







































































































































































































































































































































































































































































WRITE Command

2. WRITE AT LINE
ADDRESS (WLR)

3. ERASE SCREEN
START AT LINE

Description

Indicates that it will
begin writing output
segment at the current
cursor position

Indicates that it will
begin writing at the
line specified (from
one through fifteen
depending on model)

Indicates that the
screen will be erased
first; the output
segment will be

Designation

Binary zeros

X'01' through X'OF?
for lines 1 through
15. Values above X'06"
depend on the type of
display station and/or
its features.

X*11" through X'1PF!
for lines 1 through
15. Values above

X'06' depend on the

written at line address type of display
specified (line one station and/or its
through fifteen features

depending on model)

Indicates the screen X'20°"
will be erased first;

the output segment

will be written

starting on the upper

left corner of the

screen

4. WRITE ERASE (WE)

Any code not the same as that designated for the WRITE commands
above defaults to binary zeros. No error messages are dgiven. Since
the screen may have up to 15 lines, line addresses may range fron
X'01' to X'0OF' depending on model.

If video-paging is included in the system, multiple-~page output
messages may be designated by inserting an X'40°' in the Z2 field of
the segment representing the first segment of each page. This flag
can be in addition to other video-screen format characters (for
example, X'60' for first segment of page and write erase). To page
forward and backward within a series of pages, these flags must be
contained within a single message; no purge calls or get unique
calls to the I/0 PCB may be issued while building a multiple-page
message. If a page flag is not found in the first segment of a
message, subsequent page flags are ignored.

Example:
Z1 72 TEXT
Insert JLL]100J60 | SEG 1}
Insert LLLIN0JI00 | SEG 2|1 Page 1
Insert 1LLI00)40 | SEG 31
Insert JLL]100100_ | SEG 4] Page 2 Message 1
Insert JLLI00105 | SEG 51
Insert {LL]00152 | SEG_6] Page 3

These three screens can be displayed by the operator multiple times
or not at all and may be displayed either in oxr out of sequence as
the operator chooses.

Data Communication Application Programming 4.25



Z21 z2 TEXT

Insert 111100120 | SEG_1})
Insert 1LL100400 | SEG_21 ™Mage 1 Message 1
Purge 1LL100J00 | _SEG_3]
Insert JLL]00J00 | SEG 41 Page 1 Message 2
Insert LLLI00IONS | SEG S|
Purge LLL100{12 | SEG 6f Page 1 Message 3

The above sequences would produce the same images to the terminal

as the paged example above and would not require the paging feature.
However, these images would be displayed once and only once and must
be displayed in sequence.

e 72 for 2980

Output messages requiring a passbook on a 2980 Model 1 or a 2980
Model 8, or requiring the insertion of the auditor's key on a 2980
Model 2 must contain a X'10' in the Z2 field of each output message
segment. If the terminal PCB is the common buffer of the 2972
control field, the 22 field value is ignored.

If the required passbook is not properly inserted in the output
terminal when IMS/VS attempts transmission of a passbook message
segment, the segment will be prefixed with two carrier returns, a
FFED-OPEN (if 2980 Model #), a MESSAGE LIGHT (if 2980 Model 1), or

a TURN PAGE (if 2980 Model 4) indicator, and the required number of
tab characters to position the type element to the passbook area of
the output terminal. This allows the teller operator to insert the
passbook to the proper print line. When the indicator is turned

off (MESSAGE LIGHT or TURN PAGE), the type element tabs to the
passhook area and begins printing the output message segment. IMS/VS
positions the type element whenever the required passbook is not
properly positioned in the output terminal, or if the passbook has
been indexed beyond the last printable line when the passbook message
segment was first transmitted. For these reasons, output message
segments should not contain data for both the journal/audit tape
area and the passbook area, since this may cause undesirable results.
Output messages requiring. the auditor's key on a 2980 Model 2 are
not transmitted to the output terminal unless the auditor's key is
inserted. Refer to the IMS/VS Operator's Reference Manual for
procedures on receiving auditor key messages.

TEXT
is the output message segment in EBCDIC as it is transmitted to
a specific logical terminal. The length of an output message
segment is governed by the specific communication terminal
receiving the output message. The maximum number of bytes for
each message segment text is:

Terminal Number of Bytes
1050, 2740-1, 130 (can be larger if CRs are
2740-2, and 2741 embedded at 130 bytes or less).

If Message Format Service (MFS)
is used for the 2740/2741,
refer to the IMS/VS Message
Format Service User's Guide.

2260-1, 2265-1 960/screen*
2260-2 with 2848-1 240/screen*
2260-2 with 2848-2 480/screen*

u.26 IMS/VS Application Programming Reference Manual



\.

105372848
1053/2845
2770
2265-2
card punch
printer & paper tape punch
2780
printer
punch
2972/2980
Common buffer
Terminal buffer

with buffer expansion

3270

3600, 3790

3741

3767, 3770 console, printers

3770 punch

7770

33/35 Teletypewriter (ASR)
Systenm/3

System/7

System/370 console

Number of Bytes (Continued)
*Anything over will wrap the
screen and overlay the first
part of the message.

960; anything over will truncate.
240; anything over will truncate.

Variable, based on component.
960; anything over will wrap

the screen and overlay the first
part of the message.

80; anything over will trunca te.
less than 32768.

Variable

80 or 120, or 144, based on 2780
printer specifications; anything
over will truncate.

80; anything over will truncate.

The following applies:

23
47
95

Refer to the IMS/VS Message
Pormat Service User's Guide.

Variable; refer to the IMS/VS
Advanced Function for
Communications manuwal, or, if
MPFS is used, to the IMS/VS
Message Format Service User's

128 or less, based on 3741
specification; segments will be
padded with blanks or truncated
to this value.

Up to the message size. If
Message Format Service (MFS) is
used, the length of the message
segment is defined by the user
to MFS and is limited by the
MSGQUEUE macro statement
specification at system
definition.

80; anything over will truncate.
Any length.

80

Variable, dependent on

user's program in the System/3

or System/7.

126; anything over will truncate.

Data Communication Application Programming 4.27




Terminal ~Number of Bytes (Continued)

SYSOUT Print Variable, based on device;
Direct : the segment is truncated to the
record length specified for the
particular device. When the
output device is a printer,
default segment maximum lengths
are:

120* for 1443, 1403
132* for 3211

Spooled Default segment size is 120%*.

*These sizes do not include carriage-return characters as
specified later in the section "Online Message Format
Considerations." If carriage control is present, these maximums
can be increased by 2. '

298¢ Optional Features

The reader should refer to Component Description: IBM 2972 Models
8 and 11 General Banking Terminal Systems, GL27-3020 for a complete
discussion of the optional features available on a 2980 Model 4 and
how an application program might make use of them. The discussion
following is limited to the use of those features in the INS/VS

environment.

e. 2980 Message Lights

The 2980 Model 1 and Model U4 teller terminals incorporate a message
light feature that prevents the printing of an output message at the
terminal until some operator action is taken. An application program
can utilize this message light feature on a 2980 Model 1 by imserting
a X'17' in the text of the output message segment. The data following
the message light character will not be printed at the terminal until
the terminal operator presses the message light key. Any combination
of six message lights at a 2980 Model 4 teller terminal can be caused
to turn on by the insertion of a two-character message light sequence
as the first two (or only) characters of an output message segment.

The data following the message light sequence will not be printed until
the terminal operator presses the message light key. The message light
sequence for a 2980 Model 4 consists of an X'17' followed by any
character whose hexadecimal value is greater than X'3F'; an X'40' will
be substituted for invalid values. BRefer to the above mentioned SRL
for detailed information on the use of and setting of message lights

on the 2980 Model 4. IMS/VS precedes all system-generated messages
with an X'1740' if the message is for a 2980 Model 1 or 2980 Model 4.

e 2980 Function Keys

INS/VS cannot distinguish a function key entry from a data key entry
that causes transmission of the same character to the CPU., PFigure 4-13
lists the character received by the application program when the
corresponding function key is entered. The application programmer must
be aware that, since function keys are an optional feature, in each
instance there is a corresponding keyboard entry which results in the
same character being received. No direct facility is provided which
would give a unique distinction to the application program between
entry of function keys 23 and 24 and the graphic numeric characters 2
and 3, respectively. To do so would require the terminal operator to
enter alpha shift to enter these numbers. (The application programmer

4,28 IMS/VS Application Programming Reference Manual

a



may require operator entry of keyboard keys 11 and 15 in alpha shift
for those numbers if such distinction is necessary.)

Online Message Format Considerations -- MFS Not Used

fhen Message Format Service (MPS) is not used, it is the application
programmer's responsibility to provide all horizontal and vertical
format control required to properly display an output message. An
output message can contain multiple message segments. It is not
necessary to include a logical. terminal name in an output message since
the destination is determined by the logical terminal PCB.

Certain device control characters must be inserted into an output
message when it is desired to format a message at a terminal output
device. Output message formatting for the devices supported by IMS/VS
may be accomplished as follows:

e When output is to be printed on a typewriter-like device (for
example, 2740), the following hexadecimal characters found within
the output text function as indicatead:

X'05* sSkip to tab stop (HT), but stay on same line.
X'15* Start new line (N1) at left margin (carriage return).

X*25* Skip to new line (LF), but stay at same print position
horizontally.

The most efficient way to skip multiple lines is by including a
combination of one NL character and multiple LF characters.

Forms feed control can be provided for a 1052 or 1053 printer by
including the forms control characters as the first two bytes of
output message segment text. Output message segments may contain
multiple typed lines (carriage returns should be embedded at 130
characters or less).

e When output is to be printed on a 1050 printer and vertical forms
control is used, the forms control sequence must be the first two
characters in a segment.

e When output- is to be printed on a 2780 or local printer, a message
segment is considered to be a print line, and message text over
the designated printer's capability is truncated on output. NL
and LF characters are ignored. Control other than single line
spacing (which is default) may be achieved by inserting an ESC
character (X'27') as the first character of the output message
segment text, followed by one of the following carriage control
characters (the X'27f' and the carriage control characters are not
considered part of the message text for truncation purposes):

S -- Double space after this line is printed.
T -- Triple space after this line is printed.

A through L -- Skip to channel 1 through 12 after this line is
printed (local print).

A through H -- Skip to channel 1 through 8 after line is printed
(2780) .

M ~-- Suppress spacing after printing (local print only).

Data Communication Application Programming 4.29




e When output is to be written to the 0S/VS system console, a message
segment is considered to be a print line. If the output message
segment text does not begin with the characters DFS followed by
three numeric characters, IMS/VS inserts a prefix of DFS000I., All
embedded NI characters are replaced by blanks (X'40') as required
by 0S/VS WTO. Output message segment text (including DFS000X, if
inserted by IMS/VS) in excess of 126 characters is truncated as
reguired by 0S/VS WTO.

4.30

When output is to be punched (with, for example, the 2780 terminal
or the 3770 card punch), a message segment is considered to be a
card, and message text over 80 characters is truncated upon output.

When output is to be displayed on a 2260-1, 2260-2, or 2265-1, the
following are output message considerations:

An output message can be composed of multiple segments that make
up a single screen. Total segment and message length is
variable:

lines per Bytes per Bytes per
Device Screen Segnment Message
2260-1, 2265-1 12 80 960
2260-2 (2848-1) 6 40 240
2260-2 (2848-2) 12 40 480

If the length of the message exceeds the capacity of the screen,
the screen will wrap, destroying the data previously displayed.

New Line (NL) characters are honored; line Feed (LF) characters

are ignored.

Multiple screen output is allowed.
BEach segment can specify a write-type request (22 field bits).

IMS/VS ignores WRITE-ERASE requests except on the first segment
of an output message.

When output is to be displayed on the 2265-2 component of a 2770
system, the following are output message considerations:

An output message can be composed of multiple segments that make
up a single screen (960 bytes).

If the length of the message exceeds.  the capacity of the screen,
the screen will wrap, destroying data previously displayed. NL

characters are honored except as described below. LF characters
are not honored.

Multiple screen output is allowed.

An NL character in text that is being written on the last line
of the display screen does not cause a screen wrap operation to
occur. The NL character (s) is displayed on the last line of
the screen.

An SMM symbol on the screen after an NL symbol does not transfer
data if the ENTER key is pressed.

Each ountput message segment may specify its write-type request.

When output is to be printed on a 2770 printer component, the
following are output message consideratiaons:

Segments over the printer line length cause an automatic hardware

carriage return before printing of the remainder of the segment.

IMS/VS Application Programming Reference Manual

RN

/‘\



N

- If no control operations are embedded in the message segment,
the printer is single spaced by the insertion of an IRS
character.

- If a trailing NL character is in the segment, the printer
component double spaces after printing the line.

- Explicit carriage control can be accomplished by limiting segment
length to the length of a print line (this depends on the printer
component type and features) and inserting an ESC character
(X'27') as the first character of the output message segment
text, followed by one of the carriage control characters for
the 2770 printer component. See System Components: IBM 2770
Data Communications System, GA27-3013, for a description of
these codes.

When output is to be punched on the 2770 paper tape punch component,
the following are output message considerations:

- IMS/VS inserts an end of media character at the end of each
output message to the paper tape punch.

- If segments whose size is larger than the value specified on
the PTSEG= operand of the TERMINAL statement during system
definition are sent to this component, the segment will not be
properly deblocked on subsequent reentry to IMS/VS.

When output is to be printed on a 2980 terminal, the following
hexadecimal characters function as indicated:

X'05' Skip to tab stop (HT), but stay on same line.

X*'15* Start new line (NL) at left margin, if the present position
of the type element is within the audit/journal tape area;
or the type element will be repositioned at the intermediate
carriage stop, if the present position of the type element
is within the passbook area. In the latter instance,
printing-will resume on the same print line.

X'25' VFhen the output message segment is destined for the passbook
area of the terminal, this character will cause the start
of & new line at the intermediate carriage stop. INS/VS
will ensure that the passbook is properly inserted at a
printable line on all transmissions to the passbook area.

Output message segments may contain multiple print lines. Care
should be taken to insert carriage returns (X'15') and/or passbook
index. (X'25') characters in long message segments to prevent typing
past the audit/journal tape or passbook.

Rhen the output device is a 7770-3 line, it is the responsibility
of the application programmer to format the output message with
7770 vocabulary Drum Address characters as required for the
application.

Dutput device independence may be achieved by generating output

message segment text no greater than 80 bytes, including a trailing NL

character. Output message segment text should not contain any forms
or carriage control characters. If video terminals are included in a
system, no more .data than will fit on a single screemn should be

generated per output message. It should be noted that the output device

independence described above may restrict efficient use of certain

output devices, and may restrict use of special output device functions.

Data Communication Application Programming 4.31



Program-to-Program Message Switching

An output message destined to another application program is a

program-to-program message switch. The message switch destination can

be specified during PSB generation or during program execution using
the change call. The destination must be a transaction code defined
during system definition. The receiving program must contain an I/0

area large enough to hold the largest segment sent by the transmitting

progran.

Insert calls are used to create the segments of a program-to-program
message. When inserting a segment, an alternate PCB must be used. The
destination of the alternate PCB must be set prior to the first insert

call.

Message security procedures may or may not be invoked during
program-to-program message switching. They are invoked when a change

call is used to set the destination; the current . entering terminal must

be authorized to enter the transaction code set by the change call.
No checking is performed on insert calls.

The format of a message switch segment is:

- —— = - - - - - - - —— . - = - — - - n - Ge - > e - - - - -

The format is essentially the same as for output messages to logical

terminals. The following areas should be noted:

e 71 and 22 are one-byte fields that must contain binary zeroes; the

use of Z1 and %22 is reserved for INMS/VS.

e TEXT is the message segment that is to be sent to the specified
destination,

Since IMS/VS does not prefix a switched message with a transaction
code, the application program can put the transaction code at the
beginning of the first segment. This assures that messages arriving
at the destination are in the same format, whether originating from a
program or from a terminal.

TELEPROCESSING OR BATCH/TELEPROCESSING ENVIRONMENTS

ANS COBOL MESSAGE PROGRAM STRUCTURE

Figure 4-13 outlines the fundamental parts of an ANS COBOL message
processing program. Each item should be considered when designing a
message program. This program processes an inquiry from a terminal,
makes a reference to a data base for information, and sends a message
to a different terminal or to an application program.

4.32 IMS/VS Application Programming Reference Manual

N



Van

C

REF
NO.

ENVIRONMENT DIVIS ION.

DATA DIVISION.
WORKING~STORAGE SECTION.

77 GU-CALL PICTURE XXXX VALUE
77 ISRT-CALL PICTURE XXXX VALUE ‘ISRT"'.
77 CT PICTURE S9(5) COMPUTATIONAL VALUE +4

L]

01 SSA-NAME.

L]

01 MSG-SEG-IO-AREA.
C1 DB~-SEG-IO-AREA.
C1 ALT-MSG-SEG-OUT.

LINKAGE SECTION.

01 TIO-PCB.
01 ALT-PCB.
01 DB-PCB.

'Go v,

PROCEDURE DIVISION.

ENTRY 'DLITCBL' USING IO-FPCB,

L

CALL *‘CBLTDLI* USING GU~CALL,
MSG-SEG-IO-AREA.

L J

CALL 'CBLTDLI' USING GU-CALL,
DB-SEG-IO-AREA, SSA-NAME.

CALL 'CBLTDLI' USING ISRT-CALL, ALT-PCB,

ALT-MSG-SEG-OUT.

GOBACK.

DB-PCB,

ALT-PCB, DB-PCB.

I0-PCB,

10

COBOL -~ LANGUAGE INTERFACE

Figure 4-13.,

COBOL Message Program Structure

The following explanations are keyed to the numbers along the left
side of Figure 4-13.

1.

A 77 level or 01 level working storage statement defines each

of the call functions used by the message program.

Each picture

clause is defined as four alphameric characters and has a value
assigned for each function (for example, ISRT).

An 71 level working storage statement describes each segment

search argument (SSA) used for a data base call.

An example of

an SSA definition, with a lowercase b representing a blank and
a lowercase v representing the symbolic value in the field, is:

01

SSA~NAME.

02 SEG-NAME PICTURE X (8)
02 SEG-QUAL PICTURE X
N2 SEG-KEYNAME PICTURE X (8)
02 SEG-OPERATOR PICTURE XX

VALUE ‘*ROOTbbbb'.
VALUE *(°‘.

VALUE 'KEYbbbbb'.
VALUE 'b=*.

02 SEG-XKEY-VALUE PICTURE X(6) VALUE 'vvvvvv?',
02 SEG-END-CHAR PICTURE X VALUE '),

Data Communication Application Programming 4.33




L

Vhen the above COBOL syntax is decoded and placed in storage,
it will be in a data string as follows:

ROOTbbbb (KEYbbbbbb=vvvvvv)

(For further discussion, see the section "Segment Search
Arguments" in the "Data Base Batch Programming" chapter of this
manual.,)

An "1 level working storage statement describes each segment
1/0 vwork area within the message progranm.

An 01 level linkage section entry describes the PCB statement,
first for the input terminal for the current message being
processed (the I/O PCB), second for each output destination
other than the input terminal (alternate PCBs), and third for
each data base. It is through this linkage description that a
COROL program can access the status codes after a DL/T call.

This is the message program entry point and must be the first
executable COBOL statement in the procedure division. There
must be a name for every PCB used by the message program. The
first PCB name must be for the I/0 PCB. The remaining PCB names
must be specified in the same order, following the I/0O PCB, as
they are presented in the program's associated PSB generation.
The PCB names could be specified in the linkage section in the
same order, but this is not a requirement.

This is a typical call used to read the input (source) logical
terminal., The first time this call is executed with function

equal to get unique, the first segment of the message that caused
the message program to be scheduled is brought into this program.

If the input message consists of more than one segment,
subsequent segments can be obtained with a similar call but with
the function equal to get next.

This call is used to access data from a data base. The format
is the same as that in Item 6 above, except that the PCB refers
to a data base and the segment search arguments define a
particular data base segment.

This call is used to reply to an output destination other than
the terminal representing the source of the input message. If
the output destination is the input terminal, this call must
utilize the I/O PCB.

This operation causes the message program to return control to
the IMS/VS control facilities.

A language interface (DFSLIO00) is provided by IMS/VS for all
COBOL programs. This module must be link-edited to the message
processing program after compilation and provides a common
interface to IMS/VS and DL/I for all call statements.

The language interface function of IMS/VS is reenterable and
compatible with that of IMS/360 Version 2. To take advantage
of the reenterable capability, application modules from IMS/360
must be re-linkedited, replacing the INMS/360 Version 2 language
interface with that of IMS/YS. The IMS/360 Version 1 language
interface is not compatible with IMS/VS.

I¥NS/VS Application Programming Reference Manual




PL/I OPTIMIZING COMPILER MESSAGE PROGRAM STRUCTURE

Figure 4-14 outlines the fundamental parts of a PL/I optimizing
compiler message processing progran.
when designing a message program.
from a terminal, makes a reference to a data base for information,

Each item should be considered
This program processes an inquiry
and

sends a message to a different terminal or to an application program.

REF
NO.

10

11

/K e e e — e */
/* ENTRY POINT %/
2T %/

DLITPLI: PROCEDURE(IO_PTR,ALT_PTR,DB_PTR)
OPTIONS (MAIN);

DECLARE FUNC_GU CHARACTER (4) STATIC INITIAL('GU');
DECLARE FUNC_ISRT CHARACTER (4) STATIC INITIAL ('ISRT');

DECLARE SSA_NAME...
DECLARE MSG_SEG_IO_AREA CHAR (24);
DECLARE DB_SEG_IO_AREA CHAR (180) ;
DECLARE ALT_MSG_SEG_OUT CHAR(24) ;
DECLARE 1 IO_PCB BASED(IO_PTR),...;
DECLARE 1 ALT_PCB BASED(ALT_PTR) ,...;
DECLARE 1 DB_PCB BASED (DB_PTR) ,...;

DECLARE THREE FIXED BINARY(31) STATIC INITIAL (3);
DECLARE FOUR FIXED BINARY(31) STATIC INITIAL(UL4);

CALL PLITDLI(THREE, FUNC_GU,IO_PTR,MSG_SEG_IO_AREA);
CALL PLITDLI (FOUR,FUNC_GU,DB_PTR, DB_SEG_IO_AREA);
CALL PLITDLI (THREE,FUNC_ISRT,ALT_PTR,ALT_MSG_SEG_OUT);

END DLITPLI;

PL/I - LANGUAGE INTERFACE

Figure 4-14. General PL/I Optimizing Compiler Message Progranm

S tructure

The following explanations are keyed to the numbers along the left
side of Figure 4-14:

1.

This is the main standard entry point to a PL/I optimizing

compiler message program. There must be a pointer for every

PCB used by the message program. The first PCB pointer must be
for the I/0 PCB. The remaining PCB pointers must be specified
in the same order, following the I/0O PCB, as they are presented

in the program's associated PSB generation.

Data Communication Application Programming

4.35




4.36

These declarations define the call functions used by the PL/I
message program. Fach character string is defined as four
alphameric characters and a value assigned for each function
(for example, ISRT). Other constants and working areas may be
defined in this manner.

This declaration defines storage for SSAs. In the following
example, the SSA is declared as a structure; other methods can
be used (see the section "General Characteristics of Segment
Search Arguments"™ in Chapter 3 of this manual).

Example (lower case "b" represents a blank and lower case "v"
represents the symbolic value in the field):

DCL 1 SSA_NAME,

2 SEG_NAME CHAR(8) INIT('ROOT'),

2 SEG_QUAL CHAR (1) INIT (' ("),

2 SEG_KEY_NAME CHAR (8) INIT (*KEY'),

2 SEG_OPERATOR CHAR({2) INIT('b="),

2 SEG_KEY_VALUE CHAR(6) INIT (*vvvvvv'),
2 SEG_END_CHAR CHAR (1) INIT(') ')

The I/0 area is most efficiently passed to DL/I as a
fixed-length-character string or through a pointer variable;
other methods, however, can be used (see the PL/I example under
the section "I/0 Work Area" in Chapter 2 of this manual). An
example follows:

DCL MAST_SEG_TO_AREA CHAR(100) ;

A level 1 declarative describes the PCB statement first for the
input terminal for the current message being processed (the I/0
PCB), second for each output destination other than the input
terminal (alternate PCBs), and third for each data base. It is
through this description that a PL/I program can access the
status codes after a DL/I call. (For the PL/I optimizing
compiler, the PCBs must be BASED structures.)

This is a descriptive statement used to identify a binary number
(fullword) that represents the "parameter count" of a call to
DL/I. The parameter count value equals the remaining parameters
following the parameter count set off by commas.

This is a typical call used to read the input (source) logical
terminal. The first time this call is executed with function

equal to get unique, the first segment of the message that caused

the message program to be scheduléed will be brought into this

program. If the input message consists of more than one segment,

subsequent segments can be obtained with a similar call but with
the function equal to get next.

This call is used to access data from a data base. The format
is the same as the one in Item 7 above, except that the PCB
refers to a data base and the segment search argument defines
a particular data base segment.

This call is used to reply to an output destination other than
the terminal representing the source of the input message. If
the output destination is the input terminal, this call must
utilize the I/0 PCB.

IMS/VS Application Programming Reference Manual

D



10, This END statement causes the message program to return control
to the INS/VS control facilities. Another statement that causes
the message program to return control to the IMS/VS control
facilities is the RETURN statement. The RETURN statement may
or may not immediately precede the END statement.

11. A language interface (DFSLIQ000) is provided by IMS/VS for all
programming languages. This module must be link-edited to the
compiled message program and provides a common interface to
INS/VS and DL/I.

The language interface function of INS/VS is reenterable and
compatible with that of IMS/36C Version 2. To take advantage
of the reenterable capability, application modules from IMNS/360
mnust be re-linkedited, replacing the IMS/360 Version 2 language
interface with that of IMS/VS. The TMS/360 Version 1 language
interface is not compatible with IMS/VS.

ASSEMBLER LANGUAGE MESSAGE PROGRAM STRUCTURE

The structure of an Assembler Lanquage message program is the same
as for the Assembler Language batch program described in the section
"Assembler Language Batch Program Structure®" in the "Data Base Batch
Programming" chapter of this manual. In addition, the user should
remember that an Assembler language message program receives, upon
entry, a PCB parameter list address in register 1. The first address
in this list is a pointer to the I/0O PCB. Any alternate PCB addresses
follow, and finally any data base PCB addresses. Bit 0 of the last
address parameter i$ set to 1 in accordance with operating system
conventions for variable parameter lists.

ABENDS ISSUED BY APPLICATION PROGRAMS

Actions taken by IMS/VS on all types of application program abends
are described in the IMS/VS System/Application Design Guigde.

If an application program is going to issue the ABEND macro, the
STEP parameter must not be used. The use of the STEP parameter prevents
the message or batch message region from notifying the IMS/VS control
region that an application program has abended. This in turn may
prevent the release of resources or a normal checkpoint shutdown.

Data Communication Application Programming 4.37







e

CHAPTER 5. DATA COMMUNTCATION: CONVERSATIONAL PROCESSING

Conversational processing allows a user's application program to
retain information acquired through interchanges with a terminal even
though the application program leaves the message region between
interchanges. Special facilities are provided in IMNS/VS to allow the
retention of information. Data base facilities are not required for
information retention.

The conversational option is specified during IMS/VS system
definition so that IMS/VS can relate to transaction codes that utilize
the conversational mode. When an application program that processes
a conversational transaction type is scheduled, a get unique (GU) call
against the I/0 PCB causes the contents of a Scratchpad Area (SPA) of
user-defined length to be passed from IMS/VS to an I/0 area defined in
the user's application program. Subsequent get next (GN) calls cause
the message segments entered from the terminal to be passed to another
I/0 area defined in the user's application program. Data saved in a
SPA can be in any form: bit string, character, binary numbers, or
packed decimal.

SCRATCHPAD ARER FORMAT

The SPA format is:

L) L
| LL | XXXX | TRAN CODE | USER WORK AREA |

where:

LL
is a halfword binary field containing the total number of
characters in the SPA, including LL, XXXX, TRAN CODE, and USER
WORK AREA. This field should not be modified by the user.

‘When PL/I is used, the LL field must be defined as a binary
fullword. The value contained in the LL field is the actual
scratchpad area length minus 2 bytes. For example, if the
scratchpad area is 26 bytes, LL is equal to 24 and represents
the sum of LL (4 bytes minus 2 bytes), XXXX (2 bytes), TRAN CODE
(8 bytes), and text (10 bytes).

XXXX
is a 8-byte area reserved for IMS/VS. XXXX must not be modified
by the user. ’

TRAN CODE
is an 8-byte field containing the transaction code that caused
the program to be scheduled. The transaction code can be from
1 to 8 bytes, left-justified, and padded with blanks.

If this code is changed by the user, a different program is
scheduled for the next message input from the terminal.

The transaction code does not appear in the message segment.
(When option 3 of the Message Format Service is used, the
transaction code is not removed. Refer to the IMS/VS Message
Format Service User's Guide.)

Data Communication: Conversational Processing 5.1



USER WORK AREA

is a variable-length area 14 bytes less than that defined by
the user during IMS/VS system definition for each conversational
transaction code and cleared to binary zeros on first entry to
the application program for this conversation. This area is

for retaining user information (for example, intermediate
calculations or data retrieved through one or more data base
calls) required by an application program.

INPUT MESSAGE FORMAT

From a terminal operator's viewpoint, the format of the input message

segment that starts the conversation is the same as any
nonconversational transaction-type message. IMS/VS removes the
transaction code from the first message segment (except as noted above)
and always places it in the scratchpad area. The first message segment

is

left-justified to remove the transaction code. (Transaction code

formats are described under "Message Formats" in the chapter "DC:
Application Programming",) It is retrieved by the first GN call issued
after the GU call that retreived the scratchpad. Additional message
segments of an input message are formatted the same as for
nonconversational processing.

