

.,

1 • WRITE

2.

3.

4.

flRITE AT LINE
ADD RESS (iL It)

ERASE SCREEN
START AT LINE

WRITE ERA SE (WE)

Indicates that it will Binary zeros
begin writing output
segment at the current
cursor position

Indicates that it will
begin writing at the
line specified (from
one through fifteen
depending on model)

Indicates that the
screen will be erased
first; the output
segmen t will be
written at line address
specified (line one
through fifteen
depending on model)

Indicates the screen
will be erased first;
the output segment
will be written
starting on the upper
left corn er of the
screen

X'01' through X'OP'
for lines 1 through
15.. Values above X' 06'
depend on the type of
displ ay st ation and/or
its features.

X' 11 ' through X' 1 F '
for lines 1 through
15 • Values above
X' 06' dep en d on the
type of display
station and/or its
fea tures

X'20'

Any code not the same as that designated for the WRITE commands
above defaults to binary zeros. No error messages are given. Since
the screen may have up to 15 lines, line addresses may range from
X'01' to X'OF' depending on model.

If video-paging is included in the system, multiple-page output
messages may be designated by inserting an X'40' in the Z2 field of
the segment representing the first segment of each page. This flag
can be in addition to other video-screen format characters (for
example, X'60' for first segment of page and write erase). To page
forward and backward within a series of pages, these flags must be
contained within a single message; no purge calls or get unique
calls to the I/O PCB may be issued while building a multiple-page
message. If a page flag is not found in the first segment of a
message, subsequent page flags are ignored.

Example:

Z1 Z2 TEXT

Insert iLLiQ~Q_i_~EG-11
Insert i11lQQlOO_~EG~1 Page ,
Insert 1111QQl~Q_1-~EG_]1
Insert 1111001QQ_1-~~§_~1 Page 2 ~essage 1
Insert 1111QQ1Q2_1_~EG_21

Insert 111100122_1_~EG_§1 Page 3

These three screens can be displayed by the operator multiple times
or not at all and may be displayed either in or out of sequence as
the operator chooses.

Data Communication Application Programming 4.25

Z1 Z2 TEXT

Insert 1111QQjlQ_1-~~-11
Insert 1111QQ1QQ_l-~~_ll ~age 1 Message 1

Purge lLL1QQl~Q_l~~
Insert lLL10010~_1.2EG~i Page 1 Message 2
Insert 1!1l00102--L2~

Purge lLL1Q.Qll£_L2EG 6L Page 1 Message 3

The above sequences would produce t he same images to the terminal
as the paged example above and would not require the paging feature.
However, these images would be displayed once and only once and must
be displayed in sequence •

• Z2 for 2980

output messages reguiring a passbook on a 2980 Model 1 or a 2980
Model 4, or requiring the insertion of the auditor's key on a 2980
Model 2 must contain a X'10' in the Z2 field of each output message
segment. If the terminal PCB is the common buffer of the 2972
control field, the Z2 field value is ignored.

If the required passbook is not properly inserted in the output
terminal when IMS/VS attempts transmission of a passbook message
segment, the segment will be prefixed with two carrier returns, a
FEED-OPEN (if 2980 Model 4), a MESSAGE LIGHT (if 2980 Model 1) , or
a TURN PAGE (if 2980 Model 4) indicator, and the required number of
tab characters to position the type element to the passbook area of
the output terminal. This allows the telle,r operator to insert the
passbook to the proper print line. When the indicator is turned
off (MESSAGE LIGHT or TURN PAGE), the type element tabs to the
passbook area and begins printing the output message segment. IMS/VS
positions the type element whenever the required passbook is not
properly positioned in the output terminal, or if the passbook has
been indexed beyond the last printable line when the passbook message
segment was first transmitted. For these reasons, output message
segments should not contain data for both the journal/audit tape
area and the passbook area, since this may cause undesirable results.
Output messages requiring, the auditor's key on a 2980 Model 2 are
not transmitted to the output terminal unless the auditor's key is
inserted. Refer to the l~aL!~ Operator's Reference ~snYA! for
procedures on receiving auditor key messages.

TEXT
is the output message segment in EBCDIC as it is transmitted to
a specific logical terminal. The length of an output message
segment is governed by the specific communication terminal
receiving the output message. The maximum number of bytes for
each message segment text is:

1 05(1 , 27 4 0- 1 ,
2740-2, and 2741

2260-1, 2265-1
2260-2 with 2848-1
2260-2 with 2848-2

!!!m be ~ of Byt ~§.

130 (can be larger if CRs are
empedded at 130 bytes or less) •
If Message Format Service (MFS)
is used for the 2740/2741,
refer to the IMS/VS ~~§~9~
1.2!:.!S:! Servic~ User's .§!!i~~.

960/screen*
240/screen*
480/screen *

4.26 IMS/VS Application programming Reference Manual

('"
.~ ".-...

(
-~

" ~--.'

C.

/

(,-- -

!~I.!!!!!!~!

1 (' 53/2 84 8

1053/2845

2770
2265- 2

card punch
printer & pa per tape punch

2780
printer

punch

2972/2980

Common buffer
Terminal buffer

with buffer expansion

3270

3600, 3790

3741

3761, 3770 console, printers

3770 punch

7770

33/35 Teletypewriter (ASR)

System/3
System/7

System/370 console

RY~~~I of Byt~ (Continued)

*Anything over will wrap the
screen and overlay the first
part of the message.

960; anything over will truncate.

240; anything over will truncate.

Variable, based on component.
960; anything over will wrap
the screen and overlay the first
part of the message.
80; anything over will truncate.
less than 32768.

Variable
80 or 120, or 144, based on 2780
printer specifications; anything
over will truncate.
80; anything over will truncate.

The following applies:

23
47
95

Refer to the IHpL~ Me§~g~
!QI~l Servicg Us~ 2Y!~~.

Variable; refer to the 1~~L!2
!dvan~ lY!!£tiQ1! for
Communications manual, or, if
MFS is used, to the lAaL!~
H§2§.s~ l~i ~rvice !!§§I~§
§Yig~·

12-8 or less, ba sed on 3741
specification; segments will be
padded with blanks or truncated
to this value.

Up to the message size. If
Message Format Service (MFS) is
used, the length of the message
segment is defined by the user
to MFS and is limited by the
MSGQUEUE macro statement
speCification at system
definition.

80; anything over will truncate.

Any length.

80

Variable, dependent on
user's program in the System/3
or System/7.

126; anything over vill truncate.

Data Communication Application programming 4.27

SYSOUT Print
Direct

Spooled

!umbe~ of Byt~2 (Continued)

Variable, based on device,
the segment is truncated to the
record length specified for the
particular device. When the
output device is a printer,
default segment maximum lengths
are:

120* for 1443, 1403
132* for 3211

Default segment size is 120*.

*These sizes do not include carriage-return characters as
specified later in the section "Online Message Format
Considerations." If carriage control is present, these maximums
can be increased by 2.

2980 optional Features

The reader should refer to Component ~~2£ription: 1~~ 2972 ~2g~!§
~ ~rrQ 11 2~rr~£~! ~~n!~~g Termingl ~1§!g!2' GL27-3020 for a complete
discussion of the optional features available on a 2980 Kodel 4 and
how an application program might make use of them. The discussion
following is limited to the use of those features in the IKS/VS
env ironment •

• ' 2980 Message Lights

The 2980 Model 1 and Model 4 teller terminals incorporate a message
light feature that prevents the printing of an output message at the
terminal until some operator action is taken. An application program
can utilize this message light feature on a 2980 Model 1 by inserting
a X'17' in the text of the output message segment. The data folloving
the mes.sage light character viII not be printed at the terminal until
the terminal operator presses the message light key. Any combination
of six message lights at a 2980 Model 4 teller terminal can be caused
to 'turn on by the insertion of a two-character message light sequence
as the first two (or only) characters of an output message segment.
The data following the me~sage lig~t sequence vill not be printed ~ntil
the terminal operator presses the message light key. The message light
sequence for a 2980 Model 4 consists of an X'17' followed by any
character whose hexadecimal.value is greater'than X'3F', an X'40' vill
be substituted for invalid values. Refer to the above mentioned SRL
for detailed information on ,the use of and setting of message lights
on the 2980 Model 4.. IMS/VS precedes all system-generated messages
with an X'1740' if the message is for a 2980 Kodel 1 or 2980 Kodel 4 •

• 2980 Function Keys

IMS/VS cannot distinguish a function key entry from a data key entry
that causes transmission of the same character to the cpu. Pigure 4-13
lists the character received by the application program vhen the
corresponding function key is entered. The application programmer must
be avare that, since function keys are an optional feature, in each
instance there 'is a corresponding keyboard entry vhich results in the
same character being received. No direct facility is provided which
would give a unique distinction to the application program betveen
entry of function keys 23 and 24 and the graphic numeric characters 2
and 3, respectively. To do so would require the terminal operator to
enter alpha shift to enter these numbers. (The application programmer

4.28 IM S/VS Application programming Reference Kanual

c

c'

may require operator entry of keyboard keys 11 and 15 in alpha shift
for those number~ if such distinction is necessary.)

Qnli!l§. t1g2§~,g~ fQ£!!l~1 Consideratio!l2 -- 111:2 Not ,!!sed

When Message Format Service (MFSt is not used, it is the application
programmer's responsibility to provide all horizontal and vertical
format control required to properly display an output message. An
output message can contain multiple message segments. It is not
necessary to include a logical. terminal name ~n an output message since
the destination is determined by the logical terminal PCB.

Certain device control characters must be inserted into an output
message when it is desired to format a message at a terminal output
device. Output message formatting for the devices supported by IMS/VS
may be accomplished as follows:

• When output is to be printed on a typewriter-like device (for
example, 2740), the following hexadecimal characters found' within
the output text function as indicated:

X'05' Skip to tab stop (BT), but stay on same line.

X'15' start 'new line (Nt) at left margin (carriage return).

X'25' Skip tb new line (LF), but stay at same print position
horizontally.

The most e·fficient way to skip mn! tiple lines is by including a
combination of one Nt character and multiple LF char acters.

Forms feed control can be provided for a 1052 or 1053 printer by
including the forms control characters as the first two bytes of
output message segment text. output message segments may contain
multiple typed lines (carriage returns should be embedded at 130
characters or less).

• When output is to be printed on a 1050 printer and vertical forms
control is used, the forms control sequence must be the first tvo
characters in a segment.

• When output· is to be printed on a 2780 or local printer, a message
segment is considered to be a print line, and message text over
the designated printer's capability is truncated on output. NL
and LF characters are ignored. Control other than single line
spacing (which is default) may be achieved by inserting an ESC
character (X'27') as the first character of the output message
segment text, followed by one of the following carriage control
characters (the X'27' and the carriage control characters' are not
considered part of the message text for truncation purposes) :

S Double space after this line is printed.

T Triple space after this line is printed.

A through L Skip to channel 1 through 12 after this line is
printed (local print).

A through H -- Skip to channel 1 through 8 after line is printed
(2780) •

M -- Suppress spacing after printing (local print only).

Data Communication Application Programming

J

• When output is to be written to the OS/VS system console, a message
segment is considered to be a print line. If the output message
segment text does not begin with the characters DFS followed by
three numeric characters, lMS/VS inserts a prefix of DFSOOOI. All
embedded Nt characters are replaced by blanks (X·qO·) as required
by OS/VS WTO. output message segment text (including DFSOOOI, if
inserted by 1MS/VS) in excess of 126 characters is truncated as
required by as/vs WTO.

• When output is to be punched (with, for example, the 27Sb terminal
or the 3770 card punch), a message segment is considered to be a
card, and message text over SO characters is truncated upon output.

• When output is to be displayed on a 2260-1, 2260-2, or 2265-1, the
following are output message considerations:

An ou~put message can be composed of multiple segments that make
up a single screen. Total segment and message length is
variable:

Lines per Bytes per Bytes per
Q~!i~~ ~n ~~.9~nt ~22M.!

2260-1, 2265-1 12 SO 960
2260-2 (2848-1) 6 40 2qO
2260- 2 (2848-2) 12 qO 480

If the length of the message exceeds the capacity of the screen,
the screen will wrap, destroying the data previously displayed.
New Line (Nt) characters are honored; Line Feed (tF) characters
are ignor ed.

Multiple screen output is allowed.

Each segment can specify a write-type request (Z2 field bits).
IMS/VS ignores WRITE-ERASE requests except on the first segment
of an output message.

• When output is to be displayed on the 2265-2 component of a 2710
·system ,the following are output message considerations:

An output message can be composed of multiple segments that make
up a single screen (960 bytes).

If the length of the message exceeds the capacity of the screen,
the screen will wrap, destroying data previously displayed. NL
characters are honored except as described below. LF characters
are not honored.

Multiple screen output is allowed.

An Nt character in text that is being written on the last line
of the display screen does not cause a screen wrap operation to
occur. The Nt character(s) is displayed on the last line of
the screen.

An S~M symbol on the screen after an NL symbol does not transfer
data if the ENTER key is pressed.

Each output message segment .ay specify its write-type request •

• When output is to be printed on a 2770 printer component, the
following are output message considerations:

Segments over the printer line length cause an autoaatic hardware
carriage return before printing of the remainder of the seg.ent.

4.30 If!S,lVS Application Programming Reference !Jannal

/'--~

I

(~

'''---- .. /

C .. -'

If no control operations are embedded in the message segment,
the printer is single spaced by the insertion of an IRS
character.

If a trailing NL character is in the segment, the printer
component double spaces after printing the line.

Explicit carriage control can be accomplished by limiting segment
length to the length of a print line (this depends on the printer
component type and features) and inserting an ESC character
(X'27') as the first character of the output message segment
text, followed by one of the carriage control characters fbr
the 2770 printer component. See ~yst~ ~Qmponent§: 1~~ £110
~~1£ £~~~i£~!iQn~ Syst~, GA27-3013, for a description of
these codes.

• When output is to be punched on the 2770 paper tape punch component,
the following are output message considerations:

IMS/VS inserts an end 'of media character at the end of each
output message to the paper tape punch.

If segments whose size is larger than the value specified on
the PTSFG= operand of the TERMINAL statement during system
definition are sent to this component, the ~egment will not be
properly deblocked on subsequent reentry to IMS/VS.

• When output is to be printed on a 2980 terminal, the following
hexadecimal characters function as indicated:

X'OS' Skip to tab stop (HT), but stay on same line.

X'1S' Start new line (NL) at left margin, if the present position
of the type element is within the audit/journal tape area;
or the type element will be repositioned at the intermediate
carriage stop, if the present position of the type element
is within the passbook area. In the latter instance,
printing'will resume on the same print line.

X'25' lo1hen the output message segment is destined for the passbook
area of the terminal, this character will cause the start
of a new line at the intermediate carriage stop. IMS/VS
will ensure that the passbook is properly inserted at a
printable line on all transmissions to the passbook area.

output message segments may contain multiple print lines. Care
should be taken to insert carriage returns (X'1S') and/or passbook
index (1'25') characters in long message segments to prevent typing
past the audit/journal tape or passbook.

• When the output device is a 7770-3 line, it is the responsibility
of tne application programmer to format the output message with
7770 vocabulary Drum Address characters as required for th~
application.

output device independence may be achieved by generating output
message segment text no greater than 80 bytes, including a trailing NL
character. Output message segment text should not contain any forms
or carriage control characters. If video terminals are included in a
system, no more .data than will fit on a single screen should be
generated per output message. It should be noted that the output device
independence described above may restrict efficient use of certain
output devices, and may restrict use of special output device functions.

Data Communication Application programming 4.31

frQ~£~m~~Q~R£Qg£~ Me~~ ~~ii£hing

An output message destined to another application program is a
program-to-program message switch. The message switch destination can
be specified during PSB generation or during program execution using
the change call. The destination must be a transaction code defined
during system definition. The receiving program must contain an I/O
area large enough to hold the largest segment sent by the transmitting
program.

Insert calls are used to create the segments of a program-to-program
message. When inserting a segment, an alternate PCB must be used. The
destination of the alternate PCB must be set prior to the first insert
call.

Message security procedures mayor may not be invoked during
program-to-program message switching. They are invoked when a change
call is used to set the destination; the current.entering terminal must
be authorized to enter the transaction code set by ~he change call.
No checking is performed on insert calls.

The format of a message switch segment is:

r---,
1 LL I Z 1 , Z 2 I T EXT I
L---J

The format is essentially the same as for output messages to logical
terminals. The following areas should be noted:

• Z1 and Z2 are one-byte fields that must contain binary zeroes; the
use of Z1 and Z2 is reserved for IMS/VS •

• TEXT is the message segment that is to be sent to the specified
destination.

Since IMS/VS does not prefix a switched message with a transaction
code, the application program can put the transaction code at the
beginning of the first segment. This assures that messages arriving
at the destination are in the same format, whether originating from a
program or from a terminal.

ANS COBOL MESSAGE PROGRAM STRUCTURE

Figure 4-13 outlines the fundamental parts of an ANS COBOL message
processing program. Each item should be considered when designing a
message program. This program processes an inquiry from a terminal,
makes a reference to a data base for information, and sends a message
to a different terminal or to an application program.

4.32 IMS/VS Application Programming Reference Manual

(-"

\.' _,/

c

REF
NO. ENVIRONMENT DIVISION.

1

2

3

5

6

7

8

9

10

•
DATA DIVISION.
WORKING-STORAGE SECTION.

77 GU-CALL PICTURE XXXX VALUE 'GU '.
77 ISRT-CALL PICTURE XXXX VALUE 'ISRT'.
77 CT PICTURE S9(5) COMPUTATIONAL VALUE +q
•
01 SSA-NAME.
•
()1
C1
01

LINKAGE
01
01
01

MSG-SEG-IO-AREA.
DB-SEG-IO-AREA.
ALT -MS G-S EG-OUT.
SECTION.
IO-PCB.
ALT-PCB.
DB-PCB.

PROCEDURE DIVIS ION.

ENTRY 'DLITCBL' USING Io-PCB, ALT-PCB, DB-PCB.
•
CALL 'CBLTDLI' USING GU-CALL, IO-PCB,

M SG-SEG-IO-A REA.
•
CALL 'CBLTDLI' USING GU-CALL, DB-PCB,

DB-SEG-IO-AREA, SSA-NAME.
•
CALL 'CBLTDLI' USING ISRT-CALL, ALT-PCB,

A LT-M SG-SEG-OUT.
•
GOBACK.

COBOL - LANGUAGE INTERFACE

Figure 4 -13. COBOL Message Program Structure

The following explanations are keyed to the numbers along the left
side of Figure q-13.

1. A 77 level or 01 level working storage statement defines each
of the call functions used by the message program. Each picture
clause is defined as four alphameric characters and has a value
assigned for each function (for example, ISRT).

2. An ~1 level working storage statement describes each segment
search argument (SSA) used for a data base call. An example of
an SSA definition, with a ~owercase b representing a blank and
a lowercase v representing the symbolic value in the field, is:

01 S ~A -NAME.
02 SEG-NAME PICTURE X(8) VALUE 'ROOTbbbb'.
02 SEG-QUAL PICTURE X VALUE '(I.
ry2 SEG-KEYNAME PICTURE X(8) VALUE 'KEYbbbbb'.
02 SEG-OPERATOR PICTURE XX VALUE 'b='.
02 SEG-KEY-VALUE PICTURE X(6) VALUE 'vvvvvv'.
02 SEG-END-CHAR PICTURE X VALUE ') I.

Data Communication Application programming 4.33

When the above COBOL syntax is decoded and placed in storage,
it will be in a data string as follows:

ROOTbbbb(KEYbbbbbb=vvvvvv)

(For further discussion, see the section "Segment Search
Arguments n in the "Data Base Batch Programming" chapter of this
manual.)

3. An 01 level working storage statement describes each segment
I/O work area within the message program.

4. An 01 level linkage section entry describes the PCB statement,
first for the input terminal for the current message being
processed (the I/O PCB), second for each output destination
other than the input terminal (alternate PCBS), and third for
each data base. It is through this linkage description that a
COBOL program can access the status codes after a DL/I call.

5. This is the message program entry point and must be the first
executable COBOL statement in the procedure division. There
must be a name for every PCB used by the message program. The
first PCB name must be for the I/O PCB. The remaining PCB names
must be specified in the same order, following the I/O PCB, as
they are presented in the program's associated PSB generation.
The PCB names could be specified in the linkage section in the
same order, but this is not a requirement. '

6. This is a typical call used to read the input (source) logical
terminal. The first time this call is executed with function
equal to get unique, the first segment of the message that caused
the message program to be scheduled is brought into this program.
If the input message consists of more than one segment,
subsequent segments can be obtained with a similar call but with
the function equal to get next.

7. This call is used to access data from a data base. The format
is the same as that in Item 6 above, except that the PCB refers
to a data base and the segment search arguments define a
particular data base segment.

8. This call is used to reply to an output destination other than
the terminal representing the source of the input message. If
the output destination is the input terminal, this call must
utilize the I/O PCB.

9. This operation causes the message program to return control to
t~e IMS/VS control facilities.

1~. A language interface (DFSLIOOO) is provided by IMS/VS for all
COBOL programs. This module must be link-edited to the message
processing program after compilation and provides a common
interface to IMS/VS and DL/I for all call statements.

The language interface function of IMS/VS is reenterable and
compatible with that of IMS/360 Version 2. To take advantage
of the reenterable capability, application modules from IMS/360
must be re-linkedited, replacing the IMS/360 Version 2 language
interface with that of IMS/VS. The IMS/360 Version 1 language
interface is BQ.! compatible with IMS/VS.

IMS/VS Application programming Reference Manual

...

(\
\ , ,-_'/

C:. ~

C,

c

---------_._-_._-_ _ ... _---

PL/I OPTIMIZING COMPILER MESSAGE PROGRAM STRUCTURE

Figure 4-14 outlines the fundamental parts of a PL/I optimizing
compiler message processing program. Each item should be considered
when designing a message program. This program processes an inquiry
from a terminal, makes a reference to a data base for information, and
sends a message to a different terminal or to an application program.

REF
NO.

,
2

3

4

5

6

7

8

9

10

11

1*
1*
1*

ENTRY POINT

D LI TPLI: PROCEDURE (I O_PTR, ALT_PT R, DB_PTR)
OPTIONS (MAIN);

*1
*1
*1

DECLARE FUNC_GU CHARACTER(4) STATIC INITIAL('GU');
DECLARE FUNC_ISRT CHARACTER (4) STATIC INITIAL ('ISRT') ;

DECLARE SSA_NAME •••

DECLARE MSG_SEG_IO_AREA CHAR (24);
DECLARE DB_SEG_IO_AREA CHAR(180);
DECLARE ALT_MSG_SEG_OUT CHAR(24);

DECLARE 1 la_PCB BASED(IO_PTR), ••• ;
DECLARE 1 ALT_PCB BASED(ALT_PTR) , ••• ;
DECLARE 1 DB_PCB BASED(DB_PT~ , ••• ;

DECLARE THREE FIXED BINARY(31) STATIC INITIAL(3);
DECLARE FOUR FIXED BINARY(31) STATIC INITIAL (4) ;

CALL PLITDLI(THREE,FUNC_GU,IO_PTR,MSG_SEG_IO_AREA);

CALL PLITDLI(FOUR,FUNC_GU,DB_PTR,DB_SEG_IO_AREA);

CALL PLITDLI (THREE ,FUNC_I SRT, ALT_PTR, ALT_MS G_S EG_OUT) ;

END D LI TPLI ;

PL/I - LANGUAGE INTERFACE

Figure 4-14. General PL/1 optimizing Compiler Message program
Structure

The following explanations are keyed to the numbers along the left
side of Figure 4-14:

1. This is the main standard entry point to a PL/I optimizing
compiler message program. There must be a pointer for every
PCB used by the message program. The first PCB pointer must be
for the 110 PCB. The remaining PCB pointers mnst be specified
in the same order, following the 110 PCB, as they are presented
in the program's associated PSB generation.

Data Communication Application programming 4.35

2. These declarations define the call functions used by the PL/I
message program. Each character string is defined as four
alphameric characters and a value assigned for each function
(for example, ISRT1. Other constants and working areas may be
defined in this manner.

3. This declaration defines storage for SSAs. In the following
example, the SS A is declared as a structure; other methods can
be used (see the section "General Characteristics of Segment
Search Arguments" in Chapter 3 of this manual).

Example (lower case "b" represents a blank and lower case nvu

represents the symbolic value in the field):

2
2
2
2
2
2

SEG_NAME CHAR(8)
SEG_QUAL CHAR (1)
S EG_KEY_NAME CHAR (8)
SEG_OPERATOR CHAR (2)
SEG_KEY_ VALUE CHA R (6)
S EG_END_CHAR CHAR (1)

INIT('ROOT') ,
INIT (' (') ,
INIT (' KEY') ,
INIT('b=') ,
INIT (' vvvvvv') ,
INIT(')');

4. The 110 area is most efficiently passed to DL/I as a
fixed-Iength-character string or through a pointer variable;
other methods, however, can be used (see the PL/I example under
the section "1/0 Work Area" in Chapter 2 of this manual). An
example follows:

5. A level 1 declarative describes the PCB statement first for the
input terminal for the current message being processed (the 110
PCB), second for each output destination other than the input
terminal (alternate PCBs) , and third for each data base. It is
through this description that a PL/I program can access the
status codes after a DL/I call. (For the PL/I optimizing
compiler, the PCBs must be BASED structures.)

6. This is a descriptive statement used to identify a binary number
(fullword) that represents the "parameter count" of a call to
DL/I. The parameter count value equals the remaining parameters
following the parameter count set off by commas.

7. This is a typical call used to read the input (source) logical
terminal. The first time this call is executed with function
equal to get unique, the first segment of the message that caused
the message program to be scheduled will be brought into this
program. If the input message consists of more than one segment,
subsequent segments can be obtained with a similar call but with
the function equal to get next.

8. This call is used to access data from a data base. The format
is the same as the one in Item 7 above, except that the PCB
refers to a data base and the segment search argument defines
a particular data base segment.

9. This call is used to reply to an output destination other than
the terminal representing the source of the input message. If
the output destination is the input terminal, this call .ust
utilize the I/O PCB.

q.36 I~S/VS Application Programming Reference Manual

\,/'

(~.
I,

.. ,,_ ...• /

.,

c

c_

l.

,

... _----_._------_._------

10. This END statement causes the message program to return control
to the 1HS/VS control facilities. Another statement that causes
the message program to return control to the IMSlvS control
facilities is the RETURN statement. The RETURN statement may
or may not immediately precede the END statement.

11. A language interface (DFSL1000) is provided by 1MS/VS for all
programming languages. This module must be link-edited to the
compiled message program and provides a common interface to
I8S/VS and DL/I.

The language interface function of I8S/VS is reenterable and
compatible with that of IMS/360 Version 2. To take advantage
of the reenterable capability, application modules from IMS/360
must be re-linkedited, replacing the 1MS/360 Version 2 language
interface with that of IMS/VS. The 185/360 Version 1 language
interface is Eg~ compatible with IMS/VS.

ASSEMBLER LANGUAGE MESSAGE PROGRAM STRUCTURE

The structure of an Assembler Language message program is the same
as for the Assembler Language batch. program described in the section
"Assembler Language Ba tch Program structure" in the "Dat a Base Batch
Programming" chapter of this manual. In addition, the user should
remember that an Assembler Language message program receives, upon
entry, a PCB parameter list address in register 1. The first address
in this list is a pointer to the I/O PCB. Any alternate PCB addresses
follow, and finally any data base PCB addresses. Bit 0 of the last
address parameter i~ set to 1 in accordance with operating system
conventions for variable parameter lists.

ABENDS ISSUED BY APPLICATION PROGRAMS

Actions taken by IMS/VS on all types of application program abends
are described in the 1112L!~ §..I2iemtAIU!li~tiQ.!!. g~sig.n Gu ide.

If an application program is going to issue the ABEND macro, the
STEP parameter must not be used. The use of the STEP parameter prevents
the message or batch message region from notifying the IMS/VS control
reqion that an application program has abended. This in turn may
prevent the release of resources or a normal checkpoint shutdown.

Data Communication Application programming 4.31

,

(

,.

Conversational processing allows a user's application program to
retain information acquired through interchanges with a terminal even
though the application program leaves the message region between
interchanges. Special facilities are provided in IMS/VS to allow the
retention of information. Data base facilities are not required for
information retention.

The conversational option is specified during IMS/VS system
definition so that IMS/VS can relate to transaction codes that utilize
the conversational mode. When an application program that processes
a conversational transaction type is scheduled, a get unique (GU) call
against the I/O PCB causes the contents of a Scratchpad Area (SPA) of
user-defined length to be passed from IMS/VS to an I/O area defined in
the user's application program. Subsequent get next (GN) calls cause
the message segments entered from the terminal to be passed to another
I/O area defined in the user's application program. Data saved in a
SPA can be in any form: bit string, character, binary numbers, or
packed decimal.

The SPA forma tis:

LL

where:

LL

XXXX

xxxx TRAN CODE USER WORK AREA

is a halfword binary field containing the total number of
character·s in the SPA, including LL, XXXX, TRAN CODE, and USER
WORK AREA. This field should not be modified by the user.

When PL/I is used" the· LL field must be defined as a binary
fullword. The value contained in the LL field is the actual
scratchpad area length minus 2 bytes. For example, if the
scratchpad area is 26 bytes, LL is equal to 24 and represents
the sum of LL (4 bytes minus 2 bytes), XXXX (2 bytes), TRAN CODE
(8 bytes), and text (10 bytes).

is a 4-byte area reserved for I~S/VS. XXXX must not be modified
by the user.

TRAN CODE
is an a-byte field containing the transaction code that caused
the program to be scheduled. The transaction code can be from
1 to a bytes, left-justified, and padded with blanks.

If this code is changed by the user, a different program is
scheduled for the next message input from the terminal.

The transaction code does not appear in the message segment.
(When option 3 of the Message Format Service is used, the
transaction code is not removed. Refer to the IK~L!~ ~sage
!2~!~! ~~£!if~ Us~ gYi~~.)

Data Communication: Conversational Processing 5.1

USER WORK AREA
is a variable-length area 14 bytes less than that defined by
the user during I~S/vS system def1nition for each conversational
transaction code and cleared to binary zeros on first entry to
the application program for this conversation. This area is
for retaining user information (for example, intermediate
calculations or data retrieved through one or more data base
calls) required by an application program.

From a terminal operator's viewpoint, the format of the input message
segment that starts the conversation is the same as any
nonconversationa1 transaction-type message. IKS/VS removes the
transaction code from the first message segment (except as noted above)
and always places it in the scratchpad area. The first message segment
is left-justified to remove the transaction code. (Transaction code
formats are described under "Message Formats" in the chapter "DC:
Application Programming".) It is retrieved by the first GN call issued
after the GU call that retreived the scratchpad. Additional message
segments of an input message are formatted the same as for
nonconversationa1 processing.

EXA M'PLE

1. First conversational message segment entered at input terminal:

CONV +32546.12-1235.27

2. First CALL statement using PL/I:

3. The SPA_AREA now looks like this after the first GU call:

r--- .. , I TRAN CODE I USER WORK AREA , , ,---------------1---------------------------1
1 I 1 binary zeros I
1 LL XXX X I CONVbbbb 1 0--------------------0 I
L-

4. The first segment of the conversational message now looks like
this:

+32546.12-1235.21

Thus, to bring this text into the application program I/O work
area, a GN call must be made.

5. Second PL/I CALL statement using a GN call function to obtain
the text of the first message segment:

This brings the text as shown in item 4 above into the I/O work
area of the application program.

6. To get subsequent message segments, the CALL statement is the
same as in item 5 above.

5.2 IMS/VS Application programming Reference Manual

"''"-- -'

..

•

After the input scratchpad area and input message have been obtained,
one or more data base calls may be made and one output message may be
built. The application program may wish to retain data entered from
the terminal or obtained from data bases. This data is saved in the
user work area portion of the scratchpad.

If the application program modifies or initializes any SPA fields,
it must return the SPA to IMS/VS before issuing another GU or
terminating. An SPA is returned to IMS/VS by inserting it to the I/O
PCB.

The insert (ISRT) call for PL/I is handled as follows:

or, in ANS COBOL:

CALL 'CBLTDLI' USING ISRT, la-PCB, SPA-NA~E.

A response to the originating terminal is required to allow the
conversation to continue. The terminal operator is prevented from
entering more data to be processed (except IMS/VS commands) until he
has received this response.

The response is accomplished in one of two ways:

1. The conversational program can issue ISRT calls to the I/O PCB
or an alternate PCB defined as ALTRESP=YES prior to the next GU
call or program termination.

