

·_--------------_ .•. -._----_.-._---_._------._----------.

", STATUS CODES (Continued)

DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS
Vl 0 �~� a. ... 0 .., 0

�~�
:l. �~� :l. W :I: �w�~� DESCRIPTION ... w ... -, ... 4: «0 �~� Z a.Z wa. a:0 a: o �~� Vl

�~� Z
... Z ::; >l

0
0 " <t Z <t

CI
�~�a�:�

... 0 �~�l�:� Zl: Zl: -'w �~� �~� l: ::; U
�~�

l: 0 S �~�
,.

Ii: «0
VlU ..,.., ..,.., ".., oa: �~�=� �~�~� u. .., lJ U U lJ U a: Vl x UlJ

Nil X X X 5 INDEX MAINTENANCE RECEIVED AN
UNEXPECTED RETURN CODE FROM BUFFER
HANDLER. -

NE X 3 DLiI CALL ISSUED BY INDEX MAINTENANCE
CANNOT FIND SEGMENT.

NI X X· X 1 INDEX MAINTENANCE FOUND DUPLICATE
SEGMENT IN INDEX.

NO X X X 5 I/O ERROR ISAM, OSAM. BSAM OR VSAM.

OC X X 3 NO MORE INPUT MESSAGES EXIST.

00 X X 3 NO MORE SEGMENTS EXIST FOR THIS
i MESSAGE.

OE X X 4 GN REOUEST BEFORE GU.
GMCD REOUEST BEFORE CMD.

OF X X X X 4 SEGMENT LESS THAN FIVE CHARACTERS
(SEG LENGTH IS MSG TEXT LENGTH PLUS
FOUR CONTROL CHARACTERSI.

OH X X 4 TERMINAL SYMBOLIC ERROR-uUTPUT
DE!>IGNATION UNKNOWN TO IMS/vS
(LOGICAl. TERMINALS OR TRAN CODE).

RX X 4 VIOLATED REPLACE RULE.

UC 1 CHEC.KPOINT TAK EN.·

UR 1 RESTi\RT"

US 1 STOP'

UX 1 CHECKPOINT AND STOP'

VI X X 4 SEGMENT LENGTH NOT WITHIN LIMITS OF
DBDGEN.

XA X 4 ATTEMPT TO CONT. PROC. CONV. BY PASSING
SPA VIA PGM·TO·PGM SWITCH AFTER
ANSWERING TERMINAL

XB X PGM PASSED SPA TO OTHER PGM BUT TRYING
TO RESPOND.

XC X 4 PROGRAM INSERTED MESSAGE WITH Zl
FIELD BITS SET. THESE BITS RESERVED

"'-,

1
/

FOR SYSTEM USE.

XD X l(1 IMS IS TERMINATING. FURTHER DL/I CALLS
MUST NOT BE ISSUED. NO MESSAGE
RETURNED.

XE X 4 TRIED TO ISRT SPA TO EXPRESS PCB.

XF X 4 AL TERNA TE PCB REFERENCED IN ISRT CALL
FOR SPA HAD DESTINATION SET TO A
LOGICAL TERMINAL, BUT WAS NOT
DEFINED AS AL TRESP = YES.

XG X 4 CURRENT CONVERSATION REQUIRES FIXED·
LENGTH SPAs. ATTEMPT WAS MADE TO
INSERT SPA TO TRANSACTION WITH A
DIFFERENT OR NON·FIXED LENGTH SPA.

XX X X X X 5 INTERNAL GSAM ERROR.

Xl X X 5 I/O ERROR WRITING SPA.

X2 X X 4 1ST INSERT TO TRAN COD PCB THAT IS
CONVERSATIONAL IS NOT AN SPA.

X3 X 4 INVALID SPA.

X4 X 4 INSERT TO A TRAN CODE PCB THAT IS NOT
CONVERSATIONAL AND THE SEGMENT IS
AN SPA.

X5 X 4 INSERT OF MULTIPLE SPAs TO TRAN CODE
PCB.

X6 X 4 INVALID TRAN CODE NAME INSERTED INTO
SPA.

X7 X I 4 LENGTH OF SPA IS INCORRECT (USER
MODIFIED FIRST SIX BYTES!.

X8 , X 5 ERROR ATTEMPTING TO QUEUE AN SPA ON
A TRAN CODE PCB.

X9 X 4 SPA LENGTH IS GREATER THAN THE 1/0 AREA
SPECIFIED IN PSB.

bb X 1 GOOD. NO STATUS CODE RETURNED,
PROCEED .

• Utility Control Facilitv Status Codes h indicates a blank

Figure 103 (Part 3 of 3). IMS/VS Status Codes Quick Reference

)

IMS/VS Status Codes 271

IMS/VS STATUS CODES EXPLANATIONS

AA

Explanation: IMS/VS ignored a CHNG or
ISRT call because the response alternate
PCB referenced in the call specified a
transaction code as a destination. A
response alternate PCB must have a
logical terminal specified as its
destination.

Programmer Response: Correct the CHNG or
ISRT call.

AB

Explanation: An I/O area is required as
one of the parameters on this call and
the call did not specify one.

Programmer Response: Correct the call by
including the address of an I/O area as
one of the call parameters.

AC

Explanation: There is an error in one of
the SSAs on a get or ISRT call for one of
these reasons:

•

•

•

Dl/I could not find a segment in the
DB PCB specified in the call that has
the segment name given in the SSA.

The segment name is in the DB PCB,
but the SSA specifying that segment
name is not in its correct hierarchic
sequence.

The call specifies two SSAs for the
same hierarchic level.

IMS/VS also returns this status code when
a STAT call has an invalid statistics
function.

Programmer Response: Correct the segment
name in the SSA, or the statistics
function in the STAT call.

AD

Explanation: The call function parameter
on the call is invalid. IMS/VS returns an
AD status code if it does not recognize
the function code you've supplied. If the
function code is correct, some other
possible causes are:

• Referencing a DB or alternate PCB on
a CHKP call. CHKP calls must
reference the I/O PCB.

• Issuing a message GU or GN that
references an alternate PCB instead
of the I/O PCB

272 IMS/VS Application Programming

•

•

•

Using an invalid function string

Referencing en I/O or altQrn~ta PCB
for a data base call

Referencing a DB PCB in a message
call

Issuing a ROlB that includes the
address of an I/O area as one of the
parameters in a batch-oriented BMP

Programmer Response: If you receive this
status code on a data base, message, or
CHKP call, correct the call so that it
references the correct PCB. If you
receive AD on a ROlB call in a
batch-oriented BMP, remove the I/O area
parameter from the call.

AF

Explanation: GSAM detected a
variable-length record whose length is
invalid on a GU, GHU, GH, or GHN.

Programmer Response: Correct the
program.

AH

Explanation: The program issued an ISRT
call (load or add) that did not include
any SSAs. ISRT calls require SSAs. If the
program was issuing a GU call to a GSAM
data base, the GU did not specify an RSA.
RSAs are required on GU calls to GSAM
data ba~es.

Programmer Response: Correct the ISRT
call by including an SSA, or correct the
GU call by adding an RSA to the call.

AI

Explanation: A data management open
error occurred. Some possible reasons
are:

• There is an error in the DD
statements.

•

•

•

The data set OPEN request did not
specify load mode, but the data set
was empty. An empty data set requires
the load option in the PCB.

The buffer is too small to hold a
record that was read at open time.
See the storage estimates in the
section "IMS/VS Data Base Buffer
Pools," in the IMS/VS System
Programming Reference Manual for·
specification of the minimum buffer
pool size.

There were no DD statements supplied
for logically-related data bases.

(
'.

(

)

•

•

•

•

•

•

•

For an OSAM data set, the DSORG field
of the OS-AM DCB, DSCB, or J FCB does
not specify PS or DA.

For an old OSAM data set, the BUFL or
BLKSIZE field in the DSCB is zero.

The data set is being opened for
load, and the processing option for
one or more segments is other than L
or LS.

The allocation of the OSAM data set
is invalid. The allocation is
probably (1,,1) rather than (1,1) and
this causes the DSORG to be PO.

The processing option is L, the OSAM
data set is old, and the DSCB LRECL
and/or BLKSIZE does not match the DeD
LRECL" and/or BLKSIZE.

Incorrect or missing information
prevented IMS/VS from determining
the block size or the logical record
length.

A catalog was not avai lable for
accessing a VSAM data base that was
requested.

• OS could not perform an OPEN, but the
I/O request is valid. Either the data
definition information is incorrect,
or i~formation is missing.

• RACF was used to protect the ISAM or
OSAM data set and the control region
has no update authorization.

If IMS/VS returns message DFS0730I~ you
can determine the cause of the OPEN
failure from this message. See the
description of this message in the IMS/VS
Messages and Codes Reference Manual for
more information.

Programmer Response: These kinds of
problems often require the help of a
system programmer or system
administrator. But before you go to one
of these specialists, there are some
things you can do:

•

•

AJ

Chec~ the DD statements. Make sure
that the DD name is the same as the
name specified on the DATASET
statement of the DBD. The segment
name area in the DB PCB has the DD
name of the data set that couldn't be
opened.

Check the PSB and make sure that the
appropriate processing options have
been specified for each of the DB
PCBs that your program uses.

Explanation: The format of one of your
SSAs is invalid. Some possible reasons
for this are:

•

•

•

•

•
•

•

•

The SSA contains a command code that
is invalid for that call.

The relational operator in the
qualification statement is invalid.

A qualification statement is missing
a right parenthesis or a Boolean
connector.

A DLET call has multiple or qualified
SSAs.

A REPl call has qualified SSAs.

An ISRT call has the last SSA
qualified.

An ISRT call that inserts a logical
child segment into an existing data
base includes the D command code.
ISRT calls for logical child segments
cannot be path calls.

The RSA parameter on a GSAM call is
invalid.

Programmer Response: Correct the invalid
portion of the SSA on the DLET, REPL, or
ISRT call. If you receive this status
code on a GSAM call, correct the RSA.

AK

Explanation: An SSA contains an invalid
field name: the field name isn't defined
in the DBD. The number in the segment
level number field of the DB PCB is the
level number of the SSA that contains the
i nva lid name.

You can also receive this status code if
the program is accessing a logical child
through the logical parent. DL/I returns
AK if the field specifed in the SSA has
been defined for the logical child
segment, and it includes (at least
partially) the portion of the logical
child that contains the concatenated key
of the logical parent.

Programmer Response: Correct the SSA.

AL

Explanation: A batch program issued a
message call or ROlB and referenced an
I/O PCB.

Programmer Response: Correct the
program. Batch programs cannot issue
message or ROLB calls.

AM

Explanation: The call function is not
compatible with the processing option in
the PCB, segment sensitivity, or the
transaction-code definition. The level

IMS/VS Status Codes 273

number in the PCB is the level number of
the SSA that is invalid. Some of the
reasons you might get this status code
are:

• Issuing a retrieval call with the D
command code in a program that
doesn't have the P processing option
specified in the DB PCB that was used
for the call.

•

•

•

•

•

•

•

•

Issuing an ISRT call with the D
command code in an MPP or BMP that
doesn't have the P processing option
specified in the DB PCB that was
referenced in the call. Batch
programs do not need the P processing
option to issue an ISRT call with the
D command code--unless the program
uses field level sensitivity.

The processing option is L and the
program issued a call other than an
ISRT call. Load programs can issue
only ISRT calls.

Issuing a DLET, REPL, or ISRT call
that references a DB PCB that doesn't
have the necessary processing option
for that call. The minimum processing
options for these calls are D for
DLET; R for REPL; and I for ISRT.

Issuing a DLET, REPL, or ISRT call
for a segment to which the program
isn't sensitive.

Issuing a DLET, REPL or ISRT while
processing a transaction that has
been defined as inquiry only.

Issuing a CHKP call if a GSAM/VSAM
data set is opened for output.

Issuing a GSAM call with an invalid
call function code.

Issuing an ISRT or DLET call for the
index target segment or a segment on
which the index target is dependent
in the physical data base while using
an alternate processing sequence.

• Issuing a call to a GSAM dummy data
set. Any call to a GSAM dummy data
set is invalid.

Programmer Response: Correct the call,
or make the necessary changes in the PCB.

AO

Explanation: There is a BSAM, GSAM, ISAM,
VSAM, or OSAM physical I/O error. When
issued from GSAM, this status code means
that the error occurred when:

1. A data set was accessed

2. The CLOSE SYNAD routine was entered.
The error occurred when the last

274 IMS/VS Application Programming

block of records was written prior to
closing of the data set.

IMS/VS does not return an AO status code
for write errors with BISAM, VSAM, and
OSAM.

Programmer Response: Determine whether
the error occurred during input or
output, and correct the problem.

AP
Explanation: A message or CHKP call has
more than four parameters. This is
invalid. In Fast Path programs, a message
call included more than one SSA. Only one
SSA is allowed.

Programmer Response: Correct the call
and reprocess the transaction.

AT

Explanation: The length of the data in
the program's I/O area is greater than
the area reserved for it in the control
region. The length of the area reserved
is defined by the ACB utility program,
DFSUACBO, and printed as part of its
output.

Programmer Response: Correct the PSB or
the program in error.

AU

Explanation: The total length of the SS~s
in the data base call is greater than the
area reserved for them in the control
region. The length of the area reserved
is defined by the ACB utility program,
DFSUACBO, and printed as part of its
output.

Programmer Response: Correct the PSB or
the program in error.

AY

Explanation: IMS/VS ignored a message
ISRT call because the logical terminal
referenced by the response alternate PCB
currently has more than one physical
terminal assigned to it for input
purposes.

Programmer Response: Ask the master
terminal operator to determine (use
/DISPLAY ASSIGNMENT LTERM x) which
physical terminals (2 or more) refer to
this logical terminal. Use the /ASSIGN
command to correct the problem.

AZ

Explanation: IMS/VS ignored a PURG or
ISRT call in a conversational program.

(,

(

)

)

Some possible reasons are:

• Issuing a PURG call referencing the
I/O PCB or an alternate response PCB.
Conversational programs can issue
PURG calls only when the PURG call
references an alternate PCB that is
not an alternate response PCB.

• Issuing a PURG call to send the SPA.

• Issuing an ISRT or a PURG call
referencing an alternate PCB that is
set for an invalid destination, or a
destination that IMS/VS can't
determine.

• Issuing an ISRT call referencing an
alternate PCB whose destination is a
conversational transaction code when
the first segment inserted isn't the
SPA; or when IMS/VS can't determine
whether or not the SPA was the first
segment inserted.

programmer Response: Correct the PURG or
ISRT call.

Al

Explanat;on: The logical terminal name
supplied in the I/O area of a CHNG call
is i nval i d. If IMS/VS returns Al to a
Fast Path program, it means that the
program supplied a transaction code,
instead of a logical terminal name, on a
CHHG call.

Programmer Response: Correct the CHHG
call.

A2

Explanat;on: The program issued a CHHG
call against an invalid PCB. The PCB was
i nval i d for one of these reasons:

• It was not an al ternate PCB.

• It was an al ternate PCB, but it
wasn't modifiable.

• It was being used to process a
message and had not completed
processing it.

Programmer Response: Check the PCB that
was used by the CHHG call and determine
which PCB should have been used for the
call.

A3

Explanat;on: The program issued an ISRT
call or a PURG call using a modifiable
alternate PCB that did not have its
destination set.

------------- ---_._----_.-----------

Programmer Response: Issue a CHHG call-to -
set the destination of the modifiable
alternate PCB, then reissue the ISRT or
PURG call.

A4

Explanation: A security violation
occurred because the terminal entering
the current transaction code was not
authorized to enter that transaction
code.

Programmer Response: Check the
transaction code to make sure it was
entered correctly. If it was, check with
the person at your installation who
handles security.

AS

Explanation: An ISRT or PURG call
supplied an invalid parameter list. The
call supplied the fourth parameter (the
MOD name) but the ISRT or PURG being
issued was not for the fi rst segment of
an output message.

Programmer Response: Correct the ISRT or
PURG call.

A6

Explanat;on: IMS/VS ignored a message
ISRT call because the length of the
message segment being inserted exceeds
the maximum length allowed.

Programmer Response: Correct the output
message segment.

A7

Explanat;on: IMS/VS ignored a message
ISRT call because the number of message
segments inserted exceeds the limit
specified by one. If the program tries to
insert too many message segments before
issuing a GU again, IMS/VS will terminate
the program abnormally.

Programmer Response: Check the output
messages and correct them.

AS

Explanation: IMS/VS ignored an ISRT call
because:

•

•

An ISRT call to a response alternate
PCB must not follow an ISRT call to
the I/O PCB.

An ISRT call to the I/O PCB must not
follow an ISRT call to a response
al ternate PCB.

Programmer Response: Correct the ISRT

IMS/VS Status Codes 275

call.

A9

Explanation: IMS/VS ignored the ISRT
call because:

• The ISRT call referenced an alternate
response PCB defined as SAMETRM=YES,
but the PCB represented a logical
t~rminal that isn't part of the
originating physical terminal. An
alternate response PCB defined as
SAMETRM=YES must represent the same
physical terminal as the physical
terminal associated with the
originating logical terminal.

• The originating terminal is in
response mode and the response
alternate PCB is not associated with
that logical terminal.

IMS/VS does not return this status code
if the program makes either of these
errors while communicating with a
terminal in a remote IMS/VS system
through MSC.

Programmer Response: Determine whether
the application program is in error, the
output logical terminal has been
incorrectly reassigned (using the
/ASSIGN command), or if SAMETRM=YES
should not have been specified for the
response alternate PCB.

CA

Explanation: The program issued a CMD
call with an invalid command verb, or the
command verb does not apply to the IMS/VS
system that the program's running in.
IMS/VS does not return any command
responses.

Programmer Response: Correct the command
in the CMD call.

CB

Explanation: The command entered in the
CMD call is not allowed from an AOI
program. IMS/VS does not return any
command responses.

Programmer Response: Correct the
command. For a Ii st,of the commands that
an AOI program can issue, see Chapter 7, ,
"Automated Operator Programmi ng," in the
IMS/VS System Programming Reference
Manual.

CC

Explanation: IMS/VS has executed the
ct'mmand and returned one or more command
responses.

276 IMS/VS Application Programming

Programmer Response: Your program should
issue GCMD calls as necessary to retrieve
the respon:iQs.

CD

Explanation: The command that was
entered on the CMD call violates
security, or the application program
isn't authorized to issue CMD calls.
IMS/VS does not execute the command or
return any command responses.

Programmer Response: Correct the
command. If necessary, check with the
person in charge of security at your
installation to find out why your program
is restricted from using that command.

CE

Explanation: IMS/VS rescheduled the
message that this GU call retrieved since
the last CMD call. The program had not
reached a sync point when the message was
rescheduled.

Programmer Response: This is an
information-only status code.

CF

Explanation: The message retrieved by
this GU was scheduled before IMS/VS was
last started.

Programmer Response: This is an
information-only status code.

CG

Explanation: The message retrieved by
this GU originated from an AOI user exit.

Programmer Response: This is an
information-only status code.

CH

Explanation: IMS/VS ignored the CMD call
j~~t issued because the AOI command
interface detected a system error and was
unable to process the command; IMS/VS
processing continues.

Programmer Response: Reissue the
command.

CI

Explanation: CI is a combination of CE
and CF. The message retrieved by this GU
was scheduled for transmission before
IMS/VS was last started. The message was
rescheduled, but the program hadn't
reached a sync point.

(

(

)

\
'I

/

)

Programmer Response: This is an
information-only status code.

CJ

Explanation: CJ is a combination of CE
and CG. The message retrieved by this GU
was scheduled for transmission before
IMS/VS was last started. The message
originated from a~ AOI user exit.

Programmer Response: This is an
information-only status code.

CK

Explanation: CK is a combination of CF
and CG. The message retri eved wi th thi s
GU originated from an AOI user exit. The
message was scheduled for transmission
before IMS/VS was last started.

Programmer Response: This is an
information-only status code.

CL

Explanation: CL is a combination of CE,
CF, and CG. The message retrieved with
this GU originated from an AOI user exit.
It was scheduled for transmission before
IMS/VS was last started. It was
rescheduled but the program had not
reached a sync point.

Programmer Response: This is an
information-only status code.

DA

Explanation: The program issued a REPL
call that tried to modify the key field
in the segment. You cannot change a
segment's key field.

Programmer Response: Correct the REPL
call.

DJ

Explanation: The program issued a DLET or
REPL call without first issuing a
successful get hold call; or an SSA in
the DLET or REPL call was for a segment
that was not retrieved in the get hold
call.

Programmer Response: Correct the program
by issuing a get hold call before the
DLET or REPL call, or correct the get
hold call or SSA.

DX

Explanation: The program issued a DLET
call that violates the delete rule for

----------------------------------- -

that segment.

Programmer Response: Check the program
to see whether or not the program should
delete that segment; if it should, check
with your DBA (or the equivalent
specialist at your installation) to find
out what delete rule has been specified
for that segment.

FA

Explanation: IMS/VS returns this status
code when the program reaches a sync
point and an arithmetic overflow in an
MSDB has occurred during that sync
interval (since the last sync point, or,
if the program had not reached a sync
point, since the program began
processing). You can receive this status
code on a SYNC call, a CHKP call, or a GU
call to the message queue, depending on
your program. The overflow occurred after
the program issued a FLD/CHANGE call or a
REPl call for the MSDB. When this
happens, IMS/VS issues an internal ROlB
call to eliminate the changes that the
program has made since the last sync
point. All data base positioning is lost.

programmer Response: Reprocess the
transaction.

FC

Explanation: The program issued a call
that is not valid for the segment type.

Programmer Response: Correct the call.

FD

Explanation: A nonmessage-driven program
reached a deadlock when IMS/VS tried to
get additional resources (either DEDB
UOWs or overflow latches) for the
program. IMS/VS eliminates all data base
updates that the program has made since
the last SYNC or CHKP call (or since the
program started processing, if the
program hasn't issued a SYNC or CHKP
call). All data base positioning is lost.

Programmer Response: start processing
from the last sync point. If you reach a
deadlock again (and you usually won't)
terminate the program.

FE

Explanation: IMS/VS returns this status
code anytime a program issues a FLD call
that receives a nonblank status code in
the FSA.

Programmer Response: See "Fast Path Data
Areas" for an explanation of FSA status
codes and correct the FlD call.

IMS/VS Status Codes 277

FF

Explanation: A progrdm issu~d an !SRT
(add) call against an MSOB that has no
free space. If IMS/VS determines that
there's no free space when the program
issues the ISRT call, the program
receives the FF status code for that
call. IMS/VS may not determine this until
the program reaches the next sync point.
In this case, IMS/VSreturns FF when the
program issues a GU call to the message
queue, a SYNC call, or a CHKP call,
depending on which call caused the sync
point.

Programmer Response: To avoid this
situation, you can specify more space for
the MSDB at the next system start (cold
start or normal restart).

FG

Explanation: FG is a combination of FE
and FW. A nonmessage-driven program
issued a FLO call that received a
nonblank status code in the FSA, and the
program has used up its normal buffer
allocation.

Programmer Response: Check the FSA
status code and correct the FLO call,
then issue SYNC or CHKP calls in the
program more frequently. One way to
handle this status code is to branch to
an error routine that causes the program
to issue SYNC or CHKP calls more
frequently when it receives this status
code.

FH

Explanation: A OEOB or a DEOB area was
inacessible when the program issued a
data base call or when the program
reached a sync point. If IMS/VS returns
this status code on a call that caused a
sync point to occur (a SYNC call, a
message GU, or a CHKP call), IMS/VS
issues an internal ROlB call to eliminate
the program's data base updates since the
last sync point.

Programmer Response: If yoti receive this
status code after a call that caused a
sync point to occur (a GU call to the
message queue, a SYNC call"or a CHKP
call, depending on your program),
reprocess from the last sync point to see
if the condition exists when the program
issues data base calls.

FI

Explanation: The program's I/O area is
not at a storage addres~ that the program
can access.

Programmer Response: Correct the
program.

278 IMS/VS A~~lication Programming

FN

Explanation: The program issued a rLU
call that contains a field name in the
FSA that's not defined in the DBD. IMS/VS
doesn't continue processing the FLD call
or any of the FSAs in the FLO call.
IMS/VS returns an FN status code in thls
situation even if an earlier FSA in'the
same FLO call earned an FE status code.

Programmer Response: Issue,a ROLB 6all to
remove the effects of the incorrect FlD
call and correct the FLO call.

FP

Explanat i on: The I/O area referenced by a
REPl, ISRT or FLO/CHANGE call to an MSDB
contains an invalid packed decimal or
hexadecimal field.

Programmer Response: Correct the data in
the I/O a rea.

FR

Explanation: A nonmessage-driven program
issued a data base call that forced the
system to go beyond the buffer limit
spec i fi ed for the regi on. IMS/VS, ,_
eliminates all data base change~made by
the program since the last SYNC or CHKP
call the program issued (or since the'
program started processing if the program
hasn't issued any SYNC or CHKP calls).
All data base positionin~ is lost.'

Programmer Response: Either terminate
the program and restart it with a larger
buffer allocation, or provide an , '
error-handling ~outine that will ca~se
the program to issue SYNC or CHKP calls
more frequently. Issuing SYNC ,or CHKP
calls more frequently reduces the total
buffer requirements.

FS

Explanation: A nonmessage-driven program
issued an ISRT call for ei ther a root or
sequential dependent segment, but IMS/VS
could not get~nough space in either the
root addressable or ~equential de~endent
part of the DEDB area to insert the new
segment. If IMS/VS returns this status
code on an ISRT'cal1 fora root s~gment,
the problem is with the root addressable
portion of the area. IfIMS~VS ~eturns
this status code when the program'issues
a SYNC or CHKP call, the. problem is with
the sequential dependentpa~t of the '
area. In either c~se,IMS/VS'eli~inates ,
all of the data base ch&nges~th~'program
has made since the last sync point (or
since the program started processing, if
the program hasn't reached a sync point).