EXAMPLE

1. PFirst conversational message segment entered at input terminal:
CONV +32546,12-1235.27

2. First CALL statement using PL/I:
CALL PLITDLY (THREE,GET_UNIQUE_FUNC,IO_PCB,SPA_ARER);

3. The SPA_AREA now looks like this after the first GU call:

(o n -y

{ TRAN CODE
' ———————————————

|
XXXX |  CONVbbbb

USER WORK AREA

LL

[}
[}
]
[}
t
[}
]
]
t
1
[}
]
1
[}
]
]
1
]
]
[]
[}
\
]
)
[}
]
]
Y RS

5.2

4. The first segment of the conversatlonal message now looks like
this:

+32546. 12-1235. 27

Thus, to bring this text into the application program I/O work
area, a GN call must be made.

5. Second PL/I CALL statement using a GN call function to obtain
the text of the first message segment:

CALL PLITDLI (THREE,GET_NEXT_FUNC,I0_PCB,WORK_AREA):

This brings the text as shown in item 4 above into the I/0 work
area of the application program.

6. To get subsequent message segments, the CALL statement is the
same as in item 5 above.

INMS/VS Application Programming Reference Manual

P



(‘\,

SAVING INFORMATION IN THE SPA

After the input scratchpad area and input message have been obtained,
one or more data base calls may be made and one output message may be
built. The application program may wish to retain data entered from
the terminal or obtained from data bases. This data is saved in the
user work area portion of the scratchpad.

If the application program modifies or initializes any SPA fields,
it must return the SPA to IMS/VS before issuing another GU or
terminating. An SPA is returned to IMS/VS by inserting it to the I/0
PCB.

The insert (ISRT) call for PL/I is handled as follows:

CALL PLITDLI (THREE,ISRT_FUNC,IO_PCB,SPA_NAME);
or, in ANS COBOL:

CALL 'CBLTDLI* USING ISRT, IO-PCB, SPA-NAME.

OUTPUT MESSAGE FORMAT

A response to the originating terminal is required to allow the
conversation to continue. The terminal operator is prevented from
entering more data to be processed (except IMS/VS commands) until he
has received this response.

The response is accomplished in one of two ways:

1. The conversational program can issue ISRT calls to the I/O PCB
or an alternate PCB defined as ALTRESP=YES prior to the next GU
call or program termination.

2. Control may be passed to another conversational program by
inserting the SPA and a message to an alternate PCB.

The switched-to-conversational program may then perform 1 above
(which will wait for terminal input) or perform 2 again (program
switch) .

The output message segment format for a conversational application
program is the same as for any nonconversational output message format.

PASSING CONVERSATIONAL CONTROL TO ANOTHER CONVERSATIONAL PROGRAM

Conversational message processing programs can pass control of a
conversation to another conversational program. Two methods of passing
control are supported:

e The program in control can change the transaction name in the SPA
before returning the SPA to IMS/VS. 1IMS/VS will route the next
terminal input to the program that handles the specified transaction
code. Any intervening program switches can change the transaction
name in the SPA.

Data Communication: Conversational Processing 5.3




e For a program-to-program switch, the program in control can insert
a message to an alternate PCB that has its destination set to
another conversational program. The SPA must be the first segment
inserted to the alternate PCB; neither the SPA nor a response can
be returned to INS/VS through the I/0 PCB or response alternate
PCB if this 1is done.

If the new program requires a larger or smaller SPA, and the
conversation d4id not start with a fixed-length SPA, INS/VS will
intercept the SPA and extend or truncate it for the new program, while
preserving the data that may have been truncated.

If differing sizes for SPAs have been defined at system definition
for disk and incore SPAs, care must be exercised by the user to prevent
scheduling conversational programs within a series of programs which
require SPAs larger than the maximum SPRA size allowed by the original
program to be scheduled. The first program scheduled sets the type of
SPA that will be used for the duration of the conversation.

Example: Main storage maximum defined as 100 bytes; disk maximum
defined as 1007 bytes.

TRAN A - main storage 50 SPA bytes TRAN C - disk 100 SPA bytes
TRAN B - main storage 75 SPA bytes TRAN D - disk 1000 SPA bytes
If TRAN A or TRAN B is the first conversational program called by

a terminal operator, the conversation can switch control to TRAN A, B,

or C, but not to TRAN D, since D regquires a larger SPA than the maximum
allowed for incore SPAs.

If TRAN C or TRAN D is the first conversational program called by
the terminal operator, control can switch to any other transaction.

TERMINATING A CONVERSATION

A conversation is terminated by either the conversational program,
terminal operator, master terminal operator, or IMS/VS., 1A
conversational program terminates a conversation by:

e Blanking the transaction '‘code in the SPA and returning the SPA to
IMS/VS through an ISRT call. This terminates the conversation as
soon as the terminal has received the response.

e Tnserting the name of a nonconversational transaction code in the
transaction code field of the SPA and returning the SPA to IMS/VS
through an ISRT call to the I/0 PCB. This causes the conversation
to remain active until the next message is entered by the terminal.
Except for MPS formatting option 3 messages, the transaction code
will be inserted into the input message from the SPA. This message
will then be routed to the named transaction code prior to
terminating the conversation; the nonconversational program will
not get the SPA.

The terminal operator terminates a conversation by:

e Fntering a /EXIT command or /EXIT CONVnnn from the terminal that
is participating in the conversation.

e Entering the /HOLD command from the terminal that is participating
in the conversation. This action .temporarily suspends operation
and allows the terminal operator to enter other transactions while
the first c¢onversation is being "held" inactive. The response to
a /HOLD command furnishes the terminal operator with an identifier

5.4 IMS/VS Application Programming Reference Manual



of his conversation so that he can reactivaté it later by means of
the /RELEASE command. A held conversation is considered to be
active when the number of current conversations is calculated.

The master terminal operator terminates a conversation by:

e Entering a /START LINE (no PTERM specified) for a terminal in
conversation.

IMS/VS terminates a conversation if, after a successful GU or
insertion of the SPA, a conversational application program fails to
insert a message, When this situation occurs, IMS/VS sends the message
DFS3272I NO RESPONSE, CONVERSATION TERMINATED to the terminal,
terminates the conversation, and completes synchronization point
processing.

RULES FOR WRITING CONVERSATIONAL PROGRAMS

GENERAL

e The first 6 bytes of the SPAR cannot be modified in any way by the
application program. (IMS/VS uses these 6 bytes to identify the
SPA.)

e If a conversation is started for a transaction with a fixed-length
SPA, all succeeding transactions used for the duration of the
conversation must be defined with and use fixed~length SPAs of the
same length.

e The SPA transaction code (beginning in position 7) can be changed
by the application program to switch control to a new transaction
upon receipt of the next input from the terminal. The conversation
is terminated if this transaction is a nonconversational transaction
or if it is blanked.

o If modified by an application program, the SPA must be returned to
IM¥S/VS through an ISRT call or the SPA against which a GU call was
issued will be reused.

e The SPA cannot be returned to IMS/VS more than once. (Example:
ISRT to I/0 PCB, then ISRT to alternate PCB for program-to-program
message switch.)

e The SPA cannot be inserted to an alternate PCB representing a
nonconversational transaction or logical terminal. A response
alternate PCB is permissible if it represents the input PTERM.

e If control is being given to another conversational program through
a program-to-program message switch, the SPA must be the first
segment inserted. (Example: ISRT to alternate PCB defined as a
conversational transaction.)

Data Communication: Conversational Processing 5.5




MES

5.6

SAGE RESPONSE

An output message response to the I/0 PCB or to an alternate PCB
defined as ALTRESP=YES is required, unless the SPA has been passed
to another conversational program through an insert to an alternate
PCB, in which case the response must be given by that program. For
addi+tional information, see the section "alternate PCB" in the
"Data Communication: Application Programming” chapter of this
manual.

Only one message response is allowed for each conversational entry.
This message can consist of as many segments as required; however,
a PURG call cannot be issued to generate multiple output messages.
If a PURG call is issued, the synchronization-point processor
returns the AZ status code and does not process the call.

Conversational programs must be designed to handle the condition

in which the first GO call to the I/O PCB may produce no .message
to process. This condition can occur if the operator cancels the
conversation through an /EXIT command, prior to the program issuing
a GU call, if this was the only message in the gqueue to be
processed.

It is not permissible to use a PURG call for an I/0 PCB, response

alternate PCB, or an alternate PCB that represents another
conversational transaction.

IMS/VS Application Programming Reference Manual



CHAPTER 6. APPLICATION PROGRAM EXAMPLES

The examples of application programs included in this chapter
represent application programs that normally operate imn an IMS/VS
environment. At least one of the programming languages (COBOL, PL/I,
or Assembler) has been selected for each type of application program.
Most of the application programs represent source programs used in the
sample problem included in the IMS/VS Installation Guide.

The following types of programs are presented:

Iype Lanquage

Data Base Load Program COBOL

Data Base Dump Program Assembler

Batch Processing Progran COBOL and Assembler
Message Processing Program COBOL
Conversational Processing Program PL/X

DATA BASE LOAD PROGRAM EXAMPLE

ANS COBOI APPLICATION PROGRAM

In this example, the batch application program DFSSAMO1 uses the
SYSIN data to load a data base, named DI21PART, whose hierarchical
logical data structure is:

PARTROOT

STANINFO STOKSTAT

CYCCOUNT BACKORDR

Application Program Examples 6.1




FILE: D¥SSAMO1 ASSEMBLE 2

IDENTIFICATION DIVISION,
PROGRAM-ID. "NDFSSAMOT?
AUTHOR. DON TRUDELL.

PALC ALTO DEVELOPMENT CENTER

REMARKS, DATA BASE LOAD PROGRAN,

FNVIRONMENT NDTVISION.
CONFIGURATION SECTION.
SOURCE-COMPITER.
OBJECT-COMPUTER,
INPUT-0OUTPUT SECTION.
FILE-CONTROL.

SFLRECT INPUT-FILE
DATA DIVISION.
PTLE SECTION.

IBM-360-HSO0.
IBM-360-H50.

ASSIGN TO UT-S-INPUT.

FD

01

INPUT-FILE
RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS ¢ RECORDS
RECORDTING MODE IS F

LABFL RECORDS ARE OMITTED
DATA RECORD IS INPUT-RECORD.
INPUT-RECORD.

02 INP-SEG-NAME

72 FILLER

02 INP-DATRA

N2 TINP-SEQU¥NCE-NO

PICTURE X(08).
PICTURE X (01).
PICTURE X (67).
PTCTURE X{04).

WORKI NG -STORAGF SECTION.

01
01
01
01

01
01

01

0

01

PICTURE X (04).
PICTURE X(08)
PICTURE X (04)

DL1-FUNCTION
PREV-SEG- NAME
PREV-SEQUFENCE-NO
RUILD-SEGMENT-ARFA.
02 BUTLD-DATA -AREA OCCURS 14 TIMES

PICTURE X(67).

MI SC-ARITHMETIC-FIELDS USAGE COMPUTATIONAL,

02 5UB-1
SEG00N10-S3A.

02 SEG-NAME-00T 10
N2 REGIN-0P-00010
02 KEY-NAME-00010
2 REL-0PER-00010
N2 ¥XEY-VALUE-200 10
02 END-OP-0N010
SEGOOD60-SSA.

02 SEG-NAME-0N0&0
02 BEGIN-0P~012060
02 KEY-NAME-0N0060
02 RFPL-0OPER-00760
02 KEY=-VALUE-00060
92 END-OP-C0060
SEG020N0-SSA,

02 SEG-NAME-02000
02 REGIN-0P-02000
02 KEY-NAME-02000
02 REL-0PER-02000
N2 KEY-VALUE-02000
02 FND-0P-02000
SEG02200-SSA.

PICTURE S9{02)

PICTURE X(08) VALGUE
PICTURE X{01) VALUE
PICTURE X (08) VALUE
PICTURE X(02) VALUE
PICTURE X (17).

PICTURE X (01) VALUE

PICTURE X (08) VALUE
PICTURE X(01) VALUE
PICTURE X(08) VALUE
PICTURE X (02) VALUE
PICTURE X (02).

PICTURE X{01) VALUE

PICTURE X (08) VALUE
PICTURE X(01) VALUE
PICTUORE X{(08) VALUE
PICTORE X {02) VALUE
PICTURE X(16).

PICTURE X(01) VALUE

6.2 IMS/VS Application Programming Reference Manual

VALUE SPACE.
YALUE SPRACE.

VALUE ZEROS.

YPARTROOT *.
LIS
'PARTKEY °*.

1 =29
.

e,
" STANINFO',
V(.

'STANKEY °'.

¢ =9
')l.

' STOKSTAT®.
LU
'STOCKEY *.

" !.

\




DPSSAMO1 ASSEMRLE A PALO ALTO DEVELOPMENT CENTER

02 SEG-NAME-02200 PICTURE X(08) VALUE *CYCCOUNT'.
02 BRGIN-0P-02200 PICTURE X (01) VALUE ' ('.
D2 KEY- NAME-02200 PICTURE X (08) VALUE 'CYCLKEY .
02 REL-OPER-02200 PTCTURE X(02) VALUE ' =1,
02 KEY~-VALUE-02200 PICTURE X (02).
N2 END-0P-02200 PICTURE X (01) VALUE ')'.
01 SFG02300-SSA.
02 SEG-NAME-02300 PICTURBE X (C8) VALUE 'BACKORDR®.
02 BEGIN-0P-02300 PICTURE X (01) VALUE * ('.
02 KEY- NAME-02300 PICTURE X(08) VALUE 'BACKREY °*.
02 REL-OPFR-02300 PICTURE X(02) VALUE ' =7,
02 KEY-VALUE-02300 PICTURE X' (10).
02 END-OP-02300 PTCTURE X (01) VALUE ')°.
01 SEGDON10- INSERT-AREA.
02 FILLER PICTURE X (050) .
01 SEGONO6N-TNSERT-AREA.
02 FILLER PICTDRE X(61).
02 RIGHT-MAK E-SPAN PICTURE S9(03).
02 FILLER PICTURE X (06).
02 WRONG-MAKE~SPAN PICTURE 9 (03).
02 FILLER PICTURE X(12).
01 SEGO02000-INSERT-ARFA.
02 FILLER P ICTURE X (160) .
01 SEG0220N-INSERT-AREA.
02 FILLER PICTURE X(025).
01 SEG02300-INSERT-AREA.
02 FILLER PICTURE X (075).

LINKAGE SECTION.
01 PCB-AREA-1.

02 DBD-NANE PICTURE X (08).
02 SEGMENT~1EVEL PICTURE X {(02).
02 STATUS-CODES PICTURE X(02).
02 PROCESS-OPTIONS PICTURE X (04) .
02 FILLER PICTURE S9(05) COMPUTATIONAL.
02 SEG- NAME-FEEDBACK PICTURE X {08).

PROCEDURFE DIVISION.
ENTRY 'DLITCBL' USING PCB-AREA-1.
DISPLAY *START DB LOAD' UPON CONSCLE.
OPEN TINPUOT INPUT-FILE.
MOVE 'ISRT' TO DL1-FUNCTION.
READ-INPUT-FILE,
READ INPUT-PILE AT F¥ND
GO TO END-INP-FILE.
BUILD-SEGMENT.
IF INP-SFG-NAME NOT FEQUAL TO SPACES
PERFORM WRITE-BUILT-SEGMENT THRU WRITE-SEGMENT-EXIT
MOVE ZEROS TO SUB-1
MOVE SPACES TO BUILD-SEGMENT-AREA
MOVE INP-SFG-NAME TO PREV-SEG-NAHME.
ADD 1 TO SUPR-1.
I¥ SUB-1 IS GREATER THAN 14

DISPLAY 'MORE THAN 14 CARDS PER SEGMENT' UPON CONSOLE

DISPLAY 'SEGMENT IS ' PREV-SEG-NAME UPON CONSOLE

GO T0O TOCKED-HALT.
MOVE INP-DATA TO BUILD-DATA-AREA (SUB-1).

Application Program Examples

6.3




PILE: DFSSAMD1 ASSEMBLE A PALC ALTO DEVELOPMENT CENTER

GO TO READ~INPUT-FILE.
WRITE-BUILT-SEGMENT.
IF PREV-SEG-NAME EQUAL TO SPACES
GO TO WRITF-SEGMENT-EXIT.
I¥ PREV-SFG-NAME 'PARTROOT' GO TO SEGMENT-IS-SEG00010.
I¥ PREV-SEG-NAME " STANINFO' GO TO SEGMENT-IS-SEGC0060.
I? PREV-SEG-NANME *STOKSTAT' GO TO SEGMENT-IS-SEG02000.
I PREV-SEG-NAME YCYCCOUNT' GO TO SEGMENT-IS-SEG02200.
IF TPREV~-SEG-NAME ' PACKORDR' GC TO SEGMENT-IS-SEG02300.
INVALID-SEGMENT-NAME.
DISPLAY 'INVALID SEGMENT NAME = ' PREV-SEG-NAME.
GO TO LOCKED-HALT.
SEGM ENT-IS~-SEGN0010.
MOVE RUTLD-SEGMENT-AREA TO SEGOOO10-INSERT-AREA.
MOVE BOILD-SEGMENT-AREA TO KEY-VALUE-00010.
MOVE SPACE TO BEGIN-0P-00010,
CALL ‘*CRLTDLI* USING DL1-FUNCTION, PCB-AREA-1,
SEGOOC10-INSERT-AREA, SEG00010-SSA.
MOVE ' (' TO BEGIN-0P-00010,
IF¥ STATUS-CODES NOT = SPACES, GO TO SEGMENT~INSERT-ERROCR.
GO TO WRITE-SEGMENT-EXIT.
SEGMENT -IS-SEGON0G6N,
MOVE BUILD-SEGMENT-AREA TO SEGO0060-INSERT-AREA.
MOVE WRONG-MAKE-SPAN TO RIGHT-MAKE-SPAN.
MOVE BUILD-SEGMENT-ARFA TO KEY-VALUE-00060.
MOVE SPACE TO BEGIN-0P-00060.
CALL 'CRLTDLI* USING DL1-FUNCTION, PCB-AREA-1,
SEGOO0O060-INSERT-ARFEA, SEGO0O 10-SsaA,
SEGD0060-SSA.

MOVE ' (' TO BEGIN-O0P-00060.
I¥ STATUS-CODES NOT = SPACES, GO TO SEGMENT-INSERT-ERROR.
GO TO WRITF~SFGMENT-EXIT.
SEGMENT -IS-SEG02000.
MOVE BUILD-SEGMENT-AREA TO SEGO2000-INSERT-AREA.
MOVE RUILD-SEGMENT-AREA TO KEY-VALUE-02000.
MOVE SPACE TO BEGIN-0P-02000.
CALL 'CBLTDLI* USING DL1-PUNCTION, PCB-AREA-1,
' SEG02000- INSERT-AREA, SEG00010-SSa,
SEG02000-SSA.
MOVE * (' TO BRGIN-OP-02000.
IF STATUS-CODES NOT = SPACES, GO TO SEGMENT-INSERT-ERROR.
GO TO WRITE-SEGMENT-EXIT.
SEGMENT-IS-SEG02200.,
MOVE BUITLD-SEGMENT-AREA TO SEG02200-INSERT-AREA.
MOVE BUILD-SEGMENT-AREA TO K EY-VALUE-02200.
MOVE SPACE TO BEGIN-CP-02200.
CALL '"CBLTDLI' USING DL1-FUNCTION, PCE-AREA-1,
SEG02200-INSERT -AREA, SEG0O0010-SSA,
SEG0 2000-SSA,
SEG02200-SSA.
MOVE ' (' TO BEGIN-0P-02200.
IF STATUS-CODES NOT = SPACES, GO TO SEGMENT-INSERT-ERROR.
GO TO WRITE-SEGMENT-EXIT.
SEGMENT-T S-SEG02300,
MOVE BUILD-SEGMENT-ARFA TO SEG02300-INSERT-AREA.

6.4 IMS/VS Application Programming Reference Manual

N

.

7



FILE: DPSSAM01 ASSENBLE A PALC ALTO DEVELOPMENT CENTER

MOVE BUTLD-SEGMENT-AREA TO KEY-VALUE-02300.
MOVE SPACE TO BEGIN-0P-02300.
CALL *CBLTDLI' USING DL1-PUNCTION, PCB-AREA-1,
SEG02300-INSERT-AREA, SEG00010-SSA,
SEG02000-SSA,
SEG02300-SSA.
MOVE ' (' TO REGIN-OP-02300.
IF STATUS-CODES NOT = SPACES, GO TO SEGMENT-INSERT- ERROR.
GO TO WRTTE-SEGMENT-EXIT.
WRITE-SEGMENT-EXIT. EXIT.
SEGMENT-INSERT-FERROR.,
DISPLAY 'SEGMENT ¢
PREV -SEG -N AME
' INSERT ERROR, !
' STATUS CODE= !
STATUS-CODES UPON CONSOLE.
G0 TO WRITE-SEGMENT-EXIT.
END-INP-FILE.

CLOSE INPUT-FILF.
PERFORM WRITE-BUILT-SEGMENT THRU WRITE~SEGMENT-EXIT.

DISPLAY ' END DB LOAD* UPGON CONSOLE.

LOCKED-HALT.
GOBACK.

DATA BASE DUMP PROGRAM

ASSEMBLER LANGUAGE APPLICATION PROGRAM EXAMPLE

In this example, the application program DFSSAM08 is a program used
to dump a data base named DI21PART. This is a batch processing program
that is the reverse of the data base load program, DFSSAMO1, shown
previously. The procedure MFDBDUMP (in conjunction with the sample
problem-in the IMS/VS Installation Guide) uses DFSSAM08 as the source
program. The listing follows.

Application Program Examples 6.5




PILE: DFPSSAMO8 PTC1138 A PALO ALTO DEVELOPMENT CENTER

o/ REPL NAME=DPSSAM08
TITLE °*DFSSAM0O8 - DUMP SAMPLE DATABASE IMS/VS*
PRINT NOGEN

DFSSAMO8 CSECT
SPACE 1

PCBREG EQU 4

BASE1 EQU 12
ENTRY DLITCBL
SPACE 1
USING *,BASE1

DLITCBL SAVE (14,12),, SAMOB-120

LR 12,15 LOAD BASE REGISTER WITH EP
ST 13 ,SAVEREGS+4 FORVARD CHAIN SAVE AREAS
LA 15, SAVEREGS A (SAVE AREA)

ST 15,8(,13) BACK CHAIN SAVE AREAS

LR 13,15 A(SAVE AREA)

SPACE 1

L PCBREG, 0 (1) A (PCB) PASSED BY CALLER

ST PCBREG, PCBADDR PUT A(PCB) IN CALL LIST
MVI PCRBADDR ,X'00* CLEAR HI BYTE

USING DLIPCB,PCBREG
OPEN (OUTFILE, (OUTPUT))

GETDISK DS 0R
CALL CBLTDLI  ,MP={E,DLILINK) ISSUE DL/I CAL
CLC DLI STAT,=C* ¢ WAS CAlL CK ? '
BE CALLOCK YES, THEN PRINT SEGMENT
CLC DLISTAT ,=C'GA"* DID CALL CROSS BOUNDARY ?
BE CALLOK YES, THEN ERINT SEGMENT
CLC DLISTAT, =C*' GK' IS THIS SIBLING SEGMENT ?
BE CALLOK YES, THEN PRINT SEGHENT
CLC DLISTAT,=C"* GB! IS THIS END OF DATA BASE ?
BE ENDDI SK YES, THEN RETURN
WTO 'ERROR IN GET NEBXT DL/I CALL'
B ABFND )

*...BUILD OGUTPUT RECORD

CALLOK Ds 0H

MVC OOTREC(8) ,DLISEGFB

MVC  OUTREC+9(100) ,SEGRETRN
PUT  OUTFILE,OUTREC

MVC  OUTREC(8) ,=CLB' !

MVC  OUTREC+9(100) ,SEGRETR N+ 100
PUT  OUTPILE,OUTREC

MVI SEGRETRN,X'UQ?* EL ANK
Mvc SEGRETRN# 1(L*SEGRETRN-1) , SEGRETRN
B GRTDI SK
EJECT
ABEND EQU * .
ENDDISK CLOSE (QUTFILE)
L 13, SAVEREGS+U4
RETORN (14,12),,RC=0
EJECT
*..o CONSTANTS .AND DSECTS
DLIFUNC DC CLY'GN ! GET NEXT CALL FUNCTION
¥,...DLT CALL LIST

DLILINK DC A{DLIFUNC) A (FUNCTION)

6.6 IMS/VS Application Programming Reference Manual

)



( N\
)

FPILE: DPFSSAMO8

PCRADDR

SAVEBEGS
OUTREC
SEGRETRN

OUTFILE

INSPCB
DLIPCB
DLTPILE
DLISGLEV
DLISTAT
DLIPROC

. DLYSEGFB

DC

DC

nc
SPACE
DC

DC

DC

DC
SPACE
LTORG
SPACE
DCB

SPACE
DSECT
DS

DS

ns

ns

DC

DC

DS
END

PTO1138 1 PALO ALTO DEVELOPMENT CENTER

A (0) A (PCB)

X' 80* ERD OF LIST PLAG
AL3 (SEG RETRN) A(I/0 AREA)

1

18P0 BREGISTER SAVE AREA
Cr110v * OUTPUT RECORD
CL200! I/0 AREA

CL10DY

1

1

DSORG=PS,MACRP= (PN),

LRECL=110, BLKSIZ2F= 110 ,RECF&=FB,DDNANE=0UTPUT
1 . g

oH
CL8
cL2
CL2
cLu4'c
F'O?
CL8

Application Program Examples

6.7




BATCH

PROCESSING PROGRAM FXAMPLE

The two programs previously shown, DFSSAMO1 and DFSSAMO08, are batch
processing programs, written in COBOL and Assembler Language,

respectively.

of DFSSAMO1 to interpret the format and content of this data.

PARTROOT G2ANY6OCLO WASHER 0901
STANINFO 02 142 1200 14 0002
06 0003
STUKSTAT 00 AAL6S11 000000000 £ACHDOO0ODO0O0O0NN00000 0004
512 0000000 0UU0L31 CNOOO01S 0000N20 CNOEL26 00VOL0& 000000NVS
CLVLIONOCGY QOVOGID @ 514N N00A
STOKSTAT 00 AK231!7F LIV IHUAIMVIV VIV EACHCOQOONC000002 TU000 (A113
60 COOVOLO YOLDVRR DYLOODY VUOVOND COVNVIAOHOVCD I TUNNNDT A
400GCO0UND VOVOGN0 O 2I6UN agoa
STOKSTAT C0280G9126 0G00N000N EACH 000000000000000000019
000051351 7517S000000000000630 000U000, 000000N 00006A0 0001053 600000137
04 000UNDOO00OOV00 O 494Y 0138
PAR TRIOT 02CKOSLWIBLK CAPACITOR 0142
STANINFO 02 742 1200 €2 0143
06C 0144
STIKSTAT 00 VF 52906 000001000 EACHO00000000000400000 0169
245 0000000 0UCVOLO 000N0D0 0000000 0GOCNON0000000200000001 70
0R’N000000 0000CON U H245N o017t
STOKSTAT 0025900326 000000340 000000 0172
510510501:0000000001320 000000000000660 0000660 000000000000001 73
009204003000000000000 0174
SINKSTAT 0025910926 000000340 000000 0175
5105105 000000000Q00008 000000000000000 000008 000000000000001 76
0N000000V000000000000 [ANAS
PAR TROOT 02C SK 136G 194KL KR1 J50KS 0178
STANINFO 02 142 1200 82 o179
06C. 0180
STOKSTAT 00 LDT4S5R M000002710 EACHU00000000000000000 o1al
435 00000V NH00014 NNOOOO0 0000NCO 00000140000000600000001 82
00000CUNN0 000UOVG O VaBsN 0183
STOIKSTAT 00 SK217113 MO00002710 EACH000000000000000000 0184
260 0000000 00VO0VL4 0000000 0000000 0000004 0000000200000001 85
0017000C000 0000000 O V260N ol86
STNKSTAT 0025502526 000000000 . . 008000 o187
4724725000000000000014 0000000 000000000000014 0000050 000001 88
04 00001000V000000000 0189
PARTROOT 0ZJANINYT6R DIUDE CODE-A 0202
STANINFO 02 o 742 1200 72 0203
06¢ 0204
STOKSTAT 0025509126 000000000 004000 0208
5135155000000000000017 0000000 000020000000017 0000068 000000209
03 00000000000UV0000 513 0210
BACKURDR 30PR237942 00000211
2000 0212
PARTRONDT 02M516995~-28 SCREW 0217
STANINFO 02 742 1200 14 0218
26¢C 0219
STUKSTAT 00 AAl6511 000000152 EACHO00000000000000000 0220
4894958 0000000 0000026 0000000 0000000 0000030 0000003 000000221
0000000000 0000000 0 V489N 0222
STOKSTAT 00 BA16515 0C0000069 EACHO00000000000000000 0223
455 0000000 0000006 0COO000 0000000 0000008000000000000000224
0000000000 0000000 0 V455N 0225
STOKSTAT 00 FF55460 M000000061 £ACHO00000000000000000 0226
448 0000000 0000044 OVV0000 0000000 0000043000000000000000227
0000000000 0NV000S O V448N 0228
STOKSTAT 0025910926 600006980 000000 0229
4974985000000000000095 0000000 0000000 0000100 N000000 0000000230

6.8 INS/VS Application Programaming Reference Manual

Refer to them for details as they are not repeated here.

