Licensed Material - Property of IBM
LY33-6010-1

DOS
PL/lI Optimizing Compiler
Program Product Program Logic

Program Number 5736-PL1
(This product is also distributed as
part of composite package 5736-PL3)

Feature Number 8050

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

Second Edition (June, 1972)

This is a major revision of, and obsoletes, LY33-6010-0.
Changes or additions to the text and figures are indicated by
a vertical line to the left of the change.

This edition applies to Version 1, Release 5, Modification 0
of the DOS PL/I Optimizing Compiler, Program Product 5736-PL1,
and to any subsequent version, release, and modification.

Information in this publication is subject to significant change.
Any such changes will be published in new editions or technical
newsletters. Before using the publication, consult the latest
IEBM System/370 Bibliography, GC20-0001, and the technical
newsletters that amend the bibliography, to learn which

edition and technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the
IBM branch office that sexrves you.

Forms for readers' comments are provided at the back of the
publication. If the forms have been removed, corments may
be addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California 95150. All comments and
suggestions become the property of IBEM.

€Copyright International Business Machines Corporation
1971,1972,1973,1974,1976

Order No. LY¥33-6010-1, Page Revised by TNL LN33-6079,

The internal logic of the DOS PL/I Optimizing Compiler is described in
this manual. It is written for use by people involved in program
maintenance or in modification of the program design. The manual
consists of seven sections, organized as follows:

Section 1: 1Introduction

Section 2: Method of Operation
Section 3: Program Organization
Section 4: Directory

Section 5: Data Area Layouts
Section 6: Diagnostic Aids
Section 7: Appendixes

This organization is intended to enable ease of access when the manual
is used either for initial education purposes or for reference purposes.

For readers who are not familiar with the compiler, descriptive text and
illustrations are contained in sections 1 and 2, and in the first part
of section 3. Section 1 contains brief descriptions of the purpose and
capabilities of the compiler, and of its relationship to the Disk
Operating System. The first part of section 2 contains a general
description of compiler operation, and descriptions of the housekeeping
features that are common to all aspects of compiler operation. The main
part of section 2 consists of descriptions of the functions and methods
of operation of component sections of the compiler. These descriptions
contain references to the figures in section 5 that illustrate the
formats of various data areas. The overall physical organizatiom of the
compiler is described in the first part of section 3.

When the manual is used for reference purposes, such as diagnosis of
possible errors in compiler operation, initial access via the directory
in section 4 is recommended. If the compilation of a particular
statement is to be examined, the first list in the directory indicates
the phases of the compiler that process particular PL/I language
features. If the execution of a particular compiler phase is being
examined, the second directory list indicates the processing functions
performed by each individual phase. The lists in section 3, which show
the functions of the main sections of code within each phase, can be
used to identify the approximate position of a section of code within a
phase listing. Each phase list in section 3 is accompanied by a
flowchart for the phase. Section 6 contains details of the various
diagnostic aids in the compiler, and describes how they can be made
available when detailed examination of compiler operation is regquired.

The attention of all readers is drawn to the two fold-out figures in
appendixes C and D. The first shows the sequences of phase loading that
are used in various circumstances. The second shows the main data areas
that may be accessed during the execution of any phase. Special
reference information, such as the functions of macros used in the
compiler, and the causes of compiler error messages, is contained in
other appendixes.

PREREQUISITE PUBLICATIONS

To enable effective use to be made of this manual, an understanding of
the contents of the following publications is required:

DOS PL/I Optimizing Compiler:
Lanquage_ Reference_ Manual
order No. SG33-0005

October, 1973

Preface

oOorder No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973

IBM System/360 DOS/TQS
Assembler Language
Order No. GC2u4-3414

ASSOCIATED PUBLICATIONS

The following publications are associated with the program product
described in this manual, and should be consulted as required:

DOS PL/I Optimizing Compiler:
Messages
Order No. SC33-0021

DOS_PL/I Optimizing Compiler:
Installation

Order ¥o. SC33-0020

DOS_PL/I Optimizing Compiler:
Execution_Logic

e e

Order No. SC33-0019

DOS PL/I Optimizing Compiler:
Programmer's Guide
Order No. SC33-0068

DOS PL/I_Optimizing Compiler:
General Information
Order No. GC€33-0004

DOS PL/I Resident Library:
Progranm_Logic
Order No. LY33-6011

DOS PL/I Transient Library:
Program_Logic
Order No. LY33-6012

AVAILABILITY OF PUBLICATIONS

The availability of a publication is indicated by its use_key, the first
letter in the order number. The use keys and their indications are:

G - General: available to all users of IBM systems, products, and
services without charge, in quantities to meet their normal
requirements; can also be purchased by anyone through IBM branch
offices.

S - Sell: can be purchased by anyone through IBM branch offices.
L - Licensed material, property of IBM: available only to licensees of

the related program products under the terms of the license
agreement.

4 Licensed Material - Property of IBM

Section 1: Introduction « « « « ¢ « o o o .

Purpose of the Compiler . . « ¢ ¢ ¢« ¢ ¢ « « o o &«
The Compiler and the Disk Operating System . . .
COMEILER INPUT AND OUTPUT . ¢ <« « ¢ « o o o o « «
General Organization of the Compiler
Character Code Dependence . « « « « « « « « =«
Section 2: Method of Operation
Introduction =« « ¢ ¢ ¢ 4 ¢ e ¢ o e 2 e e e e o =
Special Macro Instructions and BCOkS . « « o+ o«
Register Naming Conventicn . « « ¢ ¢ ¢ « o o« « «
Cata Representation « . . « « ¢ o ¢ ¢ & ¢ & o & &
Format of Input « o« o ¢ o ¢ o o o o « o « o o =
Internal Text FOormats « « ¢ « © o o o o o = o o
The Dictionary . « o « ¢ ¢ ¢ o o o o o o o o @
Page-handling Scheme . . « ¢ ¢ « ¢« ¢ o o o« « o &
The Page AX€a « « o« ¢ o o o « s o o o s = o @
Fage S1iZ€ « ¢ ¢ o ¢ o ¢ ¢ ¢ o o o o o s o o o
Relationship between Main Storage and the Spil
Page StatuUS « « o ¢ ¢ ¢ o o o o o o o o o o =
Page Status Chains . . « ¢« ¢« ¢ ¢ ¢ o ¢ ¢ « &«
Basic Page-handling Operations . . . « « + « &
Selection of a Spill Candidate « . .
Text Page Handling . « ¢ « ¢ ¢« o ¢ o o o o« o =«
Dictionary Page Handling . « « « ¢ ¢ o ¢ « o« &

COM‘ROL STAGE - - L - - - - -

Initialization Phase (Phase BE) « o o o « o « @
Phase INput . « ¢ « o o ¢ ¢ o ¢ o o o o o o &«
Phase Output =« « ¢ o o o o « © o @ = « = = &«
Phase Operation « « « ¢« ¢ « ¢ ¢ o o o o o o &

Initialization of the Compiler Communication
Opening and Initialization of Data Sets . .
Processing the Compiler Options

Calculation of Page Area . . « « ¢« o « « =
Identification of Interrupt-handling Routine
Compiler Headings

The Resident Control Phase (Phase AA)
Fhase Cperation « . « « « « o « « o« e e o o
Compilation Start Routine (AAOOOO) e o o«
Fhase Loading Routine (AA0300) . . « « «
Fage-handling Routine (AA4000)
Spill Supervising Routine (ARA6C00)
Interrupt-handling Routine (AA0600)
Compilation End Routine (A20500)

THE FREPROCESSCR STAGE =« « o ¢ « o s o o « o o
48-Character/BCD/INCLUDE Preprocesscr (Phase BA)
Phase INPUt « « ¢ o ¢ o o o o o o o « o « = =
Phase Output .« « « ¢ ¢ ¢ o o o ¢ o « = o o o«

Phase Cperation « « « ¢« « « ¢ o ¢ o o o « « &«
Compile-time Statement Preprocessor (Phase CA)
Phase INPUt « ¢ ¢ ¢ o o v o o o o o « o = o =
Phase OUtPUL <« « & ¢ ¢ o« o « o o o o o &« .
Phase Cperation « « o ¢ ¢ ¢ o ¢ ¢ o o o o o« &«
Phase StructUre « « « o « « o « o o o o o &
Sequence of Processing
Input/Output Subroutines « « « o &«
Building and Usage of Preprocessor Dictionar
Reading and Analysis of Scurce Text

Processing of Compile-time Statements . . .
Preprocessor Diagnostic Message Editor (Phase CE

Licensed Material - Property of IBM

A

i
)

e

5

o o o o s o (e 6 s 2 s s 0 6 & & @

- -
.«
1

- .
- L
rea
- Ll
S .

a

Set

4 8 o o s 8 s e 0 s ¢ 8

s 8 8 & ® & 8 o 6 s ° s

¢ o & o 8 3 0 & e 5

S 2 ¢ & 0 4 e s " 2 * 3 s o e

Contents

e & o 5 8 & 5 ® & % 8 4 5 3 8 8 s o ¢ & 6 8 & o 4 8 4 s 4 8 8 8 8 o »

e o & 9 o 0

® ® 8 8 ¢ o P 5 s s s s & 8 s 8 0+ s

® s ® o 8 ¢ O s & s * 0 P 2 e

s 6 8 o o s 8 & 5 8 s 0 0 8 0 0 8 s s 0 0 s e DD s s s

Order No. LY33-6010-1, Page Revised by TNL LN33-6175,

Phase InNput « . « « ¢ o & o « o « = =
Phase Output . . . « e e e s s e .
Tables Used by the D1agnostlc
The Message List
The Reyword List . . .
Fhase Cperation
The Message Sort . . .
Nessage LCecoding
Message Editing Fa0111t1es « o e
Implementation of Compiler Orticns
| syntax Takle Builder (Phase EC)

SYNTAX ANALYSIS STAGE

| Syntax Analysis - PASS 1 (PHASES EA ANC

Phase INPUt « o « « ¢ o« o o o « o o o «
Phase OQutput . « « &« ¢ ¢ ¢ ¢ ¢ o« « &« «
Phase Operation . . . « ¢ « « « &« = + &
Source Text Read-in . « « « . .« « . .
Staterent Nuwkering
Statement Headers . « « « ¢ o o« o o «
Frefix Frocessing . . . « « « . « « .
Reyword Identification
Verb Identification «
Statement Analysis
Statement Error Handling . . « .
Program Block-structure Checklng .o .
Chaining of Nested Blocks
Syntax Analysis - Pass 2 (Phase EE) . . .
Phase INput « « « ¢ ¢ ¢ « o « « « o « =
Fhase Cutput ¢« « « « « & &
Phase Cperation « ¢ ¢« ¢ « ¢ o o « o o &«
Statement Analysis e e e
De-nesting of Containead Blocks « o .
LCetermination of Next Processing Phas
Syntax Analysis - Pass 3 (Phase EI) . . .
Phase INPUt « « o o ¢ ¢ o o o @ « « o &
Fhase Cutput . « ¢ ¢ « ¢ ¢ o ¢ « « o &«
Phase Operation « « « « « o « o o« o «
THE DICTIONARY BUILD STAGE

Dictionary Sections . . « « « « ¢ & < .
The Names Dictionmary
The Variables Dictionary . .

The General Dictionary . « « « « o .
Explicit Declarations (Phase GA)
Phase INput « « o« &« « ¢ « ¢ o @« « o o &«
Phase OQutput . . ¢ ¢ ¢ « o « o o o « &
Phase Operation « « « ¢ ¢ ¢ ¢ o o ¢ o &

Use of Tables, Lists, and Directories
Sequence of Processing
Attributes Processing . . . « - e .
Contextual Declarations (Phase GI) « o
Phase INput « « « & o 4 ¢ ¢ o o & o o »
Phase Output . . « . . « « « <« . .« . .
Phase Operation « . & ¢ ¢ o« &
Detection of Contextual Declarations
Declaration Expressions (Phase GE) . .

Phase Input « « « « 2 ¢ ¢ ¢ 4 o o o o =
Phase Output « <« « ¢« & .« &
Phase Operation . « « « + « &« ¢« o o « &
Sequence of Processing . « « « .« . .
Construction of Aggregate Tables . .

Building the Declaration-expressions File

Processing Array-bounds Expressions .

o

o s 3 s 3 8t e o LI T Y s s s & o 0 4 s

Message Editor Phase

= e e e
e o e e
e o e o
e = e =
« & e a
s e e
e« e o @
« e s e
e e a =
e e o ®
e o e o
e = = o
e @& e @
« & o e
e o o o
e e w
e = e e
e s e o
e ® e e
e e e @
e« o e =
e o e o
e e e o
e ® e o
e e o o
e o e
s e e e
e o o e
= a « e
e 8 e o
e ® o @
e e o o
e e e o
= e s e
« e e
e e = =
e e o s
e e s o
e« s o @
e e o
e a e
e e 2 =
e 8 e e
e e e o
« o e e
= e e e
e @& o o
e & e o
e s e o
e o o o
e o e
« e e @
e e o @
e e e o
e o e @
e e e o
s & e e

. . .
a ® e

Processing Variables with the DEFINED Attribute
Processing Variables with the GENERIC Attribute

Processing Label Variables

Processing ALLOCATE and LOCATE Statements .

.

October

1976

e s o e 4 8 & @

Licensed

« e e e e e e e e
© e e e e e e e e .
© s s e e e e e e
“ e e s e e e e e
© e s e o e s s e
e s e e e = e o o
« e e e e s s e e
s e s e e e e e e e
c e s s e e s e e .
« e e s s e e e s o
© 4 e s s e a s oeo.
© s e e e e e e e
e e e a4 e s e s e
© 4 e e e e e e =
« e e e s s e s e
* e 4 % a & s e =
« 4 s e e e o a e
© o s e s e s s e o
« e e s e s e e s
© e e o a s e o =
© s e s s e e s e
© e e s e o o o o
e e e 4 e e e e e o
* s e e e s e s e e
e e e e s e s e o @
c c e e o s e e o o
e e e e e = e o & @
« e e e e e e aoe s
« o a2 e e e = e o @
© e e e e e e e e
“ 4 e s e s e e e

« s s e & s e e
e e e e e e N
“ e e e e s e e e
© e s e e a2 e = e
© s e e e e s e o
© s e e s e e e e s
© e e e e s e e o
* e e e s e s e e .
© e e e e o o o o =
© s e e s e e e e s
© s 4 e e e s o o e
e e e e e s s e
« e e s e e e« e e .
c t e e e s e s e
“ e e e s e s e e e
« e e e e e 8 o e @
e e e e e e e e e .

“ e e e e e e e
e e = s e = a e a o
e e e e e e e e
e e e s e e e e e .
“ e e e e e e w e
« e e e s e s = s
“ e e e e s e e e
© e e e = s e = o o
« e o o a s s a o @
c e e s s e s e e e
c o e s o e e o e @
e s e e a4 e o o o =
© e e s e e s e e .
« & o o o s o e o o
e s s e s e o o o a
“ s e e s e e e e s
c s e e e e e e e
© e e e 4 e s s s o

Material - Property

< . 62
- - 62
- - 63
- - 6l
- . 64
- - 65
- - 65
- - 65
< « 65
< < 68
. . 69
. . 69
. . 69
.. 70
. 70.1
. 70.1

« & & ® o 8 0 & e
s 8 & 3 & & 2 a2 & @
~
w

.
s 8 o 5 8 o s s 8

< - 93
- « 96
< - 96
« « 96
-« 96
« - 96
< . 99
.« - 99
« « 99
. <100
. 100
. <100
- -102

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

Implicit Declarations and Names Resolution (Phase GM) . .« . . o « « « « o o « =« o« « « 2106
Phase INPpuUt -« « o o o o o« o o 4 o 2 o 2 o a 2 o o o o s o a s o o s s o s o« s o« = « <106
Phase OUtPUL ¢ 2 ¢ o o o o o« o o o o o o w o o » a s s« s a a s a a o = « o« =« o« s « <106
FPhase Operation « « « o ¢ « o o o o o o o @ o o o = » « =« o s s o« s a « o« o s o o« « 2107

Sequence Of FrocesSsSing . « .« o o o 4 4 o 4 4 e o e e s e s = e s s e e o o o o « 107
Irplicit Declarations « « « @ ¢ o o o« o « o o o a s o o s s o « o a o o o 2 o « « <107
Resolution Of NAam@S +: « o o o o ¢ o o o o o « o s o« s s o 2 s o s s a o« o« « « = « 2107
Resolution of Constants .« . o o & & ¢ 4 o o 4 4 @ o o e 4 o o e 2 e e o = a « =« « =108
Arqument Lists and SUDBSCIAEES « « o ¢ o ¢ o o o 2 o o o o o « o« a = a « = s« o« » « <109
Built-in Function Leclarations . . « o« o o o o w ¢ & o w o o o « = s s a « o« « o <110
Merging ALLCCATE and LOCATE Stat€ments . . . o « « « o o = s « o« « = o« « « « o« « o110
Processing Declaration-expressions Statements . . ¢« ¢« . . ¢« ¢ ¢ 4 ¢ « & « « « &« « 2110

EXPRESSION ANALYSIS ANLC TEXT FORMATITING STAGE « « o « o « o o o « s o o« o s a = e . 111

Merging of Declaraticn Expressicns (Phase IA) . « ¢ ¢ 2 o o o o o o o o o « « » = =« « <112
Phase INPULt « o« o« o« o o o o o « o o ¢ o s o o o o o « s o« s s s o o o« o o o s « o« « <112
Phase OUtPUt .« o ¢ o o o o o o o o o o o o s o o o s s s o o o a s o =« « » « « o « <112
Phase Operation « « « « o ¢ o o o o « o o o o o o o % o » 2 s o a s o« s o« a = = « « =113

Repositioning of Declaration ExXpressions .« . « ¢ ¢ o« o o ¢ ¢ o o« « = o « s o o« « <113
Construction of Locator Chains for Based Variables . . . « . ¢ ¢ & ¢ ¢« & « « « « <114
Repositioning DEFINED Statement Information . . . ¢ . ¢ ¢ & ¢ ¢ ¢ &« o o = « « « « <116
Generation of Structure-mapping Information « ¢ . ¢ ¢ ¢ ¢ 4 4 4 .« .« . 2116
Processing of Array INITIAL ASSIignNMENtS « « « o o o o « o o o s a s o « o o « = » <117
Special Processing of Built-in Functions . .« . « ¢ ¢ +v & 4 o o o « o o « = =« « « <117
Processing of ALLOCATE and FREE Statements =« « « o o « « « « 2 o = 2 o o« » « « « 2118

Matching of Data-aggregate Arguments (Phase ID) . « « 2 ¢ o o « o« o« o = o o o o =« o« « 119
Fhase INPUL « ¢ ¢ o o o o o o o o o o o s o« o o o a o« s s a s s o« o =« a a o« « a o« « =119
Phase Cutput .« . & o o o ¢ ¢ 4 o o o o o « o « s 2 o s o o . e s e s e o s e« « 2119
Phase, Operation .« « « o o ¢ o o o o o o o e o 2 o o o o s o o o o« s o « « =« =« « « & <120

Sequence Of Frocessing . « « « ¢ o ¢ o o o o o o o o . e e s e e o o o = « <120
Matching of Arquments and Parameters to Programmer- deflned Prccedures P VA
Checking Argurents to Built-in Functions . . o« o ¢ ¢ & ¢ ¢ o 4 o o o 2 o « « « « 2121
Processing of Operands in Input/Output Statements . « « « ¢ o ¢ o « ¢ o« « « o« « « 122
Generation of Aggregate Temporary OperandsS .« « « o « « « o o o s = o o« o = o o« o 2122
Processing LEAVE Statements .« « « « « o « o « o o = o s« s s s o o s s o o =« « « « <124
Processing SELECT QrOUPS « s « « « o v o o o o o = o o o o« o« o « « « o « « « « 2124.1

Expansion of Data Aggregates (Phase IE) « « o o o o « = o o o o o s o o s« o a s o« « « o125
Phase INPUL « o + o « = o o 2 o a s » o s o @ s o o o o o o o o s s o s o o o« « « o« 125
Phase Output . < « ¢ ¢ o 2 o 4o o o o o o o o = o o = 2 = o = a2 o a« « a s s« o« o o« « 2125
Phase Operation « « « o o o o 6 o 4 o o o o o o 2 o s o a o o o o o o o« = o o« o o « 125

Sequence Of Processing .« « w o o s ¢ ¢ o 4 4 4 e e 4 4 e e s s e s e s e o « o = <125
Processing of Assignments . . . e s o 8 s e e o s = s o @ e e e s e e s o« o o <126
Processing Structure BY NAME Ass1gnments e e e o e s o & s e o s e s o o = o « =« <129
Processing Aggregates in Stream I/O Statements « o 2130
Processing of Based StructuUres . « . o o o o o « o o o o o o s o a a o « o « « « 2131
Processing Aggregates in Procedure Calls and Function References « . . .132

Expression Analysis and Text Translation (Phase II) . « « « o « o o o o o o o « o« « « =138
Phase INPUt « « « o 2 w2 o« o o o o o a 1 o o o o » s o s s o o a &« o« o o o « = o « « <134
Phase OUtPUt « « « e o o & o o o o a o o o o e o o s o o« o ¢« o o s « =« o o « o« « = =134
Phase Operation « « « o o o ¢ 6 o o« o o o = a o o o s = o s = s o o« = =« a « « o o« « <135

Translation to Type—2 TEXL =« o ¢ ¢ o o o o o o o o = o o o o = o » o s &« « « » « <135
Translation of DO and IF Statements .« « o o ¢ o o & ¢ o ¢ 2 e o o o o « « o o « « <140
Expression Analysis « « « « & ¢ ¢ ¢ ¢ o o . e e s e s e e e e e e e e e oaoe e e <141
Qualified-name Temporary Operands (Q-temPSe) =« « o ¢ o« o o o o o o = o s o« =« o « =142
Analysis of Built-in FUnCtions . . « « o & o & o o o o o = o o o o o o o« « o o« « <143
Argument and Parameter Matching ¢ ¢ o o ¢ o 4 ¢ o o 4 ¢ o o o « ¢ o o o « =143
Selection of Generic Entry Points . . . ¢ « o o o o o o 6 o o o o o o o« o o = « o <144
Text Handling Features Organized by Phase II . . « ¢ o 4 o o o o o o « o« =« o « « =148

STATEMENT PROCESSING STAGE .+ « « « 2 « o o o @ « o o « e o o o 2146

Text Handling During the Statement Processing Stage « . . « . . . e e e e e e o . 147
Attributes and Cross-references Listing (Phase IK) .« « ¢ ¢ 4 ¢ & ¢ ¢ o o o« «a o +« « « 150
Phase INPUL « « =« o o o o o ¢ 2 o o o o o o = o o o o o « s = « o o« a o« a2 o = o« « « =150
Phase Output . . « =« o ¢ o o @ o o o o = s s« = a s s o o a s« s a o s s o « o« o « o 2150
Phase Operation « « « o o @ ¢ o o o o w o o o o o o ¢ o o o s o o o » s o o o o« « « =150
Collection of Identifier Cross-references . . . ¢« « ¢ ¢ ¢ ¢ ¢ & o o« « = o o« o o« « 2150
‘Sorting of Identifiers . . o o o ¢ it 4 e e i 4 i e e e e s s s e e o s e = e = «151
Output of Attributes and Cross-reference Listings . . « « « ¢« o ¢ o 2 o « « '« « - 151

Licensed Material - Property of IBM ,

Order No. LY¥33-6010-1, Page Revised by TNL LN33-617S5, October 1976

IF-statement Processing (Phase KA) .153

Phase INPUt « ¢ ¢ © o o o o o » o o o o o o o o o o o s o o s s o o o s o o o o o« o =153
Phase OUtPUt =« « o o« ¢ o o o o o o o o o o o s o« o s o« o« a s s o« s s » a s s s« =« &« 2153
Phase Operation « . « « o o o o o o o « o o a o o o « o s a s « o« o o« s « o« o« s o » =153
Creation of Statement-type Chains . e o s @ o a o s a s s a e e o s o s e« s e« <154
Frocessing of IF Staterents and WBILE Clauses e o e o s s e s s e e s o s o s e o <154
Frocessing Identifiers Ceclared with the UNALIGNED Attribute . . « . ¢« . ¢« « « « <158
Resolution of String Tenmpcrary Cperands « ¢ ¢ o o « o o o s o o s o o o » o s s o <159
Letection of Optimizable ON-UNitS « « ¢ ¢ o o o o o o ¢ o o o o 2 o o « o o =« o« « <159
Interlanguage Communication (Phase IM) « o ¢ o« o ¢ o o o ¢ o s« o s o o« o s v o« o « o <160
PHASE INPUT « ¢ « o o o o o o o o o o » o s s s s s s o o s o s o« s = = a o « o « « <160
Phase OULPUL = « o o « o = o o .o o u o o o o s a2 o o = o s o« s = a s s s s a s o« « 160
Phase Operation « « « « o © o o o o o o o 5 o o o s s s« o« s o o a a o s a s o« s o« o 2160
General ConSiderations « o« o « o o o o o o o o o o o o s a s s e o o o o o« « o « o161
Sequence of Processing . . . e ¢ o e w = W e e o o s e o s s s e = e s s » o161
Processing Invocations of PL/I from COBOL or FORTRAN e o o e s s s e o e o o = » o161
Processing Invocations of COBOL or FORTRAN from PL/I .+ « ¢ o s o o o « ¢ o « « » <162
Processing COBOL Files e o o o e o o s o e o s s s s e e o s s s s e « 163
Array and Structure Mapping (Phase IQ) « s e e s = s s 2 s e o s a s s s s s s s o o =165
Phase Input L L - - - . - - - . - - L] . . - - L] - - . - - " - L] - » - - L] - L] - - - - 1 6 5
Phase Output - - - [. e - .) . . - . L3 e & - a = . = . . - . . L] . - [] - L] . L L] !165
Phase Operation « « « ¢ o o o « o o o s o o o o o o o o s o o s s s o« o o o « s o s =165
Processing MAE Text TAbleS « « ¢ ¢ o ¢ o o « o a o o o o o @ s s s o s s o s o « 167
Frocessing RESDES TexXt TAbleS « o « « s o o s o @ s s « o s s s a o o o« a o o » o 167
Processing ALLOC TeXt TADleS ¢ « « o o o o o o @ o » o o s o s a o s « o = o« o « =168
Frocessing FREE TeXt TaDl€S « « « o « o o « o o 1o s » o o a s s« a » =« a o« o« o « » -168
Processing CCNCAT TeXt TAD1leS « « « o o o o « « = o o s s a = o« o o = » = a » o = =168
Frocessing Assignment TeXt TAD1ES « ¢ « « o o « o o « o2 o s o o o a o a s s« « « « 168
Calculation of Expression-result Lengths (The CALLEN Subroutine) . . . « . « « « 169
Subscript Processing (Phase KE) « o s o o o o ¢ o o s o = o« o s » « s s o o« s o« « o « o170
Phase INPUL « = « o « o o o o o o o « o o = s o s s s o s o o o a o =« o =« a o« o =« « 170
Phase OutpPuUt . ¢ « o« o o o o o o o @ o 2 @ = o o o = o o = o e = a a o« o a o« o« « « =170
Phase Operation « « . o o o o ¢ o ¢ o o o o o o o o 2 10 a = o o s o s o« s a s o = o« 170
Sequence Of FroCesSSing « o « ¢ ¢ o o o o 6 o « o« o ¢ o e« s = o s o s o s a s o o 2170
Optimized Aggregate ASSignmeEnNts « « « ¢ o o o ¢ ¢ o o o s s o o o a o o o o o o o <171
Processing Compiler-generated DO-1OOES =« « « o @ s o o« 8 e « o o o o o o o s o « =171
Processing iSUB-defining Text TAbleS . « « « o o o « 2 o o o o o s « o s o « o « 2172
Processing Subscripts « « « « ¢« . . . « ® o o e 4 o o & o o s s o s & s o o o o 172
Processing the SUBSCRIPTRANGE Condition e o o o o o o e 6 s & o o s e s = s e o = 2174
Processing Array INITIAL ASSIigNmENtS . « « o« o ¢ o o o o o % o o. s s s« o o« o = « <174
DO-statement Processing (Phase KI) .« . o o « o o o o o # o o s o s a = a s a o « o o o175
Phase INPUt « « « « « = 2 o e = o = o = s 2 = s o o m @ o ® o s o o o o o« s o « s o 175
Phase OUtPUL .« « o « ¢ = o o « o « o o o o o o o o o o s s o o s a s a s o a o s « o176
Phase Operation @ o » e 8 e © 8 & 8 ° @ e ® ® 6 e w e e & € ®© ® @ ® e ® @ @ © o e .‘.176
WHILE, UNTIL, Or REPEAT ClauS€ . « « s o o s = 2 s o o s s o« o o = s » o o « o = <177
Mlﬂ.tiple me Specifications [L3 - - - - L[] . - - . '@ - [. [. - - - - - .] - L] .177
@timi zati on IndicatiOn - - - - - . ‘. - - - - - . - - - LA 4 - - L] - - - - - - - - - 1 78

| Variable TO and BY ClaUSES + + « 2 « o « s o o s o o © o s o o ¢ o« s s o » s o «178.1
DO‘lOOpS in Array Assignments @« e 8 ®© & o e ® @ e © & e 80 ® e © e ® ® e ® @ e s ® .179
Systan—interface Statement Processing (HASE KT) ® @ @ & e e o * ® o & & & 2 ® an e o 0180
Phase INPUL « o ¢ ¢ 2 o o o o o o o o o s s o o o« o« o o o o s o s o o o o a = o =« o =180
Phase Output e % 8 o e e ® @ ®w 8 ® 8 € @ & °® 8 W e W & & ® © ® © e 8w °© & & @& o & = 0180
Phase operation L) L] L] . . L] L] - - - L L] L] L J L] L] L] L] . . - - - - - L] - - - .' L] L] - - 1 80
sequence of Processing * & & @ @ © o o s = & o e 8 s e s e s o = e s e & e « « 180
Processing of Statements Requiring System Interface Facilities « « « « <180
Processing PROCEDURE, BEGIN, and ON-EEGIN Statements . « « o « « s « s a o « « « 181
Processing RETURN StatementsS =« « ¢ o o s o ¢ o s ¢ ¢ o o o s o o o « o « « a » = =184
Frocessing STOP and EXIT Statements « « « « o « o « » = o o s s o a s «a « « s « » <184
PrOCeSSJ.ng the CBECK OptiOn - L) . .« o e . e . o e e e - e e o e o s @ e o - L] .:18“
Identification of Returned VARYING CBAR Strings . ¢« ¢ ¢ « ¢ o o s o s s s a e o « <185

| Processing File Declarations (Phase KL) . « « o o « « o & s o o o a o o a o « « » o « 187
Phase Inpllt - - - - - - . - - - . - . L - . - - - - - - - [L) L) - . L] L] L] L] L] - - L] ._1_87
Phase output - - - L L] L L L] . L . L] - L] L] L] - L] L) L] - L] L] L] L] L] - - L] - . . L] L] - 6187
Phase Operation ® @ @ © s @ ® 8 ® & o @ e ® @ ®© ®© e ® ® & © e ®© ® e ® e ® @ & e o = -.:187
Checking of File Declarations @ s a o = s 2 s e e e e s e o o e o o s s« 2187

| Processing OPEN, CLOSE, and RECORD 1/0 statemen S (Phase KM) . ¢ o o « o ¢« o « « =« « o190
Phase Input - - L] - L - - L] . L] . L] L] L] - ‘e L] - L] . L] L] L] L} L] - L] L] - - L] L] L] L] e L] .190
Phase OUtPUL « o o ¢ s o o o o ¢ 2 ¢ o o o o s o o o« o o o s s s s o a o a o a o « 2190

Licensed Material - Property of IBM

Order No. LY¥33-6010-1, Page Revised by TNL LN33-6175, October 1976

Phase Operation « « « « o« ¢ o « o o « = « @
Sequence of Processing
Optimization of File Opening and Clos1ng
Frocessing OFEN and CLCSE Staterents . .
Frocessing Record I/0 Statements . . .