(

(,

"

I
/

)

--- -------------- ---------_._---_._-----------

Programmer Response: Terminate the
program.

FT

Explanation: The program issued a call to
~ Fast Path data base tht included more
than one SSA. Only one SSA is allowed in
any call to a Fast Path data base.

Programmer Response: Correct the call.

FV

Explanation: At least one of the verify
operations in a FLD call issued in a
nonmessage-driven program failed when.
the program reached a sync point. IMS/VS
eliminates the data base updates the the
program has made since it issued the last
SYNC or CHKP call (or if the program
hasn't issued a SYNC or CHKP call, since
the program started processing). All data
base positioning is lost.

Programmer Response: Reprocess the
transaction or terminate the program.

FW

Explanation: A nonmessage-driven Fast
Path program has used all buffers that
are allocatd for normal usage. IMS/VS
returns this status code to warn you that
you may be running out of buffer space.
An FR status code may be imminent.

Programmer Response: One solution to
this problem is to supply an
error-handling routine, triggered by the
FW status code, that will cause your
program to issue SYNC or CHKP calls more
frequently. This will reduce the total
buffer requirement.

GA

Explanation: In trying to satisfy an
unqualified GN or GNP, IMS/VS crossed a
hierarchic boundary into a higher level.

If IMS/VS returns GA after a STAT call,
it means that the STAT call just issued
retrieved the statistics for the last
VSAM buffer subpool. These statistics are
for the la~gestVSAM buffer subpool. If
you issue: the same STAT call again,
IMS/VS returns the total statistics for
all of the VSAM buffer subpools.

Programmer Response: The status code is
an information~only status code. What you
do next dep~nds on your program.

GB

Explanation: In trying to satisfy a GN
call, DL/I reached the end of the data

base. In this situation, the SSA
specified data beyond the last
occurrence, and the search was not
limited to the presence of a known or
expected segment occurrence. For
example, a GN call for a key greater than
a particular value, rather than a GU
specifying a key value veyond the highest
value.

IMS/VS also returns this status code when
it has closed a GSAM data set. The
assumed position for a subsequent call
for a GSAM or DL/I data base is the
beginning of the data base.

Programmer Response: User determined.

GC

Explanation: An attempt was made to cross
a Unit-of-Work (UOW) boundary. There was
at least one calion the referenced PCB
that changed position in the data base
since the last sync point or after the
program began executing. IMS/VS doesn't
retrieve or insert a segment. Positioning
is for the first segment following the
current UOW boundary.

Programmer Response: User determined.

GD

Explanation: The program issued an ISRT
call that did not have SSAs for all
levels above the level of the segment
being inserted. For at least one of the
levels for which no SSA was specified, a
prior call using this PCB established
valid position on a segment. That
position is no longer valid for one of
these reasons:

• The segment has been deleted by a
DLET call using a different DB PCB.

• The segment was retrieved using an
alternate processing sequence, and a
REPL or DLET call for this DB PCB
caused the index for the existing
position to be deleted.

Programmer Response: This is an
information-only status code.

GE

Explanation: IMS/VS returns this status
code when:

•

•

DL/I is unable to find a segment that
satisfies the segment described in a
get call.

For an ISRT call, DL/I can't find one
of the parents of the segment you're
inserting.

IMS/VS status Codes 279

•

•

•

The program issued a STAT call for
ISAM/OSAM buffer pool statistics
when the buffer pool doesn't exist.

The program issued a STAT call for
VSAM buffer subpool statistics when
the subpools don't exist.

The program issued a STAT call that
specified a statistics function for
ISAM/OSAM buffer pool statistics.

Programmer Response: The action you take
depends on your program.

Note: In Fast Path application programs,
if, in executing a GNP call, IMS/VS tries
to retrieve a deleted sequential
dependent segment, IMS/VS returns a GE
status coda. The 1/0 area will contain a
length indication of 10 bytes and the
original position of the delted segment.

GG

Explanation: IMS/VS returns this status
code only to application programs with
processing options of GOT or GON, after
the program has issued one of the get
calls. It means that the segment the
program was trying to retrieve contained
an invalid pointer. Position in the data
base after a GG status code is just
before the first root segment occurrence
in the hierarchy. The PCB key feedback
area will contain the length of the key
of the last root segment accessed.

Programmer Response: Continue processing
with another segment or terminate the
program. It's possible that the call you
received the GG status code on may be
successful if you issue it again.

GK

Explanation: Ol/I has returned a
different segment type at the same
hierarchic level for an unqualified GN or
GNP.

Programmer Response: This is an
information-only status code.

GL

Explanation: The program issued a lOG
call that contained an invalid log call
for user log records. The log code in a
lOG call must be greater than X'AO'.

Ol/I returns Gl on a OEQ call when the
first byte of the 1/0 area referenced in
the call did not contain a valid OEQ
class (A-J).

Prog~ammer Response: If the program
received this status code for a lOG call,
check the log code in the call and

280 IMS/VS Application Programming

-correct it. If the program received this
status code for a DEQ call, check the-DEQ
class codQ in the I/O area.

GP

Explanation: The program issued a GNP
call when there is no parentage
established, or the segment level
specified in the GNP is not lower than
the level of the established parent.

IMS/VS also returns this status code in
Fast Path application programs when the
program issues a GNP call that names a
root segment.

Programme~ Response: Check the GNP call
and issue a call before the GNP to
correctly establish parentage.

II

Explanation: The program issued an ISRT
call that tried to insert a segment that
already exists in the data base. Some of
the reasons for receiving this status
code are:

• A segment with an equal physical twin
sequence field already exists for the
parent.

• A segment with an equal logical twin
sequence already exists for the
parent.

•

•

•

•

•

The logical parent has a logical
child pointer, the logical child
doesn't have a logical twin pointer,
and the segment being inserted is the
second logical child for that logical
parent.

The segment type doesn't have
physical twin forward pointers and
the segment being inserted is the
second segment of this type for that
parent, or it's the second HDAM root
for one anchor point.

The segment being inserted is in an
inverted structure. (The immediate
parent of this segment in the logical
structure is actually its physical
child in the physical structure.)'

A physically-paired logical child
segment already exists with a
sequence field equal to that of the
segment you're inserting. For
example, the segment could have been
inserted with no duplication but when
an attempt was made to position for
the insert of its physical pair, it
was found to have a duplicate key to
an existing twin segment.

In Fast Path application programs,
IMS/VS returns this status code only
when an attempt is made to insert

(

(,

/

\
I

/

)

)

duplicate key segments in a DEDB
(root segments only) or an MSDB.

Programmer Response: User determined.

IX

Explanation: The program issued an ISRT
call that violated the insert rule for
that segment. Some of the reasons that
IMS/VS returns this status code are:

•

•

•

•

The program tried to insert the
logical child and logical parent, and
the insert rule for the logical
parent is physical and the logical
parent does not exist.

The program tried to insert the
logical child and the logical parent
and the insert rule is logical or
virtual and the logical parent
doesn't exist. In the I/O area, the
key of the logical parent doesn't
match the corresponding key in the
concatenated key in the logical
child.

The program tried to insert a logical
child, and the insert rule of the
logical parent is virtual and the
logical parent exists. In the I/O
area, the key in the logical parent
segment doesn't match the
corresponding key in the
concatenated key in the logical
child.

The program tried to insert a
physically paired segment, where
both sides of the physical pair are
the same segment type and the
physical and logical parent are the
same occurrence.

• The program issued an ISRT call after
an open, close, or I/O error status
code.

• The program issued an ISRT call to a
GSAM data base after receiving an AI
or AO status code.

Programmer Response: Correct the ISRT
call, or the program.

LB

Explanation: The segment that the
program tried to load already exists in
the data base. Other possible causes are:

•

•

A segment with an equal physical twin
sequence field already exists for the
parent.

A segment type doesn't have a
physical twin forward pointer, and
the segment being inserted is either
the second segment of this segment

•

type for the parent or the second
HDAM root fo r one ancho r po i nt.

An application program inserted a key
of X'FF ••• FF' into a HISAM or HIDAM
data base.

Programmer Response: Correct the ISRT
call or find out if the load sequence is
incorrect. Check with the DBA or the
equivalent specialist at your
installation.

LO

Explanation: The key field of the segment
being inserted is out of sequence.

Programmer Response: Check the segment
and determine where it should be loaded.

LD

Explanation: No parent has been loaded
for the segment being inserted.

Programmer Response: Check the sequence
of segments that have been loaded and
determine where the parent should have
been loaded. .

LE

Explanation: The sequence of sibling
segments being loaded is not the same as
the sequence that's defined in the DBD.

Programmer Response: Check the sequence
of the segments that are being loaded and
correct.

Nb (N blank)

Explanation: Index maintenance is unable
to handle the status code it received
from the buffer handler. This stat~s code
will be included in message DFS0840I on
the system console. DFS0840I gives the
message "INDEX ERROR db dna me Nb (first 45
bytes of key)." The buffer handler
usually returns messages giving specific
information about the problem before
IMS/VS issues message DFS0840I. If
possible, IMS/VS continues processing;
if not, IMS/VS terminates your program
abnormally wi th a user abend code of 825.

Programmer Response: Review the status
of the index to determine whether or not
it should be rebuilt.

NE

Explanation: Indexing maintenance issued
a DL/I call, and the segment has not been
found. This status code will be included
in message DFS084lI on the system
console. DFS0840I gives the message

IMS/VS Status Codes 281

"INDEX ERROR (dbdname) NE (first 45 bytes
of key)."

Programmer Response: Review the status
of the index to determine whether or not
it should be rebuilt.

NI

~xplanation: There is a duplicate
segment in a unique secondary index.
Whi(~ IMS/VS was inserting a replacing a
source segment for a secondary index
defined with a unique sequence field, the
insertion of the segment was attempted
but was unsuccessful because an index
segment with the same key was found. One
possible cause for a duplicate segment in
the index is that the index DBD
incorrectly specified a unique key
value--secondary index only.

Inan online application program, the
call is backed out and the program
receives an NI status code.

In a batch program, IMS/VS terminates the

message.

QE

Explanation: The program issued a
message GN call before issuing a GU to
the message queue. In message-driven Fast
Path programs, this code applies to
message calls only. This code also
applies to GCMD calls in AD! programs. It
means that the program issued a GCMD call
before issuing a CMD call. This call is
also returned when a program issues a
ROlB without having issuing a successful
message GU call during that sync
interval.

Programmer Response: Correct the program
by either:

• Issuing a GU call before the GN

•
•

Issuing a CMD call before the GCMD

Issuing a GU call before the ROlB

program abnormally with a code of 828. QF

Programmer Response: In a batch progr~m,
you should run batch backout to remove
the effects of the inaccurate processing,
since the ISRT call was partially
completed when the 828 abnormal
termination occurred. If duplicate
secondary index entries occur, the index
should be specified as nonunique, and an
overflow entry-sequenced data set should
be provided.

NO

Explanation: There was a BSAM, ISAM,
VSAM, or OSAM physical I/O error during a
data base call issued by indexing
m~intenance.

Programmer Response: Check the call and
correct it.

QC

Explanation: An MPP or
transaction-oriented BMP issued a
successful CHKP call, but the message GU
call issued internally by the CHKP call
was unsuccessful. There are no more
messages in the queue for the program.

Programmer Response: This is an
information-only status code.

QD

Explanation: The program issued a
message GN, but there are no more
segments for this message.

Programmer Response: Process the

282 IMS/VS Application Programming

Explanation: The length of the segment is
less than 5 characters. The minimum
length allowed is the length of the
message text plus four control
characters.

Programmer Response: Correct the
segment.

QH

Explanation: There has been a terminal
symbolic error. The output logical
terminal name or transaction code is
unknown to IMS/VS.

Programmer Response: Check the logical
terminal name or transaction code and
correct it.

RX

Explanation: The program issued a REPl
call that violated the replace rule for
that segment.

Programmer Response: Correct the call,
or check with the DBA or the equivalent
specialist at your installation.

UC

Explanation: A checkpoint record was
written to the UCF journal data set.
During the processing of an HD
reorganization or reload or an initial
load program under the supervision of the
Utility Control Facility (UCF), a
checkpoint record was written to the UCF
journal data set. IMS/VS returns this

/
I

\

(

)

)

)

status code to. indicate that the last
ISRT call was correct and the initial
load program may continue or it may
perform a checkpointing procedure before
continuing.

Programmer Response: This is an
information-only status code.

UR

Explanation: Your initial load program
is being restarted under UCF. The program
terminated while executing under UCF. The
job was resubmitted with a restart
request.

Programmer Response: The program has to
get itself back in step with data base
loading. The program uses the I/O area
and the DB PCB key feedback area to do
this.

us
Explanation: The initial load program is
about to stop processing. While
processing an HD reorganization reload or
user initial load program under the
supervision of UCF, the operator replied
to the WTOR from UCB and requested the
current function to terminate. The last
ISRT call was processed.

Programmer Response: The intial load
program should checkpoint its data sets
and return with a nonzero value in
reg i ster 15.

UX

Explanation: A checkpoint record was
written and processing stopped. This is a
combination of UC and US status codes.

Programmer Response: See the
descriptions of UC and US status codes.

VI

Explanation: An invalid length was
supplied for a variable-length segment.
The LL field of the variable-length
segment is either too large or too small.
The length of the segment must be equal
to or less than the maximum length
specified in the DBD. The length must be
long enough to include the entire
reference field; if the segment is a
logical child, it must include the entire
concatenated key of the logical parent
and all sequence fields for the paired
segment.

IMS/VS also returns this status code when
an invalid record length is specified in
a GSAM call.

Programmer Response: Correct the

... - -...... ---------... _----- ----_._---

program.

XA

Explanation: The program tried to
continue processing the conversation by
passing the SPA to another program
through a program-to-program message
switch after already responding to the
terminal.

Programmer Response: If a response has
been sent, the SPA should be returned to
IMS/VS. Correct the program.

XB

Explanation: The program has passed the
SPA to another program but is trying to
respond to the originating terminal.

Programmer Response: No response is
allowed by a program that's passed
control of the program through a
program-to-program message switch.

xc

Explanat;on: The program inserted a
message that has some bits in the ZI
field set. The Zl field is reserved for
IMS/VS.

Programmer Response: Correct the program
to prevent it from setting those bits.

XD

Explanation: IMS/VS is terminating by a
CHECKPOINT FREEZE or DUMPQ. IMS/VS
returns this code to a BMP that has
issued a CHKP call. If it's a
transaction-oriented BMP, IMS/VS does
not return a message.

IMS/VS also returns XD when a batch
program issues a SYNC call.

Programmer Response: Terminate the
program immediately. IMS/VS will
terminate the program abnormally if the
program issues another call.

XE

Explanation: A program tried to insert a
SPA to an alternate express PCB.

Programmer Response: Regenerate the PSB
and remove the EXPRESS=YES option from
the PCB, or define another PCB that is
not express to be used in the ISRT call.

XF

Explanation: IMS/VS is ignoring the ISRT
call for the SPA because the referenced

IMS/VS Status Codes 283

alternate PCB had its destination set to
a logical terminal but was not defined as
AlTRESP=YES during PSB generation.

Programmer Response: Correct the
application program or change the PSB
generation for that alternate PCB to
specify AlTRESP=YES.

XG

Explanation: IMS/VS ignored the ISRT
call because the current conversation
requires fixed-length SPAs and the ISRT
call was to a program with a different
length or variable-length SPA.

Programmer Response: Correct the program
or the SPA definitions.

xx
Explanation: After initialization the XX
status code indicates an IMS/VS error,
probably with GSAM. An XX status code at
initialization itself (before the
program has issued its first call) may be
a system, IMS/VS, or user error.

When the XX status code is issued from
initialization, possible causes are:

• Insufficient storage

•
•

•

Invalid DBD

Invalid block size

GSAM error

Programmer Response: A subsequent GSAM
call will result in an abnormal
termination of the program. The program
should terminate.

Xl

Explanation: System error: an 1/0 error
occurred while IMS/VS was reading or
writing the SPA.

Programmer Response: Terminate the
conversation.

X2

Explanation: The first ISRT call to a PCB
whose destination is a conversational
transaction code is not for the SPA. The
SPA must be inserted with the first ISRT
call. .

Programmer Response: Insert the SPA,
then reinsert the message segment.

284 IMS/VS Applicati~ri Programming

X3

Explanation: ThQ progr~m modified the
first 6 bytes of the SPA; the SPA is now
invalid.

Programmer Response: Correct the program
and restore the original bytes.

X4

Explanation: The program issued an ISRT
call to pass the SPA to a
nonconversational transaction code. It
did this by referencing a PCB whose
destination was set for the
nonconversational transaction code. You
can send the SPA only to transaction
codes defined as conversational.

Programmer Response: Correct the ISRT
call. Send only data segments.

xs
Explanation: The program issued more
than one ISRT call to send the SPA to a
PCB whose destination is a transaction
code.

Programmer Response: Only one SPA is
allowed per message. Correct the program.

X6

Explanation: An invalid transaction code
name was inserted into the SPA.

Programmer Response: Correct the program
to set the proper transaction code name.

X7

Explanation: The length of the SPA is
incorrect. The program modified the first
6 bytes. .

Programmer Response: Correct the SPA and
the program.

X8

Explanation: There was a system or 1/0
error in attempting to queue a SPA on a
transaction code PCB.

Programmer Response: Terminate the
conversation.

X9

Explanation: The program tried to insert
the SPA, but the length of the SPA is
greater than the maximum 1/0 area size
specified in the program's PSB.

(

(,

)

)

---- ----------------_ ... _ .. _----------------

Programmer Response: Correct the SPA, or
change the 1-/0 area' 5 si ze speci fi ed on
the 10ASIZE keyword on the PSBGEN
statement.

blanks (bb)

Explanation: The call was completed.

Programmer Response: Proceed with
processing.

IMS/VS Status Codes 285

APPENDIXES

The appendixes provide four sample application programs, a sample
status code error routine, and the DL/I Test Program control
statements format:

• Appendix A: Sample Batch Program

• Appendix B: Sample Batch Message Program

• Appendix C: Sample Message Processing Program

• Appendix D: Sample Conversational MPP

• Appendix E: Sample Status Code Error Routine

• Appendix F: Using the DL/I Test Program (DFSDDLTO)

The purpose of providing the sample programs is to illustrate the
structure of different IMS/VS application programs. The
application programming in the programs has been kept to a
minimum, and the processing performed is trivial in nature.

Each of the sample programs accesses the Parts data base described
in the IMS/VS Version 1 Primer. The sample programs in Appendixes
A, B, and D perform the same processing! each program updates the
unit price field in the root segment.

The status code error routine is shown in "Appendix E. Sample
Status Code Error Routine (DFSOAER)." This routine is also part of
the Primer. "Checking Status Codes" describes this routine. Each
of the sample routines uses this routine as its error routine.

286 IMS/VS Application Programming

(,

c

(,

)

APPENDIX A. SAMPLE BATCH PROGRAM

The sample batch program reads its input from a GSAM file. The
GSAM input record contains a part number and the new price for
that part number. The program updates the data base of the new
price.

After updating the data base, the program lists the part number
and the old and new pri ces ina GSAM output fi le'.

If the part number is not valid/not a valid key, IMS/VS prints an
error message.

When the program has processed all of the input
records/transactions, the program prints a tota15 line giving the
total numbers of valid and invalid transactions.

The program uses symbolic checkpoint and restart.

Appendix A. Sample Batch Program 287

IDENTIFICATION DIVISION.
PROGRAM-ID. 'SAMPLE1'.
REMARKS.

THIS IS A BATCH PROGRAM WHICH UPDATES THE
PRICE FIELD IN THE ROOT SEGMENT OF THE PARTS
DATA BASE.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* DL/I FUNCTION CODES

77 GHU PIC X(4) VALUE 'GHU '.
77 GU PIC X(4) VALUE 'GU
77 GN PIC X(4) VALUE 'GN
77 ISRT PIC X(4) VALUE 'ISRT'.
77 REPL PIC X(4) VALUE 'REPL'.
77 XRST PIC X(4) VALUE 'XRST' .
77 CHKP PIC X(4) VALUE ' CHKP , .

* PARAMETER FIELDS FOR DFSOAER STATUS CODE CHECKING ROUTINE

01 DFSOAER-FIELDS.
02 ERROPT PIC X(4) VALUE '1 .
02 BAD-DB-CALL PIC X(8) VALUE 'DBADCALL'.
02 BAD-DC-CALL PIC X(8) VALUE 'CBADCALL'.

01 CHKPT-WORKAREAS.

* RESTART CHECKPOINT-ID RETURNED HERE IF PROGRAM RESTARTED

02 RESTART-WORKAREA.
04 RESTART-CHKPT PIC X(8) VALUE SPACES.
04 FILLER PIC X(4) VALUE SPACES.

* CHECKPOINT-ID INCREMENTED BY ONE AT EACH CHECKPOINT

02 CHKPT-ID.
04 FILLER PIC X(4) VALUE 'SAM1'.
04 CHKPT-ID-CTR PIC 9(4) VALUE O.

* TRANSACTION ,COUNTER USED TO DETERMINE CHECKPOINT FREQUENCY

02 CHKPT-LIMIT PIC S9(S) COMP-3 VALUE +0.
88 CHKPT-LIMIT-REACHED VALUE +50.

* LENGTH FIELDS USED FOR XRST AND CHKP CALLS

01 AREA-LENGTHS.
02 IOAREA-LEN PIC S9(S) COMP VALUE +80.
02 COUNTER-LEN PIC S9(S) COMP VALUE +8.

01 COUNTERS.
02 LINE-CTR PIC 59(3) COMP-3 VALUE +SO.

88 TOP-OF-PAGE VALUE +SO.
02 VALID-CTR PIC S9(S) COMP-3 VALUE +0.
02 INVALID-CTR PIC 59(5) COMP-3 VALUE +0.

* END-SWITCH SET TO 1 IF GB REACHED ON INPUT GSAM FILE

01 END-SWITCH PIC X VALUE ' 0 ' .
88 NO-MORE VALUE ' 1 ' '.

01 INPUT.-AREA.
02 TRANCODE PIC X(9).
02 IN-PARTNO PIC X(8).
02 NEW-PRICE PIC 9(6)V99.
02 FILLER PIC X(lOO).

01 OUTPUT-AREAS.
02 OUTPUT-LINE.

04 OUTPUT-ASA PIC X.
04 OUTPUT-DATA PIC X(80).

02 ,HEADING-LINE.

288 IMS/VS Application Programming

EXA00110
EXA00120
EXA00140
EXA00150
EXA00160
EXA00170
EXA00180
EXA00190
EXA00200
EXA00210
EXA00220
EXA00230
EXA00240
EXA002S0
EXA00260
EXA00270
EXA00280
EXA00290
EXA00300
EXA00310
EXA00320
EXA00330
EXA00340
EXA00350
EXA00360
EXA00370
EXA00380
,EXA00390
EXA00400
EXA00410
EXA00420
,EXA00430
EXA00440
EXA004S0
EXA00460
EXA00470
EXA00480
EXA00490
EXAOOSOO
EXAOOS10
EXA00520
EXAOOS30
EXAOOS40
EXAOOSSO
EXAOOS60
EXAOOS70
EXAOOS80
EXAOOS90
EXA00600
EXA00610
EXA00620
EXA00630
EXA00640
EXA006S0
EXA00660
EXA00670
EXA00680
EXA00690
EXA00700
EXA00710
EXA00720
EXA00730
EXA00740
EXA00750
EXA00760
EXA00770
EXA00780
EXA00790
EXA00800
EXA00810
EXA00820
EXA00830
EXA00840

(
\.....

)

)

)

04 FILLER PIC X(10) VALUE 'PART NO'.
04 FILLER PIC X(11) VALUE 'OLD PRICE'.
04 FILLER PIC X(11) VALUE 'NEW PRICE'.
04 FILLER PIC X(49) VALUE 'COMMENTS'.

02 DETAIL-LINE.
04 OUT-PARTNO PIC X(8).
04 FILLER PIC X.
04 OUT-OLD-PRICE PIC Z(6)9.99.
04 FILLER PIC X.
04 OUT-NEW-PRICE PIC Z(6)9.99.
04 FILLER PIC XX.
04 COMMENTS PIC X(40).

02 TOTAL-LINE.
04 FILLER PIC X(31) VALUE

'TRANSACTIONS PROCESSED - VALID'
04 OUT-VALID PIC Z(4)9.
04 FILLER PIC X(10) VALUE' INVALID'
04 OUT-INVALID PIC Z(4)9.

* INPUT AREA FOR DATA BASE SEGMENT

01 DB-IOAREA.
02 DB-PARTNO
02 FILLER
02 DB-PRICE
02 FILLER

PIC X(8).
PIC X(45).
PIC 9(6)V99.
PIC X(19).

* SEGMENT SEARCH ARGUMENT

01 SSA.
02 FILLER
02 SSA-PARTNO
02 FILLER

01 ASA~CTl-CHARS.

PIC X(19) VALUE 'SEIPART (FEIPGPNR ='
PIC X(8).
PIC X VALUE ')'.

02 ASA-NEWPAGE PIC X VALUE '1'.
02 ASA-SPACE-ONE PIC X VALUE ' ,
02 ASA-SPACE-TWO PIC X VALUE '0'.

LINKAGE SECTION.