Instead, the SYSIN data for DFSSAM01 is provided. Refer to the listing

'



(M

PARTRUOY
STANINFO

STOXKSTAT
CYCCOUNT
PARTRUOT
STANINFO
STOKSTAY

STUKSTAT

CYCCOUNTY
STUKSTAT

PARTROOTY
STANINFD

STNKSTATY
STOKSTAT
STIKSTAT
PAR TROOT
STANINFQ

STUKSTAT

BACKORDR
BACKURDR
BACKORDR

STNKSTAT
STUKSTAT
PARTRONY
STANINFO

STOKSTAT

PARTRDOT

0020C€000C00000000000 A\ 0231

02N51P3003F000 SCREW 0232
02 T42 1200 14 0233
03 0234
0025906026 000000000 00000000 000000000000000000241
00%) 4044045000000000000313 0C00000 0000000 0000360 0001209 000000242
00 000000000000000 © 0243
2010003690 00003600 ' ' 0244
02RCOTGF2TY) RESISTOR 0247
02 T42 1200 02 0248
06C N249

00 AK24527 000000240 EACHO00000000000000000 0250
213 0000000 0000033 0000000 0000000 0000033000000910000000251
0030000000 0NVY000 O V213N 0252
0028C09126 00000V000 006200000 0000000CON0Q0N0ONNA64
0UN0516517517500090uN0V0000L7 000000 000000N 00NONLT Q000057 N0NNOD3IGS
00 000CNAN00N00V0O0 1 4B85Y LETYY
2000000190 0000017 0367
0028011126 ¢€0000000 012000 0368
4594595000000000090026 0000000 000000000000026 N000240 000000369

29 00000CV0N00000000 0370
02106B1293P0N9 RESISTOR 0371
02 742 1200 02 0372
10 nat3
0025900326 0Cn000000 00000000 007005 (0000000000374
0010 393491476450C0000000001055 0000200 0NOOCO0 0N001055 0004780 000030375
22 1C0ua0CN0000000 0 Ni76
0025906026 0CN0V0000 00000000 000000000000000000380

0000 293 000000000000000 00000000000000000000000 0001808 000000381

01 000CNO0N0000104 O - 0382
0025910926 0CUVOLA20 , 000000 0383
4824835000000000000320 0000000 0000020 0000320 0000000 0000000384
002000000000000C 0000 0385
02250236-001 CAPACITOR 0386
02 742 1200 82 0387
04 01388
€0259C0326 0C0000000 00000000 007010 0000000000349
000 3934 384585000000000000410° 0000200 0000600 0000010 0000567 000000390
38 00NCO000000UV00 U  488Y 0391
30PR265943 00000390
1009 0390
30PRIHNTY2L 000003390
2009 0390
30PR420134 00000390
N0 . n190
00259060206 6C000000u V0000000 001000000000000000195
0CYO  44A4405000000000000000 NOVOQ000000000000000000 0000551 000000396
10 0CC0000NND00000 O 0397
0025910926 000003670 000000 0398
$175185000000000000072 V000000 0000000 000N0T2 0000045 000000399
000NCO0NOOVVOVOOVOVD  51TY 0400
02250219 TRANSISTOR 0401
02 742 1200 02 . 0402
058 0403
0025910926 000006500 004000 0413
5175185000000000000068 0000000 0000001 0000067 0000045 000000414

02 00000000000000000 517Y 0415
02250241-001 CONNECTOR 0416

Application Program Examples

609




STANINFO
PAR TROOT

STANINFO
STUKSIAT
STUKSTAT
STOKSTAT
PARTRONT
STANINFO
STUKSTAT
STOKSTAT
PAK TROOT
STANINFO
STIKSTAT
STOXSTAT
PARTROOT
STANINFO
STOKSTAT
STOKSTAT
SINKSTAY
PARTRUOT
SYANINFO
STOKSTAY
STUKSTAT

STIKSTAT

PAR TRUOT
STANINFO

6.10

02 T42 1200 &2 Ne617

06 04ls
02250796 RESISTOR . 06411
02 T2 1200 o2 0432

10 Ne33
0025900326 0000LV000 00000000 00500% 000000000004 34
00UU3T34R84885000000000000003 0000000 0000000 ©000003 00011 76 GO00NNG35
64 000003000000000 UV &B8Y LURTY
00254906026 cCconuNoCo 00000000 000000000000000000440
0010 448440N000000000000000 00200000000000000000000 0001229 000000441
80 006000000000VU000 O - 0842
0025910926 000001 740 070000 0443

$175185000000000000390 0000000 0000C00 0000381 0000180 00000N4&&
QLouUCO0CUQUUACN00000 S1T7Y Nead
02250796 SWITCH [ XYY
02 222 1200 54 044t

1] 04468
002590A026 Q00000000 VONNVOOO 000000000000000000449
0090 44H6665000000000000001 00VO00000NON0000NVO0ONT 0000062 000000450
02 0YOONNON0001023 O N4as51
002571020 000015359 000000 0652

512%135000000000000020 0000000 0000010 DO0000S 0000000 0000009453
00001000000000100000 0454
02250891 SERV(} VALVE 04655
n2 T42 1200 16 0456

06C n457
0025906026 0COo00u00N0 0U23UL000 N16000000000000000658
o0no 446446N0000000C00V00004 0000000 0000N04 00NODOO0 0000536 000NVNGS59
73 0C00C0300000029 0O nN460
0025910926 0C03950¢0 000000 0461
579440KN00000000070235 0000000 0G001AC 00NONSS 0000005 00NONN&K2
0000000C0000Y°0000000 509 0463
02252252~093 COUPLING WLT-1 9
02 T2 1200 16 D405
06C D4H6
0025900324 0C0Y000V0 000000 0467

4854850000000000000092 0000005 0000092 0000000000V0NNO0ONNONNL68
00300001)000000000000 14 . 0469
0025906026 00n0NNOCY 00000000 - 0A70000000000000004 70
0000  &4a20450N0JVVOONNVVOCY NODOVO0 0000000 0000010 00ONS3I2 NONOONGTY
87 00005 3N0NVV460 O ) 06472
0025910926 00V0 1 6450 000000 LIYX)

50 750750V0000000000076 0000005 QUOCOLO 0NNA0T6 0000008 OVOOON4T4

00000000000000000000  S03 0615
0230V3802 CHASSIS 0476
02 . 222 : 1200 34 0477
[+ ’ N&78
00259003256 000007900 000000 0479
494494500000000N000005 0000000 0000000 0000005 0000173 03000N48ND
0VDO0000NO0VCO0VVUIVOY 494 04nl
0025906026 000600000 00000000 017000000000000000682
0000 293 000000000000000 00000000000000000000000 0001198 000020483
04 000000009V00000 0 : 0484
0025910920 €00007900 000000 G485
517%1850000000000C0004 0060000 0000000 0000004 0000036 00000N&E86
0000000C0000000V00000 S17 : 0487
021003806 SWITCH LEY.T ]
02 142 1200 Se 04089
IMS/VS Application Programming Reference Manual

Va



STOKSTAT

BACKORDR
BACKORDR

STOKSTAT

STOKSTATY

PAR TRONT

STANINFO

STNKSTAT

STOKSTAT

PAR TRODT

STANINFO

STUKSTAT

STOKSTAT

‘PARTRUDT

STANINFO
STNKSTAT

STOKSTAT

PAR TROOT

STANINFO

STOKSTAT

SINKSTAT

PAR TROOT

STANINFO

STOKSTAT

PAR TROOT
STANINFO

06C
0025900326 000011263

0490
024000 0491

5145185000000000000090 0000005 0000012 0000041 0000300 000070492

72 0000127 00000000V S15Y

I0SN5360C9 R3404
1110

305N536610 83404
0160

00259060726 0aNNoO0Cy 00000000

0493

36609 00000494
0495

36610 0009n496
0497

on2000000000000000498

090U 414 0000000010000000 N(00000000000N0N000ONVO 0001 754 000000499

%2 00NCOISH00N00455 0
0025910926 000C06620

0400
100000 0501

5175185000000000000004 0000002 0000000 0000004 0000036 000000502

36 000C0000000000000 SL7

023007228 HGUSING
02 222

e :
0U259060264 000000000 00000000

0503

N504

1200 34 Ns05
0506
00000€000000000000507

ovuo 44H8448N00000000000UQL0 000N0000000000000000010 0000125 000000508

11 000000000000NL3 O
0025910926 0€0012000

0509
000000 0510

4984985000000030000013 0000000 0000000 0000013 0000006 000000511

00N00bN0COONNVUVO0000 498

023008027 CARD FRONT
02 h6A

02F
0025906020 000000000 00000000

0812

0513

7246 B84 05146
0515
016000000000000000516

00v0 346 0000000000000VU1 00000000000000000000001 N000044 0000N0517

07 0000001700000029 O
00259109206 0guovuann

0518
000000 0519

49$9459X000000009000003 0000000 0000003 00N0NN000C0000N00000NNN520

000UNN00NMVNNYNVOI0V

0521

0531

1200 82 0532
1533

000000 0534

$0050000000090¢0000001 000009 000001000000N001 00000L4 000000535

NZ2300o922u CAPACITOR
02 742
GoC
C025900326 0C0u00000
00 GQO0OUCCV92I000900 Y
0025904026 000000000 0GO00000

0536
013000000000000000537

0090 4764T6N000000000000011 00029000000000000000001 0000083 000000538

11 0C0000000000002 O

0230C9270 HOUSING
02 222
04
0025906026 GC0000000 00000000

05139

0540

1200 1A 0561
0542
005000000000000000543

0000 448 00U0V000020000C0 00000000000000000000000 0000044 000000544

G4 000C008006000000 O 0545
0025910926 000000000 000000 0546
448448X000000000000002 0000002 000000200000002 00000000000000547
00000000000000000000 T D58
0230092R0 HCUSING CONV 0549
02- 222 1200 18 0550
04 0551
0025910926 0C0293500 000000 0552
513452K000000000000002 0000000 0000000 0000002 00000000000000553
00000000000000000000 0554
02301 3405-002 MOUNTING 0555
02 22

646 0356

Application Program Examples

6.11




STOKSFAT
STOKSTAT
STOKSTATY
~PARTROOT
STANINFO
STUKSTAT
STOKSTAT
PARTROQT
STANINFU
STUKSTAT
STOKSTAT
-PARTROOT
STANINFO
STOKSTAT
STOKSTAT
STUKSTAT
“PARTROOT
STANINFO
STOKSTAT
STOKSTAT
STOKSTAT
PARTROOT

STANINFO

STOKSTAT

6.12

Quo
0025900324 400000000
009039 35004345000000000000000
27 100000000000067 O

nssS,
00030000 0040000000000000005548
0000000 0N0C00Q0 0000000 0N0C0T720 000000559
0560

00259906026 0C0000000 00000000 003000000000000000561
(e V) 329 0C07000N10000000 00000000000000000000000 0000560 000000562
14 000007000000540 0 0563
0025710926 000029650 000000 N564
514513500000000000000L 0000004 0000003 0000001 0000008 000000565

00 0COU0NEVONJIU0CIA00 518Y 0566
023013412 COVER 0567
02 222 1200 66 0568
06 0569
0025906026 €00000000 00000000 002000000000000000570

000" 44R4405000000000000012

0000005 0000020 0000000 0000400 000000571

36 COU0U23000004206 O 05872
0025910926 €00012100 000000 0573
5125125000000000000047 Q000010 0000005 0000047 0000017 000000576
000uy00NN0CNHVNV00000D 512 0575
02101 13429-001 COVER ASSY 0576
02 222 1200 66 oS77
06 0578
0025506026 C00000000 00000000 001000000000000000579

00:)0380448440N000000000000900

00000000000000000000000 0000394 000000580

€3 0C0C0000NN00L0S5 0 0ss8l
0025910926 000003700 000000 0582
5135135000000000000000 0000000 0000075 0000083 000CO0S GQO0000583
000U00CN00YINV00Y000 S13 0584
023013460-001 CAPACITOR 0585%
02 T42 1200 82 0586
04 0587
0025900326 000000000 00000000 006005 00000000000598

C0203793478478N000000000000004
73 GCO00000NN00000 O

0025906026 0CV000000
0090 443440N000000000900010

€0003934934955000000000000886
86 00000V000000000 O

0000005 000000000000004 0002915 000010589

n590
00000000 000000000000000000594
0000000 0000000 G000N00 0002248 0000 595

27 0CCNOCO0NNO000T 0 0596
0025910926 QC0001530 000000 0597
5145150000000000000349 0000000 0000255 0000094 0000108 000000598
00000000000000000000  SlaY 0599
023013548-002 CHASSIS 0600
02 222 1200 34 0601
09 0602
0025900320 G0N00000d 00000000 001005 000000000004503
00703734934600000000000000000 0007000 0000000. 0000020 0001186 V0ONVVS06
11 000000000NV0000 0 Y - 0605
0025916026 Q0C0000000 00000000 000000000000000000509
0090 293 010000000000029- 00000000000000000000000 0000498 000000610
01 000000000000505 O o611
0025910926 000000000 000000 0612
. 512512K000000000000002 0000000 0000002 0000000000000000000000413
00200000000000000000 0614
V256134-016 NAS6TICL NUT 0615
02 742 1200 14 0ol6
03 0617
0025900326 000003033 00000000 004010 000000000005618

0020200 0000000 0000886 0002376 000000619
0620

IMS/VS Application Programming Reference Manual



STOKSTAT

STOKSTAT

CYLCUUNT
PARTRUNT
STANINFO

STOKSTAT
STUKSTAT
STHKSTAT
PARTROOT
STANINFO
STUK STAT
STNKSTAT
PARTRUNT
STANINFO
STUKSTAT
pARTROOT
STANINFO
STUKSTAT
STOKSTAT
PAR TRUDT
STANINFO
STOK STAT
STOKSTAT

-PARTRUGT

STANINFOD
STOKSTAT

0025706026 000000900 0000D000 004090000000000000624
QUUD  4474475000000000000014 20000000000000000000014 0000904 000000625
46 100N 10000000000 O 0626
002591U9 20 €C0009000 000000 0627
«6146150009000€0000115 0000010 0000000 0000115 00000000000000628
C02000000000000Y0000 0629
2000001100 00001150 0629
025M003-118 7734304PB661TO RES 0630
02 742 1200 02 0631
.10 0632
0025900326 000000000 VOU00000 020010 00000000000633
007013934834B8RSN00C0VUO0000006 OCO0000 0000000 0000006 0000644 000010634
26 0CONNEH000U00N0 O  &RBY 0635
0025906026 000300000 NOVENONO 000000N00000000000539
00U 441 000)0009300VICH NOV00V00000030000000V00 0002190 §NN0N0640
19 000€00000000081 0 - 0641
0025910026 €C00LO0130 000000 0642
5195145000000000001648 0000000 0000021 0000627 0000091 0000VNNAK43
0000C0CHO00CN0000000 S518Y 0646
02552540-002 WIRF WRAP 0645
02 222 1200 42 LLYYA
04 0ReT
0027909126 000000000 00C00000 000000000000000000648
0000 460 000000000000060 00000200000000000000000 N0N0012 000000649
00 000000000000000 0 0650
0028009126 0C0000009 000000 0651
5145150000000000000012 7000000 0000012 000NJ0N 00000000000000652

12 00000000000009300 Y 0653
02652799 PULSE TRANSFORMER 0654
02 1ot 8300 0655
4 1656
0028009126 0CN00000N QUNNI000 0000000000000000V0A57
000U  5145155000000000000004 OCOV000 0000001 0000003 NOOONIB 000NONGSA
00 0100000000000L00 U 443Y 0659
0268663-192 CMUSCLO0KO03 0660
02 T42 1200 a2 0661
06C DHh62
0025906126 NCULLOONI 00L0N000 001000000000000000463
0000 3B444144405000300000000000 NOLNOC00VANNNS0 00NONND. 0001186 000000LH
€9 0CONNN0U0N0VLS6 O 0665
0025916926 €CuC00000 000000 0hoh
S$185185000000000000232 3000C52 0000075 0000232 000003i 000004Un6T

001706 CCHNN0I000Y0U0 S1H On6d
0208663~-104 CMUSN200403 0469
02 T42 1200 82 0670
06C 0AT1
0025906026 060000000 00000000 001000000000000000472
000U 448 200000060000015 UCOV00T000N0C23 NANON0A ANV0IY4 ONOO00ATI
05 0000000UNNIVUVY O Qh 14
0025910926 0€0GL000V 000000 0675
5135135000000000000095 0000015 00NNONN NO0C0Y9S 0000009 000000ATE
00000000000000000000 513 0677
0269857-63% CPO9ALKELS3K3 CAPAC 0474
02 T42 1200 82 0479
06C N6A0
0025906026 000000000 00000000 002000000000000000681
0000 44#400S000000000000000 0000000 0000000 0000200 000039 000000682
16 00N0V00UOVOVOLL O 0683

Application Program Examples

6.13




STAOKSTAY

PAR YRODT
STANINFQ

STOKSTAT

STOK STAT

PAR TROQT
STANINFO

STOKSTATY

STUKSTAT

‘PARTRNDT
STANINFO

STOKSTATY

STIKSTAT

STOKSTAT

PARTROOT
STANINFO

STUKSTAT

BACKURDR
BACKORDR
BACKORDR
RACKOROR
DACKORDR

STOUKSTAT

STOKSTATY

PAR TRUDT
STANINFO

6.14

0025910926 000000500 000000 NhAs
515515N0000000CG0000093 0030000 0000050 0000052 0000009 0000006ES
000N1CCNN0000N00009C0 515 0636
N27060654PNU1L ELE TUBE 0687
02 T42 1200 10 0688
06C 0AR9
0025906026 000000000 00000000 003000000000000000690
ovuo 446 000000000000000 00000000000000000000000 0000400 0V0000691
12 0000000)0000003 O 04/92
00259710926 0C01039C0 000000 0493
5155171000000000000038 0000000 0000002 0000036 0000004 00000064
00200000000000000J00 515 0A95
0274313995P002 NUT 04696
02 142 1200 14 0697
U3 0699
0025900326 000000000 00000000 000005 0000000000N0499
0000 4404405000000000001 736 00000000000000000002512 0000443 000000700
00 000000V30N000V0 O orol
0025996026 00N0LA000 06000000 000000000000000000T702
0090 296 0000000000CD017 000V0000000000000000033 0000880 000000703
00 0CO0V00V00000LS O 0704
027454949P991 LAMP HOLDER 0705
02 742 1200 82 01086
06C 0707
0025900326 0000061643 046000 0708
5185185000000000000061 0000000 0000040 0000024 0000173 0Q0NGNOTOY
80 0CO00N0NONONV0I00 505 _ 0710
00259C6026 000000000 00900000 022000000000000000711
0090 293 Q0V200000000000 00000000000000000000003 0001301 000020712
88 000C1N900000065 O 0713
0025910926 000005 360 000000 0714
5175145000900000000004 0002000 0000000 0000004 00000346 0000ONTLS
Q0V0N000000ONN00V000 SIT 0116
C2T1618032P1N1 CAPACITUR 07117
02 742 1200 82 0718
04 arle
0025900326 0000010C1 0VV00000 006005 000000000010720
0UV03934914925000000000000013 0000009 0000000 C00NN13 0002601 000010721
49 0COCNOOCV000000 O 435Y nr22
30PR 1493291303603 0435 B2446 3013609-001 00000723
0010 0724
30PK1493761303603 0485 B2446 3013609-001 noonNoT2s
oulL0 0726
30PR1530961303603 0485 B2449 3013609~-001 00000727
oolro nr29
30PKR1530981303603 0485 B2451 3013609-001 nooenT29
0ot o 0730
30PR1695661303603 04R5 R2484 3013609-001 00000731
00s0 0732
0025906026 000000000 0LO200000 002000000000007000736
0090 3n3 0U0000000000000 00000000000000000000000 0000952 000000737
18 000000CN00O0UOLLY O 0738
0025910926 200000000 000000 0739
45445413000000000000022 0000000 0000022 00000000000000000N0000T40
G00N0N0N00V0N000000Y 0741
0216142R9P 049 CIKCUIT BREA 07«2
02 T42 1200 0& 0143
06C 0744
IMS/VS Application Programming Reference Manual

N

N’




STOKSTAT

STOKSTAY

PAR TROOT

STANINFO

STOKSTAT

STUKSTAT

STUKSTAT

PARTROOT

STANINFO

STOKSTAT

BACKORDR

STNKSTAT
STUKSTAT
PARTRODT
STANINFO
STOKSTAT
STOKSTAT
PARTRUOT
STANINFQ
STUKSTAT
STOKSTAT
PARTROOT
STANINFQ

STOKSTAT

STOKST AT

0025906026 000000000 00000000 000000000000090000745
ounn 450 000000000000015 00900000000000000000017 0000033 000000746
03 000020000000001 O 0747
0025910926 0Cv000000 000000 0748
4984980000000000000002 0000000 0000001 0000001 0000002 000000749
00000009000000000000 498 0750
027630843P513 RESISTOR 0751
02 142 1200 02 0752
06C 0753
002590C326 000000000 00300000 000000000000000000754
000u 338 0000000000LQV02 00000000000000000000002 0000000 0000CCT55
00 0CCCN0000000002 O 0754
00255806026 000U0oU00 06000000 ©01000000000000000757
0000 4434642500000000000U000 200000000000000 0000000 0009555 000000758
$9 000000000000080 0 0759
0025910926 0C0000000 000000 0760
5185180000000000001403 0000000 0000300 0001203 0000858 000000761
000000000C000000000C 518Y 0762
027736847P001 TRAN SFORMER 0763
02 742 1200 94 0764
10 0765
0025900326 000000000 00000000 000003 00000000000766
00003935115115000000000000179 0000001 0000150 0000040 0001417 000000767
05 0000089 0000128 © 0768
30PR 135640 048y 83323 0000A3564 448506-100 00000769
1500 n7170
0025906026 n00000000 00C00000 N0500000000000000N774
0020 57 000000000000005 00000000000000000000005 0000430 000000775
20 0CC003300000040 0 0776
0025910926 000Ul 5100 000000 or1?
495497KN00000000000010 0000000 0000020 0000010 00000000000000778

00 00000000000000000 0179
02303008035 GASKET 0780
02 222 1200 84 0741
04 0782
0025906026 000000000 00000000 006000000000000000 783
0000 293 000000000000049 000N0000000002000000019 0000176 000000784
11 ©00000000000000 C 0T8s
0025910926 0000625380 000000 0786
5105105 0000000C0000012 0090000 0000000 0000012 0000008 000CNNTHT
C00001900003900000000 510 0788
02342124-056 RN6UC3161F 0789
02 742 1200 02 9790
10 0791
0025900326 000000000 00000000 000007 00000000000792
J0U03934884885000000000000008 0000000 0000000 0000008 0001176 00000N793
02 000000C0N0700028 0 488Y 0794
0025910926 0Cu00V000 000000 0401
5175185000000000000322 0000000 0000000 0000340 0000190 000000902
00000000000000000000 517Y 0803
N232124-640 RN65C9092F 0404
02 . 742 1200 02 0905
048 0306
0025900326 300000000 000000 0807
©944940000000000000000 0000000 0000000 0000000 0000008 000000808
€0000000000000000000 4934Y 0309
0025906026 00000000 00000000 000000000000000000810

0000 402 000000000000000 00000000000000000000000 0000075 000000811

Application Program Examples

6.15




PAR TROUT
STANINFO

STOKSTAT

STOKSTAT

PAR TRODY
STANINFO

STIKSTAT
STORSTAY
PAK TROOT

STANINFO
STUKSTAT

PAR TROOT
STANINFO

STOKSTAT
PARTROOT
STANINFO
STOKSTAT

STOKSTAT

PARTROOT
STANINFO
STCKSTAT
PAR TROOT
STANINFO

STOKSTAT
PARTROOT
STANINFO

STOKSTAT

6.16

03 000000000000000 O on12

0222125~469 RNT5C8252F 0813
02 742 1200 02 0814
26C 0815
0025906026 600000000 00000000 001000000000000000816
0090 446 000000000000100 00000000000000000000050 0000424 000000817
€3 v000V000000n00L3 © 0a1A8
0025910926 000000780 000000 0819
5135135000000000000090 0000000 0000000 0000090 0000060 000000820
000N00V9000NN00V0V0000 513 0921
0234353=4%6 RW6TV4T2 0822
02 142 1200 0823
06C 0924
0025900324 €00000000 00000000 002000000000000000925
0000 4794 719500000000000028U 00UVUOO 0000200 0G00EL0 0000165 000000826
03 000000000000004 0 . 0821
0025910926 000000000 000000 0831
5095175000000000000009 0000000 0000000 0000009 0000012 000000832
00 00000000000000000 SUYY 0833
0290-3033334 BONDED ASSY 08136
02 414 1236 0835
v1D 0336
0028009126 ¢€0C00000 003000 0837
5145155000000000000010 0000000 0000014 0000001 0000032 000000838
01 000€0000000000000 503Y 0839
02903033665 BCNDED ASSY 0840
02 414 7219 NK61
015 0842
0028009126 €C0000000 000000 0843
$145150000000000000024 0000000 0000024 0000000 0000048 000000844
0G000000000CVO0000000 4R2Y . 0845
02905537-384 CAPACITOR 0946
02 142 1200 nB47
06C 0848
0028002526 0€0000000 002000 0849
497461461 5000000000000004 0000000 0000000 0000004 0000050 0G00ANASO
01 0n0C00C0000000200 0851
c028C09126 0000000QU 000000 0rs52
514444D000V000G0000000 0000000 000000000000000000000000000000853
00000000000000000000 A\ LTS
02906029-040 CAPAC ITOR 0855
02 742 1200 82 0456
06C o8s7
0023009126 000000000 00000000 007000000000000000358
0000 513515S000000000000024 0000000 0000020 O00N0VO& 0000028 000000859
02 006000000000000 O Y 0860
029y7021-782 CAPACITOR 0361
02 142 1200 82 0962
06C 03863
6026009126 000061700 00000000 006000000000000000864
0000  5175170000000000000008 0000000 0000005 0000003 000CCLE 000030865
01 000000000000000 0 S03Y 0866
02922294~002 CONNECTQOR 0’79
02 T2 1200 42 0880
o6C 0981
00 TF346TA M000003390F FACH000000000000000000 0882
467 0000000 0000000 0000000 0000000 00000000000000000000N0863
0100000000 0000000 O V467N 03B4s
IMS/VS Application Programming Reference Manual

P



STOKSTAT 00 TF5877N MO00012540
467 0000000 0000001
06J20000000 0000G00 O V467N
STNOKSTAT 0028009026 - 0CV000000
00004524764745000000000000001
03 0CNC00000000V03 0
STOKSTAT 0028009126 030000000
00170 5145155000000000000017

FACH000000000000000000 Ca85
0060015 0000000 0000001 000000000000000886
0A87

00000000 020000000000000000888
00000000000000000000001 0000015 000000889
: 0390

00000000 000000000000000000891
0000000 0000000 0000007 0000030 000000892

00 0¢0C00000000000 v Y 0893

PARTHUOT 024922399-001 CCNNECTQR 0894
STANINFD 02 T42 1200 0895
o6C 08396

STOKSTAT 0023009126 000011430 005000 0897
5175175000000000000006 0000000 0000005 0000005 0000019 00000089A

01 00000000090000000 507Y 0899

PAR TRUQT 02925363-136 DIUDE ZENER 0900
STANINFO 02 T42 1200 72 0901
06C 0902

STUOKSTAT 0028009126 030000000
0000 5145150000000000000005

00000000 007000000000000000903
0000030 0000004 0000001 0000030 000000904

02 000000000000000 0 \{ 0905

HACKURDR 30PR729437 00000705

0040 0905

PARTRONT 02925380-101 DIGOE 0906

STANINFU 02 74 172 0907

000 0968

PARTRONT 02130331-102 FILTER 0910
STANINFO 02 8l6 0000

00 0713

STOKSTAT 0028009126 000000004
0090 51451550000000000000V08

00000000 000000000000000000914
0000000 0000004 0000004 0000025 000000915

00 000000000000000 0 488Y 0916

PARTRONT 02930331~-123 FILTER 0917
STANINFO 02 815 0000 u9ls
00 0919

STOKSTAT 0028009124 000000000
0090 5145155000000000000008

QU000000 000000000000000000920
0000000 0000005 0000003 0000025 000000921

00 000000000000000 O 48T7Y 0922

PAR TRODT C2330333-001 DISCRIMINATO 0923
STANINFO 02 8ls 0000 0924
00 0925

STOKSTAT £028009126 €00000000 00000000 013000000000000000926
0090 5145150000000000000002 0000000 0000002 (000000 0000008 000000927

01 000000000000001 O Y 0928

PARTRONT 02946325-086 PIN 0929
STANINFO 02 742 1200 16 0930
06C ' 0931

STOKSTAT 00 RF 34674 M0C0000899 EACH000000000000000000 0932
376 0000000 0001313 0000000 0000000 0001113000000000000000933

0000C00000 0000CU0 O V3IT6N 0934

STOKSTAT 00 VF34610 ° M3C00000u0 EACH0000000000N0000000 0935

170 0000009 000095750000000 0000000 0000059000000000000000936

0000000000 000V000 O V1ITON

STOKSTAT CO02BC09025 900000000
00004524814525000000000000000
74 0€0000000001010 0

STOKSTAT 0028009126 000000000

0937
00000000 850000000000000000938
00000000000000000000000 0000004 000000939
0940

00000000 050000000000000000941

0090 5145155000200030000008 0000000 0000000 0000008 0000016 000000742

Application Program Examples

6.17




PARTROOT
STANINFO

STOKSTAT
PAR TROOT
STANINFO
STOKSTAT
STOKSTAT
STOKSTAT
STOKSTAT
PAR TRAOT
STANINFO
STOKSTAT
PARTROGT
STANINFO
STUKSTAT
STOKSTAT
SINKSTAT
$AR TRUOT
STANINFO
STUKSTAT
PAR TRUOT
STANINFO
STNKSTAT
STOKSTAT
PAR TROOT
STANINFO
STOKSTAT
PARTROOT

STANINFO

STOKSTAT

6.18

C8 000000000000000 O 493Y 0943

02950060~006 RELAY 0944
02 T42 1200 96 0345
06C . 0946
€028CCI126 000015300 00000000 000000000000000000947
0000 5175185000000000009009 0000000 0000000 0NNJ009 0000027 ONO0VHI&B
00 000C00000000000 0 483V 0949
02954017-001 RESISTOR 0950
02 T42 1200 02 0951
06C 0952
00 JF3407A MU00002525 EACH000000000000000000 0953
907 0000000 0000066 0000000 0000000 0000N06000000030000000954
0000000000 NNOVOO0 O VIOIN 0955
00 TF3447A MOC0010000E EACHO00000000000000000 0956
401 0000000 0000000 0000000 0000000 0000000000000000000000957
00000C0000 00V0003 O V401N 0958
00 TF5877N M000002525 EACH000000000000000000 0959
474 0000000 0000002 0000000 0000000 0000002000000010000000960
0000000000 0000000 O V&T4N 0361
0028009126 000000000 00000000 000000000000000000962
0000 5145155000000000000004 2000000 0000003 0000001 0000008 000000963
00 000000000000000 O 486Y 0964
02958007-180 RESISTOR 0965
02 742 1200 02 0966
06C : n967
0028009126 0C€0000650 00000000 005000000000000000968
0000 5175175000000000000046 0000000 0000000 0000039 0000021 000000969
01 000006000000000 U A\ 0970
02960528~ 067 RFSISYOR 0971
02 T42 1200 02 0972
06C : 0973
00 DF 34671 M000007000 EACH000000000000030000 0974
140 0000000 00V0000 0000000 0000000 0000000N0N00010NN00000ITS
0300000000 0000000 O V140N 0976
0028009026 0C¢0000200 0Q009000 10000000000000000NIT7
0000452481479N000000000000000 000000000000000 0000090 0000003 NO00NOITE
¢3 000002000000003 O N9 19
00213009126 000018230 00000000 1040000000000000170980
0000 517%1700000000000000C9 0000000 0000005 00N0004 0000027 000000981
28 000000000000000 0 S505Y 0982
02968534-001 SOCKET 0983
02 142 1200 16 0984
06C 0985
0028009125 000050000 00000000 029000000000000000986
0000 514%155000000000000008 0000000 0000003 0N00QNS 0000007 000000987
02 0C0N0N000MN0V000 O \ 4 0988
02774810-019 THERMOSTAT 0989
02 T42 1200 16 0990
06C 0991
0028002526 000013250 00000000 007000000000000000992
00004955165175000000000000006 0000000 0000000 0000006 0000057 000000993
04 000000000000000 O S16 0994
0028009126 000009750 007000 0995
5175175000000000000021 0000000 0000N0S 0000016 0000014 000000996
Cl 00000000000000900 Y Q997
02975105-001 TRANSFORMER 998
02 T42 1200 16 0999
06C 1000
0028009126 000106000 024000 1001
5145155000000000000029 0000000 0000001 0000028 0000021 000001002
05 00000000000000300 Y 1003
023989036-001 TRANSFORMER 1004
02 142 1200 96 1005
06C 1006
0028009126 000019300 112000

511751 7n0000000000000007 0000000 0000004 0000003 0000017 02000
19 00000000000000000 A

IMS/VS Application Programming Reference Manual

-



~,

MESSAGE PROCESSING PROGRAM EXAMPLE

ANS COBOL APPLICATION PROGRAM

This message processing program, DFSSAMO3, provides you with the
ability to inquire about the total inventory of a part in all locations,
This program is one of several message processing programs used in the
Sample Problem, included in the IMS/VS Installation Guide.

