

IMS/VS STATUS CODES EXPLANATIONS

AA

Explanation: IMS/VS ignored a CHNG or
ISRT call because the response alternate
PCB referenced in the call specified a
transaction code as a destination. A
response alternate PCB must have a
logical terminal specified as its
destination.

Programmer Response: Correct the CHNG or
ISRT call.

AB

Explanation: An I/0 area is required as
one of the parameters on this call and
the call did not specify one.

Programmer Response: Correct the call by
including the address of an 170 area as
one of the call parameters.

AC

Explanation: There is an error in one of
the 5SAs on a get or ISRT call for one of
these reasons:

. DL/I could not find a segment in the
DB PCB specified in the call that has
the segment name given in the SSA.

. The segment name is in the DB PCB,
but the SSA specifying that segment
name is not in its correct hierarchic
sequence.

. The call specifies two 55As for the
same hierarchic level.

IMS/VS also returns this status code when
a STAT call has an invalid statistics
function.

Programmer Response: Correct the segment
name in the SS5A, or the statistics
function in the STAT call.

AD

Explanation: The call function parameter
on the call is invalid. IMS/VS returns an
AD status code if it does not recognize
the function code you've supplied. If the
function code is correct, some other
possible causes are:!

. Referencing a DB or alternate PCB on
a CHKP call. CHKP calls must
reference the 170 PCB.

° Issuing a message GU or GN that

references an alternate PCB instead
of the 170 PCB

272 IMS/VS Application Programming

. Using an invalid function string

¢ Referencing an I/0 or alternat

for a data base call

U Referencing a DB PCB in a message
call

° Issuing a ROLB that includes the
address of an I/0 area as one of the
parameters in a batch-oriented BMP

Programmer Response: If you receive this
status code on a data base, message, or
CHKP call, correct the call so that it
references the correct PCB. If you
receive AD on a ROLB call in a
batch-oriented BMP, remove the I/0 area
parameter from the call.

AF

Explanation: GSAM detected a
variable-length record whose length is
invalid on a GU, GHU, GN, or GHN.

Programmer Response: Correct the
program.

AH

Explanation: The program issued an ISRT
call (load or add) that did not include
any SSAs. ISRT calls require SSAs. If the
program was issuing a GU call to a GSAM
data base, the GU did not specify an RSA.
RSAs are required on GU calls to GSAM
data bases.

Programmer Response: Correct the ISRT
call by including an SSA, or correct the
GU call by adding an RSA to the call.

Al

Explanation: A data management open
error occurred. Some possible reasons
are:

L There is an error in the DD
statements.

. The data set OPEN request did not
specify load mode, but the data set
was empty. An empty data set requires
the load option in the PCB.

o The buffer is too small to hold a
racord that was read at open time.
See the storage estimates in the:
section "IMS/VS Data Base Buffer
Pools,” in the IMS/VS System
Programming Reference Manual for
specification of the minimum buffer
pool size.

. There were no DD statements supplied
for logically-related data bases.

~—

N

e For an 0SAM data set, the DSORG field
of the 0SAM DCB, DSCB, or JFCB does
not specify PS or DA.

U For an old 0SAM data set, the BUFL or
BLKSIZE field in the DSCB is zero.

o The data set is being opened for
load, and the processing option for
oneLgr more segments is other than L
or .

J The allocation of the 0SAM data set
is invalid. The allocation is
probably (1,,1) rather than (1,1) and
this causes the DSORG to be PO.

. The processing option is L, the 0SAM
data set is old, and the DSCB LRECL
and/or BLKSIZE does not match the DBD
LRECL and/or BLKSIZE.

U Incorrect or missing information
prevented IMS/VS from determining
the block size or the logical record
length.

® A catalog was not available for
accessing a VSAM data base that was
requested.

. 0S could not perform an OPEN, but the
I/0 request is valid. Either the data
definition information is incorrect,
or information is missing.

. RACF was used to protect the ISAM or
0SAM data set and the control region
has no update authorization.

If IMS/VS returns message DFS0730I, you
can determine the cause of the OPEN
failure from this message. See the
description of this message in the IMS/VS
Messages and Codes Reference Manual for
more information.

Programmer Response: These kinds of
problems often require the help of a
system programmer or system
administrator. But before you go to one
of these specialists, there are some
things you can do:

. Check the DD statements. Make sure
that the DD name is the same as the
name specified on the DATASET
statement of the DBD. The segment
name area in the DB PCB has the DD
name of the data set that couldn't be
opened.

U Check the PSB and make sure that the
appropriate processing options have
been specified for each of the DB
PCBs that your program uses.

AJ

Explanation: The format of one of your
SS5As is invalid. Some possible reasons
for this are:

U The SSA contains a command code that
is invalid for that call.

. The relational operator in the
qualification statement is invalid.

. A qualification statement is missing
a right parenthesis or a Boolean
connector.

. A DLET call has multiple or qualified
SSAs.

. A REPL call has qualified 55As.

. An ISRT call has the last SSA
aqualified.

. An ISRT call that inserts a logical
child segment into an existing data
base includes the D command code.
ISRT calls for logical child segments
cannot be path calls.

. The RSA parameter on a GSAM call is
invalid.

Programmer Response: Correct the invalid
portion of the 55A on the DLET, REPL, or
ISRT call. If vou receive this status
code on a GSAM call, correct the RSA.

AK

Explanation: An S5SA contains an invalid
field name: the field name isn't defined
in the DBD. The number in the segment
level number field of the DB PCB is the
level number of the SS5A that contains the
invalid name.

You can also receive this status code if
the program is accessing a logical child
through the logical parent. DL/I returns
AK if the field specifed in the SSA has
been defined for the logical child
segment, and it includes (at least
partially) the portion of the logical
child that contains the concatenated key
of the logical parent.

Programmer Response: Correct the SSA.

AL

Explanation: A batch program issued a
message call or ROLB and referenced an
I/0 PCB.

Programmer Response: Correct the
program. Batch programs cannot issue
message or ROLB calls.

AM

Explanation: The call function is not
compatible with the processing option in
the PCB, segment sensitivity, or the
transaction-code definition. The level

IMS/7VS Status Codes 273

number in the PCB is the level number of
the SSA that is invalid. Some of the
reasons vou might get this status code
are:

. Issuing a retrieval call with the D
command code in a program that
doesn't have the P processing option
specified in the DB PCB that was used
for the call.

. Issuing an ISRT call with the D
command code in an MPP or BMP that
doesn't have the P processing option
specified in the DB PCB that was
referenced in the call. Batch
programs do not need the P processing
option to issue an ISRT call with the
D command code—unless the program
uses field level sensitivity.

L The processing option is L and the
program issued a call other than an
ISRT call. Load programs can issue
only ISRT calls. '

. Issuing a DLET, REPL, or ISRT call
that references a DB PCB that doaesn't
have the necessary processing option
for that call. The minimum processing
options for these calls are D for
DLET; R for REPL; and I for ISRT.

. Issuing a DLET, REPL, or ISRT call
for a segment to which the program
isn't sensitive.

L Issuing a DLET, REPL or ISRT while
processing a transaction that has
been defined as inquiry only.

U Issuing a CHKP call if a GSAM/VSAM
data sat is opened for output.

. Issuing a GSAM call with an invalid
call function code.

. Issuing an ISRT or DLET call for the
index target segment or a segment on
which the index target is dependent
in the physical data base while using
an alternate processing sequence.

U Issuing a call to a GSAM dummy data
set. Any call to a GSAM dummy data
set is invalid.

Programmer Response: Correct the call,
or make the necessary changes in the PCB.
AO

Explanation: There is a BSAM, GSAM, ISAM,
VSAM, or 0SAM physical I/70 error. When
issued from GSAM, this status code means
that the error occurred when:

1. A data set was accessed

2. The CLOSE SYNAD routine was entered.
The error occurred when the last

276 IMS/VS Application Programming

block of records was written prior to
closing of the data set.

IMS/VS does not return an A0 status code
for write errors with BISAM, VSAM, and
0SAM.

Programmer Response: Determine whether
the error occurred during input or
output, and correct the problem.

AP

Explanation: A message or CHKP call has
more than four parameters. This is
invalid. In Fast Path programs, a message
call included more than one SSA. Only one
SSA is allowed.

Programmer Response: Correct the call
and reprocess the transaction.

AT

Explanation: The length of the data in
the program's I1/0 area is greater than
the area reserved for it in the control
region. The length of the area reserved
is defined by the ACB utility program,
DFSUACBO, and printed as part of its
output.)

Programmer Response: Correct the PSB or
the program in error.

AU

Explanation: The total length of the 55As
in the data base call is greater than the
area reserved for them in the control
region. The length of the area reserved
is defined by the ACB utility program,
DFSUACBO, and printed as part of its
output.

Programmer Response: Correct the PSB or
the program in error.

AY

Explanation: IM5/VS ignored a message
ISRT call because the logical terminal
referenced by the response alternate PCB
currently has more than one physical
terminal assigned to it for input
purposes.

Programmer Response: Ask the master
tarminal operator to determine (use
/DISPLAY ASSIGNMENT LTERM x) which
physical terminals (2 or more) refer to
this logical terminal. Use the /ASSIGN
command to correct the problenm.

AZ

Explanation: IMS/VS ignored a PURG or
ISRT call in a conversational program.

77N

7N

N

Some possible reasons are:

. Issuing a PURG call referencing the

I/0 PCB or an alternate response PCB.

Conversational programs can issue
PURG calls only when the PURG call
references an alternate PCB that is
not an alternate response PCB.

. Issuing a PURG call to send the SPA.

. Issuing an ISRT or a PURG call
referencing an alternate PCB that is
set for an invalid destination, or a
destination that IMS/VS can't
determine.

. Issuing an ISRT call referencing an
alternate PCB whose destination is a
conversational transaction code when
the first segment inserted isn't the
SPA; or when IMS/VS can't determine
whether or not the SPA was the first
segment inserted.

Programmer Response: Correct the PURG or
ISRT call.

Al

Explanation: The logical terminal name
supplied in the I/0 area of a CHNG call
is invalid. If IM5/VS returns Al to a
Fast Path program, it means that the
program supplied a transaction code,
instead of a logical terminal name, on a
CHNG call.

Programmer Response: Correct the CHNG
call.

A2

Explanation: The program issued a CHNG
call against an invalid PCB. The PCB was
invalid for one of these reasons:

. It was not an alternate PCB.

. It was an alternate PCB, but it
wasn't modifiable.

U It was being used to process a
message and had not completed
processing it.

Programmer Response: Check the PCB that
was used by the CHNG call and determine
which PCB should have been used for the
call.

A3

Explanation: The program issued an ISRT
call or a PURG call using a modifiable
alternate PCB that did not have its
destination set.

Programmer Response: Issue a CHNG call-to -
set the destination of the modifiable
alternate PCB, then reissue the ISRT or
PURG call.

AG

Explanation: A security violation
occurred because the terminal entering
the current transaction code was not
aughorized to enter that transaction
code.

Programmer Response: Check the
transaction code to make sure it was
entered correctly. If it was, check with
the person at your installation who
handles security.

A5

Explanation: An ISRT or PURG call
supplied an invalid parameter list. The
call supplied the fourth parameter (the
MOD name) but the ISRT or PURG being
issued was not for the first segment of
an output message.

Programmer Response: Correct the ISRT or
PURG call.

A6

Explanation: IMS/VS ignored a message
ISRT call because the length of the
message segment being inserted exceeds
the maximum length allowed.

Programmer Response:! Correct the output
message segment.

A7

Explanation: IMS/VS ignored a message
ISRT call because the number of message
segments inserted exceeds the limit
specified by one. If the program tries to
insert too many message segments before
issuing a GU again, IMS/VS will terminate
the program abnormally.

Programmer Response: Check the output
messages and correct them.
A8

Explanation: IMS/VS ignored an ISRT call
because:

) An ISRT call to a response alternate
PCB must not follow an ISRT call to
the I/0 PCB.

. An ISRT call to the 170 PCB must not
follow an ISRT call to a response
alternate PCB.

Programmer Response: Correct the ISRT

IMS/VS Status Codes 275

call.

A9

Explanation: IMS/VS ignored the ISRT
call because:

. The ISRT call referenced an alternate
response PCB defined as SAMETRM=YES,
but the PCB represented a logical
terminal that isn't part of the
originating physical terminal. An
alternate response PCB defined as
SAMETRM=YES must represent the same
physical terminal as the physical
terminal associated with the
originating logical terminal.

U The originating terminal is in
response mode and the response
alternate PCB is not associated with
that logical terminal.

IMS/VS does not return this status code
if the program makes either of these
errors while communicating with a
terminal in a remote IMS/VS system
through MSC.

Programmer Response: Determine whether
the application program is in error, the
output logical terminal has been
incorrectly reassigned (using the
/ASSIGN command), or if SAMETRM=YES
should not have been specified for the
response alternate PCB.

CA

Explanation: The program issued a CMD
call with an invalid command verb, or the
command verb does not apply to the IMS/VS
system that the program's running in.
IMS/VS does not return any command
responses.

Programmer Response: Correct the command
in the CMD call.

CB

Explanation: The command entered in the
CMD call is not allowed from an AOI
program. IMS/VS does not return any
command responses.

Programmer Response: Correct the

command. For a list of the commands that
an AOI program can issue, see Chapter 7, -
"Automated Operator Programming,"” in the

IMS/VS System Programming Reference
Manual.

cc
Explanation: IMS/VS has executed the

command and returned one or more command
responses.

276 IMS/VS Application Programming

Programmer Response: Your program should (

issue GCMD calls as necessary to retrieve
{_‘he resronsas ‘\

=1 oA d -1~ 0= N1

cb

Explanation: The command that was
entered on the CMD call violates
security, or the application program
isn't authorized to issue CMD calls.
IMS/VS does not execute the command or
return any command responses.

Programmer Response: Correct the
command. If necessary, check with the
person in charge of security at your
installation to find out why your program
is restricted from using that command.

CE

Explanation: IMS/VS rescheduled the
message that this GU call retrieved since
the last CMD call. The program had not
reached a sync point when the message was
rescheduled.

Programmer Responsaed: This is an
information-only status code.

CF

Explanationt The message retrieved by (
this GU was scheduled before IMS/VS was N
last started.

Programmer RESPDDSE: This is an
information-only status code.

CG

Explanation: The‘message retrieved by
this GU originated from an AOI user exit.

Programmer Response: This is an
information-only status code.

CH

Explanation- IMS/VS ignored the CMD call
just issued because the AOI command
interface detected a system error and was
unable to process the command.’ IMS/VS
processing continues.

Programmer Response: Reissue the
command.

CI

Explanation: CI is a combination of CE
and CF. The message retrieved by this GU
was scheduled for transmission before
IMS/VS was last started. The message was
rescheduled, but the program hadn't
reached a sync point.

Programmer Response: This is an
information-only status code.

cJ

Explanation: CJ is a combination of CE
and CG. The message retrieved by this GU
was scheduled for transmission before
IMS/VS was last started. The message
originated from an AOI user exit.

Programmer Response: This is an
information-only status code.

cK

Explanation: CK is a combination of CF
and CG. The message retrieved with this
GU originated from an AOI user exit. The
message was scheduled for transmission
before IM5/VS was last started.

Programmer Response: This is an
information-only status code.

CcL

Explanation: CL is a combination of CE,
CF, and CG. The message retrieved with
this GU originated from an AO0I user exit.
It was scheduled for transmission before
IMS/VS was last started. It was
rescheduled but the program had not
reached a sync point.

Programmerr Response: This is an
information-only status code.

DA

Explanation: The program issued a REPL
call that tried to modify the key field
in the segment. You cannot change a
seament's key field.

Pr?grammer Response: Correct the REPL
call.

DJ

Explanation: The program issued a DLET or
REPL call without first issuing a
successtul get hold call; or an SSA in
the DLET or REPL call was for a segment
th?t was not retrieved in the get hold
call. S

Programmer Response: Correct the program
by issuing a get hold call before the
DLET or REPL call, or correct the get
hold call or SSA.

DX

Explanation: The program issued a DLET
call that violates the delete rule for

that segment.

Programmer Response: Check the program
to see whether or not the program should
delete that segment; if it should, check
with your DBA (or the equivalent
specialist at vour installation) to find
out what delete rule has been specified
for that segment.

FA

Explanation: IMS/VS returns this status
code when the program reaches a sync
point and an arithmetic overflow in an
MSDB has occurred during that sync
interval (since the last sync point, or,
if the program had not reached a sync
point, since the program began
processing). You can receive this status
code on a SYNC call, a CHKP call, or a GU
call to the message queue, depending on
your program. The overflow occurred after
the program issued a FLD/CHANGE call or a
REPL call for the MSDB. When this
happens, IM5/VS issues an internal ROLB
call to eliminate the changes that the
program has made since the last sync
point. All data base positioning is lost.

Programmer Rasponse: Reprocess the
transaction.

FC

Explanation: The program issued a call
that is not valid for the segment type.

Programmer Response: Correct the call.

FD

Explanation: A nonmessage-driven program
reached a deadlock when IMS/VS tried to
get additional resources (either DEDB
UOWs or overflow latches) for the
program. IMS/VS eliminates all data base
updates that the program has made since
the last SYNC or CHKP call (or since the
program started processing, if the
program hasn't issued a SYNC or CHKP
call). All data base positioning is lost.

Programmer Response: Start processing
from the last sync point. If you reach a
deadlock again (and you usually won't)
terminate the program.

FE

Explanatioﬁ: IMS/VS returns this status
code anytime a program issues a FLD call

that receives a nonblank status code in
the FSA.

Programmer Response: See "Fast Path Data

Areas" for an explanation of FSA status
codes and correct the FLD call.

IMS/7VS Status Codes 277

FF

Explanation: A program issued an ISRT
(add) call against an MSDB that has no
free space. If IMS/VS determines that
there's no free space when the program
issues the ISRT call, the program
receives the FF status code for that
call. IMS/VS may not determine this until
the program reaches the next sync point.
In this case, IM5/VS returns FF when the
program issues a GU call to the message
queue, a SYNC call, or a CHKP call,
depezding on which call caused the sync
point.

Programmer Response: To avoid this
situation, you can specify more space for
the MSDB at the next system start (cold
start or normal restart).

FG

Explanation: FG is a combination of FE
and FWl. A nonmessage-driven program
issued a FLD call that received a
nonblank status code in the FSA, and the
program has used up its normal buffer
allocation.

Programmer Response: Check the FSA
status code and correct the FLD call,
then issue SYNC or CHKP calls in the
program more frequently. One way to

- handle this status code is to branch to
an error routine that causes the program
to issue SYNC or CHKP calls more
frgquently when it receives this status
code.

FH

Explanation: A DEDB or a DEDB area was
inacessible when the program issued a
data base call or when the program
reached a sync point. If IMS/VS returns
this status code on a call that caused a
sync point to occur (a SYNC call, a
message GU, or a CHKP call), IMS/VS
issues an internal ROLB call to eliminate
the program's data base updates since the
last sync point.

Programmer Response: If you receive this
status code after a call that caused a
sync point to occur (a GU call to the
message queue, a SYNC call, or a CHKP
call, depending on your program),
reprocess from the last sync point to see
lf the condition exists when the program
issues data base calls.

FI

Explanation: The program's I/0 area is
not at a storage address that the program
can access.

Programmer Response: Correct the
program.

278 IMS/VS Application Programming

FN

natien: The program issued a FLD
call that contains a field name in the
FSA that's not defined ln the DBD. IMS/VS
doesn't continue process1ng the FLD call
or any of the FSAs in the FLD call.
IMS/VS returns an FN status code in this
situation even if an earlier FSA in the
same FLD call earned an FE status code.

=vnlann+‘ ornt The
=XPa

Programmer Response: Issue. a ROLB Call to
remove the effects of the incorrect FLD
call and correct the FLD call.

FP

Explanation: The I/0 area referenced by a
REPL, ISRT or FLD/CHANGE call to an MSDB
contains an invalid packed decimal or'
hexadecimal field.

Programmar Response: Correct the data'in
the I/0 area.

FR

Explanation: A nonmessage-driven program
issued a data base call that forced the
system to go beyond the buffer limit
specified for the region. IMS/VS R
eliminates all data base changes’ made by
the program since the last SYNC or CHKP
call the program issued (or since the
program started processing if the program
hasn't issued any SYNC or CHKP calls).
All data base positioning is lost.’

Programmer Response: Either terminate
the program and restart it with a larger
buffer allocation, or provide an
error-handling routine that will cause
the program to issue SYNC or CHKP calls
more frequently. Issuing SYNC or CHKP
calls more frequently reduces the total
buffer requirements.

FS

Explanation: A nonmessage-driven program
issued an ISRT call for either a root or
sequential dependent segment, but IMS/VS
could not get enough space in either the
root addressable or sequential dependent
part of the DEDB area to insert the new
segment. If IMS/VS returns this status
code on an ISRT call for a root segment,
the problem is with the root addressable
portion of the area. If IMS/VS returns
this status code when the program "issues
a SYNC or CHKP call, the problem is with
the sequential dependent . part of the
area. In either case, IMS/VS’ ellmlnates
all of the data base changes the program
has made since the last sync point (or
since the program started processing, if
the program hasn't reached a sync point).

(

d hY

Programmer Response: Terminate the

program.

FT.

Explanation: The program issued a call to

a Fast Path data base tht included more
than one SSA. Only one SSA is allowed in
any call to a Fast Path data base.

Programmer Response: Correct the call.

FV

Explanation: At least one of the verify
operations in a FLD call issued in a
nonmessage-driven program failed when.
the program reached a sync point. IM5/VS
eliminates the data base updates the the
program has made since it issued the last
SYNC or CHKP call (or if the program
hasn't issued a SYNC or CHKP call, since
the program started processing). All data
base positioning is lost.

Programmer Response: Reprocess the
transaction or terminate the program.

FW

Explanation: A nonmessage-driven Fast
Path program has used all buffers that
are allocatd for normal usage. IMS/VS
returns this status code to warn you that
you may be running out of buffer space.
An FR status code may be imminent.

Programmar Response: One solution to
this problem is to supply an
error-handling routine, triggered by the
FW status code, that will cause your
program to issue SYNC or CHKP calls more
frequently. This will reduce the total
buffer requirement.

GA

Explanation: In trying to satisfy an
unqualified GN or GNP, IMS/VS crossed a
hierarchic boundary into a higher level.

If IMS/VS returns GA after a STAT call,

it means that the STAT call just issued
retrieved the statistics for the last
V5AM buffer subpool. These statistics are
for the largest VSAM buffer subpool. If
yvou issue the same STAT call again,
IMS/VS returns the total statistics for
all of the VSAM buffer subpools.

Programmer Response: The status code is

an information-only status code. What you
do next depends on your program.

GB

Explanation: In trying to satisfy a GN
call, DL/I reached the end of the data

base. In this situation, the SSA
specified data beyond the last
occurrence, and the search was not
limited to the presence of a known or
expected segment occurrence. For
example, a GN call for a key greater than
a particular value, rather than a GU
spfcifying a key value veyond the highest
value.

IMS/VS also returns this status code when
it has closed a GSAM data set. The
assumed position for a subsequent call
for a GSAM or DL/1 data base is the
beginning of the data base.

Programmer Response: User determined.

GC

Explanation: An attempt was made to cross
a Unit-of-Work (UOW) boundary. There was
at least one call on the referenced PCB
that changed position in the data base
since the last sync point or after the
program began executing. IMS/VS doesn't
retrieve or insert a segment. Positioning
is for the first segment following the
current UOW boundary.

Programmer Response: User determined.

GD

Explanation: The program issued an ISRT
call that did not have S5As for all
levels above the level of the segment
being inserted. For at least one of the
levels for which no SSA was specified, a
prior call using this PCB established
valid position on a segment. That
position is no longer valid for one of
these reasons:

. The segment has been deleted by a
DLET call using a different DB PCB.

. The segment was retrieved using an
alternate processing sequence, and a
REPL or DLET call for this DB PCB
caused the index for the existing
position to be deleted.

Programmer Response: This is an
information-only status code.

GE

Explanation: IMS/VS returns this status
code when:

o DL/I is unable to find a segmenf that
satisfies the segment described in a
get call.

L For an ISRT call, DL/I can't find one
of the parents of the segment you're
inserting.

IMS/VS Status Codes 279

. The program issued a STAT call for
ISAM/0SAM buffer pool statistics
when the buffer pool doesn't exist.

L The program issued a STAT call for
VSAM buffer subpool statistics when
the subpools don't exist.

. The program issued a STAT call that
specified a statistics function for
ISAM/70SAM buffer pool statistics.

Programmer Response: The action vou take
depends on your program.

Note: In Fast Path application programs,
if, in executing a GNP call, IMS/VS tries
to retrieve a deleted sequential
dependent segment, IMS/VS returns a GE
status coda. The I/0 area will contain a
length indication of 10 bytes and the
original position of the delted segment.

GG

Explanation: IMS/VS returns this status
code only to application programs with
processing options of GOT or GON, after
the program has issued one of the get
calls. It means that the segment the
program was trying to retrieve contained
an invalid pointer. Position in the data
base after a GG status code is just
before the first root segment occurrence
in the hierarchy. The PCB key feedback
area will contain the langth of the key
of the last root segment accessed.

Programmer Response: Continue processing
with another segment or terminate the
program. It's possible that the call you
received the GG status code on may be
successful if you issue it again.

GK

Explanation: DL/I has returned a
different segment type at the same

hierarchic level for an unqualified GN or
GNP.

Programmer Response: This is an
information-only status code.

GL

Explanation: The program issued a LOG
call that contained an invalid log call
for user log records. The log code in a
LOG call must be greater than X'AQ"'.

DL/I returns GL on a DEQ call when the
first byte of the I/0 area referenced in
the call did not contain a valid DEQ
class (A-J).