Erocessing Stream I/C Statements (Phase K(Q)

Generation of Data-transmission-control Subroutines
Identification-of lerary Subroutines Required for Conversions
Special-case Proce351ng (Phase KV) . . . « « «
Phase Input « « «"¢ ¢ ¢ & ¢ o ¢ o o o &
Phase Output . « ¢ « o « o ¢ @ o o o
Phase Operation « « « « ¢ « « ¢« « « o« &
Marking of Flow Units . « « « « + ¢ @« & .
Optimization of Compiler-Generated Branchlng Instructlons and Labels .
De-nesting of Arguments to Programmer-defined Functions and Procedures

¢ e - -

Phase INPUL « « ¢ = o o o = o o o o o s o s = o s s o o o o o o « o o o
Phase Cutput . .« ¢ o o o ¢ ¢ o o o o « 2 o a o 2 o a o s o s a o s o« o
Phase Cperation « « « o ¢ ¢ o o o & o 2 o o o s s o o o s » s s o o s o =
Sequence of Frocessing e e ® o & o e s s e e s e o s e e o @
Frocessing GET and PUT Text Iables .« . . « s s e o 4 o e s s s e = =
Processing DATAE. Text Tables in List- dlrected I/0 statements
Frocessing DATAE Text Tables in Data-directed I/C Statements
Processing Edit-directed I/0 Statements . « .« « . ¢« ¢ ¢ ¢ ¢ & o o & .
End-of-statement Processing . - . <« + 4 4 4 4 e 4 s e 0 e e e e e e .
Processing FCRMAT Statements . . « <« o ¢ o o o o o o o o s o o o .

e o .
- e s e o o
« o e « o =
« & = e e = o

Optimization of Exponentiation and Multiplication Operations (Strength Reduc

Optimization of Comparison Operations . « -« « o« o« & « o « « o o o o« o =
Optimization of Decimal Arithmetic Operations
Optimization of On-units . « &« « « & ¢ ¢ o ¢ o ¢ &« o &
Built-in Function and Pseudovariable Processing (Phase KK)
Phase INPUL « « « « = o o o o o = o o o o s o o o
Phase Output . < o« « o o o o @ « o s o o« o = o =
Phase Operation « « « o« « ¢ o ¢ « ¢ o o o o o o &
Generation of Text Tables for Inline Evaluation
Generation of Text Tables for Library Calls . .
Text Deleted by Phase KK ¢ ¢ o o o o &
String-handling Cperations - Part cne (Phase OC) .

6 s o 8 & & 2 s 8
LI)

“ & o ® % 8 & 8 e o
s s e
« 8 o ® 8 » & 8 &
¢« & s ® 8 8 & s &
"« s e e
e ¢« 8 & 8 s o &

-
- o
« =
« .
e o
° -
o«
o« e

Phase Input « « ¢ o o & 2 o o o o o o o a o« a o

Phase CUtPUt .« « « o ¢ o ¢ o o a 2 o o o« o o =

Phase Operation . . . « o <« ¢ o o & ¢ o o & & &
Processing String Assignments « « « « ¢ ¢ ¢ o ¢ 2 o o o o .
Frocessing Concatenation Operations . . . c e e e e e

s & & & s * s o &
.

e o 8 s s 8 o & s

Processing BOOL and TRANSLATE Built-in Functlons, and AND, OR, and NCT Operators

Processing Comparison Operations .« « o« « « o ¢ o ¢ o o« o « o s o o o &«
string-handling Operations - Part 2 and Complex-expression Expansion (Phase
Phase INput « « o o ¢ « « « o w o s o = &
Phase QutPut .« « o ¢ o o o o o « o o o o
Phase Operation « « « « « o &« o ¢ = o o« «

Processing String Built-in Functions -
Processing BC and BCB Text Tables . .
_Frocessing Expressions with Corplex Cper
Routine SCANLAB/SCANSN . . . « . « . .

Phase Input « . « « « ¢ o « o w o o &

Phase Cutput .« « o« « « =« « = o o o @

Phase Operation « « « « « o« « 2 o o &
Processing Picture Specifications.
Processing Text Tables .« « « . . .
Processing CONVersions. « « « « o o o

nas

S 2 8 & s o & 2 v .
.

LI I O L I I ' B)
.

s 8 0 s s 8 0 O, 0 .

GLOBAL OPTIMIZATION STAGE . . « = « « o o o =
Glossary of Terms Used in Global 0pt1mlzat10n
Extraction of Alias and Call Information (Phase
Phase INPUt « « « o « o« o« = o o & o o o o o =
Phase Output . « « « o o ¢ o o o« &
Phase Operation « « « .« .
Value Lists for Variables
Use of Value List Transfer Tables
Alias Information Summaries . . .

gcu

® s 8 5 0 s e
® 8 o 8 0 & & s
L] . . L] L] L] L . .
. . L] . . [] L] L] L]
8 o o 5 o o 8 8 s
* s 8 8 3 & 0 &
. . . L L]
¢ o o & o s o 3 a
S ¢ o s 8 & 8 & @

[} . [] . . L] L[] .
s o 0 s & 4 0 .
® o & s 8 o 8 ¢

e 0 s v 4 o & o

Licensed Material -~ Property of IBM

LU SR B)

o o o & 3 5 2 e s
e 8 & & & 5 s o 8

. =

ox)

¢ s e s s »

® o & 8 s 3 % 8 s 3 s 0

s o 8 8 8 3 8 g @

e

o O s 2 2 s & s o

e & s & 0 o 4 s s &

n

s 6 o ® ® 3 8 8 8 1 & Y W s &

s 8 8 ¢ 8 s 8 9 * & s 2 s 0 s

s & 8 o ¢ 32 8 s

191
<191
191
.192
.192
.199
<199
<199
.200
<200
<201
-202
-203
.203
.204
. 205
-205
. 206
. 207
<207
<207
. 207
. 208
. 208
. 208
«210
<210
.21
.212
<213
.213
-214
-214
215
«217
<217
.218
-218
-218
-218
.219
.220
.220
«221
.223
223
-223
-224
- 224
<224
.225
<226
.227
<227
.228
.228
«228
.228

«231
<231
.235
235
«235
<236
.236
«237
.238

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October

Value Lists for BlOCKS .« ¢ ¢ ¢ ¢ ¢ o o o o o« o o o o o =

Extraction of Variables Usage and Flowpath Information (Phase OE) .
Phase INPUt « « =« « « o o o o o 2 o « s s o« a s o o« s s s o« o « «
Fhase Cutput .« « < ¢ o & & o 2 o ¢ o o o « o « s a o o o o o o =
Phase Cperation . . < « o« o & 4 o o o o o o o o o s o s o o o o« =

Recrganization Of TeXt .« ¢ « o o o o ¢ o o o o o = s o o o o o
Extraction of Variables Usage Information « . . « . .
Extraction of Flow Path Information . . « « ¢ &« ¢ ¢ ¢ o ¢ o o &«
Consolidation of Block Information =« « « ¢ ¢« o« o ¢ o o o o o «
Extraction of Cn-unit Infcrmaticn « « « o ¢ ¢ ¢ ¢ ¢ o o o o o &

Flow Analysis (Phase OI) . « « o o & o o o o o o o o o o o o « o« =«
Fhase INPUt « « o o o o o o o o o o o o o o s o o o o o o o o o
Phase CUtPUL « o« o« ¢ o o o ¢ o o o o = o s s o o o s s s a s o o
Phase Cperation . « « « o ¢ o & o o o o o a o o o o s s o o« a o

Use of Tables and Lists e 4 s e o o s e s » e o e s =
Extraction of Forward-connector Informatlon e« o o & s o e & @
Collection of Rackward Connector Informatlon c e % = e = e = @
Calculation of Level NUmbers . « « o o o o o o « s o o « o o =
Determination of Back Dominators . .« « o« ¢ o o o o o o « o o &«
Identification of Loops and Back TargetS =« « ¢ « o o o o o « @
Extraction of "Busy-on-exit" Information .« . « <« ¢ ¢ ¢ & o o .
Insertion of Flow Analysis Information in the Dictionary and Tex

Text Optimization (Phase OM) < w & @ « « 2 = o « « @« = = « a = « =
Phase INPUt « « « ¢ « o o o ¢ o o o s e o o o a s o o o o o s s «
Phase Output « « « ¢ o & o ¢ % & o o o o o = o o o o @ o o » « =
Phase Operation « « « &« ¢ ¢ o o o o o o o o = o o o o = o o o s o

Common Expression Elimination « « « o « ¢ o o« 2 o o o o o = o @
Backward-movement Processing .« « « « o o o o o s o o o « o o
Strength Reduction Processing « « « « « o o « e e o o« « o s o o

STORAGE AND REGISTER ALLOCATION STAGE « « o « o « s o » o o o o a &«

Symbol Table Resolution (Phase PC) . ¢ o ¢ o o o o o o o « o o o &
PhasSe INPUt « « « « ¢ « o o o o o o 2 « s o« s o o o o o« s o s a &
Phase Output =« « « o & ¢ o o o o o o o » s o s s s o s o a s o« «
Fhase Cperation + « ¢ « o o o s o o o a o o s « o o« o o« o o o o« o

Processing Requirements . « « « « o o o ¢ o o o« o « a s o s o @
Sequence of ProcesSsing . « ¢ « ¢ 4 o ¢ e e 4 e e e e o o o o

Constants Analysis (Fhase PA) . «w <« ¢ ¢ ¢ ¢ ¢ o o o o o s o o s o =
Phase INPUt « « ¢ o & ¢ o o s o o % o s s a s o s o s s s s o o =
Phase CUtPUt . « & o o o o o o o o = o o o o a s« o o s a a s o =
Phase Cperation . . -« ¢ o o 4 o 4 o o o o o o o o o o o a o o o o

Sequence Of ProCessing .« « « o« o o o o o s o o o « s o w o o o
Creation of Pseudo Constants Pool Entries . « ¢« ¢« « ¢ o o o o &
Types of Constant POOl Entrie€s .« « « « o ¢ ¢ o o o o o o o o @
Text Deleted by Phase PA . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o = o o o o o =

Storage Allocation (Phase PE) o « o ¢ o o « o = o o o o « o a « o«
Phase Input « « o ¢ o ¢ o o « o o o o 2 s o s o o o o s« o s o s o
Phase Output .« « + ¢ o 2 ¢ o ¢ 4 2 o ¢ o ¢ s 2 2 e o e o s s = =
Phase Operation . ¢ « ¢ o o« o o o o + o o o o o« o' o » o o o o o

Building the Storage Dictionary « « « « ¢« o« ¢ o 4 o ¢ o o « o &
Base Numbering . « « o ¢ o ¢ ¢ e o ¢ o 2 o o o s o s « s a & &
Relocation of Cffsets ¢ ¢ ¢ v ¢ 4 o 6 ¢ 4 4 ¢ o & o o &«
Storage fOr FAarameterS . « o« o o o o o 2 s s « o o s o o s s =
Storage for Record and Key Descriptors . « « « o ¢ ¢ o o o o &
Text PYOCESSINng « o o o o o « 2 o o 2 o o o s o o o s o s o » @

Addressing of Storage (Phase PI) . ¢ + ¢ o v ¢ ¢ o 2 = o o « « &
Phase INPUt « ¢ o 2 o ¢ o o o « o o o s o a o o a 2 é s o s a o @
Phase OUtPUt ¢ ¢ « ¢ ¢ o o © o o 2 o o = 2 2 « o o o o o o o « =
Phase Cperation « . . . « s e e s s e s e & e o = o @

Relocation of Constants Pcol otfsets e o @ & e s s e e s =. o @
Generation of Prclogue Code for Addressing and Initialization .
Generation of Inline Addressing Code . . « « v 2 o « o o « « «
Addressing Variakles in Outer BloCKS « « « = 2 « s o o o « o «
Allocation of Temporary StOXage . « « « o« « 2 o o s s « o o o« &«

Optimized Addressing (Phase QI) « « « « « « o o s o « « o o « « o«
Phase INPUt « ¢« ¢ v & ¢ &« & 4o 4 e o o o s s o s s o a s « o o o o
Phase Output . o ¢ o ¢ o ¢ ¢ o o « o ¢ e o o 2 o o o a o« o a « o
Phase Operation « w « « « o o o o o o o o o o o s o« o s s o o s

Addressing and Temporary Storage Information . « « « « « o« o« .

Licensed Material

1976

e o o (F s s e 4 8 s 8 s s 4

4 s 8 8 8 8 o % 3 5 5 ° 8 8 8 ¥ 8 6 3 & e s 4 " g & s s & s e s 3 8 g b s *

" 8 s o 8 8 8 4 s ¢ 8 s 8 s @

® 8 8 8 4 8 6 8 8 & 0 o 8 o 8 s 8 &

-239
<281
.2481
<241
242
242
244
<244
.246
.246
.248
-248
.248
-248
.248
-250
- 251
<251
<251
- 252
- 253
« 254
- 255
- 255
- 255
. 255
« 256
.258.2
. +260

e & & 8 » o o * 0
e 2 ¢ s s s & o 8
e & 8 8 & 8
e & s & 2 s a2 @
R R T ')

® 8 3 ¢ 8 5 s 4 s 0 & 8 .

* 8 & & B % 2 & 8 & 6 s 0 & @
S * 2 2 ¢ s 0 s s e
.

® 8 & 9 3 e ® 8 & 0 & 4 8 5 & 8 @ & @
s s & @

.262
.263
.263
.263
.264
.264
.265
267
267
-267
.268
.268
.268
.270
.272
.273
.273
.273
.274
.274
.275
I276
.276
.276
.276
.277
.277
<277
.278
.278
<279
.281
.281
.281
.283
.283
.283
.283
.284

s @ ¢ 8 g & 5 0 3 2 & 8 8 6 8 8 & * s ¢
© 9 8 & o 5 ¢ ® 8 B 8 6 8 8 s 8 e & & P & 0 5 85 & e 8 8 s 6 & " s 0 .
e ® o & s 8 5 5 o s & 82 s e & 6 g & s & @

@ o 8 3 6 8 5 8 ¢ ° 5 " & s 0 8 & B o B e & g 0 g 5 2 2 s 2 s 6t b a2 0t 2 v
& 8 & @ 8 5 8 & & % 3 S 8 8 8 8 & B 3 B ° B a b+ » 4 2 s 5 3 3 B &8 B 8 " s 0+
& ¢ & 8 2 5 s 8 2 & 3 2 s 2 s P 2 e s * * s a2 s s 4 s s 0 s o2 s s s s oo

Property of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

Addressing Code for Variables in Outer Blocks .284

Relocation of Temporary Storage OffSetsS « .« ¢ o o ¢ o o 2« a 2 o o o o = o o « « « 285
Loop Processing « « « « « o o o o o o o & e e & e s e = s s e s = s o s e o = o <286
Register Allocation (Phase QA) = . o o o v o o o o 2 o s s s s s s o o o s « o o « o 290
Phase INPUt . o ¢ o o ¢ o o o o o o o o o o o = s s s o o a s s s s a o o a o « « « <290
Phase OUtPUt « + o o ¢ o o o o & e o o o o = o o o o o o s s « « a s s o a o« « « « 2290
Phase Operation « « -« & o ¢ o ¢ ¢ & o o o o o o s o o 2 s a a s o o« = o » o o o « « =290
Elimination of Unnecessary Storage Operands (Phase QE) =« « « « o « o s o » o 2 « o « =293
Phase INPUt « « . = = o ¢ o o o o o = o o = o s s o s = s s« s a s « a s o s« s » o« « 293
Phase OUtPUL o ¢ o o o o o o o o o o s o o o o o o o o s s s s a o o a s s a o« o « 293
Phase Operation . . <« ¢ ¢ ¢ «c o o o o o o o o o o o = o o = « s o s s o o o« = o = o 2293
FINAL ASSEMBLY STAGE - . e 4 o o o o o o & = = e a a = @« s = « o s o 2295
Cbject Code Generaticn (Phases SA, SQ, SE. and SC) ¢ ¢ ¢ ¢« o o 2 o 2 s e e = = o & s 2295
Phase INPUt « <« ¢ v o ¢ o o o o o o o = e o o 5 s s o o a a a a s s o« s =« o s o o o« 296
Phase OULtPUt <« ¢ ¢ ¢ o 2 ¢ & o o o o o o o o o o o o o a a a s s s = o « s o o o o« 297
Phase Cperation « « « o o o o o ¢ « o o o o o o s s s s s s 2 s o o s a s s o o« « » 297
Standard Information in Text Table BAX€@ . « "¢ « « o « o o« s o o o o o o o s o o o« 299
Code-skeletOn AXYAYS =+ o o o o o o o s o o o o o o s s s a s s« o a s « o« = « o o« =300
Bit-Strip BYYXayS =« « o o o @ o o o o o o 2 o a o« o o o a2 s o s a s s s« a o o« = o« <300
Special Case COAING « « « ¢ o ¢ o ¢ o o o o« o o o o« o o s s a o a s o a« a « « « =« 2301
Extended-code Generation . . . © & & & e s s e s s e s e & s = e o o « o s o « =301
Identification of Returned VARYING CHAR Strings . « « « « ¢ o o« o o o « o « « « o« 2302
Label Resolution (Phase SK) « « ¢ o ¢ ¢ o o o o o o o o o o o s a s s » o s o « =« = « 303
Phase INPut « « o o o o o o ¢ o o o o 2 o a o o o « s o s a o« o o =« = = s o« o o« = o 303
Phase Output . . . o ¢ ¢ o o o o ¢ o o o o o o o s o s o o o o o o o a« « = s o « « =303
Phase Operation « « « o o o o o o o o o o o o o s o o « a s = a a s = » s o « o « « 303
Sequence Of Processing . « o« o ¢ ¢ o o o 4 o o o o o o o o s o s a o o o s o a « =303
Elimination of Redundant Instructions . . e o e 2 e e o 2 a o o = s o e o o o o 2304
Establishment of Region Numbers and Boundar1es e o o o o o s s s e s e a s = « « <304
Building the Label Table .« « ¢ ¢« ¢ ¢ « o ¢ « o o s o s s o a = s s » s« « =« o« o = =305
Insertion of Alignment COA€ « o« « « « « o o o « o « s = = o o s s s s s o o o« « « =306
Implementation of the FLOW and COUNT Options . « « « o o o ¢ ¢ « o s « o« « « « « 306
Object Module Assembly (Phase SI) . « = « o o « o o o o o o o s o =2 = o « o o« s s o o =307
Phase Input e @ o e @ o 8 o s s ® & e e s e @ ® s @ ® e o @ e s e e s s e = s e« o o =307
Phase Output . . & & & o o o 4 4o 4 o o o o o o o o o = o o o o o o o a s a o o =« « <307
Phase Operation . . « ¢ o o o o ¢ o o o o o o o s o o s o o o« s a o « o a s« « = =« = =308
Sequence Of ProCeSSiNg « « « o o o o o o o o o o s s o o s s a o« a o s o« =« = o « <308
Generation Of ESD RECOXAS . « o o « « o o o o 2 o s s s s« s o s o o« a s o« o« « o o« =309
Generation of TXT and RLD RECOYAS « « « « « « o o o o » o o s s o o« a o « o = o« « 312
Object Module Listings (Phase SM) . . & « &« ¢ ¢ o o o o o 2 « o o = o = o » o o o « » 315
Phase INPUt « « « < o 2 « o o o = o o o = a o a s o a2 o = o« s s s o« o o s s s o« o« « «315
Phase Output « « ¢ o« o o a o o o o o « o e o« o @« o« o o o o o s s s s« o« a a = « o« &« <315
Fhase Operation . . « « « . . . e e o & « o o o s o s s s s 2 e = s = s = « s« = o« =315
Processing the AGGREGATE Optlcn e s & & 4 o e e e s s s e e o e e = o o s = s s « 316
Frocessing the STORAGE OPtion « « « o o o o ¢ o e o o o o o s o o o s o s o« o o« o« 2316
Processing the ESD OBtion « o ¢ ¢ ¢ o o « o a o o o o « = o a a o s a = s« = o s« o« <316
Frocessing the MRP Option . < . o o o ¢ ¢ ¢ ¢ o o o o 3 =« o o« o a s o o o = « = « <316
Processing the OFFSET OPtiCn .« ¢ « ¢ o o o o o o o o o o s s a a » a s s o o o « 317
Frocessing the LIST Option .« ¢ ¢ ¢ ¢ o ¢ ¢ o o o « o o o o e s = o o o o o = = « 317
Editing of Diagnostic Messages (Phase UA) . . ¢ 4 ¢ o ¢ o ¢ o o« o o = s s o« o = o« « a «319
Phase INPUt « o o« o o o o 2 o 2 4 o o o o =2 s a « o s = o o o« o o o« « s o« s« o« =« o« « «319
Phase Output .« « o« o o o o o ¢ o o =« o o o o o @ e o s o o o o a a o o o o o« = = = 2320
Tables Used By The Diagnostic-message EQitor Phase . « « « o ¢ o« o o o « s o o o o 2321
The Message LiSt - - . - . e o @ . - . . - - - . . - - . - - - - - - . -322
The Keyword LiSt =« « o o o o o o o o o o o o o o s o o o « o o o s o« o « « o o « 2323
Phase Operation . . ¢ o o ¢ o o o o ¢ a o o s o « o = 2 =« o a s o s s s o« a a o o« o« 2323
The MeSSage SOYt =« « « o o« ¢ o o o o o s o o 5 o s o a o « o s s a o « « o« s =« « 2323
Message DECOAING =« « o o ¢ o o o o« o o o o o o s o o s o s o a o = o » o« o« a o o «324
Message EQiting FAcilitesS o« « « o o o o o o o o » o o o o o o o o o o o o o o o « =324
Implementation of Compiler OFtiONS « o o o o o o o o o = o a a o« o =« o a s a o« o 2325

The Compiler Dump Phase (Phase BI) .« « « 2 ¢ o o o ¢« s @ « e s o = o = =« o s« » s o a =327
Phase INPUL ¢ « ¢ 2 o ¢ o o« o o o o a s a o o « o s o s s o s o s s » s o s o s o o« 2327
Phase QUutPUt =« « ¢ o o o o ¢ o ¢ o = o o o o o @« o o o o s s o s a o« a s« a a a« =« « =327
Phase Operation . « o « o ¢ o o o o o o o o« o o « o o o o o o s s s s s = s « o o « =328
Section 3: Program Organization « « « o o o ¢ o o o o « o o e = a s a o« a « o o« « =« « 331

Introduction - - L - . - L] L - . L - L L - - - - - - - L - - . - L] - - - - - - - - - - 3 3 1

Licensed Material - Property of IBM

Basic Organization of the Compiler ¢« « &« ¢ ¢ o o « &«
Determination of Phase Loading Sequence
Loading of Diagnostic Stage Phases .« « « ¢ o o o« ¢ & o &
Effects of the NOSYNTAX, NOCOMPILE, and NOLINK Options on
SEQUENCE =« « o o o « o s s & s & s s o« o o a o o =
Basic structure of a Phase
Organization of Individual Compiler Phases .
Resident Control Phase (Phase AA)
Initialization Phase (Phase BAE)
48-Character Preprocessor Phase (Phase BA) .« .
Compile-time Statement Preprocessor (Root Module CA) .
Compile-time Statement Preprocessor (Sub-phase CAl) . .
Compile-time Statement Preprocessor (Sub-phase CB, Module
Compile-time Statement Preprocessor (Sub-phase CC, Module
Preprocessor Diagnostic-message Editor (Phase CE)
Syntax Analysis Pass 1 (Phase EA) . .
Syntax Analysis - Pass 2 (Phase EE) .
Syntax Analysis - Pass 3 (Phase EI) .
Explicit Declarations (Phase GA) . .
Contextual Declarations (Phase GI) .
Declaration Expressions (Phase GE) .
Implicit Declaration (Phase GM)
Merge Declaration-expressions (Phase IA) . . .
Matching of Data-aggregate Arguments (Phase ID)
Aggregate Expansion (Phase IE) .« « « ¢ ¢ o« « o o« &
Expression Analysis and Text Formatting (Phase II)
Attributes and Cross-reference Listing (Phase IK) .
IF-statement Processing (Phase RA)
Interlanguage Communications (Phase IM)
Array and Structure Mapping (Phase I0)

.
-
.
.
-
.
.

« & & .
e s & a2 s

Subscript Processing (Phase KE)
DC-statement Processing (Phase XI)
System-Interface-Statement Processing (Phase KT)
CPEN/CLOSE and File Ceclaraticns (Fhase XL) . . .
Record I/C statemrent Processing (Phase RM)
Stream 1/C Statement Frocessing (Phase KC)
Special-case Frocessing (Phase KV) - e . . e s e o
Extraction of Alias and Call Information (Phase ca) .

Extraction of Variable Usage and Flowpath Intormation (Pha

Flow Analysis (Phase OI) =« « « « o o o o o o « o o « o &
Text Optimization (Phase OM)«
Built-in JFunction Processing (Phase KK)
‘String Handling Operations - Part 1 (Phase 0OC) .
String Handling Operations - Part 2 (Phase OX) .
Arithmetic Operations and Conversions (Phase KX)
Symbol-table Resolution (Phase PC) e e e .
Constants Analysis (Phase PRA)
Storage Allocation (Phase PE)
Addressing of Storage (Phase PI) . « « «
Cptimized Addressing (Phase QI)
Register Allocation (Phase OB) . . . ¢ & ¢ o ¢ « o« = o«
Elimination of Unnecessary Storage Orerations (Phase CE)
Ccde Generation (Phases SA, SQ, SD, and SC) .« « « . .
Label Resolution (Phase SK) « ¢ & ¢ & o o .+ &
Final Assembly (Phase SI) . « « ¢ o« « ¢ ¢ o o =« o « =
Listings (Phase sM) © e e e e e e e e
Diagnostic-Message Editor (Phase UA) « e e .
Dump Phase (Phase AI) . ¢ ¢ o « « « o « o o = o « » =
Section U: Directory . . . « & v 4 v e v v v e e e e e
Introduction . . < o ¢ ¢ i i i b i d i h e e e e e e e e e .
Compiler Processing Functions Listed by Language Feature . .
Compiler Processing Functions Listed by Phase « . .

Licensed Material

. o)
8%

e 8 8 & s e % & 8 a4 »

e * s & & u

s ® s e s 8 s s s .

and CB2
and CC2

" s 2 a s o
e s o o & 2

« & s .
" o s o
a & o
.
s o &

LI}
.

s & ¢ % & o a2 0
.
.

s s s ¢ 8 s 0
[

e & 4 8 s s s e s 8 e 4
.
8 ¢ & s 5 s s 5 % s s s 2 s e = e 8 % s 5 s s & s s s 0

* 2 a2 s s s * s s s
" .
® o s 8 s 8 & s 8 s & @
s ® o s & 3 s & s 8 & o & @
.
e & 8 + & 4 8 2 s 8 P 4 s s s e 8 & v a »
s s 8 s 8 & ¢ s s

Property of

«331
.333
.336

- 336
« 344
<347
-348
- 351
«353
-355
- 356
« 357
-359
- 364
«368
-371

.~ 374

-376
.380
.382
.384
.387
.391
-394
.397
. 401
404
.407
410
<412
-416
.418
421
424
428
<431
-433
435
.437
.439
L441
.44y
447
.450
.455
458
<461
465
468
471
473
-476
- 480
-483
- 485
487
<490
494
. 494
. 495
. 521

IBM

SECTION 5; DATA AREA LAYOUTS
Introduction
Communication Area - XCOMM . . .
Basic Data-Handling Information
Dictionary Entries
Operand Code Bytes « . .
Six-byte References to Operands . . .
Compile-Time Data Element Descriptors (DEDs)
Type-1 Text Formats . « « « « o o & o o o &
Main Text Stream, on Output from Phase EA
Main Text Stream, on Output from Phase EE
Main Text Stream, on Output from Phase GM

.
.
-

-
-

Dictionary Text Stream, On Output From Phase
Declaration Expressions Text Stream, on Output

Text Code Bytes In Type-1 Text
Type-2 Text Formats .« « « « « « o « o o « &
Pseudo Constants Pool (PCP) . . . « . . .

Output to the PCP from Phase PC .

Output to the PCP from Phase PA .
Extended Code Formats . . . « . « « « .

Preprocessor Dictionary Entries

SECTION 6: DIAGNOSTIC AIDS . . « & « « o+ =«
Introduction . « . « o & ¢ & « 4 . e . 0 e .
Use of the Compiler Dump Option

.

EE

from Phase GE

Use of the Dump Option without a Value List (Compiler Abort Dump)
Use of the Dump Option with a Value List (Interphase Dump or Unformatted

Abort AUmMP) =« « ¢ ¢ ¢ ¢ o ¢ o o o o o o
Use of Registers in the Compiler Program . .
Use of Compiler Debugging Macros

Use of the XBUG MaCcro . « . « « & « « & .

BGL = 0 (Suppression ot Debugging Code)
BGL=L (The Label Trace Facility)
BGL=E (Execution Trace Facility)

control of Tracing Code Generation. (The XTRSW

Compiler Instructions

Use of the XDYDP Macro (Dynamic Dumping Facility)

Use of the DYSTMT Option « . . .
Facility for Testing Modified Phases
Compiler Diagnostic Messages

SECTION 7. APPENDIXES =« « =« o o s o o o« + &

APPENDIX A: FUNCTIONS OF THE COMPILER MACROS
Module Construction Macros
Input/Output Macros . « « « « « « « & .
Text Accessing Macros . . . « + « o =« .

Ceneral Text Accessing Macros . . .

Sequential-Text Accessing Macrcs (Type-1

Type-2 Text-Accessing Macros
Dictionary Accessing Macros
General Purpose Macros
Special Purpose Macros« . . .
Debugging Macros « « « « o « o« « o . .
Books Invoked by a Copy Staterent

APPENDIX B: COMPILER-ERROR MESSAGES
APPENDIX C: SEQUENCE OF PHASE LOADING . . .
APPENDIX D: CREATION AND USAGE OF DATA AREAS
GLOSSARY + « « .+ . ; « e o o s & s s = o e =

INDEX . .« ¢ ¢ o ¢ o o o o o o o o« o o o o =

Licensed Material - Property of IBM

.

.

Macro)

Extended Code)

- .
. .
e o
. .

® & & & o s & 4 @

e 8 s 8 & & 4 4 o

e o s o e o e * o

. 8 8 ® & o & o

¢ ¢ s s 4 s

L T T R

o & 5 o & o 8 5 2 s @

s e s v o o

.551
-551
.551
. 564
.566
-585
-592
-598
-599
«600
«601
.602
-604
.605
.610
.614
.659
.659
.666
.669
.673

.676
.676
-676
- 677

-679
-681-
.582
-682
-682
-682
-683
-683
-684
<684
-685
<687
-688

«690

-690
<690
.690
<691
«691
«691
692
.692
<692
-694
697
<697

«699
«707
.708
-709
.715

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

Figures

Figure 1.1. Data sets and input/outrut devices used by the compiler 7
Figure 1.2. General organizaticn ct the compiler, showing control and data flow . . . 10
Figure 1.3. General organization cf sStorage . « « « 2 « ¢ o« o o s o o o o o o « « » o 1
Figure 2.1. Relationship of compiler stages to major operations . . « .« « « « 16
Figure 2.2. Phases and functions of compiler stages . . . « ¢ « o ¢ & o ¢ o = o« « o 17
Figure 2.3. Flowpaths of input records . « « o« « &« &« ¢ & o« &« ¢ « &« o = . « e e = e o 20
Figure 2.3.1. The relationship ketween the page area and the spill data set e . = < 24.1
Figure 2.4. Routines and subroutines called in text page handling operations e o« o « 28

Figure 2.5. Routines and subroutines called in dictionary page handling operations - 33
Figure 2.6. Control-phase routines and subroutines used in page-handling operations . 42
Figure 2.8. Structure Of Phase CA ¢ o ¢ « o o o o o s s o 2 s o a s s o« o o o =« =« « « 53
Figure 2.9. (Part 1 of 2). Code bytes used in compile-time statements 57
Figure 2.9. (Part 2 of 2). Code bytes used in compile-time statements 58
Figure 2.10. General format cf a statement in Type-1 text - Y ¥
Figure 2.11. Chaining of statements in the main text stream output frcm Phase EA . . 78
Fiqure 2.12. Chaining of statements in the dictionary text stream output from Phase

EE .« « . e o o o ® = s e e o % s o ® s 8 e ® s s s @ & e w s e e o o e o s = s e o « 83
Figure 2. 13. Sunmary of stream 1I/C data processing performed by Phase IE « e o « « =132
Figure 2.14. PFriocrity levels ¢t crerators commonly used in text translaticn136
Figure 2.15. (Part 1 of 3). An example of translation from Type-1l text to Type-2 text 138

Figure 2.15.
Figure 2.15.

(Part 2 of 3).
(Eaxt 3 of 3).