The transaction code DSPINV retrieves the data from the data base,
DI21PART, loaded by a previous program. Assume that it wishes to
display, on a communication terminal, only the third inventory entry
listed in the above output. The inventory location key is obtained by
concatenating AREA, INVDEPT, PROJCD, and DIV.

The input format for this transaction is:

transaction code part number inventory key
despinv an960c10, 28009126

The output is:

PART=AM960C10 ; DESC=WASHER ; PROC CODE=74

AREA=2; INV DEPT=80; PRJ=091; DIV=26; PRICE= .000; STK CT DATE=513; UNIT=EACH
CURR REQMTS= 630 ; ON ORDER= 0 ; TOTAL STOCK= 680

DISB PLANNED= 1053 ; DISB UNPLANNED= 4 ; STK CT VARIANCE= 0

Application Program Examples 6.19




The program listing is:

FILE: DFSSAM03 ASSEMBLE A PALC ALTO DEVELOPMENT CENTER

IDENTIFICATION DIVISION.

PROGRAM-ID. 'DFSSAMO3*

AUTHOR. DON TRUDELL.

REMARKS. SINGLE-~LOCATION INVENTCRY DISPLAY PROGRAN,
THE TRANSACTION CODE WHICH ACTIVATES THE PROGRAM IS
DSPINV.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION,

SOURCE-COMPUTER. IBM-360.

OBJECT-COMPUTER, IBM-360.

DATA DIVISION.

WORKING ~STORAGE SECTION.

01 NEXT-FUNC PICTURE X {O4) VALUE °'GN °*,
01 UNIQ-FUNC PICTURE X(04) VRLUE °‘GU °*.
01 ISRT-FONC PICTURE X{(04) VALUE °*ISRT'.
01 STOKSTAT-WRITE-SHW PICTURE X {02) VALUE SPACES.
01 PARTROOT-SSA.
02 ROOT-RAME PICTURE X(8) VALUE *PARTROOT'.
N2 PREGIN-OP PICTURE X VALUE * (°.
02 EKRY-NAME PICTURE X (8) VALUE *PARTKEY °'.
N2 RELATION-OP PICTURE XX VALOE * =°,
02 KEY-VALUE PICTURE X(17) .
02 END-OP PICTORE X VALUE Y)°'.
01 STOKSTAT-SSA.
02 FILLER PICTURE X (08) VALUE 'STOKSTAT'.
D2 FILLER PICTURE X(01) VALUE * (‘.
02 FILLER PICTUORE X(08) VALUE 'STOCKEY'.
02 FILLER PICTURE X(02) VALUE ' =79,
02 SS-SSA-KEY.
03 PILLER PICTURE X(02) VALUE ZEROS.
03 S5-SSA-KEY-VALUE PICTURE X(08).
03 PILLER PICTURE X{06) VALUE SPACES,
02 FILLER PICTURE X(01) VALUE *')°*.
01 TERM-TN-AREA.
02 FILLER PICTURE X (140) VALUE SPACES.
01 REFORM-MESSAGE.
02 REFORM-TRANS-CD PICTURE X (8).
02 PART-NO PICTURE X(15).
02 INPUT-SS-KEY PICTURE X (08) .
N2 FILLER PICTURE X {109).

01 WORK-AREAS.
02 ROOT-KEY-WA,

04 ROOT-PREFIX PICTURE XX VALOE '02°,
04 PN-WORK PICTURE X({15).
02 MSG-SEG-CNT PICTURE S9 COMPUTATIONAL VALUE ZERO.
N1 PARMM-TAPLE.
02 FILLER PICTURE S9 (2) VALUE +15 CONP.
02 FILLER _ ~ __ PICTURE XX _VALUE 'L ¢,
02 FILLER PICTURE S99 VALUE +8 COMP.
02 PILLEP PICTURE X (02) VALUE 'L .
02 END-TABLE PICTURE S99 VALUE ZERO COMPUTATIONAL.
01 PART-LINK. ,
02 PART-NO-EDIT PICTURE X (17) .
02 FILLER PICTUBE XXXX.
02 REJECT-CODE PICTURE X.

6.20 IMS/VS Application Programming Reference Manual




FILE: DFSSAMO03 ASSEMBLE A

01

01

01

01

01

01

01

SEG -RET-AREA,
D2 FILLER

02 PART-NO

02 PILLER

02 NDESC

02 FILLER

PICTURE
PICTURF
PICTURE
PICTURE
PICTORE

PALO ALTO DEVELOPMENT CENTER

X(02).
X(15) .
X(09) .
X{15).
X{119).

STAN-INFO-RET REDEFINES SEG-RET-AREA.

02 FILLFR

02 PROC-CODE
STOCK-STATUS-RET
02 FILLER

02 SS-AREA

02 SS-DEPT

02 SS-PROJ

02 SS-DIV

02 FILLER

02 SS-UNIT-PRICE
02 FILLER

(2 SS-UNTT-OF-MEAS
02 FILLER

02 SS-STOCK-DATE
02 FILLFR

02 SS-CUR-REQMTS
02 SS-UNPL-REQMTS
02 SS-ON-ORDER
02 SS-IN-STOCK
N2 SS-PLAN-DISP
02 SS-UNPL-DISB
02 FILLER
BACK-ORDER-RET
02 FILLER

02 WORK-0ORDER

02 FILLER

02 WO-QTY
CYCLE-COUNT-RET
02 FTLLER

02 PHYSTCAL-COUNT
02 FILLFR

02 TOTAL-STOCK
LINE-1-AREA.

02 FILLER

02 FILLER

02 FILLER

72 FILLER
02 PART-NO
02 FILLER

02 DESC

92 PTLLER

02 PROC-CODE
02 CARR-RET
LINE-2-AREA.
02 PILLER

02 FILLER

PICTUORE
PICTURE

PICTURE
PICTURE
PICTURE
PICTURE
PICTORE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTORE
PICTURR
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

X{18) .
XX.

RECEFINES STAN-INFO-RET.

XX
x.

vxx.

XXX.

XX.
X(10) .
9(6)V999.
X (05).
X(084) .
X(33).

X (03).

X(15).

S9(7) V9.
S9(7) V9.
59(7)v9.
S9(7) V9.
S9(7) V9.
S9(7) V9.
X (23).

REDEFINES STOCK-STATUS-RET.

PICTURE
PICTURE
PICTURE
PICTURE

X(02) .
X (08) .
X(53).
S9(07) V9.

REDEFINES BACK-ORDER-RET.

PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
PICTURE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTORE
PICTURE
PICTURE

PICTURE

PICTURE

X (02) .
59 (07) V9.
X (04) .
S9(07) V9.

S99 COMPUTATIONAL VALUE +62.

S99 VALUE ZERO
COMPUTATIONAL.

X(01) VALUE ' °.

X (05) VALUE 'PART='.

X (15).

X{7) VALUE '; DESC="'.
X(15). .

X (12) VALUE *; PROC CODE='.

XXx.
X(on YALUE ' °.

S9(02) VALUE +88
CONPUTATIONAL.
S9(02) VALUE ZERQ,

Application Program Examples 6.21




FILE:

6.22

DFSSAM(03 ASSEMBLE A

02 FILLER PICTURE
02 FILLFR PICTURE
N2 SS-AREA PICTURE
02 PILLFR PICTURE
02 SS-DEPT PICTURE
02 FILLER PICTURE
N2 SS-PROJ PICTURE
02 FILLFR PICTURE
02 SS-DIV PICTURE
02 FILLER PICTURE
02 SS-UNIT-PRICE PICTURE
D2 PILLER PICTURE
N2 SS-STOCK-DATF PICTURE
N2 FPILLER PICTURE
02 S<-UNIT-0F-MEAS PICTURE
02 C..RR-RET PICTURF
D1 LINE-3-ARFA.
02 FILLER PICTURE
N2 FILLER PICTURE
N2 FILLER PICTURE
02 PILLER PICTORE
02 S5-CUR-REQMTS PICTURE
02 FILLER PICTURE
N2 SS-ON-ORDER PICTURE
02 FILLER PICTURE
N2 SS-TN-STOCK PICTURE
02 CARR-RET PICTURE
01 LINE-U-ARFA,.
N2 FILLER PICTURE
N2 PTLLER PICTURE
02 FILLER PICTURE
02 FILLER PICTURE
02 SS-PLAN-DISB PICTURE
02 FILLRR PICTURE
02 SS~UNPL-DISR PICTURE
02 FILLER PICTURE
N2 STOCK-VAR PICTURE
N2 CARR-RET PICTURE
N1 LINE-S-AREA.
N2 FILLER PICTURE
02 FILLER PICTURFE
0?2 PILLER PICTURE
02 DESC-1 PICTUPE
02- WORK--ORDER -~ - - -PICTORE
02 DESC-2 PICTURE
02 WO-QTY PICTURFE

PALC ALTO DEVELOPNENT

CENTER
COMPUTATIONAL.

X(01) VALUE * .,

X (05) VALUE *AREA=',

X(0"n.

X(11) VALUE *; INV DEPT='.

X (02) .

X (06) VALUE '; PRJ='.

X(03) .

X(06) VALUE *; DIV=",

X (02).

X(08) VALUE '; PRICE='.

Z (6) .999.

X (14) VALUE *; STK CT DATE='.

X(03).

X(07) VALUE *; ONIT="',

X (04) .

X(01) VALUE ' ',

S9(02) VALUE +67
COMPUTATIONAL,

S9(02) VALUE ZERO
COMPUTATIONAL.

X(01) VALUE * v,

X (12) VALUE 'CORR REQMTS=',

7 (06)9-.

X(11) VALUE '; ON ORDER=',

7 (06) 9-.

X {14) VALUE *; TOTAL STOCK=',

2(06)9~-.

X(C1) VALUE v o,

$9(02) VALUE +79
COMPUTATIONAL.

S9 {02) VALUE ZERO
COMPUTATIONAL.

X(01) VALUE * v,

X(13) VALUE *DISB PLANNED=',

2(06) 9-.

X (17) VALUE

*s DISB UNPLANNED=!.
7(06) 9-.

X (18) VALUE
¥; STK CT VARTANCE='.

Z(07)9-.

X(01) VALUE * *,

$9(02) VALUE 457
COMPUTATIONAL.

S9 (02) VALUE ZERO
COMPUTATIONAL.

X(01) VALUE * ',

X(24).

X (08) . "

X(11).

2(06)9-.

IMS/VS Application Programming Reference Hanual

®



/R\

DFSSAM(03 ASSEMBLE A PALO ALTO DEVELOPMENT CENTER

N2 CARR-RET PICTURE X (01) VALUE * ',
01 NO-EARTROOT-MSG.

n2 FILLER PICTURE S9 (02) VALUE +48
COMPUTATIONAL.

02 FILLER PICTURE S9(02) VALUF ZERO

COMPUTATIONAL.

02 PILLER PICTURE X(01) VALUE ' v,

02 PILLER PICTURE X (10) VALUE *PART NO. °.

02 PART-NO PICTURE X (15)

02 FILLER PICTURE X(17) VALUE
' NOT IN DATA BASE'.

02 CARR-RET PICTURE X (01) VALUE ¢ v,

01 NO-STOKSTAT-MSG.

02 FILLER PICTURE S9(02) VALUE #45
COMPUTAT IONA L.

02 PILLER PICTURE S9(02) VALUE ZERO

COMPUTATIONAL.

N2 FILLER PICTURE X(01) VALUE ' °,

02 FILLER PICTURE X (14) VALUE 'STOCK RECORD .

02 STOCK-KEY PICTURE X (08).

02 FILLER PICTURE X(17) VALUE
' NOT IN DATA BASE'.

02 CARR-RET PICTURE X (01) VALUE * ',

LINKAGE SECTION.
01 TO-TERM-PCB.

02 IO-TERMINAL PICTORE X(8) .
02 IO-RESERVE PICTURE XX.

02 TO-STATUS PICTURE XX.

02 INPUT-PREFIX PICTURE X{(12).

01 PARTFILE-PCB. ‘

02 PN-DBD-NAME PICTURE X (8}.
02 PN-SEG-LEVEL PICTURE XX.

02 PN-STATUS-CODE PICTURE XX.

02 PN-PROC-OPTIONS PICTURE XXXX.
02 RESERVE-DLI PICTURE S9(5) COMPUTATIONAL.
02 PN-SEG-NAME-FB PICTURE X (8).

PROCEDURE DIVISION.
ENTRY *DLITCBL' USING IO-TERM-ECB, PARTFIL E-PCB.
INITTALIZE.
MOVE SPACES TO STOKSTAT-WRITE-SW.
MOVE 'ODTSTANDING WORK ORDERS=' TO DESC-1 OF LINE-S5-AREA.
MOVE '; OQUANTITY=' TO DESC-2 OF LINE-5-AREA.
GET-TRANSACTION.
CALL *CBLTDLI' USING UNIC-FUNC, IO-TFRM-PCB, TERM-IN-AREA.
CALL-INPUT-ANALYZER.
CALL 'INPANAL' USING PARAN-TABLE, TERM-IN-AREA,
REFORM~-MESSAGE, MSG-SEG-CNT.
CALL~-PART-EDIT.
MOVE PART-NO OF REPOBRM-MESSACGE TO PART- NO-EDIT.
CALL 'PNEDIT' USING EART-~LINK.
FIND-PART-IN-DATA-BASE.
MOVE PART-NO-EDIT TO P N-WCRK.
MOVE ROCT-KEY-WA TO KEY-VALUE.
CALL 'CBLTDLI' G<ING UNIQ-FUNC, PARTFILE-PCB, SEG-RET-AREA,
PARTROOT-SSA.

Application Program Examples 6.23




T TP TSTOKSTAT-WRITE-SW EQUAL TO ON'

DFSSAMO3 ASSEMBLE A PALO ALTO DEVELOPMENT CENTER

IF PN-STATUS-CODE NOT EQUAL TO SPACES,
GO TO PARTROOT-NOT-FOUND.
PARTROOT-FOUND.
MOVE CORRESPONDTING SEG-RET-AREA TO LINE- 1-AREA.
FIND-STANINFO-TF-PRESENT.
CALL 'CBLTDLI' USING NEXT-FUNC, PARTPILE-PCB, SEG-RET-AREA.
IF (PN-STATUS-CODE EQUAL TO 'GB')
OR
(PN-SEG-NAME-FB NOT EQUAL TO 'STANINFO')
MOVE SPACES TO PROC-CODE OF LINE- 1-AREA
ELSE
MOVF CORRESPONDING STAN-INFO-RET TO LIN E-1-AREA.
PERFORM WRITE-LINE-1 THRU WRITE-LINE-1-EXIT.
GET-UNIQUE-ST OKSTAT.
MOVE INPUT-SS-XEY TO SS-SSA-KEY-VALUE.
CALL ' CELTDLI' USING UNIQ-FUNC, PARTFILE-PCB, SEG-RET-AREA,
PARTRCCT-SSA, STOKSTAT-SSA.
IF PN-STATUS-CODE FOUAL TO * GE!
GO TO STOKSTAT-NOT-FCUND. .
STOKSTAT=-FOUND.
MOVE CORRESPONDING STOCK-STATUS-RET TO LINE-2-AREA.
PEP FORM WRITE-LINE-2 THRU WRITE-LINE~2-PFXIT.
MOVE CORRESPONDING STOCK-STATUS-RET T0 LINE-3-AREA.
PERFORM WRITE-LIN®-3 THRU WRITE-LINE-3-EXIT.
MOVFE CORRES PONDING STOCK-STATUS-RET TO LINE-4-AREA.
MOVE 'ON' TO STOKSTAT-WRITE-SW,
MOVE ZEROS TO STOCK-VAR OF LINE-U4-AREA.
GET- NFXT.
CALL 'CBLTDLI' USING NEXT-PUNC, PARTFILE-PCB, SEG-RET-AREA.
IF PN-STATUS-CODE EQUAL TO *GB!
GO TO END-CURR-ROOT.
IP PN-SEG-NAME-FB EQUAL TO 'PARTROOT! GO TO END-CURR-ROOT.
IF PN-SEG-NAME-FB EQUAL TO *STOKSTAT' GO TO ERD-CURR-ROOT.
I? PN-SEG-NAME-FR EQUAL TO 'CYCCCUNT' GO TO CYCCOUNT-FOUND.
IF PN-SEG-NAME-FB EQUAL TO *BACKORDR' GO TO BACKORDR-FOUNE.
GO TO GET-NEXT.
CYCCOUNT-FOUNE.
COMPUTE STOCK-VAR OF LINE-4-AREA = PHYSICAL-COUNT OF
CYCLE-COUNT-RET -
TOTAL-STOCK OF
CYCLE-COUNT-RET.
PERFORM WRITE-LINE-4 THRO WRITE-LINE-4-EXIT.
GO TO GET-NEXT.
BACKORDR-POUN D.
TF STOKSTAT-WRITF-SW EQUAL TO *ON®
PERFORM WRITE-LINE-4 THRU WRITE-LINE-U4-EXIT.
MOVE CORRESPONDING BACK-ORDER-RET TO LINE-S-AREA.
PERPORM WRITE-LINE-5 THRU WRITE-LINE-5-EXIT.
MOVE SPACES TO DESC-1 OF LINE-5-AREA.
MOVE SPACES TO DESC-2 OF LINE-5-AREA.
GO TO GFT-NEXT.
END-CORR-ROQOT,

PERFORM WRITF-LINE-4 THRU WRITE-LINE-U4-EXIT.
GO TO END-IT.

IMS/VS Application Programming Reference Manual

™

N




a

FILF: DPSSAMO3 ASSEMBLE A PALO ALTO DEVELOPMENT CENTER

PARTROOT~ROT- FOUND.
MOVE PN-WORK TO PART-NO OF NC-BPARTROOT-MSG.
CALL *CBLTDLI' USING ISRT-FUNC, JO-TERM~-PCB, NO-PARTROOT-MSG.
GO TO END-IT.
STOKSTAT-NOT-FOUND.
MOVE® INPUT-SS-KEY TO STOCK-REY OF NC-STOKSTAT-MSG.
CALL 'CRLTDLI* USING ISRT-FUNC, IO-TERM-PCB, NO-STOKSTAT-MSG.
GO TO END-IT.
WRITE-LINE-1.
CALL 'CBLTDLI' USING ISRT-FUNC, IO-TERM-PCB, LINE-1-AREA.
ARITE-LINP- 1-EXIT. EXIT.
WRITE-LINE-2.
CALL 'CBLTDLI' USING ISRT-FUNC, IC-TERM-PCB, LINE-2-AREA.
WRITE-LINE-2-EXIT. EXIT.
WRITE-LINE-3,
CALL 'CRLTOLI' USING ISRT-FUNC, IO-TERN-PCB, LINE-3-AREA.
SFRITE-LINE-3-EXIT. EXIT.
WRITE-LINE-4.
CALL ?CELTDLI' USING ISRT-PUNC, IC-TERH~PCB, LINE-4-AREA.
MOVE SPACES TO STOKSTIAT-SRTITE-SRW.
WRITE-LINE-4-EXIT. EXIT.
WRITE-LINE-5.
CALL 'CBLTDLI' USING ISRT-FUNC, IC-TERM-PCB, LINE-S5-AREA.
WRITE-LINE-5-EXIT. EXIT.
END-IT.
GOBACK.

Application Program Examples 6.25




CONVERSATIONAL APPLICATION PROGRAM EXAMPLES USING PL/I

This application program illustrates use of the 3270 Model 2 as a
simple calculator. The program provides for addition, subtraction,
multiplication, and division.

A sample problem for this transaction (whose PSB=HIMAJCO03) is provided
in the IMS/VS Installation Guide. The examples that follow, however,
are entirely independent of the sample problem. No data base is used,
and only input to and output from the application program are
illustrated.

Example Number 1:

/FOR DFSMO2 (for the 3270, Model 1)
/FOR TUBFMT (for the 3270, Model 2)

The first entry is the MOD name (/FOR DFSMO2). Tube is the transaction
code.

Display back says:
START INPUT HERE.¢
You enter one number, the sign (+,-,%*,/), and the second number.
START INPUT HERE. ¢ 555+444,55
Display back is the answer, followed by two questions; these are to be
answered either YY, YN, or NN. The fourth possibility is NY, which is
not correct in this program;
YOUR ANSWER IS 999,55
TWO QUESTIONS. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN, ANSWER HERE. £ NY

Display back, and the application program ends the conversation:

NOT CORRECT ANSWER. WILL ASSUME ANS=NN. PROBLEM END.

/FOR TUBE
Display back asks for input.
START INPUT HERE. £ 1234,.34+1234
Display back gives answer to the problen andmgsks_Fvo questiomns.
" YoUR ANSWER IS 2068.3
TWO QUESTIONS. DO YOU WISH TO CONTINUE?

AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. ¢ YY

6.26 IMS/VS Application Programming Reference Manual

C



N

Because you want the answer to be used as a subtotal, internally in
the scratchpad user work area, this is stored:

SPA.IN_TEXT=000000000246834+;
The display returned, and the new subtraction problem is entered:
RESULT WILL BE USED AS SUBTOTAL. START INPUT HERE. £ 1234,34-2468.34
The display returned is the answer to the above subtraction problenm
add2d to the subtotal stored in the scratchpad work area, and the two
questions are asked again. This time you want to continue the
conversation, but do not want to have a subtotal carried over to the
next problem:
YOUR ANSWER IS 1234.,00
THO QUESTIONS. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS A SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. ¢ YN

The display returned a message, after which you entered a multiplication
problen:

CONTINUE, START INPUT HERE. £ 444444

The display returned the answer to the multiplication problem and the
two questions. The answer to the questions was ¥N:

YOUR ANSWER IS 195536. 00
TWO QUESTIONS. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS OUESTIONS BY YY OR YN OR NN. ANSWER HERE. ¢ YN

The display returned a message, after which you entered a division
problem:

CONTINUE, START INPUT HERE. ¢ 335567.56/33
The display returned the answer to the division problem and the two
questions. The answer to the questions was NN:
YOUR ANSWER IS 10168.71
TWO QUESTIONS., DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. £ NN
The message displayed then was:

ANS WAS NN. CONVERSATION ENDED.

The conversation is over.

Application Program Examples 6.27




PL/I OPTIMIZING COMPILER EXAMPLE

PILE: PLIPROG1 TEST A GPD CCMMON CMS

/¥*%%%x  PL/I EXAMPLE OF A CONVERSATIONAL FRCGRAM ***%%x/
/R ok ok Kok ROk ok K Kok ok KR Kk kKR ok Kok Rk Rk Rk ok R Rk )

DLITPLI: PROCEDURE (TERMINAL) OPTIONS (MAIN,REENTFANT) RECRDER;

/2R ok ok ok ko ok ko ook ok ok e ok ok ok ok koo ok oK 0K R R OF Ok KOk ok ok ok kokok ko Rk Rk ok okok ok ok /

/*

THIS PROGRAM IS AN EXAMPLE OF CCNVERSATIONAL PROCESSING.

IS WRITTEN IN PL/I FOR THE PL/I CPTIMIZING COMPILER.

THE PROGRANM WILL ACCEPT A SIMPLE EXPRESSION CONSISTING CF TWO
OPERANDS SEPARATEL BY AN OPERATOR, WILL CCMPUTE THE VALUE OF
THE EXPRESSION AND RETURN THE ANSWER. THE EXPRESSION MUST BE
IN THE FORM: NNNOMMM, WHERE NNN AND MMM ARE NUMBERS WITH NO
MORE THAN 7 DIGITS, AND O IS ONE OF THF OPERATORS +,-,* QR /.

A MAXTIMUM OF SEVEN CHARACTERS CAN PRECEDE CR FOLLOW THE

OPERATOR. IF ONE OR BOTH OF THE QPERANDS IS OMITTED, IT WILL
BE ASSUMED TO BE ZERO. IF MORE THAN GNE OPFRATCR IS ENTERED,

*/

ALL BUT THE LAST WILL BE CONVERTED TC ZERO AND THE COMPUTATIONX*/

WILL PROCEED. ANY BLANKS CR NON-DIGITS EMEEDDED IN EITHER
OPERAND WILL BE CONVERTED TO ZERO AND THE COMPUTATION WILL

*/
*/

PROCEED. OPTIONALLY YOU CAN REQUEST THAT THE ANSWER BE ADDED*/

TO A SUBTOTAL MAINTAINED OF FRECEDING COMPUTATICNS.

*/
*/

/******t***#*********************************************************/

1/******************************#****/

/*

DECLARE LOGICAL TERMINAL PCB */

/R ko ok ok ok ok ok bk ke ok ok koK ok ok dok ok Kok dokok /

DECLARE TERMINAL PCINTER;
DECLARE 1 IOPCB BASED (TERMINAL),

IO_TERMINAL CHARACTER (8),
I0_RESERVED CHARACTER (2),
STAT_CODE CHARACTER (2),
IN_PREPIX,

3 PRE_DATE FIXED DECIMAL (7),

3 PRE_TIME PIXED DECIMAL (7),

3 PRE_MSG_COCUNT FIXED BINARY (31);

NN

/AR ok ok ok ok KoKk Kok ok kokkok Kok /

/*

DECLARE SCRATCHPAD AREA */

/R Rk kR Ok ok ok ok ok ok ko koK Rk /

DECLARE 1 SPA,

DL FIXED BINARY (31),

X CHARACTER (1),

FLAG CHARACTER (1),

‘RESERVED -CHARACTER (2),
TRAN CHARACTER (8),

COUNT CHARACTER (1),

IN_TEXT FIXED DECIMAL (15,2),
PADDING CHARACTER (75);

NN

/******************************************/

6.28

IMS/VS Application Programming Reference Manual

N



FILE: PLIPROG1 TEST A GPD CCHMMON CHMS

/* DECLARE INPUT AND OUT MESSAGE AREAS */
/AR AR K A K AR KRR OR R RO R R R R KRk Rk R kKKK

DECLARE 1 INPUT_MSG,
2 LLIN FIXED BINARY (31),
2 2ZZIN FIXED BINARY (15),
2 TXTIN CHARACTER (80),

1 OUTPUT_MSG,
2 LLOUT FIXED BINARY (31),

2 Z20UT FIXED BINARY (15) INITIAL (ERASE),

2 TXTOUOT CHARACTER (178);
100k Rk KRR KRR AR KRR KK

/* DECLARE MESSAGE CONTENTS */
/AR AR K K R Kok ok Kok ok ok Rk ok ok ok /

DECLARE

(MSG9 CHARACTER (18) INITIAL
(*START INPUT HERE.#'), /% LAST CHAR SMI */
MSG 10 CHARACTER (41) INITIAL
(* T¥O0 QUESTIONS. DO YOU WISH TO CONTINUE?'),
MSG11 CHARACTER (46) INITIAL

(' AND SHOULD THIS RESULT BE USED AS SUBTOTAL?'),

MSG12 CHARACTER (35) INITIAL

(* AWS QUESTIONS BY YY OR YN OR NN. '),
MSG 14 CHARACTER (33) INITIAL

(*RESULT WILL BE USED AS SUBTCTAL. '),
MSG15 CHARACTER (55) INITIAL

(" NOT CORRECT ANSWER. WILL ASSUME NN. PROBLEM END.!'),

MSG16 CHARACTER (34) INITIAL
(' ANS WAS NN. CONVERSATION ENDED.'),
MSG17 CHARACTER (49) INITIAL

(*YOU MUST ENTER 2 OPERANDS WITH CPERATOR BETWEEN.