2. Control may be passed to another conversational program by
inserting the SPA and a message to an alternate PCB.

The switched-to-conversational program may then perform 1 above
(which will wait for terminal input) or perform 2 again (program
switch) •

The output message segment format for a conversational application
program is the same as for any nonconversational. output message format.

Conversational message processing programs can pass control of a
conversation to another conversational program. Two methods of passing
control are supported:

• The program in control can change the transaction name in the SPA
before returning the SPA to I~S/VS. IMS/VS will route the next
terminal input to the program that handles the specified transaction
code. Any intervening program switches can change the transaction
name in the SPA.

Data Communication: Conversational Processing 5.3

• For a proqram-to-program switch, the program in control can insert
a message to an alternate PCB that has its destination set to
another conversational program. The SPA must be the first segment
inserted to the alternate PCB; neither the SPA nor a response can
be returned to IMS/VS through the I/O PCB or response alternate
PCB if this is done.

If the new program requires a larger or smaller SPA, and the
conversation did not start with a fixed-length SPA, IHS/VS will
intercept the SPA and extend or truncate it for the new program, while
preserving the data that may have been truncated.

If differing sizes for SPAs have been defined at system definition
for disk and incore SPAs, care must be exercised by the user to prevent
scheduling conversational programs within a series of programs which
require SPAs larger th~n the maximum SPA size allowed by the original
program to be scheduled. The first program scheduled sets the !X~~ of
SPA that will be used for the duration of the conversation.

Example: Main storage maximum defined as 100 bytes; disk maximum
defined as 1000 bytes.

TRAN A - main storage 50 SPA bytes

TRAN B - main storage 75 SPA bytes

TRAN C - disk 100 SPA bytes

TRAN D - disk 1000 SPA bytes

If TRAN A or TRAN B is the first conversational program called by
a terminal operator, the conversation can switch control to TRAN A, B,
or C, but not to TRAN D, since D requires a larger SPA than the maximum
allowed for incore SPAs.

If TRAN C or TRAN D is the first conversational progr am called by
the terminal operator, control can switch to any other transaction.

A conversation is terminated by either the conversational program,
terminal operator, master terminal operator, or IMS/VS. A
conversational program terminates a conversation .by:

• Blanking the transaction 'code in the SPA and returning the SPA to
IMS/VS through an ISRT call. This terminates the conversation as
soon as the terminal has received the response.

• Inserting the name of a nonconversational transaction code in the
transaction code field of the SPA and returning the SPA to IMS/VS
through .an ISRT call to the I/O PCB. This causes the conversation
to remain active until the next message is entered by the terminal.
Except for MFS formatting option 3 messages, the transaction code
will be inserted into the input message from the SPA. This message
will then be routed to the named transaction code prior to
terminating the conversation; the nonconversational program will
not get the SPA.

The terminal operator terminates a conversation by:

• Fntering a /EXIT command or /EXIT CONVnnn from the terminal that
is participating in the conversation.

• Entering the /HOLD command from the terminal that is partiCipating
in the conversation. This action .temporarily suspends operation
and allows the terminal operator to enter other transactions while
the first conversation is being "held" inactive. The response to
a /HOLD command furnishes the terminal operator with an identifier

5.4 IMS/VS Application Programming Reference Manual
c:

c.

•

of his conversation so that he can reactivate it later by means of
the /RELEAsE command. A held conversation is considered to be
active when the number of current conversations is calculated.

The master terminal operator terminates a conversation by:

• Entering a 1ST ART LINE (no PTERM specified) for a terminal in
conversa tion.

IMs/VS terminates a conversation if, after a successful GU or
insertion of the SPA, a conversational application program fails to
insert a message. When this situation occurs, IMS/VS sends the message
DFS32721 NO RESPONSE, CONVERSATION TERMINATED to the terminal,
terminates the conversation, and completes synchronization point
processing.

GENERAL

• The first 6 bytes of the SPA cannot be modified in any way by the
application program. (IMS/VS uses these 6 bytes to identify the
SPA.)

• If a conversation is started for a transaction with a fixed-length
SPA, all succeeding transactions used for the duration of the
conversation must be defined with and use fixed-length SPAs of the
same lengt h.

• The SPA transaction code (beginning in position 7) can be changed
by the application program to switch control to a new transaction
upon receipt of the next input from the terminal. The conversation
is terminated if this transaction is a nonconversational transaction
or if it is blanked.

• If modified by an application program, the SPA must be returned to
IHS/VS through an ISRT call or the SPA against which a GU call was
issued will be reused.

• The SPA cannot be returned to IMS/VS more than once. (Example:
ISRT to I/O PCB, then ISRT to alternate PCB for program-to-program
Messa ge switch.)

• The SPA cannot be inserted to an alternate PCB representing a
nonconversational transaction or logical terminal. A response
alternate PCB is permissible if it represents the input PTERM.

• If control is being given to another conversational program through
a program-to-program message switch, the SPA must be the first
segment inserted. (Example: IsRT to alternate PCB defined as a
conversational transactio~.)

Data Communication: Conversational processing 5.5

MESSAGE RESPONSE

• An output message response to the 110 PCB or to an alternate PCB
defined as ALTRESP=YES is required, unless the SPA has been passed
to another conversational program through an insert to an alternate
PCB, in which case the response must be given by that program. For
addi+ional information, see the section "Alternate PCB" in the
"Data Commun ication: Application Programmin 9 ft chapt er of this
manual.

• Only one message response is allowed for each conversational entry.
This message can consist of as many segments as required; however,
a PURG call cannot be issued to generate multiple output messages.
If a PURG call is issued, the sy nchronization- point processor
returns the AZ status code and does not process the call.

• Conversational programs must'be designed to handle the condition
in which the first GU call to the 110 PCB may produce no'. message
to process. This condition can occur if the operator cancels the
conversation through an /EXIT command, prior to the p<rogram issuing
a GU call, if this was the only message in the queue to be
processed.

• It is not permissible to use a PURG call for an I/O PCB, response
alternate PCB, or an alternate PCB that represents another
conversational transaction.

5.6 IMS/VS Application Programming Reference Manual

" .. -.. '/

..

c

I

The examples of application programs included in this chapter
represent application programs that normally operate in an IMS/VS
environment. At least one of the programming languages (COBOL, PL/I,
or Assembler) has been selected for each type of application program.
Most of the application programs represent source programs used in the
sample problem included in the lH~LY~ In~i~llation ~uide.

The following types of programs are presented:

Data Base Load Program
Data Base Dump program
Batch processing Program
Message processing program
Conversational processing Program

ANS COBOL APPLICATION PROGRAM

COBOL
Assembler
COBOL and Assembler
COBOL
PL/I

In this example, the batch application program DFSSAM01 uses the
SYSIN data to load a data base, named DI21PART, whose hierarchical
logical data structure is:

PARTROOT

I
I I

STAN INFO STOKSTAT

I
I I

CYCCOUNT BACKORDR

Application program Examples 6.1

FILE: DVSS~M01 ASSEMBL~ A PALe ALTO DEVELOPMENT CENTER

IDENTtF'ICA'rION DIVIS ION.
PR OG R A'M-IT) • I OF'SS AM 01 I

~UTHOR. DON TRUDELL.
REMARKS. DATA BASE LOAD PROGRAM.

~NVI10N"'!':N" nT VI STON.
CONPIGUR~TION SECTION.
SO fJR Cf,- co~p TJT EP. IB M- 36 O-H 50.
OBJF:C T- CO", PUT ER. !B M- 360- H SO.
INPUT-OrrTPU~ SECTION.
FII. E-CO NTR OT

sm, EC'l' INPUT-FILE ASSIGN TO UT-S-INPUT.
DATA DIVISION.
F'TLB SECTION.
FD INPU,,{,-"F'IL~

RF.CORI) CONTAINS no CHARACTERS
BLOC K C0NT!\INS 0 R FCOR DS
RECOPDING MODE JS F
LABRt RECORDS ARE OMITTED
DAT 11 ~EC()RD IS INPUT-R ECOR D.

o , TNPU"r- REe ORD •
02 If'lP-St:;G-NliMF.
02 FILL ER
02 INP-DAT~
02 INP- 5EQUT<'NCE- NO

WORKrN~-STOR!\GE SECTION.
01 DL1-FUNCTION
01 PREV-SEG-NAME
01 PREV-SEQfJRNCE-NO
01 fHJILT)-SEGMRNT-ARF.A.

01

Q 1

01

01

02 BUItD-DATA-AREA

MI SC-ARITH!1 ETIC- FIELDS
02 SUB-1
S EGOOO 1 O-SSA •
02 SRG-N.~~E-000 10
02 FEGIN-OP-00010
02 KEY- Nfl ME-OOO 10
02 Tn~r.-OPE~-01(, 10
f)2 KtY-VAT,UE-')OO 10
() 2 E ND- op- 000' 0
SEG00060-SSA, •
02 SP,G-N AM E-0l1060
02 B EGI N-OP-Of)06 0
02 KEY-NAME-00060
02 RRL-OP ER-000 60
02 K~Y-VALUF.-00060
1)2 END-OP-00060
SEG020,)O-SSA.
02 SRG-NAME-02000
02 BEGIN-OP-02000
02 KEY- NA MR-O 2000
02 REL-O? ER-0200Q
I) 2 KEY-VAVn.:-02000
02 PND-OP-02000

01 SEG 02200-S5A.

PICTURE X(08).
PICTURE X(01).
P IC T UR E X (67) •
prCTURE X(04).

PICTURE x (04).
PICTUR E X (08)
PICTURE X(04)

VALUE SPACE.
VALUE SPACE.

OCCURS 14 TIMES
PICTURE X (67) •
USAGE COMPUTATIONAL.
PICTURE S 9 (02) VALUE ZEROS.

PICTURE
PICTURE
PICTUR E
PICTURE
PICTURE
PICTUR E

PICTURE
P ICTtm E
PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
PICTUR E
PICTURE
PICTURE
PI C'l'UR E
PICTURE

x (08) VAL UE I FARTROOT '.
X{Ol) VALUE' ('.
1(08) VALUE 'PARTKEY •
X(02) VALUE • = '.
x (17) •
X(01) VALUE ')'.

X (08) VALUE • STANINFO'.
X(01) VALUE • ('.
X(08) VALUE 'STANKEY f

X (02) VALUE • ='.
x (02) •
X(01) VALUE .) I.

X(08) VALUE 'STOKSTAT'.
X(O 1) VALUE '('.
x (08) V At UE 'STOC KE Y f.

1(02) VALUE' ='.
x (16) •
X(01) VALUE ') '.

6.2 IMS/VS Application Programming Reference Manual

,

C.:

---- _ .. _-_ ... _----------

--------------------- ---------- --------- ---"-----,--

C
"
-'

C
"
-

,

PIt E: DF5SA'0 1 AS5RMRLE A PALO ALTO DEVELOPrfENT CENTER

02 SEG-NAME-02200
02 R~GIN-OP-02200
02 KEY- NA ME -02200
02 REL-OPER-0220a
02 KEY-VALUE-02200
02 E NT) -OP-02200

01 SRG0230()-SS.!..
02 SRG-N AM E-O 2300
02 BRGIN-OP-02300
02 KEY- NA M~-02]_OO
02 REL-OPFR-02300
02 K~Y-VALUE-02JOO
02 END-OP-O~3f)O

01 SEG00010-INSER'T'-I\REA.
02 FILL ER

01 SEGC'0060-TNSERT-AREA.
02 FTT.LRR
02 RIGHT-M AK E-SPAN
02 FI.LLER
02 WRONG-MlI.KE-SPAN
02 FILL F'R

01 SEG02000-INSErtT-ARP.A.
02 FILLER

01 SEG0220f)-INSERT-AREA.
02 FIT.LER

01 SEG02300-INSERT-AREA.
02 PILLER

L INK A GE SEC 'rION.
01 PCB-AREA-1.

02 T)8D-NAMF.
02 SEGMENT-lEVET.
()2 STA'rUS-CODES

PI CTUR E
PICTORE
PICTUB E
PICTURE
PICTURE
PICTURE

PICTURE
PICTURE
PICTUR E
PICTURE
P,ICTURR
PICTURE

PICTURE

PICTURE
PICTURE
PICTURE
PICTun E
PICTURE

PICTURE

PI CTUR F.

PICTURE

X (08l VALUE
X (01) VALUE
X (08) VALUE
X (02) VALUE
X (02) •
X (0 1) VALUE

X (C8) VAL UE
X (01) VALUE
X (O8) VALUE
X (02) VAL UE
X'(10) •
~ (0 1) VALUE

X(050).

X(61) •
59(03) •
X (06) •
9 (03l.
X (12) •

X (160) •

X (025) •

X (015) •

X (08) •
X (0 2) •
X (02) •

'CYCCOUNT I. . (..
'CYCLKEY • , = '.
.) ..
' BACKORDR '. . (..
'BACKKEY

,
' ='.
') ..

02 PROCESS-OPTIONS
02 FIT.LF. R

PICTURE
P IeTUR E
PICTURE
PICTURE
PICTURF.
PICTUR E

X (04) •
59(05)

X (08) •
COMPUTATION AL.

02 SEG-RPtf1E-FEEODACK
PROCEDU~ F DIVISIO~.

ENTRY'DLTTCBL' USING PCB-AREA-1.
DISPL1I.Y 'STAFT DB LOAD1 UPON CONSOLE.
OPEN INPUT INPUT-FltE.
MOVE'1SB'" TO DL 1-FUNCTION.

REA 0- I N purr -FIY.F. •
REA D I NPUT-FJLE AT END

GO TO END-INP-FILE.
BUILD-SEGMENT.

IF INP-SF.G-NAME NOT roUAL TO SPACES
PERFORM WRITE-BUILT-SEGMENT THBU WRITE-SEGMENT-EXIT
[10 VF. ZEROS TO SU B- 1
MOVB SPACES TO BU1LD-SEGl!ENT-AREA
MOVE INP-SFG-NAME TO PREV-SEG-NAPIE.

ADD 1 '1'0 StfP-1.
IF SUE-l IS GREATER THAN 14

DISPLAY 'MORE THAN 14 CARDS PER SRGMENT' UPON CONSOLE
DISPLAY 'SEGMENT IS PREV-SEG-NAME UPON CONSOLE
GO TO TJOC KEO- HA LT.

M OV E T N P -l) A T A TO BOIL D- D A T A - ARE A (S U B-1) •

Application Program Examples 6.3

FILE: DFSSAM01 ASSEMBLE A PAL C ALTO DEVELOPI1ENT CENTER

GO TO R FA D-INPUT- FILE.
WRrTE-BUILT~SEGM!NT.

IF PREV-SEG-'AME EQUAL TO SPACES
GO 1'0 WRITF"-SEGftENT-EXIT.

IF PREV-S FG-N AM E = , PARTROOT '
IP PRRV-SEG-NAME = • STANINFO'
I P PR EV-g EG- NA ME = , STOKSTAT.'
I~ PREV-S EG-N AM E = • CYCCOU.NT '
IF PRRV -SEG -N AM R :: • BACKOR DR '

IN VA L ID- SEG ffE NT- NA ME.

GO TO SEGMENT-IS-SEG00010.
GO TO SEGl'IENT-IS -SEG 00060.
GO TO SEGMENT-IS-SEG02000.
GO TO SEGl'I ENT-IS-S EG02200.
GO TO SEG ME NT-IS -S RG 02 300.

DISPLAY 'INVALID SEGMENT NAME = • PREV-SEG-NAME.
GO '1'0 LOCKED-HALT.

SEGM ENT-IS-SRGOOO 10.
~OVE nUTLD-SEGMENT-AREA TO SEG00010-IN.5ERT-AREA.
MOVE BUILD-SEGMENT-AREA TO KEy-VALUE-00010.
~OVE SPACE TO BEGIN-O~-OOO'O.
CALL 'C~LTDLI' USING DL1-PUNCTION, PCB-AREA-l,

SEGOO~10-INSERT-AREA, SEG00010-SSA.
lIIJ OV F. '(• TO BEG IN - 0 P - 0 0 0 1 0 •
If" STATUS-CODES NOT = SPACES, GO TO SEG~RNT-INSERT-ERROR.
GO TO WRITE-S EGM ENT- EX IT.

S EG ME NT -I S- SEG Of)06 0.
MOVE BUILD-SEGMENT-AREA TO SEG00060-IMSERT-AREA.
~OVE WRONG-MAKE-SPAN TO RIGHT-MAKE-SPAN.
MOVE BUILD-SEGMENT-AREA TO KEY-VALUE-00060.
MOVE SPACE TO REGIN-OP-OOQ60.
CALL 'CRL'rDT .. I' USING DL1-.PUNCTION, PCB-AREA-1,

SEG 0006 O-IN SERT-AR RA, S EG00010-SSA,
SEG00060-SSA.

MOVE '(' TO BEG IN -OP-(,006 O.
IF STATUS-CODES NOT = SPACES, GO TO SEGPlENT-INSERT-ERROR.
GO TO WFI'l'P-SFGMENT-EXIT.

S E G ME NT -I 5 - SE G 0200 n •
MOVE BUILD-SEGMENT-AREA ~O SEG02000-INSERT-AREA.
~OVE RUILD-SEGMENT-AREA TO KEY-VALUR-02000.
MOVE SPACE TO BEGIN-OP-02000.
CAI.L 'CBLTDLI' USING DL1-PUNCTION, PCB-AREA-1,

SEG02000-INSERT-AREA, SEG00010-SSA,

MOVE t (' TO BRGIN-OP-02000.
~EGO 20 OO-SSA •

IF STATUS-CODES NOT = SP ACES, GO TO SEG ME NT-I NSERT-ERROR.
GO ~o WRITE-SEG~ENT-EXIT.

SEGMENT-IS-SEG02200.
~OVE RUliO-SEGMENT-AREA TO SEG02200-INSERT-AREA.
MOVE BnILn-SEGt1ENT-AREA TO K EY-VALUE-O 2200.
MOVE SPACE TO BEGIN-CP-02200.
CALL • CBLTDLI' USING Dt1-FU KeTION, PCE-AREA-1,

SEGO 2200-1 NSR RT -ARE A, SEG0001 O-SSA,
SEGO 2000-SSA,
SEG02200-SSA.

rfOVE '(f TO BEGIN-OP-02200.
IF STATUS-CODES NOT = SPACES, 00 TO SEGftENT-INSERT-ERROR.
GO TO WRITE-SEGMENT-EXIT.

SRG~ENT-1S-SEG02300.
!!OVE BUILD-SEGM EN T-AR r:A TO SEG02l00-INSERT- AREA.

6.4 IKS/VS Application Programming Reference ftanual

C_'

FILE: npSSAM~1 ASSE~BLE A PALe ALTO DEVELOPMENT CENTER

MOVE RUrLD-SEGMENT-ARE~ TO KEY-VALUE-02300.
~OVF. SP~CE TO BEGIK-OP-02300.
C~L L t CBI.TtH.I· USI KG DL l-FU KCTION., PCB-AR EA- 1.,

SEG02300-INSERT-AR EA., SEG00010-SSA.,
SEG02000-SSA,
SEGO 2300-SSA •

MOVE • (. TO BEGIN-OP-O 230 O.
'IF STATUS-CODES NOT = SPACES, GO TO SEGftENT-IHSERT-ERROR.
GO TO WRTTE-SEGMENT-EXIT.

WRITE-SEGMENT-EXI1.'. EXIT.
SEG I'!E NT -IN S'ERT- ERROR.

1)15 PtA Y f SEGM EN T •
PREY -SEG -N AM E
, INSERT ERROR, •
• STATUS CO DE= •
STATUS-CODES UPON CONSOLE.

GO 'fO WRITE-SEGMENT-EXIT.
END - IN P-PI 1. E.

CLOSE INPH'1'-FILF..
PER FORM wn ITE- B UI LT-SEG ME NT TH au WRlTE-SEGPt ENT- EXIT.
01 SPL 1\Y • EN D DB LOAD' UPON CON SOLE.

LOCKEn-HALT.
GOBACK.

ASSEMBLER LANGUAGE APPLICATION PROGRAM EXAMPLE

In this example, the application program DFSSAM08 is a program used
to dump a data base named DI21PART. This is a batch processing program
that is the rev~rse of the data base load program, DFSSAM01, shown
previously. The procedure MFDBDUMP (in conjunction with the sample
problem'in the IMSL!§ In§talla tiQ!l gy.!.Q§) uses DFSS,AM08 as t he source
program. The listing follows.

Application Program Examples 6.5

FYLE: DPSSAK08 PT011J8 A PALO ALTO DEVELOPftENT eEtfTER

REPL NA~R=npSSA"08
TITLF. 'OFSSAKOS - DU PIP SA"PLE· DA'ABASE 1"5/'5'
PRI NT NOG EN

DFSSA "0 8 CSECT
SPACE 1

PCB"REG
BASEl

EQU 4
EQU 12
~NTRY DUTCRL
SPACE 1
U Sf KG * .. "B AS E 1

l.)LITCBL SAV~ (14,12) •• 5AK08-120
LR 12, 15
ST 13.SAV~REGS+4
LA 15,SAVEREGS
5T 15, 8 (, 13)
LR 13,15
SPACE 1
L PCB REG, <'(1)
ST PCHREG,PCBADDR
"VI PCRAnna,x '00'
USING DLIPCB,PCBR EG
OPEN (OUTFILE, (OUTPUT))

GlTDISK OS OR

LOAD BASE REGISTER WITH EP
FORIARD CHAIN SAVE AREAS
A (S A V EAR E A)
BA~ CHAIN SAVE AREAS
A(SAVE AREA)

A (PCB) PASSED BY CALLER
PUT A (PCB) IN CA LL LIS'!'
CLEAR HI BYT~

CALL CBLTDLI,l1 F= (E,DLILINK) ISSUE DL/I CALL
CY.C D1.1 STAT,=C' WAS CA tt OK ?
BE CAI..LOK YES, THEN PRINT SEGftENT
CLC DLISTAT,=C'GA' DID CALI.. CROSS BOUNDARY?
BE CALLOK YES, TREN FRINT SEGftENT
CLC DLISTAT,=C'GK' IS THIS SIBLING SEGftENT ?
BE CAtLOK YES, THEN PRINT SEGftENT
Ctc DtI STAT ,=C' GB' IS THIS END OF DATA BAS E ?
BE ENDDISK YES, THEN RETURN
iTO 'RRROR IN GET N'EXT DL/I CALL'.
B AB RND

* ••• BUILD OUTPUT RECORD
CALLOK DS OR

PlVC OUT~FC(8) ,DL1SEGFB
Hve OTJTREC+9(100) ,SEGltETRN
PUT OUTPILE,OUTREC
K vc OU1'I.l E,C (8) ,=C L8' ,
"VC OO'.rREC+9(100) .. SEGRETRN+100
PUT OUTPILE,OU1'REC
11 VI S EGR ETR N • X ' 40 • EL AN K
MVC SEGR ETRN+ 1 (L' SEGBETR N-1), SEGRETRN
B GF.TDI Sl{

EJECT
ABEND EQU *
ENDDISK CLOSE (0 UTPIL E)

L 13, S~VEBRGS .. 4
RETURN (1Q,12)"RC=O
EJECT

* .•. CONSTANTS .AND OSECTS
DLIPUNC DC C L4 'G N '
* ••. DtI CALL TA IST
·OLYLINK DC A(DLIPUNq

GET NEXT CALI. FUNCTION

~ (pU NCTION)

6.6 ItJS/VS Application Programming Reference Manual

II

PItE: DPSSAIH'B pt.11118 A PALO At TO DEYBLOPftEtrr CER'l'BI

PCBADDR DC ~ (0) A (PCB)

(. DC X' BO' ERD OF LIST P'tAG
DC A L J (SEG RP!T RR) A(I/O AREA)
SPACE 1

SAVEBBGS DC lAF'I)' REGIS,.ER SAVE AREA
OU'l'REC DC dr.11(" , OUTPUT REC OJm
SEGRE'rRH DC CL200 •

, 1,10 AREA
DC' CL10'" •
SPACE 1
LTORG
SPACE 1

OUTPILE DCB DSORG=P.S,r!ACRP= (Pft), X
LRECL=ll 0, BLK SI Z f= '·10 ,R ECl' ft=PB ,DD RAftE =OU'fPUT

SPACR '1
I"SPCB DS!CT
f) LIPCB DS OR
DLTl'IIE 1)S CT..8
OLISGT.EV ns CL2
DLIST At ns CL2
OLIPROC DC C'T..4'G

DC 1" 0 •
DLISBGP' B DS CLa

RND

•

c
Application Prograa EXaaples 6.7

§!I£H ~RO~E~~!!~ ~GRAM]!!~F1]

The two programs previously shown, DFSSAM01 and DFSSAM08, are batch
processing programs, written in COBOL and Assembler Language,
respectively. Refer to them for details as they are not repeated here.
Instead, the SYSIN data for DFSSAM01 is provided. Refer to the listing
of DFSSA~O' to interpret the format and content of this data.

PA~TROOT 02ANYhOC10
SIAN INFO 02

WA~HER
1200

(\1)01
0002
(00)
01)04 SlIJK)TAT

STOlt STU

STnKSTU

PA!~ TRnOT
STANI~FO

STI)K STA1

STOK STAT

stnK5TU

"Alf TRnaT
srANfNFO

ST'.JKSUT

STnKSTAT

PA:M.TROOT
STAN INFO

STOIC. STAT

UACIWRDK

PAR1ROOT
STAN INFO

~TOKSTU

STOI(5UT

STOI(SUT

STOKSTAT

06C
00 AA 1611 11 000(100000 fACHOOnnoOOO(lOoonooooo

512 0000000 noo0131 00000I~ 0000n20 (1000126 OO~OI04 OOtH'OIIl')05
OUII" CU~OJ(lOOOO OOOO~OJ 0 l~I'~

~o AKld"f MOC~~OUOD"
lbO ooooouo l)lH}llill'tI

a00ucnoooo 0000000 0 Z'~ON
CO~~OO~IZ~ 000000000
OO~U~I~511517S0rOOOooononOb30
04 U00010000000IJOO 0 494'

t AU'~lnCH\(\!'(,O"l'O{\} 70(l0(1 !'rill'
nUllOOOIl UUOlltl,lU 1101'110~1'I (lUf'IJOO) ?tlnOllll, "'h'I\

~I)n"
[ACH ooooooOOOOOOOOOOOOOl~

ooouooo.ooooooo 00006~O 0001053 000000131

OlCKO~tWlijlK CAPACITOR
Dna
0142
(14)
0144

02 7~2
Ot,c.

00 Vf'l906 000001000
245 0000000 OOOOO~O

ORI)\'O(lOOOO 000(001) 0 Hllt~N
OUZ~~OO~Zb OOOOOU340

51051050liOOOUOO"0013Z0
OO~POOCJOOO"OOOOOOOO
002~~11l926 0~OU00340

5105105000000000000006
ononooouuOOOOOO"O~OO

120l)

EACH000000000000400000 016Q
0000000 0000000 0000001'00000007.0000000110

0171
oooono 0172

OOOOODOOOOOOhbO OOOl)bbO 0000000(00001)0173
0174

000000 0175
000000000000000 0000008 00000000000000176

oze ~N 13e:; 1'l4Kl KMIJSOKS
OU7
0178
017Q
0180

Ol 742
OM:

00 ~n1ltS5R MOOOOOZ710
4~~ OOOOOOU 0000014

OO'IOOCUl:!,>o OOOUOOU a V4K5N
00 SK2l711 M000002110

260 0000000 0000004
00100UCOOO 0000000 a V2bON
OOZ~~02~?'b 000000000

412412S000000000000014
04 00000000000000000

1200 82

EAtHOOOOOOOOOOOOOOOOOO OIRI
0000000 0000000 00000I4~000000b00000001~Z

0183
EAtHOOOOOOOOOOOOOOOOOO 01~~

0000000 0000000 00000~0000000200000001R5
0186

008000 0187
OO~OOOO 000000000000014 0000050 000000188

OZJAN1NqrbR DIODE CODE-A
0189
0202
0203
020~

02 14?
abC

00'-~50q12b 000000000
513515S000000000000011

03 ooooooooooouooooo S13
30PR2379ltZ

1200 72

004000 0208
OOOOUoo 000020000000011 0000068 0000007.09

0210
00000211

201)0
0214S16«195-28
02

SCREW
0212
0217
n218
0219

742
!)6C

00 4416511 000000152
4ij9495NOll00000 0000026

0000000000 0000000 0 V489N
00 8A16515 OC0000069

455 0000000 0000006
0000000000 0000000 0 V455N
00 F F 55460 "OOOOOOObl

440 0000000 0000044
0000000000 0000006 0 V448N
00Z59109Z6 000006980

491498S000000000000095

1200

EACHOOOOOOOOOOOOOOOOOO 0220
0000000 0000000 0000030 0000003 000000221

07.22
EACHOOOOOOOOOOOOOOOOOO OZ23

OCOOOOO ooooaoo 0000008000000000000000224
0225

EACHOOOOOOOOOOOOOOOOOO 0226
001)0000 0000000 0000043000000000000000227

0228
000000 OZ29

0000000 0000000 0000100 00000000000000230

6.8 1M5/VS Application Programming Reference Manual

•

c

c: __

c'

· .. _•. _ .. _-_._._-_ - ----

OO~OCOOOCOOOOOOOOOOO y 0231
P.~lKUO' 02~51P300JFOOO SCREW 0232

0231
02:i"

S TAN1NFO 02 742 IZOO 14

$ TCIK STAT

C YCCOU~T
Pi\RTRUOT
S UN1~FO

:. TOKST AT

STIJIC.STAT

CYCeOUNT
STOIC STAT

PAR TROOT
STAN INFO

STIlK STA T

!) Tal(S rAT

S TIlK STAT

PARTROOT
STAN INFO

03
00l5~nhOlb 000000000
oo~u ~04404S000000000000313
00 OOOOQOOOOOOOOOO 0
20~~0036QO 00003bOO

00000000 ooooooooodoOOOOOOPZ~l
0000000 0000000 0000360 0001209 OOOOOOZ~2

OZIt1
O~-'4

02KeOl(iF171J RES I ST!lK 0l't7
0i'''8
1)249

01 742
06e

00 AK2~571 000000240
11J 0000000 0000033

ooaooooooo 0000000 0 V213N
00~8COqllh 000000000
OU0051b511511S00000uQOOOOQ011
00 oo~cnooooooOOOO 1 465Y
ZO~OOOOlqn 0000011
0026011126 ~CQOOOOOO

4,q~5qSOOOOoooooonOOlb
2q OOOOOCOOOOOOOOOOO

17.00 OZ

EACHOOOOOOOOOOOOOOOOOO 02~O
0000000 0000000 000001300000oal00ooOOOl51

OZ52
00900000 OOOOOOOQonooonOOOQ'b"
0000000 0000000 0000011 0000057 OO1)000'b5

(\1"'~
(lH.7

012000 01b~

0000000 000000000000021> 0000240 OOOOOOlb9
o HI)

02t06A1ZQ1P009 ~ESISTOR OH1
0372
0111

02 142
1(1

00~~qOOJ2b 000000000
OOon1114914~4S0000000000010,~
22 ('C(l~JOOCOOOOOOOO 0
OO,-~q0602b oenoooooo
OOllll Z'JJ 000000000000000
01 000cooonOOOOl04 0
OOl~qlOQ26 OCOUOlftlO

4~2483S000000000000320

lZ00 0'-
0(1000000 007005 0000000000011"
0000200 onooooo 0001055 000"180 000010315

0176
00000000 000000000000000000180
00000000000000000000000 0001808 000000381

0382
onoooo 0183

0000000 000007.0 0000320 00000000000000384
0365 00000000000000000000

0215023&-001 CAP4CITOR Olaf»
0)1)7
0188

02 1200 8.2
04

~TUKSTAT CQ2~q~01lh oeooooooo 00000000 007010 000000000003K9
0000010 000051>1 000000]90

0391
0000n"i90

03'l0
OOOI}') \90

OiqO
()OOI)O\'l1)

O-t'lO
uooooooo 001000000000000000195
00000000000000000000000 0000551 000000)Q6

OiH

OU")O 3'H4~RIt""~00000000I100041U 0000200 0000600
38 OOQCOOOOOOOU~OO 0 1t~8Y

UAe)(()MO!t 30PR1o~"4 3
lOll,)

IIAt:KlIRUI()OjJH.H7'1l1

I\ACKIlKOR
7();)')

30 II R It 2 b 1)It
~U(l()

OOI..,'HlbU).t, OCIIIIOOOOIJ
ocua 4~~440SUOOOoooOO~OOOOO
10 occooooC)OOOOOOO 0

c;TllKSUT OOI.~910qlb 00000Jbl0 000000 0198
~11~1~SOOOOoooOoon007Z

OOO~COOOOOOUOOOOOOOO ,17Y
UOOOOOO 0000000 0000012 0000045 00000019Q

PARTROOl
$T"~INFO

02250239 TkANSISTOR
02 742

05A
1200 02

S10KSTAT 0025910926 OOOOObSOO 00"o00
511~16S0000000000000b8 0000000 0000001 00000b7 0000045

02 00000000000000000 517Y
PARTROOT 02250241-001 CONNfCTOR

0400
0401
0402
OltO)
Oltll

00000041"
0415
0 ... 6

Application program Ex amples 6.9

STANtNFO 02 142 !ZOO 42 o .. n
0..18 0 ..

