
Program Product 

Licensed Material - Property of IBM 

L Y33-601 0-1 

DOS 
PL/I Optimiz ing Compiler 
Program Logic 

Program Number 5736-PL 1 
(This product is also distributed as 
part of composite package 5736-PL3) 

Feature Number 8050 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Second Edition (June, 1972) 

This is a major revision of, and obsoletes, LY33-6010-0. 
Changes or additions to the text and figures are indicated by 
a vertical line to the left of the change. 

This edition applies to Version 1, Release 5, Modification 0 
of the DOS PL/I Optimizing Compiler, Program Product 5736-PL1, 
and to any subsequent version, release, and modification. 

Information in this publication is subject to significant change. 
Any such changes will be published in new editions or technical 
newsletters. Before using the publication, consult the latest 
IBM System/370 Bibliography, GC20-0001, and the technical 
newsletters that amend the bibliography, to learn which 
edition and technical newsletters are applicable and current. 

Requests for copies of IBM publications should be made to the 
IBM branch office that serves you. 

Forms for readers' comments are provided at the back of the 
publication. I f the forms have been removed, corr.ments may 
be addressed to IBM Corporation, P.o. Box 50020, Programming 
Publishing, San Jose, California 95150. All comments and 
suggestions become the property of IBM. 

~Copyright International Business Machines corporation 
1971,1972,1973,1974,1976 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, 

The internal logic of the DOS PL/I Optimizing Compiler is described in 
this manual. It is written for use by people involved in program 
maintenance or in modification of the program design. The manual 
consists of seven sections, organized as follows: 

section 1: 
Section 2: 
section 3: 
Section 4: 
Section 5: 
Section 6: 
section 7: 

Introduction 
Method of Operation 
Program Organization 
Directory 
Data Area Layouts 
Diagnostic Aids 
Appendixes 

This organization is intended to enable ease of access when the manual 
is used either for initial education purposes or for reference purposes. 

For readers who are not familiar with the compiler, descriptive text and 
illustrations are contained in sections 1 and 2, and in the first part 
of section 3~ Section 1 contains brief descriptions of the purpose and 
capabilities of the compiler, and of its relationship to the Disk 
Operating System. The first part of section 2 contains a general 
description of compiler operation, and descriptions of the housekeeping 
features that are common to all aspects of compiler operation. The main 
part of section 2 consists of descriptions of the functions and methods 
of operation of component sections of the compiler~ These descriptions 
contain references to the figures in section 5 that illustrate the 
formats of various data areas. The overall physical organization of the 
compiler is described in the first part of section 3. 

When the manual is used for reference purposes, such as diagnosis of 
possible errors in compiler operation, initial access via the directory 
in section 4 is recommended. If the compilation of a particular 
statement is to be examined, the first list in the directory indicates 
the phases of the compiler that process particular PL/I language 
features. If the execution of a particular compiler phase is being 
examined, the second directory list indicates the processing functions 
performed by each individual phase~ The lists in section 3, which show 
the functions of the main sections of code within each phase, can be 
used to identify the approximate position of a section of code within a 
phase listing. Each phase list in section 3 is accompanied by a 
flowchart for the phase. Section 6 contains details of the various 
diagnostic aids in the compiler, and describes how they can be made 
available when detailed examination of compiler operation is required. 

The attention of all readers is drawn to the two fold-out figures in 
appendixes C and D. The first shows the sequences of phase loading that 
are used in various circumstances. The second shows the main data areas 
that may be accessed during the execution of any phase. special 
reference information, such as the functions of macros used in the 
compiler, and the causes of compiler error messages, is contained in 
other appendixes. 

To enable effective use to be made of this manual, an understanding of 
the contents of the following publications is required: 

~~1LI-QE!i~izinq_Comp!le~: 
1anqyaqe_Rgi~~~£~Manug! 
Order No. SG33-0005 

October, 1973 

Preface 

3 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, 

IBM Systgm/360~TO~ 
!~bl~~-1g~guag~ 
Order Ne. GC24-3414 

October, 1973 

The following publications are associated with the program product 
described in this manual, and should be consulted as required: 

DOS R1Ll_QE!!~izing_~QIDEil~~: 
l1~age.§ 
Order No. SC33-0021 

Do~_g1Ll_QPti~izin3~Q~Eil~~: 
Installation 
order~:-SC33-0020 

~OS-R1L1-QE~!~izing~ompil~~: 
~£.!! tiQ.!L1Qg ic 
Order No. SC33-0019 

~OS PL/I_Q'p!imizi.ll.9 Compil&!:: 
Programmer's Guide 
Order No. SC33-006S 

]OS-RL/I_li~.§ig~n!_1ib~~~~: 
.R~Q~1Qgic 
Order No. LY33-6011 

~OS P1L!_lran§ien!_1i~~~~Y: 
Pro~~.!!LLogi£ 
Order No. LY33-6012 

The availability of a publication is indicated by its ~e kg~, the first 
letter in the order number. The use keys and their indications are: 

G - General: available to all users of IBM systems, products, and 
services without charge, in quantities to meet their normal 
requirements; can also be purchased by anyone through IBM branch 
offices. 

S - Sell: can be purchased by anyone through IBM branch offices. 

L - Licensed material, property of IBM: available only to licensees of 
the related program products under the terms of the license 
agreement. 

4 Licensed Ma te.r ial - Property of IBM 



Section 1: Introduction • 
Purpose of the Compiler • 
~he Compiler and the Disk Operating System 
COMPILER INPUT AND OUTPUT • 
General Organization of the Compiler 

Character code Dependence • 

Section 2: Method of operation 
Introduction 
Special ~acro Instructions and Beoks 
Register Naming Convention 
tata Representation 

Format of Input 
Internal 'I'ext Formats • 
'l'he Dictionary 

Page-handling Scheme 
'Ihe Page Area • 
Page Size • 
Relationship between Main Storage and the Spill Data Set 
Page Status • 
Page status Chains 

Basic page-handling Operations 
Selection of a Spill Candidate 

Text Page Handling 
Dictionary Page Handling 

CONTROL STAGE 
Initialization Phase (Phase AE) 

Phase Input • 
Phase output 
Phase Operation • 

Initialization of the compiler Communication Area • 
Opening and Initialization of Data Sets • 
Processing the Compiler Options • 
Calculation of Page Area 
Identification of Interrupt-handling Routine 
Compiler Headings • 

~he Resident Control Phase (Phase AA) 

~hase Cperation • 
Com~ilation Start Routine (AAOOOO) 
Fhase Loading Routine (AA0300) 
Page-handling Routine (AA4000) 
Spill Supervising Routine (AA6000) 
Interrupt-handling Routine (AA0600) 
Compilation End Routine (AA0500) 

'lHE FREPROCESSCR S'IAGE 
48-Character/BCD/INCLODE Preprocessor (Phase BA) 

Phase Input • 
Phase Output 
Phase Operation 

Compile-time Statement Preprocessor (Phase CAl 
Phase Input • 
Phase Output 
Phase cperation • 

Phase Structure 
Sequence of Processing 
Input/Output Subroutines. 
Building and Osage of Preprocessor Dictionaries 
Reading and AnalYSis of Scurce Text 
Processing of Compile-time statements • 

Preprocessor Diagnostic Message Editor (Phase CE) 

Licensed Material - Property of IBM 

Contents 

5 
5 
6 
6 
8 

12 

15 
15 

• 18 
18 
18 
19 
21 
22 
23 
23 
23 
24 

24.2 
25 
25 
27 
27 
30 

34 
35 
35 
35 
36 
36 
36 
37 
39 
40 
40 
41 
41 
41 
43 
45 
45 
46 
46 

47 
49 
49 
49 
49 
52 
52 
52 
53 
53 
53 
54 
54 
55 
55 
61 



Order No. LY33-6010-1, Page Revised by TNL LN33-6115, October 1976 

Phase Input • 
Phase output 
Tables Used by the Diagnostic Message Editor Phase 

~he Message List 
The Reyword List 

Phase operation 
~he ~essage Sort 
~essage Decoding 
~essage Editing Facilities 
Implementation of conpiler Opticns 

I Syntax Tatle Builder (Phase Ee) 

SYNTAX ANALYSIS STAGE 
Syntax Analysis PASS 1 (PHASES EA AND EC) 

Phase Input • 
Phase output 
Phase Operation • 

Source 'Iext Read-in • 
State~ent ~unbering 
Statement Headers 
Prefix Frocessing 
~eyword Identification 
Verb Identification • 
Statement Analysis 
Statement Error Handling 
Program Block-structure Checking 
Chaining of Nested Blocks 

Syntax Analysis Pass 2 (PRase EE) 
Phase Input 
Phase output 
Phase Cperation 

statement Analysis 
De-nesting of Contained Blocks 
tetermination of Next Processing Phase 

Syntax Analysis Pass 3 (Phase EI) 
Phase Input • 
Phase Output 
Phase Operation 

THE DICTIONARY BUILD S'IAGE 
Dictionary Sections 

The Names Dictionary 
The Variables Dictionary 
The General Dictionary 

Explicit Declarations (Phase GA) 
Phase Input • 
Phase Output 
Phase operation • 

Use of Tables r Lists r and Directories. 
Sequence of Processing 
Attributes Processing 

Contextual Declarations (Phase GI) 
Phase Input 
Phase Output 
Phase Operation 

Detection of contextual Declarations 
Declaration Expressions (Phase GE) 

Phase Input • 
Phase output 
Phase Operation 

Sequence of Processing 
Construction of Aggregate Tables 
Building the Declaration-expressions File f. 
Processing Array-bounds Expressions • 
Processing Variables with the DEFINED Attribute • 
Processing Variables with the GENERIC Attribute • 
Processing Label Variables 
Processing ALLOCATE and LOCATE Statements • 

61 
62 
62 
63 
64 
64 
65 
65 
65 
65 
68 

69 
69 
69 
70 

70.1 
• 70. 1 

71 
72 
72 
73 
73 
74 
75 
75 
76 
79 
79 
79 
80 
81 
81 
82 
84 
84 
84 
84 

86 
86 
86 
87 
87 
89 
89 
89 
90 
90 
92 
93 
96 
96 
96 
96 
96 
99 
99 

.. 99 
.100 
.100 
.100 
.102 
.103 
.103 
.104 
.104 
.104 

Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Implicit Declarations and Names Resolution (Phase GM) 
Phase Input • • • • • 
Phase Output 
Fhase Operation • • 

sequence of Frocessing 
Implicit Declarations • • 
Resolution of Nanes • • • • • • • • 
Resolution of Constants • • • • • • • • • • 
Argument Lists and SubscriFts 
Euilt-in Function [eclarations •••• 
~erging ALLCCA~E and LOCATE Statements 
processing Declaration-expressions statements • • • • • 

EXPRESSION ANALYSIS ~ND ~EXT FOR~A~TING S~AGE • • 
~erging of Declaraticn EXFressicns (Phase IA) • 

Phase Input • • • • • • 
Phase Output •• • • • • • • • • • • • 
Phase Operation • '. • • • • • • • • • • 

Repositioning of Declaration Expressions 
Construction of Locator Chains for Based Variables 
Repositioning DEFINED Statement Information • • 
Generation of Structure-mapping Information 
processing of Array INITIAL Assignments •• 
special Processing of Built-in Functions 
processing of ALLOCATE and FREE Statemen ts •• '. • • 

Matching of Data-aggregate Arguments (Phase ID) 
Fhase Input • • • • • • • 
Phase Output •••••• 
Phase, Operation •••••• 

Sequence of Frocessing 
~atching of Argunents and Paraneters to Programmer-defined Procedures 
Checking Argu~ents to Built-in Functions • • • • 
processing of Operands in Input/Output StateIrents • • 
Generation of Aggregate Temporary Operands 
Processing LEAVE Statements • • 
Processing SELECT groups 

Expansion of Data Aggregates (Phase IE) 
Phase Input • • • • • • • • 
Phase Output ••••••• 
Phase Operation • • • • • 

sequence of Processing 

• .106 
• .106 
• .106 

• • .107 
• .107 

• •• 107 
• •• 107 

• .108 
• • • 109 

• 110 
• .110 
• .110 

• .111 
• .112 
• .112 
• .112 
• .113 
• .113 
• • 114 
• • 116 

• •• 116 
• .117 
• ·117 

• •• 118 
.119 

• .119 
• .119 
• .120 

• • • • • • .120 
• .121 
• .121 

• • • • • • • '122 
• .122 

• •• 124 
• .124.1 

• .125 
• .125 
• .125 
• .125 
• .125 

Processing of Assignments • • • '. • • • • • • • • • • • • .126 
Processing structure BY NA,ME Assignments • • •• 
Processing Aggregates in Stream I/O statements 
Processing of Based Structures • • • • • • • • 

• .129 
.•••••••••• 130 

• .131 
ProceSSing Aggregates in Procedure Calls and Function References • • • • • .132 

Expression Analysis and Text Translation (Phase II) 
Phase Input • • • • • '. • 
Phase Output • • • '. • • • • • • 
Phase Operation • • • • • • • '. 

Translation to Type-2 Text 
Translation of DO and IF Statements 
ExpreSSion Analysis • • • • • • • 
Qualified-name Temporary Operands (Q-temps.) •••• 
Analysis of Built-in Functions • • ,. • 
Argument and Parameter Matching • • 
Selection of Generic Entry Points . 
Text Handling Features Organized by Phase II 

STATEMENT PROCESSING STAGE • • • • • . 
Text Handling During the statement Processing stage 

Attributes and Cross-references Listing (Phase IK) 
Pllase Input ,. • • 
Phase Output • • • • • • • • '. • • • • • • • 
Phase Operation • '. • • • '. • • • • • ,. • • • 

Collection of Identifier Cross-references • 
Sorting of Identif iers. • • • • .• • • • • • • . 
Output of Attributes and Cross-reference Listings • • 

Licensed Material - Property of IBM 

• .134 
• .134 
• .134 
• .135 
• .135 
• .140 
• .141 

• • .142 
• ·143 
• .143 
• ·144 
• ·144 

• .146 
• • • • • .147 

• • • • • • .150 
•••••• 150 

• .150 
• •• 150 

• .150 
• .151 
• .151 



Order No. LY33-6010-1, Page Revised by TNL LN33-617S, October 1976 

IF-statement Processing (Phase KA) 
Phase Input 
Phase Output 
Phase Operation • 

Creation of Statement-type Chains • 
Frocessing of IF statenents and WHILE Clauses • 
Frocessing Identifiers Declared with the UNALIGNED Attribute 
Resolution of string ~empcrary Cperands 
tetection of Optimizable On-units • 

Interlanguage CoroRunicaticn (Phase 1M) 
PHASE INPU'! 
Phase Output 
Phase Operation 

General Considerations 
sequence of processing 
Processing Invocations of PL/I from COBOL or FORTRAN 
Processing Invocations of COBOL or FORTRAN from PL/I 
Processing COBOL Files 

Array and structure Mapping (Phase IQ) 
Phase Input 
Phase Output 
Phase Operation • 

Processing MAF Text Tables 
Frocessing RESDES 1ext 1ables 
Processing ALLOC Text 'Iables 
Frocessing FREE Text 1ables -
Processing CONCAT Text Tables 
processing Assignment Text Tables 
Calculation of Expression-result Lengths (The CALLEN Subroutine) 

Subscript Processing (Phase RE) 
Phase Input 
Phase Output 
Phase Operation 

sequence of processing 
Optimized Aggregate Assignments • 
Processing compiler-generated DO-loops 
Processing iSUB-defining Text Tables 
Processing Subscripts • 
Processing the SUBSCRIPTRANGB Condition • 
Processing Array INITIAL ASSignments 

DO-statement Processing (Phase RI) 
Phase Input • 
Phase Output 
Phase Operation • 

WHILE, UNTIL, or REPEAT Clause 
Multiple Loop specifications 
Optimization Indication • 
Variable TO and BY clauses 
Do-loops in Array ASSignments • 

System-interface statement processing (PHASE RT) 
Phase Input '. 
Phase Output 
Phase Operation 

Sequence of Frocessing 

., 

Processing of Statements Requiring System Interface Pacilities 
Processing PROCEDURE, BEGIN, and ON~EBGIN Statements 
Processing RETURN Statements 
processing STOP and EXIT Statements 
Processing the CHECK Option • 
Identification of Returned VAR1ING CHAR Strings 

IProcessing File Declarations (Phase KL) 
Phase Input • 
Phase Output 
Phase Operation • 

Checking of File Declarations 
I Processing OPEN, CLOSE, and RECORD I/O Statements (Phase KM) 

Phase Input • . I. 
Phase Output 

.. 