An example of translation from
An example cf translation fromn

Type-1 text to Type-2 text 139

Tyre-1 text to Type-2

£EXL + . ¢ c e e + e o e e e e @ o & o o e e e o o 2 e e e e s s e = s a e e o o o = 40
Figure 2.16. Use of overflow pages and chaining of text 149
Figure 2.17. Statement-type chains created by Phase KA . . « ¢« « ¢« « & o o« « « « « - 2154
Figure 2.18. sSimplified illustration of prologue code for a procedure hlock with a
secondary entry point . .« o « « ¢ ¢ 4 i 4 e e e o 4 = e e & e e 4 s e e e 4 e+ & + . 4183
Figure 2.19. Creaticn of reccrd-descriptors Ly Fhase KM ¢« ¢ ¢ & o & o o « « 2197
Figure 2.20. Text tables used in stream I/0 statements prior to Phase K€201
Figure 2.21. Example showing flow units, forward and backward connectors, and level
NUMDErS « « 2 o o o o a s = s s o s o s s s » a a s s o o s« & s o o » o & o « « o« « = 2232
Figure 2.22 . Illustration of back dominators . . « ¢ ¢ o ¢ ¢ o o o o o o o = o « o 2233
Figure 2.23. Illustration showing back targets, forward targets, and loop depth

NUNDEY'S « « o o o o o « o o o s & o o s = o s o o s o o o s o s s o = o « « « « « o 7,234
Figure 2.24. Arrangement cf tables and chaining in main text stream recrganized Ly

PhaSe OE =« « « o o o o o o s s o o o a s s a s o = s o « s o a s a s s =« o« « = = « » 243
Figure 2.25. Forrat of a locp-data entry created in the general dicticnary ky Fhase

OI = o o o o o o o o o o s o o o s s s a s« s s o o« = « o« o o o » s =« = = = « o o« =« « <254
Figure 2.26. Cffset counter table for a DSA ¢ ¢ o v & & o o o = = « « « = 2275
Figure 2.27. Relocation of constants pool offsets . . « « ¢ ¢ ¢ ¢ ¢ ¢ o ¢« ¢ o o« « « 2278
Figure 2.28. 1Initialization of locators and descriptors « « ¢« « o « « « « .280
Figure 2.29. Allocation of general registers for program execution292
Figure 2.30. Use of directories to locate code-generation information299
Figure 3.1. Phase loading operations . . « « ¢ ¢ « o ¢ o o ¢ ¢ o = o s s o s« o« = « =« 2335
Figure 3.2. (Part 1 cf 6). Conditions determining phase loading sequence338
Figure 3.2. (Part 2 of 6). Conditions determining phase loading sequence . . « « . . .339
Figure 3.2. (Part 3 of 6). Conditions determining phase loading sequence340
Figure 3.2. (Part 4 of 6). Conditions determining phase loading sequence341
Figure 3.2. (Part 5 of 6). cConditions determining phase loading sequence342
Figure 3.2. (Part 6 of 6). Conditions determining phase loadlng sequence . . .« .« . . 343
Figure 3.3. Indications of XOPPHS1 bit settings . « . ¢« & ¢« ¢ ¢ o ¢ o o o & o« « « « 344
Figure 3.4. General format of a compiler module . . . <« . < « « ¢ ¢ « o o o « « « o« 345

Licensed Material - Prcperty cf IBM

Order No. L¥Y33-6010-1, Page Revised by TNL LN33-6175, October 1976

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
. Figure
Figure
Figure
Figure
Figure
Figure
Figure
| Figure
Figure
Figure
Figure
Figure,
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

5.1.
5.2.
5.2.1.
5.3.
5.4.
5.5.

5.6. (Part 1 of 2). Format of names dictionary entries .
5.6. (Part 2 of 2). Format of names dictionary entries .
5.7. (Part 1 of 2). Format of variables dictionary entries
5.7. (Part 2 of 2). Format of variables dictionary entries .
Format of general dictionary block-header entries . . .
Format of general dictionary entry-constant entries

5.8.

5.9.

5.10.
5.11.
5.11.
5.11.
5.12.
5.13.

5.13.1. Format of general dicticnary SELECT optimization takle

5.14.
5.15.
5.15.
5.16.
5.17.
5.18.
5.18.
5.19.
5.20.
5.21.
5.22.
5.23.
5.24.

dictionary.

Figure
Figure

5.25.
5.26.

variables .

Figure

5.26.

parameter or

Figure

5.26.

variables.

Figure

entries - 1lOCAtOILS « « o « o s ¢ o o o o o o s s a s s s o« o« s a o &«

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

5.26-

5.27.
5.28.
5.29.
5.30.
5.31.
5.31.
5.32.
5.33.
5.34.
5.34..
5.35.
5.36.
5.37.
5.37.
5.38.
5.39.
5.40.
5.41.
5.42.
5.43.

Five-byte text reference format
Dictionary entry types . « « « o + « o « « o o o o

Communication Area - XCOMM

Page-space format . « .« ¢ « ¢ ¢ o ¢ o .
Format of page header table e o o o e o s o e o &

Format of overflow page index tables in Type-2 text

Format of general dictionary parameter descriptor entries . .

(Part 1 of 3). Format of general dictionary aggregate table entries
(Part 2 of 3). Format of general dictionary aggregate table entries
(Part 3 of 3). Format of general dictionary aggregate table entries

Format of general dictionary picture takle entries
Formats of general dictionary constant entries o e e e e

Format of general dictionary file constant entries
(Part 1 of 2). Format of general dictionary FCB entries . . .
(Part 2 of 2). Format of general dictionary FCB entries . . .
Format of FCB entry STREAM I/0 DlOCK « &+ « o « o o & o o o o &
Format of FCB entry RECORD I/0 block « . « + & ¢ &« o ¢ & o « &
(Part 1 of 2). Format of general dictionary ENVB entries . . .
(Part 2 of 2). Format of general dictionary ENVB entries . . .
Format of general dictionary DTF entries . . . « « . « o o« o« &
Format of general dictionary RECORD and KEY descriptor entries
Contents of a RECORD descriptor . . « . + < 2 ¢ ¢ o o o o o
contents of a KEY descriptor « o « ¢ o o ¢ o o ¢ o « o « « o« =
Format of general dictionary open control block (OCB) entries
Single optirizaticn entry for the whole program, in the general
Optimization entries for klocks, in the general dictionary . .
(Part 1 of 4). Format of general dictionary value list entries
(part 2 of
DEFINED Das€S ¢ « o o o o o o o o o s o o o o o s o o o o « o =

4). TFormat of general dictionary value list entries -

s s o 0
.
w
~3
w

" s e 4
.
(94
~3
(82

.« 582

(Part 3 of 4). Format of general dictionary value list entries - entry

(Part 4 of 4). Format of general dictionary value list

Format of general dictionary overflow entries .
Format of storage dictionary entries
Operand classifications . . .« ¢ « ¢ ¢ &« ¢ o o &
Variable operand classifications
(Part 1 of 2). Operand code bytes X'00' to X'OF'
(Part 2 of 2). Operand code bytes X'00' to X'OF'
Operand code bytes X*10*' to X'1F' . . . « . . .
Operand code bytes X'20' to X'2F' . . « o o
(Part 1 of 2). Operand code bytes X'30' to X'3F'
(Part 2 of 2). Operand code bytes X'30' to X'3F'
Operand code bytes X'40' to X'4F' . . « « « o« &
Operand code bytes X'60' to X'6F'
(Part 1 of 2). Operand code bytes X'70' to X'7F*
(Part 2 of 2). Operand code bytes X'70' to X'7r' .
Operand code bytes X'80' to X'FF' (see fiqure 5.30) . .
Six-byte reference to a structure member (refer to figure 5.68)
Six-byte reference to a data variable
Six-byte reference to a source program constant
Six-byte reference to an EVENT or TASK variable
Six-byte reference to a LABEL variable

. 4 o & & 8 s ¢ 5 e s s s
e s 4 & 8 s e s s e s 2 s
. .) L] L] . 3 a [.
e & o ® ® 3 8 g 8 8 6 8 8

Licensed Material - Property

8 8 4 8 0 & a2 g 8 8 e s s > o

P Y T)

« .582

.
.

(%,
[ee]
w

® o o 8 .5 & 4 8 ° & 8 o &
.
w
@
~

s 0 8 & 8 o
.
(52}
O
w

order No. LY¥33-6010-1, Page Revised by TNL LN33-6079, October, 1973
Figure 5.45. Six-byte reference to a literal character/bit constant « . <594
Fiqure 5.46. Six~-byte reference to a literal compiler-generated constant594
Figure 5.47. Six-byte reference to a library subroutine . . . « o o o « o « « = « « 594
Figure 5.48. Six-byte reference to a label constant . « o o « o « « « « = « « « « = 595
Figure 5.49. Six-byte reference to an adjustable aggregate extent e e« « w « = = o 2595
Figure 5.50. Six-byte reference to a structure offset field in an aggregate
descriptor (BASED/REFER structure mMember) .« o « o « 2 o o« o« s @ « =« = = s « o« « » o« =595
Figure 5.51. Six-byte reference to a non-string temporary operand « « « - . « « « « 595
Figure 5.52. Six-byte reference to a non-string Q-temp.operand . « « o« « « « o = = <595
Fiqure 5.53. Six-byte reference to an adjustable string temporary operand . . - « . .596
Figure 5.54. Six-byte reference to a non-adjustable string temporary operand596
Figure 5.55. Six-byte reference to a string Q-temp.operand (for accessing part of a
SETAING) o @ ¢ o o 4 o o e o o o o o o a e v @ @ 2 4 o = = @ e @ @« = & @ a e « o + s« «596
Figure 5.56. Six-byte reference to the maximum length of a non-adjustable string . .596
Figure 5.57. Six-byte reference to the current length of a VARYING string e« « o« = 2597
Fiqure 5.58. Six-byte reference to the maximum length of an adjustable string « « <597
Figure 5.59. Contents of compile-time data element descriptors . « « « « & « « « =« 598
Fiqure 5.60. General format of statement header in Type-1 text, output from Phase
EA to GE - o« . - e o s @ @ e o @ o o ® ® @ @ = = o o a o « a o s o 600
Fiqure 5.61. Block chalnlng flelds « e e e @ o o @ s ®w @ w s @ = a a &« = a =« = « =600
Figure 5.62. PROC, ENTRY, BEGIN, and ONB statements, in deblocked-position601
Figure 5.63. CALL statement, used to replace BEGIN statement in inline position . . .601
Figure 5.64. Statement body format for ON statementsS . <« o« « o « o « « o « « s « o «601
Pigure 5.65. PROC,BEGIN, and ONB sStateMentsS « « « o« w2 « « = % ® @ o« s o o« w « o « « +602
Figure 5.66. RETURN StatementsS =« o o « « o o« o o o » o o« 2 « a s =« o« s = =« « « « « 2602
Figure 5.67. Array operands in Type—1 teXt . o ¢ o ¢ « o « o =« s o o = =« o« « o« s o« =603
Figure 5.68. Structure operands in Type-1 teXt .« ¢ 2 &« o v« + o « « a = « o« =« =« « « =603
Figure 5.69. Subroutine calls and functions in Type-1 teXt . « 2 ¢« « « &« « o« « « « «603
Figure 5.70. Arqument 1lists in Type—=1 teXt . v o o o o o o « 2 o = = o a o o« « « « =600
Figure 5.71. Block headers . « « ¢« &« « « « « o e s e o o e s s e e = = o « o = o <604
Figure 5.72. Statements in the dictionary text stream e« a2 a s e s e e ® s o s s s o =605
Fiqure 5.73. Page sSub-headers « « o ¢ o o ¢ o o o « o o o o o o o v 2 o » o a o o « «605
Figure 5.74. Block headerS .« « o o o « o « 2 « @ s 2 = o 2 o o = s s « o = s » o« « «605
Figure 5.75. Locator qualifier statements . ¢« « o o & o « « o o 2 a s o o« s« o s « o 606
Fiqure 5.76. POSITION attribute statements v « o« o « o o o 2 s « s « o « o « « o o «606
Figure 5.77. 'Simple defined' items, with base known at compile time606
Fiqgure 5.78. 'Simple defined' items, with base known at prologue execution606
Figure 5.79. 'Simple defined' item, with base not known until reference at execution
tiMe & 6 v 4 ¢ 4 e e 4 e o 4 e s s o s e e © = 2 e 3 e s e s e s = e s = s . s a « = <607
Figure 5.80. iSUB-defined itemMS « « « ¢ « « o« o o o o o o o« o« 2 s v« s« = o s o a o« o o607
Figure 5.81. INITIAL assignment €XPresSsSionNS . « o o « o « o o« o« = o o « o s s« = o o 2607
Figure 5.82. Adjustable extent e€Xpressions . ¢ o o« 2 o o 2 « o « o 2 o o = « o » « <608
Figure 5.83. Adjustable string-length expressions for non-aggregate strings . - . . .608
Fiqure 5.84. INITIAL assignment €XPresSSiOoNS . o o o 2 o o o « o o s a a a o o = s« « <609
Figure 5.85. MAP sStatemenNtsS . « o« o « o o 2 o o « = a = @ s « « « « = o o o « o« « = =609
Fiqure 5.86. Adjustable extent eXpresSsions . « « o« 4 o« o « o « « « 2 = s o =« = s« = <600
Figure 5.87. Adjustable string-length expressions for non-aggregate strings -« = <610
Fiqure 5.88. (Part 1 of 4). Text code bytes in Type-1 text (X'00' to X'7F')610
Figure 5.88. (Part 2 of 4). Text code bytes in Type-1 text (X'80 ' to X'FF')611
Pigure 5.88. (Part 3 of 4). Text code bytes in Type-1 text (X*D900' to X'D97F') . . .612
Figure 5.88. (Part 4 of 4). Text code bytes in Type-1 text (X'D980' TO X'DIFF') . . .613
Fiqure 5.89. (Part 1 of 2). Operator code bytes (IOP1) in Type-2 text (X'00% to
XYTF') o o o o o o o o o« s 2 o o % s o » o s @ s @ s @« s % o« a « o o« o o« o s« o o o o «615
Pigure 5.89. (Part 2 of 2). Operator code bytes (IOP1) in Type-2 text (X'80' to
TPFY) . 2« o o o = o o o o o a o o o a o o a s s s s s a a s a o o a s s s a o s « +» 2616
Figure 5.90. (Part 1 of 2). Statement header tables in Type-2 text « « « « <616
Figure 5.90. (Part 2 of 2). Statement header tables in Type=-2 text . « « « « « « « «617
Fiqure 5.91. Format of PROC/BEGIN/ONB/ENTRY tables in Type-2 text . . ¢ ¢ o o « « « 617
Figure 5.92. Format of Type-2 texXxt tablesS . v ¢ o« ¢ ¢ @« o 2 « o o « =« a s « = a « « =618
Figure 5.93. (Part 1 of 2). Format and usage of the general area of Type-2 text
£AbleS 4 4 « 2 e ¢ ¢ e e s 2 o a e e e @ e s e w % s e s e @ w e s w e s e o s o o + =618
Figure 5.93. (Part 2 of 2). Format and usage of the general area of Type-2 text
£tAbleS « o o o o o e o o s o 4 2 o o e s s e e e e e s s = 4 e 8 e s e 4 o e « = = s 2619
Figure 5.94. Use of the IGEN2 byte . ¢ ¢ o v o o o o o o o « s« @ s« s = =« o o« « « « <619
Figure 5.95. Use of the IGEN27 byte . . .o o ¢ & o ¢ o o v o « o o o s =« = o o » o « 2619
Figure 5.96. (Part 1 of 32). Usage of operands in Type-2 text tables« 521
Figure 5.96. (Part 2 of 32). Usage of operands in Type-2 text tables %22
Figure 5.96. (Part 3 of 32). Usage of operands in Type-2 text tables . . . « « o« . 493

Licensed Material - Property of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973

Figure
Figure
Pigure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Pigqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

phases .

Figure

phases .

Figure
phases
Figure
Figure

5.96.

5.96.

5.97.

5.98.

5.98.

5.99.

5.99.

5.100.
5.101.
5.102.
5.103.
5.104.
5.105.
5.106.
5.107.
5.108.
5.109.
5.110.
5.111.
5.112.
5.113.
5.114.
5.114.
5.115.
5.116.
5.117.
5.118.
5.119.
5.120.
5.121.
5.122.
5.123.
5.124.
5.125.

5.125.
5.125.
5.126.
5.126.

(Part 4 of 32). ©Usage of operands in Type-2 text tables . -
(part 5 of 32). Usage of operands in Type-2 text tables -
(Part 6 of 32). Usage of operands in Type-2 text tables -
(Part 7 of 32). ©Usage of operands in Type-2 text tables .
(Part 8 of 32). Usage of operands in Type~2 text tables -
(Part 9 of 32). TUsage of operands in Type-2 text tables .

(Part 10 of 32). Usage of operands in Type-2 text tables
(part 11 of 32). Usage of operands in Type-2 text tables
(Part 12 of 32). Usage of operands in Type-2 text tables
(Part 13 of 32). Usage of operands in Type—-2 text tables
(Part 14 of 32). Usage of operands in Type-2 text tables
(Part 15 of 32). Usage of operands in Type-2 text tables
(part 16 of 32). Usage of operands in Type-2 text tables
(Part 17 of 32). Usage of operands in Type-2 text tables
(Part 18 of 32). ©Usage of operands in Type-2 text tables
(Part 19 of 32). Usage of operands in Type-2 text tables
(Part 20 of 32). Usage of operands in Type-2 text tables
(Part 21 of 32). Usage of operands in Type-2 text tables
(Part 22 of 32). OUsage of operands in Type-2 text tables
(part 23 of 32). Usage of operands in Type-2 text tables
(Part 24 of 32). Usage of operands in Type-2 text tables
(Part 25 of 32). Usage of operands in Type-2 text tables
(Part 26 of 32). Usage of operands in Type-2 text tables
(Part 27 of 32). Usage of operands in Type—-2 text tables
(Part 28 of 32). Usage of operands in Type-2 text tables
(Part 29 of 32). Usage of operands in Type-2 text tables
(Part 30 of 32). Usage of operands in Type—-2 text tables
(Part 31 of 32). Usage of operands in Type-2 text tables
(part 32 of 32). Usage of operands in Type-2 text tables

¢ & 8 & & & & & 0 s & & s 4 s 8 & 0 0 &

¢ & & 8 & s 2 s + 2 3 8 & g 4 & & 2 s 8 8 g s e 2 o
3 s 8 % & o 8 8 8 & & 2 8 8 8 s % & 5 6 8 B B ¢ b 3 s 4 a
e & 8 s 4 a2 & 8 8 s 2 4 6 2 B s 8 0 & e 8 2 S & & 4 s s

e 8 8 & * 8 & & & 8 2 s 0 4 s 8 o b & & b s

@ & & B s & @+ a2 s s

Content of Operand 2 of a SUBS1 table after Phase KE . . .

(Part 1 of 2). Format of flow unit headers from Phase OE to Phase oI
(Part 2 of 2). Format of flow unit headers from Phase OE to Phase 0OI

(Part 1 of 2). Format of flow unit headers after Phase OI
(Part 2 of 2). Format of flow unit headers after Phase OI

Format of hash tables in Type 2 text
General format of pseudo constants pool entries . . .
Contents of the PCP after Phase PC < ¢« o o « o o o o o
Format of object-time arithmetic DEDs . . . «
Format of non-pictured arithmetic FEDs (E- or
Format of pictured arithmetic FEDs
Format of non-pictured string DEDs and FEDs
Format of pictured string DEDs and FEDs . .
Format of C-format FEDS o v o « o« & « « «
Format of carriage-control FEDS . . « « «

format)

Format of program control data DEDs . .
Code bytes in object-time DEDs and FEDs
Flag bytes in object-time DEDs and FEDs .
Format of symbol table list element entries
(Part 1 of 2), Format of long symbol tables
(Part 2 of 2). PFormat of long symbol tables
Format of short symbol tables
Format of string locator/descriptors
Format of string descriptors . . .

Format of aggregate locators . . .

Format of area locator/descriptors

Format of array descriptors o o

Format of structure descriptors -

Format of descriptor descriptors for structures
Format of descriptor descriptors for base elements of
Components of extended code o e & @ o 2 e e w ° = o
(Part 1 of 3). Markers inserted in extended code by code generatlon

¢ s 8 &
3 & & s 0 8 02 s B

s s o o @
s o & s @
s 8 & 8 o s

o s 8 8
a s 8 & 8 8 & s i 8 & & s 5 s e s s g

¢ 8 8 o 8

® 8 8 8 & 8 8 8 3 s 5 & & & & B B 4 8 8 8 s 4 0 s 0

-
-
-
.
-
-
-
-
-
L]
.
-
.
-
-
-
.
-

8 & 8 8 & & 4 3 s & & 8 8 8 8 s 4o
D ® 3 o ¢ & 8 s * 3 5 & 8 & & 4 8 & s e & 8 s & s @

4]

Q) s 8 & & & s 8 &4 & 4 s 8 s b e B s s s 8 & 0 s 0

o+

M e @ &8 s o & & 2 3 3 e 8 s 8 s 8 » i s e 8 B i 2 s

[le]

) 8 4 s 8 ¢ & 2 B 2 & 8 & 2 & s s &

Q

s Q& 8 & B & s 8 i 3 8 4 8 & 8 B s F a4 8 e 06 s s s

H

e & & 8 & e 8 & o 8 F s 2 B 8 & ¥ B & s s 6 & s s s s

(Part 2 of 3). Markers inserted in extended code by code generation
(Part 3 of 3). Markers inserted in extended code by code generation
(Part 1 of 2). Preprocessor general dictionary entries

(Part 2 of 2). Preprocessor general dictionary entries

Licensed Material - Property

.624
.625
.626
.628
<629
.630
.631
.632
.633
Q63u
<635
<636
«637
638
.639
<640
641
.642
.643
.64l
645
.646
.6“7
648
649
«650
<651
«652
<653
«654
<655
.656
657
<658
-658
<659
<660
«660
<661
<661
~661
662
4662
<662
.662
<663
<663
-664
665
-666
666
-666
<666
<667
<667
«667
<667
+667
<668
<669

S 8 @ 8 & 4 s s 8 6 2 F B B 4 8 s 8 b 8 8 i & 8 8 + B b e v & 8 s s i 8 b 8 s b e 4 6 4 o b s 6 & 3 4 e 7 0 g o8 e a4 o

= <670
- <671
. 2672

- <673
- <674

of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973

Figure 5.127. Identifier value block (IVB) entries in the preprocessor variables
AictiOoNACY « o « o o @ o o % o s o « o o o 2 e s s o w 4 % % @« s« v s a a e o o « s a «67U
Figure 6.1. Compiler diagnostic messages - phase identification « e o % o s o « = «689

Licensed Material - Property of IBM

Order No. LY33-6010-1, Page added by TNL LN33-6079, October, 1973

Charts

Chart 3.1. (Part 1 of 2). Resident Control Phase (Phase AA) . « « = « o « = =« « +349
Chart 3.1. (Part 2 of 2). Resident Control Phase (Phase AA) < . « « « « « « « « 2350
Chart 3.2. Initialization Phase (Phase AE) « &« « = @ @ o = « @« @« @« =« @ « « « « « 2352
Chart 3.3. 48-character Preprocessor (Phase BA) .« « ¢ o « « « e« o o s o o o « o354
Chart 3.4. (Part 1 of 3). Compile-time Statement Preprocessor (Root Module Ca) . . 361
Chart 3.4. (Part 2 of 3). Compile-time Statement Preprocessor (Sub-phase CB) . . .362
Chart 3.4. (Part 3 of 3). Compile-time Statement Preprocessor (Sub-phase CC) . . .363
Chart 3.5. (Part 1 of 2). Compile-time Preprocessor Error Editor (Phase CE) . . .366
Chart 3.5. (Part 2 of 2). Compile-time Preprocessor Error Editor (Phase CE) . . .367
Chart 3.6. Syntax Analysis - Pass 1 (Phase EA) M, IK, =« « « « 370
Chart 3.7. Syntax Analysis — Pass 2 (Phase@ EE) « w o 2 « o © o @« o« o« ® « o« @ o« « 2373
Chart 3.8. Syntax Analysis - Pass 3 (Phase EI) v « o« o « « ¢ o o o « o « « = =« = 2375
Chart 3.9. Explicit Declarations Phase (Phase GA) « « o w « o o « « =« « « o« o o« «37S
Chart 3.10. Contextual Declarations Phase (Phase GI) < « < « <« « « o« = « = = « =« =381
Chart 3.11. Declaration Expressions Phase (Phase GE) « « < o w « « « o « « « « « 383
Chart 3.12. Implicit Declarations Phase (Phase GM) . &« « « o« « o o = = e o » o ¢386
Chart 3.13. (Part 1 of 2). Merge Declaration Expressions Phase (Phase IA) « o « <389
Chart 3.13. (Part 2 of 2). Merge Declaration Expression Phase (Phase IA)390
Chart 3. 14. Aggregate Argument-matching Phase (Phase ID) « = « o « o « « « « « « «393
Chart 3.15. Aggregate-expression Phase (Phase IE) &« « « « « o o o o « o« s« « « « «396
Chart 3.16. (Part 1 of 2). Expression Analysis and Text Translation (Phase II) . .399
Chart 3.16. (Part 2 of 2). Expression Analysis and Text Translation (Phase II) . .400
Chart 3.17. Attribute and Cross-reference Listing Phase (Phase IK) w « « « - - . 0403
Chart 3.18. IF-statement Processing Phase (Phase KA) « « « 2 o « « o « o s o o « 2406
Chart 3.19. Interlanguage Communication Phase (Phase€ IM) 4« o « « « = « =« = « « « =409
Chart 3.20. Aggregate and Structure Mapping Phase (Phase IQ) o @ ¢ « ¢ « = = « » U411
Chart 3.21. (Part 1 of 2). Subscript Processing Phase (Phase KE) . « « « « « « « o414
Chart 3.21. (Part 2 of 2). Subscript Processing Phase (Phase KE) . . . « « « « .« 415
Chart 3.22. DO-statement Processing Phase (Phase KI) ¢ « « o & o« o o « s o o o » 417
Chart 3.23. System Interface Processing Phase (Phase KT) s e e 0 s e . .. Ll20
Chart 3.24. OPEN/CLOSE and File Declarations Phase (Phase KL) « « ¢ o « « = + o 2423
Chart 3.25. Record I/0 Statement Processing Phase (Phase KM) o« o o o « o o o o » o427
Chart 3.26. Stream I/0O Statement Processing Phase (Phase KQ) « « « « « « « @ « « U430
Chart 3.27. Special-case Processing Phase (Phase KV) < ¢ ¢ o ¢ ¢ o o o o« o o s o 4432
Chart 3.28. Extraction of Alias and Call Information (Phase OA) . « o « @« « o « 2434
Chart 3.29. Extraction of Variable Usage and Flowchart Information (Phase OE) . .436
Chart 3.30. Flow Analysis Phase (Phase OI) « « « o o« « o « o = o o =« & w o « « « U438
Chart 3.31. Text Optimization Phase (Phase OM) . < « o« + o o o « = « o o = « « = <440
Chart 3.32. Built-in Function Processing Phase (Phase KK) .« < « @« « o« o« « « « o« U443
Chart 3.33. String Handling Operations — Part 1 (Phase OC) o + o o o « o o « « o« o446
Chart 3,34. String Handling Operations - Part 2 (Phase OX) « « « « ¢ « o o o« o « <449
Chart 3.35. (Part 1 of 2). Arithmetic Operations and Conversions Phase (Phase KX) 453
Chart 3.35. (Part 2 of 2). Arithmetic Operations and Conversions Phase (Phase KX) 454
Chart 3.36. Symbol Table Resolution Phase (Phase PC) o« « w o 2 o o o @ w « « o « «U457
Chart 3.37. Constants Analysis Phase (Phase PA) =« o o o o o o o o « o o« o = o o <460
Chart 3.38. Storage Allocation Phase (Phase PE) . ¢ « « o o o « o » @ o « o o o <Upl
Chart 3.39. Addressing of Storage Phase (Phase PI) « o « o o w o o « = » =« « = « <467
Chart 3.40. Optimized Addressing (Phase QI) « « o + o o = s o o o« o o« « o & « s <470
Chart 3.41. Register Allocation Phase (Phase QA4) . . . c o o a e o e e « o <472
Chart 3.42. Elimination of Unnecessary Store Operatlons (Phase QF) @ « « « « = « U475
Chart 3.43. Code Generation - Passes 1, 2, 3, and 4 (Phases SA, SQ, SD, and SC) <479
Chart 3.44. Label Resolution Phase (Phase SK) &« = « a o s = = s = o s @ o « « « 2482
Chart 3.45. Final Assembly Phase (Phase SI) o o o o o o = 2 o o o w o o o = « = <484
Chart 3.46. Object—code Listing Phase (Phase SM) . ¢ « o « w « « o o « « o « o« o« U486
Chart 3.47. Diagnostic-message Editing Phase (Phase UA) .« ¢ & o o « o o o o « « <489
Chart 3.48. Dump Phase (Phase AT) < ¢ < o ¢ o 4 o o o o o o« a o« o « = = » « o « =492

Licensed Material - Property of IBM

Oorder No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973

Section 1: Introduction

The PL/I Optimizing Compiler is a multi-phase, multi-pass compiler which
operates as a processing program under System/360, System/370 Disk
Operating System. It analyzes and processes source programs written in
the PL/I language as described in the publication, DOS_PL/I Optimizing
Compiler: Lanquage Reference Manual. The compiler is written in
System/360 Assembler Language. Extensive use is made of specially
designed macro instructions.

The purpose of each execution of the compiler is the translation of a
PL/I external procedure into a series of machine instructions which form
a relocatable object module. One or more object modules produced by the
compiler can be link-edited to form an executable program phase, and a
punched object deck can optionally be produced. A number of other
facilities, such as printed listings of source programs and object
modules, can be provided in response to programmer-specified compiler
options. If errors are detected in a source program, appropriate
diagnostic messages are generated and can be printed. In order that
compilation can be continued, erroneous statements may be ignored, or
suitable corrections may be attempted within the compiler.

An important feature of this compiler is that it performs code
optimization, i.e., the compiler recognizes situations where it can
generate machine code that can be executed more efficiently than code
produced by direct translation of the PL/I source program. Two main
forms of optimization are performed. One is the optimizatiom that is
performed when particular language features or situations are recognized
by various sections of the compiler during any compilation. This form
of optimization is referred to as local_optimization, and is not
optional. The other main form of optimization is referred to as global
optimization, and is optional. It is performed by a particular section
of the compiler, which is only executed in response to programmer
specification of the OPTIMIZE compiler option. This option enables the
programmer to specify that the program is to be modified in such a way
that less time is required for execution of the object program. This
optimization may also have a secondary effect of reducing the amount of
storage required for the object module.

The code generated by the compiler also has good performance
characteristics with virtual storage systems. The modularity of PL/I
and the way code and data are separated into different CSECTs by the
compiler, assist in minimizing the impact of a PL/I program on the
paging of a virtual storage system.

The machine instructions in the object module do not always reflect all
the operations indicated by the PL/I source program. Certain types of
statement are translated into instructions that call standard
subroutines held in a library. These subroutines perform the required
operation, or may in turn call other library subroutines. The library
calls are resolved during link-editing. Descriptions in this manual
assume that the compiler is used in conjunction with two IBM program
products: the DOS PL/I Resident Library (Program Number 5736-LM4) and
the DOS PL/I Transient Library (Program Number 5736-LM5).

Licensed Material - Property of IBM Section 1: Introduction 5

Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973

THE COMPILER AND THE DISK OPERATING SYSTEM

The compiler acts as a processing program under the control of the Disk
Operating System. It requires a partition of at least 44K bytes, and
can only be used in the batched-job processing mode. The compiler can
be used in the background partition and, if the multiprogramming option
of the operating system is used, it can be link-edited into private
core-image libraries for compile-link-go operation in the F1 and/or F2
foreground partitions. Further requirements and implementation-defined
features are listed in the Programmer's Guide for this compiler.

The name of the compiler program is PLIOPT. The compiler consists of a
number of phases. Each phase can be referred to by one of two symbolic
names. In the relocatable library, each phase is referred to by a name
beginning with the characters IELO, e.gq., IELOAE, IELOGI, IELOKX, etc.
In the core-image library, each phase is referred to by a name beginning
with characters PLIO, e.g., PLIOAE, PLIOGI, PLIOKX, etc. Except where
it is necessary to refer specifically to one of these names, phases are
referred to in this manual by the last two characters of their symbolic
names, e.d9., Phase AE, Phase GI, Phase KX, etc. An exception to this
convention is the resident control phase. In the relocatable library,
|this phase has the name IELOAA, but in the core-image library the phase
has the same name as the compiler program, PLIOPT. To avoid confusion,
the resident control phase is referred to as Phase AA.

The first compiler phase to be loaded is the compiler control phase,
Phase AA, which remains in main storage throughout the compilation
process. Among its many functions, this phase provides an interface
between the compiler and the Disk Operating System. It communicates
with the DOS control programs for loading of other compiler phases, and
input/output operations between main storage and the data sets used for
spill purposes by the compiler.