Programmer Response: If the program

received this status code for a LOG call,
check the log code in the call and

280 IMS/VS Application Programming

-correct it. If the program received this

status code for a DEQ call, check the DEQ

class code in the I/0 area.

GP

Explanation: The program issued a GNP
call when there is no parentage
established, or the segment level
specified in the GNP is not lower than
the level of the established parent.

IMS/VS also returns this status code in
Fast Path application programs when the
program issues a GNP call that names a
root segment.

Programmer Response: Check the GNP call
and issue a call before the GNP to
correctly establish parentage.

II

Explanation: The program issued an ISRT
call that tried to insert a segment that
already exists in the data base. Some of
the reasons for receiving this status
code are:

. A segment with an equal physical twin
sequence field already exists for the
parent.

. A segment with an equal logical twin
sequence already exists for the
parent.

U The logical parent has a logical
child pointer;, the logical child
doesn't have a logical twin pointer,
and the segment being inserted is the
second logical child for that logical
parent.

° The segment type doesn't have
physical twin forward pointers and
the segment being inserted is the
second segment of this type for that
parent, or it's the second HDAM root
for one anchor point.

] The segment being inserted is in an
inverted structure. (The immediate
parent of this segment in the logical
structure is actually its physical
child in the physical structure.)

. A physically-paired logical child
segment already exists with a
sequence field equal to that of the
segment you're inserting. For
example, the segment could have bheen
inserted with no duplication but when
an attempt was made to position for
the insert of its physical pair, it
was found to have a duplicate key to
an existing twin segment.

. In Fast Path application programs,
IMS/VS returns this status code only
when an attempt is made to insert

TN

duplicate key segments in a DEDB
‘(root segments only) or an MSDB.

Programmer Response: User determined.

IX

Explanation: The program issued an ISRT
call that violated the insert rule for
that segment. Some of the reasons that
IMS/VS returns this status code are:

. The program tried to insert the
logical child and logical parent, and
the insert rule for the logical
parent is physical and the logical
parent does not exist.

. The program tried to insert the
logical child and the logical parent
and the insert rule is logical or
virtual and the logical parent
doesn't exist. In the I/0 area, the
key of the logical parent doesn't
match the corresponding key in the
cﬁqgstenated key in the logical
child.

) The program tried to insert a logical
child, and the insert rule of the
logical parent is virtual and the
logical parent exists. In the I/0
area, the key in the logical parent
segment doesn't match the
corresponding key in the
concatenated key in the logical
child.

. The program tried to insert a
physically paired segment, where
both sides of the physical pair are
the same segment type and the
physical and logical parent are the
same occurrence.

. The program issued an ISRT call after
andopen, close, or I/0 error status
code.

U The program issued an ISRT call to a
GSAM data base after receiving an Al
or A0 status code.

Programmer Response: Correct the ISRT
call, or the program.

LB

Explanation: The segment that the
program tried to load already exists in
the data base. Other possible causes are:

. A segment with an equal physical twin
sequence field already exists for the
parent. -

. A segment type doesn't have a
physical twin forward pointer, and
the segment being inserted is either
the second segment of this segment

type for the parent or the second
HDAM root for one anchor point.

. An application program inserted a key
of X'"FF...FF' into a HISAM or HIDAM
data base.

Programmer Response: Correct the ISRT
call or find out if the load sequence is
incorrect. Check with the DBA or the
equivalent specialist at vour
installation.

LC

Explanation: The key field of the segment
being inserted is out of sequence.

Programmer Response: Check the sagment
and determine where it should be loaded.

LD

Explanation: No parent has been loaded
for the segment being inserted.

Programmer Response: Check the sequence
of segments that have been loaded and
determine where the parent should have
been loaded. '

LE

Explanation: The sequence of sibling
segments being loaded is not the same as
the sequence that's defined in the DBD.

Programmer Response: Check the sequence
of the segments that are being loaded and
correct.

Nb (N bhlank)

Explanation: Index maintenance is unable
to handle the status code it received
from the buffer handler. This status code
wWwill be included in message DFS0840I on
the system console. DF508401 gives the
message "INDEX ERROR dbdname Nb (first 45
bytes of key)." The buffer handler
usually returns messages giving specific
information about the problem before
IMS/VS issues message DFS0840I. If
possible, IMS/VS continues processing;
if not, IMS/VS terminates your program
abnormally with a user abend code of 825.

Programmer Response: Review the status
of the index to determine whether or not
it should be rebuilt.

NE

Explanation: Indexing maintenance issued
a DL/I call, and the segment has not been
found. This status code will be included
in message DFS508401 on the system
console. DFS0840I gives the message

IMS/VS Status Codes 281

"INDEX ERROR (dbdname) NE (first 45 bytes
of key)."

Programmer Response:! Review the status
of the index to determine whether or not
it should be rebuilt.

NI

Explanation: There is a duplicate
segment in a unique secondary index.
While IMS/VS was inserting a replacing a
source segment for a secondary index
defined with a unique sequence field, the
insertion of the segment was attempted
but was unsuccessful because an index
segment with the same key was found. One
possible cause for a duplicate segment in
the index is that the index DBD
incorrectly specified a unique key
value—secondary index only.

In an online application program, the
call is backed out and the program
receives an NI status code.

In a batch program, IMS/VS terminates the
program abnormally with a code of 828.

Programmer Response: In a batch program,
vou should run batch backout to remove
the effects of the inaccurate processing,
since the ISRT call was partially
completed when the 828 abnormal
termination occurred. If duplicate
secondary index entries occur, the index
should be specified as nonunique, and an
overflow entry-sequenced data set should
be provided.

NO

Explanation: There was a BSAM, ISAM,
VSAM, or 05AM physical 170 error during a
data base call issued by indexing
maintenance.

Programmer Rasponse:
correct it.

Check the call and

QC

Explanation: An MPP or
transaction-oriented BMP issued a
successful CHKP call, but the message GU
call issued internally by the CHKP call
was unsuccessful. There are no more
messages in the queue for the program.

Programmer Response: This is an’
information-only status code.

QD
Explanation: The program issued a
message GN, but there are no more

segments for this message.

Programmer Response: Process the

282 IMS/VS Application Programming

message.

QE

Explanation: The program issued a
message GN call before issuing a GU to
the message queue. In message-driven Fast
Path programs, this code applies to
message calls only. This code also
applies to GCMD calls in AOI programs. It
means that the program issued a GCMD call
before issuing a CMD call. This call is
also returned when a program issues a
ROLB without having issuing a successful
message GU call during that sync
interval.

Programmer Response:
by either:

Correct the program
U Issuing a GU call before the GN
. Issuing a CMD call before the GCMD

U Issuing a GU call before the ROLB

QF

¥planation: The length of the segment is
less than 5 characters. The minimum
length allowed is the length of the
message text plus four control
characters.

Programmer Response:
segment.

Correct the

QH

Explanation: There has been a terminal
symbolic error. The output logical
terminal name or transaction code is
unknhown to IMS/VS.

Programmer Response: Check the logical
terminal name or transaction code and

correct it.

RX

Explanationt: The program issued a REPL
call that violated the replace rule for
that segment.

Programmer Response: Correct the call,
or check with the DBA or the equivalent
specialist at your installation.

uc

Explanation: A checkpoint record was
written to the UCF journal data set.
During the processing of an HD
reorganization or reload or an initial
load program under the supervision of the
Utility Control Facility (UCF), a
checkpoint record was written to the UCF
journal data set. IMS/VS returns this

N

TN

k/‘/

status code to indicate that the last
ISRT call was correct and the initial
load program may continue or it may
perform a checkpointing procedure before
continuing.

Programmer Response: This is an
information-only status code.

UR

Explanation: Your initial load program
is being restarted under UCF. The program
terminated while executing under UCF. The
job was resubmitted with a restart
request.

Programmer Response: The program has to

get itself back in step with data base

loading. The program uses the I/0 area

ig§ the DB PCB key feedback area to do
is.

us

Explanation: The initial load program is
about to stop processing. While
processing an HD reorganization reload or
user initial load program under the
supervision of UCF, the operator replied
to the WTOR from UCB and requested the
current function to terminate. The last
ISRT call was processed.

Programmer Response: The intial load
program should checkpoint its data sets
and return with a nonzero value in
register 15.

Ux

Explanation: A checkpoint record was
written and processing stopped. This is a
combination of UC and US status codes.

Programmer Response: Sce the
descriptions of UC and US status codes.

Vi

Explanation: An invalid length was
supplied for a variable-length seament.
The LL field of the variable-length
segment is either too large or too small.
The length of the segment must be equal
to or less than the maximum length
specified in the DBD. The length must be
long enough to include the entire
reference field; if the segment is a
logical child, it must include the entire
concatenated key of the logical parent
and all sequence fields for the paired
segment.

IMS/VS also returns this status code when
an invalid record length is specified in
a GSAM call.

Programmer Response: Correct the

program.

XA

Explanation: The program tried to
continue processing the conversation by
passing the SPA to another program
through a program-to-program message
switch after already responding to the
terminal.

Programmer Response: If a response has
been sent, the SPA should be returned to
IMS/VS. Correct the program.

XB

Explanation: The program has passed the
SPA to another program but is trying to
respond to the originating terminal.

Programmer Rasponse: No response is
allowed by a program that's passed
control of the program through a
program-to-program message switch.

XC

Explanation: The program inserted a
message that has some bits in the Z1
field set. The 21 field is reserved for
IMS/VS.

Programmer Response: Correct the program
to prevent it from setting those bits.

XD

Explanation: IMS/VS is terminating by a
CHECKPOINT FREEZE or DUMPQ. IMS/VS
returns this code to a BMP that has
issued a CHKP call. If it's a
transaction-oriented BMP, IMS/VS does
not return a message.

IMS/VS also returns XD when a batch
program issues a SYNC call.

Programmer Response: Terminate the.
program immediately. IMS/VS will
terminate the program abnormally if the
program issues another call.

XE

Explanation: A program tried to insert a
SPA to an alternate express PCB.

Programmer Response: Regenerate the PSB
and remove the EXPRESS=YES option from
the PCB, or define another PCB that is
not express to be used in the ISRT call.
XF

Explanation: IMS/VYS is ignoring the ISRT
call for the SPA because the referenced

IMS/VS Status Codes 283

alternate PCB had its destination set to
a logical terminal but was not defined as
ALTRESP=YES during PSB generation.

Programmer Response: Correct the
application program or change the PSB
generation for that alternate PCB to
specify ALTRESP=YES.

X6

Explanation: IMS/VS ignored the ISRT
call because the current conversation
requires fixed-length SPAs and the ISRT
call was to a program with a different
length or variable-length SPA.

Programmer Response: Correct the program
or the SPA definitions.

XX

Explanation: After initialization the XX
status code indicates an IMS/VS error,
probably with GSAM. An XX status code at
initialization itself (before the
program has issued its first call) may be
a system, IM5/VS, or user error.

When the XX status code is issued from
initialization, possible causes are:

. Insufficient storage

. Invalid DBD

. Invalid block size

. Invalid option

. GSAM error

Programmer Response: A subsequent GSAM
call will result in an abnormal
termination of the program. The program
should terminate.

X1

Explanation: System error: an I1/0 error
occurred while IMS/VS was reading or
writing the SPA.

Programmer Responsae: Terminate the
conversation.

X2

Explanation: The first ISRT call to a PCB
whose destination is a conversational
transaction code is not for the SPA. The
SPA must be inserted with the first ISRT
call.)

Programmer Response: Insert the SPA,
then reinsert the message segment.

284 IMS/VS Application Programming

X3

Explanation: The proaram modified the
first 6 bytes of the SPA; the SPA is now
invalid.

Programmer Response: Correct the program
and restore the original bytes.

X6

Explanation: The program issued an ISRT
call to pass the SPA to a
nonconversational transaction code. It
did this by referencing a PCB whose
destination was set for the
nonconversational transaction code. You
can send the SPA only to transaction
codes defined as conversational.

Programmer Response: Correct the ISRT
call. Send only data segments.

X5

Explanation: The program issued more
than one ISRT call to send the SPA to a
ch whose destination is a transaction
code.

Programmer Response: Only one SPA is
allowed per message. Correct the program.

X6

Explanation: An invalid transaction code
name was inserted into the SPA.

Programmer Response: Correct the program
to set the proper transaction code name.

X7

Explanation: The length of the SPA is
incorrect. The program modified the first
6 bytes.

Programmer Response: Correct the SPA and
the program.

X8

Explanation: There was a system or I/0
error in attempting to queue a SPA on a
transaction code PCB.

Programmer Response: Terminate the
conversation.

X9

Explanation: The program tried to insert
the SPA, but the length of the SPA is
greater than the maximum I/0 area size
specified in the program's PSB.

77N\

Programmer Response: Correct the SPA, or blanks (bb)
change the I70 area's size specified on

the IOASIZE keyword on the PSBGEN Explanation: The call was completed.
statement.

Programmer Response: Proceed with
processing.

IMS/VS Status Codes 285

APPENDIXES

The appendixes provide four sample application programs, a sample
status code error routine, and the DL/I Test Program control
statements format:

. Appendix A: Sample Batch Program

. Appendix B: Sample Batch Message Program

. Appendix C: Sample Message Processing Program

. Appendix D: Sample Conversational MPP

. Appendix E: Sample Status Code Error Routine

. Appendix F: Using the DL/I Test Program (DFSDDLTO)

The purpose of providing the sample programs is to illustrate the
structure of different IMS/VS application programs. The
application programming in the programs has been kept to a
minimum, and the processing performed is trivial in nature.

Each of the sample programs accesses the Parts data base described
in the IM5/VS Version 1 Primer. The sample programs in Appendixes

A, B, and D perform the same processing: each program updates the
unit price field in the root segment.

The status code error routine is shown in "Appendix E. Sample

Status Code Error Routine (DFSO0AER)."™ This routine is also part of

the Primer. "Checking Status Codes" describes this routine. Each

of the sample routines uses this routine as its error routine. (/

AY
~

77\

286 IMS/VS Application Programming

APPENDIX A. SAMPLE BATCH PROGRAM

The sample batch program reads its input from a GSAM file. The
GSAM input record contains a part number and the new price for
thgt part number. The program updates the data base of the new
price.

After updating the data base, the program lists the part number
and the old and new prices in a GSAM output file.

If the part number is not valid/not a valid key, IMS/VS prints an
error message.

When the program has processed all of the input
records/transactions, the program prints a totals line giving the
total numbers of valid and invalid transactions.

The program uses symbolic checkpoint and restart.

Appendix A. Sample Batch Program 287

IDENTIFICATION DIVISION.
PROGRAM-ID. 'SAMPLELl".
REMARKS.

—ttw A wma s wa

THIS IS A BATCH PRUGRAM WHICH UPDATE
PRICE FIELD IN THE ROOT SEGMENT OF T

DATA BASE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

% DL/I FUNCTION CODES
77 GHU PIC X(4) VALUE

77 GU PIC X(4) VALUE
77 GN PIC X(4) VALUE
77 ISRT PIC X(4) VALUE

77 REPL PIC X(4) VALUE
77 XRST PIC X(4) VALUE
77 CHKP PIC X(4) VALUE

¥ PARAMETER FIELDS FOR DFSOAER STATUS CODE CHECKING ROUTINE

.01 DFSOAER-FIELDS.
02 ERROPT

S5 THE
HE PARTS

"GHU .
‘6 Y.
'GN V.
'ISRT'.
'REPL'.
YXRST".
"CHKP'.

PIC X(4) VALUE '1 '.

02 BAD-DB-CALL PIC X(8) VALUE *DBADCALL"'.
02 BAD-DC-CALL PIC X(8) VALUE "CBADCALL'.

01 CHKPT-WORKAREAS.

% RESTART CHECKPOINT-ID RETURNED HERE IF PROGRAM RESTARTED
02 RESTART-WORKAREA.

04 RESTART-CHKPT PIC X(8) VALUE SPACES.

04 FILLER

PIC X(4) VALUE SPACES.

¥ CHECKPOINT-ID INCREMENTED BY ONE AT EACH CHECKPOINT

02 CHKPT-ID.
04 FILLER
04 CHKPT-ID-CTR

¥ TRANSACTION COUNTER USED TO DETERMINE CHECKPOINT FREQUENCY

02 CHKPT-LIMIT

88 CHKPT-LIMIT-REACHED

PIC X(4) VALUE "SAM1'.
PIC 9(4) VALUE 0.

PIC S9(5) COMP-3 VALUE +0.
VALUE +50.

¥ LENGTH FIELDS USED FOR XRST AND CHKP CALLS

01 AREA-LENGTHS.
02 IOAREA-LEN PIC
02 COUNTER-LEN PIC

01 COUNTERS.
02 LINE-CTR PIC
88 TOP-OF-PAGE
02 VALID-CTR PIC
02 INVALID-CTR PIC

¥ END-SWITCH SET TO 1t IF

01 END-SWITCH PIC
88 NO-MORE

01 INPUT-AREA.
02 TRANCODE PIC
02 IN-PARTNO PIC
02 NEW-PRICE PIC
02 FILLER PIC

01 OUTPUT-AREAS.
02 OUTPUT-LINE.

COMP VALUE +80.
COMP VALUE +8.

~
v
~

$9(3) COMP-3 VALUE +50.
VALUE +50.

$9(5) COMP-3 VALUE +90.

$9(5) COMP-3 VALUE +0.

GB REACHED ON INPUT GSAM FILE

X VALUE '0°'.
VALUE '"1°'.

04 OUTPUT-ASA PIC X.
04 OUTPUT-DATA PIC X(80).

02 HEADING-LINE.

288 IMS/VS Application Programming -

EXA00110
EXA00120
EXA00140
EXA00150
EXA00160
EXA00170
EXA00180
EXA00190
EXA00200
EXA00210
EXA00220
EXA00230
EXA00240
EXA00250
EXA00260
EXA00270
EXA00280
EXA00290
EXA00300
EXA00310
EXA00320
EXA00330
EXA00340
EXA00350
EXA00360
EXA00370
EXA00380

- EXA00390

EXA00400
EXA00410
EXA00420

EXA00430

EXA00440
EXA00450
EXA00460
EXA00470
EXA00480
EXA00490
EXA00500
EXA00510
EXA00520
EXA00530
EXA00540
EXA00550
EXA00560
EXA00570
EXA00580
EXA00590
EXA00600
EXA00610
EXA00620
EXA00630
EXA00640
EXA00650
EXA00660
EXA00670
EXA00680
EXA00690
EXA00700
EXA00710
EXA00720
EXA00730
EXA00740
EXA00750
EXA00760
EXA00770
EXA00780
EXA00790
EXA00800
EXA00810
EXA00820
EXA00830
EXA00840

VR

.

04 FILLER PIC X(10) VALUE 'PART NO'. EXAQ0350

064 FILLER PIC X(11) VALUE 'OLD PRICE'. EXA00860

04 FILLER PIC X(11) VALUE 'NEW PRICE'. EXA00870

064 FILLER PIC X(49) VALUE 'COMMENTS'. EXA00880

02 DETAIL-LINE. EXA00890

04 OUT-PARTNO PIC X(8). EXA00900

04 FILLER PIC X. EXA00910

04 OUT-OLD-PRICE PIC Z(6)9.99. EXA00920

04 FILLER PIC X. EXA00930

04 OUT-NEW-PRICE PIC Z(6)9.99. EXA00940

04 FILLER PIC XX. EXA00950

04 COMMENTS PIC X(40). EXA00960

02 TOTAL-LINE. EXA00970

04 FILLER PIC X(31) VALUE EXA00980
'TRANSACTIONS PROCESSED - VALID °'. EXA00990

04 OUT-VALID PIC Z(4)9. EXA01000

04 FILLER PIC X(10) VALUE ' INVALID °'. EXA01010

04 OUT-INVALID PIC Z2(4)9. EXA01020

. EXA01030

¥ INPUT AREA FOR DATA BASE SEGMENT EXA01040
. : EXA01050

01 DB-IOAREA. EXA01060
02 DB-PARTNO PIC X(8). EXA01070

02 FILLER PIC X(45). EXAQ01080

02 DB-PRICE PIC 9(6)V99. EXA01090

02 FILLER PIC X(19). EXA01100

: EXA01110

¥ SEGMENT SEARCH ARGUMENT EXA01120
EXA01130

01 SSA. EXA01140
02 FILLER PIC X(19) VALUE 'SE1PART (FE1PGPNR ="', EXA01150

02 SSA-PARTNO PIC X(8). EXA01160

02 FILLER PIC X VALUE ")°'. EXA01170
S EXA01180

01 ASA-CTL-CHARS. EXA01190
02 ASA-NEWPAGE PIC X VALUE '1'. EXA01200

02 ASA-SPACE-ONE PIC X VALUE ' ', EXACG1210

02 ASA-SPACE-TWO PIC X VALUE ‘'0°. EXA01220

: . EXA01230
LINKAGE SECTION. EXA01240
‘ EXA01250

% JOPCB USED FOR XRST AND CHECKPOINT CALLS EXA01260
EXA01270

01 IOPCB. EXA01280
02 FILLER PIC X(10). EXAQ1290

02 'TPSTATUS PIC X(2). EXA01300

02 FILLER PIC X(20). EXA01310
EXA01320

% DATA BASE PCB FOR THE PARTS DATA BASE EXA01330
EXA01340

01 DBPCB. EXA01350
02 FILLER PIC X(10). EXA01360

02 DBSTATUS PIC X(2). EXA01370

02 FILLER PIC X(20). EXA01380
EXA01390

¥ GSAM INPUT PCB FOR THE INPUT DATA EXA01400
EXA01410

01 GSAMPCB-IN. EXA01420
02 FILLER PIC X(10). EXA01430

02 GSTATUS-IN PIC X(2). EXA01440

02 FILLER PIC X(20). EXA01450
EXA01460

¥ GSAM OUTPUT PCB FOR THE OUTPUT REPORT EXA01470
EXA01480

01 GSAMPCB-OUT. EXA01490
02 FILLER PIC X(10). EXA01500

02 GSTATUS-0UT PIC X(2). EXA01510

02 FILLER PIC X(20). EXA01520

: EXA01530

PROCEDURE DIVISION. EXAG1540
EXA01550

¥ AT ENTRY IMS PASSES THE FOLLOWING PCB ADDRESSES: EXA01560
EXA01570

Appendix A. Sample Batch Program 289

X K XK X

I0PCB

DBPCB
GSAMPCB-IN
GSAMPCB-0UT

USED FOR CHECKPOINT/RESTART CALLS
PARTS DATA BASE

INPUT DATA FILE

OUTPUT REPORT FILE

ENTRY 'DLITCBL' USING IOPCB, DBPCB,
GSAMPCB-IN, GSAMPCB-OUT.

FIRST CALL IS THE XRST CALL)
CALL 'CBLTDLI' USING XRST, IOPCB, IOAREA-LEN,
RESTART-WORKAREA, COUNTER-LEN, COUNTERS.
IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING
IOPCB, BAD-DC-CALL, COUNTERS, ERROPT.

IF RESTART WORKAREA IS NOT BLANK, THEN PROGRAM IS BEING
RESTARTED - SO RESET THE CHECKPOINT-ID FIELD

IF RESTART-WORKAREA NOT EQUAL SPACES
MOVE RESTART-CHKPT TO CHKPT-ID

OTHERWISE TAKE A CHECKPOINT SO THAT PROGRAM CAN BE
COMPLETELY BACKED OUT TO THE BEGINNING IF NECESSARY

ELSE PERFORM CHKPT-RTN.
MAIN LINE
PERFORM READ-INPUT THRU READ-INPUT-END.

PERFORM PROCESS-INPUT THRU PROCESS-INPUT-END UNTIL NO-MORE.

PERFORM PRINT-TOTAL-LINE THRU PRINT-TOTAL-LINE-END
GOBACK. .

PROCESS-INPUT.

*
*
*

X X X

HERE WE PROCESS THE INPUT MESSAGES
USING THE PARTNUMBER WE READ THE DATABASE
AND UPDATE THE PRICE FIELD WITH THE NEW DATA

MOVE SPACES TO DETAIL-LINE.
MOVE IN-PARTNO TO SSA-PARTNO.
PERFORM READ-DB THRU READ-DB-END.
IF DBSTATUS = 'GE'
THEN MOVE 'NOT ON FILE' TO COMMENTS
MOVE IN-PARTNO TO OUT-PARTNO
ADD 1 TO INVALID-CTR
ELSE MOVE DB-PRICE TO OUT-OLD-PRICE
MOVE NEW-PRICE TO DB-PRICE, OUT-NEW-PRICE
MOVE DB-PARTNO TO OQUT-PARTNO
PERFORM UPDATE-DB THRU UPDATE-DB-END
MOVE "PRICE UPDATED' TO COMMENTS
ADD 1 TO VALID-CTR.

PERFORM PRINT-LINE THRU PRINT-LINE-END

INCREMENT THE CHKPT COUNTER BY ONE FOR EACH TRANSACTION

ADD 1 TO CHKPT-LIMIT.

IF CHKPT-LIMIT-REACHED

INCREMENT THE CHECKPOINT-ID COUNTER

ISSUE A CHECKPOINT CALL

AND RESET THE CHECKPOINT FREQUENCY COUNTER

THEN ADD 1 TO CHKPT-ID-CTR

PERFORM CHKPT-RTN THRU CHKPT-RTN-END
MOVE 0 TO CHKPT-LIMIT.

READ THE NEXT MESSAGE

PERFORM READ-INPUT THRU READ-INPUT-END.