PAR TKUOT 02·1.ljon ..
STAN1NFO 01.

Rf.SISTOK 0 .. 31
7~1. lZ00 02 0431.

10 0 .. 3\
Sll1K~1&T 001."t900.\l& OOOOUOOOO 00000000 005005 00000000000"J4

OO~03~'4el"88S00000~OOO~00003 0000000 0000000 0000003 0001176 000000435
64 000000000000000 ~ 4B8Y 04'6

S IIlK SU T 00ZS')1)602& oconul)Oou 00000000 00000000000000000(441)
OO~O ~ .. 40NOOOOOOoonOOOO~1) OO~OOOOOOOOOOOOoooooono 000122Y OOOOOa.41
8" OOOOOOOI)OOOUOOO 0 0 2

STOKSTAT 00l.5Ql0q1.6 00000I1"~ O~OOOO 0 3
~17~18SnOOOOo0000003qO 0000000 OOOOr.OO 0000381 0000110 OOOOn~4"

O~OUCOOCOOOOOOOOOOOO 511Y n44~
puntorn C)Z!~0,q6 S .. nCH 04
UANINFO U2 221 120n 54 nit .. ,

06 044'
5T"KSrAr OOl~90~Q'6 000000000 uoonoooo OnUOOOOOOOOOOOOOOO~".

00:)0 4fl~nOOOOOOOOOOOOOI 'OOooooooooonOOOOOOOOO')1 0000062 000000450
02 OQOOOOOOOOOU02) 0 n451

SJQKsr,r OO!511~~I.~ 000015350 oooono 0452
~ U"13S000oo00U0000020 0(1)0000 0000010 0000005 000000(\000000'J453

0000')0000000001)00000 04 ~4
'A~TMOOT 01l~~~91 SEMVO VALVE 045~
ST~NINFO 02 742 1200 16 0456

06C ~451
STIIKSUT OOI.!»"OhOl~ OCOOOOOOO OOllOOOOO 0IltOOOOOOOOOOO(\OOOIt'U

00"0 ""6"46nooooouocooon004 0000000 OOOOOOtt 001)0000 0000516 00000045.
7~ OCOOC~J0000002' 0 0"60

S',lKSUT 0lll5910Ql6 OCOH50(';O 000000 (1"61
~19440KOOOOOOODO~'023S 0000000 00001~0 OOOOO~5 0000005 00000n .. 62

OOI)OOOOOOOOO~OOOOOOO 509 0'.11)
, AA TROOT 022 52252- 01) J GOfJPL I ,.G 0"64
5TANINFO Ol 742 1200 1& Ott 6'

06C O~66
SlnKS1AT 00lS~00326 OCCJUOOOUO 000000 0"61

.. a54~~ooOOUOOUOU000092 0000005 OOOOO~2 000000~OOOUOOOOOOOf)OD0468
00100~0~OOOOOO~OOOOO Y 04hl)

S 10KS' AT n02~f)I)t.\ll6 uonoonO(lO 00000000 . 00700000000000000n470
0000 ~4~4~~SU()U~uuoounuuooo no~oooo ooooono oooonl0 ooon8ll nonOO~ltl1
81 OOO"O~JOOI)UU460 0 0412

S,"K5"1 00lS~lO·).?6 OOU0164~0 000000 nltU
SO'507S~00000000~00076 0000005 0000010 OO()~076 0000008 000000474

OOOOOOOOOOO~OOOUO~OU ~03 0475
PAR'ROQT 02tnUJ~02 CHASSIS 0476
SUN'NFO 02 222 1200 34 Ott 71

0& 0478
STOKSTAl D025Q003?6 000007900 ooo~oo 041Q

.... 41t9 .. S(lOOUOOt'nonOOOll~ 0000000 0000000 0000005 0000113 oooollO .. a/)
OUOOO~O~ooucoouu~OO~ "~4 O .. Al

S'UKSTU 00,!!»90602& 000000000 OOIJOOOOO eH 10(lOOOOMC'OO(.\OOO"ez
0000 lQ) OOOOOuOUOOOOOOO 00000000000000000000000 0001L.8 000020 .. 81
04 OOOOUOOO')OOOOOO \) 0484

S'~KSTAT 00Z59l0Q26 00000190~ 000000 C~8S
~1'~10S00000000UOOOOO" 0000000 0000000 onoooo .. 0000016 n00000486

ooooooocoooooooooooo 517 0"8?
PARTAunt Ol1003ftOb SwiTCH n~8A
SfANINfO 02 H1. .1200 ,.. 04. ••

6.10 I!S/VS Application prograaaing Reference !annal

........ ~ -"

06C 0~9~
STnKST'T OO~5900]2b OOOOI12b) 02~000 0491

SId518S000000000000090 0000005 ooOOOlZ OOOOO~l 0000300 000on049Z
12 0000121 OO~OOOOO~ ~ISY 0493

nACKORDR lO~)S36bC? A1404 36609 on~00494
1110 0495

DACKORDR 30SnS3bbi0 H3404 36610 000~04q6
OlhO 0497

~TOKSTAT OOl~~Oh01h UOOOOOOCU 00000000 0~10000000000~000049B
0000 40lt OOI}OOOOQI)OOOOOO OllOOOOoooooonnooooooOOO 0001 n4 00C'OO04QQ
.. } IJOCO) .. ·.(Jl)rhJO .. ')5 0 0'.00

STnKSUT 0025910'126 00~CO"b20 100000 00;01
51'~18S000000000000004 0000002 0000000 0000004 0000036 000000502

36 Ooo,ooooonooooooo S17 0-'01
PA~TknnT 023U07228 HGUSING 0~04
S TAN INfO 02 222 1200 lit 1)"i05

C4 0506
STOKSTAT ~OZ5qObOlh 000000000 oo~noooo ooooocoooooOOOOO~0507

ouoo 44ij448NOOOOOOOOOOOUOIO 00000000000000000001)010 0000125 000000508
II oOOOOOOOI)OOOOlJ 0 0"i09

~TOK~TAT OUl~q1092h OC0012000 000000 0~10

4QS4'1SS0000000J0000013 0000000 0000000 0000013 on00006 000000511
OOOOODoocoono~uoooOO 4~8 0~12

PA~ TKIJlH 01 iOO"027 tAKD FKONT (1')13
S TAN INFO 02 Itt.A 7246 tl4 0514

07.F 0')15
STOKSTAT 00259060lb OOOOOOOUO 00000000 016000~00000~00000516

OO'JO)4b 000000u00000001 00000000000000000000001 0000044 00000nSl1
07 000000000000029 0 0518

STOKSTAT OOlSqlO~2b ooooououo 000000 O~19

It~q4~9~000~00000000003 0000000 000000] 0000000000000000000000570
OOOUOQooonUooQO~OOOO n~11

·PAR1~UUT nl\~O~27~ CAPACITOR 0531
ST'NINFO Ol 742 Iloa 82 0,)J2

06C ~~11
srnKSTAT OOZS900J~6 oeooooooo 000000 0514

~005000000\lOOOCOOOOOOl 000')009 000001000000001 0000014 0(001)053'
00 uooo~ocooo~oooaou V O~16

ST~KSTAT OOZ5qQ~n26 000000000 00000000 013000~OOOOOOOO(lOO~31

OOJO 47641bNO~OOOOOOOOOOOII ooOoOOoooooonoooooOOOOI 0000083 000000538
II ocooaoo~ooooooz 0 05J9

PARTROOT Ol40C~~70 HOUSING 0540
·STANINFU 02 222 1200 1" 0541

04 0542
STOKSTAT 00l~9060Zb 000000000 00000000 0050000000o0000000~43

oono 448 OOOOOOOOQOOOOOO 00000000000000000000000 0000044 0000~0~4~
04 ooocaoonoooo~oo 0 0545

l/
STQKST4T 0025910916 OOOO~OOOO 000000 0546

44844~KOOOOOooo0000002 0000002 000000200000002 00000000000000547
OO~OOOOOOOOOOOOOOOOO O~48

·PARTROOT 02100~2~0 HCUSING CONY 0549
S TAN INFO OZ· 222 1200 18 0550

04 0551
S TUK SU T 0025910926 OCOZ93')00 000000 ~5~2

511452Koooaoooo0000002 0000000 0000000 0000002 00~00000000000553
00000000000000000000 0554

P~~TKOOT OZ301i405-00Z MOUNTING 0555
S TAN I~FO 02 22 646· 055 •

•

Application Program Examples 6.11

~TOKSJAT

STJKSfAT

S WK SUT

-PAR THOOT
STA~I~FO

STOKSTAT

PAR TRUUT
5' ~N INFO

SruKSTAT

Sl()KSTAT

-PA~ TROOT
STAN INFO

STOKSTAT

STllK STAT

S TOt(S1 AT

'PARTROOT
S TI\Nl NfO

STIlI<. SlA T

S TOt(S TI\T

STOt(STA T

PARTROOT
STANINFO

U(llJ
OO}~q003!'o OOOUOOOOO
OO.IU Vl i~()1J'+114S0UOJOOOOOI)OOOOO
21 1000000000000~1 0
001.5~06ul6 OCOOOOOOO
OO~O J?q 0001000~Ooooooo

14 ooooocroooooo,~o 0
00Z5110~26 U00019650

51H51~sonOOOOOOOOOOOOl

00 ocounooonnouooaoo 518"

1)'5'5.
OOOJOOOO 004000000000000000~~A
0000000 onooooo 0000000 0000720 OOOOOO~~q

05&0
00000000 0030000000000000005&1
00000000000000000000000 0000'560 0000005&Z

05#>}
000000 O~h~

0000004 0000003 0000001 0000008 000000565

02i0134ll COVER
0~66

0567
0568 02 227.

0&
OO!59Q6076 COOOOOOOO
0000 44R440S000JOOOOOOOOOll
36 COOOOZ10OQ004Zo 0
007.~qlU9Z6 000012100

512512S000000000000047
ooouoonOOCOUOOOOOJOO 51l

1200 66
O'5hQ

00000000 002000000000000000,70
0000005 OOOOOZO 0000000 OOOO~OO 000000571

O'\1Z
000000 0'573

0000010 0000005 0000041 0000011 000000574

02 '01 t47'l-01)1 CGV[R I\S:)V
0575
057"
0'>71
01)18

02 222
0"

00l59n6016 COOOOOOOO
00-)038044 S"'tONOOOOOOOOOOOOOOO
C1 OCOCVOOOOOOOU05 0
002S910Q26 000003700

513513~OOOOOooooooooOO
ooouoocnooooooOOOOOo 513

1200 66

00000000 00100000000000000051Q
00000000000000000000000 0000394 000000'580

0581
000000 0582

0000000 0000015 0000083 OOOOOO~ 000000583
(1584

02301341.0-001 CAPAC nOR OS85
0586
0581

02 742
04

00J.59003l6 000000000
r0103q347~418n000000000000004
73 ocooooooonooooo 0
002~q06026 OCUOOOOOO
OOJO 44~4.0~000000000000010

21 OCooocoon000001 0
002~91097h OC0001530

~14515nooooooOOOOU0349

OooooooooononooooooO 514Y

1200 82

00000000 006005 00000000000588
0000005 000000000000004 0002Q15 0000l058Q

O"iQO
0(1(100000 000000000000000000594
0000000 0000000 0000000 000224~ 0000 595

1)596
000000 OSq7

0000000 0000755 000009~ 0000108 000000598
0599

OZlOI~~4B-OU2 CHASSI~ 0600
0601
0602

02 222

OOl5Q00370 000000000
OO'10J1j4q146UOUuOOOOO~00~OOOO

11 oonoooooo~OOOOo 0 Y
0015906026 OCOOOOOOO
OOOU 293 000000000000020
01 000000000000505 0
0025910126 000000000

512512K000000000000002
oo~nooooooOOOOOOOOOO

lZ00

UOOOOOOO 001005 OOOOOOOOOOO~Ol
OOO~OOO OOOOOOO.OOOOO~O 000118& OOOQOO~O~

OoO~
00000000 OOOOOOOOOOOOOOOOOO~UQ
00000000000000000000000 0000498 000000010

0611
000000 0612

0000000 OooOOOZ OOOOOOOOOOOOOOOOOOOOOO~13
0614

02%134-016 NAS671Cl NUT 0015
0616
0"11

02 742 lZ00 14
03

STOKSTAT 0025900326 000003033 00000000 004010 00000000000618
0000886 0002316 000000619

Ob20

fi • 12

COOU3Q]4934Q5S0C0000000000886 0000200 0000000
86 OOQOOOOOOOOOOOO 0

IMS/VS Application Programming Reference Manual

•

C,I

c.

C

•

c

:. H1KSTAT

'iTllK 'i JA T

t Yt.CUUNT
PAI(T~l.lI)T

SUNINFO

OUl~~~h02~ OOOOOOOUO
UlhJO 4" 144 "<;;U0000000000001"
4b 1100" 101)00000000 0
0~l~~lU9~b cco6ooooo

~bI4bl~OO~OouocoonOl15
C00000nnnouonuouoooo
2000001100 00001150

ooonoooo 0040~0000~oooooonn624

ooooooooOOOOOOOOOOOOOl~ 0000904 00~000625
0626

000000 0621
1)0fJOOIO 0000000 0000115 0000000000000062A

0"29
0~2')

02,,(101)3-118 173~30~P8661TO RfS Ob30
02 142 1200 02 0631

10 0632
S TI1K:iU T OOJ.r,QOOVb 000000000 \lOUOOOOO 020010 00000000000633

0010]q34Sa~RASOOOUOUUOOOOOO\l6 oeooooo 0000000 0000006 0000644 000010h34
l6 ocoo~coooouooao 0 4~HY 0635

S rtJK STA TOO? 5C)ChC'.!b lJOO·)()O\lOQ I)OI)OI}OOO OOOOOOI)OOOOOOOOOOO~ '\9
OU,)\l 44.i (h)O'')OOO(J'JOUuOCf) 00000000000030000000\l00 00021 CJQ Ol)I)01)I)b40
39 OOI)COOOJOO\l\l\lSl 0 Oh41

STtlKSTAT OOZ5'HOCJ2h C.COOU0130 000000 0/.42
51~51~sonooooouaoon64~ OO~OOOO 00000210000621 OOOOOQl 000\l00"43

OOI)OCOC~OOOCOOOO~OOO 51~Y Ob44
PA~rH.nOT OZ:J5Z540-0OZ WIRF W~AP 1),.,,,5
srhNINFO 02 222 1200 42 n~46

SfrJKSTAT
0" °'141

OO~7~O~12b OOOOOUOOO OOCOOOOO oooooooooooonoooonh"8
OUOO 4bO oaoooouooounObO 00000200000000000000000 0000012 OOOOOO~4q
00 000000000000000 0 Db50

STnK SUT OOZ~OOqllb OCoOOOOO~ 000000 06~1
51~515000000000000001l (}I)OOOOO 0000012 0000000 00000000000000~52

12 OOQO~OOOOOUOOOOOO Y 0653
PAR T~UOT 02hSl79? PuL~~ T~ANSFOR"ER 0654
STAN INro 02 101 8300 0655

14 ~h56
S T:IK STA T OOlftOOC)126 ocooooooo 00000000 oOOOOOOOOOOOOOOOUO~Sl

oouu 514~I~SOOO~OOOD0000004 oeouooo 0000001 0000003 0000008 00000065R
00 oaQOOOOooooo~ao 0 4~jy Oh5q

PAO(Tkl10T 02~86b3-1J2 t~U~tlOOK03 n660
srANINFO 02 1~2 120n ~2 Ohhl

VhC 0hb2
~ JIIK STAT 00J.'5c)06tllh IlCJlluOOOi) OOl'OOOOO OOllJOOOOIlOOOOO('l('OOlth3

OOOOJ0444~440500U~00000000UOO nooooooOOOOOO~O 0000000·0001186 OOOOIlO~h4
C9 ocoonoOOOOOU\l56 0 Ob6~

STOKSTU 00Z~11n9J.b CCUCOOOOO OUOOOO Ohbh
S1USlasoouOoooUOOOOl~2 OOOOC~Z 000001S 000023l 000(0)1 0000~Oh~7

OO!)()CGCOI)()OO<lOUUOOuO 51 H (I;.',d
PAR rl<UIlT OluhhbJ-I04 CP40!llJlOIl.J03 0"','1
STAN INFO 02 147 1?00 H2 Oh70

ObC Oh71
STOK STU OO?~90bOlh OCOOOOOOO 00000000 001000000000000000h12

OOUO 44~ 000000000000015 uC00007000nOO~3 noooooo oooo,~~ OOOOOOh73
OS OOOOOOUUOOilOUOO 0 Oh'4

S TIlK STAT 00l~qlOq26 . OCOQUOOOO 000000 Oh1S
':Jll,nso:)000000()01)009~ 00()001~ OOOOOOfl 00000'15 000000') 1)00001)"'1&

00000000000000000000 511 0671
-PAP TRUOT 02b98~1-b3~ CP09A1KE153Kl CAPAC O~7~

STAN INFO 02 7~l 1200 ~2 Oh1Q
06C I)ftftl)

STOKSTAT 0025906026 OOOOOuOOO 00000000 002000000000000000~81
0000200 00003~~ OOOOOflb8Z

0683
0000 44~4flOSOOOOOOOOOOOOOOO 0000000 0000000
16 UQOOOOOU0000011 0

Application Program Examples 6.13

STnKSflT OOlS'HO<}Z& 000000500 000000 I)~A4

~1551"r)00(JOOOOOooooo'n 0000000 oOOOOSO 0000052 0000009
OOO~CCOOOOOOryOOOOOCO 51~

PI\R TROIIT 0210b0654P()IJl
STANINFn OZ H2

ELE TUBE
1200 10

OOOOO(lb~5
01,36
Ob87
0688
O-,R9

STUKSUT

SJOKSTAT

PAR. TROOT
!.TANINFO

SlOK STAT

STUKSlAT

PAR TknOT
S lANINFO

S T(lK STAT

SJ,lKSnT

S ToK STAT

PARTROOT
STAN INFO

srllKSTU

AACKUROR

ijACKOROR

8ACKORDR

AA'CKOROR

IlACKIJROR

STfJKSTAT

SlOKST IT

PM JRUOT
Sr4NINfO

6. 14

06C
0025906026 000000000
OUOO 44& 000000000000000
lZ 00000000"000003 0
00l5?109Z6 OC010aoco

515511flOOOOOOOO,1000038
OOOOOQOOO~OOOOOOOJOO 515
071431\991)1'002 NUT
02 HZ

U3
00259003Z6 000000000
avoo 44U440S000000000001136
00 000000000000000 0
OO!~q16U2& oonouoooo
0000 79b 00000000UOCOOl1
00 OCOOllOOU0000015 0

00000000 003000000000000000690
OOOOOOOOOOOQOOOOOOOOOOO 0000400 000000691

0~92

000000 0~93
0000000 0000002 0000036 0000004 0000006~

01,95
0696

1200 14 Ob'H
O~q"

00000000 000005 00000000001)~q9
00000000000000000002512 0000443 01)1)001) 7 00

0101
00000000 000000000000000000702
00000000000000000001)033 0000880 0000001U3

0104
0274549491',)01 LAMP HOLOf:R 0705

010b
0707

02 742
O&C

OOl~90032b 0000Pblb~
')1Ar;ltl!.00000000000I)Obl

80 OCOOOOOOOOOOOOJOO 50~

00l59C602b 000000000
OO~O 193 000000000000000
88 000CIOQOOOQ0065 a
OOl5910926 000005J~0

511~1~~U001000000U0004
ooooooooooonnooooooo 5Jl

1200 82

046000 0708
0000000 0000040 00000~4 0000173 OOOOl)070Q

(1710
00000000 022000000000000000711
00000000000000000000003 0001301 0000207 1Z

0111
000000 0714

0000000 0000000 0000004 0000036 000001715

C17b16032P 11'1 1 CAPAt I TnR
07lb
0711
07l1t
0119

02 742
04

OO~~900326 0000UI0Cl
OU~OJ934q14Q2S000000000000013
4q OCOCI)0000000000 0 4~5Y

30rR14Q3l91301603 04a5
00\0
30P~149316\103603

OUIO
30PR1530961303b03
0010
3OPk15309S1303603
0010
30~Rlb950b1303603
00'i0

0465

0485

04~5

001.~q060?b 000000000
00')0) f, 1 OUOOOOOOOOOO()OO
18 oooooor00000119 0
00l~ql09?b ~OOOOOOOO

4544S41l000000000000022
OOOOO"OOOOOOOOOOOOO~

1200 82

OLlo.)OOOOO 006005 OOOOOO()('O(l1l120
0000009 0000000 0000~13 0002601 0000107Z1

82446 301 :\609-001

10 1 360f)- 00 1

101 1609-001

0122
00000123

()124
f)00()0125

012"
00000721

012'1
00(100129

0730
00000131

013Z
OODOOOOO 00ZOOOOOOOOOOOI)OOf)736
0000000000000000(1000000 0000952 000000137

073e

1l24Sl 3013609-001

R2484 3013609-001

OOOO~O 013Q
0000000 000007.2 0000000000000000000000740

07.ft)lii1AQP1)49
02

Cll(CUlf BREA
01 ',1
07 .. ?
() 143
0144

742 1200 06
06C

IMS/VS Application programming Reference Manual

•

STI)KSTAT Oo:? 5?0l>02 6 000000000 00000000 000000000OOOO~OOO074S
OU')/) 4~0 00000(000001)015 00000000000000000000011 0000033 00000074~
03 OOOO~OOOOOOOOOl 0 0741

STOkSTU 002591092b OCOOOOOOO 00000(\ 0148
r 'tQS't9SIJ000OOOOOOOOOO02 0000000 000001)1 0000001 0000002 000000749

l_ Ooooooonoooo~oOOOOOO 498 0750
PARTROOT 0276301143P513 ItESISTflR 07')1
STAN INFO O~ 142 1200 02 0152

ObC 1)753
~ 10K STAT OOl~qOC32fJ OOlIOOOO(1() OO~OOOOO 000000000000000000754

0000 ~18 0000001)0OOlJOOO2 00000000000000000000002 0000000 000000755
00 OCC000000000002 0 075#»

STUKSUT 0025906026 OOOUO:lUOO 00000000 001000000000000000151
0000 44a442S00000000000uOOO 1)00000000000000 0000000 0009555 000000758
q9 0000000~0000080 0 0759

S TIJI(SU7 00l591092& OCOOOOOOO 000000 0760
51d>18000000uOOOOO140) 0000000 0000300 001)1203 0000858 000000701

OOOOOOOOO~OOOOOOOOOC SlAY 0762
PA~TKOOT 02773b847POOI TRAN SFORMER 07b)
5 TANI NFO 02 142 1200 CHI 016.,

10 0165
~ WI(SU T 00l5'100.il6 000000000 00000000 000003 00000000000766

OOa03Q3511511S00000oociooOO179 0000001 0000150 0000040 Q001411 000000767
05 OOOOO~9 0000128 0 (l76S

DACKURDR 30?1(1350't0 046~ B3,tlJ 0000A)5~4 ~"8506-100 00000769
1 'j00 0770

STrJK$UT 00l5?Oh02b 1)00000000 OOCOOOOO 005000nOOoooOOOOOn174
OO'JO ~57 000000000000005 00000000000000000000005 00004)0 000000775
20 OCP003300000040 0 0776

C; TUK STA T OOl5'HOQ26 000U15100 000000 01H
~95497KO"0000000000010 0000000 ooooMo OPOOOIO 000OOOOOOOOOO?178

00 00000000000000000 077'1
I'ARTROOT Oli03001J0l5 GASKF.T 0780
S TANINFO 02 221 1200 A4 07K1

04 078Z
STOKSTAT OO~5~060l6 00000"000 00000000 006000000000000000183

0000 zln 00000UOOOOOO049 00000000000002000000019 0000176 000000784
11 ~OOOOOOOOOOOOOO 0 07H5

S TIJK STAT 0025'H09ZI) 0"0002580 000000 078/)
51051uSOOOOOOOCOOOOO12 0000000 0000000 0000012 0000008 0()OOo)i\7lt1

OUOn000000JOoooooaoo 510 07811
PM. TKUOT 02:iZll4-05fJ RN&\JC31.61 f 0789
S TAN INfO 02 74Z 1200 02 07QO

10 /)1ql
STlIK STA T 00l59003Z6 000000000 00000000 000007 00000OOOOO07Q2

JO\J0)9\'t8A4RRSOOOOOOOOOOCOO08 0000000 0000000 0000008 0001116 0000O()7Q)
",,,,, ... ~ 02 OOOOOOCOO~00028 0 48t1Y Q794t

L
STn~ STI\ T 00l.,9109Z6 OCUOOI>OOO 000000 O~Ol

51151USOOOOOOOOOOOOJ22 0000000 0000000 0000340 0000190 000000'\02
OOOOOOOOOOOUOOOOOOOO 517Y O~O)

PARTKUOT n2~2124-640 RNb5C90nF 0'\04
STANINFO 02 74tZ 1200 02 0"05

048 oaOb
STOK'iUT 0015900326 JOOOOOOOO 000000 OIlOT

4q44~40000000000000000 001)0000 0000000 0000000 0000008 000000808
00000000000000000000 494Y 090CJ

S TOKST AT 0020;906026 000000000 00000000 OOOOOOOOOOOOOOOOOOAIO
OOQO 402 000000000000000 00000000000000000000000 0000075 OOOOOO~ll

•

c
Applicat ion program Examples 6.15

03 000000000000000 0
PAR TROUT 02ct2125-1S6Q RN75C8252F

0"12
0813
OBI4
O~15

SUHIHFO 02 71t2 1200 02

STOK STAT

STnKSTAT

PAR TlUlIlT
S rAN INfO

1J6C
00ZS?Ob026 (;00000000
OO~O 4.~ 000000000000100
03 000000000000013 0
002SQ1097.6 000000780

51t51]~OOOOOOOOOOOUOqo
0001.)0000001'1000000000 513

00000000 00IOOOOOOOOOOOOOOO~16
OOQOOOOOOOOOOOOOOOOOO~O 0000424 000000811

ORIA
000000 0~19

0000000 0000000 0000090 0000060 000000A20
0"21

021J435l-456 RWblV412 OR22
02 742 1200 Og23

06C ~~2"
5TtJKSTAT OOZS'l00311J 000000000 00000000 002000000000000000"25

0000 41Q,,'?SOOOOOOOOOOOO?'80 0000000 00001.00 0000110 000016' 000000626
01 000000000000004 0 0~21

STOKSTAT 002~910926 000000000 000000 0831
509S17S000000000000009 0000000 0000000 0000009 0000012 000000932

00 00000000000000000 ~Oqy 0~33

PAk TRIJOT 0290- 3033334 Bn~DED ASSV 01U4
SUNWFO ('12 4U 1236 0~35

010 0'36
STUKSTAT 002800912b ~COCOOOOO 003000 0837

51 .. 515S00000000oo00010 0000000 0000014 0000001 0000032 000000"38
01 OOOCOOOOOOOOOOOOO 503Y 0839

PARTROOT 02~o-30336b5 BCNOtO ASSV 0~40
STAHIHFO 02 41A 721<» 01141

015 0842
STOKSTAT 0018009126 CCOOOOOOO 000('100 OS43

514~lS00000000~OO00024 0000000 0000024 0000000 0000048 000000B44
OCOOOOOOOOOCO~OOOOOO ~R2Y OB45

PARTROOT 02?05537-~a4 CAPACITOR O~46
S TANI HFO 02 742 1200 I)BIt7

ObC Od~8
STOK~T~T 00Z8002~2~ oeooooooo 002000 OR49

497461461S000000000000004 0000000 0000000 0000004 0000050 OOOOOO~50
01 Ol'lOCOOC0000000100 0~~1

STnKSTAT OOl8COQ126 000000000 000000 OP.52
5144440000~000000('lOOOO 0000000 0000000000000000000000000OOOOOB53

OOOOOOOOOO~ooooooooo Y 0~54
P_RTROOT 0290b07'-040 CAPACITOR 08~5
SlAHINFO 02 742 1200 82 O~Sb

ObC oa~7

STCKSTAT 00Z~01'l912h 000000000 00000000 001000000000000000~~8
0000 511515S00000000000001~ 0000000 0000020 001'10004 0000028 000000~~9
02 000000000000000 0 Y OBbO

PARTROOT OZ9~7021-787. CAPACITOR 0961
SUN INFO 02 142 1200 82 Oltb2

06C 0863
STOKSlAT 0028009126 000001700 00000000 006000000000000000864

0000 5115170000000000000008 0000000 0000005 0000003 0000018 OOOOOOR65
01 000000000000000 0 S03Y 0866

PARTKOOT 02972294-002 CONNECTOR OR7Q
STANINFO 02 742 1200 "2 0880

ObC • 0 .. 81
ST~KSTAT 00 TF3~67A M000003390f. FACHOOOOOOOOOOOOOOOOOO 0~~2

467 0000000 0000000 0000000 0000000 0000000000000000000000883
0100000000 0000000 0 V467N OBS4

IMS/VS Application Programming Reference Kanual

\' , ;

\
'-., /

(

/""

L

srUKSTAT 00 rf5~77N HOOOOll540 FACHOOOOOOOOOOOOOOOOOO OR85
~bl ooooono 0000001

OGJOOOOOOO OOOOGOO 0 V4b1N
ST~KSTAr 002U009026 OCOOOOOGO

0000015 0000000 000000100000000000000088b
OR87

00000000 020000000000000000K88
00000000000000000000001 0000015 000000889 00Q045241641~SOOOOOOOOOOOOOOl

03 OCOC00000000001 0
H£lKSTAT 002800'H26 000000000

01190
00000000 OOOOOOOOOOOOOOOOOOSQl
0000000 0000000 0000007 0000030 00000089Z 0010 51451SS000000000000017

00 OCOCOOOOOOOOOOO U Y
PARTRUOT 02~22399-001 CCNNEtTOR

0893
0891t
0"95
0'196

SfANINFO 02 742 1200

S fOK STAT

PAR TlUlOT
STAN INfO

S TUKSU T

""CKIJROR

PARTKOflT
STANINfU

abC
002d0091Z6 000011430

517S11S000000000000006
01 OOOOOOOOOQOOOOOOO 501Y

005000 0"97
0000000 0000005 0000005 0000019 0000008QR

02'125363-116 DIODE ZENER
0"99
O~OO

0'101
1)90Z

02 742
ObC

00lB009126 000000000
0000 5145150000000000000005
02 000000000000000 0 Y
30PK 12q~)7

lZ00 72

00000000 007000000000000000903
0000030 OOOOO~ 0000001 0000030 OOOOOO'~

09'o~
00000'»05

0040
02'l25J1i0-101
02

nlnOE
71t 112

000
PART~OflT Ol"OJ11-10?
STAIH NFO 02 816

Fill ER
0000

O.,O~

0<)06
O'lOl
090"
OCHO

00 OQ13
STOKS1AT OO?~00qI2h OOOOOOOOU 00000000 ooooo~000000000000q14

ooua 514515S000000000000~0~ 0000000 0000004 0000004 00000Z5 000000Q15
no 000000000000000 0 4SHY OQ16

PARTROflT 02"30331-1Z3 FILTEI\ OQl1
srANINFO 01 81~ 0000 0918

00 OQ19
~ IIIK ~ fA TOOl KOO'HZ'" OOOOuOOOO 00000000 OOO(lOOOOOOooooooon') 20

OO~O ~14515S00000000000000H 0000000 OOOOOOS 0000003 000002S 000000911
00 000000000000000 0 4S7Y 09ZZ

PARTROOT Cl~30333-001 OISCRI~INATO OQ23
SrANINfO 02 816 0000 0921t

00 0925
ST~KST~T 002ij009126 COoooooon 00000000 013000000000000000926

OO~O S1451~nOOOOoo000000002 0000000 0000002 0000000 0000008 000000Q27
01 000000000000001 0 Y 0928

rAKTRunT 02Q46325-08b PIN 092Q
~TANINFO 02 742 1Z00 16 0930

06C 0931
STOKSTAT 00 RF3467~ HOC0000890 EACHOOOOOOOOOOOOOO~OOO 0~32

376 0000000 0001313 0000000 0000000 000111300000000000Q000933
OOOOCOOOOO 0000000 0 ~37oN OQ34

srnKSTAT 00 Vf34610 HOCOOOOOUO EACHOOOOOOO~~OOOOOOOOO 0935
170 0000000 000005750<100000 0000000 0OO0059000000t'00000000936