Apart from Phase AA, each phase of the compiler is loaded in turn imto
an area of main storage allocated as a phase_area. Because the
execution of certain compiler phases is optional, depending upon the
compiler options specified or upon the contents of the PL/I source
program, some of the compiler processing phases may not be loaded for
every compilation. When a compiler phase has completed its processing,
it uses a special macro instruction, XPST, to identify the next phase to
be loaded. Phase AA passes the name of the specified phase as an
argument to the DOS control program when requesting the loading of
another phase.

Oon completion of compilation, the compiler optionally writes the
compiled object module onto the SYSLNK data set ready for link-editing.
Unless further compilations have been specified (as part of a
batched~-job) by use of a *PROCESS control statement, control is then
returned to the DOS control progran.

COMPILER INPUT AND OQUTPUT

A number of data sets are accessed or created by the compiler. The
input/output devices used for these data sets are shown in figure 1.1.

Input data read from SYSIPT consists of one or more PL/I extermnal
procedures. The batched-compilation facility of the compiler enables
more than one external procedure to be compiled in a single job step.
Each external procedure may be a complete program or part of a program.
An external procedure can contain %INCLUDE statements that specify
source-statement modules held in a private source-statement library. 1In
such cases, the specified source module is read from the device assigned
to SYSSLB, and incorporated in the source data.

Throughout this manual the term PL/I source program is used to refer in
general to external data passed to the compiler for processing. The

6 Licensed Material - Property of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

term text is used to refer to the main stream of internal data,
consisting of the internal representation of statements and other items
of information, originally corresponding to the PL/I source program and
progressively transformed by phases of the compiler into the format
required at output. During compilation, data is extracted or derived
from the text and collected in various tables, lists, etc. The term
dictionary is used to refer to a particular collection of data, used
extensively during compilation.

r L] T v 1
| Data Set | Function | Device Type | Device | When Required |
| | | | Symbolic Name | |
k- t + + 1 4
| File name = IJSYSIN| Input | DASD | SYSIPT | Always |
| DTF name = XINPUT | | Magnetic tape | | |
| | | Card reader { { i
[l <. e L L

r T T T T "““l
| Source Statement | Input | DASD | SYSSLB | When preprocessor |
| Library | | i | ®INCLUDE is used i
F + + + t]
| File name = IJSYSLS| Listings | DASD | SYSLST | Always |
| DTF name = XPRINT | | Magnetic tape | | i
| » l | Printer | | |
L L L L 4]
r Al ¥ 1)) L)
| File name = IJSYS0l1| Data spill | DASD | S¥s001 | Always. i
| DTF name = XSPILL1 | | | | i
F + + + + 1
| File name = IJSY¥S02| Data spill | DASD | s¥s002 | Always |
| CTF name = XSPILLZ | | | | |
b + + t + 1
File name = IJSYSLN{	Output tc	DASD	SYSLNK	When linkage editing]
DIF name = XLOADF	linkage	Magnetic tape		follows compilation
	editor i		in the same job	
'y L L L ']				
8 v R) L) T -				
File name = IJSYSPH	Output to	DASD	SYSPCH	When linkage editing
DTF name = XPUNCH	linkage	Magnetic tape		takes place in a [
[editor	Card punch	{ subsequent job	
[(card deck)			i
k + t t t 1				
Core-image Library	Compiler { DASD	SYSRES	Always f	
	residence			
L] 4 4L J

Figure 1.1. Data sets and input/output devices used by the compiler

Data sets on the devices assigned to SYS001 and SYS002 are used to hold
internal data (text, dictionary, etc.,) that is not currently being
accessed or processed, and which cannot be retained in main storage.
These data sets are known as the spill data_sets. Input/output
operations between main storage and the spill data sets take place
throughout most compilations.

Output from the compiler consists of one or more object modules that are
suitable for link-editing and inclusion in an executable program phase.
Each object module consists of an external symbol dictionary (ESD), a
relocation dictionary (RLD), and a series of machine instructions in the
form of TXT records. A description of an object module is given in the

publication DOS: System Control and System Sexrvice Programs.

Output from the compiler is in the form of fixed-length 322-byte
records, which can be transmitted to a data set on the device assigned
to SYSLNK. Output can also be transmitted to a data set on the device
assigned to SYSPCH, in which case the output is in the form of 80-byte
unblocked records.

During compilation, a listing can be optionally generated and
transmitted to a data set on the device assigned to SYSLST, and can be
printed. The following list shows the information that can be included
in the listing, and the options required.

Licensed Material - Property of IBM Section 1:

Introduction 7

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, Cctober 1976

Listing Options Required
Options for the compilation OPTIONS
Preprocessor input INSOURCE
Source program SOURCE
Statement nesting level NEST
Attribute table ATTRIBUTES
Ccross-reference table XREF
Aggregate-length table AGGREGATE
External symbol dictionary . EsD
Items in static storage MAP
Object module LIST
Storage requirements STORAGE
Statement offsets OFFSET
Diagnostic messages for severe errors, FLAG(S) , FLAG(E), FLAG(W), FLAG(I)

errors, warnings and information conditions

Source statements from SYSSLB are read into buffers in the main storage
used by the preprocessor phase. Input/output operations between main
storage and the spill file are made directly. All other input/output is
read into, or written from, buffer areas in main storage which are
allocated as follows:

Buffer Name Size Function
XIFBF1 80 bytes _
Input from SYSIPT
XIFBF2 80 bytes
XPRBF1 121 bytes
Output to SYSLST
XPRBF2 121 bytes
XPFBF1 81 bytes
Output to SYSPCH
XPFBF2 81 bytes
XOFBF1 322 bytes Output to SYSLNK

GENERAL ORGANIZATION OF THE COMPILER

| The compiler consists of 53 physical phases, which are stored in the
core-image library on the system residence volume. Each phase can be
individually loaded and executed.

When the compiler is invoked, the resident control phase (Phase AA) is
loaded and control is passed to it. This phase remains in main storage
throughout execution of the compiler. It contains routines which can be
entered at any time during compilation to provide services for other
phases and to communicate with the DOS control program where necessary,
e.g., for loading of phases, or for input/output operations. This phase
also contains a control section, with the symbolic name XCOMM, that
defines an area of storage used for communication between phases.

8 Licensed Material - Property of I1IBM

Located within this communication area are six of the seven input-output
buffers previously mentioned. (The XOFBF1l buffer for output to SYSLNK
is allocated in the working storage of Phase SI, the
Object-Module-Assembly phase.)

All other phases are loaded individually in sequence into an area of
main storage known as the phase area. Only one phase in addition to the
control phase can be in main storage at any time. (An exception to this
is the requirement for Phase AI tc be resident in main storage
throughout compilation if a ccwmgiler durp is required.) Cn ccmpleticn
of execution, each rhase uses a mracro statement to inform the contrcl
phase of the name of the next phase to ke loaded.

Almost immediately after receiving contrcl, Phase AA has the
initialization phase, Phase AE, lcaded and passes contrcl to it. Phase
AE performs most of the once-cnly housekeeping required to prepare the
compiler operating environment, if necessary waking adjustments in
accordance with compiler cpticns specifications. In addition to
processing corpiler options it initializes varicus fields in the
communications area, opens the data sets used by the compiler, and
allocates an area of main storage for the storage of data such as text
and dictionary tables. An irportant feature of compiler operation is
that this data can be spilled onto auxiliary storage and read back into
main storage as required. Tc facilitate this data handling, the data is
organized in records known as pages. Each page can contain 1080,1680,
or 3480 bytes of prccessakle data, depending on the size of the main
storage area available for the storage of data. If auxiliary storage is
on either a 3330 or 3340 direct access storage device, and the SIZE
option is large enough, a page size of 4040 bytes is used. The storage
area is known as the page area; its size and the size of the pages to be
used are calculated by Phase AE after the size of the compiler partition
and value of the SIZE option (if specified) have been determined. Space
for a minimum of eight pages is required in the page area but, if more
space is available, more page spaces and/or the larger page size can be
used, thus reducing the time required for compilation by reducing the
number of input/output operations required for the spilling and reading
of pages. Space within the page area is also allocated for a directory,
used to facilitate searches for dictionary entries, and for a
resident-page table, used in some page-handling operations.

When Phase AE has completed its functions and returned control to Phase
AA, the operating environment is ready for the execution of the
processing phases. The general organization of the compiler, the flow
of control, and the flow of data is shown in figure 1.2, and the
organization of storage is shown in figure 1.3.

Processing phases of the cormpiler are loaded one at a time into the
phase area, and executed. Although the phases are loaded and executed
sequentially, the functions performed by certain phases may nct be
required in some corpilations. In such cases the relevant phases are
not loaded. For exanple, unless the relevant compiler options are
specified, the preprocessing rhases and the glokal optimization phases
are not loaded. Similarly, rphases processing srecific language
features, e.g., stream oriented input/output statements, are not loaded
if those features are not present in the source program. The sequence
of phase loading is shown in appendix C, and the conditions affecting
the sequence of phase loading are shown in figure 3.2.

In general, none of the processing phases is executed more than once in
each compilation. Exceptions to this are the phases that produce
diagnostic information. In order to satisfy certain compiler options,
the phase that edits and prints diagnostic messages, Phase UA, may be
loaded and executed twice during a compilation. The phase that provides
printed dumps of the contents of data areas used by the compiler, Phase
AI, may be executed a number of times to satisfy compiler options. This
phase, if required Ly corpiler crtions, must ke resident in main storage
throughout compilation, and requires approximately 16K bytes of
additional storage.

Licensed Material - Property of IEM Section 1:

Introduction

9

Oorder No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

Auxiliary Storage Main Storage 1/0 Devices
(DASD) r—_'—'——_——'——l
I DOS I
I Supervisor I
Source
Program
| N 0
Resident Control | Communication | 1/O
System Phase Area Buffer
Residence | |
(Core—Image ‘— T -
Libiary) I ?]7 1 |
| // / I
Ty / Listings
D4 /
. /
ource .
Statement P';;es'"g / I
Library ases / |
/
¥ /
) l Object
I (I I Module
| o |
Spill Data
Data ‘-‘l_—. Processing l
Set Area
l (Page Area) |
L Compiler Partitior_:__ - _I

CPU control

Internal read/write
communications

—_— e ——

Input/output under control
_— of DOS Supervisor and/or
compiler control phase

|Figure 1.2. General organization of the compiler, showing control and data flow

10 Licensed Material - Property of IBM

MAIN STORAGE

DOS
SUPERVISOR
~
RESIDENT
CONTROL PHASE
—————————————————— L~ 7k bytes
COMMUNICATION AREA '
(INCLUDING 1/0 BUFFERS)
3
PHASE > 26k bytes
AREA
Dictionary Directory 3
(560 or 1120 bytes) w
———————————— - Variable
: —— according
Ay e e — to
K 1 [sizE option
i Minimum
____________] 9384 bytes.

PLI10O xx

CORE-IMAGE
LIBRARY

N~

Figure 1.3. General organization of storage

SYS001
(SPILL DATA SET)

Licensed Material - Property of IBM Section 1: Introduction 11

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

Character Code Dependence

The following table identifies those areas that would require attention
if it were intended to modify the compiler to accept its input and print
its output in a different character set and/or language. (By language
is meant, for example, German or French, not programming language.) The
table does not attempt to detail how a particular area or item should be
modified for a language/character set change; only the type of
dependency that exists is identified. Those compiler phases that are
totally independent of any change are listed at the foot of the table.

In-line tests for some special ENVIRONMENT option parameters which are
implementation-defined and could therefore be affected by a change of
language, for example, TP(M) and TP(R).

r L) 1
| Phase} Area of dependency |
i < ']
8) 1
| AA | Character string constants for: |
| | 1. Exrror message text for one message. |
| | 2. Some phase names. {
i -
| AE | Character string constants for: i
| | 1. File names. |
| | 2. Phase names.]
| | 3. Heading for SYSLST. i
| | 4. Option keywords. |
| | 5. Error message text for inijitialization errors. |
‘+ + -——
AT	Translate table (internal to external code).
	Hex. to external character translation.
	Character string constants for, for example:
	1. Messages. i
	2. Phase names.
	Test for numeric constants.
	Code for translation from hex. to external character.
	Comma, full stop, and blank values in trace table routine.
	Assumption that hex values of characters increase through the alphabet. i
t + {	
BA	
S 4	
cA	
F t	
CE	Message list in XMTAB macro.
	Keyword l1list in XMCDE macro.
	Translate table ZTRAN1 (internal code to EBCDIC).
F t -	
EA	Module EA1
i	Beadings on source listing.
	Sequence numbers on input records (EBCDIC).
	Module EA2
	Sequence numbers on input records (EBCDIC).
i	SYSIPT or SYSLST assumed and output when particular ON conditions encountered.
i	Module EA3 i
	External to internal code translate tables (EBCDIC).
	Keyword tables.
	Carriage control characters on input records (EBCDIC).
L L]	
La L) 1	
EC	External to internal code translate tables (EBCDIC).
	Keyword tables.
[Carriage control characters on input records (EBCDIC). 1
[' ']	
r T R	
EE	Module EE2
	Keyword tables. i
{	i
{	
l | |

-
N

Licensed Material - Property of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

Module EE3
Explicit text inserts for message IELO334I concerning missing file options on
I/0 statements such as READ, WRITE, etc.

L (] I	
r L) 1	
	Keyword tables.
	SYSIPT or SYSLST assumed and output for certain I/0 statements.
b=t 1	
GA	BIF text tables.
b + -	
GI	BIF text tables.
§	Check for SYSLST.
{	Table of such items as PLISRTA/B/C, PLIDUMP, etc. A
e !	
GE	i
L A —— e g i o e e e S e e e e o . e o o .	
1) T .'	
€*	BIF text takles.
	Machine representation cf external characters.
k + 1	
ID	Machine representation of external characters.
k 1 -= i	
IR	Translate table ZTRAN1 (internal code to EBCDIC).
L b

r T == i |
| KL | Messages containing character string SYS. {
| | MEDIUM option with SYSIPT, SYSLST, and SYSPCH. i
(] i [
T T :
| PA | Machine representation of external characters. |
prememt !
| sM | [
b-=---1 b
| UA | Message list in XMTAB macro. |
| | Keyword list in XMCDE macro. |
| | Translate table ZTRAN1 (internal code to EBCDIC). !
p——-d {
| |
| The following phases are independent of any language/character set change: |
| |
| AS EI IA IE II KT |
| IM KA IQ KE KI oI 1
i KM KQ Rv OA OE PC |
| OM KK OC OX Kx sA |
| PE PI QI QA QE |
| SsQ sD sC SK sI |
L]
Licensed Material - Property of IBM Ssection 1: Introduction 13

Section 2: Method of Operation

INTRODUCTION

The PL/I Optimizing Compiler transforms a PL/1 external procedure into a
relocatable object module, suitable for link editing and subsequent
execution. The process of transformation is known as compilation.

This section contains descriptions of the methods used by the compiler
to perform the compilation process. The major operations involved in
compilation are shown in relation to the sections of the compiler that
perform the required operations. Then follow descriptions of features
of compiler operation that are common to all phases. The remainder of
the section contains descriptions of the functions and operation of each
phase of the compiler.

Note: While referring to descriptions in this section, readers may find
it useful to refer to the flowcharts in section 3, and to the fold-out
figure "Creation and usage of data areas" in appendix D. Detailed
descriptions and illustrations of the format or contents of the main
data areas referred to in the descriptions are contained in section 5.

The compilation process performed by this compiler consists of a number
of major operations, which are performed in sequence by the execution of
some or all of the 52 phases that make up the compiler. 1In relation to
these major operations, the phases can be collected logically into ten
groups which, for descriptive purposes, are referred to as stages.
Within each stage, most of the phases perform related functions which
together comprise one of the major operations in the compilation
process. In some cases, a phase is included in a particular stage for
implementation purposes, i.e., its function is best performed at that
stage of compilation but is not logically related to the major operation
performed by other phases in the stage. The relationship Lketween
compiler stages and the major operations is shown in figure 2.1. The
main functions of each stage, and the phases which are included in each
stage, are listed in figure 2.2.

Licensed Material - Property of IBM Section 2: Method of Operation 15

Control
Stage

7
//
|

Preprocessor i
Stage |

e

Syntax Analysis
Stage

Dictionary Build
Stage

!

Expression Analysis &
Text Formatting Stage

Statement
Processing

Stage

Y

| Global Optimization
! Stage

Storage and Register
Allocation Stage

Final Assembly
Stage

|

- Diagnostic
Stage

Initialization and provision
of services

Modification of source program
before input to the main
phase of the compiler.

Checking for validity of
source program statements and
organization into data formats
most convenient for later
processing. ’

Determination of the CPU
operations and resources
required for execution of
the program.

Generation of machine code
and assembly of object module

Printing of diagnostic messages
and dumps if required.

Figure 2.1. Relationship of compiler stages to major operations

16 Licensed Material - Property of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

r T 1
| Stage Name and Phases | Main Functions {
k t , —==-—
| Control Stage | Organizes storage and facilities required for compiler |
| (Phases AA and AE) | operation, including communication area and i
| | input/output buffers. Controls loading of other phasesi|
| | and provides services for them, e.g., satisfies |
| | requests for data pages. [
k + -——q
| Preprocessor Stage | Optionally modifies source program by executing |
| (Phases BA, CA and CE) | compile-time (%) statements and/or translating into |
| | processable code and character set. i
t t -

| Syntax Analysis Stage | Eliminates comments and translates remaining text into |
| (Phases EA, EC, EE, and EI) | compiler internal code. Identifies, classifies, and {
| | numbers statements, and checks syntax of statements andj
| | statement elements. |
F +--- ———
| Dictionary Build Stage | Extracts information about each identifier and collects|
| (Phases GA, GI, GE and GM) | this information in dictionary tables for ease of |
i | reference. |
F 1 =
Expression Analysis and	Analyzes expressions and data aggregates, expanding
Text Formatting Stage	them where necessary. Translates statements
(Phases IA, ID, IE, and II)	into a parenthesis-free format, consisting of
}	fixed-length text tables.
L 4 J	
r T 1	
sStatement Processing Phase	Interprets and analyzes the logical operations
(Phases IK, KA, IM, IQ, KE,	indicated by statements and statement elements, and
KI, KK, KL, KM, KQ, KT, KV,	generates modified or additional text tables to
oc, OX, AND KX)	indicate the machine code required to perform those
} (This stage is split into two	operations. i
parts if global optimization	{
is executed.)	
t 1 1	
Global Optimization Stage	Optionally analyzes the text stream and modifies its
(Phases OA, OE, OI, and OM)	content ands/or sequence to indicate code that is
	optimized to satisfy requirements specified in compiler
	optioms.
k t b	
storage and Register	Modifies text and makes dictionary entries to indicate
Allocation Stage	mapping and addressing requirements of different {
(Phases PC, PA, PE, PI, QI,	storage classes and data types. Allocates registers
QA, and QE)	for use at execution time.
k t ~

Final Assembly Stage	Generates machine instructions indicated by text tables
(Phases SA, SQ, SD, SC, SK,	and according to addressing and register allocations.
SI, and sSM)	Assembles the object module and prints object listings
[if required. i
L 3]	
Ll T 1	
Diagnostic Stage	Edits and prints diagnostic and compiler error [
(Phases UA and AI)	messages. Prints dumps of compiler data areas if {
	required. I
i 4 J
Figure 2.2. Phases and functions of compiler stages

Licensed Material - Property of

IBM Section 2: Method of Operation 17

— SPECTIAL MACRO INSTRUCTIONS AND BOOKS

The design and construction of the compiler is based on the extensive
use of specially designed macro instructions and books. Frequent
references to such items are made in the published listings and in the
descriptions in this manual.

Note: The term book is used to refer to an invariant sequence of code
ands/or data definitions that can be introduced into the assembly of a
compiler module by use of a COPY statement.

At the time a compiler phase is assembled, an invocation of a macro
instruction or book results in the generation of a predefined sequence
of System/360 assembler language instructions. In cases where the
function specified by a macro instruction requires a large number of
assembler instructions, a call to a uniquely-labeled subroutine is
generated rather than an extensive sequence of inline code. This
feature is more fully described in section 3, "Program Organization."”

All macro instructions designed especially for use in this compiler have
a name beginning with the letter X; all routines and subroutines invoked
by a macro instruction have a name beginning with the letter X, and
similar to the name of the invoking macro instruction; all books have a
name with the initial letter X, ¥, or Z.

Approximately 160 different macros and books are used in the compiler to
perform a wide variety of functions. A complete list of them, together
with a brief description of their functions, is contained in appendix A.
The published listings show the assembler code generated by each macro
invocation.

REGISTER NAMING CONVENTION

Within the compiler code, all explicit references to general registers
are made by use of symbolic names. The naming convention, which is also
used in descriptions throughout this manual, is shown below:

Register Number Symbolic Name
0 RO or RO
1 R1 or RI
2 R2
3 R3
4 RY
5 RS
6 R6
7 R7
8 RS
9 R9

10 RA
11 RB
12 RC
13 RD
14 RE
15 RF

DATA REPRESENTATION

Data derived from statements in a PL/I source program is repeatedly
processed during the sequential execution of the compiler phases, so
that it is progressively transformed into code required in an object

18 Licensed Material - Property of IBM

Order No. L¥33-6010-1, Page Revised by TNL LN33-6175, October 1976

module. The formats used for the internal representation of this data
vary according to the type of processing being performed, i.e., the data
is collected in basic formats that are most suited to the processing
performed during one or more compiler stages. The general
characteristics of the basic data formats used in the compiler are
described in the following paragraphs; detailed descriptions and
illustrations are contained in section 5, "Data Area Layouts."

FORMAT OF INPUT

Input to the compiler consists of a series of PL/I statements and
comments grouped into one or more procedures. Each external procedure
is read into the corxpiler input buffers as a series of 80-byte unblccked
records (card-image format).

The compiler processes source statements written in the PL/I
60-character set and coded in EECLIC. Crtions are provided which enakle
the compiler to accept input written in the PI/I 48-character set ands/ox
coded in BCD. Use cf input in these forms necessitates speciticaticn of
the CHARSET (48) and/or CHARSET(BCLC) ortion, which causes one of the
preprocessor phases to be loaded to translate the records into the PL/I
60-character set and/or ERCLIC.

Modification of the source program at compile-time can be enabled by the
inclusion of compile-time statements (identified by a preceding %
character). 1Inclusion of such statements necessitates specificaticn cf
the MACRO option or INCLUDE cgtion, which cause one of the preprocessor
phases to be loaded. If the MACRC orticn and eithexr the CHARSET(48) ox
CHARSET(BCD) options are specified, the same preprocessor phase (Phase
CA) performs all preprocessing.

outrut from one of the rreprccesscr phases, consisting of prerrccessed
statements and comments, is rpassed on text pages in 84-byte record
forrat to the wmain compiler read-in routines (in Phase EA). If the
original source program was in the 48-character set and/or BCD, records
in the original character set and code are also passed, interleaved with
the translated records, in order that the SOURCE option can be
satisfied.

The flowpaths of input records are illustrated in figure 2.3.

Licensed Material - Property of 1IBM Section 2: Method of Cperation

19

) . Source program

PHASE AE

Reads *PROCESS
statement
into and

MACRO
option

specified

?

PON
_CS(48)3
CS (BCD), o «_
{NCLUDE option==—

specified

compile-time(%)
statements. Translates

48 char and BCD
records if
necessary

PHASE BA

records into and

Reads source program

Translates 48 char
and BCD records

buffer
Input
buffers
(in Specify Specify Specifyv
i Phase CA Phase BA Phase EA
compiler as next phase as next phase as next phase
/
commun-
Data /
Management | ication _
Routines PHASE CA (%) INCLUDE
area) Reads source program Modules
records into and from
eyl iNPput buffer. Processes

.| from input buffers. ‘

PHASE EA
Compiler read-in

& | routines read source-
2551 program records
into and from input

Figure 2.3.

Flowpaths of input records

20 Licensed Material - Property of IBM

%! buffer, or read
| preprocessed records
_| from text pages.

—(- Flow of control

Data flow

INTERNAL TEXT FORMATS

The main compiler read-in routines read the input records one at a time,
either from the input buffers or from the pages output from the
preprocessor stage, into an area of main storage acquired for initial
processing. As records are read in, statements are identified and
numbered, and comments and invalid characters are removed. Remaining
characters are translated into an internal character code that is more
convenient than EBCDIC for internal manipulation. This internal code is
shown in figure 5.88. As translation of each source statement is
performed, the input records containing the statement and comments in
the original characters and code, together with other information such
as statement number, etc., are copied to the print buffers if a source
listing is required.

The internal representation of statements, initially corresponding to
the source program, is referred to as text. The format of text is
changed during compilation but at any time it can consist of a mixture
of operators, operands, and program control elements. Operands can be
constants, variables, files, etc., or compiler-generated items. Text is
initially copied onto one or more pages to form a stream of data
referred to as the main text stream. Additional streams of text
extracted from the main text stream are temporarily created at various
times during compilation, and are referred to as secondary text streams.
Some secondary text streams are given names for ease of identification.

In the syntax analysis stage, statements are sorted so that all
statements in a block appear before the first statement in a block at
the next level of nesting. Within each block, statements are retained
in source-program order, and within each statement, statement elements
are also retained in source order. The text is organized in a
sequential stream. This text format is referred to as Type-1_ text.
Although the internal representation of some statement elements is
subsequently changed, and compiler-generated items are inserted in
various places, the text retains the basic characteristics of Type-1
text format from its generation in the syntax analysis stage until it is
processed by Phase II in the text formatting stage.

Routines in Phase II translate the text from a stream of statements into
a series of fixed-length tables, each 32 bytes long. Each text table
contains fields for an operator and three operands. All parentheses are
removed, and data elements are arranged in appropriate fields in the
text tables. Text in this format is referred to as Type-2 text. In
addition to the operator and operand fields, Type-2 text tables contain
fields that can be used for other purposes. For example, chain fields
are used so that text tables can be inserted into, or deleted from, the
logical sequence of text without requiring complete reorganization of
its physical sequence.

The main text stream remains in Type-2 text format from Phase II until
the text tables are replaced with machine code by the code-generation
phases in the final assembly stage. Because more than one phase is
involved in the generation of machine code, and because each of them
only processes certain types of text tables, a time exists when the text
stream contains machine code that has replaced text tables, and text
tables that have yet to be replaced. 1In addition, special markers are
inserted in the text to indicate processing required by later phases.
This mixture of text formats, which exists from the start of code
generation until the end of compilation, is referred to as extended
code.

Where secondary text streams exist, the format of their contents do not

always correspond to the format used in the main text stream at that
time.

Licensed Material - Property of IBM Section 2: Method of Operation

21

THE DICTIONARY

The attributes of an identifier directly affect the type of processing
required when any reference to it is found in the text during
compilation. It is therefore necessary for all relevant information to
be available whenever an identifier is referred to. 1Instead of
inserting extensive and numerous descriptions in the text streams,
complete descriptions of all identifiers are collected in tables that
can be accessed as required, and only the most frequently used
information is inserted at references to identifiers in the text. The
tables of descriptions are collectively referred to as the dictionary.

The dictionary is divided into four main sections: the names
dictionary, variables dictionary, general dictionary, and storage
dictionary. Collection of information for. the dictionary starts in the
syntax analysis stage, where certain types of statement are collected in
a secondary text stream for ease of reference. The main parts of the
names, variables, and general dictionaries are built in the dictionary
build stage, from explicit, contextual, and implicit declarations.
Additional entries are made in these dictionary sections throughout
compilation. The storage dictionary is built during the storage
allocation stage.

The names dictionary is used to hold the names of all the variable
identifiers and some of the constants that appear in the text. Each
entry (except entries for built-in function names) contains pointers to
associated entries in other dictionary sections.

The variables dictionary is used to hold lists of the attributes of each
variable in the program.

As its name implies, the general dictionary is used to hold a wide
variety of information, such as:

e Details of the block structure of the program.
e The format and dimensions of data aggregates.

e Descriptions of constant values too great to be conveniently held in
text.

s Standard default attributes to be applied to implicit declarations.
e Collections of information required for optimization.

e Descriptions of control blocks, etc., to be generated in the object
module. '

The storage dictionary is used to hold information about the amount and
location of storage required for every identifier in the object module.
It is built when most of the information about the object code to be
generated has been determined, and can be considered as an extension of
the variables dictionary.

When the main structure of the dictionary sections has been built, each
reference to an identifier in the text is replaced by a brief
description of its most important attributes and a reference to the
dictionary entry containing the most complete description of it. To
enable frequent access to dictionary entries without repeated use of
lengthy addresses in the text, a directory is built and used to resolve
dictionary references. This directory, which can be 560 or 1120 bytes
long, is resident in the page area of the compiler partition throughout
compilation.

22 Licensed Material - Property of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October,

PAGE-HANDLING SCHEME

The following paragraphs describe the system used in the compiler for
internal data management, which is referred to as the page-handling
scheme. This scheme is used by all phases of the compiler to acquire
storage for newly created data, to access existing data, and to pass
data to following phases. The facilities provided by the scheme are
used to handle text and dictionary data, (previously described under the
headings "Internal Text Formats" and "The Dictionary"), general
reference data such as tables and lists which are required to be passed
to other phases, and for the temporary storage and manipulation of data
that is used by one phase only and which is discarded at the end of
processing by that phase. Descriptions of the routines that implement
and supervise the scheme are contained in the phase descriptions later
in this section, in particular in the descriptions of Phases AA and AE.

The Page Area

An area of the compiler partition is allocated for the storage of data,
such as the text, dictionary, etc. According to the relationship
between the size of the partition and the content of the source progran,
it may not be possible for all data to be held in main storage
throughout compilation. In such cases, data that is not currently being
processed or accessed can be held in secondary storage. Space on
direct-access storage devices assigned to SYS001 and SYS002 is allocated
for a work data set in which this data can be stored. The tramnsfer of
data from main storage to secondary storage is known as spilling. The
data sets are known as the spill data sets, and their DTF names are
XSPILL1 and XSPILL2.

For ease of data handling, the area of main storage allocated for data
storage is divided into eight or more equal divisions. The size of each
record in the spill data set is related to the size of one division.
Each data record is referred to as a page, the main storage area
allocated for data storage is referred to as the page_area, and each
division of this area is referred to as a page_space.

Page size

The largest possible amount of the partition available to the compiler
is allocated as the page area. The routine that allocates storage for
the page area, and calculates the page space, is in the initialization
phase (Phase AE). Design of the compiler is based upon a minimum of
eight page spaces, but more can be used if sufficient main storage is
available. The minimum page space size is 1100 bytes, of which 20 bytes
(including the page header, which is described later) are used to hold
data-handling information, and 1080 bytes are available for processable
data. If storage is available, the page-space size is increased to
either 1700, 3500, or 4096 bytes, of which 1680, 3480, or 4040 bytes can
be used for processable data. Note that 4040 bytes are only used if the
spill data sets are on either a 3330 or 3340 direct access storage
device, and if the SIZE option is large enough.

At the beginning of each page space 16 bytes are used for a page header,
the format of which is shown in figure 5.2. The page header is followed
by space for processable data, and at the end of the page space is a
4-byte field, comtaining a page delimiter (X'99!').

When a page is spilled, the last seven bytes of the page header, the
processable data, and the four bytes containing the page delimiter, are
spilled, Thus, the size of a record on the spill data set does not
exactly coincide with the size of a page space.

Licensed Material - Property of IBM Section 2: Method of Operation

1973

23

order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973

To ensure that the compiler works efficiently in virtual storage, a page
header table is used. This table contains copies of page header
information. The copies of the page headers in the table differ omly
from the page headers themselves in that the pointer field points to the
page itself rather than to another page header. Thus when a search is
made for a required page, the page header table can be searched. This
prevents the possibility of transfer of a page from virtual to real
storage simply to inspect the page header.

Relationship between Main Storage_and the Spill Data_ Set

If there is not enough workspace in main storage, one of the pages in
main storage is copied onto the spill data set, and the space freed is
used for another page.

To save space on the spill data set, information on whether a page has
been spilled and the position of the copy on the spill data set is kept
in a table called the in-core page directory. A list is also kept of
pages that have been discarded by the compiler but still have copies on
the spill data set. This list is called the discard table. Figure
2.3.1 shows the relationship between the fields involved.

The in-core page_directory holds the relative track address of those
pages that have been copied onto the spill data set, and zero for those
that have not. Information about each page is held at the offset equal
to the page number. (Page numbers are incremented in threes to allow
for this.) The in-core page directory contains spaces for approximately
five times the number of pages that are held in the page area. This
allows all the pages that are likely to be needed during compilation to
be addressed without the directory overflowing.

The discard_table contains a list of those pages that have been
discarded, but that still have copies on the spill data set.

Use of the tables allows discarded and outdated pages on the spill file
to be overwritten. When a page is to be written onto the spill data
set, the address at which it is to be placed is found by following the
sequence below:

1. Looking in the discard list for a page that has been copied onto
the spill data set and subsequently discarded. If one is found it
is overwritten.