* IOPCB USED FOR XRST AND CHECKPOINT CALLS

01 IOPCB.
02 FILLER
02 TPSTATUS
02 FILLER

PIC X(10).
PIC X(2).
PIC X(20).

* DATA BASE PCB FOR THE PARTS DATA BASE

01 DBPCB.
02 FILLER
02 DBSTATUS
02 FILLER

PIC X(10).
PIC X(2).
PIC X(20).

* GSAM INPUT PCB FOR THE INPUT DATA

01 GSAMPCB-IN.
02 FILLER
02 GSTATUS-IN
02 FILLER

PIC X(10).
PIC X(2).
PIC X(20).

* GSAM OUTPUT PCB FOR THE OUTPUT REPORT

01 GSAMPCB-OUT.
02 FILLER
02 GSTATUS-OUT
02 FILLER

PROCEDURE DIVISION.

PIC X(10).
PIC X(2).
PIC X(20).

* AT ENTRY IMS PASSES THE FOLLOWING PCB ADDRESSES:

EXA00850
EXA00860
EXA00870
EXA00880
EXA00890
EXA00900
EXA00910
EXA00920
EXA00930
EXA00940
EXA00950
EXA00960
EXA00970
EXA00980
EXA00990
EXAOI000
EXAOI010
EXAOI020
EXAOI030
EXAOI040
EXAOI050
EXAOI060
EXAOI070
EXAOI080
EXAOI090
EXAOIIOO
EXAOI110
EXAOl120
EXAOl130
EXA01140
EXA01150
EXA01160
EXAOl170
EXAOl180
EXAOl190
EXA01200
EXA01210
EXA01220
EXA01230
EXA01240
EXA01250
EXA01260
EXA01270
EXA01280
EXA01290
EXA01300
EXA01310
EXA01320
EXA01330
EXA01340
EXA01350
EXA01360
EXA01370
EXA01380
EXA01390
EXA01400
EXA01410
EXA01420
EXA01430
EXA01440
EXA01450
EXA01460
EXA01470
EXA01480
EXA01490
EXA01500
EXA01510
EXA01520
EXA01530
EXA01540
EXA01550
EXA01560
EXA01570

Appendix A. Sample Batch Program 289

* IOPCB - USED FOR CHECKPOINT/RESTART CALLS * DBPCB - PARTS DATA BASE * GSAMPCB-IN - INPUT DATA FILE * GSAMPCB-OUT - OUTPUT REPORT FILE

ENTRY 'DLITCBL' USING IOPCB, DBPCB,
GSAMPCB-IN, GSAMPCB-OUT.

* FIRST CALL IS THE XRST CALL

CALL 'CBLTDLI' USING XRST, IOPCB, IOAREA-LEN,
RESTART-WORKAREA, COUNTER-LEN, COUNTERS.

IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

IOPCB, BAD-DC-CALL, COUNTERS, ERROPT.

* IF RESTART WORKAREA IS NOT BLANK, THEN PROGRAM IS BEING * RESTARTED - SO RESET THE CHECKPOINT-ID FIELD

IF RESTART-WORKAREA NOT EQUAL SPACES
MOVE RESTART-CHKPT TO CHKPT-ID

* OTHERWISE TAKE A CHECKPOINT SO THAT PROGRAM CAN BE * COMPLETELY BACKED OUT TO THE BEGINNING IF NECESSARY

ELSE PERFORM CHKPT-RTN.

* MAIN LINE

PERFORM READ-INPUT THRU READ-INPUT-END.
PERFORM PROCESS-INPUT THRU PROCESS-INPUT-END UNTIL NO-MORE.
PERFORM PRINT-TOTAL-LINE THRU PRINT-TOTAL-LINE-END
GOBACK.

PROCESS-INPUT.

* HERE WE PROCESS THE INPUT MESSAGES * USING THE PARTNUMBER WE READ THE DATABASE * AND UPDATE THE PRICE FIELD WITH THE NEW DATA

MOVE SPACES TO DETAIL-LINE.
MOVE IN-PARTNO TO SSA-PARTNO.
,PERFORM READ-DB THRU READ-DB-END.
IF DBSTATUS = 'GE'

THEN MOVE 'NOT ON FILE' TO COMMENTS
MOVE IN-PARTNO TO OUT-PARTNO

ADD 1 TO INVALID-CTR
ELSE MOVE DB-PRICE TO OUT-OLD-PRICE

MOVE NEW-PRICE TO DB-PRICE, OUT-NEW-PRICE
MOVE DB-PART NO TO OUT-PARTNO
PERFORM UPDATE-DB THRU UPDATE-DB-END
MOVE 'PRICE UPDATED' TO COMMENTS
ADD 1 TO VALID-CTR.

PERFORM PRINT-LINE THRU PRINT-LINE-END

* INCREMENT THE CHKPT COUNTER BY ONE FOR EACH TRANSACTION

ADD 1 TO CHKPT-LIMIT.

IF CHKPT-LIMIT-REACHED

* INCREMENT THE CHECKPOINT-ID COUNTER * ISSUE A CHECKPOINT CALL * AND RESET THE CHECKPOINT FREQUENCY COUNTER

THEN ADD 1 TO CHKPT-ID-CTR
PERFORM CHKPT-RTN THRU CHKPT-RTN-END
MOVE 0 TO CHKPT-LIMIT.

* READ THE NEXT MESSAGE

PERFORM READ-INPUT THRU READ-INPUT-END.

290 IMS/VS Application Programming

EXA01580
EXA01590
EXA01600
EXA01610
EXA01620
EXA01630
EXA01640
EXA01650
EXA01660
EXA01670
EXA01680
EXA01690
EXA01700
EXA01710
EXA01720
EXA01730
EXA01740
EXA01750
EXA01760
EXA01770
EXA01780
EXA01790
EXA01800
EXA01810
EXA01820
EXA01830
EXA01840
EXA01850
EXA01860
EXA01870
EXA01880
EXA01890
EXA01900
EXA01910
EXA01920
EXA01930
EXA01940
EXA01950
EXA01960
EXA01970
EXA01980
EXA01990
EXA02000
EXA02010
EXA02020
EXA02030
EXA02040
EXA02050
EXA02060
EXA02070
EXA02080
EXA02090
EXA02100
EXA02110
EXA02120
EXA02130
EXA02140
EXA02150
EXA02160
EXA02170
EXA02180
EXA02190
EXA02200
EXA02210
EXA02220
EXA02230
EXA02240
EXA02250
EXA02260
EXA02270
EXA02280
EXA02290
EXA02300

(

(
"

)

)
/

------ ----------------------

PROCESS-INPUT-END.
EXIT.

* PRINT THE REPORT SHOWING THE UPDATES * THE LINES ARE WRITTEN TO A GSAM FILE WHICH * CAN BE SPOOLED TO A PRINTER IN A SUBSEQUENT * JOB STEP

PRINT-LINE.

* IF PAGE IS FULL, PRINT A HEADING LINE AND RESET THE * LINE-COUNTER BEFORE PRINTING THE DETAIL LINE

IF TOP-OF-PAGE
THEN MOVE HEADING-LINE TO OUTPUT-DATA

MOVE ASA-NEWPAGE TO OUTPUT-ASA
MOVE 0 TO LINE-CTR
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END.
MOVE ASA-SPACE-TWO TO OUTPUT-ASA.

MOVE DETAIL-LINE TO OUTPUT-DATA
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END.

* INCREMENT LINE COUNTER. IF FIRST DETAIL LINE ON PAGE HAS BEEN * PRINTED RESET THE ASA CONTROL CHARACTER TO SINGLE SPACING

ADD 1 TO LINE-CTR
IF LINE-CTR = 1 MOVE ASA-SPACE-ONE TO OUTPUT-ASA.

PRINT-LINE-END.
EXIT.

PRINT-TOTAL~LINE.
MOVE VALID-CTR T~ OUT-VALID.
MOVE INVALID-CTR TO OUT-INVALID.
MOVE TOTAL-LINE TO OUTPUT-DATA.
MOVE ASA-NEWPAGE TO OUTPUT-ASA
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END.
MOVE SPACES TO OUTPUT-ASA.

PRINT-TOTAL-LINE-END.
EXIT.

* THE FOLLOWING PROCEDURES EXECUTE THE DL/I CALLS AGAINST * THE GSAM INPUT AND OUTPUT FILES, AND THE DATA BASE. * NO APPLICATION PROCESSING IS PERFORMED IN THESE ROUTINES.

READ-INPUT.
CALL 'CBLTDLI' USING GN, GSAMPCB-IN, INPUT-AREA.
IF GSTATUS-IN = 'GB'

THEN MOVE 1 TO END-SWITCH
ELSE IF GSTATUS-IN NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
GSAMPCB-IN, BAD-DB-CALL, INPUT-AREA~ ERROPT.

READ-INPUT-END.
EXIT.

READ-DB.
CALL 'CBLTDLI' USING GHU, DBPCB, DB-IOAREA, SSA.
IF DBSTATUS = SPACES OR 'GE'
THEN NEXT SENTENCE
ELSE CALL 'DFSOAER' USING

DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
READ-DB-END.

EXIT.

UPDA'TE-DB.
CALL 'CBLTDLI' USING REPL, DBPCB, DB-IOAREA.
IF DBSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
UPDATE-DB-END.

EXA02310
EXA02320
EXA02330
EXA02340
EXA02350
EXA02360
EXA02370
EXA02380
EXA02390
EXA02400
EXA02410
EXA02420
EXA02430
EXA02440
EXA02450
EXA02460
EXA02470
EXA02480
EXA02490
EXA02500
EXA02510
EXA02520
EXA02530
EXA02540
EXA02550
EXA02560
EXA02570
EXA02580
EXA02590
EXA02600
EXA02610
EXA02620
EXA02630
EXA02640
EXA02650
EXA02660
EXA02670
EXA02680
EXA02690
EXA02700
EXA02710
EXA02720
EXA02730
EXA02740
EXA02750
EXA02760
EXA02770
EXA02780
EXA02790
EXA02800
EXA02810
EXA02820
EXA02830
EXA02840'
EXA02850
EXA02860
EXA02870
EXA02880
EXA02890
EXA02900
EXA02910
EXA02920
EXA02930
EXA02940
EXA02950
EXA02960
EXA02970
EXA02980
EXA02990
EXA03000
EXA03010
EXA03020
EXA03030

Append;x A. Sample Batch Program 291

EXIT.

ISRT-GSAM-OUTPUT.
CALL 'CBLTDLI' USING 15RT, G5AMPCB-OUT, OUTPUT-LINE.
IF GSTATUS-OUT NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

GSAMPCB-OUT, BAD-DB-CALL, OUTPUT-LINE, ERROPT.
ISRT-GSAM-OUTPUT-END.

EXIT.

CHKPT-RTN.
CALL 'CBLTDLI' USING CHKP, IOPCB, IOAREA-LEN, CHKPT-ID,

COUNTER-LEN, COUNTERS.
IF TPSTATUS NOT EQUAL SPACES

CALL 'DFSOAER' USING

CHKPT":'RTN-END.
IOPCB, BAD-DC-CALL, CHKPT-ID, ERROPT.

EXIT.

292 IMS/VS Application Programming

EXA03040
EXA030S0
EXA03060

-EXA03070
EXA03080
EXA030-90
EXA03100
EXA03110
EXA03120
EXA03130
EXA03140
EXA031S0
EXA03160
EXA03170
EXA03180
EXA03190
EXA03200
EXA03210

(

(
\,

)

')

)

APPENDIX B. SAMPLE BATCH MESSAGE pROGRAM

This sample program is a transaction-oriented BMP that updates
the price field. The program gets its input from the message queue
and updates the price field of the root segment. When the BMP
prints the totals of the valid and invalid transactions that have
been processed, it sends them to Bn alternate PCB. Before issuing
the ISRT call to send this message, the program uses the CHNG call
to set the destination of the PCB. One reason you might use an
alternate PCB in this situation is to send the output to a
hardcopy terminal/printer in the user's department.

This program uses symbolic checkpoint and restart.

Appendix B. Sample Batch Message Program 293

IDENTIFICATION DIVISION.
PROGRAM-ID. 'SAMPLE2'.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* DL/I FUNCTION CODES

77
77
77
77
77
77
77
77

GHU
GU
GN
ISRT
REPL
XRST
CHKP
CHNG

PIC X(4) VALUE 'GHU '.
PIC X(4) VALUE 'GU '
PIC X(4) VALUE 'GN .
PIC X(4) VALUE 'ISRT'.
PIC X(4) VALUE 'REPL'.
PIC X(4) VALUE 'XRST'.
PIC X(4) VALUE 'CHKP'.
PIC X(4) VALUE 'CHNG'.

* DESTINATION LTERM-NAME FOR MODIFIABLE PCB

77 SUPER-LTERM PIC X(8) VALUE 'PARTSUPR'.

* PARAMETER FIELDS FOR USE BY DFSOAER STATUS CODE CHECKING ROUTINE

01 DFSOAER-FIELDS.
02 ERROPT PIC X(4) VALUE '1 .
02 BAD-DS-CALL PIC X(8) VALUE 'DBADCALL'.
02 BAD-DC-CALL PIC X(8) VALUE 'CBADCALL'.

01 CHKPT-WORKAREAS.
02 RESTART-WORKAREA.

04 RESTART-CHKPT PIC X(8) VALUE SPACES.
04 FILLER PIC X(4) VALUE SPACES.

02 CHKPT-ID.
04 FILLER PIC X(4) VALUE 'SAM2'.
04 CHKPT-ID-CTR PIC 9(4) VALUE O.

02 CHKPT-LIMIT PIC S9(S) COMP-3 VALUE +0.
88 CHKPT-LIMIT-REACHED VALUE +50.

01 AREA-LENGTHS.
02 IOAREA-LEN PIC S9(S) COMP VALUE +80.
02 COUNTER-LEN PIC S9(S) COMP VALUE +8.

01 COUNTERS.
02 LINE-CTR PIC 59(3) COMP-3 VALUE +SO.

88 TOP-OF-PAGE " VALUE +SO.
02 VALID-CTR PIC S9(S) COMP-3 VALUE +0.
02 INVALID-CTR PIC S9(S) COMP-3 VALUE +0.

01 SWITCHES.
02 END-SWITCH PIC X VALUE '0'.

88 NO-MORE VALUE '1'.
02 CLOSE-SWITCH PIC X VALUE '0'.

88 CLOSE-DOWN VALUE '1'.

01 INPUT-MSG.
02 IN-LLl
02 IN-ZZl
02 TRANCODE
02 IN-PARTNO
02 NEW-PRICE
02 FILLER

PIC 59(3) COMPo
PIC 59(3) COMPo
PIC X(9).
PIC X(8).
PIC 9(6)V99.
PIC X(lOO).

01 CHKPT-AREA REDEFINES INPUT-MSG.
02 ~ASS~CHKPT PIC X(8).
02 FILLER PIC X(100).

01 OUTP~T-AREAS.
02 OUTPUT-MSG.

04 OUT-LL PIC 59(3) COMP VALUE +8S.
04 OUT-ZZ PIC 59(3) COMP VALUE +0.
04 OUTPUT-LINE.

06 OUTPUT-ASA PIC X.
06 OUTPUT-DATA PIC X(80).

02 HEADING-LINE.
04 FILLER PIC X(9) VALUE 'PART NO'.

294 IMS/VS Application Programming

EXA00110
EXA00120
EXA00130
EXA00140
EXA00150
EXA00160
EXA00170
EXA00180
EXA00190
EXA00200
EXA002l0
EXA00220
EXA00230
EXA00240
EXA002S0
EXA00260
EXA00270
EXA00280
EXA00290
EXA00300
EXA003l0
EXA00320
EXA00330
EXA00340
EXA003S0
EXA00360
EXA00370
EXA00380
EXA00390
EXA00400
EXA00410
EXA00420
EXA00430
EXA00440
EXA004S0
EXA00460
EXA00470
EXA00480
EXA00490
EXA00500
EXAOOSI0
EXAOOS20
EXA00530
EXA00540
EXA005S0
EXA00560
EXAOOS70
EXA00580
EXA00590

"EXA00600
EXA00610
EXA00620
EXA00630
EXA00640
EXA00650
EXA00660
EXA00670
EXA00680
EXA00690
EXA00700
EXA00710
EXA00720
EXA00730
EXA00740
EXA00750
EXA00760
EXA00770
EXA00780
EXA00790
EXA00800
EXA00810
EXA00820
EXA00830

(

(
'.

)

)

)

04 FIllER PIC X(II) VALUE 'OLD PRICE'.
04 FIllER PIC X(II) VALUE 'NEW PRICE'.
04 FIllER PIC X(49) VALUE 'COMMENTS'.

02 DETAIL-lINE.
04 QUT-PARTNO PIC X(8).
04 FIllER PIC X.
04 OUT-OLD-PRICE PIC Z(6)9.99.
04 FIllER PIC X.
04 OUT-NEW-PRICE PIC Z(6)9.99.
04 FIllER PIC X.
04 COMM~NTS PIC X(40).

02 TOTAL-lINE.
04 FIllER PIC X(40) VALUE

'TRANSACTIONS PROCESSED - VALID'.
04 OUT-VALID PIC Z(4)9.
04 FIllER PIC X(IO) VALUE' INVALID'
04 OUT-INVALID PIC Z(4)9.

01 DB-IOAREA.
02 DB-PARTNO
02 FILLER
02 DB-PRICE
02 FIllER

01 ASA-CTl-CHARS.

PIC X(8).
PIC X(45).
PIC 9(6)V99.
PIC X(19).

02 ASA-NEWPAGE PIC X VALUE '1'.
02 ASA-SPACE-ONE PIC X VALUE' '.
02 ASA-SPACE-TWO PIC X VALUE '0'.

* SEGMENT SEARCH ARGUMENT

01 SSA.
02 FIllER
02 SSA-PARTNO
02 FILLER

lINKAGE SECTION.

PIC X(19) VALUE 'SEIPART (FEIPGPNR ='
PIC X(8).
PIC X VALUE ')'.

* IOPCB FOR RETRIEVING MESSAGES, AND ISSUING CHKP/XRST CAllS

01 IOPCB.
02 FIllER
02 TPSTATUS
02 FIllER

PIC X(10).
PIC X(2).
PIC X(20).

* MODIFIABLE ALTERNATE PCB USED TO SWITCH A TOTALS MESSAGE * TO A SUPERVISOR'S TERMINAL

01 AlTPCB.
02 AlTPCB-DEST PIC X(8).
02 FIllER PIC X(2).
02 AlTSTATUS PIC X(2).
02 FILLER PIC X(10).

* DATA BASE PCB FOR THE PARTS DATA BASE

01 DBPCB.
02 FILLER
02 DBSTATUS
02 FIllER

PIC X(10).
PIC X(2).
PIC X(20).

* GSAM PCB FOR THE OUTPUT REPORT FILE

01 GSAMPCB-OUT.
02 FILLER PIC X(10).
02 GSTATUS-OUT PIC X(2).
02 FILLER PIC X(20).

PROCEDURE DIVISION.

* ON ENTRY IMS PASSES THE FOLLOWING PCB ADDRESSES:

* IOPCS - INPUT TRANSACTIONS FROM THE MESSAGE QUEUE

EXA00840
EXA00850
EXA00860
EXA00870
EXA00880
EXA00890
EXA00900
EXA00910
EXA00920
EXA00930
EXA00940
EXA00950
EXA00960
EXA00970
EXA00980
EXA00990
EXAOI000
EXAOI010
EXAOI020
EXAOI030
EXAOI040
EXA01050
EXA01060
EXAOI070
EXA01080
EXAOI090
EXAOII00
EXAOl110
EXAOl120
EXAOl130
EXAOl140
EXAOl150
EXAOl160
EXAOl170
EXA01180
EXA01190
EXA01200
EXA01210
EXA01220
EXA01230
EXA01240
EXA01250 "
EXA01260
EXA01270
EXA01280
EXA01290
EXA01300
EXA01310
EXA01320
EXA01330
EXA01340
EXA01350
EXA01360
EXA01370
EXA01380
EXA01390
EXA01400
EXA01410
EXA01420
EXA01430
EXA01440
EXA01450
EXA01460
EXA01470
EXA01480
EXA01490
EXA01500
EXA01510
EXA01520
EXA01530
EXA01540
EXA01550
EXA01560

Appendix B. Sample Batch Message Program 295

* AlTPCB - lTERM FOR SWITCHING TOTALS MESSAGE * DBPCB - PARTS DATA BASE * GSAMPCB-OUT - OUTPUT REPORT FILE

ENTRY 'DlITCBl' USING IOPCB, AlTPCB, DBPCB, GSAMPCB-OUT.

* FIRST CAll IS THE XRST

CAll 'CBlTDlI' USING XRST, IOPCB, IOAREA-lEN,
RESTART-WORKAREA, COUNTER-lEN, COUNTERS.

IF TPSTATUS NOT EQUAL SPACES
THEN CAll 'DFSOAER' USING

IOPCB, BAD-DC-CAll, COUNTERS, ERROPT.

* IF THE RESTART WORKAREA IS NOT BLANK, THE PROGRAM * IS BEING RESTARTED, SO RESET THE CHECKPOINT ID FIELD

IF RESTART-WORKAREA NOT EQUAL SPACES
MOVE RESTART-CHKPT TO CHKPT-ID.

* READ THE FIRST MESSAGE

PERFORM READ-INPUT THRU READ-INPUT-END

* PROCESS THE MESSAGES UNTIL A QC STATUS CODE IS RECEIVED * OR AN XD ON A CHECKPOINT CAll WHICH INDICATES THAT THE * ONLINE SYSTEM IS BEING CLOSED DOWN

PERFORM PROCESS-INPUT THRU PROCESS-INPUT-END
UNTIL NO-MORE OR CLOSE-DOWN.

* PRINT THE TOTALS lINE AND SEND A MESSAGE TO * TO THE SUPERVISOR'S TERMINAL VIA THE ALTERNATE PCB

PERFORM PRINT-TOTALS THRU PRINT-TOT~lS-END.
GOBACK.

PROCESS-INPUT.
MOVE SPACES TO DETAIL-lINE.
MOVE IN-PARTNO TO SSA-PARTNO.
PERFORM READ-DB THRU READ-DB-END.
IF DBSTATUS = 'GE'

THEN MOVE 'NOT ON FILE' TO COMMENTS
MOVE IN-PARTNO TO QUT-PARTNO
ADD 1 TO INVAlID-CTR

ELSE MOVE DB-PRICE TO OUT-OLD-PRICE
MOVE NEW-PRICE TO DB-PRICE, OUT-NEW-PRICE
MOVE DB-PARTNO TO OUT-PARTNO
PERFORM UPDATE-DB THRU UPDATE-DB-END
MOVE 'PRICE UPDATED' TO COMMENTS
ADD 1 TO VAlID-CTR.

PERFORM PRINT-lINE THRU PRINT-lINE-END
ADD 1 TO CHKPT-lIMIT.

* IF THE CHECKPOINT-lIMIT HAS BEEN REACHED, TAKE * A CHECKPOINT AND INCREMENT THE ID COUNTER * THIS WIll ALSO CAUSE A MESSAGE TO BE RETURNED

IF CHKPT-lIMIT-REACHED
THEN ADD 1 TO CHKPT-ID-CTR

MOVE CHKPT-ID TO PASS-CHKPT
PERFORM CHKPT-RTN THRU CHKPT-RTN-END
MOVE 0 TO CHKPT-lIMIT

* OTHERWISE READ THE NEXT MESSAGE FROM THE QUEUE

ELSE PERFORM READ-INPUT THRU READ-INPUT-END.

PROCESS-INPUT-END.
EXIT.

296 IMS/VS Application Programming

EXA01570
EXA01580
EXA01590
EXA01600
EXA01610
EXA01620
EXA01630
EXA01640
EXA01650
EXA01660
EXA01670
EXA01680
EXA01690
EXA01700
EXA01710
EXA01720
EXA01730
EXA01740
EXA01750
EXA01760
EXA01770
EXA01780
EXA01790
EXA01800
EXA01810
EXA01820
EXA01830
EXA01840
EXA01850
EXA01860
EXA01870
EXA01880
EXA01890
EXA01900
EXA01910
EXA01920
EXA01930
EXA01940
EXA01950
EXA01960
EXA01970
EXA01980
EXA01990
EXA02000
EXA02010
EXA02020
EXA02030
EXA02040
EXA02050
EXA02060
EXA02070
EXA02080
EXA02090
EXA02100
EXA02110
EXA02120
EXA02130
EXA02140
EXA02150
EXA02160
EXA02170
EXA02180
EXA02190
EXA02200
EXA02210
EXA02220
EXA02230
EXA02240
EXA02250
EXA02260
EXA02270
EXA02280
EXA02290

(

(,

)

\
)

-- -----------------------_._._._--- ----------------------_.

PRINT-LlNE.
IF TOP-OF~PAGE

THEN MOVE HEADING-LINE TO OUTPUT-DATA
MOVE ASA-NEWPAGE TO OUTPUT-ASA
MOVE 0 TO LINE-CTR
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END
MOVE ASA-SPACE-TWO TO OUTPUT-ASA.

MOVE DETAIL-LINE TO OUTPUT-DATA
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END
ADD 1 TO LINE-CTR
IF LINE-CTR = 1 MOVE ASA-SPACE-ONE TO OUTPUT-ASA.

PRINT-LINE-END.
EXIT.

PRINT-TOTALS.
MOVE VALID-CTR TO OUT-VALID
MOVE INVALID-CTR TO OUT-INVALID
MOVE TOTAL-LINE TO OUTPUT-DATA
MOVE ASA-NEWPAGE TO OUTPUT-ASA
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END
MOVE SPACES TO OUTPUT-ASA
PERFORM ISRT-ALTPCB THRU ISRT-ALTPCB-END.