·0 

.153 

.153 

.153 
.153 
.154 
.154 
.158 
.159 
.159 
.160 
.160 
.160 
.160 
.161 
.161 
.161 
.162 
.163 
.165 
.165 
.165 
.165 
.167 
.167 
.168 
.168 
.168 
.168 
.169 
.,170 
.:170 
.170 
.'170 
.170 
.171 
.171 
.172 
.172 
.174 
.174 

•• 175 
.:175 
.176 
.:176 
.177 
.177, 
.178 

.178.1 
.'179 
.180' 
.180 
•. 180 
.180 
.180 
.180 
.181 
.184 
.,184 
.,184 
.185 
.187 
·187 
.187 
.,:187 
.187 
.190 
.190, 
.190 

Licensed Material - Property of IBM 



Order No. LY33-6010-1, page Revised by TNL LN33-6115, October 1976 

Phase Operation • '. • • • • • .• • • • • • • • • • • • • • •• .191 
Sequence of Processing • • . • • • • • • • .191 
Optimization of File Opening and Closing • • • . • •••••• 191 
processing OP!N and CLOSE Statenents . • • • .192 
Processing Record I/O statements •••• 192 

processing Strean I/O statenents (Phase ~C) . . . . . . . . . .199 
Phase Input. • • • • • •• • • • • • • • • •• 199 
Phase Output • • • • • • • • • •• 199 
Phase Operation •••••• • • • • • • .200 

sequence of Processing ••••••••••• 200 
processing G~~ and PU~ Text ~atles •• 201 
Processing DA~AE.Text ~ables in List-directed I/O Statements ••••••• 202 
Processing DA~AE Text ~ables in Data-directed I/O Statements ••• 203 
Processing Edit~directed I/O Statements •••• 203 
End-of-statement Processing • • • • • • • .204 
Processing FORMA~ Statements ••••• • • • • • .205 
Generation of Data~transmission-control Subroutines. • .205 
Identification-of Lf.brary Subroutines Required for Conversions •••••••••• 206 

Special-case Processing '. (Phase 1<V) • .207 
Phase Input • • • • • • .207 
Phase Output • • • '. • • • • • • • • • • 207 
Phase Operation • • • • • • .207 

Marking of Flow Units •••• • • • • • .208 
Optimization of compiler-Generated Branching Instructions and Labels •• 208 
De-nesting of Arguments to Programmer-defined Functions and Procedures •• 208 
Optimization of Exponentiation and Multiplication Operations (Strength Reduction) .210 
Optimization of Comparison Operations. • • • •• .210 
Optimization of Decimal Arithmetic Operations. • • • • • • • • • • .211 
Optimization of On-units • • • • • • • • • • • • • • .212 

Built-in Function and Pseudovariable Processing (Phase KK) •••• • •••••• 213 
Phase Input • • • • • • '. • • 2 1 3 
Phase Output • • • • • • • • • • • • • • • • • • • .214 
Phase Operation •••• • • • '. • • • • • • • • .214 

Generation of Text Tables for Inline Evaluation '. • • .215 
Generation of Text Tables for Library Calls. • • • • • • .217 
Text Del~ted by Phase 1<1< • • • • • • • • • • • • • .217 

String-handling Operations - Part cne (Phase OC) •• 218 
Phase Input. • • • • • • • • • • • .218 
Phase Output • • • • • • • • • • • • • • • • • • • • .218 
Phase Operation • • • • • • • • • • • • • • • • .218 

Processing String Assign~ents • • • • • • • • • • • .219 
Processing Concatenation Operations • • • .220 
Processing BOOL and TRANSLATE Built-in Functions, and AND, OR, and NOT Operators .220 
Processing Comparison Operations • • • • • • •• • • • • • • • • • • • • • • .221 

string-handling Operations - Part 2 and complex-expression Expansion (Phase OX) •• 223 
Phase Input • • • • • • • 223 
Phase Output • • • • • • • • • • • • • • .223 
Phase Oper at ion • '. • • • • • • • • • • • • • • • • • 224 

ProceSSing String Built-in Functions • • • • • • • • • .224 
Processing BC and BeB Text Tables • • • • • • • • • .,224 
Processing Expressions with Conplex Cperands • • • • • • • • • .225 
~outine SCANLAB/SCANSN • • • • • • •• .' 226 

Phase input • • • • • '. • • .227 
Phase Output •••••• • • • • • .227 
Phase operation • .• • • • • • • • • •••••• 228 

P~oce~sing Picture specifications. • • • • • • • • • • • .228 
Frocessing Text Tables • • • • • • .228 
Processing Convers ions. • • • • • • • • • • • • 228 

GLOBAL OPTIMIZATION STAGE • • • .• • • • • • • • 
Glossary. of ~'erms Used in Global Optimization 

Extraction 'Of Alias and Call Information (Phase CAl 
Phase Input • • • • • • • 
Phase OutP\1t. 
Phase Operation • • • • • • 

Value Lists for Variables • • • • • 
Use of Value List Transfer Tables • 
Alias Information SUmmaries • • • • 

Licensed Material - Property of IBM 

• .231 
••••• 231 

• • • • • • • .235 
• • • • • .235 

.235 
• .236 
• .236 

• • • • • • • • • .237 
• .238 



Order No .. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Value Lists for Blocks 
Extraction of Variables Usage and Flowpath Information (Phase OE) 

Phase Input 
Phase Output 
Phase Cperation 

Reorganization of ~ext 
Extraction of Variables Usage Information 
Extraction of Flow Path Information 
Consolidation of Block Information 
Extraction of On-unit Information • 

Flow Analysis (Pbase 01) 
Phase Input .. 
Phase Output 
Phase Cperation 

Use of Tables and Lists 
Extraction of Forward-connector Information 
Collection of Backward Connector Information 
Calculation of Level Numbers 
Determination of Back Dominators 
Identification of Loops and Back Targets 
Extraction of "Busy-on-exit" Information 
Insertion of Flow Analysis Information in the Dictionary and Text • 

Text Optimization (Phase OM) 
Phase Input .. 
Phase Output 
Phase Operation .. 

Common Expression Elimination .. 
Backward-movement Processing 
strength Reduction Processing .. 

STORAGE AND REGISTER ALLOCATION STAGE .. 
Symbol Table Resolution (Phase PC) 

Phase Input .. 
Phase Output 
Fhase Cperation 

Processing Requirements 
sequence of Processing 

Constants Analysis (Fhase PAl 
Phase Input • 
Phase Output 
Phase Operation 

Sequence of Frocessing 
Creation of Pseudo Constants Pool Entries • 
Types of Constant Pool Entries 
Text Deleted by Phase PA 

Storage Allocation (Phase PEl 
Phase Input • 
Phase Output 
Phase Operation 

Building the storage Dictionary • 
Base Numbering '. 
Relocation of Offsets 
storage for Faraneters 
storage for Record and Key Descriptors 
Text Frocessing 

Addressing of Storage (Phase PI) 
Phase Input • 
Phase Output 
Phase Operation 

Relocation of Constants Pool Offsets 
Generation of Prclogue Code for Addressing and Initialization 
Generation of Inline Addressing Code 
Addressing Variables in Outer Elocks 
Allocation of Temporary storage • 

Optimized Addressing (Phase QI) 
Phase Input • 
Phase Output 
Phase Operation • 

Addressing and Temporary storage Information 

·0 

.239 

.241 

.241 
.241 
.242 
.242 
.244 
.244 
.246 
.246 
.248 
.248 
.248 
.248 
.248 
.250 
.251 
.251 
.251 
.252 
.253 
.254 
·255 
.255 
..255 
.255 
.256 

.258.2 
.260 

.262 

.263 

.263 

.263 

.264 

.264 

.265 

.267 
·267 
.267 
.268 
.268 
.268 
• 270 
.272 
.273 
.273 
.273 
.274 
.274 
.275 
.276 
.276 
.276 
.276 
.277 
.277 
.277 
.278 
.278 
.279 
.281 
.281 

.0 .281 
.283 
.283 
.283 
.283 
.284 

Licensed Mate.rial - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6115, october 1976 

Addressing Code for Variables in Outer Blocks 
Relocation of Temporary Storage Offsets • 
Loop Processing 

Register Allocation (Phase QA) 
Phase Input 
Phase output 
Phase Operation • 

Elimination of Unnecessary Storage Operands (Phase QE) 
Phase Input 
Phase output 
Phase Operation • 

FINAL ASSEMBLY STAGE 
Cbject Code Generaticn (Phases SA, SQ, st, and SC) 

Phase Input • 
Phase Output 
Phase Cperation 

standard Information in Text Table Area 
Code-skeleton Arrays 
Eit-strip Arrays 
Special Case Coding 
Extended-code Generation 
Identification of Returned VARYING CHAR Strings 

Label Resolution (Phase SK) 
Phase Input • 
Phase Output 
Phase operation • 

sequence of Processing 
Elimination of Redundant Instructions • 
Establishment of Region Numbers and Boundaries 
Building the Label Table 

I Insertion of Alignment Code • 
Implementation of the FLOW and COUNT Options 

Object Module Assembly (Phase SI) 
Phase Input '. 
Phase Output 
Phase Operation • 

Sequence of Processing 
Generation of ESD Records • 
Generation of TX1 and RLD Records • 

Object Module Listings (Phase SM) 
Phase Input • 
Phase Output 
Phase Operation 

Processing the AGGREGATE Opticn 
Frocesslng the S10RAGE Option 
Processing the ESD Option 
Processing the MAP Option • 
Processing the OFFSET Opticn 
Processing the LIS1 Option 

Editing of Diagnostic Messages (Phase UA) 
Ptlase Input • 
Phase Output 
Tables Used By The Diagnostic-message Editor Phase 

The Message List 
The Keyword List 

Phase Operation • 
The Message Sort 
~essage Decoding 
~essage Editing Facilites • 
Implementation of Compiler OFt ions 

The Compiler Dump Phase (Phase AI) 
Phase Input 
Phase Output 
Phase Operation 

Section 3: Program organization • 
Introduction 

Licensed Material - property of IBM 

.284 

.285 

.286 

.290 

.290 

.290 

.290 

.293 

.293 

.293 

.293 

.295 

.295 

.296 

.297 

.297 

.299 

.300 

.300 

.301 

.301 

.302 

.303 

.303 

.303 

.303 

.303 

.304 

.304 

.305 

.306 

.306 

.307 

.307 

.307 

.308 
·308 
·309 
.312 
.315 
.315 
.315 
.315 
.316 
.316 
.316 
.316 
.317 
.317 
.319 
.319 
.320 
.321 
.322 
.323 
·323 
.323 
·324 
·32LJ 
·325 
·327 
·327 
·327 
·328 

.331 

.331 



Basic Organization of the compi1er • • • • • • • • • .331 
Determination of Phase Loading Sequence • • ~333 

Loading of Diagnostic Stage Phases • • • • • • •• 336 
Effects of the NOSYNTAX, NOCOMPILE, and NOLINK Options on the Phase Loading 
Sequence • '. • • • . • • • • • • • • • • • • • • • • • • • 336 

Basic structure of a Phase • • • • • • • • • • •••••• 344 
Organization of Individual Compiler Phases • • • • • • •• 347 

Resident Control Phase (Phase AA) • • • • • • • • • • • • • • .348 
Initialization Phase (Phase AE) • • •• ••• • • • • • • • • • • • .351 
48-Character Preprocessor Phase (PRase BA) • • • • • • •• 353 
Compile-time Statement Preprocessor (Root Modu1e CA) • • • • • .355 
Compile-time Statement Preprocessor (Sub-phase CAl) '. • .356 
Compile-time statement Preprocessor (Sub-phase CB, Module CB, CB1, and CB2 •• 357 
Compile-time Statement Preprocessor (Sub-phase CC, Module ec , ee1, and ee2 •• 359 
Preprocessor Diagnostic-message Editor (Phase CE) • • • • • .364 
Syntax Analysis Pass 1 . (Phase EA) • • • • • • • .368 
Syntax Analysis - Pass 2 (phase EE) • • • • • • • • • .371 
Syntax Ana1ysis - Pass 3 (Phase EI) ••• 374 
Explicit Declarations (Phase GA) • • • • • • • . • .376 
Contextual Declarations (Phase Gn • • • • • • .380 
Declaration Expressions (Phase GE) • • • • • .382 
Implicit Declaration (Phase GM) • • • • • • • .384 
Merge Declaration-expressions (Phase IA) • • • . • .387 
Matching of Data-aggregate Arguments (Phase ID) • • • • • • .391 
Aggregate Expansion (Phase IE) •••••• . • • • • .394 
Expression Analysis and Text Formatting (Phase II) • • • • • • • .397 
Attributes and Cross-reference Listing (Phase IK) • • • • • •• 401 
IF-statement Processing (Phase KA) •••• • .404 
Interlanguage Communications (Phase 1M) • • •• • •• 407 
Array and Structure Mapping (Phase 10) • • • • • • • • • • • • • .410 
Subscript Processing (Phase KE) • • • • • • • • • _ 412 
DC-statement processing (Phase ~I) • • • • • • • • • • .416 
System-Intertace-staterrent Processing (Phase KT) •••••.••• 418 
CPEN/CLOSE and File Declaraticns (Fhase ~l) •• 421 
Record I/C Staterrent Processing (Phase K~) . • • • • . .424 
Stream I/O Staterrent processing (Phase KO) • • • • • • .428 
Special-case Processing (Phase KV) •••• • • • •. ••• • • .431 
Extraction of Alias and Call Intor~ation (Phase CAl • • • • . .433 
Extraction of Variable Usage and Flowpath Intormation (Phase OE) ••• 435 
Flow Analysis (Phase on ••••• • • • • • .437 
Text Optimization (Phase OM) • • • • • .439 
Built-in l?unction Processing (Phase KK) . • . • • • • • . • .441 
String Handling Operations - Part 1 (Phase OC) . • • • . .444 
String Handling Operations - Part 2 (Phase OX) ••• 447 
Arithmetic Operations and Conversions (Phase KX) _ •• 450 
Symbol-tab1e Resolution (Phase PC) . . • • • •• 455 
Constants Analysis (Phase PA) • • • • • • • • • • • . .458 
Storage Allocation (Phase PEl • • • • • • • • • .461 
Addressing of storage (Phase PI) •••••• • • • • • • • • • .465 
Cptimized Addressing (Phase QI) . • • . • • . • • • • .468 
Register Allocat ion (Phase OA) • • • • • • • • _ .471 
Elimination of Unnecessary Storage 0ferations (Phase GE) •• -473 
Cede Generation (Phases SA, SQ, SD, and SC) • - ••• 476 
Label Resolution (Phase SK) • • . • • • • • • • .480 
Final Assembly (Phase SI) • • • • • • .483 
Listings (Phase SM) • • . • .485 
Diagnostic-Message Editor (Phase UA) • • . • • .487 
Dump Phase (Phase AI) • • • •. •• 490 