2. Looking for a read/write page that has a copy in main storage and a
copy in the spill data set. In this situation, the copy on the
spill data set will be outdated and can consequently be
overvritten.

3. Extending the spill data set by writing a new record.

When the page has been copied onto the spill data set, its relative
track address is entered in the in-core page directory. 1If this
involves overwriting a page that has a copy in maimn storage (situation
number 2 above), the in-core page directory entry for the page that is
overwritten is set to zero.

At sizes of 80K and above, the in-core page directory holds about five
times as many page spaces as there are pages in main storage. This
means that five times the number of pages available can be handled by
the method described above. If more pages are required than there are
spaces in the in-core page directory, the relative track address of any
additional pages is set in the TTR field in the page header. The TTR
field contains the page number and either X'40' indicating that any
spill page is to be addressed through the in-core directory, or, if the
directory is full, the relative track address of any spill data set
COPY.

24 Licensed Material - Property of IBM

order No. LY33-6010-1, Page added by TNL LN33-6079, October, 1973

TTR field
Spill data set X ‘40’ indicates that in-core page directory is used for addressing spill data set.
ddressi F-— .
addressing Other values are relative track addresses in spill data set and are used Spill Data Set
mechanism — .
when the in-core page directory has overflowed.

page area Spilled pages

in-core page \\——‘/
directory discard list
A w

For each page:
& zero if no spill List of discarded

copy, relative pages with copy
track address if ? still on spill data

a spill copy set.
exists.

N
)) N———

1. When a page is written on the spill data set, its track address is entered in the in-core page directory.

2. When a page is overwritten on the spill data set, its entry in the in-core page directory is set to zero. If it is a discarded page, it is
removed from the discard table.

3. When more pages are used than there are spaces for in the in-core page directory, the relative track address into which such a page is to
be spilled is placed in the TTR field.

Figure 2.3.1. The relationship between the page area and the spill data
set

Licensed Material - Property of IBM Section 2: Method of Operation 24.1

order No. LY33-6010-1, Page added by TNL LN33-6079, October, 1973

Page Status

A page in main storage is always given a specific status. The status,
which can be one of six grades, indicates the relationship between the

core copy and the spill copy, and the accessibility of the core page.
The six status grades are:

24.2 Licensed Material - Property of IBM

Status Indication

UNMOVABLE READ/WRITE Core and spill copies are different; the core ccpy
must not be spilled or overwritten.

UNMOVABLE READ~ONLY Core and spill copies are the same; the core copy
must not be spilled or overwritten.

SPILLABLE Core and spill copies are different; the core copy

(MOVABLE READ/WRITE) can be overwritten when the spill copy has been
updated.

USABLE Core and spill copies are the same; the core copy

(MOVABLE READ-ONLY) can be overwritten immediately.

DISCARDED Both core and spill copies are no longer required;
both can be overwritten.

UNUSED The page space has not yet been used; there is no
associated spill copy.

Page Status Chains

To speed searches for required pages, all core pages of similar type and
status are chained. There are six separate page chains, classified as
follows:

TEXT UNMOVABLE

TEXT MOVABLE
DICTIONARY UNMOVABLE
DICTIONARY MOVABLE
UNUSED

DISCARDED

Note: For purposes of page handling, pages which contain general
reference data that is not part of the dictionary are handled as text
pages, even though the data they contain may not be part of a text
stream.

Two-way chains are used so that, from any page in a chain, the preceding
and following pages are immediately identifiable. The communications
area contains a header field for each page chain. Each chain header
field contains pointers to the first and last page in the chain. A page
can be added to the beginning or end of a chain by referring to the
chain header field. When a chain header is initialized (before there
are any pages in the chain), the head and tail pointers both point to
the head pointer. After initialization, all manipulation of page chains
during compilation is performed by standard routines. These handle the
general case, and the chains which contain only one or no pages.

BASIC PAGE-HANDLING OPERATIONS

Standard routines are used throughout the compiler for page-handling
operations. The routine appropriate to the operation required is
invoked by a macro instruction within the phase. Some macro routines
call another macro routine in turn to perform the operation. For some
page handling operations, in particular those operations that may
involve input/output operations between main storage and the spill data
set, the macro routines call routines in the resident control phase
(Phase AA). The xoutines in Phase AA that are concerned with page
handling operations are the page handling routine (AA4000), the spill
supervisor routine (AA6000), and the phase loading routine (AA0300).

Licensed Material - Property of IBM Section 2: Method of Operation

25

The three basic page handling operations that may be required by a
processing phase are:

e Get a page space for a new page

e Get an existing page

e Change the status of a core page

The routines used to perform these operations vary according to whether
an operation is connected with the handling of text (or general
reference data) pages or dictionary pages.

Get _a Space for a New Page: When a page space is required for the
writing of a new page, the page chains are searched in the order:
Discarded, Unused, Movable. The order in which Movable chains are
searched is determined by a subroutine in the spill supervisor routine.
In general, if the new page is to be a dictionary page, the text movaktle
chain will be searched before the dictionary movable chain. The first
suitable page found is known as the spill candidate. When a spill
candidate is found, its status affects subsequent action as follows:

Status Action
Discarded The page space address and the TA are returned to the

caller. The status is changed to Unmovable.

Unused An identifying number (or core-TA), consisting of a
two-byte number followed by X'40', is allocated,
inserted in the page header, and returned to the caller
together with the absolute address of the page. The
status is changed to Unmovable.

Usable A new TA is obtained from the data set and substituted
for the existing TA. The page space address and the new
TA are returned to the caller. The status is changed to
Unmovable.

Spillable The existing core page is written onto the data set.
The action is then as for Usable.

Get_an_ Existing Page: When an existing page is required, the Unmovable
and Movable page chains of the appropriate type are searched in case the
required page is already in main storage. If the page is found, its
status is changed, the page is added to the appropriate chain, and the
page address is returned to the cailer.

If the page is not found in main storage, the page chains are searched
for a spill candidate in the same order as for a new page search. The
action taken when a spill candidate is found depends upon its status as
fcllows: '

26 Licensed Material - Property of IBM

Status Action

Discarded The TA of the discarded page is added to the discarded
page_table. (TAs in this table can be re-used for new
pages.) The required page is then read in from the
spill data set and overwrites the discarded page. The
core-page address is returned to the caller.

Unused The required page is read from the spill data set into
and the page space. The core-page address is returned to
Usable the caller.

Spillable The spill candidate is written onto the spill data set

at its existing track address. The required page is
then read in from the spill data set to overwrite the
new usable space. The core-page address is returned to
the caller.

Change_the Status of a Core_Page: The status of an UNMOVABLE core page
can be changed to MOVABLE or DISCARDED, and a MOVABLE core page can be
changed to UNMOVABLE or DISCARDED.

A READ ONLY page can have its status changed to READ/WRITE. A
READ/WRITE page cannot be changed to READ ONLY, as such a page may have
been retained in main storage since its use by a previous phase, and the
spill copy may not have been updated.

Selection of a Spill Candidate

The method used to select a spill candidate affects the number of
input/output operations required during execution of a phase. For each
phase there is an optimum method of selection, which is determined to a
great extent by the use of dictionary pages.

A subroutine in the phase loading routine selects the optimum page
handling routine for each particular phase before the phase is loaded.
It can be called to change the selection method if processing
requirements change during execution of a phase. Information about the
selected method is passed to page handling routines via the
communications area.

TEXT PAGE HANDLING

Requests for page-handling operations in connection with text or
general-reference-data are made by use of macro statements which
indicate the particular type of operation required, and contain
information necessary to‘:enable the operation to be performed. These
statements generate inline macros which either perform the operation or
call a macro subroutine. The subroutine may either perform the
operation or call a control phase routine to perform those parts of the
operation that are beyond its capabilities.

The majority of requests for basic page-handling operations are made by
use of the XTXPG, XTXST, and XTXRF macros. The XTXRF macro calls the
control phase routine AAU000 directly. The XTXST macro calls the XTXPGR
macro subroutine, which performs the required operation. The XTXPG
macro also calls the XTXPGR macro subroutine, but in this case XTXPGR
calls the control phase routine AA4000 to perform some or all of the
required operation. The relationship between these inline macro
instructions, the macro subroutine, and the control phase routine is
shown in figure 2.4. The functions of other macros involved in text
handling are shown in appendix A.

Licensed Material - Property of IBM Section 2: Method of Operation

27

H 1
I gmm===v gpmm==my pomoes |
| Inline macro |XTXPG| |XTXST| |XTXRF| |
| instructions beeaq-d e 4 [4|
l |
| Macro IXTXPGRI |
| subroutines | P | '
l I
l l
| L= |
| Control phase IAAu000|

| routines = lemeeao I
L

Figure 2.4. Routines and subroutines called in text page handling operations

The XTXPG Macro: Statements invoking the XTXPG macro can be used to
specify three functions connected with page handling:

1. If a chain of text pages is being processed, XTXPG can be used to
obtain the aksolute address of the next sequential page in the
chain, having the page read into main storage if necessary.

2. If a chain of text pages is being created, XTXPG can be used to get
a new page and add it to the chain.

3. If an individual page is required for temporary storage of
reference data, XTXPG can be used to get a new page without adding
it to a page chain.

The particular function required is specified by using NEXT, ADD, ox
HEAD respectively as the first operand in the macro statement. Other
operands can be used in the statement to specify:

e A revised status to be applied to the current page.
e A status to be applied to the next or new page.

s Registers or locations in which pointers to text references, or
absolute addresses, in the current, next, or new pages can be found
or are to be stored.

e Whether a read-ahead technique is to be used in any input/output
operations connected with the request. If required, page
input/output operations can be overlapped, and later checked for
completion by use of the XCHECK macro. This technique enables time
saving in cases where the need for a page can be predicted ahead of
actual usage and where there is a page space available for the
look-ahead page.

The XTXPG macro does not perform any of the functions, but sets bits in
the XTXBO, XSSW and XTCLCD fields in XCOMM, and sometimes ensures that
RB is pointing at a location in the current page, before calling the
XTXPGR macro subroutine. Whenever it is called by XTXPG, XTXPGR calls
the control phase routine AA4000 to perform some or all of the required
functions.

The_ XTXST Macro: The XTXST macro is used to specify a change of status
to be applied to a text page that is resident in main storage at the
time the change is requested. The page for which the change is required
can be identified in the invoking statement by the text reference,
address of start of page, or the absolute address of any location in the
page.

If a MOVABLE or UNMOVABLE page is to be changed from READ ONLY to
READ/WRITE, the XTXST macro performs the function in line. For all
other status changes, XTXST calls the XTXPGR macro subroutine, setting
bits in the XTXBO and XSSW fields in XCOMM to indicate the function

28 Licensed Material - Property of IBM

required.
routine.

The XTXPGR Subroutine:

macro in response to an invocation of the XTXPG macro.
control from either the XTXPG macro or the XTXST macro.
pass information about the required function in the XTXBO field in

XCOMM,

and also in RB.

When called by XTXST, XTXPGR does not call any control phase

The XTXPGR subroutine is generated by the XROUT

XTXPGR receives

These macros

XTXPG also passes information in the XCTLCD and

XSSW fields in XCOMM, indicating functions required of the control fphase
routines in connection with next or new page requests.

Bit settings in XTXBO give the following

indications:

t .
[Bit No.

j0123

4567

Function and Indication

Information used to_search for|

start of current page.

RB points at an absolute
address in the current page.
RB points at a text reference
in the current page.

Function required of the
XTXPGR subroutine.

Change status of current page
only.

Get a new text page.

Get a new text page, and add
it to the chain by inserting
its TA in the OTXCN field of
the current page.

Find the next page in the
chain, as indicated in the
OTXCN field of the current

page.

New Status to be applied to
current_page.

(Characters in parentheses
indicate value of operand in
XTXPG or XTXST macro.)

UNMOVABLE READ/WRITE (UNRW)
UNMOVABLE (UNMV)

MOVABLE READ/WRITE (SPIL)
MOVABLE (SAVE)

DISCARDED (DISC)

B s S S — — — — — — — — —— — — —— — —— — ——— —— ———— — — —— {—— — T— —

Licensed Material - Property of IBM

Bit settings in XCTLCD give the following

indications:
r T - 1
|Bit No. | Function Required of |
101234567 Contrcl Phase |
pommtommt |
|----|---0| Get next page in text page |
| | | chain. |
|==<-]-=--1| Get a new page. i
=---]--0-	Overlapped I/O not required.	
====	--1-	Overlapped I/0 required.
==-=--}1-0--	Make page READ/WRITE.	
}	==-=<	-1--
----]0---] Make page UNMOVABLE.	
----}1---	Make page MOVABLE.	
I 1 Y U P]		
Bit settings in XSSW give the following		
indications:		
r T 1		
[Bit No.	Punction Required of	
10123 4567	Control Phase	
b + + --- i		
0===	~----	Spill from oldest page.
1===]	=---	Spill from newest page.
	I	
	If new page to be MOVABLE.	
=0==]	==--~-	Add to end of MOVABLE page
		chain.
-1=-=]----	Test Bit 2.	
==0=-	-=--=-	Add to keep end of MOVABLE
	page chain.	
=--1-	=-=--	Add to spill end of MOVABLE
		page chain.
		If old page to be MOVABLE.
==-0	-=--	Add to end of MOVABLE page
	chain.	
===-1	=-=---	Test Bit 4.
-===]0---	Add to keep end of MOVABLE	
	page chain.	
====	1-=--	Add to spill end of MOVABLE
		page chain. {
====	-1--	Pagk start address passed as
		parameter.
L i 4 4
Section 2: Method of Operation 29

If RB has been set to point at a text reference or an absolute address,
XTXPGR searches for the start of the containing page so that the page
header can be accessed. The page must be in main storage. When the
start of the page has been found, the page is removed from the status
chain so that the page cannot be spilled during any input/output
ccnnected with the requested operation. Note that if bit 5 of the XSSW
field is on, RB already points to the start of the page.

If the only function requested is a change in the status of a page, as
when called by XTXST, this function is performed entirely by XTXPGR.
The status field OSTAT in the page header is altered, and the page is
added to the appropriate status chain by altering the OCNFD and OCNBK
fields. If the page is to be made MOVABLE, XSSW bits 3 and 4 are
examined to see whether the page is to be simply added to the most
recent end of the MOVABLE chain or whether the required end has been
specified. Control is then returned to the calling statement.

If the next page in a text-page chain is required, the TA of that page
is found by examining the OTXCN field in the current page header. If
the value of that field is zero, the current page is the last in the
chain. This information is passed to the calling macro by setting RC to
zero. If OTXCN contains a TA, RB is ‘set to point at OTXCN and the
control phase routine AA4000 is called. AAU000 finds the page, reads it
into main storage if necessary, sets its status as required, and returns
control with RC pointing at the start of the page. If a new page is to
be added to a text page chain, AA4000 performs the functions indicated
in XCTLCD and returns control to XTXPGR. Before returning control to
the calling macro, XTXPGR inserts the TA of the new page in the OTXCN
field of the current page header, and links the current page into the
appropriate status chain.

If a new individual page is required, RB is not set. XTXPGR immediately
calls AA4000 to acquire the page, and control is returned to the calling
macro with RC pointing at the start of the new page.

The_ XTXRF_Macro: The XTXRF macro is used to obtain the absolute address
of an item identified by a text reference, i.e., the TA of a page and
the offset of the item from the start of that page. XTXRF does not
perform any of the function, but sets up information according to
operands used in the invoking statement and then calls the control phase
routine AA4000 directly. The text reference is passed in RB or in a
defined area of storage. A register, or an area of storage, can be
nominated for storing the absolute address of the item or the start of
the page containing it. Other operands can be used to specify a status
to be applied to the containing page, and whether overlapped
input/ocutput can be used in any spill operations. This information is
passed to AA4000 in XCTLCD. AA4000 searches for the required page,
reading it into main storage if necessary, applies the required status,
and returns control with RC pointing at the start of the page.

DICTIONARY PAGE HANDLING

The basic difference between the handling of text data and the handling
of dictionary data is the way in which the containing page is identified
when a data item is referred to.

Each reference to an item in text is five bytes long, and consists of
the TA of the containing page and the offset of the item from the start
of the page. Thus the page is directly identified for page handling
purposes.

Because of the large number of references to dictionary entries that are
used, each reference to a dictionary entry is two bytes long, consisting
of a unit_number. Each section of the dictionary (names, variables,
general, and storage) is built on a separate page or sequence of pages.

30 Licensed Material - Property of IBM

Within each section, the pages are numbered sequentially, starting at
zero. (The section of the dictionary to which a page belongs, and the
reference of its first entry, are shown in the ODCTP and ODCRF fields in
the page header.) Entries within dictionary sections may be of fixed
length or variable length, but within each section a fixed alignment
length is used. Thus each dictionary section can be divided into units,
and the start of each dictionary entry can be related to a unit. The
number of units per page for each dictionary section varies according to
the page size used in compilation. Dictionary references are two bytes
long, and contain the unit number of the start of the required entry.

To access the entxy, the TA of the containing page, and the offset of
the entry from the start of the page must be determined. To enable
this, a directory is built at the start of the page area. The directory
remains in main storage throughout compilation, and entries are made in
it as new dictionary entries are created. Phase AE allocates 560 bytes
of storage for the directory, or 1120 bytes if sufficient storage is
available.

The directory is divided into four sections, each corresponding to a
dictionary section. Each directory section contains a list of the track
addresses of pages containing entries in the relevant dictiocnary
section, the entries being made in section-page-number order. Thus the
first three bytes of the directory section relating to the general
dictionary contain the TA of general-dictionary-page number zero, the
second three bytes contain the TA of general-dictionary-page number one,
etc.

To identify the dictionary section to which a dictionary reference
belongs, an identifying operand is used in the macro statement used to
make a request for a dictionary page. The macro invoked by the
statement sets up a corresponding value in the dictionary code byte
XCODBT, in XCOMM. The values set in XCODBT are as follows:

XCODBT value Indicated_dictionary section
X'00"' General dictionary
x'o08"* Names dictionary
X'10* Variables dictionary
X*'18" Storage dictionary

XCODBT is used by the page-accessing routines and subroutines to index
four 32-byte tables, XSQTBL, XMSKTB, XDRTBI, and XDICEN. (XDICEN is
overlayed on XDRTBL.) Each of these tables, which are in XCOMM,
consists of four 8-byte sections, (one section for each dictionary
section). Each 8-byte section in the tables is organized as follows:

Licensed Material - Property of IBM Section 2: Method of Operation

31

-------- L Aetubuinetaiiededetaied Subebetebetediiesiat et fatesis - - ittt |
| Table | Field name | Size in bytes | Field content
b= - ————— R B it i
{ | | | [
| XSQTBL | | | |
| | [| I
	XREF	2	Reference of next unused unit.
	XOFST	2	Offset within current page of
			next unused unit.
i			[
	XALGLN	1	Alignment length.
! | XTA | 3 | Track address of current page. |
- pom————————- - - {
| | | | |
| XMSKTB | | | |
| | (| |
| | XOFMSK | 4 | Not used. |
| | | { |
| | XPGMSK | 2 | Not used. |
| | | | |
| | XELTH | 2 | Alignment length.
r B s t-—— - 1
| | | { | |
| XDRTBL | | | |
| | | | |
] | XSHFT | 2 | Not used. (Number of
| | | | dictionary units per -page, when|
| | | | XDRTBL is overlayed with |
| | | | XDICEN.) |
| | | | |
| | XDROFS | 2 | The offset, from the start of |
| | | | the directory, of the start of |
| | | | a directory section |
| | | | corresponding to the relevant |
| | | | dictionary section.
| | | | |
| | XSECSZ | 2 | The size of the section of the |
] | | | directory allocated to the |
i | | | relevant dictionary section. |
| | | | |
| | XCRDRF | 2 | The offset, from the start of aj
| | | | directory section, of the next |
| | | | free space. |
L N, R o - -d

Requests for dictionary page handling operations are made by use of
macro statements, in which operands are used to specify the precise
function required of the subroutines and the control phase routines that
may be called. The functions of the various macros used for dictionary
accessing are shown in appendix A. The macros most generally used and
mcst directly involved with dictionary-page handling are XRFAB and
XRFSEQ.

At compiler assembly time, any invocation of the XRFAB or XRFSEQ macros
causes a few inline macro instructions to be generated. These
instructions include a call to the XRFAB and XRFSEQ subroutines, which
are respectively contained in the XRFABI and XRFSEQI macros. XRFABI and
XRFSEQI are generated by the XROUT macro in response to the first inline
invocation of the XRFAB and XRFSEQ macros respectively. The XRFAB and
XRFSEQ subroutines may call control phase routines to perform part of a
required function. The relationship between the inline macro
instructions, subroutines, and control phase routines is shown in figure
2.5.

32 Licensed Material - Property of IBM

1 1
I |
| r——=—-= 1 r———==- 1|
| Inline macro | XRFAB| | XRFSEQ| |
| instructions b ad | i
I 1 E
| r=-t-—1 p=-t===y |
| Macro | XRFAB| | XRFSEQ| |
| subroutines [eyt |
' \ VA
| St B SU 1 {
| Contxol phase |AALO000| |AAUS500} |
| routines L 1t 4 |
] }

Figure 2.5. Routines and subroutines called in dictionary page handling operations

The XRFAB_Subroutine: The XRFAB subroutine is called by the XRFAB macro
to £ind the absolute address of a dictionary entry identified by a
dictionary reference. If necessary it has the relevant page read into
main storage.

The XRFAB subroutine uses the directory to determine the TA of the page
that contains the referenced entry. If the reference is valid, it calls
the control phase routine AA4000 to search for the page, rassing any
required information in ‘the XCTLCD field of XCOMM. If necessary, AA4000
reads the page into main storage. The XRFAB routine then converts the
unit number given in the reference into a byte-offset from the start
address of the page, converts it into an absolute address, and returns
it to the caller in RC or in some other specified register or location.

The_ XRFSEQ Subroutine: The XRFSEQ subroutine is called by the XRFSEQ
macro, to find the absolute address of the next alignment unit available
in a specified dictionary section for the creation of a new dictionary
entry.

XRFSEQ examines the XOFST field in the relevant section of XSQTBL, to
find the next available alignment unit in the current page identified in
the XTA field. when the page and unit are identified, a check is made
to see if there is sufficient space in the page to hold the new entry.
All entries in the storage and variables dictionaries are of a known
fixed length. For entries in the names and general dictionaries, the
length of the entry is specified in the invoking statement. If the new
entry can be created in the space available in the current page, routine
AA4000 is called to find the address of that page, reading it into main
storage if necessary, and XRESEQ applies the necessary offset to obtain
the absolute address at which the new entry is to be made. If there is
insufficient space available in the current page, routine AA4000 is
called to get a new page. The directory, and the XDRTBL table in XCOMM,
are updated before the address is returned to the caller.

Before the required address for a dictionary entry is returned to a

caller, the XOFST and XREF fields of XSQTBL are updated in preparation
for a subsequent request.

Licensed Material - Property of IBM Section 2: Method of Operation

CONTROL_STAGE

The control stage of the compiler consists of two phases, AA and AE.
These phases perform functions that enable the compilation process to be
carried out, but do not directly perform any processing of the text.

Phase AA is the resident control phase. It is the first compiler phase
to be loaded and remains in main storage throughout compilation. It
provides an interface between the compiler and the operating system, and
performs various housekeeping operations required during the compilation
process.

Phase AE is the initialization phase. It performs the once-only
housekeeping operations required to prepare the operating environment
for execution of the compiler processing phases. If the compiler is
operating in batched-processing mode, this phase is loaded and executed
before the processing of each external procedure.

Because som€ results of processing by Phase AE affect the way in which
operation of the compiler is controlled, this phase is loaded and
executed almost immediately after Phase AR has received control from the
DCS supervisor program. Accordingly, for descriptive purposes, the
operation of Phase AE is described here before the operation of phase AaA
is described.

34 Licensed Material - Property of IBM

INITIALIZATION PHASE (PHASE_AE)

O X3 iU A el == Rix: LA

Phase AE performs the housekeeping functions required to prepare the
operating environment for the processing of source modules. Some of
these functions must be performed before the processing of each source
module when the compiler is operating in batched-processing mode. Much
of the information used by Phase AE is contained in Phase AA. The
instructions that process this information are included in Phase AE to
avoid the retention in main storage of instructions that are used once
only. The functions of Phase AE include:

e Determination of the partition size available to the compiler.

e Initialization of the compiler communications area, and
re-initialization of this area as required for batched compilationmns.

e Opening of the input, print, and spill data sets. The punch data
set is opened if it is required by compiler optionms.

e Processing of compiler options.

e Calculation of the main storage area available for use as the page
area, and calculation of the page size.

e Advising the operating system of the interrupt-handling routine to
be used in the case of program check interrupts.

e Obtaining time and date for compiler headings.

PHASE INPUT

When Phase AA passes control to Phase AE, the communication area exists
as a control section in which some of the fields are already
initialized. The fields that are initialized include:

XACTL the address of the start of Phase AA.

XBATCH a flag byte set by Phase AA to indicate the type of
processing required of Phase AE.

DTFs for the input, print, punch and spill data sets.
When the input data set is open, Phase AE reads the *PROCESS statement
(if present) at the front of the source program to determine the
compiler options specified for the compilation.

The DOS supervisor communication reqgiomn is accessed by Phase AE to
ascertain the size of the partition available to the compiler.

PHASE OUTPUT

On completion of processing by Phase AE, all fields in the compiler
communication area have initial values set as required for operation of
the processing phases. All data sets required are open. Main storage
is allocated only as shown in figure 1.3 and initialized.

Licensed Material - Property of IBM Section 2: Method of Operation

35

Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973

PHASE OPERATION

I~

nitialization of the Compiler Communication Area

When Phase AA passes control to Phase AE, Register 13 contains the
address of the compiler communication area, XCOMM. Some of the fields
in XCOMM have initial values set. Phase AE sets initial values in all
other fields that are required at the start of the processing of a
source progran.

Routine AE0000 accesses XCOMM and examines a field, XBATCH. This field
contains a flag byte set by Phase AA (or by the XREAD macro in the case
of batched compilation) to indicate whether Phase AE is required to
perform initialization functions after invocation of the compiler, or
whether re-initializatiom is required before the compiler processes the
second or a subsequent member of a batched compilation.

If XBATCH indicates that the initial member of a batch is to be
compiled, Phase AE copies into XCOMM the addresses of control routines
in Phase AA. It also issues a COMRG nmacro to access the DOS supervisor
communication region, and copies information from there into XCOMM. The
information copied includes the start and end addresses of the partition
allocated for use by the compiler. These addresses are copied into the
XACTL and XAEND fields.

Initialization of other fields is described in following paragraphs.
Fields in XCOMM that do not have an initial value set by Phase AR or AE,
and may be read by a processing phase before being set, have their
initial value set to zero.

Opening_and_Initialization of Data_Sets

The input, print, spill, and punch are opened by Phase AE. The DTFs for
these data sets are in XCOMM when it is loaded, and are partly
initialized. Completion of the initialization, required before a data
set can be used, includes the insertion of the address of the LIOCS
module into the DTF.

The spill data sets are required to be open for every compilation. If
batched compilation is performed, the data set is opened and initialized
for processing the first member of the batch, and remains open until all

.compilations in the batch are completed. The requirement for opening

and initialization is indicated by the setting of XBATCH, which is
tested by Phase AE at the start of each compilation. The LIOCS module
for the spill data sets is in Phase AA. When the page size has been
calculated, the blocksize field in the DTF is completed, an OPEN
statement is issued to open the spill data sets, and the address of the
LIOCS module is inserted in the DTF. If the spill data sets have been
opened for a previous compilation, the track address of the first record
on the data set is inserted in the XNWTA field in XCOMM, to indicate to
the page-handling routine in Phase AA the TA on the first page to be
used.

The LIOCS modules for all other data sets are generated within the
phases that use the data sets. A common LIOCS module is used for the
input, print, punch, and load data sets. This LIOCS module is generated
by use of an XPRINTR macro instruction within the phase. A different
entry point in the LIOCS module is used for each data set, and the
address of the relevant entry point is inserted in the appropriate DTF
by use .of an XREADI, XPRINTI, XLOADI, or XPUNCHI macro instruction.

The input and print data sets are used by Phase AE, and are therefore
opened and initialized by this phase for all compilations. Use of the

36 Licensed Material - Property of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

punch and load data sets depends upon the compiler options that are
specified. Phase AE examines the options and opens the punch data set
if it is required. The LIOCS module is generated, and the DTF is
initialized, by Phases CA or SI. The load data set is opened by Phase
SI if required. Phase SI contains the DTF and also the buffer area for
that data set, and generates the LIOCS module as required.

Processing the Compiler -Options

The standard default specifications for all compiler options are defined
in the PLIOAS module, which is link-edited and stored in the core-image
library at system-generation time. In addition to indicating the
default options, PLIOAS also indicates those options that are deleted
from usage and which cannot be altered by options specified in the
*PROCESS statement. If any compiler option deleted at system
installation time is required for a particular compilation, it can be
enabled by the use of the CONTROL option in the *PROCESS statement.
This option must be specified with a password that is defined at system
installation time. Use of an incorrect password will cause compilation
to terminate.

.The default and delete indications are given in separate 16-byte fields
within the PLIOAS module. The following table describes the relative
positions of the default bits and delete bits, and gives the standard
defaults with appropriate default bit settings. The same byte offset
and mask apply to the default and delete tables for the same option.

r | R L) L) T 1
Bit| Address | Option | standard Default | Default |
| Byte|Mask| | |Bit Setting]
f-==—t-——t + + 1
1| +#0 | 80 |ATTRIBUTES |NOATTRIBUTES | 0 |
2 | | 40 |AGGREGATES [NOAGGREGATES {] i
3 | 20 |DYNBUF | NODYNBUF | 0 |

| | | | CHARSET | |
4 | 10 | EBCDIC|BCD|EBCDIC | 1 |
S 08 | 60|us 160 l 1 i
6 04 |CATALOG* | - | 0 |

i 71 | 02 |LIST | NOLIST | 0 |
8 | 01 |COMPILE { NOCOMPILE(S) | 0 |
9 | #41 | 80 | NC(W) | | 0 |
10 40 | NC(E) | | 0 |
11 20 | Nc(s) | | 1 |
12 10 |DECK | NODECK | 0 |
13 08 | l |

14 04	DUMP	NODUMP	0	
15	02			
16	01	ESD	NOESD.	0
[FLAG	FLAG(I)	
17 +2	80	(D)		1 (
18 40 | (W) | | 0 |
19 20 | (E) | | 0 |
20 | 10] (8 | | 0 |
21 | 08 |LIMSCONV | NOLIMSCONV 1 0 |
22| o4 | | | |
23 02 | | | |
24 | 01 |INSOURCE | INSOURCE | 1 |
25| +3 | 80 |LINECOUNT# |LINECOUNT(55) i 0 |
26 | 40 | | |
27 20 |MACRO | NOMACRO | 0 |
28 10 |MARGINI | NOMARGINI | 0 |
29| 08 |MARGINS# |MARGINS(2,72) | 0 |
30 04 |MDECK | NOMDECK | 0 |
31 02 |NAME# | - | 0 |
32 01 |NEST | NONEST | (] |
33] +4 80 | | | |

Licensed Material - Property of IBM

Section 2: Method of Operation 37

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

o oo OO Ol O ©OOOmW OO cooow (= o (=]
”~
0
H =3 ~ ~- ~ 2]
MI (] > [9] a
3} 0 g < = < ~ M 1)
0 - 2 m P I T - 3] 14 w
B FM QO -0 @ & Qom = =) (3
(™Y Ll mE O M N1 () [o] zZ
5§ 88 &3 HO © & 88 8 8 9
Z 22 (o wnwu = z Z Z 2 z 4
~
la el el T
=m0 -~ o~ -1
2] it = HW0 []
TZ EEM@ M H o v a 7
2]
EMWHMMCA * O = < WU ZZ 2 [m b
Nk HHHHK gl B O HOOO XM Mo Z .n.w]
AN MEEHBEEHEO ND O ZZZZ OM}X - RERERE| 1<)
Y By A A = O (o] > - X HOO0O (o] Z
s OO0 ou waw o w [T HZZ2Z (5] b
CO0NINEHOOOOXMINHOOQQOIINHOOOCORITINHOQLQOOXRINHOOOOONTITNHOOOO WS N
FTNHOOOCOXINHOOOOXITNHOOOCOXNINHOOOOXINHOOOCOOFNHOOOOCO®INHOOOO
lllllllllllllllllllllllllllllllll e e
n v} ~ -] o -
+ + + + + +
T PO R RN OHANMINO N NOHNM TN OR P NOANMINONONOHNMNINORDNOANMNMTIN O DN o N M
OO OMNIIITTITIITTIIIONOODOLOLVDDNVNOOVOOYOOOOVOOOVONENENENNNANNNODODDRODXPRODONANNRN

38 Licensed Material - Property of IBM

Order No. LVY33-601n-1, Page 2dded hv MNT. TN32-6175 October 1976

I | TSTAMP | |
I | | I
| g | |
L. 4 L

L

NOTE: For FLAG, COMPILE, and SYNTAX options, only the
first of the corresponding DELETE bits is used to
indicate that the option is non-deleteable.