MSG19 CHARACTER (40) INITIAL

(* YOU ARE NOT ALLOWED TO DIVIDE BY ZERGC.'),
MSG20 CHARACTER (9) INITIAL

(*REENTER. '),
MSG21 CHARACTER (44) INITIAL

(* ONE OR BOTH OPERANDS EXCEEDS 7 CHARACTERS. '),

MS5G22 CHARACTER (38) INITIAL
(*UNSPECIFIED ERROR. PGM ENDS. ONCODE = '),
MSG23 CHARACTER (15) INITIAL
(*YOUR ANSWER IS:'),
MSG24 CHARACTER (10) INITIAL
{*CONTINUE, '),
MSG25 CHARACTER (23) INITIAL
(*SPA RETURN STAT CODE = '),
MSG26 CHARACTER (23) INITIAL
(*GET UNIQUE STAT CODE = '),
MSG27 CHARACTER (21) INITIAL
(*GET NEXT STAT CODE = '),
MSG28 CHARACTER (27) INITIAL
(*NO VALID OPERATOR ENTERED.')
) STATIC;

Application Program Examples

'),

6.29




PILE: PLIPROG1 TEST A GPD COMMON CHS

1R Rkiokokkok ok Rk kAo R Rk Rk kKK KK/

/* MISCELLANEOUS DECLARATIONS */
/R R oK ok K KoK KKKk K Rk Kk Rk kK ok

DECLARE

RESULT PIXED DECIMAL (15,2),

CRESULT PIC'S,SSS,SSS,5SS,S59.V99¢*,

STRING CHARACTER (80) VARYING,

(OPERAND1,0PERAND2) FIXED DECIMAL (9,2),

(A,S,M,D,L,0PERATOR) FIXED BINARY (15),

THREE FIXED BINARY (31) STATIC INITIAL (3),

GU CHARACTER (4) STATIC INITIAL ('GU'),

GN CHARACTER (4) STATIC INITIAL ('GN'),

ISRT CHARACTER (4) STATIC INITIAL ('ISRT'),

TXTANS CHARACTER (2),

PLITDLI ENTRY,

RETURN_POINT LABEL (TERMINATE,SAVE_INFOQ),

ERASE FIXED BINARY (15) STATIC INITIAL (32),
/* ERASE INITIALIZED TC X'002C' */

NL CHARACTER (1) STATIC;

UNSPEC " (NL) = *00010101'B; ,/* INITIALIZE NL TO X'15°

JEERRkkRkkkkkk /

/% ON UNITS */
JEEREREERE KKK KK /

ON CONVERSION BEGIN;
DECLARE ONCHAR BUILTIN;
ONCHAR = '0';
END;

ON ZERODIVIDE BEGIN;
IF COUNT = '2' THEN COUNT = *1';
RETURN_POINT = SAVE_INFO;

LLOUT = LENGTH (MSG19) ¢+ LENGTH (MSG20) + LENGTH (MSG9) + 5

TXTOUT = MSG19 |t MSG20 || NL || MSG9Y;
GO TO OUTPUT_MESSAGE;
END;

ON ERROR BEGIN;
DECLARE ONCODE BUILTIN,
CONCODE PIC'9999°;
CONCODE = ONCODE;
RETURN_POINT = TERMINATE;

LLOUT = LENGTH (MSG22) + LENGTH (CGCNCODE) + 4;

TXTOOT = MSG22 || CONCODE;
GO TO OUTPUT_MESSAGE;
END;

T/ Aok ok ok ook ok ok ok ok ok R kokokokok Kk ok /

___/* BEGIN_EXECUTABLE PROGRAM... %/ oo o
JFERERR kR Rk R kAR Rk kR kR kKK )

JRekpRkEkkkkkkk R kkkkkkkk )

6.39 IMS/VS RApplication Programming Reference Manual

*/

N



PILE: PLIPROG1 TEST A GPD COMMON CHMS

/* FIRST CALL TO SPA */
/AR AR Rk Rk Rk Rk KK/

BEGIKNING:
CALL PLITDLI (THREE,GU,TERMINAL,SPA);
IF STAT_CODE = *'QC' THEN RETURN;
IF STAT_CODE -= ' ' THEN GO TG BAD_GU;
IF (COUNT < *'1') | (COUNT > *4') THEN CCUNT = '"1°';

/***t******************/

/¥ GET TEXT SEGMENT */
/R Rk ok ok ok ok kKR KKK/

CALL PLITDLI (THREE,GN,TERMINAL,INPUT_MSG);
IF STAT_CODE = 'QD' THEN GO TQ BAD_NN;

IF STAT _CODE -»= ' ' THEN GO TO BAD_GN;

IP COUNT = *1' | COUNT = '3% | COUNT = "4

/AR AR K Ok Kok ok ok ok kR koK Kok

/*¥ PERFORM CALCULATIONS */
/AR OK Rk ok ok ok ok ok R KKk K ok Kk

THEN DO;
L = LLIN - 43
IF L > 15 THEN GO TO LNG_ERROR; /* (2%7) + 1 = 15
STRING = SUBSTR (TXTIN,1,1):

A = INDEX (STRING,'+');
S = INDEX ({STRING,'-');
M = INDEX (STRING,'#*7');
D = INDEX (STRING,'/');

OPERATOR = MAX (A,S,M,D);

IF OPERATOR > 8 THEN GO TO LNG_ERRCR;

IF L - OPERATOR > 7 THEN GO TC LNG_ERROR;

IF OPERATOR = 0 THEN GG TC CF_ERROCR;

OPERAND1 = SUBSTR (STRING,1,0PERATOR-1);

OPERAND2 = SUBSTR (STRING,OPERATOR+1,L-OPERATOR);
IF A > 0 THEN RESULT = OPERAND1 + OPERAND2;

*/

ELSE IF S > ¢ THEN RESULT = OPERANDY - OPERAND2;
ELSE IF M > 0 THEN RESULT = OPERAND1 * OPERAND2;

ELSE RESULT = OPERAND?'1 , OPEEKAND2;
IP COOUNT = *1' THEN COUNT = '2';
IF COUNT = '3' THEN DO;
RESULT = RESULT + IN_TEXT;
COUNT = 1'2';
. END;
IF COUNT = *'4' THEN DO;
IN_TRXT = 03
COUNT = '2°¢;
END;

1 /%% ook ok ok ok kol ook Aok Kok ok K R OK KKk kR kR KXok K/
/* OQUTPUT ANSWER ANL TWO QUESTIONS */
ko o KK Kok okl ok ok ok KOk 0K ok R K Kk KRR OR ok

IN_TEXT, CRESULT = RESULT;

Application Program Examples




FILE: PLIPROGY TEST A GPD COMMON CHMS

LLOUT = LENGTH (MSG23) + LENGTH
LENGTH (MSG10) + LENGTH
LENGTH (MSG12) + LENGTH

TXTOUT = MSG23 |} CRESULT ||

MSG10 || NL |}
MSG11 | NL }|
MSG12 || MSG9;

RETURN_POINT = SAVE_INFO;
END;
/******t*#********************/

/¥ CONTINUING CONVERSATION */
/2 Ak oK ok KK ok koK ok KoK Kk Kk

ELSE NO; /* COUNT = '2% */
TXTANS = SUBSTR (TXTIN,1,2);

IF TXTANS = 'YY' THEN DO;

RETURN_POINT = SAVE_INFC;

LLOUT = LENGTH (MSG14)

TXTOUT = MSG14 (| MSG9;
COUNT = t3°;
END;

ELSE IF TXTANS = *YN' THEN DO;
RETURN_POINT = SAVE_INFGQ;

LLOUT = LENGTH (MSG24)
TIXTOUOT = MSG24 || MSGYI;
COUNT = '4rv;

END;

ELSE IF TXTANS = !NN' THEN DO;
RETURN_POINT = TERMINATE;
LLOUT = LENGTH (MSG16) + 4;

TXTOUT = MSG16 || NL;
END;

ELSE GO TO BAD_NN;
END;
1/ ok ok ok ok ok ok ok ok ok ok kK kK

/* INSERT OUTPUT MESSAGE */
/R AOR ARk Kk ok ok ko ok Kok KKk

OUTPUT_MESSAGE:

CALL PLITDLI (THREE,ISRT,TERMINAL,OUTPUT_MSG) ;

GO TO RETURN_POINT:

/R ok ok ok ek ok ok koK sk ok ok ok ok koK ok Xk

/% _ _SAVE_INFORMATION - -IN--SPA--%/- - --— oo

/R ROk ROk Rk ko ok ok ok R kR k ko ok kokok f

SAVE_INFO:

6.32 IMS/VS Application Programming Reference Manual

{CRESULT) +

(MSGY) + 7;

+ U3

(MSG9) + 4;

/”\

~”

77N

N’



[

(N

FILE: PLIPROG1 TEST ‘A GPD COMMON CHS

CALL PLITDLI (THREE,ISRT,TERMINAL,SERA);
IF STAT_CODE = ' * THEN GO TO BEGINNING;
ELSE GO TO SAVE_ERROR;

/t***************/

/* TERMINATE */
JRERREE RN Rk

TERMINATE:
TRAN = ' ¢,
CALL PLITDLI (THREE,ISRT,TERMINAL,SPA);
RETURN

T/7%kkkkkdokkkkkkkhkkkkx /

/* ERROR ROUTINES */
JRERRRRRRRKRRKKERK KKK KK/

LNG_ERROR:
RETURN_POINT = SAVE_INFO;
LLOUT = LENGTH (MSG17) + LENGTH (MSG21) + LENGTH (MSG20) +
LENGTH (MSG9) + 7;
TXTOUT = MSG17 || NL }| MSG21 || NL || MSG20 || NL || MSG9;
GO TGO CUTPUT_MESSAGE;

OP_ERROR:
RETURN_POINT = SAVE_INFO;
LLOUT = LENGTH (MSG28) + LENGTH (MSG20) + LENGTH (MSG9) + 6;
TXTOUT = MSG28 (| NL {{ MSG20 {| NL || MSG9;
GO TO OUTPUT_MESSAGE;

SAVE_ERROR:
RETURN_POINT = TERMINATE;
LLOUT = LENGTH (MSG25) + LENGTH (STAT_CCDE) + U4;
TXTOUT = MSG25 || STAT_CODE;
GO TO OUTPUT_MESSAGE;

BAD_NN:
RETURN_POINT = TERBINATE;
LLOUT = LENGTH (MSG15) + 4;
TXTOUT = MSG15;

GO TO OUTPUT_MESSAGE;

BAD_GU:
RETURN_POINT = TERMINATE;
LLOUT = LENGTH (MSG26) + 4;
TXTOUT = MSG26 || STAT_CODE;
GO TO OUTPUT_MESSAGE;

BAD_GN:
RETURN_POINT = TERMINATE;
LLOUT = LENGTH (MSG27) + 4;
TXTOUT = MSG27 || STAT_CODE;
GO TO OUTPUT_MESSAGE;

END DLITPLI;

Application Program Examples 6.33



MESSAGE FORMAT SFRVICES

The following message format service statements show the message
descriptions and device formats used in conjunction with the
conversational PL/I programs illustrated elsewhere in this chapter.
This format applies only to the 3270 Model 2.

MEMBER NAME TUBFMT

TUBF MT FMT
e e e e FORMAT FOR TUBE PROGRAM
DEV TYPE=3270,FEAT=IGNORE
DPAGE1 DPAGE  CURSOR=((5,22))
FLDX DFLD POS=(03,02) ,LTH=10,ATTR= (NODISP,PROT)
FLDY DFLD POS=(C4,02),LTH=9,ATTR=PROT
FLD1 DFLD POS=(05,02) ,LTH=05,ATTR=PROT
FLD2 DFLD POS=(05,08) ,LTH=13,ATTR= PROT
INPUT DFLD POS=(05,22) ,LTH=18, ATTR=HI
DPAGE2 DPAGE  CURSOR= ((5,22))
FLD1 DFLD POS=(01,02) ,LTH=04, ATTR=PROT
FLD2 DFLD POS=(01,07) ,LTH=26,ATTR= PROT
FLD3 DFLD POS=(02,02) ,LTH=41, ATTR=PROT
FLDU4 DFLD POS=(03,02) ,LTH=46,ATTR= PROT
FLD5 DFLD POS=(04,02) , LTH=35, ATTR=PROT
FLD6 DFLD POS=(05,08) ,LTH=13,ATT R= PROT
TNPUT DFLD POS= (05, 22) ,LTH=02, ATTR=HI
FLDN DFLD POS=(18,02) ,LTH=4 ,ATTR= (NODISP, PROT)
DPAGE3 DPAGE  CURSOR= ( (5, 22))
FLDA DFLD POS=(03,02) ,LTH=06, ATTR=(NODISP,PROT)
FLDB DFLD POS=(04,02) ,LTH=6 ,ATTR=PROT
FLDC DFLD POS=(04,09) ,LTH=27, ATTR=PROT
FLDD DFLD POS=(05,04) ,LTH=17,ATTR= PROT
INPUT DFLD POS=(05,22) ,LTH=18,ATTR=HI
DPAGEY DPAGE
F1 DFLD POS=(03,02) ,LTH=5,ATTR= (NODISP,PROT)
F2 DFLD POS=(03,08) ,LTH=06,ATTR= PROT
F3 DFLD POS=(03,15),LTH=10, ATTR=PROT
F4 DFLD POS=(11,34) ,LTH=12,ATTR=(PROT,HI)
F5 DFLD POS=(13,37) ,LTH=06,ATTR= (PROT ,HI)
DPAGES DPAGE ‘
FL1 DFLD POS=(03,02) ,LTH=5,ATTR= (NODIS P, PROT)
FL2 DFLD POS=(03,08),LTH=03, ATTR=PROT
FL3 DFLD POS=(03,12) ,LTH=17, ATTR=PROT
FLU DFLD POS=(04,06) ,LTH=21, ATT R= PROT
FL5 DFLD POS=(11,37) ,LTH=07,ATTR=(PROT ,HI)
FL6 DPLD POS=(13,38) ,LTH=04,ATTR= ( PROT , HI)
DPAGE6 DPAGE  CURSOR= ((5,22))
A1 DFLD POS=(02,02) ,LTH=52, ATTR=PROT
A2 DFLD POS=(03,02) ,LTH=49,ATTR=PROT
A3 DFLD POS=(05,02) ,LTH=05, ATTR=PROT
AL DFLD POS=(05,08) ,LTH=11, ATT R= PROT
INPUT DFLD POS=(05,22) ,LTH=18, ATTR=HI
A6 DFLD POS=(04,02) ,LTH=08, ATTR= PROT
e A7 DPLD----POS=(04;11);LTH=08; ATTR=(NODISP,PROT)
FMTEND
TUBEMOD1  MSG TYPE=OUTPUT,SOR=(TUBFMT, IGNORE) ,NXT=TUBEMID
MFLD PLD1,LTH=5
MFLD FLD2, LTH=13
MFLD (INPUT,'-=--- 3
MSGEND
TUBEMOD M SG TYPE=OUTPUT,SOR= (TUBFMT, IGNORE) , NXT=T UBEM ID
LPAGE SOR=DPAGE1,COND=(MSG1,=,' START!')
MSG1 MFLD FLDX,LTH=5
MFLD (FLD1,*START')

6.34 IMS/VS Application Programming Reference Manual

e

N



N

MEMBER NAME TUBFMT

MSG2

MSG3

NsSGu

MSGS

MSG6

MSG7

MsGs8

MSG9

TUBEMID

MFLD
LPAGE
SEG
MFLD
MFLD
MFLD
SEG
MFLD
SEG
MFLD
SEG
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
MFLD
MFLD
MSGEND
MSG
MFLD
MSGEND
END

FLD2,LTH=12
SOR=DPAGE2,COND=(MSG2,=,'YOUR')

FLDN,LTH=4
(FLD1,'YOUR')
FLD2,LTH=26

FLD3,LTH=41
FLDY4,LTH=46

FLD5,LTH=35

FLD6, LTH=13

(INPUT,'--1)
SOR=DPAGE3, COND= (MSG3,='RESULT')
FLDA,LTH=6

(FLDB,'RESULT!')

FLDC, LT H=27

PLDD,LTH=17

SOR=DPAGEU4, COND=(MSG4,=,! ANS')
F1,LTH=5

(F2,' ANSWER?')

F3,LTH=10

F4,LTH=12

FS5,LTH=06

SOR=DPAGES, COND=(MSG5,=,' NOT')
FL1,LTH=5

(FL2, 'NOT?')

PL3,LTH=17

FLY4,LTH=21

FL5,LTH=7

FL6,LTH=4
SOR=DPAGE1,COND= (MSG6 ,=, ' CONTINUE, *)
FLDX, LT H=10

(FLDY, 'CONTINUE: ")

FLD1,LTH=5

FLD2,LTH=12

SOR=DPAGE6, COND=(MSG7, =, ' REEN TER. ')
A1,LTH=51

A7,LTH=8

(A6, 'REENTER. ')

(A3, "START')

(A4 ,'INPUT HERE:')
SOR=DPAGE6 ,COND= (MSG8,=, ' REENTER. ')
A2,LTH=40

A7,LTH=8

{A6, ' REENTER.')

(A3,'START')

(A4, ' INPUT HERE:')

SOR=DPAGE6, COND=(MSG9, =, '"REENTER. ')
A1,LTH=52

A2,LTH=49

A7,LTH=8

(A6, ' REENTER. ')

(A3,7START"')

(A8, " INPUT HERE:')

TYPE=INPUT,SOR= (TUBFMT) , NXT=TUBEMOD
INPUT ,LTH=18

Application Program Examples







~

CHAPTER 7. APPLICATION PROGRAMMING TESTING AIDS

DATA LANGUAGE/I TEST PROGRAM (DFSDDLTO)

The Data Language/I (DL/I) test program is an IMS/VS application
program that issues calls to DL/I based upon control statement
information. Tt compares, optionally, the results of those calls with
expected results that are also provided in control statements. It is
used to test DL/I.

To a limited extent, this program can be used as a general purpose
data base utility program. However, the control statement language
dozss not lend itself well to executing large volumes of calls. It is
useful as a debugging aid because it can display DL/I control blocks.
It provides an easy method of executing any call against any data base.

GENERAL DESCRIPTION

The DL/I test program is a control statement processor. There are
four *ypes of control statements used by the program:

o Status statements--establish print options and select processing
PCB.

e Comments statements--conditionally or unconditionally print
comments.

e Call statements--format the desired DL/T call.
e Compare statements--compare anticipated results with actual results.

The status statement is used to establish print options and to select
which PCR within a PSB will be used. The call to be issued is provided
in the CALL statement. A COMPARE statement is optional and is used to
tell the program what the results of this call should be in the data
base PCB and in the user input/output area. Various print and display
options are available; these are based on whether the results of the
call agree with the data in the COMPARE statement. COMMENTS statements
are also optional. As the name implies, they are only comments and
can be used by the programmer at his discretion. BAs will be seen later,
there are two types of comments: conditional and unconditional.

The general sequence of operation is to read CALL statements until
a noncontinued CALL statement is detected. The DL/I call is issued
based on data in the CALL statements. The program then reads the next
control statement. If a COMPARE statement is read, it compares the
contents of the COMPARE statement with the corresponding field in the
PCB, or, if a data COMPARE statement, with the data in the user
input/output area. The comments, call, compare, PCB, input/output
area, and compare data are printed if requested. If any control
statement other than a COMPARE statement is read after a call was
issued, the results of the prior call are printed first and the new
control statement is then processed.

INTERFACES

Module DFSDDLSO must be link-edited with DFSLIQ00 and placed in
IMSVS.PESLIB under the name DFSDDLTO.

Application Programming Testing Aids 7.1




JCL REQUIREMENTS

- -

EX®C

-

- =t m— s wm e e " ——— - > =m = = - . = -

o e s e = - - W~ = - - - - = " e = —— - —— = - -

This statement specifies the program name, or
invokes a cataloged procedure. The required
format is:

PGM=DFSRRCO0 ,PARM='AAA,DFSDDLTO,BBBBBBBB,
c¢ccececccec, ppbppDphD Y

wvhere AAA is the region type and BBBBBBBB is the
name of the PSB to be used. Parameters CCCCCCC and
DDDDDDD are optional, and can be used to specify
symnbolic input terminal and output terminal names,
respectively. Refer to the IMS/VS System
Programming Reference Manual for other parameters
that can be used.

- - . - - - - ——— s = . - - W W - = - - . - . . = - - -

ey, Py s, S e . s —— ey T oy, — oy = o

STEPLIB Defines the partitioned data set named IMSVS.RESLIB.}|

DD

data
DD

IEFR
DD

- -

— iy, W ey D gy .y T s T s e, T ey T gy e g T iy ey oy S s g . — i, " iy A i D s s i . iy D ) D gy

DD

blocks using the SNAP call. It must conform to the
0S SNAP data set requirements. T
------------------------ ----------;&:;;Z-;;;;--_--_-------—---|
{
SYSUDUMP This statement is optional and is used by the |
DD test program only when normal termination is |
not possible, |

7.2 IMS/VS Application Programming Reference Manual

If EXIT routine modules are used, they should be |
placed into this library or into another PDS {
concatenated to this library. |

_-----_-—--_-_—--_-----_--—--------————-—----------------'

: |
This statement defines two concatenated data sets. |

The first DD statement defines the library contain- |
ing the PSB to be used by the test program. The I
second DD statement defines the library containing |
the DBD of the data base to be processed. |

base This statement references a specific data base. |
There should be one statement for each data base to |

be processed. In each statement the ddname must 1
agree with the ddname specified in the DBD. |

|

DER This statement defines the log data set, if one is |
desired. A DD DUMMY statement may be used if a log |
is not desired. One form or the other of this i
statement is required. {

PRINTDD This statement defines the output data set for

|
|
the test program, including displays of control I
|
|



| SYSIN This statement defines the control statement input |
| DD data set. |

| SYSIN2 This 1is an optional secondary input statement. See |
{ DD the description of "Special Control Statement i
{ Formats"™ for details. |

CONTROL STATEMENTS

In the control statement formats below, the "$" indicates those
fields which are usually filled in; the absence of the "$" indicates
that the field can be left blank and the default used. If position 1
is left blank on any control statement, the statement type defaults to
the prior statement type.

STAIUS Statement

The STAT™US statement establishes print options and determines the
PCB that subsequent calls are to be issued against.

The format of the STATUS statement is as follows:

Position Contents
$ 1 = S identifies this as a STATUS statement.
2 = Output device option.

blank - use PRINTDD when in a DLI region;
use I/0 PCB in the MSG region.

1 - use PRINTDD in MSG region if the DD
statement is provided; otherwise, use I/0
PCB.

A - same as if 1, and disregard all other fields

in this STATUS statement.

3 = Print comment option.
blank - do not print.
1 - print always.
2 - print only if compare done and unequal.

4 = Not used.
5 = Print call option.
blank - do not print.
1 - print always.
2 - print only if compare done and unequal.
6 = Not used.
7 = Print compare option.
blank - do not print.
1 - print always.
2 - print only if compare done and unequal.

8 = blank.

Application Programming Testing Aids 7.3




Position Contents

9 = Print PCB option.

blank - do not print.

1 - print always.

2 - print only if compare done and unequal.
10 = Not used.
11 = Print segment option,

blank - do not print.

1 - print always.

2 - print only if compare done and unegqual.
12 - 15 = Reserved.
16 - 23 = DBD name.

This determines the PCB against which subsequent
calls will be issued; hence, it must be a DBD name
given in one of the PCBs in the PSB. The default
PCB is the first data-base-PCB in the PSB. 1If
positions 16 through 23 are blank, the current PCB
is used. If positions 16 through 18 are blank, and
positions 19 through 23 are not blank, then the
non-blank positions are interpreted as the relative
number of the desired data-base-PCB in the PSB., The
number must be right-justified to position 23, but
need not contain leading zeroes. The user must
insure that the relative data-base-PCB exists in
the PSB because no checks are made to insure that

a proper PCB is obtained in this manner.

2u = Print status option.
1 - do not use print option in this statement.
2 - do not print this STATUS statement.
3 - do not print this STATUS statement or use

print option.
blank - use print option -and print this statement.

25 - 28 = PCB processing option -- This is optional and is
only used when two PCBs have the same DBD name but
different processing options. If non-blank, it is
used in addition to the DBD name in positions 16
through 23 to select which PCB in the PSB to use.
This must appear as it does in the processing option
of the PCB desired.

29 - 89

Yot used.

If no STATUS statement is read, the default PCB is first data
base-PCB in the PSB, and the print status option is 2. New STATUS
statements can be anywvhere in the SYSIN stream, changing either the .
“~data base to be referenced or the options.

7.4 IMS/VS Application Programming Reference Manual




COMMENTS Statement

There are two types of COMMENTS statements. The first, the
unconditional statement, allows for unlimited comments, all of which
are printed. The second type, the conditional statement, allows only
limited comments, which are printed or not depending on other factors
as described below.

As the name implies, information on these statements is treated by
the system as comments only. ©¥No action, other than printing, is taken
when a COMMENTS statement is read.

Unconditional:

Position Contents
$ 1 = U specifies an unconditional COMMENTS statement.
2 - 80 = Comments - any number of unconditional COMMENTS

statements are allowed; they are printed when read.
Time and date of printing are printed with each
unconditional COMMMENTS statenment.

Conditional:

Position Contents
3 1 = T specifies a conditional COMMENTS statement.
2 - 80 = Comments - up to 5 conditional COMMENTs statements

per call are allowed; no continuation mark in
position 72 is required. Printing is conditioned

on the STATUS statement. Printing is deferred until
after the following call and optional compare are
executed, but prior to the printing of the following
call.

CALL Statement

The CALL statement identifies the type of INS/VS call to be made,
and supplies information to be used by the call.

Position contents

$ 1 = L identifies this as either a CALL or DATA statement.
3 = SSA level (optional).
4 = Format options--

U, if columns 16 onward are unformatted, with no
blanks separating fields.

Blank, for formatted calls with intervening blanks
in positions 24, 34, and 37.

Vv, for the first statement describing a variable
length segment, when inserting or replacing only

one variable length segment. It is also used for
the first statement describing the first segment of
multiple variable length segments.

M, for the second through last statements that begin

Application Programming Testing Aids 7.5




Position Contents

data for a variable length segment, when inserting

or replacing multiple variable length segments. -
P, when inserting or replacing via path calls. It (ﬁ
is used only in the first statement of fixed length ~

segment statements in path calls containing both
variable and fixed length segments.

5 - 8 = Number of times to repeat this call (optional) in
the range of 0001 through 9999.

$ 10 - 13 = DL/I, application program call function.
= DATA, indicates that this statement contains data
to be used in an ISRT, REPL, SNAP, CHPT, or LOG .
call. See the following section on DATA statements
for usage.
= CONT, if a continuation statement for field data *
that was too long for previous CALL statement.
$ 16 - 23 = SSA segment name.

24 = Not used.
$ 25 = {, if segment is qualified.

26 - 33 = SSA field name,

34 = Not used.
$ 35 - 36 = DL/I call operator or operators.

37 = Not used. f(‘\
$ 38 - XX = Field value (where the maximum value of XX=70). >
F XX + 1 = ), end character.
£ 72 = Nonblank, if more SSAs. Blank, if this is the only

or last SSA.

Position 3, the SSA level, is usually blank. If blank, the first
CALL statement fills SSA 1, and each following CALL statement fills
the next lower SSA. 1If the SSA level, position 3, is nonblank, the
statement fills the SSA at that level, and the following CALL statement
fills the next lower SSA.

Position 4 contains a.U to indicate an alternative format for the
CALL statement. 1In this case, from position 16 on is the exact SSA -
vith no intervening blanks in positions 24, 34 and 37. If command
calls (for example, *D) are to be used, then the U must specified.

Positions 5 through 8 are usually blank, but if used, must be = . o e
right-justifiedv " The identical call is repeated as specified in
positions 5 through 8.

Positions 10 through 13 - the DL/I call function is required only
for the first SSA of the call.

Positions 16 through 23 - the segment name is not specified for
unqualified calls.

7.6 IMS/VS Application Programming Reference Manual




If there are multiple SSAs in the call, each SSA should be entered
in positions 16 through 23 of a separate statement. A non-blank in
position 72 of any statement indicates that another SSA follows.
Positions 1 and 10 through 13 are blank for the second through last
SSks.

If the field value extends past 71, there is a nonblank in position
72 and CONT in positions 10 through 13 of the next statement, with the
field value continued starting in position 16. Maximum field value is
256 bytes.

An alternate format for the CALL statement is available by putting
a U in position 4., If you use this option, you must start the exact
SSA in position 16, with no intervening blanks in positions 24, 34,
and 37. To continue an unformatted SSA, put a nonblank character in
position 72, a U in position 4, and CONT in positions 10-13 of the next
statement. Include the data of the SSA that is continuing in positions
16 through 71. Maximum size for an SSA is 290 bytes. For additional
information on SSAs, refer to the section "Segment Search Argument! in
the "Data Base Batch Programming" chapter of this manual.

The maximum number of levels for this program is the same as the
IMS/VS limit, which is 15.

DATA Statement

DATA statements provide IMS/VS with segment information required
for ISRT, REPL, SNAP, LOG, and CHKP calls.

For an TISRT, REPL, SNAP, LOG, or CHKP call, statements containing
segment data must follow immediately after the last (non-continued)
CALL statement. The DATA statements must have an L in column 1, and
DATA in positions 10 through 13. The segment data appears in positiomns
16 through 71. Data continuation is indicated with a non~-blank in
position 72. On the continuation statement, positions 1 through 15
are blank, and the data is resumed in position 16. The maximum length
of a segment is set at 1500 bytes, but the user can change this by
reassembling the program with the USERSEG field altered.

Note: On ISRT calls, the last SSA can have only the segment name, with
no qualification or continuation.

When inserting or replacing variable length segments, as defined in
a DBDGEN, or including variable length data for a CHKP or L0OG call,
position 4 of the CALL statement must contain either a V or M. V nmust
be used if only one segment of variable length is being processed.
Positions 5 through 8 must contain the length of the data,
right-justified, with leading zeroes. This value is converted to
binary, and becomes the first two bhytes of segment data.
Segment-data-statements can be continued, as described above, with the
subsequent statements blank in positions 1 through 15, and the data
starting in position 16.

Application Programming Testing Aids 1.7




If multiple variable-length segments are required (that is,
concatenated logical child/logical parent segments both of which are
variable-length) for the first segment, there must be a V in position
4 and the length of that segment in positions 5-8. TIf that segment is
longer than 56 bytes, then the data is continued as above except that
the last card to contain data for this segment must have a non-blank
in position 72, The next statement applies to the next variable-length
segment, and must contain an M in position 4 and the length of this
segment in positions 5-8. Any number of variable-length segments can
be concatenated in this manner, up to 1500 bytes of total length. The
M or V and the length must appear only in statements that begin data
for a variable-length segment.