Section 4: Directory ........ .494 
Introduction • • • • • • . . • • • . • • • • • • • 494 
Compiler Processing Functions Listed by Language Feature • • • • •• • 495 
Compiler Processing Functions Listed by Phase • • • • • • •.• • .521 

Licensed Materia1 - Property of IBM 



SECTION 5: DATA AREA LAYOUTS 
Introduction • • • • • • • • 
Communication Area - XCOMM • 
Basic Data-Handling Information 
Dictionary Entries • • • • • • • 
Operand Code Bytes • • • • • • • 
Six-byte References to Operands • • • . 
Compile-Time Data Element Descriptors (DEDs) • • . • . • 
Type-l Text Formats • • . • • • 

Main Text Stream, on Output from Phase EA 
Main Text Stream, on Output from Phase EE 
Main Text Stream, on Output from Phase GM • • • • . 
Dictionary Text stream, On Output From Phase EE 
Declaration Expressions Text Stream, on Output from Phase GE 
"I'ext Code Bytes In Type-l Text • • • • • • 

Type-2 Text Formats •••••••••• 
Pseudo Constants Pool (PCP) 

Output to the PCP from Phase PC 
Output to the PCP from Phase PA 

Extended Code Formats ••••• 
Preprocessor Dictionary Entries 

• • .551 
• •• 551 
• •• 551 

•• 564 
• •• 566 
• •• 585 
• •• 592 
• • .,598 
• •• 599 
• • .600 
• • .601 
• •• 602 
• •• 604 
• •• 605 
"' •• 610 
• •• 614 

.659 
• •• 659 
• •• 666 

.669 
• • .673 

SECTION 6: DIAGNOSTIC AIDS. • • • .• 676 
Introduction. • • • • • • • • . . • . • • .676 
Use of the Compiler Dump Option . • • . . •• 676 

Use of the Dump Option without a Value List (Compiler Abort Dump) ••• 677 
Use of the Dump Option with a Value List (Interphase Dump or Unformatted Compiler 
A.bort dump) •••••••••••••• • • • • • • .679 

Use of Registers in the Compiler Program. . . • •• 681-
Use of Compiler Debugging Macros. . • • • . • • . . .582 

Use of the XBUG Macro • • . • • • • • • • • • • . •••• 682 
BGL = 0 (Suppression ot Debugging Code) . • • . • •• 682 
BGL=L (The Label Trace Facility) • . • • • . . • • • •• 682 
BGL=E (Execution Trace Facili ty) • . • • • . • • . • • .683 
Control of Tracing Code Generation. (The XTRSW Macro) • • .683 
Compiler Instructions . . • • • • . • • . . • • .684 

Use of the XDYDP Macro (Dynamic Dumping Facility) • • .684 
Use of the DYSTMT Option • • • . • . • • • . • . . • •• 685 

Facility for Testing Modified Phases • . . • • • • •• 687 
Compiler Diagnostic Messages • • • • • .688 

SECTION 1. APPENDIXES 

APPENDIX A: FUNCTIONS OF THE COMPILER MACROS • 
Module Construction Macros • 
Input/Output Macros • • . • 
Text Accessing Macros 

General Text Accessing Macros 
Sequential-Text Accessing Macros (Ty~e-l Text or Extended Code) 
Type-2 "Iext-Accessing Macros • 

Dictionary Accessing Macros 
General Purpose Macros • • • • • 
Special Purpose Macros • • • • • 
Debugging Macros • • • • • • • • 
Books Invoked by a Copy Staterrent 

APPENDIX B: COMPILER-ERROR MESSAGES • 

APPENDIX C: SEQUENCE OF PHASE LOADING •• 

APPENDIX D: CREATION AND USAGE OF DATA AREAS 

GLOSSARY • • • . • • 

INDEX 

Licensed Material - Property of IBM 

• •• 690 

· •••• 690 
• •• 690 
• •• 690 
• •• 691 
• •• 691 

• .691 
• •• 692 

• .692 
• • • • .692 

• • .694 
• •••• 697 

• •• 697 

• •• 699 

• ••• 707 

• .708 

•••• 709 

•• 715 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Figures 

Figure 1.1. Data sets and input/out~ut devices used by the corrpiler 7 
Figure 1.2. General organizaticn cf the compiler, showing control and data flow • 10 
Figure 1.3. General organization cf storage • • • • • • • • • • • • • • • ••• 11 
Figure 2.1. Relationship of compiler stages to major operations 16 
Figure 2.2. Phases and functions of compiler stages 17 
Figure 2.3. Flowpaths of input records. • • • • • • • • • • • • • • • • 20 
Figure 2.3.1. The relationship tetween the page area and the spill data set •• 24.1 
Figure 2.4. Routines and subroutines called in text page handling operations •• 28 
Figure 2.5. Routines and subroutines called in dictionary page handling operations • 33 
Figure 2.6. Control-phase routines and subroutines used in page-handling operations • 42 
Figure 2,.8. structure of Phase CA • • • • • • • • • • • • • • • • • • • • • • • • • • 53 
Figure 2.9. (Part 1 of 2). Code bytes used in compile-time statements •• 57 
Figure 2.9. (Part 2 of 2). Code bytes used in compile-time statements • 58 
Figure 2.10. General forrrat cf a statement in Type-l text ••••••• • 72 
Figure 2.11. Chaining of statements in the main text stream output frcm Phase EA • 78 
Figure 2.12. Chaining of statements in the dictionary text stream output from Phase 
EE • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .. • • • • • 83 
Figure 2.13. SurrRary of streaR I/C data proceSSing performed by Phase IE .132 
Figure 2.14. Friority levels cf o~erators commonly used in text translation .136 
Figure 2.15. (Part 1 of 3). An example of translation from iype-1 text to Type-2 text 138 
Figure 2.15. (Part 2 of 3). An example of translation from Type-1 text to Type-2 text 139 
Figure 2.15. (Fart 3 of 3). An example cf translation froa ~y~e-l text to Type-2 
text • • • • • • • • • • • • • • • • •• • • • • • • • • • 140 
Figure 2.16. Use of overflow pages and chaining of text •••••..•••••••• 149 
Figure 2.17. Statement-type chains created by Phase KA ••••••••.••••••• 154 

I Figure 2.18. Sirr,plified illustration of prologue code for a procedure block \'1i th a 
secondary entry point. . . . . . . . . . . • • • . . . . • • • . . . . . . . .• .183 
Figure 2.19. Creaticn of reccrd-descriptors by Fhase ~M • • • • • • .197 
Figure 2.20. Text tables used in stream I/O statements prior to Phase KC •• 201 
Figure 2.21. Example showing flow units, forward and backward connectors, and level 
numbers • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .232 
Figure 2.22. Illustration of back dominators ••••• • • • .233 
Figure 2.23. Illustration showing back targets, forward targets, and loop depth 
n wnber s • • • • • • • • • • • • '.. • • • • • • • • • • • • • • • • . • • • . . .". 2 3 4 
Figure 2.24. Arrangement cf tables and chaining in rrain text streaR recrganized by 
Phase OE • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .243 
Figure 2.25. Forrrat of a loo~-data entry created in the general dicticnary by Phase 
01 •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .254 
Figure 2.26. Cffset counter table for a DSA • • • • .• •••• • • • • • • .275 
Figure 2.27. Relocation of constants pool offsets ••••••• 278 
Figure 2.28. Initialization of locators and descriptors •••• .280 
Figure 2.29. Allocation of general registers for program execution. • • • .292 
Figure 2.30. Use of directories to locate code-generation information •.•••••• 299 
Figure 3.1. Phase loading operations. • • • • • • • • • • • • • • • • • • •••• 335 
Figure 3.2. (Part 1 cf 6). Conditions d,etermining phase loading sequence • • • .338 
Figure 3.2. (Part 2 of 6). Conditions determining phase loading sequence ••••••• 339 
Figure 3.2. (Part 3 of 6). Conditions determining phase loading sequence. . .340 
Figure 3.2. (Part 4 of 6). Conditions determining phase loading sequence •• 341 
Figure 3.2. (Part 5 of 6). Conditions determining phase loading sequence. • .342 
Figure 3.2. (Part 6 of 6). Conditions determining phase loading sequence •• 343 
Figure 3.3. Indications of XOPPHSl bit settings •••• • .344 
Figure 3.4. General format of a compiler module • . • • • • • • • • .345 

Iicensed ~aterial - Property of IE~ 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Figure 5.1. Communication Area - XCO~M • • • • •• • • • .563 
Figure 5.2. Page-space format • • • • • • • •• 564 
Figure 5.2.1. Format of page header table • • • • • .565 
Figure 5.3. Format of overflow page index tables in Type-2 text •• 565 
Figure 5.4. Five-byte text reference format. • • • • • • • • .565.1 
Figure 5.5. Dictionary entry types • • • • • • • • • • • • • • .566 
Figure 5.6 .• (Part 1 of 2). Format of names dictionary entries • • .566 
Figure 5.6. (Part 2 of 2). Format of names dictionary entries. • • • .567 
Figure 5.7. (Part 1 of 2). Format of variables dictionary entries •• 567 
Figure 5.7. (Part 2 of 2). Format of variables dictionary entries. .568 
Figure 5.8. Format of general dictionary block-header entries. • • • •••• 569 

. Figure 5.9. Format of general dictionary entry-constant entries. • • .570 
Figure 5.10. Format of general dictionary parameter descriptor entries ••••• 570 
Figure 5.11. (Part 1 of 3). Format of general dictionary aggregate table entries .571 
Figure 5.11. (Part 2 of 3). Format of general dictionary aggregate table entries •• 572 
Figure 5.11. (Part 3 of 3). Format of general dictionary aggregate table entries •. 573 
Figure 5.12. Format of general dictionary picture table entries. . • • . •• 573 
Figure 5.13. Formats of general dictionary constant entries ••••• • •• 574 

'Figure 5.13.1. ForRat of general dicticnary SELECT optimization table. • .574 
Figure 5.14. Format of general dictionary file constant entries. • • • • •• 575 
Figure 5.15. (Part 1 of 2). Format of general dictionary FCB entries ••• 575 
Figure 5.15. (Part 2 of 2). Format of general dictionary FCB entries •• 576 
Figur~ 5.16. Format of FCB entry STREAM I/O block. • • • • • • • • • • • .576 
Figure 5.17. Format of FCB entry RECORD I/O block. • • • • • • • • • • • .576 
Figure 5.18. (Part 1 of 2). Format of general dictionary ENVB entries •••••••• 577 
Figure 5.18. (Part 2 of 2). Format of general dictionary ENVB entries. • •• 577 
Figure 5.19. Format of general dictionary DTF entries. • • • • .577 
Figure 5.20. Format of general dictionary RECORD and KEY descriptor entries ••• 578 
Figure 5.21. contents of a RECORD descriptor •• • • • • • • • • • • • • • • .579 
Figure 5.22. Contents of a KEY descriptor. • • • • • • • • • • • • • • • • • .579 
Figure 5.23. Format of general dictionary open control block (OCB) entries •• 580 
Figure 5.24. Single optiRizaticn entry for the whole program, in the general 
dictionary. ••••••••••••••••••••••••••••••••• • .580 
Figure 5.25. Optimization entries for tlocks, in the general dictionary ••••••• 581 
Figure 5.26. (Part 1 of 4). Format of general dictionary value list entries - la~el 
variables • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 582 
Figure 5.26. (Part 2 of 4). Format of general dictionary value list entries -
parameter or DEFINED bases • • • • • • • • • • • • • •• • • 582 
Figure 5.26. (Part 3 of 4). Format of general dictionary value list entries - entry 
variabl es • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 582 
Figure 5.26. (Part 4 of 4). Format of general dictionary value list 
entries - locators • • • • • • • • • • • • • • • • • • • • • 
Figure 5.27. Format of general dictionary overflow entries 
Figure 5.28. Format of storage dictionary entries. •• • ••• 
Figure 5.29. Operand classifications ••••••••• • ••• 

• .583 
• .583 

• ••• 584 
• •• 585 

Figure 5.30. Variable operand classifications • • • •• • ••• • • • • • • .586 
Figure 5.31. (Part 1 of 2). Operand code bytes X'OO' to X'OF' 
Figure 5.31. (Part 2 of 2). Operand code bytes X'OO' to X'OF' 
Figure 5.32. Operand code bytes X'10' to X'1F' •••••••• 
Figure 5.33. Operand code bytes X'20' to X'2F' •••••••• 
Figure 5.34. (Part 1 of 2). Operand code bytes X'30' to X'3F' 
Figure 5.34., (Part 2 of 2). Operand code bytes X'30' to X'3F' 
Figure 5.35. Operand code bytes X'40' to X'4F' •••• 
Figure 5.36. Operand code bytes X'60' to X'6F' •••••••• 
Figure 5.37. (Part 1 of 2). Operand code bytes X'70' to X'7F' 
Figure 5.37. (Part 2 of 2). Operand code oytes X'70' to X'7F' 
Figure 5.38. Operand code bytes X'80' to X'FF' (see figure 5.30) 
Figure 5.39. Six-byte reference to a structure member (refer to figure 5.68) 
Figure 5.40.. Six-byte reference to a data variable • • • • • • 
Figure 5.41. Six-byte reference to a source program constant 
Figure 5.42. Six-byte reference to an EVENT or TASK variable 
Figure 5.43. Six-byte reference to a LABEL variable ••••• 