* Applies to the delete table only.

™ o s e S g e, S
et e e S eoe i - —— —

Each time Phase AE is executed, the PROCOPS routine issues a LOAD macro
instruction to have the PLIOAS nodule lcaded into an area of the rhase
working storage. Fcr each corpiler option specified in PLIOAS, an
appropriate bit is set in the XNSYGBT field in XCOMM. sSimilarly, for
each compiler option that is disakled, a kit is set in the XNDELEBET field
in XCOMM to indicate that specification of that option in the #*PROCESS

Licensed Material - Property of IBM Section 2: Method of Operation 38.1

statement is invalid and that a diagnostic statement should be
generated. For those compiler options for which a specific value can be
specified (e.g., the SIZE and MARGINS options), the values specified in
PLIOAS are copied into appropriate fields in XCOMM.

If XBATCH indicates that the first source program is to be processed, an
XREAD macro instruction is issued to read the first record from the
input stream into an input buffer. A test is made to check that this is
a *PROCESS statement. If XBATCH indicates that the second or a
subsequent member of a batched compilation is to be processed, a
*PROCESS statement will already be held in the input buffer; a *PROCESS
statement is treated as the end of file marker by the XREAD macro
routine in Phases BA, CA, or EA, and is retained in an input buffer
while the previous batch member is being processed.

Three subroutines, BLKSKP, CBSKP, and PNCSCN, are called to handle
internal delimiters, such as blanks, commas, brackets, quotes, and
equals signs, when scanning the record for an option keyword. When an
alphameric character string is detected, its length to the naxt
delimiter is determined. The KEYSCN routine then searches the options
keyword table at KEYTBS for keyword entries of the same length as the
detected character string.

Within the KEYTBS tables, valid keywords are grouped according to their
length. Each entry in the tables consists of:

1. A DC instruction defining an option keyword.

2. A TM instruction which is used to determine whether the option has
been deleted from usage.

3. An instruction which sets a bit in a field in XCOMM to indicate
that the option is specified or, if the option has a value list,
passes control to the appropriate processing routine.

When a valid option keyword corresponding to the detected character
string is found, the instructions at items 2 and 3 above are executed.
If the character string detected is not a valid option keyword, or if
there is an error in its option value list, the STRGAJ subroutine is
called to generate an error message and locate the next keyword.

Records are read in and processed until a semicolon indicates the end of
the *PROCESS statement. The next record is then read in and tested to
see if it is a further %*PROCESS statement. If it is, the options are
processed on an additive basis. If an option is found that has been
specified previously, the later specification is used. If the later
specification is invalid, the default specification is used rather than
reverting to the previous specification. When a record that is not part
of a %PROCESS statement is found, it is assumed to be the first record
of the source program, and is copied into the XREC1 field of XCoMM for
use when the SOURCE option is implemented. On completion of processing
by the PROCOPS routine, information about all option settings applicable
to the compilation are available in XCOMM to any compiler phase. The
enablement of specified options can be tested by use of the XCOPT or
XTOPT macro, and individual fields can be accessed to test for specified
values.

Calculation of Page Area.

The routine AES5000 calculates and identifies the space available for
pages. The first operation performed by this routine is a comparison of
the partition size allocated for use by the compiler (XAEND minus XACTL)
with the partition size specified in the SIZE option (stored in XSIZE).
If the specified size is the greater, an error message is generated and
the maximum partition size is allocated. If the specified size is less

Licensed Material - Property of IBM Section 2: Method of Operation

39

order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973

than or equal to the maximum partition size, the size of the page area
is calculated using XSIZE.

The amount of storage required for the resident control phase, the
compiler communication area, and the phase area, (which is the total
non-page area of the compiler partition), is stored as a comnstant value
in ZOVHD is Phase AE. The size and address of the page area is found by
subtracting 2OVHD from the compiler partition size.

Compiler design requires a minimum page area of 9544 bytes, i.e., space
for eight pages of 1080 bytes each, plus space for headers and tables to
look after the pages. If the page area is less than 9544 bytes, an
error message is generated and compilation is terminated. To reduce
spill file input/output operations, three different page sizes are used.
These are: 1680 bytes if the page area is greater than 13600 bytes,
3480 bytes if the page area is greater than 28000 bytes, 4040 bytes if
the page area is greater than 32800 bytes, and the spill data sets are
on either a 3330 or 3340 direct access storage device.

The page size determined is stored in XPAGS in XCOMM and the number of
page spaces is stored in XPNO.

When the page size is known, the record length for the spill data set is
calculated. The record length is the usable page space (1080, 1680,
3480, or 4040 bytes) plus 11 bytes for some of the page header
information and the page delimiter. The XSPILL DTF is completed and the
spill data sets opened.

The first usable track address on the spill file data set is stored in
XNWTA, and used by Phase AR when formatting the data set. The UNUSED
page—-status chain is set up, the page-header tables are initialized, and
the dictionary tables XMSKTB, XSQTBL, and XDRTBL (in XCOMM) are
initialized.

If XBATCH indicates that batched processing is in operation, all the
information about the page area, page size, etc., will already be
available and the spill file will be open. Phase AE checks the highest
track address used in any of the previous compilations and stores it in
XSAVTA. PFor the new compilation, no new page will have to be acquired
until all the track addresses up to XSAVTA are used. XNWTA points at
the next track address on the data set to be used when a new page is
required. All pages in main storage are given the UNUSED status, and
other page-status chains are set to null.

Identification of Interrupt-handling Routine

The interrupt handling routine is at AR0600 is Phase AA. To reduce the
‘storage space required by the resident control phase, routine AE6000
identifies the interrupt handling routine and the dump save area, and
.passes their addresses as arguments when issuing a STXIT macro.

Compiler Headings

Routine AE0100 issues a GETIME macro to obtain the time of day from the
computer timer feature. For each compilation, this time is printed out
in the form HH.MM.SS at the head of any listing.

40 Licensed Material - Property of IBM

THE RESIDENT CONTROL_PHASE (PHASE_AA)

Phase AA consists of a number of service routines. These routines are
used by the processing phases of the compiler to provide standard
services, and to provide interfaces with the DOS supervisor program.
The phase is loaded by the DOS supervisor, and remains in main storage
until compilation is completed. 1Its functions include:

e Operations required at the start of each compilation.

e Ccontrol of the loading of all other compiler phases.

e satisfaction of all requests from processing phases for new or
existing data pages.

e Handling of program check interrupts.
e Operations required at the end of each compilation.
These functions are performed by the following routines:

AA0000 Compilation Start Routine

AA0300 Phase Loading Routine

AALOOO Page Handling Routine

AA6000 Spill Supervising Routine

AR0600 Program-interrupt Handling Routine
ARO0500 Compilation End Routine

PHASE OPERATION

Note: Some of the routines described in the following paragraphs
perform functions connected with page~handling operations. A general
description of the page-handling scheme used by the compiler is given
earlier in this section. The control phase routines involved in page
handling® operations are shown in figure 2.6.

Compilation Start Routine_ (AA0000)

The DOS supervisor has Phase AA loaded from the core-image library and
passes control to AA0000. A CSECT named XCOMM is loaded with Phase AA
to provide an area of main storage that can be used for communication
between compiler phases. Phase AA identifies XCOMM by setting Register
13 to point at it. The address of XCOMM is retained in Register 13
throughout compilation.

When XCOMM is loaded, some of its fields contain their requisite initial
values. Phase AA stores its own start address in the field named XACTL.
It also stores the time of the start of compilation in the XTIMU field.
If the compiler is operating in batched processing mode, XTIMU is set
for each source module.

Some of the fields in XCOMM require initialization only on invocation of
the compiler. Other fields need to be re-initialized before compilation
of each batch member. Phase AA sets the XBATCH field in XCOMM to zero
to indicate that initialization is required for compilation of the first
source module. (For batched compilation, XBATCH is subsequently set by
the phase that reads the input records, Phase BA, CA, or EA.) Phase AE
is then loaded and control passed to it.

Licensed Material - Property of IBM Section 2: Mdthod of Operation

41

AAQ0204
Select spill
algorithm
for the
phase

AAQ0300
PHASE LOADING
ROUTINE

UDCNOQOO
Check max
number of
dictionary

|

TACNOOQ
Search for

pages

AA4000

PAGE HANDLING

existing text
page

ROUTINE
PECNOO \ DRCNOO
Add a page Search for
to a page existing dict
chain page
FPCNOO
Search chains / AA4100
for spill Dictionary
candidate AAB6000 Page Search
- Supervisor

SPILL SUPERVISING
ROUTINE

AA7200
Save TAs of
DISCARDED

pages

AA7000
Get a new
track
address

AA7500
Read in an
existing
page

AA7700
Write out
spill
candidate

DOS DATA

MANAGEMENT PROGRAMS

(SAM)

Figure 2.6.

42 Licensed Material - Property of IBM

COMPILER
PROCESSING

PHASES

control-phase routines and subroutines used in page-handling operations

Phase Loading Routine (AA0300)

The prime function of this routine is to issue instructions that cause a
specified phase (or phase segment) to be loaded. The routine also
performs some page-handling organization to ensure that data processed
by a phase is made available in the most efficent manner.

When a phase has completed its processing, it uses an XPST macro
instruction to call the phase loading routine, and to specify the next
processing phase to be loaded. Before the specified phase is loaded,
the phase 1list at XPHSL (in XCOMM) is examined to see if an interphase
dump has been specified in the compiler options. If so, Phase AI is
executed kefore any preparation for the next processing phase is
performed.

In addition to specifying the name of the next phase, the XTEMP table
generated by the XPST macro instruction also contains code bytes that
indicate the paging requirements of the next phase. The code bytes are
used to select the optimum page-spilling algorithm for the phase. The
information in the code bytes is also used by the main routine, which
has pages added to appropriate page chains and re-initializes fields in
XCOMM that contain page-handling information. In order to perform these
functions, the page handling routine (AA4000) and the spill supervising
routine (AA6000) are called. When the regquired page reorganization is
complete, the new phase is loaded.

In addition to ensuring that data is available for any phase when it is
loaded, this routine may also be called to perform similar functions
during the execution of a phase, if the page-handling requirements alter
because of a change in the nature of processing by that phase (e.g., if
dictionary pages are required during part of its processing, but not
required later). 1In such cases, the routine is called by use of an
XFREE macro instruction, and control is returned to the phase when the
page reorganization is complete.

Selection of Page Spilling Algqorithm: For each processing phase there
is an optimum method of selecting a spill candidate when a page space is
required. The method of selection may be affected by:

e The scanning methods used -- sequential or non-sequential.

e The ratio of the number of page spaces to the number of pages in
use.

e The type of processing performed, e.g., a phase that scans text only
will require spill candidates to be selected on a different basis
from a phase that accesses both text and dictionary.

Selection of the optimum page-spilling algorithm is performed in the
phase-building routine, AA0300.

At the end of each processing phase, an XPST macro generates a 6-byte
table, XTEMP, which contains the name and details of the next phase to
be loaded. (The details for each phase are predetermined.) The format
of the table is as follows:

——-2-bytes--y-1-bytey-1-bytes---2-bytes-—

T

| PHASE NAME |PAGE | PHASE |PHASE INDEX |
[| CONTROL| TYPE | |
I |BYTE | BYTE | |
| p—— 4 4 P -4

Licensed Material - Property of IBM Section 2: Method of Operation

43

Page Control byte:

Bit_Numbex Indication

0 not set Spill text before dictionary.
set Spill dictionary before text.
Bit 0 is used when looking for a spill
candidate to replace with a text page.

1 not set Phase simply adds to text stream.
set Phase creates new text stream.
Bit 1 is used to determine relative
sizes of text stream and page space.
2 -4 Factor 1.
5 -7 Factor 2.

Phase Type byte:

Bit Number Indication
0 not set Separate logical phase.
set Another branch in same overlay structure.
i1i-4 Spare.
5 not set Dictionary not required.
set Dictionary required.
6 -7 Number of dictionary pages to be maintained in

unmovable dictionary chain.
The page-spill algorithm routine determines its algorithm from:
1. The control byte,
2. The size of the text stream, XTXC, and
3. The number of pages in main storage, XPNO.

The first bit in the control byte determines whether text-spill
candidates are to be taken from the text (bit 0 = 0) or from the
dictionary (bit 0 = 1); the former tends to increase the number of
dictionary pages as opposed to text, the latter reduces it.

The second bit determines how the size of the text stream after this
phase is to be determined. Either the phase creates a new text stream
(bit 1 = 1) in which case the size of the stream is just the number of
new text page requests (XTXC = XNWTP) or the phase just adds to the
existing stream (bit 1 = 0) in which case the size of the text stream is
incremented by the new text pages (XTXC = XTXC + XNWIP).

The last six bits contain two factors, F1 and F2, which enable the
routine to calculate three different ranges for the ratio XTXC/XPNO. 1In
general when this ratio is very large or very small, the spill candidate
is taken as the oldest movable page, at intermediate values the newest
page is chosen. However, the ranges are variable: some phases always
spill the oldest (F1 = 0) whilst others always spill the newest

(F1 = 7).

Having determined the algorithm, XSSW bit 0 is set accordingly: bit
0 = 1 if the oldest is to be spilled, but 0 = 0 if the newest is to be
spilled.

The processing phase is then loaded and the page handling routines in

Phase AA use the masks and switch as required during page handling
operations.

44 Licensed Material - Property of IBM

Page-handling Routine (AA4000)

This routine is called to handle all requests for pages required during
processing. The routine may be called by macro routines in the
processing phases, or may be called by the phase loading routine. 1In
dealing with page requests, this routine calls the spill supervising
routine to control input/output operations required if a request is made
for a page not in main storage, or for a new page.

The routine consists of a main routine that supervises the search for a
requested page, and a number of subroutines that perform functions
connected with the search. Some of these subroutines may be called
directly from the processing phase routines.

The main routine is called to handle all requests for text and
dictionary pages, except when an existing dictionary page is identified
by a dictionary reference (in such cases the routine is entered at
AA4100). If a request is made for an existing page, the routine decides
which chains to search, and builds a list indicating the order in which
the chains are to be searched. Control is then passed to either TACNOO
or DRCNOO to search these chains. TACNOO searches for a text page that
is identified by its track address. DRCNOO is used to search for a
dictionary rpage that is identified by the dictionary reference of the
first entry in the page. If the required page is found, the subroutine
PECNOO is called, and, according to the setting of the first three bits
in XSSW, may choose which end of the chain to add a movable page. The
address of the page is returned to the processing phase.

For each phase there is a maximum number of dictionary pages that can be
maintained with the unmovable status. The number is specified when the
XPST macro statement is used to specify the phase. Before any page is
added to the dictionary unmovable chain, the UDCNOO subroutine is called
to ensure that the limit is not exceeded. If necessary, the oldest
page, (i.e., the page at the start of the chain), is removed from the
unmovable chain, and added to the movable chain by the PECNOO
subroutine, which then adds the found page to the unmovable chain.
Dictionary pages are always added to the newest end of the movable page
chain.

Spill Supervising Routine (AA6000)

This routine is called to satisfy a request for a new page, or for an
existing page that is not in main storage. The routine has no direct
interface with the compiler phases. It can be called from a number of
places in the page handling routine whenever input/output operations
between main storage and the spill data set may be required. The
routine contains a number of subroutines, some of which interface with
the DOS BSAM data management programs by use of system macro
instructions.

The subroutine AA7200 is used to maintain a table, in the communication
area, of the track addresses of DISCARDED pages. Re-use of these track
addresses reduces the rate of expansion of the spill data set. The list
is updated each time a track address is re-used.

The subroutine AA7000 is called whenever a new page is requested. If
there is a track address available in the list maintained by AA7200,
that track address is allocated to the new page. If there is no
discarded track address available, the routine writes a new formatting
record after the last record on the spill data set. The track address
of the new record is obtained, and becomes the name of the new page.
The system macro instruction instructions used in this subroutine are
WRITE, CHECK, and NOTE.

Licensed Material - Property of IBM Section 2: Method of Operation

45

Subroutine AA7500 is called to read a page from the spill data set into
a page space in main storage. Subroutine AA7700 is called to write a
page from main storage to the spill data set. When a page is written,
the target track address is the name of the page. When a page is read,
the source track address is the name of the page requested. These
subroutines check for completion of input/output operations if
overlapped input/output is specified in the page request. The system
macro instructions used in the subroutines are CHECK and POINTR.

When the main routine is called to satisfy a page request, the
subroutine FPCNOQ is called. This subroutine searches page chains in an
order specified by AA4000. The first page found in this search is the
spill candidate. The action then taken depends upon the nature of the
page request, and the status of the spill candidate.

If the request is for a new page, the action taken is as follows. If
the status of the spill candidate is UNUSED or DISCARDED, it can be used
immediately for the new page. If the spill candidate is USABLE, a new
track address is required, and subroutine AA7000 is called to provide
the new track address. If the spill candidate is SPILLABLE, subroutine
AA7700 is called to write the spill candidate to the spill data set, and
AR7000 is then called to provide a track address for the new page.

If the routine receives a request to read an existing page into main
storage, the action is as follows. If the status of the spill candidate
is DISCARDED, subroutine AA7200 saves its track address for future
use,and subroutine AA7500 reads the requested page into the available
page space. If the spill candidate is SPILLABLE, subroutine AA7700 is
called to write it to the spill data set. Subroutine AA7500 is then
called to read the requested page into the available page space.

Interrupt-handling Routine_ (AA0600)

If a program check interrupt occurs during compilation, the STXIT macro
issued by Phase AE at initialization time causes the operating system to
pass control to routine AA0600.

This routine contains instructions which cause a branch-and-link to the
address held in the XDMADR field of XCOMM. If an “"abort"™ dump has been
specified, the address in XDMADR is the entxry point of the dump phase
(Phase AI). Phase AI is executed to print the required dump, and
control then returns to the interrupt-handling routine. If the DUMP
option has not been specified, Phase AI will not have been loaded, and
XDMADR contains an address which causes control to be returned
immediately to the interrupt-handling routine. An XDIAG macro
instruction is then executed to test which of the message-editing phases
is to be loaded. Phase CE prints the compiler-error message and any
diagnostic messages generated by Phase CA; Phase UA prints the
compiler-error message generated by any other phase, plus any diagnostic
messages generated prior to the interrupt. When control returns to the
interrupt-handling routine, it passes control to the compilation end
routine.

Compilation End Routine (AAQ0500)

This routine is entered on completion or termination of the compilation
of a source module.

The linkage to the system interrupt handling routine is cancelled. If
the XBATCH switch indicates that there are more source modules to
compile, control is passed to the start routine. If all compilations
are complete, all data sets are closed and control is returned to the
operating system.

46 Licensed Material - Property of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

THE PREPROCESSOR STAGE

The preprocessor stage consists of three phases: Phases BA, CA, and CE.
The functions of Phase BA and CA are to modify the source program sc
that it is passed tc the syntax analysis stage of the compiler in a
format acceptable as compiler input. When necessary, the content of the
PL/I source program is mcdified by translation into é60-character set
EBCDIC format and by executicn of any ccmpile-time statements
(identified by a preceding % character) that it contains. Phase CE
edits and prints any diagnostic or corrpiler-errcr messages generated
during preprocessing. 1The flcwraths of input records are shown in
fiqure 2.3.

Phases in the preprocessor stage are loaded and executed only if the
relevant compiler options are specified. These options are:

MACRO Source program may include compile-time statements.
CHARSET(48) Source program written in #48-character set and coded
) in EBCDIC.

CHARSET (48, BCD) Source program written in 48-character set and coded
in BCD.

CHARSET (60, BCD) Source program written in 60-character set and coded
in BCD.

INCLUDE Source program may contain %INCLUDE statements.

If the_MACRO option is specified, Phase CA is locaded and executed.
Phase CA perforns all preprocessing of the source program, including
translation into 60-character set EBCLCIC if CHARSET (48),

CHARSET (48,BCD), or CHARSET(60,BECLC) is also specified.

If the NCMACRC option is srecified (by default) and one of the options
CBARSET (48) , CHARSET(48,BCD), CBARSET(60,BCD) and INCLULE is specified,
Phase BA is loaded and executed. This phase translates the source
program into 60-character set EECLCIC and performs any %INCLUDE
statements in the program.

If any diagnostic or compiler-errcr messages are generated during the
execution of Phase BA or CA, Phase CE is called to edit and print ther.

If the options NOMACRO (by default), NOINCLUDE and CHARSET(60) are
specified, no preprocessing is required, and the phases of the
preprocessor stage are not lcaded.

The diagnostic messages produced by the diagnostic message editing
phase, Phase CE, are graded in order cf severity. Implementation of the
FLAG option perrmits specificaticn of messages of a chosen minirun level
of severity to be listed. The choice is indicated by means of the FLAG
option value list as follows:

FLAG(I) All diagnostic messages listed.

FIAG (W) All diagnostic messages except 'informatory' messages listed.

FLAG(E) All diagnostic messages except ‘warning' and ‘'informatory"'
messages listed.

FLAG (S) Only "severe' errors and ‘unrecoverable' errors listed.

Licensed Material - Property of IBM Section 2: Method of Operation

47

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

Note: The specification FLAG is equivalent to FLAG(I).

Full details of the diagnostic message severity levels and of all
preprocessor options are given in the Programmer's Guide for this
compiler.

48 Licensed Material - Propefty of IBM

Order No. LY33-6010-1, Page Revised ty TNL LN33-6175, October 1976

48-CHARACTER/ECD/INCLUDE PREPROCESSOR (FHASE BA)

The function of this phase is to convert source staterents written in
the PL/I 48-character set to the FL/1 60-character set, and tc process
%INCLUDE statements if the INCLUDE compiler option applies. 1In
addition, if specification of the CHARSET (BCD) option indicates that the
source prograr is represented by BCD, the program will be translated to
the EBCDIC representation. This phase is loaded only if the NOMACRO
ortion applies.

PHASE INPUT

The input to the phase consists of records, with a maximum length of
80-bytes, in card-image form. The records can contain PL/I statements
(and comments) written in either the PL/I 48-character set or the PL/I
60-character set and coded in BCD or EBCDIC.

PHASE OUTPUT

The output of the phase is to Phase EA in the syntax analysis stage, and
consists of one or more text pages containing pairs of records, one or
two 8u4-byte records being written for each record (the extra 4 bytes
contain the record length). One record of the pair is used for the
source listing on specification of the SOURCE option, and the other is
the preprocessed record, used for compilation.

Conversion and/or translation are carried out by the phase, depending on
the format of the input records, providing the following output record
formats:

Input record Output records

SOURCE listing Compilation

48-char. EBCDIC 48-char. EBCDIC 60-char. EBCDIC
48-char. BCD 48-char. EBCDIC 60-char. EBCDIC
60-char. BCD 60-char. EBCDIC 60-char. EBCDIC

If the INCLUDE and CS(EBCDIC,60) options apply, then except during
processing of %INCLUDE statements, only one reccrd is put out for each
input record. This applies tc bcth SYSIPT input and included text.

PHASE OPERATICN

The 80-byte source records in card-image form are read into a buffer by
the XREAD MACRO. All ‘necessary processing is carried out whilst a
record is in this buffer, and the reccrd is output frorm the buffer
direct tc the output text strean.

Irmediately after a record has keen read into the buffer, any
BCD-to-EBCDIC conversion required is carried out by reans of the
translate takle TREECCIC. A cory of the record is then output to the
current text page, to be used for the source listing on specification of
the SCURCE option.

Each byte of active source (that is, within the source margins) in the
buffer is scanned by a translate-and-test instruction for one of the
characters which are valid as the first character of a 48-character
symbol. If one is found it is translated to a value between 1 and 11.

Licensed Material - Property of IRM Section 2: Method of Operation

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

A TRT on the next byte for a character which is valid as the second
character of a 48-character symbol gives a value between 1 and 12.
These two half-bytes are concatenated into one byte which is translated
and tested for a valid combination of characters forming a #48-character
symbol.

There are five different types of 48-character symbols to be replaced by
60-character symbols. The separate routines required for replacing the
different types are selected by the translate-and-test instruction.

1. 3-character symbols which must be preceded by a character which is
not one of A-%, 0-9, §, _, or §. For example, 'AND'.
Replacement routines: BA2250, BA2260.

2. 2-character symbols, with restrictions as for the above case. For
example, °‘GE'.
Replacement routine: BA2240.

3. 26-character symkols which must ke followed ky a character which is
not one of 0-9. The only exanple is *,.".
Replacement routine: Ba2230.

4. 2-character syrbols which must be followed by a character which is
not an asterisk. The only examgle is the combinaticn of two
slashes (/7).

Replacement routine: BA2235.

5. 2-character syrbols without any such restrictions. For exarnple,
[] L]

Replacement routine: BA2220.

Wwhen a 48-character symbol has been found, it is replaced by the
60-character equivalent from the table REFO0. If the 48-character symkol
spans two records the replace is in two parts; the second part of the
symbol is replaced in the XREAD buffer, the first part is replaced in
the output text stream since the contents of the buffer have already
been output. (As the last eight pages remian in main store, the
required text page will still be available even if it is no longer the
current output page.)

Comments within the records are found by treating /* as a 48-character
symbol then skipping by TRT to #*/.

Quotes are found by including the quote sign (') in the translate tables
and skipping by TRT to the next quote sign that is not immediately
followed by a second one.

If the INCLUDE compiler option is specified, and the MACRO compiler
option does not override it, Phase BA performs %INCLUDE processing.

If a % character is detected outside a comment or quoted string, and
then the keyword INCLUDE (optionally preceded by a comment) is found,
the statement is interpreted immediately. The DOS macros for searching
and reading the source statement library (private and/or system) are
used to incorporate the specified books into the text passed to Phase
EA. Possible nesting of %INCLUDE statements is catered for by the use
of NOTE and POINT logic.

Phase BA creates twc ocutput records for each input source record if
either of the options CHBARSET(48) or CHARSET(BCL) apply-.

In the case where only the INCLUDE option applies, one output record is
created for each input source reccrd except those input records which
contain a XINCLUDE statement. In that case, twc records are generated,
the first to be printed by Phase EA, and the second to be processed.
This applies equally to included records which contain %INCLUDE
Statements.

50 Licensed Material - Property of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

Included books appear as new records; where one record specifies the
inclusion of several books, only that part of the including record
relating to a particular book will be passed to Phase EA at that point
in the text stream; remaining parts of that record will be passed
immediately before remaining books are read in. Asterisks will show
where text has been erased. As far as the unseen 60-character-set
record is concerned, all BINCLUDE specifications and asterisks are
blanked out.

For example:
Including record:
A=B; %INCLUDE X, Y; J=Z;
Passed to Phase EA:

CHARUS A=B; SINCLUDE X, #**#kkktktkbhkhtaskk

included text from X

khkkkkkkkkkkkrkkkkkkY, kkkkkkkkkkkkkkk X

included text from Y

Ehkkkkkkkkkkkkkkkkkk J=Z;

CHAR60 : as for CHAR48 but asterisks and %INCLUDE
specifications are blanked out.

Licensed Material - Proverty of IBM Section 2: Method of Operation 51

COMPILE-TIME STATEMENT PREPROCESSOR_(PHASE CA)

The main function of this phase is to read the source program into the
compiler work area (text pages) and to execute any compile-time
statements (identified by a preceding % character) so that the source
program is modified as specified by the programmer and passed to the
syntax analysis stage in a format that can be processed by phases in
that stage. The phase is loaded and executed only if the MACRO compiler
option is specified.

If necessary, this phase also carries out translation from BCD to EBCDIC
representation and/or PL/I 48-character set to PL/I 60-character set.

In addition to providing input to later phases of the compiler, the
phase can also generate listings and a punched-card deck if required by
compiler options.

PHASE INPUT

Input to Phase CA is from source program records, cards, disk, or tape,
using the compiler macro XREAD, or from a partitioned data set as a
result of a RINCLUDE statement. Input may be in 48-character or
60-character set, BCD or EBCDIC.

PHASE OUTPUT

Four forms of output can be produced by the preprocessor phase:

1. The modified PL/I source program with all compile-time statements
preprocessed, ready for processing by Phase EA, in the form of
84-byte records held in text pages. If the CHARSET(48) option is
specified, each 84-byte record is preceded by an 84-byte record in
48-character form. These additional records enable Phase EA to
satisfy the SOURCE option if specified.

2. If the INSOURCE opfion is specified, the phase input from SYSIPT,
followed by boocks specified in %XINCLUDE statements (in order of
inclusion) are copied to SYSLST for printing.

3. Punched card deck on SYSPCH, being copies of the 84-byte records
passed to Phase EA in 48-character set or 60-character set, and
EBCDIC or BCD as specified for input. Card columns 73 through 80
contain °‘MCDRKnnnn', where nnnn is a serial number. This form of
output is optional and is obtained by specification of the MDECK
option.

4. If any diagnostic messages have been produced, Phase CE is called
to print them. The preprocessor general and variables dictionaries
are passed so that identifier names may also be printed by Phase
CE. If the dictionary pages are not so used they are freed for
further use.

52 Licensed Material - Property of IBM

PHASE OPERATION

Phase Structure

Phase CA is the only phase in the compiler to employ a form of overlay.
The phase consists of a total of eight assembled modules (CA, CAl, CB,
CBl1, CB2, cc, ccl, and CC2) organized into an initialization subphase
(CAl) and two partial-overlay subphases (CB and CC), the storage area
for the subphases being assembled with the root module CA.

-

€ 1
|ca (Root Module) |
|8 Jorcrcea-
¥ 1
|Root Module working storage { A
L | [
§ 1
| XMCOMM-Communication Area for the Phase | |
t 4
b -—-- i
| Storage Area | XSTG
| for { |
| Subphase CAl or Subphase CB or Subphase CC | |
|8 4 l
1 3 1
|Buffers, stacks, tables, etc. | v
! PG RO
A ~
r—————---- 1 R 1 [mom—————- 1 |
| ! | I | I
| cAl | | CB | | CcC | |
| I | | | | |
Y | b o 1 b e ¥ |
|
[mo———---- 1 [-———————- 1 |
| | | | OVERLAY
| CB1 | | ccl | SEGMENTS
| | | I
| SN . 4 | SR y]
|
fo———————— 1 [me——————— 1 |
| I | I
i CB2 | | cc2 | |
| | | | v
[IO i lemme e j P
Subphase CAl Subphase CB Subphase CC

Figure 2.8. Structure of Phase CA

The structure of the phase is jillustrated in more detail in section 3,
"Program Organization."

Sequence of Processing

Module CA is the resident phase of the compile-time statement
preprocessor, remaining in main storage during compile-time
preprocessing and, via the control phase (Phase AR), loading the
preprocessoxr subphases. Translation of input text to EBCDIC, if
necessary, is also carried out by routine INPUT, contained in this
module.

Phase CA contains the initialization module CAl, which initializes
tables, pointers, and buffers for use by subphases CB and CC, the print
file (if the INSOURCE option is specified), and the punch file (if MDECK
is specified).

Licensed Material - Property of IBM Section 2: Method of Operation

53

Subphase CB, which is overlayed on the initialization module CAl, reads
and analyzes the input to the compiler. Source text that does not
contain compile-time statements is moved directly into the output text
stream. Consecutive blanks are replaced by a special marker, and line
numbers are encoded and placed in the text. Compile-time statements are
decoded and placed into the text pages. An entry is made in the
preprocessor general dictionary for each compile-time variable,
constant, procedure, label, or INCLUDE identifier.

Subphase CC is overlayed on subphase CB, and scans the text pages
produced as a result of the operation of that subphase, executing
compile-time statements and writing out PL/I source program text after
effecting any necessary modifications. The output consists of text
pages containing EBCDIC code, organized in 8U4-byte blocks ready for
processing by the read-in routines of the syntax analysis stage. If the
compiler option CHARSET (48) has been specified, the output consists of
pairs of 84-byte blocks, the first in each pair being in the original
48-character set, for printing, the second in the 60-character set for
processing. If the MDECK option is specified, the output is also passed
to SYSPCH.

If a ®INCLUDE statement is encountered by subphase CC, it searches the
source statement library for the specified bookname and returns control
to subphase CB for processing of statements within the book.

When the end of the original input source is reached, subphase CC passes

control to Phase CE if there are any diagnostic messages to be printed;
otherwise conptrol is passed to Phase EA.