PRINT-TOTALS-END.
EXIT.

* THE FOLLOWING ROUTINES EXECUTE THE DL/I CALLS * BUT DO NOT DO ANY APPLICATION PROCESSING

READ-INPUT. ;
CALL 'CBLTDLI' ,USING GU .. IOPCB .. INPUT-MSG.
IF TPSTATUS = 'QC'

THEN MOVE 1 TO END-SWITCH
ELSE IF TPSTATUS NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
IOPCB .. BAD-DC-CALL .. INPUT-MSG .. ERROPT.

READ-INPUT-END.
EXIT.

READ-DB.
CALL 'CBLTDLI' USING GHU .. DBPCB .. DB-IOAREA .. SSA.
IF DBSTATUS = SPACES OR 'GE'

THEN NEXT SENTENCE
ELSE CALL 'DFSOAER' USING

DBPCB .. BAD-DB-CALL .. DB-IOAREA .. ERROPT.
READ-DB-END.

EXIT.

UPDATE..;;DB.
CALL 'CBLTDLI' USING REPL .. DBPCB .. DB-IOAREA.
IF DBSTATUS NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
DBPCB .. BAD-DB-CALL, DB-IOAREA .. ERROPT.

UPDATE-DB-END.
EXIT.

ISRT-GSAM-OUTPUT.
CALL 'CBLTDLI' USING ISRT .. GSAMPCB-OUT .. OUTPUT-LINE.
IF GSTATUS-OUT NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
GSAMPCB-OUT .. BAD-DB-CALL .. OUTPUT-LINE .. ERROPT.

ISRT-GSAM-OUTPUT-END.
EXIT.

ISRT-ALTPCB.
CALL 'CBLTDLI' USING CHNG .. ALTPCB .. SUPER-LTERM
IF ALTSTATUS NOT EQUAL SPACES

-THEN CALL 'DFSOAER' USING
ALTPCB .. BAD-DC-CALL .. SUPER-LTERM .. ERROPT.

CALL 'CBLTDLI' USING ISRT .. ALTPCB .. OUTPUT-MSG.
IF ALTSTATUS NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
ALTPCB .. BAD-DC-CALL .. OUTPUT-MSG .. ERROPT.

EXA02300
EXA02310
EXA02320
EXA02330
EXA02340
EXA02350
EXA02360
EXA02370
EXA02380
EXA02390
EXA02400
EXA02410
EXA02420
EXA02430
EXA02440
EXA02450
EXA02460
EXA02470
EXA02480
EXA02490
EXA02500
EXA02510
EXA02520
EXA02530
EXA02540
EXA02550
EXA02560
EXA02570
EXA02580
EXA02590
EXA02600
EXA02610
EXA02620
EXA02630
EXA02640
EXA02650
EXA02660
EXA02670
EXA02680
EXA02690
EXA02700
EXA02710
EXA02720
EXA02730
EXA02740
EXA02750
EXA02760
EXA02770
EXA02780
EXA02790
EXA02800
EXA02810
EXA02820
EXA02830
EXA02840
EXA02850
EXA02860
EXA02870
EXA02880
EXA02890
EXA02900
EXA02910
EXA02920
EXA02930
EXA02940
EXA02950
EXA02960
EXA02970
EXA02980
EXA02990
EXA03000
EXA03010
EXA03020

Appendix B. Sample Batch Message Program 297

ISRT-ALTPCB-END.
EXIT.

CHKFT-RTii.
CALL 'CBLTDLI' USING CHKP, IOPCB, IOAREA-LEN, CHKPT-AREA,

COUNTER-LEN, COUNTERS.
IF TPSTATUS = 'XD'

THEN MOVE 1 TO CLOSE-SWITCH
ELSE IF TPSTATUS = 'QC'

THEN MOVE 1 TO END-SWITCH
ELSE IF TPSTATUS NOT EQUAL SPACES

CALL 'DFSOAER' USING
IOPCB, BAD-DC-CALL, CHKPT-ID, ERROPT.

CHKPT-RTN-END.
EXIT.

298 IMS/VS Application Programming

EXA03030
EXA03040 . '
EXA03050
EXA03060
EXA03070
EXA03080
EXA03090
EXA03100
EXA03110
EXA03120
EXA03130
EXA03140
EXA03150
EXA03160
EXA03170
EXA00440

(
...

(

(

) APPENDIX C. SAMPLE MESSAGE PROCESSING PROGRAM

This program processes the Primer sample parts data base.

)

)
I

Appendix C. Sample Massage Processing Program 299

PE4NINQ: PROCEDURE (C1PC_PTR,D1PC_PTR) OPTIONS (MAIN);

1* * * DEC l A RAT ION S

DCL 1 C1PC BASED (C1PC PTR),
2 FILL CHAR (10)7
2 STAT CHAR (2),

1 D1PC BASED (D1PC_PTR) LIKE C1PC;

DCL 1 INPUT_MESSAGE,
2 FILL1 CHAR (6),
2 TRANS CODE CHAR (9),
2 FEOOGCNR CHAR (6),
2 FILL2 CHAR (60),

lOUT MESSAGE,
2 OUT_LL INIT (111) FIXED BINARY (31),
2 OUT_ZZ INIT (0) FIXED BINARY (15),
2 OUT_DETAILS,

3 FE2PCNUM CHAR (6),
3 (FE2PCNAM,

FE2PCADR,
FE2PCCTY) CHAR (20),

3 FE2PCPCD CHAR (6),
2 OUT_ERROR CHAR (35),

1 SE2PCUST,
2 CUST DETAILS LIKE OUT_DETAILS,
2 FILL-CHAR (40),

1 CUSTOr'1ER SSA,
2 FILL1 CHAR (19) INIT ('SE2PCUST(FE2PCNUM ='),
2 SSA_CNUM CHAR (6),
2 FILL2 CHAR (1) INIT (')');

DCL «GU IN IT ('GU'),
ISRT INIT ('ISRT'),
ERROPT INIT ('1'» CHAR (4),

(MODNAME INIT ('OE4CNI01'),
BAD CALL INIT ('BAD CALL'» CHAR (8),

(THREE INIT (3),
FOUR lNIT (4» FIXED BINARY (31» STATIC,

(CIPC_PTR,D1PC_PTR) POINTER,
(PLITDLI, DFSOAER OPTIONS (ASSEMBLER» ENTRY;

/* * * PRO C E S S

READ_MESSAGE:

M E S SAG E S * * */

CALL PLITDLI (THREE, GU,C1PC_PTR, INPUT_MESSAGE);
IF C1PC.STAT = 'QC' THEN RETURN;
IF CIPC.STAT ~= , ,

THEN CALL DFSOAER (CIPC,BAD_CALL,INPUT_MESSAGE,ERROPT);
SSA_CNUM = FEOOGCNR;

/* * * REA D C U S TOM E R D A T A BAS E * * */
CALL PLITDLI (FOUR,GU,DIPC_PTR,SE2PCUST,CUSTOMER_SSA);
IF D1PC.STAT = , , THEN DO;

OUT_DETAILS = CUST_DETAILS;
OUT_ERROR = , 'i
END;

ELSE IF D1PC.STAT = 'GE' THEN DO;
OUT_ERROR = 'INVALID NUMBER - PLEASE RE-ENTER';
OUT DETAILS = , 'i
END;

ELSE CALL DFSOAER (D1PC,BAD_CALL,SE2PCUST,ERROPT);

/* * * INS E R T M E S SAG E * * */
CAll PlITDLI (FOUR,ISRT,C1PC_PTR,OUT_MESSAGE,MODNAME);
IF CIPC.STAT ~= , ,

THEN CALL DFSOAER (C1PC,BAD_CAll,OUT_MESSAGE,ERROPT);

300 IMS/VS Application Programming

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000

(
I

........ ~

(

(

\

:
,/

)
I

GO TO READ~MESSAGE;

END PE4NINQ;

-----------.---........... -------------

00074000
00075000
00076000

Appendix C. Sample Message Processing Program. 301

APPENDIX D. SAMPLE CONVERSATIONAL MPP

This program updates the price field of the root segment of a new
price for that part. There are two passes in the conversation:

• To start the conversation, the person at the terminal enters
the transaction code and the number of the part whose price
will be updated.

•

The progam retrieves the root segment for that part from the
parts data base by qualifying the SSA of the part number. The
program also saves the part number and the current price from
the root segment in the SPA, then sends an output message to
the terminal that gives the current price.

If the part number that was entered is invalid, the program
sends an error message to the terminal and ends the
conversation by inserting blanks in the area of the SPA that
contains the transaction code (the first 8 bytes).

The person at the terminal then enters the new price~ Using
the part number stored in the SPA, the program retrieves the
root segment and checks to see if the price in the SPA matches
the price in the data base segment. If the price in the data
base hasn't been updated, the program updates the data base
with the new price and sends a message to the terminal giving
the old and new prices. The program terminates the
conversation by inserting blanks in the transaction code area
of the SPA. The reason that the program has to check the price
during pass 2 is that you can't enqueue a data base record
across passes of a conversation. For example, someone at
another terminal could have entered the same transaction and
completed it before the first person entered the data for
pass.

302 IMS/VS Application Programming

(,

(

)

. _----------- ._----_. __ " --... _------_ _-_ - .. _ _-_ .. - ...

IDENTIFICATroN"DIVISION.
PROGRAM-ID. 'SAMPlE4'.
REMARKS.

THIS PROGRAM IS A CONVERSATIONAL MESSAGE PROCESSING
PROGRAM WHICH UPDATES THE PRICE FIELD IN THE ROOT
SEGMENT OF THE PARTS DATA BASE.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Dl/I FUNCTION CODES

77
77
77
77
77

FUNC
GU
GN
ISRT
REPL

PIC X(4).
PIC X(4) VALUE 'GU
PIC X(4) VALUE 'GN .
PIC X(4) VALUE 'ISRT'.
PIC X(4) VALUE 'REPl'.

* THIS SWITCH IS SET TO 1 IF A QC IS RETURNED WHEN * RETRIEVING THE NEXT MESSAGE.

77 END-SWITCH PIC X VALUE '0'.
88 NO-MORE-INPUT VALUE '1'.

* PARAMETERS USED BY DFSOAER STATUS CODE CHECKING ROUTINE

01 DFSOAER-FIElDS.
02 ERROPT PIC X(4) VALUE '1 .
02 BAD-DB-CAll PIC X(8) VALUE 'DBADCAll'.
02 BAD-DC-CAll PIC X(8) VALUE 'CBADCALl'.

* SCRATCH PAD AREA

01 SPA.
02 FIllER PIC X(6).
02 SPA-TRANCODE PIC XCS).

* THIS FIELD IS SET TO 1 DURING PASS 1 PROCESSING

02 PASS-COUNT PIC S9(3) COMPo
88 FIRST-PASS VALUE +0.

02 SPA-PARTNO PIC X(8).
02 SPA-OLD-PRICE PIC 9(6)V99.
02 FIllER PIC X(100).

01 PASS1-INPUT.
02 IN-ll1 PIC S9(3) COMPo
02 IN-ZZ1 PIC S9(3) COMPo
02 IN-PARTNO PIC xes).
02 FIllER PIC X(80).

01 PASS2-INPUT.
02 IN-ll2 PIC S9(3) COMPo
02 IN-ZZ2 PIC S9(3) COMPo
02 NEW-PRICE PIC 9(6)V99.
02 FILLER PIC X(100).

01 OUTPUT-MSG.
02 OUT-ll PIC S9(3) COMP VALUE +72.
02 OUT-ZZ PIC S9(3) COMP VALUE +0.
02 OUT-DATA.

04 OUT-PARTNO PIC X(8).
04 OUT-OLD-PRICE PIC Z(6)9.99.
04 OUT-NEW-PRICE PIC Z(6)9.99.
04 COMMENTS PIC X(40).

01 DB-IOAREA.
02 DB-PARTNO
02 FILLER
02- DB-PRICE
02 FIllER

PIC X(8).
PIC X(4S).
PIC 9(6)V99.
PIC X(19).

EXAOOII0
EXA00120
EXA00130
EXA00140
EXA00150
EXA00160
EXA00170
EXA00180
EXA00190
EXA00200
EXA00210
EXA00220
EXA00230
EXA00240
EXA002S0
EXA00260
EXA00270
EXA00280
EXA00290
EXA00300
EXA00310
EXA00320
EXA00330
EXA00340
EXA00350
EXA00360
EXA00370
EXA00380
EXA00390
EXA00400
EXA00410
EXA00420
EXA00430
EXA00440
EXA004S0
EXA00460
EXA00470
EXA00480
EXA00490
EXAOOSOO
EXAOOS10
EXAOOS20
EXAOOS30
EXAOOS40
EXAOOSSO
EXA00560
EXA00570
EXA00580
EXA00590
EXA00600
EXA00610
EXA00620
EXA00630
EXA00640
EXA00650
EXA00660
EXA00670
EXA00680
EXA00690
EXA00700
EXA00710
EXA00720
EXA00730
EXA00740
EXA00750
EXA00760
EXA00770
EXA00780
EXA00790
EXA00800
EXA00810
EXA00820
EXA00830

Append;x D. Sample Conversat;onal MPP 303

* SEGMENT SEARCH ARGUMENT

01 SSA.
02 FILLER PIC X(19) VALUE 'SEIPART (FE1PGPNR ='
02 SSA-PARTNO PIC X(8).
02 FILLER PIC X VALUE ')'.

LINKAGE SECTION.

01 IOPCB.
02 FILLER PIC X(10).
02 TPSTATUS PIC X(2).
02 FILLER PIC X(20).

01 DBPCB.
02 FILLER PIC X(10).
02 DBSTATUS PIC X(2).
02 FILLER PIC X(20).

PROCEDURE DIVISION.

* ON ENTRY IMS PASSES THE FOLLOWING PCB ADDRESSES:

* IOPCB - FOR RETRIEVING THE SPA AND INPUT MESSAGE SEGMENT * DBPCB - PARTS DATA BASE

ENTRY 'DLITCBL' USING IOPCB, DBPCB.
PERFORM READ-SPA THRU READ-SPA-END
PERFORM MAINLINE THRU MAINLINE-END

UNTIL NO-MORE-INPUT.
GOBACK.

MAINLINE.

* HERE WE CHECK A FIELD IN THE SPA TO SEE IF IT IS * BINARY ZEROES, WHICH INDICATES THAT THIS IS THE * FIRST PASS OF THE CONVERSATION.

IF FIRST-PASS PERFORM PASS1 THRU PASSI-END
ELSE PERFORM PASS2 THRU PASS2-END.

* AFTER PERFORMING THE NECESSARY DATA BASE PROCESSING * WE INSERT THE SCRATCH PAD AREA AND A MESSAGE TO * TO THE OPERATOR. * THEN WE RETRIEVE ANOTHER MESSAGE FROM THE INPUT MESSAGE * QUEUE. IF A QC STATUS CODE IS RECEIVED, A SWITCH * IS SET ON, AND THE PROGRAM WILL TERMINATE. * OTHERWISE THE MAINLINE LOOP IS REPEATED.

PERFORM ISRT-SPA THRU ISRT-SPA-END
PERFORM ISRT-MSG THRU ISRT-MSG-END
PERFORM READ-SPA THRU READ-SPA-END.

MAINLINE-END.
EXIT.

* PASS 1 PROCESSING

PASS1.
* READ THE INPUT MESSAGE CONTAINING THE PART NUMBER

PERFORM READ-PASS! THRU READ-PASSI-END.
MOVE SPACES TO OUT-DATA

* SET UP THE SSA AND FUNCTION CODE FOR THE DATA BASE CALL
MOVE IN-PARTNO TO SSA-PARTNO, OUT-PARTNO
MOVE GU TO FUNC.
PERFORM READ-DB THRU READ-DB-END

* IF THE PART NUMBER IS AN INVALID KEY, SET UP AN * ERROR MESSAGE FOR THE OPERATOR, AND BLANK THE TRANSACTION * CODE IN THE SPA TO TERMINATE THE CONVERSATION

304 IMS/VS Application Programming

EXA00840
EXA 0 08-5-0
EXA00860
EXA00870
EXA00880
EXA00890
EXA00900
EXA00910
EXA00920
EXA00930
EXA00940
EXA00950
EXA00960
EXA00970
EXA00980
EXA00990
EXA01000
EXA01010
EXA01020
EXAOI030
EXAOI040
EXAOI050
EXAOI060
EXAOI070
EXAOI080
EXAOI090
EXAOII00
EXA01110
EXA01120
EXA01130
EXA01140
EXA01150
EXA01160
EXA01170
EXAOl180
EXAOl190
EXA01200
EXA01210
EXA01220
EXA01230
EXA01240
EXA01250
EXA01260
EXA01270
EXA01280
EXA01290
EXA01300
EXA01310
EXA01320
EXA01330
EXA01340
EXA01350
EXA01360
EXA01370
EXA01380
EXA01390
EXA01400
EXA01410
EXA01420
EXA01430
EXA01440
EXA01450
EXA01460
EXA01470
EXA01480
EXA01490
EXA01500
EXA01510
EXA01520
EXA01530
EXA01540
EXA01550
EXA01560

(
\ -',

(

(
\..

)

)

IF DBSTATUS = 'GE'
MOVE 'NOT ON FILE' TO COMMENTS
MOVE SPACES TO SPA-TRANCODE

----_ __ ._--------

* IF THE PART NUMBER IS A VALID KEY, STORE THE KEY AND * THE CURRENT PRICE IN THE SPA, AND CHANGE THE SPA * INDICATOR FIELD TO 1, TO INDICATE THAT PASS 1 HAS BEEN * SUCCESSFUllY COMPLETED.

ELSE MOVE DB-PRICE TO SPA-OLD-PRICE, OUT-OLD-PRICE
MOVE IN-PARTNO TO SPA-PARTNO
MOVE +1 TO PASS-COUNT
MOVE '·ENTER NEW PRICE' TO COMMENTS.

PASS1-END.
EXIT.

* PASS 2 PROCESSING

PASS2.

* READ THE INPUT MESSAGE

PERFORM READ-PASS2 THRU READ-PASS2-END.

* SET UP THE SSA AND FUNCTION CODE FOR THE DATA BASE CAll * AND MOVE THE OLD PRICE TO THE OUTPUT MESSAGE AREA

MOVE SPACES TO OUT-DATA
MOVE SPA-PART NO TO SSA-PARTNO, OUT-PARTNO
MOVE SPA-OLD-PRICE TO OUT-OLD-PRICE
MOVE'GHU' TO FUNC
PERFORM READ-DB THRU READ-DB-END

* IF THE DATA BASE RECORD HAS BEEN DELETED SINCE PASS 1 * (BY SOME OTHER TRANSACTION TYPE), SEND AH ERROR * MESSAGE TO THE OPERATOR

IF DBSTATUS = 'GE'
MOVE 'NOT ON FILE' TO COMMENTS

* OTHERWISE UPDATE THE DATA BASE AND MOVE THE HEW * PRICE TO THE OUTPUT MESSAGE AREA

ELSE IF SPA-OLD-PRICE = DB-PRICE
THEN MOVE HEW-PRICE TO DB-PRICE, OUT-NEW-PRICE

PERFORM UPDATE-DB THRU UPDATE-DB-END
MOVE ' PRICE CHANGED' TO COMMENTS

ELSE MOVE ' PRICE ALREADY CHANGED' TO COMMENTS
MOVE DB-PRICE TO OUT-NEW-PRICE.

* BLANK THE TRANSACTION CODE IN THE SPA TO TERMINATE THE * CONVERSATION AT THE END OF THIS PASS

MOVE SPACES TO SPA-TRANCODE.

PASS2-END.
EXIT.

* THE FOllOWING SUB ROUTINES PERFORM THE DlI CAllS * BUT DO NO APPLICATION PROCESSING OTHER THAN * CHECKING FOR VALID STATUS CODES.

READ-SPA.
CAll 'CBlTDlI' USING GU, IOPCB, SPA.
IF TPSTATUS = 'QC' MOVE '1' TO END-SWITCH
ELSE IF TPSTATUS NOT EQUAL SPACES

THEN CAll 'DFSOAER' USING
IOPCB, BAD-DC-CAll, SPA, ERROPT.

READ-SPA-END.
EXIT.

READ-PASS1.

EXA01570
EXA01580
EXA01590
EXA01600
EXA01610
EXA01620
EXA01630
EXA01640
EXA01650
EXA01660
EXA01670
EXA01680
EXA01690
EXA01700
EXA01710
EXA01720
EXA01730
EXA01740
EXA01750
EXA01760
EXA01770
EXA01780
EXA01790
EXA01800
EXA01810
EXA01820
EXA01830
EXA01840
EXA01850
EXA01860
EXA01870
EXA01880
EXA01890
EXA01900
EXA01910
EXA01920
EXA01930
EXA01940
EXA01950
EXA01960
EXA01970
EXA01980
EXA01990
EXA02000
EXA02010
EXA02020
EXA02030
EXA02040
EXA02050
EXA02060
EXA02070
EXA02080
EXA02090
EXA02100
EXA02110
EXA02120
EXA02130
EXA02140
EXA02150
EXA02160
EXA02170
EXA02180
EXA02190
EXA02200
EXA02210
EXA02220
EXA02230
EXA02240
EXA02250
EXA02260
EXA02270
EXA02280
EXA02290

Appendix D. Sample Conversational MPP 305

CALL 'CBLTDLI' USING GN, IOPCB, PASSI-INPUT.
IF TPSTATUS NOT EQUAL SPACES

CALL 'DFSOAER' USING
IOPCB, BAD-DC-CALL, PASSI-INPUT, ERROPT.

READ-PASSI-END.
EXIT.

READ-PASS2.
'CALL 'CBLTDLI' USING GN, IOPCB, PASS2-INPUT.

IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

IOPCB, BAD-DC-CALL, PASS2-INPUT, ERROPT.
READ-PASS2-END.

EXIT.

READ-DB.
CALL 'CBLTDLI' USING FUNC, DBPCB, DB-IOAREA, SSA.
IF DBSTATUS = SPACES OR 'GE'
THEN NEXT SENTENCE
ELSE CALL 'DFSOAER' USING

DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
READ-DB-END.

EXIT.

UPDATE-DB.
CALL 'CBLTDLI' USING REPL, DBPCB, DB-IOAREA.
IF DBSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
UPDATE-DB-END.

EXIT.

ISRT-SPA.
CALL 'CBLTDLI' USING ISRT, IOPCB, SPA.
IF TPSTATUS NOT EQUAL SPACES
THEN CALL ~DFSOAER' USING

IOPCB, BAD-DC-CALL, SPA, ERROPT.
ISRT-SPA-END.

EXIT.

ISRT-MSG.
CALL 'CBLTDLI' USING ISRT, IOPCB, OUTPUT-MSG.
IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

IOPCB, BAD-DC-CALL, OUTPUT-MSG, ERROPT.
ISRT-MSG-END.

EXIT.
--~-----------------

306 IMS/VS Application Programming

EXA02300
EXA02310
EXA02320
EXA02330
EXA02340
EXA02350
EXA02360
EXA02370
EXA02380
EXA02390
EXA02400
EXA02410
EXA02420
EXA02430
EXA02440
EXA02450
EXA02460
EXA02470
EXA02480
EXA02490
EXA02500
EXA02510
EXA02520
EXA02530
EXA02540
EXA02550
EXA02560
EXA02570
EXA02580
EXA02590
EXA02600
EXA02610
EXA02620
EXA02630
EXA02640
EXA02650
EXA02660
EXA02670
EXA02680
EXA02690
EXA02700
EXA02710
EXA02720
EXA02730
EXA02740
EXA02750
EXA02760

I

/--

"

(

(
"

" I
I

)

--------. ------ ._-... _._._._--_ .. - ----_ _._ .. _- -----

APPENDIX E. SAMPLE STATUS CODE ERROR ROUTINE (DFSOAERJ

This sample status code error routine is provided as an example of
an error routine. All of the sample programs call it. It is part
of the Primer function.

Appendix E. Sample Status Code Error Routine (DFSOAER) 307

**
* IMS/VS PRIMER SAMPLE STATUS CODE ERROR ROUTINE
**
* **

TITLE 'IMS/VS PRIMER SAMPLE PCB DSECT MACRO'
**
*

. *
&NM

.L100
&NM
.LOOO

.*
· *
.*
.*
.DBOOO
.*
&NM
&NM.DBDN
&NM.LEVL
&NM.STAT
&NM.PROC
&NM.RESV
&NM.SEGN
&NM.KFBL
&NM.NSSG
&NM.KFBA

.*
· * .*
· * .DCOOO
· * &NM
&NM.LTNM
&NM.RESV
&NM.STAT
&NM.PRFX
&NM.DATE
&NM.TIME
&NM.MSEQ
&NM.MODN

MACRO
MOOPCB &TYPE=DB,

&PCB=DIPC

LCLC
SETC

&NM
'D1PC'

PCB TYPE TO BE GENERATED (DB OR DC)
DSECT NAME,MAX 4 CHAR, ALSO USED,
AS FIRST 4 CHAR OF PCB SUB FIELDS .