290 IMS/VS Application Programming

EXA01630
EXA01640
EXA01650
EXA01660
EXA01670
EXA01680
EXA01690
EXA01700
EXA01710
EXA01720
EXA01730
EXA01740
EXA01750
EXA01760
EXA01770
EXA01780
EXA01790
EXA01800
EXA01810
EXA01820
EXA018390
EXA01840
EXA01850
EXA01860
EXA01870
EXA01880
EXA01890
EXA01900
EXA01910
EXA01920
EXA01930
EXA01940
EXA01950
EXA01960
EXA01970
EXA01980
EXA01990
EXA02000
EXA02010
EXA02020
EXA02030
EXA020640
EXA02050
EXA02060
EXA02070
EXA02080
EXA02090
EXA02100
EXA02110
EXA02120
EXA02130
EXA02140
EXA02150
EXA02160
EXA02170
EXA02180
EXA02190
EXA02200

'EXA02210

EXA02220
EXA02230
EXA02240
EXA02250
EXA02260
EXA02270
EXA02280
EXA02290
EXA02300

7N

77N

N

PROCESS~-INPUT-END.
EXIT.

PRINT THE REPORT SHOWING THE UPDATES

THE LINES ARE WRITTEN TO A GSAM FILE WHICH
SAN BE SPOOLED TO A PRINTER IN A SUBSEQUENT
OB STEP

PRINT-LINE.

¥ IF PAGE IS FULL, PRINT A HEADING LINE AND RESET THE
¥ LINE-COUNTER BEFORE PRINTING THE DETAIL LINE

IF TOP-OF-PAGE
THEN MOVE HEADING-LINE TO OUTPUT-DATA
MOVE ASA-NEWPAGE TO OUTPUT-ASA
MOVE 0 TO LINE-CTR
PERFORM ISRT-GSAM-QUTPUT THRU ISRT-GSAM-OUTPUT-END.
MOVE ASA-SPACE-TWO TO OUTPUT-ASA.

MOVE DETAIL-LINE TO OUTPUT-DATA
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END.

¥ INCREMENT LINE COUNTER. IF FIRST DETAIL LINE ON PAGE HAS BEEN
¥ PRINTED RESET THE ASA CONTROL CHARACTER TO SINGLE SPACING

ADD 1 TO LINE-CTR
IF LINE-CTR = 1 MOVE ASA-SPACE-ONE TO OUTPUT-ASA.

PRINT-LINE-END.
EXIT.

PRINT-TOTAL-LINE.
MOVE VALID-CTR 70 OQOUT-VALID.
MOVE INVALID-CTR TO OUT-INVALID.
MOVE TOTAL-LINE TO OUTPUT-DATA.
MOVE ASA-NEWPAGE TO OUTPUT-ASA .
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END.
MOVE SPACES TO OUTPUT-ASA.

PRINT-TOTAL-LINE~-END.
EXIT.

¥ THE FOLLOWING PROCEDURES EXECUTE THE DL/I CALLS AGAINST
¥ THE GSAM INPUT AND OUTPUT FILES, AND THE DATA BASE.
% NO APPLICATION PROCESSING IS PERFORMED IN THESE ROUTINES.

READ-INPUT.
CALL 'CBLTDLI' USING GN, GSAMPCB-IN, INPUT-AREA.
IF GSTATUS-IN = "GB!
THEN MOVE 1 TO END-SWITCH
ELSE IF GSTATUS-IN NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING
GSAMPCB-IN, BAD-DB-CALL, INPUT-AREA, ERROPT.
READE§¥PUT-END.

.

X XK X XK

READ-DB.

CALL '"CBLTDLI' USING GHU, DBPCB, DB-IOAREA, SSA.

IF DBSTATUS = SPACES OR 'GE'

THEN NEXT SENTENCE

ELSE CALL 'DFSOAER' USING

DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.

READ-DB-END.

EXIT.

UPDATE-DB.
CALL 'CBLTDLI' USING REPL, DBPCB, DB-IOAREA.
IF DBSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING
DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
UPDATE-DB-END.

EXA02310
EXA02320
EXA02330
EXA02340
EXA02350
EXA02360
EXA02370
EXA02380
EXA02390
EXA02400
EXA02410
EXA02420
EXA02430
EXA02440
EXA02450
EXA02460
EXA02470
EXA02480
EXA02490
EXA02500
EXA02510
EXA02520
EXA02530
EXA02540
EXA02550
EXA02560
EXA02570
EXA02580
EXA02590
EXA02600
EXA02610
EXA02620
EXA02630
EXA02640
EXA02650
EXA02660
EXA02670
EXA02680
EXA02690
EXA02700
EXA02710
EXA02720
EXA02730
EXA02740
EXA02750
EXA02760
EXA02770
EXA02780
EXA02790
EXA02800
EXA02810
EXA02820
EXA02830,
EXA02840
EXA02850
EXA02860
EXA02870
EXA02880
EXA02890
EXA02900
EXA02910
EXA02920
EXA0293¢
EXA02940
EXA02950
EXA02960
EXA02970
EXA02980
EXA02990
EXA03000
EXA03010
EXA03020
EXA03030

Appendix A. Sample Batch Program

291

EXIT.

ISRT-GSAM-0UTPUT.
CALL TCBLTDLIF USING ISRT, GSAMFCB-OUT, OUTFUT-LINE.
IF GSTATUS-0UT NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING
GSAMPCB-0UT, BAD-DB-CALL, OUTPUT-LINE, ERROPT.
ISRTE§§$M-OUTPUT-END. :

CHKPT-RTN. '
CALL 'CBLTDLI' USING CHKP, IOPCB, IOCAREA-LEN, CHKPT-ID,
COUNTER-LEN, COUNTERS.
IF TPSTATUS NOT EQUAL SPACES
CALL 'DFSOAER' USING
: IOPCB, BAD-DC-CALL, CHKPT-ID, ERROPT.
CHKPT-RTN-END.

EXIT.

292. IMS/VS Application Programming

EXA03110
EXA03120

EXA03130

EXA03140
EXA03150
EXA03160
EXA03170
EXA03180
EXA03190
EXA03200
EXA03210

7N

APPENDIX B. SAMPLE BATCH MESSAGE PROGRA

This sample program is a transaction-oriented BMP that updates
the price field. The program gets its input from the message queue
and updates the price field of the root segment. When the BMP
prints the totals of the valid and invalid transactions that have
been processed, it sends them to an alternate PCB. Before issuing
the ISRT call to send this message, the program uses the CHNG call
to set the destination of thae PCB. One reason you might use an
alternate PCB in this situation is to send the output to a
hardcopy terminal/printer in the user's department.

This program uses symbolic checkpoint and restart.

Appendix B. Sample Batch Message Program 293

IDENTIFICATION DIVISION.
PROGRAM-ID. 'SAMPLE2'.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

¥ DL/I FUNCTION CODES

GHU PIC X(4) VALUE
GU PIC X(4) VALUE
GN PIC X(4) VALUE
ISRT PIC X(4) VALUE
REPL PIC X(4) VALUE
XRST PIC X(4) VALUE
CHKP PIC X(4) VALUE
CHNG PIC X(4) VALUE

¥ DESTINATION LTERM-NAME

77

¥ PARAMETER FIELDS FOR USE BY DFSOAER STATUS CODE CHECKING ROUTINE

01

01

01

01

01

01

01

01

294

SUPER-LTERM PIC

DFSOAER-FIELDS.
02 ERROPT PIC

YGHU *.
‘6 T,
6N ',
'ISRT'.
*REPL'.
TXRST'.
YCHKP'.
"CHNG'.

FOR MODIFIABLE PCB

X(8) VALUE

X(4) VALUE

02 BAD-DB-CALL PIC X(8) VALUE

02 BAD-DC-CALL PIC

CHKPT-WORKAREAS.
02 RESTART-WORKAREA
04 RESTART-CHKP
04 FILLER
02 CHKPT-ID.
04 FILLER
04 CHKPT-ID-CTR
02 CHKPT-LIMIT
88 CHKPT-LIMIT-
AREA-LENGTHS.
02 IOAREA-LEN
02 COUNTER-LEN
COUNTERS.
02 LINE-CTR
88 TOP-OF-PAGE
02 VALID-CTR
02 INVALID-CTR
SWITCHES.
02 END-SWITCH
88 NO-MORE
02 CLOSE~SWITCH
88 CLOSE-DOWN

INPUT-MSG.
02 IN-LL1 PIC
02 1IN-ZZ1 PIC

02 TRANCODE PIC
02 IN-PARTNO PIC
02 NEW-PRICE PIC
02 FILLER PIC

CHKPT-AREA REDEFINES
02 PASS=CHKPT PIC
02 FILLER PIC

OUTPUT-AREAS.
02 OUTPUT-MSG.
04 O0UT-LL PIC
04 0QUT-ZZ PIC
04 OUTPUT-LINE.
06 OUTPUT-A
06 OUTPUT-D
02 HEADING-LINE.
04 FILLER PIC

X(8) VALUE

-

T PIC X(8)

"PARTSUPR'.

'l '.
'DBADCALL’.
"CBADCALL"'.

VALUE SPACES.

PIC X(4) VALUE SPACES.
PIC X(4) VALUE 'SAM2'.
PIC 9(4) VALUE 0.

PIC $9(5) COMP-3 VALUE +0.
REACHED VALUE +50.
PIC $9(5) COMP VALUE +80.
PIC 59(5) COMP VALUE +8.

PIC S9(3) COMP-3 VALUE +50,
- VALUE +50.
PIC 59(5) COMP-3 VALUE +0.
PIC S$S9(5) COMP-3 VALUE +0.
PIC X VALUE '0°'.
VALUE '"1°'.
PIC X VALUE '0°'.
VALUE "1°'.
$9(3) COMP.
$9(3) COMP.
X(9).
X(8).
9(6)V99.
X(100).
INPUT-MSG.
X(8).
X(100).

$9(3) COMP
$9(3) comMp

VALUE +85.
VALUE +0.

SA PIC X.
ATA PIC X(80).

X(9) VALUE

YPART NO'.

IMS/VS Application Programming

EXA00110
EXA00120
EXA00130
EXA00140
EXA00150
EXA00160
EXA00170
EXA00180
EXA00190
EXA00200
EXA00210
EXA00220
EXA00230
EXA00240
EXA00250
EXA00260
EXA00270
EXA00280
EXA00290
EXA00300
EXA00310
EXA00320
EXA00330
EXA00340
EXA00350
EXA00360
EXA00370
EXA00380
EXA00390
EXA00400
EXA00410
EXA00420
EXA00430
EXA00440
EXA00450
EXA00460
EXA00470
EXA00480
EXA00490
EXA00500
EXA00510
EXA00520
EXA00530
EXA00540
EXA00550
EXA00560
EXA00570
EXA00580
EXA00590

"EXA00600

EXA00610
EXA00620
EXA00630
EXA00640
EXA00650
EXA00660
EXA00670
EXA00680
EXA00690
EXA00700
EXA00710
EXA00720
EXA00730
EXA00740
EXA00750
EXA00760
EXA00770
EXA00780
EXA00790
EXA00800
EXA00810
EXA00820
EXA00830

.

4 N\

Y

04 FILLER PIC X(11) VALUE 'OLD PRICE'.
04 FILLER PIC X(1l1) VALUE "NEW PRICE'.
: 04 FILLER PIC X(49) VALUE 'COMMENTS'.
62 DETAIL-LINE.

04 OUT-PARTNO PIC X(8).
04 FILLER PIC X.
04 OUT-0LD-PRICE PIC Z(6)9.99.
04 FILLER PIC X.
04 OUT-NEW-PRICE PIC 2(6)9.99.
04 - FILLER PIC X.
04 COMMENTS PIC X(40).

02 TOTAL-LINE.
04 FILLER PIC X(40) VALUE

'TRANSACTIONS PROCESSED - VALID '.
04 OUT-VALID PIC Z2(4)9.
04 FILLER PIC X(10) VALUE ' INVALID .
04 OUT-INVALID PIC Z2(4)9.
01 DB-IOAREA.

62 DB-PARTNO PIC X(8).

02 FILLER PIC X(45).

02 DB-PRICE PIC 9(6)V99

02 FILLER PIC X(19).

01 ASA-CTL-CHARS.
02 - ASA-NEWPAGE PIC X VALUE '1°'.
02 ASA-SPACE-ONE PIC X VALUE ' '.
02 ASA-SPACE-TWO PIC X VALUE '0".

¥ SEGMENT SEARCH ARGUMENT

01 SSA.
02 FILLER PIC X(19) VALUE '"SE1PART (FE1PGPNR =".
02 SSA-PARTNO PIC X(8).
02 FILLER PIC X VALUE ")'.

LINKAGE SECTION.
¥ IOPCB FOR RETRIEVING MESSAGES, AND ISSUING CHKP/XRST CALLS

01 IOPCB.
02 FILLER PIC X(10).
02 TPSTATUS PIC X(2).
02 FILLER PIC X(20).

¥ MODIFIABLE ALTERNATE PCB USED TO SWITCH A TOTALS MESSAGE
¥ TO A SUPERVISOR'S TERMINAL

61 ALTPCB.

02 ALTPCB-DEST PIC X(8).

02 FILLER PIC X(2).

02 ALTSTATUS PIC X(2).

02 FILLER PIC X(10).
¥ DATA BASE PCB FOR THE PARTS DATA BASE
01 DBPCB.

02 FILLER PIC X(10).

02 DBSTATUS PIC X(2).

02 FILLER PIC X(20).

* GSAM PCB FOR THE OUTPUT REPORT FILE
01 GSAMPCB-O0UT.

02 FILLER PIC X(10).
02 GSTATUS-0UT PIC X(2).
02 FILLER PIC X(20).

PROCEDURE DIVISION.
¥ ON ENTRY IMS PASSES THE FOLLOWING PCB ADDRESSES:
¥ IOPCB - INPUT TRANSACTIONS FROM THE MESSAGE QUEUE

EXA00840
EXA00850
EXA00860
EXA00870
EXA00880
EXA00890
EXA00900
EXA00910
EXA00920
EXA00930
EXA00940
EXA00950
EXA00960
EXA00970
EXA00980
EXA00990
EXA01000
EXAO01010
EXA01020
EXA01030
EXA01040
EXA01050
EXA01060
EXA01070
EXA01080
EXAQ01090

- EXAQ01100

EXAQ01110
EXA01120
EXA01130
EXA01140
EXA01150
EXA01160
EXA01170
EXA01180
EXA01190
EXA01200
EXA01210
EXA01220
EXA01230
EXA01240
EXA01250 -
EXA01260
EXA01270
EXA01280
EXA01290
EXA01300
EXA01310
EXA01320
EXA01330
EXA01340
EXA01350
EXAD1360
EXA01370
EXA01380
EXA01390
EXA01400
EXA01410
EXA01420
EXAD01430
EXA01440
EXA01450
EXA01460
EXA01470
EXA01480
EXA01490
EXA01500
EXA01510
EXA01520
EXA01530
EXA01540
EXA0155¢
EXA01560

Appendix B. Sample Batch Message Program

ALTPCB - LTERM FOR SWITCHING TOTALS MESSAGE
DBPCB - PARTS DATA BASE
GSAMPCB-0OUT - OUTPUT REPORT FILE
ENTRY 'DLITCBL' USING IOPCB, ALTPCB, DBPCB, GSAMPCB-DUT.

¥ FIRST CALL IS THE XRST

X X X

CALL 'CBLTDLI' USING XRST, IOPCB, IOAREA-LEN,
RESTART-WORKAREA, COUNTER-LEN, COUNTERS.
IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING
IOPCB, BAD-DC-CALL, COUNTERS, ERROPT.

¥ IF THE RESTART WORKAREA IS NOT BLANK, THE PROGRAM
¥ IS BEING RESTARTED, SO RESET THE CHECKPOINT ID FIELD

IF RESTART-WORKAREA NOT EQUAL SPACES
MOVE RESTART-CHKPT TO CHKPT-ID.

¥ READ THE FIRST MESSAGE
PERFORM READ-INPUT THRU READ-INPUT-END

PROCESS THE MESSAGES UNTIL A QC STATUS CODE IS RECEIVED
OR AN XD ON A CHECKPOINT CALL WHICH INDICATES THAT THE
ONLINE SYSTEM IS BEING CLOSED DOWN

PERFORM PROCESS-INPUT THRU PROCESS-INPUT-END
UNTIL NO-MORE OR CLOSE-DOWN.

¥ PRINT THE TOTALS LINE AND SEND A MESSAGE TO
¥ TO THE SUPERVISOR'S TERMINAL VIA THE ALTERNATE PCB

PERFORM PRINT-TOTALS THRU PRINT-TOTALS-END.
GOBACK.

PROCESS-INPUT.
MOVE SPACES TO DETAIL-LINE.
MOVE IN-PARTNO TO SSA-PARTNO.
PERFORM READ-DB THRU READ-DB-END.
IF DBSTATUS = 'GE!
THEN MOVE 'NOT ON FILE' TO COMMENTS
MOVE IN-PARTNO TO OUT-PARTNO
ADD 1 70O INVALID-CTR
ELSE MOVE DB-PRICE TO OUT-OLD-PRICE
MOVE NEW-PRICE TO DB~PRICE, -OUT-NEW-PRICE
MOVE DB-PARTNO TO OUT-PARTNO
PERFORM UPDATE-DB THRU UPDATE-DB-END
MOVE 'PRICE UPDATED' TO COMMENTS
ADD 1 TO VALID-CTR.

PERFORM PRINT-LINE THRU PRINT-LINE-END
ADD 1 TO CHKPT-LIMIT.

IF THE CHECKPOINT-LIMIT HAS BEEN REACHED, TAKE
A CHECKPOINT AND INCREMENT THE ID COUNTER
THIS WILL ALSO CAUSE A MESSAGE TO BE RETURNED

IF CHKPT-LIMIT-REACHED
THEN ADD 1 TO CHKPT-ID-CTR
MOVE CHKPT-ID TO PASS-CHKPT
PERFORM CHKPT-RTN THRU CHKPT-RTN-END
MOVE 0 TO CHKPT-LIMIT
OTHERWISE READ THE NEXT MESSAGE FROM THE QUEUE
ELSE PERFORM READ-INPUT THRU READ-INPUT-END.

PROCESS—~INPUT-END.
EXIT.

X XK X

X K XK

X

296 IMS/VS Application Programming

EXA01570
EXA01580
EXA01590
EXA01600
EXA01610
EXA01620
EXAG1630
EXA01640
EXA01650
EXA01660
EXA01670
EXA01680
EXA01690
EXA01700
EXA01710
EXA01720
EXA01730
EXA01740
EXA01750
EXA01760
EXA01770
EXA01780
EXA01790
EXA01800
EXA01810
EXA01820
EXA01830
EXA01840
EXA01850
EXA01860
EXA01870
EXA01880
EXA01890
EXA01500
EXA01910
EXA01920
EXA01930
EXA01940
EXA01950
EXA01960
EXA01970
EXA01980
EXA01990
EXA02000
EXA02010
EXA02020
EXA02030
EXA02040
EXA02050
EXA02060
EXA02070
EXA02080
EXA02090
EXA02100
EXA02110
EXA02120
EXA02130
EXA02140
EXAG2150
EXA02160
EXA02170
EXA02180
EXA02190
EXA02200
EXA02210
EXA02220
EXA02230
EXA02240
EXA02250
EXA02260
EXA02270
EXA02280
EXA02290

VRN

N

PRINT-LINE.
IF TOP-OF-PAGE
THEN MOVE HEADING-LINE TO OUTPUT-DATA
MOVE ASA-NEWPAGE TO OUTPUT-ASA
MOVE 0 TO LINE-CTR

PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END

MOVE ASA-SPACE-TWO TO OUTPUT-ASA.

MOVE DETAIL-LINE TO OUTPUT-DATA

PERFORM ISRT-GSAM-OUTPUT THRU ISRT~GSAM-OUTPUT-END

ADD 1 TO LINE-CTR

IF LINE-CTR = 1 MOVE ASA-SPACE-ONE TO OUTPUT-ASA.
PRINE;&%NE-END.

PRINT-TOTALS.

MOVE VALID-CTR TO OUT-VALID

MOVE INVALID-CTR TO OUT-INVALID

MOVE TOTAL-LINE TO OUTPUT-DATA

. MOVE ASA-NEWPAGE TO OUTPUT-ASA

PERFORM ISRT-GSAM-OUTPUT THRU ISRT- GSAM-0UTPUT- END

MOVE SPACES TO OUTPUT-ASA

PERFORM ISRT-ALTPCB THRU ISRT-ALTPCB-END.
PRINE;}?TALS-END.

¥ THE FOLLOWING ROUTINES EXECUTE THE DL/I CALLS
¥ BUT DO NOT DO ANY APPLICATION PROCESSING

READ-INPUT. -
CALL 'CBLTDLI' USING GU, IOPCB, INPUT-MSG.
IF TPSTATUS = 'QC'
THEN MOVE 1 TO END-SWITCH
ELSE IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING
IOPCB, BAD-DC-CALL, INPUT-MSG, ERROPT.
READ-INPUT-END.

EXIT.

READ-DB. :
CALL 'CBLTDLI' USING GHU, DBPCB, DB-IOAREA, SSA.
IF DBSTATUS = SPACES OR 'GE'
THEN NEXT SENTENCE
ELSE CALL 'DFSOAER' USING
DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.

'READ-DB-END.

EXIT.

UPDATE-DB. ‘
CALL 'CBLTDLI' USING REPL, DBPCB, DB-IOAREA.
IF DBSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING _
: DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
UPDATE-DB-END.

EXIT.

ISRT-GSAM-OUTPUT. ‘ .
CALL 'CBLTDLI' USING ISRT, GSAMPCB-OUT, OUTPUT-LINE.
IF GSTATUS-0UT NOT EQUAL SPACES
THEN CALL '"DFSOAER' USING
: GSAMPCB-0UT, BAD-DB-CALL, OUTPUT-LINE, ERROPT.
ISRTE§%¢M-OUTPUT-END.

ISRT-ALTPCB.

CALL 'CBLTDLI' USING CHNG, ALTPCB, SUPER-LTERM

IF ALTSTATUS NOT EQUAL SPACES

* 'THEN CALL 'DFSOAER' USING

ALTPCB, BAD-DC-CALL, SUPER-LTERM, ERROPT.

CALL 'CBLTDLI' USING ISRT, ALTPCB, OUTPUT-MSG.

IF ALTSTATUS NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
ALTPCB, BAD-DC-CALL, OUTPUT- MSG; ERROPT.

EXA02300
EXA02310
EXA02320
EXA02330
EXA02340
EXA02350
EXA02360
EXA02370
EXA02380
EXA02390
EXA02400
EXA02410
EXA02420
EXA02430
EXA02440
EXA02450
EXA02460
EXA02470
EXA02480
EXA02490
EXA02500
EXA02510
EXA02520
EXA02530
EXA02540
EXA02550
EXA02560
EXA02570
EXA02580
EXA02590
EXA02600
EXA02610
EXA02620
EXA02630
EXA02640
EXA02650
EXA02660
EXA02670
EXA02680
EXA02690
EXA02700
EXA02710
EXAQ2720
EXA02730
EXA02740
EXA02750
EXAG2760
EXA02770
EXA02780
EXA02790
EXA02800
EXA02810
EXA02820
EXA02830
EXA02840
EXA02850
EXA02860
EXA02870
EXA02830
EXA02890
EXA02900
EXA02910
EXA02920
EXA02930
EXA02940
EXA02950
EXA02960
EXA02970
EXA02980
EXA02990
EXA03000
EXA03010
EXA03020

Appendix B. Sample Batch Message Program

297

ISRT-ALTPCB-END.
EXIT. B

CALL 'CBLTDLI' USING CHKP, IOPCB, IOAREA-LEN,
COUNTER-LEN, COUNTERS.
IF TPSTATUS = 'XD'
THEN MOVE 1 TO CLOSE-SWITCH
ELSE IF TPSTATUS = 'QC*
THEN MOVE 1 TO END-SWITCH
ELSE IF TPSTATUS NOT EQUAL SPACES
CALL 'DFSOAER' USING
IOPCB, BAD-DC-CALL, CHKPT-ID,
CHKPT-RTN-END.
EXIT.

298 IMS/VS Application Programming

CHKPT-AREA,

ERROPT.

EXA03030

EXA03040 .

EXA03050
EXAG3060
EXA03070
EXA03080
EXA03090
EXA03100
EXAO03110
EXA03120
EXA03130
EXA03140
EXA03150
EXA03160
EXA03170
EXA00440

)

N

APPENDIX C. SAMPLE MESSAGE PROCESSING PROGRAM

This program processes the Primar sampla parts data basa.