When inserting or replacing via path calls, a P in position 4 causes
the length field to be used as the length the segment will occupy in
the user I/0 area, without the length (LL) field of variable-length
segments, as in the instructions for M, above. V, M, and P can be
mix=d in successive statements. The P appears in only the first
statement of fixed-length segment DATA statements, in path calls which
contain both variable- and fixed-length segments.

PARAMETER LENGT™H, SNAP CALLS: On SNAP calls, the length of the SNAP
parameters must be in positions 5-8. This number must be equal to the
length of the SNAP parameters starting in position 16 plus an additional
two bytes. The TEST program converts the length to binary and places

it in the first half-word of the user I/0 area passed to DL/I. The
parameters from position 16 are placed in the I/0 area immediately
following this half-word. If positions 5-8 are blank, a default of 22
is used as the parameter length. For additional information on SNAP
calls, see Sections 2 and 6 in Volumes 1 and 3, respectively, of the
INS/VS Program Logic Manual.

A1l parameters are passed without change, with the following
excaption: If the SNAP destination field specifies "DCB-addr" or ddname
of PRINTDD, and if a PRINTDD statement is supplied to the test progranm,
the test program replaces this parameter with the DCB address of the
test program PRINTDD data set. If a PRINTDD DD statement is not
supplied, the test program defaults to LOGPBYY.

PARAMETER LENGTH, LOG CALL: The LOG call is normally used with the
I/0 PCB. It can be used in batch mode only if the CMPAT option of the
PSBGEN statement (see the IMS/VS Utilities Reference Manual) is
specified.

The LOG call can be specified in two ways:

1. A LOG call statement followed by a DATA statement with an L in.
column 1, a V in column 4, and the record length (in decimal)
in columns 5-8, right-justified, and padded with zeroes. An

example:

CcoL COL COL CoL

1 u 10 16

L LOG
Lo ... V0016 - -DATA- - OOASEGMENT ONE -

When this method is used, the first halfword of the record is
eliminated. However, the specified length must include the 2
bytes that are eliminated.

7.8 IMS/VS Application Programming Reference Manual

N

C

~.

v



2. A LOG call statement followed by a DATA statement with an L in
column 1 and the record length (in binary) as the first halfword
of the record. The second halfword of the record is binary
zeros. An example:

CoL CoL COL CcoL

1 ) 10 16

L LOG

L DATA T000BSEGMENT TWO

When this method is used, columns 5-8 should be blank.

SEGMENT LENGTH AND CHECKING, ALL CALLS: Because this program does not
know segment lengths, the length of the segment displayed on REPL or
ISRT calls is the number of DATA statements that have been read, times
56. IMS/VS knows the segment length and uses the proper length.

This program does no checking for errors in the call; invalid

functions, segments, fields, operators, or field lengths are not
detected by this program.

COMPARE Statement Format for PCB Comparisons

This is the format of the COMPARE statement used for PCB comparisons.

Position Contents
1 = E identifies this as a COMPARE statement.
2 = H indicates hold COMPARE statement (see below for
details).

Blank indicates a reset of the hold condition or a
single COMPARE statement.

3 = Option requested if results of the compare are
unequal: Blank means "Use the default for the SNAP
option." The normal default is 5. For an explanation
of how to change the default, see the description
of the "OPTION Statement Format."

request SNAP of the complete I/0 buffer pool.

request SNAP of entire region.

request SNAP of DL/I blocks.

abort this step; go to end of job.

SNAP subpools 0-127.

NOEN

Note: Multiple functions of the first 4 options
can be obtained by summing their respective

~ hexadecimal values. For example, a value of 5 is
a request for a print of the I/O buffers and the
DL/I blocks; and a value of D snaps the I/0 pool,
snaps the DL/I blocks, and aborts the program run.

Application Programming Testing Aids 7.9




Position Contents

———————

10

11 -

19

20 -

23

24 -

72

= Extended SNAP options, if results of a compare are
unequal: .
Blank: this extended option is ignored; P the
complete buffer pool is snapped; S subpools 0-127
are snapped.

Note: 1In no case will an area be snapped twice;
that is, a combination of 1P in positions 3 and 4
results in just one snap of the buffer pool.
Similarly, a combination of SS results in just one
snap of subpools 0-127.

€ = Segment level,
= Not used.
9 = Status code, or one of the following:

XX - do not check status code.
OK - allow blank,.GA, or GK.

= Not used.
18 = Segment name.
= Not used.
22 = Length of feedback key.
= Not used.
XX = Concatenated key feedback.

= Nonblank to continue key feedback.

The COMPARE statement is optional. It can be used to do regression
testing of known data bases, or to call for a print of blocks or buffer
pool (s) . : )

Any fields left blank are not compared to the corresponding field
in the PCB. Since a blank is a valid status code, to not compare status
codes, put XX in positions 8 and 9. To accept any valid status code,
{that is, blank, GA, or GK), use OK in position 8 and 9.

To execute the same COMPARE after each call, put an H in position
2., This is useful when loading a data base to compare to a blank status
code only. Since the compare was done, the current control statement
type is F in position 1; the next control statement read must therefore
have its type in position 1 or it will default to E. The HOLD-COMPARE
statement stays in effect until another COMPARE statement is read. If
a new COMPARF statement is read, two compares will be done for the
precedlng call, since the HOLD-COMPARE and optlonal prlntlng are done
prlor to readlng the new COMPARE statement. .. .. _

The total number of unequal compares will be reflected in the
condition code returned for that step.

7.10

IMS/VS Application Programming Reference Manual

™

N



COMPARE Statement Format for User I/O Area Comparisons

This is the format of the COMPARE statement used for user I/0 area
comparisons.

Position Contents
$ 1 = E identifies this as a COMPARE statement.
3 = Blank, the LL field of the segment is not included

in the .comparison, only data is compared.

= L, the length in positions 5-8 is converted to binary
and compared against the LL field of the segment.

4 = V, if variable-length segment only, or if the first
variable-length segment of multiple variable-length
segments in a path call or concatenated logical
child/logical parent segment.

P, if fixed-length segment in a path call.

M, if the second or subsequent variable-length of
a path call, or concatenated logical child/logical
parent segment.

= Blank, not variable-length or non-path call data
compare.

5 -8 = nnnn, length of a variable-length segment,
right-justified with leading zeroes. If position
4 contains Vv, P, or M, then a value must appear in
positions 5-8. If position 3 contains an L then
this value is compared against the LL field of the
returned segment. If position 3 is blank and the
segment is not in a path call, then this value is
used as the length of the comparison. The rules
for continuations are the same as those described
for the variable-length segment DATA statement in
the description of the CALL statement.

If this is a path call comparison, and position 4
contains P, then the value in positions 5-8 must be
the exact length of the fixed segment used in the

path call.

10 - 13 = DATA, this has to be specified in the first COMPARE
DATR statement only.

16 - 71 = Data against which the segment is to be compared.

72 = Blank identifies the last COMPARE DATA statement
for the current call, and causes the comparison to
be made.

= Non-blank, if the comparison data exceeds 56
characters, data is continued in positions 16-71 of
the subsequent statements for a maximum total of
1500 bytes.

Application Programming Testing Aids 7.1




This COMPARF statement is optional. Its purpose is to COMPARE the
segment returned by IMS/VS to the data in this statement to verify that
the correct segment was retrieved.

The length in positions 5-8 is optional except as already noted; if
present, this length is used in the COMPARE and in the display. If no
length is specified, the shorter of either the length of data moved to
the I/0 area by IMS/VS, or the number of DATA statements read times 56
is used for the length of the comparison and display.

If both a COMPARE DATA and a COMPARE PCB statement are present, the
COMPRRE DATA statement must precede the COMPARE PCB statement.

The conditions for printing the COMPARE DATA statement are the same
as for printing a COMPARE PCB statement; position 7 of the STATUS
statement is used. The same unequal switch is set for either the
COMPARE DATA or COMPARE PCB. However, if control block displays are
requested for unequal comparisons, a COMPARE PCB statement is required
to request these options.

The total number of unequal comparisons will be reflected in the
condition code returned for that step.

OPTION Statement Format

The purpose of the OPTION statement is to set the default SNAP option
and/or the number of unequal comparisons before aborting the step. The
default value for the number of unequal comparisons before aborting is

e

The format of the statement is explained below.

Position Contents
1 = 0 identifies’ this as an OPTION statement.
2 - 80 = Free-form coding.

The first operand is SNAP=x, where "x" is the default
SNAP option to be used.

The second operand is ABORT=xxxX, where "xxxx" is
a 4-digit numeric value that 'sets the number of
upequal comparisons before aborting the step.

Use of the following example of the OPTION statement will cause the
DL/T test program to operate as it did prior to the release of IMNS/VS
Version 1, Modification Level 1:

Col. 1

OPSNAP=), ABORT=9999

7.12 IMS/VS Application Programming Reference Manual

™

—



SPFECIAL CONTROL STATEMENT FORMATS

PUNCH Statement

The PUNCH control statement provides the facility for this program
to produce an output data set consisting of the PCB COMPARE statements,
the user I/0 area COMPARE statements, all other control statements
read, or any combination of the above. An example of the use of this
facility is to code the call, but not the COMPARE statements for a new
test. Then, after verifying that the calls were executed as
anticipated, another run is made where the PUNCH statement is used to
cause the test program to merge the proper COMPARE statements, based
on the results of the call, with the CALL statements read, producing
a new output data set. This is then used as input for subsequent
regression tests. If segments in an existing data base are changed,
the use of this control statement causes a new test data set to be
produced with the proper COMPARE statements. This eliminates the need
to manually change the COMPARE statements because of a change in the
segments of the test data base.

The PCB COMPARE statements are produced based on the information in
the PCR after the call is completed. The COMPARE DATA statements are
produced based on the data in the I/O area after the call is completed.
A1l input control statements, other than COMPARE statements, can be
produced to provide a new composite test with the new COMPARE statements
properly merged. The data set produced can be sequenced.

Since the key feedback area of the PCB COMPARE statement can be
long, two options are provided for producing these COMPARE statements.
Either the complete key feedback can be provided, or the portion of
the key feedback that does not fit on one statement can be dropped.
Forty-eight bytes of key feedback fit on the first statement.

Getting the full data from the I/0 area into the data COMPARE
statement might also be excessive. An optiomn is to put it all on the
data COMPARE statements, or put only the first 56 bytes on the first
statement and drop the rest. The test program only compares the first
56 bytes if it only receives one COMPARE DATA statement.

PONCH STATEMENT FORMAT:

Position Contents
$ 1-3 = CTL identifies this statement type.
5 10 - 13 = PUNC further identifies this statement type as

controlling the punch output data set, and tells
the program to start punching.

NPUN stop punching.

5 16 = Starts keyword parameters controlling the various
options. These keywords are:

PCBL, produce the full PCB COMPARE statement.

PCBS, produce the PCB COMPARE, dropping the key
feedback if it exceeds one statement.

DATAL, produce the complete COMPARE DATA statements.

DATAS, produce only one statement of compare data.

Application Programming Testing Aids 7.13




Position Contents
OTHER, reproduce all control statements except
COMPARE control statements.

START, starting sequence number to be punched in 73
through 80. Eight numeric characters must follow
the START= parameter; leading and/or trailing zeroes
are required.

INCR, increment to be added to the sequence number
of each statement. Four numeric characters must
follow the INCR= parameter; leading and/or trailing
zeroes are required.

Some examples of the PUNCH control statement are:

1 10
CTL PUNC PCBL,DATAL,OTHER,START=00000010,INCR=0010
CTL NPUN

PUNCH DD Statement

The DD statement for the output data set is labelled PUNCH; the data
set. characteristics are fixed, unblocked, with a logical record length
of 87.

An example of the PUNCHDD statement is:

//PUNCHDD DD SYSOUT=B

SYSIN2.-DD Statement

The data set specified by the SYSIN DD statement is the normal input
data set for this program. It is sometimes desirable when processing
an input data set that is on direct access or tape, to override or
insert some control statements into this input stream. This is
especially useful to obtain a SNAP after a particular call.

To provide this capability, a second input data set (SYSIN2) will
be read if the DD statement is present in the JCL for the step. The
records from the SYSIN2 data set are merged with records from the SYSIN
data set, and the merged records become the input for this program.

The merging is done based on the sequence numbers in positions 73
through 80, and is a two-step process: first, positions 73 and 74 of
SYSIN2 must be equal to the corresponding positions of SYSIN; then the
merge is done based on positions 75 to 80.

This peculiarity of merging allows for multiple data sets (each with
a different high-order sequence number in 73-74) that have been
concatenated to form SYSIN, in other than positions 73-74 numeric
-sequence.—-The-two-step merge logic permits SYSIN2 input to be merged
appropriately into each of the concatenated data sets.

When the sequence numbers are equal, SYSIN2 overrides SYSIN.

Any statements or records in this data set must contain sequence
numbers in columns 73-80. They will replace the same sequence number
in the SYSIN data set, or be inserted in proper sequence if the number
in SYSIN2 does not exist in SYSIN, Replacement or merging is done only
for the run being made. The orginal SYSIN data is not changead.

T7.14 IMS/VS Application Programming Reference Manual



(’*\

Other Control Statement Formats

Position

Contents

DLCK - issues 0S/VS checkpoint, followed by a DL/X
checkpoint.

Contains a 1- to 8-character checkpoint ID
(left-justified).

WTOR - puts message in remainder of statement on
system console and waits for any reply, then
continues.

WTO same as WTOR, but does not wait for reply.

. or N; disregard this statement.

ABEND - issues user ABEND 252 with the DUMP option.

Special CALL Statement Format

Position
$ 1
5..

Contents

I. identifies this as a CALL statement.

Number of times to repeat a series of calls with a
range from 0001 thru 9999 (default is 1).

STAK - Start stacking control cards for later
execution.

END - Stop stacking control cards and begin
execution.

The STAK function enables the user to repeat a series
of calls which have been read from SYSIN and held

in storage. All control statements between the STAK
card and the END card are read and saved. When the
END card is encountered, the series of calls is
executed as many times as the number punched in
positions 5 through 8 of the STAK card. This can

be used to test exclusive control and scheduling by
having two different regions executing stacks of
calls concurrently.

STAT - Print the current buffer pool statistics.

Cols, 16-20 One of the following values is used to
obtain the type and form of statistics
required:

VBASF provides the full VSAM data base
subpool statistics in a formatted
form.

VBASU provides the full VSAM data base

subpool statistics in an
unformatted form.

Application Programming Testing Aaids 7.15




VBASS provides a summary of the VSAM
data base subpool statistics in
a formatted form.

DBASF provides the full ISAM/0OSAM data
base buffer pool statistics in
a formatted form.

DBASU provides the full ISAM/0SAM data

base buffer pool statistics in
an unformatted form.

DBASS provides a summary of the
ISAM/0SAM data base buffer pool
statistics in a formatted form.

For more information on the STAT call, see the
"System Service Calls" section in the "Data Base
Batch Programming" chapter of this manual.

SNAP - Issue the DL/Y Call. See sections 2 and 6,
Volumes 1 and 3, respectively, of the IMS/VS Program
Logic Manual.

DLCK - For any dependent region, DLCK gives an 0S/VS
checkpoint to a DD statement labelled CHKDD whose
DSORG=PO. This is followed by a DL/I checkpoint
call.

CHKP - Same as DLCK.

SKIP - Skip SYSIN statements until START statement
encountered.

START- Start making DL/I calls again.

FORMAT OF DISPLAY OF DL/I BLOCKS

The IMS/VS SNAP call is used to display the DL/I blocks. For
additional information on the SNAP call, see the "Process SNAP Call"
diagram and the "SNAP Call Facility" discussion in Sections 2 and 6,
Volumes 1 and 3, respectively, of the IMS/VS Program Logic Manual.

EXECUTION IN DIFFERENT TYPES OF REGIONS

This program is designed to operate in a DL/I or BMP region but can
also be executed in a MSG region. The input and output devices are
dynamically established based on the type of region in which the program
is executing. In a BMP or DL/I region, the EXEC statement allows the
program name to be different from the PSB name. There is no problem
executing calls against any data base in a BMP or DL/I region. In a
.MSG region, the program name must be the same as the PSB name. In
order to execute in a MSG region, the DFSDDLTO program must be given
the name or an alias of the PSB named in the IMS/VS d=2finition.

When in a DL/I region, input is read from SYSIN and output is written
to PRINTDD.

7.16 IMS/VS Application Programming Reference Manual

;
{



When in a BMP region, if a symbolic input terminal was specified as
the fourth parameter of the EXEC statement, input is obtained from that
SMB, and output is sent to the I/O PCB. The name of the I/0O PCB can
be specified as the fifth parameter of the EXEC statement. If SMB is
not specified on the EXEC statement, SYSIN is used for input and PRINTDD
is used for output, as in the DL/I region.

In the MSG region, the I/0 PCB is used for both input and output
unless position 2 of the STATUS statement is either a 1 or an A. In
either of these cases, PRINTDD is used for output if the DD card is
present in the JCL for that message regqion. 2 limit of 50 lines per
schedule is sent to the I/0 PCB and, after that, PRINTDD is used for
output if present. If PRINTDD is not present, the program terminates.

Because the input is in fixed form, it is difficult to key it from
a terminal. For ease of entry, however, Message Format Service (MFS)
facilities can be used from a terminal to create the fixed-format input.
One way to test DL/I in a message region, using this program, is to
first execute another message program which, based on a message from
the terminal, reads control statements stored as a member of a
partitioned data set. 1Insert these control statements into an SMB.
This program is then scheduled by IMS/VS to process those transactions.
This allows the same control statements to be used to execute in any
region type.

HINTS ON USAGE
1. To load a data base:
This program is applicable for loading small data bases, because
all calls and data must be provided to it rather than it
generating data. It can be used to load large volume data bases
if the control statements were generated as a sequential data
set.

2, To display a data base:

To display a data base, the following sequence of control
statements can be used.

s12221 DBDNAME Display comments and segment

L GN DO 1 Get Next

FH8 OK Hold compare, GA, GK, OK, terminate
on GB

L 9999 GN DO 9,999 Get Next calls

3. To do regression testing:

This program can be used for regression testing. By using a
known data base, calls can be issued and the results compared
to expected results using COMPARE statements. The program then
can determine if DL/I calls are being executed correctly. By
making the print options of the STATUS statement all twos, only
those calls not satisfied properly are displayed.

4. To-use as a debugging aid:

When doing debugging work, usually a print of the DL/I blocks

is required. By use of COMPARE statements, the blocks can be
displayed at appropriate times. Sometimes the blocks are needed
even though the call is executed correctly, such as the call
before the failing call. In those cases, a SNAP call can be
inserted. This causes the blocks to be displayed even though
the call was executed correctly.

Application Programming Testing Aids 7.17




5. To verify how a call is executed:

Because it is easy to execute a particular call, this program

can be used to verify how a particular call is handled. This 4
is of value when DL/I is suspected of not operating correctly .
in a specific situation. The calls that are suspected can be

issued using this program, and the results examined.

SAWMPLE JCL

//3CLSAMP" JOB ACCOUNTING,NAME, MSGLEVEL=(1, 1) ,MSGCLASS=3,PRTY=8
//GET EXEC PGM=DFSRRCO0,PARM='DLI,DFSDDLTO,PSBNAME!
//STEPLIB DD  DSN=INMSVS.RESLIB,DISP=SHR

//INS DD DSN=IMSVS.PSBLIB,DISP= (SHR, PASS)

7/ DD DSN=IMSVS.DBDLIB,DISP=(SHR, PASS)

//DDCARD DD DSN=DATASET,DISP=(OLD,KEEP)

//IEFRDER DD DUMMY

//PRINTDD DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SISIN DD *

s 1111 DBDNAME

/*

SAMPLE CONTROL STATEMENT INPUT

//SYSIN DD *
U START TEST LOAD

T ISRT ROOT SEGMENT 4060000111 S
T ISRT A1111111 R
1 DATA A06000 11 1069999888 ROOT SEG1 )
EH
T ISRT ROOT SEGMENT A06000511
L ISRT 2111111
L DATA A060000511 1069999488 ROOT SEG2
L ISRT A1111 11 (A1111111 = A060000511) X
AR222222

DATA XAAOU405112
/%

Data Base Retrieve and Update

e —— o ———

//SYSIN DD *

s1T1111 1

L GHU JHNXXX (J1INXXX = A10H102000) *
JM2PABCX {JM2PABCX = DIOHIO2A10)

S111 11 2 '

L ~ISRT _  JVINXXXX - - --(JVTINXXXX = A10HO02000) "C
JK2PADXX

L DATA A10HDO2000D10RDO2A1U

s 11111 1

L REPL

L DATA A10HDO200DB10HD02A10

/*

7.18 IMS/VS Application Programming Reference Manual



MESSAGE PROCESSING REGION SIMULATION

Message processing region simulation is not supplied as a part of
the IBM IMS/VS program,

The checkout of any message processing program in the online terminal
environment is often impractical. To enable a more practical and
efficient checkout environment, a message processing region simulation
can be used. The object of the simulator is to enable checkout of a
message processing program, in a batch processing region, with a set
of test data bases. Messages are read and written with unit record,
tape, or disk data sets as opposed to input and output message queues.
To be effective, the simulator should incur no, or minimal, change to
the message processing program when it is moved from the simulated to
the actual message processing region environment.

The user can accomplish simulation by appending the Simulator
Interface A and Simulator Interface B modules to the message processing
program in addition to the language interface. (See Fiugre 7-1.)

ENTRY: DLITCBL SIMULATOR
OR ———— 3 INTERFACE
DLITPLI A

MESSAGE
PROCESSING
PROGRAM

MESSAGE CALLS

DATA BASE CALLS

ENTRY: -  CBLTDLI or PLITDLI

Ly LANGUAGE INTERFACE >

DATA
ENTRY: » - GEORGE! BASE

SIMULATOR
— INTERFACE
B

(MESSAGE INPUT) (MESSAGE OUTPUT)

Figure 7-1. Message Processing Region Simulation

Application Programming Testing Aids 7.19




When the PSB is generated for the associated message program, the
PCBs within the PSB are normally for Data Language/I data bases only.
No PCB for an input and output terminpal is provided. When the message
program is loaded into a batch processing region, the PCB addresses
are passed to the message program. No terminal PCB is provided.

When Simulator Interface A is link-edited with the message progranm
with entry point DLITCBL or DLITPLI, the Simulator Interface 1A is
entered. The interface prefixes the PCB address list with an .
input/output terminal PCB address. The PCB exists within Simulator
Interface A, and its address is added as the first PCB address in the
PCB address list passed to the message program. This PCB address is
used by the message program ‘as are the other PCB addresses in the list,
except that this PCB address is used -in calls from the message program
to Simulator Interface B.

When a call is made from the message program to Simulator Interface
B, the message program makes a Data Language/I call, with the terminal
PCB address provided by Simulator Interface A. Simulator Interface B
then utilizes 0S/VS SYSIN and SYSOUT data sets as if messages were
being read from and written to messageée queues. You may include
alternate terminal PSBs within your PSB generation. The addresses for
these PCBs are provided, upon entry to the user message program, in
the order specified by PCB statements in PSB generation. If a Data
Language/I call (CALL CBLTDLI) is issued with an alternate terminal
PCB address in an IMS/VS batch region, an AL status code is returned
in the PCB.

Data Language/I data base calls are executed with the appropriate
PCBs to the link-edited language interface.

The following changes must be made when the message processing
program is moved to a message processing region:

e Both Simulator Interface modules should be omitted.

e The entry point name of the message program must be renamed DLITCBL
(COBOL or Assembler) or DLITPLI (PL/I).

» The CALL statement operand must be renamed from GEORGEI to the
language interface entry point CBLTDLI or PLITDLI,

7.20 IMS/VS Rpplication Programming Reference Manual



EXAMPLES
The following example shows a typical COBOL program that might be

written to test a message program in a batch processing region. (Refer
to Figure 7-1 in conjunction with this example.)

Simulator Interface 2

IDENTIFICATION DIVISTION.
PROGRAM~ID. 'CAB!?,
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING~-STORAGE SECTION.
01 INOUT-PCB

02 TO-TERMINAL PICTURE X (8) .
02 TIO-RESERVE PICTURE XX.
02 TIO-STATUS PICTURE XX.
02 TO-PREFIX PICTURE X(12).

LINKAGE SECTION.
01 DB-PCB.
02 DATA-BAS-DESC PICTUORE X(71) .
PROCEDURE DIVISION.
ENTRY *'DLITCBL' USING DB-PCB.
CALL 'TEST' USING INOUT-PCB, DB-PCB.
STOP ROUN.

Message Processing Program

The following is an example of a section of the message processing
program being tested. It shows the entry point and call to the Message
Input and Output (Message Simulator Interface B). (Refer to Fiugre
7-1 in conjunction with this example.)

START-0UT.

ENTRY *TEST' USING TERMINAL INOUT-PCB,DB-PCB.
CALL 'GEORGEI' USING GET-UNIQUE,INOUT-PCB,LINE-INPUT,.

Application Programming Testing Aids 7.21




Simulator Interface B

The following example of message output should be reviewed in

conjunction with the previous example and with Figure 7-1.

IDENTIFICATION DIVISION.
PROGRAM-ID. ‘IMSTEST.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MESSAGE-FILE ASSIGN TO ‘TESTIN’ UTILITY.
SELECT TEST-OUTPUT-FILE ASSIGN TO ‘TESTOUT’ UTILITY.

DATA DIVISION.
FILE SECTION.
FD MESSAGE-FILE
RECORDING MODE IS V
DATA RECORD IS INPUT-MESSAGE.
01 INPUT-MESSAGE
FD TEST-OUTPUT-FILE
BLOCK CONTAINS 10 RECORDS
DATA RECORD IS PRINT-LINE.
01 PRINT-LINE
WORKING-STORAGE SECTION.
77 OPEN-SWITCH PICTURE X
77 END-SWITCH PICTURE X
77 MESSAGE-SIZE-WORK PICTURE S9(4)

USAGE COMPUTATIONS.
77 BAD-FUNCTION-CODE PICTURE XX
77 NO-DATA-CODE PICTURE XX

77 REC-SWT PICTURE X VALUE * .
77 MESS-OUT PICTURE X VALUE * .
77  C-329 PICTURE $S9(6) VALUE 329
USAGE COMPUTATIONAL.
01 MESSAGE-IN-WORK-AREA.
02 HEADER-DATA-IN.
03 MESSAGE-COUNT
03 MESSAGE-TYPE
03 TERMINAL-NAME
02 MESSAGE-TEXT.

PICTURE IS X(143).

PICTURE IS X(133).

VALUE °’ .
VALUE ° .
VALUE 0

VALUE ‘QA’.
VALUE ‘QC’.

PICTURE 9(4).
PICTURE X.
PICTURE X(8).

03 FILLER PICTURE X OCCURS 130 TIMES
DEPENDING ON MESSAGE-SIZE-WORK.

01 TEST-OUTPUT-HEADER. '
02 FILLER PICTURE X(18) VALUE
*  MESSAGE TYPE = .
02 FILLER.
03 IN-OR-OUT-MESSAGE
03 HEAD-OR-BODY
02 FILLER PICTURE X(18)
’,  MESSAGE COUNT =",
02 OUTPUT-COUNT
02 FILLER PICTURE X(13)
’,  TERMINAL =,
02 OUTPUT-TERMINAL

PICTURE X.
PICTURE X.
VALUE

PICTURE 9999.
VALUE

PICTURE X(8).

7.22 IMS/VS Application Programming Reference Manual

/‘\

N



02 FILLER PICTURE XX VALUE SPACES,
02 OUT-RUN PICTURE XXXX,
01 TEST-OUTPUT-TEXT, v
02 TEST-OUTPUT-CHAR OCCURS 130 TIMES
PICTURE X,
LINKAGE SECTION, -
01 INOUT-PCB,

02 IO-TERMINAL PICTURE X(8).
02 IO-RESERVE PICTURE XX.
02 IO-STATUS PICTURE XX.

02 I-PREFIX PICTURE X(12).
01 FUNCTION PICTURE XXXX.
01 IO-AREAS-RECORD,
02 RCC PICTURE S9(4) USAGE COMPUTATIONAL,
02 RCC-ZEROS PICTURE XX.
02 TEXT.
03 FILLER PICTURE X OCCURS 130 TIMES.
PROCEDURE DIVISION,
ENTRY 'GEORGEI' USING FUNCTION, IMOUT-PCB, IO-AREAS-RECORD,
OPEN-FILES,
IF OPEN=-SWITCH = '1' GO TO PROCESS-X.
MOVE 0 TO TALLY,
OPEN INPUT MESSAGE-FILE
OUTPUT TEST-OUTPUT-FILE,
MOVE '1' TO OPEN-SWITCH.
PROCESS-X.
IF FUNCTION 'GU ' GO TO GET-HEADER,
IF FUNCTION 'GN ' GO TO GET-BODY,
IF FUNCTION 'ISRT' GO TO WRITE-REPLY,
MOVE BAD~FUNCTION-CODE TO IO-STATUS.
RETURN-TO-APPLICATION,
RETURN.
FORMAT-INPUT-MESSAGE,.
MOVE 'I' TO IN-OR-OUT-MESSAGE,
MOVE MESSAGE-TYPE TO HEAD-OR-BODY,
MOVE MESSAGE~-COUNT TO OUTPUT-COUNT.
MOVE TERMINAL-NAME TO OUTPUT-TERMINAL.
MOVE MESSAGE-TEXT TO TEST-OUTPUT-TEXT.
SET-UP-FOR-USER,
MOVE MESSAGE~COUNT TO RCC.
MOVE LOW-VALUES TO RCC-ZEROS.
MOVE TERMINAL-NAME TO IO~TERMINAL.,

MOVE MESSAGE-TEXT TO TEXT.

MOVE ' ' TO IO-STATUS.
READ-MESSAGE-FILE.

IF END-SWITCH = '1' GO TO FINISH-UP.