0000000000 0000000 0 V170N 0937
STaKSTAT CO'-8C0902~ 000000000 00000000 850000000000000000935

0000452481452S000000000000000 00000000000000000000000 0000004 000000939
14 OC0000000001010 0 0940

STOKSTAT 0028009126 000000000 00000000 0~0000000000000000941
OOJO ~14515S00000000000000B 0000000 0000000 0000008 0000016 000000Qlt2

Application Program Examples 6.11

C8 000000000000000 0 49JY OQ43
PA~TROOT 02q500~o-006 RELAY Oq4~
SfANINFO 02 742 1200 96 0~45

06C OQ46
STOKSTAT GOl8Cr.91Z6 U00015)00 00000000 00000000000000~000941

0000 S17518S00000000000000q 0000000 0000000 onQOOoq 0000021 OijOOOU~46
00 000000000000000 0 4dJY OQ4q

PARTKOoT 02QS4017-00\ RESISTOR O~~O
S TAN INFO 02 142 121)0 02 0'l51

ObC 09S2
STOKSTAT 00 JF14b7A M000002SZ~ EACHOOOOOOOOOOOOOOOOOO OQ53

907 0000000 000000& 0000000 0000000 ~0000060000000!0000000q54
0000000000 0000000 0 VQ07N OQ55

STOKSTAT 00 rF34~lA MOOOOI0000E EACHOOOOOOOOOOOOOOOOOO 0?5&
401 0000000 OOOOOQO 0000000 0000000 OOOOOOOOOOOooooooOOOOOQ57

0000000000 000000) 0 V40lN OQ58
STOKSTAT 00 lF5077N M000002525 EACHOOOOOOOOOOOOOOOOOO OQ59

474 0000000 0000002 0000000 0000000 0000002000000010000000Q60
0000000000 0000000 0 V474N 0~61

STOKSTAT 00lHOOQI2& 000000000 00000000 000000000000000000Q62
0000 514S15S00000000000000~ 0000000 0000003 0000001 0000008 OOOOOOQb1
00 000000000000000 0 ~86Y 0964

PAR1ROOT 02<J58007-180 RESISTOR 096'5
STAN INFO 02 1~2 1200 02 0966

06C Qq67
STOKSTAT 00Z80091Z6 OC0000650 00000000 005000000000~00000q68

0000 511517S000000000000046 0000000 0000000 00000)9 0000021 000000Q6q
01 OOOOOCOOOOOOOOO 0 V 0970

PARTROOT 01Qh052R-067 RFSISTOR OQ71
STAN INFO 02 7~2 1200 02 0972

ObC OQ1)
SrUKSTAT 00 DF)~b71 M000007000 EACHOOOOOOOo0000030000 Oq7~

\40 0000000 OOUOOOO 0000000 0000000 0000000000000100000000975
0300000~00 0000000 0 V140N 0976

SrQKSTAT 00l80090Z6 000000000 OQOOOOOO 100000000000000000977
0000~52481479NOOOOOOOOOOOOOOO 000000000000000 0000090 0000003 OOOOOOQ18
O} OOOOO~OOOOOOOO) a 0919

STnKSTAT 001.~OOq\Z6 0000u~2JO 00000000 1040000000000000~Oq~0
0000 517,1700000000000000C9 0000000 0000005 0000004 0000027 000000Q81
2M 000000000000000 0 505Y 0982

P~RTRUUT 02968534-001 SOCKET OQRl
SlANINfO 02 742 1200 Ib OQd~

ObC 0~85

S1UKSUT 00l1J00912~ 000050000 00000000 029000000000000000986
0000 514~15S000000000000008 0000000 0000003 0000005 0000007 000000987
02 OC0000000000000 0 Y 0988

PAR TRllOT 02'H481o-01 i } THE~MOSTAT 0989
~fANINFO 02 1~2 1200 16 09QO

ObC OQ91
STnKSTAT 002800252h OOOOI32~0 00000000 007000000000000000QQZ

000049~51b~17~000000000000006 0000000 OOOOO~O 0000006 0000057 0000009Q)
O~ 000000000000000 0 516 0994

STOkSTAT 002800917.6 0000091~0 001000 0995
517517S0U0000000000021 0000000 0000005 0000016 00000I~ onOOOO?96

01 00000000000000000 Y 0?9T
rARTROOT OZQ7S\05-001 TRANSFORMER 998
STAN INFO 02 14Z 1200 16 09Q9

ObC 1000
STOKSTAT 0028009126 u0010000Q 024000 1001

514515S000000000000029 0000000 0000001 0000028 0000021 000001002
05 00000000000000000 Y 1003

PA~TROOT 02~89036-001 TRANSFORMER 1004
S'ANINFo 02 742 1200 96 1005

ObC 1006
STOKSTAT 0028009126 000019)00 112000

5115170000000000000007 0000000 0000n04 n000003 0000017 O~OOO
19 00000000000000000 Y

t

c=,
6.18 IMS/VS Application programming Reference Manual

ANS COBOL APPLICATION PROGRAM

This message processing program, DFSSAM03, provides you with the
ability to inquire about the total inventory of a part in all locations.
This program is one of several message processing programs used in the
Sample Problem, included in the lMSL1~ I~stallai!Qll Guid~.

The transaction code DSPINV retrieves the data from the data base,
DI21PART, loaded by a previous program. Assume that it wishes to
display, on a communication terminal, only the third inventory entry
listed in the above output. The inventory location key is obtained by
concatenating AREA, INVDEPT, PROJCD, and DIV.

The input format for this transaction is:

transaction code part number inventory key

despinv an960c10, 28009126

The output is:

PART=AM960C10 ; DESC=WASHER ; PROC CODE=74

AREA=2; INV DEPT=80; PRJ=091; DIV=26; PRICE= .000; STK CT DATE=513; UNIT=EACH

CURR REQMTS=

DISB PLANNED=

630 ; ON ORDER= 0

1053 ; DISB UNPLANNED=

TOTAL STOCK= 680

4 ; STK CT VARIANCE= o

Application Program Examples 6.19

The program listing is:

FILE: DPSSA~O] ASSE~BLE A PALe ALTO DEVELOP"ENT CENTER

IDENTIFICATION DIVISION.
PR OG RAP1-ID. 'DFSSAl'! 03'
AUTHOR. DON TRUDE LL.
REMA·RKS. SIKGLE-LOCATION INVENTORY DISPLAY PROGRA".

THE TRANSACTION CODE WHICH ACTIVATES THE PROGRA~ IS
DSPINV.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBK-360.
OBJECT-COMPUTER. IBM-360.
DATA DIVISION.
WORKING -STORAGE SECTION.
01 NEXT-14'UNC
o 1 IJNIQ- FO NC
01 I SR T- FUNe
01 5'l'OKSTAT-IfRI'rE-Sli
01 PARTROOT-SSA.

02 POOT-NAME
')2 PEG IN -op
02 KF.Y -N AM E
')2 RELAT! ON-OP
02 KEY-VALUE
02 END -op

01 STO~STAT-SSA.

O~ FILLER
02 FILL FR
02 FILtER
02 FIt L F.R
02 5S-SSA-KEY.

0] FIT.LEt?
03 SS-SSA-KRY-VAtUE
(I] FILL ER

02 FILLER
01 TERM-TN-AREA.

02 FItL ER
01· REFORM-MESSAGE.

02 REFOR l'I-T HA NS-CD
02 PAR1'-NO
02 TNPUT-SS-K EY
02 FILLER

01 WOR K-AREAS.

01

01

02 ROOT-KEY-WA.
04 ROO'l'-P~EFIX
04 PH-WORK

02 MSG-SEG-CN"t'
PAR AM -T A PL E.
02 FILLER
02 FILLER
02 FILL ER
02 'PILJ4'P.P
02 END-TABLE
PART-LINK.
02 P ART-NO- EDIT
02 FILLER
02 REJECT-CODE

PICTURE I(OQ) VALUE 'GN
PI CT UR E X (04) VA LUB 'G U
PICTURE X(04) VALUE'ISRT'.
PICTURE X(02) VALUE SPACES.

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

X(8) VALUE 'PAR'l'ROOT'.
X VALUE,(t.
X (8) VALUE' PA RTK BY ,
XX V~LUE' ='.
x (17) •
X VALUE ')'.

PICTURE 1(08)
PICTURE X (01)
PICTURE X (08)
PICTURE X(02)

PICTURE X (02)
PICTURE X (08) •
prCTU RE x (06)
P ICTtJRE X (01)

PI CT U REI (14 0)

PICTURE X (8).
PI C T U REX (15) •
PICTURE X (08) •
PICTURE X (109) •

VAL UE 'STO KSTA l' t.
VALUE '('.
VALUE 'STOCKEY'.
VALUE ' = '.
V A LU E ZEROS.

VALUE SPACES.
VALUE')'.

VAL DE SPACES.

PICTURE IX VALUE '02'.
PICTUR E X (15) •
PICTURE S9 COrlPUTATIONAI VALU.E ZERO.

PICTURE S9 (2) VALUE +15 CO!lP.
PICTURE XX _VALUE 't '.
PICTURE S99 VALUE +8 COftP.
PICTURE X(02) VALUE 'L '.
PICTUR E 599 VALUE ZERO COrtPUTATIONAL.

PICTURE 1(17) •
PICTURE XXXX.
PICTUR E X.

6.20 IMS/VS Application Programming Reference Manual

, .
' ~' . ./

...... ,/

•

c ..

*

c

PILE: DFSSAM03 ASSEMBLE A PALO AI,'1'O DEVELOPMENT CENTER

01 SEG-RRT-AFEA.
() 2 FILLER PICTUR E X (02).
02 PA-RT.-NO PICTtJRF X(15).
02 FILL ER PICTU RE X (09) •
02 J'ESC PICTURE X (15) •
02 FILLER PICTtJR E X (119).

01 STAN-INFO-RET REDEFINES SEG-RE'f-AREA.
02 .F1I.L ER PICTURE X (18) •
02 PROC-("ODE PICTURE XX.

nl STOCK-STATUS-RET REDEFINES STAN-INFO-RET.
o 2 F IL L ER PI CT UR E X X •
02 SS-AREA PICTURE X.
02 SS-D Po PT P ICTtJR E ,XX.
02 SS- PRO.J PICTUR E XXX.
02 ss-nrv prCTUFE IX.
02 FILLER PICTURE X(10).
02 SS-UNIT-PRICE PICTUFE 9(6)V999.
07. FILLER PICTURE X(05).
r2 SS-UNT'l'-OF-MEAS PICTURE X(04).
02 FILLER PICTURE I(]3).
02 SS-STOCK-D~TE PICTUBEX(03).

(') 2 F ILL F. R PI CT OR E X (15) •
02 SS-CtJR-REQMTS PICTURP. S9 (7) V9.
02 SS-UNPL-REQMT5 PICTURE S9(7) Vq.
02 55-aN-ORDER PICTURE 59(7)V9.
02 SS-IN-STOCK PICTURE S9(7)V9.
1)2 SS-PLAN-015P- PICTURE S9(7) V9.
02 SS-UNPL-DISB PICTURR S9(7)V9.
O? 'F ILL E R PI CT OR E 1 (2 3) •

01 Bi\CK-O~nF.R-RET REDE.FINES STOCK-STATUS-RET.
02 FILL ER PICTURE X (02) •
02 WORK-OPDER PICTORE X (08).
02 FILLF.R PICTURE X (53).
02 WO-QTY PICTURE 59 (07) V9.

01 CYCLE-COUNT-RET REDEFINES BACJ{-ORDER-RET.
02 FILLER PICTURE X (02) •
02 PHYSICAL-COUNT PICTURE 59 (07)V9.
02 FILLF.R PICTURE X(04).
02 TOTAL-STOCK PTCTURE S9(07) V9.

o 1 T~IRF. -1 -ARE A.
02 FILLER PICTURE 599 COMPUTATIONAL VALUE +62'.
02 FILLER PICTURE 599 VALUE ZERO

02 FILLE~
02 FILLER
02 PART-NO
02 "F II.L F.R
02 DESC
1)2 FILLER
02 PROC-CODE
02 CARR-I? ET

o 1 L IN E- 2 - ARE A •
02 PILL ER

02 FILLER

COJ!ll PUTATION AL.
PICTURE x (01) VALUE".
P ICTUR E X (05) VALUE ' PART=' •
P I CT DR E X ('5) •
PICTURE X(7) VALUE '; DESC='.
PICTURE X (15) •
PICTURE 1(12) VALUR '; PROC CODE='.
PICTURE xx.
P ICT U RE X (01) 'I AL U E ' ,

PICTURE 59(02) VALUE +88
CO"PUTATION AL.

PICTURE S9 (02) VALUE ZERQ

Application Program Examples 6.21

FIT>~: DFSSAM03 .a.S5E~BLE A P hLO ALTO DEVELOPl'IENT CENTFR

COM PUTA nON AL.

C 02 FI LIIER P.ICTUR E X (0 1) VA LUE , •
02 FT LLF. R PICTURE X (05) VALUE ' AR EA=' •
02 5S-APEA PICTURE X (0 1) •
02 PILL ~R PICTURE X (11) VALUE ' . INV DEPT=' • •
02 55-DEPT PICTURE X (02) •
02 PILLER PICTURE X (06) VALUE • • PRJ:' • •
02 ss- PRO .. 1 PICTURE X (0]) •
02 PILI. FP PICTURE X (06) VALUE ' . DIV=' • •
02 55-DIV PICTURE X(02).
02 FTI.LER PICTUR E X (08) VALUE ' . PRICE=' • •
02 55-UN IT-PR ICE PICTURE Z (6) .q99.
02 FILLER P rCTURE x (14) VALUE ' . STK CT DAT E=' • • ()2 S 5 - 5 T OC K - D ATE PICTUR E X (03) •
02 PItL F.P PICTUR E X (07) VALUE ' . UNIT=' • •
02 S ~ -UN! T-O F-M EA S PICTUPE X (04) •
02 C."RR-RET PICTUR F X (0 1) VA LUE • •

01 LI NE - 3 - A RF A.
02 FILLER PICTUR E S9 (02) VALUE +67

CO{l!PUTATIONAL.
02 FILl. ER PICTU BE S9 (02) VAL UE ZERO

COMPUTATION AL.
I)?, FILLER I?1:CTUR E X (0 1) VA LUE • , .
02 fIT.LER P'JCTORB X (12) VALUE ' CDRR REQ~TS=' •
02 SS':'CUR- RE QMTS PICTUR E 'l (06) 9- •
02 FILL ER PI CTUR r: x (11) VALUE •• ON ORDER=' • ,
02 55-0N-OR DER PICTU BE Z(06)9-.
02 FItLER PICTURE X (14) V ALUF- •• TOTAL STOCK=' • •
')2 SS- r N-S'l'OC K PICTURE Z(06)9-.
02 C ARR-R ET PICTURE X (01) VAL U E ' •

01 LJNE-4-ARFA.
O~ FILL ER PICTUBE Sq (02) VALUE +79 r-"

CO~ PUTATION AL. \
' _-_/

02 'PILLER PICTURE 59 (0:2) VA LUE ZERO
COMPUTATIONAL.

02 prItL ~R PICTURE X (01) VALUE • •
02 FltL P.P PICTURE X (13) VALUE 'DISB PLANNP.D=' •
02 SS-PL AN- nrs B PICTU BE Z (06) 9-.
02 FILL~F PICTURE X (17) VALUE .. DISB U NPL ANN ED=' • ,
02 C:;S-UNPL-DI5T3 PICTUR E Z (06) 9-.
02 "PILL ER PJCTUBE X (18) VALUE . . STK CT V ARI ANCE=' • •
'1? STOCK-VAR PTC'J'UR"F. Z(07)9-.
02 C ARR-R ET PICTURE X (01) VALUE , •

01 LIN E-5- AR EA.
02 FILL ER prCTU RE S9 (02) VALUE +57

COMPUTATION AL. • 02 FILLER PICTUR E S9 (02) VALUE ZERO
COM PUT.ATTO NAL.

O~ FILL ER PICTURE X (01) VALUE • •
02 DESC- 1 PI CTtJP E X (24) •
02- WORK·-OROER . PICTURE X (08) •.
02 DE SC-2 PICTUFE X(11).
02 lJO-QTY PICTUR ~ Z (06) 9-.

6.22 IM5/VS Application Programming Reference Manual

C-

FILE: DFSSA~03 A5SEMnLE A

02 CARR-RET
Ol NO- FART ROOT-PI SG.

') 2 FIL.LER

01 PILL RR

02 FILLER
02 PILLER
02 PART-NO
02 FILL ER

02 CARR-llET
01 NO-STOK STAT-l1 SG.

02 FILlER

02 PILL ER

02 FILLER
02 FILLER
02 STOCK-KEY
02 FILLER

PALO ALTO DEVELOPMENT CENTER

PICTURE X (01) VALUE •
,

prCTUR E S9 (02) VALUE +48
COr!PUTAT 10 NA L.

PICTU RE 59 (02) VIL UE ZERO
COlli PUTATION AL.

PICTUR E X (0 1) VALUE • , .
PICTURE X (10) VA.LUE 'PART NO.
PICTUR E X (15)
PICTURE X (17) VALUE

• NOT IN DATA BASE' •
PICTURE X (01) VALUE ' •
PICTUR E 59 (02) VA LU.E +45

COr!PUTAT 10 NA L.
PICTU RE S9 (02) VAL UE ZERO

COft PUTATION At.
PICTURE X(01) VALUE' '.
PICTURR X (14) VALUE 'STOCK RECORD
PICTUR E X (08) •
PICTUR E X (17) VALUE

, NOT IN DATA BASE'.
02 CARR-RET

LI NKAGE SEC TI ON.
01 TO-TER M- PCB.

P IeTURE X (01) VALUE"

02 IO-TER MINA T.
02 IO-RESERVE
02 TO-STATUS
02 INPUT-PTlEFIX

01 PARTFIL E-PCB.
02 PN-TlRD-N Apt E
02 P N-S EG-LEVEL
02 PN-STATUS-CODE
02 PN-PRoe-OPTIONS
02 RRSE RVR-DLI
02 PN-SRG-NAl'fE-FB

PROCEDUR E DIVISION.

PI CT (J REX (8) •
PICTURE XX.
PICTURE XX.
PICTURE X(12).

P IeTURE
PICTUR E
PICTURE
PICTURE
PICTURE
PICTUR E

X (8} •
XX.
ix.
XXXX.
S9 (5)
X (8) •

COftPUTATION AL.

EN'l'RT 'nL ITCBL' US ING TO-TER ~- PCB, PARTFIL E-PCB.
INI'T'IAT.I7.E.

MOVE SPACRS TO STOK5TAT-WRITE-SW.
MOVE 'OUTSTANDING WORK ORDEES=' TO DESC-l OF LINE-5-AREA.
MOV E '; OU ANTI 'rY=' TO DESC -2 op· LI NE-5 -AR EA.

GET-TRA NSACTION.
CALL 'CBLTDLI' USING UNIC-PUNC, IO-TERPI-PCB, TERft-IM-AREA.

CALL-I NPUT - AN At JZ ER.
CAT.L 'INPANAL' USING PARMI-TABLE, TERM-IN-AREA,

REFORM-MESSAGE, PlSG-SEG-CNT.
CALL-PART-E DIT.

MOVE PART-NO O? REPoa~-MES5AGE TO PART-NO-EDIT.
CALL 'PNEDIT' USING FART-LINK.

FIND -PART-IN- DATA-BASE.
MOVE PART-NO-EDIT TO PH-WORK.
MOVE ROO'I.'-KEY-WA TO KEY-VALUE.
CALL 'CBLTDLI' UCING UNIQ-FUNC, PARTFILE-PCB, SEG-RET-AREA,

PARTROOT-5SA.

Application Program Examples 6.23

FILE: DFSS~~03 ASSEMBLE A PALO ALTO DFVELOP'ENT CENTER

IP PN-STATUS-CODE NOT EQUAL TO SPACE5,
GO TO P~RTROOT-NOT-FOUND.

PARTROOT.-POU ND.
~OVE CORRESPONDtNG SEG-RET-AREA 'IQ LINE-l-AREA.

FIND - 5 TAN INFO - 'I F- PRES ENT •
CA.LL 'CBT.TDLl' USING NEXT-PUNC, PARTFILE-PCB, SEG-RET-AREA.
IF (PN-ST ATUS -CODE EQUAl. TO • GB')

OR
(PN-5EG-NAME-FB NOT EQUAL TO 'STANINFO')

MOVE SPACES TO PROC-CODE OF LlNE-l-AREA
ELSE

MOVF. CORRESPONDING STAN-INFO-RET TO LINE-l-AREA.
PEFPOFM iPUTE-T.INE-l THRO WRITE-LINE-l-EXIT.

GET-UNlQUE-STOKSTAT.
5S-SSA-KEY-VALUE. MOVE INPUT-55-KEY TO

C A.LL • CELTDLI' US IN G UNIQ-FUNC, PAR'l'"FIL E-PCB, SEG-RET-AREA,
PARTRCCT-SSA, STOKSTAT-SSA.

IF P N- 5TA TUS -CODE ROU At TO 'GE'
GO 'f0 STOKSTAT-NOT-FOU NO ••

ST OKS't'A T-POUND.
MOVE CORRESPONDING STOCK-STATUS-RET TO LlNE-2-AREA.
PEP FORM WRITE-LlNE-2 THRU VRITE-tINE-2-FXIT.
MOVE CORR ESPON 0 IN G STOCK-STATU S-RET TO LIN E-3-AR EA.
PERPORM WRITE-LTNB-3 THRU WRITE-LINE-J-EXIT.
t!OVF. CORRESPONDING S'IOCK-STATUS-RET TO LlNE-4-AREA.
MOVP. 'ON' TO S'l'OKSTAT-iRITE-Sil.
MOVE ZEROS TO STOCK-VAR OF LtNE-4-AREA.

GET- NPoX".
CAr.L 'CBI.TDtl' USI NG NEXT-FUNC, PARTFILE-PCB, SEG-RET-AREA.
IF' PN-STA'1'US- CO DE EQUA 1 TO 'GB'

GO TO END-CURR-ROOT.
IP PN-SEG-NAME-PB EOUAL TO 'PARTROOT'
IF PN-SEG-NA~E-FB EQUAL TO '5TOKSTAT'
IP ?N-SEG -N AM B-FB 'eQUAL '1'0 'Cyce: CU NT'
IF PN-SEG-NAME-PB EQUAL TO 'BACKORDR'
GO TO GET-NEXT.

CYCC au NT-POUND.

GO TO END-CURR-ROOT.
GO TO END-CURR-ROOT.
GO TO CYCCOONT-FOUND.
GO TO BACKORDR-FOUN D.

COMPUTE STOCK-VAR OF LINE-4-AREA = PHYSICAL-COUNT OF
CYCLE-COUNT-RET
TOTAL-STOCK OF
eyc LE-COUNT-RET.

PERFORM WRITE-LTNE-4 THRU WRITE-LINE-4-EXIT.
GO TO GET-NEX'!'.

BACKORD R-FO UN D.
TF STOKST1tT-V1UTE-SW EQUAL TO 'ON'

PERFORM i~ITE-LINE-4 THRU WRITE-LINE-4-EXIT.
r!O V"E CORR ESPONDI NG BACK-ORDER-RET TO LINE-5-AREA.
PERF'ORl'! WRITE-LINE-5 THRU WRITE-LINE-5-EXIT.
MOVR SPACES TO DESC-1 OF LINE-S-AREA.
MOVE SPACES TO DESC-2 OF LINE-S-AREA.
GO '10 G E'1'-N EXT.

END-CURR-ROOT. _______ _
- ----------- . -- IF --ST OKST 1\ T-::WRI-TE-:';'-SW--EfitfAt-T(f--'-ON ,-- ---------

PER FOR [Ill WRT'1'P-LI WE -4 TH RU WRI 'rE-L INE-4- EXIT.
GO 'TO EN D- IT.

6.24 IMS/VS Application programming Reference Manual

I

'- ... /

---.. -~---- .. ---------~--.-----.

..

..

c'

"FIt F: DFSSAMO 3 ASSF.MBLE A PAL 0 ALTO DEV ELOP PlEHT CE NTER

PAR'l'ROOT-NO'l'- FOUND.
MOVE PH-WORK TO PART-NO OF NC-FARTBOOT-MSG.
CAL L 'CB LTD L1 I U SING I SRT- PUN C, IO- TER l1- PCB, NO-PARTROO T-Pl SG.
GO TO END- IT.

ST OK STAT-NOT- POUN D.
PlOV~ INPUT-SS-KEY TO STOCK-KEY OF NO-STOKSTAT-l'ISG.
CALL 'CRLTDLI' USING ISRT-FUNC, IO-TERPl-PCB, NO-STOKSTAT-PiSG.
GO TO END- IT.

WRITE-LINE-1.
CAL L 'CBLTOLI' U SING I SRT- FUN C , IO-TER M- PCB, LI ME -1 -ARE A.

WRI TE-L IN F- 1- EXIT. EXIT.
'if RITE -LIN E-2.

CA LT. 'CRLTDLI'
WE ITF.- L 1 NE- 2- EXIT.
WRITF.-T,INE-] •

CAL t ' C B LTD I, I '
WR I1'E- LINF'- 3-EXIT.
WRITE-L IN R- 4.

CALL • C EL "I'D~I'
,.OVE S PACES TO

llRI TE-LTN E- 4- EX IT.
W RI TE -L r N E-5 •

C ~ L I, ' C B LTD L I '
WR 1T£- L1 NE- 5-EXTT.
ENlJ-I T.

GOBACK •

USING ISRT-PUNC, I()-TERl'!-PCB, LINR-2-AREA.
EXIT.

USING TSRT-FUNC, Io-TEBPl-PCB, LINE-3-AREA.
EXIT.

USING ISRT-FUNC, IC-TERrt-PCB, LIHE-4-AREA.
STOKS1AT-iRITE-Si.
EXIT.

USING ISRT-FUNC, IC-TERPI-PCB, LINE-5-AREA.
EXIT.

Application Program Examples 6.25

This application program illustrates use of the 3270 Model 2 as a
simple calculator. The program provides for addition, subtraction,
multiplication, and division.

A sample problem for this transaction (whose PSB=HIMAJC03) is provided
in the I~~LY~ !nstallatiQll ~Yi£~. The examples that follow, however,
are entirely independent of the sample problem. No data base is used,
and only input to and output from the application program are
illustrated.

/FOR DFSM02

/FOR TUBFMT

(for the 3270, Model 1)

(for the 3270, Model 2)

The first entry is the MOD name (/FOR DFSM02). Tube is the transaction
code.

Display back says:

START INPUT HERE.¢

You enter one number, the sign (+,-,*,/), and the second number.

START INPUT HERE.¢ 555+444.55

Display back is the answer, followed by two questions; these are to be
answered either YY, YN, or NN. The fourth possibility is NY, which is
not correct.in this program;

YOUR ANSWER IS 999.55

TWO QUESTIONS. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. t NY

Display back, and the application program ends the conversation:

NOT CORRECT ANSWER. WILL ASSUME ANS=NN. PROBLEM END.

Entry to 3270:

/r'OR TUBE

Display back asks for input.

START INPUT HERE. t 1234.34+1234

Display back gives answer to the problem and asks two qu~stions •.

YOUR ANSWER IS 2468.34

TWO QUESTIONS. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. ¢ YY

6.26 IMSjVS Application programming Reference Manual

f

c=

l

L

Because you want the answer to be used as a SUbtotal, internally in
the scratchpad user work area, this is stored:

SPA.IN_TEXT=000000000246834+;

The display returned, and the new subtraction problem is entered:

RESULT WILL BE USED AS SUBTOTAL. START INPUT HERE. e 1234.34-2468.34

The display returned is the answer to the above subtraction problem
add~d to the subtotal stored in the scratchpad work area, and the two
questions are asked again. This time you want to continue the
conversation, but do not want to have a subtotal carried over to the
next problem:

YOUR ANSWER IS 1234.00

TWO QUESTIONS. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS A SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. ¢ YN

The display returned a message, after which you entered a multiplication
problem:

CONTINUE, START INPUT HERE. e 4444*44

The display returned the answer to the multiplication problem and the
two questions. The answer to the questions was YN:

YOUR ANSWER IS 195536.00

TWO QUESTIONS.. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS OUESTIONS BY YY OR YN OR NN. ANSWER HERE. e YN

The display returned a message, after which you entered a division
problem:

CONTINUE, START INPUT HERE. ¢ 335561.56/33

The display returned the answer to the division problem and the two
questions. The answer to the questions was NN:

YOUR ANSWER IS 10168.71

TWO QUESTIONS. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS QUESTIONS BI II OR YN OR NN. ANSWER HERE. e NN

The message displayed then was:

ANS WAS NN. CONVERSATION ENDED.

The conversation is over.