Appendix C. Sample Message Processing Program

299

PE4NINQ: PROCEDURE (C1PC_PTR,DIPC_PTR) OPTIONS (MAIN);

/% ¥ X BDECLARATIONS X x %/
DCL 1 C1PC BASED (CIPC_PTR),
2 FILL CHAR (10);
2 STAT CHAR (2),
1 DIPC BASED (DIPC_PTR) LIKE C1PC;

DCL 1 INPUT_MESSAGE,
2 FILL1 CHAR (6),
2 TRANS_CODE CHAR (9),
2 FEOOGCNR CHAR (6),
2 FILL2 CHAR (60),

1 OUT_MESSAGE,
2 OUT_LL INIT (111) FIXED BINARY (31),
2 0UT_ZZ INIT (0) FIXED BINARY (15,
2 OUT_DETAILS,
3 FE2PCNUM CHAR (6),
3 (FE2PCNAMNM,
FE2PCADR,
FE2PCCTY) CHAR (20),
3 FE2PCPCD CHAR (6),
2 OUT_ERROR CHAR (35),

1 SE2PCUST,
2 CUST_DETAILS LIKE OUT_DETAILS,
2 FILL CHAR (40),

1 CUSTOMER_SSA,
2 FILL1 CHAR (19) INIT ('SE2PCUST(FE2PCNUM ="),
2 SSA_CNUM CHAR (6),
2 FILL2 CHAR (1) INIT (')");

DCL ((GU INIT ('GU"),

ISRT INIT ('ISRT"),

ERROPT INIT ('1')) CHAR (4),

(MODNAME INIT ('OE4CNIO1"),

BAD_CALL INIT ('BAD CALL')) CHAR (8),
(THREE INIT (3),

FOUR INIT (4)) FIXED BINARY (31)) STATIC,
(ClPC_PTR,DIPC_PTR) POINTER,
(PLITDLI, DFSOAER OPTIONS (ASSEMBLER)) ENTRY;

/% ¥ X PROCESS MESSAGES*x »x
READ_MESSAGE:

CALL PLITDLI (THREE,GU,C1PC_PTR,INPUT_MESSAGE);
IF CIPC.STAT = 'QC' THEN RETURN;
IF C1PC.STAT =-~= "
THEN CALL DFSOAER (C1PC,BAD_CALL, INPUT_MESSAGE, ERROPT);
SSA_CNUM = FEOOGCNR;

7% ¥ ¥ READ CUSTOMER DATA B ASEX x %/

CALL PLITDLI (FOUR,GU,DIPC_PTR,SE2PCUST,CUSTOMER_SSA);
IF DIPC.STAT = ' ' THEN DO;
OUT_DETAILS = CUST_DETAILS;
OUT_ERROR = ' '; ;
END;
ELSE IF DIPC.STAT = 'GE' THEN DO;
OUT_ERROR = TYINVALID NUMBER - PLEASE RE-ENTER';
ggE_DETAILS = vy
b4
ELSE CALL DFSOAER (D1PC,BAD_CALL,SE2PCUST,ERROPT);

/¥ ¥ ¥ T NSERT MESS AGE % ¥ %/

COO0OO0OO0OOOOOO0OO0OO0OOODOO
COOODDOOODOOOOODOOOOUOOD

CALL PLITDLI
IF ClPC.STAT
THEN CALL

(FOUR ISRT,CIPC_PTR,0UT_MESSAGE,MODNAME);

-

DFSOAER (C1PC,BAD_CALL,OUT_MESSAGE, ERROPT);

300 IMS/VS Application Programming

COOODOODOO
CONAUT LN =
COO0OOODOCO
(=]

DOO00OMDOO

09000
10000
11000
12000
13000
14000
15000
16000
17000

OO0 O0OWOO0OO0OODOO0OOOO0WWOO

19000
020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00025000
00030000

00046000
00047000
00048000
00049000
00050000
060051000
00052000
00053000
00054000
00055000
00056000
00057000
000580

o
Q
o
o
-3
o
o
OCOO0OOO0OODOO0O0OOO

00070000
00071000
00072000
00073000

13000

7N

s

GO TO READ_MESSAGE;
END PE4NINQ;

00074000
00075000
00076000

Appendix C. Sample Message Processing Program

301

APPENDIX D. SAMPLE CONVERSATIONAL MPP

302

This program updates the price field of the root segment of a new
price for that part. There are two passes in the conversation:

To start the conversation, the person at the terminal enters
the transaction code and the number of the part whose price
will be updated.

The progam retrieves the root segment for that part from the
parts data base by qualifying the SSA of the part number. The
program also saves the part number and the current price from
the root segment in the SPA, then sends an output message to
the terminal that gives the current price.

If the part number that was entered is invalid, the program
sends an error message to the terminal and ends the
conversation by inserting blanks in the area of the SPA that
contains the transaction code (the first 8 bytes).

The person at the terminal then enters the new price. Using
the part number stored in the SPA, the program retrieves the
root segment and checks to see if the price in the SPA matches
the price in the data base segment. If the price in the data
base hasn't been updated, the program updates the data base
with the new price and sends a message to the terminal giving
the old and new prices. The program terminates the ’
conversation by inserting blanks in the transaction code area
of the SPA. The reason that the program has to check the price
during pass 2 is that you can't enqueue a data base record
across passes of a conversation. For example, someone at
another terminal could have entered the same transaction and
completed it before the first person entered the data for
pass.

IMS/VS Application Programming

/

77N\

IDENTIFICATION DIVISION.

PROGRAM-ID. 'SAMPLEG4'.

REMARKS.
THIS PROGRAM IS A CONVERSATIONAL MESSAGE PROCESSING
PROGRAM WHICH UPDATES THE PRICE FIELD IN THE ROOT
SEGMENT OF THE PARTS DATA BASE.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

¥ DL/I FUNCTION CODES

77 FUNC PIC X(4).

77 GU PIC X(4) VALUE ‘'GU .
77 GN PIC X(4) VALUE 'GN ',
77 ISRT PIC X(4) VALUE 'ISRT'.
77 REPL PIC X(4) VALUE 'REPL'.

¥ THIS SWITCH IS SET TO 1 IF A QC IS RETURNED WHEN
¥ RETRIEVING THE NEXT MESSAGE.

77 END-SWITCH PIC X VALUE '0".
88 NO-MORE-INPUT VALUE '1'.

¥ PARAMETERS USED BY DFSOAER STATUS CODE CHECKING ROUTINE

01 DFSOAER-FIELDS.
02 ERROPT PIC X(4) VALUE 'l '.
02 BAD-DB-CALL PIC X(8) VALUE '"DBADCALL"'.
02 BAD-DC-CALL PIC X(8) VALUE 'CBADCALL"'.

¥ SCRATCH PAD AREA

01 SPA. ..
02 FILLER PIC X(6).
02 SPA-TRANCODE PIC X(8).

¥ THIS FIELD IS SET TO 1 DURING PASS 1 PROCESSING

02 PASS-COUNT PIC S9(3) COMP.
88 FIRST-PASS VALUE +0.

02 SPA-PARTNO PIC X(8).

02 SPA-OLD-PRICE PIC 9(6)V99.

02 FILLER PIC X(100),.

01 PASS1-INPUT.

02 IN-LL1 PIC S$9(3) COMP.
02 IN-ZZ1 PIC S9(3) COMP
02 IN-PARTNO PIC X(8).
02 FILLER PIC X(80).

01 PASS2-INPUT.
02 IN-LL2 PIC S$S9(3) COMP.
02 IN-ZZ2 PIC S9(3) COMP.
02 NEW-PRICE PIC 9(6)V99.
02 FILLER PIC X(100).

01 OUTPUT-MSG.
02 O0UT-LL PIC S9(3) COMP VALUE +72.
02 0UT-ZZ PIC S9(3) COMP VALUE +0.
02 OUT-DATA.
04 OQUT-PARTNO PIC X(8).
04 OUT-OLD-PRICE PIC Z2(6)9.99.
04 OUT-NEW-PRICE PIC Z(6)9.99.
04 COMMENTS PIC X(40).

01 DB-IOAREA.

62 DB-PARTNO PIC X(8).

02 FILLER PIC X(45).
02 DB-PRICE PIC 9(6)V99.
02 FILLER PIC X(19).

EXAO0110
EXA00120
EXA00130
EXA00140
EXA00150
EXAQ00160
EXA00170
EXA00180
EXA00150
EXAQ0200
EXAQ00210
EXA00220
EXA00230
EXA00240
EXA00250
EXA00260
EXA00270
EXA00280
EXA00290
EXA00300
EXAQ0310
EXA00320
EXA00330
EXA00340
EXA00350
EXA00360
EXAQ00370
EXA00380
EXA00390
EXA00400
EXA00410
EXA00420
EXA00430
EXA00440
EXA00450
EXA00460
EXA00470

- EXA00480

EXA00490
EXA00500
EXA00510
EXA00520
EXA00530
EXA00540
EXA00550
EXA00560
EXA00570
EXA00580
EXA00590
EXA00600
EXA00610
EXA00620
EXA00630
EXA00640
EXA00650
EXA00660
EXAQ0670
EXA00630
EXA00690
EXA00700
EXAQ0710
EXA00720

- EXA00730

EXA00740
EXA00750
EXA00760
EXA00770
EXA00780
EXA00790
EXA00800
EXA00810
EXA00820
EXA00830

Appendix D. Sample Conversational MPP

303

¥ SEGMENT SEARCH ARGUMENT

01 SSA.
02 FILLER PIC X(19) VALUE 'SE1PART (FE1PGPNR ='.
02 SSA-PARTNO PIC X(8).
02 FILLER PIC X VALUE ')'.

LINKAGE SECTION.

01 IOPCB.
02 FILLER PIC X(10).
02 TPSTATUS PIC X(2).
02 FILLER PIC X(20)

01 DBPCB.
02 FILLER PIC X(10).
02 DBSTATUS PIC X(2).
02 FILLER PIC X(20).

PROCEDURE DIVISION.
¥ ON ENTRY IMS PASSES THE FOLLOWING PCB ADDRESSES:

¥ IOPCB - FOR RETRIEVING THE SPA AND INPUT MESSAGE SEGMENT
¥ DBPCB - PARTS DATA BASE

ENTRY 'DLITCBL' USING IOPCB, DBPCB.

PERFORM READ-SPA THRU READ-SPA-END

PERFORM MAINLINE THRU MAINLINE-END
UNTIL NO-MORE-INPUT.

GOBACK.

MAINLINE.

¥ HERE WE CHECK A FIELD IN THE SPA TO SEE IF IT IS
¥ BINARY ZEROES, WHICH INDICATES THAT THIS IS THE
¥ FIRST PASS OF THE CONVERSATION.

IF FIRST-PASS PERFORM PASS1 THRU PASS1-END
ELSE PERFORM PASS2 THRU PASS2-END.

AFTER PERFORMING THE NECESSARY DATA BASE PROCESSING

WE INSERT THE SCRATCH PAD AREA AND A MESSAGE TO

TO THE OPERATOR.

THEN WE RETRIEVE ANOTHER MESSAGE FROM THE INPUT MESSAGE
QUEUE. IF A QC STATUS CODE IS RECEIVED, A SWITCH

IS SET ON, AND THE PROGRAM WILL TERMINATE.

OTHERWISE THE MAINLINE LOOP IS REPEATED.

PERFORM ISRT~SPA THRU ISRT-SPA-END
PERFORM ISRT-MSG THRU ISRT-MSG-END
PERFORM READ~SPA THRU READ-SPA-END.

MAINLINE-END.
EXIT.

¥ PASS 1 PROCESSING

PASS1.

¥ READ THE INPUT MESSAGE CONTAINING THE PART NUMBER
PERFORM READ-PASS1 THRU READ-PASS1-END.
MOVE SPACES TO OUT-DATA

SET UP THE SSA AND FUNCTION CODE FOR THE DATA BASE CALL
MOVE IN~PARTNO TO SSA-PARTNO, OUT-PARTNO
MOVE GU TO FUNC.
PERFORM READ-DB THRU READ-DB-END

IF THE PART NUMBER IS AN INVALID KEY, SET UP AN
ERROR MESSAGE FOR THE OPERATOR, AND BLANK THE TRANSACTION
CODE IN THE SPA TO TERMINATE THE CONVERSATION

KX XK XKXKXKX

X

KK XK

304 IMS/VS Application Programming

EXA00840
EXA00850
EXA00860
EXA00870
EXA00880
EXA00890
EXA00900
EXA00910
EXA00920
EXA00930
EXA00940

EXA00950

EXA00960
EXA00970
EXA00980
EXA00990
EXA01000
EXA01010
EXA01020
EXA01030
EXA01040
EXA01050
EXA01060
EXA01070
EXA01080
EXA01090
EXA01100
EXAO01110
EXA01120
EXA01130
EXA01140
EXA01150
EXA01160
EXAG1170
EXA01180
EXA01190
EXA01200
EXA01210
EXA01220
EXA01230
EXA01240
EXA01250
EXA01260
EXA01270
EXA01280
EXA01290
EXA01300
EXA01310
EXA01320
EXA01330
EXA01340
EXA01350
EXA01360
EXA01370
EXA01380
EXA01390
EXA01400
EXA01410
EXA01420
EXA01430
EXA01440
EXA01450
EXA01460
EXA01470
EXA01480
EXA01490
EXA01500
EXA01510
EXA01520
EXA01530
EXA01540
EXA01550
EXA01560

/

TN

IF DBSTATUS = 'GE’
MOVE °"NOT ON FILE' TO COMMENTS
MOVE SPACES TO SPA-TRANCODE

IF THE PART NUMBER IS A VALID KEY, STORE THE KEY AND
THE CURRENT PRICE IN THE SPA, AND CHANGE THE SPA
INDICATOR FIELD TO 1, TO INDICATE THAT PASS 1 HAS BEEN
SUCCESSFULLY COMPLETED.

ELSE MOVE DB-PRICE TO SPA-OLD-PRICE, OUT-OLD-PRICE
MOVE IN-PARTNO TO SPA-PARTNO
MOVE +1 TO PASS-COUNT
MOVE "ENTER NEW PRICE' TO COMMENTS.

PASS1-END.
EXIT.

¥ PASS 2 PROCESSING
PASS2.
¥ READ THE INPUT MESSAGE
PERFORM READ-PASS2 THRU READ-PASS2-END.

¥ SET UP‘THE SSA AND FUNCTION CODE FOR THE DATA BASE CALL
¥ AND MOVE THE OLD PRICE TO THE OUTPUT MESSAGE AREA

MOVE SPACES TO OUT-DATA

MOVE SPA-PARTNO TO SSA-PARTNO, OUT-PARTNO
MOVE SPA-OLD-PRICE TO OUT-OLD-PRICE

MOVE 'GHU' TO FUNC

PERFORM READ-DB THRU READ-DB-END

IF THE DATA BASE RECORD HAS BEEN DELETED SINCE PASS 1
(BY SOME OTHER TRANSACTION TYPE), SEND AN ERROR
MESSAGE TO THE OPERATOR

IF DBSTATUS = 'GE'
MOVE "NOT ON FILE' TO COMMENTS

¥ OTHERWISE UPDATE THE DATA BASE AND MOVE THE NEW
¥ PRICE TO THE OUTPUT MESSAGE AREA

ELSE IF SPA-OLD-PRICE = DB-PRICE
THEN MOVE NEW-PRICE 7O DB-PRICE, OUT~NEW-PRICE
PERFORM UPDATE-DB THRU UPDATE-DB-END
MOVE ' PRICE CHANGED' TO COMMENTS
ELSE MOVE ' PRICE ALREADY CHANGED' TO COMMENTS
MOVE DB-PRICE TO OUT-NEW-PRICE.

¥ BLANK THE TRANSACTION CODE IN THE SPA TO TERMINATE THE
¥ CONVERSATION AT THE END OF THIS PASS

MOVE SPACES TO SPA-TRANCODE.

PASS2-END.
EXIT.

¥ THE FOLLOWING SUB ROUTINES PERFORM THE DLI CALLS
¥ BUT DO NO APPLICATION PROCESSING OTHER THAN
¥ CHECKING FOR VALID STATUS CODES.

READ-SPA.

CALL 'CBLTDLI' USING GU, IOPCB, SPA.

IF TPSTATUS = 'QC' MOVE '1' TO END-SWITCH

ELSE IF TPSTATUS NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
IOPCB, BAD-DC-CALL, SPA, ERROPT.

READ-SPA-END.

EXIT.

READ-PASS1.

XX X X

X XK X

EXA01570
EXA01580
EXA01590
EXA01600
EXA01610
EXA01620
EXA01630
EXA01640
EXA01650
EXAD1660
EXAD1670
EXA01680
EXA01690
EXA01700
EXA01710
EXA01720
EXA01730
EXA01740
EXAQ1750
EXA01760
EXA01770
EXA01780
EXA01790
EXA01800
EXA01810
EXA01820
EXA01830
EXA01840
EXA01850
EXA01860
EXA01870
EXA01880
EXA01890
EXA01900
EXA01910
EXA01920
EXA01930
EXA01940
EXA01950
EXA01960
EXA01970
EXA01930
EXA01990
EXA02000
EXA02010
EXA02020
EXA02030

EXA02040

EXA02050
EXA02060
EXA02070
EXA02080
EXAD2090
EXA02100
EXA02110
EXA02120
EXA02130
EXA02140
EXA02150
EXA02160
EXAQ02170
EXA02130
EXA02190
EXA02200
EXA02210
EXA02220
EXA02230

EXA02240

EXA02250
EXA02260
EXA02270
EXA02280
EXA02290

Appendix D. Sample Conversational MPP

305

CALL 'CBLTDLI' USING GN, IOPCB, PASS1-INPUT.
IF TPSTATUS NOT EQUAL SPACES
CALL '"DFSOAER' USING
IOPCB, BAD-DC-CALL, PASS1-INPUT, ERROPT.
READ-PASS1-END.
EXIT.

READ-PASS2.
"CALL 'CBLTDLI' USING GN, IOPCB, PASS2-INPUT.
IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING
: IOPCB, BAD-DC-CALL, PASS2-INPUT, ERROPT.
READE;Q?SZ-END.

READ-DB.

CALL 'CBLTDLI'" USING FUNC, DBPCB, DB-IOAREA, SSA.

IF DBSTATUS = SPACES OR 'GE'

THEN NEXT SENTENCE

ELSE CALL 'DFSOAER' USING

DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.

READ-DB-END.

EXIT.

UPDATE-DB.
CALL 'CBLTDLI' USING REPL, DBPCB, DB-IOAREA.
IF DBSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING
DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
UPDATE-DB-END.
EXIT.

ISRT-SPA.
CALL 'CBLTDLI' USING ISRT, IOPCB, SPA.
IF TPSTATUS NOT EQUAL SPACES
THEN CALL ‘DFSOAER' USING
IOPCB, BAD-DC-CALL, SPA, ERROPT.
ISRT-SPA-~END.
EXIT.

ISRT-MSG.
CALL 'CBLTDLI' USING ISRT, IOPCB, OUTPUT-MSG.
IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING :
I0PCB, BAD-DC-CALL, OUTPUT-MSG, ERROPT.
ISRT-MSG-END.
EXIT.

306 IMS/VS Application Programming

EXA02300
EXA02310
EXA02320
EXA02330
EXA02340
EXA02350
EXA02360
EXA02370
EXA02380
EXA02390
EXA02400
EXAG2410
EXA02420
EXA02430
EXA026440
EXA02450
EXA02460
EXA02470
EXA02480

EXA02490

EXA02500
EXA02510
EXA02520
EXA02530
EXA02540
EXA02550
EXA02560
EXA02570
EXA02580
EXA02590
EXA02600
EXA02610
EXA02620
EXA02630
EXA02640
EXA02650
EXA02660
EXA02670
EXA02680
EXA02690
EXA02700
EXA02710
EXA02720
EXA02730
EXA02740
EXA02750
EXA02760

VAN

e

APPENDIX E. SAMPLE STATUS CODE ERROR ROUTINE (DFSOAER)

This sample status code error routine is provided as an example of
an error routine. All of the sample programs call it. It is part
of the Primer function.

Appendix E. Sample Status Code Error Routine (DFSCAER) 307

FEHEMMIIMIMNIMMINIIINIMIINMINIIIMI MMM IEINIINIMINNIINIHMNINMNNMINNMNMRRRNUNNNX¥X -~ 00001000
¥ IMS/VS PRIMER SAMPLE STATUS CODE ERROR ROUTINE 00002000
BEMMHMMMMMN AU HUHRHKHMHKRRRANRRR AR KRR MNMMMMMMNN MR NN MR RN MRERNNNNNNNXX 00003000
X 00004000
LR 2 b2 b2 2222222323333 3333 8338883333333 3333333 3333333833 L))
TITLE 'IMS/VS PRIMER SAMPLE PCB DSECT MACRO' 00006000

3333 33822833333 3233233333333 333333 33333333333333 3333 3833333338332i i mmmiirAL]]
* 00008000
MACRO , 00009000

MOOPCB &TYPE=DB, PCB TYPE TO BE GENERATED (DB OR DC) ¥00010000
&PCB=D1PC DSECT NAME,MAX 4 CHAR, ALSO USED, 00011000

X AS FIRST 4 CHAR OF PCB SUB FIELDS. 00012000
LCLC &NM 00013000

&NM SETC 'D1PC! 00014000
AIF (T'&PCB EQ '0').L000 00015000

AIF (K'&PCB LE 6).L100 CORRECT LENGTH ? 00016000

MNOTE %," PCB= OPERAND IS TOO LONG, TRUNCATED TO 4CHAR' 00017000

.L100 ANOP 00018000
&NM SETC '&PCB'(1,4%) 00019000
.LO0O ANOP 60020000
AIF ("&TYPE' EQ 'DB').DB00O 00021000

AIF ("&TYPE' EQ 'DC').DCO0O 00022000

MNOTE %,'TYPE= OPERAND IS INVALID, ''DB'' ASSUMED ' 00023000

X% 00024000
L% 00025000
. % DATABASE PCB: 00026000
e 00027000
.DB0OO ANOP 00028000
. % 00029000
&NM DSECT LAYOUT OF A DL/I DATABASE PCB 80030000
&NM.DBDN DS CL8 DATABASE NAME 00031000
&NM.LEVL DS cL2 SEGMENT HIERARCHY LEVEL 00032000
&NM.STAT DS CcL2 STATUSCODE 000330600
&NM.PROC DS CL4 PROCESSING OPTIONS 00034000
&NM.RESV DS CL4 RESERVED 00035000
&NM.SEGN DS CL8 SEGMENTNAME FEEDBACK 00036000
&NM.KFBL DS F LENGTH OF KEY FEEDBACK AREA 00037000
&NM.NSSG DS F NUMBER OF SENSITIVE SEGMENTS 00038000
&NM.KFBA DS oC KEY FEEDBACK AREA 00039000
MEXIT 00040000

X 00041000
L% 060042000
¥ : DC - PCB: 00043000
X o ee e e 00044000
.DCOo00 ANOP 00045000
. 00046000
&NM DSECT LAYOUT OF A DC-PCB 00047000
&NM.LTNM DS CL8 SOURCE/DESTINATION LTERM NAME 00048000
&NM.RESV DS CL2 RESERVED ' 00045000
&NM.STAT DS CL2 STATUSCODE 00050000
&NM.PRFX DS 0CL12 INPUTPREFIX 00051000
&NM.DATE DS PL4 CURRENT DATE 00052000
&NM.TIME DS PL4 CURRENT TIME 00053000
&NM.MSEQ DS F INPUT MESSAGE SEQUENCE NUMBER 00054000
&NM.MODN DS CL8 MESSAGE FORMAT OUTPUT DESCRIPTION NAME 00055000
MEXIT _ ' 00056000

MEND ' ‘ 00057000

* 00058000
HHEIEH I I NI HMIN I NI I NI MMM MM HNHMNIMHMMMN MMM NMHNNRHNNNNNX 00059000
¥* END OF IMS/VS PRIMER SAMPLE MACROS 00060000
33626 36363 3 33 366 I 26 36 26 26 6 26 626262 I X I IEIE I 6 I IE MM I NI MMM IMMMMMIMMMIMINNNINNHNNNNNRNXNX 00061000
¥ ‘ 00062000
LCLC &PGMID 00063000

LCLC &INVOMAX 60064000

&PGMID SETC 'DFSOAER! 00065000
gINVOMAX SETC '20°' DEFAULT VALUE FOR MAX. NUMBER OF CALLS ggggggog
0

3363 363K 363 36 26 36 36 36 I 96 6 I 2 6 6626 56 2636 I I IEIEIE I M I WM IMMMNHKMMMNMNMMMMNHNNNRHNNXN 00068000
TITLE 'IMS/VS PRIMER SAMPLE STATUS CODE ERROR ROUTINE &PGMID' 00069000
HHEHHHIEHMIIEHIEHMMIEHIEN N HIHIIEMMIIENHMHIIE NN KNI NI MMM MNHMMMNNNIHNINHHRNNNNNN 00070000
* ’ 00071000
¥* 00072000
* 00073000

308 IMS/VS Application Programming

TN

N~

FUNCTION: TO BE CALLED BY IMS/VS APPLICATION PROGRAMS 60074000
IF AN UNEXPECTED STATUS CODE WAS RECEIVED. 08075033
000760
PROCESS: PRINT ESSENTIAL PCB INFORMATION, 00077000
A CALL ID AND UP TO NINE PROGRAM AREAS. 00078000
A DDNAME OF DOOAERR IS REQUIRED. 00079000
RETURN TO CALLER IS MADE IF REQUESTED, 00080000
AND NO ERRORS FOUND. 00081000
00082000
MESSAGE DFS3125A IS ISUED IF REQUESTED BY CALLER. 00083000
DEPENDENT UPON THE REPLY, THE ROUTINE 00084000
WILL FORCE EITHER A PROGRAM LOOP, AN ABEND, 00085000
OR RETURN TO CALLER. 00086000
00087000
ABEND: NE WILL ISSUE USER ABEND 3400 IF: 00088000
REQUESTED BY USER 00039000
2. MAX NUMBER OF INVOCATIONS IS REACHED, 00090000
SET BY GLOBAL &INVOMAX 00091000
3. ERRORS IN CALL PARAMETERS ARE DETECTED 00092000
) 00093000
00094000
INPUT: UPON ENTRY R1 MUST POINT TO PARMLIST: 00095000
WITH ADDRESSES OF AT LEAST 4 PARMS: 00096000
1. A(PCB) EITHER A DB- OR A DC-PCB 00097000
2. ACIDENTIFIER(8 BYTES) OF THE CALL) 00098000
WHERE D....... DENOTES A DB-CALL 00099000
AND C....... DENOTES A DC-CALL 00100000
3. A(CAREALl) WE WILL DISPLAY 76 CHARACTERS 00101000
4. ACOPTIONFIELDS) A 4BYTE FIELD WHERE 00102000
BYTE 1: C'1' = ABEND, NO RETURN 00103000
THIS IS NORMAL CASE. 00104000
C'0' = RETURN TO CALLER 00105000

