsets and calculating the offsets of 
equates is continued until OFFTAB2 is com­
pletely on TXTOUT. 

The processed equate table is named 
EQUTAB. The EQUTAB entries have the fol­
lowing format: 

300 

bytes 0-1 internal name of equated data 
bytes 2-3 offse't of equated data 

byte 4 attributes of equated data 
(equal to attributes of based 

data) 
byte 5 not used. 

~~~!ing EqUate Offsets into the 
Offset Table

If all entries of OFFTAB2 are stored in the
work area, EQUTAB is successively read into
the input buffers. The offsets and attri­
butes of the equated data are inserted into
the work area according to their internal
names.

If OFF TAB is greater than the work area,
inserting of equate offsets starts with
MIN=O and MAX=M. The records of OFFTAB2
that contain entries of internal names
greater than or equal to MIN and less than
MAX are read into the work area. EQUTAB is
successively read into the input buffers.
The offsets and attributes of equated data
whose internal nameS are greater than or
equal to MIN and less than MAX are inserted
into the work area according to their
internal names. If all entries of EQUTAB
whose internal names are not less than MIN
or greater than MAX have been inserted, the
part of OFFTAB that is in the work area is
written onto SYS001. MIN and MAX are
increased by M and the insertion of equate
offsets is continued until OFFTAB is com­
pletely on SYS001.

DESCRIPTION OF ROUTINES

Initialization and Gathering o~~tes -~
AB, Af

Buffer pointer R3 is set to the beginning
of buffer A and table space pointer R8 is
set to the beginning of the table space.

If th~ source program contains defined
variables, SYMT1I.B is scanned. If a defined
variable is found, an entry in EQUTAB1 is
made. SYMTAB is scanned in buffers A and
B. EQUTAB1 is built up in the table space
and written onto TXTIN.

If scanning of SYMTAB is finished,
switch CON is set. CONEQU is read into
buffers A and B, and all entries of it are
added to EQUrAB1. If EQUTAB1 has been
completed and written onto TXTIN, switch
TXT is set to indicate the presence of
EQUTAB1 on TXTIN.

Construction of Work Area -- AD

The space consisting of parts of the phase
(beginning with WBEG2), the table space,
and the first three buffers is used as work
area to build up the offset tables.

c

(

(

PL/I PLM 8

IBM Confidential

If the length of the work area divided
by 3 is not less than the number of off­
sets, the entire offset table can be placed
in the work area. Otherwise, the offset
tables must be built up in several passes.
Between these passes, the parts of an off­
set table that have been processed are
written onto TXTOUT or SYS001 in the length
of multiples of the buffer length. To
avoid gaps in the offset tables, the length
of the work area actually used must be
three times the buffer length times floOr
of length of the work area divided by three
times the buffer length.

The number of entries of the offset
table that can be placed in the work area
is called M.

§.orti!!Sl. of Offsets (TXTOUrl -- AE
(

OFFTAB1 is read from TXTOOT into the input
buffers. The offset and attributes of each
OFFTAB1 entry whose internal names are less
than M are stored in the work area accord­
ing to the internal name. The table built
up in the work area is called OFFTAB2. If
there are entries of OFFTAB1 with internal
names equal to or greater than M, OFFTAB1
is written onto SYS001.

EQUTAB1 is on TXTIN if switch TXT is oni
otherwise, it is on SYS001. EQUTAB1 is
read into the input buffers. If the entry
of the based data of an E~UTAB1 entry is in
the work area, the based data is replaced
by its offset. Its modifier is added to
the offset and the first byte of the modi­
fier is replaced by the attributes of the
based data.

After processing, EQUTAB1 is written
onto SYS001 if switch TXT is oni otherwise,
it is written onto TXTIN. Switch TXT is
altered.

The part of OFFTAB2 which is built up in
the work area is written onto TXTOUT if
OFFTAB2 is not completely contained in the
work area. If OFFTAB2 is completely on
TXT OUT and EQUTAB is on SYS001, EQUTAB is
written onto TXTIN.

If the construction of OFFTAB2 is not
finished, MIN and MAX are increased by M
and OFFTAB1 is read from SYS001 into the
input buffers. The offset and attributes
of each OFFTAB1 entry whose internal name
is greater than or equal to MIN and less
than MAX are stored in the work area
according to its internal name to continue
the construction of OFFTAB2.

~~~~" "~" """ -"-~~'" 

Inserting of Offsets of Equates -- AH 

EQUTAB, which contains the internal name, 
offset, and attributes of all equated data, 
is read into the input buffers. If OFFTAB2 
is completely in the work area, the offset 
and attributes of each entry of EQUTAB are 
stored in the work area according to its 
internal name. 

If OFFTAB2 is not completely in the work 
area, the insertion of offsets of equated 
data is started with MIN=O and MAX=M. The 
records of OFFTAB2 which contain the off­
sets of internal names greater than or 
equal to MIN and less than MAX are read 
into the work area. The offset and attri­
butes of each EQUTAB entry whose internal 
name is greater than or equal to MIN and 
less than MAX are stored in the work area 
according to its internal name. If EQUTAB 
has been completely scanned, the records of 
OFFTAB that are in the work area are writ­
ten onto SYS001. If the construction of 
OFFTAB is not finished, MAX and MIN are 
increased by M and the insertion of offsets 
of equates is continued by scanning EQUTAB 
again. 

End-of-Buffer Routine -- AI 

Entry point: WSR21 

Input parameters: 
R3 points to the element to be scanned in 
the input buffers. 
R6 contains the address of buffer A. 
R7 contains the address of buffer B. 

If pointer R3 points to an element in 
buffer B, buffer B is moved into buffer A, 
buffer pointer R3 is reset, and the routine 
is left through exit B. Otherwise, the 
routine is left through exit A. 

Move Buffer B to Buffer A -- AI 

Entry point: WSR21A 

The function is the same as described for 
the routine WSR21, but without testing 
whether pOinter R3 pOints to an element in 
buffer B. 

Put E~f Table on SYS001 -- AJ 

Entry point: WSR51 

Input parameters: 
R3 points to the beginning of the end key 
of a table in buffer A. 
R7 contains the add ress of buffer B. 

It is tested whether the entire end key 
of a table is in buffer A. If not, buffer 
B is written onto SYS001 and the routine is 
left through exit B. Otherwise, the rou­
tine is left through exit A. 

Phase PL/IF90 301 



PL/I PLM 8 

IBM Confidential 

~Qrk~~EntrY-Qf OFFTABl -- AK 

Entry point: WSRll 

Input parameter: 
R3 points to the entry of OFFTABl being 
scanned. 

If the internal name of the entry point­
ed to by R3 is not less than MIN and less 
than ~~X, the offset and the attributes of 
this entry are stored in the work area 
according to its internal name. 

Output parameter: 
R3 points to the second byte of the OFFTABl 
entry following the scanned entry. 

Entry point: WSR61 

Input parameters: 
R2 contains the internal name of the EQUTAB 
entry being scanned. 
R3 points to the EQUTAB entry scanned. 

If the internal name in R2 is not less 
than MIN and less than MAX, the offset and 
the attributes of the entry pointed to by 
R3 are stored in the work area according to 
its internal name. 

Output parameter: 
R3 points to the EQUTAB entry following the 
scanned entry. 

~Q~~~2~Ent£~-2f_§QgTAB1-==~ 

Entry point: WSR31 

Input parameter: 
R3 points to the EQUTABl entry scanned. 

If the internal name of the based data 
of the entry pointed to by R3 is not less 
than MIN and less than MAX, the offset of 
the equated data is calculated by the off­
set of the based data and the modifier. 
The based data is replaced by the offset of 
the equated data, and the first byte of the 
modifier is replaced by the attributes of 
the based data. 

Output parameter: 
R3 points to the EQUTABl entry following 
the scanned entry. 

~QffiEare Internal Name with MIN and MAX -­
AK 

Entry point: WSREl 

Input parameters: 
R2 : internal name; 

302 

R4 : address of the table space; 
R9 : MIN; 
Rl0 : MAX. 

If the internal name is less than MIN or 
not less than MAX, the routine is left 
through exit A. Otherwise, the allocation 
of the entry in the work area is calculated 
by the internal name and the routine is 
left through exit B. 

Output parameter: 
R2 contains the address of the internal 
name in the work area, if the routine is 
left through exit B. 

Calculate end of Filled Work Area -- AL 

Entry point: WSRBl 

Input parameters: 
R4 : address of the work area; 
R9 : MIN; 
Rl1 : K = maximum number of OFFTAB2 or 
OFF TAB entries. 

The address of the end of the filled 
work area is calculated. 

Output parameter: 
R3 contains the address of the end of the 
filled work area. 

Put Work Area on TXTOUT -- AL 

Entry point: WSRC1 

Input parameters: 
R3 contains the address of the end of the 
filled work area. 
R4 contains the address of the work area. 

The contents of the filled work area are 
written onto TXTOUT. 

Put Work Area on SYS001 -- AL 

Entry point: WSRD1 

Input parameters: 
R3 contains the address of the end of the 
filled work area. 
R4 contains the address of the work area. 

The contents of the filled work area are 
written onto SYS001. 

Set Pointer and Clear Work Area-- AL 

Entry point: WSR41 

Input parameters: 
R4 contains the address of the work area. 
R6 contains the address of buffer A. 
R8 contains M. 

c 

c 



PL/I PLM 8 

( 

( 

(~ 

IBM Confidential 

Buffer pointer R3 is set to the begin­
ning of buffer A, and the work area is 
filled with zeroS. 

Output parameter: 
R3 points to the beginning of buffer A. 

~2.E~~~EntrL.Qf_SY~T~_=_~~ 

Entry point: WSR22 

Input parameters: 
R3 points to the SYMTAB entry being 
scanned. 
R8 points to the location in the table 
space where the next entry of EQUTAB1 is 
stored. 

If the SYMTAB entry contains a defined 
variable, the internal names of the defined 
and the based variable are moved into the 
entry in the table space pOinted to by R8. 

Output parameters: 
R3 points to the entry of SYMTAB that fol­
lows the one being checkej. 
R8 points to the next EQUrAB1 entry. 

~£i!~_g~cord of TaQ!~Space on TXTIN -- AJ 

Entry point: WSR12 

Input parameters: 
R4 contains the address of the beginning of 
the table space. 
R8 points to the location in the table 
space where the next EQUTAB1 entry is 
storej. 
R11 contains the address of the end of an 
EQUTAB1 record in the table space. 

If R8 points to an address not less than 
that of the end of an EQUTAB1 record, a 
recorj of EQUTAB1 is written onto TXTIN and 
the remaining bytes of EQUTAB1 are moved to 
the beginning of the table space. Table 
space pointer R8 is reset. 

Entry point: WSR02 

Input parameter: 
R8 points to the location of the table 
space where the next entry of EQUTAB1 is 
storej. 

The area of the table space used to 
build up EQUTAB1 is filled with zeros 
starting at the location pointed to by R8. 

Phase PL/IF90 303 

---------- .. - ------



PL/I PLM 8 

IBM Confidential 

These phases can be divided into two 
groups. The first group comprises the 
phases F95 - G15; the second group compris­
es the phases G20 - G55. Phase G17 is 
organized differently and not described 
here. 

PHASES F95 - G15 

'These phases prepare the program text for 
final output, i.e., all code and all infor­
mation required for the TXT and RLD cards 
has been prepared upon completion of these 
phases. 

Phase F95 generates the code for offsets 
greater than 4K using the offset table 
OFFTAB, which contains' the offsets of the 
variables and constants of static and auto­
matic storage. As far as possible, the 
offsets are inserted into the text string, 
even if no code generation is required. 

Phase GOO optimizes the "maximum" code 
produced by phase F95. The offsets of the 
labels are inserted into the label table 
LABTAB, and all program blocks are divided 
into segments of 12K length. For all 
branches within the same segment, the 
preceding pseudo Assembler instruction ADD 
(generated in previous phases) is deleted. 

LABTAB is updated accordingly. 

Phase G01 inserts the label offsets into 
OFFTAB so that the missing offsets may be 
retrieved from only one table. It also 
lists OFFTAB if the SYM option was speci­
fied in the OPTION job control statement. 

In the first part of phase G15, the text 
string is scanned and the remaining offsets 
are inserted. In the second part, the 
format of the constants in static storage 
is changed from that of the constant table 
CONTAB to that of the text string, and the 
offsets for the address constants are cal­
culated. If the source program contains no 
file declarations, phase G15 transfers 
control to phase G20 instead of to phase 
G17. 

!.~E!t/Outpu~ndli!!9:.!.. The handling of 
input and output is the same for all phases 
(except phase G17). Storage is divided 
into four parts: 

1. Compiler interface 

2. Program space (4~ 

3. Table space (TS). This space is used 
to read OFFTAB from SYS001 and to build 
up LABTAB. 

304 

GENERAL DESCRIPTION OF PHASES F95 - G55 

4. Buffer area. It is used for I/O of the 
text string. 

Actually, there are five buffers in the 
buffer area. However, only three are used 
for text I/O so that the first two buffers 
may be considered as belonging to the table 
space. The last three buffers are used as 
follows: 

buffer 1: output buff er (OBUF) 
buffer 2: input buffer 1 (IBUF1) 
buffer 3: input buffer 2 (IBUF2) 

The start addresses of these buffers are 
BO, B1, and B2, respectively. Pointer POU 
is used in OBUF; pointer POI is used in 
IBUF1 and IBUF2. The buffer length is 
referred to as BUFL. 

ISU,_~OO, MODIF (F95, GOO, G15). The text 
is read into the input buffers and scanned 
using pointer POI. When POI becomes great­
er than B2, the record is moved from IBUF2 
to IBUF1, POI is adjusted, and a new text 
record is read into IBU1. This action is 
performed by the routine ISU. 

PHASES G20 - G55 

The text of the length L (given in reg­
ister 1) is moved from the address pointed 
oy POI to the address pointed to by POU by 
means of the routine MOO. This routine 
also performs the output if OBUF is full 
and adjusts all pointers. Reading and 
writing of the text records is performed by 
the external routines IJKGI and IKJPO. The 
external move routine IJKMN is used for 
move operations. MODIF is used to evaluate 
the correct modifier. 

Table_HanE!li!!s.:.. Each 
several phases has an 
master table TABTAB. 
the following format: 

table to be used in 
8-byte entry in the 
Each TAB TAB entry has 

bytes 0-1 flag bytes. The first three bits 
indicate the following: 
bit 0 on = table on SYS001 
bit 1 on table in storage 
bit 2 on transfer to or from 

SYS001 has been start­
ed. 

bytes 2-3 position on SYS001 (key) 
bytes 4-5 number of records 
bytes 6-7 record length 

If OFFTAB, which is built in phase F90, 
is small enough, it remains in the table 
space. Otherwise, it is written onto 
SYS001 (TABTAB entry ZTAB11). Phase F95 
checks whether or not OFFTAB is in the 
table space. If it is not, the first part 

c 

c 



( 

PL/I PLM 8 

IBM Confidential 

is read into the table space by means of 
the external routine ZTIN. The text is 
scanned and the available offsets are 
inserted. Then the next part of OFFTAB is 
read. This process continues until all 
parts of OFFTAB have been in storage. 

If OFFTAB was not on S~S001, it is writ­
ten onto it by the external routine ZTOUT 
in order to free the table space for the 
construction of LABTAB in phase GOO. 

If LABTAB becomes greater than the table 
space, it is intermediately written onto 
ten onto it by the external routine ZTOUT 
in order to free the table space for the 
construction of LABTAB in phase GOO. 

If LABTAB becomes greater than the table 
space, it is intermediately written onto 
ten onto it by the external routine ZTOUT 
in order to free the table space for the 
construction of LABTAB in phase GOO. 

If LABTAB becomes greater than the table 
space, it is intermediately written onto 
ten onto it by the external routine ZTOUT 
in order to free the table space for the 
construction of LABTAB in phase GOO. 

If LABTAB becomes greater than the table 
space, it is intermediately written onto 
ten onto it by the external routine ZTOUT 
in order to free the table space for the 
construction of LABTAB in phase GOO. 

If LABTAB becomes greater than the table 
space, it is intermediately written onto 
ten onto it by the external routine ZTOUT 
in order to free the table space for the 
construction of LABTAB in phase GOO. 

If LABTAB becomes greater than the table 
space, it is intermediately written onto 
ten onto it by the external routine ZTOUT 
in order to free the table space for the 
construction of LABTAB in phase GOO. 

If LABTAB becomes greater than the table 
space, it is intermediately written onto 
SYS001 (TABTAB entry ZTAB19). It is read 
again into storage for upGating. The final 
LAB TAB is written onto SYS001 (TABTAB entry 
ZTAB201 for use by phase 325. 

In phase G01, the label offsets are 
inserted from LABTAB into OFFTAB. For this 
purpose, OFFTAB is read into the table 
space and LABTAB is read (record by recor~ 

into the buffer area. The updated OFFTAB 
remains in the table space unless it 
becomes too large. In this case, it is 
written onto SYS001 (TABTAB entry ZTAB07) • 

In phase G15, OFFTAB is read into the 
table space in order to insert the missing 
offsets into the instructions. The text is 
scanned only once if OFFTAB fits into the 
table space; otherwise, the text is scanned 
as many times as parts of OFF TAB have to be 
read. After this phase, OFFTAB is no long­
er used. 

The constant table CONTAB is also proc­
essed in phase G15. CONTAB (TABTAB entry 
ZTAB08) is read into the buffers record by 
recorj. After this phase, CONTAB is no 
longer used. 

As initialization for the following 
phases, the external name table EXTAB 
(TABTAB entry ZTAB04) is read from SYS001 
at the end of phase G15 and written onto 
TXTIN, which becomes TXTOUT in the follow­
ing phaseS. 

PHASES G20 - G55 

Phase G20 arranges the different cards for 
the files to prepare one file module and 
writes the cards onto SYS001. 

Phase G25 generates the ESD cards for 
the object-program module and writes them 
onto SYS001. 

Phase G30 generates the TXT and RLD 
cards for the object-program module as well 
as the END card. The cards are written 
onto SYS001 (TABTAB entry ZTAB16) • 

Phase G31 is called if the compilation 
must be terminated before phase G55 is 
callej. It lists the flagged errors, clos­
es all files, and t.erminates the compila­
tion by the EOJ macro instruction. 

Phase G40 lists the object code. 

Phase G55 writes all cards (for both the 
first and the second module) onto IJSYSLN 
(in blocks of 322 bytes) if the LINK option 
is on. If the DECK option is on, it 
punches the object deck. If the SYM option 
is on, it lists the external symbol table 
and the block table. 

Phases PL/IF95 - G55 (General) 305 



PL/I PLM 8 

IBM Confidential 

This phase generates code for operands that 
have an offset greater than or equal to 4K 
or 12K, respectively. The code is generat­
ed by means of the four general registers 5 
- 8 and some constants contained in static 
storage. Registers 7 and 8 are loaded with 
4K and 8K, respectively. Registers 5 and 6 
are used for indirect addressing. The 
constants in static storage are OK, 12K, 
16K, 20K, 24K, and 28K. rhey are stored in 
this sequence under the internal name 
N'0004' ~ne half-word each). 

1. Offset less than 12K 

306 

a. No additional code is required if 
the offset is less than 4K. 

b. 

Not~: No code generation is 
required for RS instructions, since 
these instructions are never used 
with offsets greater than or equal 
to 4K. 

For instructions with offsets 
between 4K and 12K, an additional 
register is used for addressing. 
In RX instructions, the index reg­
ister has not been used so that 
registers 7 (containing 4K) and 8 
(containing 8K) can be used as 

index registers for these instruc­
tions. For instance, in the 
instruction 

L R,NAME1 

NAME 1 is an address with the offset 
5000. This instruction is modified 
to 

L R,904 (7,9) 

where 9 is the base register. 

In all other instructions, the base 
register is increased by 4K or 8K. 
For example, in the instruction 

MVC NAME2 (4) , NAME3 

NAME2 is an address with the offset 
6000 and NAME3 has the offset 
10000. The instruction is modified 
to 

(ST 6, SAVE) 
LA 6,0(7,9) 
LA 5,0(8,9) 
MVC 1904(4,6),1806(5) 
(L 6,SAVE) 

PHASE PL/IF95 (HANDLING OF OFFSETS) -- AN 

The instructions in brackets are 
required if, for example, register 
6 is not free. 

2. Offset greater than 12K-1 and less than 
32K. In this case, one of the con­
stants 12K, 16K, 20K, 24K, or 28K is 
loaded into a register as follows: 

3. 

LH 6, =A (16K) • 

This register can then be used as an 
index register in RX instructions so 
that no additional code generation is 
required. In all other cases, an addi­
tional ADD instruction for the base 
register must be generated, and reg­
ister 6 or 5 is inserted as base reg­
ister. For instance, 

AR 6,9 
STM R,S,50, (6) 

Offset greater than 32K-1. One of the 
constants is loaded into register 5 or 
6 and multiplied by 2 by adding the 
register to itself, e.g., 

LH 6,=A{20K) 
AR 6,6 

(20K) 
(40K) 

For 36K, 44K, 52K, and 60K, additional 
4K must be added, e.g., 

AR 6,7 (44K) 

The following instructions are the same 
as described under item 2. 

Phase Input and Output 

The input is read from the text input file 
and consists of machine instructions, pseu­
do Assembler instructions, and end key. 
The format of these instructions is des­
cribed in the section Instruction Formats. 
The input is read into the two input buf­
fers B1 and B2. The input pointer is POI. 

The offset table OFFTAB is read into the 
table space. If OFFTAB is small enough, 
phase F90 has left it in the enlarged table 
space of the length M*buffer length. If 
the size of OFFTAB exceeds the table space, 
OFFTAB is read from SYS001. The table 
space was enlarged in phase F90 by 180 
bytes in low core and two I/O buffers in 
high core. Thus, M is given by the length 
of the table space divided by the buffer 
length. M is stored at IJKMIP+2. The 
start address of the table space (stored at 
IJKMTS) was reduced by 180 bytes. 

c 



( 

( 

(-

PL/I PLM 8 

IBM Confidential 

Figure 1. Input and Output of Phase F95 

All instructions whose offset has 
already been determined are modified by 
inserting a half-word after the modifier. 
The inserted half-word contains the base 
register in the first four bits and the 
offset in the remaining bits. The key is 
changed to 10. 

Note: The pseudo Assembler instruction 

DC AL3 

is not modified. 

The correlation between the input and 
output of this phase is shown in Figure 1. 

NAME and MODIFIER are not deleted 
because they are still used in phase G40. 
The output is written on the text output 
file using the output buffer (OBUF) BO with 
the pointer POU. At the end of this phase, 
OFFTAB is written on SYS001, if it is not 
already there. 

!g~!E~~!io~_~QEma!~ 

The format ot the individual machine 
instructions is shown in Figure 2. The 
first byte contains the key 88. The second 
byte contains the operation code. Rl, R2, 
and R3 are registers. Ll and L2 are 
lengths. I is an immediate constant. 

The format of the Assembler pseudo 
instructions is shown in Figure 3. The 
first byte contains the key 80. 

The end key (01) is used to determine 
the end of the text. 

The keys used in the operands have the 
following meaning: 

E1 Declared variable 
E4 Generated variable 
E9 Constant 
E5 Register 
00 Absolute address 
11 Label in DC A 
10 New key (worked up) 
18 New key (worked-up E51 

Input 

Output 

The first three keys denote entries in 
OFFTAB, from where the offset is retrieved. 
The key E5 indicates that the operand con­
sists of a register with a displacement 
given by the modifier. The key 00 denotes 
an absolute address. The key 11 denotes a 
label in a DC A or DC AL3 instruction. The 
keys 10 and 18 are written if the offset 
has already been retrieved and inserted 
into a half-word following the element. 

FUNCTIONAL DESCRIPTION 

Phase F95 does the following: 

1. To retrieve the offset from OFFTAB, the 
first part of OFFTAB is read into the 
table space if it is not already there. 
The offsets of all text operands with 
entries in this part of OFFTAB are 
determined. Then, the next part of 
OFFTAB is read into the table space, 
and the text is scanned again from the 
beginning. This process is repeated 
until all parts of OFFTAB have been in 
storage. 

RR-Format 

RX-Format 

lee I Op I Rl I x21Keyi Name Modif 

RS-Format 
Modif 

SI-Format 

Modif 

SS-Format 

lee I Op I Ll I L2 IKey! Name I Modif I Key I Name Modif 

If only one length 1s present, L replaces L2 and Ll 
must be zero. 

Figure 2. Machine Instruction Formats 

Phase PL/IF95 307 



PL/I PLM 8 

IBM Confidential 

CNOP 

DC AL3 

Iso I Cl I KEyl NAME MODIF 

L 

LABEL 

NAME 

PROCEDURE 

IsO I C5 ILEV IBID I NAME 
BLO is the block number; 
LEV is the level number. 

END OF BLOCK 

DC F 

Iso I C71 LEV 1BW I 

This is a special key for a DC X'L' in which 
the length L of the DSA is inserted in phase 
G30. The reserved length is 4 bytes. 

ADD (OPT) 

Iso I csl LABEL 

This is a s.pecial key denoting that a branch 
instruction follows that is optimized in 
phase G¢¢. 

DC A (STATIC) 

Iso I C91 
not 

used 
This is a special kev for a DC 
containin9 the initial address 
storage. 

PARA 

IsO I CA I LC I LO I 

A (STATIC) 
of static 

This instruction precedes a field of instruc­
tions not to be separated by other instructions. 
(The length of the string is restricted to 256 
bytes.) LC = length of the string; LO = length 
at object time. 

UREG 

IsO ICB I KEY 

Indicates register not to be used for innirect 
addressing (5 or 6). Zero means both are free, 

Figure 3. Assembler Pseudo Instruction Formats 

2. To evaluate the base register, it is 
determined whether the variable is in 
static or in automatic storage. Gener­
al register 12 is used for static stor­
age. One of the general registers 13, 
11, or 10 is used for automatic stor­
age. Which of these three registers is 
used depends on the block in which the 
variable appears and in which it is 
called (see ~~~_~~_ASL. 

3. The length of static and automatic 
storage and of the text string is res­
tricted to 64K. 

308 

To get no displacement greater than or 
equal to 4K, storage is divided into 
4K-blocks. Each block is pointed to by 
the corresponding offset. When code is 
to be generated, the 4K-block is deter­
mined and the address of the block is 
loaded into a register which is then 
used as a base or index register. 

4. The code to be generated depends <lIon 
the type of instruction and (21 on the 
4K-block pointed to by the offset of 
the operand. Examples of code genera­
tion for blocks with an offset greater 
than 4K are shown in Figure 4. 

c 



( 

PL/I PLM 8 

IBM Confidential 

. Block pointed 
to by offset RX instruct ion 55 or 51 instructions 

4K Req. 7 as index LA 5,j1I(7,BASE) 
8K Req. 8 as index LA 5,j1I(8,BASE) 

12K LB ·5,A(12K) LH 5,A(12K) 
Req. 5 as index AR 5,BA5E 

Req. 5 as pase req. 
16K LH 5,A(16K) LH 5,A(16K) 

Req. 5 as index AR 5,BASE 
Req. 5 as base req. 

21/lK LH 5,A (2j11K) LH 5,A(2j11K) 
Req. 5 as index AR 5,BASE 

Req. 5 as base req. 
24K LH 5,A(24K) LH 5,A(24K) 

Req. 5 as index AR 5,BASE 
Req. 5 as base req. 

28K LH 5,A(28K) LH 5,A(28K) 
Req. 5 as index AR 5,BME 

Req. 5 as base req. 
32K LH 5,A(16K) LH 5,A(16K) 

AR 5,5 AR 5,5 
Req. 5 as index AR 5,BASE 

Req. 5 as base req. 
36K LH 5,A(16K) LH 5,A(16K) 

AR 5,5 AR 5,5 
AR 5,7 AR 5,7 
Req. 5 .s index AR 5,BASE 

Req. 5 as base req. 
4j11K LH 5,A(2j11K) LH 5,A(2j11K) 

AR 5,5 AR 5,5 
Req. 5 as index AR 5,BASE 

Req. 5 as base req. 
5 - one of thq reqisters 5 or 6. 
A( ••• ) - address of the correspondinq constant. 
BASE - base reqister. 

Figure 4. Generation of Code for Blocks 
with Offset greater than 4K 

~Qqical Flow 

If the first part of OFFT~B is not yet in 
the table space, it is read from SYS001. 
rhe I/O buffers are filled with text. The 
text is scanned for entries in this part of 
OFFTAB, and the corresponding offset and 
the attribute byte are moved into a special 
stack. The base register and the 4K-block 
are determined and the corresponding code 
is generated. The key and the instruction 
followed by a half-word containing the base 
register and the offset (modulo 4K) are 
then put into the output text string. 

When the end key is found, the next part 
of OFFTAB is read into the table space and 
the text is scanned again from the begin­
ning. This process is repeated until all 
parts off OFFTAB have been in storage. 

Note: The modifier becomes negative if it 
is greater than X'FFFS'. 

DESCRIPTION OF ROUTINES 

Note: The routines ISU, MOO, and MODIF are 
deSCribed in the section General DescriE­
tion of Phases F95 - G55. 

Symbols used 
BN 
TS 
M 
BO, B1, B2 
POU 
POI 
STA 
STAP 
STAR 
HW 
SSS 
BOTH 

OFEN 
LEVS 
RY 

REWO 

R 1, R2, etc. 
OBUF 
IBUF 

in flow charts: 
Number of OFFTAB records 
Table space 
Number of buffers in TS 
Initial I/O buffer addresses 
Output pointer 
Input painter 
Stack 
Pointer in STA 
Pointer in STA 
Half-word 
Switch for SS instructions 
Switch indicating that R6 
has been saved by a store 
instruction 
Stack for offset 
Stack for level 
Register containing object­
time base register 
1-byte stack indicating the 
free register 
General registers 
Output buffer 
Input buffer 

This routine scans the text for end-of­
statement, machine instructions, and 
Assembler instructions. 

If an end-of-statement of the format 

(1) (3) (2) 
r----T------------T----------------, 
I EA I not used IStatement No. I L ____ ~ ____________ ~ ________________ J 

is detected, it is transformed into a pseu­
do Assembler instruction of the format 

(1) (1 ) (2) (2) 
r----T----T-------T---------------, 
I 80 I C5 I FF FF I Statement No. I L ____ ~ ____ ~ _______ ~ _______________ J 

This format is the same as for the PROCE­
DURE statement. The only difference is 
that it contains X'FFFF' in bytes 3 and 4. 

Assembler and machine instructions are 
differentiated by their first byte, which 
is 80 for Assembler instructions and 88 for 
machine instructions. The individual types 
of Assembler and machine instructions are 
then determined by means of the second byte 
(the code byte) • 

The Assembler instructions are processed 
by individual routines branched to via the 
branch table shown in Figure 5. The rou­
tines are described later. 

Phase PL/IF95 309 



PL/I PLM 8 

IBM Confidential 

r---T---------T----'-----------------------, 
IKeylBranch tolHandles I 
~---+---------+---------------------------~ 
I COIB CNOP ICNOP I 
I C1 1B DCAL31 DCAL3 I 
I C21B DCX IDC X I 
I C3IB DSL IDS I 
I C41B LABELl Label I 
I C51B PROCEIBegin of block I 
I C61B ENDBLIEnd of block I 
I C71B DCF IDC X with length of DSA I 
I C81B ADD IOptimizable branch I 
I C91 B DCSTA I DC A (sta tic) 
I CAIB PARA IConnected field I 
I CBIB UREG I Free register (6 or 5) I 
L ___ ~ ______ ---~---------------------------J 

Figure 5. Format of the Branch Table 

For machine instructions, the instruc­
tion format (RR, RX, RS, SI, and SS) is 
checked. The routine then scans the text 
for operands with one of the keys E1, E9, 
E4, E5, and 00. The scanned element is 
moved into a special 18-byte stack. STAR 
always points to the first free byte in 
STA. Pointer STAP is used to indicate the 
position of the keys. 

If one of the keys El, E9, or E4 is 
found, the routine OGE is called to 
retrieve the offset from QFFTAB, add the 
modifier, determine the base register and 
the 4K-block and generate code, if neces­
sary, insert the base register and the 
offset into the half-word following the 
modifier as shown in Figure 1. 

If one of the keys E5 ~r 00 is found, 
only a part of OGE (OGE1) is used to gener­
ate code if the modifier is greater than or 
equal to 4K, and to insert offset and reg­
ister (for key E5 only) into the half-word 
following the the modifier half-word in 
STA. 

OGE --AR --------
OGE determines whether or not the name at 
STAP+5 is an entry in the present part of 
OFFTAB. If it is an entry, OGE moves off­
set and attribute byte to OFEN+2, deter­
mines the base register, changes the key, 
and m~ves base register plus offset into 
the c~rresponding column ~f STA. If addi­
tional code is required, it is generated by 
means of the routine KBT. 

BAS -- AS ------
rhis routine determines the base register 
by means of the variable level (in the 
attribute byte at OFEN+4) and the current 
block level (in LEVS) • 

The attribute byte has the following 
format: 

310 

bits 0-1: level 
bit 2 1 = automatic 
bits 3-7: off 

For static variables, register 12 is 
used as base register. 

For automatic variables, the block con­
taining the variable is determined. Figure 
6 shows the register used for the current 
block level and the level of the variable. 
The base register is returned in RY. 

r--------------T-----------------------, 
I I CURRENT BLOCK LEVEL I 
I ~-------T-------T-------1 
IVARIABLE LEVELl 1 I 2 I 3 I 
~--------------+-------+-------+-------~ 
I 1 I 13 I 11 I 11 I 
I 2 I ERROR I 1 3 I 1 0 I 
I 3 I ERROR I ERROR I 13 I L ______________ ~ _______ ~ _______ ~ _______ J 

Figure 6. Base Registers Used for Block 
and Variable Level 

MOK -- AT ------
MOK inserts the base register (contained in 
RY) into the leftmost 4 bits of the half­
word at STAR and the rightmost 12 bits of 
the offset into the other 12 bits. 

KBT determines the 4K-block and 
distinguishes the offsets as follows: 

1. of f set smaller than 12K 

2. offset greater than or equal to 12K and 
smaller than 32K 

3. offset greater than or equal to 32K 

In each of these cases it determines wheth­
er or not the instruction is an RX instruc­
tion. 

It generates code by means of 3 masks 
(see ~IO -- AY) corresponding to the 
4K-block and the type of instruction and 
returns the number of the base register in 
RY. rhe number of the index register, if 
any, is inserted into the instruction at 
STA+3. 

FRR -- AX 

This routine determines which of the two 
registers 5 or 6 is free and returns the 
number of the free register in R2. If both 
registers are free, 6 is returned. If no 
register is free, R2 is set to zero. 
Whether or not a register is free is indi­
cated by the byte REWO (see Figure 7) • 

c 

~-- ~ --~-- ----- - ~~- - ~ --



( 

PL/I PLM 8 

IBM Confidential 

If a free register is used for the first 
operand of an SS instruction (SWITCH=11, 
bi ts 4 (for R51 and 5 (for R6) are set to 
prevent the use of these registers for the 
second operand. Therefore, these bits are 
always tested when a free register is 
found. If the corresponding bit is on, the 
other register is used and its contents are 
saved, if required. 

r----T------------------------------------, 
IBit 1 Meaning 1 
~----+------------------------------------~ 
10-3 1 Not used 1 
1 4 1 If on, register 5 is used for firstl 
1 1 operand of an SS instruction 1 
I 5 I If on, register 6 is used for firstl 
1 1 operand of an SS instruction I 
1 6 1 If on, register 5 is free I 
I 7 I If on, register 6 is free I L ____ i ____________________________________ J 

Figure 7. Available Registers as Indicated 
by Byte REWO 

MIO -- AY 

MIO puts a mask, the initial address of 
which has been inserted into RO, into OBUF. 
It identifies the mask and thus its length. 
rhe hexadecimal formats of the masks are as 
follows: 

LH mask (9 bytes) : 
88 48 00 00 E1 00 04 00 00 

AR mask (4 bytes): 
88 1A 00 00 

LA mask (9 bytes) : 
88 41 00 00 E5 00 00 00 00 

L mask (9 bytes) : 
88 58 06 00 E1 00 06 00 00 

sr mask (9 bytes) : 
88 50 06 00 E1 00 06 00 00 

CNOP -- AZ --------
rhis routine is identical to MULTI. 

DC AL3 -- AZ ----------
The element (length 7 bytes) is moved into 
OBUF. 

DCX -- AZ ------
The length of the element is determined by 
addinq 4 to the length half-word. The 
element is then put into the output stream. 

All these routines are identical to MULTI. 

MULTI -- AZ -------

This routine moves the element (length 4 
bytesl into OBUF. 

PROCE -- BA 

This routine determines whether there is a 
statement number or not. If there is a 
statement number, the element is put out. 
Otherwise, this routine stores the level 
from POI+2 at LEVS and calls MOO to move 
the element into OBUF. 

ADD -- BB ------

The pseudo assembler instruction and the 
following branch are put into OBUF. 

PARA -- BA -------

The following elements of length LC 
(restricted to 256) are regarded as one 
unit and put into OBUF together with the 
preceding assembler pseudo instruction 
PARA. No additional ADD, CNOP, or LABEL 
may occur in the string. 

UREG -- BB 

The free register (5 or 6) is flagged in a 
special flag byte REWO. If bit 7 of REWO 
is on, register 6 is available. If bit 6 
is on, register 5 is available. The reg­
ister that may not be used is specified in 
the second half-word of the instruction. 
If it contains 5, this means that register 
5 is not free. If it contains zero, both 
registers are free. The element is then 
put into OBUF. 

Phase PL/IF95 311 



PL/I PLM 8 

IBM Confidential 

This phase performs the following fUnc­
tions: 

1. It constructs a label table LABTAB 
which contains the internal names of 
the labels, the location counter values 
relative to the beginning of each pro­
gram block, and the number of the pro­
gram block; 

2. It constructs a program block table PBT 
which contains the names and addresses 
of the program blocks; 

3. It optimizes the code for branches to 
label constants inside the same 12K 
segment and updates L~BTAB and PBT. 
The code generated for branches that 
cannot be optimized is shown in the 
section Generated Code and 0Etimiza­
tiQg. 

Block Structure ------------
The source program has a special block 
structure; blocks may be nested into one 
another up to a level of 3. This block 
structure is assorted in a previous phase, 
so that there is no longer any nesting. 

Each program block may have a maximum 
length of 32K bytes. Because most of the 
branch instructions branch to labels inside 
of the same program block, the label han­
dling is optimized within a program block. 
All branches to labels outside of the block 
are not optimized. 

If any program block is larger than 12K 
bytes, it has to be divided into segments 
of 12K. At the end of each (full) 12K 
segment, an instruction 

BALR 9,0 

is generated so that register 9 is always 
loaded with the initial address of the 
current 12K segment. For the first 12K 
segment of each program block, register 9 
is loaded by the prologue. 

A branch within a 12K segment may 
require a displacement greater than or 
equal to 4K. Therefore, the general reg­
isters 7 (loaded with 4K) and 8 (loaded 
with 8K) are used as index registers. 
Thus, any branch inside of a 12K segment is 
possible without using a displacement 
greater than or equal to 4K. 

312 

PHASE PL/IGOO (LABEL HANDLING) -- BF 

Generated Code and 0Etimization 

In phase ESO, a 4-byte pseudo Assembler 
instruction of the format 

r----T----T-------, 
I 80 I C8 I LABEL I L ____ ~ ____ ~ _______ J 

is generated in front of each branch to a 
label constant inside the same program 
block so that the code can be optimized as 
follows: 

1. The branch instruction and the label 
appear in the same 12K segment of the 
same program block: 
The pseudo Assembler instruction is 
deleted and the branch may be modified 
by inserting register 7 or 8 as index 
register (if the displacement is great­
er than 4K-1 or 8K-1, respectively). 

2. The branch instruction and the label 
appear in different 12K segments of the 
same program block: 
The code to be generated depends on the 
type of branch instruction. 

a. Absolute branch 

b. 

c. 

AH 9,=X'3000' (or 
BC F,LABEL 

Conditional branch 

BALR 
AH 
SPM 
BC 
SH 

14,0 
9,=X'3000' 
14,0 
8, LABEL 
9,=X'3000' 

BCT and BAL 

AH 
BAL 
SH 

9,=X'3000' 
LINK, LABEL 
9,=X'3000' 

X' 6000 ') 

If the label has an offset smaller than 
that of the branch instruction, the AH 
will be replaced by an SH and the SH by 
an AH. The constants 12K and 24K are 
half-words contained in static storage. 

Construction of LABTAB and PBT 

LABTAB and PBT are constructed in the rou­
tine LATA. The text is scanned for the 
pseudo Assembler instructions PROCEDURE, 
END OF BLOCK, and LABEL. 

c 



( 

( 

PL/I PLlvI 8 

IBM Confidential 

1. When PROCEDURE is found, the number of 
the program block is stored in a stack, 
the name and the location counter LOC1, 
which counts the offset from the begin­
ning of the program, are inserted in 
PBT at a locatinn given by the block 
number (PBN). The second location 
counter LOCO, which counts the offset 
from the beginning of the program 
block, is set to zero to start a new 
count. The entry name is inserted in 
LAB TAB with the location O. 

The format of PBT and LABTAB entries is 
as follows: 

PBT: 
Name (2 bytes) 
Of f set (LaC 1) (2 bytes) 

LABTAB: Name (2 bytes) 
Offset (LOCO) (2 bytes) 
PBN (1 byte) 

2. When END OF BLOCK is found, it is 
checked whether LOCO is greater than 
32K and whether LOC1 is greater than 
64K. An error is indicated if either 
one of these conditions is detected. 
The part of LABTAB that pertains to 
this block is written on SYS001. 

3. When LABEL is found, the name, LOCO, 
and the block number PBN are inserted 
at the appropriate location in LABTAB. 
While PBT remains in storage for phase 
G15, LAB TAB is written on SYS001 for 
the phases G01 and G25. 

QEtimization of Text Code 

rhe text is scanned for the 4-byte special 
pseudo Assembler instruction ADD, which 
indicates an optiffiizable branch. This 
instruction has the format. 

r----T----T-------, 
I 80 I C8 I LABEL I l ____ ~ ____ ~ _______ J 

The present part of LABTAB is scanned 
for the label and, if the label is found, 
the label offset is compared with the cur­
rent location counter LOCO if the label and 
the ADD instruction are located in the same 
program block. If label and instruction 
appear in the same 12K segment, the pseudo 
Assembler instruction is deleted and the 
following instruction is modified. The 
label offsets of this program block in 
LABTAB and all offsets of following blocks 
in PBT are updated. 

If label and instruction do not appear 
in the same 12K segment, code is generated 
as described in the section Generated Code 
~~Q_QE~imizati2~· --------------

At the end of a 12K segment, an instruc­
tion 

BALR 9,0 

is generated to load register 9 with the 
initial address of the following segment. 
This instruction must be exactly at the end 
of the 12K segment. This is achieved by 
inserting one or more instructions of the 
type 

BCR 0,0 

if necessary. 

Critical Cases and Boundary Problems 

There are some critical cases at the end of 
each 12K segment. Because the LABTAB was 
constructed when maximum code was present 
or simulated by the pseudo Assembler 
instruction, some labels may get from one 
12K segment into the other during this 
phase due to the deletion of code. 

CALL LABEL A CALL LABEL A 

12K 12K 

LABEL A 

Figure 1. Calling of Label A at Different 
Moments of Compile Time 

Figure 1 shows two cases of calling 
LABEL A at different moments of compile 
time. While in case 1 instruction and 
label are situated in different segments, 
they are in the same segment in case 2, 
although instructions 1 and 2 are situated 
in the same segment. These cases are han­
dled differently as follows: 

Case 1: 

The ADD instruction is not deleted because 
it is not known whether or not LABEL A will 
go into the same segment. In phase G15, 
where it can be determined whether label 
and instruction are in the same segment, 
the generated AH instruction is modified to 
a NOPR instruction by inserting the address 
of a zero half-word into the AH instruc­
tion, so that zero is added to register 9. 

Phase PL/IGOO 313 



PL/I PLM 8 

IBM Confidential 

Case 2: ----
The pseudo Assembler instruction ,is deleted 
and no code is generated. Another critical 
case occurs, for instance, if there is only 
one label to be called in a 12K segment, 
and this is situated just before the last 
instruction of the segment. Because a 

BALR 9,0 

instruction has to be generated at the end 
of each 12K segment, it may happen that the 
label is moved into the next segment so 
that the optimization performed before 
becomes wrong. To exclude this case, A 
will be regarded as being situated in the 
next block, so that no optimization is 
performed. 

Due to the limited table space, only a 
part of LABTAB may fit into storage so that 
the rest remains on SYS001. Because each 
LABTAB entry has 5 bytes, the maximum num­
ber of present labels is restricted to 
FLOOR [M*BUFFERLENGTH: 51 =NPL where M is the 
number of buffers in the table space. For 
a 16K system with a buffer length of 256 
bytes, the number of labels in the table 
space is NPL = FLOOR (9x256:5) =460. 

If NPL is smaller than the number of 
labels of one 12K segment, some labels, 
although belonging to the same segment, may 
not be present in the table space and, 
therefore, be regarded as belonging to 
another segment. The corresponding branch­
es are not optimized. Optimization is 
stopped when coming to a branch with cur­
rent offset greater than the offset of the 
last present label. 

Phase input is the output text string of 
phase F95. The I/O buffers B1 and B2 are 
used for accommodating the text input (the 
pointer is POI). Input is controlled by 
the sUbroutine ISU. 

LABTAB is intermediately written on 
SYS001 if it becomes larger than the table 
space. It is put out in records of buffer 
length (ZTAB19) and read again into the 
table space for updating. At the end of 
each block, the corresponding updated part 
of LABTAB is written on SYS001 (ZTAB20). 
'Thus, LABTAB is completely on SYSO 01 at the 
end of the phase. PBT is left in storage. 
It is placed at the end of the program 
space by an ORG instruction. 