AIF (T'&PCB EQ 'O').LOOO
AIF (K'&PCB LE 4).L100 CORRECT LENGTH?
MNOTE *,' PCB= OPERAND IS TOO LONG, TRUNCATED TO 4CHAR'
ANOP
SETC '&PCB'(1,4)
ANOP
AIF
AIF

('&TYPE' EQ 'DB').DBOOO
('&TYPE' EQ 'DC').DCOOO

MNOTE *,'TYPE= OPERAND IS INVALID, "DB" ASSUMED'

ANOP

DSECT
DS CL8
DS CL2
DS CL2
DS CL4
DS CL4
DS CL8
DS F
DS F
DS OC
MEXIT

ANOP

DSECT
DS CL8
DS CL2
DS CL2
DS OCL12
DS PL4
DS PL4
DS F
DS CL8
MEXIT
MEND

DATABASE PCB:

LAYOUT OF A DL/I DATABASE PCB
DATABASE NAME
SEGMENT HIERARCHY LEVEL
STATUSCODE
PROCESSING OPTIONS
RESERVED
SEGMENTNAME FEEDBACK
LENGTH OF KEY FEEDBACK AREA
NUMBER OF SENSITIVE SEGMENTS
KEY FEEDBACK AREA

DC - PCB:

LAYOUT OF A DC-PCB
SOURCE/DESTINATION LTERM NAME
RESERVED
STATUSCODE
INPUTPREFIX
CURRENT DATE
CURRENT TIME
INPUT MESSAGE SEQUENCE NUMBER
MESSAGE FORMAT OUTPUT DESCRIPTION NAME

* **
* END OF IMS/VS PRIMER SAMPLE MACROS
**
* LCLC &PGMID

LCLC &INVOMAX
&PGMID SETC 'DFSOAER'
&INVOMAX SETC '20' DEFAULT VALUE FOR MAX. NUMBER OF CALLS
* **

TITLE 'IMS/VS PRIMER SAMPLE STATUS CODE ERROR ROUTINE &PGMID'
~*************
* * *
308 IMS/VS Application Progr~mming

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000

*00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000

(

(,

\

)

· ._---._------._._.- ------------ .. _-_ _---_._. -----

*
* . *
*

FUNCTION: TO BE CALLED BY IMS/VS APPLICATION PROGRAMS
IF AN UNEXPECTED STATUS CODE WAS RECEIVED.

PROCESS: PRINT ESSENTIAL PCB INFORMATION,

ABEND:

INPUT:

OUTPUT

A CALL ID AND UP TO NINE PROGRAM AREAS.
A DDNAME OF DOOAERR IS REQUIRED.
RETURN TO CALLER IS MADE IF REQUESTED,
AND NO ERRORS FOUND.

MESSAGE DFS3125A IS ISUED IF REQUESTED BY CALLER.
DEPENDENT UPON THE REPLY, THE ROUTINE
WILL FORCE EITHER A PROGRAM LOOP, AN ABEND,
OR RETURN TO CALLER.

WE WILL ISSUE USER ABEND 3400 IF:
1. REQUESTED BY USER
2. MAX NUMBER OF INVOCATIONS IS REACHED,

SET BY GLOBAL &INVOMAX
3. ERRORS IN CALL PARAMETERS ARE DETECTED

UPON ENTRY R1 MUST POINT TO PARMLIST:
WITH ADDRESSES OF AT LEAST 4 PARMS:

1. ACPCB) EITHER A DB- OR A DC-PCB
2. ACIDENTIFIER(8 BYTES) OF THE CALL)

WHERE D DENOTES A DB-CALL
AND C DENOTES A DC-CALL

3. A(AREA1) WE WILL DISPLAY 76 CHARACTERS
4. A(OPTIONFIELDS) A 4BYTE FIELD WHERE

BYTE 1: C'l' = ABEND, NO RETURN
THIS IS NORMAL CASE.

C'O' = RETURN TO CALLER
THIS ENABLES MULTIPLE
INVOCATIONS, E.G .
FOR TESTING PURPOSES
IN THAT CASE A 'FINAL'
INVOCATION IS NEEDED:

C'2' = FINAL INVOCATION
PLUS RETURN TO CALLER.

C'3' = MESSAGE DFS3125A
REQUESTED BY CALLER

BYTE 2-4: NOT USED
5-12. A(AREA2) ... A(AREA9) OPTIONAL

ONLY 76 CHARACTERS OF EACH AREA
WILL BE LISTED

FOR EACH PRINT REQUEST, ESSENTIAL PCB INFORMATION
IS PRINTED AND UP TO 9 USER AREAS.

MESSAGES: DFS3125A IF REQUESTED BY CALLER

OS MACRO'S USED: OPEN/CLOSE/DCB/PUT/ABEND

* REGISTER USAGE:
* --
* * * * * * * * * * * * *

REGISTER

o
1
2
3
4
8
9
11
13
14
15

EQUATED

RO
Rl
R2
R3
R4
DBPCBR
DBPCBR
BASE1B
R13
R14
R15

USAGE

OS/VS LINKAGE
OS/VS LINKAGE
WORK
WORK
WORK
DB PCB REGISTER
DC PCB REGISTER
PROGRAM BASE REGISTER
PROGRAM SAVE AREA ADDRESS
OS/VS LINKAGE
OS/VS LINKAGE

*
**************~***

00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000

Appendix E. Sample Status Code Error Routine (DFSOAER) 309

&PGMID

IDLEN
*
* *

* *

EJECT
CSECT
B
DC
DC
DC
EQU

STM

IDLENCO,R15)
CL8'&PGMID'
CL8'&SYSDATE'
CL8'&SYSTIME'
*-&PGMID

14,11,12(13)

BALR BASE1,O
USING *,BASEI

ST
LR
lA
ST
SR

R13,SAVR+4
RIO,R13
R13,SAVR
RI3,8CRIO)
R15,R15

BRANCH AROUND ID
PROGRAM ID.

SAVE REGISTERS, INCLUDING PL1'S

PROVIDE A BASE REGISTER:

CHAIN OLD AND NEW SAVEAREAS

CLEAR

EJECT
**
MAIN EQU *
**
* PICK UP PARAMETERS RECEIVED:
* --------------------------------------

* * * *

* * *

*

MVC
MVC
MVC
MVC
MVI
lR

L
ClI

. BE

ClI
BH
Bl
MVI

PARMIADR,00CR1)
PARM2ADR,04CR1)
PARM3ADR,08CR1)
PARM4ADR,12CR1)
PARM4ADR,X'00'
R3,Rl

R2,PARM4ADR
OCR2),C'3'
MAIN400

SWITCH,C'I'
ABEND2
MAINI00
SWITCH,C'O'

REMOVE HIORDER

CHECK FOR DFS3125 MESSAGE REQUEST

GET CONTROL BYTE
IS IT THREECMESSAGE REQUEST) ?
IF SO, PROCESS IN MAIN400

CHECK FIRST TIME SWITCH

PGM RETURNED AFTER FINAL INVOCATION
OKE, PROCEED
SET FIRST TIME SWITCH OFF

* OPEN DCB IF FIRST TIME THROUGH
* -------------------------OPEN CDOOAERR,COUTPUT»

* * DETERMINE WHAT TO DO:
* MAINI00 EQU

*

ClI
BE
BH
l
lTR
BZ
ClI
BNE
BAl
B

MAIN400 EQU
BAl
l
lA
ST
ClC

* OCR2),C'2'
MAIN900
ABEND
R2,PARM2ADR
R2,R2
ABEND
OCR2),C'D'
MAIN500
RI4,PRTDB
END

FINAL INVOCATION ?

UNKNOWN CONDITION
ADR OF CAllID
TEST IT
IF 0, INVALID CALL, ABEND
IS IT A DB PCB ?

PRINT DB-PCB FIELDS

* MESSAGE REQUESTED
RI4,MESSAGE
R4,INVOKECT
R4,ICR4) ADD ONE TO NUMBER OF INVOCATIONS
R4,INVOKECT
INVOKECT,INVOKMAX

310 IMS/V5 Application Programming

00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160QOO
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000
00186000
00187000
00188000
00189000
00190000
00191000
00192000
00193000
00194000
00195000
00196000
00197000
00198000
00199000
00200000
00201000
00202000
00203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000
00214000
00215000
00216000
00217000
00218000
00219000

(
\ ...

(
"

"
)

\
\

/

----------------- ------- ---------------------------

BE ABEND2 ABEND IF MAX NUMBER IS REACHED
B RETURN

*
MAIN500 EQU * CLI 0(R2),C'C' IS IT A DC PCB ?

BNE ABEND INVALID CALL-ID, ABEND
BAL R14,PRTDC PRINT DC-PCB FIELDS
B END

*
MAIN900 EQU *

MVI SWITCH,C'2' PROVIDE ABEND IF HE COMES BACK
PUT DOOAERR,ENDLINE PRINT FINAL LINE
CLOSE (DOOAERR) CLOSE OUTPUT-DCB
B RETURN

* **
END EQU *
**
*

ABEND
ABEND2

CLC
BE
L
CLI
BE
CLOSE
ABEND

INVOKECT,INVOKMAX
ABEND
R2,PARM4ADR
0(R2),C'0'
RETURN
(DOOAERR)
3400,DUMP

MAXIMUM NR OF INVOCATIONS
IF SO , ABEND
4TH PARM WAS'OPTIONS'
RETURN REQUESTED?
IF YES, CONTINUE
CLOSE DCB

REACHED ?

* **
RETURN EQU * RETURN TO CALLER
**
* L R13,SAVR+4

LM 14,11,12(R13)
SR R15,R15
BR R14

* **
TITLE '&PGMID: PRINT PCB-FIELDS -- DB-PCB'

**
* **
PRTDB EQU * DB-PCB FIELDS TO BE PRINTED
**
* ST
*
*
*

L
LTR
BZ
USING

*
PRTDBIOO EQU
*
*

MVC
L
MVC

L
LA
ST
CVD
UNPK
01
MVC

* PUT
*
*
*
PRTDB200 EQU

R14,SAVER14 RETURN ADDR

FIND PCB TO BE USED:

DBPCBR,PARM1ADR ADR OF PCB
DBPCBR,DBPCBR WAS IT SUPPLIED?
END INVALID, SKIP PROCESSING
DBPC,DBPCBR ADDRESSABILITY OF PCB FIELDS

BUILD 1ST LINE AND DISPLAY IT

LN1HEAD(2),=C'DB'
R2,PARM2ADR ADR OF CALLID
LN1IDEN(8),OCR2) CALL IDENTIFIER

R4,INVOKECT
R4,1(R4) INCREMENT
R4,INVOKECT UPDATE COUNT
R4,WORK2
WORKl(8),WORK2(8)
WORK1+07,X'FO'
LN1COUNT(4),WORK1+4

DOOAERR,LINEI

BUILD 2ND LINE AND DISPLAY IT

00220000
0022100-0
00222000
00223000
00224000
00225000
00226000
00227000
00228000
00229000
00230000
00231000
00232000
00233000
00234000
00235000
00236000
00237000
00238000
00239000
00240000
00241000
00242000
00243000
00244000
00245000
00246000
00247000
00248000
00249000
00250000
00251000
00252000
00253000
00254000
00255000
00256000
00257000
00258000
00259000
00260000
00261000
00262000
00263000
00264000
00265000
00266000
00267000
00268000
00269000
00270000
00271000
00272000
00273000
00274000
00275000
00276000
00277000
00278000
00279000
00280000
00281000
00282000
0"0283000
00284000
00285000
00286000
00287000
00288000
00289000
00290000
00291000
00292000

Appendix E. Sample Status Code Error Routine (DFSOAER) 311

*

MVC LN2DBDNCDBDNLEN),DBPCDBDN
MVC LN2LEVLCLEVLLEN),DBPCLEVL
MVC LN2STATCSTATLEN),DBPCSTAT
MVC LN2PROCCPROCLEN),DBPCPROC
MVC LN2SEGNCSEGNLEN),DBPCSEGN
L R4,DBPCKFBL
CVD R4,WORK2
UNPK WORKl(8),WORK2C8)
01 WORKl+07,X'FO'
MVC LN2KFBL(4),WORK1+4
L R4,DBPCNSSG
CVD R4,WORK2
UNPK WORKI(8),WORK2C8)
01 WORKl+07,X'FO'
MVC LN2NSSG(4),WORK1+4
PUT DOOAERR,LINE2

PRTDB300 EQU

* BUILD 3RD LINE AND DISPLAY IT
* L

LTR
BZ
C
BNH
LA

PRTDB310 EQU
BCTR
EX

PRTDB320 EQU
PUT
MVC
~VC

* * * PRTDB009 L
LA
LA

PRTDBOIO STC
MVC
PUT
CLI
BNE
LA

* *

L
LA
B

PRTDB900 EQU
L
BR

MOVEKFB MVC
EJECT

R4,DBPCKFBL
R4,R4
PRTDB320
R4,=F'73'
PRTDB310
R4,73

* R4,0
R4,MOVEKFB
* DOOAERR,LINE3

LENGTH OF KFB DATA
ZERO ?
SKIP
EXCEED MAX LENGTH
NO - OK
YES- SET MAX

MIN 1 FOR EX
MOVE KFB DATA

FOR 1 PRINTLINE

LN3KFBA(1),SPACES
LN3KFBA+1(72),LN3KFBA

CLEAR IT
AFTER USAGE

PRINT AREAl AND OPTIONALS

R2,PARM3ADR ADDRESS OF AREAl
R4,241CO,0) LOAD 'Fl' IN R4
R3,l2CO,R3)
R4,LINEHUM SET AREA NUMBER
LN4AREA(74),OCR2) GET DATA
DOOAERR,LINE4
OCR3),X'00' LAST PARAMETER?
PRTDB900 READY
R3,4(0,R3) STEP TO NEXT AREA ADDRESS
R2,OCR3) LOAD AREA ADDRESS
R4,1CO,R4) ADD ONE TO AREA NUMBER
PRTDB010

READY:

* R14,SAVER14 RETURN ADDRESS
R14 RETURN
LN3KFBA(1),DBPCKFBA

* **
PRTDC EQU * DC - PCB FIELDS TO BE PRINTED
**
*
* * * *

* * *

ST R14,SAVER14

L DCPCBR,PARM1ADR
LTR DCPCBR,DCPCBR
BZ ABEND
USING DCPC,DCPCBR

RETURN ADDRESS

FIND PCB TO BE USED:

GET PCB ADDRESS
WAS IT SUPPLIED?
IF NOT GOTO ABEND.

BUILD 1ST LINE AND DISPLAY IT

MVC LN1HEAD(2),=C'DC' IT IS A DC-PCB

312 IMS/VS Application Programming

00293000
00294000
00295000
00296000
00297000
00298000
00299000
00300000
00301000
00302000
00303000
00304000
00305000
00306000
00307000
00308000
00309000
00310000
00311000
00312000
00313000
00314000
00315000
00316000
00317000
00318000
00319000
00320000
00321000
00322000
00323000
00324000
00325000
00326000
00327000
00328000
00329000
00330000
00331000
00332000
00333000
00334000
00335000
00336000
00337000
00338000
00339000
00340000
00341000
00342000
00343000
00344000
00345000
00346000
00347000
00348000
00349000
00350000
00351000
00352000
00353000
00354000
00355000
00356000
00357000
00358000
00359000
00360000
00361000
00362000
00363000
00364000
00365000

(
\..,

(

)

)

)

l
MVC
l
lA
ST
CVD
UNPK
01
MVC
PUT

R2,PARM2ADR ADDR OF IDENTIFIER
lN1IDEN(8),OCR2) INTO OUTPUTlINE
R4,INVOKECT NR OF TIMES INVOKED
R4,1(R4) UP BY 1
R4,INVOKECT UPDATE COUNTER FIELD
R4,WORK2
WORK1(8),WORK2(8)
WORK1+07,X'FO'
lN1COUNT(4),WORK1+4 INTO OUTPUT lINE
DOOAERR,lINE1 DISPLAY IT

BUILD DC PCB lINE6

00366000
00367000
00368000
00369000
00370000
00371000
00372000
00373000
00374000
00375000
00376000
00377000
00378000
00379000

MVC
MVC
MVC
ClC
BNE
MVC
MVC
MVC
PUT
B
UNPK
01
UNPK
01

lN6lTNM,DCPClTNM
lN6STAT,DCPCSTAT
lN6MODN,DCPCMODN
DCPCDATE,SPACES
PRTDC009
LN6DATE,SPACES
LN6TIME,SPACES
LN6MSEQ,SPACES
DOOAERR,lINE6

IS IT A DUMMY/ALTERNATE PCB?
00380000
00381000
00382000

PRTDC009

l
CVD
UNPK
01
PUT
B

PRTDB009 GO
LN6DATE,DCPCDATE
LN6DATE+7,X'FO'
LN6TIME,DCPCTIME
LN6TIME+7,X'FO'
R4,DCPCMSEQ
R4,WORK2
LN6MSEQ,WORK2(8)
LN6MSEQ+7,X'FO'

PRINT PROGRAM AREAS

DOOAERR,lINE6
PRTDB009 GO PRINT PROGRAM AREAS

00383000
00384000
00385000
00385500
00386000
00387000
00388000
00389000
00390000
00391000
00392000
00393000
00394000
00395000
00396000

* **
00397000
00398000
00399000
00400000
00401000

MESSAGE EQU * ISSUE DFS3125A MESSAGE
**
*

lOOP

MVC
WTOR

WAIT
ClC
BE
ClC
BE
ClC
BE
B

WTORECB,=F'O' CLEAR ECB
'DFS3125A PRIMER SAMPLE TEST, REPLY CONT,
R CANCEL JOB',REPlY,5,WTORECB,ROUTCDE=11
ECB=WTORECB
REPlY(4),=C'CONT'
RETURN RETURN TO CAllER
REPlY(5),=C'ABEND'
ABEND2 ABEND
REPlY(4),=C'lOOP'
lOOP lOOP
MESSAGE WRONG REPLY TRY AGAIN

~BM10815 00401500
lOOP, ABEND, 0*00402000

00403000
00404000
00405000
00406000
00407000
00408000
00409000
00410000
00411000

TITLE '&PGMID: PRINT PCB-FIELDS -- EQUATES,CONSTANTS,AREAS'
**

00412000
00413000
00414000
00415000
00416000
00417000
00418000

* CONSTANTS, EQUATES AND DATA-AREAS
**
* REGISTER EQUATES:
* ---------------------------------------RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R~· EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
DBPCBR EQU 8
DCPCBR EQU 9
R10 EQU 10
BASEl EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* *

00419000
00420000
00421000
00422000
00423000
00424000
00425000
00426000
00427000
00428000
00429000
00430000
00431000
00432000
00433000
00434000
00435000
00436000

Appendix E. Sample Status Code Error Routine (DFSOAER) 313

DS OD 00437000 (WORK1 DC D'O' 00438000
WORK2 DC D'O' 00439000 \ ...

DEVT DC 2ACO) 00440000
DDNMFLO DC CL8'DOOAERR' 00441000
WTORECB DC F'O' 00442000
SAVR DC 20ACO) 00443000
SAVER14 DC ACO) 00444000
PARM1ADR DC ACO) 00445000
PARM2ADR DC ACO) 00446000
PARM3ADR DC ACO) 00447000
PARM4ADR DC ACO) 00448000
INVOKMAX DC AC&INVOMAX) MAXIMUM NR OF INVOCATIONS 00449000
INVOKECT DC ACO) COUNTER FIELD 00450000
SWITCH DC C'l' FIRST TIME SWITCH 00451000
REPLY DS CL5 MESSAGE REPLY FIELD 00452000

EJECT 00453000
LINE1 EQU * 00454000

DC CL01'1' ASA 00455000
LN1HEAD DC CL24'DB-PCB FIELDS PRINTOUT' 00456000

DC CL04'ID= , 00457000
LN1IDEN DC CL08' , CALL IDENTIFIER 00458000

DC CL02' , 00459000
DC CL06'COUNT=' 00460000

LN1COUNT DC CL04' , 00461000
DC CL31' , FILLER 00462000

* 00463000
LINE2 EQU * 00464000

DC CL01' , ASA 00465000
DC CL06' DBDN=' 00466000

LH2DBDH DC CL08' , 00467000
DC CL06' lEVL=' 00468000

LN2LEVL DC CL02' , 00469000
DC CL06' STAT=' 00470000

LN2STAT DC CL02' , 00471000
DC . CL06' PROC=' 00472000 (LN2PROC DC CL04' , 00473000
DC CL06' SEGN=' 00474000

LN2SEGN DC CL08' , 00475000
DC CL06' KFBL=' 00476000

LN2KFBL DC CL04' , 00477000
DC CL06' NSSG=' 00478000

LN2NSSG DC CL04' , 00479000
DC CL05' , FILLER 00480000

* 00481000
LINE3 EQU * 00482000

DC CL01' , ASA 00483000
DC CL06' KFBA=' 00484000

LN3KFBA DC CL73' , 00485000
* 00486000
LINE4 EQU * 00487000

DC CL01' , 00488000
DC CL05' AREA' 00489000

LINENUM DC CL02' : , 00490000
LN4AREA DC CL74' , 00491000
* 00492000
SPACES DC CL8' , 00493000
LINE6 EQU * 00494000

DC CLOl' , 00495000
DC CL08' LTNAME=' 00496000

LN6LTNM DC CL08' , 00497000
DC CL06' STAT=' 00498000

LN6STAT DC CL02' , 00499000
DC CL06' DATE=' 00500000

LN6DATE DC CL08' , 00501000
DC CL06' TIME=' 00502000

LN6TIME DC CL08' , 00503000
DC CL06' SEQ=' 00504000

LN6MSEQ DC CL08' , 00505000
DC CL05' MOO=' 00506000 (LN6MODN DC CL08' , 00507000

ENDLINE DC CL81'0***~*NO MORE ERROR PRINTS REQUESTEO*****' 00508000
* 00509000

314 IMS/VS Application Programming

)

'\
)

.,
\

)

-----"-"-"----" "---"--" "------------------------

LTO-RG
EJECT

*** * D C B

DOOAERR DCB DSORG=PS,LRECL=80,RECFM=FA,MACRF=(PM),

BLKSIZE=80,DDNAME=DOOAERR
EJECT

*** * DSECTS

* * LEVLLEN EQU 2
STATLEN EQU 2
PROCLEN EQU 4
SEGNLEN EQU 8
KFBLLEN EQU 4
NSSGlEN EQU 4
DBDNlEN EQU 8
LTNMlEN EQU 8
DATELEN EQU 4
TIMELEN EQU 4
MSEQlEN EQU 4
MODNlEN EQU 8

* MOOPCB TYPE=DB,PCB=DBPC
MOOPCB TYPE=DC,PCB=DCPC
END _

*********************~** * END IMS/VS PRIMER SAMPLE STATUS ERROR PRINT ROUTINE DFSOAER
***********************************~**********************************

00510000
00511000
00512000
00513000
00514000

C00515000
00516000
00517000
00518000
00519000
00520000
00521000
00522000
00523000
00524000
00525000
00526000
00527000
00528000
00529000
00530000
00531000
00532000
00533000
00534000
00535000
00536000
00537000
00538000
00539000
00540000
00541000

Appendix E. Sample Status Code Error Routine (DFSOAER) 315

APPENDIX F. USING THE DL/I TEST PROGRAM (DFSDDLTO)

CONTROL STATEMENTS

STATUS STATEMENT

In the control statement formats below, the "$" indicates those
fields which are usually filled in; the absence of the "$"
indicates that the field can be left blank and the default used.
If position 1 is left blank on any control statement, the
statement type defaults to the prior statement type.

The STATUS statement establishes print options and determines the
PCB that subsequent calls are to be issued against. '

The format of the STATUS statement is as follows:

Position contents

$ 1 = S identifies this as a STATUS statement.

2 = Output device option.

Blank Use PRiNTDD when in a DLI region;
use I/O PCB in the MSG region.

1 - Use PRINTDD in MSG region if the
DD statement is provided; otherwise,
use I/O PCB.

A - Same as if 1, and disregard all other
fields in this STATUS statement.

3 = Print comment option.

Blank - Do not print.
1 - Print always.
2 - Print only if compare done

and equal.

4 = Not used.

5 = Print call option.

1 - Print always
2 - Print only if compare done

and equal.

6 = Not used.

7 = Print compare option.

Blank - Do not print.
1 - Print always.
2 - Print only if compare done

and equal.

8 = Blank.

9 = Print PCB option.

Blank - Do not print.
1 - Print always.
2 - Print only if compare done

and equal.

10 = Not used.

(
\
\

'-

(

\.

(

)

\
)

11

12

13

14

16

24

15

23

25 - 28

29 - 80

=

=

--

=

=

=

=

=

---_. -""._._--------------

Print segment option.

Blank - Do not print.
1 - Print always.
2 - Print only if compare done

and unequal.

EBCDIC characters are printed as they appear
in the segment. Hexadecimal characters
are displayed in two lines with the high-order
four bits printed above the low-order four
bits. The low-order four bits of data are
printed on the same line as the EBCDIC data.
Hexadecimal data is read from top to bottom,
left to right.

Set task time.

1 - Time each call.
2 - Time on unequal compares.
5 - Time and BFSP trace each call.
6 - Time and BFSP trace on unequal compares.

Set real time.

1 - Time each call.
2 - Time on unequal compares.
5 - Time and BFSP trace each call.
6 - Time and BFSP trace on unequal compares.

Reserved.

DBD name.

This determines the PCB against which subsequent
calls will be issued; hence, it must be a DBD
name given in one of the PCBs in the PSB. The
default PCB is the first data-base-PCB in the
PSB. If positions 16 through 23 are blank, the
current PCB is used. If positions 16 through
18 are blank, and positions 19 through 23 are
not blank, then the nonblank positions are
interpreted as the relative number of the desired
data-base-PCB in the PSB. The number must be
right-justified to position 23, but need not
contain leading zeros. The user must insure
that the relatlve DB PCB exists in the PSB
because no checks are made to insure that
a proper PCB is obtained in this manner.

Print status option.

Blank - Use orint option and print this
statement.

1 - Do not use print option in this
statement.

2 - Do not print this STATUS statement.
3 - Do not print this STATUS statement or

use print option.