THIS ENABLES MULTIPLE 00106000
INVOCATIONS, E.G. 00107000
FOR TESTING PURPOSES 00108000
IN THAT CASE A 'FINAL' 00109000
INVOCATION IS NEEDED: 00110000

C'2' = FINAL INVOCATION 00111000

PLUS RETURN TO CALLER. 00112000

C'3" = MESSAGE DFS3125A 00113000

REQUESTED BY CALLER 00114000

BYTE 2-4: NOT USED 00115000

5-12. ACAREA2)...ACAREA9) OPTIONAL 00116000

ONLY 76 CHARACTERS OF EACH AREA 00117000

WILL BE LISTED 00118000

00119000

OUTPUT : FOR EACH PRINT REQUEST, ESSENTIAL PCB INFORMATION 00120000
IS PRINTED AND UP TO 9 USER AREAS. 00121000

00122000

MESSAGES: DFS3125A IF REQUESTED BY CALLER 00123000
00124000

00125000

0S MACRO'S USED: OPEN/CLOSE/DCB/PUT/ABEND 00126000
00127000

00128000

‘ 00129000

REGISTER USAGE: 00130000
-- 00131000
REGISTER EQUATED USAGE 00132000
-- 00133000
RO 05/VS LINKAGE : 00134000

1 R1 05/VS LINKAGE 00135000
2 R2 WORK 00136000
3 R3 WORK 00137000
4 R4 WORK 00138000
8 DBPCBR DB PCB REGISTER 00139000
9 DBPCBR DC PCB REGISTER 00140000
11 BASE1B PROGRAM BASE REGISTER 00141000
13 R13 PROGRAM SAVE AREA ADDRESS 00142000
14 R14 0S/7VS LINKAGE 00143000
15 R15 05/VS LINKAGE 00144000
00145000

KEEKEKKEKKKEKEKKEKEEKXKEKEKEKE K KKK KK KKK K KKK KK E KK KKK E KKK EKKEXKEKKKEKEKKXKEXXEXXKXKKXXXKXXKXXXXXXKXX XXX

xxxxxxxxxxx*xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx*x*xxxx*xxxx*xxxxx*xxx 00146000

Appendix E. Sample Status Code Error Routine (DFSOAER) 309

3

&PGMID

*

3636 3 36 I 3E I I 3 I I 3 I IE I IE I I I I I I I IEIE I IEIEIE I I I 36 I I 3 I I 3¢ 36 26 3 3 36 26 I 3 36 I 36 26 I I 36 26 I 36 26 36 56 26 26 36 36 26 26 6 2 X ¢

MAIN

3636 26 36 2 3 36 26 26 3 I 2K I I I H I I X I I I 3 I I I 3 I 3 33 I 3 36 I 3 36 2 36 36 26 I I 36 IE 26 36 26 26 2 2 26 3 2 26 2 36 26 6 36 36 2 6 6 36)¢

*
*

XK XK X . X XK X XK

X XK X

XX X X

AIN100O

*
MAIN40O

EJECT
CSECT

DC

DC
EQU

STM

BALR
USING

EJECT
EQU

MVC
MVC
MVC
MVC
MVI
LR

OPEN

EQU
CLI
BE
BH
L
LTR
BZ
CLI
BNE
BAL
B

EQU
BAL
L
LA
ST
CcLC

IDLENC(O,R15) BRANCH AROUND ID
CL8'&PGMID’ PROGRAM ID.
CL8T&SYSDATE' :
CL8'&SYSTIME'
*¥-&PGMID
14,11,12(13) SAVE REGISTERS, INCLUDING PL1'S
PROVIDE A BASE REGISTER:
BASE1,0
*,BASEL
CHAIN OLD AND NEW SAVEAREAS
R13,SAVR+4
R10,R13
R13,S5AVR
R13,8(R10)
R15,R15 - CLEAR

*

PICK UP PARAMETERS RECEIVED:

PARMIADR,00(R1)
PARM2ADR, 04 (R1)
PARM3ADR,08(R1)
PARM4ADR, 12(R1)
PARMGADR,X'00" REMOVE HIORDER
R3,R1
CHECK FOR DFS3125 MESSAGE REQUEST
R2,PARM4ADR GET CONTROL BYTE
0(R2),C'3" IS IT THREE(MESSAGE REQUEST) ?
MAINGOO IF S0, PROCESS IN MAINGOO
CHECK FIRST TIME SWITCH
SWITCH,C"1?
ABEND?2 PGM RETURNED AFTER FINAL INVOCATION
MAIN1OO OKE, PROCEED
SWITCH,C'0" SET FIRST TIME SWITCH OFF
OPEN DCB IF FIRST TIME THROUGH
(DOOAERR, (OUTPUT))
DETERMINE WHAT TO DO:
* .
0(R2),C'2" FINAL INVOCATION ?
MAINSOO
ABEND UNKNOWN CONDITION
R2,PARM2ADR ADR OF CALLID
R2,R2 TEST IT
ABEND IF 0, INVALID CALL, ABEND
0(R2),C'D" IS IT A DB PCB ? ,
MAIN500
R14,PRTDB PRINT DB-PCB FIELDS
END
* MESSAGE REQUESTED
R16,MESSAGE
R4, INVOKECT .
R%,1(R%) ADD ONE TO NUMBER OF INVOCATIONS
R4%, INVOKECT
INVOKECT, INVOKMAX

310 IMS/VS Application Programming

00147000
00148000
60149000
0150000
151000
152000
153000
154000

COO0COOOOOOOOO O
COO0O0OO0OOOOOO

00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000
00186000
00187000
00188000
00189000
00190000
00191000
00192000
00193000
00194000
060195000
00156000
00197000
00198000
00199000
00200000
00201000
00202000
60203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000
002140600
00215000
00216000
060217000
00218000
60219000

BE ABEND2 ABEND IF MAX NUMBER IS REACHED 00220000
B RETURN 00221000
* 00222000
MAIN500 EQU * 00223000
CLI 0(R2),C'C’ IS IT A DC PCB ? 00224000
BNE ABEND INVALID CALL-ID, ABEND 00225000
BAL R14,PRTDC PRINT DC-PCB FIELDS 00226000
B END 00227000
¥ 00228000
MAINSOO EQU 3 00229000
MVI SWITCH,C'2" PROVIDE ABEND IF HE COMES BACK 00230000
PUT DOOAERR, ENDLINE PRINT FINAL LINE 00231000
CLOSE (DOOAERR) CLOSE OUTPUT-DCB 00232000
B RETURN 00233000
* 00234000
L3333 3822382233223 3833323332333 33333833 3233333333333.33.3.3333333.33383 LTI
END EQU * : 00236000
333t 822330220233 33333333333 3333 3333333333 3333.33333.333333.333 3838 YA
* ' 00238000
CLC INVOKECT, INVOKMAX MAXIMUM NR OF INVOCATIONS REACHED ? 00239000
BE ABEND IF S0 , ABEND 00240000
L R2,PARM4ADR 4TH PARM WAS'OPTIONS' 00241000
CLI 0(R2),C'0" RETURN REQUESTED? 00242000
BE RETURN IF YES, CONTINUE 00243000
ABEND CLOSE (DOOAERR) CLOSE DCB 00244000
ABEND2 -~ ABEND 3400,DUMP 00245000
* 00246000
b3t 83322323233 33233 3833333233333 333333333333 33 3333333383 L YA]]
RETURN EQU * RETURN TO CALLER 00248000
333 3332323333333 333333333333 3333333833 333.33333333.33.333333.3.333333 383 00249000
* 00250000
L R13,SAVR+4 00251000
LM 14,11,12(R13) 00252000
SR R15,R15 00253000
BR R14 00254000
* 00255000
3333232203233 233333332333 333333333333333333333333333 33333333 LT Y I
TITLE "&PGMID: PRINT PCB-FIELDS -- DB-PCB ' 00257000
L3232t 332323233333333333.333333.3333333383 333388333333 333 333333 PeY.IN]]
* 00259000
33333323322 333 3323233333333 3333333333333, 3.8333333333338 383338333 i)
PRTDB EQU * DB-PCB FIELDS TO BE PRINTED 00261000
it 2332232333333 333 3.3333333333.33333333.333333333.3333 3 LY
* 00263000
ST R14,SAVER14% RETURN ADDR 00264000
* 00265000
* FIND PCB TO BE USED: 00266000
. T ettt bttt et btk bbb b b L 00267000
L DBPCBR,PARM1ADR ADR OF PCB 00268000
LTR DBPCBR,DBPCBR WAS IT SUPPLIED ? 00269000 .
BZ END INVALID,SKIP PROCESSING 00270000
USING DBPC,DBPCBR ADDRESSABILITY OF PCB FIELDS 00271000
* 00272000
PRTDB100 EQU ¥ 00273000
* BUILD 1ST LINE AND DISPLAY IT 00274000
o Sttt ettt ettt ettt bttt b 00275000
Mve LN1HEAD(2),=C'DB" 00276000
L R2,PARM2ADR ADR OF CALLID 00277000
Mve LN1IDEN(8),0(R2) CALL IDENTIFIER 00278000
¥* 00279000
L R4, INVOKECT 00280000
LA R4, 1(R4%) INCREMENT 00281000
ST R4, INVOKECT UPDATE COUNT 00282000
CcVD R4, WORK2 00283000
UNPK WORK1(8),W0RK2(8) 00284000
01 WORK1+07,X'F0" 00285000
MVC LNI1COUNT(4%),WORK1+4 00286000
* 00287000
PUT DOOAERR,LINEL 00288000
% 00289000
* BUILD 2ND LINE AND DISPLAY IT 00290000
o e e e e e e e e e e e e e e 60291000
PRTDB200 EQU * 00292000

Appendix E. Sample Status Code Error Routine (DFSCAER) 311

MVC
MVC
MvVC
MVC
MvC

CvVD
UNPK

MVC

CVD
UNPK

MVC
PUT
*

PRTDB300 EQU
*

*

LTR
BZ

BNH

PRTDB310 EQU
BCTR

PRTDB320 EQU
PUT
Mve
Mvc

¥
¥
*
PRTDB0O09 L

PRTDB010 STC

%
*

PRTDB900 EQU

BR
MOVEKFB MVC

EJECT

¥

LN2DBDN(DBDNLEN), DBPCDBDN
LN2LEVL(LEVLLEN) ,DBPCLEVL
LN2STAT(STATLEN) ,DBPCSTAT
LN2PROC(PROCLEN), DBPCPROC
LN2SEGN(SEGNLEN) , DBPCSEGN

" R%,DBPCKFBL

R4, WORK2
WORK1(8),WORK2(38)
WORK1+07,X"F0"'
LN2KFBL(4),WORK1+4
R4, DBPCNSSG

R4, WORK2
WORK1(8),WORK2(8)
WORK1+07,X'F0°
LN2NSSG(4),WORK1+4
DOCAERR,LINE2

*
BUILD 3RD LINE AND DISPLAY IT

R4, DBPCKFBL LENGTH OF KFB DATA

R4 ,R4% ZERO ?

PRTDB320 SKIP

R4,=F'73"' EXCEED MAX LENGTH FOR 1 PRINTLINE
PRTDB310 NO - OK

R4,73 YES- SET MAX

*

R4,0 MIN 1 FOR EX

R4 ,MOVEKFB MOVE KFB DATA

%

DOOAERR,LINE3

LN3KFBA(1),SPACES CLEAR IT

LN3KFBA+1(72),LN3KFBA AFTER USAGE
PRINT AREA1 AND OPTIONALS

R2,PARM3ADR ADDRESS OF AREA1
R%,241(0,0) LOAD "F1' IN R4

R3,12(0,R3)
R4, LINENUM SET AREA NUMBER
LN4AREA(74),0(R2) GET DATA
DOGAERR,LINE4
0(R3),X"'00* LAST PARAMETER ?
PRTDB900 READY
R3,4(0,R3) STEP TO NEXT AREA ADDRESS
R2,0(R3) LOAD AREA ADDRESS
R4,1(0,R%4) ADD ONE TO AREA NUMBER
PRTDBO10

READY:
*
R14,SAVER14 RETURN ADDRESS
R14 RETURN
LN3KFBA(1),DBPCKFBA

3223333333338 33433338333 3333 3333333333333 33333332323

PRTDC EQU

* DC - PCB FIELDS TO BE PRINTED

36 96 36 3 36 6 JE 26 I 2 2 JE JE 26 26 26 2 I 36 26 26 36 I 36 3¢ 26 I I I I 3 3 3 26 2 2 I 3 36 3 3 I I I I I 3 3 3 X 36 36 2 26 3 36 26 26 26 I 36 6 6 26 36 96 26 ¥ %

R14,SAVER14 RETURN ADDRESS
FIND PCB TO BE USED:

DCPCBR, PARMIADR GET PCB ADDRESS
DCPCBR, DCPCBR WAS IT SUPPLIED?
ABEND IF NOT GOTO ABEND.

USING DCPC,DCPCBR

X
"~ ST
*
¥
X
*
L
LTR
BZ
X
*
*

Mve

BUILD 1ST LINE AND DISPLAY IT

D L T T p——

LN1HEAD(2),=C'DC" IT IS A DC-PCB

312 IMS/VS Application Programming

00293000
00294000
00295000
00296000
00297000
00298000
00299000
00300000
00301000
00302000
00303000
00304000
00305000
00306000
00307000
00308000
00309000
00310000
00311000
00312000
00313000

oooooo

o
-]
w
N
N
o
o
QOO0 OOCOOOOOOOLDOoOOO®

00332000
00333000
00334000
00335000
00336000
00337000
00338000
00339000
00340000
00341000
060342000
00343000
00344000
00345000
00346000
00347000
00348000
00349000
00350000
00351000
00352000
00353000
00354000
00355000
00356000
00357000
00358000
00359000
00360000
060361000
00362000
00363000
00364000
00365000

7N

7N

N

L R2,PARM2ADR ADDR OF IDENTIFIER 00366000

MVC LN1IDEN(8),0(R2) INTO OUTPUTLINE 00367000

L R4, INVOKECT NR OF TIMES INVOKED 00368000

LA R4,1(R4%) UpP BY 1 00369000

ST R4, INVOKECT UPDATE COUNTER FIELD 00370000

cvVD R4 ,WORK2 00371000

UNPK WORK1(8),WORK2(8) 00372000

0I WORK1+07,X'FO0°' 00373000

Mve LNICOUNT(4),WORK1+4 INTO OQUTPUT LINE 60374000

PUT DOOAERR,LINEL DISPLAY 1IT 00375000

¥ BUILD DC PCB LINEé6 00376000
* e e e e e e - 00377000
MVC LN6LTNM, DCPCLTNM 00378000

MVC LN6STAT,DCPCSTAT 00379000

Mve LN6MODN, DCPCMODN 00380000

CLC DCPCDATE,SPACES IS IT A DUMMY/ALTERNATE PCB? 00381000

BNE PRTDC009 00382000

MVC LN6DATE, SPACES 00383000

MVe LN6TIME,SPACES 00384000

Mve LN6MSEQ, SPACES 00385000

PUT DOOAERR, LINES6 00385500

B PRTDBOO09 GO PRINT PROGRAM AREAS 00386000

PRTDC009 UNPK LN6DATE,DCPCDATE 00387000
01 LN6DATE+7,X'FO0"' 00388000

UNPK LN6TIME,DCPCTIME 00389%000

01 LN6TIME+7,X"FO" 00390000

L R4,DCPCMSEQ 00391000

CcVD R4, WORK?2 00392000

UNPK LN6MSEQ,WORK2(8) 00393000

0l LN6MSEQ+7,X'FO" 00394000

PUT DOOAERR,LINEG 00395000

B PRTDBOOY GO PRINT PROGRAM AREAS 00396000

* 00397000
333333333333 3333333333333 33333333333 3333 33333333333333333333333333333 00398000
MESSAGE EQU ¥ ISSUE DFS3125A MESSAGE 00399000
3332332233383 33333338333 3333383 333333333 3.33.33333333333333 33 5 AN
* ' 00401000
MVC- WTORECB,=F'0" CLEAR ECB aBM10815 00401500

WTOR 'DFS3125A PRIMER SAMPLE TEST, REPLY CONT, LOOP, ABEND, 0%00402000

R CANCEL JOB',REPLY,5,WTORECB,ROUTCDE=11 00403000

WAIT ECB=WTORECB 00404000

CLC REPLY(4),=C"CONT' 00405000

BE RETURN RETURN TO CALLER 00406000

CcLC REPLY(5),=C'ABEND' 00407000

BE ABEND2 ABEND 00408000

LOOP CLC REPLY(4),=C'LOOP" 00409000
BE LOOP LooP 00410000

B MESSAGE WRONG REPLY TRY AGAIN 00411000

* ' 00412000
TITLE '&PGMID: PRINT PCB-FIELDS -- EQUATES,CONSTANTS,AREAS ' 00413000
L3333 3333333333 333133333333 3333333338333ttt LSRN
* CONSTANTS, EQUATES AND DATA-AREAS 00415000
3k 3223323202233 323323323333 33333333 23333333333 333333233333333 3SR Y]]
* REGISTER EQUATES: 00417000
¥) e 00418000
RO EQU 0 ' 00419000
R1 EQU 1 00420000
R2 EQU 2 00421000
R3 EQU 3 004622000
R¢ EQU 4 00423000
R5 EQU 5 00424000
R6 EQU 6 00425000
R7 EQU 7 00426000
DBPCBR EQU 8 00427000
DCPCBR EQU 9 00428000
R10 EQU 10 00429000
BASE1L EQU 11 00430000
R12 EQU 12 00431000
R13 EQU 13 00432000
R14 EQU 14 00433000
R15 EQU 15 00434000
* ' 00435000
%* 00436000

Appendix E. Sample Status Code Error Routine (DFSOAER) 313

WORK1
WORK2
DEVT
DDNMFLD
WTORECB
SAVR
SAVER1G
PARM1ADR
PARM2ADR
PARM3ADR
PARMGADR
INVOKMAX
INVOKECT
SWITCH
REPLY
LINE1
LN1HEAD

LN1IDEN
LN1COUNT
*

LINE2

LN2DBDH
LN2LEVL
LN2STAT
LN2PROC
LN2SEGN
LN2KFBL
LN2NSSG

*
LINE3

LN3KFBA
*

LINES
LINENUM

LNGAREA
*

SPACES
LINEé6
LN6LTNM
LN6STAT
LN6DATE
LN6TIME
LN6MSEQ
LN6MODN

ENDLINE
*

0D

Dro’

D'o’

2A(0)
CL8'DOOAERR'
F'o?

N
(]
>
~
(-]
~

NVOMAX)

«cm AN~
UNMROMOoOOoOO0O0OO
-t e N ot ot N

X OO
-

cLoi'l’

MAXIMUM NR OF INVOCATIONS
COUNTER FIELD

FIRST TIME SWITCH

MESSAGE REPLY FIELD

ASA

CL24'DB-PCB FIELDS PRINTOUT'

CL04'ID= "
cLog' '
cLo2' !
CLO6'COUNT="
cLog" *
cL31'

%*

cLo1r v
CL0O6" DBDN="
cLog' !
CLO6" LEVL=?
cLo2' ¢
CLO6' STAT="
cLo2' ¢
CLO6' PROC="
cLOG'
CL06' SEGN="
cLog' !
CL06" KFBL="
cLoG'
CLO6" NSSG='
cLo4'
cLo5'

%

cLolY '
CLO6' KFBA="
CL73 7

*

cLol* ¢
CLO5" AREA’
cLo2' :=*
CL74"

cLg'
%*

cLolr

CLO8&' LTNAME="'

cLog'
CLO6' STAT=!
cLoz2'
CLO6" DATE="
cLog'
CLO6' TIME="'
cLog8"
CLO6' SEQ="
cLog'
CLO5' MOD="
cLog' !

CL81'0%%%x%NO MORE ERROR PRINTS REQUESTEDxxx?*

CALL IDENTIFIER

FILLER

ASA

FILLER

ASA

314 IMS/VS Application Programming

0043700
0043800
0043900
0044000
0044100
0044200
0044300
0044400
0044500
0044600
004470
004480
004490
004500
004510
004520
004530
004540
004550
004560
004570
004580
004590
004600
004610
0046200
0046300
0046400
0046500
0046600
0046700
0046800
0046900
00470000
00471000
00472000
00473000
00474000
00475000
00476000
00477000
00478000
00479000
00480000
00481000
00482000
00483000
00484000
00485000
00486000
00487000
00483000
00489000
00490000
00491000
00492000
00493000
00494000
00495000
00496000
00497000
00498000
00499000
00500000
00501000
00502000
00503000
00504000
00505000
00506000
00507000
00508000
00509000

OO0 O0OOOOOOOOOODODOO

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
0
0
0
0
0
0
0
0
0
0
0
0

£

J

*

DOOAERR

*

*

*

LEVLLEN
STATLEN
PROCLEN
SEGNLEN
KFBLLEN
NSSGLEN
DBDNLEN
LTNMLEN
DATELEN
TIMELEN
MSEQLEN
MODNLEN
*

LTORG 00510000

EJECT 00511000

3636 36 36 6 36 6 36 36 36 36 36 36 36 36 36 36 36 36 I 3 I 36 36 36 36 36 6 36 36 36 36 36 26 36 96 36 96 36 36 36 36 36 36 36 36 696 36 6 36 36 36 36 36 36 26 2 I3 36 96 36 36 3 36 I 3¢ ¢ 00512000
DCB 00513000

3636 36 36 36 6 3 36 36 36 36 36 3696 3 36 36 36 36 36 36 I 26 96 36 3 36 3 3 36 36 36 3 2 3 3 6 36 36 36 3 36 I 26 36 96 3 36 36 3 36 36 3 36 3 36 36 36 36 36 6 36 36 I I 9 00514000
DCB DSORG=PS,LRECL=80,RECFM=FA,MACRF=(PM), €00515000
BLKSIZE=80,DDNAME=DO0OAERR 00516000

EJECT 00517000

3636 36 36 3 36 3 JE3K 3 3636 36 36 JE 3 2 3 I I I I I I 363K 36 36 236 236 3 H 26 3 3 36 3 3 FEIEH 2 3 3 6 3 3 I H I H I3 I 2 3 HHH HHH M ¢ 00518000
DSECTS 00519000

363636 36 36 36 6 36 JE 96 3 36 IE 36 36 HE 36 36 636 JE I6 I 36 36 36 36 6 36 36 36 2 36 36 3636 36 6 36 I6 I 36 36 36 36 96 3636 36 36 36 3636 3 36 36 36 336 36 36 36 3 36 36 ¥ % 00520000
00521000

00522000

EQU 2 00523000

EQU 2 00524000

EQU 4 00525000

EQU 8 00526000

EQU 4 00527000

EQU ¢ 00528000

EQU 8 00529000

EQU 8 00530000

EQU 4 00531000

EQU 4 00532000

EQU 4 00533000

EQU 8 00534000

00535000

MOOPCB TYPE=DB,PCB=DBPC 00536000

MOOPCB TYPE=DC,PCB=DCPC 00537000

END 00538000

36 36 36 36 36 36 36 36 36 36 36 36 36 36 96 36 36 36 36 36 26 06 36 96 56 36 6 36 36 36 36 36 36 36 26 36 6 3 36 36 36 3 3 N K H M % 00539000

END IMS/VS PRIMER SAMPLE STATUS ERROR PRINT ROUTINE DFSOAER 00540000
3636 36 € 36 96 3 2 36 6 26 6 36 J6 36 6 3 26 36 3 36 36 36 6 23 I 26 3 2 36 3 36 3 3 IIE MM I MM NI HM NI NNMNMMM NN NN XK NN HXNN 00541000

*

Appendix E. Sample Status Code Error Routine (DFSO0AER)

315

APPENDIX F. USING THE DL/I TEST PROGRAM (DFSDDLTO)

CONTROL STATEMENTS

In the control statement formats below, the "$" indicates those
fields which are usually filled in; the absence of the "$"
indicates that the field can be left blank and the default used.
If position 1 is left blank on any control statement, the
statement type defaults to the prior statement type.

STATUS STATEMENT

316

The STATUS statement establishes print options and determines the
PCB that subsequent calls are to be issued against.

The format of the STATUS statement is as follows:

Position
$ 1
2

10 =

IMS/VS Application Programming

contents
S identifies this as a STATUS statement.
OQutput device opti#n.

Blank - Use PRINTDD when in a DLI region;
use I/0 PCB in the MSG region.

1 - Use PRINTDD in MSG region if the
DD statement is provided; otheruwise,
use I/0 PCB.

A - Same as if 1, and disregard all other

fields in this STATUS statement.
Print comment option.

Blank - Do not print.

1 - Print always.
2 - Print only if compare done
and equal.

Not used.

Print call option.

1 - Print always

2 - Print only if compare done
and equal.

Not used.

Print compare option.

Blank - Do not print.

1 - Print always.

2 - Print only if compare done
and equal.

Blank.

Print PCB option.

Blank - Do not print.

1 - Print always.

2 - Print only if compare done
and equal.

Not used.

7N

N’

11

12
13

14 - 15
16 - 23
26

25 - 28
29 - 80

Print segment option.

Blank - Do not print.

1 - Print always.

2 - Print only if compare done
and unequal.

EBCDIC characters are printed as they appear
in the segment. Hexadecimal characters

are displayed in two lines with the high-order
four bits printed above the low-order four
bits. The low-order four bits of data are
printed on the same line as the EBCDIC data.
Hexadecimal data is read from top to bottom,
left to right.

Set task time.

1 - Time each call.

2 - Time on unequal compares.

5 -~ Time and BFSP trace each call.

6 - Time and BFSP trace on unequal compares.

Set real time.

1 - Time each call.

2 - Time on unequal compares.

5 - Time and BFSP trace each call.

6 - Time and BFSP trace on unequal compares.
Reserved.

DBD name.