• .586 
• .587 
• .587 
• .588 
• .588 
• ·589 
• ·589 

·590 
••• 590 

• .591 
• .591 
• .592 
• .593 
• .593 
• .593 
• ·593 

Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

Figure 5.45. Six-byte reference to a literal character/bit constant ••• 
Figure 5.46. Six-byte reference to a literal compiler-generated constant 
Figure 5.47. Six-byte reference to a library subroutine •••• _ • 
Figure 5.48. Six-byte reference to a label constant ••••••••••••• 
Figure 5.49. Six-byte reference to an adjustable aggregate extent ••• ~ 
Figure 5.50. Six-byte reference to a structure offset field in an aggregate 

• 594 
• 594 
• 594 
• 595 
• 595 

descriptor (BASED/REFER structure member) ••••••••• _ • • •• .595 
Figure 5.51. Six-byte reference to a non-string temporary operand _ • ,.. • ••• 595 
Figure 5.52. Six-byte reference to a non-string Q-temp.operand •• '. • • • • .595 
Figure 5.53. Six-byte reference to an adjustable string temporary operand _ • .596 
Figure 5.54. Six-byte reference to a non-adjustable string temporary operand .596 
Figure 5.55. Six-byte reference to a string Q-temp.operand (for accessing part of a 
string) ••••••••••••••••••••••••••••••••••••• 596 
Figure 5.56. Six-byte reference to the maximum length of a non-adjustable string •• 596 
Figure 5.57. Six-byte reference to the current length of a VARYING string. .597 
Figure 5.58. Six-byte reference to the maximum length of an adjustable string .597 
Figure 5.59. Contents of compile-time data element descriptors ••••• ,. .598 
Figure 5.60,. General format of statement header in Type-1 text, output from Phase 
EA to GE ••••••••••••••••••••••••• _ • ~ •• _ • • • .600 
Figure 5.61. Block chaining fields •• • • • • • • • • • • • • • • • • • ..600 
Figure 5.62. PROC, ENTRY, BEGIN, and ONB statements, in deblocked-position .601 
Figure 5.63. CALL statement, used to replace BEGIN statement in inline position .601 
Figure 5.64. statement body format for ON statements • • • • .601 
Figure 5.65. PROC,BEGIN, and ONB statements. • • • •• .602 
Figure 5.66. RETURN statements • • • • • • • • • • • • • • • • .602 
Figure 5.67. Array operands in Type-1 text • • • • • 603 
Figure 5.68. structure operands in Type-1 text ••• '. .603 
Figure 5.69. Subroutine calls and functions in Type-1 text . • • • • • .603 
Figure 5.70. Argument lists in Type-1 text ••• • • • .604 
Figure 5.71. Block headers • • • • • • • • • • • • • • .604 
Figure 5.72. statements in the dictionary text stream. •• • • • •••• 605 
Figure 5.73,. Page sub-headers • • • • • • • • 605 
Figure 5.74. Block headers • • • • • • • • • •• • .605 
Figure 5.75. Locator qualifier statements. • • • • • • •••••••• 606 
Figure 5.76. POSITION attribute statements ••••• 606 
Figure 5.77. 'Simple defined' items, with base known at compile time • • • • .606 
Figure 5.78. 'Simple defined' items, with base known at prologue execution ••••• 606 
Figure 5.79. 'Simple defined' item, with base not known until reference at execution 
time • • • • • • • • • • • • • • • • .• • • • • • • • • '. 
Figure 5.80. iSUB-defined items. • • • • • • • • • • ••••••• 

·607 
• 607 
·607 
·608 
• 608 
·609 
·609 
·609 
·610 
·610 
·611 
·612 
-613 

Figure 5.81. INITIAL assignment expressions. • ••• 
Figure 5.82. Adjustable extent expressions ••••••• _ 
Figure 5.83. Adjustable string-length expressions for non-aggregate strings 
Figure 5.84. INITIAL assignment expressions •••••• 
Figure 5.85. MAP statements. • • • • • • • • • • • ••••••••• _ 
Figure 5.86. Adjustable extent expressions •••••• _ ••••• 
Figure 5.87. Adjustable string-length expressions for non-aggregate strings 
Figure 5.88. (Part 1 of 4). Text code bytes in Type-1 text (X'OO' to X'7Ft) 
Figure 5.88. (Part 2 of 4). Text code bytes in Type-1 text (X'80 ' to X'FF') 
Figure 5.88. (Part 3 of 4). Text code bytes in Type-1 text (X'D900' to X'D97F') 
Figure 5.88. (Part 4 of 4). Text code bytes in Type-1 text (X'D980' TO X'D9FF') 
Figure 5.89. (Part 1 of 2). Operator code bytes (IOP1) in Type-2 text (X'OO" to 
X' 7 F') • • • '. • • • • • • • • • • • • ,. • • • • • • • • • • • 
Figure 5.89. (Part 2 of 2). Operator code bytes (IOP1) in Type-2 text (X'80' to 
, FF' ) • • • • • • • • • • • • • • • • • • 
Figure 5.90. (Part 1 of 2). Statement header tables in Type-2 text 
Figure 5.90. (Part 2 of 2). Statement header tables in Type-2 text 
Figure 5.91. Format of PROC/BEGIN/ONB/ENTRY tables in Type-2 text •••••• _ 
Figure 5.92. Format of Type-2 text tables. • • • ~ •••••• 
Figure 5.93. (part 1 of 2). Format and usage of the general area of Type-2 text 
tables • _ • • • • • • • • • • - - - • ,. • _ • • • • • • • • • • 
Figure 5.93. (Part 2 of 2). Format and usage of the general area of Type-2 text 
tables • • • • • • • • • • • • 
Figure 5.94. Use of the IGEN2 byte • • • • • • • •••• 
Figure 5.95. Use of the IGEN27 byte ••••••••••••••••• 
Figure 5.96. (Part 1 of 32). Usage of operands in Type-2 text tables •••• 
Figure 5.96. (Part 2 of 32). Usage of operands in Type-2 text tables 
Figure 5.96. (Part 3 of 32). Usage of operands in Type-2 text tables ••• ~ 

Licensed Material - Property of IBM 

·615 

• ·616 
·616 
·617 
·617 
·618 

-618 

·619 
·619 
-619 
·621 
·622 
"623 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
phases 
Figure 
phases 
Figure 
phases 
Figure 
Figure 

5,.96. (Part 4 of 32). usage of operands in Type-2 text tables 
5.96. (Part 5 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 6 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 7 of 32). Usage of operands in Type-2 text tables 
5.96~ (Part 8 of 32). Usage of operands in Type~2 text tables 
5.96. (Part 9 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 10 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 11 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 12 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 13 of 32). Usage of operands in Type-2 text tables 
5.96~ (Part 14 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 15 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 16 of 32) '. Usage of operands in Type-2 text tables 
5.96~ (Part 17 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 18 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 19 of 32)~ Usage of operands in Type-2 text tables 
5.96. (Part 20 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 21 of 32). Usage of operands in Type- 2 text tables 
5~96. (Part 22 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 23 of 32). Usage of operands in Type-2 text tables 
5.96~ (Part 24 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 25 of 32)~ Usage of operands in Type-2 text tables 
5.96. (Part 26 of 32)~ Usage of operands in Type-2 text tables 
5.96. (Part 27 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 28 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 29 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 30 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 31 of 32). Usage of operands in Type-2 text tables 
5.96. (Part 32 of 32). Usage of operands in Type-2 text tables 
5.97. Content of Operand 2 of a SUBS1 table after Phase KE ~ • 

.624 

.625 

.626 

.628 
• • • • .629 

• • •• 630 
• •• ,. .631 

~ . 

.632 

.633 

.634 

.635 

.636 
• ,.637 
• .638 

.639 

.640 

.641 

.642 
• .643 

.,644 

.645 

.646 

.647 

.648 
• • • • • • .649 

.650 
• .651 

.652 

.653 

5.98. (Part 1 of 2). Format of flow unit headers from Phase OE to Phase 01 • 
5.98. (Part 2 of 2). Format of flow unit headers from Phase OE to Phase 01 • 

.654 

.655 

.656 

.657 5.99~ (Part 1 of 2). Format of flow unit headers after Phase or 
5.99. (Part 2 of 2). Format of flow unit headers after Phase or • .658 

• .658 5.100. Format of hash tables in Type 2 text •••• 
5.101. General format of pseudo constants pool entries. 
5.102. Contents of the PCP after Phase PC ••••••• 
5.103. Format of object-time arithmetic DEDs ••• _ 

• • ,. '. • • .659 

5.104. Format of non-pictured arithmetic FEDs (E- or F-format) 
5.105. Format of pictured arithmetic FEDs •••• 
5.106. Format of non-pictured string DEDs and FEDs • 
5.107. Format of pictured string DEDs and FEDs • 
5.108. Format of C-format FEDs • ~ ••••• ~ • ~ • 
5.109~ Format of carriage-control FEDs •••• 
5.110. Format of program control data DEDs ••• 
5.111. Code bytes in object-time DEDs and FEDs 
5.112. Flag bytes in object-time DEDs and FEDs 
5.113. Format of symbol table list element entries. 
5.114. (Part 1 of 2) '. Format of long symbol tables • • • 
5.114. (Part 2 of 2). Format of long symbol tables ••••••••• 
5.115. Format of short symbol tables ••••••••••••• 
5.116. Format of string locator/descriptors ••••• 
5.117. Format of string descriptors •••• 
5.118. Format of aggregate locators 
5.119. Format of area locator/descriptors 
5.120. Format of array descriptors •••• 
5.121. Format of structure descriptors ......... . 
5.122. Format of descriptor descriptors for structures 
5.123. Format of descriptor descriptors for base elements of aggregates 

• .660 
• .660 
• .661 

• • • .661 
,.661 
.662 

• .662 
• ·662 

·662 
·663 

• • • ·663 
·664 
·665 
·666 

• .666 
• • • ·666 

• • ·666 
• • • ·667 

'. ·667 
,·667 
·667 
·667 

5. 124. Components of extended code ............... ,. • • • 
.668 
-669 

5.125. (Part 1 of 3). Markers inserted in extended code by code generation 

• • • • • • • • • • • • • • • • • • • • • • '. • • • • • ·670 5.125. (Part 2 of 3). Markers inserted in extended code by code generation 
• • • • • • • • • • • • • • • • • Ie • • • • • • • • • • .671 

5 .• 125. (Part 3 of 3). Markers inserted in extended code by code generation 

5.126. (Part 1 of 2). 
5.126. (Part 2 of 2). 

Preprocessor general dictionary entries 
Preprocessor general dictionary entries 

·672 
• .673 

·674 

Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

Figure 5~127. Identifier value block (IVB) entries in the preprocessor variables 
dictionary • • • • • ~ • ~ ~ • • • • • • • • • • • • • • • ~ • • 
Figure 6.1. Compiler diagnostic messages - phase identification 

Licensed Material - Property of IBM 

.674 
~689 



Order No. LY33-6010-1, Page added by TNL LN33-6079, October, 1973 

Chart 3. 1. 
Chart 3,. 1. 
Chart 3.2. 
Chart 3.3. 
Chart 3.4. 
Chart 3.4. 
Chart 3,.4. 
Chart 3,.5,. 
Chart 3.5. 
Chart 3.6. 
Chart 3.7. 
Chart 3.8. 
Chart 3.9. 
Chart 3. 1O,. 
Chart 3. 11. 
Chart 3. 12. 
Chart 3 .• 13. 
Chart 3.13. 
Chart 3. 14. 
Chart 3. 15. 
Chart 3. 16. 
Chart 3 .• 16. 
Chart 3. 17. 
Chart 3. 18. 
Chart 3.19. 
Chart 3.20. 
Chart 3 .. 21. 
Chart 3.21. 
Chart 3 .• 22. 
Chart 3.23. 
Chart 3,.24. 
Chart 3 .. 25. 
Chart 3 .• 26. 
Chart 3.27. 
Chart 3.28. 
Chart 3.29. 
Chart 3,.30,. 
Chart 3.31. 
Chart 3.32. 
Chart 3,.33. 
Chart 3 .. 34. 
Chart 3.35. 
Chart 3.35. 
Chart 3.36. 
Chart 3 .. 37. 
Chart 3.38. 
Chart 3.39. 
Chart 3.40. 
Chart 3.41 .. 
Chart 3.42. 
Chart 3.43. 
Chart 3 .• 44. 
Chart 3.45. 
Chart 3.46. 
Chart 3.47,. 
Chart 3 .• 48 .• 

Charts 

.349 (Part 1 of 2). Resident Control Phase (Phase AA) 
(Part 2 of 2). Resident Control Phase (Phase AA) • • '. .• • .. 350 
Initialization Phase (Phase AE) _ ~ _ • _ • 
48-character Preprocessor (Phase BA) ....... • • • • 

.. 352 
.354 
• 361 
• 362 
• 363 

(Part 1 of 3). Compile-time Statement Preprocessor (Root Module CAl ~ 
(Part 2 of 3). Compile-time Statement Preprocessor (Sub-phase CB) 
(Part 3 of 3). Compile-time Statement Preprocessor (Sub-phase CC) 
(Part 1 of 2). Compile-time Preprocessor Error Editor (Phase CE) 
(Part 2 of 2). Compile-time Preprocessor Error Editor (Phase CE) 

• • '. 366 
• '. • 367 

,. • 370 Syntax Analysis - Pass 1 (Phase EA) M, IK, 
Syntax Analysis - Pass 2 (Phase EE) ............. . 
Syntax Analysis - Pass 3 (Phase EI) • • • .. • ..... .. 
Explicit Declarations Phase (Phase GA) ..... .. 

.373 

.375 
• .. 379 

Contextual Declarations Phase (Phase GI) • • .. .. • .. 381 
Declaration Expressions Phase (Phase GE) • .. • • 
Implicit Declarations Phase (Phase GM) ....... 

(Part 1 of 2). Merge Declaration Expressions Phase (Phase IA) 
(Part 2 of 2). Merge Declaration Expression Phase (Phase IA) _ • 
Aggregate Argument-matching Phase (Phase ID) • .. • • • • .. • • • 
Aggregate-expression Phase (Phase IE) ............ . 