Buffer BO and the pointer POU are used 
for output. The output consists of the 
optimized text string which contains only 
one new element: 

314 

(1 ) (1 ) (1 ) (1) (1) (1) (2) (2) 
r----T----T----T----T----T----T----T----' 
I 80 I CO I OP I X I 00 I E1 INAMEIOOOOI 
I I Icodel I I I I I L ____ L ____ L ____ L ____ L ____ ~ ____ ~ ____ ~ ____ J 

This element represents the optimized 
branch instruction. The special pseudo 
Assembler instruction ADD is changed in 
this phase to 

(1 ) (1 ) (1) (1 ) (1) (1) (2) (2) 

r----T----T----T----T----T----T----T----' 
I I I 4A I I I I I I 
I 80 I C8 I or I 9 I 00 I E1 I NAME I 0 I 
I I I 4B I I I I I I L ____ L ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J 

The CNOP instruction 

r----T----T----T----' 
I 80 I co I B I W I L ____ L ____ ~ ____ ~ ____ J 

is replaced by a corresponding number of 

BCR 0,0 

instructions of the format 

r----T----T----T----' 
I 88 I 07 I 00 I 00 I L ____ ~ ____ ~ ____ ~ ____ J 

so that the key CO is available for the 
other instructions, and the instructions 

r----T----T----T----' 
I 80 I CA I LC I LO I and L ____ L ____ ~ ____ L ____ J 

r----T----T---------, 
I 80 I CB I KEY I L ____ ~ ____ ~ _________ J 

are deleted. 

DESCRIPTION OF ROUTINES 

Note: The routines ISU, MOO, and MODIF are 
described in the section General Descrip­
tion of Phases F95 - G55. 

Symbols used in flow charts: 

BO, B1, B2 

BUFL 
OBUF 

IBUF 
POU 
POI 
LAPO 

TS 

- Initial addresses of the I/O 
buffers 

- Buffer length 
- Output buffer (for text) 

same as BO 
- Input buffer (for text) 
- Pointer for OBUP 
- Pointer for input buffers 
- Pointer for LABTAB in the 

I/O buffers 
- Initial address of table 

space 

- -- -~-~-- --~-- --~ -- -

c 



( 

PL/I PLI>1 8 

IBM Confidential 

TSE 

LSP 

NLB 
LAPO 

BA 
LASTAD 

BTS 
LOCO 

LOC1 

[JPCO 
[JP 

PBTCO 

BRAN1 
N 

SSS 
SRS 
CCB 

- End of table space (points 
to first byte after table 
spacel 

- Pointer for LABTAB in table 
space 

- Number of LABTAB buffers 
- Pointer in table space to 

insert labels into LABTAB 
- BUFL of BO 
- Address of last updated 

LABTAB element + 5 
- TS + BUFL 
- Location counter from 

beginning of a program block 
- Location counter from 

beginning of program 
- Update counter 
- Update counter for present 

LABTAB part 
- Pointer for PBT and other 

tables 
- Branch table 
- Number of current 12K 

segment 
- Switch for SS format 

Switch for labels 
- Switch for conditional 

branches 
NLBSTA - Stack for NLB 
NO - Number of program blocks 
RO, R1, R2, 
RX, RY - Working registers 
PBT - Program block table 
OFFTAB - Offset table 
LABTAB - Label table 
M Number of buffers in TS 

LATA -- BI -------
LATA constructs the first version of LAB­
TAB. It scans the text string for the 
pseudo Assembler instructions LABEL, PROCE­
DURE, and END of block. rwo location coun­
ters are used. LOCO counts from the begin­
ning of each program block; LOC1 counts 
from the beginning of the program. 

1. When LABEL is found, LOCO is stored in 
LAB TAB together with the label name and 
the number of the current program 
block. 

2. When PROCEDURE is found, the number of 
the program block is stored in a stack. 
The name and LOC1 are inserted into PBT 
at a location given by the block number 
(PBNI. LOCO is set to zero to start a 

new count. The entry name is inserted 
into LAB TAB with the location O. rhe 
format of the entries in PBT is as 
follows: 

bytes 1 - 2 
bytes 3 - 4 

name 
offset (LOC11 

The format of the entries in LABTAB is 
as follows: 

bytes 1 - 2 
bytes 3 - 4 
byte 5 

name 
offset (LOCal 
program block number 

3. When END OF BLOCK is found, an error is 
indicated if LOC1 is greater than 64K 
or if LOCO is greater than 32K. 

LABE -- BJ -------
If the pseudo Assembler instruction LABEL 
is found, LOCO is stored in LABTAB together 
with the internal name of the label and the 
current program block number contained in 
the corresponding stack. LAB TAB is written 
on SYS001 if an overflow occurs. The ele­
ment LABEL is put into OfrUF. 

UDA -- BK ------
UDA updates those offsets of the present 
labels in LABTAB of the current program 
block that are greater than the value of 
the current location counter LOCO with the 
value given in UP. The same updating is 
performed for the offsets in PBT that are 
greater than the value of LOC1. 

MaC -- BL ------
If the half-word pointed to by LSP contains 
the end key (X'FFFF'), LABTAB is written on 
SYS001. It is tested whether the byte 
pointed to by LSP + 4 (block number) is 
equal to PBN. If it is not, the routine 
returns. If the label location is greater 
than LOCO, the routine returns. If it is 
not, LSP is increased by 5. If LSP becomes 
greater than TS + BUFL, the first buffer in 
the table space is written on SYS001. LSP 
is decreased by BUFL and a new LABTAB 
record, if any, is read in and updated. 

If switch SRS is off, SCAL scans the pre­
sent part of LAB TAB for the label at POI + 
2. If SRS is on, the label is regarded as 
not belonging to the same 12K segment. 
Thus, optimization is suppressed for 
branches of that part of a 12K segment the 
labels of which are not present in the 
table space. 

Before scanning LABTAB, the current 
program block number PBN and LOCO are com­
pared with the number of the last present 
LABTAB entry. If the PBNs are identical 
and LOCO is greaer than the label offset, 
SRS is set to one. SRS is reset if the end 
of the program block or the 12K segment is 
found. 

If the label is in the present part and 
belongs to the same program block and the 
same 12K segment, SCAL returns RX # 0; 
otherwise, it returns RX = o. 

Phase PL/IGOO 315 



PL/I PLM 8 

IBM Confidential 

This routine moves the ADD mask to OBOF by 
means of the routine MaC. 

SBO -- BN ------

This routine is used for the handling at 
the 12K segment boundaries. It generates 

BCR 0,0 

instructions until LOCO has the value 
N*12K-2. The instruction 

BALR 9,0 

is generated to load register 9 with the 
initial address of following segment. 

The location counters and the update 
counter are adjusted. The present labels 
are updated (by calling UDA) , and new 
labels are read into the table space (by 
calling MaC) • 

To determine the various Assembler instruc­
tions, the code byte is used as offset in a 
branch table BRAN1 which contains branches 
to corresponding subroutines. For the 
format of the branch table refer to phase 
F95. 

The individual routines branched to via 
the branch table perform the following 
functions: 

N = 0 : Word boundary: Add 2 to location 
counters. Double-word boundary: 
Add 6 to location counters. Skip 
the element. 

N ¢ 0 Evaluate the increment of the loca­
tion counters. Generate a corres­
ponding number of 

instructions. Update the present 
label offsets of LABTAB, change 
UPCO and update PBT. 

DCAL3 -- BO -------
The location counters are increased by 3 
and the element is moved into OBUF. 

DCX -- BO ------
The second half-word (L) of the element is 
added to the location counters and the 
element is put into OBOF. 

316 

DSL -- BP 

The second half-word (L) of the element is 
added to the location counters and the 
element is moved into OBOF. 

LABEL (Test N) -- BP 

N 0 
N ¢ 0 

Branch to LABE. 
Move the element into OBOF. 

The routine checks whether there is a 
statement number. If there is not, it 
stores the program block number in stack 
PBN and sets LOCO to zero. It tests wheth­
er N = O. 

N = 0 : Insert the name of the block and 
LOC1 into PBT and the name with 
LOCO into LABTAB. 

N ¢ 0 Move the element into OBUF. 

If it is a statement number, the element 
is moved into OBUF. 

An error message is produced by calling 
phase G31 if either LOCO ~ 32K or LOC1 ~ 
64K. Call MaC to write the labels of the 
current block on SYS001 and read the next 
part of LABTAB into the table space, if 
possible. Move the element into OBUF. 

The location counters are increased by 4 
and the element is moved into OBUF. 

ADD -- BR ------
N = 0 : Determine the type of the following 

branch instruction and increase the 
location counters accordingly. 
Skip the element and the following 
branch instruction. 

N ¢ 0 Call SCAL to scan LABTAB for the 
label (second half-word). Deter­
mine whether the label belongs to 
the same 12K segment as the 
instruction. 

1. If not the same 12K segment: 

Insert name and instruction key into 
the ADD mask of following format: 

(1) (1) (1) (1) (1) (1) (2) (2) 
r----T----T----T----T----T----T----T----' 
I I I 4A I I I I I I 
I 80 I C8 I 4B I 9 I 0 I E3 I NAME I 0 I L ____ ~ ____ ~ ____ L ____ ~ ____ ~ ____ ~ ____ ~ ____ J 

c 



( 

( 

( 

PL/I PLM 8 

IBM Confidential 

2. 

a. An absolute branch follows: The ADD 
mask followed by the branch 
instruction is put into OBUF. 

b. A BAL or BCT instruction follows: 
The ADD mask is put into OBUF fol­
lowed by the branch instruction and 
an SH instruction of corresponding 
format. 

c. A conditional branch follows:rhe 
following sequence of instructions 
is generated: 

BALR 14,0 
AH 9, •••• 
SPM 14 
BC 
SH 9, •••• 

The location counters are increased 
accordingly. If the generated 
instructions should not fit in the 
current 12K segment, corresponding 
NOPR instructions are inserted and 
the instructions are put into the 
next segment. 

Same 12K segment: 

Delete the pseudo hssembler instruction 
by adjusting the pointer POI and change 
the following branch instruction to the 
format 

(1) (1 ) (1 ) (1 ) (1) (1) (2) (2) 

Put this element into OBUF and increase 
the location counters by 4. Update the 
label table LAB TAB and PBT. 

DCSTA -- BP 

The location counters are increased by 4 
and the element is moved into OBUF. 

PARA -- BT ------
N = 0 : Increase the location counters by 

the length LO (contained in the 
byte at POI + 3). Skip the element 
of length 4 and the following 
string Of. length LC. 

N '" 0 Delete the pseudo Assembler 
instruction (POI + 4). Test wheth­
er LOCO + LO is greater than N*12K 
- 2. If the value is not greater, 
increase LOCO and LOC1 by LO. Put 
the string at POI (length LC) into 
OBUF. If the value is greater, 
evaluate 

N*12K - 2 - LOCO = hBS. 

Generate ABS: 2 instructions of the 
type 

BCR 0,0 

Increase the location counters by 
hBS + 2 and N by 1. Then generate 
an instruction 

BALR 9,0; 

update present labels and branch to 
the action listed under item 1. 

This instruction is deleted during the 
construction of LABTAB by increasing the 
pOinter POI by 4. 

Phase PL/IGOO 317 



PL/I PLM 8 

IBM Confidential 

The offset table OFFTAB is listed if the 
S~M option is active. This phase inserts 
the label offsets and block numbers from 
the label table LABTAB into the offset 
table OFFTAB. The offset table is put into 
the table space in subsequent parts. rhe 
label table is read into the 1/0 buffers 
record by record. 

Each LAB TAB record is scanned. For each 
entry, the offset half-word and the follow­
ing program block number are inserted into 
the present part of OFFTAB, if possible. 
rhe scan of LAB TAB is repeated until all 
parts of OFFTAB have been in the table 
space. 

~g~~~_!npui_an~_Q~iE~i 

The input consists of the two tables OFFTAB 
and LAB TAB retrieved from SYS001. OFFTAB 
is read into the table space in parts of LVI 

records. The value of M is stored at 
IJKMIP+ 2. 

LABTAB is read (record by record) into 
the 110 buffers BO and'B1 with the pOinter 
LAPO. Each record is processed separately. 
If the end of LABTAB is found, the next 
part of OFFTAB is written into the table 
space and reading of LABTAB starts again 
with the first record. 

The output (used by phase G15) consists 
of the changed offset table which is writ­
ten onto SYS001 under ZTAB07. 

OFLIS -- CC 

rhis routine lists the offset table OFFTAB 
in the following format (in the example, 
the start address of the static storage is 
assumed to be 4000) : 

318 

PHASE PL/IGOl (LABEL OFFSETS) -- CA ;tI'\ 

r----------T---------T----------T---------, 
I INTERNAL I OFFSET I TYPE I MODULE I 
I NAME I I I OFFSET I 
~----------+---------+----------+---------~ 
I 0101 I 0024 I STATIC I 004024 I 
I 0102 ,,0038 I AUTOMATIC I I L __________ ~ _________ ~ __________ ~ _________ J 

Variables, constants, or labels that do 
not have an offset in static or automatic 
storage are not listed. For entry names, 
the offset of the generated address con­
stants in static storage are written. 

RAN -.,. CD 

RAN inserts one line of the offset table 
into the print buffer. For the format of 
the line see the section OFLIS -- CC. Then 
the line is printed by the routine ZPRNT. 

TRANS -- CD -------
This routine translates hexadecimal values 
into EBCDIC. The bytes (the number of 
which is given in R2) at 0 (R1) are trans­
lated and moved into the print buffer at 
the location given in RO. 

WOLA -- CB -------
WOLA inserts the offsets and block numbers 
of the present part of LAB TAB into the 
present part of OFFTAB. 

It takes the first half-word of a LABTAB 
entry, multiplies it by 3, and takes the 
value as offset in the offset table. It 
then inserts offset and block number at the 
position indicated by the offset. The 
pointer LA PO is increased by 5 for adjust­
ment to the next entry. The routine 
returns when it finds the end key or reach­
es the end of the first buffer. 

o 

c 



( 

( 

PL/I PLM S 

IBM Confidential 

This phase inserts the offsets from OFFTAB 
together with the corresponding base Reg­
isters into the instructions. A half-word 
following the instruction is reserved for 
this purpose as described in phase F95. 
For address constants, three bytes are 
reserved for the offset. 

The phase consists of two main parts: 

1. Processing of the text string and 

2. Processing of the constants contained 
in static storage. 

The text output of phase :;00 is the input 
of this phase. The text is scanned for RX, 
RS, SI, SS, and DC ~L3 instructions. The 
format of the operands of these instruc­
tions is as follows: 

byte 1 
bytes 2-3 
bytes 4-5 

key 
name 
modifier 

The key may have the following values: 

X'E1' 
X'E9' 
X'E4' 
X'E5' 
X'OO' 
X' 11 ' 
X' 10' 
X'20' 

declared variable 
constant 
generated variable 
register 
absolute address 
DC AL3 (label) 
already processed 
DC VL3 

a. The first three keys mark the following 
field as entry in OFFTAB. In these 
cases, the offset is taken from OFFTAB. 
The modifier is added, the correspond­
ing base register evaluated, and both 
are inserted into half-word following 
the operand. . 
The key is changed to X'10' to mark 
that the element has already been proc­
essed. 
Address constants require special 
treatment because the offset may become 
greater than 64K. Therefore, the off­
set is inserted into the following 3 
bytes. 

b. The key X'E5' denotes that the operand 
(the half-word name) is a register. 

The register is taken as base register 
and the modifier as offset. Both are 
inserted into the following half-word 
as described under item a. The key is 
changed to X'10'. 

c. The key X'OO' denotes an absolute 
address, i.e., the name field is free, 
no base register has to be taken, and 
the modifier has to be inserted as 
offset. 

Though most of the instructions were 
processed in phase F95, some are left 
because the offsets for the labels 
could not be inserted; some strings, 
the elements of which should be con­
nected, have not yet 'been processed; 
and the address constants could not be 
processed because some of them might 
contain labels. 

d. The key X'10' is used to mark operands 
already processed, i.e., that the half­
word with offset and base register has 
already been inserted. 

Besides those normal cases, two special 
instructions have to be regarded. 
Those are the special pseudo assembler 
instructions with the code byte X'CO' 
or X'CS', respectively. ~ee phase 
GOO). Special base and index registers 
have to be inserted besides the offset 
in these cases. 

Constants 

The constants are on SYS001 in the table 
CONTAB. They have the following format: 

bytes 
byte 
bytes 
bytes 

1 - 2 : internal name 
3 . attribute 

4 - 5': length 
6 - n : constant 

The attribute byte has the following 
format: 

" 
bits 0-1 00 = constant of type DC X 

01 constant of type DC A 
10 constant of type DC V 
11 constant of type DC AL3 

bit 2 0 not optimizable 
1 optimizable 

bit 3 not used 
bit 4 1 = DCVL3 if bits 0-1 are on. 
bit 5 1 word boundary 
bits 6-7 01 DC X for label assignment 

DC A for segment origin 
10 = DC A of an entry name 
11 = double-word boundary 

The constant itself is given in the inter­
nal representation or, if it is an address 
constant, as name plus modifier (4 bytes) • 

Phase PL/IG15 319 



PL/I PLM 8 

IBM Confidential 

r-----------T-------------------------------------------------, 
I I Byte (s) I 
I ~----T----T----T----T----T----T----T----T----T----~ 
I Instruction I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 101 
~-----------+----+----+----~----+----~----~----+----~----~----~ 
IDC X I 80 I C2 I length I constant I I 
~-----------+----+----+----T----~----T---------+--------------~ 
IDC A l 80 I CA I 10 I name I modifier I offset I 
~----~------+----+----+----+---------+---------+--------------~ 
IDC V I 80 I CB I 10 I name I modifier I offset I 
~-----------+----+----+----+---------+---------+--------------~ 
IDC AL3 I 80 I C1 I 10 I name I modifier I offset I 
~-----------+----+----+----+---------+---------+--------------~ 
IDC VL3 I 80 I C1 I 13 I name I modifier I offset I L ___________ ~ ____ ~ ____ ~ ____ ~ _________ ~ _________ ~ ______________ ~ 

Figure 1. Output Format of Translated Constants 

These constants are translated into the 
same format as those in the text string, 
and the offset for address constants is 
inserted. For DC A, the code byte X'CA' 
and for DC V the code byte X'CB' is used. 
·rhe constants are put onto the text medium 
behind the normal text; the end key is put 
at the end of the constants so that there 
is no difference between the two parts in 
following phases. At the begin of the 
constants, a label FFFF is generated denot­
ing the begin of static storage. 

The output is shown in Figure 1. 

Two keys are used for DC AL3 because two 
types of instructions may occur: 1) the 
normal DC AL3 with the key X'10' and 2) a 
DC VL3 (flagged by bit 4 of the attribute 
byte) with the key X'30'. 

The names in front of the constants, 
used to address them, are inserted into a 
pseudo assembler instruction LABEL. 

Special constants: 

a. For GOTOs from one program block to a 
label in another one, the following DC 
instructions are used: 

32Q 

L'aaaa' DC A(BLOCK + 12K segment) 
DC X'OFFSEr' 

The DC A constant contains the address 
of the program block and a multiple of 
12K as modifier representing the ini­
tial offset of the 12K segment corres­
ponding to the label. 

The 4-byte DC X constant is the label 
offset in the block reduced by the 
offset of the corresponding 12K seg­
ment. 

The output formats of these constants 
are shown in Figure 2. 

r----T--------------------, 
I 80 I C4 label aaaa I L ____ ~ ____________________ J 

r----T----T----T-------T-------T------' 
I I BLOCK I I I 
I 80 I CA I 10 I NAME I N*12K I OFFSET I L ____ ~ ____ ~ ____ ~ _______ ~ _______ ~ ______ J 

N = 0 or 1 or 2 

r----T----T---T----------, 
I 80 I C2 I 4 I CONSTANT I L ____ ~ ____ ~ ___ ~ __________ J 

Figure 2. Output Formats of DC A and 
DC X Constants Generated for 
GOTOs. 

D2 A 

DC X 

r--------
I 
I 
I 12K 
I 
I 
~--------
I 
I L: <--, 
I I L________ I 

I 
r-------- I 
I I 
I J 
I GOTO X __ J 

I 
I L _______ _ 

LABEL L 

X L 

b. To correctly load register 9 (in the 
prologue) when calling an entry name, a 
constant 

'Label DC A (BLOCK + 12K segment) , 

is used. Its output is the same as 
that of the previous instruction. 

c; 



( 

PL/I PLM 8 

IBM Confidential 

General Flow 

The offset table is read into the table 
space and the text is scanned and proc­
essed. If the End key is found, the con­
stant table CONTAB is read into the buf­
fers. The format is changed, the off~et 
inserted, and the constants are written 
behind the text string. 

If the offset table is greater than the 
table space, the text followed by the con­
stants is scanned again. This process is 
repeated until all parts of OFFTAB have 
been in the table space. At the end of the 
phase it is tested whether a file table 
exists. If there is a file table, phase 
317 is called. Otherwise, phase G17 is 
skipped and phase G20 is called. 

~!!~~--Input~ OutE.ut 

rhe input consists of the text string as 
generated in phase GOO and of the following 
tables: 

OFFTAB Offset table to be found on SYS001 
under ZTAB07 or, if small enough, 
in the table space. 

CONTAB Constant table to be found on 
SYS001 under ZrAB08. It is read 
into the 1/0 buffers. 

CAR TAB Character-string table to be found 
on SYS001 under ZrABOO. It is read 
in and put behind the text string. 

EXTTAB External name table to be found on 
SYS001 under ZrAB04. It is written 
onto the free text medium at the 
end of the phase. 

PBT Program block table in the program 
space (generated by phase GOO) • 

The text is read into the I/O buffers 81 
and B2 with the pointer P~I and put out by 
means of the output buffer BO with the 
pointer POU. 

BO, B1, 82 

IBUF 
OBUF 
POI 
POU 
BRAN2 
LOCO 
DCXMA 
OFEN 
HiV 

- 1/0 buffer begin 
addresses 

- Input buffers 
- Output buffers 
- Input pointer 
- Output p::>inter 
- Branch table 
- Location counter 
- Address of the DC X mask 
- Storage area for offset 
- Half-word 

(' BN 

RO, Rl, R2, RY 
SSS 

- Number of OFFTAB records 
left 

- Working registers 
- Switch f::>r SS instructions 

SW 
REN 

LAMA 
CN 
PSC 
AMA 
DSLMA 
SWO 
M 

- Switch for the constants 
- Register containing the 

name 
- Address of LABEL mask 
- Number of constant records 
- Pointer for constants 
- Address of DC A mask 
- Address of DS mask 
- Switch for DC SO 

Number of buffers in the 
table space 

Funct~onal DescriE.tion 

This phase has the following functions: 

1. To scan the text for instructions not 
yet processed. 

2. To generate the half-word containing 
base register and offset after the 
operand. 

3. To change the format of the constants 
in static storage. 

4. To insert the offsets for address con­
stants into the succeeding 3 bytes. 

Since OFFrAB may become greater than the 
table space, only a part of OFFTAB might be 
present in storage. Therefore, the text 
string and the constants may have to be 
scanned several times, once for each part 
of OFFTAB. 

Machine Instructions 

The instruction format is determined by 
testing bits 0 and 1 of the operation-code 
byte. 

RR Format -----
The element is moved into OBUF and LOCO is 
increased by 2. 

~g~~r SI Format 

LOCO is increased by 4. The key at POI+4 
is tested. If the key is E1, E9 or E4, the 
offset is taken from OFFTAB together with 
the attribute byte. The modifier is added 
to the rightmost 12 bits of the offset, and 
the base register is evaluated. The ele­
ment is put into output after the key has 
been changed. rhe half-word containing 
base register and offset is put behind the 
element. 

If the key is E5, the offset half-word 
is constructed from register and modifier. 
If the key is 00, the modifier is used as 
offset half-word. If the key is 10, the 
element is moved into the output. 

Phase PL/IG15 321 



PL/I PLM S 

IBM Confidential 

SS Format --------

Both operands of the instruction are han­
dled as described for the RX, RS, and SI 
instructions. The element is put into the 
output in two parts. LOCO is increased by 
6. 

Assembler Instructions 

The individual assembler instructions are 
determined by the second byte which con­
tains the instruction key. The keys are: 

CO - optimized BRANCH 
C1 - DC AL3 
C2 - DC X 
C3 - DS L 
C4 - LABEL 
C5 - PROCEDURE 
C6 - END OF BLOCK 
C7 - DC X'LENGTH OF DSA' 
CS - special ADD 
C9 - DC A (STATIC) 
CA* - DC A 
CB* - DC V 
CC* - DC LASS 
CD* - DC SO 

* used for static constants 

The key byte is put into a general reg­
ister and X'CO' is subtracted. The result­
ing number is used as an offset in the 
branch table (BRAN2) that contains the 
corresponding branches to the processing 
subroutines. 

rhe branch table BRAN2 has the format shown 
below. 

BRAN2 B OBRA 0 
B DCAL3 1 
B DCX 2 
B DSL 3 
B LABEL 4 
B PROCE 5 
B ENDBL 6 
B DCF 7 
B ADD S 
B DCSTA 9 
B DCA A 
B DCV B 
B DCLASS C 
B DCSO D 

The names contained in the table are the 
names of the subroutines. The displacement 
within the table is found by multiplying 
the number in the right-hand column by 
four. 

OBRA -- CL -------

The instruction (branch) has the following 
format: 

322 

Byte(~L Contents 

1- 2 X'80CO' 
3 operation code 
4 X 

5- 6 X'OOE1' 
7- S name 
9-10 zero 

LOCO is increased by 4. The name field 
is tested to determine whether the corres­
ponding offset is contained in the present 
part of OFFTAB. If it is not contained, 
the element is put into OBUF unchanged. If 
it is contained, the first byte (SO) is 
deleted. The second byte (CO) is replaced 
by X'S8'. The offset is taken from OFFTAB. 

o ~ offset module 1aK < 4K byte 4=X'OO' 
4K ~ offset module 12K < SK byte 4=X'07' 
8K ~ offset module 12K < 12K byte 4=X'08' 

The key E1 is changed to 10 and the 
element is put into OBOF. The offset modu­
lo 4K and the base register 9 are inserted 
into the following half-word. 

The new format is: 

Byte(~L 

1 
2 
3 
4 
5 

6- 7 
8- 9 
1-11 

Contents ---
X'S8' 
operation code 
X 
0, 7, or 8 
X'1 0' 
name 
zero 
left-hand four bits: X'9' 
remainder: offset 

DC AL3 -- CM 

The instruction has the following format: 

ByteJ~L Contents 

1- 2 X'SOC1' 
3 key 

4~ 5 name 
6- 7 modifier 
8-10 used for offset 

The location counter is increased by 3. 
The key is tested for 10 and 11. If it is 
10, the element has already been processed 
and is put into OBUF unchanged. In this 
case, the succeeding 3 bytes contain the 
offset. If it is 11, the key denotes that 
the operand is a label. The offset is 
taken from OFFTAB together with the program 
block number. The offset is increased by 
the sum of modifier and initial block­
address offset to be taken from PBT. This 
sum is inserted into the succeeding three 
bytes. The element is then put into OBUF 
after the key has been changed. 

~ 
0 

c 



( 

( 

PL/I PLM S 

IBM Confidential 

If the key is neither 10 nor 11, the 
operands are constants in static storage. 
The offset is taken from DFFTAB (if 
present). The sum of offset, modifier, and 
length of program is inserted into the 
succeeding 3 bytes after the element with 
the changed key has been moved into OBUF. 

Since the constant may become greater than 
256 bytes (for STATIC), a special treatment 
for I/O is necessary. Thus, the element is 
not changed but only put into the output 
(LOCO + length of constant). It is tested 
whether the element is fully contained in 
the input buffers B1, B2. If it is, MOO is 
called to move the element into OBUF. If 
it is not, MOO is called for the present 
part. The input pointer and the element 
length are updated and new input is read 
into B1 and B2. This loop is repeated 
until the entire element has been brought 
from input to output. 

Q~_1_==~~ LOCO is increased by the 
length L (HW at POI+2). The element is put 
into OBUF unchanged (call MULTI) • 

LABEL -- CN (Same as MULTI) -- CN. The 
element-rs-put into OBUF unchanged. 

PROCE -- CN LOCO is set to zero to start -------a new count. rhe element is then put into 
OBUF (call MULTI). 

ENDBL -- CN. (Same as MULTI). The element 
is-put into OBUF unchanged. 

Q£_E_== CN The element is put into OBUF 
unchanged and LOCO is increased by 4. 

MULTI -- CN. The element of length 4 is 
moved from POI to POU by calling MOO. 

f!i:!:~J~L 

1- 2 
3 

4-10 

The element has the following 

Contents -------
X'80CS' 
X' 5A' or X' 5B ' 
X'0900E300040000' 

LOCO is increased by 4. The name field is 
tested to determine whether the correspond­
ing offset is contained in the present part 
of OFFTAB. 

If it is not contained, the element is 
moved into OBUF unchanged. If it is con­
tained, the first byte (SO) is deleted. 
rhe second byte (CS) is set to X'8S'. The 
key is changed to X'10'. The offset is 
taken from OFFTAB. Then it is tested 
whether or not LABEL and instruction are 
contained in the same 12K segment. The 
modifier is replaced by 0 if it is the same 

12K segment, by 12K if it is a neighbouring 
segment, and 24K in all other cases. Base 
register 12 together with the offset of the 
constant which is stored in a special stack 
during the initialization are inserted into 
the succeeding half-word. 

The new format is: 

Byte(sL 
1 
2 

3- 7 
S- 9 

10-11 

Contents 
X'88' 
X' 5A' or X' 58' 
X'0900100004' 
modifier 
left-hand four bits: X'C' 
remainder: offset 

r--T-----T--T--T--T----T~-------T--------, 

I 15A I I I I I I I 
IS810r 58109100110100041MODIFIERIC OFFSET I 
l __ ~ _____ ~ __ ~ __ ~ __ ~ ____ ~ ________ ~ ________ J 

The internal name 0004 is reserved for the 
special constants OK, 12K, 16K, 20K, 24K 
and 28K. These are stored as half-words at 
the beginning of static storage. Their 
offset is contained in OFFTAB. During the 
initialization of the phase, the offset of 
these constants has to be taken and stored 
into a stack so that it is accessible dur­
ing the entire phase. 

Constant Name Modifier -----
OK 0004 0000 

12K 0004 0002 
16K 0004 0004 
20K 0004 0006 
24K 0004 0008 
2SK 0004 OOOA 

DC STA CO. The length of the program is 
retrieved from the interphase communication 
region. It is inserted to the last three 
bytes of the DC A mask. The format of the 
DC A mask is as follows: 

Byte(~L 
1- 3 
4- 7 
S-10 

Contents 
X'SOCA10' 
zero 
length of program 

The name field is set to zero to sign the 
special DCA. This mask is moved into OBUF, 
and LDCO is increased by 4. 

DC A and DC V -- CP These routines are 
used for the constants of static storage 
after they have been brought to a new for­
mat. 

Byte(sL 
1 
2 
3 

4-5 
6-7 
8-9 

Contents 
X'SO' 
X'CA' or X'CB 
key 
name 
modifier 
offset 

Phase PL/IGl5 323 



PL/I PLM 8 

IBM Confidential 

The key is tested for 10 and 11. The DC V 
routine is contained in D2 A. 

The key 10 indicates that the element 
has already been processed. The three 
succeeding bytes contain the offset. The 
element is put into OBUF. The key 11 
denotes that the internal name represents a 
label. In this case, the offset together 
with the program block nu~ber, if present, 
are taken from OFFTAB. The offset is 
increased by the sum of m~difier and ini­
tial block-address offset to be taken from 
PBT. This sum is inserted into the suc­
ceeding three bytes and the element put 
into OBUF after the key has been changed. 

If the key is neither 10 nor 11, the 
offset is taken from OFFT~B, if present. 
The sum of offset, modifier, and length of 
program is inserted into the succeeding 
three bytes. The element is put into OBUF 
after the key has been changed. 

DC LASS -- CQ The instruction has the 
following format: 

r----T----T----T------------T--------T----' 
I I I I Int. NAME I I I 
I 80 I CC I E1 I OF LABEL I 0 I I L ____ L ____ L ____ L ____________ L ________ L ____ J 

The name of the label is tested to deter­
mine whether the corresponding offset is 
contained in the present part of OFFTAB. 

If it is not contained, the element is 
put into OBUF unchanged. If it is con­
tained, the second byte is changed to CA 
and the third to 10. The offset together 
with the block number is taken from OFFTAB. 
The block number is inserted into the name 
field and the 12K segment is determined. 
Corresponding to this, 0, 12K, or 24K is 
inserted as modifier. The modifier is then 
added to the offset of the program block to 
be taken from PBT. The sum is inserted 
into the following three bytes. 

r--T--T--T--------T------T~---------------, 

I I I I NUMBER I 0, 1 2K I OFFSET OF I 
180lCAI1010F BLOCKlor 24KICORRES.12K segm.1 l __ L __ L __ L ________ L ______ ~ ________________ J 

Following this, the instruction DC X 
(containing the offset of the label inside 
the 12K segment) is generated. Its format 
is as follows: 

r----T----T------------T------------, 
I 801 C2 I LENGTH=4 I OFFSET I L ____ L ____ L ____________ L ____ . ________ J 

The length 4 is inserted into the DC X 
mask. The label offset is reduced by the 
modifier of the preceding DC A and stored 
into the following 4 bytes. The element is 
put into OBUF. 

324 

DC SO -- CQ. This routine consists of the 
first part of DC STA. At the beginning, 
switch SWO is set to one so that the rou­
tine is terminated before generating the 
second instruction. 

When the End key is found for the first 
time, a routine will be called to transform 
the static storage constants into the same 
format as the constants of the text string. 
The routine inserts the offset, if possi­
ble, and moves it into OBUF. After this a 
switch will be set. 

At the beginning of the static storage, 
a label 'FFFF' is generated while the end 
key is put at the end of the output. 

In all cases, the contents of the last 
output buffer are written onto text medium. 
If all parts of OFF TAB have not yet been in 
storaqe, a new part of OFFTAB is read into 
the table space. The wor'k files are 
switched and rewound, and the phase is 
called again until all offsets have been 
inserted. 

The character string is retrieved from 
SYS001 and put behind the text. TXTIN is 
rewound and EXTAB is written on it. It is 
tested whether a file table exists. If it 
does, phase G17 is called. Otherwise, that 
phase is skipped and G20 is called. 

EXTAB -- CR --------
This routine reads EXTAB record by record 
into the 1/0 buffers BO and B1 in over­
lapped mode and puts it onto TEXTOUT in the 
same way. 

OGA -- CR 
----~-

OGA determines whether the corresponding 
offset is contained in the present part of 
OFFTAB. If not, it moves the rest of the 
element (5 bytes) into OBUF and returns. 
Otherwise, the offset is taken fro~ OFFTAB 
together with the attribute byte and stored 
in OFEN+2. The base register is determined 
by the routine BAS; the rest of the element 
(5 bytes) is followed by a half-word con-
taining the base register in the first 4 
bits and the offset mod 4K in the following 
12 bits is moved into OBUF. 

GEO -- CS 

GEO moves the OFFTAB entry, if present, to 
OFEN+2 (R1 = 0), or it returns (R1 = 1) 
after having moved the element into OBUF. 

MOK -- CS ------
Moves the half-word at OFEN+2 into OBUF. 

() 



( 

( 

PL/I PLM 8 

IBM Confidential 

ROFF determines the final offset by adding 
the modifier (at POI + R11 to the offset, 
taking the sum modulo 4K, storing the 
result in OFEN+2 and ORing base register RY 
on the initial 4 bits of OFEN+2. 

BAS -- CU -------

rhis routine determines the base register 
by means of the variable level contained in 
the attribute byte at OFEN+4 and the cur­
rent block level contained in LEVS. The 
format of the attribute byte is as follows: 

bits 0 -
bit 2 
bits 3 - 7 

level 
1 = static, 0 = automatic 
zeros 

If bit 2 is on (staticl, register 12 is 
used as base register. If it is off 
(automaticl I it has to be determined in 
which block the variable is to be found. 
Figure 3 shows all possible cases and the 
base register used. The base register is 
returned in RY. 

r------------------------------l 
I Current Block I 
I Level I 
I r-----T-----T-----~ 
I I 1 I 2 J 3 I 
I r---+-----+-----+-----~ 
I Level I 1 I 13 I 11 I 11 I 
lof the t---+-----+-----+-----~ 
I Variable I 2 I ERROR I 13 I 10 I 
I t---+-----+-----+-----~ 
I I 3 IERRORIERRORI 13 I l ________ L ___ L _____ L _____ L _____ J 

Figure 3. Basic Register Used for Automat­
ic Variables 

rRAN transforms the constants of static 
storage given in a table on SYS001 into the 
instruction formats used for the text. The 
constant table CONTAB is taken from SYS001 
and put into the input buffers B1 and B2. 
rhe format of the constant in the table is: 

DC X 

Contents -----
1-2 name 

3 attributes 
4-5 length 
6-8 constant 

1-2 name 
3 attributes 

4-5 4 
6-7 internal name 
8-9 modifier 

All elements with a 'delete' bit are delet­
ed. rhe name field is translated into the 
pseudo assembler instruction LABEL. The DC 
X instructions are transformed into the 
following format: 

Contents ------
1-2 X'80C2' 
3-4 length L 
5-7 constant 

This is done by inserting the length into 
the 02 X mask: 

Bytef~L 

1-2 
3-4 

Contents 

X'80C2' 
length L 

and m~ving the mask followed by the con­
stant itself into OBUF. In the case of an 
aptimizable DC X, LOCO is set to boundary 
depending on the length of the constant: 

gouQdary 
half-word 

4 word 
8 double-word 

This is done by generating a corresponding 
DSL instruction by means of the DSL mask: 

ByteJ~L 

1-2 
3-4 

Contents ------
X'80C3' 
length L 

There are special constants for label 
assignments which are transformed to the 
format: 

ByteJ~L 
1-2 

3 
4-5 

6 

Contents 
X'80CC' 
key 
label 
zero 

The routine DC LASS is called to insert the 
offsets, to generate the following DC X and 
to put the elements into OBUF. These spe­
cial constants originally have the follow­
ing f~rmat in CONTAB: 

1. D2 A 

ByteJ~L 
1-2 

3 

4-5 
6-7 
8-9 

Contents ----
name of DC A 
attributes 
bits 0-1 = 00: DC X 
bit 2 = 0 : not 
optimizable 
bits 3-5 always zero 
bits 6-7 = 01: label 
assignment 
length = 4 
label 
zero 

Phase PL/IG15 325 



PL/I PLM 8 

IBM Confidential 

2. DC X 

~ontgnt§. 
zero 
attributes 

bits 0-1 = 00: DC X 
bits 2-7 always zero 

The DC AL3 and the DC VL3 instructions are 
transformed by means of the DC A mask: 

~z!:gJ§.l 
1 

Contents 
)C' 80'--

2 
3 

4-5 
6-7 
8-10 

X'C1', X'CA', X'CB', or X'CC' 
key 
internal name 
modifier 
place for offset 

rhe key C1 is inserted into byte 1, the 
internal name and the modifier into the 
corresponding two half-words. The key at 
byte 2 is set to 11 for entry names, to 20 
for DC VL3, and to E1 for all other items. 
rhe routine DC AL3 is called to insert the 
offset~ if possible, and to put the element 
into OBUF. 

The same mask is used for DC A and DC V 
instructions, CB is inserted into byte 1 
for DC V and CA or CC for DC A, after LOCO 
has been brought to word-boundary. 

In the case of a DC V, the element is 
put into OBUF. The modifier is taken as 
offset and put into the three bytes follow­
ing the element. The key at byte 2 is set 
to 10. 

For DC A instructions the following 
three cases may occur: The operand is an 
entry name: The key (byte 2) is set to 11, 
and the routine DC A is called to put the 
element followed by the offset (if present) 
which is formed by the sum (modifier + 
offset from OFFTAB + length of program 
block) into OBUF. 

Segment origin: 

rhe format of this instruction is: 

~l!:.~& Contents --------

1-2 name of DC A 
3 attributes 

4-5 length = 4 
1-7 entry 
8-9 zero 

rhe format of the attribute byte is as 
follows: 

bits 
bit 
bits 
bits 

326 

0-1 : 01 = DC A 
2 : 0 = optimizable 
3- 5 zero 
6-7 : 01 = segment origin 

It is transformed to: 

Blte(~L 

1-2 
3 

4-5 
6-7 

Contents 

X'80CD' 
key 
label 
zero 

and the routine DC SO is called to insert 
the offsets and to put the element into 
OBUF. 

In all other cases, the key (byte 2) is 
set to E1 and the routine DC A is called to 
put the element followed by the offset 
which is formed by the sum (modifier + 
offset from OFFTAB + length of program) 
into OBUF. 

BOU -- DC ------
BOU sets LOCO to the boundary given in R2. 

R2 2 half-word boundary 
R2 4 word boundary 
R2 8 double-word boundary 

All other values of R2 cause no boundary 
alignment. LOCO is set to boundary by 
generating an instruction DSL with the 
corresponding length L. 

MOK1 -- DD 
~-----

This routine moves a constant from PSC into 
OBUF even if it is not fully contained in 
the 1/0 buffers. It moves the present 
part, reads new input into the input buf­
fers, and moves the next part. This proce­
dure is repeated until the constant is 
fully moved into OBUF. 

ISCR -- DE -------
ISCR supervises the input buffers B1 and 
B2. It compares the pointer PSC with B2. 
If B2 is greater than PSC, the routine 
returns. If it is less or equal, the input 
is moved from B2 to B1 (with the length L 
BUFL) and new input is read into B2. PSC 
is adjusted by subtracting BUFL, and the 
routine returns. 

BRG -- DF ------

BRG is called by the routines OBRA and ADD. 
It prepares the elements generated in phase 
GOO for the branch instruction. It takes 
the offset from OFFTAB and inserts some 
keys into the instruction. 

These routines are described in the section 
GeneE~1 D~iptionof Phases F95 - G55) 

c 



( 

PL/I PLM 8 

IBM Confidential 

These phases generate the tables required 
for each file: the DTF appendages, the DTF 
tables, and the buffers. 

These tables are generated in the form 
of assembler output cards (ESD, TXT, and 
RLO cards). For each file, a special con­
trol section is produced. The name of the 
control section is the file name. External 
references are the module name in each 
table and, depending on special file param­
eters, certain library routine names (e.g. 
the name of the end-of-file processing 
routine). The first part of the text is 
the appendage (from ST~RT to the label 
r~B~D in the tables shown in ~ppendix D) • 
For the format see description of the 
library. The following text applies to the 
normal logical Ioes DTF table, which is 
followed by the buffer areas, if required. 

The above control sections are generated 
as follows: First, the ad1resses of the 
work spaces (buffers) to be used by the 
phas~s are established and the first 
entries of the file table and of the exter­
nal name table (on the text output medium) 
are read. Reading and writing is performed 
in non-overlapped mode, using the external 
routines IJKARO and IJKAPI and the standard 
routine ZTIN. The phase itself provides a 
partial overlapping of these functions. A 
record count-is maintaine1 in register RO 
for the file table entries, and the proc­
essing is terminated when this table is 
exhausted. Then the file entries are 
scanned. The file table was constructed 
and written on SYSOOl by phase B25. The 
external name table was constructed and 
written on SYSOOl by phase D97. The latter 
table is written on TXTOUr by phase G15. 

All file entries, which are not to be 
processed by the present phase are 
bypassed. In the first of the six phases, 
a bit is set in the communication region 
for each bypassed file entry. This bit 
later on initiates calling of the appropri­
ate phase to process the entry. If a file 
entry to be processed by one of the phases 
of group G17 is encountered in the corres­
ponding phase, a mask is selected according 
to certain file parameters, and the output 
pointer (register RE) is set to the address 
of this mask. Then the external name table 
is scanned for the external name of the 
file. The external name table is scanned 
record by record. Each record contains 
several entries. A new record is fetched 
whenever the previous record has been com­
pletely scanned. 

If no matching file name is found, the 
file entry is associated to a file paramet­
er and consequently ignored. Otherwise, 
the matching external name is inserted into 
the selected mask. The remaining part of 
the mask is set up according to the file 
table attributes. The EDIT routine is 
called to edit the modified mask into the 
text input medium, immediately following 
the program text. The next phase is 
fetched according to the setting of the 
communication bits. If the next phase is 
G20, an END card image is additionally 
produced and edited. 

The EDIT routine writes one output 
record (card image: 80 bytes), starting 
with the byte selected by the output poin­
ter. Then the output pointer is conse­
quently incremented by 80. 

Phase_Input and Output 

This phase uses the file table (see phase 
B25) and the external name table (see phase 
B97) as input. The external name table was 
written onto the text output medium by the 
preceding phase. The text input medium was 
not rewound so that the output cards can be 
written onto the medium, immediately fol­
lowing the text. 

The output file tables are based on 
preassemb'led masks in the form of assembler 
output cards. ~ll files are divided into 
several groups, each group is characterized 
by special file parameters. For each 
group, one mask is generated. The remain­
ing file parameters, which may change and 
which are not required for the selection of 
the group, affect the mask internally. The 
file groups and the modification of masks 
are discussed later. 

The following rules apply to all files 
except those explicitly mentioned: 

1 • The file name is inserted as SO name 
the first ESD card. 

2. The CSECT length in the SD entry is 
incremented for all files except the 
unbuffered files. 
The increment value is: 
• one blocksize for files with 

BUFFERS (1) ; 
• two blocksizes for files with 

BUFFERS (2) and STREAM, and 
• two block sizes + MOD (blocksize,8) 

for files with BUFFERS (2) and 
RECORD. 

in 

Phase PL/IG17 327 



PL/I PLM 8 

IBM Confidential 

PL/IG17 (CARD, PRINTL-UNBOFFERED FILES) 

'rhis phase processes all card, print, and unbuffered files. 