READ MESSAGE-FILE INTO MESSAGE-IN~WORK-AREA
AT END MOVE '1' TO END-SWITCH

Application Programming Testing Aids

7.23




GO TO READ-MESSAGE~FILE,
COMPUTE MESSAGE-SIZE-WORK = MESSAGE-COQUNT - -4,
PERFORM FORMAT-INPUT-MESSAGE,
PERFORM WRITE-TEST-OUTPUT-FILE.,

WRITE-TEST~OUTPUT-FILE,

MOVE FUNCTION TO OUT-RUN.
WRITE PRINT-LINE FROM TEST-OUTPUT-~-HEADER,
WRITE PRINT-LINE FROM TEST-OUTPUT-TEXT.

GET-HEADER,

IF REC-SWT NOT = 'H'
PERFORM READ-MESSAGE-FILE
GO TO REC-GOT,
COMPUTE MESSAGE-SIZE-WORK = MESSAGE-COUNT - 4,
PERFORM FORMAT-INPUT-MESSAGE.
PERFORM WRITE=-TEST-OUTPUT~FILE.

REC-GOT,

IF MESSAGE-TYPE NOT = TO 'H' GO TO GET-HEADER.
PERFORM SET-UP-FOR-USER, MOVE ' ' TO REC-SWT,
GO TO RETURN-TO-APPLICATION,

GET-BODY .

PERFORM READ-MESSAGE-FILE,
IF MESSAGE~-TYPE = 'B' NEXT SENTENCE ELSE
MOVE 'H' TO REC-SWT
MOVE ‘oD’ TO IO-STATUS
GO TO RETURN-TO-APPLICATION.
PERFORM SET-UP-FOR-USER.
GO TO RETURN-TO-APPLICATION,

WRITE-REPLY,

MOVE IO-TERMINAL TO OUTPUT-TERMINAL,
COMPUTE MESSAGE-SIZE-WORK = RCC - 4,

MOVE RCC TO OUTPUT-COUNT.

MOVE 'O' TO IN-OR-OUT-MESSAGE,

MOVE ' ' TO HEAD-OR-BODY.

MOVE TEXT TO TEST-OUTPUT-TEXT,.

MOVE MESS-OUT TO IO-STATUS.

PERFORM WRITE-TEST~-OUTPUT-FILE,

FINISH-UP.

IF FUNCTION 'GU ' MOVE '0OC' TO IO-STATUS.
IF FUNCTION 'GN ' MOVE '0OD' TO IO=-STATUS.
GO TO RETURN-TO-APPLICATION.

W

7.24 IMS/VS Application Programming Reference Manual

/

/

AN



APPENDIX A. DL/I STATUS CODES QUICK-REFERENCE TABLE

At the completion of a DL/I call, a status code that indicates the
results of the call is returned to the application program in the PCB
status'code field. The user should follow each call in his program
with statements which examine the returned status codes to determine
if the requested action was completed properly.

Status codes fall into four different categories:

1.

Exceptional but valid conditions encountered for the call (for
example, GE, GB)

2. Warning or indicative status codes on successful calls (for

example, GA, GK, II, 0C, and QD)

3. Improper user specifications (the principal category)

4. FError conditions encountered during the actual execution of I/0

requests

An IMS/VS installation should normally provide application progranms
with a standardized status code checking procedure to be applied after
each call.

Status codes from categories 1 and 2 can be handled by each
application program according to its specific needs.

Status codes from category 3 result from programming errors, and
should be handled in a generalized way which supplies the
application programmer with the information required to correct
the error.

Status codes from cateqgory 4 must be handled by procedures set up
by the data base administrator; they should not be handled by each
individual application programmer., Category 4 status codes often
require recovery procedures which could affect other application
programs and the integrity of the entire data base environment.

Figure A-1 provides a quick reference of DL/I status codes. These
status codes are described in detail in Appendix B.

DL/I Status Codes Quick References A.1




TTddY SA/SKI AR |

Id uotTied

Tenue}y 9dusIajay butuwueibo

;‘:1 | DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS
Q status {Gu: Jon L one | oLer | iseT | isRT CALL ERROR | 1/00R CATE-
= cone | GHU | 6HN | aHne | repe | (toap) | aooy | Gu | o |1seT |onng | purc|cHkp|roLL] DEa | LoG | snap| compLeTep | incaLL | sysTERrOR | GORY | DpescripTioN
H AR X CHNG CALL FOR RESPONSE ALTERNATE PCB CAN ONLY
o X 3 SPECIFY LOGICAL TERMINAL DESTINATION; TRANSACTION
CODE DESTINATION SPECIFIED.
b a8 | x X X x X X x| x{x | x X x | x X 3 SEGMENT 1/0 AREA REQUIRED, NONE SPECIFIED
i IN CALL
- ac | x X X X X X 3 HIERARCHICAL ERROR IN SSAs
ALID FUNCTION PA
AD X 3 INVALID FUNCTION PARAMETER
’;; AR X X X 3 CALL REQUIRES SSAs, NONE PROVIDED
@ R ES RS X X X X X 4 DATA MANAGEMENT OPEN ERROR
4 FRE X X X X X 3 INVALID SSA QUALIFICATION FORMAT
+ Ak [ x [ x X X X X 3 INVALID FIELD NAME IN CALL
AL | x X X X x x x 3 CALL USING LT PCB IN BATCH PGM
- am | x X 3 X X X X N CALL FUNCTION NOT COMPATIBLE W/PROCESSING
. OPTION OR SGMT SENSITIVITY
o] A0 | X X X X X X X 4 }/O ERROR ISAM, OSAM, BSAM, DR VSAM
Hh AQ x | x X X A READ 1/0 ERROR, MESSAGE CHAIN CANNOT BE
FOLLOWED, MINIMUM OF ONE MESSAGE LOST
B AR x | x X X a READ 1/0 ERROR, MESSAGE SEGMENT HAS BEEN
LOST, MESSAGE CHAIN 1S STILL INTACT
L]
AT X X X X x X X X 3 USER 1/0 AREA TOO LONG
- Tau | ox x x X X x x 3 SSAs TOO LONG
) AY X X RESPONSE ALTERNATE PCB REFERENCED BY ISRT CALL
N 3 HAS MORE THAN ONE PHYSICAL TERMINAL ASSIGNED FOR
H INPUT PURPOSES. NOTIFY MASTER TERMINAL.
Az X X 3 CONVERSATIONAL PROGRAMS WILL ISSUE
I PURG CALLS TO WRONG PCB
A1 X X LLA D WITH §-CH A 1
g a3 CALL ATTEMPTED WITH §-CHAR LOGICAL TERMINAL
o NAME NOT KNOWN TO SYSTEM
A2 x X a CHANGE ATTEMPTED WITH
5 INVALID PCB
A3 X x x a INSERT/PURGE ATTEMPTED TO A MOD
a TP PCB WITH NO DESTINATION SET
o A4 x X 3 SECURITY VIOLATION
[ AS x x X a FORMAT NAME SPECIFIED ON 2ND OR SUBSEQUENT
10} MSG ISRT OR PURG
n A6 X X 3 QUTPUT SEGMENT SIZE LIMIT EXCEEDED ON ISRT CALL.
o ar | - X X a NUMBER GF QUTPUT SEGMENTS INSERTED EXCEEDED THE
[] LIMIT BY ONE.
[ A8 X X 3 ISRT TO RESPONSE ALTERNATE PCB FOLLOWED {SRT TO
Q . 1/0 PC8, OR VICE VERSA.
tal A9 x X RESPONSE ALTERNATE PCB REFERENCED 8Y ISRT CALL
3 REQUIRES THAT SOURCE PHYSICAL TERMINAL RECEIVE
o THE OUTPUT RESPONSE.
P‘Ph DA X X 3 SEGMENT KEY FIELD HAS BEEN CHANGED
® DJ X X 3 NO PRECEDING SUCCESSFUL GET HOLD CALL
(] Dx X X 3 VIOLATED DELETE RULE
[ GA X x X CROSSED HIERARCHICAL BOUNDARY INTO
=] 2 HIGHER LEVEL (RETURNED ON UNQUALIFIED
a CALLS ONLY)
® G8 3 1 END OF DATA SET, LAST SEGMENT REACHED
GE | x | x X X 1 SEGMENT NOT FOUND
GK x X X DIFFERENT SEGMENT TYPE AT SAME LEVEL
2 RETURNED (RETURNED ON UNQUALIFIED
CALLS ONLY)
oL x x 3 INVALID USER LOG CODE.
e X X A GNP CALL AND NO PARENT ESTABLISHED
3 OR REQUESTED SEGMENT LEVEL NOT LOWER
THAN PARENT LEVEL
T X 1 SEGMENT TO INSERT ALREADY EXISTS IN
DATA BASE
N
/ \ /‘
{ {
{
\ N / \
. - .




seouaIdjay YOINY S8pod sniels I/1d

£V

*{z 30 z 33ed) L-V °21ubTd4

2ouUs 1930Y YOTIND Sopo) shiels I/Id

. J
. (\
< !
DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS
STATUS |GU | GN | GNP | OLET | 1SRT ISRT CALL ERROR | 1/OOR CATE-
CODE GHU | GHN | GHNP | REPL | (LOAD) | (ADD) | GU { GN | 1SRT | CHNG |PURG |CHKP|ROLL| DEQ | LOG |SNAP| compLETED | INCALL | SYST ERROR GORY | DESCRIPTION
1x X X 3 VIOLATED INSERT RULE
LB X B SEGMENT TO INSERT ALREADY EXISTS IN
DATA BASE
L¢ X 3 KEY FIELD OF SEGMENTS OUT OF SEQUENCE
Lo X 3 NO PARENT FOR THIS SEGMENT HAS BEEN LOADED
LE SEQUENCE OF SIBLING SEGMENTS NOT THE SAME
3 AS DBO SEQUENCE
NE x x A DL/t CALL ISSUED BY INDEX MAINTENANCE CANNOT FIND
SEGMENT
Nt x X X x A INDEX MAINTENANCE UNABLE TO OPEN AN INDEX DB, OR
FOUND DUPLICATE SEGMENT IN INDEX
NO x X X x 4 1/0 ERROR ISAM, OSAM, BSAM, OR VSAM
Qc X X 1 NO MORE INPUT MESSAGES
an X 1 NO MORE SEGMENTS FOR THIS MESSAGE
QE X X 3 GET NEXT REQUEST BEFORE GET UNIQUE
QF X X X X SEGMENT LESS THAN FIVE CHARACTERS (SEG
: 3 LENGTH 1S MSG TEXT LENGTH PLUS FOUR
CONTROL CHARACTERS)
QH X X X TERMINAL SYMBOLIC ERROR — QUTPUT
3 DESIGNATION UNKNOWN TO IMS/VS
(LOGICAL TERMINALS OR TRAN CODE)
RX X X 3 VIOLATED REPLACE RULE
uc 1 CHECKPOINT® TAKEN .
UR 1 RESTART"
us 1 STOP®
Ux 1 CHECKPOINT AND STOP®
vi x X x x 3 INVALID LENGTH FOR VARIABLE LENGTH SEGMENT
X1 X X X 4 1/0 ERROR WRITING SPA
X2 X X 3 1ST INSERT TO TRAN CODE PCB THAT 1S CONVERSATIONAL,
IS NOT AN SPA
X3 X X X 3 INVALIO SPA
x4 x X X 3 INSERT TO A TRAN CODE PCB THAT IS NOT
CONVERSATIONAL AND THE SEGMENT IS AN SPA
X5 X X X 3 INSERT OF MULTIPLE SPAs TO TRAN CODE PCB
X6 x 3 INVALID TRAN CODE NAME INSERTED (NTO SPA
x7 X X X 3 LENGTH OF SPA IS INCORRECT (USER MODIFIED
FIRST SIX BYTES)
X8 X X X 4 ERROR ATTEMPTING TO QUEUE AN SPA ON A
TRAN CODE PCB
X9 X X X 3 INCOMPATIBLE CONVERSATIONAL PROGRAM
CALL PATH
XA X X X 3 ATTEMPT TO CONT. PROC. CONV. BY PASSING SPA VIA
PGM-TO-PGM SW. AF TER ANSWERING TERMINAL
XB X X X 3 PGM PASSED SPA TO OTHER PGM
BUT TRYING TO RESPOND
xC X X X a3 PGM INSERTED MSG WITH Z1 FLD BITS
SET RESERVED FOR SYSTEM USE
XD X 1 IMS IS TERMINATING. FURTHER DL/I CALLS MUST NOT BE
X ISSUED. NO MESSAGE RETURNED.
XE X X X 3 TRIED TO ISRT SPA TO EXPRESS PCB
XF X v X ALTERNATE PCB AEFERENCED IN ISRT CALL FOR SPA HAD
3 DESTINATION SET TO A LOGICAL TERMINAL, BUT WAS NOT
DEFINED AS ALTRESP=YES.
X6 x X CURRENT CONVERSATION REQUIRES FIXED-LENGTH SPAS.
3 ATTEMPT WAS MADE TO INSERT SPA TO TRANSACTION
WITH A DIFFERENT OR NON-FIXED LENGTH SPA.
we | x X X X X X x| x| x X X X x x X GOOD. NO STATUS CODE RETURNED, PROCEED.
b~ bb indicates blanks

“Utihity Cantiol Facibity Status Codes







(3]

APPENDIX B.

DATA LANGUAGE/Y STATUS CODES

The status codes that appear in tabular form in Appendix A are

described in full detail in this section.

-9}

AB

AC

AD

Error in call.

Explanation: The change call was ignored because the

response alternate PCB specified a tramnsaction code
destination. Response alternate PCBs can only reference a
logical terminal destination.

Action: Correct the application program.

Explanation: On a data base or message call, the segment

Action: Correct program.

Error in call.

Explanation: SSA(s) contains an error in hierarchical
sequence.

Possible causes:

1. No segment name equal to that specified in SSA was found
within the scope of this PCB.

2. The level at which this SSA appears is out of sequence
with that specified by the PCB.

3. Two seqgments of the same level are specified in the same
call.

4, The statistics function that was specified or a STAT
call was not a defined function.

Action: Correct the program.
Error in call.
Explanation: An invalid function parameter was supplied.

Possible causes:

1. A GU or GN was requested for a terminal PCB other than
the I/0 PCB.

2. An invalid function string exists.
3. An invalid request type was made for a TP PCB.

4., A call has been issued to the message queues with a DB
PCB.

Action: Correct progranm.

DL/I Status Codes B.1




AR

AT

B.2

Brror in call.

Explanation: No SSA(s) was specified in the call. The call
required at least one SSA (or RSA if GSAM being used), and
none was specified.

Action: Correct the program by specifying SSA (or RSA) in

I/0, system, Or user error

Explanation: Data management open error.
Possible causes:

1. An error exists in the DD statements.

2. The data set was opened for something other than load
mode, but it is not loaded.

3. The buffer is too small to hold a record that was read
at open time, See the INS/VS System Prodramming
Reference Manual for specification of the minimum buffer

pool size.

4., DD statements for logically related data bases not
supplied.

5. For an OSAM data set, the DSORG field of the OSAM DCB,
DSCB, or JFCB does not specify PS or DA.

6. TFor.an old OSAM data set, the BUFL or BLKSIZE field in
the DSCB is zero.

7. The data set is being opened for load, and the processing
option for one or more segments is other than L or LS.

8. The allocation of the OSAM data set is invalid; the
allocation is probably (1,,1) rather than (1,1) and this
causes the DSORG to be P0O.

9. The processing option is L, the OSAM data set is old,
and the DSCB LRECL and/or BLKSIZE does not match the
DBD LRECL and/or BLKSIZE.

19. Incorrect or missing information prevented computation
of block size or the determination of the logical record
length,

11. A catalog was not available for accessing a VSAM data
base that was requested.

12. 0S could not perform on OPEN, but the I/0O request is
valid. Information is either missing, or data definition
information is incorrect.

vgé;igg: Check the DD statements: ensure that the ddname
is the same‘as the name specified on the DATASET statement
of the DBD. The segment name area in the PCB has the ddname

of the data set which could not be opened.

IMS/VS Application Programming Reference Manual



(“\

AJ

AK

AL

Error in call.

Explanation: The SSA qualification format was invalid.
Possible causes:

1. Invalid command codes were used.

2. Invalid relational operators were used.

3. A right parenthesis or Boolean connector was missing.
4, More than eight Boolean members were specified.

5. The DLET call has multiple SSAs or qualified SSas.

6. The REPL call has qualified SSAs.

7. The ISRT call has the last SSA qualified.

8. A path insert call into an existing data base involves
a logical child segment.

9. The Record Search Argument (RSA) parameter is invalid.
Action: Correct the program.
BError in call.

Bxplanation: An invalid field name was supplied in the

Possible causes:

1. Unable to find the specified field nanme.

2. When accessing a logical child from the logical parent
path, the field specified has been defined for the
logical child segment and at least partially includes
the portion of the logical child that contains the
concatenated key of the logical parent.

Action: Correct progranm.

Error in call.

Explanation: The call is using a terminal PCB in a DL/I

—— i e e

DL/I Status Codes B.3



AM

RO

AQ

AR

AT

B.O#

Error in call.

Explanation: The call function was not compatible with the
processing option, segment sensitivity, or transaction-code
definition.

Action: Correct program, PSB, or system definitionm.

Possible causes:

1. The D command code was used for a path retrieval call
without path sensitivity.

2. The processing option of L and call function is not
insert.

3. A DLET, REPL, or ISRT call was made without corresponding
segment sensitivity.

4. A DLET, REPL, or ISRT call was issued by a program while
a transaction defined as inquiry was being processed.

A GET call was attempted for a segment with KEY
sensitivity. Correct the error by specifying DATA
sensitivity.

5. This status code occurs for a checkpoint (not restart)
call if a GSAM/VSAM data set is opened for output.

6. An invalid request was included in a GSAM call.
I/0 error

Explanation: There is a BSAM, GSAM, ISAM, VSAM, or an OSAMNM
physical I/0 error. When issued from GSAM, this status code
means that the error occurred when: (1) a data set was
accessed, or (2) the CLOSE SYNAD routine was entered. The
error occurred when the last block of records was written
prior to closing of the data set.

Action: Determine whether the error occurred during input

or output, and correct the problen.
Read T/0 error

Explanation: The message chain cannot be followed; a minimum

of one message is lost.

g

ctio If it is imperative to recover any messages that
re 1

n:
e lost, perform an emergency restart with the BLDQ option.
I/0 error

Explanation: There is a read I/O error. A .message segment

has been lost, but the message chain is still intact.

Error in call in a VS system.

Explanation: The length of the user's I/O area data is
greater than the area reserved for it in the control region.
The length of the area reserved was determined by the ACB

utility program, DFSUACBO, and printed as part of its output.

Action: Correct the PSB or the program in error.

'IMS/VS Application Programming Reference Manual



AU

AY

AZ

A1

A2

Error in call in a VS systen.

Explanation: The total length of the user's SSAs is greater
than the area reserved for them in the control region. The
length of the area reserved was determined by the ACB utility

program, DFSUACBN, and printed as part of its output.
Action: Correct the PSB or the program in error.
Frror in call.

Explanation: Insert call ignored because the logical
terminal referenced by the response alternate PCB currently
has more than one physical terminal assigned to it for input
purposes.

Action: Ask the master terminal operator to determine (use
/DISPLAY ASSIGNMENT LTERM X) which physical terminals (2 or
more) refer to this logical terminal. Use the /ASSIGN

command to correct the problenm.
Error in call.

Explanation: This status code is used to prevent

asynchronous conditions involving the MPP, SPA content, and
terminal. Possible causes for this status code are:

1. The conversational program inserted the SPA with a PURG
call.

2. The TP-PCB destination is a conversational SMB, and
there is no way to determine if the SPA was inserted to
this PCB.

3. The TP-PCB destination is a logical terminal, and the
TP-PCB is the I/0 PCB or a response alternate PCB.

4, PURG is the only parameter (no PCB was specified), and
' v status is returned; no action is taken if conditions
1, 2, or 3 (above) exist.

Action: Correct the application program and rerun,

Explanation: The CHNG call was attempted with an

eight -character logical terminal name which was unknown to
the systenm.
Action: Correct program.

Explanation: The CHNG call was attempted with an invalid

_——lamn o

PCB. It was either not an alternate PCB, was not defined
as modifiable, or had a message in process but incomplete.

Action: Correct progranm.

DL/I Status Codes B.5




A3

Al

AS

A6

A7

Ag

A9

B.6

Error in call.

Explanation: An INSERT or PURGE call was attempted to a
modifiable alternate PCB which had no destination set.

reissue the INSERT or PURGE call.
Security violation

Explanation: The terminal entering the current transaction

did not have the security to allow a message to the named
SMUB.

Action: User determined.

Error in call.

ggp;gnatigg: An invalid call list was supplied. 1A fourth
parameter (MOD name) was supplied, but the function was not
PURG or ISRT for the first segment of an output message.

Action: Correct the ISRT or PURG call and retry the

application program.
Brror in call.

Explanation: Insert call ignored because output segment

size exceeded specified 1limit.

Action: Correct the application progranm.

Frror in call.

Explanation: Insert call ignored because number of output

message segments inserted exceeded specified limit by one.

If another attempt is made to insert too many segments before

the program issues another GU, the program is abended.

Action: Correct the application progranm,

Error in call.

Explanation: Insert call ignored because an insert call to
a response alternate PCS must not follow an insert call to
the I/0 PCB, or vice versa.

Action: Correct the application program,

Error in call.

Explanation: Insert call ignored because it referenced a

response alternate PCB that requires (SAMETRM=YES) the source

physical terminal to receive the output response.

“'Thi§ status code can also occur if the input terminal is in

response mode and the response alternate PCB is not
associated with the input terminal.

Action: Determine whether the application program is in
error, the output logical terminal has been erroneously
reassigned (/ASSIGN command), or if SAMETRM=YES should not
have been specified.

IMS/VS Application Programming Reference Manual

7



DA

DJ

DX

GA

GB

GE

Explanation: Segment key field has been changed.

Action: Correct.

Error in call.

Explanation: No previous successful GET HOLD call.

Action: Check and correct.

—— o

Explanation: Violated delete rule. Review the delete rule

in the "Data Base Design Consideration" chapter of the IMNS/VS
System/Application Design Guide.

Action: Correct program.

System/Application Design Guide), or the final call in a
series of STAT calls was issued for VSAM buffer subpool
statistics., This status code is returned on unqualified
calls only.

Action: User determined.
Call is not completed.

Explanation: An attempt was made to satisfy a GN call and
the end of the data base was encountered. (If this situation
occurs on a  GU or ISRT call, a GE status code is returned.)
This status code is also returned when a GSAM data set has

been closed.

Action: User determined.

Call is not conmpleted.

Explanation: This status code is returned when: (1) an
attempt is made to satisfy a GU or GN call but a segment
cannot be found that satisfies the qualification, (2) an
attempt is made to position for an ISRT call but one of the
parents of the segment to be inserted cannot be found, (3)
a STAT call is issued for ISAM/OSAM buffer pool statistics
when the buffer pool does not exist, (4) a STAT call is
issued for VSAM buffer subpool statistics when the subpools
do not exist, and (5) a statistics function is specified on

a STAT call for ISAM/0SAM buffer pool statistics.

Action: User determined.

DL/I Status Codes B.7




GK

GL

GP

II

Call is completed.

Explanation: Different segment type at same level returned.

This status code is returned on unqualified calls only.

Action: User determined.

oo

Explanation: Log code is not a valid user code. (Only

A A4

codes X'A0' through X'E(Q' are reserved for users.)

Action: Check and correct.

Error in call.

Fxplanation: No parent for this GNP call, or the requested
segment level is not lower than the parent level.

Action: User determined.

Call is not completed.

Explanation: The segment that the user tried to insert
already exists in the data base.

Possible Causes:

1. Segment with equal physical twin sequence field already
exists for parent

2. Segment with equal logical twin sequence already exists
for parent

3. Logical parent has logical child pointer, logical child
does not have logical twin pointer, and segment being
inserted is second logical child for logical parent

4. Segment type does not have physical twin forward pointer
and segment being inserted is second segment of this
type for parent or is second HDAM root for one anchor
point

5. The segment being inserted is in an inverted structure;
that is, the immediate parent of this segment in the
logical structure is actually its physical child in the
physical structure.

Action: User determined.

B.8 IMS/VS Application Programming Reference Manual

'

)



IX

LB

LC

LD

Error in call.

Explapation: Violated insert rule. Review the insert rule
in the IMS/VS System/Application Design Guide.

Possible Causes:

1. Insert of logical child and logical parent (insert rule
of logical parent is physical and the logical parent
does not exist)

2. Insert of logical child and logical parent (insert rule
is logical or virtual and the logical parent does not
exist) and, in the user I/O area, the key of the logical
parent does not match the corresponding key in the
concatenated key in the logical child.

3. Insert of logical child (insert rule of logical parent
is virtual and logical parent exists) and, in the user
I/0 area, the key in the logical parent does not match
the corresponding key in the concatenated key in the
logical chilad.

4. ISRT request after previous Open, Close or I/0O error
status code.

S. A GSAM ISRT call was issued after a previous AI or A0
status code was returned.

Action: Correct progranm.

Call is not completed.

Explanation: The segment that the user tried to load already

-y L 5

exists in the data base. Other possible causes are:

1. 1A segment with an equal physical-twin-sequence field
already exists for the parent.

2. A segment type does not have a physical-twin-forward
pointer, and the segment being inserted is either the
second segment of this segment type for the parent or
the second HDAM root for one anchor point.

w
.

An application program inserted a key of X'FF'..FF' into
a HISAM or HIDAM data base.

Action: User determined.

Call is not completed.

Explanation: Key field of segments is out of sequence.
Ag;;gg:‘ Check and correct.

Call is not completed.

Explanation: No parent has been loaded for this segment.

Action: Check and correct.

DL/I Status Codes B.9




LE

NE

NI

B.10

Call is not completed.

Explanation: Sequence of sibling segments is not the same
as the sequence in the DBD.

Action: Check and correct.

Call is not completed.

Explanation: Indexing maintenance issued a DL/I call, and
the segment has not been found.

Action: User determined.

Explanation: 1Index maintenance was unable to open an index

data base, or there was a duplicate segment in the index.

Possible causes for being unable to open the index data
base:

1. Error in DD cards

2. The data set was opened for something other than load
mode, but it is not loaded.

3. Buffer too small to hold record read at open time. See
the IMS/VS System Programming Reference Manual for
minimum buffers pool size.

4. DD cards for logically related data bases not supplied.

5. For an OSAM data set, the DSORG field of the OSAM DCB,
DSCB, or JFCB does not specify PS or DAL

6. For an old OSAM data set, the BUFL or BLKSIZE field in
the DSCB is zero.

7. The data set is being opened for load and the processing
option for one or more segments is other than L or LS.

8. The allocation of the OSAM data set is invalid;
allocation is probably (1,,1) rather than (1,1) and this
causes the DSORG to be PO.

9. Processing option is 1, the O0SAM data set is old, amnd
the DSCB LRECL and/or BLKSIZE does not match the DBD
LRECL and/or BLKSIZE.

Action: Check DD cards; ensure ddname same as name specified

on DATASET card of DBD. Segment name area in PCB has ddname
of data set which could not be opened.

_.Possible causes-for-a-duplicate-segment "in the index:

1. Index segment was incorrectly deleted earlier - Index
should be rebuilt.

2. Index DBD incbrrectly specifies unique key value -
secondary index only.

IMS/VS Application Programming Reference Manual



¥O

oc

ob

QE

QF

OH

RX

uc

I/0 error

Explanation: There was a BSAM, ISAM, VSAM, or OSAM physical
I/0 error during a DL/I call issued by indexing maintenance.

Action: Check and correct.

CHKP was successful; GU was not successful (no more
messages) .

Explanation: There are no more input messages.

Action: As appropriate.

Call is not completed.
Explanation: There are no more segments for this message.

Action: As appropriate,

Explanation: A GET NEXT call was issued before a GET UNIQUE.

Action: Check and correct.

Error in call.

Explanation: Length of segment is less than five characters.
{Allowable segment length is length of message text plus
four control characters.)

Action: Check and correct.

Explanation: This is a terminal symbolic error -- the output

designated is unknown to IMNS/VS (logical terminal or
transaction code).

Action: Check and correct.

Error in call.

Explanation: Violated replace rule. Review the replace
rule in the "Data Base Design Considerations"™ chapter of
the IMS/VS System/Application Design Guide

Action: Correct program.

Checkpoint record written to UCF Journal data set.

Explanation: During the processing of a HD Reorganization
Reload or a user's Initial Load program under the supervision
of the Otility Control Facility (UCF), a checkpoint record
was written to the UCF Journal Data set. This status code
is returned to indicate that the last ISRT call was correct
and the User Initial Load program may continue or perform

his checkpointing procedure before continuing.

DL/TI Status Codes B.11




OR

gs

Ux

V1

X1

X2

B.12

The user's Initial Load program is being restarted under
the UCF.

Explanation: During the processing of a user's Initial Load

program under the UCF, a termination had occurred. The job
was resubmitted with a Restart request. ‘

Action: The user's Initial Load Program must get itself

back in step with Data Base Loading. ' Examination of the
UOser I/0 area or PCB key-feedback area can be used.

The user's Initial Load program is preparing to stop
processing.

Explanation: During the processing of a HD Reorganization
Reload or a user's Initial Load program under the supervision
of the Utility Control Facility (UCF), the operator replied
to the WTOR from UCF and requested the current function to
terminate. The last ISRT call was processed.

!

Action: The user's Initial lLoad program should checkpoint

its data sets and return with a non-zero value in Register
15.

A checkpoint record was written and processing stopped.

Explanation: This is a combination of UC and US status

codes; see the descriptions of those codes for further
explamnation.

o

ction: Refer to UC and US status codes.
Error in call.

Explanation: An invalid length was supplied for a
variable-length segment. The LL field of the variable-length
segment is either too large or too small. The length of

the segment must be equal to or less than the maximum length
specified in the DBD. The length must be long enough to
include the entire reference field; if the segment is a
logical child, it must include the entire concatenated key
of the logical parent and all sequence fields for the paired
segment.

This status code is also returned when an invalid record
length is specified in a GSAM call.