PCB processing option. This is optional and is
only used when two PCBs have the same DBD name
but different processing options. If nonblank,
it is used in addition to the DBD name in
positions 16 through 23 to select which PCB in
the PSB to use. This must appear as it does in
the processing option of the PCB desired.

Not used.

If no STATUS statement is read, the default PCB is the first DB
PCB in the PSB, and the print status option is 2. New STATUS

Appendix F. Using the DL/I Test Program (DFSDDLTO) 317

COMMENTS STATEMENT

Unconditional

Conditional

CALL STATEMENT

statements can be anywhere in the SYSIN stream, changing either
the data base to be referenced or the options.

There are two types of COMMENTS statements. The first, the
unconditional statement, allows for unlimited comments, all of
which are printed. The second type, the conditional statement,
allows only limited comments, which are printed or not depending
on other factors as descri bed below.

position

$ 1

2 - 80

Position

$ 1

2 - 80

=
=

=
=

contents

U specifies an unconditional COMMENTS statement.

Comments - any number of unconditional COMMENTS
statements are allowed; they are printed when
read. Time and date of printing are printed
with each unconditional COMMENTS statement.

contents

T specifies a conditional COMMENTS statement.

Comments - up to 5 conditional COMMENTS
statements per call are allowed; no continuing
mark in position 72 is required. Printing is
conditioned as the STATUS statement. Printing
is defer.red until after the following call
and optional compare are executed, but prior
to the printing of the following call.

The CAll statement identifies the type of IMS/VS call to be made,
and supplies information to be used by the call.

position

$ 1

3

4

=

=
=

contents

l identifies this as either a CAll or DATA
statement

SSA level (optional).

Format options:

Blank - For formatted calls with intervening
blanks in positions 24, 34, and 37.

U - If columns 16 onward are unformatted,
with no blanks separating fields.

V - For the first statement describing a
variable-length segment, when inserting
or replacing only one variable-length
segment. It is also used for the first
statement describing the first segment
of multiple variable-length segments.

M - For the second through last statement
that begin data for a variable-length
segment, when inserting or replacing
multiple variable-length segments.

P - When inserting or replacing through
path calls. It is used only in the
first statement of fixed-length segment
statements in path calls contai ni'ng

318 IMS/VS Application Programming

/,/"

I
',,-

/'

"

(
~

.,
I

/

)

)

5 8

$ 10 - 13

$ 16 - 23

24

$ 25

26 - 33

34

$ 35 - 36

37

$ 38 XX

$ XX + 1

$ 72

=

=

=

=

=

=

=

=

=

=

=

=

both variable- and fixed-length
segments .

Number of times to repeat this call (optional)
in the range of 0001 through 9999.

Dl/I call function.

DATA - Indicates that this statement contains
data to be used in an ISRT, REPl, SNAP,
CHKP, or LOG call. See the following
section on DATA statements for usage.

CONT - For a continuation statement for field
data that was too long for previous
CAll statement.

SSA segment name.

Not used.

(,if segment is qualified.

SSA field name.

Not used.

Dl/I call opertor or opertors.

Not used.

Field value (where the maximum value of XX=70).

), end character.

Nonblank, if more SSAs. Blank, if this is the
only or last SSA.

Position 3, the SSA level, 1S usually blank. If blank, the first
CAll statement fills SSA 1, and each following CAll statement
fills the next lower SSA. If the SSA level, position 3, is
nonblank, the statement fills the SSA at that level, and the
following CAll statement fills the next lower SSA.

Position 4 contains a U to indicate an alternative format for the
CALL statement. In this case, from position 16 on is the exact SSA
with no intervening blanks in positions 24, 34, and 37. If command
calls (for example, *D) are to be used, then the U must be
specified.

Positions 5 through 8 are usually blank, but if used, must be
right-justified. The identical call is repeated as specified in
positions 5 through 8.

Positions 10 through 13 contain the Dl/I call function. The call
function is required only for the first SSA of the call. If left
blank, the call function from the previous CALL statement is used.

Positions 16 through 23 contain the segment name, if the call uses
an SSA.

If there are mutilple SSAs in the call, each SSA should be entered
in'positions 16 through 23 of a separate statement. A nonblank in
position 72 of any statement indicates that another SSA follows.
Position 1 and 10 through 13 are blank for the second through last
SSAs.

If the field value extends past 71, there is a nonblank in
position 72 and CONT in positions 10 through 13 of the next
statement, with the field value continued starting in position
16. Maximum field value is 256 bytes.

An alternative format for the CAll statement is available by
putting a U in position 4. If you use this option, you must start

Appendix F. Using the Dl/I Test Program (DFSDDlTO) 319

DATA STATEMENT

the exact SSA in position 16, with no intervening blanks in
positions 24, 34, and 37. To continue an unformatted SSA, put a ('
nonblank character in position 72, a U in position 4, and CONT in I
positions 10 through 13 of the next statement. Include the data of "
the SSA that is continuing in positions 16 through 71. Maximum
size for an SSA is 290 bytes.

The maximum number of SSAs for this program is the same as the
IMS/VS limit, which is 15.

DATA statements provide IMS/VS with segment information requirp.d
for ISRT, REPl, SNAP, lOG, and CHKP calls.

For an IRST, REPl, SNAP, lOG, or CHKP call, statements containing
segment data must follow immediately after the last
(noncontinued) CAll statement. The DATA· statements must have an l
in column 1, and DATA in positions 10 through 13. The segment data
appears in positions 16 through 71. Data continuation is
indicated with a nonblank in position 72. On the continuation
statement, positions 1 through 15 are blank, and the data is
resumed in position 16. The maximum segment size in a batch region
is based on the PSB I/O area size. This size may be specified by
the user during PSBGEN, or it is calculated by the ACB utility.
When running in an online region, a maximum size of 30736 is
available.

Note: On ISRT calls, the last SSA can have only the segment name,
with no qualification or continuation.

When inserting or replacing variable-length segments, as defined
in a DBDGEN, or including variable-length data for a CHKP or lOG
call, position 4 of the CAll statement must contain either a V or
an M. V must be used if only one segment of variable length is
being processed. Positions 5 through 8 must contain the length of (
the data, right-justified, with leading zeros. This value is .
converted to binary, and becomes the first two bytes of segment
data. Segment-data-statements can be continued, as described
above with the subsequent statements blank in positions 1 through
15, and the data starting in position 16.

If multiple variable-length segments are required (that is,
concatenated logical child/logical parent segments both of which
are variable length) for the first segment, there must be a V in

, position 4 and ,the length of that segment in positions 5 through
8. If that segment is longer than 56 bytes, then the data is
conti~ued as above, except that the last card to contain data for
this segment must have a nonblank in position 72. The next
statement applies to the next variable-length segment, and must
contain an M in position 4 and the length of this segment in
positions 5 through 8. Any number of variable-length segments can
be concatenated in this manner. The M or V and the length must
appear only in statements that begin data for a variable-length

. segment.

When inserting or replacing through path calls, a P position 4
causes the length field to be used as the length the segment will
occupy in the user I/O area, without the length (ll) field of
variable-length segments, as in the instructions for M, above. V,
M, and P can be mixed in successive statements. The P appears in
only the first statement of fixed-length segment DATA statements,
in path calls which contain both variable- and fixed-length
segments.

Parameter Length. SNAP Calls

On SNAP calls, the length of the SNAP parameters must be in
positions 5 through 8. This numbe~ must be equal to the length of
the SNAP parameters starting in position 16 plus an additional 2
bytes. The TEST program converts the length to binary and places

320 IMS/VS Application Programming

(,

)

)

it in the first half-word of the user I/O area passed to DL/I. The
parameters from position 16 are placed in the 110 area immediately
following this half-word. If positions 5 through 8 are blank, a
default of 22 is used as the parameter length.

All parameters are passed without change, with the following
exceptions:

1. If the SNAP destination field specifies "DCB-addr" or ddname
of PRINTDD, and if a PRINTDD statement is supplied to the test
program, the test program replaces this parameter with the
DCB address of the test program PRINTDD data set.

2. If running DFSDDLTO in a dependent region, the results of a
SNAP call are routed to the dependent region PRINTDD DCB in
systems where the PRINTDD DCB is accessable. In systems such
as MVS where the dependent region PRINTDD DCB is inaccessable
from the control region, the default is the log data set.

Parameter Length, LOG Call

The LOG call is normally used with the I/O PCB. It can used in
batch mode only if the CMPAT option of the PSBGEN statement is
specified.

The LOG call can be specified in two ways:

1. A LOG call statement followed by a DATA statement with an L in
column 1, a V in column 4, and the record length (in decimal)
in columns 5 through 8, right-justified, and padded with
zeros. For example:

Column
1

L
L

Column
4

V0016

Column
10

LOG
DATA

Column
16

OOASEGMENT ONE

When this method is used, the first halfword of the record is
eliminated. However, the specified length must include the 2
bytes that are el i mi nated. "

2. A LOG call statement followed by a DATA statement with an L in
column l'and the record length (in binary) as the first
halfword of the record. The second halfword of the record is
binary zeros. For example:

Column
1

L
L

Column
4

Column
10

LOG
DATA

Column
16

1000BSEGMENT TWO

When this method is used, columns 5 through 8 should be blank.

segment Length and Checking, All Calls

Because this program does not know segment lengths, the length of
the segment displayed on REPL or ISRT calls is the number of DATA
statements that have been read, times 56. IMS/VS knows the segment
length and uses the proper length.

This program does no checking for errors in the call; invalid
functions, segments, fields, operators, or field lengths are not
detected by this program. The results os invalid statements
passed to IMS/VS will be unpredictable.

Appendix F. Using the DL/I Test Program (DFSDDLTO) 321

COMPARE STATEMENT FOR PCB COMPARISONS

This is the format of the COMPARE statement used for PCB
comparisons.

position

1

2

3

=
=

=

Contents

E identifies this as a COMPARE statement.

H indicates hold COMPARE statement
(see below for details).
Blank indicates a reset of the hold condition
or a single COMPARE statement.

Option requested if results of the compare are
unequal:

Blank - Use the default for the SNAP option.
The normal default is 5. For .
information on how to change.th~
default, see thecription of the
"Opti'on Statement."

1 - To request a SNAP of the complete I/O
buffer pool.

2 - To request a SNAP of the entire· region.
This option is valid only for~batch
regions.

4 - To request a SNAP of the DL/I blocks.
8 - To abort this step and go to. the end

of the job.
S - To SNAP subpools 0 through 127.

Note: Multiple functions of the first 4

4

5 - 6

7

8 - 9

10

11

20

23

18

22

24 - XX

=

=
=
=

=
=
=
=
=

322 IMS/VS Application Programming

~ptions can be obtained by summing their
respective hexadecimal values. For example,
a value of 5 a request for a print of the 1/)
buffers and the DL/I blocks; and a value of D
snaps the I/O pool, snaps the DL/I blocks,
and aborts the program run.

Extended SNAP options, if the results of a
compare are unequal:

Blank - To ignore this extended option.
P - To SNAP the complete buffer pool.
S - To SNAP subpools 0 through 127.

Note: In no case will an area be snapped twice;
that is, a combination of IP in positions 3
and 4 results in just one snap of the buffer
pool. Similarly, a combination of SS results in
just one snap of subpools 0 through 127.

Segment level.

Not used.

Status code, or one of the following:

XX - Do not check status code.
OK - Allow blank, GA, or GK.

Not used.

Segment name.

Length of feedback key~ .

Not used.

Concatenated key feedback.

/
(
\

(

(
\

\
I

I

----- --------

72 = Honblank to continue key feedback.

The COMPARE statement is optional. It can be used to do regression
testing of known data bases, or to call for a print of blocks or
buffer pool(s).

Any fields left blank are not compared to the corresponding field
in the PCB. Since a blank is a valid status code, to not compare
status codes, put XX in positions 8 and 9. To accept any valid
status code, (that is, blank, GA, or GK), use OK in postions 8 and
9.

To execute the same COMPARE after each call, put an H in position
2. This is useful when loading a data base to compare to a blank
status code only. Since the compare was done, the current control
statement type is E in position 1; the next control statement read
must therefore have its type in position 1 or it will default to
E. The HOLD-COMPARE statement stays in effect until another
COMPARE statement is read. If a new COMPARE statement is read, two
compares will be done for the preceding call, since the
HOLD-COMPARE and optional printing are done prior to reading the
new COMPARE statement.

The total number of unequal compares will be reflected in the
condition code returned for that step.

COMPARE STATEMENT FOR I/O AREA COMPARISONS

This is the format of the COMPARE statement used for I/O area
comparisons.

Position

$ 1

3

4

5 - 8

=
=

=

=

contents

E identifies this as a COMPARE statement.

Length field option.

Blank - The LL field of the segment is not
included in the comparison; only data
is compared.

L - The length in positions 5 through 8 is
converted to binary and compared
against the LL field of the segment.

Segment length option.

Blank - Hot a variable-length segment or
nonpath call data compare.

M - For the second or subsequent variable-
length segment of a path call, or a
concatenated logical child/logical
parent segment.

P - For a fixed-length segment in a path
call.

V - For a variable-length segment only, or
for the first variable-length segment
of multiple variable-length segments
in a path call or for a concatenated
logical child/logical parent segment.

nnnn, length of a variable-length segment,
right-justified with leading zeros.
If position 4 contains V, p, or M, then a
value must appear in positions 5 through 8.
If position 3 contains an L, this value is
compared against the LL field of the returned
segment. If position 3 is blank and the
segm~nt is not in a path call, then this value
is used as the length of the comparison. The
rules for continuations are the same as those
described for the variable-length segment DATA

Appendix F. Using the DL/I Test Program (DFSDDLTO) 323

OPTION STATEMENT

10 - 13 =

16 - 71 =

72 =

statement in the description of the CALL
statement.

If this is a path call comparison, and position
4 contains P, then the value in positions 5
through 8 must be the exact length of the fixed
segment used in the path call.

DATA, this has to be specified in the first
COMPARE DATA statement only.

Data against which the segment is to be
compared.

Continuation or end of COMPARE statement:

Blank - Identifies the last COMPARE DATA
statement for the current call, 'and
causes the comparison to be made.

Nonblank - If the comparison data exceeds 56
characters, data is conti nued i'n
positions 16 through 71 of the
subsequent statements for a
maximum total of 1500 bytes.

This COMPARE statement is optional. Its purpose is to COMPARE the
segment returned by IMS/VS to the data in this statement to verify
that the correct segment was retrieved.

The length in positions 5 through 8 is optional except as already
noted; if present, this length is used in the COMPARE and in the
display. If no length is specified, the shorter of either the
length of data moved to the I/O area by IMS/VS, or the number of
DATA statements read times 56 is used for the length of the
comparison and display.

If both a COMPARE DATA and a COMPARE PCB statement are present,
the COMPARE DATA statement must precede the COMPARE PCB
statement.

The conditions for printing the COMPARE DATA statement are the
same as for printing a COMPARE PCB statement; position 7 of the
STATUS statement is used. The same unequal switch is set for
either the COMPARE DATA or COMPARE PCB. However, if control block
displays are requested for unequal comparisons, a COMPARE PCB
statement is required to request these options.

The total number of unequal comparisons will be reflected in the
condition code returned for that step.

The purpose of the OPTION statement is to set the default SNAP
option and/or the number of unequal comparisons before aborting
the step. The default value for the number of unequal comparisons
before aborting is 5.

The format of the statement is explained below.

position contents

1 = o identifies this a s an OPTION statement.

2 - 80 = Free-from coding.

(
\.

r
\,

The first operand is SNAP=x, where "x" ix the
default SNAP option to be used. For an
explanation of the possible values of "x",
see the description of the "COMPARE (
Statement for PCB Comparisons." ,

324 IMS/VS Application Programming

)

)

The second operand ~s ABORT=xxxx, where "xxxx"
is a 4-digit numer~c value that sets the number
of unequal comparisons before aborting the
step.

Use of the following example of the OPTION statement w~ll cause
the Dl/I test program to operate as ~t d~d prior to the release of
IMS/VS Version 1, Mod~ficat~on level 1, that ~s , ~t reinstates
the old SWAP opt~ons:

Column
1

ObSNAP=b,ABORT=9999

SPECIAL CONTROL STATEMENTS

PUNCH STATEMENT

The PUNCH control statement provides the facility for this
program to produce an output data set consisting of the PCB
COMPARE statements, the user I/O area COMPARE statements, all
other control statements read, or any combination of the above. An
example of the use of this facility is to code the call, but not
the COMPARE statements for a new test. Then, after verifying that
the calls were executed as anticipated, another run is made where
the PUNCH statement is used to cause the test program to merge the
proper COMPARE statements, based on the results of the call, with
the CAll statements read, produc~ng a new output data set. This is
then used as input for subsequent regression tests. If segments in
an exist~ng data base are changed, the use of this control
statement causes a new test data set to be produced with the
proper COMPARE statements. This eliminates the need to manually
change the COMPARE statements because of a change in the segments
of the test data base.

The PCB COMPARE statements are produced based on the information
in the PCB after the call is completed. The COMPARE DATA
statements are produced based on the data in the I/O area after
the call ~s completed. All ~riput control statements, other than
COMPARE statements, can be produced to prov~de a new composite
test with the new COMPARE statements properly merged. The data set
produced can be sequenced.

Since the key feedback area of the PCB COMPARE statement can be
long, two options are prov~ded for producing these COMPARE
statements. Either the complete key feedback can be provided, or
the portion of the key feedback that does not fit on one statement
can be dropped. Forty-eight bytes of key feedback fit on the first
statement.

Getting the full data from the I/O area into the data COMPARE
statement might also be excessive. An option is to put it all on
the data COMPARE statements, or put only the first 56 bytes on the
first statement and drop the rest. The test program compares only
the first 56 bytes if it receives only one COMPARE DATA statement.

The PUNCH statement format is as follows:

position

$ 1 3

$ 10 - 13

$ 16

=
=

=

contents

CTI identifies this statement type.

Punch control:

PUNC - Begin punching.
NPUN - Stop punching.

Start~ keyword parameters controlling the
various options. These keywords are:

Appendix F. Using the Dl/I Test Program (DFSDDlTO) 325

PUNCH DD STATEMENT

SYSIN2 DD STATEMENT

PCBL - To produce the full FCB COMPARE
statement.

PCBS - To produce the PCB COMPARE, dropping
the key feedback if it exceeds 'on~
statement.

DATAL To produce the complete COMPARE DATA
statements.

DATAS - To produce only one statement of
COMPARE DATA.

OTHER - To reproduce all control statements
except COMPARE control statements.

START - To punch the starting sequence number
in columns 73 through 80. Eight numeric
characters must follow the START=
parameter; leading and/or trailing
zeros are required.

INCR - To add the increment to the sequence
number of ~ach statement. Four numeric
characters must follow the INCR=
parameter; leading and/or
trailing zeros are required.

Some examples of the PUNCH control statement are:

CTl PUNC PCBl,DATAl,OTHER,START=OOOOOOlO,INCR=OOlO
CTl NPUN

The DD statement for the output data set is labelled PUNCH; the
data set characteristics are fixed, unblocked, with a logical
record length of 80.

An example of the PUNCHDD statement is:

IIPUNCHDD DD SYSOUT=B

The data set specified by the SYSIN DD statement is the normal
input data set for this program. It is sometimes desirable when
processing an input data set that is on direct access or tape, to
override or insert some control statements into this input
stream. This is especially useful to obtain a SNAP after a
particular call.

To provide this capability, a second input data set (SYSIN2) will
be read if the DD statement is present in the JCl for the step.
The records from the SYSIN2 data set are merged with records from
the SYSIN data set, and the merged records become the input for
this program.

The merging is done based on the sequence numbers in positions 73
through 80, and is a two-step process: first, positions 73 and 74
of SYSIN2 must be equal to the corresponding positions of SYSIN;
then the merge is done based on positions 75 to 80.

This peculiarity of merging allows for multiple data sets (each
with a different high-order sequence number in 73 and 74) that
have been concatenated to form SYSIN, in other than positions 73
and 74 numeric sequence. The two-step merge logic permits SYSIN2
input to be merged appropriately into each of the concatenated
data sets.

When the sequence numbers are equal, SYSIN2 overrides SYSIN.

(
~

(

Any statements or records in this data set must contain sequence (
numbers in columns 73 through 80. They will replace the same
sequence number in the SYSIN data set, or be inserted in proper
sequence if the number in SYSIN2 does not exist in SYSIH.

326 IMS/VS Application Programming

\
)

)

Replacement or merging is done only for the run being made. The
original SYSIN data is not changed.

OTHER CONTROL STATEMENTS

position

1 - 4

10 17

1 - 4

1 - 3

1

1 - 5

SPECIAL CALL STATEMENTS

position

$ 1

5 - 8

$ 10 - 13

=

=

=

=

=

=

=
=

=

contents

DLCK: To issue an OS/VS checkpoint, followed
by a DL/I checkpoint. For any dependent region,
DLCK gives an OS/VS checkpoint to a DD
statement labelled CHKDD whose DSORG=PO.
This is followed by a DL/I checkpoint call.
The use of this control statement will
cause all subsequent CHKP calls to issue the
OS/VS checkpoint unless a statement with
USCKOFF in columns 1 through 7 precedes the
CHKP call.

CHKP: Same as DLCK.

Contains a 1- to 8-character checkpoint ID
(left justified).

WTOR: puts message in remainder of statement on
system console and waits for any reply, then
continues.

WTO: same as WTOR, but does not wait for reply.

. or N: used as last statement in a data set that
can be concatenated with other SYSIN data sets.

ABEND: To issues user ABEND 252 with the DUMP
option.

contents

L identifies this as a CALL statement.

Number of times to repeat a series of calls
with a range from 0001 through 9999
C defaul tis 1).

Stacking control cards:

STAK - Start stacking control cards for later
execution.

END - Stop stacking control cards and begin
execution.

The STAK function makes it possible to repeat
a series of call~ which have been read from
SYSIN and held in storage. All control
statements between the STAK card and the END
card are read and saved. When the END card
is encountered, the series of calls is
executed as many times as the number punched in
positions 5 through 8 of the STAK card. This
can be used to test exclusive control and
scheduling by having two different regions
executing stacks of calls concurrently.

SKIP - Skip SYSINs until START statement
statement encountered.

START - Start making DL/I calls again.
STAT - Print the current buffer pool

statistics. When this call is used,
IOASIZE in the PSB must be specified
specified as greater than 360 bytes.

Appendix F. Using the DL/I Test Program CDFSDDLTO) 327

16 - 20 =

EXECUTION IN DIFFERENT REGIONS

One of the following values is used to obtain
the type and form of statistics required:

VBASF - To obtain the full VSAM data base
subpool statistics in a formatted form.

VBASU - To obtain the full VSAM data base
subpool statistics in an unformatted
form.

VBASS - To obtain a summary of the VSAM data
base subpool statistics in formatted
form.

DBASF - To obtain the full ISAM/OSAM data base
buffer pool statistics in unformatted
form.

DBASS - To obtain a summary of the ISAM/OSAM
data base buffer pool statistics in
formatted form.

Note that for VSAM statistics, a
separate set of values is provided
for each VSAM subpool defined, and a
final set of values is provided to
summarize all VSAM subpool values.
The buffer size in the final totals
is the total size of all buffers in
all VSAM subpools.

SNAP - Issue the DL/I SNAP call to print the
DL/I blocks.

This program is designed to operate in a DL/I or BMP region but
can also be executed in a MSG region. The input and output devices
are dynamically established based on the type of region in which
the program is executing. In a BMP or DL/I region, the EXEC
statement allows the program name to be different from the PSB
name. There is no problem executing calls against any data base in
a BMP or DL/I region. In a MSG region, the program name must be
the same as the PSB name. In order to execute in a MSG region, the
DFSDDLTO program must be given the name or an alias of the PSB
named in the IMS/VS definition.

When in a DL/I region, input is read from SYSIN and output is
written to PRINTDD.

When in a BMP region, if a symbolic input terminal was specified
as the fourth parameter of the EXEC statement, input is obtained
from that 5MB, and output is sent to the I/O PCB. The name of the
I/O PCB can be specified as the fifth parameter of the EXEC
statement. If 5MB is not specified on the EXEC statement, SYSIN is
used for input and PRINTDD is used for output, as in the DL/I
region.

In the MSG region, the I/O PCB is used for both input and output
unless position 2 of the STATUS statement is either a 1 or an A.
In either of these cases, PRINTDO is used for output if the DO
card is present in the JCL for that message region. A limit of 50
lines per schedule is sent to the I/O PCB and, after that, PRINTDD
is used for output if present. If PRINTDD is not present, the
program terminates.

If PRINTDD is specified in either a BMP or MPP region, SNAP output
will be routed to the IMS/VS control region PRINTDD 00 card.

Because the input is in fixed form, it is difficult to key it from (
a terminal. For ease of entry, however, Message Format Service
(MFS) facilities can be used from a terminal to create the '
fixed-format input. One way to test DL/I in a message region,
using this program, is to first execute another message program

328 IMS/VS Application Programming

)

._------ ._-_._---_.-----------_ .. _------_ .. __ ... _ .. _--------------------------- -.. _---_._---

which, based on a message from the terminal, reads control
statements stored as a member of a partitioned data set. Insert
these control statements into an 5MB. This program is then
scheduled by IMS/VS to process thoSQ transact; ons. 'Thi sallows
the same control statements to be used to execute in any region
tYPQ.

SUGGESTIONS ON USING THE DL/I TEST PROGRAM

1. To load a data base:

This program is applicabie for loading small data bases,
because all calls and data must be provided to it rather than
it generating data. It can be used to load large volume data
bases if the control statements were generated as a
sequential data set.