This determines the PCB against which subsequent
calls will be issued; hence, it must be a DBD
name given in one of the PCBs in the PSB. The
default PCB is the first data-base-PCB in the
PSB. If positions 16 through 23 are blank, the
current PCB is used. If positions 16 through

18 are blank, and positions 19 through 23 are
not blank, then the nonblank positions are '
interpreted as the relative number of the desired
data-base-PCB in the PSB. The number must be
right-justified to position 23, but need not
contain leading zeros. The user must insure
that the relative DB PCB exists in the PSB
because no checks are made to insure that

a proper PCB is obtained in this manner.

Print status option.

Blank - Use orint option and print this
statement.

1 - Do not use print option in this
statement.

2 - Do not print this STATUS statement.

3 -~ Do not print this STATUS statement or

use print option.

PCB processing option. This is optional and is
only used when two PCBs have the same DBD name
but different processing options. If nonblank,
it is used in addition to the DBD name in

positions 16 through 23 to select which PCB in
the PSB to use. This must appear as it does in
the processing option of the PCB desired.

Not used.

If no STATUS statement is read, the default PCB is the first DB
PCB in the PSB, and the print status option is 2. New STATUS

Appendix F. Using the DL/I Test Program (DFSDDLTO0) 317

statements can be anyuhere in the SYSIN stream, changing either
the data base to be referenced or the options.

COMMENTS STATEMENT

There are two types of COMMENTS statements. The first, the
unconditional statement, allows for unlimited comments, all of
which are printed. The second type, the conditional statement,
allows only limited comments, which are printed or not depending
on other factors as described below.

Unconditional
Position
$ 1 =
2 - 80 =
conditional
Position
$ 1 =
2 - 80 =

CALL STATEMENT

318

Contents

U specifies an unconditional COMMENTS statement.

Comments - any number of unconditional COMMENTS
statements are allowed; they are printed when
read. Time and date of printing are printed
Wwith each unconditional COMMENTS statement.

contents
T specifies a conditional COMMENTS statement.

Comments - up to 5 conditional COMMENTS
statements per call are allowed; no continuing
mark in position 72 is required. Printing is
conditioned as the STATUS statement. Printing
is deferred until after the following call

and optional compare are executed, but prior
to the printing of the following call.

The CALL statement identifies the type of IMS/VS call to be made,
and supplies information to be used by the call.

Position

$ 1 =
3 =
G =

IMS/VS Application Programming

contents

L identifies this as either a CALL or DATA
statement

S5A level (optional).
Format options:

Blank - For formatted calls with intérvening
blanks in positions 24, 34, and 37.

U - If columns 16 onward are unformatted,
with no blanks separating fields.
v - For the first statement describing a

variable~length segment, when inserting
or replacing only one variable-length
segment. It is also used for the first
statement describing the first segment
of multiple variable-length segments.

M - For the second through last statement
that begin data for a variable-length
saegment, when inserting or replacing
multiple variable-length segments.

P - When inserting or replacing through
path calls. It is used only in the
first statement of fixed-length segment
statements in path calls containing

VN

(

N

both variable- and fixed-length

segments.
5-28 = Number of times to repeat this call (optional)
in the range of 0001 through 9999.
$ 10 - 13 = DL/1I call function.

DATA - Indicates that this statement contains
data to be used in an ISRT, REPL, SNAP,
CHKP, or LOG call. See the following
section on DATA statements for usage.

CONT - For a continuation statement for field
data that was too long for previous
CALL statement.

$ 16 - 23 = SSA segment name.
24 = Not used.
$ 25 = (,if segment is qualified.
26 - 33 = SSA field name.
34 = Not used. ’
$ 35 - 36 = DL/I call opertor or opertors.
37 = Not used.
$ 38 - XX = Field value (where the maximum value of XX=70).
$ XX + 1 =), end character.
$ 72 = Nonblank, if more SSAs. Blank, if this is the

only or last SSA.

Position 3, the SSA level, is usually blank. If blank, the first
CALL statement fills SSA 1, and each following CALL statement
fills the next lower SSA. If the SSA level, position 3, is
nonblank, the statement fills the 5S5A at that level, and the
following CALL statement fills the next lower SSA.

Position ¢ contains a U to indicate an alternative format for the
CALL statement. In this case, from position 16 on is the exact SSA
with no intervening blanks in positions 24, 34, and 37. If command
calls (for example, ¥D) are to be used, then the U must be
specified.

Positions 5 through 8 are usually blank, but if used, must be
right-justified. The identical call is repeated as specified in
positions 5 through 8.

Positions 10 through 13 contain the DL/I call function. The call
function is required only for the first SSA of the call. If left
blank, the call function from the previous CALL statement is used.

Posgggons 16 through 23 contain the segment name, if the call uses
an .

If there are mutilple SSAs in the call, each SSA should be entered

~in positions 16 through 23 of a separate statement. A nonblank in

position 72 of any statement indicates that another $S5A follows.
Position 1 and 10 through 13 are blank for the second through last
S5SAs.

If the field value extends past 71, there is a nonblank in
position 72 and CONT in positions 10 through 13 of the next
statement, with the field value continued starting in position
16. Maximum field value is 256 bytes.

An alternative format for the CALL statement is available by

" putting a U in position 4. If you use this option, yvou must start

Appendix F. Using the DL/1 Test Program (DFSDDLTO0) 319

DATA STATEMENT

the exact SS5A in position 16, with no intervening blanks in
positions 24, 34, and 37. To continue an unformatted SSA, put a
nonblank character in position 72, a U in position 4, and CONT in
positions 10 through 13 of the next statement. Include the data of
the SSA that is continuing in positions 16 through 71. Maximum
size for an SSA is 290 bytes.

The maximum number of SSAs for this program is the same as the
IMS/VS limit, which is 15.

DATA statements provide IMS/VS with segment information required
for ISRT, REPL, SNAP, LOG, and CHKP calls.

For an IRST, REPL, SNAP, LOG, or CHKP call, statements containing
segment data must follow immediately after the last
(noncontinued) CALL statement. The DATA statements must have an L
in column 1, and DATA in positions 10 through 13. The segment data
appears in positions 16 through 71. Data continuation is
indicated with a nonblank in position 72. On the continuation
statement, positions 1 through 15 are blank, and the data is
resumed in position 16. The maximum segment size in a batch region
is based on the PSB 1/0 area size. This size may be specified by
the user during PSBGEN, or it is calculated by the ACB utility.
When running in an online region, a maximum size of 30736 is
available.

Note: On ISRT calls, the last 5SA can have only the segment name,
with no qualification or continuation.

When inserting or replacing variable-length segments, as defined
in a DBDGEN, or including variable-length data for a CHKP or LOG
call, position 4 of the CALL statement must contain either a V or
an M. V must be used if only one segment of variable length is
being processed. Positions 5 through 8 must contain the length of
the data, right-justified, with leading zeros. This value is
converted to binary, and becomes the first two bytes of seogment
data. Segment-data-statements can be continued, as described
above with the subsequent statements blank in positions 1 through
15, and the data starting in position 16.

If multiple variable-length segments are required (that is,
concatenated logical child/logical parent segments both of which
are variable length) for the first segment, there must be a V in
position ¢ and the length of that segment in positions 5 through
8. If that segment is longer than 56 bytes, then the data is
continued as above, except that the last card to contain data for
this segment must have a nonblank in position 72. The next
statement applies to the next variable-length segment, and must
contain an M in position 4 and the length of this segment in
positions 5 through 8. Any number of variable-length segments can
be concatenated in this manner. The M or V and the length must
appear only in statements that begin data for a variable-length
segment.

When inserting or replacing through path calls, a P position 4
causes the length field to be used as the length the segment will
occupy in the user I/0 area, without the length (LL) field of
variable-length segments, as in the instructions for M, above. V,
M, and P can be mixed in successive statements. The P appears in
only the first statement of fixed-length segment DATA statements,
in path calls which contain both variable- and fixed-length

- segments.

Parameter Length, SNAP Calls

On SNAP calls, the 1ength of the SNAP parameters must be in

positions 5 through 8. This number must be equal to the length of
the SNAP parameters starting in position 16 plus an additional 2
bytes. The TEST program converts the length to binary and places

320 IMS/VS Application Programming

N

SN

N

it in the first half-word of the usaer I/0 area passed to DL/I. The
parameters from position 16 are placed in the 1I/0 area immediately
following this half-word. If positions 5 through 8 are blank, a
default of 22 is used as the parameter length.

All parameters are passed without change, with the following
exceptions:

1. If the SNAP destination field specifies "DCB-addr"” or ddname
of PRINTDD, and if a PRINTDD statement is supplied to the test
program, the test program replaces this parameter with the
DCB address of the test program PRINTDD data set.

2. If running DFSDDLTO in a dependent region, the results of a
SNAP call are routed to the dependent region PRINTDD DCB in
systems where the PRINTDD DCB is accessable. In systems such
as MVS where the dependent region PRINTDD DCB is inaccessable
from the control region, the default is the log data set.

Parameter Length, LOG Call

The LOG call is normally used with the I70 PCB. It can used in
batch moge only if the CMPAT option of the PSBGEN statement is
specified.

The LOG call can be specified in two ways:

1. A LOG call statement followed by a DATA statement with an L in
column 1, aV in column 4, and the record length (in decimal)
in columns 5 through 8, right-justified, and padded with
zeros. For example:

column column column column
1 4 10 16
L LOG
L Voolé DATA 00ASEGMENT ONE

When this method is used, the first halfuword of the record is
eliminated. However, the specified length must include the 2
bytes that are eliminated.

2. ‘A LOG call statement followed by a DATA statement with an L in
column 1 and the record length (in binary) as the first
halfword of the record. The second halfword of the record is
binary zeros. For example:

column column column column
1 10 6
L ' LOG
L DATA 1000BSEGMENT TWO

When this method is used, columns 5 through 8 should be blank.

segment Length and Checking, All Calls

Because this program does not know segment lengths, the length of

the segment displayed on REPL or ISRT calls is the number of DATA

statements that have been read, times 56. IMS/VS knows the segment
length and uses the proper length.

This program does no checking for errors in the call; invalid
functions, segments, fields, operators, or field lengths are not
detected by this program. The results os invalid statements
passed to IMS/VS will be unpredictable.

Appendix F. Using the DL/I Test Program (DFSDDLTO) 321

COMPARE STATEMENT FOR PCB COMPARISONS

This is the format of the COMPARE statement used for PCB
comparisons. :

Position contents
1 = E identifies this as a COMPARE statement.
2 = H indicates hold COMPARE statement
(see below for details).
Blank indicates a reset of the hold condition
or a single COMPARE statement.
3 : = Option requested if results of the compare are

unequal:

Blank - Use the default for the SNAP option.
The normal default is 5. For .
information on how to change .the
default, see thecription of the
"Option Statement.™

1 - To request a SNAP of the complete 1/0
buffer pool.

2 - To request a SNAP of the entire. region.
This option is valid only for. batch
regions.

4 - To request a SNAP of the DL/I blocks.

8 - To abort this step and go to the end
of the job.

S = To SNAP subpools 0 through 127.

Note: Multiple functions of the first 4
options can be obtained by summing their
respective hexadecimal values. For example,
a value of 5 a request for a print of the 1/)
buffers and the DL/I blocks; and a value of D
snaps the 170 pool, snaps the DL/1 blocks,
and aborts the program run.

% = Extended SNAP options, if the results of a
compare are unequal:

Blank - To ignore this extended option.
P To SNAP the complete buffer pool.
S To SNAP subpools 0 through 127.

Note: In no case will an area be snapped twice;
that is, a combination of 1P in positions 3

and 4 results in just one snap of the buffer
pool. Similarly, a combination of SS results in
just one snap of subpools 0 through 127.

5-6 = Segment level.
7 = Not used.
8 -9 = Status code, or one of the following:
XX - Do not check status code.
0K - Allow blank, GA, or GK.
10 = MNot used.
11'; 18 = Segment name.
20 - 22 = Length of feedback. key. .
23 = th used. , |
26 - XX = Concatenated key feedback.

322 IMS/VS Application Programming

PN

N

72 = Nonblank to continue key feedback.

The COMPARE statement is optional. It can be used to do regression
testing of knouwn data bases, or to call for a print of blocks or
buffer pool(s).

Any fields left blank are not compared to the corresponding field
in the PCB. Since a blank is a valid status code, to not compare
status codes, put XX in positions 8 and 9. To accept any valid
gtatus code, (that is, blank, GA, or GK), use 0K in postions 8 and

To execute the same COMPARE after each call, put an H in position
2. This is useful when loading a data base to compare to a blank
status code only. Since the compare was done, the current control
statement type is E in position 1; the next control statement read
must therefore have its type in position 1l or it will default to
E. The HOLD-COMPARE statement stays in effect until another
COMPARE statement is read. If a new COMPARE statement is read, two
compares Will be done for the preceding call, since the
HOLD-COMPARE and optional printing are done prior to reading the
new COMPARE statement.

The total number of unequal compares will be reflected in the
condition code returned for that step.

COMPARE STATEMENT FOR I/0 AREA COMPARISONS

This is the format of the COMPARE statement used for I/0 area
comparisons.

Position contents
$ 1
3

E identifies this as a COMPARE statement.
Length field option.
Blank - The LL field of the segment is not

included in the comparison; only data
is compared.

L - - The length in positions 5 through 8 is
converted to binary and compared
against the LL field of the segment.

4 = Segment length option.

Blank - Not a variable-length segment or
nonpath call data compare.

M - For the second or subsequent variable-
length segment of a path call, or a
concatenated logical child/logical
parent segment.

P - For a fixed-length segment in a path
call.

v - For a variable-length segment only, or
for the first variable-length segment
of multiple variable-length segments
in a path call or for a concatenated
logical child/logical parent segment.

5-38 = nnnn, length of a variable-length segment,
right-justified with leading zeros.
If position % contains V, P, or M, then a
value must appear in positions 5 through 8.
If position 3 contains an L, this value is
compared against the LL field of the returned
segment. If position 3 is blank and the
segmaent is not in a path call, then this value
is used as the length of the comparison. The
rules for continuations are the same as those
described for the variable-length segment DATA

Appendix F. Using the DL/I Test Program (DFSDDLTO) 323

OPTION STATEMENT

statement in the description of the CALL
statement.

If this is a path call comparison, and position
4 contains P, then the value in positions 5
through 8 must be the exact length of the fixed
saegment used in the path call. :

10 - 13 = DATA, this has to be specified in the first
COMPARE DATA statement only.

16 - 71 = Data against which the segment is to be
compared.

72 = Continuation or end of COMPARE statement:

Blank - Identifies the last COMPARE DATA
statement for the current call, and
causes the comparison to be made.

Nonblank - If the comparison data exceeds 56
characters, data is continued in
positions 16 through 71 of the
subsequent statements for a
maximum total of 1500 bytes.

This COMPARE statement is optional. Its purpose is to COMPARE the
segment returned by IMS/VS to the data in this statement to verify
that the correct segment was retrieved.

The length in positions 5 through 8 is optional except as already
noted; if present, this length is used in the COMPARE and in the
display. If no length is specified, the shorter of either the
length of data moved to the 170 area by IMS/VS, or the number of
DATA statements read times 56 is used for the length of the
comparison and display.

If both a COMPARE DATA and a COMPARE PCB statement are present,
t:atCOMPQRE DATA statement must precede the COMPARE PCB
statement.

The conditions for printing the COMPARE DATA statement are the
same as for printing a COMPARE PCB statement; position 7 of the
STATUS statement is used. The same unequal suwitch is set for
either the COMPARE DATA or COMPARE PCB. However, if control block
displays are requested for unequal comparisons, a COMPARE PCB
statement is required to request these options.

The total number of unequal comparisons will be reflected in the
condition code returned for that step.

The purpose of the OPTION statement is to set the default SNAP
option and/or the number of unequal comparisons before aborting
the step. The default value for the number of unequal comparisons
before aborting is 5.
The format of the statement is explained below.
Position contents

1 b identifies this a s an OPTION statement.

2 - 80

Free-from coding.

The first operand is SNAP=x, where "x" ix the
default SNAP option to be used. For an
explanation of the possible values of "x",
see the description of the "COMPARE

Statement for PCB Comparisons."

326 IMS/VS Application Programming

AN

N

N

The second operand is ABORT=xxxx, where "xxxx"
is a ¢-digit numeric value that sets the number
of unequal comparisons before aborting the
step.

Use of the following example of the OPTION statement will cause
the DL/I test program to operate as it did prior to the release of
IMS/VS Version 1, Modification Level 1, that is , it reinstates
the old SWAP options:

column
1

ObSNAP=b, ABORT=9999

SPECIAL CONTROL STATEMENTS

PUNCH STATEMENT

The PUNCH control statement provides the facility for this
program to produce an output data set consisting of the PCB
COMPARE statements, the user I/0 area COMPARE statements, all
other control statements read, or any combination of the above. An
example of the use of this facility is to code the call, but not
the COMPARE statements for a new test. Then, after verifying that
tha calls were executed as anticipated, another run is made where
the PUNCH statement is used to cause the test program to merge the
proper COMPARE statements, based on the results of the call, with
the CALL statements read, producing a new output data set. This is
then used as input for subsequent regression tests. If segments in
an existing data base are changed, the use of this control
statement causes a new test data set to be produced with the
proper COMPARE statements. This eliminates the need to manually
change the COMPARE statements because of a change in the segments
of the test data base.

The PCB COMPARE statements are produced based on the information
in the PCB after the call is completed. The COMPARE DATA
statements are produced based on the data in the I/0 area after
the call is completed. All input control statements, other than
COMPARE statements, can be produced to provide a new composite
test with the new COMPARE statements properly merged. The data set
produced can be sequenced.

Since the key feedback area of the PCB COMPARE statement can be
long, two options are provided for producing these COMPARE
statements. Either the complete key feadback can be provided, or
the portion of the key feedback that does not fit on one statement
cintbe dropped. Forty-eight bytes of key feedback fit on the first
statement.

Getting the full data from the I/0 area into the data COMPARE
statement might also be excessive. An option is to put it all on
the data COMPARE statements, or put only the first 56 bytes on the
first statement and drop the rest. The test program compares only
the first 56 bytes if it receives only one COMPARE DATA statement.

The PUNCH statement format is as follows:

Position contents
$ 1 -3 = CTI identifies this statement type.
$ 10 - 13 = Punch control:
PUNC -~ Begin punching.
NPUN - Stop punching.
$ 16 = Starts keyword parameters controlling the

various options. These keywords are:

Appendix F. Using the DL/I Test Program (DFSDDLTO) 325

PUNCH DD STATEMENT

SYSINZ DD STATEMENT

PCBL
PCBS

To produce the Tull PCB COMPARE

statement.

To produce the PCB COMPARE, dropping

the key feedback if it exceeds one

statement.

DATAL _ To produce the complete COMPARE DATA
statements.

DATAS To produce only one statement of
COMPARE DATA.

OTHER

START

To reproduce all control statements
except COMPARE control statements.

To punch the starting sequence number
in columns 73 through 80. Eight numeric
characters must follow the START=
parameter; leading and/or trailing
zeros are required.

To add the increment to the sequence
number of each statement. Four numeric
characters must follow the INCR=
parameter; leading and/or

trailing zeros are required.

INCR

Some examples of the PUNCH control statement are:

CTL PUNC PCBL,DATAL,OTHER,START=00000010,INCR=0010
CTL NPUN

The DD statement for the output data set is labelled PUNCH; the
data set characteristics are fixed, unblocked, with a logical
record length of 80.

An example of the PUNCHDD statement is:
//PUNCHDD DD SYSOUT=B

The data set specified by the SYSIN DD statement is the normal
input data set for this program. It is sometimes desirable when
processing an input data set that is on direct access or tape, to
override or insert some control statements into this input
stream. This is especially useful to obtain a SNAP after a
particular call.

To provide this capability, a second input data set (SYSIN2) will
be read if the DD statement is present in the JCL for the step.
The records from the SYSIN2 data set are merged with records from
the SYSIN data set, and the merged records become the input for
this program.

The merging is done based on the sequence numbers in positions 73
through 80, and is a two-step process: first, positions 73 and 74
of SYSINZ2 must be equal to the corresponding positions of SYSIN;
then the merge is done based on positions 75 to 80.

This peculiarity of merging allows for multiple data sets (each

Wwith a different high-order sequence number in 73 and 74) that

have been concatenated to form SYSIN, in other than positions 73

and 76 numeric sequence. The two-step merge logic permits SYSIN2
Ln:ut to be merged appropriately into each of the concatenated
ata sets.

When the sequence numbers are equal, SYSIN2 overrides SYSIN.

Any statements or records in this data set must contain sequence
numbers in columns 73 through 80. They will replace the same
sequence number in the SYSIN data set, or be inserted in proper
sequence if the number in SYSIN2 does not exist in SYSIN.

326 IMS/VS Application Programming

N

N

Replacement or merging is done only for the run being made. The
original SYSIN data is not changed.

OTHER CONTROL STATEMENTS

Position
1 -4
10 - 17
1 -4
1 -3
1
1 -5

SPECIAL CALL STATEMENTS
Position
$ 1
5-8

$ 10 - 13

contents

DLCK: To issue an 05/VS checkpoint, followed
by a DL/I checkpoint. For any dependent region,
DLCK gives an 0S5/VS checkpoint to a DD
statement labelled CHKDD whose DSORG=PO.

This is followed by a DL/I checkpoint call.

The use of this control statement will

cause all subsequent CHKP calls to issue the
0S/7VS checkpoint unless a statement with
USCKOFF in columns 1 through 7 precedes the
CHKP call.

CHKP: Same as DLCK.

Contains a 1- to 8-character checkpoint ID
(left justified).

WTOR: puts message in remainder of statement on
systgm console and waits for any reply, then
continues.

WTO0: same as WTOR, but does not wait for reply.

. or N: used as last statement in a data set that

can be concatenated with other SYSIN data sets.

ABEND: To issues user ABEND 252 with the DUMP
option.

Contents
L identifies this as a CALL statement.

Number of times to repeat a series of calls
with a range from 0001 through 9999
(default is 1).

Stacking control cards:

STAK - Start stacking control cards for later
execution.

END - Stop stacking control cards and begin
execution.

The STAK function makes it possible to repeat
a series of calls which have been read from
SYSIN and held in storage. All control
statements between the STAK card and the END
card are read and saved. When the END card
is encountered, the series of calls is
executed as many times as the number punched in
positions 5 through 8 of the S5TAK card. This
can be used to test exclusive control and
scheduling by having two different regions
executing stacks of calls concurrently.

SKIP - Skip SYSINs until START statement
statement encountered.

START - Start making DL/I calls again.

STAT - Print the current buffer pool
statistics. When this call is used,
IOASIZE in the PSB must be specified
specified as greater than 360 bytes.

Appendix F. Using the DL/ Test Program (DFSDDLTO0) 327

16 - 20 One of the following values is used to obtain

the type and form of statistics required:
VBASF To obtain the full VSAM data base
VBASU

subpool statistics in a formatted form.

To obtain the full VSAM data base
subpool statistics in an unformatted

form. o

To obtain a summary of the VSAM data

gase subpool statistics in formatted
orm.

To obtain the full ISAM/0SAM data base

buffer pool statistics in unformatted
form.

To obtain a summary of the ISAM/0SAM

data base buffer pool statistics in

formatted form.

VBASS

DBASF

DBASS

Note that for VSAM statistics, a
separate set of values is provided
for each VSAM subpool defined, and a
final set of values is provided to
summarize all VSAM subpool values.
The buffer size in the final totals
is the total size of all buffers in
all VSAM subpools.

SNAP - Issue the DL/I SNAP call to print the
DL/I blocks.

EXECUTION IN DIFFERENT REGIONS

328

This program is designed to operate in a DL/I or BMP region but
can also be executed in a M5G region. The input and output devices
are dynamically established based on the type of region in which
the program is executing. In a BMP or DL/I region, the EXEC
statement allows the program name to be different from the PSB
name. There is no problem executing calls against any data base in
a BMP or DL/I region. In a M5G region, the program name must be
the same as the PSB name. In order to execute in a M5G region, the
DFSDDLTO program must be given the name or an alias of the PSB
named in the IM5/VS definition.

When in a DL/I region, input is read from SYSIN and output is
written to PRINTDD.

When in a BMP region, if a symbolic input terminal was specified
as the fourth parameter of the EXEC statement, input is obtained
from that SMB, and output is sent to the I/70 PCB. The name of the
I/0 PCB can be specified as the fifth parameter of the EXEC
statement. If SMB is not specified on the EXEC statement, SYSIN is
useq for input and PRINTDD is used for output, as in the DL/I
region.

In the MSG region, the I/0 PCB is used for both input and output
unless position 2 of the STATUS statement is either a 1l or an A.
In either of these cases, PRINTDD is used for output if the DD
card is present in the JCL for that message region. A limit of 50
lines per schedule is sent to the I/0 PCB and, after that, PRINTDD
is used for output if present. If PRINTDD is not present, the
program terminates.

If PRINTDD is specified in either a BMP or MPP region, SNAP output
will be routed to the IMS/VS control region PRINTDD DD card.

Because the input is in fixed form, it is difficult to key it from
a terminal. For ease of entry, however, Message Format Service
(MFS) facilities can be used from a terminal to create the
fixed-format input. One way to test DL/I in a message region,
using this program, is to first execute another message program

IMS/VS Application Programming

/

VRN

_/'I

~——

which, based on a massage from the terminal, reads control
statemaents stored as a membar of a partitioned data sat. Insert
these control statements into an SMB. This program is thaen
scheduled by IM5/VS to process those transactions. This allows
the same control statements to be usad to execute in any region
vpe.

SUGGESTIONS ON USING THE DL/I TEST PROGRAM

1.

To load a data base:

This program is applicable for loading small data bases,
becausea all calls and data must be provided to it rather than
it generating data. It can be used to load large volume data
bases if the control statements were generated as a
sequential data set.