,. 383 
• • 386 

• 389 
• 390 
• 393 
.396 

(Part 1 of 2). Expression Analysis and Text Translation (Phase 
(Part 2 of 2). Expression Analysis and Text Translation (Phase 
Attribute and Cross-reference Listing Phase (Phase IK) 
IF-statement Processing Phase (Phase KA) • • • .. 
Interlanguage Communication Phase (Phase 1M) ~ • 

II).. 399 
II) •• 400 

• • • 403 
.406 

Aggregate and Structure Mapping Phase (Phase IQ) • ~ .. • • • • • 
(Part 1 of 2). Subscript Processing Phase (Phase KE) 
(Part 2 of 2). Subscript Processing Phase (Phase KE) 
DO-statement Processing Phase (Phase KI) • ~ • d 

System Interface processing Phase (Phase KT) • • 
OPEN/CLOSE and File Declarations Phase (Phase KL) 

• .409 
• • • 411 

.414 

.. 415 
· 417 
.420 
.423 

Record I/O Statement Processing Phase (Phase KM) • • • • • • 
Stream I/O Statement processing Phase (Phase KQ) • 
Special-case Processing Phase (Phase KV) • • • • • • 

...... 427 

Extraction of Alias and Call Information (Phase OA) 
Extraction of Variable Usage and Flowchart Information (Phase OE) 
Flow Analysis Phase (Phase 01) •.•• '. • • • • • • ••.• 
Text Optimization Phase (Phase OM) •• • .. • .. • .• • .. • 
Built-in Function Processing Phase (Phase KK) • • • • 

• .. 430 
.432 
.434 

• .436 
.438 

• .440 
• ... 443 

• .446 String Handling Operations - Part 1 (Phase OC) • 
String Handling Operations - Part 2 (Phase OX) • • • • • • 449 

(Part 1 of 2). Arithmetic Operations and Conversions 
(Part 2 of 2). Arithmetic Operations and Conversions 
Symbol Table Resolution Phase (Phase PC) • • ~ .. 
Constants Analysis Phase (Phase PAl 

Phase (Phase KX) 453 
Phase (Phase KX) 454 
• • .• .• .• ,. .. • • 457 

Storage Allocation Phase (Phase PEl ...... . 
Addressing of Storage Phase (Phase PI) • _ • .. _ • • • • 
Optimize~ Addressing (Phase QI) ........ ~ • 
Register Allocation Phase (Phase QA) • .. • • • • • .. ~ • 
Elimination of Unnecessary Store Operations (Phase QE) • • • • 

.460 

.464 

.467 
• .470 
.• .. 472 

Code Generation - Passes 1, 2, 3, and 4 (Phases SA, SQ, SD, and SC) 
.475 
.479 
.482 Label Resolution Phase (Phase SK) • • • 

Final Assembly Phase (Phase SI) .............. .. .484 
Object-code Listing Phase (Phase SM) • .• .. • 
Diagnostic-message Editing Phase (Phase UA) 
Dump Phase (Phase AI) ........... . 

•••• 486 
• • .. .. • .• ,.489 

• .. ,.492 

Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, october, 1973 

Section 1: Introduction 

I
The PL/I Optimizing Compiler is a multi-phase, multi-pass compiler which 
operates as a processing program under System/360, System/370 Disk 
Operating System. It analyzes and processes source programs written in, 
the PL/I language as described in the publication, DOS PL/I Optimizing 
~ompiler: La~e Reference Manual. The compiler is written in 
System/360 Assembler Language. Extensive use is made of specially 
designed macro instructions. 

PURPOSE OF THE COMgILEE 

The purpose of each execution of the compiler is the translation of a 
PL/I external procedure into a series of machine instructions which form 
a relocatable object module. One or more object modules produced by the 
compiler can be link-edited to form an executable program phase, and a 
punched object deck can optionally be produced. A number of other 
facilities, such as printed listings of source programs and object 
modules, can be provided in response to programmer-specified compiler 
options. If errors are detected in a source program, appropriate 
diagnostic messages are generated and can be printed. In order that 
compilation can be continued, erroneous statements may be ignored, or 
suitable corrections may be attempted within the compiler. 

An important feature of this compiler is that it performs code 
optimization, i~e., the compiler recognizes situations where it can 
generate machine code that can be executed more efficiently than code 
produced by direct translation of the PL/I source program. Two main 
forms of optimization are performed. One is the optimization that is 
performed when particular language featUres or situations are recognized' 
by various sections of the compiler during any compilation. This form 
of optimization is referred to as lQ£~l_optimization, and is not 
optional. The other main form of optimization is referred to as glob a! 
QPtimization, and is optional. It is performed by a particular section 
of the compiler, which is only executed in response to programmer 
specification of the OPTIMIZE compiler option. This option enables the 
programmer to specify that the program is to be modified in such a way 
that less time is required for execution of the object program. This 
optimization may also have a secondary effect of reducing the ~mount of 
storage required for the object module. 

The code generated by the compiler also has good performance 
characteristics with virtual storage systems. The modularity of PL/I 
and the way code and data are separated into different CSECTs by the 
compiler, assist in minimizing the impact of a PL/I program on the 
paging of a virtual storage system. 

The machine instructions in the object module do not always reflect all 
the operations indicated by the PL/I source program. Certain types of 
statement are translated into instructions that call standard 
subroutines held in a library. These subroutines perform the required 
operation, or may in turn call other library subroutines. The library 
calls are resolved during link-editing. Descriptions in this manual 
assume that the compiler is used in conjunction with two IBM program 
products: the DOS PL/I Resident Library (Program Number 5736-LM4) and 
the DOS PL/I Transient Library (Program Number 5736-LM5). 

Licensed Material - Property of IBM section 1: Introduction 5 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1913 

THE COMPILER AND THE DISK OPERATING SYSTEM 

The compiler acts as a processing program under the control of the Disk 
Operating System. It requires a partition of at least 44K bytes, and 
can only be used in the batched-job processing mode. The compiler can 
be used in the background partition and, if the multiprogramming option 
of the operating system is used, it can be link-edited into private 
core-image libraries for compile-link-go operation in the F1 and/or F2 
foreground partitions. Further requirements and implementation-defined 
features are listed in the Programmer's Guide for this compiler. 

The name of the compiler program is PLIOPT. The compiler consists of a 
number of phases~ Each phase can be referred to by one of two symbolic 
names. In the relocatable library, each phase is referred to by a name 
beginning with the characters IELO, e.g., IELOAE, IELOGI, IELOKX, etc_ 
In the core-image library, each phase is referred to by a name beginning 
with characters PLIO, e.g., PLIOAE, PLIOGI, PLIOKX, etc. Except where 
it is necessary to refer specifically to one of these names, phases are 
referred to in this manual by the last two characters of their symbolic 
names, e. g .• , Phase AE, Phase GI, Phase KX, etc. An exception to this 
convention is the resident control phase~ In the relocatable library, 

Ithis phase has the name IELOAA, but in the core-image library the phase 
has the same name as the compiler program, PLIOPT. To avoid confusion, 
the resident control phase is referred to as Phase AA~ 

The first compiler phase to be loaded is the compiler control phase, 
Phase AA, which remains in main storage throughout the compilation 
process. Among its many functions, this phase provides an interface 
between the compiler and the Disk Operating System. It communicates 
with the DOS control programs for loading of other compiler phases, and I input/output operations between main storage and the data sets used for 
spill purposes by the compiler. 

Apart from Phase AA, each phase of the compiler is loaded in turn into 
an area of main storage allocated as a .Ehag~~.. Because the 
execution of certain compiler phases is optional, depending upon the 
compiler options specified or upon the contents of the PL/I source 
program, some of the compiler processing phases may not be loaded for 
every compilation. When a compiler phase has completed its processing, 
it uses a special macro instruction, XPST, to identify the next phase to 
be loaded. Phase AA passes the name of the specified phase as an 
argument to the DOS control program when requesting the loading of 
another phase. 

I
On completion of compilation, the compiler optionally writes the 
compiled object module onto the SYSLNK data set ready for link-editing. 
Unless further compilations have been specified (as part of a 
batched-job) by use of a *PROCESS control statement, control is then 
returned to the DOS control program. 

A number of data sets are accessed or created by the compiler. The 
input/output devices used for these data sets are shown in figure 1.1. 

Input data read from SYSIPT consists of one or more PL/I external 
procedures. The batched-compilation facility of the compiler enables 
more than one external procedure to be compiled in a single job step~ 
Each external procedure may be a complete program or part of a program. 
An external procedure can contain %INCLUDE statements that specify 
source-statement modules held in a private source-statement library. In 
such cases, the specified source module is read from the device assigned 
to SYSSLB, and incorporated in the source data. 

Throughout this manual the term R1L1-§2~~Eroqra~ is used to refer in 
general to external data passed to the compiler for processing. The 

6 Licensed Material - Property of IBM 



Order No. LY33-6010-~, Page Revised by TNL LN33-6175, October 1976 

term text is used to refer to the main stream ot internal data, 
consisting of the internal representation of statements and other items 
of information, originally corresponding to the PL/I source program and 
progressively transformed by phases of the compiler into the format 
required at output. During compilation, data is extracted or derived 
from the text and collected in various tables, lists, etc. The term 
dictionary is used to refer to a particular collection of data, used 
extensively during compilation. 
r---~----------------T-----------~---------------T---------------T---------------------, I Data Set. I Function I Device Type I Device I When Required I 
I I I I symbolic Name I I 
~--------------------+_-----------+---------------+---------------t---------------------~ I File name = IJSYSINI Input I DASD I SYSIPT I Always I 
, DTF name = XINPUT I I Magneti c tape , I I 
, I I Card reader I I i 
~--------------------t------------t---------------t---------------+--------------------~ 
, Source statement I Input I DASD I SYSSLB I When preprocessor I 
I Library I I I I "INCLUDE is used I 
~-------------------t_-----------t---------------+---------------+--------------------~ I File name = IJSYSLSI Listings I DASD , SYSLST I Always I 
I DTF name = XPRINT I I Magnetic tape I I I 
I I I Printer I I I 
~--------------------+------------t---------------.. ---------------t---------------------~ I File name = IJSYSOll Data spill I DASD I SYSOOl I Always. I 
I DTF name = XSPILLl I I I I I 
~-------------------t_-----------i--------------_i---------------i---------------------f I File name = IJSYS021 Data spill I DASD I SYS002 I Always I 
I CTF name = XSPILL~ I I I I I 
~--------------------t------------+---------------t---------------t---------------------~ I File name = IJSYSLNI Output to I DASD . I SYSLNR I When linkage editing I 
I D~F name = XLOADF I linkage I Magnetic tape I I follows compilation I 
, I editor I I I in the same joh I 
~--------------------t------------+---------------+---------------t--------------------~ 
I File name = IJSYSPHI Output to I DASD I SYSPCH I When linkage editing' 
I D'l'F name = XPUNCH I linkage I Magnetic tape I I takes place in a I 
, I editor I Card pundit I I subsequent job I 
I I (card deck) I I I I 
~--------------------+------------+---------------+---------------+----------------~--~ I Core-image Library I Compiler I OASO I SYSRES I Always I 
I I residence I I I I L ____________________ ~ ___________ ~ _______________ ~ ____ -----------~ ____________________ _J 

Figure 1.1. Data sets and input/output devices used by the compiler 

Data sets on the devices assigned to SYSOOl and SYS002 are used to hold 
internal data (text, dictionary, etc.,) that is not currently being 
accessed or processed, and which cannot be retained in main storage. 
These data sets are known as the spill data sets. Input/output 
operations between main storage and the spill data sets take place 
throughout most compilations. 

Output from the compiler consists of one or more object modules that are 
suitable for link-editing and inclusion in an executable program phase. 
Each object module consists of an external symbol dictionary (ESO), a 
relocation dictionary (RLD), and a series of machine instructions in the 
fOrlll of TXT records. A description of an object module is given in the 
publication DOS: System Control and System Service Programs. 

Output from the compiler is in the form of fixed-length 322-byte 
records, which can ~ transmitted to a data set on the device aSSigned 
to SYSLNK. Output can also be transmitted to a data set on the device 
assigned to SYSPCB, in which case the output is in the form of SO-byte 
unblocked records. 

During compilation, a listing can be optionally generated and 
tranSlDi tted to a data set on the device assigned to SYSLST. and can be 
printed. The following list shows the information that can be included 
in the listing, and the options required. 

Licensed Material - Property of IBM section 1: Introduction 7 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Listing Options Required 

Options for the compilation OPTIONS 

Preprocessor input I NSOURCE 

Source program SOURCE 

Statement nesting level NEST 

Attribute table ATTRIBUTES 

Cross-reference table XREF 

Aggregate-length table AGGREGATE 

External symbol dictionary . ESD 

Items in static storage MAP 

Object module LIST 

Storage requirements STORAGE 

Statement offsets OFFSET 

Diagnostic messages for severe errors, 
errors', warnings and information conditions 

FLAG(S), FLAG(E), FLAG(W), FLAG(I) 

Source statements from SYSSLB are read into buffers in the main storage 
used by the preprocessor phase. Input/output operations between main 
storage and the spill file are made directly. All other input/output is 
read into, or written from, buffer areas in main storage which are 
allocated as follows: 

Buffer Name Size Function 

XIFBF1 80 bytes! 
XIFBF2 80 bytes 

Input from'SYSIPT 

XPRBF1 121 bytes! 
XPRBF2 121 bytes 

Output to SYSLST 

XPFBF1 81 bytes! 
XPFBF2 81 bytes 

Output to SYSPCH 

XOFBF1 322 bytes Output to SYSLNK 

GENERAL ORGANIZATION OF THE COMPILER 

The compiler consists of 53 physical phases, which are stored in the 
core-image library on the system residence volume. Each phase can be 
individually loaded and executed. 

When the compiler is invoked, the resident control phase (Phase AA) is 
loaded and control is passed to it. This phase remains in main storage 
throughout execution of the compiler. It contains routines which can be 
entered at any time during compilation to provide services for other 
phases and to communicate with the D05 control program where necessary, 
e.g_, for loading of phases, or for input/output operations. This phase 
also contains a control section, with the symbolic name XCOMM, that 
defines an area of storage used for communication between phases. 

8 Licensed Material - Property of IBM 



Located within this communication area are six of the seven input-output 
buffers previously mentioned. (The XOFBF1 buffer for output to SYSLNK 
is allocated in the working storage of Phase SI, the 
Object-Module-Assembly phase.) 

All other phases are loaded individually in sequence into an area of 
main storage known as the phase area. Only one phase in addition to the 
control phase can be in main storage at any time. (An excepti.on to this 
is the requirement for Phase AI te be resident in main storage 
throughout eo~pilation it a cem~iler dump is required.) Cn cempletion 
of execution, each phase uses a nacro statement to inform the control 
phase of the name of the next phase to te loaded. 

Almost immediately after receiving control, Phase AA has the 
initialization phase, Phase AE, leaded and passes contrel to it. Phase 
AE performs most of the once-cnly housekeeping required to prepare the 
compiler operating environrrent, if necessary making adjustments in 
accordance with compiler eptiens specifications. In addition to 
processing corrpiler options it initializes varieus fields in the 
communications area, opens the data sets used by the compiler, and 
allocates an area of main storage tor the storage of data such as text 
and dictionary tables. An inportant feature of compiler operation is 
that this data can be spilled onto auxiliary storage and read back into 
main storage as required. Te facilitate this data handling, the data is 
organized in records known as~. Each page can contain 1080,1680, 
or 3480 bytes of processable data, depending on the size of the main 
storage area available for the storage of data. If auxiliary storage is 
on either a 3330 or 3340 direct access storage device, and the SIZE 
option is large enough, a page size of 4040 bytes is used. 'I'he storage 
area is known as the page area: its size and the size of the pages to be 
used are calculated by Phase AE after the size of the compiler partition 
and value of the SIZE option (if specified) have been determined. Space 
for a minimum of eight pages is required in the page area but, if more 
space is available, more page spaces and/or the larger page size can be 
used, thus reducing the time required for compilation by reducing ,the 
number of input/output operations required for the spilling and reading 
of pages. Space within the page area is also allocated for a directory, 
used to facilitate searches for dictionary entries, and for a 
resident-page table, used in some page-handling operations. 