2. To display a data base:

3.

4.

To display a data base, the following sequence of control
statements can be used.

S 1 2 221 DBNAME Display comments and segment
L GN DO 1 Get Next
EH OK Hold compare, GA, GK, OK, terminate

on GB
L 9999 GN DO 9,999 Get Next calls

To do regression testing:

This prog~am can be used for regression testing. By using a
known data base, calls can be issued and the results compared
to expected results using COMPARE statements. The program
then can determine if DL/I calls are being executed
correctly. By making the print options of the STATUS
statement all twos, only those calls not satisfied properly
are di splayed.

To use as a debuggi ng ai d:

When doing debugging work, usually a print of the DL/I blocks
is required. By use of COMPARE statements, the blocks can be
di splayed at appropri ate times. Somet i mes the blocks are
needed even though the call is executed correctly, such as the
call before the failing call. In those cases, a SNAP call can
be inserted. This causes the blocks to be displayed even
though the call was executed correctly.

An alternative method of doing a SNAP call when running
DFSDDLTO is to use a COMPARE statement after the call, forcing
the program to do an unequal compare. For example:

Column
I

E

Column
3-4

SP

Column
11

SNAP

The SNAP call compares against the segment name of SNAP, gets
an unequal compare, and as a result of the SNAP options in
columns 3 and 4, snaps the complete I/O buffer pool, the DL/I
blocks, and the complete buffer pool.

5. To verify how a call is executed:

Because it is easy to execute a particular call, this program
can be used to verify how a particular call is handled. This
is of value when DL/I is suspected of not operating correctly
in a specific situation. The calls that are suspected can be
issued using this program, and the results examined.

Appendix F. Using the DL/I Test Program (DFSDDLTO) 329

DL/I TEST PROGRAM JCL REQUIREMENTS

JOB Th is statement in it i ates the job.

EXEC This statement specifies the program name, or
invokes a cataloged procedure. The required format
is:

PGM=DFSRRCOO,PARM='AAA,DFSDDLTO,BBBBBBBB,
CCCCCCCC,DDDDDDDD'

where AAA is the region type and BBBBBBBB is the name
of the PSB to be used. Parameters CCCCCCCC and
DDDDDDDD are optional, and can be used to specify
symbolic input terminal and output terminal names,
respectively. Refer to the section "Member Name
IMSBATCH" in the IMS/VS System Programming Reference
Manual for other parameters that can be used.

STEPLIB DD Defines the partitioned data set named IMSVS.RESLIB.
If EXIT routine modules are used, they should be
placed into this library or into another PDS
concatenated to this library.

IMS OD This statement defines two concatenated data sets.
The first DD statement defines the library
containing the PSB to be used by the test program.
The second DD statement defines the library
containing the DBD of the data base to be processed.

database DD This statement references a specific data base.

IEFRDER DO

PRINTOO DD

SYSDUMP DO

SYSIN DD

SYSIN2 DD

There should be one statement for each data base to
be processed. In each statement the ddname must
agree with the ddname specified in the DBD.

This statement defines the log data set, if one is
desired. a dd dummy statement may be used if a log is
not desired. One form or the other of this statement
is required.

This statement defines the output data set for the
test program, including displays of control blocks
using the SNAP call. It must conform to the OS SNAP
data set requirements.

This statement is optional and is used by the test
program only when normal termination is not
possible.

This statement defines the control statement input
data set.

This is an optional secondary input statement. See
the description of "Special Control Statement
Formats" for details.

Note: SYSIN may be members of a partioned data set; if they are to
be concatenated together, the last statement must be a period (.)
or an N statement. This prevents the last statement in the
previous concatenation to be used twice.

330 IMS/VS Application Programming

(

(

)

.-----.-.. -----.. ---------------------------

SAMPLE JCL FOR THE DL/I TEST PROGRAM

//JCLSAMP JOB ACCOUNTING,NAME,HSGLEVEL=(1,11,HSGCLASS=3,PRTY=8
//GET EXEC PGM=DFSRRCOO,PARM='DLI,DFSDDLTO,PSBNAME'
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
//IMS DD DSN=IMSVS.PSBLIB,DISP=(SHR,PASS)
// DD DSN=IMSVS.DBDLIB,DISP=(SHR,PASS)
//DDCARD DD DSN=DATASET,DISP=(OLD,KEEP)
//IEFRDER DD DUMMY
//PRINTDD DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSIN DD *
S 1 1 1 1 DBNAME
/*

Appendix F. Using the DL/I Test Program (DFSDDLTO) 331

(

/
I
\

)

)

access methods 41-47
GSAM 46
HDAM 43
HIDAM 44
HISAM 46
HSAM 45
SHISAM 47
SHSAM 47

accessing a segment through different
paths 52

accessing IMS/VS data bases through
OS/VS 47

adding information to the data
base 104-108

aggregate 18
alternate destinations, sending messages

to 195
alternate PCB masks

description 179
format 179

alternate PCBs 196
express 180
modifiable 180, 195
o v e r v i caw 0 f 72
response 205
SAMETRM=YES 205
sending messages to other
terminals 195

types and uses of 179
use with program-to-program message
switching 196

using the PURG call with 195
analyzing application requirements 10
analyzing data access 41-47
analyzing data relationships 17
analyzing processing requirements 28
analyzing screen and message formats 65
and, independent 120
and, logical 120
appendixes 286-331
application design guide 1-73
application program test 228-232
application programming guide 75-236
assembler language

call parameters 239
DB PCB mask 242
DC call formats 248
DL/I call format 239
DL/I program structure 163
entry statement 238
I/O area 243
MPP structure 219
parameter list at program entry 238
program entry 238
register 1 at program entry 238
return statement 238
SSA definition examples 247

backing out data base updates 210, 224
basi c CHKP 130

and OS/VS restart 59
call format 252
DCB names for OS/VS restart 133
description 133
ID 131
OS/VS option 133.
parameters 252
restart and 59

basi cedi t 193
input

using basic edit 193
input messages 193
output

using basic edit 193
output messages 193
overview of 66

batch message program
see "BMPs (batch message programs)"

batch processing 39
batch processing online 37
batch programs

assembler language structure 163
checkpoints 39, 60
COBOL structure 157
converting to BMPs 138-140
description of 39
overvi ew of 78
PL/I structure 160
recovery 39
sample 287
structure 78
structuring 76
sync po i nts 39

batch sample program 287
Batch Terminal Simulator II (BTS II) 230
batch-oriented BMPs 32, 223

checkpoints in 60
comparison with batch programs 226
description of 37
recovery 37
sync points 224
sync points in 37

before you code
a batch program 156
an MPP 215

before you update: get hold calls 100
BILLING segment 90
BMPs (batch message programs) 223

batch-oriented 37, 223
checkpoints in 60, 61
designing batch-oriented BMPs 226
differences between
transaction-oriented BMPs and
MPPs 223

guidelines 38
multiple-mode 226
planning ahead for batch-to-BMP
conversion 138-140

processing online data bases 223,
224

Q command code in 224

Index 333

sample program 293
similarities to batch programs 223
similarities to MPPs 223
single-mode BMPs 225
transaction-oriented 36, 61
types of 31, 223
XD status code 225

Boolean operators 120
independent. and 120
logical and 120
logical or 120 .

BTS II (Batch Terminal Simulator II) 230

C command code 123
CALL statement (DL/I test program) 229,

318
calling the sample status code error
routine 169

calls, DL/I
DLET 103
formats 239
get calls 100
get hold calls 100
GN 94-97
GNP 97-99
GU 91-93
guidelines on retrieval calls 100
ISRT 104
overv i ew of 80
parameters 239
REPl 101
retrieval calls 100

changing a field's contents 151
changing segments 101
changing the destination of a modifiable
alternate PCB 195

checking a field's contents:
FLD/VERIFY 149

checking status codes 128-130, 169, 221
sample routine 307

checkpoint calls
basi c 59, 133
choosing 59
description of 58, 130
effects of 59
frequency 131
how often to use checkpoints 131
IDs 131
kinds of 59
similarities 130
symbolic 59, 132
types of 130
where to use checkpoints 131

checkpoint IDs 131
checkpoints

calls 130
comparison of 60
data sharing and 62
frequency 60
in batch programs 39, 60
in batch-oriented BMPs 60
in BMPs 224, 225
in MPPs 61
in transaction-oriented BMPs 61, 225
restart and 59
summary of 60
taking checkpoints 130

CHKDD 133

334 IMS/VS Application Programming

CHKDD2 133
CHKP (checkpoint)

basi c 130, 133
call format 252

effects of 130
frequency 131
guidelines 131
how often to use 131
IDs 131
in sample batch program 287
in sample BMP 293
symbolic 130, 132

call format 251
parameters 251

types of 130
what IMS/VS does 130

CHNG (change)
call format 248
description 195
usi ng PURG wi th 196
with directed routing 199

choosing a checkpoint call 59
choosing the right retrieval call 100
CLSE (close) 259
CMD (command)

call format 248
description 208

CMPAT=YES 130
COBOL

call parameters 239
DB PCB mask 241
DC call format 248
DL/I call format 239
Dl/I program structure 157
entry statement 238
GU function code 170
I/O area 243
return statement 238
sample programs

batch 287
BMP 293
conversational 302

skeleton MPPs
COBOL 216

skeleton program 157, 216
SSA definition examples 245

codes, command
description of 121
summary of 83

codes, status
and GU 93
checking 128-130
explanations 272-285
for logical relationships 138
for XRST call 132
quick reference table 268
reference 268-285

coding
DL/I function codes 169
entry statements 168
function codes 169
parmcount 169

codi ng an MPP
in assembler language 219
overview of 215
parts of an MPP 215
skeleton MPPs 216, 217

coding checkpoint IDs 171
coding DC calls 220

overview of coding 220
coding DC system service calls 220
coding Dl/I calls 168
coding Fast Path data base calls 172

(--

\

(

(

)
;'

)

.... - .. _. __ ._---- --------------

coding monitoring system service
calls 168

coding recovery system service
calls 168

coding SSAs 171
codi ng the data area 169
coding the DL/I portion of a program 156
codi ng the I/O area 170
coding the program logic 167, 220
command codes

and REPL 103
C 123
coding restrictions 244
descriptions of 121
F 105, 122

use with HERE insert rule 105
L 105, 123

use with HERE insert rule 105
N 125
null 126
P 124.
U 124
usage 84, 93

in load programs 108
wi th DLET 104
wi th GN 96
wi th GNP 99
wi th GU 93
wi th ISRT 106

V 125
with qualified SSAs 83
wi th SSAs 83
with unqualified SSAs 83

commands- 208
comments in DL/l test program

conditional 318
unconditional 318

COMMENTS statement 229, 318
communicating with other IMS/VS

systems 197
COMPARE statement 229, 322, 323
comparing ways to store data 2
comparison of symbolic CHKP and basic

CHKP 60
compatibility option 130
concatenated key

in key feedback area 87, 143
using in SSA~ 123

concepts and terminology 2-9
conditional comments 318
considerations for message-driven Fast

Path programs 212
considerations in screen design 67
continuing a conversation 68
control statements

CALL 318
COMMENTS 318
COMPARE 322, 323
DATA 320
DL/I test program 229, 316-328
for checkpoints 327
OPTION 324
PUNCH 325
PUNCH DO 326
special control statement
formats 325

STATUS 316
SYSIN2DO 326

conversational abnormal termination
routine 70

conversational mode 72
conversational processing 200, 207

continuing the conversation 205

conversational abnormal termination
routine 70

deferred program switch 68
designing a conversation 68
OFSCOHEO 70
direct access storage SPAs 69
ending the conversation and passing
control 207

example of 200
fixed-length SPAs 69
gathering requirements 67
immediate program switch 68
information you need to code the
program 220

main storage SPAs 69
maximum SPA size 69
message formats 205
overview of 67, 200
passing control and continuing the
conversation 206

passing the conversation to another
program 68

recovery considerations 70
replying to the terminal 205
restrictions 69, 204
ROLB and 202, 212
ROLL and 212
sample program 302
SPA (scratchpad area) 68
SPA characteristics 69
steps in a conversational

program 203
structure 202
types of SPAs 69
use with response alternate PCBs 72
using a deferred program switch to end
the conversation 69

variable-length SPAs 69
ways to continue the conversation 68
ways to end the conversation 69
what happens in a conversation 67

converting an existing application 12
converting batch programs to

BMPs 138-140
creating a new hierarchy 52
current position

after unsuccessful calls 115
determining your position 108
when restarting 133
with multiple positioning 126

current roster 13

o command code 83, 121
and ISRT 104
example of 83
use when loading a data base 108

data aggregate 18
data base calls

OLET 103
formats 239
get ca 11 s 100
get hold calls 100
GH 94-97
GNP 97-99
GU 91-93
guidelines on retrieval calls 100
parameters 239
REPL 101

Index 335

retrieval calls 100
data base description (DBD) 5
data base hierarchy 5
data base load 107
data base name in DB PCB 86, 142
data base options 41-62
data base position 108

determining 108
explanation of 108

. with multiple positioning 126
data base record

example of 7
processing 7

data communications options 63
data dictionary 12
data elements

listing 13
naming 15

data entity 13
data entry data base

processing 146, 153
see "DEDB (data entry data base)"
using Dl/I calls with 153

data relationships, analyzing 17
data sharing 62
DATA statement 320
data structuring 18
DB PCB

contents with secondary indexing 135
data base name 86, 142
key feedback area 87, 143
key feedback area length field 81,

143
number of sensitive segments
field 81

overview of 18
processing options field 81, 143
relation to DB PCB mask 85
segment level number field 86
segment name field 81
sensitive segments 81
status code field 87, 142
using multiple 126

DB PCB mask 85
as parameter in program entry

statement 86, 142
assembler language 242
coding examples 241
fields in 85, 86, 142
format 241
general description of 18
in COBOL 241
in Pl/I 242
name 86, 142
relation to DB PCB 18, 85

DbD (data base description) 5
DC calls

call formats 248
CHNG 195
CMD 208
coding 248
GCMD 208
general description 116
GN 194
GU 194
in assembler language 248
in BMPs 225
in COBOL 248
in Pl/I 248
ISRT 194
overview of 220
parameters 248
PURG 195

336 IMS/VS Appl i cat ion Programmi ng

summary of 116, 249
DCB names for OS/VS restart 133
debugging a program 231
DEDB (data entry data base)

processing 146, 153
using Dl/I calls with 153

deferred program switch 68
definitions

qualified DL/I call 81
qualified SSA 81
unqualified DL/I call 81
unqualified SSA 81

delete call
description 103
format 239

deleting segments 103
DEQ (dequeue)

call format 251
description 210
in BMPs 224
parameters 251

dequeue call
call format 251
description 210
in BMPs 224
parameters 251

designing a conversation 68
designing a local view 11
designing a terminal screen 61
designing batch-oriented BMPs 226
designing transaction-oriented BMPs 225
determining mappings 21
determining your position in the data

base 108
DFSCONEO 70
DFSDDLTO (Dl/I test program)

control statements 229
description of 229
explanation of 316, 331
how to use 316, 331
testing Dl/I call sequences 229

DFSERAI0 (File Select and Formatting
Print Program) 130

DFSOAER 301
dictionary 12
DIF (device input format) 185
differences between transaction-oriented

BMPs and MPPs 223
direct access methods 42

characteristics of 42
HDAM 43
HIDAM 44
types of 42

direct access storage SPAs 69
direct dependents 153
direct retrieval 91
directed routing 191, 198
Dl/I access methods 41-41

considerations in choosing 41
direct access 42
GSAM 46
HDAM 43
HIDAM 44
HISAM 46
HSAM 45
sequential access 45
SHISAM 41
SHSAM 41

DL/I call parameters (figure) 81
Dl/I call trace 229
Dl/I calls

coding 168
DLET 103

(
\.,

(

(

\
)

./

\
/

------------_._--------------_._----_._--------- ------------------------

formats 239
get calls 91, 100
get hold calls 100
GN 94-97
GNP 97-99
GU 91-93
guidelines on retrieval calls 100
overview of 77, 80
parameters 80, 239
processing online data bases
with 224

qualifying your calls 81
REPL 101
retrieval calls 91, 100
testing DL/I call sequences 229
types of 81
use wi th SSAs 81

DL/I options
field level sensitivity 47
logical relationships 52
secondary indexing 48

DL/I program parts 156
DL/I program structure 78
DL/I programming 76-172
DL/I test program

call statements 229
checking program performance 229
comments statements 229
compare statements 229
control statements 229
debugging and 329
description of 229
displaying a data base with 329
execution in different regions 328
explanation of 316, 331
how to use 316, 331
JCL requirements 330
loading a data base with 329
regression testing and 329
segment length and checking 321
status statements 229
suggestions on use 329
testing DL/I call sequences 229
timings 230
using 229, 316-331
verifying call results with 329

DLET (delete)
call format 239
description 103
wi th MSDB 148

DLITCBL 238
DLITPLI 238
documentation for users 236
documenting an application

program 235-236
documenting the application design
process 12

DOF (device output format) 185
input

usi ng MFS 187
input messages

usi ng MFS 187
dynamic log space 227

editing considerations in your
application 66

editing messages 184, 193
considerations in message and screen

design 66
overview 65

element 13
eliminating data base updates 210

ROLB (rollback) 210
ROLL (roll) 210

ending a conversation 69
ending a conversation and passing control
to another program 207

ending the conversation 69
enqueue lockout 226
enqueue space 226

in batch-oriented BMPs
enqueue space

entity 13
entry statement

formats 238
entry statements 168

226

equal to relational operator 82
error routines 129

call format for sample routine
I/O errors 129
programming errors 129
sample status code error
routine 130, 307

system errors 129
types of errors 129

errors, execution 231
e~rors, initialization 231
establishing parentage

and GNP 99
ISRT 106
usi ng GU 93

256

using the P command code 124
establishing position after restart 133
examples

Boolean operators 121
conversational processing 200
current roster 13
D command code 83, 122
DEQ call 210
DLET 103
field level sensitivity 48
GN 95
GU 92
instructor schedules 25
instructor skills report 24
ISRT (add) 105
issuing a data base call 90
L command code 123
local view 22
logical relationships 52
medical data base 88
multiple qualification

statements 121
of GNP 98
P command code 124
path call 83
program isolation 208
Q command code 209
REPL 101
schedule of classes 23
using an SSA with secondary

indexing 135
exceptional conditions 129

Index 337

exclusive mode 72
executing Dl/I test program in different

regions 328
execution errors 231
explicitly opening and closing a GSAM
data base 144

express PCBs 73

F command code 122
with HERE insert rule 105

Fast Path
considerations for message-driven

Fast Path programs 212
data areas 265
data base calls 146, 263
data entry data base 146
DEDB 146
FlD call 263
FSA 265
main storage data base 146
message calls 266
MSDB 146
pas call 264
processing Fast Path data bases 146
processing MSDBs 146
reference 263-267
SYNC call 267
system service calls 267
types of data bases 146

Fast Path application pro~rams
introduction to 31
message-driven 31, 35
mi xed mode 38
nonmessage driven 31
nonmessage-driven 38
restrictions on mixed mode 38
types of 31

Fast Path data bases
DEDBs (data entry data bases) 35
MSDBs (main storage data bases) 35
types of 35

field call
call format 263
description 148
FlD/CHANGE 151
FlD/VERIFY 149
parameters 264

field level sensitivity
as a securi ty mechani sm 56
example of 48
introduction to 47
specifying 48
uses of 48

fi eld name
in FSA 150
in qualfication statement of SSA 82

field search argument
description 149
reference 265

fi eld value
in FSA 150
in qualification statement of

SSA 82, 83
fields in a DB PCB mask 86, 142
File Select and Formatting Print

Program 130
finding the problem 231
FIRST insert rule 105, 123

338 IMS/VS Application Programming

use with l command code 123
fixed-length records 144
FlD (field)

call format 263
description 148
FlD/CHANGE 151
FlD/VERIFY 149
parameters 264

for your reference 237-285
frequency, checkpoint 131
FSA (field search argument)

description 149
reference 265

function codes 169
in assembler language 170
in COBOL 170
in Pl/I 170

GA status code 129
gathering requirements for
conversational processing 67

gathering requirements for data base
options 41-62

gathering requirements for data
communications options 63

GB status code 129
GCMD (get command)

call format 248
description 208
retrieving responses to commands 208

GE status code 129
not-found calls 115
position after 115

general programming guidelines 118, 127
Generalized Sequential Access Method 46
get calls 91-100

choosing a retrieval call 100
get hold calls 100
GN 94-97
GNP 97-99
GU 91-93
overview of 100
use wi th D 121

get hold calls 100
get hold next

call format 239
description 100

get hold next within parent
call format 239
description 100

get hold unique
description 100

get next
data base call 94-97
message call

description 194
get next within parent 99

call format 239
description 97

get system contents directory call
call format 253
description 233
parameters 253

get un i que
data base call 91-93
message call 194

GHN (get hold next)
call format 239

/
\,

(

\

/

)

description 100
GHNP (get hold next within parent)

call format 239
description 100

GHU (get hold unique)
call format 239
description 100

GK status code 129
GN (get next)

data base call 94-97
call format 239
description 94

message call
call format 248
description 194

GNP (get next within parent) 97-99
call format 239

greater than or equal to relational
operator 82

greater than relational operator 82
grouping data elements into
hierarchies 18

grouping data elements with their
controlling keys 21

GSAM (Generalized Sequential Access
Method) 46

accessing GSAM data bases 140
and CHKP 145
and XRST 133, 145
call formats 259
call parameters 259
coding considerations 171
data areas 260
description of 140
designing a program with 140
fixed-length records 144
I/O areas 261
in sample batch program 287
in sample BMP 293
JCL restrictions 262
PCB mask 141
RECFM 262
record formats 144, 262
reference 259-262
restrictions on CHKP and XRST 145
RSA 143, 261
status codes 145
summary of calls 171
undefined-length records 144
variable-length records 144

GSCD (get system contents directory)
call format 253
description 233
parameters 253

GU (get unique)
data base call 91-93

call format 239
description 91

message call
call format 248
description 194
i ssui ng as fi rst call 194

GU function code for COBOL 170
guidelines on retrieval calls 100
guidelines, general programming 118,

127

HDAM (Hierarchical Direct Access
method) 43

HERE insert rule 105, 122, 123
use with F command code 122
use with L command code 123

HIDAM (Hierarchical Indexed Direct
Access Method) 44

hierarchic sequence 94
Hierarchical Direct Access Method 43
Hierarchical Indexed Direct Access

Method 44
Hierarchical Indexed Sequential Access

Method 46
Hierarchical Sequential Access

Method 45
HISAM (Hierarchical Indexed Sequential

Access Method) 46
hold calls 100
HOUSHOLD segment 90
how a program uses a DB PCB mask 78
how IMS/VS identifies terminals 32
how IMS/VS protects online data 33
how logical relationships affect your

programming 137
how often to use checkpoints 60, 131
how secondary indexing affect your

program 134
how you process a data base record 7
how you read and update a DL/I data
base 77

how you use GN 95
how you use GU 92
HSAM (Hierarchical Sequential Access

Method) 45

I/O area
for a DC ISRT call 194
for data base calls

coding 243
in assembler language 243
in COBOL 243
Pl/I 243

for symbolic CHKP 251
for XRST 132, 251
with DL/I calls 77

I/O PCB 177
I/O PCB masks

contents after successful GU 194
description 177
format 177

identification, checkpoint 131
identifying application data 12
identifying free space 154
identifying online security
requirements 63

identifying output message
destinations 71

identifying recovery requirements 58
identifying security requirements

data base 55
ILLNESS segment 89
immediate program switch 68
IMS/VS entry and return conventions

formats 238

Index 339

independent and 120
indexed field fn-an-SSA 135
indexing, s~condary

OB PCB contents 135
effect on programming 134, 135
how it affects your program 134
use with SSAs 135

information you need about
checkpoints 167

information you need about each
segment 167

information you need about
hierarchies 167

information you need about program
design 166

i nformat i on you need to code a
conversational program 220

i nformat i on you need to code an MPP 219
initialization errors 231
initially loading a data base 107
input me~sage format 183
input messages

format 183
input

format 183
MFS 187
using basic edit 193

insert call
call format 239
data ba se call

description 104
insert rules 105

use with F command code 122
use with l command code 123

inserting a path of segments 104
inserting a sequence of segments 121
inserting information 108
inserting segments

usi ng 0 command code. 122
inserting segments to an existing data
base 104

inserting the first occurrence 122
inserting the last occurrence 123
inserting with 0 122
instructor schedules 25
instructor skills report 24
introduction 2-9
i solat i ng dUp! rca~e values 19
isolating repeating data elements 18
ISRT (insert)

data base call
adding segments 104
call format 239
description 104
loading a data base 107
rules 105
use with 0 command code 122
use with F command code 122
use with l command code 123
wi th MSOB 148

inserting the SPA 205
message call

call format 248
description 194
in conversational programs 205
use with SPAs 205

ISRT function code for Pl/I 170
iss u i n g C H K Pas fir s t ca 11 i n
program 131---

issuing commands 208
using the CMD call 208
using the GCMO call 208

issuing data base calls 90

340 IMS/VS Appl i cat ion Programmi ng

issuing GU as first call in MPP 194

JCl (job control language)
Dl/I test program requirements 330
GSAM restrictions 262

key feedback area
definition of 87, 143
field in OB PCB 87, 143
length field in OB PCB 87, 143

key sensitivity 56
keys, concatenated

using in SSAs 123

L command code 123
with HERE insert rule 105

LAST insert rule 105
length of key feedback area 87, 143
less than or equal to relational
operator 82

less than relational operator 82
level number field in DB PCB 86
limiting access to specific

individuals 64
limiting access to specific
terminals 64

1 i mi ti ng access to the program 64
listing data elements 13
LL field

in input messages 183
in output messages 183
in SPA 204
with directed routing 200

load program
use of SSAs in 107

loading a data base 107
loading a sequence of segments 108
local view examples 22
local views, designing 17
locating a specific sequential
dependent -153

locating the last inserted sequential
dependent 154

LOG (log)
call format 254
description 233
parameter length for OL/I test

program 321
parameters 254
restrictions on I/O area 255

log call
call format 254
parameters 254
restrictions on I/O area 255

log record
containing checkpoint IO 130
File Select and Formatting Print

Program 130

r'
(

r
\

-'-

(

(

)
/

how to print 130
printlng log records 130

10glcal and 120
logical child 136
logi calor 120
logical parent 136
10glcal relatlonshlps

and status codes 138
deflnlng 53
effect on programming 136, 137
example of 52
introduction to 52, 136
logical child 136
logical parent 136
physlcal parent 136
processing segments in 136

logical structure 136

main storage data base
see "MSDB (main storgage data base)"

main storage SPAs 69
maklng programmlng easler 118
making your program reusable 175
many-to-many mapping 22
mappings, determining 21
mask, DB PCB 78, 85
maximum SPA size 69
medical data base example 88

descrlption of 88
segments in 88

message calls
call formats 248
in assembler language 248
1 n COBOL 248
1 n PL/I 248
parameters 248
summary of 249

message prlming 194
message processing 32
message queues

accessing from BMPs 225
message-driven Fast Path programs 31,

35
considerations 212
recovery 36
scheduling 36
sync points 36

messages 32
editing 184
from terminals 180
in conversations 205
input 193
output 71, 193

identifYlng destlnations for 71
retrievlng 193-194
segments 180
sending 194-197
sending messages to other appllcatlon
programs 196