Application Program Examples 6.21

PILE: PLIPBOG1 TEST A GPO CCMrlON CMS

1***** PL/I EXAMPLE OF A CONVERSATIONAL FRCGBAM *****1
1***1

DLITPLI: PROCEDURE ('IERMINAL) OPTIONS (MAIN r EEEN'IEANT) REORDER;

1**1
1* *1
1* THIS PROGRAM IS AN EXAMPLE OF CCNVERSATIONAL PROCESSING. IT *1
1* IS WRITTEN IN PL/I FOR THE PIlI CPTIMIZING COMPILER. *1
1* *1
1* THE PROGRAM WILL ACCEPT A SIMPLE EXPRESSION CONSISTING OF TWO *1
1* OPERANDS SEPARATEC BY AN OPERATOR, WILL CCMPUTE THE VALUE OF *1
1* THE EXPRESSION AND RETURN THE ANSWER. THE EXPRESSION MUST BE *1
1* IN THE PORM: NNNOMMM r WHERE NNN AND MMM ARE NUMBERS WITH NO */
1* ftORE THAN 7 DIGITS, AND 0 IS ONE OF THE OPERATORS +,-,* OR I. *1
1* A MAXIMUM OF SEVEN CHARACTERS CAN PRECEDE eR FOLLOW THE *1
1* OPERATOR. IF ONE OR BOTH OP THE OPERANDS IS OMITTED, IT WILL *1
1* BE ASSUMED TO BE ZERO. IF MORE THAN ONE OPERATOR IS ENTERED, *1
1* ALL BUT TAE L~ST WILL BE CONVERTED TO ZERO AND THE COMPUTATION*I
1* WILL PROCEED. ANY BLANKS OR NON-DIGITS EMEEDDED IN EITHER *1
1* OPERAND WILL BE CONVERTED TO ZERO AND THE COMPUTATION WILL *1
1* PROCEED. OPTIONALLY YOU CAN REQUEST IHAT THE ANSWER BE ADDED*I
1* TO A SUBTOTAL MAINTAINED OPPRECEDING COMPUTATIONS. */
1* *1
1**1

1/***********************************1
1* DECLARE LOGICAL TERMINAL PCB *1
1***********************************1

DECLARE TERMINAL PCINTER;
DECLARE 1 IOPCB BASED (TERMIN~L),

2 10_ T E R MIN A L C H A R ACT E R (8) ,
2 10 RESERVED CHABACTER (2),
2 STAT_conE CHAR~CTER (2) r

2 IN_PREFIX,
3 PRE DATE FIXED DEClr1AL (7),
3 PRE-rIME FIXED DECIMAL (7),
3 PRE:MSG_COUNT FIXED BINARY (31);

1*****************************1
1* DECLARE SCRATCHPAD AREA *1
1*****************************1

DECLARE 1 SPA,
2 DL FIXED BINARY (31)r
2 X CHARACTER (1),
2 FLAG CHARACTER (1) r

"-2"RESER~ED"CHARACTER (2)~
2 TRAN CHARACTER (8) r

2 COUNT CHARACTER (1),
2 IN_TEXT FIXED DECIMAL (15 r 2)r
2 PADDING CHARACTER (75);

1**1

6.28 IMS/VS Application Programming Reference Manual

r"-"
I
\ , .. _ .. ",,'

c

c'

PILE: PLIPBOG1 TEST A GPD CCl!P!ON CMS

1* DECLARE INPUT AND OUT MESSAGE AREAS *1
1****************·**·**********************1

DECLARB 1 INPUT_MSG,
2 LLIN FIXED BINARY (31),
2 ZZIN FIXED BIHARY (15),
2 TXTIN CHARACTER (80),

1 OUTPUT_MSG,
2 LLOUT FIXED BINARY (31),
2 ZZOUT FIXED BINARY (15) INITIAL (ERASE),
2 TXTOUT CHARACTER (178):

1/·****··*******··**·****··*****1
1* DECLARE MESSAGE CONTENTS *1
1·*·····***····*****·***·***···1

DECLARE
(l'tSG9 CHARACTER (18) INITIAL

('START INPUT HERE.t l), 1* LAST CHAR SMI *1
M SG 1 0 C H A R ACT E R (4 1) I N I 'I I A L

(' TWO QUESTIONS. DO YOU WISH TO CONTINUE?') ,
MSG11 CHARACTER (46) INITIAL

(' AND SHOULD THIS RESULT BE USED AS SUBTOTAL?'),
MSG12 CHARACTER (35) INITIAL

(f ANS QUESTIONS BY YY OR YN OB NN. '),
MSG 14 CHAR ACTER (33) INITIAL

('RESULT WILL BE USED AS SUETOTAL. '),
MSG15 CHARACTER (55) INITIAL

(' NOT CORRECT ANSWER. WILL ASSUME NN. PROBLEM END.'),
MSG16 CHARACTER (34) INITIAL

C' ANS WAS NN. CONVERSATION ENDED. '),
M SG 17 CHAR ACTER (49) INITIAL

('YOU MUST ENTER 2 OPERANDS WITH OPERATOR BETWEEN. '),
l1SG19 CHARACTER (40) INITIAL

(' YOU ARE NOT ALLOWED TO DIVIDE BY ZERO.'),
MSG20 CHARACTER (9) INITIAL

(' REENTER. '),
MSG21 CHARACTER (44) INITIAL

(' ONE OR BOTH OPERANDS EXCEEDS 7 CHARACTERS. '),
MSG22 CHARACTER (38) INITIAL

('UNSPECIFIED ERROR. PGM ENDS. ONCODE = '),
MSG23 CHARACTER (15) INITIAL

('YOUR ANSWER IS: I),
MSG24 CHARACTER (10) INITIAL

{'CONTINUE, '},
MSG25 CHARACTER (23) INITIAL

('SPA RETURN STAT CODE = '),
l1SG26 CHARACTER (23) INITIAL

('GET UNIQUE STAT CODE = '),
MSG27 CHARACTER (21) INITIAL

('GET NEXT STAT CODE = '),
MSG28 CHARACTER (27) INITIAL

('NO VALID OPERATOR ENTERED.')
) STATIC;

Application Program Examples 6.29

PILE: PLIPROG1 TEST A GPD COMMON CMS

1/******************'·*************1
/* ftISCELLANEOUS DECLARATIONS *1
/********************************1

DECLARE
RESULT FIXED DECIMAL (15,2),
CRESULT PIC'S,SSS,SSS,SSS,SS9.V99',
STRING CHARACTER (80) VARYING,

(OPERAND1,OPERAND2) FIXED DECIMAL (9,2),
(A , S , M , D , L , 0 PER A TOR') P I XED BIN A R Y (15),
THREE FIXED BINARY (31) STATIC INI'1IAL (3),
GU CHARACTER (4) STATIC INITIAL ('GU') /I

GN CHARACTER (4) STATIC INITIAL (',GN'),
ISRT CHARACTER (4) STATIC INITIAL ('ISRT'),
TXTANS CHARACTER (2),
PLITDLI ENTRY,
RETURN_POINT LABEt (TERMINATE, SAVE_INFO) ,
ERASE PIXED BINARY (15) STATIC INITIAL (32),

1* ERASE INITIALIZED TC X'002C' *1
NL CHARACTER (1) STATIC; ,
UNSPEC"(NL) = '00010101'E; 1* INITIALIZE NL TO X'lS' *1

1**************1
/* ON UNITS *1
1**************1

ON CONVERSION BEGIN;
DECLARE ONCHAR BUILTIN;
o NC H A R == '0';
END:

ON ZERODIVIDE BEGIN;
IF COUNT = '2' THEN COUNT = '1';
RETURN POINT = SAVE INFO:
LLOOT ; LENGTH (KSG19) + LENGTH (MSG20) + LENGTH (MSG9) + 5;
TXT OUT = MSG19 11 MSG20 II Nt II ftSG9;
GO TO OUTPUT_MESSAGE;
END;

ON ERROR BEGIN:
DECLARE ONCODE BUILTIN,

CONCODE'PIC'9999':
CONCODE = ONCODE;
RETURN_POINT = TERMINATE:
LLOUT = LENGTH' (MSG22) + LENGTH (CONCODE) .. 4;
TITOUT = MSG22 I I CORconE;
GO TO OUTPUT_MESSAGE;
END;

1/******************************1
___ . ___ l* _____ BEGIlf-EXECUTABLE---PROGRAM--- *1 --

-- 1******************************/

/***********************/

6.3~ IMS/VS Application Programming Reference Manual

c

C
-·_--

)

---- -------------------------~------

PILE: PLIPROG1 TEST A GPD COMMON CMS

1* FIRST CALL TO SPA *1
1***********************1

BEGINNING:
CALL PLITDLI (THREE,GU,TERMINAL,SPA);
IF STAT_CODE -= 'QC' THEN RETURN;
IF STAT_CODE ~=, 'THEN GO TO BAD_GU;
IF (COHNT < "') (COUNT> '4') THEN CCUNT = "';

1**********************1
1* GET TEXT SEGMENT *1
1**********************1

CALL PLITDLI (THREE,GN,TERI1INAL,INPUT MSG);
IF STAT_CobE = 'QD' THEN GO TO BAD_NN~
IF STAT_CODE ~=' 'THEN GO TO EAD_GN;
IF COUNT = ", I COUNT = '3' I COUNT = "4'

1**************************1
1* PERFORM CALCULATIONS *1
1**************************1

THEN DO;
L -= LLIN - 4;
IF L > 15 THEN GO '1'0 LNG_ERROR; 1* (2*7) + 1 = 15 *1
STRING = SUBSTR (TXTIN,1,1);
A = INDEX (STRING,'+');
S = INDEX (STRING,'-');
M = INDEX (STRING,' *') ;
o = INDEX (STRING,' I') ;
OPERATOR = MAX (A,S,M,D);
IF OPERATOR > 8 THEN GO TO LNG_ERROR;
IF L - OPERATOR > 7 THEN GO TO LNG_ERROR;
IF OPERATOR = 0 THFN GO TO OF ERROR;
OPERAND1 = SUBSTR (STRING,l,OPERATOR-l);
OPERAND2 -= SUESTR (STRING,OPERATOR+l,L-OPERATOR);
IF A) 0 THEN RESULT = OPE~AND1 + OPERAND2;

ELSE IF S > 0 THEN RESUL! -= OPERAND' - OPERAND2;
ELSE IF M > 0 THEN ~ESUL! = OPERAND1 * OPERAND2;
ELSE RESULT = OPERAND1 I OPEEAND2;

IF COUNT = '1' THEN COUNT = '2';
IF COUNT = '3' THEN DO:

RESOLT = RESULT + IN_TEX!;
COUNT = '2';
END;

iF COUNT = '4' THEN DO;
IN_T~XT = 0;
COUNT -= '2';
END:

1/*************************************1
1* OUTPUT ANSWER AND TWO QUESTIONS *1
1*************************************1

IN_TEXT, CRESULT = RESULT;

Application Program Examples 6.31

fILE: PLIPBOGl TEST A GPD COMMON CMS

LLOUT = LENGTH (MSG23) + LENG'IH (CRESULT) ..
L EN G T H (M S G 1 0) .. LEN G'I Ii (M S G 1 1) ..
LENGTH (MSG12) + LENG'IH (MSG9) + 7;

TXTOUT = MSG23 I J CRESULT I I NL "
MSG 10 I I Nt II
MSG 1 1 I I Nt I I
MSG12 II MSG9:

RETURN_POINT = SAVE_INFO;

END;

1*****************************1
1* CONTINUING CONVERSATION *1
1*****************************1

ELSE no; 1* COUNT = '2' *1
TXTANS= SUBS'IR (TXTIN,1,2);

IF TXTANS = 'YY' THEN DO;
RETURN_POINT = SAVE_INFO;
LLOUT = LENGTH (MSG14) .. LENGTH (MSG9) .. 4;
TXTOOT = MSG14 t t MSG9;
COUNT = '3':
END;

ELSE IP TXTANS = 'YN' THEN DO;
RETURN_POINT = SAVE_INFO;
LLOUT = LENGTH (I1SG24) + LENGTH (MSG9) .. 4;
TXTOOT = MSG24 II MSG9;
COUNT = '4';
END;

ELSE IF TXTANS = 'NN' THEN DO;
RETURN_POINT = TERMINATE;
LLOUT = LENGTH (MSG16) + 4;
TXTOUT = MSG16 I I NL;
END;

ELSE GO TO BAD_NN;

END;

1/***************************1
1* INSERT OUTPUT ~ESSAGE *1
/***************************/

OUTPUT_MESSAGE:
CALL PLITDLI (THREE,ISRT,TERMINAL,OUTPUT_MSG);
GO TO RETURN_POINT;

1*****************************/
___ /~ _____ SAVE __ INP_ORM ATION -IN ---SPA-----*/-

/*****************************/

6.32 IMSjVS Application programming Reference Manual

.,.

/ '.

l_

c·

FILE~ PLIPROG1 TEST GPD COMMON CMS

CALL PLITDLI (THREE.ISRT.TF.RMINAL.SFA);
IF STAT_CODE = I I THFN GO TO BEGINNING;

ELSE GO TO SAVE_ERROR;

/****************/
/* TERMINATE *1
/****************/

TERMINATE:
TRAN = I ';

CALL PLITDLI (THREE,ISRT,TERMINAL,SP~);

RETURN;

1/********************/
1* ERROR ROUTINES */
1********************/

LNG_ERROR:
RETURN_POINT = SAVE INFO;
LLOUT = LENGTH (MSG17) + LENGTH (MSG21) + LENGTH (f'fSG20) +

LENGTH (l1SG9) + 7;
TITOUT = MSG11 II Nt J 1 MSG21 II NL II fIISG20 II NL II f'fSG9:
GO TO OUTPOT_MESSAGE;

OP_ERBOR:
RETURN_POINT = SAVE_INFO;
LLOUT = LENGTH (l1SG28) • LENGTH (l1SG20) + LENGTH (l1SG9) + 6;
TXTOUT:: l1SG28 11 NL II l1SG20 I I NL II MSG9;
GO TO OUTPUT_~ESSAGE;

SAVE_ERROR:
RETURN POINT = TERMINATE;
LLOUT ;; LENGTH (l1SG25) + LENGTH (STAT_CODE) + 4;
TITOUT = l1SG25 II STAT_CODE;
GO TO OUTPUT_MESSAGE;

BAD_NN:
RETURN POINT = TERftINATE;
LLOUT -;' LENGTH (MSG 15) + 4;
TXTOUT :: I1SG1S;
GO TO OUTPUT_MESSAGE;

BAD_GU:
RETURN POINT = TERMINATE;
LLOUT ; LENGTH (l1SG26) • 4;
TITOUT :: ftSG26 I I STAT_CODE;
GO TO OUTPUT_MESSAGE;

BAD_GN:
RETURN POINT = TERMINATE;
LLOUT -; LENGTH (l1SG27) + 4;
TXTOUT = l1SG21 I I STAT_CODE;
GO TO OUTPUT_MESSAGE;

END DLI! PLI;

Application Program Examples 6.33

MESSAGE FORMAT SFRVICES

The following message format service statements show the message
descriptions and device formats used in conjunction with the
conversational PL/I programs illustrated elsewhere in this chapter.
This format applies only to the 3270 Model 2.

MEMBER NAME TUBFMT

TUBFMT FMT

****** FORMAT FOR TU BE PROGRAM
DEV TYPE=3270,FEAT=IGNORE

DP~GE1 DPAGE CURSOR= «5,22»
FLD1{ DFLD POS=(03 ,02) ,LTH=1 O,ATTR= (NODISP,PROT)
FLDY nFLD POS=(04,02),LTH=9,ATTR=PROT
FLD1 DFLD POS=(05,O~ ,LTH=05,ATTR=PROT
FLD2 D'F.LD POS= (05, 08) , LTH=13, ATTR=PROT
INPUT DFLD POS=(05,2~ ,LTH=18,ATTR=HI
DPAGE2 DPAGE CURSOR= «5,22»
FLDl DFLD POS=(01,02) ,LTH=04,ATTR=PROT
FLD2 DFLD POS= (01 ,07) , LTH=2 6, ATTR= PROT
FLD3 DFLD POS=(02,02) ,LTH=41,ATTR=PROT
FLD4 OFLD POS=(03,02) ,LTH=46,ATTR=PROT
FLU5 DFLD POS=(04,02) ,LTH=35,ATTR=PROT
FLD6 DFLD POS=(05,08) ,LTH=13,ATTR=PROT
INPUT DFLD POS=(05,22) ,LTH=02,ATTR=HI
FLDN DFLD POS= (18 ,02) ,LTH=4 ,ATTR= (NODISP, PROT)
DPAGE3 DPAG~ CU RS 0 R= ((5, 22) }
FLDA DFLO POS= (03,02) , LTH=O 6, ATTR = (NODI SP ,PROT)
FLDB OFLD POS=(04,02) ,LTH=6,ATTR=PROT
FLDC DFLD POS=(04,09) ,LTH=27,ATTR=PROT
FLDD OFLD POS=(05,04) ,LTH=17,ATTR=PROT
INPUT DFLD POS=(05,2~ ,LTH=18,ATTR=HI
DPAGE4 DPAGE
F1 DFLD POS = (03, 02) , LT H= 5, A TTR = (N OD I SP , PR 0 T)
F2 OFLO POS=(03 ,08) ,LTH=06,ATTR=PROT
F3 DFLD POS=(03,15),LTH=10,ATTR=PROT
F4 D1"LO POS=(11,34) ,LTH=12,ATTR=(PROT,HI)
F5 OFLD PO S = (1 3 ,3 7) , LTH = 0 6 , AT T R= (PROT , HI)
DPAGE5 DPAGE
FLl DFLO POS=(03,02) ,LTH=5,ATTR=(NODISP,PROT)
FL2 DFLD POS=(03,08},LTH=03,ATTR=PROT
FL3 DFLD POS=(03,1~ ,LTH=17,ATTR=PROT
FL4 DFLO PO S = (04 ,06) , LT H = 2 1 , AT T R= PROT
FL5 DFLD POS=(11,37) ,LTH=07,ATTR=(PROT,HI)
FL6 DFLD POS= (13,38) ,LTH=04,ATTR= (PROT ,HI)
DPAGE6 DPAGE CURSOR= ((5, 22))
Al DFLD POS=(02,02) ,LTH=52,ATTR=PROT
A2 DFLD POS=(03,02) ,LTH=49,ATTR=PROT
A3 DFLD POS=(05,02) ,LTH=05,ATTR=PROT
A4 DFLD POS=(05,08) ,LTH=ll,ATTR=PROT
INPUT DFLD POS=(05,22) ,LTH=18,ATTR=HI
A6 DFLD POS= (04,02) , LTH=08, ATT R= PROT

--A 1 - ---------- -------DFLD- - --POS= (04, 11)-;- LTH=O 8i-ATTR = (NODI SP~PRO T)
FKTEND

TUBE MOD1 MSG TYPE=OUTPUT,SOR=(TUBFMT,IGNORE) ,NXT=TUBEHID
MFLD FLD1 , LTH=5
MFLD FLD2, LTH=13
MFLD (I NPUT , ,----- ')
MSGEND

TUBRMOD MSG TYPE=OUTPUT,SOR=(TUBFMT,IGNORE),NXT=TUBEMID
LPAGE S OR= DPAGE1, COND= (MSG 1, =, , STAR T')

MSG1 I1FLD FLDX,LTH=5
MFLD (FL D1 , , ST ART')

6.34 IMS/VS Application Programming Reference Manual

~
I

'\..- ./

(.~,
--_/

MEMBER NAME TUBFMT

MFLD FLD2,LTH=12

C_' LPAGE SOR=DPAGE2,COND=(MSG2,=,'YOUR')
SEG

MSG2 MFLD FLDN, LTH=4
MFLD (FL D 1 , , YOU R ')
MFLD FLD2, LTH=26
SBG
MFLD F LD 3, LTH =41
SEG
MFLD F LD 4, LTH=46
SEG
MFLD F LD 5, LTH=35
MFLD FLD6, LTH=13
MFLD (INPUT,'--')
LPAGE SOR=DPAGE3,COND=(MSG3,='RESULT')

MSG3 MFLD FLOA, LTH=6
MFLD (FLDB " RESULT')
MFLD FLDC, LTH=27
MFLD FLDO, LTH=17
LPAGE SOR=DPAGE4,CONn=(MSG4,=, • AN S')

MSG4 MFLO F1,LTH=5
MFLO (F 2, • AN S W ER •)
MFLD F3,LTH=10
MFLD F4,LTH=12
MFLD F 5 ,LTH=06
LPAGE SOR=DPAGE5,COND=(MSG5,=,' NOT')

MSG5 MFLD FL 1 ,LTH=5
MFLD (FL2, 'NOT')
MFLD FL3,LTH=17
MFLD FL4,LTH=21
MFLD FL5,LTH=7

c:/ MFLD FL6,LTH=4
LPAGE SOR=DPAGE1,COND=(MSG6,=,'CONTINUE, ,)

MSG6 MFLD FLDX, LT H= 10
MFLD (FLDY, 'CONTINUE: ')
MFLD FLD1,LTH=5
MFLD F L02, LTH=12
LPAGE SOR=OPAGE6,CONO=(MSG7,=,'REENTER.')
MFLD A1,LTH=51

MSG7 MFLD A 7, LT H=8
MFLD (A 6, , REE NTE R. ')
MFLD (A3,'START')
MFLD (A 4 , • IN PUT HERE:')
LPAGE SOR=DPAGE6,COND=(MSG8,=,'REENTER. ')
M1"LD A2, LT H=40

MSG8 MFLD A7,LTH=8
MFLD (A6,' REENTER.')
MFLD (A3,' START')
MFLO (A4,'INPUT HERE:')
LPAGE SOR=DPAGE6,COND=(MSG9,=,'REENTER.')
MFLD A 1 ,LTH=52
M1"LD A2, LT H=49

MSG9 MFLD A7,LTH=8
MFLD (A6,' REENTER ••)
MFLD (A3,'START')
MFLD (A4,'INPUT HERE:')
MSGEND

TUBEM ID MSG TYPE=INPUT,SOR=(TUBFMT},NXT=TUBEMOD
MFLD IN PU T , LT H= 18
MSGEND
END

C
Application Program Examples 6.35

r~'
\,~/

The Data Language/I (DL/I) test program is an IMS/VS application
proqram that issues calls to DL/I based upon control statement
information. It compares, optionally, the results of those calls with
expected results that are also provided in control statements. It is
used to test DL/I.

To a limited extent, this program can be used as a general purpose
data base utility program. However, the control statement language
does not lend itself well to executing large volumes of calls. It is
useful as a debugging aid because it can display DL/I control blocks.
It provides an easy method of execut ing any call against any data bas,e.

GENERAL DESCRIPTION

The DL/I test program is a control statement processor. There are
four types of control statements used by the program:

• Status statements--establish print options and select processing
PCB.

• Comments statements--conditionally or unconditionally print
comments.

• Call statements--format the desired DL/I call.

• Compare statements--compare anticipated results with actual results.

The status statement is used to establish print options and to select
which PCB within a PSB will be used. The call to be issued is provided
in the CALL statement. A COMPARE statement is optional and is used to
tell the program what the results of this call should be in the data
base PCB and in the user input/output area. Various print and display
options are available; these are based on whether the results of the
call agree with the data in the COMPARE statement. COMMENTS statements
are also optional. As the name implies, they are only comments and
can be used by the programmer at his discretion. As will be seen later,
there are two types of comments: conditional and unconditional.

The general sequence of operation is to read CALL statements until
a noncontinued CALL statement is detected. The DL/I call is issued
based on data in the CALL statements. The program then reads the next
control statement. If a COMPARE statement is read, it compares the
contents of the COMPARE statement with the corresponding field in the
PCB, or, if a data COMPARE statement, with the data in the user
input/output area. The comments, call, compare, PCB, input/output
area, and compare data are printed if requested. If any control
stat~ment other than a COMPARE statement is read after a call was
issued, the results of the prior call are printed first and the new
control statement is then processed.

INTERFACES

~odule DFSDDLSO must be link-edited with DFSLIOOO and placed in
IMSVS.PESLIB under the name DFSDDLTO.

Application Programming Testing Aids 7.1

JCL REQUIREMENTS

r--,
1 I
, JOB This statement initiates the job. 1
I I
1--,
, EXBC , , ,
1
1
1

This statement specifies the program name, or
invokes a cataloged procedure. The required
forma tis:

PGM=DFSRRCOO,PARM='AAA,DFSDDLTO,BBBBBBBB,
CCCCCCCC,DDDDDDDD'

1 where AAA is the region type and BBBBBBBB is the
I name of the PSB to be used. Parameters CCCCCCC and
, DDDDDDD are optional, and can be used to specify
, symbolic input terminal and output terminal names,
, respectively. Refer to the 1~2L!2 [YEtem
, Er~gr~!ing Ref~~~ Manygl for other parameters
1 that can be used.
1--1
, STEPLIB Defines the partitioned data set named IMSVS.~ESLIB.'
, DD If EXIT routine modules are used, they should be 1
, placed into this library or into another PDS 1
1 concatenated to this library. 1
1-~--f
, I
1 IMS This statement defines two concatenated data sets. 1
, DD The first DD statement defines the library contain- 1
, ing the PSB to be used by the test program. The I
1 second DD statement defines the library containing 1
1 the· DBD of the data base to be processed. 1
1--1
I 1
1 database This statement references a specific data base. I
I DD There should be one statement for each data base to I
, be processed. In each statement the ddname must I
, agree with the ddname specified in the DBD. 1
, I
1--1
1 1
1 IEFRDER This statement defines the log data set, if one is I
1 DD desired. A DD DUMMY stat ement may be used if a log I
1 is not desired. One form or the other of this 1
, statement. is required. I
1--1
1 I
1 PRINTDD This statement defines the output data set for (
, DD the test program, including displays of control I
, blocks using the SNAP call. It must conform to the 1
I OS SNAP data set requirements. I
,---------------------------------~~~;~~~~~-~~~----~~~~~~-~~~--I
1 t
, SYSUDUMP This statement ,is optional and is used by the I
1 DD test program only when normal termination is I
1 not possible. I

7.2 IMS/VS Application Programming Reference Manual

. ~ -, .'

L

1--1
, I
I SYSIN This statement defines the control statement input I
I D D d a t a se t . I
1--1
,SYSIN2 This is an optional secondary input statement. See I
, DD the description of "Special Control Statement I
, Forma ts" for details. I
L--~

CONTROL STATEMENTS

In the control statement formats below, the "$" indicates those
fields which are usually filled in; the absence of the "$" indicates
that the field can be.left blank and the default used. If position 1
is left blank on any control statement, the statement type defaults to
the prior statement type.

The STA~US statement establishes print options and determines the
PCB that subsequent calls are to be issued against.

The format of the STATUS statement is as follows:

$ 1 =
2 =

3 .=

4 =
5 =

6 =

7 =

8 =

S identifies this as a STATUS statement.

Output device option.
blank - use PRINTDD when in a DLI region;

use IIO PCB in the MSG region.
1 use PRINTDD in MSG region if the DD

statement is provided; otherwise, use I/O
PCB.

A - same as if 1, and disregard all other fields
in this STATUS statement.

Print cQmment option.
blank - do not print.
1 - print al ways.
2 - print only if compare done and unequal.

Not used.

Print call option.
blank - do not print.
1 - print always.
2 - print only if compare done and unequal.

Not used.

Print compare option.
blank - do not print.
1 - print always.
2 - print only if compare done and unequal.

blank.

Application Programming Testing Aids 7.3

=

10

11 =

12 - 15 ::

16 - 23 =

24 =

25 - 28 ::

29 - 8') =

Print PCB option.
blank - do not print.
1 - print always.
2 - print only if compare done and unequal.

Not used.

Print segment option.
blank - do not print.
1 - print always.
2 - print only if compare done and unequal.

Reserved.

DBD name.

Thi~ determines the PCB against which subsequent
calls will be issued; hence, it must be a DBD name
given in one of the PCBs in the PSB. The. default
PCB is the first data-base-PCB in the PSB. If
positions 16 through 23 are blank, the current PCB
is used. If positions 16 through 18 are blank, and
positions 19 through 23 are not blank, then the
non-blank positions are interpreted as the relative
number of the desired data-base-PCB in the PSB. The
number must be right-justified to position 23, but
need not contain leading zeroes. The user must
insure that the relative data-base-PCB exists in
the PSB because no checks are made to insure that
a proper PCB is obt ained in this ma nner.

Print
1
2
3

sta tus opti on.
- do not use print option in this statement.
- do not print this STATUS statement.
- do not print this STATUS statement or use

print option.
blank - use print o?tion "and print this statement.

PCB processing option -- This is optional and is
only used when two PCBs have the same DBD name but
different processing options. If non-blank, it is
used in addition to the DBD name in positions 16
through 23 to select which PCB in the PSB to use.
This must appear as it does in the processing option
of the PCB desired.

}10t used.

If no STATUS statement is read, the default PCB is first data
base-PCB in the PSB, and the print status option is 2. New STATUS
statements can be an y"here" 1n" til e SY_SINs:tream,"_ changingei therthe
-data -Jja:-se" to-" be "re-fere-ncedo-r-- the options.

7.4 IMS/VS Application programming Reference Manual

---- _ .•.....•. _---_ .. - ._----- -... -------

~Q~~~R12 [i~ig~2nt

There are two types of COMMENTS statements. The first, the
unconditional statement, allows for unlimited comments, all of Khich
are printed. The second type, the conditional statement, allows only
limited comments, which are printed or not depending on other factors
as described below.

AS the name implies, information on these statements is treated by
the system as comments only. No action, other than printing, is .taken
when a COMMENTS statement is read.

Uncon di tiona I:

$ 1

2 - 80

Condi tional:

$ 1

2 - 80

=

=
:::

~Q!ltents

U specifies an unconditional COMMENTS statement.

comments - any number of unconditional COMMENTS
statements are allowed; they are printed when read.
Time and date of printing are printed with each
unconditional COMMMENTS statement.

T specifies a conditional COMMENTS statement.

Comments - up to 5 conditional COMMENTs statements
per call are allowed; no continuation mark in
position 72 is required. printing is conditioned
on the STATUS statement. Printing is deferred until
after the following call and optional compare are
executed, but prior to the printing of the following
call.

The CALL statement identifies the type of IMS/VS call to be made,
and supplies information to be used by the call.

$ 1 =

3 :::

4 =

fQ!l!~!!i.2

L identifies this as either a CALL or DATA statement.

SS A level (optional)

Forma t option s--
U, if columns 16 onward are unformatted, with no
blanks separating fields.
Blank, for formatted calls with intervening blanks
in positions 24, 34, and 37.
v, for the first statement describing a variable
length segment, when inserting or replacing only
one variable length segment. It is also used for
the first statement describing the first segment of
multiple variable length segments.
M, for the second through last statements that begin

Application programming Testing Aids 7.5

5 - 8

$ 11) - 13

$ 16 - 23

24

$ 25

26 - 33

34

$ ~ - 36

37

$ 38 - XX

$ xx + 1

'f: 72

=

data for a variable length segment, when ins~rting
or replacing multiple variable length segments.
P, when inserting or replacing via path calls. It
is used only in the first statement of fixed length
segment statements in path calls containing both
variable and fixed length s~gments~

Number of times to repeat this call (optional) in
the range of 0001 through 9999.

DL/I, application program call function.

= DATA, indicates that this statement contains data
to be used in an ISRT, REPL, SNAP, CHPT, or LOG
call. See the following section on DATA statements
for usage.

= CONT, if a continuation statement for field data
that was too long for previous CALL statement.

=

=
=

=
=
=

=
=

=

=

55! segment name.

Not used.

(, if segment is qualified.

SSA field name.

Not used.

DL/1 call operator or operators.

Not used.

Field value (where the maximum value of XX=70) •

), en d char acter.

Nonblank, if more SSAs. Blank, if this is the only
or la st SSA.

Position 3, the SSA level, is usually blank. If blank, the first
CALL statement fills SSA 1, and each following CALL statement fills
the next lower SSA. If the SSA level, position 3, is nonblank, the
statement fills the SS! at that level, and the following CALL statement
fills the next lower S5A.

position 4 contains a,U to indicate an alternative format for the
CALL statement. In this case, from position 16 on is the exact 55A
with no intervening blanks in positions 24, 34 and 37. If command
calls (for example, *D) are to be used, then the U must specified.

Positions 5 through 8 are usually blank, but if· used, must_be
. right- justified·~·-The··identicaTcall·is--re·pe-a"f·ed· as· specified in
positions 5 through 8.

Positions 10 through 13 - the DL/I call function is required only
for the first 55A of the call.

Positions 16 through 23 - the segment name is not specified for
unqualified calls.

7.6 IM5/VS Application programming Reference Manual

"-_ .• /

If there are multiple SSAs in the call, each SSA should be entered
in positions 16 through 23 of a separate statement. A non-blank in
position 72 of any statement indicates that another SSA follows.
Positions 1 and 10 through 13 are blank for the second through last
SSAs.

If the fi~ld value extends past 71, there is a nonblank in position
72 and CONT in posit ions 10 through 13 0 f the next sta te ment, vi th the
field value continued starting in position 16. Maximum field value is
256 bytes.

An alternate format for the CALL statement is available by putting
a U in position 4. If you use this option, you must start the exact
SSA in position 16, with no intervening blanks in positions 24, 34,
and 37. To continue an unformatted SSA, put a nonblank character in
position 72, a U in position 4, and CONT in positions 10-13 of the next
statement. Include the data of the 5SA that is continuing in positions
16 throuqh 71. Maximum size for an 55A is 290 bytes. For additional
information on SSAs, refer to the section "Segment Search Argument" in
the "Data Base Batch Programming" chapter of this manual.

The maximum number of levels for this program is the same as the
IMS/VS limit, which is 15.

DATA statements provide IMS/VS with segment information required
for ISRT, ~RPL, SNAP, LOG, and C~KP calls.

For an ISRT, REPL, SNAP, LOG, or CHKP call, statements containing
segment data must follow immediately after the last (non-continued)
CALL statement. The DATA statements must have an L in column 1, and
DATA in positions 10 through 13. The segment data appears in positions
16 through 71. Data continuation is indicated with a non-blank in
position 72. On the continuation statement, positions 1 through 15
are blank, and the data is resumed in position 16. The maximum length
of a segment is set at 1500 bytes, but the user can change this by
reassembling the program with the U5ER5EG field altered.

Note: On 15FT calls, the last 5SA can have only the segment name, with
no-qualification or continuation.

~hen inserting or replacing variable length segments, as defined in
a DBDGEN, or including variable length data for a CHKP or LOG call,
position 4 of the CALL statement must contain either a V or M. V must
be used if only one segment of variable length is being processed.
Positions 5 through 8 must contain the length of the data,
right-justified, with leading zeroes. This value is converted to
binary, and becomes the first two bytes of segment data.
Seqment-data-statements can be continued, as described above, with the
subsequent statements blank in positions 1 through 15, and the data
starting in position 16.

Application Programming Testing Aids 1.1

If multiple variable-~ength segments are required (that is,
concatenated logical child/logical parent segments both of which are
variable-length) for the first segment, there must be a V in position
U and the length of that segment in positions 5-8. If that segment is
longer than 56 bytes, then the data is continued as above except that
the last card to contain data for this segment must have a non-blank
in position 72. The next statement applies to the next variable-length
segment, and must contain an M in position 4 and the length of this
segment in positions 5-8. Any number of variable-length segments can
be concatenated in this manner, up to 1500 bytes of total length. The
~ or V and the length must appear only in statements that begin data
for a variable-length segment.

When inserting or replacing via path calls, a P in position 4 causes
the length field to be used as the length the segment will occupy in
the user I/O area, without the length (LL) field of variable-length
segments, as in the instructions for H, above. V, M, and P can be
mixed in successive statements. The P appears in only the first
statement of fixed-length segment DATA statements, in path calls which
contain both variable- and fixed-length segments.