CARD FILES 

Four different masks are used for card files: 

FILECDI : 
FILECDO 1: 
FILECD02: 
FILECD03: 

Input card files 
1442 Output card files 
2520 Output card files 
2540 Output card files 

The following rules apply to all card files: 

Location Action 

001E AL1 (0) 
AL 1 (1) 

001F AL 1 (1) 
AL 1 (2) 
AL 1 (0) to AL1 (245) 

0028 7th character 

8th character 

Rules for FILECDI: 

Location Actiog 

0020 

0030 

0038 
0040 

AL1 (0) 
AL 1 (1) 
AL1 (2) 
~L1 (32) 
Add 4 to all values if BUFFERS (2) 
The address is incremented 
by blocksize 
by blocksize + MOD (blocksize,8) 
4th parameter: 
Insert LA 2,0 (14) 

Rules for FILECD01, 2, 3: 

0020 

002E 
002F 
003A 
003E 

0040 

328 

AL1 (16) 
AL1 (20) 
AL1 (65) 
AL1(193) 
Insert LA 2,0 (14) 
X'OO' 
X'01' 
X'02' 
1st parameter: 
2nd parameter: 

by blocksize + MOD (blocksize,8) 
4th parameter: 

if SYSIPT, SYSPCH 
if SYSOOO to SYS245 
if SYSIPT 
if SYSPCH 
if SYSOOO to SYS245 
Z if BUFFERS (1) 
Iif BUFFERS (2) 
o if 2540,INPUT 
1if 1442 
2 if 2520 
3 if 2501 
4 if 2540,OUTPUT 

if 2501 
if 2540 
if 2520 
if 1442 

if BUFFERS (2) STREAM, and 
if BUFFERS (2) , RECORD. 
insert bl6cksize 
if BUFFERS (2) 

if BUFFERS (1) 
if BUFFERS (2) 
if 2520, 2540 
if 1442 
if BUFFERS (2) 
if 2540 
if 2520 
if 1442 
see location 002E 
the address is increased by blocksize 
if BUFFERS (2) STREAM, and 
if BUFFERS (2) , RECORD 
insert blocksize 

c 



PL/I PL!vl 8 

IBM Confidential 

PRINT FILES 

f Two different masks are used for print files: 

FILEPRR : print files with record 
FILEPRP : print files with print 

The following rules apply to print files: 

FILEPRR FILEPRP 

001E 

001F 

0028 

0020 

003A 

0040 

0026 

0027 

0030 

0035 

0042 

0048 

ALl (0) 
AL 1 (1) 
ALl (3) 
AL 1 (0) to AL 1 (245) 
7th character: Z 

AL (16) 
ALl (20J 
ALl (481 
AL 1 (52t 
NOP 
LA 2,0 (14) 

I 

if SYSLST 
if SYSOOO to SYS245 
if SYSLST 
if SYSOOO to SYS245 
if BUFFERS (1) 
if BUFFERS (2) 
if BUFFERS (1) 
if BUFFERS (2) 
if BUFFERS (1) 
if BUFFERS (2) 
if BUFFERS (1) 
if BUFFERS (2) 

2nd parameter: 
the address is increased by blocksize + MOD (blocksize,8) 

if BUFFERS (21 
4th parameter: 
2nd parameter: 

insert blocksize -

the address is increased by block size 

4th parameter: 
if BUFFERS (2) 
insert blocksize -

( UNBUFFERED TAPE FILES 

(: 

One mask is used for unbuffered tape files: FILETAUN. The following rules apply to this 
file group: 

~Qcatio!! ~ctio!! 

0016 ALl (1) if SYSOOO to SYS245 
AL 1 (0) if SYSIPT, SYSPCH, SYSLST 

0017 ALl (1) if SYSIPT 
ALl (2) if SYSPCH 
ALl (3) if SYSLST 
ALl (0) to ALl (245) if SYSOOO to SYS245 

0025 Increase value by 16 if BACKWARDS, and by 128 
if LEAVE 

0028 Insert blocksize 
002A Insert blocksize 
002C X'02' if without BACKWARDS 

X' OC' if BACKWARDS 
0038 X'OOOOOOOO' if without BACKWARDS 

X'00400000' if BACKWARDS 

Phase PL/IG17 329 

------.. -~-



PL/I PLM 8 

IBM Confidential 

UNBUFFERED DISK FILES 

Two different masks are used for unbuffered disk files: 

FILEDIUN: no UPDATE 
FILEDIUU: with UPDATE. 

The following rules apply to unbuffered disk files: 

FILEDIUN FILEDIUU 

0026 
0038 
004E 
0050 
0054 

002E 
0040 
0056 
0058 
005C 

Insert filename 
Insert blocksize 
Insert blocksize 
Increment value by 64 if VERIFY 
Increment value by 16 if VERIFY 

PL/IG17B (BUFFERED TAPE FILES) 

'This phase processes all tape files except the unbuffered ones. Eight different masks 
are used for buffered tape files: 

FILETAFI: Input tape files with fixed records 
FILETAFO: Output tape files with fixed records 
FILETASP: Tape files with PRINT option 
FILETAFB: Tape files with BACKWARDS option 
FILETAVI: Input tape files with variable records 
FILETAVO: Output tape files with variable records 
FILETAUI: Input tape files with undefined records 
FILETAUO: Output tape files with undefined records 

The following rules apply to all buffered tape files: 

FILETASP 

0026 

0027 

0034 

0035 

0036 
0040 

330 

All others 

001E 

001F 

002C 

0020 

002E 
0038 

Action -----

AL1 (0) 
AL1 (1) 
AL1 (1) 
AL1 (2) 
AL1 (3) 
AL1 (0) to AL1(245) 
X' 11 ' 
X, 12' 
X' 13' 
X' 14' 
Increment by 64 
by 32 
by 4 
Insert file name 
Increment value 
by 128 
by 16 
by 8 

if SYSIPT, SYSPCH, SYSLST 
if SYSOOO to SYS245 
if SYSIPT 
if SYSPCH 
if SYSLST 
if SYSOOO to SYS245 
if NOLABEL 
if OUTPUT without NOLABEL 
if INPUT, BACKWARDS without NOLABEL. 
if INPUT without BACKWARDS and NOLABEL 
if blocksize * record size or if VARIABLE 
if BUFFERS (2) 
if BACKWARDS 

if NOLABEL not specified, 
if LEAVE, 
if BACKWARDS specified. 

~-~-~ ~~------ -"---~-

c 



( 

( 

PL/I PLM 8 

IBM Confidential 

FILETASP All others 

0054 004C 

0058 0050 

0060 0058 

0064 OOSC 

Insert NOP if neither blocksize unequal to record 
nor BUFFERS (2) specified. 

size 

2nd parameter: 
add (blocksize -1) 
4th parameter: 
insert blocksize 

if BACKWARDS 

BUFFERS (2) STREAM, 
BUFFERS (2) RECORD, 
BACKWARDS. 
BACKWARDS, 

0068 0060 

0064 

Add to address blocksize if 
blocksize + MOD (blocksize, 8,) if 
add extra (blocksize -1) if 
Add (blocksize - record size) if 
blocksize if 
blocksize + MOD (blocksize, 8) if 
Insert (-recordsi ze) if 
recordsize in all other cases. 
Add (blocksize - recordsize) 
blocksize 

OUTPUT, BUFFERS (2) , STREAM 
OUTPUT, BUFFERS (2) RECORD 
BACKWARDS, 

006C if BACKWARDS, 

2 blocksizes 

0070 
0072 

0068 
006A 

2 blocksizes+MOD(blocksize,8) 
Insert blocksize 

if OUTPUT, BUFFERS (1) , 
if OUTPUT, BUFFERS (2) , 
if OUTPUT, BUFFERS (2) , 

Insert (blocksize + 1) if BACKWARDS, 
(blocksize -1) in all other cases 

0074 006C Insert (recordsize -1) • 

Rules for FILETAVI and FILETAVO: 

0050 
0058 
OOSC 
0060 
006C 
0070 

0076 

4th parameter: insert blocksize 
Add blocksize + MOD (blocksize, 8) 
Insert blocksize 
Add blocksize + MOD (blocksize,8) 
Add blocksize + MOD (blocksize,8) 
Insert blocksize -4 
block size 
Insert (blocksize -1) 

Rules for FILETAUI and FILETAUO: 

Location Action -------- ------

if BUFFERS (2) 

if BUFFERS (2) 
if BUFFERS (2) 
if OUTPUT, 

if INPUT 

STREAM 
RECORD 

004C Insert NOP if neither BACKWARDS nor BUFFERS (2) 
0050 1st parameter: 

X' 01' 
X'02' 
X'OC' 
2nd parameter: 
add (blocksize -1) 
4th parameter: insert blocksize 

0058 Add blocksize + MOD (blocksize, 
add extra (blocksize -1) 

OOSC Add blocksize + MOD (blocksize, 
0060 Insert BCTR 14,0 

NOPR 
0064 Insert blocksize 
0066 Insert (blocksize -1) 

8) 

8) 

if OUTPUT 
if INPUT without BACKWARDS 
if INPUT, BACKWARDS 

if BACKWARDS 

if BUFFERS (2) 
if BACKWARDS 
if BUFFERS (2) 
if BACKWARDS 

Phase PL/IG17 331 



PL/I PLM 8 

IBM Confidential 

~!!L!.~!l~.~_'@!IFFEB~lL£ONS~VE l2!2!LFILES 

These two phases process all consecutive disk files except the unbuffered ones. Ten 
different masks are us.ed for buffered, consecutive disk files: 

FIDIINFI: Input disk file, fixed records 
FIDIINVA: Input disk file, variable records 
FIDIINUN: Input disk file, undefined records 
FIDIOUFI: Output disk file, fixed records 
FIDIOUPR: Disk file with PRINT option 
FIDIOUVA: Output disk file, variable records 
FIDIOUUN: Output disk file undefined records 
FIDIUPFI: Update disk file, fixed records 
FIDIUPVA: Update disk file, variable records 
FIDIUPUN: Update disk file, undefined records 

~~cep!!on to G~ner2.J:.~g.~.J~ules: 

The CSECT length is additionally increased by 8 bytes for all disk files with OUTPUT, 
BUFFERS (1), and by 16 bytes for all disk files with OUTPUT, BUFFERS (2) • 

Rules for all BufferedL Cb~se~tive ~!2k Files: 

Location Action 

FIDIOUPR All others 

0035 0020 
0036 002E 
004C 0044 

0062 005A 
0068 0060 

006A 0062 
0074 006C 
0080 0078 

0084 007C 

OOAO 0098 

Increment value by 64 if blocksize unequal to recordsize 
Insert file name 
If INPUT/UPDATE, BUFFERS (2) , STREAM, add blocksize to address. 
If INPUT/UPDATE, BUFFERS (2) , RECORD, add blocksize + MOD 
(blocksize, 8) to address. 
If OUTPUT, insert blocksize 
If FIXED, insert records per track (RT: see below). Otherwise 
insert X'FF'. 
Insert (blocksize -1) 
If BUFFERS (1) and blocksize is equal to recordsize, insert NOP. 
If OUTPUT, add (blocksize +8) to address. Otherwise, add blocksize 
to address. 
Increment value 
by 4 if VARIABLE, INPUT/UPDATE; 
by 8 if FIXED, INPUT/UPDATE, BUFFERS (2) ; 
by 16 if VERIFY, OUTPUT/UPDATE 
2nd parameter: 
Add (blocksize +8) to address if OUTPUT, BUFFERS (2) , STREAM. 
Add (blocksize +8) + MOD (blocksize, 8) to address if OUTPUT, 
BUFFERS (2) , RECORD. 
3rd parameter: 
Insert 64 if OUTPUT, VERIFY 
4th parameter: 
Insert blocksize if INPUT/UPDATE. 
Insert (blocksize +8) if OUTPUT. 

Rules for Evaluation of Rr (Records per Track) : 

Length of normal record: 
LNR = [blocksize multiplied by 537/512 + 61) 

Normal records per track: 
NRT = [3625/LNR) 

Number of records per track for INPUT/UPDATE: 
RrI = NRT or 
RrI = NRT + 1 if 3625 - NRT multiplied by LNR ~blocksize 

Number of records per track for OUTPUT: RTO = RTI - 1 

332 

c 



PL/I PLM 8 

IBM Confidential 

~~/IG17~~EGIONAL DISK FILES) 

( rhese two phases process all regional disk files. ren different masks are used for reg­
ional disk files: 

( 

FIDIINR1: Input disk files, regional 1 
FIDIONR1: Output disk files, regional 1, no verify 
FIDIOVR1: Output disk files, regional 1, with verify 
FIDIUNRI: Update disk files, regional 1, no verify 
FIDIUVRI: Update disk files, regional 1, with verify 
FIDIINR3: Input disk files, regional 3 
FIDIONR3: Output disk files, regional 3, no verify 
FIDIOVR3: Output disk files, regional 3, with verify 
FIDIUNR3: Update disk files, regional 3, no verify 
FIDIUVR3: Update disk files, regional 3, with verify 

For FIDIINR3, the CSEcr length is increased by blocksize + key len~th.For FIDIONR3, 
FIDIOVR3, FIDIUNR3, and FIDIUVR3, the CSECT length is increased by blocksize + key length 
+ 8. 

0010 
0018 
001C 
0024 
OOSE 
0094 
OOBO 

00B6 
00B8 

OODO 

OOFO 

Action -----
If REGIONAL 3, OUTPUT/UPDATE, add (keylength + 8) to address. 
If INPUT, REGIONAL 3, add blocksize to address. 
Insert RT if RE3IONAL 1 
Insert key length 
Insert filename 
Insert blocksize 
2nd parameter: 
If INPUT, REGIONAL3 add blocksize to address. 
4th parameter: insert keylength if INPUT/UPDATE, REGIONAL3. 
If OUTPUT, REGIONAL 3, insert keylength. 
2nd parameter: 
add (keylength + 8) to address if OUTPUT/UPDATE, REGIONAL 3 
4th parameter: 
insert blocksize. 
If OUTPUT/UPDATE, REGIONAL 3, insert block size + keylength. Otherwise insert 
blocksize. 
4th parameter: 
If OUTPUT/UPDATE, REGIONAL3, insert blocksize + keylength + 8. 

Phase PL/IGl7 333 

.-.-----.-.------.- .. -----~-------~ 



PL/I PLM 8 

IBM Confidential 

This phase moves the block table from 
SYS001 into the table space. The label 
table is written from SYS001 onto TXTIN. 
If no files are declared, the end of the 
phase is reached. 

If files do exist, ESD, TXT, and RLD 
cards for each user- defined file are proc­
essed.O These cards are stored on TXTIN in 
the preceding sequence. Following the 
cards for all files, only one END card is 
generated. The output of G17 is changed in 
the following manner: 

First, all ESD cards are sorted out and 
written onto SYS001. Then all TXT cards 
are written behind the ESD cards, and 
finally all RLD cards followed by the END 
card are written onto SYS001. The ESID 
numbers of the cards are changed to provide 
only one module for the files. 

Phase Input and Output 

!!1put: 

1. TXTIN 

2. TXT OUT 

3. SYS001 

Qutput: 

1. TXTIN 

2. TXT OUT 

3. SYS001 

The text (i.e., the changed 
source program) is located on 
TXTIN. Information about the 
existing files is written 
following the text. This 
information consists of ESD, 
TXT, and RLD cards and one END 
card as described in phase 
G17. TXTIN is positioned at 
the end of the text if no 
files exist and at the end of 
the files if files do exist. 
The external name table is 
located on TXTOUT, which is 
positioned at its beginning. 
The block table and the label 
table are located on SYS001. 

At the end of this phase, the 
unchanged text and the 
unchanged files followed by 
the label table are contained 
on TXTIN, which is positioned 
at the beginning of the label 
table. 
The external name table is 
contained on TXTOUT, which is 
positioned at its beginning. 
The work file SYS001 contains 
the updated files. 

The block table is contained in the first 
128 bytes of the table space. 

334 

PHASE PL/IG20 (FILE MODULE) -- DP 

1. The NOTE information about the begin­
ning of the files written on TXTIN is 
contained in ZTAB19. 

2. The NOTE information about the end of 
the external name table written on 
TXTOUT is contained in ZTAB18. 

3. The NOTE information about the end of 
the DTF table writen on SYS001 is con­
tained in KSAVE8. 

4. If the third bit in the first byte of 
ZrAB03 is 1, files do exist. 

5. At the end of this phase, the number of 
the cards which are still in the output 
buffer and have not been written on 
SYSOO1 is stored in the first byte 
behind the output buffer. 

Main Routine -- DO and DR 

This routine moves the block table into the 
table space and writes the label table onto 
TXTIN. SYS001 is reset to the end of the 
DTF table and, if no files exist, the end 
of the phase is called; otherwise, the 
files are read in. 

The ESD cards are changed and written 
onto SYS001, the TXT cards that have been 
processed are written onto TXTOUT, and the 
RLD cards are stored in the table space. 
If an overflow occurs in the table space, 
the RLD cards are written onto TXTIN. If 
the END card is detected, the TXT cards are 
moved from TXTOUT onto SYS001 and the RLD 
cards are written onto SYS001. Finally, 
the END card is written on SYS001. Each 
card written on SYS001 is given a consecu­
tive card number in colunms 77-80 and the 
identification FILE in columns 73-76. At 
the end of this phase, TXTIN is positioned 
at the beginning of the label table, and 
TXTour is repositioned at its beginning. 

The parameters for ZTIN are loaded and 
the block table record indicated by ZTAB13 
is read into the table space. Control is 
transferred to the routine LABTAB, which 
moves the label table onto TXTIN. The 
tables contained on SYS001 are saved or no 
longer used; therefore, the work file is 
pOSitioned at the end of the DTF table, and 
the other tables may be overwritten. If 
files exist, routine INI2 is called. 
TXTOUr is set to the first free record 
following the external-name table, and 
TXTIN is set at the beginning of the files. 

c 



( 

PL/I PLM 8 

IBM Confidential 

Buffer handling is as shown in Figure 1. 

TS TSB 
t 

I I 

BO· 
t 

I 
r-------------t--------------------------------- ------1 
block table I table space used for RLD cards 

r-------------t---------------------------------
I I 
IJKMTS IJKMTS+128 

I 
------1 

I 

BO BO+80 B1 B1+80 B3 BA 
I I I I I I 
t------------t------------t------------+~---+----_I 
I I input filesl output TXT Ifreelfreel L ____________ L ____________ L ____________ L ____ L ____ J 

IJKMBS+2 * IJKMBL IJKMBS+ 3+IJKMBL 

BA. BB or B5 

I I 
t------------T------------T------------T---------_I 
I I I I I L ____________ L ____________ L ____________ i _________ J 

IJKMBS+3 * IJKMBL+8 BA.+320 
320 BYTES = 4 CARDS 

Figure 1. Buffer Handling 

2. Processing of the files. 

The first card of the file is read into 
the input buffer at BO+80, and the 
program enters a loop as follows: 

LOOP: The card in BO+80 is moved into 
buffer BO and the next record is 
read into BO+80. The card type 
in BO is checked: 
a. A.n ESD card is detected: Sub­

routine ESD changes the ESID 
numbers in the ESD card and 
subroutine MOOK moves the card 
into the out~ut buffer BA.. 

b. A. TXT card is detected: The 
ESID number of the last ESD 
card that contains an SO entry 
is contained in SDNO. It is 
put into the TXT card. The 
card is moved into output­
buffer B1 and written onto 
TXTOUT. 

c. An RLD card is detected: 
Subroutine RLD changes the 
ESID numbers in the RLD cards, 
and subroutine MOR moves the 
card into the table space or 
onto TXTIN. 

Subroutine rXTSYS moves the TXT cards 
behind the ESD cards; subroutine RLDSYS 
moves the RLD cards behind the TXT 
c~rds. The number of those cards that 
are still in output buffer BA 
(contained in POUS) is stored in the 
first byte behind B5. TXTIN is set to 
the beginning of the label table and, 
after repositioning TXTOUT to its 
beginning, phase G25 is called. 

INI1 -- DT 

This routine initializes some pOinters. 
These pointers are used mainly to move the 
label table and the block table. All poin­
ters, counters, and values used for han­
dling files are initialized in INI2. The 
transfer bits of the block table (ZTA.B13) 
and the label table (ZTA.B20) are set to O. 
The initial buffer address (IJKMBS) is 
incre~sed by 2 * IJKMBL and stored in BO. 
BO is increased by IJKMBL and stored in B1. 

INI2 -- DU 

(- d. If an END card is detected, 
the end of the loop is 
reached. 

This routine is called if files exist. It 
evaluates the buffer start addresses and 
initi~lizes some counters and pointers used 
to process the files. 

Phase PL/IG20 335 



PL/I PLM 8 

IBM Confidential 

The address of the out~ut buffer for the 
TXT cards is stored in B1 (B1 = BO+1601 • 

The address of the out~ut buffer for the 
sorted cards is stored in BA (BA = 
BO+IJKMBL+81, and the end of this buffer is 
stored in BB (BB = BA+3201 • 

The TABTAB entry of the output (ZTAB16) 
is updated. The buffer length is changed 
to 320; the transfer bit is set to O. 
SONO, which contains the ESIO number of the 
last ESO card with an SO entry, is set to 
0, and ESIO, which contains the current 
ESIO number, is set to 1. The output ~oin­
ter CSP is set to BA,TSB is evaluated, and 
SPEI is set equal to TSB. 

This routine moves the label table from 
SYS001 onto TXTIN. 

The beginning of the label table on 
TXTIN is noted by the NOTE macro, and the 
number of label table rec~rds is moved from 
ZTAB20 into register R3. 

If R3 is 0, the label table does not 
exist, and the routine returns to the main 
routine. Otherwise, the first label table 
record is read into buffer BO. 

Buffers: 
r--------T--------------------------------, 
I I I L ________ ~ ________________________________ J 

t t t 
BO B1 = BO+IJKMBL B1+IJKMBL 

Both buffers have the buffer length and 
both are used alternately as input and 
output buffers. Next, the program enters a 
loop as follows: 

First, R3 is decreased by 1 and a test 
is performed to determine if it is equal to 
O. If it is 0, the end of the loop is 
reached; otherwise, the next record is read 
into B1 or BO and the preceding record is 
written onto TXTIN from BO or B1, respec­
tively. 

The program waits for the end of the 
last reading. Then the last record is 
written onto TXTIN, the end of the label 
table is noted, and the routine returns 
control back to the main routine to the 
point where it was called. 

ESO -- ow -------
This routine inserts the curr~nt ESIP num­
ber contained in ESIO int~ the ESO cards. 
SONO is updated and Esro is increased by 
the number of entries in the ESO card. 

336 

This routine is called if an ESO card is 
identified. If its first entry L, an SO 
entry, SONO, (the ESIO number of the last 
ESO card containing an SO entry) is set to 
the current value of ESIO. ESIO is insert­
ed into the ESO card and increased by the 
number of bytes contained in the card 
divided by the length of one ESO entry. 
Then the routine returns to the main rou­
tine. 

This routine moves the cards that have been 
processed into the output buffer BA after 
inserting the successive card number. If 
the buffer is filled, a 320-byte record is 
written on SYS001. 

This routine is called if a card that 
has been processed has to be moved from the 
place pointed to by R1 into the output 
buffer BA. The pointer CSP points to the 
next available byte in the buffer. NOS 
contains the current card number in binary 
representation. It is increased by 1, and, 
after it was converted to decimal, it is 
moved into the last four columns of the 
card. The identification ;FILE; is put 
into columns 73-76. Then the card is moved 
into the output buffer, CSP is increased by 
80, and POUS, the counter of the cards in 
BA, is increased by 1. 

If CSP does not point to the end of the 
'output area, the end of the routine is 
reached; otherwise, the four cards con­
tained in the buffer are written on SYS001. 
CSP is reset to BA, POUS is cleared, and 
the program waits for the end of the write 
operation before the end of the routine is 
reached. 

RLO -- OY ------
This routine updates the relocation and 
position headers of the RLO cards. 

This routine is called when an RLO card 
is found in buffer BO. 

First, the ESIO numbers of the first 
entry are updated. The first ESIO number, 
the relocation header, is increased by 
SONO-1 and the second, the position header, 
is set to SONO. The next entries are han­
dled in the following manner: 

If the flag byte is on, the four-byte 
entry is skipped. If the flagbyte is off, 
the entry is handled like the first entry. 
If all entries are processed, the routine 
returns to the main routine. 



( 

PL/I PLM 8 

IBM Confidential 

This routine moves the RLD cards out of BO 
into the table space. If the area reserved 
for this purpose is filled, the cards are 
written in records of 1920 bytes onto TXTIN 
following the label table. 

SPEI (the current pointer for the area 
TSB reserved for the RLD cardsl is 
increased by 80 and then compared with BO. 
If SPEI+80 is not greater than BO, the RLD 
card is moved into the area, SPEI is 
increased by 80, and the end of this rou­
tine is reached. 

If SPEI+80 is greater than BO, the cur­
rent position of TXTIN is noted and the 
file is set to the end of the label table 
or to the end of the last RLD card written 
on TXTIN. Next, the contents of the table 
space are divided into 1920-byte records 
which are written onto TXTIN. Left over 
cards are moved to the beginning of the 
area TSB and the RLD card in 80 is moved 
behind them. The end of the last record 
written on TXTIN is noted and the file is 
reset to the current position in the file 
module. ZEHLS, which counts the number of 
records put onto TXTIN, is updated and SPEI 
is set to the location of the next availa­
ble byte in the table space. Next a branch 
is made to the beginning of this routine 
and the next RLD card is processed. 

This routine moves the TXT cards written on 
TXTOUT onto SYS001 behind the ESD cards. 

This routine is called after the END 
card is found in the buffer BO. 

(' 

The TXT OUT work file is repositioned to 
the beginning of the TXT cards. They are 
read into buffer B1, and moved by subrou­
tine ~OOK into output buffer BA. If all 
cards are read in and processed (ZAHLS = 
01 , the routine returns to the main rou­
tine. 

RLDSYS -- EC and ED 

This routine moves the RLD cards from the 
table space or TXTIN onto SYS001 behind the 
TXT cards. 

This routine is called by the main rou­
tine. Two cases have to be distinguished. 

1. If SWI = 0, (i.e., no RLD cards have 
been written on TXTINI the RLD cards 
contained in the table space are put 
onto SYS001 by subroutine MOOK. When 
all cards have been processed, the 
program branches back to the main rou­
tine. 

2. In the second case, RLD cards have been 
written on TXTIN by subroutine MOR. 
The file is positioned to the end of 
the last record. The RLD cards still 
contained in the table space are moved 
onto TXTIN (buffer length = 19201 and 
the number of written records is updat­
ed. Then the file is repositioned to 
the beginning of the RLD cards and the 
cards are moved from TXTIN onto SYS001, 
controlled by the counter of the RLD 
records and the counter of the cards 
contained in the last record. After 
having moved all records, the routine 
returns to the main routine. 

Phase PL/IG20 337 

--------------------~~~ 



PL/I PLM 8 

IBM Confidential 

rh~ function of this phase is to generate 
ESD (External Symbol Dictionary) cards The 
format of ESD cards is sh~wn in Figure 1. 
ESD cards are generatej in the following 
cases: 

1. Program: 
One ESD-SD card for the program control 
section including the STATIC storage. 

2. External references: 
One ESD-ER card for each of the follow­
ing: 

a. Library routine used during object 
time 

b. External procedure referenced by 
this compilation 

c. File name 

3. Entries: 
One ESD-LD card for each entry point of 
the external procejure. 

4. External variables: 
One ESD-SD for each external variable. 

r------T----------------------------------, 
I Column I Contents I 
~------+----------------------------------1 

1 IMultiple punch 
2- 4 IESD 

11-12 INumber of bytes of information 
Icontained in this card 

15-16 IESID number of the first SD or ER 
Ion this card 

17-72 IVariable information: 
18 positions - name 
11 position - Type code to 
lindicate SD,LD or ER 
13 positions - assembled origin 
11 position + Blank 
13 positions - Length, if SD type. 
IIf an LD type, this field contains 
Ithe external symb~l identifica-
I tion. 

73-76 IFirst four characters of the 
Iprogram name or zeros 

177-80 ISequential card number 1 L ______ ~ __________________________________ J 

Figure 1. Format of the ESD Card 

In the first part of this phase (general 
flow charts EH-EI) the external name table 
EXTAB is scanned and the following ESD 
cards are produced: 

1. On finding an entry name with the block 
and level number 0, the ESD-SD card for 
the program is produced. 

338 

~~AS~r~/IG~2_JGENERATION OF ESD CARDS) -- EH 

2. If the entry name has the block number 
1 and the level number 0, this is a 
secondary entry point of the external 
procedure and an ESD-LD card is pro­
duced. 

3. On finding an entry name with a level 
and block number different from 0,0 and 
0,1 an ESD-ER card must be produced. 

4. On finding a file name, an ESD-ER card 
is produced. 

5. Entries for built-in functions are 
skipped. 

6. Other entries are considered as exter­
nal variables and ESD-SD cards are 
produced. 

If the external variable is a structure 
with a lefthang different from 0, an ESD-SD 
card with a generated name and an ESD-LD 
card with the name of the structure is 
produced. 

If lefthang is 0, only an ESD-SD card is 
generated. 

In the second part of the phase (general 
flow chart ET) the ESD-ER cards for the 
library routines are produced. The library 
bit string in the communication area indi­
cates which routines are needed during 
object time. 

Appendix XYZ contains a listing of the 
library routines and their corresponding 
internal names in decimal and hexadecimal 
representation. 

1. Label table LABTAB on the TXTIN work 
file. The format of the LABTAB entries 
is as follows: 

Bytes 0-1 

Bytes 2-3 
Byte 4 

Internal name of the label 
or entry name 
Offset from program begin 
Block number 

2. External name table EXTAB on the TXTOUT 
work file. 

3. Block table BLTAB in the table space at 
IJKTS. Length of BLTAB: 128 bytes. 

4. Library bit string in the table space 
at IJKTS+128. Length of library bit 
string: 32 bytes. 

--------- ----

c 



( 

( 

PL/I PLM 8 

IBM Confidential 

5. Length of the control section PROGRAM+ 
STATIC STORAGE in the first 4 bytes of 
the TAB TAB entry ZTAB05. 

6. Remaining ESD, TXT, and RLD cards and 
the END card which are in a 320-byte 
buffer at BUFF3 of the buffer area. 

7. Information bytes needed by the phase, 
at BUFF3+320. 

1. ESD table on SYSOO 1 (TABTAB entry = 
ZTAB161. If the last 1/0 buffer is not 
full, the remaining ESD cards are 
stored at BUFF3. The number of remain­
ing ESD cards is stored at BUFF3+320. 

2. ESID table containing a maximum of 255 
entries. The ESID entries have the 
following format: 

Bytes 0-1 
Byte 2 

Internal name 
ESID number 

The start address of the ESID table is 
stored at BUFF3+324 

3. Block table containing the lengths of 
DSA's (Dynamic Storage Areasl. This 
table, located in the first 128 bytes 
of table space, is not changed by this 
phase. The address of the block table 
is stored in BUFF3+328. 

4. If the number of ESD cards is greater 
than 255, bit 4 in IJKMWC is set to 1 
and phase G31 is called. 

DESCRIPTION OF ROUTINES 

ABLT : 
ALIB : 
AESID: 
EXBU1 : 
EXBU2: 
LABU1 : 
LABU2: 
ESBU 
RECl 
CACN 
BCDP 
SVAR 

Address of block table 
Address of library bit string 
Address of ESID table 
Input buffer for EXTAB 
Input buffer for EXTAB 
Input bUffer for LAB TAB 
Input buffer for LABTAB 
ESD output buffer 
Number of input records required 
Number of cards in ESD buffer 
BCD pointer 
ESD variable field 

INIT1 -- EJ -------

( \ 

.... 

The initialization routine INITl determines 
the addresses of the buffers and tables 
used during the phase. The contents of the 
table space (starting address TSI and the 
buffer area (starting address BS) are shown 
in Figure 2. 

r---------T--------------------T----------, 
ILocation IContents 1 Length 1 
~---------+--------------------+----------~ 
TS+O Block table BLTAB 1128 
TS+128 Library bit string 1 

TS+160 
TS+92 5 

LIBTAB 132 
ESID-table ESIDTAB Imax. 765 
Input buffers for 12 buffer 
EXTAB 1 lengths 

BS+1BUFFL Input buffers for 12 buffer 
LAB TAB 1 lengths 

BS+3BUFFL ESD output buffer 1320 
BS+3BUFFL Interphase 1 

communication 120 
+320 1 
~---------i--------------------i----------~ 
1 Note: 1 
1 TS = Table space starting address 1 
1 BS = Buffer area starting address 1 
1 BUFFL = Buffer length 1 L _________________________________________ J 

Figure 2. Contents of the Table Space and 
the Buffer Area 

GETEX -- EK 

This subroutine reads one or two records of 
the external name table EXTAB from the 
TXTOUT medium according to the specifi­
cation in REC1. If only one record is 
required, buffer EXBU2 is moved to EXBUl 
and EKBU2 is filled up. 

GETLA -- EK -------
This subroutine reads 2 records of the 
label table LABTAB from the TXTIN work file 
and waits for 1/0 termination. 

MESID -- EL --------
This subroutine moves the internal rep­
resentation of the external name and the 
ESID number to the ESID table area. The 
output pointer OPT2 is increased by the 
length of the ESID entry. 

ESFIN -- EM ---------
This subroutine controls the variable field 
in the ESD card, i.e., columns 17-60. If 
the ESD card is full or if the last ESD 
entry was made, the routine ESMO is called 
in order to move the ESD card into the 
output buffer ESBU. 

SDPRO -- EL -------
This subroutine moves the following infor­
mation into the ESD entry SVAR: 

1 • 

2. 

3. 

Program name (8 bytesl as given in the 
external name table 

Origin = 000 

Type of ESD entry X'OO' 

Phase PL/IG20 339 

------------~~~--~.~. 



PL/I PLM 8 

IBM Confidential 

4. Length of the control section including 
program and STATIC storage. The length 
is contained in the TABTAB entry 
ZTAB02. 

Finally, the or~g~n is increased by the 
length of the section and aligned on 
double-word boundary. The ESID numer is 
increased by 1. The length of the variable 
field in the ESD card is increased by 16 
and routine ESFIN is called in order to 
move the entry into the output buffer. 

ESMO -- EN 

The ESD card produced at ESENT is moved 
into the output buffer ESBU. If the output 
buffer is full, it is written on a work 
file. Otherwise, the output pointer OPT1 
is increased by 80 and the routine returns 
to the main program. 

LDXEC -- EO ---------
This subroutine stores the LD information 
for the secondary entry points of the 
external procedure in the variable field of 
the ESD card: 

1. External name (8 bytes I 

2. Type code to indicate LD X'01' 

3. Assembled origin (3 bytesl which is 
taken from the label table LABTAB by 
means of sUbroutine LABS. 

4. ESO number which is always X'000001' 

LABS -- EO --------
The input parameter for this routine is the 
name of the secondary entry point of the 
external procedure in internal representa­
tion. This sUbroutine scans through the 
label table LABTAB, and, on finding the 
corresponding name of the secondary entry 
point, the offset is fetched and stored in 
the ESO card. 

This subroutine moves the following infor­
mation into the variable field of the ESD 
card: 

1. External name 

2. Type code to indicate ER 

3. Assembled origin (must always be 
X'OOOOOO'I. 

An entry in the ESIO table is made and 
the ESID number is increased by 1. 

340 

If the external structure has a lefthang of 
0, only an ESO-SO card is produced in sub­
routine SOPRO. Otherwise, an ESD-SD card 
is produced for which an external name must 
be generated, and an ESO-LO card is made 
for the structure name. 

PAD -- ER ------
This subroutine generates a name for the 
ESD-SO card of an external structure. The 
user-defined name of the external structure 
must not be longer than 6 characters. If 
it is exactly 6 characters, the leftmost 2 
bytes of the 8-byte name in the ESD card 
are padded with X'SBSB'. If the user­
defined name is shorther than 6 bytes, it 
is moved right-aligned into the ESO card, 
and the leftmost bytes are padded with 
X, SB'. 

This subroutine increases the input pointer 
INPT1 by the length of the EXTAB entry. To 
ensure that the second input buffer EXBU2 
is read, the routine waits for completion 
of input from the TXTOUT work file to 
determine if the input pointer is greater 
than EXBU2-30. If the input pointer is 
greater than EXBU2, buffer 2 is moved into 
buffer 1 and the next record is read from 
buffer 2. 

In the second part of phase G2S, the ESO-ER 
cards are produced for the library routines 
needed during object time. The library bit 
strinq located at IJKMLB in the communi­
cation region indicates the library rou­
tines for which ESO cards must be produced. 
The BCD names of the library routines have 
a lenqth of 6 or 7 bytes. The first 3 
characters are always IJK. The variable 
characters are listed in the library table 
and are inserted in the ESD card. 

This subroutine moves the following infor­
mation into the variable field of the ESO 
card: 

1. BCD name of the library routine. 

2. Type code to indicate ER 

3. Assembled origin must always be 
X'OOOO'. 

An entry in the ESID table is made, and 
the ESID number is increased by 1. 

---~-.. ---

o 

c' 