When Phase AE has completed its functions and returned control to Phase 
AA, the operating environment is ready for the execution of the 
processing phases. The general organization of the compiler, the flow 
of control, and the flow of data is shown in figure 1.2, and the 
organization of storage is shown in figure 1.3. 

Processing phases of the conpiler are loaded one at a time into the 
phase area, and executed. Although the phases are loaded and executed 
sequentially, the functions performed by certain phases may net be 
required in some corrpilations. In such cases tbe relevant phases are 
not loaded. For example, unless the relevant co~piler options are 
specified, the preprocessing phases and the glotal optimization phases 
are not loaded. Sinilarly, phases processing specific language 
features, e.g., stream oriented input/output statements, are not loaded 
if those features are not present in the source program. The sequence 
of phase loading is shown in appendix C, and the conditions affecting 
the sequence of phase loading are shown in figure 3.2. 

In general, none of the processing phases is executed more than once in 
each compilation. Exceptions to this are the phases that produce 
diagnostic information. In order to satisfy certain compiler options, 
the phase that edits and prints diagnostic messages, Phase UA, may be 
loaded and executed twice during a compilation. The phase that provides 
printed dumps of the contents of data areas used by the compiler, Phase 
AI, may be executed a number of times to satisfy compiler options. This 
phase, if required by corrpiler options, must te resident in main storage 
throughout compilation, and requires approximately 16K bytes of 
additional storage. 

Licensed Material - Property of IBM Section 1: In.troduction 9 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Auxiliary Storage 
(DASD) 

System 
Residence 

(Core-I mage 
Library) 

Source 
Statement 

Library 

Spill 
Data 
Set 

mlili!:jm!;miUlI~ 

- -- ... 

IFigure 1.2. 

Main Storage 

I - r---_-_--=-=_-= - - - l 
I DOS f 

Supervisor 

I I 

~ -t J 

Resident Control I Communication 
Area 

I 
To phases 
BA&CA 
only 

I 

Phase 

I 
Processing 

Phases 

Data 
Processing 

Area 
(Page Area) 

I 
I 

I 
I 

I 

I 
I 

I I 
I 
I 
I 
I 
I 
I 

_ __ J L __ Compiler Partition ----
CPU controi 

Internal read/write 
communications 

Input/output under control 
of DOS Supervisor and/or 
compiler control phase 

I/O Devices 

Source 
Program 

Listings 

Object 
Module 

General organization of the compiler, shOWing control and data flow 

10 Licensed Material - property of IBM 



CORE-IMAGE 
LIBRARY 

MAIN STORAGE 

DOS 
SUPERVISOR 

RESIDENT 
CONTROL PHASE 

COMMUNICATION AREA 
(INCLUDING I/O BUFFERS) 

PHASE 

AREA 

Dictionary Directory 
(560 or 1120 bytes) 

Figure 1.3. General organization of storage 

Licensed Material - Property of IBM 

7k bytes 

26k bytes 

Variable 
according 
to 
SIZE option. 
Minimum 
9384 bytes. 

SYSOO1 
(SPILL DATA SET) 

Section 1: lntroduction 11 



Order No. LY33-6010-1, Page Revised by TNL LN33-617S, October 1976 

Character Code Dependence 

The following table identifies those' areas that would require attention 
if it were intended to modify the compiler to accept its input and print 
its output in a different character set and/or language. (By language 
is meant, for example, German or French, not programming language.) The 
table does not attempt to detail how a particular area or item should be 
modified for a language/character set change; only the type of 
dependency that exists is identified. Those compiler phases that are 
totally independent of any change are listed at the foot of the table. 

r-----T-------------------~-------------------------------------------------------------, 
) Phase) Area of dependency , 
~-----t---------------------------------------------------------------------------------i I AA I Character string constants for: , 
I I 1. Error message text for one message. , 
I I 2. Some phase names. , 
~-----+---------------------------------------------------------------------------------i 
'AE ,Character string constants for: , 
I I 1. File names. I 
I I 2. Phase names. , 
I I 3. Heading for SYSLST. I 
I I 4. Option keywords. J 
I I 5. Error message text for initialization errors. I 
.~-----+---------------------------------------------------------------------------------i I AI I Translate table (internal to external code). , 
I I Hex. to external character translation. I 
I I Character string constants for, for example: , 
I I 1. Messages. I 
I I 2. Phase names. , 
I I Test for numeric constants. I 
I I Code for translation from hex. to external character. , 
I I Comma, full stop, and blank values in trace table routine. , 
I I Assumption that hex values of characters increase through the alphabet. , 
~-----+---------------------------------------------------------------------------------~ 
I BA I I 
~-----+---------------------------------------------------------------------------------i 
I CA I I 
~-----+---------------------------------------------------------------------------------~ 
I CE I Message list in XMTAB macro. I 
I I Reyword list in XMCDE macro. , 
I I Translate table ZTRANl (internal code to EBCDIC). I 
~-----+---------------------------------------------------------------------------------i EA Module EA1 

Headings on source listing. 
Sequence numbers on input records (EBCDIC). 

Module EA2 
sequence numbers on input records (EBCDIC). 
SYSIPT or SYSLST assumed and output when particular ON conditions encountered. 

Module EA3 
External to internal code translate tables (EBCDIC). 
Keyword tables. 
Carriage control characters on input records (EBCDIC). 

~-----+---------------------------------------------------------------------------------i I EC I External to internal code translate tables (EBCDIC). I 
I I Reyword tables. I 
I I Carriage control characters on input reeords (EBCDIC). I 
~-----+---------------------------------------------------------------------------------i I EE I Module EE2 I 
I I Reyword tables. I 
I I In-line tests for some special ENVIRONMENT option parameters which are I 
I I implementation-defined and could therefore be affected by a change of I 
I I language, for example, TP(M) and TP(R). I 

12 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6115, October 1976 

I Module EE3 I 
I I Explicit text inserts for message IEL0334I concerning missing file options on I 
I I I/O statements such as READ, WRITE, etc. t 
~-----+--------------------------------------------------------------------------------~ I I Keyword tables. I 
I I SYSIPT or SYSLST assumed and output for certain I/O statements. I 
~-----+---------------------------------------------------------------------------------~ I GA I BIF text tables. I 
~-----+---------------------------------------------------------------------------------i 
I GI I BIF text tables. I 
I I Check for SYSLST. I 
I I Table of such items as PLISRTA/B/C, PLIDUMP, etc. .J 
~----1---------------------------------------------------------------------------------f 
I GE I I 
~-----+---------------------------------------------~-----------------------------------i 
I G~ I BIF text tatles. I 
I I Machine representation ct external characters. I 
~-----+---------------------------------------------------------------------------------i 
I ID I Machine representation of external characters. I 
~-----+---------------------------------------------------------------------------------i 
I IK I Translate table ZTRANl (internal oode to EBCDIC). I 
~-----t---------------------------------------------------------------------------------i I KL I Messages containing character string SYS. I 
I I MEDIUM option with SYSIPT, SYSLST, and SYSPCH. I 
~-----+---------------------------------------------------------------------------------i 
I PA I Machine representation of external characters. , 
~-----+---------------------------------------------------------------------------------~ 
I SM I I 
~-----+--------------------------------------------------------------------------------~ 
I UA I Message list in XMTAB macro. t 
I I Keyword list in XMCDE macro. I 
I I Translate table ZTRANl (internal code to EBCDIC). I 
~-----~---------------------------------------------------------------------------------f 
I I 
I The following phases are independent of any language/character set change: t 
I I 
I AS EI IA IE II KT , 
I 1M KA IQ KE KI 01 I 
I RM RQ RV OA OE PC I 
I OM KK OC OX KX SA I 
I PE PI QI QA QE t 
I SQ SO 5C 5K 51 I L _______________________________________________________________________________________ J 

Licensed Material - Property of IBM section 1: Introduction 13 





Section 2: Method of Operation 

INTRODUCTION 

The PL/I Optimizing Compiler transforms a PL/I external procedure into a 
relocatable object module, suitable for link editing and subsequent 
execution. The process of transformation is known as compilation. 

This section contains descriptions of the methods used by the compiler 
to perform the compilation process. The major operations involved in 
compilation are shown in relation to the sections of the compiler that 
perform the required operations. Then follow descriptions of features 
of compiler operation that are common to all phases. The remainder of 
the section contains descriptions of the functions and operation of each 
phase of the compiler. 

Note: While referring to descriptions in this section, readers may find 
it useful to refer to the flowcharts in section 3, and to the fold-out 
figure "Creation and usage of data areas" in appendix D. Detailed 
descriptions and illustrations of the format or contents of the main 
data areas referred to in the descriptions are contained in section 5. 

The compilation process performed by this compiler consists of a number 
of major operations, which are performed in sequence by the execution of 
some or all of the 52 phases that make up the compiler. In relation to 
these major operations, the phases can be collected logically into ten 
groups which, for descriptive purposes, are referred to as stage2. 
~ithin each stage, most of the phases perform related functions which 
together comprise one of the major operations in the compilation 
process. In some cases, a phase is included in a particular stage for 
implementation purposes, i.e., its function is best performed at that 
stage of compilation but is not logically related to the major operation 
performed by other phases in the stage. The relationship between 
compiler stages and the major operations is shown in figure 2.1. The 
main functions of each stage, and the phases which are included in each 
stage, are listed in figure 2.2. 

Licensed Material - Property of IBM section 2: Method of Operation 15 



Control 
Stage 

1', , 
....... 

....... 

r-~-
I Pr 

-------, 
eprocessor I 

I Stage I 
L-_?,,""_ 

_______ J 

/" 
./ r,/ 

Syntax Analysis 
Stage 

., 
Dictionary Build 

Stage 

, 
Expression Analysis & 
Text Formatting Stage 

r 

Statement 

Processing --....,r--------- ---, 
Stage 

~-

r 

Storage and Register 
Allocation Stage 

r 

Final Assembly 
Stage 

I 

I 

i 
Diagnostic 

Stage 

I 
I 

Global Optimization I 
Stage I -t-___________ .J 

Initial ization and provision 
of services 

Modification of source program 
before input to the main 
phase of the compiler. 

Checking for validity of 
source program statements and 
organization into data formats 
most conven ient for later 
processi ng. 

Determination of the CPU 
operations and resources 
required for execution of 
the program. 

Generation of machine code 
and assembly of object module 

Printing of diagnostic messages 
and dumps if required. 

Figure 2.1. Relationship of compiler stages to major operations 

16 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r------------------------------T--------------------------------------------------------, 
I stage Name and Phases I Main Functions I 
~-----------------------------+--------------------------------------------------------~ 
I Control Sta'ge , Organizes storage and facilities required for compiler I 
I (Phases AA and AE) , operation, including communication area and I 
I I input/output buffers. Controls loading of other phases I 
I I and provides services for them, e.g., satisfies , 
I I requests for data pages. I 
~------------------------------+--------------------------------------------------------1 
I Preprocessor stage I Optionally modifies source program by executing I 
I (Phases BA, CA and CE) I compile-time (%) statements and/or translating into I 
I , processable code and character set. I 
~------------------------------+-------------------------------------------------------~ 
I Syntax Analysis stage , Eliminates comments and translates remaining text into I 
I (Phases EA, EC, EE, and EI) I compiler internal code. Identifies, classifies, and I 
I , numbers statements, and checks syntax of statements andl 
I I statement elements. I 
~------------------------------+--~-----------------------------------------------------~ 
I Dictionary Build Stage I Extracts information about each identifier and collectsl 
I (Phases GA, GI, GE and GM) ,this information in dictionary tables for ease of I 
I I reference. I 
~------------------------------+--------------------------------------------------------~ 
I Expression Analysis and I Analyzes expressions and data aggregates, expanding I 
, Text Formatting stage , them where necessary. Translates statements I 
I (Phases lA, ID, IE, and II) I into a parenthesis-free format, consisting of I 
I , fixed-length text tables. I 
~------------------------------+--------------------------------------------------------~ 
I Statement Processing Phase I Interprets and analyzes the logical operations I 
I (Phases IK, KA, 1M, IQ, KE, ,indicated by statements and statement elements, and I 
I KI, KK, KL, KM, KQ, KT, KV, I generates modified or additional text tables to I 
I OC, OX, AND KX) , indicate the machine code required to perform those I 
I (This stage is split into two, operations. I 
I parts if global optimization , i 
I is executed.) I j 

~------------------------------+--------------------------------------------------------~ 
I Global Optimization stage ,Optionally analyzes the text stream and modifies its I 
I (Phases OA, OE, 01, and OM) ,content and/or sequence to indicate code that is I 
I I optimized to satisfy requirements specified in compiler I 
I , options. I 
~------------------------------+--------------------------------------------------------1 
I Storage and Register , Modifies text and makes dictionary entries to indicate I 
I Allocation Stage , mapping and addreSSing requirements of different I 
I (Phases PC, PA, PE, PI, QI, ,storage classes and data types. Allocates registers I 
I QA, and QE) I for use at execution time. I 
~--------~--------------------+-------------------------------------------------------~ 
I Final Assembly Stage I Generates machine instructions indicated by text tables, 
I (Phases SA, SQ, SD, SC, SK, ,and according to addreSSing and register allocations. I 
I SI, and SM) I Assembles the object module and prints object listings I 
I I if required. I 
~-----------------------------+--------------------------------------------------------~ 
I Diagnostic stage , Edits and prints diagnostic and compiler error I 
I (Phases UA and AI) 'messages. Prints dumps of compiler data areas if I 
I , required. I L ______________________________ ~ _______________________________________________________ -J 

Figure 2.2. Phases and functions of compiler stages 

Licensed Material - Property of IBM Section 2: Method of Operation 11 



-- SPECIAL MACRO INSTRUCTIONS AND BOOKS 

The design and construction of the compiler is based on the extensive 
use of specially designed macro instructions and books. Frequent 
references to such items are made in the published listings and in the 
descriptions in this manual. 

Note: The term book is used to refer to an invariant sequence of code 
and/or data definitions that can be introduced into the assembly of a 
compiler module by use of a COPY statement. 

At the time a compiler phase is assembled, an invocation of a macro 
instruction or book results in the generation of a predefined sequence 
of System/360 assembler language instructions. In cases where the 
function specified by a macro instruction requires a large number of 
assembler instructions, a call to a uniquely-labeled subroutine is 
generated rather than an extensive sequence of inline code. This 
feature is more fully described in section 3, -Program Organization.-

All macro instructions designed especially for use in this compiler have 
a name beginning with the letter X; all routines and subroutines invoked 
by a macro instruction have a name beginning with the letter X, and 
similar to the name of the invoking macro instruction; all books have a 
name with the initial letter X, Y, or Z. 

Approximately 160 different macros and books are used in the compiler to 
perform a wide variety of functions. A complete list of them, together 
with a brief description of their functions, is contained in appendix A. 
The published listings SROW the assembler code generated by each macro 
invocation. 