PARAMETER LENG~H, SNAP CALLS: On SNAP calls, the length of the SNAP
parameters must be in positions 5-8. This number must be egual to the
length of the SNAP parameters starting in position 16 plus an additional
two bytes. The TEST program converts the length to binary and places
it in the first half-word of the user I/O area passed to DL/I. The
parameters from position 16 are placed in the I/O area immediately
following this half-word. If positions 5-8 are blank, a default of 22
is used as the parameter length. For additional information on SNAP
calls, see sections 2 and 6 in Volumes 1 and 3, respectively, of the
I~~L!~ ~tQgt£ID 1Qgi£ Mali~~l·

All parameters are passed without change, with the following
exception: If the SNAP destination field specifies "DCB-addr" or ddname
of PRINTDD, and if a PRINTDD statement is supplied to the test program,
the test program replaces this parameter with the DCB address of the
test program PRINTDD data set. If a PRINTDD DD statement is not
supplied, the test program defaults to LOG~~~~.

PARAMETER LENGTH, LOG CALL: The LOG call is normally used with the
I/O PCB. It can be used in batch mode only if the CMPAT option of the
PSBGEN statement (see the I~!~ ~!i!i1i~§ Refer§D£~ tl~ual) is
specified.

The LOG call can be specified in two ways:

1. A LOG call statement followed by a DATA statement with an L in
column 1, a V in column 4, and the record length (in decimal)
in columns 5-8, right-justified, and padded with zeroes. An
example:

COL
1

L
--L-

COL
4

COL
10

LOG

COL
16

V0016 - DATA- - - OOASEGMENT --ONE

~hen this method is used, the first halfword of the record is
eliminated. However, the specified length must include the 2
bytes that are eliminated.

1.8 IMS/VS Application Programming Reference Manual

\
'"--

c ...

C/

2. A LOG call statement followed by a DATA statement with an L in
column 1 and the record ~ength (in binary) as the first halfword
of the record. The second halfword of the record is binary
zeros. An example:

COL
1

L
L

COL
4

COL
10

LOG
DATA

COL
16

1000BSEG~ENT TWO

When this method is used, columns 5-8 should be blank.

SEGMENT LENGTH AND CHECKING, ALL CALLS: Because this program does not
know segment lengths, the length of the segment displayed on REPL or
ISRT calls is the number of DATA statements that have been read, times
56. IMS/VS knows the segment length and uses the proper length.

This program does no checking for errors in the call; invalid
functions, segments, fields, operators, or field lengths are not
detected by this program.

This is the format of the COMPARE statement used for PCB comparisons.

RQsi1~Q!l

1 =
2 =

3 =

E identifies this as a CO~PARE statement.

H indicates hold COMPARE statement (see below for
details) •
Blank indicates a reset of the hold condition or a
single COMPARE statement.

Option requested if results of the compare are
unequal: Blank means "Use the default for the SNAP
option." The normal default is 5. For an explanation
of how to change the default, see the description
of the "OPTION Statement Format."
1 request SNAP of the complete I/O buffer pool.
2 request SNAP of entire region.
4 request SNAP of DL/I blocks.
8 abort this step; go to end of job.
S S NAP sub poo 1 s 0 -1 27 •

R~te: ~ultiple functions of the first 4 options
can be obtained by summing their respective
hexadecimal values. For example, a value of 5 is
a request for a print of the IIO buffers and the
DLtI blocks; and a value of D snaps the I/O pool,
snaps the DL/I blocks, and aborts the program run.

Application programming Testing Aids 7.9

=

5 - f; =

7 =

8 - 9 =

10 =

11 - 18 =
19 =
20 - 22 =

23 =

24 - xx =

72 =

Extended SNAP options, if results of a compare are
unegu al:
Blank: this extended option is ignored; P the
complete buffer pool is snapped; S subpools 0-127
are sna pped •

HQt~: In no case will an area be snapped twice;
that is, a combination of 1P in positions 3 and 4
results in just one snap of the buffer pool.
Similarly, a combination of SS results in just one
snap of subpools 0-127.

Segment level.

Not used.

Status code, or one of the following:
XX - do not check status code.
OK - allow blank"GA, or GK.

Not used.

Segment name.

Not used.

Length of feedback key.

Not used.

Concaten ated key feedback.

Nonblank to continue key feedback.

Th,e COMPARE sta tem ent is opt ional. It can be used to do regression
testing of known data bases, or to call for a ~rint of blocks or buffer
pool (s) •

Any fields left blank are not compared to the corresponding field
in the PCB. Since a bla'nk is a valid status code, to not compare status
codes, put XX in positions 8 and 9. To accept any valid status code,
(that is, blank, GA, or GK), use OK in position 8 and 9.

To execute the same COMPARE after each call, put an H in position
2. This is useful when loading a data base to compare to a blank status
code only. Since the compare was done, the current control statement
type is E in position 1; the next control statement read must therefore
have its type in position 1 or it will default to E. The ,HOLD-COMPARE
statement stays in effect until another COMPARE statement is read. If
a new COMPARP. statement is read, two compares will be done for the
preceding call, since the HOLD-COMPARE and optional printing are done
priC:>,r ,tor:e_a~~n.9,t,h!= ne~, ~QMP,ARE statement.

The total number of unequal compares will be reflected in the
condition code returned for that step.

7.10 IMS/VS Application Programming Reference Manual

c

This is the format of the COMPARE statement used for user I/O area
comparisons.

$

3

4

5 - 8

10 - 13

16 - 71

72

=

=

E identifies this as a COMPARE statement.

Blank, the LL field of the segment is not included
in the ·comparison, only data is compared.

= L, the length in positions 5-8 is converted to binary
and compared against the LL field of the segment.

= v, if variable-length segment only, or if the first
variable-length segment of multiple variable-length
segments in a path call or concatenated logical
child/logical parent segment.

P, if fixed-length segment in a path call.

M, if the second or subsequent variable-length of
a path call, or concatenated logical child/logical
parent segment.

= Blank, not variable-length or non-path call data
compare.

=

=

=
=

nnnn, length ~f a variable-length segment,
right-justified ~ith leading zeroes. If position
4 contains V, P, or M, then a value must appear in
positions 5-8. If position 3 contains an L then
this value is compared against the LL field of the
returned segment. If position 3 is blank and the
segment is not in a path call, then this value is
used as the length of the comparison. The rules
for continuations are the same as those described
for the variable-length segment DATA statement in
the description of the CALL statement.

If this is a path call comparison, and position 4
contains P, then the value in positions 5-8 must be
the exact length of the fixed segment used in the
pa th call.

DATA, this has to be specified in the first COMPARE
DATA statement only.

Data against which the segment is to be compared.

Blank identifies the last COMPARE DATA st at em ent
for the current call, and causes the comparison to
be made.

= Non-blank, if the comparison data exceeds 56
characters, data is continued in positions 16-71 of
the subsequent statements for a maximum total of
1500 bytes.

Application Programming Testing Aids 7.11

This COMPARE statement is optional. Its purpose is to COMPARE the
segment returned by IMS/VS to the data in this statement to verify that
the correct segment was retrieved.

The length in positions 5-8 is optional except as already noted; if
present, this length is used in the COMPARE and in the display. If no
length is specified, the shorter of either the length of data moved to
the I/O area by' IMS/VS, or the number of DATA statements read times 56
is used for the length of the comparison and display.

If both a COMPARE DATA and a COMPARE PCB statement are present, the
COMPARE DATA statement must precede the COMPARE PCB statement.

The conditions for printing the COMPARE DATA statement are the same
as for printing a COMPARE PCB statement; position 7 of the STATUS
statement is used. The same unequal switch is set for either the
COMPARE DATA or COMPARE PCB. However, if control block displays are
requested for. unequal comparisons, a COMPARE PCB statement is required
to request these options.

The total number of unequal comparisons will be· reflected in the
condition code returned for that step.

The purpose of the OPTION statement is to set the default SNAP option
and/or the number of unequal comparisons before aborting the step. The
default value for the number of unequal comparisons before aborting is
5.

The format of the statement is explained below.

1 =

2 - 80 =

o identifies' this as an OPTION statement.

Free-form coding.

The first operand is SNAP=x, where "x" is the default
SNAP option to be used.

The second operand is ABORT=xxxx, where "xxxx" is
a 4-digit numeric value that 'sets the number of
unequal comparisons before aborting the step.

Use of the following example of the OPTION statement will cause the
DL/T test program to operate as it did prior to the release of IMS/VS
version 1, Modification Level 1:

Col. 1

0~SNAP=~,ABORT=9999

7.12 IMS/VS Application Programming Reference Manual

C~

c

SPECIAL CONTROL STATEMENT FORMATS

The PUNCH control statement provides the facility for this program
to produce an output data set consisting of the PCB COMPARE statements,
the user IIO area COMPARE statements, all other control statements
read, or any combination of the above. An example of the use of this
facility is to code the call, but not the COMPARE statements for a new
test. Then, after verifying tha t the calls were e'xecuted as
anticipated, another run is made where the PUNCH statement is used to
caus e the test program to merge the proper COMPARE statements, based
on the results of the call, with the CALL statements read, producing
a new output data set. This is then used as input for subsequent
regression tests. If segments.in an existing data base are changed,
the use of this control statement causes a new test data set to be
produced with the proper COMPARE statements. This eliminates the need
to manually change the COMPARE statements because of a change in the
segments of the test data base.

The PCB COMPARE statements are produced based on the information in
the PCE after the call is completed. The COMPARE DATA statements are
produced based on the data in the I/O area after the call is completed.
All input control statements, other than COMPARE statements, can be
produced to provide a new composite test with the new COMPARE statements
properly merged. The data set produced can be sequenced.

Since the key feedback area of the PCB COMPARE statement can be
long, two options are provided for producing these COMPARE statements.
Eitner the complete key feedback can be provided, or the portion of
the key feedback that does not fit on one statement can be dropped.
Forty-eight bytes of key feedback fit on the first statement.

Getting the full data from the I/O area into the data COMPARE
statement might also be excessive. An option is to put it all on the
data COMPARE statements, or put only the first 56 bytes on the first
statement and drop the rest. The test program only compares the first
56 bytes if it only receives one COMPARE DATA statement.

PUNCH STATEMENT FORMAT:

1 - 3 =
10 - 13 =

16 =

rTL identifies this statement type.

PUNC further identifies this statement type as
controlling the punch output data set, and tells
the program to start punching.

NPUN stop punching.

Starts keyword parameters controlling the various
options. These keywords are:

PCBL, produce the full PCB COMPARE statement.

PCBS, produce the PCB COMPARE, dropping ~he key
feedback if it exceeds one statement.

DATAL, produce the complete COMPARE DATA statements.

DATAS, produce only one statement of com'pare da ta.

Application programming Testing Aids 1.13

OTHER, reproduce all control statements except
COMPARE control statements.

START, starting sequence number to be punched in 73
through 80. Eiqht numeric characters must follow
the START= parameter; leading and/or trailing zeroes
a re required.

INCR, increment to be added to the sequence number
of each statement. Four numeric characters must
follow the INCR= parameter; leading and/or trailing
zeroes are required.

Some examples of the PUNCH control statem ent are:

1 10

CTL PUNe PCBL,DATAL,OTHER,START=00000010,INCR=0010
CTL NPUN

The DD statement for the output data set is labelled PUNCH; the data
set characteristics are fixed, unblocked , with a logical record lengt h
of 80.

An example of the PUNCHDD statement is:

//PUNCHDD DD SYSOUT=B

The data set specified by the SYSIN DD statement is the normal input
data set for this program. It is sometimes desirable when processing
an input data set that is on direct access or tape, to override or
insert some control statements into this input stream. This is
especially useful to obtain a SNAP after a particular call.

To provide this capability, a second input data set (SYSIN2) will
be reaa if the DD statement is present in the JCL for the step. The
records from the SYSIN2 data set are merged with records from the SYSIN
data set, and the merged records become the input for this program.

The merging is done based on the sequence numbers in positions 13
through 80, and is a two-step process: first, pOSitions 73 and 74 of
SYSIN2 must be equal to the corresponding positions of SYSIN; then the
merge is done based on positions 75 to 80.

This peculiarity of merging allows for multiple data sets (each with
a different high-order sequence number in 73-74) that have been
concatenated to form SYSIN, in other than positions 73-74 numeric

-sequence. -----The - two-step-merge:logic-permlts -SYSIN2 -input: to -be merged
appropriately into each of the concatenated data sets.

When the sequence numbers are equal, SYSIN2 overrides SYSIN.

Any statements or records in this data set must contain sequence
numbers in columns 73-80. They will replace the same sequence number
in the SYSIN data set, or be inserted in proper sequence if the number
in SYSIN2 does not exist in SYSIN. Replacement or merging is done only
for the run being made. The orginal SYSIN data is not changed.

7.14 IMS/VS Application Programming Reference Manual

c

~--.--------.. - -~-

c 1 - 4 =

10 - 17 =

1 - 4 =

1 - 3

1 =
- 5 =

$ 1 =

5 - 8 =

10 - 13 =

DLCK - issues OS/VS checkpoint, followed by a DL/I
checkpoint.

contains a 1- to 8-character checkpoint ID
(left-justified) •

WTOR - puts message in remainder of statement on
system console and waits for any reply, then
continues.

WTO same as WTOR, but does not wait for reply.

• or N; disregard this statement.

ABEND - issues user ABEND 252 with the DUMP option.

L identifies this as a CALL statement.

Number of times to repeat a series of calls with a
range from 0001 t hru 9999 (default is 1) •

STAK - start stacking control cards for later
execution.

END - stop stacking control cards and begin
execution.

The STAK function enables the user to repeat a series
of calls which have been read from SYSIN and held
in storage. All control statements between the STAK
card and the END card are read and saved. When the
END card is encountered, the series of calls is
executed as many times as the number punched in
positions 5 through 8 of the STAK card. This can
be used to test exclusive control and scheduling by
having two different regions executing stacks of
calls concurrently.

STAT - Print the current buffer pool statistics.

Cols. 16-20 One of the following values is used to
obtain the type and form of statistics
required:

VBASF

VBASU

provides the full VSAM data base
subpool statistics in a formatted
form.

provides the full VSAM data base
subpool statistics in an
unformatted form.

Application programming Testing Aids 7.15

VBASS

DBASF

DBASU

DBASS

provides a summary of the VSAM
data base sub pool sta tistics in
a formatted form.

provides the full ISAM/OSAM data
base buffer pool statistics in
a formatted form.

provides the full ISAM/OSAM data
base buffer pool statistics in
an unformatted form.

provides a summary of the
ISAM/OSAM data base buffer pool
statistics in a formatted form.

For more information on the STAT call, see the
"System Service Calls" section in the "Data Base
Batch Programming" chapter of this manual.

SNAP - Issue the DL/I Call. See sections 2 and 6,
Volumes 1 and 3, respectively, of the IMSL!~ g~QgIs~
1Qg~£ !1Stn ua 1 ~

DLCK - For any dependent region, DLCK gives an OS/VS
checkpoint to a DD statement labelled CHKDD whose
DSORG=PO. This is followed by a DL/I checkpoint
call.

CHKP - Same as DLCK.

SKIP - Skip SYSIN statements until START statement
encountered.

START- start making DL/I calls again.

FORM~T OF DISPLAY OF DL/I BLOCKS

The IMS/VS SNAP call is used to 'display the DL/I blocks. For
additional information on the SNAP call, see the "Process SNAP Call"
diagram and the "SNAP Call Facility" discussion in Sections 2 and 6,
Volumes 1 and 3, respectively, of the IMS/VS PrQg~ 1Qg~£ A~!.

EXECUTION IN DIFFERENT TYPES OF REGIONS

This program is designed to operate in a DL/I or BMP region but can
also be executed in a MSG region. The input and output devices are
dynamically established based on the type of region in which the' program
is executing. In a BMP or DL/I region, the EXEC statement allows the
program name to be different from the PSB name. There is no problem
executing calls against any data base in a BMP or DL/I region. In a
MSG-region, the--program namemust-be--the same as the PSB name.- In
order to execute in a MSG reg~on, the DFSDDLTOprogram must be given
the name or an alias of the PSB ~amed in the IMS/VS dgfinition.

When in a DL/I region, input is read from SYSIN and 0 utput is written
to PRINTDD.

7.16 IMS/VS Application Programming Reference Manual

c,.
When in a BMP region, if a symbolic input terminal was specified as

the fourth parameter of the EXEC sta teme,nt, input is obtained from that
5MB, and output is sent to the I/O PCB. The name of the I/O PCB can
be specified as the fifth parameter of the EXEC statement. If 5MB is
not specified on' the EXEC statement, SYSIN is used for input and PRINTDD
is used for output, as in the DL/I region.

In the MSG region, the I/O PCB is used for both input and output
unless position 2 of the STATUS statement is either a 1 or an A. In
either of these cases, PRINTDD is used for output if the DD card is
present in the JCL for that message region. A limit of 50 lines per
schedule is sent to the I/O PCB and, after that, PRINTDD is used for
output if present. If PRINTDD is not present, the program terminates.

Because the input is in fixed form, it is difficult to key it from
a terminal. For ease of entry, however, Message Format Service (MFS)
facilities can be used from a terminal to create the fixed-format input.
One way to test DL/I in a message region, using this program, is to
first execute another message program which, based on a message from
the terminal, reads control statements stored as a member of a
partitioned data set. Insert these control statements into an 5MB.
This program is then scheduled by IMS/VS to process those transactions.
This allows the same control statements to be used to execute in any
region type.

HINTS ON USAGE

1 •

2 •

To load a data base:

This program is applicable for loading small data bases, because
all calls and data must be provided to it rather than it
generating data. It can be used to load large volume data bases
if the control statements were generated as a sequential data
set.

To display a data base:

To display a data base, the following sequence of control
statements can be used.

S 1 2 2 2 1
L GN
EHB OK

DBDNAME Display comments and segment
DO 1 Get Next
Hold compare, GA, ,GK, OK, terminate
on GB

L 9999 GN DO 9,999 Get Next calls

3. To do regression testing:

This program can be used for regression testing. By using a
known data base, calls can be issued and the results compared
to expected results using COMPARE statements. The program then
can determine if DL/I calls are being executed correctly. By
making the print options of the STATUS statement all twos, only
those calls not satisfied properly are displayed.

To'use as a debugging aid:

When doing debugging work, usually a print of the DLjI blocks
is required. By use of COMPARE statements, the blocks can be
displayed at appropriate times. Sometimes the blocks are needed
even though the call is executed correctly, such as the call
before the failing call. In those cases, a SNAP call can be
inserted. This causes the blocks to be displayed even though
the call was executed correctly.

Application Programming Testing Aids 7.17

5. To verify how a call is executed:

Because it is easy to execute a particular call, this program
can be used to verify how a particular call is handled. This
is of value when DL/I is suspected of not operating correctly
in a specific situation. The calls that are suspected can be
issued using this program, and the results examined.

SAMPLE JCL

IIJCLSAMP JOB ACCOUNTING,NAME,MSGLEVEL=(1,1) ,ftSGCLASS=3,PRTY=8
/IGET EXEC PGM=DFSRRCOO,PARM='DLI,DFSDDLTO,PSBNAME'
IlsrEPLIB DO DSN=IMSVS.RESLIB,DISP=SHR
/II~S DO OSN=IMSVS.PSBLIB ,DISP= (SHR, PASS)
II DD OSN=IMSVS.DBDLIB,DISP=(SHR,PASS)
IIDOCARD DD DSN=DA TA SET, Dr SP= (OLD, KEEP)
IIIEFRDER DD DUMMY
IIPRINTDD DD SYSOUT=A
I/SYSUDUMP DD SYSOUT=A
I/SYSIN DD *
S 1 , 1 1 DBDNAME
1*

SAMPLE CONTROL STATEMENT INPUT

IISYSIN DD *
U START TEST LOAD
T ISRT ROOT SEGMENT A060000111
L ISRT A11'1111
L DATA A06000 11
EH
T ISRT
L

ROOT, SEGMENT A06000511
I SR T A 111111

1069999888 ROOT SEG1

L
L

DATA A060000511
I SR T . A 1 111 11

1069999488 ROOT SEG2
(A""111 = A0600005") x

DATA
1*

IISYSIN DO *
S , 1 1 1 1
L GHU

S 1 1 1 1 1
L ISRT

L DATA
S 1 1 1 1 1
L REPL
L DATA
1*

AA222222
XAA 04051' Z

JHNIXX
JM2PAB.CX

1

2

(J11NIXX = A10Hl02000)
(JM2PABCX = DIOHI02A10) *

J 11NXIIX - . --(J-l1N-XXIX =
JK2P!DXX
A10HD02000D10HD02A1U

A 10H02000) . C

1

A10HD0200DB10HD02A10

7.18 IMS/VS Application programming Reference Manual

..... , ... ~;

Message processing region simulation is not supplied as a part of
the IB! IMS/VS program.

The checkout of any message processing program in the online termina1
environment is often impractical. To enable a more practical and
efficient checkout environment, a message processing region simulation
can be used. The object of the simulator is to enable checkout of a
message processing program, in a hatch processing region, with a set
of test data bases. Messages are read and written with unit record,
tape, or disk data sets as opposed to input and output message queues.
To be effective, the simulator should incur no, or minimal, change to
the message processing program when it is moved from the simulated to
the ~ctual message processing region environment.

The user can accomplish simulation by appending the Simulator
Interface A and Simulator Interface B modules to the message processing
program in addition to the language interface. (See Fiugre 7-1.)

~: DLlTCBL
OR

DLITPLI

SIMULATOR
INTERFACE

A

MESSAGE
PROCESSING
PROGRAM

MESSAGE CALLS

DATA BASE CALLS

~:--------------------~--+---~ CBL TDLI or PLITDLI

LANGUAGE INTERFACE

~:~-------------------r------" GEORGEI

Figure 7-1.

SIMULATOR
INTERFACE

B

(MESSAGE INPUT) (MESSAGE OUTPUT)

!!essage Processing Region Simulation

Application Programming Testing Aids 1.19

When the PSB is generated for the associated message program, the
PCBs within the PSB are normally for Data Language/I data bases only.
No PCB for an input and output terminal is provided. When the message
program is loaded into a batch processing region, the PCB addresses
are passed to the message program •. No terminal PCB is provided.

When Simulator Interface·A is link-edited with the message program
with entry point DlaITCBL or DLITPLI, the Simulator Interface A is
entered. The interface prefixes the PCB address list with an .
input/output termin,al PCB address. The PCB exists within Simulator
Interface A, and its address is added as the first PCB address in the
PCB address list passed to the message program. This PCB address is
used by the message program·as are the other PCB addresses in the list,
except that this PCB address is used in calls from the message program
to Simulator Interface B.

When a call is made from the message program to Simulator Interface
B, the message program makes a Data Language/I call, with the terminal
PCB address provided by Simulator Interface A. Simulator Interface B
then utilizes OS/VS SYSIN and SYSOUT data sets as if messages vere
being read from and written to message queues. You may includ~
alternate terminal PSBs within your PSB generation. The addresses for
these PCBs are provided, upon entry to the user message program, in
the order specified by PCB statements in PSB generation. If a Data
Language/I call (CALL CBLTDLI) is issued with an alternate terminal
PCB address in an IMS/VS batch region, an AL status code 'is returned
in the PCB.

Data L'anguage/I data base calls are executed with the appropriate
PCBs to the link-edited language interface.

The following changes must be made when the message processing
program is moved to a message processing region:

• Both Simulator Interface modules should be omitted.

• The entry point name of the message program must be renamed DLITCBL
(COBOL or Assembler) or DLITPLI (PL/I).

• The CALL statement operand must be renamed from GEORGE! to the
language interface entry pOint CBLTDLI or PLITDLI.

7.20 IMS/VS Application Programmin 9 Reference Ranual

I",~. _,/

EXA MPLES

The following example shows a typical COBOL program that might be
written to test a message program in a batch processing region. (Refer
to Figure 1-1 in conjunction with this example.)

IDENTIFICATION DIVISION.
PROGRAM-ID. 'CAB',
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
0' INOUT-PCB

02 IO-TERMINAL
02 IO-RE SERVE
02 IO-ST ATtJS
C2 IO-PREFIX

LINKAGE SECTION.
01 DB-PCB.

02 DATA-BAS-DESC
PROCEDURE DIVISION.

PICTURE X (8) •
PICTURE XX.
PICTURE XX.
PICTURE X (12) •

PICTURE X(71) •

ENTRY 'DLITCBL' USING DB-PCB.
CALL 'TEST' USING INOUT-PCB, DB-PCB.
STOP RUN.

The following is an example of a section of the message processing
program being tested. It shows the entry point and call to the Message
Input and Output (Message Simulator Interface B). (Refer to Fiugre
7-1 in" conjunction with this example.)

START-OUT.
ENTRY 'TEST' USING TERMINAL INOUT-PCB,DB-PCB.
CALL 'GEORGEI' tJSING GET-UNIQUE,INOUT-PCB,LINE-INPtJT.

Application Programming Testing Aids 1.21

~imY!llQ!: J1!1~!:!~~ !!

The foll~wing example of message output should be revi~ved in
conjunction with the previous example and with Figure 7~1.

IDENTIFICATION DIVISION.
PROGRAM-ID. 'IMSTEST'.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MESSAGE-FILE ASSIGN TO 'TESTIN' UTILITY.
SELECT TEST-OUTPUT-FILE ASSIGN TO 'TESTOUT' UTILITY.

DATA DIVISION.
FILE SECTION.
FD MESSAGE-FILE

RECORDING MODE IS V
DATA RECORD IS INPUT-MESSAGE.
01 INPUT-MESSAGE

FD TEST-OUTPUT-FILE
BLOCK CONTAINS 10 RECORDS
DATA RECORD IS PRINT-LINE.
01 PRINT-LINE

WORKING-STORAGE SECTION,
77 OPEN-SWITCH PICTURE X
77 END-SWITCH PICTURE X
77 MESSAGE-SIZE-WORK PICTURE S9(4)

77
77
77
77
77

USAGE COMPUTATIONS.
BAD-FUNCTION-CODE PICTURE XX
NO-DATA-CODE PICTURE XX
REC-SWT PICTURE X VALUE ' "
MESS-OUT PICTURE' X VALUE ' "
C-329 PICTURE S9(6) VALUE 329

USAGE COMPUTATIONAL.
01 MESSAGE-IN-WORK-AREA.

02 HEADER-OAT A-IN.
03 MESSAGE-COUNT
03 MESSAGE-TYPE
03 TERMINAL-NAME

02 MESSAGE-TEXT.

PICTURE IS X(I43).

PICTURE IS X(l33).

VALUE' '.
VALUE' '.
VALUE 0

VALUE 'QA'.
VALUE 'QC'.

PICTURE 9(4).
PICTURE X.
PICTURE XeS).

03 FILLER PICTURE X OCCURS 130 TIMES
DEPENDING ON MESSAGE-SIZE-WORK.

01 TEST-OUTPUT-HEADER.

7.22

02 FILLER PICTURE X(l8) VALUE
, MESSAGE TYPE = '.

02 FILLER.
03 IN-OR-OUT -MESSAGE
03 HEAD-OR-BODY

02 FILLER PICTURE X(l8)
" MESSAGE COUNT = '.

02 OUTPUT -COUNT
02 FILLER PICTURE X(I3)

" TERMINAL = '.
02 OUTPUT-TERMINAL

PICTURE X.
PICTURE X.
VALUE

PICTURE 9999.
VALUE

PICTURE XeS).

IKS/VS Application Programming Reference Manual

..

•

c

02 FILLER PICTURE XX VALUE SPACES.
02 OUT-RUN PICTURE XXXX.

01 TEST-OUTPUT-TEXT.
02 T~ST-OUTPUT-CHAR OCCURS 130 TIMES

PICTURE X.
LINKAGE SECTION.

01 INOUT-PCB.
02 IO-TERMINAL PICTURE X(8).
02 IO-RESERVE PICTURE XX.
02 IO-STATUS PICTURE XX.
02 I-PREFIX PICTURE X(12).

01 FUNCTION PICTURE XXXX.
01 IO-AREAS-RECORD.

02 RCC PICTURE S9 (4) USAGE C01'lPUTATION1\L.
02 RCC-ZEROS PICTURE XX.
02 TEXT.

03 FILLER PICTURE X OCCURS 130 TIHES.
PROCEDURE DIVISION.

ENTRY 'GEORGEI' USING FUNCTION, INOtJT-PCB, IO-AREAS-RECORD.
OPEN-FILES •

IF OPEN-SWITCH = '1' GO TO PROCESS-X.
MOVE 0 TO TALLY.

OPEN INPUT MESSAGE-FILE
OUTPUT TEST-OUTPUT-FILE.

HOVE '1' TO OPEN-SWITCH.
PROCESS-X.

IF FUNCTION = 'GU 'GO TO GET-HEADER.
IF FUNCTION = 'GN 'GO TO GET-BODY.
IF FUNCTION = 'ISRT' GO TO WRITE-REPLY.
MOVE BAD-FUNCTION-CODE TO IO-STATUS.

RETURN-TO-APPLICATION.
RETURN.

FORMAT-INPUT-MESSAGE.
MOVE 'I' TO IN-OR-OUT-l·lESSAGE.
MOVE HESSAGE-TYPE TO HEAD-OR-BODY.
MOVE MESSAGE-COUNT TO OUTPUT-COUNT.
MOVE TERHINAL-NAr.1E TO OUTPUT-TERHINAL.
MOVE HESSAGE-TEXT TO TEST-OUTPUT-TEXT.

SET-UP-FOR-USER,
MOVE MESSAGE-COUNT TO RCC.
MOVE LOW-VALUES TO RCC-ZEROS.
MOVE TERl1INAL-NAME TO IO-TERHINAL.
MOVE r-1ESSAGE-TEXT TO TEXT.
1-10VE' 'TO IO-STATUS.

READ-MESSAGE-FILE.
IF END-SWITCH = '1' GO TO FINISH-UP.
READ MESSAGE-FILE INTO MESSAGE-IN-WORK-AREA

AT END NOVE '1' TO· END-SWITCH

Application programming Testing Aids 1.23

GO TO READ-HESSAGE-FILE.
COMPUTE MESSAGE-SIZE-WORK = MESSAGE-COUNT
PERFORM FORHAT-INPUT-MESS1\GE.
PERFORM WRITE-TEST-OtJTPUT-FILE.

WRITE-TEST-OUTPUT-FILE.
110VE FUNCTION TO OUT-RUN.

WRITE PRINT-LINE FROB TEST-OUTPUT-HEADER.
WRITE PRINT-LINE FROH TEST-OUTPUT-TEXT.

GET-HEADER.
IF REC-SWT NOT = 'H'

COMPUTE
PERFOm~

PERFORM
REC-GOT.

PERFORM READ-MESSAGE-FILE
GO TO REC:-GOT.

HESSAGE-SIZE-WORI{ = MESSAGE-COUNT
FORHAT-INPUT-MESSAGE.
~"1RITE-TES T-OUTPUT-FILE.

-,4.

- 4.

IF HESSAGE-TYPE NOT = TO 'H' GO TO GET-HEADER.
PERFORM SE~-UP-FOR-USER. MOVE • • TO REC-SWT.
GO TO RETURN-TO-APPLICATION.

GET-BODY.
PERFORM READ-MESSAGE-FILE.

IF MESSAGE-TYPE = 'B' NEXT SENTENCE ELSE
MOVE 'H 'TO REC-m'1T
MOVE '00' TO IO-STATUS
GO TO RETURN-TO-APPLICATION.

PERFORH SET-UP-FOR-USER.
GO TO RETURN-TO-APPLICATION.

WRITE-REPLY ..
MOVE IO-TERMINAL TO OUTPUT-TER11INATJ.

COMPUTE MESSAGE-SIZE-WORK = RCC - 4.
MOVE RCC TO OUTPUT-COUNT.
MOVE '0' TO IN-OR-OUT-MESSAGE.
MOVE • , TO HEAD-OR-BODY.
1-iOVE TEXT TO TEST-OUTPUT-TEXT.
,HOVE MESS-OUT TO IO-STATUS.
PERFORM WRITE-TEST-OUTPUT-FILE.

FINISH-UP.
IF FUNCTION = 'GU 'MOVE 'DC' TO IO-STATUS.
IF FmlCTION = 'GN 'MOVE '00' TO IO-STATUS.
GO TO RETURN-TO-APPLICATION.

7.24 IMS;VS Application programming Reference Manual

•

•

c

At the completion of a DL/I call, a status code that indicates the
results of the call is returned to the application program in the PCB
status' code field. The user should follow each call in his program
with statements which examine the returned status cod~s to determine
if the requested action was completed properly.