c 



( 

( 

PL/I PLM 8 

IBM Confidential 

~~~~~~~~~!~30_JGENERATION OF TXT AND RLD CARDS) -- FH 

This phase generates the rXT and RLD cards
for the program module.

rXT cards (see Figure 1) contain machine
instructions and constants.

r------T----------------------------------,
I Column I Contents I
t------+----------------------------------~

11 Load card identification
I (12-2-9). Identifies this as a
I card acceptable to the loader.

2- 41 TXT. Identifies the type of load
I card. .

51 Blank.
6- 81 24-bit start address in storage

where the information from the
card is to be loaded (in extended
card code) •

9-10 Blank.
11-12 Number of bytes of text to be

loaded from the card (in extendedl
card code) • I

13-14 Blank. I
15-16 External Symbol Identification I

(ESID.) number, in extended cardl
code, assigned to the program I
segment in which the text occurs. I
(Here 01) I

17-72 A maximum of 56 bytes of instruc-I
t: lns and/or constants assembled I
in extended card code. I

73-80 Not used by the loader; used for I
identification: the first 4 char-I
acters of the external procedure I
name followed by a sequence num- I
ber. I ______ ~ __________________________________ J

Figure 1. Format of the TXT Card

RLD Cards -------
RLD cards are generated for all address
constants. They contain the location of
the constant in reference to the corres­
ponding TXT card, the ESID numbers for the
reference (relocation heajer), and the
position (position header). Figure 2 shows
the format of the RLD carj.

The length of the information to be put
in the RLD card for each constant is 8
bytes or 4 bytes depending on whether the
relocation and position headers change or
not. If they do not change, the headers
must not be repeated. This is flagged by
the continuation flag bit. The information
for a maximum number of 13 address con­
stants may be contained in one card~

r------T----------------------------------,
I Column I Contents I
t------+----------------------------------~

1 Load card identification I
(12-2-9). Identifies this as a I
card acceptable to the loader. I

2- 4 RLD. Identifies the type of load
card.

5-10 Blank.
11-12 Number, in extended card code, of

bytes of information in the vari­
able field (card columns 17-72)
of this card. The range is from
8 to a maximum of 56.

13-16 Blank.
17-72 Variable field (in extended card

code). Consists of the following
subfields:

1. Relocation Header. (Two
bytes) An ESID with a value
of from 01 through 256.
Whether or not the value is
01 or from 02 through 256
depends on whether the symbol
it points to is internal or
external to the particular
program segment.

2. Posi tion Header. (Two bytes)
The ESID assigned to this
program segment.

3. Flag Byte (bits 0 through 3
are not used). This byte
contains three items:

a. Size. (Bits 4 and 5) Two
bits which indicate the
length (in bytes) of the
adjusted address cell (AA
cell)

a. 00 - one-byte cell
b. 01 - two-byte cell
c. 10 - three-byte cell
d. 11 - four-byte cell

I
I
I

b. Complement Flag. (Bit 6) I
When this bit is 1, it I
means that the value (or I
address) of the symbol is\
to be subtracted from the
contents of the AA cell. I
When this bit is 0, the I
value of the symbol is tal
be added to the contents I
of the AA cell. I __________________________________ J

Figure 2. Format of the RLD Card (Part 1
of 2)

Phase PL/IG30 341

PL/I PLM 8

IBM Confidential

r------T----------------------------------, I Column I Contents ,
~------+----------------------------------~

, c. Continuation Flag. (Bit
, 7) When this bit is 1, it
, means that this is one of
I a series of addresses to
, be adjusted. When this
, bit is 0, this is the
, only AA cell to be
, adjusted or the last in a
, series using the same
, relocation and position
, headers. ,
, 4. ,
I , , , , ,

Address. The three-byte
address of the location of
the AA cell.
The flag byte and address may
be repeated for AA cells as
long as the continuation flag
bit is on in the current
four-byte entry.

73-80j , Not used by the loader; used for
identification: the first 4 char-I
acters of the external procedure ,
name followed by a sequence num- I

, ,
, I ber. , L ______ ~ __________________________________ ~

Figure 2. Format of the RLD Card (Part 2
of 2)

§ND £~~£

'rhe last card to be generated is the END
card. Figure 3 shows the format of the
Load End card.

r------T----------------------------------,
I Column' Contents I
~------+----------------------------------~
I 1 Load card identification I
, (12-2-9). Identifies this as a I
I card acceptable to the loader. I
I 2- 4 END. Identifies the type of loadl
I card. I
I 5 Blank. I
I 6-8 Address (may be blank), in I
, extended card co~e, of the point I
, in the program segment to which I
, control may be transferred at thel
I end of the loading process. I
I 9-14 Blank. I
I 15-16 External Symbol Identification I
I (ESID). (May be blank.) I
I 17-72 Blank. t
I 73-80 Used for identification as in thel
I ESD, TXT, and RLD cards. I L ______ ~ __________________________________ J

Figure 3. Format of the Load End Card

If there is a main procedure (flagged in
the communication area) , the address
columns will be set to 0 and the ESID num­
ber is set to 01. In all other cases the
address columns and columns for the ESID
number contain blanks.

342

The cards are constructed in an 80-byte
mask and written on SYS001 in physical
recor~s of 320 bytes each. The cards for
the files and the ESD cards of the program
module are already present on SYS001. All
cards are used as input for the final out­
put phase (G55).

There are two modules, one for files and
one for the program and the external varia­
bles. A module may consist of several
control sections.

MODULE 1

MODULE 2

r--
I
I ESD - cards
I TXT - cards
I RLD - cards
I
I
I ,
I
I END - card

L_
r--

ESD - cards
TXT - cards
RLD - cards

END - card

(FILES)

(PROGRAM)

General Flow of the Phase -- FH

The program string is scanned to determine
whether an element is a machine or an
assembler instruction.

For machine instructions the format is
determined. The instruction is moved
(according to the format) into the current
~XT-card mask which is moved into the out­
put buffer if it is full.

For assembler instructions the kind of
instruction is determined first. The cor­
responding information is inserted in the
current TXT card. For address constants,
the current location counter (LOC1) is
storea in a save buffer together with the
corresponding ESID numbers.

When all TXT cards have been generated,
i.e., when the END-key is found, the RLD
cards are generated from the records in the
save buffer.

All cards are written on SYS001 in
320-byte records.

c

c

c

<:

PL/I PLM 8

IBM. Confidential

The input consists of the program string
and three tables: the ESD table, the
character-string and the BLOCK table. The
program string is located on TXTIN, fol­
lowed by the character-string and is the
output of phase G15 where it has been des­
cribed. The program string is read sequen­
tially using buffers B1 and B2 as input
buffers with the pointer POI.

The ESID and BLOCK tables are inserted
in the table space by the phases G25 and
G20, respectively. Their addresses are
located in the second and third word of the
master table TABTAB.rhe ESID table is
restricted to 255 3-byte entries with the
following format:

2
r-------------,

ESID IINTERNAL ESIDI BLOCK
I NAME NO I
~-------------~
I • I
I • I
I • I
I I

r------,
ILENGTH~
IOF DSAI

t---~--1
I I
I I
I I

The BLOCK table is restricted to a maxi­
mum of 63 2-byte entries each containing
the length of a DSA.

If the save buffer BO is full, it is
written on TXTOUT intermediately. The
information is read in again for generation
of the RLD cards using the input buffers B1
and B2.

The output is written on SYS001 just
behind the ESD cards constructed in phase
G25. The output consists of TXT cards, RLD
cards, and the END card.

For output, two 320-byte buffers are
used with the pointer cPO. Which of the
two buffers is used is determined by reg­
ister ABU and switch AE. One buffer is
filled while the other is written on
SYS001. The first buffer is located at
B3+8, and the second one is at the end of
the phase.

If phase G25 does not fill the last
320-byte record, this record is left in the
I/O buffer and is filled with TXT cards in
phase G30.

Q~tail~d De~£E!E!!2~

The scan of the text string is handled as
in previous phases. It must be determined
whether an element is a machine instruction
or an assembler instruction.

Machine Instructions

The format is determined first. Then the
information contained in the instructions
is inserted (according to the format) in
the TXT-card mask which is moved into the
output buffer if it is full.

1. RR instructions

2.

3.

a.

r----T----T----T----'
I lOP. I I I
I 88 I C. I OX I OY I L ____ ~ ____ ~ ____ ~ ____ J

Format of the instruction. (4 bytes)

b.

r----T--T--'
lOP. I I I
I C. I X I Y I L ____ ~ __ ~ __ J

Information inserted in the TXT card (2
bytes)

RX and RS instructions

a.

r----T----T----T----T----T---------,
I lOp. I I I I I
I 88 I C. I OX I OY I 10 I NAME I L ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ _________ J

r---------T--T------,
IMODIFIER IB IDISPL.I (11 bytes) L _________ ~ __ ~ ______ J

b.

r----T--T--T--T------,
lOp. I I I I I
Ie. I X I Y I B I DISPL. I (4 bytes)
l ____ ~--~--~--~------J

SI instructions

a.

r----T----T----T----T----T----'
I lOp. I I I I I
I 88 IC. I 00 I I IKEY I NAME I L ____ i ____ i ____ ~ ____ i ____ i ____ J

r--------T--T------,
IMODIFIERIB IDISPL.I
L ________ ~ __ ~ ______ J

b.

r----T--T--T------,
lOp. I I I I
IC. I II BIDISP. I L ____ i __ ~ __ ~ ______ J

(11 bytes)

(4 bytes)

Phase PL/IG30 343

PL/I PLM 8

IBM Confidential

4. SS instructions

a.

r----T----T----T----T----T---------,
188 lOp. IOL1 I OL21 KEYI NAME I
I I C. I I I I I l ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ___ --____ J

r---------T--T------T----T---------,
IMODIFIER IB IDISPL.I KEYI NAME I l _________ ~ __ ~ ______ ~ ____ ~ _________ J

r---------T--T------,
I MODIFIER I B I DISPL. I (18 bytes) l _________ ~ __ ~ ______ J

b.

(1) (1) (2)

r-----T--T--T-T------T-T------,
lOp. C. I L 11 L21 BI DISPL. I B I DISPL.I (6 BYTES) l _____ ~ __ ~ __ ~_~ ______ ~~ ______ J

For all instructions the location coun­
ter is adjusted in the same way.

Abbreviations:

x, Y are registers,

B is the base register,

Op.C. is the operation code,

I is the immediate constant,

DISPL is the displacement

L1,L2 are lengths

Assembler Instructions

rhese instructions must be distinguished in
the code byte (second byte) •

r-----------T---------------------,
I Code byte I Instruction I
~-----------+---------------------~
I C1 I DC AL3 I
I C2 I DC X I
I C3 I DS L I
I C4 I LABEL I
I C5 I PROCEDURE I
I C6 I END OF BLOCK I
I C7 I DC X'LENGTH OF DSA' I
I CA I DC A I
I CB I DC V I l ___________ ~ _____________________ J

The code byte is put into a general
register and X'CO' is subtracted. The
result is used as offset in the branch
table BRAN4 with the corresponding branches
to subroutines as entries.

344

BRAN4 -----> r-------------,
I B ERR 0
I B DC AL3 1
I B DC X 2
I B DS L 3
I B LABEL 4
I B PROCE 5
I B ENDBL 6
I B DC F 7
I B ERR 8
I B ERR 9
I B DC A A
J B DC V B l _____________ J

Note: ERR is an error routine for elements
which must not occur.

1. DC AL3 (DC VL3)

The location counter is stored in the
save buffer together with the corres­
ponding ESID number. The ESID number
is 01 for the key 10 (for DC AL3) ,
otherwise it has to be taken from the
ESID table (for DC VL3) •

The leftmost bit of the entry is set to
1 to flag the length of the address (3 ("""\.
bytes). 0

Save buffer: r--------------~---,
I CURRENT ESID I
I LOCATION NO I
I COUNTER I
~------------------1
I I
I I
I I
I I

The location counter is increased by 3.
The instruction has the format:

a.

(1) (1) (1) (2)
r----T----T----T---------,
180 IC1 IKEY I NAME I l ____ ~ ____ ~ ____ ~ _________ J

(2) (3)
r--------------T---------,
I MODIFIER I OFFSET I (10 bytes) l ________ ~ _____ ~ _________ J

The following information is put into
the TXT-card mask:

b.

r--------------,
I OFFSET I (3 bytes) l ______________ J

c

--------- ---

(

PL/I PLlvI 8

IBM Confidential

2. DC X

The location counter is increased by
the length of the constant found in the
second halfword and the constant itself
is moved into the TXT-card mask.

3. DS L

The location counter is increased by
the length given in the second half­
word, and(if the length is greater
than 8, a new TXT card is started,
otherwise, zeros are inserted.

4. LABEL

This element is skipped by increasing
the pointer POI by 4.

5. PROCE

This element is not used and, there­
fore, it is skipped by adding 6 to POI.

6. ENDBL

Adding 4 to POI causes this element to
be skipped, too. (Same routine as
LABEL)

7. DC F

This instruction has the format

r----T----T----T----'
180 IC7 ILEV IBLO I L ____ ~ ____ ~ ____ ~ ____ J

The block number BLO is used to find
the corresponding entry in the BLOCK
table, where the length of the DSA is
found in a halfword. This halfword is
expanded to a fullword by inserting
leading zeros and the fullword is
stored in the TXT card mask.

The location counter is increased by 4.

8. DC A

The location counter is stored in the
save buffer together with the ESID
number 01. The location counter is
increased by 4. The offset, found in
the last three bytes of the instruc­
tion, is expanded to a fullword and
stored in the TXT-card mask.

9. DC V

The location counter is stored in the
save buffer together with the corres­
ponding ESID number, which is taken
from the ESID table.

The location counter is increased by 4.

The offset, found in the last three
bytes of the instruction, is expanded
to a full word and stored in the TXT­
card mask.

END K~y

The END key is directly followed by the
character string, the length of which is
found in the communication area. The
character string is inserted in the current
TXT-card mask and the mask is written on
SYS001.

The save buffer, which might be written
on TxrOUT intermediately, is read into the
I/O buffers, and for each entry in the save
buffer an entry in the current RLD mask is
inserted.

When the records of the save buffer have
been processed, this phase ends by generat­
ing the END card.

Abbreviations ---------
BO, B1, B2, B3 - I/O buffers
POI - Input pointer
POU - Output pointer for save

BRAN4
LOC1
BUFL
RLDcoa
TXTCOU
CPO

AE

AB1

AB2

TXT
L

INRE -- FL

buffer
- Branch Table
- Location Counter
- Buffer length
- Counter for the
- Counter for the
- Pointer for the

buffers

RLD mask
TXT mask
320-byte

- Switch for the 320-byte
buffers

- Initial address of first
320-byte buffer
Initial address of second
320-byte buffer

- Address of TXT-card mask
- Length

This routine inserts the register in the
rightmost 4 bits of the byte POI+2 into the
leftmost four bits of POI+2, and the reg­
ister in the rightmost 4 bits of the byte
at POI+3 into the rightmost 4 bits of
POI+2.

This routine moves a string of length L
(given in R1) from POI+1 into the TXT-card

mask at the point denoted by the pointer
TXTcoa and supervises the TXT-card mask,
moves it into output if it is full and
adjusts the starting address and TXTCOU.

MOSC -- FM ------
This routine moves a record of length 80
bytes from the mask initial address TXT to

Phase PL/IG30 345

PL/I PLM 8

IBM Confidential

the current output buffer. It adusts the
pointer CPO and writes the output buffer,
if full, on SYS001.

Before moving the card into output, it
inserts the TXTCOU or RLD:OU in bytes 11
and 12 of the mask giving the number of
information bytes in the card.

The output buffers have a length of 320
bytes.

This routine moves the four bytes, consist­
ing of the location counter and ESID num­
ber, into OBUF (EO) by means of routine
MOO. The OBUF is supervised and the output
pointer is adjusted.

ELO -- FN

This routine determines the information to
be inserted into the RLD mask. This will
be done by means of an 8-byte mask with the
following format:

r----------T-----------T-----T------------l
I -2- I -2- I -1- I -3- I
,RELOCATION, POSITION IFLAG IADDRESS I
I HEADER I HEADER I BYTE I , L __________ ~ ___________ ~ _____ ~ ____________ J

1. The relocation header is taken from the
save-buffer where it is the fourth byte
of each entry (ESID number) •

2. The position header is always X'01',
because all constants arise in the
program control section.

3. The flag byte has to be constructed in
the following format:

346

bits 0-3
4,5

6
7

zeros
10 - For DC AL3 and DC VL3

constants.
11 - For all other

constants.
zero
o - If another header or

no more instructions
follow in .current card.

1 - For the same header s.

4. The address of the DC instruction rela­
tive to the beginning of the program
control section.

ELO inserts this information in the mask
and sets a switch (SW8) to 1 if the headers
change and to 0 if they do not.

MAX -- FO ------

This routine inserts the 8-byte mask. It
determines whether there is room enough to
insert the information of length 4 (SW8 =
0) or 3 (SW8 = 1) into the current RLD
mask. If there is room enough, the mask is
inserted and counter RLDCOU is increased;
if not, the RLDCOU is inserted into bytes
11-12 of the mask (number of information
bytes in the card) and the mask is written
on SYS001. Then the 8-byte mask is insert­
ed into the card in each case, and the
RLDCOU is updated.

If SW8 = 0, the last bit of the previous
flag byte is set to 1 (means continuation) •

RLDCA -- FP

This routine changes the TXT-card mask to
an RLD-card mask which is used to generate
the RLD cards. It reads the save records
one by one into the I/O buffer BO and uses
the pointer POI. For each entry it deter­
mines the bytes to be inserted by routine
ELO, inserts them into the card (by MAX)
and increases POI. This is done until the
END key XI' FF' is found. Then the last RLD
card is written out by MOSC.

INLE FQ

This routine inserts the length-1 in the
byte at POI+3 into one byte together with
the length-1 at POI+2 if there is any.

This routine fetches the corresponding ESID
number from the ESID table by scanning the
table for the name in the current DCV.

~-- ---~-~.-- ----

c'

(

(

PL/I PL1"1 8

IBM Confidential

~!!~~~~L/I~lLJFINAL DIAGNOSTI q -- GA

rhis phase lists the errors that occur
after phase E25. It terminates the compi­
lation if one or more of these errors occur
or if neither LINK, SYM, nor DECK was spec­
ified in the OPTION job control statement.
Which error has occurred is indicated by
the bits of byte IJKMWC as follows:

~it Message*

0 5GOlI
1 5G021
2 5G031
3 5G041
4 5GOSI
S 5G061
6 5G07I

*For the actual diagnostic message refer to
the DOS/TOS PL/I Programmer's Guide.

If no error is detected, all files are
closed and the compilation is terminated.
If an error is detected, the corresponding

message is written on SYSLST, and the mes­
sage

SE011 JOBSTEP PL/I TERMINATED, LINK OPTION
RESET is written on SYSLOG.

The linkage bits in the communication area
are set off, the files are closed, and the
compilation is terminated.

Note: For the tape version, SYSRES is
rewound at the beginning of the phase.

The current line is written on SYSLST. If
SYSLO; is not the same device as SYSLST,
the message

SE01 JOBSTEP PL/I TERMINATED, LINK OPTION
RESET

is written on SYSLOG.

phase PL/IG3l 347

PL/I PLM 8

IBM Confidential

PHASE PLlIG40 (LISTING OF COMPILER OUTPUT) -- GF ~

This phase lists the object code produced
by the compilation and the constants of the
static storage. The listing is produced if
the LISTX option is specified; otherwise,
the next phase (G55) is called. Figure 1
shows the format of the object code list­
ing.

r--------T---------T----------------------,
I Print I I I
I position I Subheader I Contents I
~--------+---------+----------------------1

2 LOC. 6 hexadecimal digits I
representing the cur- I
rent value of the I
location counter. I

10 OBJECT The instruction I
CODE printed in hexadecimal I

digits containing I
operation code, I
registers or lengths, f
and displacements. I

31 LABEL The internal name is I
listed in the format I
L'aaaa', where 'a' is I
a hexadecimal digit ofl
the internal name. I

40 OP. Mnemonic operation I
code using the Assem- I
bler mnemonics. I

46 OPERANDS Up to 35 print posi- I
tions containing the I
operands of the I
instruction. I

90 Statement number NN I
~--------~---------~----------------------1
I Note: Registers, lengths, displacements I
I names, and labels are listed in hexa- I
I decimal notation. The statement number I
lis listed in decimal notation. It indi- I
Icates that the code generated from the I
Ipreceding statement number from the I
I beginning of the progra~ to this one I
Ibelongs to the statement marked by the I
Istatement number. This number may appear I
I more than once. I L ___ J

Figure 1. Format of the Object Code List­
ing

348

There are two formats for the operands:

1. If the internal name replaces a
declared name or a library routine, it
is listed in the format N'aaaa'+mmmm,
where aaaa is the internal name and
mmmm is the modifier. A zero modifier
or heading zeros in it are left out.

2. In all other cases, the format of the
operands is X' ddd ' .(B), where ddd is the
hexadecimal displacement and B is the
base register.

In addition, there are some pseudo
Assembler instructions with the following
formats which differ from Assembler lan­
guage:

1. At the beginning of a block, 'BEGIN OF
BLOCK NN' is written, where NN is the
block number.

2. At the end of a block, 'END OF BLOCK'
is written.

3. For the length of a DSA, the comment
'LENGTH OF DSA OF BLOCK NN' is written.

4. At the beginning of the static storage,

'L'FFFF' STATIC STORAGE'

is listed starting in column 31 and preced­
ed by a blank line.

5. The listing is terminated with 'END' in
columns 40-42.

Figure 2 shows examples for each type of
instruction format.

o

c

('

(

PL/I PLM 8

IBM Confidential

r---,
000000 L'0102' BEGIN OF BLOCK 01 I
000000 05FO BALR F,O I
000002 45EO FOOA BAL E,X'OOA' (F) I
00000800000040 DC A (N'FFFF', I
OOOOOC 905A 0078 STM 5,A,N'0103'+8 I
000010 05EO BALR E,O I
000012 4A60 C002 AH 6,X'002' (C:)
000016 040E SPM E
000018 OA02 SVC 02

00001A
00001E
000020
000024
000025
000028
OOOO.2C
000032
000038
00003C
00003C

000040

00004C
00004D
000050
000054
000058
00005B

9216 0080
05EO
41El EOOE
03
000118
00000C80
D255 E007
F842 0104
94EE 6022

Dl12
0080

0000300040005000
60007000
00
000000
00000000
00000038
000060

STATEMENT NUMBER 7
L'0107' MVI N'0106'+4,X'16'

BALR E,O
LA E,X'OOE'(l,E)
DC X'03'
DC AL3(N'0105')
DC LENGTH OF DSA OF BLOCK 01
MVC X'007' (56,E) ,N'Ol10'+36
ZAP N'0111'-7(5) ,N'0110' (3)

L'0112' NI X'022' (6) ,X'EE'
END OF BLOCK
DS CL0004

L'FFFF' STATIC STORAGE
L'0004' DC X'0000300040005000'

DC X'60007000'
L'Ol19' DC X'OO'

L'0019'
L'Ol12'
L'0120'
L'0003'

DC VL3 (N'0100')
DC V(N'0019',
DC A (N' 0 1 1 2 ' ,
DC AL3 (N' 0119 ')
DC C'/$$$ IJXG40'
END

~---~ I Note: The preceding listing is not a logical program I L ___ ---------_____________________________________ J

Figure 2. Example of All Instruction Formats

In some cases, address constants occur
containing the same internal name as their
own label, e.g.

L' 0101 ' DC A (N' 0101')

This is because the internal label name
occurs twice, once in the program part and
once in static storage. In the program
string, the constant is addressed via this
name. In the static storage, the program
string label is addressed. Only one entry
in the offset table is used for both. This
is because the offset of the constant is
inserted into the offset table by phase F75
and inserted into the text string by phase
F95. In phases GOO and G01, the offset in
OFFTAB is replaced by the label offset; in
phase G15, this offset is inserted into the
instructions.

Phase Input and Output

rhe input is taken from the TEXT work file
and consists of the output of phase G15.
rhe input is read into buffers Bl and B2
with pointer POI.

Another input is the BLOCKTABLE, which
is read into BO during phase G30.

The output is written onto IJSYSLS via
two buffers of length 121 bytes each res­
erved in the I/O buffer B4. The buffers
are addressed via register 11.

General Flow of the Phase -- GF

The input is scanned. Each instruction is
identified and the corresponding print line
inserted into one of the two print bu~fers.
The information is written on IJSYSLS by
means of routine ZPRNT. When all instruc­
tions have been listed, i.e., when the end
key is found, the phase is terminated by
printing 'END' and calling phase G55.

The program string is read and scanned
sequentially. The following types of
instructions are differentiated:

1. Machine instructions (key is X' 88')

2. Assembler instructions (key is X'80')

3. End key (X'Ol')

Phase PL/IG40 349

PL/I PLM 8

IBM Confidential

Machine Instructions. If a machine
instruction is-detected, the format is
determined. This is done by means of the
code byte which contains a special hexa­
decimal key for each instruction. For each
format there are translate tables for the
corresponding mnemonics. The code byte is
translated with a translate vector contain­
ing the offsets in the corresponding table
of mnemonics. The mnemonics are moved from
the mnemonic tables into the corresponding
entry of the print buffer. The mnemonic
tables are shown in Figures 4-7. A summary
of these tables is shown in Figure 3.

r-----------T---------T-------------------,
I Instruction I Tables oflTranslate Vectors I
I I Mnemonics 1 1
~-----------+---------+-------------------~
I RR I RR1 IRR2 1
I RX I RX1 IRX2 I
I RS I SI1 ISI2 I
I 5I I SI1 ISI2 I
I SS I SS1 I SS2 (for X'D. ') I
I I ISS3 (for X'F. ') I L ___________ ~ _________ ~ ___________________ J

Figure 3. Summary of Mnemonics Tables and
Translate Vectors

r-----------T--------T--------------T---------T--------,
IRR1 0 SPM I 20 LPORIRR2 X'OO' 00 IX'08' 14 IX'17' 281
I • BALRI • LNORI 00 01 I 09 15 I 18 29
I • BCTRI • LCDRI 00 02 I OA 16 I 19 2A
I • SCR I • LOR 1 00 03 1 DB 17 1 1A 2B
1 • SVC I • CDR I 26 04 I DC 18 I 1B 2C
I 5 LPR I 25 AOR 1 01 05 I 00 19 1 1 C 20
I • LNR I • SOR I 02 06 1 DE 1A I 00 2E
I • LCR I • MOR I 03 07 I OF 1B I 00 2F
I • NR • OOR I 00 08 I 10 1C I 10 30

• CLR 1 • LPER I 00 09 1 11 10 1 1 E 31
10 OR I 30 LNER 04 OA I 12 1 E I 29 32 Figure 4. RR Tables

• XR I • LCER 00 DB 1 13 1F I 1F 33
• LR I • LER 00 DC 1 14 20 I 00 34
• CR I • CER 00 00 I 15 21 I 00 35
• AR I • AER 00 DE ~ 28 22 1 00 36

15 SR 1 35 SER 00 OF 1 16 23 I 00 37
• MR I • MER 05 10 1 00 24 I 20 38
• DR I • OER 06 11 I 00 25 I 21 39
• ALR I • SPM 27 12 I 00 26 I 22 3AI
• SLR I • LTR 07 13 I 00 27 I 23 3BI

I 40 LTOR I I 24 3C I
I • LTER I I 25 3D I L ___________ ~ ________ ~ __________ .----.L--_______ .L ________ J

r------------T-------T--------------T---------T--------,
RX1 0 0000 25 M IRX2 X'01' 40 IX'16' 59 IX'OO' 721

1 STH • 0 I 02 41 17 5A I 00 731
2 LA • AL 1 03 42 18 5B I 00 741
3 STC • SL 1 04 43 19 5C I 00 751
4 IC • STO I 05 44 1A 50 I 00 761
5 EX 30 LO I 06 45 1B 5E I 27 771
6 BAL • CD I 07 46 1C 5F I 28 781
7 BCT • AD I 08 47 1E 60 I 29 791
8 BC • SO I 09 48 00 61 J 2A 7AI
9 LH • MD I OA 49 00 62 I 2B 7BI

10 CH 35 DO I DB 4A 00 63 I 2C 7CI
• AH • AW I DC 4B 00 64 I I Figure 5. RX Tables
• SH • SW I 00 4C 00 65 1
• MH • STE I 00 40 00 66 1
• CVO • LE I DE 4E 00 67 I

15 CVB 40 CE 1 OF 4F 1F 68 I
• ST • AE I 10 50 20 69 I
• M • S E I 00 5 1 21 6A I
• CL • NE I 00 52 22 6B I
• 0 • DE 1 00 53 23 6C I

20 X 45 I 11 54 24 ~O I
• L I 12 55 25 6E I
• C I 13 56 26 6F I
• A I 14 57 00 70 I

I • S I I 15 58 I 00 71 I L ____________ ~ _______ .L ______________ .L _________ ~ ________ .J

350

c

--_ .. __ ._-- ---_ ... -_.- _. -' -- - .- --_.- -_ ... _ .. _.

(

(

c

PL/I PLM 8

IBM Confidential

r-----------T-------------,
SI1 0 0000lSI2 X'OO' SOl

• SRL I 00 S11
• SLL I 00 821
• SRA I 00 831
• SLA I 00 Sql
5 SRDLI 00 851
• SLDLI 00 861
• SRDAI 00 87
• SLDAI 01 8S
• STM I 02 89

10 TM I 03 SA
• MVI I 04 88
• NI I 05 8C
• CLI I 06 SD
• 01 1 07 8E

15 XI I OS SF
• LM I 09 90

I 01'1. 91
I OB 92
I 00 93
I OC 9q
I OD 95
I OE 96

1 I OF 97
1 1 10 9S1 L___________ _ ____________ J

Figure 6. RS andSI Tables

r-----------T-------------T-------------,
SS1 0 0000lSS2 X'OO' DOISS3 X'OO' FOI

1 MVN I 01 D1 lOS F 11
2 MVC I 02 D21 09 F21
3 MVZ I 03 D3 1 OA F31
4 NC I Oq Dq I 00 F41
5 CLC I 05 D5t 00 F51
• OC I 06 D6 00 F61
• XC 1 07 D71 00 F71
• MVO I I OB F81
• PACK 1 I OC F91

10 UNPKI I OD FAJ
• ZAP I I OE FBI
• CP I I OF FCI
• AP I I 10 FD I
• SP I I I

15 MP I I I
• DP I 1 I ___________ ~ _____________ ~ _____________ J

Figure 7. SS Tables

Besides the mnemonics, the location
counter, the current label, and the oper­
ands are moved into the print buffer.
Before it is inserted, all the information
is translated into EBCDIC by routine TRANS.

Assembler Instructions

These instructions must be distinguished in
the code byte (second byte). The instruc­
tion codes follow.

r-----------T-------------------,
IContents ofllnstruction I
I Code byte I I
~-----------+-------------------~
I C1 IDC AL3 (DC VL3) I
I C2 IDC X I
I C3 IDS L I
I C4 I LABEL I
I C5 IPROCEDURE OR I
I I STATEMENT NUMBER I
I C6 lEND OF BLOCK I
I C7 I DC X, LENGTH OF DSA' I
I CA IDC A I
I CB IDC V I
L ______ -----~-------------------J

The code byte is put into a general
register and X'CO' is subtracted. The
result is used as offset in the branch
table BRAN3 with corresponding branches to
SUbroutines as entries. The format of
BRAN3 follows:

BRAN3 r----------,
IB ERR
I B DC AL3
IB DC X
IB DS L
IB LABEL
IB PROCE
IB ENDBL
I B DC F
IB ERR
IB ERR
IB DC A
1B DC A L _________ _

o ,
2
3
4
5
6
7
8
9
A
B

Note: ERR is an error routine for elements
which must not occur.

1. DC AL3, DC VL3, DC A, and DC V

The information contained in the instruc­
tion is inserted into the print buffer.
The print line has the following format:

r------T--------~-------~---T-------------,
ILOC. I OBJECT ILAEEL lOP. I OPERANDS I
I I CODE I I I I
~------+--------+-------+---+-------------~
100008SI000742 IL'OB7' IDC IAL3 (N'0140') I
10000SBI000000 IL'013S'IDC IVL3(N'013S') I
1000090100000S06I L '0139'IDC IA(N'0142') I
10000941000000 IL'0037'IDC tV(N'0037') t L ______ L-_______ ~ _______ ~ ___ ~ _____________ J

LOC is increased by 3 or 4 corresponding to
the type of instruction. POI is increased
by 10.

2. DC X

The information is inserted into the print
buffer as follows:

Phase PL/IG40 351

PL/I PLM 8

IBM Confidential /

r-----------T-----------------------------,
I Starting I I
I Print I C.ontents I
I P.ositi.on I I

~-----------+-----------------------------1
I 2 I L.ocati.on c.ounter I
I 10 I C.onstant, but n.ot more than I
I I 8 bytes of it I
I 31 I Label I
I 40 I DC I
I 46 I X 'CONSTANT' (n.ot m.ore than 81
I I bytes) I L ___________ ~ _____________________________ J

If the c.onstant has more than 8 bytes, a
new line is printed for each 8 bytes, but
with.out updating the location c.ounter each
time. The l.ocation counter is increased
by the entire length of the constant.

3. DS L

The print line has the following f.ormat:

LOCATION
LABEL
CODE DS
OPERAND CL f.oll.owed by the length

C.olumn
2

31
40
46

LOC is increased by length L, which is
found in the sec.ond half-w.ord. POI is
increased by 4.

4. LABEL

The label is moved into stack LAFI, and
POI is increased by 4. When the label
X'FFFF' (denoting the beginning .of the
static storage) is found, the line

L'FFFF' STATIC STORAGE

is printed.

5. PROCE

Test whether statement number .or n.ot. If
not, the message 'BEGIN OF BLOCK NN', the
label, and the l.ocation counter are
inserted into the print buffer. POI is
increased by 6.

If there is a statement number, it is
checked if the number is zer.o. If it is
not, it is listed in the form

STATEMENT NUMBER NNNN

starting at print position 90. NNNN is
the statement number translated into a
decimal value. Leading zeros are left
out. If an immediately foll.owing sta
tement number has a l.ower value, it is
skipped. POI is increased by 4.

352

6. ENDBL

The expression 'END OF BLOCK' and the
l.ocation counter are inserted int.o the
print buffer. POI is increased by 4.

7. DC F

The length of the c.orresponding OSA is
taken from the block table expanded to a
full-word and inserted at R11+10. The
message

'DC LENGTH OF DSA OF BLOCK NN •

(where NN is the bl.ock number) is listed.
The location counter and, in s.ome cases, a
label are also inserted. The location
c.ounter and POI are increased by 4.

END key

When the end key is found, the word END is
put into the print buffer. ZPRNT is
called t.o print the line. It determines
whether the DECK and LINK bits are .off.
If both are off, the c.ompilati.on is termi­
nated by calling phase G31, which prints
the message

5G021 SUCCESSFUL COMPILATION

cl.oses all files, and calls EOJ. Other­
wise, the phase is terminated by calling
phase G55.

The routine translates location c.ounter
LOC int.o EBCDIC and inserts it int.o the
c.orresponding entries of the print buffer.

This routine first translates the label
found in the label field (LAFI) int.o
EBCDIC. The label, preceded by L' and
followed by a quote is moved into the
print buffer. The label field is then set
to zer.o.

TRANS -- GM

This routine translates hexadecimal values
into EBCDIC. The bytes (the number of
which is given in R2) at 0(R1) are trans­
lated and moved into the print buffer at
the location given in RO.

CHAMO GM

This r.outine c.omplements the half-word at
POI+<R1>. The half-w.ord is moved into a
work area to ensure b.oundary alignment,

o

PL/I PLM 8

IBM Confidential

then loaded into register R2, and restored
at POI+<R1>.

TRA -- GN

This routine translates a string from
POI+4 of length L (given in R3) into
EBCDIC and inserts it into the print buf­
fer at location R11+47. A quote is
inserted at the end of the translated
string.

NAME GN

This routine inserts the name, in the form
N'aaaa', into the print buffer at the
location given in RN. It determines
whether or not the modifier is O. If it
is not 0, it inserts the modifier after
the name. The modifier has no leading
zeros and is preceded by a + or - sign.

This routine translates the length for SS
instructions with only one length. It
takes the length from POI+3 and inserts it

unpacked into the stack ARBS. Length - 1
is inserted into the print buffer at
R11+11.

TRANLS -- GO

This routine translates the lengths for SS
instructions with two lengths. The proce­
dure is the same as described in TRANSL.

TRANSR -- GO

This routine translates the register con­
tents into EBCDIC and inserts them into
the print buffer.

This routine lists the character string
with the label L'0003' followed by

DC C'aaa ••• '.

No more than 32 characters are put into
one line. The location counter is updated
and printed for each line.

Phase PL/IG40 353

PL/I PLM 8

IBM Confidential

This phase provides the final output for
the Linkage Editor, writes the object cards
on IJSYSPH and/or writes the external sym­
bol table on IJSySLS if LINK, DECK, and/or
SYM are flagged in the job control switches
of the communication area within the Super­
visor Nucleus.

The address of the communication area is
inserted into register 1 via the macro
instruction COMRG. The job control switch­
es are located in bytes 56-59 of the com­
munication area.

Job Control Bytes:

Byte: 56
Byte: 57
Byte: 58
Byte: 59

NOTE:

Job control byte
Linkage control byte
Language processor control
Job duration indicators

byte

al bit 0 of byte 57 denotes LINK if on,
~ bit 0 of byte 58 denotes DECK if on,
cl bit 3 of byte 58 denotes SYM if on.

(If all these bits are off, the compilation
is terminated previous to this phase.1

The input of this phase is made up of
the cards generated in previous phases and
described there. The cards have been writ­
ten onto SYSOOl in physical records of 320
bytes and logical records of 80 bytes.

The first 16 bytes of each card (logical
recordl are fixed while the following 56
bytes contain information corresponding to
the type of card. The final 8 bytes (73 -
801 are used for identification, containing
the first 4 letters of the name of the
external procedure and a current number.

The output for the Linkage Editor is writ­
ten onto IJSYSLN in physical records of 322
bytes without overlap. The first two bytes
of each physical record contain the follow­
ing information:

Byte 1: number of logical records in the
physical one

Byte 2: length of the logical records.

Because four logical records of 80 bytes
(in card-format) are inserted into one
physical record, the bytes get the follow­
ing values:

Byte 1: 4
Byte 2: 80

354

PHASE. PL/IG55 ·CFINAL OUTPUT) -- HA

The cards are taken from SYSOOl in
records of 320 bytes and inserted into a
mask of 322 bytes. From there they are put
onto IJSYSLIN by means of routine ZLEDI
which uses one 322-byte output record in
the liD-buffer region.

Card Output

The cards are punched as they are written
onto SYS001. This is done by the routine
ZPCH.

The cards are moved into one of the two
output buffers (length 8Q bytes) in the
I/O-buffer area. The initial address of
the output buffer is found in register 10.
The use of two output buffers makes over­
lapping possible. Then routine ZPCH is
called to move the card onto IJSYSPH.

Listing of the External Symbol Table

The input is scanned for ESD cards. These
are printed in the following format:

r------T------T------T------T------T------,
I SYMBOL I TYPE I ESID I ADbR I LENGTH I ESID I
~------+------+------+------+------+------~
I * I SD I * I * I * I I
I * I ER 1 * 1 1 I I
1* ILDI 1* 1 1*1
~------+------+------+------+------+------~
IPrint IPrint IPrint IPrint IPrint IPrint I
18 Pos.12 Pos.12 Pos.16 Pos.14 Pos.12 Pos.1 L ______ ~ _____ ~ ______ ~ ______ ~ ______ ~ ______ J

* means 'used in this case'.

The printing is done by inserting the
information in one of two 121 byte buffers
at B5 which are used to process overlapped.
Then routine ZPRINT is called to print the
line.

Listing of the Block Table

At the end of the phase, the block table is
listed. The format is of the block table
is shown below:

Block Length of DSA Blocktable

01 01C7
02 0060
03 0070
04 0058

It contains, besides the block number
(printed in hexadecimal notationl, the
length of the corresponding DSA (also in
hexadecimal notation) •

When all cards have been punched, print­
ed, or written onto IJSYSLN, the compila­
tion is terminated.

- - --- --- -- .. __ ._--_._----

c

c

(

(

PL/I PLM. 8

IBM Confidential

For this the comment

5W011 SUCCESSFUL COMPILATION

is put on IJSYSLS: all files are closed and
the LINKEDIT bits (bits 0 and 1 of byte 57)
are set.

If the compilation is in error, byte
IJKMWC+1 is set to X'FF' and the message

5W02I COMPILATION IN ERROR

is listed.

Then the macro END OF JOB (EOJ) is used
to terminate the compilation.

Q~!~il~d D~scriptio~

In this phase the following three options
are tested:

a. Output on IJSYSLN (LINK-bit is on)
b. Output on IJSYSPH (DECK-bit is on)
c. Output on IJSYSLS (SYM-bit is on)

The resulting 7 cases

1 • a, b, and c
2. a and b
3. a and c
4. b and c
5. a
6. b
7. c

are processed in four special routines:

PLI
LINK
PCH
PRT

for cases 1 and 2
for cases 3 and 5

for cases 4 and 6
for case 7

The input consists of the cards written
onto SYS001 in records of 320 bytes (one
record containing 4 cards) •

These records are read into the second
input buffer EBU, moved into the first
input buffer ABU, and processed there while
another record is read into EBU.

Register CPO is used as an input poin­
ter.

The output is written onto IJSYSLN,
IJSYSPH and/or IJSYSLS depending on the
options specified. While for IJSYSPH and
IJSYSLS two output buffers are reserved
(addressed via register 10 or 11,
respectively), the output on IJSYSLN uses
only one buffer of 322 bytes.

(

0.

/
The buffers for IJSYSLS are located in

the last I/O buffer B4 and have a length of

121 bytes. The buffers for IJSYSPH are
located in the external I/O buffers B5 and
B6 and have a length of 80 bytes each.

The listing of the block table uses the
table at IJKMBS, which contains the lengths
of the DSAs.

In order to test the option bits, the
address of the corresponding communication
area is put into register 1 by means of the
macro COMRG. The first bit of byte 57 is
the LINK bit, the first bit of byte 58 is
the DECK bit, and the fourth bit of byte 58
is the SYM bit.

When all input has been processed, the
block table is listed and this phase termi­
nates the compilation by printing a final
comment, inserting bits into the communi­
cation area, and cloSing all files. The
final instruction is the macro EOJ.

GET -- HC ------
This routine processes overlapped by moving
the contents of the second input buffer EBU
into the first input buffer ABU. It tests
to determine whether there are any more
records on SYS001. If there are no more
records, switch NCl is set to 1. Other­
wise, the next record is read into EBU, and
the number of records NC is updated.

PLI -- HC

This routine puts all input records from
ABU onto IJSYSLN, punches all cards, and
prints the ESD table if the SYM switch is
on.

The output on IJSYSLN is processed by
routine LINKS, the punching by PUNCH, and
the listing by PRINT.

LNK writes all input records from ABU onto
IJSYSLN and prints the ESD table if the SYM
switch is on. It uses routines LINKS,
PRINT, and GET.

PCH -- HE

This routine punches all
routine PUNCH and prints
means of routine PRINT.
GET for input.

PRT -- HF ------

cards by calling
the ESD cards by
It uses routine

This routine prints the external symbol
table by means of routine ZPRNT, which uses
two print buffers of length 121, the cur­
rent address of which is to be found in
register 11.

Phase PL/IG55 355

PL/I PLM 8

IBM Confidential

The information is taken from the cards
found in the buffer ABU and inserted into
the corresponding slots of the print buf­
fer.

This routine prints an ESD card in the way
described in PRT. It scans the card and
prints one line for each ESD entry in the
card.

This routine is used to punch a card locat­
ed at cpo. This is done by moving the card
into one of the punch buffers (the address
of which is found in register 10) and call­
ing routine ZPCH.

rhis routine moves one record of 322 bytes
from ABO into the link buffer and writes it
onto IJSYSLN by calling routine ZLEDI.

356

TRA -- HH ------
This routine translates hexadecimal values
(length given in R2) into EBCDIC code and
inserts the translated string into the
print buffer at the location given in RO.
The location of the hexadecimal value is
given in R 1.

PRIBLO -- HI

This routine prints the rightmost byte in
register RY (block number) and the halfword
at CPO (length of the current block DSA) •

BLOCKr -- HI

This routine prints the block table by
means of routine PRIBLO. It inserts the
subheader and uses CPO as a pointer in the
block table and RY as a counter for the
block numbers. The greatest block number
is found in IJKMBC.

---~---

c

PL/I PLM 8

IBM Confidential

(-

('.

The metalanguage used in this section must
not be considered to be of universal signi­
ficance. It is a combination of the IBM
syntax notation, the Backus/Naur form and a
few extensions. The following rules apply:

• <a series of lower case letters> is the
common form of metalinguistic variables.

• ::= means "is defined as". Each metal­
inguistic definition contains one such
symbol.

• {} denotes grouping.

• indicates that a choice is to be made.

• [I denotes options. ~nything enclosed
in square brackets may appear once or
not at all.

• E 3 "Combinatorial" brackets indicate
that the options enclosed by them may
appear in any order, however not more
than once.

• min 1
If-used in connection with { }, the
enclosed syntactical unit must appear at
least once.
If used in connection with combinatorial
brackets, at least one of the enclosed
options must appear.

• max m
If-used in connection with { }, the
enclosed syntactical unit must not
appear more than m times.
If used in connection with combinatorial
brackets, a maximum of m of the enclosed
options may appear.

• min 1 max m
Both limitations apply (see preceding
text) •

• <A SERIES OF CAPITAL LETTERS> indicates
the internal 3-byte representation of
the corresponding keyword.

• hex , where and are hexadecimal
digits, indicates the literal occurence
of the hexadecimal digits.

• All other symbols maintain their origi­
nal meaning.

Examples:
(Note that most of these examples are no
valid definitions of PL/I statements.)

<digit> ::= 0111213141516171819

Meaning: a digit is defined as the literal
occurence of a 0,1,2 etc.

<function reference> ::= <ident> [(expres­
sion list»)

Meaning: a function reference is defined as
an identifier optionally followed by an
expression list enclosed in parentheses.

<replication factor> ::= {min 1 max 3
{<digi t>})

Meaning: a replication factor is defined as
a series of 1 to 3 digits enclosed in
parentheses.

<open item> :: =
<FILE> «ident» C [<INPUT>] [<BACKWARDS>]
[<page>13

Meaning: an open item is defined as the
internal representation of the keyword
FILE, followed by a left parenthesis, fol­
lowed by an identifier, followed by a right
parenthesis, followed by a list of three
options which may appear in any order (each
option not more than once) •

Appendix A. Syntax Notation of PL/I Input Stream 357

PL/I PLM 8

IBM Confidential

<A> ::= <links> he~ 0003

<arithmetic constant> ::= <decimal fixed constant> 1 <binary fixed constant> 1 <decimal
float constant> 1 <binary float constant>

<assign> ::= <left> hex OE <right>

<assignment statement> ::= <assign> <name>

 ::= <links> he~ 0001

<BACKWARDS> ::= <links> hex 0164

<BEGIN> ::= <left> hex 06 <right>

<begin statement> ::= <BE;IN>

<expr>

<binary constant> ::= <binary integer> [. [<binary integer>]] I. <binary integer>

<binary digit> ::= 011

<binary fixed constant> ::= <binary integer>

<binary float constant> ::= <binary constant> <exponent>

<binary integer> ::= ~i~ 1 «binary digit>}

<bi t string constant> :: = [<replic>] '<binary integer>'

<blend> ::= <left> g~~ 07 <right>

<block> ::= <data character>

<BY> ::= <links> g~~ 0010

<CALL> ::= <left> hex 09 <right>

<call statement> ::= <CALL> <ident> [«expression list»]

<character string constant> ::= <character string constant key> <data character>
<character string constant key> <data character> <data character>

<character string constant key> ::= hex E3

<CLOSE> ::= <left> hex 30 <right>

<close list> ::= <file option> 1 <close list>, <file option>

<close statement> ::= <CLOSE> <close list>

<COLUMN> ::= <links> g~ 012F

<condition> ::= <FIXEDOVERFLOW> 1 <UNDERFLOW> 1 <SIZE> 1 <ERROR> 1 <ZERODIVIDE> I
<ENDFILE> <enclosed ident> 1 <TRANSMIT> <enclosed ident> 1 <KEY> <enclosed
ident> I <RECORD> <enclosed ident> I <ENDPAGE> <enclosed ident> I <OVERFLOW>
<CONVERSION>

<constant> ::= <sterling constant>
I <binary fixed constant>
<decimal float constant>

<CONVERSION> ::= <links> h~~ 016A

358

<bit string constant> I <character string constant>
<decimal fixed constant> I <binary float constant> I

-------- ------------- -----

c

PL/I PLM 8

IBM. Confidential

<decimal fixed constant> ::= <integer> [. [<integer~) I • <integer>

<decimal float constant> ::= <decimal fixed constant> <exponent>

<DECL~RE> ::= <left> hex 40 <right>

<declare statement> ::= <DEC~RE> min 0 {<data character>}

<digit> ::= 0 1 I 2 I 3 I 4 I 5 I 6 7 I 8 I 9

<DISPL~Y> ::= <left> hex 32 <right>

<display statement> ::= <DISP~Y> <single> [<REPLY> <enclosed name»

<DO> ::= <left> hex 12 <right>

<do statement> ::= <DO> [<while clause> I <q-name> <specification list»

<E> ::= <links> he~ 0002

<EDIT> ::= <links> hex 0055

<ELSE> ::= <left> h~~ 11 <right>

<else statement> ::= <ELSE>

<enclosed ident> :: = «ident»

<enclosed name> :: = «name»

(<end of block statement> ::= <blend>

<end of group statement> ::= <grend>

('

<end of statement> ::= <eos> <no error> <level> <block> <statement number> I <eos>
<error> <level> <block> <statement number> <error tail>

<ENDFILE> ::= <links> hex 0147

<ENDPAGE> ::= <links> hex 014B

<ENTRY> ::= <left> h~~ OB <right>

<entry statement> :: = <ENrRY> [«identifier list»)

<eos> ::= hex EA

<error> ::= he~ 80 \ h~~ 40

<fixedoverflow> ::= <links> hex 0177 hex 40

<ERROR> ::= links hex 0107

<error key> ::= he~ EB

<error number> ::=.<data character>

<error tail> ::= <error key> <error number> I <error tail> <error key> <error number>

<exponent> ::= <E> [+ I -I <integer>

<expr> ::= <constant> I <name> I <function reference> I <single> I <prefix operator>
<expr> I <expr> <infix operator> <expr>

<expression list> ::= <expr> I <expression list>,<expr>

Appendix A. Syntax Notation of PL/I Input Stream 359

PL/I PLM 8

IBM Confidential

<F> ::= <links> hex 0004

<FILE> ::= <links> g~~ 0047

<file option> ::= <FILE> <enclosed ident>

<fixedoverflow> ::= <links> hex 0177

<FORMAT> ::= <left> hex 35 <right>

<format element> ::= [<integer>] <format item> I <integer> <format list>

<format element list> ::= <format element> I <format element list>, <format element>

<format item> ::= <F> «integer> [,<integer> [, [+ I -] <integer>]]) I <E> «integer>,
<integer> [, <integer>]) I [«integer» I I <A> [«integer»] I <x>
«integer» I <SKIP> [«integer»] I <LINE> «integer» I <COLUMN> «integer»

<PAGE> I <R> «q-name»

<format list> ::= (<format element list»

<format statement> ::= <FORMAT> <format list>

<FROM> ::= <links> g~~ 005A

<function reference> ::= <ident> [«expression list»]

<GET> ::= <left> g~~ 33 <right>

<get statement> ::= <GET> [<file option> I <STRING> <enclosed name>] <input data
specification>

<GO> ::= <links> hex OOOE

<goto> ::= <left> g~~ OA <right>

<GOTO> ::= <links> hex 0040

<goto statement> ::= <goto> <name>

<grend> ::= <left> g~~ 13 <right>

<heading> ::= min 0 {<ident>:}

<ident> ::= <ident key> <:lata character> <data character>

<ident key> ::= hex E1

<identifier list> ::= <ident>

<IF> ::= <left> he~ 10 <right>

<if statement> ::= <IF> <expr>

<identifier list>, <ident>

<infix operator> :: = + I - I * I / I ** I = I < I > I , = I <= I <= I II I I I , > I 1 <

<INPUr> ::= <links> g~~ 0183

<input data element> ::= <name> I <input repetitive specification>

<input data element list> ::= <input data element> I <input data element list>, <input
data element>

360

---_. -- -----------.

c

(

PL/I PUll 8

IBM Confidential

<input data list> ::= «input data element list»

<input data specification> ::= <input list specification> ~ <input edit specification>

<input edit list> ::= <input data list> <format list> I <input edit list> <input data
list> <format list>

<input edit specification> .. - <EDIT> <input edit list>

<input list specification> : := <LIST> <input data list>

<input repetitive specification> : := «input data element list> <do> <q- name>
<specification list»

<integer> ::= ~~g 1 {<digit>}

<INTO> ::= <links> hex 00D9

<iteration> ::= <expr> [<ro> <expr> [<BY> <expr>] I <BY> <expr> [<PO> <expr>]] [<while
clause»

<KEY> ::= <links> h~~ 0097

<KEYFROM> ::= <links> Q~~ 01C9

<KEYTO> ::= <links> he~ OOFD

<L> ::= <links> hex 0088

(<left> ::~ hex EOOO

<level> ::= <data character>

<LINE> ~:= <links> hex 00D8

<links> ::= hex E1

<LIST> ::= <links> hex 00D6

<Loo.rE> :: = <left> Q~~ 38 <right>

<locate statement> ::= <LOCATE> <ident> <file option> {<SEr> <enclosed name> [<KEYFROM>
<single>] [<KEY FROM> <single>] <SET> <enclosed name>}

<name> ::= <q-name> [«subscript list»)

<NEWPAGE> ::= <links> hex 01C8

<no error> ::= hex 00

<nap> ::= <left> Q~~ OD <right>
<null statement> ::= <nop>

<ON> ::= <left> Q~~ 22 <right>

<on statement> ::= <ON> <condition> [<SYSTEM> I <GO> <TO> <ident> I <GOTO> <ident>

4[" <OPEN> ::= <left> hex 31 <right>

<open item> ::= <file option> [<PAGESIZE> <single> I <OUTPUT> I <INPUT»

Appendix A. Syntax Notation of PL/I Input St~eam 361

PLII PLM 8

IBM Confidential

<open list> ::= <open item> 1 <open list>, <open item>

<open statement> ::= <OPEN> <open list>

<OUTPUT> ::= <links> ~~ 011C

<output data element> ::= <eKpr> 1 <output repetitive specification>

<output data element list> ::= <output data element> I <output data element list>,
<output data element>

<output data list> ::= «output data element list»

<output data specification> ::= <output list specification> 1 <output edit specification>

<output edit list> ::= <output data list> <format list> 1 <output edit list> <output data
list> <format list>

<output edit specification> ::= <EDIT> <output edit list>

<output list specification> ::= <LIST> <output data list>

<output repetitive specification> ::= «output data element list> <do> <q-name> =
<specification list>

<O~ERFLOW> ::= <links> ~ 0152

<PAGE> ::= <links> h~~ 0057

<PAGESIZE> ::= <links> ~ 0159

<pence integer> :: = 10 I 11 1 (0) <digit>

<pence part> ::= <pence integer> [. [<integer»]

<prefix operator> :~= + I • 1 ,

<PROCEDURE> ::= <left> ~ 05 <right>

<procedure statement> ::= <PROCEDURE> [«identifier list»]

<PUT> ::= <left> h~~ 34 <right>

<put statement> :: = <PUT> «file option >] (({E [<page>} «line> <SINGLE>]31 <skip>
[<SINGLE>}} <OUTPUT DATA SPECIFICATION>} I. {(~ 1 ~ [<page> «line> <SINGLE>] 31
<skip> [<SINGLE»} [<OUTPU~ DATA SPECIFICArION»}} 1 <put> <string> <ENCLOSED
NAME> <OUTPUT DArA SPECIFICATION>

<q-name> ::= <ident> I <q-name>. <ident>

<R> ::= <links> ~ OOOA

<READ> ::= <left> h~~ 36 <right>

<read statement> ::= <READ> <file option> ((<SET> <enclosed name> 1 <INTO> <enclosed
ident>} [<KEYTO> <enClosed name> 1 <KEY> <single>} I [<KEYTO> <enclosed name>
<KEY> <single>} {<SET> <enclosed name> 1 <INTO> <enclosed ident>}}

<RECORD> ::= <linkS> h~~ 0114

<replic> ::= (min 1 max 3 «digit>})

362

c

(

PL/I PLl'1 8

IBM Confidential

<REPLY> ::= <links> he~ 0105

<RETURN> ::= <left> h~~ OC <right>

<return statement> ::= <RETURN> «single»

<REVERT> ::= <left> h~~ 21 <right>

<revert statement> ::= <REVERT> <condition>

<REWRITE> ::= <left> h~ 39 <right>

<rewrite statement> :: = <REWRITE> <file option> E «KEY> <single>] «FROM> <enclosed
ident>U

<right> ::= <data character> <data character> <data character>

<SET> ::= <links> h~~ 0018

<shilling part> ::= [0 I 1] <digit>

<SIGNAL> ::~ <left> ~~ 20 <right>

<signal statement> ::~ <SIGNAL> <condition>

<single> ::= «expr»

<SIZE> ::= <links> ~ 0052

<SKIP> ::= <links> h~~ 0050

4[" <specification list> ::= <iteration> I <specification list>, <iteration>

<statement> ::= <heading> <statement body> <end of statement>

<statement body> ::= <null statement> I <assignment statement> I <call statement> I
<display statement> I <goto statement> I <return statement> I <signal statement>
I <revert statement> I <stop statement> I <do statement> I <if statement> I
<open statement> I <close statement> I <read statement> I <write statement>
<format statement> I <else stat~ment> I <begin statement> I <end of block
statement> I <end of group statement> I <procedure statement> I <entry
statement> I <on statement> I <declare statement> I <get statement> I <put
statement> I <locate statement> I <rewrite statement>

<statement number> ::= <data character> <data character>

<sterling constant> ::= <integer>. <shilling part>. <pence part>

<STOP> ::= <left> h~~ 23 <right>

<stop statement> ::0 <STOP>

<STRING> ::= <links> h~~ 0113

<subscript> ::= <g-name> I <arithmetic constant> I {+ I -} <subscript> I <subscript>
{*I+I-} <subscript>

<subscript list> ::= <subscript> I <subscript list>, <subscript>

<SYSTEM> ::= <links> h~~ 011F

<ro> ::= <links> h~2 OOOF

Appendix A. Syntax Notation of PL/I Input stream 363

PL/I PLM 8

IBM Confidential

<rRANSMIT> ::= <links> hex 0158

<UNDERFLOW> ::= <links> h§! 0162

<WHILE> ::= <links> h~! 007F

<while clause> ::= <WHILE> <single>

<WRITE> ::= <left> hex 37 <right>

<write statement> ::= <WRITE> <file option> {<FROM> <enclosed ident> [<KEYFROM> <single>]
«KEYFROM> <single» <FROM> <enclosed ident>}

<x> ::= <links> h~!0006

<ZERODIVIDE> •• - <links> hex 0169

364

o

c

(

(

PL/I PLM 8

IBM Confidential