REGISTER NAMING CONVENTION 

Within the compiler code, all explicit references to general registers 
are made by use of symbolic names. The naming convention, which is also 
used in descriptions throughout this manual, is shown below: 

Register Number S~mbolic Name 

0 RO or RO 
1 R1 or RI 
2 R2 
3 R3 
4 R4 
5 R5 
6 R6 
7 R7 
8 R8 
9 R9 

10 RA 
11 RB 
12 RC 
13 RD 
14 RE 
15 RF 

DATA REPRESENTATION 

Data derived from statements in a PL/I source program is repeatedly 
processed during the sequential execution of the compiler phases, so 
that it is progressively transformed into code required in an object 

18 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

module. The forma~s used for the internal representation of this data 
vary according to the type of processing being performed, i.e., the data 
is collected in basic formats that are most suited to the processing 
performed during one or more compiler stages. The general 
characteristics of the basic data formats used in the compiler are 
described in the following paragraphs; detailed descriptions and 
illustrations are contained in section 5, "Data Area Layouts." 

FORMAT OF INPUT 

Input to the compiler consists of a series of PL/I statements and 
comments grouped into one or more procedures. Each external procedure 
is read into the conpiler input buffers as a series of 80-byte unblccked 
records (card-ia,age fornat). 

The compiler processes source statements written in the PL/I 
60-character set and coded in BECtIC. Cptions are provided which enatle 
the compiler to accept input written in the PI/l 48-character set and/or 
coded in BCD. Use cf input in these forms necessitates s~eciticaticn of 
the CHARSE7(48) and/or CHARSET(ECt) option, which causes one of the 
preprocessor phases to be loaded to translate the records into the PL/I 
60-character set and/or EECDlC. 

Modification of the source program at compile-time can be enabled by the 
inclusion of compile-time statements (identified by a preceding % 
character). Inclusion ot such statements necessitates specification of 
the MACRO option or INCLUDE cption, which cause one of the preprocessor 
phases to be loaded. If the MACRC option and either the CHARSBT(48) or 
CHARSET(BCD) options are specified, the same preprocessor phase (Phase 
CAl performs all preprocessing. 

Output from one of the ~reprccesscr phases, conSisting of preprocessed 
statements and conments, is passed on text pages in 84-byte record 
fornat to the roain compiler read-in routines (in Phase EA). If the 
original source program was in the 48-character set and/or BCD, records 
in the original character set and code are also passed, interleaved with 
the translated records, in order that the SOURCE option can be 
satisfied. 

The flowpaths of input records are illustrated in figure 2.3. 

Licensed Material - Property of IBM Section 2: Method of Operation 19 



Data 

Input 

buffers 

(in 

compiler 

commun-

Management ication 
Routines 

area) 

PHASE AE 

Reads *PROCESS 
statement 

.. ;~~~:nd 
buffer 

Specify 
Phase CA 
as next phase 

PHASE CA 

Reads sou rce program 
records into and from 

(%) INCLUDE 
Modules 

Specify 
Phase BA 
as next phase 

Specify 
Phase EA 
as next phase 

......... ___ ........... input buffer. Processes 
com pile-time(%) 
statements. Translates 
48 char and BCD 
records if PHASE BA 
necessary 

,:::,~ ... : Reads source program 
........ ---.... -------'-----... ~ records into and 

~Ir_.~ ~!:~~~~:::;f::· ~~;:~erE:ad.in 
;:;~:;:~:; ~~~i~... ';:;... routines read source .. 
~lll~ll~: ·~~~~~l~~~t~ll~~~li~iJ.~.~~~· J1rogram records 
::!l.':::.:: .'.~ into and from input 

·':::l~~i~i~;f:J.~~:::~~ . : .. TlTn·· .. :..,.··~ :~: ...... ~ijlM:.'~~.t~Jr ... :~:~~l.Wt~: ~~:~~~c~~e~ea~cords 
r:. from text pages 

lil mill [""ME ·'[iTl TmJni~rgr~~~' . 
~:.' '-----------1 

--... ~ Flow of control 

Figure 2.3. Flowpaths of input records 

20 Licensed Material - Property of IBM 



INTERNAL TEXT FORMATS 

The main compiler read-in routines read the input records one at a time, 
either from the input buffers or from the pages output from the 
preprocessor stage, into an area of main storage acquired for initial 
processing. As records are read in, statements are identified and 
numbered, and comments and invalid characters are removed. Remaining 
characters are translated into an internal character code that is more 
convenient than EBCDIC for internal manipulation. This internal code is 
shown in figure 5.88. As translation of each source statement is 
performed, the input records containing the statement and comments in 
the original characters and code, together with other information such 
as statement number, etc., are copied to the print buffers if a source 
listing is required. 

The internal representation of statements, initially corresponding to 
the source program, is referred to as text. The format of text is 
changed during compilation but at any time it can consist of a mixture 
of operators, operands, and program control elements. Operands can be 
constants, variables, files, etc., or compiler-generated items. Text is 
initially copied onto one or more pages to form a stream of data 
referred to as the main text stream. Additional streams of text 
extracted from the main text stream are temporarily created at various 
times during compilation, and are referred to as secondary text streams. 
Some secondary text streams are given names for ease of identification. 

In the syntax analysis stage, statements are sorted so that all 
statements in a block appear before the first statement in a block at 
the next level of nesting. Within each block, statements are retained 
in source-program order, and within eac~ statement, statement elements 
are also retained in source order. The text is organized in a 
sequential stream. This text format is referred to as Type-1 text. 
Although the internal representation of some statement elements is 
subsequently changed, and compiler-generated items are inserted in 
various places, the text retains the basic characteristics of Type-l 
text format from its generation in the syntax analysis stage until it is 
processed by Phase II in the text formatting stage. 

Routines in Phase II translate the text from a stream of statements into 
a series of fixed-length tables, each 32 bytes long. Each text table 
contains fields for an operator and three operands. All Farentheses are 
removed, and data elements are arranged in appropriate fields in the 
text tables. Text in this format is referred to as Type-2 text. In 
addition to the operator and operand fields, Type-2 text tables contain 
fields that can be used for other purposes. For example, chain fields 
are used so that text tables can be inserted into, or deleted from, the 
logical sequence of text without requiring complete reorganization of 
its physical sequence. 

The main text stream remains in Type-2 text format from Phase II until 
the text tables are replaced with machine code by the code-generation 
phases in the final assembly stage. Because more than one phase is 
involved in the generation of machine code, and because each of them 
only processes certain types of text tables, a time exists when the text 
stream contains machine code that has replaced text tables, and text 
tables that have yet to be replaced. In addition, special markers are 
inserted in the text to indicate processing required by later phases. 
This mixture of text formats, which exists from the start of code 
generation until the end of compilation, is referred to as extendeg 
code. 

Where secondary text streams exist, the format of their contents do not 
always correspond to the format used in the main text stream at that 
time. 

Licensed Material - Property of IBM Section 2: Method of Operation 21 



THE DICTIONARY 

The attributes of an identifier directly affect the type of processing 
required when any reference to it is found in the text during 
compilation. It is therefore necessary for all relevant information to 
be available whenever an identifier is referred to. Instead of 
inserting extensive and numerous descriptions in the text streams, 
complete descriptions of all identifiers are collected in tables that 
can be accessed as required, and only the most frequently used 
information is inserted at references to identifiers in the text. The 
tables of descriptions are collectively referred to as the dictionary. 

The dictionary is divided into four main sections: the names 
dictionary, variables dictionary, general dictionary, and storage 
dictionary. Collection of information for, the dictionary starts in the 
syntax analysis stage, where certain types of statement are collected in 
a secondary text stream for ease of reference. The main parts of the 
names, variables, and general dictionaries ~re built in the dictionary 
build stage, from explicit, contextual~ and implicit declarations. 
Additional entries are made in these dictionary sections throughout 
compilation. The storage dictionary is built during the storage 
allocation stage. 

The names dictionary is used to hold the names of all the variable 
identifiers and some of the constants that appear in the text. Each 
entry (except entries for built-in function names) contains pointers to 
associated entries in other dictionary sections. 

The variables dictionary is used to hold lists of the attributes of each 
variable in the program. 

As its name implies, the general dictionary is used to hold a wide 
variety of information, such as: 

• Details of the block structure of the program. 

• The format and dimensions of data aggregates. 

• Descriptions of constant values too great to be conveniently held in 
text. 

• standard default attributes to be applied to implicit declarations. 

• Collections of information required for optimization. 

• Descriptions of control blocks, etc., to be generated in the object 
module. 

The storage dictionary is used to hold information about the amount and 
location of storage required for every identifier in the object module. 
It is built when most of the information about the object code to be 
generated has been determined, and can be considered as an extension of 
the variables dictionary. 

When the main structure of the dictionary sections has been built, each 
reference to an identifier in the text is replaced by a brief 
description of its most important attributes and a reference to the 
dictionary entry containing the most complete description of it. To 
enable frequent access to dictionary entries without repeated use of 
lengthy addresses in the text, a directory ~s built and used to resolve 
dictionary references. This directory, which can be 560 or 1120 bytes 
long, is resident in the page area of the compiler partition throughout 
compilation. 

22 Licensed Ma~erial - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, 

PAGE-HANDLING SCHEME 

The following paragraphs describe the system used in the compiler for 
internal data management, which is referred to as the Eage-~andliQg 
§cheme. This scheme is used by all phases of the compiler to acquire 
storage for newly created data, to access existing data, and to pass 
data to following phases. The facilities provided by the scheme are 
used to handle text and dictionary data, (previously described under the 
headings "Internal Text Formats" and "The Dictionary"), general 
reference data such as tables and lists which are required to be passed 
to other phases, and for the temporary storage and manipulation of data 
that is used by one phase only and which is discarded at the end of 
processing by that phase. Descriptions of the routines that implement 
and supervise the scheme are contained in the phase descriptions later 
in this section, in particular in the descriptions of Phases AA and AE~ 

An area of the compiler partition is allocated for the storage of data, 
such as the text, dictionary, etc. According to the relationship 
between the size of the partition and the content of the source program, 
it may not be possible for all data to be held in main storage 
throughout compilation. In such cases, data that is not currently being 

I processed or accessed can be held in secondary storage. Space on 
direct-access storage devices assigned to SYS001 and SYS002 is allocated 
for a work data set in which this data can be stored. The transfer of 
data from main storage to secondary storage is known as §£illing. The 

I data sets are known as the spill data sets, and their DTF names are 
XSPILL1 and XSPILL2. 

For ease of data handling, the area of main storage allocated for data 
storage is divided into eight or more equal divisions. The size of each 
record in the spill data set is related to the size of one division. 
Each data record is referred to as a ~g~, the main storage area 
allocated for data storage is referred to as the £~g~~~, and each 
division of this area is referred to as a ~~g~spa£~. 

The largest possible amount of the partition available to the compiler 
is allocated as the page area. The routine that allocates storage for 
the page area, and calculates the page space, is in the initialization 
phase (Phase AE). Design of the compiler is based upon a minimum of 
eight page spaces, but more can be used if sufficient main storage is 
available. The minimum page space size is 1100 bytes, of which 20 bytes 
(including the page header, which is described later) are used to hold 
data-handling information, and 1080 bytes are available for processable 
data. If storage is available, the page-space size is increased to 
either 1700, 3500, or 4096 bytes, of which 1680, 3480, or 4040 bytes can 
be used for processable data. Note that 4040 bytes are only used if the 
spill data sets are on either a 3330 or 3340 direct access storage 
device, and if the SIZE option is large enough. 

At the beginning of each page space 16 bytes are used for a page header, 
the format of which is shown in figure 5.2. The page header is followed 
by space for processable data, and at the end of the page space is a 
4-byte field, containing a page delimiter (X'99'). 

When a page is spilled, the last seven bytes of the page header, the 
processable data, and the four bytes containing the page delimiter, are 
spilled, Thus, the size of a record on the spill data set does not 
exactly coincide with the size of a page space. 

October, 1973 

Licensed Material - Property of IBM Section 2: Method of Operation 23 



Order No~ LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

To ensure that the compiler works efficiently in virtual storage, a page 
header table is used. This table contains copies of page header 
information. The copies of the page headers in the table differ only 
from the page headers themselves in that the pointer field points to the 
page itself rather than to another page header~ Thus when a search is 
made for a required page, the page header table can be searched. This 
prevents the possibility of transfer of a page from virtual to real 
storage simply to inspect the page header. 

If there is not enough workspace in main storage, one of the pages in 
main storage is copied onto the spill data set, and the space freed is 
used for another page. 

To save space on the spill data set, information on whether a page has 
been spilled and the position of the copy on the spill data set is kept 
in a table called the in=£Q£~_~~gi~£tory. A list is also kept of 
pages that have been discarded by the compiler but still have copies on 
the spill data set~ This list is called the discard table. Figure 
2.3.1 shows the relationship between the fields involved. 

The in-core ~_dire£to~l holds the relative track address of those 
pages that have been copied onto the spill data set, and zero for those 
that have not. Information about each page is held at the offset equal 
to the page number~ (Page numbers are incremented in threes to allow 
for this.) The in-core page directory contains spaces for approximately 
five times the number of pages that are held in the page area. This 
allows all the pages that are likely to be needed during compilation to 
be addressed without the directory overflowing. 

The discard table contains a list of those pages that have been 
discarded, but that still have copies on the spill data set. 

Use of the tables allows discarded and outdated pages on the spill file 
to be overwritten. When a page is to be written onto the spill data 
set, the address at which it is to be placed is found by following the 
sequence below: 

1. Looking in the discard list for a page that has been copied onto 
the spill data set and subsequently discarded. If one is found it 
is overwritten. 

2. Looking for a read/write page that has a copy in main storage and a 
copy in the spill data set. In this situation, the copy on the 
spill data set will be outdated and can consequently be 
overwritten. 

3. Extending the spill data set by writing a new record. 

When the page has been copied onto the spill data set, its relative 
track address is entered in the in-core page directory. If this 
involves overwriting a page that has a copy in main storage (situation 
number 2 above), the in-core page directory entry for the page that is 
overwritten is set to zero. 

At sizes of 80K and above, the in-core page directory holds about five 
times as many page spaces as there are pages in main storage. This 
means that five times the number of pages available can be handled by 
the method described above. If more pages are required than there are 
spaces in the in-core page directory, the relative track address of any 
additional pages is set in the TTR field in the page header. The TTR 
field contains the page number and either Xl 40 1 indicating that any 
spill page is to be addressed through the in-core directory, or, if the 
directory is full, the relative track address of any spill data set 
copy. 

24 Licensed Material - Property of IBM 



TTR field 

Spill data set 
addressing 
mechanism 

Order No. LY33-6010-1, Page added by TNL LN33-6079, October, 1973 

{ 

X '40' indicates that in-core page directory is used for addressing spill data set. 

-- Other values are relative track addresses in spill data set and are used Spill Data Set 
when the in-core page directory has overflowed. 

page area 

in-core page 
directory 

'\ 

) 

discard list 

For each page: 
zero if no spill 
copy, relative 
track address if 
a spill copy 
exists. 