Status codes fall into four different categories:

1. Exceptional but valid conditions encountered for the call (for
example, GE, GB)

2. Warning or indicative status codes on successful calls (for
example, GA, GK, II, QC, and QD)

3. Improper user specifications (the Brincipal category)

4. Error conditions encountered during the actual execution of I/O
requests

An IMS/VS installation should normally provide application programs
with a standardized status code checking procedure to be applied after
each call.

• Status codes from categories 1 and 2 can be handled by each
application program according to its specific needs.

• Status codes from category 3 result from programming errors, and
should be handled in a generalized way which supplies the
application programmer with the information required to correct
the error.

• Status codes from category 4 must be handled by procedures set up
by the data base administrator; they should not be handled by each
individual application programmer. category 4 status codes often
require recovery procedures which could affect other application
programs and the integrity of the entire data base environment.

Figure A-1 provides a quick reference of DL/I statas codes. These
status codes are described in detaii in Appendix B.

DL/I status Codes Quick References 1.1

I-zj > ...,- : DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS
I

f\.J \Q STATUS GU: GN GNP DLET ISRT ISRT CALL ERROR I/O OR CATE·
~ CODE GHU GHN GHNP REPL (LOAD) (ADD) GU GN ISRT CHNG PURG CHKP ROLL DEO LOG SNAP COMPLETED IN CALL SYST ERROR GORY DESCRIPTION

t1
(1)

f-i

AA X CHNG CALL FOR RESPONSE ALTERNATE PCB CAN ONLY

X
3 SPECIFY LOGICAL TERMINAL DESTINATION; TRANSACTION

CODE DESTINATION SPECIFIED_

»I :3
I til

AB X X X X X X X X X X X X X X 3 SEGMENT I/O AREA REOl!IRED, NONE SPECIFIED
IN CALL

........ -' AC X; X X X X X 3 HIERARCHICAL ERROR IN SSAs
<:
til

"'C
I» »I

AD X 3 INVALID FUNCTION PARAMETER
AH X X X 3 CALL REOUIRESSSAs, NONE PROVIO£D

AI X , X X X X X X 4 DATA MANAGEMENT OPEN ERROR

"'0 t1 AJ X X X X X X 3 INVALID SSA OUALlFICATION FORMAT

"'0 cT AK X , X X X X X 3 INVALID FIELD NAME IN CALL

~ AL X , X X X X X X 3 CALL USING LT PCB IN BATCH PGM

-' 1-'-
n AM X X X X X X X 3 CALL FUNCTION NOT COMPATIBLE W/PROCESSING

OPTION OR SGMT SENSITIVITY

0 I»
I-tt r+

..,-
~ 0

::s

AD X X X X X X X 4 1/0 ERROR ISAM, OSAM, BSAM, OR VSAM

AO X X X X 4 READ 1/0 ERROR, MESSAGE CHAIN CANNOT BE
FOLLOWED, MINIMUM OF ONE MESSAGE LOST

AR X X X X
4

READ I/O ERROR, MESSAGE SEGMENT HAS BEEN
LOST, MESSAGE CHAIN ISSTILL INTACT

'"d AT X X X X X X X X 3 USER I/O AREA TOO LONG

t1
0 0 AU X X X X X X X 3 SSAs TOO LONG

~ I.Q

"-t1
AY X X RESPONSE ALTERNATE PCB REFERENCED BY ISRT CALL

3 HAS MORE THAN ONE PHYSICAL TERMINAL ASSIGNED FOR

I» H INPUT PURPOSES_ NOTIFY MASTER TERMINAL

S
til S

AZ X X
3 CONVERSATIONAL PROGRAMS WILL ISSUE

PURG CALLS TO WRONG PCB

cT ..,-
PI ::s
c+ \Q

~
r.n ~

<D
(1 I-tt
0 ct>

Al X X 3
CALL ATTEMPTED WITH 8-CHAR LOGICAL TERMINAL
NAME NOT KNOWN TO SYSTEM

A2 X X 3
CHANGE ATTEMPTED WITH
INVALID PCB

A3 X X X 3
INSERT/PURGE ATTEMPTED TO A MOD
TP PCB WITH NO DESTINATION SET

A4 X X 3 SECURITY VIOLATION

PI 11
(1) ct>

A5 X X X FORMAT NAME SPECIFIED ON 2ND OR SUBSEQUENT
3

MSG ISRT OR PURG

r.n ::s
0

A6 X X 3 OUTPUT SEGMENT SIZE LIMIT EXCEEDED ON ISRT CALL

CD !O A7 -
~

X X 3
NUMBER QF OUTPUT SEGMENTS INSERTED EXCEEDED THE
LIMIT BY ONE_

1-" :J:
0 PI

A8 X X 3 ISRT TO RESPONSE ALTERNATE PCB FOLLOWED ISRT TO
1/0 PCB, OR VICE VERSA_

"" ::s
~

A9 X X RESPONSE ALTERNATE PCB REFERENCED BY ISRT CALL
3 REQUIRES THAT SOURCE PHYSICAL TERMINAL RECEIVE

PI ~ THE OUTPUT RESPONSE_

<t> ~
I-t)
(l)

DA X X 3 SEGMENT KEY FIELD HAS BEEN CHANGED

OJ X X 3 NO PRECEDING SUCCESSFUL GET HOLD CALL

t1 OX X X 3 VIOLATED DELETE RULE

CD
::s
0
<t>

GA X X X CROSSED HIERARCHICAL BOUNDARY INTO
2 HIGHER LEVEL (RETURNED ON UNQUALIFIED

CALLS ONLY)

GB X 1 END OF DATA SET, LAST SEGMENT REACHED

GE X X X X 1 SEGMENT NOT FOUND

GK X X X 01 FFERENT SEGMENT TYPE AT SAME LEVEL
2 RETURNED (RETURNED ON UNOUALIFIED

CALLS ONLY)

Gl X X 3 INVALID USER LOG CODE_

GP X X A GNP CALL AND NO PARENT ESTABLISHED
3 OR REQUESTED SEGMENT LEVEL NOT LOWER

THAN PARENT LEVEL

II X 1 SEGMENT TO INSERT ALREADY EXISTS IN
DATA BASE

() /----'"

\) (-)
..

r i (\
..

(\

I-zj
~.

o..Q

DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS

I

STATUS GU GN GNP DLET ISRT ISRT CALL ERROR 110 OR CATE·
CODE GHU GHN GHNP REPL (LOAD) (ADD) GU GN ISRT CHNG PURG CHKP ROLL DEQ LOG SNAP COMPLETED IN CALL SYST ERROR GORY DESCRIPTION

~
H
({)

IX X X 3 VIOLATED INSERT RULE

LB X
1

SEGMENT TO INSERT ALREADY EXISTS IN

I DATA BASE

~
LC X 3 KEY FJELD OF SEGMENTS OUT OF SEQUENCE I

I LD X 3 NO PARENT FOR THIS SEGMENT HAS BEEN LOADED
,

~ LE X
3

SEOUENCE OF SIBLING SEGMENTS NOT THE SAME
AS DBD SEQUENCE

I

~
NE X X 4 DUI CALL ISSUED BY INDEX MAINTENANCE CANNOT FIND

I SEGMENT

PI
H
rl"

NI X X X X 4
INDEX MAINTENANCE UNABLE TO OPEN AN INDEX DB. OR j FOUND DUPLICATE SEGMENT IN INDEX

I
NO X X X X 4 1/0 ERROR ISAM. OSAM. BSAM. OR VSAM

I
tv QC X X 1 NO MORE INPUT MESSAGES

0
t-ta

QD X 1 NO MORE SEGMENTS FOR THIS MESSAGE
I

OE X X 3 GET NEXT REQUEST BEFORE GET UNIQUE I

tv
QF X X X X SEGMENT LESS THAN FIVE CHARACTERS (SEG

3 LENGTH IS MSG TEXT LENGTH PLUS FOUR I
CONTROL CHARACTERS) J

QH X X X TERMINAL SYMBOLIC ERROR OUTPUT

i
3 DESIGNATION UNKNOWN TO IMSNS

(LOGICAL TERMINALS OR TRAlJ CODE)

t:::1
RX X X 3 VIOLATED REPLACE RULE

0
~
H

UC 1 CHECKPOINT" TAKEN

UK 1 RESTART"

t;-t US 1 STOP'

" H
til
r+
PI

UX 1 CHECKPOINT AND STOP'

VI X X X X 3 INVALID LENGTH FOR VARIABLE LENGTH SEGMENT

til
r+

r+

PI
~

r+
en

~
en

n
0
OJ

Xl X X X 4 1/0 ERROR WRITING SPA

X2 X X X 3
1ST INSERT TO TRAN CODE PCB THAT IS CONVERSATIONAL.
IS NOT AN SPA

X3 X X X 3 INVALID SPA

X4 X X X 3
INSERT TO A TRArJ CODE PCB THAT IS NOT
CONVERSATIONAL AND THE SEGMENT IS AN SPA

n CD X5 X X X J INSERT OF MULTIPLE SPAs TO TRAN CODE PCB

0 en X6 X X X 3 INVALID TRAN CODE NAME INSERTED INTO SPA

OJ
({) 10

X7 X X X 3
LENGTH OF SPA IS INCORRECT (USER MODIFIED
FIRST SIX BYTES)

Ul ~
~.

X8 X X X 4
ERROR ATTEMPTING TO OUEUE AN SPA ON A
TRAN CODE PCB

10
~

n
~

X9 X X X 3
INCOMPATIBLE CONVERSATIONAL PROGRAM
CALL PATH

f-J.
n ~

• XA. X X X
3

ATTEMPT TO CONT. PROC. CONV. BY PASSING SPA VIA
PGM-TO-PGM SW. AFTER ANSWERING TERMINAL

~ CD
HI

XB X X X
3

PGM PASSED SPA TO OTHER PGM
BUT TRYING TO RESPOND

~
ro

CD
t1

XC X X X
3

PGM INSERTED MSG WITH Zl FLD BITS
SET RESERVED FOR SYSTEM USE

.....,
CD

CD
='

XD
X 1

IMS IS TERMINATING. FURTHER DUI CALLS MUST NOT BE
X ISSUED. NO MESSAGE RETURNED.

H
ct>

n
ro XE X X X 3 TRIED TO ISRT SPA TO EXPRESS PCB

=' n
ct>
rn

XF X X ALTERNATE PCB REFERENCED IN ISRT CALL FOR SPA HAD
3 DESTINATION SET TO A LOGICAL TERMINAL. BUT WAS NOT

DEFINED AS ALTRESP=YES

XG X X CURRENT CONVERSATION REOUIRES FIXED-LENGTH SPAS.
3 ATTEMPT WAS MADE TO INSERT SPA TO TRANSACTION

WITH A DIFFERENT OR NON-FIXED LENGTH SPA.

> M X X X X X X X X X X X X X X X GOOD. NO STATUS CODE RETURNED. PROCEED.
~ r>1) mdlcates blanks

w
'Utliity Clllltlol F.lCillty SI.nus Codes

•

c.:=

The status codes that appear in tabular form in Appendix A are
described in full detail in this section.

AA

AB

AC

AD

Errol:' in call.

~KQ1~~1iQn: The change call was ignored because the
response alternate PCB specified a transaction code
destination. Response alternate PCBs can only reference a
logical te~minal destination.

~£liQn: Correct the application program.

Error in call.

~!Q!~natiQn: On a data base or message call, the segment
I/O area is required but was not specified in the call.

!£liQnl Correct program.

Errol:' in call.

~K~!~~i1Qn: SSA(s) contains an error in hierarchical
sequence.

Possible causes:

1. No segment name equal to that specified in SSA was found
within the scope of this PCB.

2. The level at which this 5SA appears is out of sequence
with tha t specified by the PCB.

3. Two segments of the same level a~e specified in the same
call.

U. The statistics function that was specified or a STAT
call was not a defined function.

!£ibQn: Correct the program.

Error in call.

~!2!~nsliQn: An invalid function parameter was supplied.

Possible causes:

1. A GU or GN vas reques,ted for a terminal PCB other than
the I/O PCB.

2. An invalid function string exists.

3. An invalid request type was made for a TP PCB.

4. A call has been issued to the message queues with a DB
PCB.

!£11Qn: Correct program.

DL/I Status Codes B.1

AH

AI

Error in call.

~K~1~nati2n: No 55A(s) was specified in the call. The call
required at least one 5SA (or RSA if GSA! being use~, and
none was specified.

!£!iQn: Correct the program by specifying SSA (or RSA) in
call.

I/O, system, or user error

~!~!~~!iQn: Data management open error.

possible causes:

1. An error exists in the DD statements.

2. The data set was opened for something other than load
mode, but it is not loaded.

3. The buffer is too small to hold a record that vas read
at open time. See the IMS/VS ~§tem PrQg~!!i~g
]gf~£~n£~ Manual for specification of the minimum buffer'
pool size.

4. nD statements for logically related data bases not
supplied.

5. For an OSAM data set, the DSORG field of the OSA! DCB,
DSCB, or JPCB does not specify PS or DA.

6. For, an old OSAM data set, the BUFL or BLKSIZE field in
the DS CB is zero.

1. The data set is being opened for load, and the processing
option for one or more segments is other than L or LS.

8. The allocation of the OSAM data set is invalid; the
allocation is probably (1,,1) rather than (1,1) and this
causes the DSORG to be po.

9. The processing option is L, the OSAM data set is old,
and the DSCB LRECL and/or BLKSIZE does not match the
DBD LRECL and/or BLKSIZE.

10. Incorrect or missing information prevented computation
of block size or the determination of the logical record
length.

11. A catalog vas not available for accessing a VSA! data
base that was requested.

12. as could not perform on OPEN, but the I/O request is
valid. Information is either missing, or data definition
information is incorrect.

Action: Check the DO statements: ensure that the ddname
is-the same 'as the name specified on the DATASET statement
of the DBD. The segment name area in, the PCB has the ddname
of the da ta set which could not be opened'.

B.2 IMS/VS Application programming Reference Manual

•

.;

AJ

c

..

AK

c.

At

Error in call.

~!E!~natiQ~: The SSA qualification format vas invalid.

i? ossible ca uses:

1. Invalid command codes were used.

2. Invalid relational operators were used.

3. A right parenthesis or Boolean connector vas missing.

4. More than eight Boolean members w~re specified.

5. The OLET call has multiple SSAs or qualified SSAs.

6. The "FEPL call has qualified SS As.

7. The ISRT call has the last SSA qualified •

8. A path insert call into an existing data base involves
a logical child segment.

9. The Record Search Argument (RS A) para mete r is invalid.

A£iiQ~: Correct the program.

Error in call.

~!~!~~iiQn: An invalid field name was supplied in the
call.

Possible ca uses:

1. Unable to find the specified field name.

2. When accessing a logical child from the logical parent
path, the field specified has been defined for the
logica~ child segment and at least partially inCludes
the portion of the logical child that contains the
concatenated key of the logical parent.

!£iiQn: Correct program.

Error in call.

~!~!~natiQn: The call is using a terminal PCB in a OL/!
program.

!£1ion: Correct program.

OL/1 status Codes B.3

AM

AD

lQ

AT

Error in call.

~!~~~~~iQn: The call function was not compatible with the
processing option, segment sensitivity, or transaction-code
definition.

!Qi1Qn: Correct program, PSB, or system definition.

Possible causes:

1. The D command code was used for a path retrieval call
without path sensitivity.

2. The processing option of L and call function is not
insert.

3. A DLET, REPL, or ISRT call was made without corresponding
segment sensitivity.

U. A DLET, REPL, or ISRT call was issued by a program while
a transaction defined as inquiry was being processed.

A GET call was attempted for a segment with KEY
sensitivity. Correc~ the error by specifying DATA
sensitivity.

5. This status code occurs for a checkpoint (not restart)
call if a GSAM/VSAM data set is opened for output.

6. An invalid request was included in a GSAM call.

IIO error

~!E!~BA1i2n: There is a BSAM, GSAK, ISAM, VSAK, or an OS!M
physical I/O error. When issued from GSAM, this status code
means that the error occurred when: (1) a da ta set was
accessed, or (2) the CLOSE SYNAD routine was entered. The
error occurred when the last block of records was written
prior to closing of the data set.

!Q1iQ~: Determine whether the error occurred during input
or output, and correct the problem.

Read TID error

]!!E.!s!lS!i2n: The message chain cannot be followed; a minimum
of one message is lost.

!Q1iQB: If it is imperative to recover any messages that
are lost, perform an emergency restart with the BLDQ option.

I/O error

B!E.!~!lSi1Qn: There is a read I/O error. A.message segment
h as been lost, but the m_e!;_~~ge_<::ll.ain is_still intact.

Error in call in a VS system.

~!E!~natiQn: The length of the user's I/O area data ,is
greater than the area reserved for it in the control region.
The length of the area-reserved was determined by the AeB
utility program, DFSUACBO, and printed as part of its output.

!Qi1Qn: Correct the PSB or the program in error.

B.q 'IMS/VS Application Programming Reference Manual

AU

c.
AY

AZ

A1

A2

c

Error in call in a vs system.

~!El~Mti.Q!l: The total length of the user's SSAs is greater
than the area reserved for them in the control region. The
length of the area reserved was determined by the ACB utility
program, DFSUACB0, and printed as part of its output.

!£i!Qu: Correct the PSB or the program in error.

Error in call.

~!21~~iiQn: Insert call ignored because the logical
terminal referenced by the response alternate PCB currently
has more than one physical terminal assigned to it for input
purposes.

~£i1.Qn: Ask the master terminal operator to determine (use
/DISPLAY ASSIGNMENT LTERM X) which physical terminals (2 or
more) refer to this logical terminal. Use the /ASSIGN
command to correct the problem.

Error in call.

~!~l~~!iQn: This status code is used to prevent
asynchronous conditions involving the MPP, SPA content, and
terminal. Possible causes for this status code are:

1. The conversational program inserted the SPA with a PURG
call.

2. The TP-PCB destination is a conversational 5MB; and
there is no way to determine if the SPA was inserted to
this PCB.

3. The TP-PCB destination is a logical terminal, and the
TP-PC8 is the IIO PCB or a response alternate PCB.

4. PURG is the only parameter (no PCB was specified), and
, 'status is returned; no action is taken if conditions
1, 2, or 3 (above) exist.

A£tiQn: Correct the application program and rerun.

Error in call.

~!2ls!lgiiQn: The CHNG call was attempted with an
eight-character logical terminal name which was unknown to
the system.

~£i~Qn: Correct program.

Error in call.

~!E!~natiQn: The CHNG call was attempted with an invalid
PCB. It was either not an alternate PCB, vas not defined
as modifiable, or had a message in process but incomplete.

~£i1.Qn: Correct program.

DL,II Status Codes 8.5

A3

A4

AS

A6

A7

AS

A9

Error in call.

~!E!~nat!Qn: An INSERT or PURGE call was attempted to a
modifiable al ternate PCB which had no destination set.

!£1!Qn: Issue a CHNG call to set the PCB destination, and
reissue the INSERT or PURGE call.

Security violation

R!E!~natiQn: The terminal entering the current transaction
did not have the security to allow a message to the named
5MB.

!£1i211: User determined.

Error in call.

g!~!~natiQn: An invalid call list was supplied. A fourth
parameter (MOD name) was supplied, but the fu nction vas not
PURG or ISRT for the first segment of an output message.

Action: Correct the ISRT or PURG call and retry the
applIcation program.

Error in call.

~~2!~~1!Qn: Insert call ignored because output segment
size exceeded specified limit.

!£!i211: Correct the application program.

'Error in call.

~!g!~ng1!Qn: Insert call ignored because number of output
message segments inserte~ exceeded specified limit by one.
If another attempt is made to insert too many segments before
the program issues another GU, the program is abended.

!£1i211: Correct the application program.

Error in call.

~~E!sna tiQ1!: Insert call ignored because an insert call to
a response alternate PCS must not follow an insert call to
the I/O PCB, or vice versa.

!£1i211: Correct the application program.

Error in call.

~!E!~1iQ11: Insert call ignored because it 'referenced a
response alternate PCB that requires (SAMETRM=YES) the source
physical terminal to receive the output response.

,- 'This "status--code --can -also occur if the input terminal is in
response mod~ and the response alternate PCB is not
associated with the input terminal.

!£1iQn: Determine whether the application program is in
error, the output logical terminal has been erroneously
reassigned (/ASSIGN command), or if SAKETRK=YES should not
have been specified.

B.6 IMS/VS Application Programming Reference Manual

I~"
I

DA

DJ

DX

11

GA

GB

GE

Error in call.

~!E!~~tiQn: Segment key field has been changed.

Error in call.

~!E!snatiQn: No previous successful GET HOLD call.

!£~1Q~: Check and correct.

Error in call.

E!£!~~liQn: Violated delete rule. Review the delete rule
in the "Data Base Design Consideration" cha pter of the 111~LVS
~Y~ig!LA£Eli£sti2n Design §ui~~.

!£li2n: Correct program.

Call is completed

~!B!a~tiQn: A hierarchical boundary into a higher level
was crossed (see the discussion on hierarchical pointers in
the "Data Base Design Considerations" chapter of the 11!§L!§
~Y~ig!LA£E!!£Al!Qn ~~sign §Yi~~), or the final call in a
series of STAT calls was issued for VSAM buffer subpool
statistics. This status code is returned on unqualified
calls only.

!£~iQn: User determined.

Call is not completed.

~!~!~~tiQn: An attempt was made to satisfy a GH call and
the end of the da ta base was encountered. (If this situation
occurs on a·GU or ISRT call, a GE status code is returned.)
This status code is also returned when a GSAK data set has
been closed.

!cti2n: User determined.

Call is not completed.

~!Ela~l!Qn: This status code is returned when: (1) an
attempt is made to satisfy a GU or GN call but a segment
cannot be found tha t satisfies the qualification, (2) an
attempt is made to position for an ISRT call but one of the
parents of the segment to be inserted cannot be found, (3)
a STAT call is issued for ISAK/OSAK buffer pool statistics
when the buffer pool does not exist, (4) a STAT call is
issued for VSAM buffer subpool statistics when the subpools
do not exist, and (5) a statistics function is specified on
a STAT call for 1SAM/OSA8 buffer pool statistics.

!£l!Q~: User determined.

DL/I Status Codes B.7

GK

GL

GP

II

Call is completed.

~~B1~ns1!Qn: Different segment type at same level returned.
This status code is returned on unqualified calls only.

!£i!Qn: User determined.

call is not completed.

~~E.!~!lSi!Q!l: Log code is not a valid user code. (Only
codes X'AO' through X'EO' are reserved for users.)

!£!iQ~: Check and correct.

Error in call.

!~E.!~!lSi!Q!l: No parent for this GNP call, or the requested
segment level is not lower than the parent level.

!£!iQn: User determined.

Call is not completed.

R~~l~natiQn: The segment that the user tried to insert
already exists in the data base.

Possible Causes:

1. Segment with equal physical twin sequence field already
exists for parent

2. Segment with equal logical twin sequence already exists
for parent

3. Logical parent has logical child pointer, logical child
does not have logical twin pOinter, and segment beinq
inserted is second logical child for logical parent

4. Segment type does not have physical twin forward pointer
and segment being inserted is second segment of this
type for parent or is second HDAM root for one anchor
point

5. The segment being inserted is in an inverted structure;
that is, the immediate parent of this segment in the
logical structure is actually its physical child in the
physical structur e.

!£!1Qn: User determined.

B.8 IMS/VS Application programming Reference Manual

', .. /

•

IX

c.

•

LB

• LC

LD

c

Error in call.

~KE!~natiQn: Violated insert rule. Review the insert rule
in the IM2LVS 2I'§!~.IDL!E.E!ic~!i.Qn Desi9.!l ~uide.

Possi hIe Causes:

1. Insert of logical child and logical parent (insert rule
of logical parent is physical and the logical parent
does not exist)

2. Insert of logical child and logical parent (insert rule
is logical or virtual and the logical parent does not
exist) and, in the user 1/0 area, the key of the logical
parent does not match the corresponding key in the
concatenated key in the logical child.

3. Insert of logical child (insert rule of logical parent
is virtual and logical parent exists) and, in the user
110 area, t he key in the logical parent does not ma tch
the corresponding key in the concatenated key in the
logical child.

4. ISRT request after previous Open, Close or 1/0 error
status code.

5. A GSAM ISRT call was issued after a previous AI or AD
status code was returned.

!£1i.2n: Correct program.

Call is not completed.

~XE!~natiQn: The segment that the user tried to load already
exists in the data base. Other possible causes are:

1. A segment with an equal physical-twin-sequence field
already exists for the parent.

2. A segment type does not have a physical-twin-forward
pointer, and the segment being inserted is either the
second segment of this segment type for the parent or
the second HDAM root for one anchor point.

3. An application program inserted a key of X'FP' •• PP' into
a HISAM or HIDAM data base.

!£ii.2n: User determined.

Call is not completed.

~KE!~~i!Qn: Key field of segments is out of sequence.

!gii.2n: Check and correct.

Call is not completed.

RXE!~nati~: No parent has been loaded for this segment.

!giiQn: Check and correct.

DL/I status Codes B.9

LE

NE

NI

B.1~

Call is not completed.

~~E!~~11on: Sequence of sibling segments is not the same
as the sequence in the DBD.

!~tiQn: Check and correct.

Call is not completed.

~~Ql~~~!Qn: Indexing maintenance issued a DL/I call, and
the segment has not been found.

!£!i2n: User determined.

Data management open error or duplicate segment.

~!El~~tiQn: Index maintenance was unable to open an index
data base, or there was a duplicate segment in the index.

possible causes for being unable to open the index data
base:

1. Error in DD cards

2. The data set was opened for something other than load
mode, but it is not loaded.

3. Buffer too small to hold record read at open time. See
the 1~2lY2 ~yst~ RfQ~~!~!llg Ref~£~ ~~nY~l for
minimum buffers pool size.

4. nn cards for logically related data bases not supplied.

5. For an OSAM data set, the DSORG field of the·OSAM DCB,
DSCB, or JFCB does not specify PS or DA:

6. For an old OSAM data set, the BUFL or BLKSIZE field in
the DSCB is zero.

7. The data set is being opened for load and the processing
option for one or more segments is other than L or LS.

8. The allocation of the OSAM data set is invalid;
alloca tion is probabl y (1,,1) rather than (1, 1) and this
causes the DSORG to be PO •.

9. processing option is L, the OSAM data set is old, and
the DseB LRECL and/or BLKSIZE does not match the DBD
LRECL and/or BLKSIZE.

!£1!Qn: Check DD cards; ensure ddname same as name specified
on DATASET card of DBD. Segment name area in PCB has ddname
of data set which could not be opened •

. Possible---ca uses-for-ad uplicate---s egm en to-in -- the --in-dex:

1. Index segment was incorrectly deleted earlier - Index
should be rebuilt.

2. Index DBD incorrectly specities. unique key value -
secondary index only.

I~S/VS Application Programming Reference Manual

II

NO

I QC

QD

•
QE

QF

QH

RX

•
UC

I/O error

~~£l~~!~Qn: There was a BSAM, ISAM, VSAM, or OSAM physical
1/0 error during a DL/I call issued by indexing maintenance.

!£1i2n: Check and correct.

CHKP was successful; GU was not successful (no more
messages) •

~~£!~~!iQn: There are no more input messages.

~£!iQn: As appropriate.

Call is not completed.

~~£!~~!iQn: There are no more segments for this message.

~£!iQn: As appropriate •

Error in call.

E~~!~ngiiQn: A GET NEXT call was issued before a GET UNIQUE.

!£!iQn: Check and correct.

Error in call.

~~El~~tiQn: Length of segment is less than five characters.
(Allowable segment length is length of message text plus
four control characters.)

!£!i2n: Check and correct.

Error in call.

~~2!~ng!iQn: This is a terminal symbolic error -- the output
designated is unknown to IM$/VS (logical terminal or
transaction code) •

!£!i~~: Check and correct.

Error in call.

~~El~na1iQn: Violated replace rule. Review the replace
rule in the "Da ta Ba se Design Considerations" chapter of
the IMSL!~ ~21~IDL!E.l!.!.icatiQ.!!. J1.§§ign Guid.§

!£!i~n: Correct program •

Checkpoint record written to UCF Journal data set.

~~El~na!iQn: During the processing of a HD Reorganization
Reload or a user's Initial Load program under the supervision
of the Utility Control Facility (UCF), a checkpOint record
was written to the UCF Journal Data set. This status code
is returned to indicate that the last ISRT call was correct
and the User Initial Load program may continue or perform
his checkpointing procedure before continuing.

DL/I Status Codes B.' ,

UR

us

UX

V1

X1

X2

B.12

The user's Initial Load program is being restarted under
the UCF.

~!E.!.s!lSi!Qn: Duri.ng the processing of a user's Initial Load
program under the UCF, a termination had occurred. The job
was resubmitted with a Restart request.

!£tiQu: The user's Initial Load program must get itself
back in step with Data Base Loading.' . Examination of the
User I/O area or' PCB key-feedback area can be used.

The user's Initial Load program is preparing to stop
proce ssing.

~!E.!~n2i!Qn: During the processing of a HD Reorganization
Reload or a user's Initial Load program under the supervision
of the Utility Control Facility (UCF), the operator replied
to the WTOR from UCF and r,equested the current function to
terminate, The last ISRT call was processed.

Action: The user's Initial Load program should checkpoint
its-data sets and return with a non-zero value in Register
15.

A checkpoint record was written and processing stopped.

~!E.!.~~i!Qn: This is a combination of UC and US status
codes; see the descriptions of those codes for further
explanation.

!£ti~u: Refer to UC and US status codes.

Error in call.

~!E!~nati2n: An invalid length was supplied for a
variable-length segment. The LL field of the variable-length
segment is either too large or too small. The length of
the segment must be equal to or less than the maximum length
specified in the DBD. The length must be long enough to
include the entire reference field; if the segment is a
logical child, it must include the entire concatenated key
of the logical parent and all sequence fields for the paired
segment.

This status code is also returned when an invalid record
length is specified in a GSA~ call.

!cti2n: Correct the program.

System error.

~!E.!~n~i!Qn~ An I/O error occurred while IMS/VS was reading
or writing the SPA.

-------!cti.Qru· ---Terminate the- -conversati-on.··

Error in call.

~!E.!~ngtiQnl The first insert to a transaction code PCB
that is conversational is not a SPA.

!£ii2ru Insert the SPA; then reinsert the data segment.

I~S/VS Application programming Reference Manual

........ _ ,/ ..

•

•

('~
'-.. .. _ '

X3

c.
X4

XS
it

X6

X1

X8

X9

•
XA

Error in call.

g~E1~~!1Qnl Invalid SPA (user modified the first six
bytes) •

!£i1Qnl Correct ,the program, and restore the original bytes.