~~~~~Q!e B. SYNTAX NOTATION OF PL/I OUTPUT STREAM 

<a> ::= <links> hex 0003 

<and> ::= ~ E205EC 

<arithmetic constant> ::= <decimal fixed constant> I <binary fixed constant> I <decimal 
float constant> I <binary float constant> 

<assign> ::= <left> g~~ OE <right> 

<assignment statement> ::= <assign> <name> <ist> <expr> 

<b> ::= <links> he~ 0001 

<backwards> ::= <links> hex 0164 

<BEGIN> ::= <left> hex 06 <right> 

<begin statement> ::= <BE3IN> 

<binary fixed constant> : : = <binary 

<binary fixed constant key> :: = hex 

<binary float constant> : : = <binary 

<binary float constant key> : : = hex 

fixed constant key> 

F9 

float constant key> 

Fl'~ 

<length> min 2 {<data character>} 

<length> min 4 {<data character>} 

<bit string constant> : : = <bit string constant key> <length> min 4 {<data character>} 

<bit string constant key> ::= g~~ FB 

<blend> ::= <left> hex 08 <right> 

<branch> ::= <links> hex 0355 

<by> ::= <links> hex 0010 

<CALL> ::= <left> hex 09 <right> 

<call statement> ::= <CALL> <ident> [<lnb> <expression list> <rnb» 

<cat> ::= gex E203EA 

<character string constant> ::= <character string constant key> <data character> <data 
character> <character string constant key> <data character> <data character> 

<character string constant key> ::= hex E3 

<CLOSE> ::= <left> g~~ 30 <right> 

<close list> ::= <file option> I <close list> <comma> <file option> 

<close statement> ::= <CLOSE> <close list> 

(' <col> :: = <links> g~~ 012F 

<comma> ::= hex E200E8 

Appendix B. Syntax Notation of PL/I Output Stream 365 



PL/I PLM 8 

IBM Confidential 

<condition> :: "" <fixedoverflow> I <underflow> I <sijz;e> I <fieldoverflow> I <;::endtile> f~ 
<enclosed ident> I <transmit;> <enclosed ident> I <key> <enclosed ident> I ( 
<record> <enclosed ident> I <endpage> <enc10sed ident> I <overflow> I <error> ~ 
<zerodivide> I <conversion> 

<constant> ;;"" <sterling constant) 
I <binary fixed constant> 
<decimal float constant> 

<conversion> ::= <links> h~ 016A 

<DECLARE> ::= <left> ~ 40 <right> 

<bit string COnstant> I < character string constant> 
<decimal ~ix;ed constant> I <binary float constant> I 

<declare statement> ::= <DECLARE> min 0 {<data character>} 

<decimal fixed constant> ::~ <decimal fixed constant key> <length> m!n 1 {<data 
character>} 

<decimal fixed constant key> :::;:: ~ F7 

<decimal float constant> ::= <decimal float oonstant key> <length> min 3 {<data 
character>} 

<decimal float constant key> :;= hex F8 

<DISPLAY> ;:= <left> hex; ~ <right> 

<display statement> ::= <DISPLAY> <single> [<reply> <enclosed name>] 

<DO> ::.= <left> he~ 12 <right> 

<do> ::= <links> h~~ 0054 

<do statement> ::= <DO> ~while clause> I <q-name> <ist> <specification list>] 

<e> ::= <links> ~ 0002 

<edit> ::¢ <links> h~! 0055 

<ELSE> ;:= <left> h~~ 11 <right> 

<else statement> ::= <ELSE> 

<enclosed ident> ::= <llb> <ident> ~rlb> 

<enclosed n~me> ::= <llb> <name> <rlb> 

<endfile> ::= <links> h~ 0147 

<end of block statement> ::= <blend> 

<end of group statement> ::= <grend> 

<end of procedure statement> :;= <prend> 

<end of statement> :;:;:: <eos> <no error> <level> <block> <$~at~m~nt numbe~> I <eos> 
<error> <level> <block> <statement nu~be+> <error tail> 

<endpage> ::~ <links> ~ 0145 

<ENTRY> ::= <left> h~ OB <rignt> 

<entry statement> : p= <ENrRY> [<lnb> <identifier list> <rnb» 

366 

c 



( 

PL/I PLM 8 

IBM Confidential 

<eos> ::= hex EA 

<eq> ::= hex E207ED 

<ERROR> ::= <links> hex 0107 

<error> ::= hex 80 I ~~~ 40 

<error key> ::= hex EB 

<error number> ::= <data character> 

<error tail> ::= <error key> <error number> I <error tail> <error key> <error number> 

<expr> ::= <constant> I <name> I <function reference> 1 <single> <prefix operator> <expr> 
I <expr> <infix operator> <expr> 

<expression list> ::= <expr> I <expression list> <comma> <expr> 

<f> ::= <links> he~ 0004 

<file> ::= <links> hex 0047 

<file option> ::= <file> <enclosed ident> 

<fixedoverflow> ::= <links> he~ 0177 

<FORMAT> ::= <left> hex 35 <right> 

<format element> ::= [<format integer» <format item> I <format integer> <format list> 

<format element list> ::= <format element> I <format element list> <comma> <format 
element> 

<format integer> ::= <format integer key> <length> min 1 {<data character>} 

<format integer key> ::= ~~ FE 

<format item> ::= <f> <lIb> <format integer> [<comma> <format integer> [<comma> [<uplus> 
I <umin~ <format integer») <rIb> I <e> <lIb> <format integer> <comma> <format 
integer> [<comma> <format integer>] <rIb> I <b> [<lIb> <format integer> <rIb>] I 
<a> [<lIb> <format integer> <rIb» I <x> <lIb> <format integer> <rIb> I <skip> 
[<lIb> <format integer> <rIb>] I <line> <lIb> <format integer> <rIb> I <col> 
lIb> <integer> <rIb> I <page> I <r> <lIb> <q-name> <rIb> 

<format list> ::= <lIb> <format element list> <rIb> 

<format statement> ::= <FORMAT> <format list> 

<from> ::= <links> ~~~ 005A 

<function reference> ::= <ident> [<lnb> <expression list> <rnb» 

<gauche> ::= he~ E2 <data character> 

<ge> ::= hex E207F2 

<GET> ::= <left> ~ex 33 <right> 

c <get statement> ::= <GET> [<file option> I <string> <enclosed name>] <input data 
specification> 

<goto> ::= <left> ~~~ OA <right> 

Appendix B. Syntax Notation of PL/I Output Stream 367 



PL/I PLM 8 

IBM Confidential 

<goto statement> ::= <goto> <name> 

<grent> ::= <left> gex 13 <right> 

<gt> ::= hex E207FO 

<heading> ::= min 0 {<ident>:} 

<ident> ::= <ident key> <data character> <data character> 

<identifier list> ::= <ident> I <identifier list> <comma> <ident> 

<ident key> ::= hex E1 

<IF> ::= <left> he~ 10 <right> 

<if statement> ::= <IF> <expr> 

<infix operator> ::= <plus> I <minus> I <slash> I <pot> I <star> I <eg> I <It> I <gt> I 

<ne> I <Ie> I <ge> I <and> I <or> I <cat> 

<input> ::= <links> he~ 0183 

<input data element> ::= <name> I <input repetitive specification> 

<input data element list> ::= <input data element> I <input data element list> <comma> 
<input data element> 

<input data list> ::= <lIb> <input data element list> <rIb> 

<input data specification> ::= <input list specification> I <input edit specification> 

<input edit list> ::= <in~ut data list> <format list> I <input edit list> <input data 
list> <format list> 

<input edit specification> ::= <edit> <input edit list> 

<input list specification> ::= <list> <input data list> 

<input repetitive specification> ::= <lIb> <input data element list> <do> <q-name> <ist> 
<specification list> <rIb> 

<into> ::= <links> hex 00D9 

<ist> ::= <gauche> gg~ FB 

<iteration> ::= <expr> [<to> <expr> [<by> <expr>] I <by> <expr> [<to> <expr>]] [<while 
clause>] 

<key> ::= <links> hex 0097 

<keyfrom> ::= <links> g~ 01C9 

<key to> ::= <links> he~ OOFD 

<Ie> ::= he~ E207F1 

<left> ::= hex EO <data character> 

<length> ::= <data character> <data character> 

368 

c 



( 

PL/I PLM 8 

IBM Confidential 

<line> : : = <links> hex 00D8 

<links> : : = hex EF 

<list> : : = <links> hex 00D6 

<llb> : : = <gauche> hex FO 

<lnb> : := gex E200E6 

<LOCATE> ::= <left> he~ 38 <right> 

<locate statement> ::= <LOCATE> <ident> <file option> {<set> <enclosed name> [<keyfrom> 
<single» I [<keyfrom> <single» <set> <enclosed name>} 

<It> ::= he~ E207EF 

<minus> ::= hex E208F4 

<name> ::= <q-name> [<lnb> <subscript list> <rnb>] 

<ne> ::= hex E207EE 

<newpage> ::= <links> hex 01C8 

<no error> ::= hex 00 

<nop> ::= <left> hex 00 <right> 

(- <not> ::= gex E20AF9 

<null> ::= <links> hex 0356 

<null statement> ::= <nop> 

<ON> ::= <left> he~ 22 <right> 

<on statement> ::= <ON> <condition> {<system> I <branch> <ident> I <null>} 

<OPEN> ::= <left> g~~ 31 <right> 

<open item> ::= <file option> [<pagesize> <single> I <output> I <input» 

<open list> ::= <open item> <open list> <comma> <open item> 

<open statement> ::= <OPEN> <open list> 

<or> ::= he~ E204EB 

<output> ::= <links> hex 011C 

<output data element> ::= <expr> I <output repetitive specification> 

<output data element list> ::= <output data element> I <output data element list> <comma> 
<output data element> 

<output data list> ::= <lIb> <output data element list> <rlb> 

<output data specification> ::= <output list specification> I <output edit specification> 

<output edit list> ::= <output data list> <format list> I <output edit list> <output data 
list> <format list> 

Appendix B. Syntax Notation of PL/I Output Stream 369 



PL/I PLM 8 

IBM Confidential 

<output edit specification> ::= <edit> <output edit list> 

<output list specification> ::= <list> <outp~t data list> 

<output repetitive specification> ::= <lIb> <output data element list> <do> <q-name> 
<ist> <specification list> <rIb> 

<overflow> ::= <links> hex 0152 

<page> ::= <links> hex 0057 

<pagesize> ::= <links> hex 0159 

<period> ::= <links> g~ 0360 

<plus> ::= hex E208F3 

<pot> ::= g~ E20AFA 

<prefix operator> ::= <uplus> I <umin> ! <not> 

<prend> ::= <left> gex 07 <right> 

<PROCEDURE> ::= <left> hex 05 <right> 

<procedure statement> ::= <PROCEDURE> [<lnb> <identifier list> <rnb>] 

<PUT> ::= <left> g~~ 34 <right> 

<put statement> ::= <PUT> [<file option>] {{ {([<page» [<line> <single>] 3 I <skip> 
[<single»} <output data specification>} I {{min 1 £' [<page>] [<line> <single»3 I (\; 
<skip> [<single»} [<output data specification>]}}! <PUT> <string> <enclosed ~ 
name> <output data specification> 

<q-name> ::= <ident> I <q-name> hex 2B <ident> 

<r> ::= <links> he~ OOOA 

<READ> ::= <left> hex 36 <right> 

<read statement> ::= <READ> <file option> {{<set> <enclosed name> I <into> <enclosed 
ident>} [<key to> <enclosed name> I <key> <single» ! [<key> <single> I <key to> 
<enclosed name>] {<set> <enclosed name> I <into> <enclosed ident>}} 

<record> ::= <links> g~~ 0114 

<rIb> ::= <gauche> g~ FE 

<rnb> •. - hex E200E7 

<reply> ::= <links> hex 0105 

<RETURN> ::= <left> hex 02 <right> 

<return statement> ::= <RETURN> [<single>] 

<REVERT> ::= <left> hex 21 <right> 

<revert statement> ::= <REVERT> <condition> 

<REWRITE> ::= <left> g~~ 39 <right> 

370 

c 



( 

( 

PL/I PLM 8 

IBM Confidential 

<rewri te statement> :: = <REWRITE> <file option> E[<key> <single>] [<from> <enclosed 
ident>13 

<right> ::= <data character> <data character> <data character> 

<rnb> ::= hex E200E7 

<set> ::= <links> g~~ 0018 

<SIGNAL> ::= <left> he~ 20 <right> 

<signal statement> ::= <SIGNAL> <condition> 

<single> ::= <lnb> <expr> <rnb> 

<size> : : = <links> hex 0052 

<skip> <links> hex 005D 

<slash> ::= hex E209F6 

<specification list> ::= <iteration> I <specification list> <specom> <iteration> 

<specom> ::= <gauche~ g~ FC 

<star> ::= g~ E209F5 

<statement> ::= <heading> <statement body> <end of statement> 

<statement body> ::= <null statement> I <aSSignment statement> I <call statement> I 

<display statement> I <goto statement> I <return statement> I <signal statement> 
I <revert statement> I <stop statement> I <do statement> I <if statement> I 

<open statement> I <close statement> I <read statement> I <write statement> I 

<get statement> I <put statement> I <locate statement> I <rewrite statement> I 

<format statement> I <else statement> I <begin statement> I <end of block 
statement> I <end of procedure statement> I <end of group statement> I 

<procedure statement> I <entry statement> I <on statement> I <declare statement> 

<statement number> ::= <data character> <data character> 

<sterling constant> ::= <sterling constant key> <length> min 6 {<data character>} 

<sterling constant key> ::= hex FC 

<STOP> ::= <left> g~~ 23 <right> 

<stop statement> ::= <STOP> 

<string> ::= <links> hex 0113 

<subscript> ::= <q-name> I <arithmetic constant> I {<uplus> I <umin>} <subscript> 
<subscript> {<plus> I <minus.> I <star>} <subscript> 

<subscript list> ::= <subscript> I <subscript list> <comma> <subscript> 

<system>::= <links> g~~ 011F 

<to> ::= <links> g~~ OOOF 

<transmit> ::= <links> hex 0158 

<umin> ::= g~~ E20AF8 

Appendix B. Syntax Notation of PL/I Output Stream 371 



PL/I PLM 8 

IBM Confidential 

<underflow> ::= <links> he~ 0162 

<uplus> ::= he~ E20AF7 

<while> ::= <links> h~~ 007F 

<while clause> ::= [<while> <single» 

<WRITE> ::= <left> hex 37 <right> 

<write statement> ::= :WRITE> <file option> {<from> <enclosed ident> [<keyfrom> <single» 
[<keyfrom> <single» <from> <enclosed ident>} 

<x> ::= <links> he~ 0006 

<zerodivide> ::= <links> hex 0169 

372 

c 

c 



PL/I PLM 8 

IBM Confidential 

( 

r---------T----T--------------------------, 
lINT. NAME I MOD. I I 
~----T----~NAMEI I 
IHEX.IDEC. IPos. I DESCRIPTION I 
I I 14-7 I I 
~----+----+----+--------------------------~ 

10 161 SZCAlMAIN I 
11 171SZCMlMAIN I 
12 181 SZCNIPROLOGUE I 
13 1915ZCPIGO TO I 
14 20lSZCSISIGNAL I 
15 211 SZCTISTOP I 
16 22 SZLMIENTRY MOVE ROUTINE 1 
17 23 ZWSAILIBRARY WORK SPACE I 
18 24 TOPMIOPEN 1 
19 25 TCLMICLOSE I 
1A 26 TPSMIPAGESIZE 1 
1B 27 I I 
1C 28 ISTREAM-DIRECTED LIST INPUT 
1D 29 IINITIAL srRING LIST INPUT 
1E 30 ISTRING TRANSMITTED 

ILIST INPUr 
1F 31 I 
20 32 TFDMISTREAM DIRECTOR 
21 33 TFMMIFORMAT DECODER 
22 34 TGDSISTRING DIRECTOR 
23 351TSTMIGET/PUr FILE INITIAL 

r---------T----T--------------------------, 
lINT. NAME I MOD. I I 
~----T----~ NAME I I 
IHEX·IDEC·IPos·IDESCRIPTION I 
I I 14-7 I I 
~----+----+----+--------------------------~ 
143 I 67 VRPMISTERLING TO DECIMAL FIXED I 
144 I 68 VNPMIFIXED NBM. FIELD TO DEC. 1 
1 I 1 FIXED I 
145 I 69 FPNMIDEC. FIXED TO FIXED NUM. I 
I I 1 FIELD I 
146 I 70 VPRMIDEC. FIXED TO STERLING I 
I 1 INUM. FIELD I 
147 I 71 1 
148 I 72 I 
149 1 73 I 
14A I 74 I 
14B ,75 I 

4C 76 I 
4D 77 I 
4E 78 I 
4F 79 I 
50 80 STMMITIME 
51 81 SDTMIDATE 
52 82 I 
53 83 I 
54 84 QQSMISQUARE ROOT (SHORT) 

(- 24 361!GD!IGET STRING INITIAL 
25 371TGDOIPUT STRING INITIAL 
26 381 I 

55 85 QQLMISOUARE ROOT (LONG) 
56 86 QASMI EXPONENTIATION (SHORT) 
57 87 QALMIEXPONENTIATION (LONG) 

27 39 I TXRMIEXTENT, FB TO PDI 58 88 QLSAI LOG (SHORT) 
28 40 VBCMI 159 89 QLLAI LOG (LONG) 
29 41 VTCMIFLOAT ro PDI 15A 90 QLSCI LOG2 (SHORT) 
2A 42 VPCMIFIXED DECIMAL TO PDI 15B 91 QLLC I LOG2 (LONG) 
2B 43 VFCMINUM. FIELD FLOAT TO PDI 15C 92 QLSBILOG10 (SHORT) 
2C 44 VECMIE, F TO PDI 15D 93 QLLBI LOG10 (LONG) 
2D 45 VGIMICHAR. STRING TO BIT STRING 15E 94 ~SDI SINE (SHORT) 
2E 46 VIGMIBIT STRING TO CHAR. STRING 15F 95 QSLDISINE (LONG) 
2F 47 TSTRIX, PAGE, SKIP 160 96[QSSCI SINE-DEGREE (SHORT) 
30 48 TLCMILINE, COLUMN 161 97 QSLCISINE-DEGREE (LONG) 
31 49 VCBMIPDI TO BIN. FIXED 162 98 QSSBI COSINE (SHORT) 
32 50 VCTMIPDI TO FLOAT 
33 51 VCPMIPDI TO FIXED DECIMAL 

I 63 99 QSLB I COSINE (LONG) 
164 100 QSSAICOSINE-DEGREE (SHORT) 

34 52 VCFMIPDI TO NUM. FIELD FLOAr 165 101 QSLAICOSINE-DEGREE (LONG) 
35 53 VCEMIPDI TO E, F 166 102 2!SBITAN (SHORT) 
36 54 SYSIISYSIN 167 103 Q!LBI TAN (LONG) 
37 55 SYSAISYSPRT 168 104 QTSAITAN-DEGREE (SHORT) 
38 56 TCBMICONSECUTIVE BUFFERED 169 105 QTLAITAN-DEGREE (LONG) 

I TRANSMITTER 16A 106 QQSAI SINH (SHORT) 
39 57 TCUMICONSECUTIVE UNBUFFERED 16B 107 QCLAI SINH (LONG) 

I TRANSMITTER 16C 108 QCSBICOSH ~HOR~ 
13A 58 TRGMIREGIONAL rRANSMITTER I 6D 109 QCLB I COSH (LONG) 
13B 59 TDPDIDISPLAY 16E 110 QDSAI TANH (SHORT) 
13C 60 TDPRIDISPLAY : REPLY I 6F 111 QDLA I TANH (LONG) 
13D 61 TXCFIEOF 170 112 QBSAIATANH (SHORT) 
13E 62 TXCWIWR LENGTH 171 113 QBLAI ATANH (LONG) 
13F 63 TXCRIERROpr I 72 114 QRSB I ERF (SHORT) 
140 64 VTBMIBIN. FLOAr TO BIN. FIXED 173 115 QRLB I ERF (LONG) 
141 65IVBTMIBIN. FIXED TO BIN. FLOAT 174 116 QRSAIERFC ~HOR~ 
142 661VIIMIBIT STRIN~ TO BIT STRING 17 5 117 QRLA I ERFC (LONG) L ____ ~ ____ ~ ____ ~ __________________________ J 

176 I 118 Q~SDIATAN (SHORT) L ____ ~ ____ ~ ____ ~ __________________________ J 

Note: The underlined module names are primary entry points. 

Appendix C. Library Routines 373 



PL/I PLM 8 

IBM Confidential 

r---------T----T--------------------------, r---------T----T--------------------------, 

0 lINT. NAME I MOD. I I I INT. NAME I MOD. I I 
~----T----~NAMEI I ~----T----~NAMEI I 
IHEX·IDEC.IPos·IDESCRIPTION I IHEX.IDEC.IPos.IDESCRIPTION I 
I I 14-7 I I I I 14-7 I I 
~----+----+----+--------------------------~ ~----+----+----+--------------------------~ 
177 119IQNLDIATA.N (LONG, AC I 1721 FIXED I 
178 120IQNSCIATAN-DEGREE (SHORT) AD I 1731 PRECISION I 
179 121IQNLCIATA.N-DEGREE (LONG) AE I 1741 I 
I7A 1221 QNSB IATA.N- (X,YII SHORT) AF I 175 ADD I 
17B 1231 QNLB I ATA.N- (X, Yl (LONG) BO I 176 MULTIPLY I 
I7C 124IANSAIATAN-DEGRBE (X, Y) (SHORT) B1 I 177 o IVID:E I 
I7D 125 QNLA.IATA.N-DEGREE (X, Y) (LONG) B2 I 178 HIGH I 
17E 126 RBKB REPEAT Blr B3 I 179 LOW I 
17F 127 RBKA. BIT CONCA.rENA.TION B4 I 180 SOM I 
180 128 RBIM INDEX BIT B5 I 181 PROD I 

81 129 RGIM INDEX CHARA.CTER B6 I 182 ALL I 
82 130 B7 183 ANY I 
83 131 B8 184 ADDRESS I 
84 132 RBBM BOOL B9 185 STRING I 
85 133 RGKM REPEAT CHA.RA.CTER BA 186 I 
86 134 RMSX MAX (FLOAr SHORT) BB 187 I 
87 135 RMLX MAX (FLOA.r LONG) BC 1881 I 
88 136 RMBX MAX (FIXED BINARY) BD 189 1 
89 137 RMPX MAX (FIXED DECIMAL) BE 190 I 
8A 138 RMSN MIN (FLOA.r SHORT) BF 191 1 
8B 139 RMLN MIN (FLOAr LONG) CO 192 1 
8C 140 RMBN MIN (FIXED BINA.RY) C1 193 I 
8D 141 RMPN MIN (FIXED DECIMAL) C2 194 SDMPIDYNDUMP 1 
8E 142 SOBSTR BIr (RIGHT) C3 195 I 1 
8F 143 SOBSTR CHA.R (RIGHT) C4 196 I I 
90 144 SOBSTR BIr (LEFT) C5 197 I 1 
91 145 SOBSTR CHA.R (LEFT) I IC6 198 I I 

(~ 92 146 RESMIEXP (FLOAr SHORT + INTEGER) IC7 199 I 1 
93 147 RELMIEXP (FLOAr LONG + INTEGER) IC8 200 RTSMIFLOOR (FLOAT SHORT) 1 0 
94 148 REPMIEXP (DECIMAL + INTEGERI IC9 201 RTLMIFLOOR (FLOAT LONG) I 
95 1491REBM EXP (BIN. FIXED) INTEGER ICA 202 RTBMIFLOOR (BIN. FIXED) 1 
96 1501RXSA. EXP (GENERAL SHORT) ICB 203 RTPMIFLOOR (DEC. FIXED) I 
97 1511RXLM EXP (GENERA.L LONG) ICC 204 RVSMICEIL (FLOAT SHORT) 1 
98 1521 ICD 205 RVLMICEIL (FLOAT LONG) 1 
99 1531 ICE 206 RVBMICEIL (BIN. FIXED) I 
9A 1541 ICF 207 RVPMlceil (DEC. FIXED) 1 
9B 1551 100 208 RSSMIMOD (FLOAT SHORT) 1 
9C 1561 101 209 RSLMIMOD (FLOAT LONG) I 
9D 1571 JD2 210 RSBMIMOD (BIN. FIXED) I 
9E 1581 03 211 RSPMIMOD (DEC. FIXED) I 
9F 15 9 1 D4 212 RUSMIROUND (FLOAT SHORT) 1 
A.O 1601 ABS D5 213 ROLMIROUND (FLOAT LONG) I 
A.1 1611 SIGN D6 214 ROBMIROUND (BIN. FIXED) I 
A.2 1621 FLOOR 07 215 ROPMIROUND (DEC. FIXED) I 
A.3 1631 CEIL 08 216 RWSMITRUNC (FLOAT SHORT) I 
A.4 1641 UNSPEC 09 217 RWLMITRUNC (FLOAT LONG) I 

I A.5 1651 DA 218 RWBMITRUNC (BIN. FIXED) I 
I A.6 1661 BIT DB 219 RWP!:!I TRUNC (DEC. FIXED) I 
1A.7 1671 I CHAR DC 220 lABS (FLOAT SHORT) I 
1A.8 1681 I DD 221 IA.BS (FLOAT LONG) I 
I A.9 169 1 IBINA.R~ DE 222 lABS (BIN. FIXED) I 
I A.A 1701 I DECIMAL IDF I 223 lABS (DEC. FIXED) I 
I A.B I 1711 I FLOAT 

L ____ ~ ____ ~ ____ ~ __________________________ J 

L ____ ~ ____ ~ ____ ~ __________________________ J 

~ot~: The underlined module names are primary entry points. 

c 
374 



( 

PL/I PLM 8 

IBM. Confidential 

000000 
000000 
000001 
000004 
000005 
000008 
OOOOOA 
OOOOOC 
000010 
000014 
000016 
000018 
000018 
00001E 
00001F 
000020 
000024 
000028 
00002C 
000020 
00002E 
00002F 
000030 
000034 
000038 
000040 
000044 
000048 
00004A 
000050 

000000 
000000 
000001 
000004 
000005 
000008 
OOOOOA 
OOOOOC 
000010 
000014 
000016 
000018 
000018 
00001E 
00001F 
000020 
000024 
000028 
00002C 
000020 
00002E 
00002F 
000030 
000034 
000038 
00003A 
00003E 
00003F 
000040 
000048 

FILECDI 

TABAD 

CCWAD 

IOA1 

START 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
CCW 
NOP 
NOP 
DC 

DC 
END 

FILECD01 START 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

TABAD DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
NOPR 
NOP 
DC 
DC 

CCWAD CCW 
IOA1 DC 

END 

o 
X'C2' 
AL3 (TABADI 
X'01' 
AL3 (01 
X'OOOO' 
H'O' 
A (01 
A (IDA 11 
H'O' 
H'O' 
OD'O' 
X'000080000QOO' 
AL1 (01 
ALl (0) 
A (CCWADI 
4X'00' 
V (IJCFZIZ 01 
X'02' 
ALl P) 
AL1 (2) 
AL1 (2) 
A (IOA1) 
V (IJKTXCFI 
2,IOA1,X'20·,80 
o 
o 
X'OOOO' 

OD'O' 

o 
X'A2' 
AL3 (TABADI 
X'01' 
AL3 (0) 
X'OOOO' 
H'O' 
A (0) 
A (IDA 11 
H'O' 
H'O' 
OD'O' 
X'000080000000' 
AL1 (0) 
AL1 (0) 
A (CCWAD) 
4X'OO' 
V (IJCFZ OI 01 
X'04' 
AL1 (16) 
ALl (651 
AL1 (65) 
A (IOA1) 
CL4' , 
o 
o 
X'OO' 
C' , 
65,IOA1,X'20',80 
OD'O' 

CARD INPUT 
OPEN MASK 
TABLE ADDRESS 
FLAG BYTE ONE 
CHAIN ADDRESS 
FLAG BYTE TWO, COMM BYTE 
RECORD LENGTH 

BUFFER ADDRESS 
REMAINING DATA 
DATA LENGTH 

RES. COUNT. COM., STATUS BTS 
LOGICAL UNIT CLASS 
LOGICAL UNIT 
CCW-ADDRESS 
CCB-ST BYTE,CSW CCW ADDR. 
ADDR OF LOGIC MODULE 
DTF TYPE (READERI 
SWITCHES 
NORMAL COMM. CODE 
CNTROL COMM. CODE 
ADDR OF IOAREA1 
EOF ADDRESS 

IOAREA1 

CARD OUTPUT, DEVICE 1442 
OPEN MASK 
TABLE ADDRESS 
FLAG BYTE ONE 
CHAIN ADDRESS 
FLAG BYTE TWO, COMM BYTE 
RECORD LENGTH 

BUFFER ADDRESS 
REMAINING DATA 
DATA LENGTH 

RES. COUNT,COM. BYTE, STATUS BTS 
LOGICAL UNIT CLASS 
LOGICAL UNIT 
CCW ADDRESS 
CCB-ST BYTE,CSW CCW ADDR. 
ADDR OF LOGIC MODULE 
DTF TYPE = PUNCH 
SWITCHES 
NORMAL COMM. CODE 
CONTROL COMM. CODE 
ADDR. OF DATA IN IOAREA1 
BUCKET 

SWITCH 2 
BLANK FOR EJECT LAST PRG. CARD 

IOAREA1 

Appendix D. DTF Tables 375 



PL/I PLM 8 

IBM Confidential 

000000 
000000 
000001 
000004 
000005 
000008 
OOOOOA 
OOOOOC 
000010 
000014 
000016 
000018 
000018 
00001E 
00001F 
000020 
000024 
000028 
00002C 
00002D 
00002E 
00002F 
000030 
000034 
000038 
00003A 
00003E 
00003F 
000040 
000048 
000050 

000000 
000000 
000001 
000004 
000005 
000008 
OOOOOA 
OOOOOC 
000010 
000014 
000016 
000018 
000018 
00001E 
00001F 
000020 
000024 
000028 
00002C 
00002D 
00002E 
00002F 
000030 
000034 
000038 
00003A 
00003E 
00003F 
000040 
000048 
000050 
OOOOAD 

376 

FILECD02 START 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

TABAD DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
NOPR 
NOP 
DC 
DC 
CCW 

CCWAD CCW 
IOA1 DC 

END 

FILECD03 START 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

TABAD DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
NOPR 
NOP 
DC 
DC 

CCWAD CCW 
CCW 
DC 

lOA 1 DC 
END 

o 
X'A2' 
AL3 (TABAD) 
X'01' 
AL3 (0) 
X'OOOO' 
H'O' 
A (0) 
A (lOA 1) 
H'O' 
H'O' 
OD'O' 
x'000080000000' 
AL1 (0) 
AL1 (0) 
A (CCWAD) 
4X'OO' 
V (IJCFZOZ2) 
X'04' 
AL1 (16) 
AL1 (65) 
AL1 (65) 
A (lOA 1) 
CL4' , 
o 
o 
X'01' 
C' , 
65,IOA1,X'20',80 
1 , *- 9 , X ' 20 ' , 1 
OD'O' 

o 
X'A2' 
AL3 (TABAD) 
X'01' 
AL3 (0) 
X'OOOO' 
H'O' 
A (0) 
A (lOA 1) 
H'O' 
H' 0' 
OD'O' 
X'000084000400' 
AL1 (0) 
AL1 (0) 
A (CCWAD) 
4X'OO' 
V (IJCFZOI4) 
X'04' 
AL1 (16) 
AL1 (65) 
AL1 (65) 
A (IOA1) 
CL4' , 
o 
o 
X'OO' 
C' , 
65,IOA1,X'20',80 
1,*+8,X'20',80 
CL80' , 
OD'O' 

CARD OUTPUT, 2520B1 
OPEN MASK 
TABLE ADDRESS 
FLAG BYTE ONE 
CHAIN ADDRESS 
FLAG BYTE TWO, COMM BYTE 
RECORD LENGTH 

BUFFER ADDRESS 
REMAINING DATA 
DATA LENGTH 

RES. COUNT, COM. BYTES,STATUS BTS 
LOGICAL UNIT CLASS 
LOGICAL UNIT 
CCW2 ADDRESS 
CCB-ST BYTE,CCW ADDR. 
ADDR. OF LOGIC MOD 
DTF TYPE (PUNCH) 
SWITCHES 
NORMAL COMM. CODE 
CONTROL COMM. CODE 
ADDR. OF DATA IN IOAREA1 
BUCKET 

SWITCH 2 
BLANK FOR EJECT LAST PRG. CARD 

FOR EJECT LAST PROG. CARD 
IOAREA1 

CARD OUTPUT, DEVICE 2540 
OPEN MASK 
TABLE ADDRESS 
FLAG BYTE ONE 
CHAIN ADDRESS 
FLAG BYTE TWO, COMM BYTE 
RECORD LENGTH 

BUFFER ADDRESS 
REMAINING DATA 
DATA LENGTH 

RES. COUNT, COM. BYTE,STATUS BTS 
LOGICAL UNIT CLASS 
LOGICAL UNIT 
CCW ADDRESS 
CCB-ST BYTE,CSW CCW ADDR. 
ADDR OF LOGIC MODULE 
DTF TYPE = PUNCH 
SWITCHES 
NORMAL COMM. CODE 
CONTROL COMM. CODE 
ADDR. OF DATA IN IOAREA1 
BUCKET 

SWITCH 2 
BLANK FOR EJECT LAST PRG. CARD 

FOR PUNCH ERROR RETRY 
AREA FOR SAVE CARD IMAGE 
IOAREA1 



PL/I PU1 8 

IBM Confidential 

( 
000000 FILEPRR START 0 PRINTER, RECORD ORIENTED 
000000 DC X'A2' OPEN MASK 
000001 DC AL3 (TABAD} TABLE ADDRESS 
000004 DC X'09' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM.BYTE 
OOOOOA DC H'OO' RECORD LENGTH 
OOOOOC DC A (O} 
000010 DC A (IOA 1} BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC OD'O' 
000018 DC X'000084000400' RES. CNT, COM. BYTES, STATUS BTS 
00001E DC AL1 (0) LOGICAL UNIT CLASS 
00001F DC AL1 (0) LOGICAL UNIT 
000020 DC A (CCWAD) CCW ADDR. 
000024 DC 4X'00' CCB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (IJDFZPZZ} ADDRESS OF LOGIC MODULE 
00002C DC X'08' DTF TYPE (PRINTER) 
00002D DC AL1 (16) SWITCHES 
00002E DC X'09' NORMAL COMM. CODE 
00002F DC X'09' CONTROL COMM. CODE 
000030 DC A (IOA1} ADDRESS OF DATA IN IOAREA1 
000034 DC 4X'OO' BUCKET 
000038 NOPR 0 
00003A NOP 0 
00003E DC 2X'OO' NOT USED 
000040 CCWAD CCW 9,IOA1,X'20' ,120 
000048 IOA1 DC OD'O' 

END 

(-
000000 FILEPRP START 0 PRINTER WITH PRINT OPTION 
000000 DC X'A2' OPEN MASK 
000001 DC AL3 (TABAD} TABLE ADDRESS 
000004 DC X'OD' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM.BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC A (O} 
000010 DC A (lOA 1-1) BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 DC H'O' PAGE SIZE 
00001A DC H'O' CURRENT LINE 
00001C 
000020 TABAD DC OD'O' 
000020 DC X'OOO080000000' RES. COUNT, COM. BYTES, STATUS BTS 
000026 DC AL1 (0) LOGICAL UNIT CLASS 
000027 DC AL1 (0) LOGICAL UNIT 
000028 DC A (CCWAD) CCW ADDR. 
00002C DC 4X'OO' CCB-ST BYTE,CSW CCW ADDRESS 
000030 DC V (IJDFAZZZ) ADDRESS OF LOGIC MODULE 
000034 DC X'08' DTF TYPE (PRINTER) 
000035 DC ALl (48} SWITCHES 
000036 DC X'09' NORMAL COMM. CODE 
000037 DC X'09' CONTROL COMM. CODE 
000038 DC A (lOA 1) ADDRESS OF DATA IN IOAREA1 
00003C DC 4X'OO' BUCKET 
000040 NOPR 0 
000042 NOP 0 
000046 DC 2X'OO' NOT USED 

(. 
000048 CCWAD CCW 9,IOA1,X'20',120 
000050 DC X'OO' CONTROL CHARACTER FIELD 
000051 IOA1 DC OC'O' 

END 

Appendix D. DTF Tables 377 



PL/I PLM 8 

IBM Confidential 

000000 FILETAUN START 0 TAPE UNBUFFERED FILE ~ 
000000 DC X"83' OPEN MASK U 000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'01' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'4600' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'40000000' 
000010 TABAD DC 00'0' 
000010 DC X'000082000000' CCB 
000016 DC AL1 (0) LOGICAL UNIT CLASS 
000017 DC AL 1 (0) LOGICAL UNIT 
000018 DC AL4 (CCWAD) CCW ADDRESS 
00001C DC 4X'OO' CCB-ST BYTE,CSW CCW ADDRESS 
000020 DC V (IJFWEZZZ) ADDR OF LOGICAL MODULE 
000024 DC X'10 ' DTF TYPE 
000025 DC AL1 (32) LOGICAL INDICATORS 
000026 DC X'OOOO' 
000028 DC H'O' RECORD LENGTH 
0000211. DC H'O' BLOCKSIZE 
00002C DC X'02' READ OP CODE 
000020 DC AL3 (IJKTXCF) END OF FILE ADDRESS 
000030 CCWAD CCW X'02',*,X'20',1 CHANNEL PROGRAM 
000038 DC F'O' BLOCK COUNT 
00003C DC AL1 (128) READ ERROR OPTION INDIC. 
000030 DC AL3 (IJKTXCRj READ ERROR ROUTINE 

EXTRN IJKTXCF,IJKrXCR 
END 

c 
:378 



PL/I PLIvJ. 8 

IBM Confidential 

( 
000000 FILEDIUN START 0 DISK UNBUFFERED FILE, NO UPDATE 
000000 DC X'83' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC x'01' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'4600' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC A (0) 
000010 DC 00'0' 
000010 TABAD DC X'OOO082000000' CCB 
000016 DC X'FFFF' CCB-LOGICAL UNIT 
000018 DC A (CCWAD) CCB-CCW ADDRESS 
0000lC DC 4X'OO' CCB-ST BYTE,CSW CCW ADDRESS 
000020 DC V (IJGWEZZZ) LOGIC MODULE ADDRESS 
000024 DC X'20' DTF TYPE 
000025 DC ALl (32) OPEN/CLOSE INDICATORS 
000026 DC CL8'FILEDIUN' FILENAME 
00002E DC H'3625' TRACK CAPACITY COUNTER 
000030 DC 7X'OO' 
000037 DC X'09' UPPER HEAD LLMIT 
000038 DC H'O' RECORD LENGTH 
00003A DC 14X'00' 
000048 DC X'OOOOFFOO' SEARCH ADDRESS-CCHH 
00004C DC 2X'OO' 
00004E DC H'O' MAXIMUM RECORD LENGTH 
000050 DC A1.1 (32) VERIFY CHAIN BIT 
000051 DC AL3 (IJKTXCF) EOF ADDRESS 
000054 DC AL1 (128) LOGICAL INDICATORS 
000055 DC AL3 (IJKTX~R) USER'S ERROR ROUTINE 
000058 CCWAD CCW 7,*-18,64,6 SEEK 
000060 CCW x'31',*-24,64,5 SEARCH 10 EQUAL 
000068 ccw 8,*-8,0,0 TIC 

(- 000070 CCW 3,*,32,1 WRITE CKD OR READ DATA 
000078 CCW 5,*,32,1 WRITE DATA/READ COUNT 
000080 CCW X'31',*-56,64,5 SEARCH 10 EQUAL 
000088 ccw 8,*-8,0,0 TIC 
000090 CCW X'1E' ,*+16,48,8 VERIFY 
000098 CCW X'12' ,*+8,0, 8 READ COUNT 
OOOOAD DC X'OOOOOOOO01000000' COUNT AREA 

EXTRN IJKTXCF,IJKTXCR 
END 

AppendiX D. DTF Tables 379 



PL/I PLM 8 

IBM Confidential 

000000 FILEDIUU START 0 DISK UNBUFFERED FILE, WITH UPDATE 

C 000000 DC X'9B' OPEN MASK 
000001 DC AL3 (TABADI TABLE ADDRESS 
000004 DC X'Ol' FLAG BYTE ONE 
000005 DC AL3 (01 CHAIN ADDRESS 
000008 DC X'4600' FLAG BYTE TWO. COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC A (0) 
000010 DC A (0) 
000014 
000018 DC OD'O' 
000018 TABAD DC X'OOO082000000' CCB 
00001E DC X'FFFF' CCB-LOGICAL UNIT 
000020 DC A (CCWAD) CCB-CCW ADDRESS 
000024 DC 4X'OO' CCB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (IJGWEZZZ) LOGIC MODULE ADDRESS 
00002C DC X'20' DTF TYPE 
00002D DC ALl (32) OPEN/CLOSE INDICATORS 
00002E DC CL8'FILEDIUU' FILENAME 
000036 DC H' 3625' TRACK CAPACITY COUNTER 
000038 DC 7X'OO' 
00003F DC X'09' UPPER HEAD LIMIT 
000040 DC H'O' RECORD LENGTH 
000042 DC 14X'OO' 
000050 DC X'OOOOFFOO' SEARCH ADDRESS-CCHH 
000054 DC 2X'OO' 
000056 DC H'O' MAXIMUM RECORD LENGTH 
000058 DC ALl (32) VERIFY CHAIN BIT 
000059 DC AL3 (IJKTXCFI EOF ADDRESS 
00005C DC ALl (128) LOGICAL INDICATORS 
00005D DC AL3 (IJKTXCR) USER'S ERROR ROUTINE 
000060 CCWAD CCW 7,*-18,64,6 SEEK 
000068 CCW X'31',*-24,64,5 SEARCH ID EQUAL (~ 
000070 CCW 8,*-8,0,0 TIC 
000078 CCW 3,*,32,1 WRITE CKD OR READ DATA 
000080 CCW 5,*,32,1 WRITE DATA/READ COUNT 
000088 CCW X'31' ,*-56,64,5 SEARCH 10 EQUAL 
000090 CCW 8,*-8,0,0 TIC 
000098 CCW X'lE' ,*+ 16,4 8,8 VERIFY 
OOOOAD CCW X'12',*+8,0,8 READ COUNT 
0000A8 DC X'OOOOOOOOO1000000' COUNT AREA 

EXTRN IJKTXCF,IJKrXCR 
END 

380 



PL/I PLM 8 

IBM Confidential 

000000 FILETAFI START 0 TAPE FILE FIXED INPUT 

( 000000 DC X'C2' OPEN MASK 
000001 DC AL3 (TABADI TABLE ADDRESS 
000004 DC X'01' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'40000000' 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC OD'O' 
000018 DC X'OOO082000000' CCB 
00001E DC AL 1 (0) LOGICAL UNIT CLASS 
00001F DC AL1 (0) LOGICAL UNIT 
000020 DC AL4 (CCWADI CCW ADDRESS 
000024 DC 4X'OO' CCB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (IJFFZZZZI ADDRESS OF LOGICAL MODULE 
00002C DC X'11' DTF TYPE 
000020 DC AL1 (8) LOGICAL .IOCS SWITCHES 
00002E DC CL8'FILETAFI' FILE NAME 
000036 DC X'0200' 
000038 DC AL 1 (0) SWI TCH ONE FOR OPEN AND CLOSE 
000039 DC AL3 (01 
00003C DC AL1 (321 SWITCH TWO FOR OPEN AND CLOSE 
00003D DC AL3 (IJKTXCFI EOF-ADDRESS 
000040 DC F'O' BLOCKCOUNT 
000044 BXH 11 , 12,24 (151 DEBLOCKING FORWARD 
000048 LA 14,1(14) INCREASE BLOCKCOUNT BY ONE 
00004C L 2,IJF2-TABAD (1) LOAD USER REGISTER 
000050 CCWAD CCW X'02',IOA1,X'OO',0 
000058 DC A (lOA 1) ADDRESS OF IOAREA 
00005C IJF2 DC F'O' DEBLOCKER 1 