Action: Correct the progranm.

System error.

Explanation: An I/0 error occurred while IMS/VS was reading
or writing the SPA.

. .-Action: -Terminate the comversation.” =

Error in call.

Explanation: The first insert to a transaction code PCB
that is conversational is not a SPA.

Action: InseTt the SPA; then reinsert the data segment.

IMS/VS Application Programming Reference Manual

N



X3

Xy

X5

X6

X7

X8

X9

XA

Error in call.

Explanation: Invalid SPA (user modified the first six
bytes).

Action: Correct the program, and restore the original bytes.
Error in call.

Explanation: An insert was made to a transaction code PCB
that is not conversational and the segment is a SPA.

Action: Do not pass the SPA to the transaction code. Send

only data segments.
Error in call.

Explanation: Multiple SPAs were inserted to a transaction
code PCB.

Action: Only one SPA is allowed per message, Correct the

program.
Error in call.

Explanation: An invalid transaction code name was inserted
into SPA.

Action: Correct the program to set the proper transaction

code name.
Error in call.

Explanation: The length of the SPA is incorrect
(user-modified first six bytes).

Action: Correct the progranm.

System error

Explanation: Error attempting to queue an SPA on a
transaction code PCB.

Action: Terminate the conversation.

Error in call.

Explanation: Incompatible conversational program call path.

Action: Design error. Report this to your systenm

programmer.
Error in call.

Explanation: An attempt has been made to continue processing
the conversation by passing the SPA to another program
through a program-to-program message switch after already

responding to the terminal.

Action: TIf a response has been generated, the SPA should
be passed back to the I/0O PCB. Review the rules for
conversational programs in this manual and correct the

program.

DL/I Status Codes B.13




¥B

Xc

XD

XE

XF

XG

bb

B.14

Error in call.

Explanation: The program has passed the SPA on to another
program for processing but is trying to respond to the
terminal.

Action: No response is allowed by a program which has passed
control of the program through a program-to-program message
switch., Review the rules for conversational programs in

this manual. ‘

Error in call.

Action: Correct the program to prevent it from setting

those bits.
IMS/VS is terminating by a CHECKPOINT FREEZE or DUMPQ.

g;glggggigg: This code is returned only from a CHKP call
issued by a batch-message application program. If the
application accesses the message queues, no message is

returned.

Action: BAny subsequent DL/I call will result in an abend.

—— e e

The application should terminate.
Error in call.

Explanation: An attempt has been made to insert a SPA to

an alternate PCB which was generated with the EXPRESS=YES
option.

Action: Regenerate the PSB and remove the EXPRESS=YES option

from the PCB or define another PCB (whose mode is not
express) to be used in the insert call.

BError in call.

i e i . et e

referenced alternate PCB had its destination set to a logical
terminal but was not defined as ALTRESP=YES during PSB
generation.

Action: Correct the application program or change the PSB

generation for that alternate PCB to specify ALTRESP=YES.
Brror in call,.

Explanation: Insert call ignored because the current

conversation requires fixed length SPAs and the insert was
to a transaction with a different or non-fixed length SPA.

Action: —~Correct the program or INS/VS System Definitionm.

Call completed.

INS/VS Application Programming Reference Manual

7N

()



abend, application program
ABEND macro statement 4.37
during output using PURG 4.14
TP call 4.9
accessing multiple data bases 2.46-2,47
description of 2.46-2.47
purpose of 2.46-2.47
alternate PCB, data communication 4.4-4.,5
defined with ALTRESP=YES 4.5,4.9
defined with EXPRESS=YES 4.4-4.9
defining 4.4-4.5
description 4.4
message formats, types of 4#.15
restriction with PURG call 4.14
ANS COBOL, conventions and uses of
batch program structure 2.38-2.40
building output messages
requirements 4.11%
using ISRT call 4.11-4.12
call format for data communication
calls 4.8
data base load example
listing 6.2-6.4
entry statement, data communication 4.7
message processing 6.19
input and output formats 6.19
listing 6.20-6.25
message processing program
structure 4.32-4,.34
PCB~mask, data communication
description 4.5-4.6
linkage section 4.6
retrieving seqgments of an input
message 4.9 )
call formats using GU and GN 4.10
saving information in scratchpad
areas 5.3
input message format using ISRT
call 5.3
system service call formats
checkpoint (CHKP), basic 2.49
checkpoint (CHKP), symbolic 2.50
dequeue (DBEQ) 2.53
log (LOG) 2.54 ,
restart (XRST) 2.51-2.52
rollback (ROLL) 2,53
terminating application programs (data
base batch) 2.37
application program examples 6.1
batch processing (assembler language and
COBOL) 6.8
listing 6.8-6.18
conversational (PL/I)
description 6.26
entries and displays at 3270
terminals 6.26-6.27
message format service 6.34-6.35
PL/I optimizing compiler. 6.28-6.33

6.1-6.2

6.26-6.27

data base dump (assembler language) 6.5
listing 6.5-6.7

data base load (ANS COBOL) 6.1-6.2
listing 6.2-6.4

message processing (ANS COBOL) 6.19
input and output formats 6.19 -
listing 6.20-6.25

application program, INMS/VS
data base PCB masks, use of 2.16-2.17

entry points to 2.14-2,15
rules 2.14
examples 2.15-2.16

language and compilation 2.14-2.15
PCB mask used with 2,19
application programming, data
communication 4.1
abends issued by application
programs 4.37
ANS COBOL message processing progranm
structure 4.32-4,34
example 4.33-4.34 ‘
assembler language message processing
program structure 4.37
data base PCBs 4.2-4,3
device-dependent input messages 4.18
2260-1, 2260-2, 2265-1 4,19
2270 system components 4,19-4.20
2972/2980 components 4,20-4,21
2980 Model 1 4.20-4.21
2980 Model 4 4.22-4,.23
entry statements to TP application
programs 4.7
ANS COBOL example 4.7
PL/I optimizing compiler example 4.7
input message formats 4.16-4.17
first or only segment 4.17
non-first segment 4.17
preset mode segment edit 4.17-4.18
terminal types of 4.16
interface to INS/VS 4.2
logical terminal concept 4.2
message format service (MFS), use
of 4.15,4.1-4.2
output message format 4.23
online message formatting without
MPS 04.29-4.31
program-to-program message
switching 4,32
terminal destination -
output 4.23-4.24
terminal types 4.27-4.29
text 4.26 )
video-paging 4.25-4.26
WRITE command, uses of 4.25
PL/I optimizing compiler message
processing program structure 4.35
example 4.,35-4,37

Index 1.1




teleproéessing calls 4.8
building output messages 4.9
CHNG call, use of 4.9,4.15

delimiting output messages being

inserted 4.9

grouping of message segments with

PURG call 4.14
input message segment calls
(GU, GN) 4.9-4.11

ISRT call, uses of 4.9,4.11-4.12

nessage destination 4.9
message relationships to
segments 4.8

output message segment calls using

ISRT 4.11-4,13
PURG call, uses of 4.9,4.13

setting an output message destination

to an alternate PCB 4.9

synchronization points, uses of 4.9

. teleprocessing PSBs 4.3
alternate PCB 4.3-4.5
I/0 PCB. 4.3-4.4

TP~-PCB mask 4.5
COBOL example 4.6
fields required for 4.5-4.6
layout 4.5-u4.6
PL/I example 4.7

application programming and data base

administration, relatlonships
between 1.2-1.3

application programming, environment

for 1,1
application programming for data
communications 1.5

application programming testing aids
Data language/I (DLIT) test program

(DFSDDLTO) 7.1
control statements 7.3
DATA statement 7.7
JCL requirements 7.2-7.3
message processing region
simulation 7.19
description of 7.19
examples (COBOL) 7.21-7.22

executing DL/I data base calls

for 7-20

» moving a message processing progranm

to a message processing
region 7.20
" PSB generation for 7.20

assembler lanquage, conventions and uses of

batch processing program 6.8
- example (listing) 6.8-6.18
batch program structure 2.43

‘“"‘“”“”“‘“Cﬁlls“tO”leI;“data“base”batbh’”2T21"”ﬂ““""”’”
data base dump, example of 6.5-6.7

entry point to data base batch
application program 2.15
GSAM call formats 2.69-2.70

system service call formats
checkpoint (CHKP), basic 2.49
checkpoint (CHKP), symbolic 2.50
degueune (DEQ) 2.53
get SCD (GSCD) 2.55
log (LOG) 2.54
rollback (ROLL) 2.53
statistics (STAT) 2.56
terminating application programs (data
base batch) 2.37

basic edit, IMS/VS U4,.17-4.18
basic functions of a user
installation 1.1
batch programming, data base 2.1
accessing a data base 2.10
accessing multiple data
bases 2.46-2,47
application and logical data
structures, designing and
defining 2.8-2.10 _
checking out online message programs
in batch regions
description of 2.66
examples (COBOL, PL/I) 2.67
data base organization 2.2
data elements, relationships
of 2.3-2.4
levels 2.4
path, definition of 2.5-2.7
record, definition of 2.6-2.7
root segment, definition of 2.5-2.7
segment types 2.5
size and extent of data
structures 2.7
traversal of a structure 2.4
data structures
application 2.2-2.3
logical 2.2-2.3
logical data bases 2.2-2.3
physical data bases 2.2-2.3
designing logical data
structures 2.1,2.7
DL/I calls
description of 2.20
examples of (assembler langquage,
COBOL, and PL/I) 2.20-2.22
functions 2.22-2.23
segment search arguments (SSAs) used
in 2.24,2.27 ,
DL/I processing functions 2.28
"delete and replace calls 2.33-2.35

get calls  2.29=2.31 o e e A

insert calls 2.32-2.33
DL/I status codes
description of 2,43
for get calls 2.u44 .
for exceptional conditions 2.u44
entry points to application
programs 2.14-2.15
examples of 2.15-2.16
PL/I transaction, initial invocation
of 2.15-2.16

I.2 IMS/VS Application Programming Reference Manual

N

|

N, S



N

examples, batch-program structure

ANS COBOL 2.38-2.140

assembler language 2.43

PL/I optimizing compiler 2.41-2.43
generalized sequential access method

(GSAN)
buffer management 2.73
calls 2.69

checkpoint/restart 2.73
data base accessing 2.68-2.69
functions of 2.68
JCL 2.74-2.75
record formats 2.70
restrictions 2.67
uses 2.67
interface to application progranms,
INS/VS 2.11-2.13
program communication blocks
(PCBs) 2.11-2.12
DL/I 2.11-2.12
interfacing with IMS/VS 2.1
languages used and compilation 2.14
loading a data base, initially 2.10
logical data bases, designing and
defining 2.8
PCB elements 2.18-2.19
data base name 2.18
DL/I processing options 2.18
DL/I reserved area 2.19
DL/I status codes 2.18
key-feedback area 2.19
length of key-feedback area 2.19
PCB name 2.18
segment~hierarchy-level
indicator 2.18
segment-name-feedback area 2.19
sensitive segments, number of 2.19
PCB masks 2.16,2.19
description of 2.16
examples (COBOL, PL/I) 2.17
physical data bases, designing and
defining 2.8
position in a data base 2.44-2.45
processing with DL/I I/0 functions
description of 2.60-2.61
data base creation 2.61
data base deletions 2.65
data base insertions 2.66
data base retrievals 2.64
data base updates 2.65
segments, format of 2.35
fixed-length 2,.35-2.36
variable-length 2.36
system service calls
CHKP 2.47-2.48
DEQ 2.47,2.52
GSCD 2,47-2.48,2.55
LOG 2.47,2.54-2,55
ROLL 2.47,2.53
STAT 2.47,2.56
XRST 2.47,2.51
terminating application programs 2.37

calls to DL/I 2.20
description of 2.20
examples of I/0 processing
calls 2.20-2.21 v
assembler language 2.21
COBOL 2.20
PL/T 2.21
examples of I/0 work area
COBOL 2.23
PL/I 2.24 .
segment search arquments (SSAs) 2.24
command codes for 2,27
concept and function of 2.24
gqualification of 2.26
structure 2.25
characteristics of 2,27
checking out online message programs in
a batch region 2.66
CMPAT option, uses of 2.66
examples (COBOL, PL/I) 2.67
checkpoint call (see CHKP call)
CHKP call (data base) 2.47-2.48
basic, examples of 2.49
symbolic, examples of 2.50
CHNG call (data communication) 4.9,4.15
COBOL, conventions and uses of ‘
batch processing program exaiiple 6.8
calls to DL/I, data base batch
programming
description of 2.20
checking out online message programs
in batch regions 2.67
1/0 processing call 2.20-2,22
entry point to data base batch
application programs 2.15
GSAM call formats 2.69-2.70
PCB mask, data base
application programming
requirements 2.16
linkage section 2.17-2.19
system service call format
statistics (STAT) 2.56
conversational processing
description 5.1
input message format 5.2
example of first message segment
entered at terminal 5.2
example of first CALL statement,
PL/I 5.2
output message format 5.3
response to originating
terminal 5.3
passing conversational control to
another conversational program 5.3
by program in control 5.3
for program-to-program switch 5.4
size of scratchpad area (SPA),
changing 5.4

Index I.3




rules for writing conversational programs
fixed-length SPAs, defining 5.5
message response 5.6
modifying first six bytes of SPA,
restriction against 5.5
program-to-program switches 5.5
returning the SPA to IMS/VS 5.5
SPA transaction code, changing 5.5

saving information in SPAs 5.3
ISRT call, use of 5.3
example of ISRT call, ANS COBOL 5.3
example of ISRT call, PL/I 5.3
returning the SPA to IMS/VS, using

ISRT call for 5.3

scheduling application programs for

conversational transactions 5.1
GU and GN calls used for 5.1

scratchpad area (SPA) format 5.1-5.2

terminating a conversation, methods

of 5.4
by conversational program
by IMS/VS 5.5
by master terminal operator 5.5
by terminal operator 5.4-5.5

converting existing programs for use by
IMs/vs 1.5
converting from 0S/VS file design and

5.4

access to IMS/VS 1.3-1.4
advantages 1.4
data base creation 2.61

HIDAM, HISAM, and HSAM 2.61

insert function, use of 2.61

segment search arguments for 2.62-2.64
data base deletions 2.65

examples (PL/I) 2.66
data base dump 6.5

example (assembler langquage) 6.5-6.7

data base insertions 2.66,2.61
data base load

description 6.1

example (ANS COBOL) 6.1-6.2

initial 2.10

data base organization, INS/VS batch
application data structure 2.2-2.3
logical data structure 2.2-2.3
physical and logical data base
structures 2.2-2.3

data base retrievals 2.64-2,.65

data base structure, INS/VS 2.35
fixed-length segments 2.35-2.36

format of 2.35-2.36

variable-length segments 2.36 =

S for‘at_of, - 2._ 36 R

segment retrieval 2,36
data base updates 2.65
examples (PL/I) 2.65

I."

data bases, INS/VS
accessing 2.10
application and logical data
structures 2.8
defining 2.9-2.10
designing 2.9
loading 2.10
logical 2.8
Data lLanguage/I (DL/I) test program:
DFSDDLTO 7.1.
DATA statement of DFSDDLTO 7.7
control statements 7.3
CALL 7.5-7.7
COMPARE for PCB comparisons 7.9-7.10
COMPARE for user I/0 area
comparisons 7.11-7.12
COMMENTS 7.5
DATA 7.7-7.8
parameter length, LOG
calls 7.8-7.9
parameter length, SNAP calls 7.8
OPTION 7.12
STATUS 7.3-7.4
sample input 7.18
execution in different types of
regions 7.16
format of display of DL/I
blocks 7.16
general description 7.1
hints on usage 7.17
interfaces 7.1
JCL requirements 7.2-7.3

example 7.18
other formats 7.15
CALL 7.15

PUNCH 7.13
SYSIN2 7.14
data set, definition of
DEQb call 2.52,2.47
examples of 2,53
dequeue call (see DEQDb call)
design and definition of IMS/VS data
bases 2.8
accessing a data base 2.10
application and logical data
structures 2.8
defining 2.9-2.10
designing 2.9
loading a data base, initially 2.10
logical data bases 2.8
physical data bases 2.8
DLET call (data base) 2.33-2.35
DL/I call functions 2.22-2.23

1.4

_DL/I processing functions--2.28--- -~

delete calls 2.33-2.34
issued against logical data

bases 2.35
rules for using 2.35
get calls 2,29-2.30

rules for using 2.31
get hold calls 2.31-2.32
insert calls 2.32

loading a data base with 2.33
rules for using 2.32
updating data bases with 2.33

IMS/VS Application Programming Reference Manual

N



replace calls 2.33-2.34 X4 B.13

rules for using 2.35 X5 B.13
status codes for 2.43-2.44 X6 B.13
(see also DL/I status codes) X7 B.13
DL/I status codes X8 B.13
description of 2.43-2.44,2.1 X9 B.13
detailed description of B.1 XA B.13
AA B.1 XB B.14
AB B.1 XC B.14
AC B.1 XD B.14
AD B.1 XE B.14
AH B.2 XF B.14
ATl B.2 XG B.14
AJ B.3 bb B.14
AK B.3 guick-reference table A.1-1.3
AL B.3
AM B.U4
A0 B.4 field, key )
AQ B.4 description of 2.5
AR B.4 uses of 2.5
AT B.U4
AU B.S
AY B.5 generalized sequential access method
AZ B.5 (see GSAM)
A1 B.5 get calls (data base) 2.29
A2 B.S5 GHN 2.29,2.31
A3 B.6 GHNP 2.30-2.31
A4 B.6 GHU 2.29,2.31
AS B.6 GN 2.29-2.30
A6 B.6 GNP 2,30
A7 B.6 GU 2.29-2.30
A8 B.6 get calls (data communication)
A9 B.6 GN 4.9
DA B.7 GU 4.9
DJ B.7 get SCD call (see GSCD call)
DX B.7 GSAM
GA B.7 accessing data bases 2.68
GB 'B.7 calls used for 2.68-2.69
GE B.7 buffer management with 2.73
GK B.S8 calls 2.69
GL B.8 examples (assembler, COBOL,
GP B.S8 PL/I) 2.69-2.70
II B.8 checkpoint/restart with 2.73-2.74
IX B.9 checkpoint restrictions 2.74
LB B.9 JCL guidelines 2.74-2.75
LC B.9 data base restrictions 2.67
LD B.9 description of 2.67
LE B.10 functions 2.68
NE B.10 record formats with 2.70
NI B.10 data set I/0 area 2.71
NO B. M fixed-length 2.70
QoC B.11 undefined-length 2.71
QoD B.11 user area 2.71
QE B.11 variable~length 2.70
QF B.11 record search arqgument (RSA), uses
QH B.11 of 2.71-2.72
RX B.11 status codes 2.70
uc B.11 GSCD call 2.55,2.48
UR B.12 examples of 2.55
Us B.12 guide to using IMS/VS systenm
UX B.12 publications iv-v
vl B.12
X1 B.12
X2 B.12
X3 B.13

Index




illustrations (see Preface)
implementing an IMS/VS
application 1.6-1.7
INS/VS interface to application
progranms
PL/T 2.11-2.12
program communication blocks
{PCBs) 2.11-2.12
program elements required
for 2.11-2.12
IMS/VS system publications, guide to

using iv-v
I/0 PCB 4.4 :
ISRT call (data base) 2.32-2,33,2.30
ISRT call (data communication) 4.9,
4.11-4.12

LOGbh call 2.54, 2.47
examples of 2.54
logical data bases
defining 2.8-2.10
description of 2.8
designing 2.8-2.10
message format service (MFS)
example with PL/I 6.34-6.35

message processing region simulation 7.19
description of 7.19 .
examples of (COBOL) 7.21-7.22

entry point and call statement 7.21
message output 7.22-7.24
testing a message program in a batch
processing region 7.21
executing DL/I data base calls for 7.20C
moving a message processing program
to a message processing region 7.20
PSB generation for 7.20
multiple application programs,
requirements of 1.2
multiple positioning 3.10-3.11
effects on DL/I call functions
DLET and REPL calls 3,12
‘GN and GNP calls 3.12
GU and ISRT calls  3.12
examples of call sequences
for 3.12-3.13
maintaining position in a data
base 3.10°
mixing calls with and without SSAs and

multiple positioning 3.14
exanple 3.15
restrictions_ 3.14-3.15. (U —

“parallel processing of dependent
segment types 2.14
single positioning versus multiple
positioning 3.10-3.12,3.15-3.16
examples 3.10-3.12
uses of 3.13-3.14

I.6

organization of data, IMS/VS 2.3
design of data structures,
limits on 2.7
rules 2.7
hierarchical data structures
relationships of data
elements 2.3-2.4
hierarchical interrelationships
data base record 2.6
path 2.5
root segments
levels 2.4
segment
fields 2.5
segment occurrence
segment type 2.5
traversal of hierarchical
structures 2.4

2.3

2.5

2.5

2.5

path calls 2.27,3.5
path, hierarchical
definition of 2.5
example 2.4
PCB for a logical data structure
DL/I areas 2.18-2.19
key-feedback area 2.18-2.19

2.18

concatenated keys 2.19-2.20
length of 2.19
name of data base 2.18

name of PCB 2.18
segment-name feedback area 2.19
sensitive segments, number of 2.19
PCB mask, data base ‘
description 2.16-2.17
COBOL example 2.17-2.19
PL/I optimizing compiler
example 2.17-2.19
PCB mask, TP
COBOL example 4.6
fields required for
layout 4.5-4.6
PL/I example 4.7
physical data bases
defining 2.8-2.10
description of 2.8
designing 2.8-2.10
PL/I, conventions and uses of
building output messages
requirements 4,11
using ISRT call 4.11
call format for data communlcatlon
calls 4.8 o R
‘calls to DL/I, “data base batch
description of 2.20
1/0 processing call 2.20-2.22
checking out online message programs
in batch regions 2.67
conversational application program
example 6.26-6,27
messagde format service (MFS)
statements used with 6.34-6.35

4.5-4.6

IMS/VS Application Programming Reference Manual

/\

RN

N



data base processing using DL/I
input/output function
data base deletions 2.66
data base updates 2.65
entry point to data base batch
application programs 2.15-2.16
GSAM call formats 2.69-2.70
input message format,
conversational 5.2
retrieving segments of an input
message 4.9
call formats using GU and GN
calls 4.10
saving information in scratchpad
areas 5.3
segment search arguments (data base
batch), specifying 2.27-2.28
system service call formats
change (CHNG) 4.15
checkpoint (CHKP), basic 2.49
checkpoint (CHKP), symbolic 2.50
dequeue (DEQ) 2.53
log (LOG) 2.54
purge (PURG) 4,13
restart (XRST) 2.51-2.52
rollback (ROLL) 2.53
statistics (STAT) 2.56
terminating application programs 2.37
PL/I optimizing compiler, conventions and
uses of
batch program structure 2.41-2.43
conversational application progran
using the 3270 as a calculator 6.26
examples 6.26-6.27
conversational processing,
example of 6.28-6.33
message processing progranm
structure 4.35-4,37
PCB-mask, data base
application programming
requirements 2.16
example 2.17-2.19
PCB-mask, data communication
application programming
requirements 4.5-4.6
example 4.7
position, data base 2.44
current 2.44-2.46
not-found 2.44-2.45
reestablishing known position 2.45
preface iii-vi

PURG call (DC) 4.9,4.12-4.14

record, data base
definition of 2.6
example 2.7

REPL call (data base)

ROLL call 2.53,2.47
examples of 2.53

rollback (see ROLL call)

2.34-2.35

secondary indexing .
considerations, special 3.22
creating a secondary data base

structure 3.19-3.20
definition of 3.19
defining 3.21
description of 3.16-3.17
examples 3.25-3.27
dependent AND, use of 3.26-3.27
independent AND, use of * 3.25-3.26
indexed segments and fields
index pointer segment 3.18
index source segment 3.18
index target segment 3.18
options and rules 3.21-3.22
processing a secondary index as a
data base 3.23
secondary indexes versus primary
indexes 3.17
segment search arqguments 3.34
independent and dependent AND
Boolean operators 3.24-3,25,3.27
XDFLD field names in 3.24
uses of 3.17,3.12

segment
definition of 2.5
example 2.4

segment search arguments (SSAs),

data base batch programming 2.27
characteristics 2.27
command codes for 2.27
concept and function of 2.24
example (PL/I) 2.27
qualification of 2.26
structure of 2.25-2.26

segment search arguments (SSAs),

advanced techniques for data base
processing 3.1 )
Boolean qualification statements used
in 3.8
logical operators, use with 3.8-3.9
call function, modifying 3.4-3.5
characteristics of 3.3-3.4
command codes used with 3.4,3.2

c 3.6
D 3.5
F 3.4
L 3.4-3.5
N 3.5
P 3.7
Q 3.5
U 3.7
v 3.7

independent and dependent AND Boolean

operators, uses of 3.24
examples 3.25-3.27

logical-parent sequence fields,

effects of using 3.9-3.10

main elements of 3.1 _
Boolean qualification statements 3.1
conmand codes 3.1
segment name 3.1

Index I.7




qualification statement,
description of 3.1-3.2 .
comparative value 3.2-3.3
field name 3.2-3.3
relational operator 3.2-3.3
segment qualification 3.6
setting of parentage 3.7-3.8
structure 3.2
command codes 3.2
segment name 3.2
qualification character 3,2-3.3
gualification statement 3.2-3.3
use of field names for concatenated
segments 3,9-3.10
STAT call 2.56,2.48
examples of 2.56
statistics
ISAM/0SAM buffer pool 2.56
ISAM/0SAM data base buffer
pool 2.57-2.58
VSAM buffer subpool 2.58-2.60
statistics call (see STAT call)
symbolic call interface for CHKP/XRST
DL/I calls xv
checkpoint (CHKP) call, description
of 2.48

basic CHKP call, example of 2.49

symbolic CHKP call,
example of 2.50
restart (XRST) call, description
of 2.51
examples 2.51-2.52
system service ‘calls 2.47
checkpoint (CHKP) 2.47-2.48
examples of basic CHKP "2.49
examples of symbolic CHKP 2.50
dequeue (DEQbYy 2.52,2.47
examples of 2.53
get SCD {GSCD) 2.55,2.u48
examples of 2.55
log (LOGb) 2.54,2.47
examples of 2.54
restart (XRST) 2.51,2.47
examples of 2.51-2.52
rollback (ROLL) 2.53,2.47
examples of 2.53
statistics (STAT) 2.56,2.48
examples of 2.56
System/3 4.16,4.27
System/7 4.16,4.27
System/370 console
input message length 4,16
online message formatting without
MFS 4,29

terminating an application program 2.37
RETURN and GOBACK statements,
use of 2.37
with ANS COBOL 2,37
with assembler language 2.37
with PL/T 2,37 .
testing aids (see Data lLangquage/I test
program; message processing region
simulation)
TP PCBs U4.3-4.4

XRST call 2.51,2.47
examples of 2.51-2.52

33/35 Teletypewriter (ASR)
input message length 4.16
online message formatting without
MFS 4,29
output message length 4.27
1050 Data Communication System
input message length 4.16
online message formatting
without MFS 4.29
output message length 4,27
2260 Display Station Models 1 and 2
input message considerations 4.16-4.17
output messaqge
considerations 4.24,4,26,4.30
video paging 4.25-4.26
WRITE commands 4.25
2265 Display Station Model 1
input message considerations 4.16-4.17
output message
considerations 4.24,4.26,4.30
video paging 4.25-4.26
WRITE commands 4.25
2265 Display Station Model 2 (2770)
input message considerations 4.16-4,17
output message
considerations 4.24,4.26,4.31
video paging 4.25-4.26
WRITE commands 4,25
2740 Data Communications Terminal
Models 1 and 2
input message length 4.16-4.17
online message formatting
without MFS 4.29
output message length 4,26
2741 Data Communication Terminal
input message length 4.16-4,17
online message formatting
without MFS 4.29

__output _message length 4.27- . _output—message length 4.26 T

2770 Data Communications Systenm
input message considerations 4.16-4.17
output message considerations 4.27
video paging (2265-2) 4.25
WRITE commands (2265-2) 4.25

I.8 IMS/VS Application Programming Reference Manual




7

2780 Data Transmission Terminal
Models 1, 2, 3 and 4
input message length 4.16-4.17
online message formatting without
MFS 04.29-4.30
~ output message length 4.27
2980 General Banking Terminal Systenm
Models 1, 2, and 4
function keys 4.23-4.24,4.28-4.29
input message
considerations 4.16,4,21-4.23
message lights 4.28
online message formatting without
MFS 4.31
output message
considerations 4.24,4,26-4,28
2980-6 function key translate
table 4.23
2980~-1 special character set 4.21
2980-4 special character set 4,22
3270 Information Display Systenm
input message considerations 4.16
output message considerations 4.27
3600 Finance Communication Systenm
input message considerations 4.16
output message considerations 4.27
3741 Data Stations, Models 2 and 4
input message considerations 4.16
output message considerations 4.27
3767 Communication Terminal
input message considerations 4.16
message format service (MFS)
support 4.2
output message considerations 4,27
3770 Data Communication Systen
input message considerations 4.16
message format service (MFS)
support 4.2
output message considerations 4.27
3790 Insurance Communication System
input message considerations 4.16
output message considerations 4.27
7770 Audio Response Unit Model 3
input message length 4.16
output message considerations 4,27

Index

I.9




SH20-9026-4

JISIME

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(Internationat)

7°9206-0CHS "V'S'N Ul paluld  [enuely sousiasay Bunwiweibouy uoneol|ddy | uotsisp SA/SII

9 -



IMS/VS Version 1 Reader’s
Application Programming Reference Manual Comment
SH20-9026-4 Form

7N

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

"Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local I1BM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

-

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.




SH20-9026-4

Fold and Staple

First Class Permit
Number 6090
San Jose, California

Business Reply Mail

No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation

P. 0. Box 50020
Programming Publishing
San Jose, California 95150

Fold and Staple

1013

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

oS

1BM World Trade Corporation
821 Un_ited Nations Plaza, New York, New York 10017
(International)

|enuey eduaiaay Bulwwelbolq uonestjddy | uoisiap SA/SWI

-9206-0CHS “V'S'N Ul pajulg

Q.

N

‘o ay

&