To display a data base:

To display a data base, the following sequence of control
statements can be used.

$§12221 DBNAME Display comments and segment
L GN DO 1 Get Next

EH 8] 4 Holgscompare. GA, GK, OK, terminate
on
L 9999 GN DO 9,999 Get Next calls

To do regression testing:

This program can be used for regression testing. By using a
known data base, calls can be issued and the results compared
to expected results using COMPARE statements. The program
then can determine if DL/I calls are being executed
correctly. By making the print options of the STATUS
statement all twos, only those calls not satisfied properly
are displayed.

To use as a debugging aid:

When doing debugging work, usually a print of the DL/I blocks
is required. By use of COMPARE statements, the blocks can be
displayed at appropriate times. Sometimes the blocks are
needed even though the call is executed correctly, such as the
call before the failing call. In those cases, a SNAP call can
be inserted. This causes the blocks to be displayed even
though the call was executed correctly.

An alternative method of doing a SNAP call when running
DFSDDLTO is to use a COMPARE statement after the call, forcing
the program to do an unequal compare. For example:

column column column
1 - 11
E 5P SNAP

The SNAP call compares against the segment name of SNAP, gets
an unequal compare, and as a result of the SNAP options in
columns 3 and 4, snaps the complete 170 buffer pool, the DL/I
blocks, and the complete buffer pool.

To verify how a call is executed:

Because it is easy to execute a particular call, this program
can be used to verify how a particular call is handled. This
is of value when DL/1 is suspected of not operating correctly
in a specific situation. The calls that are suspected can be
issued using this program, and the results examined.

Appendix F. Using the DL/I Test Program (DFSDDLTO) 329

DLs/I TEST PROGRAM JCL REQUIREMENTS

JOB
EXEC

STEPLIB DD

IMS DD

database DD

IEFRDER DD

PRINTDD DD

SYSDUMP DD

SYSIN DD

SYSIN2 DD

This statement initiates the job.

This statement specifies the program name, or
invokes a cataloged procedure. The required format
153

PGM=DFSRRCO00,PARM="AAA,DFSDDLTO,BBBBBBBB,
ccccececc, bbbDDDDD!

where AAA is the region type and BBBBBBBB is the name
of the PSB to be used. Parameters CCCCCCCC and
DDDDDDDD are optional, and can be used to specify
symbolic input terminal and output terminal names,
respectively. Refer to the section "Member Name

IMSBATCH" in the IMS/VS System Programming Reference
Manual for other parameters that can be used.

Defines the partitioned data set named IMSVS.RESLIB.
If EXIT routine modules are used, they should be
placed into this library or into another PDS
concatenated to this library.

This statement defines two concatenated data sets.
The first DD statement defines the library
containing the PSB to be used by the test program.
The second DD statement defines the library
containing the DBD of the data base to be processed.

This statement references a specific data base.
There should be one statement for each data base to
be processed. In each statement the ddname must
agree with the ddname specified in the DBD.

This statement defines the log data set, if one is
desired. a dd dummy statement may be used if a log is
not desired. One form or the other of this statement
is required.

This statement defines the output data set for the
test program, including displays of control blocks
using the SNAP call. It must conform to the 0S SNAP
data set requirements.

This statement is optional and is used by the test
program onhly when normal termination is not
possible.

This statement defines the control statement input
data set. .

This is an optional secondary input statement. See
the description of "Special Control Statement
Formats"™ for details.

Note: SYSIN may be members of a partioned data set; if they are to
be concatenated together, the last statement must be a period (.)
or an N statement. This prevents the last statement in the
previous concatenation to be used twice.

330 IMS/VS Application Programming

N

SAMPLE JCL FOR THE DL/I TEST PROGRAM

//7JCLSAMP JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=3,PRTY=8
//GET EXEC PGM=DFSRRCO00,PARM='DLI,DFSDDLTO,PSBNAME’
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR

7//7IMS DD DSN=IMSVS.PSBLIB,DISP=(SHR,PASS)

7/ DD DSN=IMSVS.DBDLIB,DISP=(SHR,PASS)

//DDCARD DD DSMN=DATASET,DISP=(OLD,KEEP)

7/71EFRDER DD DUMMY

//PRINTDD DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//7SYSIN DD ¥

sl1111 DBNAME

/%

Appendix F. Using the DL/I Test Program (DFSDDLTO) 331

N

A

access methods 61-47

GSAM 46
HDAM 43
HIDAM 44
HISAM 46
HSAM 45
SHISAM 47
SHSAM 47

accessing a segment through different
paths 52
accessing IMS5/VS data bases through
0S7VS 47
adding information to the data
base 104-108
aggregate 18
alternate destinations, sending messages
to 195
alternate PCB masks
description 179
format 179
alternate PCBs 196
express 180
modifiable 180, 195
overview of 72
response 205
SAMETRM=YES 205
sending messages to other
terminals 195
types and uses of 179
use Wwith program-to-program message
switching 196
using the PURG call with 195
analyzing application requirements 10
analyzing data access 61-67
analyzing data relationships 17
analyzing processing requirements 28
analyzing screen and message formats 65
and, independent 120
and, logical 120
appendixes 286-331
application design guide 1-73
application program test 228-232
application programming guide 75-236
assembler language
call parameters 239
DB PCB mask 242
DC call formats 248
DL/I call format 239
DL/I program structure 163
entry statement 238
I/0 area 243
MPP structure 219
parameter list at program entry 238
program entry 238
ragister 1 at program entry 238
return statement 238
SSA definition examples 247

backing out data base updates 210, 224
basic CHKP 130
and 05/VS restart 59
call format 252
DCB names for 0S/VS restart 133
description 133
ID 131
05/VS option 133
parameters 252
restart and 59
basic edit 193
input
using basic edit 193
input messages 193
output
using basic edit 193
output messages 193
overview of 66
batch message program
see "BMPs (batch message programs)"
batch processing 39
batch processing online 37
batch programs
assembler language structure 163
checkpoints 39, 60
COBOL structure 157
converting to BMPs 138-140
description of 39
overview of 78
PL/1 structure 160
recovery 39
sample 287
structure 78
structuring 76
sync points 39
batch sample program 287
Batch Terminal Simulator II (BTS II) 230
batch-oriented BMPs 32, 223
checkpoints in 60
comparison with batch programs 226
description of 37
recovery 37
sync points 224
sync points in 37
before you code
a batch program 156
an MPP 215
before you update: get hold calls 100
BILLING segment 90
BMPs (batch message programs) 223
batch-oriented 37, 223
checkpoints in 60, 61
designing batch-oriented BMPs 226
differences hetuween
transaction-oriented BMPs and
MPPs 223
guidelines 38
multiple-mode 226
planning ahead for batch-to-BMP
conversion 138-140
p;ocessing online data bases 223,
26
Q command code in 224

Index 333

sample program 293
similarities to batch programs 223
similarities to MPPs 223
single-mode BMPs 225
transaction-oriented 36, 61
types of 31, 223
XD status code 225
Boolean operators 120
independent and 120
logical and 120
logical or 120 ’
BTS II (Batch Terminal Simulator II) 230

c

C command code 123
C§LL statement (DL/I test program) 229,
18
calling the sample status code error
routine 169
calls, DL/1I
DLET 103
formats 239
get calls 100
get hold calls 100

GN 94-97
GNP 97-99
GU 91-93

guidelines on retrieval calls 100
ISRT 104
overview of 80
parameters 239
REPL 101
retrieval calls 100
changing a field's contents 151
changing segments 101
changing the destination of a modifiable
alternate PCB 195
checking a field's contents:
FLD/VERIFY 149
checking status codes 128-130, 169, 221
sample routine 307
checkpoint calls
basic 59, 133
choosing 59
description of 58, 130
effects of 59
frequency 131
how often to use checkpoints 131
IDs 131
kinds of 59
similarities 130
symbolic 59, 132
types of 130
where to use checkpoints 131
checkpoint IDs 131
checkpoints
calls 130
comparison of 60
data sharing and 62
frequency 60
in batch programs 39, 60
in batch-oriented BMPs 60
in BMPs 224, 225
in MPPs 61
in transaction-oriented BMPs 61, 225
restart and 59
summary of 60
taking checkpoints 130
CHKDD 133

334 IMS/VS Application Programming

CHKDD2 133
CHKP (checkpoint)
basic 130, 133
call format 252
effects of 130
frequency 131
guidelines 131
how often to use 131
IDs 131
in sample batch program 287
in sample BMP 293
symbolic 130, 132
call format 251
parameters 251
types of 130
what IMS/VS does 130
CHNG (change)
call format 2648
description 195
using PURG with 196
with directed routing 199
choosing a checkpoint call 59

choosing the right retrieval call 100

CLSE (close) 259
CMD (command)
call format 248
description 208
CMPAT=YES 130
COBOL
call parameters 239
DB PCB mask 241
DC call format 248
DL/I call format 239
DL/I program structure 157
entry statement 238
GU function code 170
I/0 area 263
return statement 238
sample programs
batch 287
BMP 293
conversational 302
skeleton MPPs
COBOL 216
skeleton program 157, 216
SSA definition examples 245
codes, command
description of 121
summary of 83
codes, status
and GU 93
checking 128-130
explanations 272-285
for logical relationships 138
for XRST call 132
quick reference table 268
reference 268-285
coding
DL/1I function codes 169
entry statements 168
function codes 169
parmcount 169
coding an MPP
in assembler language 219
overview of 215
parts of an MPP 215
skeleton MPPs 216, 217
coding checkpoint IDs 171
coding DC calls 220
overview of coding 220
coding DC system service calls 220
coding DL/I calls 168
coding Fast Path data base calls 172

- TN

N

~——

N~

~——

coding monitoring system service
calls 168
coding recovery system service
calls 168
coding §5As 171
coding the data area 169
coding the DL/I portion of a program 156
coding the I/0 area 170
coding the program logic 167, 220
command codes
and REPL 103
c 123
coding restrictions 244
descriptions of 121

F 105, 122
use with HERE insert rule 105
L 105, 123

usa with HERE insert rule 105
N 125

null 126
P 124,
U 124

usage 8%, 93
in load programs 108
with DLET 104
with GN 96
with GNP 99
with GU 93
with ISRT 106
vV 125
with qualified SSAs 83
with 5SAs 83
with unqualified SSAs 83
commands. 208
comments in DL/T test program
conditional 318
unconditional 318
COMMENTS statement 229, 318
communicating with other IMS/VS
systems 197
COMPARE statement 229, 322, 323
comparing ways to store data 2
comparison of symbolic CHKP and basic
CHKP 60
compatibility option 130
concatenated key
in key feedback area 87, 143
using in $SAs 123
concepts and terminology 2-9
conditional comments 318
considerations for message-driven Fast
Path programs 212
considerations in screen design 67
continuing a conversation 68
control statements
CALL 318
COMMENTS 318
COMPARE 322, 323
DATA 320
DL/1I test program 229, 316-328
for checkpoints 327
OPTION 324
PUNCH 325
PUNCH DD 326
spacial control statement
formats 325
STATUS 316
SYSIN2 DD 326
conversational abnormal termination
routine 70
conversational mode 72
conversational processing 200, 207
continuing the conversation 205

conversational abnormal termination
routine 70
deferred program suitch 68
designing a conversation 68
DFSCONEO 70
direct access storage SPAs 69
ending the conversation and passing
control 207
example of 200
fixed-length SPAs 69
gathering requirements 67
immediate program switch 68
information you need to code the
program 220
main storage SPAs 69
maximum SPA size 69
message formats 205
overview of 67, 200
passing control and continuing the
conversation 206
passing the conversation to another
program 68
recovery considerations 70
replying to the terminal 205
restrictions 69, 204
ROLB and 202, 212
ROLL and 212
sample program 302
SPA (scratchpad area) 68
SPA characteristics 69
steps in a conversational
program 203
structure 202
types of SPAs 69
use with response alternate PCBs 72
using a deferred program switch to end
the conversation 69
variable-length SPAs 69
ways to continue the conversation 68
ways to end the conversation 69
what happens in a conversation 67
converting an existing application 12
converting batch programs to
BMPs 138-140
creating a new hierarchy 52
current position
after unsuccessful calls 115
determining your position 108
when restarting 133
with multiple positioning 126
current roster 13

D

D command code 83, 121

and ISRT 104

example of 83

use when loading a data base 108
data aggregate 18
data base calls

DLET 103

formats 239

get calls 100

get hold calls 100

GN 94-97
GNP 97-99
GU 91-93

guidelines on retrieval calls 100
parameters 239
REPL 101

Index 335

retrieval calls 100
data base description (DBD) 5
data base hierarchy 5
data base load 107
data base name in DB PCB 86, 142
data base options 41-62
data base position 108
determining 108
explanation of 108
with multiple positioning 126
data base record
example of 7
processing 7
data communications options 63
data dictionary 12
data elements
listing 13
naming 15
data entity 13
data entry data base
processing 146, 153
see "DEDB (data entry data base)"
using DL/I calls with 153
data relationships, analyzing 17
data sharing 62
DATA statement 320
data structuring 18
DB PCB
contents with secondary indexing 135
data base name 86, 142
key feedback area 87, 143
key feedback area length field 87,

143
number of sensitive segments
field 87

overview of 78
processing options field 87, 143
relation to DB PCB mask 85
segment level number field 86
segment name field 87
sensitive segments 87
status code field 87, 142
using multiple 126
DB PCB mask 85
as parameter in program entry
statement 86, 142
assembler language 242
coding examples 241
fields in 85, 86, 1642
format 241
general description of 78
in COBOL 241
in PL/I 242
name 86, 162
relation to DB PCB 78, 85
DbD (data base description) 5
DC calls
call formats 248
CHNG 195
CMD 208
coding 248
GCMD 208
general description 176
GN 194 ’
GU 194
in assembler language 248
in BMPs 225
in COBOL 248
in PL/I 248
ISRT 194
overview of 220
parameters 248
PURG 195

336 IMS/VS Application Programming

summary of 176, 249
DCB names for 05/VS restart 133
debugging a program 231
DEDB (data entry data base)
_processing 146, 153
using DL/I calls with 153
deferred program switch 68
definitions
qualified DL/I call 81
qualified 55A 81
unqualified DL/I call 81
unqualified SSA 81
delete call
description 103
format 239
deleting segments 103
DEQ (dequeue)
call format 257
description 210
in BMPs 224
parameters 257
dequeue call
call format 257
description 210
in BMPs 224
parameters 257
designing a conversation 68
designing a local view 17
designing a terminal screen 67
designing batch-oriented BMPs 226
designing transaction-oriented BMPs 225
determining mappings 21
determining your position in the data
base 108
DFSCONEO 70
DFSDDLTO (DL/I test program)
control statements 229
description of 229
explanation of 316, 331
how to use 316, 331
testing DL/I call sequences 229
DFSERAL10 (File Select and Formatting
Print Program) 130
DFSOAER 307
dictionary 12
DIF (device input format) 185
di fferences between transaction-oriented
BMPs and MPPs 223
direct access methods 42
characteristics of 42
HDAM 43
HIDAM 44
types of 42
direct access storage SPAs 69
direct dependents 153
direct retrieval 91
directed routing 197, 198
DL/I access methods 41-47
considerations in choosing &1
direct access 62
GSAM 46
HDAM 43
HIDAM 44
HISAM 46
HSAM 45
sequential access 45
SHISAM 47
SHSAM 47
DL/I call parameters (figure) 81
DL/1 call trace 229
DL/I calls
coding 168
DLET 103

7N\

e

formats 239
get calls 91, 100
get hold calls 100

GN 94-97
GNP 97-99
GU 91-93

guidelines on retrieval calls 100

overview of 77, 80
parameters &0, 239
processing online data bases
with 224
qualifying your calls 81
REPL 101
retrieval calls 91, 100
testing DL/I call sequences 229
types of 81
use with SSAs 81

DL/1 options
field level sensitivity 47
logical relationships 52
secondary indexing 68

DL/1I program parts 156

DL/1I program structure 78

DL/I programming 76-172

DL/1I test program
call statements 229

checking program performance 229

comments statements 229
compare statements 229
control statements 229
debugging and 329
description of 229
displaying a data base with 329
execution in different regions
explanation of 316, 331
how to use 316, 331
JCL requirements 330
loading a data base with 329
regression testing and 329
segment length and checking 321
status statements 229
suggestions on use 329
testing DL/I call sequences 229
timings 230
using 229, 316-331
verifying call results with 329
DLET (delete)
call format 239
description 103
with MSDB 148
DLITCBL 238
DLITPLI 238
documentation for users 236
documenting an application
program 235-236
documenting the application design
process 12
DOF (device output format) 185
input
using MFS 187
input messages
using MFS 187
dynamic log space 227

editing considerations in your
application 66
editing messages 184, 193

considerations in message and screaen

design 66
overview 65
element 13
eliminating data base updates 210
ROLB (rollback) 210
ROLL (roll) 210
ending a conversation 69

ending a conversation and passing control

to another program 207
ending the conversation 69
enqueue lockout 226
enqueue space 226

in batch-oriented BMPs
enqueue space 226
entity 13
entry statement
formats 238
entry statements 168
equal to relational operator 82
error routines 129

call format for sample routine 256

I/0 errors 129
programming errors 129
sample status code error
routine 130, 307
system errors 129
types of errors 129
errors, execution 231
errors, initialization 231
establishing parentage
and GNP 99
ISRT 106
using GU 93
using the P command code 124
establishing position after restart
examples
Boolean operators 121
conversational processing 200
current roster 13
D command code 83, 122
DEQ call 210
DLET 103
field level sensitivity 48
GN 95
GU 92
instructor schedules 25
instructor skills report 24
ISRT C(add) 105
issuing a data base call 90
L command code 123
local view 22
logical relationships 52
medical data base 88
multiple qualification
statements 121
of GNP 98
P command code 124
path call 83
program isolation 208
Q command code 209
REPL 101
schedule of classes 23
using an SSA with secondary
indexing 135
exceptional conditions 129

Index

133

337

exclusive mode 72

executing DL/I test program in different
regicns 328

executioh errors 231

explicitly opening and closing a GSAM
data base 144

express PCBs 73

F

F command code 122
with HERE insert rule 105
Fast Path
considerations for message—-driven
Fast Path programs 212
data areas 265
data base calls 1466, 263
data entry data base 146

DEDB 146
FLD call 263
FSA 265

main storage data base 146
message calls 266
MSDB 146
P0OS call 264
processing Fast Path data bases 146
processing MSDBs 146
reference 263-267
SYNC call 267
system service calls 267
types of data bases 146
Fast Path application programs .
introduction to 31
message-driven 31, 35
mixed mode 38
nonmessage driven 31
nonmessage-driven 38
restrictions on mixed mode 38
types of 31
Fast Path data bases
DEDBs (data entry data bases) 35
MSDBs (main storage data bases) 35
types of 35
field call
call format 263
description 148
FLD/CHANGE 151
FLD/VERIFY 149
parameters 264
field level sensitivity
as a security mechanism 56
example of 48
introduction to 67
specifying 48
uses of 48
field name
in FSA 150
in qualfication statement of SSA 82
field search argument
description 149
reference 265
field value
in FSA 150
in qualification statement of
SSA - 82, 83
fields in a DB PCB mask 86, 142
File Select and Formatting Print
Program 130
finding the problem 231
FIRST insert rule 105, 123

338 IMS/VS Application Programming

use with L command code 123
fixed-length records 144
FLD (field)

call format 263

description 148

FLD/CHANGE 151

FLD/VERIFY 149

parameters 264
for your reference 237-285
frequency, checkpoint 131
FSA (field search argument)

description 149

reference 265
function codes 169

in assembler language 170

in COBOL 170

in PL/I 170

G

GA status code 129
gathering requirements for
conversational processing 67
gathering requirements for data base
options 41-62
gathering requirements for data
communications options 63
GB status code 129
GCMD (get command)
call format 248
description 208

retrieving responses to commands 208
GE status code 129

not-found calls 115

position after 115
general programming guidelines 118, 127
Generalized Sequential Access Method 46

get calls 91-100
choosing a retrieval call 100
get hold calls 100

GN 94-97
GNP 97-99
GU 91-93

overview of 100
use with D 121
get hold calls 100
get hold next
call format 239
description 100
get hold next within parent
call format 239
description 100
get hold unique
description 100
get next
data base call 94-97
message call
description 194
get next within parent 99
call format 239
description 97
get system contents directory call
call format 253
description 233
parameters 253
get unique
data base call 91-93
message call 194
GHN (get hold next)
call format 239

7

TN

description 100
GHNP (get hold next within parent)
call format 239
description 100
GHU (get hold unique)
call format 239
description 100
GK status code 129
GN (get next)
data base call 94-97
call format 239
description 94
message call
call format 248
description 194
GNP (get next within parent) 97-99
call format 239
greater than or equal to relational
operator 82
greater than relational operator 82
grouping data elements into
hierarchies 18
grouping data elements with their
controlling keys 21
GSAM (Generalized Sequential Access
Method) 46
accessing GSAM data bases 140
and CHKP 145
and XRST 133, 145
call formats 259
call parameters 259
coding considerations 171
data areas 260
description of 140
designing a program with 140
fixed-length records 144
I/0 areas 261
in sample batch program 287
in sample BMP 293
JCL restrictions 262
PCB mask 141
RECFM 262
record formats 144, 262
reference 259-262
restrictions on CHKP and XRST 145
RSA 143, 261
status codes 145
summary of calls 171
undefined-length records 144
variable-length records 144
GSCD (get system contents directory)
call format 253
description 233
parameters 253
GU (get unique)
data base call 91-93
call format 239
description 91
message call
call format 248
description 194
issuing as first call 194
GU function code for COBOL 170
guidelines on retrieval calls 100
ggégelines, general programming 118,

H

HDAM (Hierarchical Direct Access
method) 4¢3
HERE insert rule 105, 122, 123
use with F command code 122
use with L command code 123
HIDAM (Hierarchical Indexed Direct
Accaess Method) 44
hierarchic sequence 9%
Hierarchical Direct Access Method 43
Hierarchical Indexed Direct Access
Method 4%
Hierarchical Indexed Sequential Access
Method 46
Hierarchical Sequential Access
Method 45
HISAM (Hierarchical Indexed Sequential
Access Method) 46
hold calls 100
HOUSHOLD segment 90
how a program uses a DB PCB mask 78
how IMS/VS identifies terminals 32
how IMS/VS protects online data 33
how logical relationships affect your
programming 137
how often to use checkpoints 60, 131
how secondary indexing affect your
program 134 .
how you process a data base record 7
how vou read and update a DL/1 data
base 77
how you use GN 95
how you use GU 92
HSAM (Hierarchical Sequential Access
Method) 45

I/0 area
for a DC ISRT call 194
for data base calls
coding 243
in assembler language 243
in COBOL 243
PL/I 243
for symbolic CHKP 251
for XRST 132, 251
with DL/ calls 77
I0 PCB 177
I/0 PCB masks
contents after successful GU 194
description 177
format 177
identification, checkpoint 131
identifying application data 12
identifying free space 15%
identifying online security
requirements 63
identifying output message
destinations 71
identifying recovery requirements 58
identifying security requirements
data base 55
ILLNESS segment 89
immediate program switch 68
IMS/VS entry and return conventions
formats 238

Index 339

independent and 120
indexed field in-an-SSA 135
indexing, secondary
DB PCB contents 135
effect on programming 134, 135
how it affects your program 134
use with SSAs 135 ‘
information you need about
checkpoints 167
information you need about each
segment 167
information you need about
hierarchies 167
information you need about program
design 166
information you need to code a
conversational program 220

information you need to code an MPP 219

initialization errors 231
initially loading a data base 107
input message format 183
input messages
format 183
input
format 183
MFS 187
using basic edit 193
insert call
call format 239
data base call
description 104
insert rules 105
use with F command code 122
use with L command code 123
inserting a path of segments 104
inserting a sequence of segments 121
inserting information 108 -
inserting segments
using D command code, 122
inserting segments to an existing data
base 104
inserting the first occurrence 122
inserting the last occurrence 123
inserting with D 122
instructor schedules 25
instructor skills report 24
introduction 2-9
isolating duplicate values 19
isolating repeating data elements 18
ISRT (insert)
data base call
adding segments 104
call format 239
description 104
loading a data base 107
rules 105
use with D command code 122
use with F command coda 122
use with L command code 123
with MSDB 148
inserting the SPA 205
message call
call format 248
description 194
in conversational programs 205
use with SPAs 205
ISRT function code for PL/I 170
issuing CHKP as first call in
program 131 '
issuing commands 208
using the CMD call 208
using the GCMD call 208
issuing data base calls 90

340 IMS/VS Application Programming

issuing GU as first call in MPP 194

JCL (job control language)
DL/I test program requirements 330
GSAM restrictions 262

K

key feedback area

definition of 87, 143

field in DB PCB 87, 143

length field in DB PCB 87, 143
key sensitivity 56
keys, concatenated

using in SSAs 123

L command code 123

with HERE insert rule 105
LAST insert rule 105 ;
length of key feedback area 87, 143
less than or equal to relational
operator 82
less than relational operator 82
level number field in DB PCB 86
limiting access to specific
individuals 64
limiting access to specific
terminals 64
limiting access to the program 64
listing data elements 13
LL field

in input messages 183

in output messages 183

in SPA 204

with directed routing 200
load program

use of SSAs in 107
loading a data base 107
loading a sequence of segments 108
local view examples 22
local views, designing 17
locating a specific sequential
dependent 153
locating the last inserted sequential
dependent 154
LOG (log)

call format 254

description 233

parameter length for DL/I test

program 321

parameters 254

restrictions on I/70 area 255
log call

call format 254

parameters 254

restrictions on I/0 area 255
log record

containing checkpoint ID 130

File Select and Formatting Print

Program 130 ‘

TN,

N

how to print 130
printing log records 130
logical and 120
logical child 136
logical or 120
logical parent 136
logical relationships
and status codes 138
defining 53
effect on programming 136, 137
example of 52
introduction to 52, 136
logical child 136
logical parent 136
physical parent 136
processing segments in 136
logical structure 136