(- 000060 DC F'O' DEBLOCKER 2 
000064 DC F'O' DEBLOCKER 3 
000068 DC Y (0) BLOCKSIZE 
00006A DC Y (01 BLOCKSIZE-1 
00006C DC Y (0) RECSIZE-1 
00006E DC H'O' NOT USED 
000070 DC A (IJKTXCWI WLR-ADDRESS 
000074 DC A (IJKTXCRI ERROR EXIT 
000078 IOA1 DC OD'O' 

EXTRN IJKTXCF,IJKrXCW,IJKTXCR 
END 

Appendix D. DTF Tables 381 



PL/I PLM 8 

IBM Confidential 

000000 FILETA.FO STA.RT 0 TAPE FILE FIXED OU'J;'PUT 

0 000000 DC X'A2' Ol?EN MASK 
000001 DC AL3 ('rABAD) TABLE ADDRESS 
000004 DC X'01' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO f COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'40000000' 
000010 DC A (lOA 1) BUFFER 1l.DDRESS 
000014 DC H'O' REM1l.INING DATA 
000016 DC H'O' DATA Ll;.:NGTH 
000018 'rABAD DC 00'0' 
000018 DC X'OOOO80000000' CCJiI 
00001E DC AL1 (0) LOGICAL UNIT CLASS 
00001F DC AL1 (0) 1..0GICAL UNIT 
000020 DC AL4 (CCWAD) CCW ADDRESS 
000024 DC 4X'OO' CCB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (J:JF.FZZZZ) ADDRESS OF LOGICAl.. MODULE 
00002C DC X' 11 ' DTF TYPE 
000020 DC AL1 (0) LOGICAL IOCS SWITCHES 
00002E DC CLS'FILETAFO' FILE NAME 
000036 DC X'0100' 
000038 DC AL1 (0) SWITCH ONE FOR OPEN AND CLOSE 
000039 DC AL3 (0) 
00003C DC AL1 (0) SWITCa TWO FOR OPEN AND CLOSE 
000030 DC AL3 (*) EOF-ADDRESS 
000040 DC F'O' JilLOCI<COUNT 
000044 BXH 11, 12,24 (151 DEBLOCKING FORWARD 
000048 LA 14,1(14) INCREASE BLOCKCOUNT JilY ONE 
00004C L 2,IJF2-TABAD E1) LOAD USER REGISTER 
000050 CCWAD CCW X'01',IOA1,X'00',0 
000058 DC A (lOA 1) 
00005C IJF2 DC A (rOA 1) DEJilLOCKER 1 

0 000060 DC F'O' DE6LOCKER 2 
000064 DC A (1:0A1-1) DEJilLOCKER 3 
000068 DC Y (0) JilLOCKSIZE 
00006A DC Y (0) JilLOCKSrZE-1 
00006C DC Y (0) RECSIZE-1 
00006E 
000070 IOA1 DC 00'0' 

END 

c 
382 



PL/I PLM 8 

IBM Confidential 
,{ 

( 
000000 FILET~SP START 0 TAPE STREAM FILE WITH PRINT OPTION 
000000 DC X'A2' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'OD' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'COOO' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'40000000' 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' D~TA LENGTH 
000018 DC H'O' P~GE SIZE 
00001A DC H'O' CURRENT LINE 
00001C 
000020 TABAD DC OD'O' 
000020 DC X'OOO080000000' CCB 
000026 DC AL1 (0) LOGICAL UNIT CLASS 
000027 DC AL1 (0) LOGICAL UNIT 
000028 DC AL4 (CCWAD) CCW ADDRESS 
00002C DC 4X'OO' CCB-ST BYTE,CSW CCW ADDRESS 
000030 DC V (IJFFZZZZ) ADDRESS OF LOGICAL MODULE 
000034 DC X' 11 ' DTF TYPE 
000035 DC AL1 (0) LOGICAL IOCS SWITCHES 
000036 DC CL8'FILET~SP' FILE NAME 
00003E DC X'0100' 
000040 DC AL1 (0) SWITCH ONE FOR OPEN AND CLOSE 
000041 DC AL3 (0) 
000044 DC AL1 (0) SWITCH TWO FOR OPEN AND CLOSE 
000045 DC AL3 (*) EOF-ADDRESS 
000048 DC F'O' BLOCKCOUNT 
00004C BXH 1 1 , 1 2 .. 2 4 (1 5) DEBLOCKING FORWARD 
000050 LA 14,1(14) INCREASE BLOCKCOUNT BY ONE 

( 
000054 L 2,IJF2-T~B~D (1) LOAD USER REGISTER 
000058 CCWAD CCW X'01',IOA1,X'OO',0 
000060 DC A (lOA 1) 
000064 IJF2 DC A (lOA 1) DEB LOCKER 1 
000068 DC F'O' DEBLOCKER 2 
00006C DC A (lOA 1-1) DEBLOCKER 3 
000070 DC Y (0) BLOCKSIZE 
000072 DC Y (0) BLOCKSIZE-1 
000074 DC Y (0) RECSIZE-1 
000076 IOA1 DC OH'O' 

END 

Appendix D. DTF Tables 383 



PL/I PLM 8 

" IBM Confidential 

000000 FILETAFB START 0 TAPE FILE BACK FIXED RECORDS ~ 
000000 DC X'C2' OPEN MASK U 000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'03' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'4500' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'40000000' 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC H'O' REMAINING DJ\,TA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC 00'0' 
000018 DC X'000082000000' CCB 
00001E DC AL1 (0) LOGICAL UNIT CLASS 
00001F DC AL1 (0) LOGICAL UNIT 
000020 DC A (CCWAD) CCW ADDRESS 
000024 DC 4X'00' CCB-ST. BYTE, CSW CCW ADDRESS 
000028 DC V (IJFFBZZZI ADDRESS OF LOGICAL MODULE 
00002C DC X' 11 ' DTF TYPE 
000020 DC AL1 (8) LOGICAL IOCS SWITCHES 
00002E DC CL8'FILETAFB' FILE NAME 
000036 DC X'OCOO' 
000038 DC AL 1 (0) SWITCH ONE FOR OPEN AND CLOSE 
000039 DC AL3 (0) 
00003C DC AL 1 (32) SWITCH TWO FOR OPEN AND CLOSE 
000030 DC AL3 (IJKTXCF) EOF-ADDRESS 
000040 DC F'O' BLOCKCOUNT 
000044 BXLE 11 , 12,24 (15) DEBLOCKING BACKWARD 
000048 BCTR 14,0 DECREASE BLOCK COUNT BY ONE 
00004A NOPR 0 
00004C L 2,IJF2-TABAD (1) LOAD USER REGISTER 
000050 CCWAD CCW X'OC',IOA1,X'00',0 
000058 DC A (IOA 1) ADDRESS OF IOAREA 

~ OOOOSC IJF2 DC A (lOA 1) DEBLOCKER 1 I 

000060 DC F'O' 2 ~.J 
000064 DC A (IOA1) 3 
000068 DC Y (0) BLOCKSIZE 
00006A DC Y (0) BLOCKSIZE+1 
00006C DC YeO) RECORDSIZE-1 
00006E DC H'O' 
000070 DC V (IJKTXCW) WLR-ADDRESS 
000074 DC V (IJKTXCR) ERROR EXIT 
000078 IOA1 DC 00'0' 

EXTRN IJKTXCF 
END 

c 
384 



PL/I PLM 8 

IBM Confidential 

000000 FILETAVI START 0 TAPE INPUT FILE VARIABLE RECORDS 

( 000000 DC X'C2' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'11' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'4500' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'40000000' 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC 00'0' 
000018 DC X'OOO082000000' CCB 
00001E DC AL1 (0) LOGICAL UNIT CLASS 
00001F DC AL1 (0) LOGICAL UNIT 
000020 DC AL4 (CCWAD) CCW ADDRESS 
000024 DC 4X'OO' CCB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (IJFVZZZZ) ADDRESS OF LOGICAL MODULE 
00002C DC X'11 ' DTF TYPE 
000020 DC AL1 (72) LOGICAL IOCS SWITCHES 
00002E DC CL8'FILETAVI' FILE NAME 
000036 DC X'0200' INPUT 
000038 DC AL1 (0) SWITCH ONE FOR OPEN AND CLOSE 
000039 DC AL3 (0) 
00003C DC AL1 (32) SWITCH TWO FOR OPEN AND CLOSE 
000030 DC AL3 (IJKTXCF) EOF-ADDRESS 
000040 DC F'O' BLOCKCOUNT 
000044 NOP 0(0) 
000048 LA 14,1(14) INCREASE BLOCKCOUNT BY ONE 
00004C L 2,IJF4-TABAD (1) LOAD USER IOREG 
000050 CCWAD CCW X'02',IOA1,X'OO',O 
000058 DC A (lOA 1) ADDRESS OF IOAREA 

( 
00005C IJF3 DC F'O' 
000060 IJF2 DC A (lOA 1) DEBLOCKER 3, 
000064 DC 2F'O' 4,5, 
00006C IJF4 DC A (IOA1+4) 1, 
000070 DC F'O' 6 
000074 DC Y (0) BLOCKSIZE 
000076 DC Y (0) BLOCKSIZE-1 
000078 DC Y (0) 
00007A DC H'O' 
00007C DC V (IJKTXCW) WLR-ADDRESS 
000080 DC V (IJKTXCR) ERROR EXIT 
000084 
000088 IOA1 DC 00'0' 

EXTRN IJKTXCF 
END 

Appendix D. DTF Tables 385 



PL/I PLM 8 

IBM Confidential 

000000 
000000 
000001 
000004 
000005 
000008 
OOOOOA. 
OOOOOC 
000010 
000014 
000016 
000018 
000018 
00001E 
00001F 
000020 
000024 
000026 
000028 
00002C 
00002D 
00002E 
000036 
000038 
000039 
00003C 
00003D 
000040 
000044 
000048 
00004C 
000050 
000058 
00005C 
000060 
000064 
00006C 
000070 
000074 
000076 
000078 
oooon 
000080 

386 

FILETA.VO START 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

TABAD DC 
DC 
DC 
DC 
DC 
DC 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
L 
LA 
L 

CCWAD CCW 
DC 

IJF3 DC 
IJF2 DC 

DC 
IJF4 DC 

DC 
DC 
DC 
DC 

IOA1 DC 
END 

o 
X'A2' 
AL3 (TABAD) 
X' 11' 
AL3 (0) 
X'4500' 
H'O' 
X'40000000' 
A (lOA 1) 
H'O' 
H'O' 
OD'O' 
X'000080000000' 
AL1 (0) 
AL1 (0) 
A (CCWAD) 
X'OOOO' 

V (IJFVZZZZ) 
X' 11' 
AL1 (64) 
CL8'FILETAVO' 
X'0100' 
A.L1 (0) 
AL3 (0) 
A.L 1 (0) 
AL3 (*) 
F'O' 
3,IJF3-TA.BA.D (1) 
14,1 (14) 
2,IJF4-TA.BA.D (1) 
X'01',IOA1,X'OO',0 
A (lOA 1) 
F'O' 
A (IOA 1) 
2F'O' 
A{IOA1+4) 
F'O' 
Y (0) 
Y (0) 
Y (0) 

OD'O' 

TAPE OUTPUT FILE VARIABLE RECORDS 
OPEN MASK 
TABLE ADDRESS 
FLAG BYTE ONE 
CHAIN ADDRESS 
FLAG BYTE TWO, COMM. BYTE 
RECORD LENGTH 

BUFFER ADDRESS 
REMAINING DATA 
DATA LENGTH 

CCB 
LOGICAL UNIT CLASS 
LOGICAL UNIT 
CCW ADDRESS 
CCB-ST BYTE, CSW CCW ADDRESS 

ADDRESS OF LOGICAL MODULE 
DTF TYPE 
LOGICAL IOCS SWITCHES 
FILE NAME 
OUTPUT 
SWITCH ONE FOR OPEN AND CLOSE 
USER LABEL ROUTINE 
SWITCH TWO FOR OPEN AND CLOSE 
EOF-A.DDRESS 
BLOCKCOUNT 

INCREASE BLOCKCOUNT BY ONE 

ADDRESS OF IOAREA 

DEB LOCKER 3, 
4,5, 
1, 
6 

BLOCKSIZE-4 
BLOCKSIZE-1 

c 

c 



PL/I PLM 8 

IBM Confidential 

000000 FILETAUI START 0 TAPE INPUT FILE UNDEFINED RECORDS 

( 000000 DC X'C2' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'31' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'4500' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'40000000' 
000010 DC A (lOA 1) BUFFER ·ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC OD'O' 
000018 DC X'000082000000' CCB 
00001E DC AL1 (0) LOGICAL UNIT ClASS 
00001F DC ALl (0) LOGICAL UNIT 
000020 DC AL4 (CCWAD) CCW ADDRESS 
000024 DC 4X'00' CCB-ST. BYTE, CSW CCW ADDRESS 
000028 DC V (IJFUZZZZ) ADDRESS OF LOGICAL UNIT 
00002C DC X, 11 ' DTF TYPE 
00002D DC ALl (8) LOGICAL IOCS SWITCHES 
00002E DC CL8'FILETAUI' FILE NAME 
000036 DC X'0200' 
000038 DC ALl (0) SWITCH ONE FOR OPEN ADN CLOSE 
000039 de AL3 (0) 
00003C DC AL1 (32) SWITCH TWO FOR OPEN AND CLOSE 
00003D DC AL3 (IJKTXCF) EOF-ADDRESS 
000040 DC F'O' BLOCKCOUNT 
000044 IJF4 DC F'O' DEBLOCKER 1 
000048 L 4,IJF4-TABAD (1) GIVE USER RECSIZE 
0OO04C L 2, IJF2-TABAD (1) LOAD USER IOREG 
000050 CCWAD CCW X'00',IOA1,X'00',0 
000058 DC A (lOA 1) 
00005C IJF2 DC A (lOA 1) DEBLOCKER 2 

(-~ 000060 LA 14,1 (14) CHANGE BLOCKCOUNT 
000064 DC ~ (0) BLOCKSIZE 
000066 DC Y (0) BLOCKSIZE-l 
000068 NOPR 0 
00006A DC H'O' 
00006C DC V (IJKTXCR) ERROR EXIT 
000070 IOAl DC OD'O' 

EXTRN lJKTXCR,IJKTXCF 
END 

c 
Appendix D. DTF Tables 387 



PL/I PLM 8 

IBM Confidential 

000000 FlLETAUO START 0 TAPE OUTPUT FILE UNDEFINED RECORDS 

C 000000 DC X'A2' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'31' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'4500' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'40000000' 
000010 DC A (lOA 11 BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC OD'O' 
000018 DC X'000080000000' CCB 
00001E DC AL1 (0) LOGICAL UNIT CLASS 
00001F DC AL1 (0) LOGICAL UNIT 
000020 DC AL4 (CCWAD) CCW ADDRESS 
000024 DC 4X'00' CCB-ST. BYTE, CSW CCW ADDRESS 
000028 DC V (IJFUZZZZ) ADDRESS OF LOGICAL MODULE 
00002C DC X' 11 ' DTF TYPE 
00002D DC AL1 (0) LOGICAL IOCS SWITCHES 
00002E DC CL8'FILETAUO' FILE NAME 
000036 DC X'0100' OUTPUT 
000038 DC AL1 (0) SWITCH ONE FOR OPEN AND CLOSE 
000039 DC AL3 (0) 
00003C DC AL1 (0) SWITCH TWO FOR OPEN AND CLOSE 
000030 DC AL3 (0) EOF-ADDRESS 
000040 DC F'O' BLOCKCOUNT 
000044 IJF4 DC F'O' DEBLOCKER 1 
000048 NOP o (0) 
00004C L 2,IJF2-TABAD (1) LOAD USER IOREG 
000050 CCWAD CCW X'01',IOA1,X'00',0 
000058 DC A (lOA 1) 
00005C IJF2 DC A (lOA 1) DEBLOCKER 2 

~. 000060 LA 14,1 (14) CHANGE BLOCKCOUNT 0 000064 DC Y (0) BLOCKSIZE 
000066 DC Y (oj BLOCKSIZE-1 
000068 LR 12,4 PICK UP RECSIZE 
00006A 
000070 IOA1 DC OD'O' 

END 

c 
388 



PL/I PLM 8 

IBM Confidential 

( 
000000 FIDIINFI START 0 DISK FILE 
000000 DC X'C2' OPEN MASK 
000001 DC AL3 (TABADI TABLE ADDRESS 
000004 DC X.' 01' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'80000000' 
000010 DC A (lOA 11 BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC OD'O' 
000018 DC X'000082000000' CCB 
00001E DC X'FFFF' CCB-LOGICAL UNIT 
000020 DC A (CCWAD) CCB-CCW ADDRESS 
000024 DC 4X'00' XXB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (IJGFIEZZ) LOGIC MODULE 
00002C DC X'20' DTF TYPE 
00002D DC AL1 (2) OPEN/CLOSE INDICATOR 
00002E DC CL8'FIDIINFI' FILENAME 
000036 DC 8X'00' 
00003E DC X'08' OPEN COMMUNICATIONS BYTE 
00003F DC 2X'OO' 
000041 DC AL3 (*1 USER'S LABEL ADDRESS 
000044 DC A (IOA11 ADDRESS OF IOAREA 
000048 DC X'80000000' CCHH ADDR OF USER LABEL TRACK 
00004C DC 6X'00' 
000052 FILENS DC 2X'OO' SEEK ADDRESS-BB 
000054 DC X'OOOOFFOO' SEARCH ADDRESS-CCHH 
000058 DC X'OO' RECORD NUMBER 
000059 DC AL3 (IJKTXCF) EOF ADDRESS 
00005C DC 4X'OO' CCHH CONTROL FIELD 

(' 000060 DC AL1 (0) CONTROL FIELD 
000061 DC X'OO' SWITCHES 
000062 DC H'O' SIZE OF BLOCK-1 
000064 DC 5X'00' CCHHR BUCKET 
000069 DC AL3(IJKTXCW) WLERR ADDRESS 
00006C L 2,88 (1) LOAD USER'S IOREG 
000070 DC A (lOA 1) DEBLOCKER-INITIAL POINTER 
000074 DC F'O' DEBLOCKER-RECORD SIZE 
000078 DC A (IOA1-1) DEBLOCKER LIMIT 
00007C DC AL1 (128) LOGICAL INDICATORS 
00007D DC AL3 (IJKTXCR) USER'S ERROR ROUTINE 
000080 CCWAD CCW 7,*-46,64,6 SEEK 
000088 CCW X'31',"'-52,64,5 SEARCH ID EQUAL 
000090 CCW 8,*-8,0,0 TIC 
000098 CCW 6,IOA1,0,0 READ DATA 
OOOOAO IOA1 DC 00'0' 

EXTRN IJKTXCF,IJKTXCW,IJKTXCR 
END 

(: 

Appendix D. DTF Tables 389 



PL/I PLM 8 

IBM Confidential 

000000 FIDIINVA START 0 DISK FILE 

C 000000 DC X'C2' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'11 ' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'80000000' 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC OD'O' 
000018 DC X'000082000000' CCB 
00001E DC X'FFFF' CCB-LOGICAL UNIT 
000020 DC A (CCWAD) CCB-CCW ADDRESS 
000024 DC 4X'00' XXB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (IJGVIEZZ) LOGIC MODULE 
00002C DC X'20' DTF TYPE 
000020 DC AL1 (66) OPEN/CLOSE INDICATOR 
00002E DC CL8'FIDIINVA' FILENAME 
000036 DC 8X'OO' 
00003E DC X'08' OPEN COMMUNICATIONS BYTE 
00003F DC 2X'00' 
000041 DC AL3 (*) USER'S LABEL ADDRESS 
000044 DC A (IOA1) ADDRESS OF IOAREA 
000048 DC X'80000000' CCHH AD DR OF USER LABEL TRACK 
00004C DC 6X'00' 
000052 FILENS DC 2X'00' SEEK ADDRESS-BB 
000054 DC X'OOOOFFOO' SEARCH ADDRESS-CCHH 
000058 DC X'OO' RECORD NUMBER 
000059 DC AL3 (IJKTXCF) EOF ADDRESS 
00005C DC 4X'00' CCHH CONTROL FIELD 
000060 DC X'FF' CONTROL FIELD (\. 000061 DC X'OO' SWITCHES 
000062 DC H'O' SIZE OF BLOCK-1 ~ 
000064 DC 5X'OO' CCHHR BUCKET 
000069 DC AL3(IJKTXCW) WLERR ADDRESS 
00006C L 2,88 (1) LOAD USER'S IOREG 
000070 DC A (IOA1+4) DEBLOCKER-INITIAL POINTER 
000074 DC F'O' DEBLOCKER-RECORD SIZE 
000078 DC A (IOA1-1) DEBLOCKER LIMIT 
00007C DC ALl (128) LOGICAL INDICATORS 
000070 DC AL3 (IJKTXCR) USER'S ERROR ROUTINE 
000080 CCWAD CCW 7,*-46,64,6 SEEK 
000088 CCW X'31',*-52,64,5 SEARCH ID EQUAL 
000090 CCW 8,*-8,0;0 TIC 
000098 CCW 6,IOA1,64,0 READ DATA 
OOOOAD CCW X'92',*+8,0,8 READ COUNT 
0000A8 DC 2F'O' COUNT AREA 
OOOOBO IOA1 DC OD'O' 

EXTRN IJKTXCF,IJKTXCW,IJKTXCR 
END 

3ge 



PL/I PLM 8 

IBM Confidential 

( 
000000 FIDIINUN STA.RT 0 DISK FILE 
000000 de X'C2' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'31' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'80000000' 
000010 DC A (IOA1) BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC 00'0' 
000018 DC X'OOO082000000' CCB 
00001E DC X'FFFF' CCB-LOGICAL UNIT 
000020 DC A (CCWAD) CCB-CCW ADDRESS 
000024 DC 4X'OO' XXB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (IJGUIEZZ) LOGIC MODULE 
00002C DC X'20' DTF TYPE 
00002D DC AL1 (2) OPEN/CLOSE INDICATOR 
00002E DC CL8'FIDIINUN' FILENAME 
000036 DC 8X'OO' 
00003E DC X'08' OPEN COMMUNICATIONS BYTE 
00003F DC 2X'OO' 
000041 DC AL3 (*) USER'S LABEL ADDRESS 
000044 DC A (IOA1) ADDRESS OF IOAREA 
000048 DC X'80000000' CCHH AD DR OF USER LABEL TRACK 
00004C DC 6X'OO' 
000052 FILENS DC 2X'OO' SEEK ADDRESS-BB 
000054 DC X'OOOOFFOO' SEARCH ADDRESS-CCHH 
000058 DC X'OO' RECORD NUMBER 
000059 DC AL3 (IJKTXCF) EOF ADDRESS 
00005C DC 4X'OO' CCHH CONTROL FIELD 

( 
000060 DC X'FF' CONTROL FIELD 
000061 DC X'OO' SWITCHES 
000052 DC H'O' SIZE OF BLOCK-l 
000064 DC 5X'OO' CCHHR BUCKET 
000069 DC 3X'OO' 
00006C L 2,88P) LOAD USER'S IOREG 
000070 DC A (lOA 1) DEBLOCKER-INITIAL POINTER 
000074 L 4,96(1) 
000078 DC A (lOA 1-1) DEBLOCKER LIMIT 
00007C DC AL1 (128) LOGICAL INDICATORS 
00007D DC AL3 (IJKTXCR) USER'S ERROR ROUTINE 
000080 CCWAD CCW 7,*-46,64,6 SEEK 
000088 CCW X'31',*-52,64,5 SEARCH ID EQUAL 
000090 CCW 8,*-8,0,0 TIC 
000098 CCW 6,IOA1,96,O READ DATA 
OOOOAD CCW X'92',*+8,0,8 READ COUNT 
OOOOAS DC 2F'O' COUNT AREA 
OOOOBO IOA1 DC OD'O' 

EXTRN IJKTXCF 
,EXTRN IJKTXCR 
END 

Appendix D. DTF Tables 391 



PL/I PLM 8 

IBM Confidential 

000000 FIDIOOFI SThRT 0 DISK FILE 
000000 DC X'A2' OPEN MASK tff\ 

000001 DC AL3 (TABAD) TABLE ADDRESS V 
000004 DC X'01' FLAG BYTE ONE 
000005 DC AL3 (0) CHhIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'80000000' 
000010 DC A (IOA1+8) BOFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DhTA LENGTH 
000018 TABAD DC OD'O' 
000018 DC X'000082000000' CCB 
00001E DC X'FFFF' CCB-LOGICAL UNIT 
000020 DC A (CCWAD) CCB-CCW hDDRESS 
000024 DC 4X'00' XXB-ST BYTE,CSW CCW hDDRESS 
000028 DC V (IJGFOEZZ) LOGIC MODOLE 
00002C DC X'20' DTF TYPE 
00002D DC AL1 (0) OPEN/CLOSE INDICATOR 
00002E DC CL8'FIDIOOFI' FILENhME 
000036 DC 8X'00' 
00003E DC X'08' OPEN COMMUNICATIONS BYTE 
00003F DC 2X'00' 
000041 DC AL3 (*) USER'S LABEL ADDRESS 
000044 DC h (IDA 1) ADDRESS OF IOAREh 
000048 DC X'80000000' CCHH hDDR OF USER LABEL TRACK 
00004C DC 6X'00' 
000052 FILENS DC 2X'OO' SEEK hDDRESS-BB 
000054 DC X'OOOOFFOO' SEhRCH ADDRESS-CCHH 
0000S8 DC X'OO' RECORD NUMBER 
0000S9 DC X'OO' KEY LENGTH 
OOOOSh DC H' 0' DhTA LENGTH 
OOOOSC DC 4X'00' CCHH CONTROL FIELD 
000060 DC hL1 (0) CONTROL FIELD ~ 

000061 DC X'OO' SWITCHES ~j 
000062 DC H'O' SIZE OF BLOCK-1 
000064 DC SX'OO' CCHHR BUCKET 
000069 DC X'OO' 
00006A DC H'362S' TRACK CAPACITY CONSTANT 
00006C L 2,88 (1) LOAD USER'S IOREG 
000070 DC h (lOA 1 +8) DEBLOCKER-INITIAL POINTER 
000074 DC F'O' DEBLOCKER-RECORD SIZE 
000078 DC h(IOA1-1) DBLOCKER LIMIT 
00007C DC AL1 (128) LOGICAL INDICATORS 
00007D DC hL3 (IJKTXCR) USER'S ERROR ROUTINE 
000080 CCWAD CCW 7,*-46,64,6 SEEK 
000088 CCW X'31',*-S2,64,S SEARCH ID EQUAL 
000090 CCW 8,*-8,0,0 TIC 
000098 CCW X' 1 D' , I OA 1 , 0 , 0 WRITE COUNT, KEY AND DATA 
OOOOAO CCW X'31',FILENS+2,64,S SEARCH ID EQUAL 
0000A8 CCW 8,*-8,0,0 TIC 
000080 CCW 30,*,48,1 
0000B8 IOA1 DC ODe 0' 

EXTRN IJKTXCR 
EXTRN IJKTXCF 
END 

c 
392 



( 

PL/I PLl'1 8 

IBM Confidential 

000000 
000000 
000001 
000004 
000005 
000008 
OOOOOA. 
OOOOOC 
000010 
000014 
000016 
000018 
00001A 
00001C 
000020 
000020 
000026 
000028 
00002C 
000030 
000034 
000035 
000036 
00003E 
000046 
000047 
000049 
00004C 
000050 
000054 
00005A 
00005C 
000060 
000061 
000062 
000064 
000068 
000069 
00006A. 
00006C 
000071 
000072 
000074 
000078 
00007C 
000080 
000084 
000085 
000088 
000090 
000098 
OOOOM 
OOOOM 
OOOOBO 
0000B8 
OOOOCO 

FIDIOUPR STA.RT 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

TABAD DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

FILENS DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
L 
DC 
DC 
DC 
DC 
DC 

CCWAD CCW 
CCW 
CCW 
CCW 
CCW 
CCW 
CCW 

IOAl DC 
EXTRN 
EXTRN 
END 

o 
X'AO' 
AL3 (TABADI 
X'OD' 
AL3 (0) 
X'OOOO' 
H'O' 
X'80000000' 
A (IOA1+81 
H'O' 
H'O' 
H'O' 
H' 0' 

OD'O' 
X'000082000000' 
X'FFFF' 
A (CCWAD) 
4X'OO' 
V (IJGFOEZZ) 
X'20' 
AL 1 (0) 
CL8'FIDIOUPR' 
8X'OO' 
X'08' 
2X'OO' 
AL3 (*) 
A. (lOA 1) 
X'80000000' 
6X'OO' 
2X'OO' 
X'OOOOFFOO' 
X'OO' 
X'OO' 
H'O' 
4X'OO' 
ALl (0) 
X'OO' 
H'O' 
5X'OO' 
X'OO' 
H'3625' 
2,88(1) 
A (lOA 1+8) 
F'O' 
A(IOA1-l) 
ALl (128) 
AL3 (IJKTXCRI 
7,*-46,64,6 
X'31',*-52,64,5 
8,*-8#0,0 
X' 1 D' , lOA 1 ,0, 0 
X'31',FILENS+2,64,5 
8,*-8,0,0 
30,*,48,1 
OD'D' 
IJKTXCR 
IJKTXCF 

DISK FILE 
OPEN MASK 
TABLE ADDRESS 
FLAG BYTE ONE 
CHAIN ADDRESS 
FLAG BYTE TWO, COMM. BYTE 
RECORD LENGTH 

BUFFER ADDRESS 
REMAINING DATA 
DATA LENGTH 
PAGE SIZE 
CURRENT LINE 

CCB 
CCB-LOGICAL UNIT 
CCB-CCW ADDRESS 
XXB-ST BYTE,CSW CCW ADDRESS 
LOGIC MODULE 
DTF TYPE 
OPEN/CLOSE INDICATOR 
FILENAME 

OPEN COMMUNICATIONS BYTE 

USER'S LABEL ADDRESS 
ADDRESS OF IOAREA 
CCHH ADDR OF USER LABEL TRACK 

SEEK ADDRESS-BB 
SEARCH ADDRESS-CCHH 
RECORD NUMBER 
KEY LENGTH 
DATA LENGTH 
CCHH CONTROL FIELD 
CONTROL FIELD 
SWITCHES 
SIZE OF BLOCK-l 
CCHHR BUCKET 

TRACK CAPACITY CONSTANT 
LOAD USER'S IOREG 
DEBLOCKER-INITIAL POINTER 
DEBLOCKER-RECORD SIZE 
DEBLOCKER LIMIT 
LOGICAL INDICATORS 
USER'S ERROR ROUTINE 
SEEK 
SEARCH ID EQUAL 
TIC 
WRITE COUNT, KEY AND DATA 
SEARCH ID EQUAL 
TIC 

Appendix D. DTF Tables 393 



PL/I PLM 8 

IBM Confidential 

000000 FIDIOOVA START 0 DISK FILE 

C 000000 DC X'A2' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X' 11' FLAG BYTE ONE 
OOOOOS DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'80000000' 
000010 DC A (IOA1+8) BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC OD' 0" 
000018 DC X'OOO082000000' CCB 
00001E DC X'FFFF' CCB-LOGICAL UNIT 
000020 DC A (CCWAD) CCB-CCW ADDRESS 
000024 DC 4X'00' XXB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (IJGVOEZZ) LOGIC MODULE 
00002C DC X'20' DTF TYPE 
00002D .DC AL1 (64) OPEN/CLOSE INDICATOR 
00002E DC CL8'FIDIOUVA' FILENAME 
000036 DC 8X'OO' 
00003E DC X'OS' OPEN COMMUNICATIONS BYTE 
00003F' DC 2X'OO' 
000041 DC AL3 (*) USER'S LABEL ADDRESS 
000044 DC A (lOA 1) ADDRESS OF IOAREA 
000048 DC X'80000000' CCHH ADDR OF' USER LABEL TRACK 
00004C DC 6X'00' 
0000S2 FILENS DC 2X'OO' SEEK ADDRESS-BB 
0000S4 DC X'OOOOFFOO' SEARCH ADDRESS-CCHH 
0000S8 DC X'OO' RECORD NOMBER 
0000S9 DC X'OO' KEY LENGTH 
OOOOSA DC H'O' DATA LENGTH 
OOOOSC DC 4X'00' CCHH CONTROL FIELD 

f'" 000060 DC X'FF' CONTROL FIELD 
000061 DC X'OO' SWITCHES 0 
000062 DC H'O' SIZE OF BLOCK-1 
000064 DC SX'OO' CCHHR BUCKET 
000069 DC X'OO' 
00006A DC H'362S' TRACK CAPACITY CONSTANT 
00006C L 2,88(1) LOAD USER'S IOREG 
000070 DC A (IOA1+12) DEBLOCKER-INITIAL POINTER 
000074 DC F'O' DEBLOCKER-RECORD SIZE 
000078 DC A (IOA1-1) DEB LOCKER LIMIT 
00007C DC AL1 (128) LOGICAL INDICATORS 
00007D DC AL3 (IJKTXCRI USER'S ERROR ROUTINE 
000080 CCWAD ccw 7,*-46,64,6 SEEK 
000088 ccw X'31',*-S2,64,S SEARCH ID EQUAL 
000090 ccw 8,*-8,0,0 TIC 
000098 ccw X' 1 D' , lOA 1 ,0,0 WRITE COUNT, KEY AND DATA 
OOOOAO CCW X, 31' ,FILENS +2,64, S SEARCH ID EQUAL 
0000A8 CCW 8,*-8,0,0 TIC 
OOOOBO CCW 30,*,48,1 
0000B8 DC F'O' SPACE REMAINING IN OUTPUT AREA 
OOOOBC DC H'362S' TRACK CAPACITY BUCKET 
OOOOBE L 3,160 (1) LOAD USER'S VARBLD REGISTER 
0000C2 
0000C8 IOA1 DC OD'O' 

EXTRN IJKTXCR 
EXTRN IJKTXCF 
END 

c 
394 



PL/I PLM 8 

IBM Confidential 

f 
000000 FIDIOUUN STA.RT 0 DISK FILE 
000000 DC X'A2' OPEN MASK 
000001 DC A.L3 (TABA.D) TA.BLE A.DDRESS 
000004 DC X' 31' FLA.G BYTE ONE 
OOOOOS DC A.L3 (0) CHA.IN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM. BYTE 
OOOOOA. DC H' 0' RECORD LENGTH 
OOOOOC DC X'80000000' 
000010 DC A (lOA 1+ 8) BUFFER ADDRESS 
000014 DC H'O' REMA.INING DATA 
000016 DC H'O' DA.TA LENGTH 
000018 TA.BAD DC OD'O' 
000018 DC X'OOO082000000' CCB 
00001E DC X'FFFF' CCB-LOGICAL UNIT 
000020 DC A (CCWAD) CCB-CCW A.DDRE6S 
000024 DC 4X'OO' XXB-ST BYTE,CSW CCW A.DDRESS 
000028 DC V (IJGUOEZZ) LOGIC MODULE 
00002C DC X'20' DTF TYPE 
000020 DC AL 1 (0) OPEN/CLOSE INDICA.TOR 
00002E DC CL8'FIDIOUUN' FILENAME 
000036 DC 8X'OO' 
00003E DC X'OS' OPEN COMMUNICA.TIONS BYTE 
00003F DC 2X'OO' 
000041 DC AL3 (*) USER'S LA.BEL ADDRESS 
000044 DC A. (IOA.l) ADDRESS OF IOAREA 
000048 DC X'80000000' CCHH ADDR OF USER LABEL TRACK 
00004C DC 6X'OO' 
000052 FILENS DC 2X'OO' SEEK A.DDRESS-BB 
000054 DC X'OOOOFFOO' SEARCH ADDRESS-CCHH 
000058 DC X'OO' RECORD NUMBER 
0000S9 DC X'OO' KEY LENGTH 
OOOOSA DC H'O' DATA LENGTH 

C OOOOSC DC 4X'OO' CCHH CONTROL FIELD 
000060 DC X'FF' CONTROL FIELD 
000061 DC X'OO' SWITCHES 
000062 DC H'O' SI ZE OF BLOCK-l 
000064 DC SX'OO' CCHHR BUCKET 
000069 DC X'OO' 
00006A. DC H'362S' TRACK CAPACITY CONSTANT 
00006C L 2,88 (1) LOAD USER'S IOREG 
000070 DC A (lOA 1 + S) DEBLOCKER-INITIAL POINTER 
000074 STH 4,66 (1) 
000078 DC A (lOA 1-1) DEBLOCKERLIMIT 
00007C DC ALl (12S) LOGICAL INDICATORS 
000070 DC AL3 (IJKTXCRI USER'S ERROR ROUTINE 
OOOOSO CCWAD CCW 7,*-46,64,6 SEEK 
000088 CCW X'31',*-52,64,5 SEARCH ID EQUAL 
000090 CCW 8,*-8,0,0 TIC 
000098 CCW X' 1 D' , lOA 1,0,0 WRITE COUNT KEY AND DATA 
OOOOAO CCW X'3l',FILENS+2,64,S SEARCH ID EQUAL 
0000A8 CCW 8,*-8,0,0 TIC 
OOOOBO CCW 30,*,48,1 
0000B8 DC H'362S' TRACK CAPACITY BUCKET 
OOOOBA 
OOOOCO IOAl DC OD'O' 

EXTRN IJKTXCR 
EXTRN IJKTXCF 
END 

c 
Appendix D. DTF Tables 395 



PL/I PLM 8 

IBM Confidential 

000000 FIDIUPFI STII.RT 0 DISK FILE C\ 000000 DC X'9A' OPEN MII.SK 
000001 DC AL3 (TABAD) TABLE II.DDRESS 
000004 DC X'01' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLII.G BYTE TWO, COMM. BYTE 
0000011. DC H'O' RECORD LENGTH 
OOOOOC DC X'80000000' 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC OD'O' 
000018 DC X'OOO082000000' CCB 
00001E DC X'FFFF' CCB-LOGICAL UNIT 
000020 DC II. (CCWAD) CCB-CCW II.DDRESS 
000024 DC 4X'OO' XXB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (IJKFUEZZ) LOGIC MODULE 
00002C DC X'20' DTF TYPE 
00002D DC II.L1 (2) OPEN/CLOSE INDICII.TOR 
00002E DC CL8'FIDIUPFI' FILENII.ME 
000036 DC 8X'OO' 
00003E DC X'08' OPEN COMMUNICATIONS BYTE 
00003F DC 2X'OO' 
000041 DC II.L3 (*) USER'S LII.BEL ADDRESS 
000044 DC A (IOA1) ADDRESS OF IOAREA 
000048 DC X'80000000' CCHH II.DDR OF USER LABEL TRACK 
00004C DC 6X'OO' 
000052 FILENS DC 2X'OO' SEEK ADDRESS-BB 
000054 DC X'OOOOFFOO' SEII.RCH ADDRESS-CCHH 
000058 DC X'OO' RECORD NUMBER 
000059 DC II.L3 (IJKTXCF) EOF II.DDRESS 
00005C DC 4X'OO' CCHH CONTROL FIELD 
000060 DC II.L1 (0) CONTROL FIELD 

C 000061 DC X'OO' SWITCHES 
000062 DC H'O' SIZE OF BLOCK-1 
000064 DC 5X'OO' CCHHR BUCKET 
000069 DC A.L3 (IJKTXCW) WLERR II.DDRESS 
00006C L 2,88 (1) LOII.D USER'S IOREG 
000070 DC A. (1011.1) DEBLOCKER-INITIAL POINTER 
000074 DC F'O' DEBLOCKER-RECORD SIZE 
000078 DC A. (IOA1-1) DEBLOCKER LIMIT 
00007C DC AL1 (128) LOGICAL INDICATORS 
00007D DC AL3 (IJKTXCR) USER'S ERROR ROUTINE 
000080 CCWAD CCW 7,*-46,64,6 SEEK 
000088 CCW X'31',*-52,64,5 SEARCH ID EQUAL 
000090 CCW 8,*-8,0,0 TIC 
000098 CCW 6,IOA1,0,0 READ DATA 
000011.0 CCW X'31',FILENS+2,64,5 SEARCH ID EQUAL 
000011.8 CCW 8,*-8,0,0 TIC 
OOOOBO CCW 6,*,48,1 VERIFY 
0000B8 1011.1 DC OD'O' 

EXTRN IJKTXCF,IJKTXCW,IJKTXCR 
END 

396 



PL/I PLM 8 

IBM Confidential 

(- 000000 FIDIUPVA START 0 DISK FILE 
000000 DC X'9A' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X' ", FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'80000000' 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC H'O' REMAINING DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC OD'O' 
000018 DC X'OOO082000000' CCB 
00001E DC X'FFFF' CCB-LOGICAL UNIT 
000020 DC A (CCWAD) CCB-CCW ADDRESS 
000024 DC 4X'OO' XXB-ST BYTE,CSW CCW ADDRESS 
000028 DC V!IJGVUEZZ) LOGIC MODULE 
00002C DC X'20' DTF TYPE 
000020 DC AL 1 (66) OPEN/CLOSE INDICATOR 
00002E DC CL8'FIDIUPVA.' FILENAME 
000036 DC 8X'00' 
00003E DC X'08' OPEN COMMUNICATIONS BYTE 
00003F DC 2X'OO' 
000041 DC AL3 (*) USER'S LABEL ADDRESS 
000044 DC A (lOA 1) ADDRESS OF IOAREA 
000048 DC X'80000000' CCHH ADDR OF USER LABEL TRACK 
00004C DC 6X'OO' 
000052 FILENS DC 2X'OO' SEEK ADDRESS-BB 
000054 DC X'OOOOFFOO' SEARCH ADDRESS-CCHH 
000058 DC X'OO' RECORD NUMBER 
000059 DC AL3 (IJKTXCF) EOF ADDRESS 
00005C DC 4X'00' CCHH CONTROL FIELD 

( 
000060 DC X'FF' CONTROL FIELD 
000061 DC X'OO' SWITCHES 
000062 DC H'O' SIZE OF BLOCK-l 
000064 DC 5X'00' CCHHR BUCKET 
000069 DC AL3 (IJKTXCW) WLERR ADDRESS 
00006C L 2,88(1) LOAD USER'S IOREG 
000070 DC A (lOA' +4) DEBLOCKER-INITIAL POINTER 
000074 DC F' 0' DEBLOCKER-RECORD SIZE 
000078 DC A (lOA 1-1) DEBLOCKER LIMIT 
00007C DC ALl (128) LOGICAL INDICATORS 
000070 DC AL3 (lJKTXCR) USER'S ERROR ROUTINE 
000080 CCWAD CCW 7,*-46,64,6 SEEK 
000088 CCW X'31',*-52,64,5 SEARCH 10 EQUAL 
000090 CCW 8,*-8,0,0 TIC 
000098 CCW 6,lOA1,64,0 READ DATA 
OOOOAD CCW X'92',*+32,0,8 READ COUNT 
0000A8 CCW X'31',FlLENS+2,64,5 SEARCH ID EQUAL 
OOOOBO CCW 8,*-8,0,0 TIC 
0000B8 CCW 6,*,48,146 VERIFY 
OOOOCO DC 2F'O' COUNT AREA 
0000C8 DC 2F'O' COUNT SAVE AREA 
000000 DC 2F'O' COUNT SAVE AREA FOR 21/0 

EXTRN IJKTXCF,IJKTXCW,IJKTXCR 
0000D8 lOAl DC 00'0' 

END 

C: 

Appendix D. DTF Tables 397 



PL/I PLM 8 

IBM Confidential 

000000 FIDIUPUN START a DISK FILE 
000000 DC X'9A' OPEN MASK ~~ 

000001 DC AL3 (TABAD) TABLE ADDRESS ~, 
000004 DC X'31' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'OOOO' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'80000000' 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC H'O' REMAINIG DATA 
000016 DC H'O' DATA LENGTH 
000018 TABAD DC OD'O' 
000018 DC X'000082000000' CCB 
00001E DC X'FFFF' CCB-LOGICAL UNIT 
000020 DC A (CCWAD) CCB-CCW ADDRESS 
000024 DC 4X'00' XXB-ST BYTE,CSW CCW ADDRESS 
000028 DC V (IJGUUEZZ) LOGIC MODULE 
00002C DC X'20' DTF TYPE 
00002D DC AL1 (2) OPEN/CLOSE INDICATOR 
00002E DC CL8'FIDIUPUN' FILENAME 
000036 DC 8X'OO' 
00003E DC X'08' OPEN COMMUNICATIONS BYTE 
00003F DC 2X'OO' 
000041 DC AL3 (*) USER'S LABEL ADDRESS 
000044 DC A (lOA 1) ADDRESS OF IOAREA 
000048 DC X'80000000' CCHH ADDR OF USER LABEL TRACK 
00004C DC 6X'00' 
000052 FILENS DC 2X'OO' SEEK ADDRESS-BB 
000054 DC X'OOOOFFOO' SEARCH ADDRESS-CCHH 
000058 DC X'OO' RECORD NUMBER 
000059 DC AL3 (IJKTXCF) EOF ADDRESS 
00005C DC 4X'OO' CCHH CONTROL FIELD 
000060 DC X'FF' CONTROL FIELD 