Input/Output Subroutines

All routines in Phase CA and subphases CB and CC that either scan input
or write out characters use routines GNC and OUTPTC to read in or write
out one character. The calling routine sets a flag as a means of
indication of the form of the I/0. This may be:

1. From SYSIPT or SYSSLB (input only).
2. Text page (input and output).

3. Identifier value block (IVB) in the variables dictionary (input and
output).

4. Output buffer (XOUTBUF) for insertion into text pages, which are
passed to the read-in routines of the syntax analysis stage (output
only).

Routines GNC and OUTPTC act on buffers, which they refill by testing the
I/0 flag calling the the appropriate routine.

Building and Usage of Preprocessor Dictionaries

The various routines of Phase CA and subphases CB and CC use the
preprocessor general and preprocessor variables dictionaries to
communicate information regarding the compile-time preprocessor
variables. General dictionary entries relate to compile-time variables
and constants, whilst literal values of character variables and
constants are stored in the variables dictionary. Thus an entry in the
general dictionary for a character-type identifier contains a pointer to
an entry in the variables dictionary. Detailed descriptions of
dictionary formats are given in section 5, "Data Area Layouts," figures
5.126 and 5.127.

S4 Licensed Material - Property of IBM

Oorder No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

During the first scan, compile-time statements are analysed and, if an
identifier is detected, an entry is made in the general dictionary. If
an entry already exists for a particular identifier, the existing entry
is used to check for any incompatibility between the uses of that
identifier. A hashing technique is employed to reduce the dictionary
scan time required to check for and locate an existing identifier entry.

Each entry made in the general dictionary is eighteen bytes long, plus
the name of the identifier if necessary.

The preprocessor uses the variables dictionary to hold character string
values for variables and intermediate text during the replacerment
activity of the seccnd scan. Entries, which may ke chained together,
are of forty kytes.

Reading and Analysis of Scurce Text

After initialization in module CAl, Phase CA calls subphase CB to scan
the input using the routine PH1SCN. This routine employs a subroutine,
FINDPC, which calls routine GNC to get characters from the input medium.
GNC, in turn, uses a subroutine, INPUT, to read a record from SYSIPT or
from a book specified in a ®INCLUDE statement, to translate to EBCDIC if
necessary and, if the INSOURCE option has been specified, to print each
record on SYSLST.

On receiving a character from GNC, subroutine FINDPC examines it for
end-of-file or the % character. If either is found, it is passed to
PH1SCN. If they are not found, FINDPC transmits the character, by means
of the routine OUTPIC, to text page. When successive blanks are found,
however, these are replaced by a special marker which is then
transmitted. At the start of each new line, FINDPC puts out a line
marker followed by an updated line number.

If PH1SCN receives back an end-of-file indication, it returns control to.
Phase CA, which then calls subphase CC. If PHI1SCN is returned the %

character, it transmits a character (CPMA) to indicate compile-time text
action and starts tc scan the compile-time statement.

Processing of Compile-time Statements

The initial text scan examines and translates compile-time text into a
postfix Polish format in preparation for the second scan, which handles
all conversions and retains operands in a rush-down stack.

Thus the statement D = (A + B) || C; for example, would be translated
into: .

PUSH A
PUSH B
ADD
PUSH C
CONCAT
ASSIGN D
"The PUSH operator causes an operand to ke added to its stack of 8-byte

entries during the second scan. Operands are represented in the text by
‘2-byte ‘dictionary references.

Licensed Material - Property of IBM Section 2: Method of Operation

55

All instructions generated by the first scan begin*Wwith an operation
code byte. Depending on the operation, this may be fcllowed by zero cr
by more bytes which form part of that operation.

Each operand will usually have either or koth of the following
characteristics:

STACK Operators with this characteristic take their operands from the
push-down stack. After conversion to the required type -
(CHARACTER, BIT or FIXED), the result:is usually added to the
stack.

FIXED These operators are followed by a fixed number of bytes, usually
a 2-byte dictionary operand reference.

Figure 2.9, "Code bytes used in ccrpile-time statements,” provides a
conplete descriptive list of possikle operators.

56 Liceneed Material - Property of IBM.

Order No. L¥33-6010-1, Page Reviséd by TNL LN33-6175,

October 1976

Licensed Material - Property of IBM

Section 2:

r R T k) H 1
|Mnemonic|Code| Type | Function | Remarks |
L 4 L 4 L
Ll I R L} L) -'-"'"
| ADD | 0 | STACK { A+B | Fixed result. |
- S 1 , : i
| MA I 1 | Entry interpreter scan. | Always precedes text for {
1 | | | | compile-time statements. |
b —4--—-t 1 1 === 1
| SUB { 2 | STACK | A -B | Fixed result. 1
1 4 L 4 L
L 8 T Ll LI T -"'-"
| MUL | 3 | STACK | A*B | Fixed result. {
L i 4 L)]
r T 1 T 13 e 1
| OPDT | 4 | FIXED | Update line count. | Followed by 3-byte packed |
| | | | | decimal line number. |
b t--——+ t t ~ 1
| DIV | 5 | STACK | A/B | Fixed result. l
k 1 + t t 1
] ONMIN | 6 | STACK | -A | Fixed result. |
L 4 L d L]
r 1 T T T H
| ASSIGN | 7 | STACK/FIXED | A = B (assignment) | Dictionary reference of A |
| | | | | follows code. A is not |
| | | | | stacked. B is unstacked. i
k t--—-4 + + 1
| NOT | 8 | STACK | =-A | Bit result. |
- --=-4 1 ==~ t
it result.
AND 9 | STACK | A &B Bit 1t |
L ' L 4 4
T LS L) L) i T —--"
| OR | 10 | STACK | A|B | Bit result. |
L <4 I <4 <4 J
0 L) T 1) L) t
| CONCAT | 11 | STACK | AlIB | Character result. |
L L L 4 - {
T T T T 1
ECU | 12 | STACK | A = B (equality) | These procduce a bit result of {
+ + + 4 length 1 which is '1' if true |
| GT | 13 | STACK | A>B | and '0" if false. |
L [' 4 I
T v L) L} A I
| LT { 14 | STACK | A<B | I
- +-—— 1 1 i
| INC | 15 | FIXED | Include A. | Dicticnary reference of A |
| | | | | follous. {
b --—-t + 1 i
| ABORT | 16 | | Terminate processing. | Follows from error detected in |
| | { | | f£irst scan. i
r -1 pca— 1 t
T ; STACK/ : ranch i is true. ictionary reference of branc
RA 17 ACK/FIXED | B h if A i Dicti £ £f b]
| | 1] N | location follows. A on stack. |
k -1 +- , + 1
| “TRAF | 18 | STACK/FIXED | Branch if A is false. | As for TRA. |
L L i L L -
r LA R} t T L
| INV | 19 | STACK/FIXED | Invoke procedure. | Arguments on stack. Dictionary |
| | i | | reference of procedure (2 |
| | | | | bytes), argument count (1 byte) |
|] | | | and flag byte follow. The |
[| | | | procedural text starts with a i
| | | | | 2-byte procedure dictionary |
] | | | | reference, and dictionary |
| | | | | references of the parameters. |
i | i | | These are scanned so that the {
[| | | | arguments may be matched. |
ottt 1 $ 1
| TRAX | 20 | FIXED | GOTO out of current | Dicticnary reference of kranch |
i | | INCLUDE. | location follows. |
] L 4 L 4 1
Figure 2.9. (Part 1 of 2). Code bytes used in compile-time statements

Method of Operation 57

Order No. LY33-6010-1, Page

Revised by TNL LN33-6175, October 1976

r T Al] k] 1
{Mnemonic|Code| Type | Function | Remarks |
k- t--——t 1 t 1
| PUSH | 21 | STACK/FIXED | Put A on stack. | Dictionary reference of 2 and {
| [1 ! 1 flag byte follow. |
=’ L] T T T - - ..__{
| PUSHI | 22 | STACK/FIXED | Put address of A | Dictionary reference of A |
| | | | on stack. | and flag byte follow. i
k t-——+ 1 e 1
| RTNS | 24 | | Return to second scan. | Follows text for compile-time |
| | | | | statements. |
k t-———1 t t ~
END	25	FIXED	Activate A with rescan.	Dictionary reference of A
		l	follows. Also produced by	
				DECLARE statement.
L 1 [l -4 <4

T L] v) T ,
| DSB | 26 | FIXED | Ceactivate A. | Dicticnary reference of A |
| | | | | follows. |
4 + + + + 1
| RTN | 29 | STACK/FIXED | Return from procedure. | Return value on stack. |
i | | | | Dictionary reference of |
| | | | | procedure follows. |
k t 1 t t : -
| CNvT | 30 | STACK/FIXED | Convert for RETURN | Return value is converted to |
! ! ! ! statement. ! procedure's type. !
r L} 1 T L} i]
| UPDCR | 31 | FIXED | Update current DO count.| 2-byte DO nest count follows. |
t { [l Iy -4 ¥ |
L 1 1) | T
| TRAC | 32 | FIXED | GOTC | Dicticnary reference of kranch |
! 1 1 ! 1 location follows. !
1 3 T LB 1 L) 1
] UNPLS | 33 | STACK | +A | Fixed result. |
k + 1 1 t i
| ENBN | 34 | FIXED | Activate A with no | Dictionary reference of A |

rescan. follows.

! -t ; ; 4
| PAGE | 35 | | Output XPAGE | i
F 1 t t 1 1
| SRIP | 36 | FIXED | Outrut ®SKI1EFE(n) | 2-byte count in packed decimal. |
L 4 <4 4 4 — —— —— 4
r] T T T |
CNTRL	37		Output %CCNIROL:	Option list follows in. text.
				This list is not syntax
				analyzed.
t -+ 1 + + 1				
NOTE	38	STACK	%NOTE(A,B)	Produces an entrxy on the
				message page.
k 1 t + t 1				
} PRNT I 39		Output %PRINT;	1	
F -———1 t t -				
NOPRNT	40		Output NOPRNT	
j i - R L L]

Figure 2.9. (Fart 2 of 2).

Scanning of Compile-time Text:

Code kytes used in

compile-time statements

After a % character has been located,
control passes from PH1SCN to the STMNT routine, which examines the
syntax of the compile-time statement.

After scanning for and checking labels, the type of the statement is
determined and control passed to the aprrcpriate routine to process that
particular statement type (e.g., the DECLAR routine processes the

%¥DECLARE statement) .

When the statement has been processed,

entry point DONE.

control returns to PH1SCN at the
A code to indicate the end of the compile-time

statement action (OPRTNS) is transmitted, and scanning of the source

text recommences.

58 Licensed Material - Proper

ty of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

Translation of Compile-time Statements: The form of output from the
various statement processing routines is generally a series of 3-byte

operator-identifier pairs, each consisting of a 1l-byte operator and a
2-byte dictionary reference for the identifier.

As a routine locates an identifier within its input, it uses the routine
IDSRCH to check whether an entry exists in the preprocessor general
dictionary for that identifier. 1If an entry is found, the existing
dictionary reference is used; otherwise, an entry is inserted in the
dictionary ky the rcutine ADICT. 1If the syntax rules for the statement
permit expressions, the sukrcutine PARSE is used to translate the
expression into a 3-byte forrmat.

A %INCLUDE statement is placed in the output text strear in the same
forrat as any other statement.

Compile-time procedures and the compile-time statements contained in
ther are placed in a second text stream, thus avoiding inter-leaving cf
PL/I source text and %PROCEDURE text.

Processing Intermediate Text: When the end of the input stream has been
detected, subphase CB hands control to the root module which calls
subphase CC to scan the output from subphase CB. Subphase CC is entered
at routine PH2SCN.

PH2SCN scans the intermediate text, one token at a time, using the
subroutine TOKSCN. (Tokens are logical units of text, and include
identifiers, constants, operators, delimiters, etc.,)

If the token is a ccnstant or an creratcr (e.g., plus, rinus, semicclcen,
etc.) it is transmitted directly.

If the token is an identifier, routine SRHDIC is called to determine
whether or not the named identifier is in the preprocessor general
dictionary. 1If it is, the current value of the identifier rerlaces the
token in the output stream, unless this current value itself contains
replaceakle compile-time variakles. 1If there is no entry in the
dictionary for the named identifier, the token (identifier name) is
transmitted directly.

If the token returned by TOKSCN is the cperator CPMA (indicating "enter
corrile-time text"), the rcutine INTPRT is entered in order that
compile-time text statements may ke executed.

When the end of the source text is encountered, control is passed tc
Phase CA so that phase operaticn can ke terminated. If, however, the
source text scanned was the subject cf a %INCLUDE statement, scanning
recommences immediately after the point in text at which the %INCLULE
statement was invoked.

The Output of Tokens: Each token to ke written out is passed to the
routine OQUTPI. This routine emplcys a 71-byte kuffer, into which it
attempts to fit the current tcken, thus ensuring that the token dces not
span lines unnecessarily. When the kuffer is full, routine CLSBUF is
invoked to put out an 8u4-byte record to be printed by Phase EA. If the
compiler option MDECK is specified, CLSBUF invokes the subroutine PUNCH
to send the record to SYSPCH.

Rescanning of Tokens: Before routine PH2SCN passes an identifier token
to routine OUTPUI, the identifier must be examined to determine whether
it is a compile-time variable. This examination process is repeated,
unless inhibited by the NORESCAN option, until all active compile-time
variables have been replaced.

This rescanning is achieved by a process of stacking input pointers.
Thus, when a compile-time variable is detected by PH2SCN, the input
pointer is stacked and the input scanner is switched to examine the
current value of the variable stored in the preprocessor variables

Licensed Material - Property of IBM Section 2: Method of Operation

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

dictionary as IVB storage. This process is repeated if the IVB contains
another replaceable token. When the IVB value has been scanned, a
pointer is unstacked so that the next lower level IVB is scanned. When
the original IVB has been completely scanned, token scanning continues
normally.

Scanning of Compile-time Statement Text: When routine PH2SCN detects an
OPMA character, the routine INTPRT is entered to scan and process
compile-time text.

wWhen a RINCLUDE operator is detected, the text reference of the input
pointer is saved. Control passes to Phase CA, which calls PH1SCN tc
read from the book named in the RINCLUDE statement. The saved

input-pointer reference is placed in the dictionary entry for the
%®INCLUDE statement.

60 Licensed Material ~ Property of IBM

PREPROCESSOR_DIAGNOSTIC MESSAGE_EDITOR_(PHASE CE)

Diagnostic message entries are generated on the error pages by the
preprocessor phase (Phase CA) by means of the XMESG macro. Phase CE
receives these pages as input, and by reference to various tables,
produces the final (sorted) listing of messages. These messages appear
in the compiler listing immediately following the statements processed
by the preprocessor, and are grouped according to their severity. The
specification of the FLAG option (described below) indicates that
messages of only selected severity levels must be listed.

The major functions of Phase CE are:

1. To sort the message entries in the message page stream into
severity-code order, statement-number order within each severity
code and, finally generation-sequence order within each statement
number.

2. To insert, and where necessary to decode, the arguments supplied to
the message.

3. To print out the message, with inserts, depending on the
specification of the FLAG option.

PHASE INPUT

By means of the XMESG macro, a calling sequence is generated to a
routine in XROUT. This routine uses a number of fields in the
communication area (XCOMM) as follows:

XMPRF contains the page reference of the current message page. This is
zero if no message has been created.

XMREM indicates the amount of space remaining in the current message
page.

XSTAT is a slot containing the number of the statement currently being
processed by a phase.

XMNUM contains an optional numeric argument for a message if one is
specified as an argument to the XMESG macro.

XMDRF contains an optional dictionary reference which is to appear in
the message.

XMDTP is a single byte used to contain a character indicating the type
of dictionary to which XMDRF applies. Both the dictionary
reference and the type code are specified as arguments to the
XMESG macro.

In addition to the fields described above, registers RB and RC are also
used if text is supplied as an argument to the message. Two forms of
such text are permitted by the XMESG macro:

1. Implicit text pointers, where text is assumed to occupy the N bytes
preceding the address in Register 1. (The value of N is a constant
but it may be changed in the XMESG macro definition.)

2. Explicit text pointers, where a pointer to the start of the text
and the length of the text are supplied explicitly to the macro.
These values are loaded into registers RB and RC respectively by
the calling sequence generated.

Licensed Material - Property of IBM Section 2: Method of Operation

61

The XMESGR routine in XROUT generates a message entry (the format of
which is described in the XMESGP DSECT) in a stream of pages chained
from XMPRF in XCOMM. The routine calculates the size of the message
entry to be made, and checks that the current message page contains
sufficient space for the entry. If enough space is available, the page
is brought into main storage, and the message entry made by moving into
the page the contents of all the XCOMM fields described above, plus the
message text if the length is not zero. It should be noted that,
although these fields are not necessarily used in the message, no
attempt is made to determine this in XMESGR since testing would be more
time- and space-consuming than moving the fields in every case. Whether
or not the fields are actually used is determined by the structure of
the message.

If the current message page does not contain enough space to accommodate
the latest message, it is not brought into main storage and a new page
is requested. The old page reference is then placed in the new page,
and the new page reference is placed in the XCOMM fields XMPRF. The
message pages are thus chained in reverse order. The latest message is
then entered on the new page in the manner described above.

PHASE OUTPUT

The output from Phase CE consists of diagnostic and error messages
raised by error conditions occurring in Phase CA.

The preprocessor-error message has the message number IEL0001I and the
format

S PREPROCESSOR ERROR NUMBER n DURING PHASE pp.
This message is described in detail in appendix B to this publication.

The diagnostic messages output by Phase CE are identified by message
numbers in the range IEL0061I through IEL02291I.

TABLES USED BY THE DIAGNOSTIC MESSAGE EDITOR PHASE

The tables used in the operation of Phase CE are all produced by the
XMTAB macro and are as follows:

MCDE: The table is generated by the XMTAB macro, when XMTAB is called
with MCDE as an argument, and consists of 1000 single-byte entries, one
for each possible message. Each byte consists of a set of flags
indicating the severity code and information concerning parameters to
the message, and editing of it.

The MCDE table is used to set the severity code when building up the
sort units. Its use avoids the necessity of specifying the severity
code and the statement-number information, both in the message text and
the macro call to XMESG, which creates the entry in the error message
page stream.

KEYREF: The KEYREF table is produced by the XMTAB macro when called
with the argument MESSAGE. XMTAB produces the table by a nested call to
the XMCDE macro, with COUNT as a second argument.

KEYREF is used to obtain the appropriate keyword from the keyword table
(KEYTAB) using the code obtained from the scan of the coded message
string (refer to the sub-heading "Message Decoding" in the description
of the phase operation given below).

62 Licensed Material - Property of IBM

The table consists of 16 pairs of 2-byte entries, one pair for each
permissible length of words contained in messages. Thus the first entry
is for 1-letter words (and special and parameter keywords), the second
for 2-letter words, and so on. The first member of the pair is the
number, in bytes, counting from the start of the keyword table (KEYTAB),
of the last word of that number of letters. For example, if there are
12 single-letter words and 10 2-letter words, the first members of the
first two entries in KEYREF are 12 and 22, respectively. The second
member of each pair is the offset, in bytes, of the first word with the
next highest number of letters from the start of KEYTAB. Thus,
considering again the previous example, the second members of the first
two entries in KEYREF would contain 12 and 32 respectively.

KEYTAB: The KEYTAB table is produced, with KEYREF, by a call to the
XMTAB macro.

It consists of one DC instruction for each keyword which may appear in a
message. The keywords are arranged in the table in order of length,
shortest first, and for ease of updating they are arranged in alphabetic
order within each length category. The order of the appearance of the
keyword in the table determines the code that is assigned to the word in
the coded form of messages. However, this fact is relatively
unimportant since the keyword table and the message coding operation are
both carried out by the XMCDE macro; the order in the table depends on
the order of the arguments to the XKEY macro calls that are nested
within XMCDE.

MESREF: This table is created by the XMTAB macro with an argument
MESSAGE. It is used to access the coded message for a particular
message number.

MESREF consists of 1000 halfword constants, one for each message. If
message text for a particular message has not yet been supplied to the
XMTAB macro, the relative halfword constant has a value of -1; otherwise
the constant is the relative address of the corresponding coded message
from the start of the message table (MESTAB).

MESTAB: The message table is produced by the XMTAB macro with MESSAGE
as an argument. The individual messages in the table are coded by the
XMCDE macro calls nested within the XMTAB macro.

MESTAB consists of strings of coded error messages with one or more code
bytes for each word in the message. Each message is preceded by a byte
which specifies the length of the message. The code strings appear in
order of message number, purely for convenience of updating the macro
that produces the table.

All the tables described above are interrelated, but they may be
classified into two groups:

1. Glossary of keywords (KEYREF and KEYTAB)

2. Lists of messages (MCDE, MESREF, and MESTAB)
The interrelationships between the tables are generated automatically by
the relevant macros. In order to add messages or translate them into

other languages, two areas of the macros require change: the message
list in the XMTAB macro and the keyword list in the XMCDE macro.

The_Message_List

The message list appears at the end of the XMTAB macro as a series of
nested calls to the XMCDE macro in the form:

Licensed Material - Property of IBM Section 2: Method of Operation

63

XMCDE N,S,Wl,W2,W3,W4,....Wx

where
N is a decimal number which identifies the message.
S is the severity code of the message. This may be T,S,E,W, or

I for 'unrecoverable', 'severe', '‘error', 'warning', or
'informatory'. (Note that this is the only place where the
severity code is defined.)

Wl-Wx are the words of the message.

If a statement number is to be applied to the message, the character '$*
is coded as an argument following the severity code field.

One of the following special control characters may also appear anywhere
in the word list:

Z signifies that the preceding and following words must be
concatenated.

Q signifies that the following word must be enclosed in quotation
marks.

All the woxrds in the word list must appear in the keyword list, either

explicitly or without one of the endings ATION, ING, LY, ED, ES, E, S,
I1ZE, IZED.

The Keyword List

The keyword list appears in the macro XMCDE in the form:
.XLn XKEY C,W1,W2,W3,W4,....Wx
AIF (&XK7).X2
XKEY C,Wx+1,WxX+2,....
AIF (&€XK8).XI
where
n 1is the number of letters in the keywords W1 to Wx, and 1<n<1é6.
C is &C1 if n<8 and &Cl&c2 if n>8.
Note: The assembler has a limitation of 128 characters (for DOS) per
macro call. 1In order to overcome this restriction, if the total number
of letters in the argument list exceeds two records (one record with the
macro call and one continuation record) a second (unlabeled) call to the
macro is made, separated by the statement AIF (&§XK7).X2. The end of all

the keywoxrd lists for a particular word length is terminated by the
statement AIF (§XK8).X2.

PHASE OPERATION

The error-message e€diting phase operates in two stages, to sort and
decode the message.

64 Licensed Material - Property of IBM

The Message Sort

Sorting is achieved by a sequential scan of the chain of message pages.
As each message is encountered, a 12-byte 'sort unit' is created,
consisting of the severity code, the statement number, the message
number, the generation-sequence number, and the 5-byte text reference of
the message. The information regarding the severity code, and whether
or not a message contains a statement number, is obtained from the MCDE
table that is generated as a by-product from the XMTAB macro.

As the sort units are generated, they are placed in a new page stream.

When each page is full, or when the end of the input stream is reached,
the page is sorted by means of the SCHELL sort routine before the next

output page is obtained.

On its completion, the new output stream is rescanned and the sorted
pages merged into new pages, the o0ld pages being discarded as they are
emptied.

At the end of the message sort process, two page streams exist: the

original message strxeam and a stream of pages containing sort units in
their correct sequence.

Message Decoding

When the message sort is complete, the sort-unit page stream is scanned
sequentially. As each sort unit is encountered, the page reference of
the corresponding message is obtained and converted to an address. Each
message is maintained in the diagnostic message editor in the form of a
string of code bytes generated by the XMTAB macro. The appropriate
message string is obtained from the table by indexing the message
reference table (MESREF) with the message number.

The message string is scanned and each byte or group of bytes is
converted to a keyword code, which is used to reference the table of
keywords (KEYTAB) by means of the keyword reference table (KEYREF). The
keyword may be one of three types:

1. Ordinary keyword. 1In this case, the keyword is moved directly into
the print buffer.

2. Special-purpose keyword. This type is used to indicate either that
the preceding and following keywords are not to be separated by a
blank, or that some multiple of 256 must be added to the following
code to construct the keyword code.

3. Parameter keyword. If a keyword of this type is encountered, the
appropriate parameter is obtained from the message entry, is
decoded or translated as necessary, and then placed in the print
buffer.

When the print buffer is full, or when the message is complete, the
message is printed and the scan moves on to the next sort unit.

Message Editing Facilities

In addition to the facilities described above (i.e., statement number,
dictionary entry, text, and numeric arguments), the following inserts
can also be generated in a message:

Licensed Material - Property of IBM Section 2: Method of Operation

65

1. Two text parameters

2. A single attribute specification

3. Two attribute specifications

4. One attribute specification and a text parameter

These inserts may be generated by their being passed as arguments to the
XMESG macro. In all the cases above, a character must also be set as an
argument in the severity-code field of the XMCDE macro. Thus, although
the XMESG macro may generate a text string containing two text inserts
for a message, the string will be decoded as one insert unless this
character is specified in the XMCDE call for that message. The
character used in this case is 'E', which must be concatenated with the
severity code field. This sets a bit in the MCDE vector.

In order to pass these arguments, explicit pointers must be set up to
indicate the start and length of a formatted text string. The string
would start with a code byte indicating which of the above four cases is
concerned. This would be followed by a single-Lkyte attribute
specification and/or the text to be included, preceded by its
corresponding length specification, depending on which of the four
combinations is being passed.

If an attribute specification is passed in this manner, the single byte
is decoded Ly Phase CE and the corresponding attribute is moved into the
print buffer.

A further editing facility accumulates several generations of the same
message in a message page and then prints it only once (i.e., instead of
the message appearing in the listing N times for N different statement
numbers, it is printed only once, following a list of statement numbers
to which that particular diagnostic applies). Once again, for this
facility to be implemented at message-decoding time, the corresponding
bit must be set in the MCDE vector. This is achieved by concatenating
the character *'C' with the severity-code field argument to the XMCDE
macro. This accumulating facility can be applied only to those messages
generated by the XMESG macro and having the statement number as the only
parameter.

When, by reference to the MCDE table, a message in the message page
stream is found to be of the cumulative type, two sort units are created
for it. The first is created in the normal way, with the statement
number field as specified in the XMESG call.

The second, however, is created with the normal statement field set to
zero, the actual statement number being saved elsewhere in the sort
unit. An entry is then made in a push-down stack, which always contains
the lowest statement for which a particular cumulative message is
generated. In addition to the statement number, the entry also includes
the message number and the page reference of the first
'zero-statement-number' sort unit for the message.

Each time a further generation of the same message is encountered in the
page stream, another sort unit with a zero statement number is created
and the push-down stack is then checked to see if the new statement
number is lower than the previous entry for that message. If this is
the case, the previous entry in the stack is replaced by the new number
and another sort unit is created with the statement number in the normal
statement number field.

When the whole of the message page stream has been scanned, therefore,
for a cumulative message which has been generated for N statements there
will exist:
e N sort units with zero-statement-number fields (the actual statement
number being held in the sort units).

66 Licensed Material - Property of IBM

¢ An entry in the push-down stack which contains the lowest statement
number for which the message was generated, and a reference to the
start of the zero-statement-number sort units.

e A normal sort unit for the message, containing the lowest statement
number.

It should be noted that, if the first generation of the message in the
message page stream should happen not to be the lowest statement number
for which the message is relevant, a redundant sort unit will be
created. This would be ignored at message-decoding time.

During the message sort, all the zero-statement-number sort units are
shifted to the beginning of the sort-unit stream, and the normal sort
unit for that message is moved to the correct position for printing.
When this normal sort unit is encountered at message-decoding and
printing time, the stack entry is checked to see if the message has been
printed already (i.e., if this is in fact one of the above-mentioned
redundant sort units). If the message has not been printed, the
zero~statement-number sort units are referenced and all printed out in
the position where the lowest statement number would have been printed.

Irplementation of Ccompilex Opticns

FLAG Option: Diagnostic messages produced during preprocessing are
grouped in order of severity. The FLAG option specification indicates
the minimum severity level for which diagnostic messages, if produced,
will be listed. The severity level is specified in the value list of
the FLAG option, as follows:

FLAG(I) All diagnostic messages listed.
FLAG (W) All diagnostic messages except ‘'informatory' messages listed.

FLAG(E) All diagnostic messages except 'warning' and ‘informatory"*
messages listed.

FLAG(S) Only "severe' errors and 'unrecoverable' errors listed.

Note that the specification of FLAG is equivalent to FLAG(I). The
severity levels are discussed fully in the Programmer's Guide for this
compiler.

If, due to the specification of the FLAG option, any levels of messages
are to be suppressed, suppression takes place early in operation of the
phase and no sort units are created for those levels of messages.

SYNTAX or NOSYNTAX Option: Phase CE also implements the option
SYNTAX | NOSYNTAX(W|E|S) .

SYNTAX specifies unconditional syntax check after preprocessing unless
*unrecoverable' errors are encountered.

NOSYNTAX specifies unconditional termination of the compilation after
preprocessing, without any syntax check being carried out.

The specification of NOSYNTAX with a value list makes the syntax check
conditional upon errors detected during compile-time preprocessing. The
value list specifies suppression of the syntax check if a diagnostic
message equal to or exceeding the severity indicated by the value is
encountered during preprocessing. Thus the syntax check is suppressed
as follows:

NOSYNTAX (W) Wwhen '"warning', ‘'error', 'severe', or 'unrecoverable"'
diagncstics have keen issued.

Licensed Material -~ Property of IBM Section 2: Method of Operation

67

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

NOSYNTAX (E) When 'error', ‘'severe', or ‘'unrecoverable' diagnostics
have keen issued.

NCSYNTAX (S) When 'severe' or 'unreccverable' diagnostics have been
issued.

If NOSYNTAX is specified, or the specified severity value is equalled ox
exceeded, Phase CE returns control to the control phase (Phase AA). If
however, the option SOURCE has also been specified then the SYNTAX flag
is set and Phase EA is loaded to print the required source listing.
Phase EA will immediately pass control back to Phase AA after so
printing.

SYNTAX TABLE BUILDER (PHASE EC)

Phase EC makes space for phase EA by copying Translate and Keyword
tables onto a text page. If possible, a single page is used, otherwise
two pages are used. The addresses of the tables (in S-byte format) are
stored in the XCOMM fields XRIOCH and XDOCH.

68 1 Licensed Material - Property of IBM

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

SYNTAX ANALYSIS STAGE

The main function of phases in the syntax analysis stage is to analyze
all data in the source program, and to process it so that only
statements that are valid within the PL/I language implemented by this
compiler are passed for processing by later phases. When an erroneous
statement is detected, a phase may attempt to correct the error by
making an assumption about the intention of the statement, or may delete
the statement from the text passed to other phases. Diagnostic nessages
are generated to indicate errors that are detected.

Because of the wide score of the PL/I language, the function is
rerformed by three rhases, EA, EE, and EI. Each phase checks the syntax
of a particular range of PL/I statements. Phases EA and EE are locaded
and executed in every compilation; Phase EI is only loaded and executed
if the source program contains stream oriented input/output statenents.
During processing, the text is translated into an internal code and
oxganized into a format that is convenient for processing by subsequent

phases. Certain tyres of statement are collected in a separate stream
of text for the convenience of rhases in the dictionary build stage.

| SYNTAX ANALYSIS - PASS 1 (PHASES EA AND EC)

| Before syntax analysis commences, phase EC is loaded. 1Its function is
| to move RKeyword and Translate tables into one or two text pages for use
| by syntax analysis.
| Phase EA performs the following functions:
1. Reads the source program input records into a text-page work area.
2. Prints the source program listing if required.
3. Removes comments and excess blanks from the text.
4. Translates the input text intc an internal format code.

5. Identifies each statement and allocates statement numbers.

6. Analyzes completely the syntax of a number of types of PL/I
statements, and issues error messages if required.

7. Builds the compiler main text stream by copying all statements
(including those not fully analyzed) onto text pages.

8. Inserts chain fields in the text stream to assist Phase EE in
de-nesting the program block structure.

PHASE INPUT

Input to the phase consists of records containing the compiler source
text, written in 60-character EBCLCIC. These records may be read intoc
the compiler input buffers from SYSIPTI, or may ke passed to Phase EA on
text pages as output from a compiler preprocessing phase (Phase BA or
Phase CA).

Licensed Material - Property of IBM Section 2: Method of Operation

69

Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976

If the external format of text is not 60-character EBCDIC, the text
passed to Phase EA from the preprocessing stage consists of record
pairs, one record being in the original scurce form (used for the scurce
listing), and the other record cf a pair keing the preprocessed reccrd
in 60-character EBCLIC form (used for cormpilation).