M

main storage data base
see "MSDB (main storgage data base)"
main storage SPAs 69
making programming easier 118
making your program reusable 175
many-to-many mapping 22
mappings, determining 21
mask, DB PCB 78, 85
maximum SPA size 69
medical data base example 88
description of 88
segments in 88
message calls
call formats 248
in assembler language 248
in COBOL 248
in PL/I 248
parameters 248
summary of 249
message priming 194
message processing 32
message queues
accessing from BMPs 225
mggsage-driven Fast Path programs 31,

considerations 212
recovery 36
scheduling 36
sync points 36
messages 32
editing 184
from terminals 1890
in conversations 205
input 193
output 71, 193
identifying destinations for 71
retrieving 193-194
segments 180
sending 194-197
sending messages to other application
programs 196
MFS (Message Format Services) 184
control blocks 65, 185
example of 185
input messages 187
overview of 65
MID (message input descriptor) 185
mixed mode 38
restrictions 38

mixing Fast Path and IMS/VS
processing 38
MOD (message output descriptor) 185
mode
exclusive 72
multiple 61
response 72
single 61
modifiable alternate PCBs 195
changing the destination of 195
using the CHNG call with 195
MPPs (message processing programs)
checking status codes 221
description of 33
differences with transaction-oriented
BMPs 223
introduction to 31
multiple mode 34
recovery 34
sample program 299
scheduling an MPP 35
single mode 61
structure 175
sync points 33
MSC (Multiple Systems Coupllng)
and conversational programming 207
description 197
directed routing 198
receiving messages from other IMS/VS
systems 198
sending messages to other IMS/VS
systems 199
MSDB (main storage data base) 146
description of 35
nonrelated 146
nonterminal-related 146
processing 146
reading segments in 148
related 146
terminal related 146
dynamic 146
fixed 166
types of 166
multiple DB PCBs 126
multiple mode 61
multiple positioning 126
multiple qualification statements 120
Multiple Systems Coupling
see "MSC (Multiple Systems Coupling)"®
multiple transaction codes 194
multiple-mode BMPs 226
multiple—-mode MPPs 34

N

N command code 125
use with REPL 103
name field, segment 82
naming data elements 15
nonmessage-driven Fast Path programs 31
description 38
recovery 38
sync points 38
nonrelated MSDB 146, 148
nonterminal related MSDB 148
nonterminal-related MSDB 146
not equal to relational operator 82
not-found calls
description 115
position after 115

Index 341

notes on coding a COBOL MPP 216
notes on coding a PL/I MPP 218
notes on coding assembler language
MPPs 219

null command code 126

number of sensitive segments in DB
PCB 87

0

one~-to-many mapping 21
online and batch processing 28-40
online processing 30-38
message processing 32
processing online data bases 223
processing the data base online 224
online security
password security 64
supplying information about your
application 6%
terminal 64
OPEN (open) 259

operator
in FSA 150
in SSA 82

operators, Boolean 120
operators, relational 120
OPTION statement - 324
options, processing
description of 57-58
field in DB PCB 87, 143
or, logical 120
0S/VS checkpoint option
return codes 133
057VS checkpoint records 133
057VS restart 59
DCB names 133
description of 133
restrictions 134
output message format 183
output messages
format 183
identifying destinatlons for 71
output
format 183
retrieving 193-194
sending 194-197
to other application programs 196
to other IMS/VS systems 199
using basic edit 193
with directed routing 200
overriding FIRST insert rule 123
overriding here insert rule 122, 123
overriding insert rules 105
overview of application design 10
overview of basic edit 66
overview of coding an MPP 220
overview of MFS (Message Format
Services) 65

342 IMS/VS Application Programming

p

P command code 124
P processing option 121
parallel processing 126
parameter length

LOG call 321

SNAP calls 320
parameters

for DC calls 248

for DL/I calls 239

for GSAM calls 259

parentage
and DLET 104
and GNP 99
and GU 93

and ISRT 106
and REPL 103
using the P command code 124
parmcount 167, 169, 218
partition specifications table 233
parts of a batch program 156 i
parts of a DL/I program. 78, 156
parts of an MPP 215
passing a conversation to another IMS/VS
system 207
passing a conversation to another
program 69
restrictions 69
passing control to a conversational
program 206
passing control to another program in a
conversation 206
passing the conversation to another
program 68
password security 64, 65
path call 83
definition of 83
example of 83
PATIENT segment 89

"PAYMENT segment 90

PCB masks
alternate PCB masks 179
DB &85
DB PCB mask 78
GSAM 141

I/0 PCB masks 177
PCB parameter list in assembler language
MPPs 219
PCBs (program communication blocks)
DB PCB 78
I0 PCB 177
PCBs, alternate
see "alternate PCBs"™
PCBs, modifiable
see "modifiable alternate PCBs"
physical parent 136
PL/I1
call parameters 239
DB PCB mask 242
DC call format 248
DL/I call format 239
DL/I program structure 160
entry statement 238
I/0 area 243
ISRT function code 170
parameters 238
entry statement 238
passing PCBs 238
in entry statement 238
pointers in entry statement 238

return statement 238
sample MPP 299
skeleton program 160
5SA definition examples 246
PL/I coding notes
on MPPs 218
PL/I MPP skeleton 217
skeleton MPPs
PL/I 217
PL/I Optimizing Compiler 218
planning ahead for batch-to-BMP
conversion 138-140
POS (position)
call format 264
description 153
I/0 area 266
parameters 2664
POS=MULT 126
position call
call format 26%
description 153
I/0 area 266
parameters 266
positioning 108
after unsuccessful calls 115
determining your position 108
multiple 126
when restarting 133
preventing a program from updating
data 57
preventing a segment from being
replaced 125
primarily sequential processing 46
printing log records 130
problem determination 231
processing a message 181
overview 181
processing data bases online 37
processing DEDBs 153
processing DL/I data bases
overview of 77, 80
procaessing Fast Path data bases 146
processing information in a data base
processing messages
transaction-oriented BMPs 225
processing messages 225
processing MSDBs 146
processing online data bases 224
in BMPs 223, 224
processing options
A (all) 57
D (delete) 57
E (exclusive) 57
field in DB PCB 87, 143
G (get) 57
general description of 57
G0 (read only) 58
GON 58
GOT 58
I (insert) 57
K (key) 57
P (path) 121
R (replace) 57

processing requirements, analyzing 28

processing segments in logical
relationships 136

processing several views of the same data

base 126
processing, parallel 126

program communication block
see PCB
program entry
formats 238
program isolation 208
enqueue lockout 226
enqueue space 226
example of 208
in BMPs 224
program isolation enqueues 208
program structure
conversational 202
program test 228-232
program—-to-program message
switching 197
conversational 206
nonconversational 196
restrictions 197
security checks 197
programming guidelines 118, 127

programming with secondary indexing

programs, sample 286-315

PSB (program specification block)
introduction to 5

PST (partition specifications

table) 233

PUNCH DD statement 326

PUNCH statement 325

PURG (purge)
call format 248
description 195
using CHNG with 196

Q

Q command code 208-210

134

assigning classes to segments you're

reserving 210
example of 209
how to use 209
in BMPs 224
relationship to program
isolation 208
restrictions 210
use with DEQ call 208
using 210
with dependent segments 210
with root segments 210
qualification statement 82
coding 244
field name 82
field value 82, 83
relational operator 82
segment name 82
structure 82
using multiple qualification
statements 120
qualified call
definition of 81
qualified SSA 81, 82
qualification statement 82
structure 82

structure with a command code 83

with command codes 83
qualifying DL/I calls 81
qualifying your 5S5As 82

Index

343

R

read-only access 58
reading segments in an MSDB 148
real time, DL/I test program 230
receiving messages
overview 174
receiving messages from other IMS/VS
systems 198
RECFM for GSAM 262
record, log
File Select and Formatting Print
Program 130
giving checkpoint ID 130
how to print 130
printing log records 130
recording information about your
program 235
recovery
checkpoints calls 58
identifying requirements 58
in a batch-oriented BMP 37
in a message-driven Fast Path
program 36
in batch programs 39
in MPPs 34
in nonmessage-driven Fast Path
programs 38
in programs accessing 05/VS
files 133
restart call (XRST) 59
using basic CHKP 133
using XRST 132
with 05/VS restart 133
with symbolic CHKP and XRST 132
recovery calls
CHKP 130, 132, 133
basic 130, 133
symbolic 130, 132
CHKP (symbolic) 132
symbolic CHKP 132
XRST 132
recovery considerations in
conversations 70
reference section 237-285
related MSDB 146
relational operator
in qualification statement of SSA 82
list of 82
relational operators
Boolean operators 120
coding in SSA 244
independent and 120
logical and 120
logical or 120
relationships between data elements 17
REPL (replace)
call format 239
description 101
with MSDB 148
replace call
call format 239
description 101
replacing segments 101
replying to one alternate terminal 195
replying to the originating
terminal 194
replving to the terminal in a
conversation 68, 205
repositioning GSAM data bases 133
reserving a place for command codes 126

344 IMS/VS Application Programming

reserving and releasing segments 208
program isolation 208
resolving data structure conflicts 47
responding to an alternate terminal 195
response alternate PCBs 72
response mode 72
restart 132
and GSAM 133
with basic CHKP 59
with 05/VS restart 59
with symbolic CHKP 59
restarting vour program
DCB names for 0S/VS restart 133
repositioning GSAM 133
using basic CHKP 133
using 05/VS restart 134
when accessing 05/VS files 133
with 05/VS restart 133
with XRST 132
restriction on passing control to
conversational programs 206
passing control and continuing the
conversation
restriction on size of SPA 206
restriction on SPA size when passing
the conversation 206
restrictions
CHKP and XRST with GSAM 145
GSAM JCL 262
mixed mode 38
on checkpoint calls in single-mode
BMPs 226
on F command code 122
on LOG I/0 area 255
on passing a conversation 69
on PL/1I entry statement 218
on program—-to-program message
switching 197
on the D command code 121
on using the @ command code 210
on using the SPA 204
using 05/VS restart 134
retrieval call usage 100
retrieval calls 91-100
exceptional status codes for 129
get hold calls 100

GN 94-97
GNP 97-99
GU 91-93

guidelines 100

use with D 121

use with L command code 123

using F with GN and GNP 122

which retrieval call to use 100
retrieving a sequence of segments 121
retrieving IMS/VS system statistics 232
retrieving information 91-100
retrieving messages 193-19¢
retrieving segments directly 91
retrieving segments sequentially 94
retrieving segments with D 121
retrieving subsequent message
segments 194
retrieving system addresses 233
retrieving the first message
segment 194
retrieving the first occurrence 122
retrieving the last occurrence 123
return codes

after 05/VS checkpoint 133
return conventions

formats 238
reusable programs 175

TN

ROLB (rollback)
call format 258
comparison to ROLL 211
description 210
in BMPs 224
parameters 258
use in conversations 202, 212
ROLL (roll)
call format 258
comparison to ROLB 211
description 210
in BMPs 224
parameters 258
use in conversations 212
roll call
call format 258
comparison to rollback call 211
description 212
in BMPs 224
parameters 258
rollback call
call format 258
comparison to roll call 211
description 210
in BMPs 224
parameters 258
routines, error 129
RSA (record search argument)
description 143
reference 261
rules, ISRT 105
RULES=FIRST 105, 123
use with L command code 123
RULES=HERE 105, 123
use with F command code 122
use with L command code 123
RULES=LAST 105

]

SAMETRM=YES 205
sample JCL for DL/I test program 331
sample programs 286-315
batch 287
BMP 293
conversational 302
MPP 299
transaction-oriented BMP 293
sample status code error routine
calling 130
description of 130
saving information in the SPA 205
SCD (system contents directory) 233
schadule of classes example 23
scheduling
a message-driven Fast Path
program 36
scheduling an MPP 35
scratchpad area
general description 68
screen design considerations 67
secondary indexing
DB PCB contents 135
effect on programming 134
examples of uses 49
how it affects your program 134
introduction to 48
specifying 50
using 55As with secondary
‘"indexes 135

what DL/I returns 135
secondary processing sequence 135
security

checks in program-to-program

sWwitching 197
data base - 55
field level sensitivity 56

identifying online requirements 63

key sensitivity 56
password security 64
processing options 57
segment sensitivity 55
sign-on 64
supplying information about your
application 64
terminal 66
segment
introduction to 5
sensitivity 55
segment length and checking
(DFSDDLTO0) 321
segment level number field 86
segment name
field in DB PCB 87

in qualification statement of SSA 82

sagment name field
in 55A 244
sagment name field in an S5A 82
segment search argument
see "SSA (seoment search argument)"™
segments in medical data base example
sending messages 174, 194-197
overview 174
to alternate destinations 195
to other application programs 196
to other IMS/VS systems 197
to the originating terminal 194
using alternate PCBs 195
using the PURG call 195
sending messages to alternate
destinations 195
sending messages to other application
programs 196
sending messages to other IMS/VS
systems 199
sending messages to several alternate
destinations 195
sensitive segments in DB PCB 87
sensitivity
field level 56
general description of 55
key 56
saegment 55
sequence in a hierarchy 9%
sequential access methods 45, 46
characteristics of 45
HISAM 46
HSAM 45
types of 45
sequential dependents 153
sequential processing only 45
sequential retrieval 94
setting parentage
-and GNP 99
ISRT 106
using GU 93
using the P command code 124
SHISAM (Simple Hierarchical Indexed
Sequential Access Method) 47
SHSAM (Simple Hierarchical Sequential
Access Method 47
sign-on security 6%
simple HISAM (SHISAM) 47

88

Index 345

simple HSAM (SHSAM) 47 status codes

simplifying your programming 118 and DLET 104
single mode 61 and error routines 129
single-mode BMPs 225 and GN 97
single-mode MPPs 34 and GNP 99
skeleton programs and GU 93
assembler language 163 and ISRT 106
COBOL 157 and load programs 108
PL/I 160 and REPL 103
SNAP call blank 129
parameter length 320 checking 128-130
SPA (scratchpad area) checking in an MPP 221
contents 204 exception conditions 129
format 204 explanations 272-285
length 69 for logical relationships 138
maximum size 69 for retrieval calls 129
restrictions on using 20% for XRST call 132
saving information 205 in FSA 150
size 69 quick reference table 268
storage medium 69 reference 268-285
type 69 STATUS statement 229, 316
special call statements for DL/I test storing data in a combined file 3
program 327 storing data in a data base &
special control statement formats 325 storing data in separate files 2
specifying field level sensitivity 48 structure of a DL/I program 78
SSA (segment search argument) structuring a batch program 76
coding 244 structuring a message processing
coding formats 245 program 173
in assembler language 247 structuring and coding a BMP 223
in COBOL 245 batch-oriented BMPs 226
in PL/1I 246 processing online data bases 223,
coding rules 244 224
command codes 83 transaction-oriented BMPs 225
definition of 81 structuring data 18
guidelines on usage 119 structuring the DL/I portion of a
overview of 81 program 76
qualification statement 2644 suggestions on using the DL/I test
qualified 81, 82 program 329
reference 244 : summary of command codes 8%
relational operators 82 summary of DC calls 249
restrictions 244 summary of symbolic CHKP and basic
segment name field 82, 244 CHKP 60
structure 81 supplying security information 64
structure with a command code 83 symbolic CHKP 130, 132
unqualified 81 and GSAM 46
usage 92 and XRST 132
guidelines on 119 call format 251
with DLET 104 ID 131
with GN 96 in BMPs 225
with GNP 98 in sample batch program 287
with GU 92 : in sample BMP 293
with ISRT 105 ‘ parameters 251
with REPL 102 restart and 59
use with DL/I calls 81 restart with 132
use with multiple qualification SYNC (sync)
statements 120 call format 267
use with secondary indexing 135 parameters 267
using qualified SS5As 83 sync call
with command codes 83 call format 267
STAT (statistics) parameters 267
call format 255 sync point processing in a DEDB 155
description 232 sync points
parameters 255 and checkpoint calls 58
statistics call description of 33
call format 255 in a batch-oriented BMP 37
description 232 in batch programs 39
parameters 255 in batch-oriented BMPs 226
status code in BMPs 224
field in DB PCB 87, 142 in message-driven Fast Path
status code error routine 307 programs 36
call format 256 in MPPs 33
calling the sample routine 130 in multiple-mode BMPs 226

parameters 256

346 IMS/VS Application Programming

in nonmessage-driven Fast Path
programs 38

in transaction-oriented BMPs 225,
226
taking checkpoints 130

sync points in single-mode BMPs 226

sync points in transaction-oriented
BMPs 225
synchronization points
see "sync points"
SYSIN2 DD statement 326
system contents directory 233
system service calls
CHKP 130, 132, 133
basic 130, 133
symbolic 130, 132
CHKP, basic 252

CHKP, symbolic 251
DEQ 210, 257
use in BMPs 224

for Fast Path 267

65CD 233, 253, 255

LOG 233, 254

ROLB 202, 210, 224, 258
ROLL 210, 224, 258

STAT 232

summary of 250

symbolic CHKP 132
SYNC 267
XRST 132, 251

system statistics, retrieving 232

taking checkpoints 130
in batch-oriented BMPs 226, 227
dynamic log space 227
enqueue lockout 226
in multiple-mode BMPs 226
in single-mode BMPs 225
in transaction-oriented BMPs
task tima, DL/I test program 230
tasks of designing and coding application
programs 7
techniques to make programming
easier 118
terminal security 664, 65

225

terminal-related MSDB 146
testing an application program 228-232
using BTS II 230
using DL/I test program 229, 316, 331
what vou need 228
testing DL/I call sequences 229
testing status codes 128
timings, DL/I test program 230
tools available to BMPs 224
Q command code 224
ROLB 224
ROLL 224
transaction-oriented BMPs 31
checkpoints in 61
common uses 225
description of 36
desigh considerations 225
differences with MPPs 223
multiple and single mode 224

multiple mode 226
processing messages
sample program 293
single mode 61

225

sync points 224
usaes of 36
TREATMNT segment 89

u

U command code 124
unconditional comments 318
undefined-length records 143
understanding how data structure
conflicts are raesolved 47
understanding online and batch
processing 28-40
unit test 228
unqualified calls
definition of 81
unqualified SSA 81, 82
segment name field 82
structure 81
structure with a command code 83
with command codes 83
updating information 100
get hold calls 100
updating segments in an MSDB
updating the data base online
in BMPs 223
using a data dictionary in application
design 12
using a DB PCB mask 78

148

using BTS II to test your program 230
using command codes 121, 126

when loading a data base 108

with DLET 104

with GN 96

with GNP 99

with GU 93

with ISRT 106

with REPL 103
using command codes with SSAs 83
using concatenated keys in S5SAs 123

using DFSDDLT0 229, 316-331
using different fields 47

using DL/I calls to process online data

bases 224
using DL/I calls with DEDBs 153
using DL/I's positions as
qualifications: U 124
using F with GN and GNP 122
using F with ISRT 122
using GN 95
using L with ISRT 123
using L with retrieval calls 123
using multiple DB PCBs 126
using multiple positioning 126
using multiple qualification
statements 120
using parallel processing 126

using password security with terminal
security 64

using qualified 5SAs 83

using ROLB and ROLL in conversations

using ROLB in conversational

programs 202

using secondary indexing and logical
relationships 134

using SSAs

general guidelines 119
in a load program 107
with DLET 104

with GN 96

Index

212

347

with GNP 98
with GU 92
with ISRT 105
with multiple qualification
statements 120
with REPL 102
with secondary indexing 135
using 55As with DL/I calls 81
using the CHNG call 195
modifiable
changing the destination of 195
using the CHNG call with 195
using the DL/I test program 316-331
using the right retrieval call 100

v

V command code 125
variable-length records 143

W

what a CHKP call does 130

what DL/I returns with a secondary
index 135

what happens in a conversation 67

what happens when you issue a call 90

what happens when you process a
message 181

what the data looks like to vour
program 5

what the SPA contains 206

what you can use in BMPs 224

what vou need to test a program 228

when IMS/VS schedules a message-driven
Fast Path program 36

when IMS/VS schedules an MPP 35

348 IMS/VS Application Programming

when position is important 109

where field level sensitivity is
specified 48

where to use checkpoints 131

which retrieval call to use 100

writing information to the system
log 233

X

XRST (restart) 132
and GSAM 133
call format 251
description of 59
in sample batch program 287
in sample BMP 293
parameters 251
using XRST 132

Y

your input
information you need to code an
MPP 219

your input for a DL/I program 166

z

2Z field
in input messages 183
in output messages 183
with directed routing 200
22 field 183

s/

7N

tomated mail sorting equipment.

-
Wit au

N

Staples can cause problems

Note:

Please use pressure sensitive or other gummed tape to seal this form.

.e . seses
R T T T R R R AR A AR A A AR

tessesscesssrsessessscnces

Ry

Reader’s
Comment
Form

IMS/VS Version 1
Application Programming:
Designing and Coding
SH20-9026-8

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author’s department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at tixr location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
Cuopeiation.

SH20-9026-8

Reader’'s Comment Form

cold and tape Please do not staple

0 0 000 0PNt 0000000000e0000000000000000000000000000000000C00P000e00IT00INsIORIRCCIOIEOIIEIsOORIEDROIDNTS

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y,

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programminy Publishing
San Jose, California 95150

D 8 0 00 0000000000t 0eeernEetletE000 0000 c0EerNteele0e00r000RcssIRCOCOOIIROIRCITORES

-old and tape Please do not staple

International Business Machines Corporation
Data Processing Division)
1133 Westchester Avenue, White Plains, N.Y. 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

1BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
———
EEEE—
———
E——
———
R
OER——
EE——
——
——
TE——
A
——
EEE—
EE————
R TT——

Fold and tape

0606665 66656666068600600008060o00sessssstossscssessstssssosssosstttosssssttotsitotstesssoscssesssscscscasssesssecseasessstecesessoreessesocssostenerdsssdttentsoesrsssssosossesostnscncsscss

(0G-0ZES "ON 2J1d) Buipoy pue Butubisaq :Buiwweibold uoneoddy | uoisiap SA/SWI

8-9206-0CHS °v'S'N ul paiuld

7N\

TN

/

N

N

Staples can cause problems witn automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

- .o eesccssecsesssnscnss
O T T R R S R A A A R R A R A A cecee

R S L R R R I I oy

Reader’s
Comment
Form

IMS/VS Version 1
Application Programming:
Designing and Coding
SH20-9026-8

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author’s department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SH20-9026-8

Reader's Comment Form

old and tape Please do not staple

© 8 000 65 050000000 00000000 estessststitieseecsessstessreocssessessstossiceetiessssscsossssesonseccseresvsaccesscnscsnsoecssnsce

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.0. Box 50020
Programming Publishing
San Jose, California 95150

® 000 000000000000 000000000 000000000 E0000000000CN000acsecsccsensoncoscsosse

old and tape Please do not staple

N AR, . A
LN W) A

-_— - L W

L] N L ¥ -}

— - Y Fa

-— — T - W -
TS DO BN WY
[N v
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., US.A. 10601

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
EEETNCETI————
ECE——
S
E———
EE—————
N ———
——
Co————rT
————CE—
EEE—
——
E————————
I ——
R
E———mi
L ——————

Fold and tape

06060660506 c000 60660 cccsassosottoessscssessesssestscsecetsetsttieeteeesseeeeororeoeoonesee o0 s00t0IT000PI0s0000000000000000000000 0000000000 000000t ssPETOONOCOIICIOILIICISIITITTS

(0S-0LES "ON 21id) Buipo) pue Buiubisaq :BuiwweiBoig uoneoliddy | uoisiap SA/SINI

8-9C06-0CHS V'S’ Ul palulid

A\

e

77\

Staples can cause problems~__../ automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

Note:

esesesssasssssccssesasce
e et e s s e e s 0s s 000t 000 c 0004 ese 000 sl s0 0000000000000 Nesn00000000000000000000000000esIIeRIIPIITIIOIIOItIIIPIIIOIROIOIITSTTOTS -

DR R R R R R N R R R T S)

Reader'’s
Comment
Form

IMS/VS Version 1
Application Programming:
Designing and Coding
SH20-9026-8

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author’s department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SH20-9026-8

Reader’'s Comment Form

Fold and tape Please do not staple

© 6 0 00000 00000 0000000000080 000000000 0000000 0000000000000 00ciacsestsesessoctssroctstssssssssessosensstsisscssssconsososnss

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

® 0 0 0 P 0000 L0000 e0e sl eEtlN0000 0000000000000 00CEIIIRIOBLS

Fold and tape Please do not staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

1BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
—
————
—
EEE————
EEE—
E——
R
———
—
—
—————
——
ER——————
EE——
——
E——

Fold and tape

@8 6566506606086 60660806668606660 8000600 e0ss0etosssetstessecsiosostssesnscossossocsoncsossstsstotsosossestssostiessecsssssescssseesotocesonsrdosceroecossiorsonscssrscssscsssccsrsossocsccssscscssscssonsss

/

A

(0G-0/ES "ON 3l14) ﬁuggog pue Butubisaq :Buiwweiboig uoiresijddy | uoisisA SA/SWI
7

8-9206-0CHS ‘V'S'N u! pajuld

VR

ARl
£y ST R
RN

Bl
o
"4‘7;5

s B

RSP T RANARL T

: Kt
v VG S A
! T
Y R
B
A

it

S
¥

. %‘ i ﬂ'nfé

Buguun

isag

3
Mtae
) .,:’:Wk ."LN.,

SAGROAT

|
W
Wy

‘