C 000061 DC X'OO' SWITCHES 
000062 DC H'O' SIZE OF BLOCK-1 
000064 DC 5X'OO' CCHHR BUCKET 
000069 DC 3X'00' 
00006C L 2,88 (1) LOAD USER'S IOREG 
000070 DC A (lOA 1) DEBLOCKER-INITIAL POINTER 
000074 L 4,96 (1) 
000078 DC A (lOA 1-1) DEBLOCKER LIMIT 
00007C DC AL1 (128) LOGICAL INDICATORS 
00007D DC AL3 (IJKTXCR) USER'S ERROR ROUTINE 
000080 CCWAD CCW 7,*-46,64,6 SEEK 
000088 CCW' X'31' ,*-52,64,5 SEARCH ID EQUAL 
000090 CCW' 8,*-8,0,0 TIC 
000098 CCW 6,IOA1,96,0 READ DATA 
OOOOAO CCW' X'92',*+32,O,8 READ COUNT 
0000A8 CCW X'31',FILENS+2,64,5 SEARCH ID EQUAL 
OOOOBO CCW 8,*-8,0,0 TIC 
0000B8 CCW 6,*,48,146 VERIFY 
000000 DC 2F'O' COUNT AREA 
0000C8 DC 2F'O' COUNT SAVE AREA 
OOOODO DC 2F'O' COUNT SAVE AREA FOR 21/0 

EXTRN IJKTXCF 
EXTRN IJKTXCR 

0000D8 IOA1 DC OD'O' 
END 

398 



PL/I PLM 8 

IBM Confidential 

000000 FIDIINRl START 0 

( 000000 DC X'C5' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X, 01' FLA.G BYTE ONE 
000005 DC A.L3 (0) CHAIN A.DDRESS 
000008 DC X'2800' FLA.G BYTE TWO, COMM. BYTE 
OOOOOA. DC H'O' RECORD LENGTH 
OOOOOC DC X'80' DEVICE CODE 
OOOOOD DC AL3 (0) 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC X'OO' REGIONA.L TYPE 
000015 DC AL3 (IJKTXRP) ADDRESSING ROUTINE 
000018 DC A. (0) 
00001C DC A (0) 
000020 DC X'OOOO' LOGICAL UNIT 
000022 ERRByrE DC X'OOOO' ERROR ByrE 
000024 DC H'O' KEY LENGTH 
000026 DC X'OO' 
000027 SEEKADR DC 15X'OO' 
000036 DC H'10' 
000038 DC 6X'O' 
00003E DC H'10' 
000040 DC 6X'O' 
000046 DC H' 10' 
000048 TA.BAD DC 00'0' 
000048 DC H'O' FIRST CCB BYTES 
00004A. DC X' 88' 
000048 DC 5X'O' 
000050 DC AL4 (CCA.D) CC A.DDR IN CCB 
000054 DC F'O' 
000058 DC V (IJIFZZZZ) FILE TYPE 
00005C DC X'22' 
00005D DC B'OOOOOOOO' (C 00005E DC CL8' FIDIINR 1 ' 
000066 DC X'0104' 
000068 DC F'O' LA.BEL ROUTINE ADDRESS 
00006C DC V (IJKTXRM) EXTENT ROUTINE A.DDRESS 
000070 DC X'O' 
000071 DC A.L3 (ERRBYTE) 
000074 DC H'O' TEST SWITCH 
000076 DC Y(CCWAD~TA.BA.D-32) POINTER 
000078 DC H'O' IJICB2 
00007A. DC X'88' 
00007B DC 5X'O' 
000080 DC A.L4 (FILENZ) 
000084 DC 4X'O' 
000088 FILENZ CCW X'07',SEEKA.DR+l,X'OO',6 
000090 XI 36 (2) ,C'O' 
000094 DC H'O' MA.XIMUM DATA LENGTH 
000096 DC YLl (FILENO-TABAD-l) PTR TO READ ID STRING 
000097 DC YLl (FILEN1-rA.BA.D-1) REA.D KEY 
000098 DC YL 1 (FILEN2-rABAD-l) WRITE ID 
000099 DC YL1 (FILEN3-rABA.D-1) WRITE KEY 
00009A. DC YL 1 (FILEN4- rI,.BAD-1) RZERO 
00009B DC YL 1 (FILEN5- Tl.BAD- 1 ) A.FTER 
00009C DC H'OO' 
00009E DC H'61' RIC CONSTANT 
OOOOM DC 0'0' 
0000A8 FILENC CCW X'31',SEEKA.D~+3,X'40',5 

OOOOBO DC 1F'O' 
0000B4 DC H'O' 
0000B6 DC H'O' 
0000B8 CCW X'06',IOA1,X-40',O 
OOOOCO DC 10'0' 

C' 
0000e8 CCW X'39',SEEKA.D.I+3,X'40',4 
OOOODO eew X'OE',IOA1,X-40',0 

/ 000008 FILENO EQU * 
000008 DC X'871814' 

AppendiX D. OTF Tables 399 



PL/I PLM 8 

IBM Confidential 

000049 FILEN1 
000049 FILEN2 
000049 FILEN3 
000049 FILEN4 
000049 FILEN5 
OOOODB 
OOOOEO CCWAD 
0000E8 
000120 IOA1 

400 

EQU 
EQU 
EQU 
EQU 
EQU 

CCW 
DC 
DC 
EXTRN 
END 

TABAD+1 
TABAD+1 
TABAD+1 
TABAD+l 
TABAD+1 

X'07',SEEKAJR+1,X'40',6 
7D'0' 
OD'O' 
IJKTXRP 

o 

c 

c 



PL/I PLM 8 

IBM Confidential 

000000 FIDIONRl START 0 

( 000000 DC X'AS' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'Ol' FLAG BYTE ONE 
OOOOOS DC AL3 (0) CHAIN ADDRESS 
000008 DC X'2800' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'80' DEVICE CODE 
OOOOOD DC AL3 (0) 
000010 DC A (IOA 1) BUFFER ADDRESS 
000014 DC X'OO' REGIONAL TYPE 
00001S DC AL3 (IJKTXRP) ADDRESSING ROUTINE 
000018 DC A (0) 
00001C DC A (0) 
000020 DC X'OOOO' LOGICAL UNIT 
000022 ERRBYTE DC X'OOOO' ERROR BYTE 
000024 DC H'O' KEYLENGTH 
000026 DC X'OO' 
000027 SEEKADR DC lSX'OO' 
000036 DC H'10' 
000038 DC 6X'O' 
00003E DC H'10' 
000040 DC 6X'O' 
000046. DC H'10' 
000048 TABAD DC OD'O' 
000048 DC H'O' FIRST CCB BYTES 
00004A DC X'88' 
00004B DC 5X'O' 
OOOOSO DC AL4 (CCWAD) CCW ADDR IN CCB 
0000S4 DC F'O' 
0000S8 DC V (IJIFZZZZ) FILE TYPE 
OOOOSC DC X'22' 
OOOOSD DC B'10000000' 

(- OOOOSE DC CL8'FIDIONR1' 
000066 DC X'0104' 
000068 DC F'O' LABEL ROUTINE ADDRESS 
00006C DC V (IJKTXRM) EXTENT ROUTINE ADDRESS 
000070 DC X'O' 
000071 DC AL3 (ERRBYTE) 
000074 DC H'O' TEST SWITCH 
000076 DC Y{CCWAD-TABAD-32) POINTER 
000078 DC H'O' IJICB2 
00007A DC X'88' 
00007B DC SX'O' 
00008C DC AL4 (FILENZ) 
000084 DC 4X'O' 
00el088 FILENZ CCW X'07',SEEKADR+l,X'OO',6 
000090 XI 36 (2) ,C' 0' 
000094 DC H'O' MAXIMUM DATA LENGTH 
000096 DC YLl (FILENO-TABAD-l) PTR TO READ ID STRING 
000097 DC YLl (FILEN1-TABAD-l) READ KEY 
000098 DC YLl (FILEN2-TABAD-l) WRITE ID 
000099 DC YLl (FILEN3-rABAD-l) WRITE KEY 
00009A DC YL 1 (FILEN4-TABAD-l) RZERO 
00009B DC YLl (FILENS-rABAD-l) AFTER 
00009C DC H'OO' 
00009E DC H'61' RIC CONSTANT 
OOOOAD DC D'O' 
0000A8 FILENC CCW X'31',SEEKADR+3,X'40',S 
OOOOBO DC lF'O' 
0000B4 DC H'O' 
0000B6 DC H'O' 
0000B8 CCW X'06',IOA1,X'40',0 
OOOOCO DC lD'O' 

C 
0000C8 CCW X'39',SEKKAPR+3,X'40',4 
OOOODO CCW X ' 0 E ' , lOA 1 , L ' 40' , 0 
000049 FILENO EQU rABAD+l 
000049 FILENl EQU TABAD+l 

Appendix D. DTF Tables 401 



PL/I PLM 8 

IBM Confidential 

OOOOD8 FILEN2 EQU * OOOOD8 DC X'871895' 
000049 FILEN3 EQU TABAD+1 c 
000049 FILEN4 EQU TABAD+1 
000049 FILEN5 EQU TABAD+1 
OOOODS 
OOOOEO CCWAD CCW X'07',SEEKADR+1,X'40',6 
0000E8 OC 70'0' 
000120 IOA1 DC 00'0' 

EXTRN IJKTXRP 
END 

c 

c 
402 

~------- --_. - ._--_. ~ -~-. ----



PL/I PLM. 8 

IBM. Confidential 

( 000000 FIDIOVR1 ST~RT 0 
000000 DC X'~5' OPEN MASK 
000001 DC ~L3 (T~B~D) T~BLE ADDRESS 
000004 DC X, 01' FL~G BYTE ONE 
000005 DC ~L3 (0) CH~IN ADDRESS 
000008 DC X'2800' FL~G BYTE TWO, COt-1M. BYTE 
OOOOO~ DC H'O' RECORD LENGTH 
OOOOOC DC X'80' DEVICE CODE 
000000 DC AL3 (0) 
000010 DC ~ (lOA 1) BUFFER ~DDRESS 
000014 DC X'OO' REGION~L TYPE 
000015 DC ~L3 (IJKTXRP) ADDRESSING ROUTINE 
000018 DC A (0) 
00001C DC A (0) 
000020 DC X'OOOO' LOGICAL UNIT 
000022 ERRBYTE DC X'OOOO' ERROR BYTE 
000024 DC H'O' KEY LENGTH 
000026 DC X'OO' 
000027 SEEKADR DC 15X' 00' 
000036 DC H' 10' 
000038 DC 6X'0' 
00003E DC H'10' 
000040 DC 6X'0' 
000046 DC H' 10' 
000048 TABAD DC OD'O' 
000048 DC H'O' FIRST CCB BYTES 
00004~ DC X'88' 
00004B DC 5X'0' 
000050 DC A 14 (CCWAD) CCW ~DDR IN CCB 
000054 DC F'O' 
000058 DC V (IJIFZZZZ) FILE TYPE 
OOOOSC DC X'22' 

( 
000050 DC B'11000000' 
OOOOSE DC C18'FIDIOVR1' 
000066 DC X'0104' 
000065 DC F'O' L~BEL ROUTINE ADDRESS 
00006C DC V (IJKTXRM) EXTENT ROUTINE ~DDRESS 
000070 DC X'O' 
000071 DC A 13 (ERRBYTE) 
000074 DC H'O' TEST SWITCH 
000076 DC Y(CCWAD-T~B~D-32) POINTER 
000078 DC H'O' IJICB2 
00007~ DC X'88' 
00007B DC SX'O' 
000080 DC ~L4 (FILENZ) 
000084 DC 4X'0' 
000088 FILENZ CCW X'07',SEEK~DR+1,X'00',6 
000090 XI 36(2),C'0' 
000094 DC H'O' MAXIMUM DATA LENGTH 
000096 DC YL1 (FILENO-TABAD-1) FTR TO READ ID STRING 
000097 DC YL1 (FILEN1-TABAD-1) RE~D KEY 
000098 DC YL1 (FILEN2-TABAD-1) WRITE ID 
000099 DC YL1 (FILEN3-TABAD-1) WRITE KEY 
00009~ DC YL1 (FILEN4-rABAD-1) RZERO 
00009B DC YL1 (FILENS-rABAD-1) AFTER 
00009C DC H'OO' 
00009E DC H' 61' RIC CONSr~NT 
OOOOAO DC 0'0' 
0000A8 FILENC CCW X'31',SEEK~DR+3,X'40',S 

OOOOBO DC 1F' 0' 
0000B4 DC H'O' 
0000B6 DC H'O' 
0000B8 CCW X'06',IO~1,X'40',0 
OOOOCO DC 1D' 0' 

C' 0000C8 CCW X'39',SEEK~DR+3,X'40',4 

000000 CCW X'OE',IOA1,X'40',0 
000049 FILENO EQU rAB~D+1 

000049 FILEN1 EQU rABAD+1 

Appendix D. DTF Tables 403 



PL/I PLM 8 

IBM Confidential 

0000D8 FILEN2 EQU * 
0000D8 DC X'871891871815' 
000049 FILEN3 EQU TABAO+1 o 
000049 FILEN4 EQU TABAD+l 
000049 FILEN5 EQU TABAD+l 
OOOODE 
OOOOEO CCWAD CCW X'07',SEEKADR+1,X'40',6 
0000E8 DC 7D'0' 
000120 DC 5D'0' 
000148 IOA1 DC OD'O' 

EXTRN IJKTXRP 
END 

c 
404 



PL/I PLM 8 

IBM Confidential 

( 
000000 FIDIUNR1 STA.RT 0 
000000 DC X'9D' OPEN MASK 
000001 DC A.L3 (TABAD) TA.BLE ADDRESS 
000004 DC X'01' FLAG BYTE ONE 
000005 DC A.L3 (0) CHAIN ADDRESS 
000008 DC X'2800' FLAG BYTE TWO, COMM. BYTE 
OOOOOA. DC H'O' RECORD LENGTH 
OOOOOC DC X'80' DEVICE CODE 
OOOOOD DC AL3 (0) 
000010 DC A. (lOA 1) BOFFER ADDRESS 
000014 DC X'OO' REGIONAL TYPE 
000015 DC AL3 (IJKTXRP) ADDRESSING ROUTINE 
000018 DC A (0) 
00001C DC A (0) 
000020 DC X'OOOO' LOGICAL ONIT 
000022 ERRByrE DC X'OOOO' ERROR BYTE 
000024 DC H'O' KEYLENGTH 
000026 DC X'OO' 
000027 SEEKADR DC 15X'00' 
000036 DC HI10 ' 
000038 DC 6X'0' 
00003E DC H' 10' 
000040 DC 6X'0' 
000046 DC H'10' 
000048 TA.BAD DC OD'O' 
000048 DC H'O' FIRST CCB BYTES 
00004A. DC X'88' 
00004B DC 5X'0' 
000050 DC AL4 (CCWAD) CCW ADDR IN CCB 
000054 DC F'O' 
000058 DC V (IJIFZZZZ) FILE TYPE 
00005C DC X'22' 

(- 00005D DC B'OOOOOOOO' 
00005E DC CL8'FIDIUNR1' 
000066 DC X'0104' 
000068 DC F'O' LABEL ROUTINE ADDRESS 
00006C DC V (IJKTXRM) EXTENT ROOTINE ADDRESS 
000070 DC X'O' 
000071 DC AL3 (ERRBYTE) 
000074 DC H'O' TEST SWITCH 
000076 DC Y(CCWAD-TA.BA.D-32) POINTER 
000078 DC H'O' IJICB2 
oooon DC X'88' 
000078 DC 5X'0' 
000080 DC A.L4 (FILENZ) 
000084 DC 4X'0' 
000088 FILENZ CCW X'07',SEEKADR+1,X'00',6 
000090 XI 36 (2) ,C' 0' 
000094 DC H'O' MA.XIMUM DATA LENGTH 
000096 DC YL1 (FILENO-rABAD-1) PTR TO READ ID STRING 
000097 DC YL1 (FILEN1-TABAD-1) REA.D KEY 
000098 DC YL1 (FILEN2-rABAD-1) WRITE ID 
000099 DC YL1 (FILEN3-TABAD-1) WRITE KEY 
00009A. DC YL1 (FILEN4-TABAD-1) RZERO 
000098 DC YL1 (FILEN5-rABAD-1) AFTER 
00009C DC H'OO' 
00009E DC H' 61 ' RIC CONS rANT 
OOOOAO DC D'O' 
0000A8 FILENC CCW X'31' ,SEEKA.DR+3,X'40',5 
OOOOBO DC 1F' 0 I 

0000B4 DC H'O' 
000086 DC H'O' 
000088 CCW X'06',IOA1.X'40',0 
OOOOCO DC 1D' 0' 

(' 0000C8 CCW X'39',SEEKADR+3,X'40',4 
OOOODO CCW X'OE',IOA.1,X'40',0 
0000D8 FILENO EQO * 
0000D8 DC X' 871814' 

Appendix D. DTF Tables 405 

.-.-- -- ... -----.. ---.~-.. ,--.. 



PL/I PLM 8 

IBM Confidential 

000049 FILEN1 
000008 FILEN2 
000008 
000049 FILEN3 
000049 FILEN4 
000049 FILENS 
OOOOOE 
OOOOEO CCWAD 
0000E8 
000120 IOA1 

406 

EQU 
EQU 
DC 
EQU 
EQU 
EQU 

CCW 
DC 
DC 
EXTRN 
END 

TABAD+1 

* X'87189S' 
TABAD+1 
TABAD+1 
TABAO+1 

X'07',SEEKADR+1,X'40',6 
70'0' ' 
00'0' 
IJKTXRP 

o 

c 



PL/I PLM 8 

IBM Confidential 

000000 FIDIUVR1 SThRT 0 

( 000000 DC X'9D' OPEN MhSK 
000001 DC hL3 (TABAD) ThBLE hDDRESS 
000004 DC X'O l' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN hDDRESS 
000008 DC X'2800' FLhG BYTE TWO, COMM. BYTE 
OOOOOh DC H'O' RECORD LENGTH 
OOOOOC DC X'80' DEVICE CODE 
000000 DC AL3 (0) 
000010 DC h (lOA 1) BUFFER hDDRESS 
000014 DC X'OO' REGIONAL TYPE 
000015 DC AL3 (IJKTXRPI ADDRESSING ROUTINE 
000018 DC A (0) 
00001C DC A (0) 
000020 DC X'OOOO' LOGIChL UNIT 
000022 ERRBYTE DC X'OOOO' ERROR BYTE 
000024 DC H'O' KEY LENGTH 
000026 DC X'OO' 
000027 SEEKADR DC 15X'00' 
000036 DC H'10' 
000038 DC 6X'0' 
00003E DC H'10' 
000040 DC 6X'0' 
000046 DC H '1 0' 
000048 ThBAD DC 00'0' 
000048 DC H'O' FIRST CCB BYTES 
00004h DC X'88' 
00004B DC 5X'0' 
000050 DC AL4 (CCWAD) CCW hDDR IN CCB 
000054 DC F'O' 
000058 DC V (IJIFZZZZ) FILE TYPE 
00005C DC X'22' 

(- ... 
000050 DC B'01000000' 
00005E DC CL8'FIDIUVR1' 
000066 DC X'0104' 
000068 DC F'O' LhBEL ROUTINE ADDRESS 
00006C DC V (IJKTXRM) EXTENT ROUTINE ADDRESS 
000070 DC X'O' 
000071 DC AL3 (ERRBYTEI 
000074 DC H'O' TEST SWITCH 
000076 DC Y(CCWAD-ThBhD-32 POINTER 
000078 DC H'O' IJICB2 
00007h DC X'88' 
00007B DC 5X'O' 
000080 DC AL4 (FILENZI 
000084 DC 4X'0' 
000088 FILENZ CCW X'07',SEEKADR+1,X'00',6 
000090 XI 36(2),C'O' 
000094 DC H'O' MA.XIMUM DATA LENGTH 
000096 DC YL1 (FILENO-rABAD-1) PTR TO READ 10 STRING 
000097 DC YL1 (FILEN1-rABAD-1) REhD KEY 
000098 DC YL1 (FILEN2-TABAD-1) WRITE ID 
000099 DC YL1 (FILEN3-rABAD-2) WRITE KEY 
00009h DC YL1 (FILEN4-TABAD-1) RZERO 
00009B DC YL1 (FILEN5-rABhD-1) hFTER 
00009C DC H'OO' 
00009E DC H'61' RIC CONSTANT 
OOOOAO DC 0'0' 
0000A8 FILENC CCW X'31',SEEKhDR+3,'40',5 
OOOOBO DC 1F' 0' 
0000B4 DC H'O' 
0000B6 DC H' 0' 
0000B8 CCW X'06',IOA1,X'40',0' 
OOOOCO DC 10'0' 

C 
0000C8 CCW X'39',SEEKADR+3,X'40',4 
000000 CCW X'OE',IOA1,X'40',0 
000008 FILENO EQU * 
000008 DC X'871814' 

Appendix D. DTF Tables 407 

._-------------_._---



PL/I PLM 8 

IBM Confidential 

0.0.0.0.49 FILEN1 EQU TABAO+1 
0.01')0.08 FILEN2 EQU * 0.00.0.08 DC X'871891871815' o 
Mo.o.49 FILEN3 EQU TABAO+1 
0.0.0.0.49 FILEN4 EQU TABAD+l 
0.0.0.0.49 FILEN5 EQU TABAD+l 
o.o.o.o.E1 
DOo.o.E8 CCWAO CCW X'D7',SEEKADR+l,'4D',6 
Do.Do.FD DC 7D'o.' 
0.0.0.128 de 5d'D' 
0.0.0.150. IOAl DC 0.0'0.' 

EXTRN IJKTXRP 
-.'.- END 

c 

c 
41)6 



PL/I PU1 8 

IBM Confidential 

000000 FINDIINR3 STA.RT 0 

( 000000 DC X'C5' OPEN MA.SK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'Ol' FLAG BYTE ONE 
000005 DC A.L3 (0) CHA.IN ADDRESS 
OOOOOS DC X'2S00' FLAG BYTE TWO, COMM. BYTE 
OOOOOA. DC H'O' RECORD LENGTH 
OOOOOC DC X'SO' DEVICE CODE 
000000 DC AL3 (0) 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC X'OS' REGIONAL TYPE 
000015 DC A.L3 (IJKTXRP) ADDRESSING ROUTINE 
00001S DC A (KEYARG) 
00001C DC A (0) 
000020 DC X'OOOO' LOGICA.L UNIT 
000022 ERRByrE DC X'OOOO' ERROR BYTE 
000024 DC H'O' KEY LENGTH 
000026 DC X'OO' 
000027 SEEKAOR DC 15X'OO' 
000036 DC H'10' 
000038 DC 6X'O' 
00003E DC H'10 ' 
000040 DC 6X'O' 
000046 DC H'10 ' 
000048 TABAD DC OD'O' 
00004S DC H'O' FIRST CCB BYTES 
00004A. DC X'8S' 
00004B DC SX'O' 
000050 DC AL4 (CCWAD) CCW A.DDR IN CCB 
000054 DC F' 0' 
000058 DC V (IJIFZZZZ) FILE TYPE 
00005C DC X'22' 
OOOOSD DC B'OOOOOOOO' e OOOOSE DC CLS'FIOIINR3' 
000066 DC X'0104' 
00006S DC F'O' LABEL ROUTINE ADDRESS 
00006C DC V (IJKTXRM) EXTENT ROUTINE ADDRESS 
000070 DC X'O' 
000071 DC AL3 (ERR BYTE) 
000074 DC H'O' TEST SWITCH 
000076 DC Y(CCWAD-TA.BAD-32) POINTER 
000078 DC H'O' IJICB2 
00007A. DC X'S8' 
00007B DC 5X'O' 
OOOOSO DC AL4 (FILENZ) 
000084 DC 4X'O' 
000088 FILENZ CCW X'07',SEEKA.DR+l,X'OO',6 
000090 XI 36(2),C'O' 
000094 DC H'O' MAXIMUM DATA LENGTH 
000096 DC YLl (FILENO-rABAD-l) PTR TO READ 10 STRING 
000097 DC YLl (FILEN1-TABAD-l) READ KEY 
000098 DC YLl (FILEN2-rABAO-l) WRITE ID 
000099 DC YL 1 (FILEN3-r ABAD-l) WRITE KEY 
00009A. DC YLl (FILEN4-rABAO-l) RZERO 
00009B DC YLl (FILEN5-rABAD-l) AFTER 
00009C DC H'20' 
00009E DC H'61' RIC CONSTANT 
OOOOAO DC D'O' 
0000A8 FILENC CCW X'31',SEEKADR+3,X'40',5 
OOOOBO CCW X'29',KEYARG,X'40',0 
0000B8 CCW X'06',IOA1,X'40',0 
OOOOCO DC lD'O' 
0000C8 CCW X'39',SEEKADR+3,X'40',4 
OOOODO CCW X'OE',IOA1,X'40',0 

( .. , 000049 FILENO EQU TABAD+l 
OOOODS FILENl EQU 
OOOOOS DC X'SF1S14' 
000049 FILEN2 EQU TABAD+l 

Appendix D. DTF Taples 409 



PL/I PLM 8 

IBM Confidential 

000049 FILEN3 EQU TABAO+1 
000049 FILEN4 EQU TABAO+1 
000049 FILEN5 EQU TABAO+1 o 
OOOOOB 
OOOOEO CCWAD ccw X'07',SEEKADR+1,X'40',6 
0000E8 DC 70'0' 
000120 IOA1 DC 00'0' 
000120 KEYARG DC 00'0' 

EXTRN IJKTXRP 
END 

c 
410 



PL/I PLI'1 S 

IBM Confidential 

( 
000000 FIDIONR3 START 0 
000000 DC X'AS' OPEN MASK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'01' FLAG BYTE ONE 
OOOOOS DC AL3 (0) CHAIN ADDRESS 
000008 DC X'2S00' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'SO' DEVICE CODE 
OOOOOD DC AL3 (0) 
000010 DC A (IOA1) BUFFER ADDRESS 
000014 DC X'OS' REGIONAL TYPE 
00001S DC AL3 (IJKTXRP) ADDRESSING ROUTINE 
00001S DC A (KEYARG+ 8) 
00001C DC A (0) 
000020 DC X, 0000' LOGICAL UNIT 
000022 ERRBYTE DC X'OOOO' ERROR BYTE 
000024 DC H'O' KEYLENGTH 
000026 DC X'OO' 
000027 SEEKADR DC 15X'OO' 
000036 DC H'10' 
000038 DC 6X'O' 
00003E DC H'10' 
000040 DC 6X'O' 
000046 DC H'10' 
000048 TABAD DC 00'0' 
000048 DC H'O' FIRST CCB BYTES 
00004A DC X'S8' 
00004B DC SX'O' 
OOOOSO DC AL4 (CCWAD) CCW ADDR IN CCB 
000054 DC F'O' 
0000S8 DC V (IJIFAZZZ) FILE TYPE 
00005C DC X'22' 

( 
000050 DC B'10010000' 
OOOOSE DC CL8'FIDIONR3' 
000066 DC X'0104' 
000068 DC F'O' LABEL ROUTINE ADDRESS 
00006C DC V (IJKTXRM) EXTENT ROUTINE ADDRESS 
000070 DC X' O' 
000071 DC AL3 (ERRBYTE) 
000074 DC H'O' TEST SWITCH 
000076 DC Y(CCWAD-TABAD-32) POINTER 
00007S DC H'O' IJICB2 
00007A DC X'SS' 
00007B DC 5X'O' 
000080 DC AL4 (FILENZ) 
000084 DC 4X'O' 
000088 FILENZ CCW X'07',SEEKADR+1,X'OO',6 
000090 XI 36 (2) ,C'O' 
000094 DC H'O' MAXIMUM DATA LENGTH 
000096 DC YL1 (FILENO-'rABAD-1) PTR TO READ ID STRING 
000097 DC YL1 (FILEN1-TABAD-1) READ KEY 
000098 DC YL 1 (FILEN2-rABAD-1) WRITE ID 
000099 DC YL1 (FILEN3-TABAD-1) WRITE KEY 
00009A DC YL 1 (FILEN4-rABAD-1) RZERO 
00009B DC YL 1 (FILEN5-'r ABAD-1) AFTER 
00009C DC H'20' 
00009E DC H'61' RIC CONSTANT 
OOOOAO DC D'O' 
OOOOAO FILENC CCW X'31',SEEKADR+3,X'40',S 
OOOOBO DC IF'O' 
0000B4 DC H'O' 
0000B6 DC H'O' 
OOOOBS CCW X'06',IOA1,X'40',0 
OOOOCO DC 1D'O' 

C 
OOOOCS CCW X'39',SEEKADR+3,X'40',4 
000000 CCW X'OE',IOA1+8,X'40',0 
OOOODS CCW X'06',FILENK,X'40',8 
OOOOEO CCW X'12',FILENK,X'40',8 

Appendix D. DTF Tables 411 



PL/I PLM 8 

IBM Confidential 

0000E8 CCW X'31',FILENF,X'40',S C OOOOFO CCV'l X'1E',IOA1,X'40',0 
0000F8 CCW X'11',CCV'lAD+32,X'40',3625 
000100 NOPR 0 
000102 NOPR 0 
000104 FILENF DC 5X'O' 
000109 FILENK DC 8x'O' 
000049 FILENO EQU TABAO+1 
000049 FILEN1 EQU TABAO+1 
000049 FILEN2 EQU TABAO+1 
000049 FlLEN3 EQU TABAO+1 
000111 FILEN4 EQU * 000111 DC X'C718D752C718BS' 
000118 FILEN5 EQU * 000118 DC X'C71834' 
00011B DC X'C718B18718CD' 
000121 
000128 CCWAD CCW X'07',SEEKADR+1,X'40',6 
000130 DC 70'0' 
000168 IOA1 DC 00'0' 
000168 KEYARG DC 00'0' 

EXTRN IJKTXRP 
END 

c 
412 



PL/I PLM 8 

IBM Confidential 

000000 FIDIOVR3 START 0 
("- 000000 DC X'A5' OPEN MASK 

000001 DC AL3 (TABADI TABLE ADDRESS 
000004 DC X'01' FLAG BYTE ONE 
000005 DC AL3 (01 CHAIN ADDRESS 
OOOOO~ DC X'2800' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'80' DEVICE CODE 
OOOOOD DC AL3 (0) 
000010 DC A (lOA 11 BUFFER ADDRESS 
000014 DC X'08' REGIONAL TYPE 
000015 DC AL3 (IJKTXRP.I ADDRESSING ROUTINE 
000018 DC A (KEYARG+ 81 
00001C DC A (01 
000020 DC X'OOOO' LOGICAL UNIT 
000022 ERRBYTE DC X'OOOO' ERROR ByrE 
000024 DC H'O' KEY LENGTH 
000026 DC X'OO' 
000027 SEEKADR DC 15X'00' 
000036 DC H' 10' 
000038 DC 6X'O' 
00003E DC H'10' 
000040 DC 6X'O' 
000046 DC H'10' 
000048 TABAD DC OD'O' 
000048 DC H'O' FIRST CCB BYTES 
00004A DC X'88' 
000048 DC 5X'0' 
000050 DC AL4 (CCWADI CCW ADDR IN CCB 
000054 DC F'O' 
000058 DC C (IJIFAZZZI FILE TYPE 
00005C DC X'22' 
00005D DC B'11010000' 

(- 00005E DC CL8'FIDIOVR3' 
000066 DC X'0104' 
000068 DC F'O' LABEL ROUTINE ADDRESS 
000060 DC V (IJKTXRMI EXTENT ROUTINE ADDRESS 
000070 DC X'O' 
000071 DC AL3 {ERRBYTEI 
000074 DC H'O' TEST SWITCH 
000076 DC Y (CCWAD-TABI-\D-321 POINTER 
000078 DC H'O' IJICB2 
00007A DC X'88' 
00007B DC 5X'0' 
000080 DC AL4 {FILENZt 
000084 DC 4X'O' 
000088 FILENZ CCW X'07',SEEKADR+1,X'OO',6 
000090 IX 36 (2) ,C'O' 
000094 DC H'O' MAXIMUM DATA LENGTH 
000096 DC YL 1 (FILENO-'r ABAD-1) PTR TO READ ID STRING 
000097 DC YL1 (FILEN1-TABAD-1) READ KEY 
000098 DC YL1 (FILEN2-rABAD-1) WRITE ID 
000099 DC YL1 (FILEN3-TABAD-1) WRITE KEY 
000091-\ DC YL1 (FILEN4-TABAD-1) RZERO 
00009B DC YL1 (FILEN5-TABAD-1) AFTER 
00009C DC H'2' 
00009E DC H'61' RIC CONSTANT 
OOOOAO DC D'O' 
0000A8 FILENC CCW X'31',SEEKADR+3,X'40',5 
OOOOBO DC 1F'0' 
0000B4 DC H'O' 
0000B6 DC H'O' 
0000B8 CCW X'06',IOA1,X'40',0 
OOOOCO DC 1D' 0' 
0000C8 CCW X'39',SEEDADR+3,X'40',4 

(" OOOODO CCW X'OE',20A1+8,X'40',0 
/ 0000D8 CCW X'06',FILENK,X'40',8 

OOOOEO CCW X'12',FILENK,X'40',8 

Appendix D. DTF Tables 413 



PL/I PLM 8 

IBM Confidential 

0000F8 CCW X'31',FILENF,X'40',5 

0 OOOOFO CCW X'1E',IOA1,X'40',0 
0000E8 CCW X'11',CCWAO+32,X'40',362S 
000100 NOPR 0 
000102 NOPR 0 
000104 FILENF DC 5X'O' 
000109 FILENK DC 8X'O' 
000049 FILENO EQU TABAO+1 
000049 FILEN1 EQU TABAO+1 
000049 FILEN2 EQU TABAD+1 
000049 FILEN3 EQU TABAO+1 
000111 FILEN4 EQU '" 000111 DC X'C71807S2C718BS' 
000118 FILENS EQU '" 000118 DC X'C71834' 
00011B DC X'C718B18718C9C71831871840' 
000127 
000128 CCWAD CCW X'07',SEEKADR+1,X'40',6 
000130 DC 7D'O' 
000168 DC SO'O' 
000190 IOA1 DC 00'0' 
000190 KEYARG DC 00'0' 

EXTRN IJKTXRP 
END 

c 
414 



PL/I PLM 8 

IBM Confidential 

000000 FIDIUNR3 STA.RT 0 

( 000000 DC X'9D' OPEN MA.SK 
000001 DC AL3 (TABAD) TA.BLE ADDRESS 
000004 DC X'01' FLAG BYTE ONE 
OOOOOS DC AL3 (0) CHAIN ADDRESS 
000008 DC X'2800' FLAG BYTE TWO, COMM. BYTE 
OOOOOA. DC H'O' RECORD LENGTH 
OOOOOC DC X'80' DEVICE CODE 
OOOOOD DC AL3 (0) 
000010 DC A. (lOA 1) BUFFER ADDRESS 
000014 DC X'08' REGIONAL TYPE 
00001S DC AL3 (IJKTXRP) ADDRESSING ROUTINE 
000018 DC A (KEYARG+8) 
00001C DC A (0) 
000020 DC X'OOOO' LOGICAL UNIT 
000022 ERRBYTE DC X'OOOO' ERROR BYTE 
000024 DC H'O' KEY LENGTH 
000026 DC X'OO' 
000027 SEEKADR DC 1SX'QO' 
000036 DC H'1 0' 
000038 DC 6X'O' 
00003E DC H'10' 
000040 DC 6X'O' 
000046 DC H'1 0' 
000048 TABAD DC OD'O' 
000048 DC H'O' FIRST CCB BYTES 
00004A. DC X'88' 
00004B DC SX'O' 
OOOOSO DC AL4 (CCWAD) CCW A.DDR IN CCB 
0000S4 DC F'O' 
0000S8 DC V (IJIFAZZZ) FILE TYPE 
OOOOSC DC X'22' 
OOOOSD DC B'OO010000' 

(' OOOOSE DC CL8'FIDIUNR3' 
000066 DC X'0104' 
000068 DC F'O' LABEL ROUTINE ADDRESS 
00006C DC V (IJKTXRM) EXTENT ROUTINE ADDRESS 
000070 DC X'O' 
000071 DC A.L3 (ERRBYTE) 
000074 DC H'O' TEST SWITCH 
000076 DC Y(CCWAD-TA.BA.D-32) POINTER 
000078 DC H'O' IJICB2 
00007A. DC X'88' 
00007B DC SX'O' 
000080 DC AL4 (FILENZ) 
000084 DC 4X'O' 
000088 FILENZ CCW X'07',SEEKADR+1,X'00',6 
000090 XI 36(2),C'O' 
000094 DC H'O' MAXIMUM DA.TA LENGTH 
000096 DC YL1 (FILENO-TA.BAD-1) PTR TO REA.D ID STRING 
000097 DC YL1 (FILEN1-TABAD-1) READ KEY 
000098 DC YL1 (FILEN2-TABAD-1) WRITE ID 
000099 DC YL1 (FILEN3-TABAD~1) WRITE KEY 
00009A. DC YL1 (FILEN4-TABAD-1 RZERO 
00009B DC YL1 (FILENS-TABAD-1) AFTER 
00009C DC H'20' 
00009E DC H'61' RIC CONSTANT 
OOOOAO DC D'O' 
0000A8 FILENC CCW X'31',SEEKA.DR+3,X'40',S 
OOOOBO CCW X'29',KEYARG+8,X'40',0 
0000B8 CCW X'06',IOA1,X'40',0 
OOOOCO DC 1D' 0' 
OOOOC8 COl X' 39' ,SEEKADR+3,X' 40' ,4 
OOOODO CCW X'OE',IOA.1+8,X'40',0 

C 
0000D8 CCW X'06',FILENK,X'40',8 
OOOOEO CCW X'12',FILENK,X'40',8 
0000E8 CCW X'31',FILENF,X'40',5 
OOOOFO CCW X'1E',IOA.1,X'40',0 

Appendix D. DTF Tables 415 



PL/I PLM 8 

IBM Confidential 

0000F8 CC~ X'11',CC~AD+32,X'40',3625 

0 000100 NOPR 0 
000102 NOPR 0 
000104 FILENF DC 5X'O' 
000109 FILENK DC 8X'O' 
000049 FILENO EQU TABAD+1 
000111 FILEN1 EQU * 000111 DC X'8F1814' 
000049 FILEN2 EQU TABAD+1 
000114 FILEN3 EQU * 000114 DC X'8F189S' 
000117 FILEN4 EQU * 000117 DC X'C718D7S2C718BS' 
00011E FILENS EQU * 00011E DC X'C71834' 
000121 DC X'C718B18718CD' 
000127 
000128 CC~AD CC~ X'7',SEEKADR+1,X'40',6 
000130 DC 70'0' 
000168 IOA1 DC OD'O' 
000168 KEYARG DC OD'O' 

EXTRN IJKTXRP 
END 

c 

c 
416 



PL/I PLM 8 

IBM Confidential 

(- 000000 FIDIUVR3 START 0 
000000 DC X'9D' OPEN MA.SK 
000001 DC AL3 (TABAD) TABLE ADDRESS 
000004 DC X'01' FLAG BYTE ONE 
000005 DC AL3 (0) CHAIN ADDRESS 
000008 DC X'2800' FLAG BYTE TWO, COMM. BYTE 
OOOOOA DC H'O' RECORD LENGTH 
OOOOOC DC X'SO' DEVICE CODE 
OOOOOD DC AL3 (0) 
000010 DC A (lOA 1) BUFFER ADDRESS 
000014 DC X'08' REGIONAL TYPE 
000015 DC AL3 (IJKTXRP) ADDRESSING ROUTINE 
000018 DC A (KEYARG+8J 
00001C DC A (0) 
000020 DC X'OOOO' LOGICAL UNIT 
000022 ERRBYTE DC X'OOOO' ERROR BYTE 
000024 DC H'O' KEY LENGTH 
000026 DC X'OO' 
000027 SEEKADR DC 15'00' 
000036 DC H'10' 
000038 DC 6X'O' 
00003E DC H'10' 
000040 DC X'O' 
000046 DC H'10' 
000048 TABAD DC OD'O' 
000048 DC H'O' FIRST CCB BYTES 
00004A DC X'S8' 
00004B DC 5X'O' 
000050 DC AL4 (CCWAD) CCW ADDR IN CCB 
000054 DC F'O' 
000058 DC V (IJIFAZZZ) FILE TYPE 
00005C .DC X'22' 

(- 00005D DC B'01010000' 
00005E DC C18'FIDIUVR3' 
000066 DC X'0104' 
000068 DC F'O' LABEL ROUTINE ADDRESS 
00006C DC C (IJKTXRM) EXTENT ROUTINE ADDRESS 
000070 DC X'O' 
000071 DC AL3 (ERRBYTE) 
000074 DC H'O' TEST SWITCH 
000076 DC Y(CCWAD-TABAD-32) POINTER 
000078 DC H'O' IJICB2 
00007A DC X'88' 
00007B DC 5X'O' 
OOOOSO DC AL4 (FILENZ) 
000084 DC 4X'O' 
00008S FILENZ CCW X'07',SEEKARD+1,X'OO',6 
000090 XI 36 (2) ,C' 0' 
000094 DC H'O' MAXIMUM DATA LENGTH 
000096 DC YL 1 (FILENO-r ABAD-1 ) PTR TO READ 1D STRING 
000097 DC YL(FILEN1-TABAD-1) READ KEY 
00009S DC YL1 (FILEN2-TABAD-1) WRITE ID 
000099 DC YL1 (FILEN3-r ABAD-1) WRITE KEY 
00009A DC YL1 (FILEN4-TABAD-1) RZERO 
00009B DC YL1 (FILEN5-rABAD-1) AFTER 
00009C DC H'20' 
00009E DC H'61' RIC CONSTANT 
OOOOAO DC D'O' 
OOOOAS FILENC CCW X'31',SEEKADR+3,X'40',5 
OOOOBO CCW X'29',KEYARG+8,X'40',0 
0000B8 CCW X'06',IOA1,X'40',0 
OOOOCO DC 1D' 0' 
OOOOCS CCW X'39',SEEKADR+3,X'40',4 
OOOODO CCW X'OE',IOA1+S,X'40',0 

(~ 
OOOODS CCW X'06',FILENK,X'40',8 
OOOOEO CCW X'12',FILENK,X'40',8 
OOOOES CCW X'31',FILENF,X'40',5 
OOOOFO CCW X'1E',IOA1,X'40',0 

Appendix D. DTF Tables 417 



PL/I PLM 8 

IBM Confidential 

0000F8 CCW X'11',CCWAO+32,X'40', C 000100 NOPR 0 
000102 NOPR 0 
000104 FILENF DC SX'O' 
000109 FILENK OC 8X'O' 
000049 FILENO EQU TABAO+l 
000111 FILENl EQU * 000111 DC X'8F1814' 
000049 FILEN2 EQU TABAO+l 
000114 FILEN3 EQU * 000114 OC X'8F18918F181S' 
00011A FILEN4 EQU * 00011A OC X'C718D7S2C718BS' 
000121 FILENS EQU * 000121 OC X'C71834' 
000124 OC X'C718B18718C9C71831871840' 
000130 CCWAD CCW X'07',SEEKAOR+1,X'40',6 
000138 OC 70'0' 
000170 OC 50'0' 
000198 IOA1 DC 00'0' 
000198 KEYARG OC 00'0' 

EXTRN IJKTXRP 
ENO 

c 

C' , , , 

418 



( 

ABS 
ABS, fixed binary ••••• 
ABS, fixed decimal 
ABS, long float ••••••• 
ABS, short float •••••• 
AC1-AC6 ••••••• 

225 
•••••••••••••••• 262 
•••••••••••••••• 265 
•••••••••••••••• 269 
• • • • • • • • • • • • • • •• 267 

ACOMA ••••••••••••••••••••••••••••••••• 
177 
194 
196 
180 31 

ACTIO (R5) 
ACTIONO 
ACTIONO 
ACTIONO 

31 (DO 0) 
31 (Dl 0) 

ACTIONO 31 (D11) 

•••••••••••.••••••••• 175 
•••••••••••••••• 188 
•••••••••••••••• 198 
• • • • • • • • • • • • • • • • 1 83 ACTION2C •••••••••••••• 

ADASSI •••••••• 
ADASSI1 - 9 
ADBASA •••••••• 
ADBASC •••••••• 

•••••••••••••••••••••••• 202 
• • • • • • • • • • • • • • • • • • • • • • •• 192 · ...................... . 203 

202 
ADBISA •••••••••••••••• 
ADBOIV •••••••••••••••• 
ADBSIP •••••••••••••••• 
ADBSOP •••••••••••••••• 

•••••••••••• ~ ••. 203 
••••••••••••• 202 
••••••••••••• 203 
••••••••••.•• 203 

ADCALL •••••••• 
ADCHAP •••••••• 

· ............. ~ ........ . 203 
203 

••••••••••••• 203 
• • • • • • • • • • • •• 193 

ADCHOP •••••••••••••••• 
ADCOB3 •••••••••••••••• 
ADCON ••••••••••••••••• • •••••••••••• 293 

• • • • • • • • • • • • • • • • • • • • • • •• 194 ADCOST •••••••• 
ADD 225,311,316,323 
ADDARI •••••••• • • • • • • • • • • • • • • • • • • • • • • •• 202 
ADDEQ ••••••••••••••••• 
ADDIV ••••••••••••••••• 

• ••••••••••••••• 194 
•••••••••••••••• 202 

ADDMU ••••••••• 
ADD NEG •••••••• 
ADDNIG •••••••• 
ADDPQL •••••••• 
ADDRF ••••••••• 
ADDSHI •••••••• 
ADIF •••••••••• 
ADIOST •••••••• 
ADMACO •••••••• 
ADMULI 
ADMVC ••••••••• 
ADNEG 1 •••••••• 
ADRTLC •••••••• 
ADSECO •••••••• 
ADTEE6 •••••••• 
ADUNA ••••••••• 
AHSTAB •••••••• 
ALIGN .•••..••• 
ALL ••••••••••• 
ALLOC ••••••••• 
ALLVAR •••••••• 
ANDO •••••••••• 
ANDOST 
ANEN •••••••••• 
hNEND ••••••••• 
ANY ••••••••••• 
hRITH1-2 •••••• 
ARGADR 

202 
202 
203 
192 

• • • • • • • • • • • • • • • • • • • • • • •• 221 
•••••••••••••••••••••••• 202 

203 
202 
198 
202 

•••••••••••••••••••• 172,197 
•••••••••••••••••••••••• 202 
• . • • . . . . • • . . . . • • . • . . . • .. 203 
•••••••••••••••••••••••• 203 · ...................... . 193 

202 
75 

297 
225 
291 
291 
158 
153 
158 
153 
225 
182 
221 

hrray •••••••••••••••••••••••••••••••••• 70 
ARRAY, ARRAYO ••••••••••••••••••••••••• 
Array expression begin •••••••••••••••• 

178 
279 

Array 
Array 
ARRCH 
ARROUr 
ARRTAB 

INDEX 

table ••••••••••••••••••••••••••• 
table construction •••••••••••••• 

Array expression end •••••••••••••••••• 
ARYTAB •••••••••••••••••••••••••••••••• 

205 
111 
178 
178 
209 
281 
111 

ASGN •••••••••••••••••••••••••••••••••• 226 
ASKIP ••••••••••••••••••••••••••••• 2 08 , 2 1 9 
ASSCODE ••••••••••••••••••••••••••••••• 289 
Assign label constant ••••••••••••••••• 274 
Assign label variable ••••••••••••••••• 275 
Attribute byte •••••••••••••••••••••••• 172 
Attribute table ••••••••••••••••••• 107,109 
Attribute table compression ••••••••••• 109 

51 BANN • 
BAS 
BEBE •••••••••••••••••••••••••••••••••• 

310,325 
120 
246 
223 

BFSTR 
BITSET 
Bit strings (generated code) •••••••••• 272 
BLBL •••••••••••••••••••••••••••••••••• 

description table ••••••••••••••• 
sorting ........................ . 