Error in call.

~~~~~ll~t!Qlll An insert was made to a transaction code PCB 
that is not conversational and the segment is a SPA. 

!£ii2nl Do not pass the SPA to the transaction code. Send 
only data segments. 

Error in call. 

~~E1E~ti2n~ Multiple SPAs were inserted to a transaction 
code PCB. 

!£tiQ!l Only one SPA is allowed per message. 
program. 

Correct the 

Error in call. 

~~El~~tiQn: An invalid transaction code name was inserted 
into SPA. 

!£tiQ~ Correct the program to set the proper transaction 
code na me. 

Error in call. 

~!E!~~tiQnl The length of the SPA is incorrect 
(user -modified first six bytes). 

!£i12nl Correct the program. 

System error 

~!E!~n~t!Qnl Error attempting to queue an SPA on a 
transaction cod~ PCB. 

!£i!Qnl Terminate the conversation. 

Error in call. 

!'l!E!.~MtiQ!!l Incompa tible conversational program call path. 

!£tiQ~ Design error. Report this to your system 
programme r • 

Error in call. 

~!E!E~tiQn: An attempt has been made to continue processing 
the conversation by passing the SPA to another program 
through a program-to-program message switch after already 
responding to the terminal. 

!£tiQn: If a response has been generated, the SPA should 
be passed back to the I/O PCB. Review the rules for 
conversational programs in this manual and correct the 
program. 

DL/I Status Codes B.13 



IB 

xc 

XD 

XE 

XF 

XG 

bb 

Error in call. 

~!Bl~~tiQ~: The program has passed the SPA on to another 
program for processing but is trying to respond to the 
terminal. 

!£1iQn: No response is allowed by a program which has passed 
control of the program through a program-to-program message 
switch. Review the rules for con~ersational programs in 
this ~anual. 

Error in call. 

~!Ql~ng1iQn: Program has inserted a message which has some 
Z1 field bits set which are reserved for IMS/VS use. 

!£1iQn: Correct the program to prevent it from setting 
those bits. 

IMS/VS is terminating by a CHECKPOINT FREEZE or DUMPQ. 

~!~~ngliQn: This code is returned only from a CHKP call 
issued by a batch-message application program. If the 
application accesses the message queues, no message is 
returned. 

!£1iQn: Any subsequent DL/I call will result in an abend. 
The application should terminate. 

Error in call. 

~!21~ng1iQn: An attempt has been made to insert a SPA to 
an alternate PCB which was generated with the EXPRESS=YES 
option. 

Action: Regenerate th~ PSB and remove the EIPRESS=YES option 
from-the PCB or define another PCB (whose mode is not 
express) to be used in the insert call. 

Error in call. 

~!~1~ng1iQn: Insert call for SPA ignored because the 
referenced alternate PCB had its destination set to a logical 
terminal but was not defined as ALTRESP=YES during PSB 
generation. 

Action: Correct the application program or change the PSB 
generation for that alternate PCB to specify ALTRESP=YES. 

Error in call. 

~!~1~ng1iQn: Insert call ignored because the current 
conversation requires fixed length SPAs and the insert vas 
to a transaction with a different or Don-fixed length SPA • 

. ·-!£ij·~n:- --Correct --th-e· pr()cir-am---or---r-rfslvs System Definition. 

Call completed. 

~~l~natiQn: Your call was completed! 

!£1iQn: Proceed! 

B.14 , I8S/VS Application programming Reference Manual 



(~ 

• 

c 

abend, application program 
ABEND macro statement 4.37 
during output using PURG 4.14 
TP call 4.9 

accessing multiple data bases 2.46-2.47 
description of 2.46-2.47 
purpose of 2.46-2.47 

alternate PCB, data communication 4.4-4.5 
defined with lLTRESP=YES 4.5,4.9 
defined with EXPRESS=YES 4.4-4.9 
defining 4.4-4.5 
description 4.4 
message formats, types of 4.15 
restriction with PURG call 4.14 

INS COBOL, conventions and uses of 
batch program structure 2.38-2.40 
building output messages 

requirements 4.11 
using ISRT call 4.11-4.12 

call format for data communication 
calls 4.8 

data base load example 6.1-6.2 
listing 6.2-6.4 

entry statement, data communication 4.7 
message processing 6.19 

input and output formats 6.19 
listing 6.20-6.25 

message processing program 
structure 4.32-4.34 

PCB-mask, data communication 
description 4.5-4.6 
linkage section 4.6 

retrieving segments of an input 
message 4.9 , 

call formats using GU and G~ 4.10 
saviBg information in scratchpad 

areas 5.3 
input message format using ISRT 

call 5.3 
system service call formats 

checkpoint (CHKP), basic 2.49 
checkpoint (CHKP), symbolic 2.50 
dequeue (DEQ) 2.53 
log (LOG) 2.54 
restart (XRST) 2.51-2.52 
rollback (ROLL) 2.53 

terminating application programs (data 
base batch) 2.37 

application program examples 6.1 
batch processing (assembler language and 

COBOL) 6.8 
listing 6.8-6.18 

conversational (PL/I) 6.26-6.27 
description 6.26 
entries and displays at 3270 
terminals 6.26-6.27 

message format service 6.34-6.35 
PL/I optimizing compiler. 6.28-6.33 

data base dump (assembler language) 6.5 
list ing 6.5-6.7 

data base load (INS COBOL) 6.1-6.2 
listing 6.2-6.4 

message processing (INS COBOL) 6.19 
input and output formats 6.19 . 
listing 6.20-6.25 

application program, IKS/VS 
data base PCB masks, use of 2.16-2.17 
entry points to 2.14-2.15 

rules 2.14 ' 
examples 2.15-2.16 

language and compilation 2.14-2.15 
PCB mask used with' 2.19 

application progra.ming, data 
communication 4.1 

abends issued by application 
programs 4.37 

lNS COBOL message p~ocessing program 
structure 4.32-4.34 

exaaple 4.33-4.34 
assembler language message processing 

proqram structure 4.37 
data base PCBs 4.2-4.3 
device-dependent input messages 4.18 

2260-1, 2260-2, 2265-1 4.19 
2270 system components 4.19-4.20 
2972/2980 components 4.20-4.21 
2980 Kodel 1 4.20-4.21 
2980 Kodel 4 4.22-4.23 

entry statements to TP application 
programs 4.7 

ANS COBOL example 4.7 
PL/I optimizing compiler example 4.7 

input message formats 4.16-4.17 
first or only segment 4.17 
non-first segment 4.17 
preset mode segment edit 4.17-4.18 
terminal types of 4.16 

interface to IftS/VS 4.2 
logical terminal concept 4.2 
message format service (ftPS), use 
of 4.15,4.1-4.2 

output message format 4.23 
online meSSage formatting without 

ftF S 4 • 29 -4 • 3 1 
program-to-program message 

swi tching 4.32 
terminal destination . 

output 4.23-4.24 
terminal types 4.27-4.29 
text 4.26 
video-paging 4.25-4.26 
WRITE command, uses of 4.25 

PL/I optimizing compiler message 
processing proqram structure 4.35 

example 4.35-4.37 

Index I.1 



teleprocessing calls 4.8 
building output messages 4.9 
CHNG call, use of 4.9;4.15 
delimiting oritput messages being 
inserted 4.9 

grouping of message segments v ith 
PURG call 4.14 

input message segment calls 
(GU, GN) 4~9-4.11 

ISRT call, uses of 4.9,4.11-4.12 
message destination 4.9 
aessage relationships to 

segaen+s 4.8 . 
output message segment calls using 

ISRT 4. 11- 4. 13 
PURG call, uses of 4.9,4.13 
setting an output message destination 
to ~n alternate PCB 4.9 

synchronization points, uses of 4.9 
telepr9cessing PSBs 4.3 

alternate PCB 4.3-4.5 
I/O PC B 4 • 3 -4 • 4 

'l'P~PCB mask 4.5 
COBOL example 4.6 
f1elds required for 4.5-4.6 
layout 4.5-4.6 
PL/I example 4.1 

~pplication programming and data base 
adainistratiori, relationships 
between 1.2-1.3 

a,plication programming, environment 
for 1.1 

application programming for data 
communications 1.5 

application programming testing aids 
Data ~anguage/I (DLIT) test program 

(DFSDDLTO) 1. 1 . 
control statements 1.3 
DATA statement 1.1 
JCL requirements 1.2-1.3 

message processing region 
simulation 7.19 

description of 7.19 
examples (COBOL) 1.21-7.22 
executing DL/I data base calls 
for 1.20 

moving a message processing program 
to a message processing 
region 7.20 

PSB generation for 7.20 
asse.mbler language, conventions and uses of 

batch processing program 6.8 
example (listing) 6.8-6.18 

batc_ program structure 2.43 
------------- -------cal-ls--to-DL~I ,--data-base- -batch---2-:-2 r-

d'ata base dUIlP, example of 6.5-6.1 
ent.ry point to data base batch 

application program 2.15 
GSA" call formats 2.69-2.70 

system service call formats 
checkpoint (CHKP), basic 2.49 
checkpoint (CHKP), symbolic 2.50 
dequeue (DEQ) 2.53 
get SCD (GSCD) 2. 55 
log (LOG) 2.54 
rollback (ROLL) 2.53 
statistics (STAT) 2.56 

terminatin~ application programs (data 
base batch) 2.37 

basic edit, 1MS/VS 4.17-4.18 
basic functions of a user 
installation 1.1 

batch programming, data base 2.1 
accessing a data base 2.10 
accessing multiple data 
bases 2.46-2.47 

applic~tion and logical data 
structures, designing and 
defining 2.8-2.10 

checking out online message programs 
in batch regions 

description of 2.66 
examples (COBOL, PL/1) 2.61 

data base organization 2.2 
data elements, relationship~ 
of 2.3-2.4 

levels 2.4 
path, definition of 2.5-2.7 
record, definition of 2.6-2.7 
root segment, definition of 2.5-2.7 
segment types 2.5 
size and extent of data 
structures 2.7 

traversal of a structure 2.4 
data structures 

application 2.2-2.3 
loqical 2.2-2.3 
logical data bases 2.2-2.3 
physical data bases 2.2-2.3 

designing logical data 
structures 2.1,2.7 

DL/I calls 
description of 2.20 
examples of (assembler language, 

COBOL, and PL/I) , 2.20-2.22 
functions 2.22-2.23 
segment search arguments (SSAs) used 

in 2.24,2.27 
DL/I processing functions 2.28 

"delete and replace calls 2.33-2.35 
______________ g~.t ___ calls--2 .29~-2.31----- ---- -- --------

insert calls 2.32-2.33 
DL/I status codes 

description of 2.43 
for get calls 2.44 
for exceptional conditions 2.44 

entry points to application 
programs 2.14-2.15 

examples of 2.15-2.16 
PL/I transaction, initial invocation 
of 2.15- 2.16 

1.2 IMS/VS Application Programming Refer,ence Manual 

c 



• 

examples, batch-program structure 
ANS COBOL 2.38-2.40 
assembler language 2.43 
PL/I optimizing compiler 2.41-2.43 

generalized sequential access method 
(GSAM) 

buffer management 2.73 
calls 2.69 
checkpoint/restart 2.73 
data base accessing 2.68-2.69 
functions of 2.68 
JCL 2.74-2.75 
record formats 2.70 
restrictions 2.67 
uses 2.67 

interface to application programs, 
IMS/VS 2.11-2.13 

program communication blocks 
(PCBs) 2.11-2. 12 

DL/I 2.11-2.12 
interfacing with I~S/VS 2.1 
languages used and compilation 2.14 
loading a data base, initially 2.10 
logical data bases, designing and 
defining 2.8 

PCB elements 2.18-2.19 
data base name 2.18 
DL/I processing options 2.18 
DL/I reserved area 2.19 
DL/I status codes 2.18 
key-feedback area 2.19 
length of key-feedback area 2.19 
PCB name 2.18 
segment-hierarchy-Ievel 
indicator 2. 18 

segment-name-feedback area 2.19 
sensitive segments, number of 2.19 

PCB masks 2.16,2.19 
description of 2.16 
examples (COBOL, PL/I) 2. 17 

physical data bases, designing and 
defining 2.8 

position in a data base 2.44-2.45 
processing with DL/I I/O functions 

description of 2.60-2.61 
data base creation 2.61 
data base deletions 2.65 
data base insertions 2.66 
data base retrievals 2.64 
data base updates 2.65 

segments, format of 2.35 
fixed-length 2.35-2.36 
variable-length 2.36 

system service calls 
CHKP 2.47-2.48 
DEQ 2.47,2.52 
GSCD 2.47-2.48,2.55 
LOG 2.47,2.54-2.55 
ROLL 2.47,2.53 
STAT 2.47,2.56 
XRST 2.Q7,2.51 

terminating application programs 2.37 

calls to DL/I 2.20 
description of 2.20 
examples of I/O' processing 
calls 2.20-2.21 

assembler. language 2.21 
COBOL 2.20 
PL/I 2.21 

examples of I/O work area 
COBOL 2.23 
PL/I 2.24 

segment search arguments (SSAs) 2.24 
command codes for 2.27 
concept and function of 2.24 
qualification of 2.26 
structure 2.25 
characteristics of 2.27 

checking out online message programs in 
a batch region 2.66 

C!PAT option, uses of 2.66 
examples (COBOL, PL/I) 2.67 

checkpoint call (§ee caKP call) 
CHKP call (data base) 2.47-2.48 

basic, examples of 2.49 
symbolic, examples of 2.50 

CaNG call (data communication) 4.9,4. 15 
COBOL, conventions and uses of 

batch processing program example 6.8 
calls to DL/I, data base batch 

programming 
description of 2.20 
checking out online message programs 

in batch regions 2.67 
I/O processing call 2.20-2.22 

entry point to data base batch 
application programs 2.15 

GSA! call formats 2.69-2.70 
PCB mask, data base 

application programming 
requirements 2.16 

linkage section 2.17-2.19 
system service call format 

statistics (STAT) 2.56 
conversational processing 

description 5~' 
input message format 5.2 

example of first message segment 
entered at terminal 5.2 

example of first CALL statement, 
PL/I 5.2 

output message format 5.3 
response to originating 
terminal 5.3 

passing conversational control to 
another conversational progra. 5.3 

by program in control 5.3 
for program-to-program switch 5.4 
size of scratchpad area (SPA), 
changing 5.4 

Index I.3 



rules for writing conversational programs 
fixed-length SPAs, defining 5.5 
message response 5.6 
modifying first six bytes of SPA, 
restriction against 5.5 

proqram-to-proqram switches 5.5 
returning the SPA to I8S/VS 5.5 
SPA transaction code, changing 5.5 

saving information in SPAs 5.3 
ISRT call, use of 5.3 
example of ISRT call, ANS COBOL 5.3 
example of ISRT call, PL/I 5.3 
returning the SPA to I85/VS, using 

ISRT call for 5.3 
scheduling application programs for 
conversational transactions 5.1 

GU and GN calls used for 5.1 
scratchpad area (SPA,. format 5.1-5.2 
terminating a conversation, methods 
of 5." 

by conversational program 5.4 
by I8S/VS 5.5 
by master terminal operator 5.5 
by terminal operator 5.4-5.5 

converting existing programs for use by 
I8S/VS 1.5 

converting from OS/VS file design and 
access to IKS/VS 1.3-1.4 

advantages 1.4 

data base creation 2.61 
HIDA8, HISAK, and 8SA! 2.61 
insert function, use of 2.61 
segment search arguments for 2.62-2.64 

data base deletions 2.65 
examples (PL/I) 2.66 

data base dump 6.5 
example (assembler language) 6.5-6.7 

data base insertions 2.66,2.61 
data base load 

description 6.1 
example (lNS COBOL) 6.1-6.2 
initial 2.10 

data base organization, IKS/VS batch 
application data structure 2.2-2.3 
logical data structure 2.2-2.3 
physical and logical data base 
structures 2.2-2.3 

data base retrievals 2.64-2.65 
data base structure, I8S/VS 2.35 

fixed-length segments 2.35-2.36 
format of 2.35-2.36 

variable-length segments 2.36 _____________ _ 
-------------- ---------format-of- -2~36-- ------------------

segment retrieval 2.36 
data base updates 2.65 

examples (PL/I) 2.65 

data bases, I8S/VS 
accessing 2.10 
application and logical data 
structures 2.8 

defining 2.9- 2. 10 
designing 2.9 

loading 2.10 
logical 2.8 

Data Language/I (DL/I) test program: 
DFSDDLTO 7.1-

DATA statement of DFSDDLTO 7.7 
control statements 7.3 

CALL 7.5-7.7 
CO~PARE for PCB comparisons 7.9-7.10 
CO~PARE for user I/O area 
comparisons 7.11-7.12 

C088ENTS 7.5 
DATA 7.7-7.8 

parameter length, LOG 
calls 7.8-7.9 

parameter length, SNAP calls 7.8 
OPTION 7.12 
STATUS 7.3-7.4 
sample input 7.18 
execution in different types of 
regions 7. 16 

format of display of DL/1 
blocks 7.16 

general description 7.1 
hints on usage 7.17 
interfaces 7. 1 

JCL requirements 7.2-7.3 
example 7.18 

other formats 7.15 
CALL 7.15 
PUNCH 7.13 
5YS1I2 7.14 

data set, definition of 1.4 
DEQb call 2.52,2.47 

examples of 2.53 
dequeue call (§~~ DEQb call) 
design and definition of IKS/V5 data 

bases 2.8 
accessinqa data base 2.10 
application and logical data 
structures 2.8 

defining 2.9-2.10 
designinq 2.~ 

loading a data base, initially 2.10 
logical data bases 2.8 
physical data bases 2.8 

DLET call (data base) 2.33-2.35 
DL/I call functions - 2.22-2.23 

____ DL/I--processing-functions ---2.28 ---
delete calls 2.33-2.34 

issued against logical data 
bases 2.35 

rules for using 2.35 
qet calls 2.29-2.30 

rules for using 2.31 
get hold calls 2.31-2.32 
insert calls 2.32 

loading a data base with 2.33 
rules for using 2.32 
updating data bases with 2.33 

1.41MB/VB Application Programming Reference Manual 

• 

\,--_/ 

- ----------.-

c 



c, 

.. 

r 

replace calls 2.33-2.34 
rules for using 2.35 

status codes for 2.43-2.44 
(§g~ glsQ DL/I status codes) 

DL/I status codes 
description of 2.43-2.44,A.l 
detailed description of B.l 

AA B.1 
AB B.1 
AC B.l 
AD B.1 
AH B.2 
AI B.2 
AJ B.3 
AK B.3 
AL B.3 
AM B.4 
AO B.4 
AQ B.4 
AR B.4 
AT B.4 
AU B.5 
AY B.5 
AZ B.5 
A1 B.5 
A2 B.5 
A3 B.6 
A4 B.6 
AS B.6 
A6 B.6 
A7 B.6 
AB B.6 
A9 B.6 
DA B.7 
DJ B.7 
DX B.7 
GA B.7 
GB 'B.7 
GE B.7 
GK B.B 
GL B.B 
GP B.B 
II B.B 
IX B.9 
LB B.9 
LC B.9 
LD B.9 
LE B.l0 
HE B.l0 
NI B.l0 
NO B.ll 
QC B.11 
QD B.11 
OE B.11 
OF B.11 
OH B.l1 
RX B.l1 
UC B.l1 
UR B.12 
US B.12 
UX B.12 
Vl B.12 
Xl B.12 
12 B.12 
X3 B.13 

X4 B. 13 
IS B.13 
X6 B.13 
X7 B.13 
X8 B.13 
X9 B.13 
XA B.13 
XB B.14 
XC B.14 
XD B.14 
XE B.14 
IF B.14 
XG B.14 
bb B.14 

quick-reference table A.1-A.3 

field, key 
description of 2.5 
uses of 2.5 

generalized sequential access method 
(§~§ GSA!!) 

get calls (data base) 2.29 
GHN 2.29,2.31 
GHNP 2.30- 2.31 
GHU 2.29,2.31 
GN 2.29-2.30 
GNP 2.30 
GO 2.29- 2.30 

get calls (data communication) 
GN 4.9 
GU 4.9 

get SCD call (§g~ GSCD call) 
GSAM 

accessing data bases 2~68 
calls used for 2.68-2.69 

buffer management with 2.73 
calls 2.69 

examples (assembler, COBOL, 
FL/I) 2.69-2.70 

checkpoint/restart with ,2.73-2.74 
checkpoint restrictions 2.74 
JCL guidelines 2.74-2.75 

data base restrictions 2.67 
description of 2.67 
functions 2.68 
record formats with 2.70 

data set I/O area 2.71 
fixed-length 2.70 
undefined-length 2.71 
user area 2.71 
variable-length 2.70 

record search argument (RSA), uses 
of 2.71-2.72 

status codes 2.70 
GSCD call 2.55,2.48 

examples of 2.5'5 
guide to using IKS/VS system 
publications iv-v 

Index 1.5 



illustrations (.§~ Preface) 
implementing an IMS/VS 
application 1.6-1.7 

IMS/VS interface to application 
programs 

DL/I 2.11-2.12 
program communication blocks 

(PCBs) 2.11-2.12 
program elements required 
for 2.11-2.12 

IMS/VS system publications, guide to 
using iv-v 

I/O PCB 4.4 
ISRT call (data base) 2.32-2.33~2.30 
ISRT call (data communication) 4.9, 
4.11~4.12 

LOGb call 2.54, 2.47 
examples of 2.54 

logical data bases 
defining 2.8-2.10 
description of 2.8 
designing 2.8-2.10 
message format service (MFS) 

example with PL/I 6.34-6.35 

message processing region simulation 7.19 
description of 7.19 
examples of (COBOL) 7.21-7.22 

entry point and call statement 7.21 
message output 7.22-7.24 
testing a message program in a batch 

processing region 1.21 
executing DL/I data base calls for 7.20 
moving a message processing program 
to a message processing region 7.20 

PSB generation for 7.20 
multiple application programs, 

requirements of 1.2 
multiple positioning 3.10-3.11 

effects on DL/I call functions 
DLET and REPL calls 3.12 
GN and GNP calls 3.12 
GU and ISRT calls 3.12 

examples of call sequences 
for 3.12-3.13 

maintaining position in a data 
base 3.10 

mixing calls with and without SSAs and 
multiple positioning 3.14 

example 3.15 
restrictions ___ 3 __ 14~3 .-15 --

--------- --- -----paralfel-i)i--ocessing of dependent 
segment types 2.14 

single positioning versus multiple 
positioning 3.10-3.12,3.15-3.16 

examples 3.10-3.12 
uses of 3.13-3.14 

organization of data, IMS/VS i.3 
design of data structures, 
limits on 2.7 

rules 2.7 
hierarchical data structures 2.3 

relationships of data 
elements 2.3-2.4 

hierarchical interrelationships 2.5 
data base record 2.6 
path 2.5 
root segments 2.5 

levels 2.4 
segment 

fields 2.5 
segment occurrence 2.5 
segment type 2.5 

traversal of hierarchical 
structures 2.4 

path calls 2.27,3.5 
path, hierarchical 

definition of 2.5 
example 2.4 

PCB for a logical data structure 2.18 
DL/I areas 2.18-2.19 
key-feedback area 2.18-2.19 

concatenated keys 2.19-2.20 
length of 2.19 

name of data base 2.18 
name of PCB 2.18 
segment-name feedback area 2.19 
sensitive segments, number of 2.19 

PCB mask, data base 
description 2.16-2.17 
COBOL example 2.17-2.19 
PL/I optimizing compiler 

example 2.17-2.19 
PCB mask, TP 

COBOL example 4.6 
fields required for 4.5-4.6 
layout 4.5-4.6 
PL/I example 4.7 

physical data bases 
defining 2.8-2.10 
description of 2.8 
designing 2.8- 2. 10 

PL/I, conventions and uses of 
building output messages 

requirements 4.11 
using ISRT call 4.11 

call format for data communication 
calls ___ L!._~ _____________________ _ 

---------caTIs--to DL/I, data base batch 
description of 2.20 
I/O processing call 2.20-2.22 

checking out online message programs 
in batch regions 2.67 

conversational application program 
example 6.26-6.27 

message format service (MFS) 
statements used with 6.34-6.35 

I.6 1MS/VS Application Programming Reference Manual 

- ,-- -- --,--- --------- -------'., 



l._-

data base processing using DL/I 
input/output function 

data base deletions 2.66 
data base updates 2.65 

entry point to data base batch 
application programs 2.15-2.16 

GSAM call formats 2~69-2.70 
input message format, 
conversational 5.2 

retrieving segments of an input 
message 4.9 

call formats using GO and GN 
calls 4.10 

saving information in scratch pad 
areas 5.3 

segment search arguments (data base 
batch), specifying 2.27-2.28 

system service call formats 
change (CHNG) 4.15 
checkpoint (CHKP), basic 2.49 
checkpoint (CHKP), symbolic 2.50 
dequeue (DEQ) 2.53 
log (L OG ) 2 • 54 
purge (PORG) 4.13 
restart (XRST) 2.51-2.52 
rollback (ROLL) 2.53 
statistics (STAT) 2.56 

terminating application programs 2.37 
PL/I optimizing compiler, conventions and 

uses of 
batch program structure 2.41-2.43 
conversational application program 

using the 3270 as a calculator 6.26 
examples 6.26-6.27 

conversational processing, 
example of 6.28-6.33 

messaqe processing program 
structure 4.35-4.37 

PCB-mask, data base 
application programming 
requirements 2.16 

example 2.17-2.19 
PCB-mask, data communication 

application programming 
requirements 4.5-4.6, 

example 4.7 
position, data base 2.44 

current 2.44-2.46 
not-found 2.44-2.45 
reestablishing known position 2.45 

preface iii-vi 
PORG call (DC) 4.9,4.12-4.14 

record, data base 
definition of 2.6 
example 2.7 

REPL call (data base) 2.34-2.35 
ROLL call 2.53,2.47 

examples of 2.53 
rollback (§g~ ROLL call) 

secondary indexing , 
considerations, special 3.22 
creating a secondary data base 
structure 3.19-3.20 

definition of 3.19 
defining 3.21 
description of 3.16-3.17 
examples 3.25-3.27 
depen~ent AND, use of 3.26-3.27 
independent AND, use of . 3.25-3.26 
indexed segments and fields 

index pointer segment 3.18 
index source segment 3.18 
index target segment 3.18 

options and rules 3.21-3.22 
processing a secondary index as a 
data base 3.23 

secondary indexes versus primary 
indexes 3.17 
se~ment search arguments 3.34 

independent and dependent 1ND 
Boolean operators 3.24-3.25,3.27 

XDFLD field names in 3.24 
uses of 3.17,3.12 

segment 
d~finition of 2.5 
example 2.4 

segment search arguments (SSAs), 
data base batch programming 2.27 

characteristics 2.27 
command codes for 2.27 
concept and function of 2.24 
example (PL/I) 2.27 
qualification of 2.26 
structure of 2.25-2.26 

segment search arguments .(SS1s), 
advanced techniques for data base 
processing 3.1' , 

Boolean qualification statements used 
in 3.8 

logical operators, use with 3.8-3.9 
call function, modifying 3.4-3.5 
characteristics of 3.3-3.4 
command codes used with 3.4,3.2 

C 3.6 
D 3.5 
F 3.4 
L 3.4-3.5 
N 3.5 
P 3.7 
Q 3.5 
o 3.7 
V 3.7 

independent and dependent AND Boolean 
operators, uses of 3.24 

examples 3.25-3.27 
logical-parent sequence fields, 
effects of using 3.9-3.10 

main elements of 3.1 
Boolean qualification statements 3.1 
command codes 3.1 
segment name 3.1 

In,dex 1.7 



qualification statement, 
description of 3.1-3.2 . 

comparative value 3.2-3.3 
field name 3.2-3.3 
relational operator 3.2-3.3 

segment qualification 3.6 
setting of parentage 3.7-3.8 

structure 3.2 
command codes 3.2 
segment name 3.2 
qualification character 3.2-3.3 
qualification statement 3.2-3.3 

use of field names for concatenated 
segments 3.9-3.10 

STAT call 2.56,2.48 
examples of 2.56 

terminating an application program 2.37 
RETURN and GO BACK statements, 

use of 2.37 
with ANS COBOL 2.37 
with assembler language 2.37 
with PL/I 2.37 

testing aids (§gg Data Language/I test 
program; message processing region 
simulation) 

TP PCBs 4.3-4.4 

XRST call 2.51,2.47 
examples of 2.51-2.52 

statistics 33135 Teletypewriter (ASR) 
ISAM/OSAM buffer pool 2.56 input message length 4.16 
ISAM/OSAM data base buffer online message formatting without 

pool 2.57-2.58 MFS 4.29 
VSAM buffer subpool 2.58-2.60 output message length 4.27 

statistics call (§~ STAT call) 1050 Data Communication System 
symbolic call interface for CHKP/XRST input message length 4.16 

DL/I calls xv online message formatting 
checkpoint (CHKP) call, description without MFS 4.29 
of 2.48 output message length 4.27 

basic CHKP call, example of 2.49 2260 Display Station Models 1 and 2 
symbolic CHKP call, input message considerations 4.16-4.17 

example of 2.50 output message 
restart (XRST) call, description considerations 4.24,4.26,4.30 
of 2.51 video paging 4.25-4.26 

examples 2.51-2.52 WRITE commands 4.25 
system service~alls 2.47 2265 Display Station Model 1 

checkpoint (CHKP) 2.47-2.48 input message considerations 4.16-4.17 
examples of basic CHKP '2.49 output message 
examples of symbolic CHKP 2.50 considerations 4.24,4.26,4.30 

dequeue (DEQb) 2.52,2.47 video paging 4.25-4.26 
examples of 2.53 WRITE commands 4.25 

qet SCD (GSCD) 2.55,2.48 2265 Display Station Model 2 (2770) 
examples of 2.55 input message considerations 4.16-4.17 

log (LOGb) 2.54,2.47 output message 
examples of 2.54 considerations 4.24,4.26,4.31 

restart (XRST) 2.51,2.47 video paging 4.25-4.26 
examples of 2.51-2.52 WRITE commands 4.25 

rollback (ROL~ 2.53,2.47 2740 Data Communications Terminal 
examples of 2.53 Models 1 and 2 

statistics (STAT) 2.56,2.48 input message length 4.16-4.17 
examples of 2.56 online message formatting 

System/3 4.16,4.27 without MFS 4.29 
System/7 4.16,4.27 output message length 4.26 
System/370 console 2741 Data Communication Terminal 

input message length 4.16 input message length 4.16-4.17 
online message formatting without online message formatting 

MFS 4.29 without MFS 4.29 
_____________ o_u :tpu t __ mess a ge _length ---4 • 27---- ----- - --- - ------------------------, --out pu t--- m es s a-g e -re-n-gt h---- 4.-26 

-- -------------------- --------1-

2770 Data Communications System 
input message considerations 4.16-4.17 
output message considerations 4.27 
v ideo paging (2265- 2) 4.25 
WRITE commands (2265-2) 4.25 

1.8 IMS/VSApplication Programming Reference Manual 



2780 Data Transmission Terminal 
Models 1, 2, 3 and 4 

input message length 4.16-4.17 
online message formatting without 

MFS 4.29-4.30 
. output message length 4.27 

2980 General Banking Terminal System 
Models 1, 2, and 4 

function keys 4.23-4.24,4.28-4.29 
input message 

considerations 4.16,4.21-4.23 
message lights 4.28 
online message formatting without 

MFS 4.31 
output message 
considerations 4.24,4.26-4.28 

2980-6 function key translate 
table 4.23 

2980-1 special character set 4.21 
2980-4 special character set 4.22 

3270 Information Display System 
input message considerations 4.16 
output message considerations 4.27 

3600 Finance Communication System 
input message considerations 4.16 
output message considerations 4.27 

3741 Data Stations, Models 2 and 4 
input message considerations 4.16 
output message considerations 4.27 

3767 Communication Terminal 
input message considerations 4.16 
message format service (MFS) 
support 4.2 

output message considerations 4.27 
3770 Data Communication System 

input message considerations 4.16 
message format service (MFS) 

support 4.2 
output message considerations 4.27 

3790 Insuranqe Communication System 
input message considerations 4.16 
output message considerations 4.27 

7770 Audio Response unit Model 3 
input messaqe length 4.16 
output message considerations 4.27 

Index 1.9 



SH20-9026-4 

I~ternational Business Machines Corporation 
Data Processing Division 

1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternational) 

s:: 
en -< en 
< 
CD ., 
en o· 
:J 

» 
'0 
'£ 
o· 
Q) 

~. 
o 
:J 

-0 ., 
o r.c ., 
Q) 

" 

• 

3 "-
~. 
:J 

r.c 
:0 
CD 
-to. 

!!1 
CD 
:J 
(') 
CD 

s:: 
Q) 

:J 
c:: 
~ 

en 
:c , '-----1\,) , 

o 
cO 
o 
I\,) 
0') 

.i::. 

- -- -- ---i ---- -



o 

IMS/VS Version 1 
Application Programming Reference Manual 
SH20-9026-4 

Your comments about this publication will help us to improve it for you. 
Comment in the space below, giving specific page and paragraph references 
whenever possible. All comments become the property of IBM. 

, Please do not use this form to ask technical questions about IBM systems and 
programs or to request copies of publications. Rather, direct such questions or 
requests to your local IBM representative. 

If you would like a reply, please provide your name, job title, and business 
address (including ZIP code). 

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 

Reader's 
Comment 
Form 



SH20-9026-4 

Fold and Staple 

Business Reply Mail 
No postage necessary if mailed in the U.S.A. 

Postage will be paid by: 

IBM Corporation 
P. O. Box 50020 
Programming Publishing 
San Jose, California 95150 

Fold and Staple 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternationaU 

First Class Permit 
Number 6090 
San Jose, California 

S 
en -< en 
< 
CD .., 
(I) 

c)' 
::J 

» 
'0 
'2. o· 
OJ 
.-+ o· 
::J 

iJ .., 
0 
to .., 
OJ 

3 
~. 
::J 
to 

:0 
CD 
-+> 
CD .., 
CD 
::J 
0 
CD 

S 
OJ 
::J 
C 
~ 

iJ .., 
:;' 
.-+ 
CD 
Q. 

:;' 
C en 
l> 

------en-
:c 
I\) 
o 
cO 
o 
I\) 
m .;:. 

t-

., 
• 

.r---..... 

I' 
I 

------ --i----