The input contains free format PL/I statements and corrents within the
limits of the MARGINS option.

PHASE OUTPUT

Output from the phase consists of the main text streawm, plus a
diagnostic message stream if the source program contained syntactical
errors.
The output text consists of a stream of FL/I1I statements in source
statement order, in which all statements are nunbered, and statement
elements are retained in source program order. All characters are in
compiler internal ccde (see figure 5.88). A statement header is
inserted in front of every statement. The following types of statement
are checked for correct syntax, and appear in Type 1 text format (see
figure 5.60):

PROCEDURE statements (options are not processed at this tirme)

ENTRY statements (options are not processed at this time)

BEGIN statements (options are not processed at this time)

IF - THEN - ELSE statements and clauses

XSRIP and RPAGE staterments

XPRINT and ENOPRINT statements

SIGNAL and REVERT statements

FETCH and RELEASE statements

ASSIGN statkements

FREE statements

CON statements

END statements

GOTO statements

WAIT statements

RETURN staterents

NULL statements

LEAVE statements

SELECT statements

WHEN statements

OTHERWISE statements
Following the statement header for each PROCEDURE, BEGIN, and ON

statement, a 17-byte chain field is inserted for use Ly Phase EE (see
figure 5.61). '

70 Licensed Material - Property of IBM

Order No. LY33-6010-1, Page Added by TNL LN33-6175, Octoher 1076

The page-handling routines in the control stage are called as required
to acquire page spaces for the text stream output.

PHASE OPERATION

Source Text Read-in

Phase EA acquires a page space for use as a read-in work area. This
| page is treated as a scratch page and is discarded on completion of
| processing by the phase.

Licensed Material - Property of IBM Section 2: Method of Operation 70,1

The READR routine has records copied from SYSIPT into the input buffers,
and from there copies the records, one at a time, into the resad-in work
area. If the SOURCE option is specified, each source record is copied
into the print file buffer, for inclusion in the printed source listing,
immediately before the next record is read.

If the source program is coded in either BCD or 48-character EBCDIC, the
input to Phase EA consists of the output from either Phase BA or Phase
CA. This output is passed to Phase EA in record format on text pages.
Records are paired, the source record preceding the 60-character record.
Each 60-character EBCDIC record is copied into the read-in work area.

If the SOURCE option is specified, each source record is copied into the
print file buffers for inclusion in the source listing.

As each record is read in it is translated, byte for byte, from
60-character EBCDIC into the compiler internal code. This code is shown
in figure 5.88. Each character of all identifiers and constants is
translated into internal code. All operators, including two character
operators (e.g., ||, ->), are replaced by single code bytes.

The translated record is scanned from the left. Comments (identified by
their inclusion within /% */ characters), are replaced by blanks.
All remaining characters are considered to be part of the PL/I program
and control is passed to the STARTA routine for processing of the
records as described later.

When a record has been processed, the processing routines call the READR
routine as required to read-in and translate further records. Within
the read-in work area, records are concatenated so that they form a
ccntinuous stream of text. If there is insufficient space for a record
containing part of a current statement to be read in, existing text
within that statement is moved to the start of the read-in work area, so
that the entire work-area page is available for the statement. If a
statement, other than a DECLARE, DEFAULT, or ALLOCATE statement, cannot
then be contained within the read-in work area, it indicates that the
maximum permissible statement size has been exceeded: an error message
is issued, the statement is ignored, and compilation continued.

DECLARE, DEFAULT, and ALLOCATE statements can be split at any comma not
contained within parentheses, and spanning of pages by these statements
is permitted.

If a statement containing a string item cannot be contained in the
work-area, a quote character is inserted in front of the first semicolon
(if any) found within the string. The remainder of the string item is
considered to belong to another statement.

Detection of any invalid characters not contained by quote characters
results in deletion of the containing statement.

Statement Numbering

The limits of statements are recognized by the appearance of semicolons.
All statements, including compound statements, statements included in a
compound statement, block- and group-delimiting statements, and null
statements, are numbered as they are copied into the read-in work area.
THEN clauses are not regarded as statements for numbering purposes.
Diagnostic messages created throughout compilation refer to these
statement numbers. The number of the first statement in each record is
printed in the source listing.

Licensed Material - Property of IBM Section 2: Method of Operation

71

Statement Headers

To enable statements to be easily identified, and basic information
about each statement to be readily accessable, a 6-byte statement header
is created and inserted before each statement. Information is inserted
in the various fields of the statement header during processing by this
phase. The format of statement headers varies slightly according to the
type of statement; the statement header may be followed immediately by
the body of the statement, or other information such as a label list or
a chain field may be inserted. On completion of processing by this
phase, the text is organized in a format referred to as Type 1 text.

The general structure of a statement in this format is shown in figure
2.10.

(3 T T == 3
| Bytes | Content | Use |
|8 iy 4 4
& T T 1
O	SL or SN	Marker to indicate labeled or unlabeled statement.
1	code byte	Indication of statement type, e.g., IF, GOTO,
		assignment. Statement
]) header	
2-3	statement	Number of source statement. o
I	number	
l b b . o l		
4-5	Prefix	Bits set to indicate conditions (e.g., SIZE,
	options	OVERFLOW) that are enabled for the statement.
6... [Label	If the first byte indicates a labeled statement, these bytes show	
	list	the length of the label list and the length and name of each label,
		e.g., LAB:L: would be shown as seven bytes containing 7 3 LAB 1 L.
	i	
	Chain	A 17-byte chain field is inserted in all PROCEDURE, BEGIN, and ON i
	field	statements.
i		
	statement	The statement body with statement elements in source order. Keywords
i	body	are represented by code bytes, identifier names are preceded by a
i		length byte, and constants are preceded by a marker and a length
L	o	
	Semicolon	End-of-statement marker.
L L L - J

Figure 2.10. General format of a statement in Type-1 text

Prefix Processing

Each PL/I item is tested for the presence of a colon, indicating that it
is a statement prefix. There are two types of prefixes, condition
prefixes and label prefixes. Condition prefixes must precede label
prefixes.

Label prefixes are placed immediately after the statement header. Each
label name is preceded by its length. If there is more than one label,
the total length of the label list is inserted before the first label
length.

When condition prefixes are detected, bits are set in bytes 4 and 5 of
the statement header to indicate the conditions or options that are
enabled for that statement. Exceptions to this are the CHECK and
NOCHECK condition prefixes, which may have argument identifier lists.
These two condition prefixes are treated as separate statements, and are
inserted before the main statement with their own statement headers.
Thus, the source /statement:

72 Licensed Material - Property of IBM

A

A

(NOOFL, SUBRG, CHECK (A,B)): (NOCHECK(C)):LABi:LAB(3):A,B,C=1;
would appear in the output from Phase EA as:
CHECK statement header (A,B);
NOCHECK statement header (C);
ASSIGN statement header, label list length, 4LAB1 6LAB(3)1A 1B 1C=1;

The prefix option field in the ASSIGN statement header would contain
flag settings for the NOOFL and SUBRG conditions, plus any applicable
default or inherited options. The prefix option fields in the CHECK and
NOCHECK statement headers would contain zeros. If CHECK and NOCHECK
condition prefixes precede a PROCEDURE or BEGIN statement, the block
level and count are inserted in the prefix option bytes.

Keyword Identification

Each identifier in a statement is treated as a potential PL/I keyword.
Phase EA contains tables that contain every PL/I keyword handled by the
phase. These tables are searched for a keyword that matches the
identifier. If a match is found, and if the identifier is in a position
that makes it a valid keyword, it is replaced by a predefined 1-byte or
2-byte code (see figure 5.88).

Keywords are classified according to their context in the source
program, €.9g., statement identifier, verb, ON-condition. Keyword tables
are organized on the basis of class of keyword and length of keyworxds
within that class. Within each classification, keywords are grouped in
tables containing keywords of similar length. The format of keyword
table entries is shown in the following sample of entries in the tables
of verb-class keywords of three bytes length:

STL3 DC X ' number of keywords in this table!'
DC X'0E170D*' (keyword in internal code)
DC ALl (END) (replacement code)
DC X'0D0C15' (keyword in internal code)
DC AL1(DCL) (replacement code)

Two levels of directory are used when searching the keyword tables.

When a statement analysis routine calls the KYWD routine, it passes a
numeric argument indicating the class of the potential keyword. This
indicates the first level of directory to be used to find the address of
the second level directory. The second level directory indicates the
address of a keyword table for the same class and length as the
potential keyword.

When a matching keyword table entry is found, the replacement code is
returned to the caller routine. If a matching entry cannot be found, a
code of X'FF' is returned to the caller routine.

Because there are more than 256 PL/I keywords, some of them are replaced
by a 2-byte code. These keywords can always be recognized by their
classification, and the first character (always X *D9') is not shown in
the keyword tables.

Verb_Identification

When the first identifier that is not enclosed by parentheses and is not
followed by a colon is found, it indicates that all prefixes to a
statement have been processed. This identifier is treated as a

Licensed Material - Property of IBM Section 2: Method of Operation

73

potential verb keyword and the keyword tables are searched for its
replacement code.

If a matching verb keyword is found, the replacement code is inserted in
the second byte of the statement header to indicate that statement tyre.
The routine that processes the particular type of statement is called to
analyze and process the body of the statement.

If the identifier is found not to be a verb, it is assumed to be the
left-hand side of an assignment statement. The ASSIGN code is inserted
in the statement header and the appropriate routine is called.

If the first identifier is a verb, analysis of the statement may reveal
that the statement is an assignment statement, e.g., GOTO = 3; or
PROC(A,B,C)=4;. Detection of the assignment character (=) will result
in reprocessing of such a statement.

Statement Analysis

The syntax of each statement is checked for its compliance with the
syntax defined for that type of statement within the PL/I language. As
described above, the statement type is determined according to the
presence of certain verb keywords or operators, and an appropriate
routine is called to analyze and process each type of statement.

The analyzing routine scans the statement body for the presence of
mandatory and optional items. In general, these items consist of
keywords that apply only to the particular type of statement, and
optional arguments applying to the keywords. Keywords can often appear
in variable order. When a keyword is found, it is replaced by its
internal code, and a subroutine is called to process any arguments
present. These optional arguments can be in the form of:

e A constant.
* A simple identifier e.g., NAME.
e A subscripted or qualified identifier e.g., NAME.A(3) ->Q.

s An expression, which consists of one or more of the above items,
plus operators and parentheses.

These items are converted to a series of identifiers and constants,
separated by operators and delimiters, by the following subroutines used
by all statement analysis routines:

Item type Subroutine name
Arithmetic constant ACONST
String constant SCONST
Identifier IDENTR
Qualified identifier SQUID
Expression EXP

When the syntax has been checked, the statement body is output, after
the statement header and label list, in source-program order as follows:

Keywords - replaced by l-byte or 2-byte code.
Identifiers - the identifier name, preceded by a field containing its

length value.

74 Licensed Material - Property of IBM

Constants - the constant, preceded by a field containing its length
value, preceded by a 1-byte constant-marker.

Delimiters - the delimiter for an IF clause is "THEN". The delimiter
for a THEN clause followed by an ELSE clause is ";ELSE".
In all other cases the delimiter is a semicolon.

This is the basic format of Type-1 text.

Statement Error Handling

The handling of syntax errors within statements depends upon features
peculiar to the statement type. Errors are mainly handled by deletion
of the part of the statement in error. Depending upon whether the
remaining part of the statement retains the sense of the program,
subject to checking by later compiler phases, deletion is kept to a
minimum. If cascading of errors throughout the program is likely, the
erroneous statement is replaced by a null statement, thus enabling
labels to be retained. In a few cases of simple errors, an attempt is
made at correction. The following example indicates typical methods of
handling errors in a statement for which the valid syntax can be
represented as:

VERB KEYWORD1 KEYWORDZ2 (NAME) KEYWORD3(EXP);

If an error is found within "NAME" or “EXP", the complete KEYWORD option
is deleted.

If one or more parenthesis around "NAME" ox "EXP" is missing, it is
usually inserted.

If "KEYWORD1" is mandatory but is missing, the statement is replaced by
a null statement.

If "KEYWORD2" is optional but is in exror, only "KEYWORD2(NAME)" is
deleted.

If "VERB" cannot be identified, the statement is replaced by a null
statement.

Program_Block-structure Checking

Blocks are numbered in order of their appearance in the .source program.
The block structure of the program is checked for the logical occurrence
of end-of-program and end-of-file indications.

A push~-down stack is used to check the block structure. The stack
consists of a series of entries, one for each statement, or IF, THEN,
and ELSE clause, that is significant in the program block structure. As
each item is entered in the stack it is allocated a block numbexr. The
format of a stack entry is:

Symbolic Field Field

field name length content

STCODE 1 byte Code for type of entry (e.g., PROC)
STBKC 1 byte Block number

STPO 2 bytes Prefix options

STLLTH 1 byte Length of label

STLBL 31 bytes Label (if any)

Licensed Material - Property of IBM Section 2: Method of Operation

75

The STCODE, and the stacking/unstacking action, for various statement
types is as follows:

Statement STCODE Stacking Action

Type

PROC 80 Make new stack entry

BEGIN 81 Make new stack entry

DO 82/84 Make new stack entry

END Delete from the stack all entries
for the block just ended.

ON 20 Make new stack entry

On-unit AOQ Make new stack entry

IF 41 Make new stack entry

THEN 42 At THEN clause change STCODE of IF
entry to STCODE of THEN.

ELSE 4y STCODE of top entry must be THEN:

delete this entry.

After each statement is processed, the top entry in the stack is
checked. TBEN entries are deleted if no ELSE clause is found. Errors
such as 'IF - THEN - END;' are checked for, and are corrected by
inserting NULL statements in appropriate places. RETURN statements
inside BEGIN clauses are deleted.

If an end-of-file indication (/#*) is detected before the stack entries
indicate the logical end-of-program, END statements are inserted to
enable compilation to continue. If the stack entries indicate the
logical end-of-program before the end-of-file indication is detected,
the current END statement is deleted and the remaining source statements
are processed.

If the push-down stack overflows, it indicates that a compiler

limitation on nesting of blocks has been exceeded, and compilation is
terminated.

Chaining of Nested Blocks

To assist Phase EE in the de-nesting of blocks, a 17-byte chain field is
inserted ketween the statement header or the label list, and the body of
the statement for each PROCEDURE, BEGIN, and ON statement. The format
of these chain fields is shown in figure 5.61.

ON statements are chained in a special way. If an ON statement is
associated with SYSTEM, or is associated with a NULL on-unit, it is not
treated as a block statement. All others are treated as a BEGIN block
on-unit, even though they may be single statements. 1In the latter case,
the chain field is inserted in the ON statement body; the following
BEGIN statement (if any) has no chain field. If there is no BEGIN
block, the END statement pointer is set to X'FF°.

The following example illustrates chaining of statements in the output
from Phase EA.

The source statements:

1. A:PROC(P,Q);

2. B:ON SUBRG BEGIN;

3. ON OFL(CHECK(X)):GOTO L;
4. L:END

5. E:ENTRY

6. (CHECK(Y)) :BEGIN;

7. END A;

would be chained on output from Phase EA as shown in figure 2.11.

76 Licensed Material - Property of IBM

The example of chaining illustrates the following features that are used
during processing by Phase EE:

1. Every block-heading statement contains a pointer to the END
statement for that block, thus enabling Phase EE to skip all
statements within a block. The exception is on-units that consist
of a single statement, and therefore have no END statement. 1In
such cases, Phase EE skips the next statement, plus any CHECK and
NOCHECK statements attached to the on-unit.

2. The chain of next-block references passes through dummy statement
headers embedded within ON statements. These dummy headers have a
unique code byte, X'9B' (ON-BEGIN) which Phase EE recognizes. The
next-block chain points to the first CHECK or NOCHECK statement
preceding a block so that these statements are included in a block.
In the case of ON-BEGIN statements, the CHECK and NOCHECK
identifier lists follow the ON statement.

3. The ENTRY statement chain fields are only used in PROCEDURE blocks;
BEGIN blocks cannot contain ENTRY statements, (for uniformity they
contain an unused chain field).

4. The chain field of each block header is preceded by a 2-byte field
containing values for the block nesting-level and block-count.
Phase EA inserts the total block-count for the program in the
XBLKCT field in XCOMM. When the block-count maintained by Phase EE
reaches the value in XBLKCT, it indicates that the end of the
next-block chain has been reached. For this reason, the next-block
chain field in statement 6 in the example is shown as not-used.

Licensed Material - Property of IBM Section 2: Method of Operation 77

Source

stmt. no.
(in hdr.) [. _,l
$ | T
1 PROC header A level=1 END Next ENTRY (P,Q)); H
count=1 | chain block chain ‘
1 .
2 ONheader B SUBRG NOSNAP level=2 |END | Next | Dummy ON- |
count=2 [Chain block | BEGIN header !

N

: BEGIN header;

END
chain=FF

Next
block

level=3
count=3

Dummy ON-
BEGIN (header

3 I ON header OFL NOSNAP

w

i CHECK header (X)

w

|

I

I

"

l

|

|

|

|

|

I

| GOTO header L; ||
4 LEND header L; J

re—ee————_—_———_- Y — — — —-r

5 ENTRY header E| level=0 |END chain | Next-block ENTRY ;
count=0 { not used chain not used | chain=FF ‘
6 CHECK header (Y); |
6 BEGIN header level=2 END Next-block ENTRY chain ; I
count=4 ct}in chain not used | not used .
7 END header J

8 END header

Figure 2.11. Chaining of statements in the main text stream output from Phase EA

78 Licensed Material - Property of IBM

SYNTAX ANALYSIS - PASS 2 (PHASE_EE)

Phase EE continues the analysis of the source program started by Phase
EA. In doing so it performs the following functions:

1. completes the analysis of statement types partly processed by Phase
EA, i.e., PROCEDURE, BEGIN, and ENTRY statements.

2. Analyzes, and converts to Type-1 text, the following types of

statement:

ALLOCATE REWRITE
DELAY DELETE
STOP UNLOCK
EXIT OPEN
DISPLAY CLOSE
CALL LOCATE
READ DECLARE
WRITE DEFAULT

3. Builds a new main text stream in which the statements are written
in de-nested block order (i.e., all statements within a block
appear in a contiguous text stream preceding all statements within
a contained block).

4. Builds a second text stream containing types of statements for
which easy access is particularly required by phases in the
dictionary build stage.

5. Scans for stream-oriented input/output statements (i.e., GET, PUT,
and FORMAT statements) to determine whethex the next phase to be
loaded is Phase EI, which analyzes such statements, or Phase GA.

PHASE INPUT

The input to this phase consists of the main text stream generated by
Phase EA. The input is written on text pages, chained in sequence.

The text consists of a contiguous sequence of statements in
source-program order. Each statement is numbered and preceded by a
statement header. Block-heading statements have chain fields preceding
the statement header or inserted in the body of the text. Statements
analyzed by Phase EA are in Type-1 text format. Other statements are in
the form of source-program statements translated into compiler internal
code, with all keywords represented by a one or 2-byte code.

PHASE OUTPUOT

output from the phase consists of two streams of text, the main text
stream and a second text stream known as the dictionary text stream. In
both text streams, all statements (except stream-oriented input/output
statements) are in Type-1 text format.

In both text streams the statements are written in de-nested block
order, e.g., if block A contains block B, all the statements in block A
appear before the first statement in block B.

Some statements inserted in the dictionary text stream are also retained

in the main text stream. The content of each statement may vary between
the two text streams.

Licensed Material - Property of IBM Section 2: Method of Operation

79

The format of items in both text streams output by Phase EE are shown in
section 5: "Data Area Layouts."

The Main Text Stream: a new text stream is built during processing by
Phase EE, and the text pages input from Phase EA are discarded on
completion of the processing of all text.

The new main text stream contains no chain fields. All valid PL/I
statements in the source program are written in the text stream in
de-nested block order. Statements are written in Type 1 text format,
with the following exceptions:

1. PROCEDURE, BEGIN, and ENTRY statements are represented by statement
headers, labels, and prefix options only. 1In this form they
indicate the positions of entry points.

2. GET, PUT, and FORMAT statements are not processed by this phase,
and appear in the same format as at input to the phase.

BEGIN blocks are repositioned as required for de-nesting, and a
compiler-generated label is placed before each one so that it can be
identified in the CALL statement that is used to replace the BEGIN
statement in its original in-line position.

DECLARE and DEFAULT statements are not included in the main text stream
output.

. The Dictionary Text Stream: To simplify scanning in the dictionary
build stage, PROCEDURE, ENTRY, BEGIN, DECLARE, DEFAULT, LOCATE, and
ALLOCATE statements are copied into a separate text stream. These
statements are written in de-nested block order and chained for rapid
access (see figurge 5.72). PROCEDURE and ENTRY statements associated
with contained blocks are included with statements in the containing
block ' (in which they are known in the PL/I sense).

Each block is preceded by a 28-byte block header containing five chain
fields (see figure 5.71). The first chain field contains a forwaxrd
pointer to the next block. The other four chain fields, in order of
appearance, contain chains for PROCEDURE and ENTRY, DECLARE, DEFAULT,
and LOCATE and ALLOCATE statements within the block. These statements
appear in source-program order and are chained backwards. BEGIN and
ON-BEGIN statements appear with the compiler label generated for
identification in the main text stream, and are chained with ENTRY
statements.

To enable entry points in the main external procedure block to be
handled by the same routines as entry points in the rest of the program,
a header for an imaginary block of zero nesting level is inserted at the
beginning of the dictionary text stream.

PHASE OPERATION

The input consists of a contiguous sequence of text in source program
order. When this text is read sequentially, a read-ahead technique that
employs the XBRIC macro is used, enabling page-handling requirements to
be determined in advance. When chains are followed, and scanning of the
text becomes non-sequential, it is sometimes necessary for the scan to
shift forwards or backwards to a location within another text page.

Such cases are handled by the JUMPTXT routine and special-case coding in
the XBRICM routine. The XTXRF macro is used for non-sequential scanning
of text. Input pages are given the status DISCARDED on completion of
all processing by the phase.

80 Licensed Material - Property of IBM

Statement Analysis

The syntax of statement types processed by this phase is checked by
special analyzing routines for each type of statement. The method of
checking and the handling of errors is similar to that described for
Phase EA.

De-nesting of Contained_ Blocks

To assist in the resolution of names during the dictionary build stage,

contained blocks are de-nested so that all statements within a block are
contiguous on output from the phase. The chains set up by Phase EA are

used for this purpose. The two output streams are built simultaneously

as statements are scanned and processed.

The output streams built by this phase are illustrated in the following
example, showing output in the main text stream and in the
dictionary-text stream. The source program example used is similar to
that used in the Phase EA description. A few statements have been added
for illustration purposes.

The following source statements:

1. A: PROC(P,Q);

2. DCL BB FIXED;

3. B: ON SUBRG BEGIN;

4. DEFAULT RANGE(X) FLOAT;

5. ON OFL(CHECK(X)): GOTO 1;

6. L: END;

7. E: ENTRY;

8. DCL CC STATIC, AA CHAR (5)CTL;
9. (CHECK(Y)): BEGIN;

10. ALLOCATE AA CHAR 3;

11. END A;

would appear in the main stream output from Phase EE in de-nested block
order as follows:

1. PROC-header level=1l count=1 A;

2. ON-header B SUBRG NOSNAP FF0002;

7. ENTRY-header level=1] count=1 E;

9. CALL-header FF0004;

12. END-header ;

3. ON-BEGIN-header level=2 count=2 FF0002;
5. ON-header OFL NOSNAP FF0003;

6. END-header L;

5. CHECK-header level=3 count=3 (X);

5. ON-BEGIN-header level=3 count=3 FF0003;
5. GOTO-header L;

5. END-header ;

9. CHECK-header level=2 count=4 (Y);

9. BEGIN-header level=2 count=4 FF0004;
10. ALLOCATE-header;

11. END-header ;

Note the following features shown in the example:

1. Block nesting-level and count values are retained in the block
headers to assist name resolution by later phases.

2. CHECK and NOCHECK headers contain block nesting-level and count
values for use by Phase KT.

Licensed Material - Property of IBM Section 2: Method of Operation

81

3. Special entry-names, consisting of FF00 and a 2-digit block-count
number, are generated for BEGIN and ON-BEGIN blocks.

4. DECLARE statements (statements numbers 2 and 8) and DEFAULT
statements (statement number 4) are not required in the main text
stream: they are included in the dictionary-text stream.

5. ALLOCATE statement headers only appear in the main text stream to
mark the statement position (statement number 10). The identifier
and its attributes (if any) are included in the dictionary text
stream.

6. There are no chains in the main text stream output from this phase.

The same source program statements would result in entries being made in
the dictionary text stream as shown in figure 2.12.

Note the following features illustrated in the examgle:

1. Block nesting-level and count values are inserted in entry
statements. For other types of statement, these values are shown
in the block header.

2. A block header is created for the on-unit block created by the
expansion of source statement number 5 (see main text stream
example). The ON-BEGIN header in this block is treated as being
part of the containing block, and therefore all chains in the block
header, except the next-block chain, are set to X'FF'. The klock
header is generated for block-nesting level and count information
in the dictionary build stage.

Determination of Next Processing Phase

If stream-oriented input/output statements are found in the text stream,
they are copied into the output stream without change. A flag is set in
the phase work area to indicate the presence of such statements. When
the end-of-program indication is detected, the setting of this flag is
tested. If it is set, an XPST macro is issued to indicate that Phase EI
is to be loaded. If it is not set, the XPST macro specifies that Phase
GA is to be loaded.

82 Licensed Material - Property of IBM

Source

stmt. no.
(in hdr)
‘ Dummy level=0 | Next DEFAULT PROC/ENTRY DECLARE ALLOC
Block header block chain=FF chain j chain=FF chain=FF
- — - —— ——— —— = — — — — ——
1 : PROC header Next-item level=1 A (P,Q);
| 4 chain=FF count=1
[
| —_—— e
I "1
7 Le—ENTRY header| Next | level=1 [E;
item count=1
Block header level=1 | Next DEFAULT PROC/ENTRY DECLARE ALLOC
count=1 | block chain=FF chain Y chain chain=FF
_______________________ 4 Y
2 | DCL header Next item|BB FIXED; :
| chain=FF :
: e
3 | ®ON-BEGIN header ~ Next-item ' level=2 I Name= ‘
:: chain=FF count=2 FFO0002; :
8 [: PCL header | Next item ‘ CC STATIC, AA CHAR(5) CTL; '
Il
. }
9 L> BEGIN header | Next level=2 | Name=
item count=4 | FF0004;]
Block header level=2 | Next DEFAULT PROC/ENTRY DECLARE ALLOC
count=2 | block chain chain Y chain=FF chain=FF
r-—--—-——-- - - - - T |
3 : ON-BEGIN header | Next-item | level=3 | Name= |
| t chain=FF | count=3 | FF0003; J
P .
4 Le—DEFAULT header Next-item RANGE(X) FLOAT;
chain=FF \
Y
Block header level=3 | Next DEFAULT PROC/ENTRY DECLAREJALLOC
count=3 | block chain=FF chain=FF chain=FF |]chain = FF
y
'
Block header | level=2 |Next block DEFAULT PROC/ENTRY DECLARE | ALLOC
count=4 |chain=FF chain=FF chain=FF chain=FF | chain
10 ALLOC header | Next-item AA CHAR(3); i
chain=FF I

Figure 2.12.

Licensed Material - Property o

f IBM

Section 2:

Chaining of statements in the dictionary text stream output from Phase EE

Method of Operation 83

SYNTAX ANALYSIS - PASS_3 (PHASE_EI)

Phase EI is only loaded and executed if the source program contains GET,
PUT, or FORMAT stream oriented input/output statements. These
statements are checked for correct syntax, and output in Type 1 text
format. Diagnostic messages are issued if errors are detected.

While the stream I/0 statements are being processed, the following
functions are performed to assist processing by Phase II:

1. The contents of DO specifications within data lists are re-ordered.

2. Markers are inserted at each end of format item iterations.

PHASE INPUT

Only the main text stream output from phase EE is scanned. The
dictionary text stream is not scanned or accessed.

PHASE OUTPUT

The output consists of the main text stream in which all statements
appear in Type 1 text format in deblocked order. Only syntactically
correct statements are included.

PHASE OPERATION

Every statement in the main text stream is scanned. Statements other
than stream-oriented input/output statements are copied unchanged into
the output stream. If a GET, PUT, or FORMAT statement is detected,
appropriate routines are called to process them.

Stream oriented input/output statements can contain three main types of
item:

Options e.g., PAGE, SKIP, etc.,

Data lists

Format lists
GET and PUT statements can contain all three types of item. FORMAT
statements contain only format list items. The relationship between the
three types of statement enables common routines to be used for much of
their processing.

A file entry is inserted by default if not specified in a PUT or GET
statement.

84 Licensed Material - Property of IBM

Format List Iterations: Special markers are inserted in format lists to
indicate the beginning of the format list, and the limits of iteration
and repetition factors within the list. The markers are:

Symbolic Code Indication
name
FMATLST Xx'c8* Format list follows
FIT X*AC’ Precedes format iteration factor
FITE X*'AB* Ends the format iteration factor

DO_Specifications: The specifications contained in DO statements within
data lists are re-ordered so that they appear in a format similar to
iterative DO statements. The clause *BY 1' is inserted in DO
specifications by default if no BY clause is specified. Parentheses
around DO specifications are removed and a special marker (X'38'), which
has the same priority as a semicolon, is inserted at the end of each DO
specification. A scratch text page is used as a temporary storage area
when processing DO specifications.

The processing described above is illustrated in the following example.
The source statement:

PUT EDIT (P,Q, ((AR(I,J)DO I=1 TO 20) DO J=3 TO 4)) ((X)A,3B, (3*X)(4 B,n),A));
would appear in the output from Phase EI as follows:
PUT-header EDIT(P,Q, DO J=3 TO 4 BY 1 °38' DO I=1 TO 20 BY 1 *38°*
AR(I,J) ENDDO; ENDDO;)
FMATLST(FIT(X) (fmtA, FIT 3 fmtB FITE FIT(3*X)(FIT 4 fmtB FITE fmtd)

FITE, fmtA)FITE) FILE(SYSOUT);
FILE (SYSOUT);

Licensed Material - Property of IBM Section 2: Method of Operation 85

THE _DICTIONARY BUILD_ STAGE

The dictionary build stage consists of four phases: GA, GI, GE, and GM.
Each phase is invoked for all compilations. These phases build a
dictionary in which entries describe all identifiers and some constants
that appear in the text streams output from the syntax analysis stage.
The purpose of the dictionary is to provide easy access to any of the
information that is currently known about a particular identifier at the
time of its appearance in any data area. Later phases of the compiler
may use the dictionary to obtain this information, or to insert
information that is determined during processing.

The dictionary is built by extraction of information during several
passes of the text streams against the phases that comprise this stage.
In the final pass, each item for which a dictionary entry (or entries)
has been made is replaced by a reference to its dictionary entry. This
reference is accompanied by a brief description of the item's most
important features, thus reducing the need to access the dictionary for
regularly used information.

DICTIONARY SECTIONS

The dictionary is divided into four named sections, the names,
variables, general, and storage dictionaries. The names dictionary is
built completely in this stage. The main structures of the variables
and general dictionaries are built in this stage, but many additional
entries may be made by later phases. The storage dictionary is built in
the storage allocation stage.

Note: The formats of the various dictionary sections, and of the
entries they hold, are shown at section 5: "Data Area Layouts."

The_Names_Dictionary

An entry is made in the names dictionary for each unique identifier in
the text, including compiler-generated names for BEGIN-blocks. The
entries have fixed alignment and variable length, (see figure 5.6).

Each entry in the names dictionary contains a reference to its
associated entry in either the variables or general dictionary. The
level and count numbers of blocks containing the identifier are also
included. Entries for structure members contain references to the name
of the immediately containing structure. All entries are connected by
hash chains.

Searching the Names Dictionary (Hashing): Each time an identifier is
processed by a phase in this stage, the names dictionary must be
searched to find whether an entry for that identifier already exists.
Because an identifier may appear many times in a source program, a
hashing technique is used to avoid repeated sequential searches of the
dictionary.

When a name in the text is read, an Exclusive-Or operation is performed,
byte for byte, on that name. After each exclusive-or operation, the two
hexadecimal digits in the hash-result-byte are interchanged. The value
of the final hash-result-byte is doubled. The resulting value indicates
an offset in a 512-byte hash table. This table consists of a number of
2-byte dictionary references, each of which is the head of a hash chain

86 Licensed Material - Property of IBM

linking existing entries. The chain referenced by the hash result is
searched for an existing entry for the name. If there is no entry, the
name is added to the chain.

The scope