120 
229 
127 

Block 
Block 
Block structure •••••••••••••••••••••••• 57 

312 Block table (PBT) 
Block table listing 
BLOCKr 

••••••••••••••••••• 354 

BLTAB ••••••••••••••••••••••••••••••••• 
BLUE ••••••••••••••••••••••••••••••••••• 
BOOLF 
BOU ••••••••••••••••••••••••••••••••••• 
Branch macro •••••••••••••••••••••••••• 
Branch on condition ••••••••••••••••••• 
BRANl 
BRG ••••••••••••••••••••••••••••••••••• 

356 
298 

51 
221 
326 
118 
274 
316 
326 

BSAC •••••••••••••••••••••••••• 120,153,158 
BUBU ••••••••••••••••••••••••••••••••••• 
Buffer areas ••••••••••••••••••••••••••• 
Built-in functions, library calls for 
Built-in fUnctions II ••••••••••••••••• 
BYBY 

65 
21 

212 
224 
159 

BYPA •••••••••••••••••••••••••• 120,153,159 

CACTIONO-7 
CALL •••••••••••••••••••••••••••••••••• 
CALL (3) 

193 
277 
282 

Call library routine •••••••••••••••••• 283 
CARFB •••••••••••••••••••••••••••••••••• 65 
CARThS ••••••••••••••••••••••••••••• 54,297 
CHAIN ••••••••••••••••••••••••••••••••• 1 78 
CHAMO ••••••••••••••••••••••••••••••••• 352 
CHAR •••••••••••••••••••••••••••••••••• 353 

string assignment ••••••••••• 275 
string comparison ••••••••••• 271 
string concatenation •••••••• 270 

Character 
Character 
Character 
Character 
Character 
CHECK3-5 

strings •••••••••••••••••••••• 54 
string table ••••••••••••••••• 54 

CHECKENT •••••••••••••••••••••••••••••• 
CH'ECKJK ••••••••••••••••••••••••••••••• 

Index 

209 
184 
223 

419 



CHECKOUT •••••••••••••••••••••••••••••• 177 
CHECKSP 
CHECKST 

••••••••••••••••••••••••••• 178,180 

CKREVA •••••••• 
CLOSE .................................. . 

135 
149 
144 

CNOP •••••••••••••••••••••••••••••• 311,316 
Code generation ••••••••••••••••••• 253,284 
COMMON •••••••••••••••••••••••••••••••• 
Communication region •••••••••••••••••• 
eOMOMA ••••• " ••••••••••••••••••••••••••• 
COMOMAO 

186 
7 

146 
136 

Compiler interface ••••••••••••••••••••• 20 
CON ••••••••••••••••••• •••••••••••••••• 159 
CONEND •••••••••••••••••••••••••••••••• 291 
CONLBE •••••••••••••••••••••••••••••••• 143 
CONOUT •••••••••••••••••••••••••••••••• 294 
CONSCR •••••••••••••••••••••••••••••••• 294 
CONSTA •••••••••••••••••••••••••••••••• 290 
Constants in static storage ••••••••••• 319 
Constants, optimization of •••••••••••• 292 
Constants, processing of (I) •••••••••• 123 
Constants, processing of (II) ••••••••• 237 
Constants, sorting of ••••••••••••••••• 287 
Constant table •••••••••••••••••••• 123,237 
CONTAB •••••••••••••••••••••••••••• 292,297 
CONTB .................................. 146 
CONTBR •••••••••••••••••••••••••••••••• 150 
CONTEB •••••••••••••••••••••••••••••••• 135 
Contextual declarations •••••••••••••••• 92 
CONVAR •••••••••••••••••••••••••••••••• 289 
Conversion 
Conversion 
Conversion 
CONVERT 

CV4- 5 •••••••••••••••••••••• 
180 
270 

(generated cod~ ••••••••••• 270 
••••••••••••••••••••••••••• 184,192 

CONVN ••••••••••••••••••••••••••••••••• 222 
COSC •• 
COTAB 
COUNT ••••••••• 
COUT •••••••••• 
CV36 •••••••••• 
CIlFISCH ••••••• 

D17 
Data lists of GET/PUT ••••••••••••••••• 
DCA ••••••••••••••••••••••••••••••••••• 

153 
190 
245 
291 
193 
210 

219 
138 
323 

DeAL3 ••••••••• 
DCF ••••••• 

•••••••••••••••• 311,316,322 
•••••••••••••••• 311,316,323 

DCLASS 
Deso •••••••••• 

324 
324 

DCSTA • 
DCV 
DCX 
DEC 

•••••••••••••••••••••••• 311,317,323 
323 

311,316,323 

Declaration pool ••••••••••••••••••••••• 
Declaration scan ••••••••••••••••••••••• 
Declaration scan II •••••••••••••••••••• 
DECLARE statements ••••••••••••••••••••• 
DED ••••••••••••••••••••••••••••••••••• 
DEDGEN 
Define label constant ••••••••••••••••• 
Define label macro •••••••••••••••••••• 
DEROUTO-7 
DETERMI N •••••••••••••••••••••••••••••• 

51 
67 
67 
70 
67 

222 
222 
274 
118 
194 
186 
250 Diagnostic 

Diagnostic, final ••••••••••••••••••••• 347 
DIFL •••••••••• 
DIMCHK 
DISPLAY 

420 

243 
209 
150 

DIVIDE 
DO branch ............................. 
DOD·O •••••••••••••••••••••••••••••••••• 

225 
275 
120 

DOPH •••••••••••••••••••••••••••••• 153,158 
DO statement •••••••••••••••••••••••••• 151 
DO statement II ••••••••••••••••••••••• 155 
DPDS •••••••••••••••••••••••••••••••••• 
DPTE ••••••••••••••••••••••••••••••••••• 
DRIFT 
DSEND 
DSGEN 

................................... 
120 

51 
51 

291 
183 

DSL ••••••••••••••••••••••••••• 311,316,323 
DSPUT ••••••••••••••••••••••••••••••••• 
DSTAB 
DTF tables •••••••••••••••••••••••••••• 
DYNDMP •••••••••••••••••••••••••••••••• 

290 
298 
375 
222 

EAACT 
EBACT 

208,219 
208,219 

51 ECAV ••••••••••••••••••••••••••••••••••• 
Edit pattern 
EOACT 

(pictures) •••••••••••••••• 47 

EO-EF 
E1GEN 
E302-E310 
ELCO 

208,219 
178 
179 
183 

ELEL •••••••••••••••••••••••••••••••••• 
ELO ••••••••••••••••••••••••••••••••••• 

38 
121 
346 

END card generation ••••••••••••••••••• 342 
ENDBL ••••••••••••••••••••••••• 311,316,323 
End-of-statement key ••••••••••••••••••• 57 
ENDX •••••••••••••••••••••••••••••••••• 
EOP ••••••••••••••••••••••••••••••••••• 

153 
249 

EOPH •••••••••••••••••••••• 1 36 , 1 41 , 1 47, 1 50 
EOPACT •••••••••••••••••••••••• 209,220,225 
EOS key •••••••••••••••••••••••••••••••• 57 
EOST ••••••••••••••••••• 65,121,136,154,159 
EQU ••••••••••••••••••••••••••••••••••• 
EQuour 
EQUSR 
ERCAL 
ERLI • 

294 
294 
294 
340 
340 

Error 
ERROR 

••••••••••••••• 53,66,121,136,154,159 
(DOO-D11) 

Error diagnostic 
ESD ••••••••••••••••••••••••••••••••••• 
ESD card generation ••••••••••••••••••• 
ESFIN 
ESI ••••••••••••••••••••••••••••••••••• 
ESMO •••••••••••• ., ••••••••••••••••••••• 
EXCHP 
EXPA • 
EXPOA 
EXPOB 
EXPONENT •••••••••••••••••••••••••••••• 
EXTAB 

172 
250 
336 
338 
339 
346 
340 
223 

51 
222 
222 
183 
324 

External name table (EXTTAB) 
External symbol table listing 
EXTTAB 

•••••••••• 113 
• • • • • • • •• 354 

FACTIONY •••••••••••••••••••••••••••••• 
FBFI 
FBFL 
FBID 
FBII 
FBIL 
FBLL 
FBIN 

113 

196 
125 
125 
240 
239 
239 
239 
126 

o 

o 

c 



c 

FBIS •••••••••• 
FBLO 
FBLS 
FBSL •••••••••• 

241 
82 

240 
239 

FBSS 
FBST 
FBUF 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 241 
• • • • • • • • • • • • • • • • • • • • • • • • • • • .. • • •• 125 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 82 

FCMB •••••••••• 
FCOM •••••••••• 

39 
38 

FCON •••••••••••••••••• 
FCSC •••••••••••••••••• 
FCTA •••••••••• 

•••••••••••• 125,238 
• • • • • • • • • • • • • • •• 124 

FDDI •••••••••• 
FDFI 
FDFL 
FDIB •••••••••• 
FOIL •••••••••• 
FDIS •••••••••• 

........................ 

55 
240 
125 
125 
243 
242 
242 

FDLB •••••••••••••••••• 
FOLD •••••••••••••••••• 

•••••••••••••••• 242 
•••••••••••••••• 243 

FOLL 
FDLS 
FEFIBL •••••••• 
FEND •••••••••• 

242 
242 
135 

41 
80 

••••••••••••••••••••• 83,238 
••••••••••••••••••••••••••••••• 83,238 

FENV •••••••••• 
FE OS •••••••••• 
FERR 
FERRUC 
FEST •• 
FETCH • 
FETCHA, 
FFIL 

238 
124 

•••••••••••••••••••••••• 175,180,197 
FETCH1 195 

80 
56 
82 
82 

FFIN 
FFIT 
FFIX 
FGSC 
FIDE 
FILE 

237 
41,55 

70 
File attributes and options, 
conflicting ••••••••••••••••••••••••••• 

File declarations •••••••••••••••••••••• 
File generation ••••••••••••••••••••••• 
File module ••••••••••••••••••••••••••• 
File table FILTAB •••••••••••••••••••••• 
FILL •••••••••••••••••••••••••••••••••• 
FILTAB ••••••••••••••••••••••••••••••••• 
Final output •••••••••••••••••••••••• 
FINDKEY ••••••••••••••••••••••••••••••• 
FINT •••••••••••••••••••••••••••••••••.•• 
FISCH ••••••••••••••••••••••••••••••••• 
Fixed binary addition ••••••••••••••••• 
Fixed binary assignment with overflow 

check •••••••••••••••••••••••••••••••• 
Fixed binary assignment without 

overflow check ••••••••••••••••••••••• 
Fixed binary comparison ••••••••••••••• 
Fixed binary division ••••••••••••••••• 
Fixed binary exponentiation ••••••••••• 
Fixed binary multiplication with 

overflow check ••••••••••••••••••••••• 
Fixed binary multiplication without 

overflow check ••••••••••••••••••••••• 
Fixed binary negation ••••••••••••••••• 
Fixed binary subtraction •••••••••••••• 
Fixed decimal comparison •••••••••••••• 
Fixed decimal division •••••••••••••••• 
Fixed decimal exponentiation •••••••••• 
Fixed decimal multiplication •••••••••• 

81 
79 

327 
334 

79 
293 

79 
354 
182 

82 
211 
259 

260 

261 
261 
260 
261 

259 

261 
260 
259 
263 
263 
264 
263 

Fixed decimal negation •••••••••••••••• 
Fixed decimal subtraction ••••••••••••• 
FKBU ••••••••••••••••••••••••••••••••••• 
FKEL ••••••••••••••••••••••••••••••••••• 
FKEW ••••••••••••••••••••••••••••••••••• 
FLBI 

263 
263 

39 
82 
39 

242 
FLCEILF ••••••••••••••••••••••••••••••• 222 
FLCLOF •••••••••••••••••••••••••••••••• 222 
FLDI •••••••••••••••••••••••••••••••••• 241 
Float comparison •••••••••••••••••••••• 269 
Float general exponentiation •••••••••• 267 
FLTRO ••••••••••••••••••••••••••••••••• 222 
FMBU •••••••••••••••••••••••••••••••• 41,56 
FMED ••••••••••••••••••••••••••••••••••• 82 
FNBI •••••••••••••••••••••••••••••••••• 241 
FNCA ••••••••••••••••••••••••••••••••••• 39 
FNDI •••••••••••••••••••••••••••••••••• 241 
FNOP ••••••••••••••••••••••••••••••••••• 82 
FORMAr •••••••••••••••••••••••• 1 46 , 2 4 6 , 2 76 
Format label assignment, macros for ••• 204 
Format list ••••••••••••••••••••••••••• 144 
FORMAr statement •••••••••••••••••••••• 144 
FORMTA.B ••••••••••••••••••••••••••••••• 209 

121 FOUT 
FPOT 
FPER 
FPFI 
FPFL 
FPIN 
FQUO 
FREE 

82 
39 

126 
126 

41,52,56,238 
38 

FREEING ••••••••••••••••••••••••••••••• 
195 
195 

82 FREG • 
FREP • 
FROTO 
FRR •• 
FSBI 

55,126 
184 
310 
239 

FSCA 
FSCN 
FSCS 
FSDI 
FSI •• 
FSI1 
FSLA 
FSPE 
FSTL 
FSTN 
FSTR 
FSYS 
FTKW 
FUNCTA •••••••••••••••••••••••••••••••• 

55 
80 

240 
240 

52 
52 
38 
82 

125 
38 
55 
82 
39 

220 
Function procedures 
FUVN 

• • • • • • • • • • • • • • • • • • •• 84 

F (Yl 

GEASS 
GEASS3 
GEASSR 
GECON ••••••••••••••••••••••••••••••••• 
GEDOS'r 
GEEND 
GENADCO ••••••••••••••••••••••••••••••• 
GENCO 
Generated temporary variables ••••••••• 
Generator phases •••••••••••••••••••••• 
GENDEDAD •••••••••••••••••••••••••••••• 
GENLAB 
GENVAR 

Index 

82 
51 

136 
147 
150 
291 
136 
136 
221 
221 
151 
253 
222 
226 
290 

421 



GEO ••••••••••••••••••••••••••••••••••• 324 
GEOS •••••••••••••••••••••••••• 121,154,159 
GEPOI ••••••••• 
GEPUF ••••••••• 
GEPUII 
GEl' ••••••••••••••••••••••••••••••••••• 
GET CON •••••••••• e· ••••••••••••••••••••• 

GETEX 
GETIN ••••••••••••••••••••••••••••••••• 
GETLA ••••••••••••••••••••••••••••••••• 
GETLOC 

143 
147 
141 
355 
294 
339 
291 
339 
298 

GETOP ••••••••••••••••• •••••••••••••••• 195 
GET PRE 
GET PUT 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 290 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 246 

GETST ••••••••••••••••••••••••••••••••• 
GETSYM 
GEVA •••••••••• 

195 
290 
143 

GEVAO 
GEVARE 
GRGR 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 137 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 150 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 121 
GSN ••••••••••••••••••• •••••••• 121,154,159 

HAM •••••••••••••••••••••••••••••••••••• 
HDETER 
HEINS . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 
HERH •••••••••••••••••••••••••••••••••• 
HESUB •••••••••••••••••••••••••••••••••• 
High •••••••••••••••••••••••••••••••••• 
HIGHLOW ••••••••••••••••••••••••••••••• 
HINDAD 
HMOCO 
HMOVE ••••••••••••••••••••••••••••••••• 
HOPE 
Housekeeping on work files 
HTE ••••••••••• 
HOE ••••••••••• 

52 
285 
284 
252 

31 
276 
221 
285 
284 
286 
285 

25 
52 

286 

Identifiers, replacement of •••••••••••• 40 
IDEXPR •••• $ • • • • • • • • • • • • • • • • • • • • • • • • • •• 141 
IF •••••••••••••••••••••••••••••••••••• 275 
IF statement •••••••••••••••••••••••••• 118 
IFFALSE statement ••••••••••••••••••••• 118 
IFIF •••••••••••••••••••••••••••••••••• 
IFPH •••••••••••••••••••••••••••••••••• 
IJKAGI 
IJKAGINO •••••• 
IJKAGO •••••••• 
IJKAGONO •••••• 
IJKANT •••••••• ......................... 
IJKAMN ••••••••••••••••••••••••••••••••• 
IKJAPINO •••••• 
IJKAPH •••••••• 

121 
120 

28 
28 
28 
28 
27 
29 
29 
28 

IJKAPI 
IJKAPO 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 29 
••••••••••••••••••••••••••••••••• 29 

IJKAPT •••••••• 
IJKAPTR •••••••••••••••••••••••••••••••• 
IJKATIN ••••••• 
IJKATOUT ••••••••••••••••••••••••••••••• 

27 
27 
30 
30 
27 IJKAWT 

IJKGI ••••••••••••••••••••••••••••••• 26,28 
IJKGO ••••••••••••••••••••••••••••••• 
IJKMBL 
IJKMBS 

26,28 
7 
7 

26 
26 

7 

IJKMN •••••••••••••••••••••••••••••••••• 
IJKMO •••••••••••••••••••••••••••••••••• 
IJKMTS 
IJKNT 

· ...... . 
IJKPH ••••••••• 

422 

26 
26 

IJKPI 
IJKPO 
IJKPONO •••••••••••••••••.••••••••••••••• 

26,29 
26,29 

29 
26 
26 

IJKPT 
IJKPTR 
IJKRI 
IJKRO 
IJKTI 
IJKTO 
IJKWI 
IJKWO 
IJKWT 
INC1 
INCHARF 

26,28 
26,28 

26 
26 

26,29 

................ ' ................. . 
26,29 

INCR •••••••••••••••••••••••••••••••••• 
I NCRE 
INIGP 
INISC2 

26 
159 
221 
290 
219 
134 
141 

INITI~L •••••••••••••••••••••••••••• 70,276 
(AOO) 35 Initialization for disk versions 

Initialization for tapes (AOO) 
Initialization for tape and disk 
INITSOB 

• • • • • •• 34 
(AOO) 35 

209 
INLE ••••••••••••••••••••••• ., ••••••••••. 346 
INPT ••••••••••••••••••••••••••••••••••• 65 

135,247 
345 
285 

INPUT ••••••••••••••••••••••••••••• 
INRE ••••••••••.•••••••••••••••••••••••• 
INSERT 
Interface, compiler •••••••••••••••••••• 20 
Interface, new •••••••••••••••••••••••• 161 
Interface routines ••••••••••••••••••••• 26 
Interface structure •••••••••••••••••••• 
Internal PL/I code ••••••••••••••••••••• 

25 
36 

INTREST ••••••••••••••••••••••••••• 220,226 
flow during compilation •••••••••••• 11 I/O 

I/O 
I/O 
I/O 
I/O 
I/O 

macros I •••••••••••••••••••••••••• 245 
macros II ••••••••••••••••••••••••• 248 
scan I •••••••••••••••••••••••••••• 131 
scan II ••••••••••••••••••••••••••• 138 
scan III •••••••••••••••••••••••••• 144 

I/O scan 
IPDS 

IV ••••••••••••••••••••••••••• 

ISCR •••••••••••••••••••••••••••••••••• 
ISU ••••••••••••••••••••••••••••••••••• 

JAHSA1 
JASSA1 
JATAA1 
JATRA1 
JBEGA1 
JBETAl 
JBIPA1 

· ................................. . · ............................... . 

JBLT •••••••••••••••••••• " ••••••••••••• 
JCATA1 
JCCBA1 
JCES •••••••••••••••••••••••••••••••••• 
JCHAA1 
JCHEAl · ............................... . 
JCIR •••••••••••••••••••••••••••••••••• 
JCPI 
JCPLA1 
JCSTA1 
JCVTA1 
JCWTA1 
JDCLA1 
JDCSA1 
JDECA1 
JDEPA1 

· ............................... . 
· ............................... . · ............................... . 

148 
121 
326 
304 

77 
58 
76 
71 
68 
61 

110 
107 
109 

85 
109 

60 
85 

109 
110 

68 
84 
71 
78 
75 
68 
71 
69 

c 

c 



( 

( 

(. 

JDLAA1 
JELSA1 
JENDA1 
JENTA1 
JEOPA1 
JEOS 
JEOSA1 
JEPLA1 
JERR 
JERRAl 
JFIXAl 

· ...... . 
60,67 

59 
59,68 
58,68 

61 
••...•....•••.••••.•••.••.••• 83,126 
••••••••••••••• 59,65,69,121,154,159 

57 
126,238 

•••••••••••••••••• 60,66,121,154,159 
61 

JGOF •••••••••••••••••••••••••••••••••• 110 
JGOTAl ••••••••••••••••••••••••••••••••• 60 
JLABA 1 ••••••••.••••••••••••••••••••••••• 75 
JLACAl ••••••••••••••••••••••••••••••••• 59 
JLEN •••••••••••••••••••••••••••••••••• 110 
JMAC •••••••••••••••••••••••••••••••••• '07 
JMDCA 1 ••••••••••••••••••••••••••••••••• 85 
JMIB •••••••••••••••••••••••••••••••••• 126 
JNAMA 1 ••••••••••••••••••••••••••••••••• 77 
JNSTAl ••••••••••••••••••••••••• 84 
JOPTAl ••••••••••••••••••••••••••••• 68 
JPCOA 1 ••••••••••••••••••••••••••••••••• 78 
JPCRAl ••••••••••••••••••••••••••••••••• 68 
JPDOA 1 ••••••••••••••••••••••••••••••••• 59 
JPIFAl ••••••••••••••••••••••••••••••••• 58 
JPREA 1 ••••••••••••••••••••••••••••••••• 76 
JPROA 1 ••••••••••••••••••••••••••••••••• 58 
JPUTAl ••••••••••••••••••••••••••••••••• 78 
JQULA 1 ••••••••••••••••••••••••••••••••• 85 
JRPS •••••••••••••••••••••••••••••••••• 107 
JRSTA 1 ••••••••••••••••••••••••••••••••• 84 
JSAR •••••••••••••••••••••••••••••••••• 107 
JSATA 1 ••••••••••••••••••••••••••••••••• 76 
JSCC •••••••••••••••••••••••••••••••••• 108 
JSCNA 1 ••••••••••••••••••••••••••••••••• 70 
JSCOAl ••••••••••••••••••••••••••••••••• 74 
JSID •••••••••••••••••••••••••••••••••• 107 
JSIPA 1 ••••••••••••••••••••••••••••••••• 71 
JSKPAl ••••••••••••••••••••••••••••••••• 60 
JSLC •••••••••••••••••••••••••••••••••• 126 

65,69 JSLCA1 
JSPOA1 
JSRTA1 
JSSAA1 
JSTAA1 
JSTBA1 
JTRA •• 
JTRNA1 
JTRIA1 
JTRLA1 
JTRN •• 
JTRNA1 

84 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 70 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 61 

58 
67 

108 
60 
71 
77 

••••••••••••••••••••••••• 83,126,238 
•••••••••••••••••• 52,65,121,154,159 

KBT ••••••••••••••••••••••••••••••••••• 310 
KCHECK •••••••• 27 
KCONDOUT •••••••••••••••••••••••••••••• 236 
Keywords, replacement of ••••••••••••••• 36 
Keyword table •••••••••••••••••••••••••• 37 
KEY4MOD ••••••••••••••••••••••••••••••• 187 
KGETNOTE ••••••••••••••••••••••••••••••• 27 
KINTER •••••••••••••••••••••••••••••••• 236 
KONLOOK ••••••••••••••••••••••••••••••• 236 
KONSTOUT •••••••••••••••••••••••••••••• 236 
KOTE •••••••••••••••••• 
KRAFT 
KREAD ••••••••••••••••• 
KREP •••••••••••••••••• 

236 
159 

27 
28 

KSAVE1 
KTESC~ 

7 
235 

KTETA •••••••••••••••••••••••••••••••• 7.25 
K2CHECK •••••••••••••••••••••••••••••••• 27 
K5PH • • • • • • • • • • •• 7 

LAB ••••••••••••••••••••••••••••••••••• 352 
315 

311,316,323 
LABE •••••••••••••••••••••••••••••••••• 
LABEL 
LABELAS ••••••••••••••••••••••••••••••• 209 
Label 
Label 
Label 
Label 

declaration list ••••••••••••••••• 67 
handling •••••••••••••••••••••••• 312 
offsets ••••••••••••••••••••••••• 318 
table ••••••••••••••••••••••••••• 

LABS •••••••••••••••••••••••••••••••••• 
312 
340 

312.336 LAB TAB 
LAREG ••••••••••••••••••••••••••••••••• 284 
LAST •••••••••••••••••••••••••••••••••• 
LATA • 
LDXEC 
LEFTH 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
LENGTH •••••••••••••••••••••••••••••••• 
LF utility routines •••••••••••••••••••• 

298 
315 
340 
298 
178 

63 
LGEN •••••••••••••••••••••••••• 121,154.159 
LIBCALL ••••••••••••••••••••••••••••••• 
LIBER ••••••••••••••••••••••••••••••••• 
Library routines •••••••••••••••••••••• 
LINCR ••••••••••••••••••••••••••••••••• 

223 
340 
373 
297 

Linguistic functions ••••••••••••••••••• 63 
Linka3e for built-in functions •••••••• 212 
LINKS ••••••••••••••••••••••••••••••••• 356 
LIOCS for disk versions •••••••••••••••• 33 
LIOCS for tapes •••••••••••••••••••••••• 32 
LIOCS modules •••••••••••••••••••••••••• 26 
LJX ••••••••••••••••••••••••••••••••••• 2 11 
LKW •••••••••••••••••••••••••••••••••••• 
LNK ••••••••••••••••••••••••••••••••••• 
Load 
Load 
Load 
Load 
Load 
Load 
Load 
Load 
Load 
Load 

address of ON block •••••••••••••• 
array •••••••••••••••••••••••••••• 
OED •••••••••••••••••••••••••••••• 
long ••••••••••••••••••••••••••••• 
multiple ••••••••••••••••••••••••• 
scalar .......••....••.......•.... 
short •••••••••••••••••••••••••••• 
tr ansmi t .......•.•......•........ 
variable .••••••••••••••.•........ 

LOCAL ••••••••••••••••••••••••••••••• ,.. 

66 
355 
281 
276 
282 
282 
282 
282 
282 
281 
277 
280 
297 

LOCAT ••••••••••••••••••••••••••••••••• 352 
Logical flow of compiler ••••••••••••••• 15 
Logical parts of compiler •••••••••••••• 13 
Long float addition ••••••••••••••••••• 267 
Long float assignment ••••••••••••••••• 269 
Long float division ••••••••••••••••••• 268 
Long float exponentiation ••••••••••••• 269 
Long float general exponentiation 269 
Long float multiplication ••••••••••••• 268 
Long float negation ••••••••••••••••••• 268 
Long float subtraction •••••••••••••••• 268 
Loop begin •••••••••••••••••••••••••••• 283 
Loop end •••••••••••••••••••••••••••••• 283 
Low ••••••••••••••••••••••••••••••••••• 
LGEN 
LGEN 
LGEN 
LJX •• 
LVGE 
LY •••••••••••••••••••••••••••••••••••• 

Index 

280 
121 
154 
159 
211 
159 
211 

423 



Macro generation II .................. . 
MacroS and generated code ••••••••••••• 
MADM ••••••••.• 
MAIN •••••••••• · ...................... . 
MAKGEN 
MAMA •••••••••• 
MAMIFI 

196 
258 
316 
180 
210 
121 
221 

Mask table MSKTAB •••••••••••••••••••••• 74 
MASURO 
MASU (X) 
MATRIX •••••••• 
MAX ••••••••••• 
MESID ••••••••• 
MEX ••••••••••• 
MIO ••••••••••• 
MOC 
MOD 
MODDF ••••••••••••••••••••••••••••••••• 
MODF •••••••••••••••••••••••••••••••••• 
Model-instruction dictionary .••••••••• 
MODIF ••••••••••••••••••••••••••••••••• 

287 
198 
185 
346 
339 
345 
311 
315 
293 
222 
221 
254 
304 

MOK 
MOKl 

310,324 
326 
346 
304 

MOKK •••••••••••••••••••••••••••••••••• 
MOO 
MOOK •••••••••••••••••••••••••••••••••• 336 
MOR ••••••••••••••••••••••••••••••••••• 
MOSC •••••••••••••••••••••••••••••••••• 

337 
345 

• • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • •• 209 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 220 

MOV21 
MOV21-31 
MOV31 
MOVE •••••••••• 
MOVEA 1 •••••••• 

209 
247 

60 
Move address 
Move character 
MOVECON ••••••• 

• • • • • • • • • • • • • • • • • • • • • • •• 279 
•.•••••..•..••••.••••.•• 283 
• • • • • • • • • • • • • • • • • • • • • • •• 1 84 

MOVEDATA •••••••••••••••••••••••••••••• 
Move immediate 
MOVE II 
MOVEIO 
MOVEIS 
MOVEIT 
MOVESO 
MOVETO 

••••• jII •••••••••••••••••••••••••• 

MOVGEN •••••••• 
MOV021 •••••••• 

182 
281 
173 
173 
173 
173 
173 
173 
210 
209 

MOVOUT 
MSKTAB 
MUDI 

220,226 
74 

243 
243 MUFL •••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••.••. 311,323 
•••••• ~ ••••••••••••••••••••••• 225 

MULTI 
MULTIPLY 
Multiply halfword ••••••••••••••••••••• 

N1-6 •••••••••• 
NAME •••••••••• 
NAMTAB •••••••• 

· ...................... . 
New interface ••••••••••••••••••••••••• 
NOTOPT 
NSNS 

Object code listing ••••••••••••••••••• 
OERA •••••••••••••••••••••••••••••••••• 
OFF OUT •••••••• 
OFFSET •••••••• 
Offset 
Offset 
Offset 

424 

handling ••••••••••••••••••••••• 
preparation, final ••.••.•..•••• 
table, building of ••••••••••••• 

283 

220 
353 

40 
161 
293 
121 

348 
322 
297 
298 
306 
319 
299 

OFFTAB1 
OFLIS 
OGA 

................................. 
OGE ••••••••••••••••••••••••••••••••••• 
ON ••• 
OPCLO 
OPEN • 

297 
318 
324 
310 
229 
147 
144 

Operation priorities •••••••••••••••••• 176 
OPT ••••••••••••••••••••••••••••••••••• 
OPTIM 
OPTIM2 
OPTIM4 
OPTIM8 
OPWSP 

. ............................... . 

Or immediate 
OTSEKr 

290 
294 
294 
293 
293 
247 
283 
150 

OUT ••••••••••••••••••••••••••• 209,220,290 
289 
142 
137 
142 

OUTASS 
OUTCOND 
OUTGEIl 
OUTPcr 
OUTPur 
Output, final 
Output lis.ting 

135,247,291 
354 
348 

OUTSBST ••••••••••••••••••••••••••••••• 
OUTSPIl 
OUTSVC 
OUTSTR 
OUTTAB 
Overlay •••••••••••••••..•.••.••....... 

P80-P183 ............... ' .............. . 
PAD ••••••••••••••••••••••••••••••••••• 

143 
143 
142 
142 
137 
281 

186 
340 

PARA •••••••••••••••••••••••••••••• 311,317 
Parameter list ••••••••••••••••••••••••• 67 
PARG •••••••••••••••••••••••••••••••••• 222 
PAT • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 52 
PBT ••••••••••••••••••••••••••••••••••• 312 
PCB ••••••••••••••••••••••••••••••••••• 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
phase 
Phase 
Phase 

A25 
A30 
A35 
A45 
A50 
B10 
B15 
B20 
B25 
B30 
B40 
B70 
B90 
B92 
B95 
B97 
COO 
C25 
C30 
C35 
e50 
C55 
C60 
C65 
C85 
C86 
C95 
000 
DOS 

- ------- ----

355 
36 
40 
42 
54 
57 
67 
70 
73 
79 
84 
86 
92 

107 
109 
111 
113 
116 
118 
123 
127 
131 
138 
144 
148 
151 
155 
161 
175 
180 

o 

c 

c 



( 

Phase 010 
part 1 
part 2 
part 3 

Phase 011 
Phase 015 
Phase 017 
Phase 020 

188 
188 
189 
194 
196 
204 
212 
224 
229 Phase 040 

Phase 070 
Phase 075 
Phase E25 
Phase E50 
Phase F25 
Phase F35 

•••••••••••••••••••• 237,248 
• • • • • • • • • • • • • • • • • • • • • • •• 245 
.••••••••..••••••••••••• 250 
•••••••••••••••••••••••• 284 

F75 
F90 
F95 
GOO 
G01 
G15 
G17 
G20 
G25 
G30 

............................. ............................. 

G 31 ••••••••••••••••••••••••••••• 
G40 ••••••••••••••••••••••••••••• 
G55 

AOO, AOOO, A10 •••••••••••••••••• 
A60-A65 

287 
292 
295 
299 
306 
312 
318 
319 
329 
334 
338 
341 
347 
348 
354 

34 
62 

Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phase 
Phases 
Phases 
Phases 
Phases 
Phases 
Phases 

000-011 
E50-E61 
E60-E61 

(general) 
(general) 

•••••••••••••• 163 
•••••••••••••• 253 

F95-G55 (general) •••••••••••••• 
Phases, list of 
PICK 
Pictures ••••••••••••••••••••••••••••••• 
PIP1 
PLENG ••••••••••••••••••••••••••••••••• 
PLI 
PMAKO ••••••••••••••••••••••••••••••••• 
PMAK87 
P (NA) 
POB 
Pointer assignment •••••••••••••••••••• 
pointer comparison •••••••••••••••••••• 
PQ •••••••••••••••••••••••••••••••••••• 
PRECSION •••••••••••••••••••••••••••••• 
Precision handling •••••••••••••••••••• 
PREMAC 

285 
304 

10 
298 

42 
50 

222 
355 
221 
210 
186 
122 
274 
274 
182 
184 
180 
189 

Prestatement generation ••••••••••••••• 107 
PRET •••••••••••••••••••••••••••••••••• 
PRETAB 
PRETEND 
PRIBLO 
PRINT 

289 
113 
290 
356 
356 

PROCE ••••••••••••••••••••••••• 311,316,323 
PROD •••••••••••••••••••••••••••••••••• 
Prologue •••••• 
PRT ••••••••••• 

225 
278 
355 

pseudo program (pictures) •••••••••••••• 47 
PUCO •••••••••• 
PUNCH • 
PUT 
PUTCO • 
PUTLOC ................................ 
PUTNV ••••••••••••••••••••••••••••••••• 
PUTPRE 

221 
356 
294 
290 
298 
291 
289 

PUTour 
PUTOUTES 
PUTOUrFC 

178,294 
182 
182 

RAN ••••••••••••••••••••••••••••••••••• 318 
220 
148 

READIN 
Record I/O •••••••••••••••••••••••••••• 
RECT ••••••••••••••••••••••••••••••••••• 40 
Register usage 
REPE •••••••••••••••••••••••••••••••••• 
Repeat 
REPROON 
REQUEST ••••••••••••••••••••••••••••••• 
RESLEN 
RETURN 
Return 

................................ 

RETURN (000-011) 
Return function value ••••••••••••••••• 
Return to label constant •••••••••••••• 
Return to label variable •••••••••••••• 
Reverse polish notation ••••••••••••••• 
REVER'r •••••••••••••••••••••••••••••••• 

7,22 
222 
281 
220 
195 
183 
129 
277 
172 
280 
274 
275 
175 
229 

RFOF ••••••••••••••••••••••••••••••••••• 52 
52 

346 
336 
341 
337 
297 
325 
222 
191 
290 

RFT •• 
RLDCA ••••••••••••••••••••••••••••••••• 
RLO ••••••••••••••••••••••••••••••••••• 
RLO card generation ••••••••••••••••••• 
RLOSYS •••••••••••••••••••••••••••••••• 
RERRTE ST •••••••••••••••••••••••••••••• 
ROFF •••••••••••••••••••••••••••••••••• 
ROUNDBF ••••••••••••••••••••••••••••••• 
Routine table (010) ••••••••••••••••••• 
RTESTI N ••••••••••••••••••••••••••••••• 

SACT30-43 
SACT50-57 

211 
210 

SACTION7 •••••••••••• 
SACTIONX-Z •••••••••• 

• • • • • • • • • • • • • • • • •• 1 96 
• • • • • • • • • • • • • • • • •• 1 96 

SAVE •••••••••••••••••••••••••••••••••• 293 
172 SAVER 

SBO ••••••••••••••••••••••••••••••••••• 316 
135 
135 

SCAOAL1 
SCADAL2 
SCAFO 146 
SCAL •••••••••••••••••••••••••••••••••• 315 
Scope table (SCOTAB) 
SCOTAB 
SCSIJr 
SOLOS 
SOPRO 
SEARCH 

• • • • • • • • • • • • • • • • • •• 73 
73 

223 
340 
339 

SEAV ••••••••••••••••••••••••••••••••••• 
245,248 

52 
220,226 SETERR 

SETIN1-2 
SETPNr 

246 
226 

Set true on condition ••••••••••••••••• 282 
SHIFT ••••••••••••••••••••••••••••• 262,284 
Shifts (generated code) ••••••••••••••• 272 
Short float addition •••••••••••••••••• 265 
Short float assignment •••••••••••••••• 266 
Short float comparison •••••••••••••••• 266 
Short float division •••••••••••••••••• 265 
Short float exponentiation •••••••••••• 266 
Short float multiplication •••••••••••• 265 
Short float negation •••••••••••••••••• 266 
Short float to long float assignment 270 
Short float subtraction ••••••••••••••• 265 
SIGNAL •••••••••••••••••••••••••••••••• 229 

Index 425 



SIGN •••••••••••••••••••••••••••••••••• 
SIGN, 
SIGN, 
SIGN, 

fixed 
fixed 
float 

binary •••••.•••••••••••••• 
decimal ••••••••••••••••••• 

SITE ••••••••••••••••••••••••••••••••••• 
SKIDLI 
SKIEX ••••••••••••••••••••••••••••••••• 
SKIEX3 
SKILl 
SKISTA •••••••••••••••••••••••••••••••• 
SKISTAT ••••••• 

225 
262 
264 
267 

52 
146 
135 
147 
135 
135 
141 

SKIP •••••••••• 
SKIPC ••••••••• 
SKIPF7 ••• " ••••• 

209,219,245,292,294,340 

SKIPIN 
SKIPRE •••••••• 
SKIPV ••••••••• 
SOURCE •••••••• 
SOURCE (I) 
SPECFUN ••••••• 
STATEN •••••••• 

297 
219 
289 
290 
298 
195 
194 
221 
177 

statement decomposition ••••••••••••••• 175 
Statement identifier key ••••••••••••••• 57 
Statement numbering ••••••••••••••••••• 316 
STEP •••••••••••••••••••••••••• 122,154,160 
STER ••••••••••••••••••••••••••••••••••• 52 
STOP •••••••••••••••••••••••••••••••••• 229 
Storage allocation •••••••••••••••••••• 295 
Storage layout during compilation •••••• 20 
Storage type, determination of •••••••• 180 
Store ••••••••••••••••••••••••••••••••• 275 
Store 
Store 
Store 

long ............................ . 
multiple ••••.•••••.•••••••••..•• 
short •••••••••••••••••••••••• 

STR ••••••••••• 
STRI •••••••••• 
STROUT •••••••• 

279 
279 
275 
245 

53 
178 

Structure mapping •••••••••••••••••••••• 86 
SUBSCR •••••••••••••••••••••••••••••••• 209 
Subscript evaluation •••••••••••••••••• 
Subscript variable •••••••••••••••••••• 
Substri ng ......•..•........•...•...... 
SUBSTT •••••••• 

table construction I •••••••••••• 
table construction II ••••••••••• 
table listing •••••••••••••••.•• 

204 
275 
276 
223 
275 
225 

53 
72 
73 
84 

116 

Sum 
SUM ••• 
SUP 
SWITAB 
Symbol 
Symbol 
Symbol 
Symbol 
SYMTAB 
SYN1 

table (SYMTAB) ••••.••••••.•...•.• 73 

Syntax 
Syntax 
Syntax 

426 

check ••.•••••••••••••.•••••••.•• 
notation, input stream ••••••••• 
notation, output stream •••••••• 

73 
65 
62 

357 
365 

Table and buffer areas 
TARGET 

• • • • • • • • • • • • • • • •• 21 

TARGEr (I) 
TARI1 
TBSBSr 
TDS •••••••••••••••••••••••••••••••••••• 
TEEL ••••••••••••••••• ;. •••••• ,. /IJ •••••••• 

TEPHA •••••••••••••••••••••••••••••••••• 
TESCON 
TEST • 
TESTN ••••••••••••••••••••••••••••••••• 
TESTR 

195 
195 

66 
223 

53 
141 

66 
210 
293 
179 
142 

Text string during compilation 
TIMDAr 

• • • • • • • •• 18 

TPEP ••••••••••••••••••••••••••••••••••• 
222 

53 
353,356 TRA ••••••••••••••••••••••••••••••• 

TRACT3 - 5 •••••••••••••••••••••••••••••• 2 1 0 
TRAN •••••••••••••••••••••••••••••••••• 325 

353 TRANLS 
TRANS 
TRANSL 
TRANSR 
TSCSIJ 
TSUBST 
TTS1 

318,352 
353 
353 
223 
223 
160 

........................ -...... . 
TXT card generation ••••••••••••• • • • • •• 341 
TXTIN 
TXTSYS 

• • • • •• 289 
• • • • •• 337 

UDA ••••••••••••••••••••••••••••••••••• 315 
UREG •••••••••••••••••••••••••••••• 3 11 , 3 1 7 

variables, 
VIRGO 

sorting of 

VTE ••••••••• 

WAIT1 
WAIT2 
WCTAB 
WHY ••••••••••••••••••••••••••••••••••• 
WOLA •••••••••••••••••••••••••••••••••• 
WSLIST 
WTE •••••••••••••••••••••••••••••••••••• 
WUP ................................... . 

Z9 
ZLEDI 
ZMO •••••••••••••••••••••••••••••• •.••••• 
ZPCH • 
ZPRNT 
ZRCD • 
ZTIN ••••••••••••••••••••••••••••••••••• 
ZTOUT 

287 
122 

53 

289 
290 

93 
160 
318 

92 
53 

309 

53 
31 
32 
31 
31 
31 
30 
30 

o 

C 



( 



Y33-9010-0 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

o 

c 



c 

( 

READER'S COMMENT FORM 

IBM System/360 
DOS/TOS PL/I PLM 

• How did you use this publication? 

As a reference source .............................. D 
As a classroom text ................................. D 
As a self-study text .................................. D 

• Based on your own experience, rate this publication 

As a reference source: 

As a text: 

Very 
Good 

Very 
Good 

Good 

Good 

Fair 

Fair 

Poor 

Poor 

Very 
Poor 

Very 
Poor 

Form Y33-9010-0 

• What is your occupation? .................................................................................................................. .. 

• We would appreciate your other comments; please give specific page and line references 
where appropriate. If you wish a reply, be sure to include your name and address. 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



Y33-90l0-O 

YOUR COMMENTS PLEASE ••• 

This SRL bulletin is one of a series which serves as reference sources for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back of this 
form, together with your comments, will help us produce better publications for your use. Each 
reply will be carefully reviewed by the persons responsible for writing and publishing this 
material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should be directed to your IBM representative or to the IBM sales office serving your 
locality. 

Fold 
Fold 

· ......................................................................................................................... : 

Attention: Department B13 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE Will BE PAID BY ••• 

IBM Corporation 

112 East Post Road 

White Plains, N. Y. 10601 

FIRST CLASS 

PERMIT NO. 1359 

WHITE PLAINS. N. Y. 

· 

· .......................................................................................................................... : 
Fold 

International Business Machines Corporation 
. Data Processing Division 

112 East Post Road, White Plains, N.Y.I0BDI 
[USA Only] . 

IBM World Trade Corporation 
821 United Nations Plaza, Naw York, Naw York 10017 
[International] 

Fold 

· · 



( 

" • 

( 

READER'S COMMENT FORM 

DOS/TOS PL/I PLM 

• How did you use this publication? 

As a reference source .............................. D 
As a classroom text .................................. D 
As a self-study text ................................. D 

• Based on your own experience, rate this publication 

As a reference source: 

As a text: 

Very 
Good 

Very 
Good 

Good 

Good 

Fair 

Fair 

Poor 

Poor 

Very 
Poor 

Very 
Poor 

Form Y33-9010-0 

• What is your occupation? .................................................................................................................. . 

• We would appreciate your other comments; please give specific page and line references 
where appropriate. If you wish a reply, be sure to include your name and address. 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



Y33-901 0-0 

YOUR COMMENTS PLEASE ••• 

This SRL bulletin is one of a series which serves as reference sources for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back of this 
form, together with your comments, will help us produce better publications for your use. Each 
reply will be carefully reviewed by the persons responsible for writing and publishing this 
material. All comments and suggestions become the property of IBM. . 

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should be directed to your IBM representative or to the IBM sales office· serving your 
locality. 

Fold Fold 

............................................................................................................................. 

Attention: Department 813 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY .•. 

IBM Corporation 

112 East Post Road 

White Plains, N. Y. 10601 

FIRST CLASS 

PERMIT NO. 1359 

WHITE PLAINS. N. Y. 

.................................................................................. , ............................................ . 
Fold 

International Business Machines Corporation 
Data Processing Division 
112 East Past Road, White Plains, N.Y.1DBOl 
[USA Dnly) 

IBM World Trade Corporetion 
821 United Nations Plaza, New York, New York 10017 
[International) 

Fold 