MFS (Message Format Servlces) 184
control blocks 65, 185
exampl e of 185
input messages 187
overview of 65

MID (message input descrlptor) 185
mi xed mode 38

restrictions 38

mixing Fast Path and IMS/VS
processing 38

MOD (message output descriptor) 185
mode

exclusive 72
multiple 61
response 72
single 61

modifiable alternate PCBs 195
changing the destination of 195
uSlng the CHNG call with 195

MPPs (message processing programs)
checking status codes 221
description of 33
dlfferences with transaction-oriented

BMPs 223
lntroduction to 31
multiple mode 34
r'ecovery 34
sample program 299
scheduling an MPP 35
single mode 61
structure 175
sync po i nts 33

MSC (Multiple Systems Coupling)
and conversational programming 207
description 197
directed routing 198
receiving messages from other IMS/VS

systems 198
sending messages to other IMS/VS

systems 199
MSDB (main storage data base) 146

description of 35
non related 146
nonterminal-related 146
processing 146
reading segments in 148
related 146
terminal related 146

dynamic 146
fixed 146

types of 146
multiple DB PCBs 126
multiple mode 61
multiple positioning 126
multiple qualification statements 120
Multiple Systems Coupling

see "MSC (Multiple Systems Coupling)"
multiple transaction codes 194
multiple-mode BMPs 226
multiple-mode MPPs 34

N command code 125
use with REPL 103

name field, segment 82
naming data elements 15
nonmessage-driven Fast Path programs 31

description 38
recovery 38
sync poi nts 38

non related MSDB 146, 148
nonterminal related MSDB 148
nonterminal-related MSDB 146
not equal to relational operator 82
not-found ca 11 s

description 115
position after 115

Index 341

notes on coding a COBOL MPP 216
notes on coding a PL/I MPP 218
notes on coding assembler language

MPPs 219
null command code 126
number of sensitive segments in DB

PCB 87

one-to-many mapping 21
online and batch processing 28-40
online processing 30-38

message processing 32
processing online data bases 223
processing the data base online 224

online security
password security 64
supplying information about your
application 64

terminal 64
OPEN (open) 259
operator

in FSA 150
in SSA 82

operators, Boolean 120
operators, relational 120
OPTION statement 324
options, processing

description of 57-58
field in DB PCB 87, 143

or, logi cal 120
OS/VS checkpoint option

return codes 133
OS/VS checkpoint records 133
OS/VS restart 59

DCB names 133
description of 133
restrictions 134

output message format 183
output messages

format 183
identifying destinations for 71
output

format 183
retrieving 193-194
sending 194-197
to other application programs 196
to other IMS/VS .systems 199
using basic edit 193
with directed routing 200

overriding FIRST insert rule 123
overriding here insert rule 122, 123
overriding insert rules 105
overview of application design 10
overview of basic edit 66
overview of coding an MPP 220
overview of MFS (Message Format
Services> 65

342 IMS/VS Application Programming

P command code 124
P processing option 121
parallel processing 126
parameter length

LOG call 321
SNAP calls 320

parameters
for DC calls 248
for DL/I calls 239
for GSAM calls 259

parentage
and DLET 104
and GNP 99
and GU 93
and ISRT 106
and REPL 103
using the P command code 124

parmcount 167, 169, 218
partition specifications table 233
parts of a batch program 156
parts of a DL/I program 78, 156
parts of an MPP 215
passing a conversation to another IMS/VS

system 207
passing a conversation to another

program 69
restrictions 69

passing control to a conversational
program 206

passing control to another program in a
conversation 206

passing the conversation to another
program 68

password security 64, 65
path call 83

definition of 83
example of 83

PATIENT segment 89
PAYMENT segment 90
PCB masks

alternate PCB masks 179
DB 85
DB PCB mask 78
GSAM 141
I/O PCB masks 177

PCB parameter list in assembler language
MPPs 219

PCBs (program communication blocks)
DB PCB 78
I/O PCB 177

PCBs, al ternate
see "alternate PCBs"

PCBs, modifiable
see "modifiable alternate PCBs"

physical parent 136
PL/I

call parameters 239
DB PCB mask 242
DC call format 248
DL/I call format 239
DL/I program structure 160
entry statement 238
I/O area 243
ISRT function code 170
parameters 238

entry statement 238
passing PCBs 238

in entry statement 238
po inters- in entry statement 238

(

(

--------- ---

)

)

return statement 238
sample MPP 299
skeleton program 160
SSA definition examples 246

PL/I coding notes
on MPPs 218

PL/I MPP skeleton 217
skeleton MPPs

PL/I 217
PL/I Optimizing Compiler 218
planning ahead for batch-to-BMP
conversion 138-140

POS (position)
call format 264
description 153
I/O area 266
parameters 264

POS=MUlT 126
position call

call format 264
description 153
I/O area 266
parameters 264

positioning 108
after unsuccessful calls 115
determining your position 108
multiple 126
when restarting 133

preventing a program from updating
data 57

preventing a segment from being

processing
130

replaced 125
primarily sequential
printing log records
problem determination
processing a message

231
181

overview 181

46

processing data bases online 37
processing DEDBs 153
processing Dl/I data bases

overview of 77, 80
processing Fast Path data bases 146
processing information in a data base 2
processing messages

transaction-oriented BMPs 225
processing messages 225

processing MSDBs 146
processing online data bases 224

in BMPs 223, 224
processing options

A (all) 57
D (delete) 57
E (exclusive) 57
field in DB PCB 87, 143
G (get) 57
general description of 57
GO (read only) 58

GON 58
GOT 58

I (i n sert) 57
K (key) 57
P (path) 121
R (replace) 57

processing requirements, analyzing 28
processing segments in logical
relationships 136

processing several views of the same data
base 126

processing, parallel 126

program communication block
see PCB

program entry
formats 238

program isolation 208
enqueue lockout 226
enqueue space 226
example of 208
in BMPs 224

program isolation enqueues 208
program structure

conversational 202
program test 228-232
program-to-program message

switching 197
conversational 206
nonconversational 196
restrictions 197
security checks 197

programming guidelines 118, 127
programming with secondary indexing 134
programs, sample 286-315
PSB (program specification block)

introduction to 5
PST (partition specifications
table) 233

PUNCH DD statement 326
PUNCH statement 325
PURG (purge)

call format 248
description 195
using CHNG with 196

Q command code 208-210
assigning classes to segments you're

reserving 210
example of 209
hO ... J to use 209
in BMPs 224
relationship to program
isolation 208

restrictions 210
use with DEQ call 208
using 210
with dependent segments 210
with root segments 210

qualificatIon statement 82
coding 244
fi eld name 82
field value 82, 83
relational operator 82
segment name 82
structure 82
using multiple qualification

statements 120
qual i fi ed call

definition of 81
qualified SSA 81, 82

qualification statement 82
structure 82
structure with a command code 83
with command codes 83

qualifying DL/I calls 81
qualifying your SSAs 82

Index 343

read-only access 58
reading segments in an MSDB 148
real time, Dl/I test program 230
receiving messages

overview 174
receiving messages from other IMS/VS

systems 198
RECFM for GSAM 262
record, log

File Select and Formatting Print
Program 130

giving checkpoint ID 130
how to print 130
printing log records 130

recording information about your
program 235

recovery
checkpoints calls 58
identifying requirements 58
in a batch-oriented BMP 37
in a message-driven Fast Path
program 36

in batch programs 39
in MPPs 34
in nonmessage-driven Fast Path
programs 38

in programs accessi ng OS/VS
files 133

restart call (XRST) 59
using basic CHKP 133
using XRST 132
with OS/VS restart 133
with symbolic CHKP and XRST 132

recovery call s
CHKP 130, 132, 133

basi c 130, 133
symbolic 130, 132

CHKP (symbolic) 132
symbolic CHKP 132
XRST 132

recovery considerations in
conversations 70

reference section 237-285
related MSDB 146
relational operator

in qualification statement of SSA 82
list of 82

relational operators
Boolean operators 120
coding in SSA 244
independent and 120
logical and 120
logical or 120

relationships between data elements 17
REPl (replace)

call format 239
description 101
wi th MSDB 148

replace call
call format 239
description 101

replacing segments 101
replying to one alternate terminal 195
replying to the originating
terminal 194

replying to the terminal in a
conversation 68, 205

repositioning GSAM data bases 133
reserving a place for command codes 126

344 IMS/VS Application Programming

reserving and releasing segments 208
program isolation 208

resolving data structure conflicts 47
responding to an alternate terminal 195
response alternate PCBs 72
response mode 72
restart 132

and GSAM 133
with basic CHKP 59
with OS/VS restart 59
with symbolic CHKP 59

restarting your program
DCB names for OS/VS restart 133
repositioning GSAM 133
using basic CHKP 133
using OS/VS restart 134
when accessing OS/VS files 133
with OS/VS restart 133
wi th XRST 132

restriction on passing control to
conversational programs 206

passing control and continuing the
conversation

restriction on size of SPA 206
restriction on SPA size when passing
the conversation 206

restrictions
CHKP and XRST with GSAM 145
GSAM JCl 262
mixed mode 38
on checkpoint calls in single-mode

BMPs 226
on F command code 122
on LOG I/O area 255
on passing a conversation 69
on Pl/I entry statement 218
on program-to-program message

switching 197
on the D command code 121
on using the Q command code 210
on using the SPA 204
using OS/VS restart 134

retrieval call usage 100
retrieval calls 91-100

exceptional status codes for 129
get hold calls 100
GN 94-97
GNP 97-99
GU 91-93
guidelines 100
use wi th D 121
use with l command code 123
using F with GN and GNP 122
which retrieval call to use 100

retrieving a sequence of segments 121
retrieving IMS/VS system statistics 232
retrieving information 91-100
retrieving messages 193-194
retrieving segments directly 91
retrieving segments sequentially 94
retrieving segments with D 121
retrieving subsequent message

segments 194
retrieving system addresses 233
retrieving the first message

segment 194
retrieving the first occurrence 122
retrieving the last occurrence 123
return codes

after OS/VS checkpoint 133
return conventions

formats 238
reusable programs 175

(

(
\

)

)

ROLB (rollback)
call format 258
comparison to ROLL 211
description 210
in BMPs 224
parameters 258
use in conversations 202, 212

ROLL (roll)
call format 258
comparison to ROLB 211
description 210
in BMPs 224
parameters 258
use in conversations 212

roll call
call format 258
comparison to rollback call 211
description 212
in BMPs 224
parameters 258

rollback call
call format 258
comparison to roll call 211
description 210
in BMPs 224
parameters 258

routines, error 129
RSA (record search argument)

description 143
reference 261

rules, ISRT 105
RULES=FIRST 105, 123

use with L command code 123
RULES=HERE 105, 123

use wi th F command code 122
use with L command code 123

RULES=LAST 1~5

SAMETRM=YES 205
sample JCL for DL/I test program 331
sample programs 286-315

batch 287
BMP 293
conversational 302
MPP 299
transaction-oriented BMP 293

sample status code error routine
calling 130
description of 130

saving information in the SPA 205
SCD (system contents directory) 233
schedule of classes example 23
scheduling

a message-driven Fast Path
program 36

scheduling an MPP 35
scratchpad area

general description 68
screen design considerations 67
secondary indexing

DB PCB contents 135
effect on programming 134
examples of uses 49
how it affects your program 134
introduction to 48
specifying 50
using SSAs with secondary
. indexes 135

what DL/I returns 135
secondary processing sequence 135
security

checks in program-to-program
switching 197

data ba se . 55
field level sensitivity 56
identifying online requirements 63
key sensitivity 56
password security 64
processing options 57
segment sensitivity 55
sign-on 64
supplying information about your
application 64

terminal 64
segment

introduction to 5
sensitivity 55

segment length and checking
(DFSDDL TO) 321

segment level number field 86
segment name

field in DB PCB 87
in qualification statement of SSA 82

segment name field
in SSA 244

segment name field in an SSA 82
segment search argument

see "SSA (segment search argument)"
segments in medical data base example 88
sending messages 174, 194-197

overview 174 .
to alternate destinations 195
to other application programs 196
to other IMS/VS systems 197
to the originating terminal 194
usi ng al ternate PCBs 195
using the PURG call 195

sending messages to alternate
destinations 195

sending messages to other application
programs 196"

sending messages to other IMS/VS
systems 199

sending messages to several alternate
destinations 195

sensitive segments in DB PCB 87
sensitivity .

fi eld level 56
general description of 55
key 56
segment 55

sequence in a hierarchy 94
sequential access methods 45, 46

characteristics of 45
HISAM 46
HSAM 45
types of 45

sequential dependents 153
sequential processing only 45
sequential retrieval 94
setting parentage

and GNP 99
ISRT 106
usi ng GU 93
usi ng the P command code

SHISAM (Simple Hierarchical
Sequential Access Method)

SHSAM (Simple Hierarchical
AccessMethod 47
si~n-on security 64
s~mple HISAM (SHISAM) 47

124
Indexed
47

Sequential

Index 345

simple HSAM (SHSA~) 47
simplifying your programming 118
si ngle mode 61
single-mode BMPs 225
single-mode MPPs 34
skeleton programs

assembler language 163
COBOL 157
PL/I 160

SNAP call
parameter length 320

SPA (scratchpad area)
contents 204
format 204
length 69
maximum size 69
restrictions on using 204
saving information 205
size 69
storage medium 69
type 69

special call stetements for DL/I test
program 327

special control statement formats 325
specifying field level sensitivity 48
SSA (segment search argument)

coding 244
coding formats 245

in assembler language 247
in COBOL 245
in PL/I 246

coding rules 244
command codes 83
definition of 81
guidelines on usage 119
overv i ew of 81
qualification statement 244
qualified 81, 82
reference 244
relational operators 82
restrictions 244
segment name field 82, 244
structure 81
structure with a command code 83
unqualified 81
usage 92

guidelines on 119
with DLET 104
wi th GN 96
wi th GNP 98
wi th GU 92
with ISRT 105
with REPL 102

use with DL/I calls 81
use with multiple qualification

statements 120
use with secondary indexing 135
using qualified SSAs 83
with command codes 83

STAT (statistics)
call format 255
description 232
parameters 255

statistics call
call format 255
description 232
parameters 255

status code
field in DB PCB 87, 142

status code error routine 307
call format 256
calling the sample routine 130
parameters 256

346 IMS/VS Application Programming

status codes
and DLET 104
and error routines 129
and GN 97
and GNP 99
and GU 93
and ISRT 106
and load programs 108
and REPL 103
blank 129
checking 128-130
checking in an MPP 221
exception conditions 129
explanations 272-285
for logical relationships 138
for retrieval calls 129
for XRST call 132
in FSA 150
quick reference table 268
reference 268-285

STATUS statement 229, 316
storing data in a combined file 3
storing data in a data base 4
storing data in separate files 2
structure of a DL/I program 78
structuring a batch program 76
structuring a message processing

program 173
structuring and coding a BMP 223

batch-oriented BMPs 226
processing online data bases 223,

224
transaction-oriented BMPs 225

structuring data 18
structuring the DL/I portion of a

program 76
suggestions on using the DL/I test

program 329
summary of command codes 84
summary of DC calls 249
summary of symbolic CHKP and basic

CHKP 60
supplying security information 64
symbolic CHKP 130, 132

and GSAM 46
and XRST 132
call format 251
ID 131
in BMPs 225
in sample batch program 287
in sample BMP 293
parameters 251
restart and 59
restart with 132

SYNC (sync)
call format 267
parameters 267

sync call
call format 267
parameters 267

sync point processing in a DEDB 155
sync points

and checkpoint calls 58
description of 33
in a batch-oriented BMP 37
in batch programs 39
in batch-oriented BMPs 226
in BMPs 224
in message-driven Fast Path
programs 36

inMPPs 33
in multiple-mode BMPs 226

(
',-

(

(

'\
)

)

in nonmessage-driven Fast Path
programs 38

in transaction-oriented BMPs 225,
226

taking checkpoints 130
sync points in single-mode BMPs 226
sync points in transaction-oriented

BMPs 225
synchronization points

see "sync po i nt sty
SYSIN2 DO statement 326
system contents directory 233
system service calls

CHKP 130, 132, 133
basi c 130, 133
symbolic 130, 132

CHKP, basic 252
CHKP, symbolic 251
DEQ 210, 257

use in BMPs 224
for Fast Path 267
GSCD 233, 253, 255
LOG 233, 254
ROLB 202, 210, 224, 258
ROLL 210, 224, 258
STAT 232
summary of 250
symbolic CHKP 132
SYNC 267
XRST 132, 251

system statistics, retrieving 232

taking checkpoints 130
in batch-oriented BMPs 226, 227

dynamic log space 227
enqueue lockout 226

in multiple-mode BMPs 226
in single-mode BMPs 225
in transaction-oriented BMPs 225

task time, DL/I test program 230
tasks of desi gni ng and codi ng appl i cati on

programs 7
techniques to make programming
easi er 118-

terminal security 64, 65
terminal-related MSDB 146
testing an application program 228-232

using BTS II 230
using DL/I test program 229, 316, 331
what you need 228

testing DL/I call sequences 229
testing status codes 128
timings, DL/I test program 230
tools avai lable to BMPs 224

Q command code 224
ROLB 224
ROLL 224

transaction-oriented BMPs 31
checkpoints in 61
common uses 225
description of 36
design considerations 225
differences with MPPs 223
multiple and single mode 224
multiple mode 226
processing messages 225
sample program 293
singlemode 61

sync points 224
uses of 36

TREATMNT segment 89

U command code 124
unconditional comments 318
undefined-length records 143
understanding how data structure
conflicts are resolved 47

understanding online and batch
processing 28-40

unit test 228
unqualified calls

definition of 81
unqualified SSA 81, 82

segment name field 82
structure 81
structure with a command code 83
with command codes 83

updating information 100
get hold calls 100

updating segments in an MSDB 148
updating the data base online

in BMPs 223
using a data dictionary in application

design 12
using a OB PCB mask 78
using BTS II to test your program 230
using command codes 121, 126

when loading a data base 108
with OLET 104
with GN 96
wi th GNP 99
with GU 93
with ISRT 106
with REPL 103

using command codes with SSAs 83
using concatenated keys in SSAs 123
using DFSDDLTO 229, 316-331
using different fields 47
using DL/I calls to process online data
bases 224

using DL/I calls with DEDBs 153
usi ng DL/I' s posi ti ons as
qualifications: U 124

usi ng F wi th GN and GNP 122
using F with ISRT 122
usi ng GN 95
usi ng L wi th ISRT 123
using L with retrieval calls 123
using multiple DB PCBs 126
using multiple positioning 126
using multiple qualification

statements 120
using parallel processing 126
using password security with terminal
security 64

using qualified SSAs 83
using ROLB and ROLL in conversations 212
using ROLB in conversational

programs 202
using secondary indexing and logical
relationships 134

usi ng SSAs
general guidelines 119
in a load program 107
with OLEl 104
with GN 96

Index 347

wi th GNP 98
wi th GU 92
with ISRT 105
with multiple qualification

statements 120
with REPL 102
with secondary indexing 135

using SSAs with DL/I calls 81
using the CHNG call 195

modifiable
changing the destination of 195
using the CHNG call with 195

using the DL/I test program 316-331
using the right retrieval call 100

V command code 125
variable-length records 143

what a CHKP call does 130
what DL/I returns with a secondary

index 135
what happens in a conversation 67
what happens when you issue a call 90
what happens when you process a

message 181
what the data looks like to your

program 5
what the SPA contains 204
what you can use in BMPs 224
what you need to test a program 228
when IMS/VS schedules a message-driven

Fast Path program 36
when IMS/VS schedules an MPP 35

348 IMS/VS Application Programming

when position is important 109
where field level sensitivity is
specjfied 48

where to use checkpoints 131
which retrieval call to use 100
writing information to the system

log 233

XRST (restart) 132
and GSAM 133
call format 251
description of 59
in sample batch program 287
in sample BMP 293
parameters 251
usi ng XRST 132

your input
information you need to code an

MPP 219
your input for a DL/I program 166

ZZ field
in input messages 183
in output messages 183
with directed routing 200

Z2 field 183

r-
I

\ ...

(

"-
\
/

./

E g
E.E
c.'" .:; :E
0-
(1)"iO
ClQ)
c: III

·E B
o Q)
III 0.

== 10 10

E]
] E
10 E
E 5,
o
;~

. 10
'- 0
~

,,~ 0
II> Q)

E ·E
~.;;;

.0 c: o (1)
.... III

o.~

~ ~
10 (1)

~ c.
~ ~
III ::I
OJ (1)

o.~
10 (1) we:
(1)

o z

)

IMS/VS Version 1
Application Programming:
Designing and Coding
SH20-9026-8

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at ti1'!.' location to which this form is addressed. Please direct
any requests for copies of publications, or for assistanc:~ in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL _________ _

Previous TNL _________ _

Previous TNL _________ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
(;UOP~li:1i.iuH.

SH20-9026-8

Reader's Comment Form

=old and tape Please do not staple Fold and tape

... :

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programminy Publishing
San Jose, California 95150

IIIII1 NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

...•...•...
=old and tape

--- ---------- ---- - ---- - ----------_ .. -
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation

Please do not staple

Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

r
(
\ ,-

s:
en -< en
<
CD ..,
CI'I o·
:J

o
CD
CI'I

cO·
:J
5·
to
Q)

5.r
n\. o
a.
5·
to

en
:J:
I\J
o
cO
o
I\J
0')

Co

(,

----.-----

iii o z

)
/

IMS/VS Version 1
Application Programming:
Designing and Coding
SH20-9026-8

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL _________ _

Previous TNL ________ _

Previous TNL _________ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
coop~raiion.

SH20-9026-8

Reader's Comment Form

old and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

IIII

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

~
en -< en
< ctI ..,
CII o·
::J

:t>
"0
"2-o·
Q)
.-+ o·
::J

"tJ
a
to
@
3
3
::J
to

"tJ
~.
::J

•••••••••••••••••••••••••••• • •••••••• • •••••••••• • •••••••••••• • •• • •••••• • ••••••••• •• • (ti'

old and tape

--- ------ ---------- - - - ... ---------.-
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. N.Y. 10604

IBM World Trade Americas/Far East Corporation

Please do not staple

Town of Mount Pleasant. Route 9. North Tarrytown. N.Y •• U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue. White Plains. N.Y •• U.S.A. 10601

Fold and tape

Co

en
::I:
I'.)
o
cO o
I'.)
0>
00

(
"

~ g
e.E
0.<1)
.; :2
0-'"
CIl'iij
ClCll c: <I)

''::; 0
o CIl
<I) a.
:: co co ...
E"O
~ e
~ E
§ 6,
.... ...
~£
'- 0) (;
.'", ~
E ''::;
~.;;;
.0 c: o CIl
... <I)

o.CIl

~ :;
:::J en

~ e
c: a.

~ ~
CIl CIl
o.~
co CIl cnii:
CD
o z

)

... _----_._ _._ ...•.... -------------------------------

IMS/VS Version 1
Application Programming:
Designing and Coding
SH20·9026·8

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ________ _

Previous TNL ________ _

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SH20-9026-8

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

,f
\

~
en -< en
<
CD
"" en o·
:J

»
'C
'Eo o·
Q)
.-+

'-

.. : o·
:J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

II1111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

"'0
"" o
to
"" Q)

3
3
:J
to

"
CD

z
!='
en
w
.......
o
t1t
.9

"'0
~.
:J

• •• • n;-

Fold and tape

--- ----- ------ - ---- - - ------------_.-
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.V. 10604

IBM World Trade Americas/Far East Corporation

Please do not staple

Town of Mount Pleasant, Route 9, North Tarrytown, N.V., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.V., U.S.A. 10601

Fold and tape

o C.

en
::r:
I\J
o
tb o
I\J
0')

00

(
"

)

)

)