'\ 

/ 

List of discarded 
pages with copy 
still on spill data 
set. 

1. When a page is written on the spill data set, its track address is entered in the in-core page directory. 

2. When a page is overwritten on the spill data set, its entry in the in-core page directory is set to zero. If it is a discarded page, it is 
removed from the discard table. 

3. When more pages are used than there are spaces for in the in-core page directory, the relative track address into which such a page is to 

be spilled is placed in the TTR field. 

I Figure 2.3,. 1. The relationship between the page area and the spill data 
set 

Licensed Material - Property of IBM section 2: Method of Operation 24.1 



Order No. LY33-6010-1, Page added by TNL LN33-6079, October, 1973 

Page status 

A page in main storage is always given a specific status. The status, 
which can be one of six grades, indicates the relationship between the 
core copy and the spill copy, and the accessibility of the core page~ 
The six status grades are: 

24.2 Licensed Material - Property of IBM 



UNMOVABLE READ/WRITE 

UNMOVABLE READ-ONLY 

SPILLABLE 
(MOVABLE READ/WRITE) 

USABLE 
(MOVABLE READ-ONLY) 

DISCARDED 

UNUSED 

Core and spill copies are different; the core ccpy 
must not be spilled or overwritten. 

Core and spill copies are the same; Lhe core co~y 
must not be spilled or overwritten. 

Core and spill copies are different; the core copy 
can be overwritten when the spill copy has been 
updated. 

Core and spill copies are the same; the core copy 
can be overwritten immediately. 

Both core and spill copies are no longer required; 
both can be overwritten. 

The page space has not yet been used; there is no 
associated spill copy. 

To speed searches for required pages, all core pages of similar type and 
status are chained. There are six separate page chains, classified as 
follows: 

TEXT UNMOVABLE 
TEX'I MOVABLE 
DICTIONARY UNMOVABLE 
DICTIONARY MOVABLE 
UNUSED 
DISCARDED 

Note: For purposes of page handling, pages which contain general 
reference data that is not part of the dictionary are handled as text 
pages, even though the data they contain may not be part of a text 
stream. 

Two-way chains are used so that, from any page in a chain, the preceding 
and following pages are immediately identifiable. The communications 
area contains a header field for each page chain. Each chain header 
field contains painters to the first and last page in the chain. A page 
can be added to the beginning or end of a chain by referring to the 
chain header field. When a chain header is initialized (before there 
are any pages in the chain), the head and tail pointers both point to 
the head pointer. After initialization, all manipulation of page chains 
during compilation is performed by standard routines. These handle the 
general case, and the chains which contain only one or no pages. 

BASIC PAGE-HANDLING OPERATIONS 

Standard routines are used throughout the compiler for page-handling 
operations. The routine appropriate to the operation required is 
invoked by a macro instruction within the phase. Some macro routines 
call another macro routine in turn to perform the operation. For some 
page handling operations, in particular those operations that may 
involve input/output operations between main storage and the spill data 
set, the macro routines call routines in the resident control phase 
(Phase AA). The routines in Phase AA that are concerned with page 
handling operations are the page handling routine (AA4000), the spill 
supervisor routine (AA6000), and the phase loading routine (AA0300). 

Licensed Material - Property of IBM Section 2: Method of Operation 25 



The three basic page handling operations that may be required by a 
processing phase are: 

• Get a page space for a new page 

• Get an existing page 

• Change the status of a core page 

The routines used to perform these operations vary according to whether 
an operation is connected with the handling of text (or general 
reference data) pages or dictionary pages. 

Get a Space for a New Page: When a page space is required for the 
writing of a new page, the page chains are searched in the order: 
Discarded, Unused, Movable. The order in which Movable chains are 
searched is determined by a subroutine in the spill supervisor routine. 
In general, if the new page is to be a dictionary page, the text movable 
chain will be searched before the dictionary movable chain. The first 
suitable page found is known as the spill candidate. When a spill 
candidate is found, its status affects subsequent action as follows: 

Status 

Discarded 

Unused 

Usable 

Spillable 

Action 

The page space address and the TA are returned to the 
caller. The status is changed to Unmovable. 

An identifying number (or core-TA), consisting of a 
two-byte number followed by X'40', is allocated, 
inserted in the page header, and returned to the caller 
together with the absolute address of the page. The 
status is changed to Unmovable. 

A new TA is obtained from the data set and substituted 
for the existing TA. The page space address and the new 
TA are returned to the caller. The status is changed to 
Unmovable. 

The existing core page is written onto the data set. 
The action is then as for Usable. 

Get an Existing Page: When an existing page is required, the Unmovable 
and Movable page chains of the appropriate type are searched in case the 
required page is already in main storage. If the page is found, its 
status is changed, the page is added to the appropriate chain, and the 
page address is returned to the caller. 

If the page is not found in main storage, the page chains are searqhed 
for a spill candidate in the same order as for a new page search. The 
action taken when a spill candidate is found depends upon its status as 
fellows: 

26 Licensed Material - Property of IBM 



status 

Discarded 

Unused 
and 
Usable 

Spillable 

Action 

The TA of the discarded page is added to the discarded 
E~e table. (TAs in this table can be re-used for new 
pages.) The required page is then read in from the 
spill data set and overwrites the discarded page. The 
core-page address is returned to the caller. 

The required page is read from the spill data set into 
the page space. The core-page address is returned to 
the caller. 

The spill candidate is written onto the spill data set 
at its existing track address. The required page is 
then read in from the spill data set to overwrite the 
new usable space. The core-page address is returned to 
the caller. 

Change the Status of a Core Pa~: The status of an UNMOVABLE core page 
can be changed to MOVABLE or DISCARDED, and a MOVABLE core page can be 
changed to UNMOVABLE or DISCARDED. 

A READ ONLY page can have its status changed to READ/WRITE. A 
READ/WRITE page cannot be changed to READ ONLY, as such a page may have 
been retained in main storage since its use by a previous phase, and the 
spill copy may not have been updated. 

Selection of a Spill Candidate 

The method used to select a spill candidate affects the number of 
input/output operations required during execution of a phase. For each 
phase there is an optimum method of selection, which is determined to a 
great extent by the use of dictionary pages. 

A subroutine in the phase loading routine selects the optimum page 
handling routine for each particular phase before the phase is loaded. 
It can be called to change the selection method if processing 
requirements change during execution of a phase. Information about the 
selected method is passed to page handling routines via the 
communications area. 

TEXT PAGE HANDLING 

Requests for page-handling operations in connection with text or 
general-reference-data are made by use of macro statements which 
indicate the particular type of operation required, and contain 
information necessary to 'enable the operation to be performed. These 
statements generate inline macros which either perform the operation or 
call a macro subroutine. The subroutine may either perform the 
operation or call a control phase routine to perform those parts of the 
operation that are beyond its capabilities. 

The majority -of requests for basic page-handling operations are made by 
use of the XTXPG, XTXST, and XTXRF macros. The XTXRF macro calls the 
control phase routine AA4000 directly. The XTXST macro calls the XTXPGR 
macro subroutine, which performs the required operation. The XTXPG 
macro also calls the XTXPGR macro subroutine, but in this case XTXPGR 
calls the control phase routine AA4000 to perform some or all of the 
required operation. The relationship between these inline macro 
instructions, the macro subroutine, and the control phase routine is 
shown in figure 2.4. The functions of other macros involved in text 
handling are shown in appendix A. 

Licensed Material - Property of IBM Section 2: Method of Operation 27 



r-----------------------------------------------------, 
Inline macro 
instructions 

Macro 
subroutines 

Control phasE 
routines 

r-----' r-----' 
IXTXPGI I XTXST I 
L ___ ,_J ~ _____ J 

r~----' 
IXTXPGRI 
L __ ,\ __ J 

r~----' 
IAA40001 L ______ J 

r-----' 
IXTXRFI L _____ J 

Figure 2.4. Routines and subroutines called in text page handling operations 

The XTXPG Macro: Statements invoking the XTXPG macro can be used to 
specify three functions connected with page handling: 

1. If a chain of text pages is being processed, XTXPG can be used to 
obtain the absolute address of the next sequential page in the 
chain, having the page read into main storage if necessary. 

2. If a chain of text pages is being created, XTXPG can be used to get 
a new page and add it to the chain. 

3. If an individual page is required for temporary storage of 
reference data, XTXPG can be used to get a new page without adding 
it to a page chain. 

The particular function required is specified by using NEXT, ADD, or 
HEAD respectively as the first operand in the macro statement. Other 
opErands can be used in the statement to specify: 

• A revised status to be applied to the current page. 

• A status to be applied to the next or new page. 

• Registers or locations in which pointers to text references, or 
absolute addresses, in the currentA next, or new pages can be found 
or are to be stored. 

• Whether a read-ahead technique is to be used in any input/output 
operations connected with the request. If required, page 
input/output operations can be overlapped, and later checked for 
completion by use of the XCHECK macro. This technique enables time 
saving in cases where the need for a page can be predicted ahead of 
actual usage and where there is a page space available for the 
look-ahead page. 

The XTXPG macro does not perform any of the functions, but sets bits in 
the XTXBO, XSSW and XTCLCD fields in XCOMM, and sometimes ensures that 
RB is pointing at ~ location in the current page, before calling the 
XTXPGR macro subroutine. whenever it is called by XTXPG, XTXPGR calls 
the control phase routine AA4000 to perform some or all of the required 
functions. 

The XTXST Macro: The XTXST macro is used to specify a change of status 
to be applied to a text page that is resident in main storage at the 
time the change is requested. The page for which the change is required 
can be identified in the invoking statement by the text reference, 
address of start of page, or the absolute address of any location in the 
page. 

If a MOVABLE or UNMOVABLE page is to be changed from READ ONLY to 
READ/WRITE, the XTXST macro performs the function in line. For all 
other status changes, XTXST calls the XTXPGR macro subroutine, setting 
bits in the XTXBO and XSSW fields in XCOMM to indicate the fUnction 

28 Licensed Material - Property of IBM 



required. When called by XTXST, XTXPGR does not call any control phase 
routine. 

The XTXPGR Subroutine: The XTXPGR subroutine is generated by the XROUT 
macro in response to an invocation of the XTXPG macro. XTXPGR receives 
control from either the XTXPG macro or the XTXST macro. ~hese macros 
pass information about the required function in ~he XTXBO field in 
XCOMM, and also in RB. XTXPG also passes information in the XCTLCD and 
XSSW fields in XCOMM, indicating functions required of the control phase 
routines in connection with next or new page requests. 

Bit settings in XTXBO give the following 
indications: 

r---------T-------------------------------, 
IBit No. I Function and Indication 1 
10123 45671 1 
~---------+-------------------------------~ 

Information used to search for 
~~~rt o!:£~~rent-Eage. 

0--- RB points at an absolute 
address in the current page. 

1--- RB points at a text reference 
in the current page. 

--00 Change status of current page 
only. 

--01 Get a new text page. 
--10 Get a new text page, and add 

it to the chain by inserting 
its TA in the OTXCN field of 
the current page. 

--11 ---- Find the next page in the 
chain, as indicated in the 
OTXCN field of the current 
page. 

~ew status to be applied to 
£g~ll!!!-E!~ • 
(Characters in parentheses 
indicate value of operand in 
XTXPG or XTXST macro.) 

-0-- 00-- UNMOVABLE READ/WRITE (UNRW) 
-0-- 01-- UNMOVABLE (UNMV) 
-0-- 10-- MOVABLE READ/WRITE (SPIL) 
-0-- 11-- MOVABLE (SAVE) 

1-1-- 01-- DISCARDED (DISC) L _________ ~ ______________________________ _ 

Licensed Material - Property of IBM 

Bit settings in XCTLCD give the following 
indications: 

r---------T-------------------------------, 
IBit No. 1 Function Required of 1 
10123145671 Contrel Phase 1 
~----+----+-------------------------------~ 1----1---01 Get next page in text page 1 
I 1 I chain. 1 
1----1---11 Get a new page. I 
1----1--0-1 Overlapped I/O not required. 1 
1----1--1-1 overlapped I/O required. 1 
1----1-0--1 Make page READ/WRITE. 1 
1----1-1--1 Make page READ ONLY. 1 
1----10---1 Make page UNMOVABLE. 1 
1----11---1 Make page MOVABLE. 1 L ____ ~ ____ ~ _______________________________ J 

Bit settings in XSSw give the following 
indications: 

r---------T-------------------------------, 
IBit No. 1 Function Required of 1 
10123145671 Control Phase 1 
~----+----+-------------------------------~ 10--- Spill from oldest page. 1 
11--- Spill from newest page. 1 
1 1 
1 If new page to be MOVABLE. I 
1-0-- Add to end of MOVABLE page 
1 chain. 
1-1-- Test Bit 2. 
1--0- Add to keep end of MOVABLE 
I page chain. 
1--1- Add to spill end of MOVABLE 
1 page chain. 
1 
1 If old page to be MOVABLE. 
1---0 Add to end of MOVABLE page 
1 chain. 
1---1 Test Bit 4. 
1---- 0--- Add to keep end of MOVABLE 
I page chain. 
1---- 1--- Add to spill end of MOVABLE 
1 page chain. 
1---- -1-- Page start address passed as 
1 parameter. L ____ ~ ____ ~ ______________________________ _ 

Section 2: Method of Operation 29 



If RB has been set to point at a text reference or an absolute address, 
XTXPGR searches for the start of the containing page so that the page 
header can be accessed. The page must be in main storage. When the 
start of the page has been found, the page is removed from the status 
chain so that the page cannot be spilled during any input/output 
ccnnected with the requested operation. Note that if bit 5 of the XSSW 
field is on, RB already points to the start of the page. 

If the only function requested is a change in the status of a page, as 
when called by XTXST, this function is performed entirely by XTXPGR. 
The status field OSTAT in the page header is altered, and the page is 
added to the appropriate status chain by altering the OCNFD and OCNBK 
fields. If the page is to be made MOVABLE, XSSW bits 3 and 4 are 
examined to see whether the page is to be simply added to the most 
recent end of the MOVABLE chain or whether the required end has been 
specified. Control is then returned to the calling statement. 

If the next page in a text-page chain is required, the TA of that page 
is found by examining the OTXCN field in the current page header. If 
the value of that field is zero, the current page is the last in the 
chain. This information is passed to the calling macro by setting RC to 
zero. If OTXCN contains a TA, RB is 'set to pOint at OTXCN and the 
control phase routine AA4000 is called. AA4000 finds the page, reads it 
into main storage if necessary, sets its status as required, and returns 
control with RC pointing at the start of the page. If a new page is to 
be added to a text page chain, AA4000 performs the functions indicated 
in XCTLCD and returns control to XTXPGR. Before returning control to 
the calling macro, XTXPGR inserts the TA of the new page in the OTXCN 
field of the current page header, and links the current page into the 
appropriate status chain. 

If a new individual page is required, RB is not set. XTXPGR immediately 
calls AA4000 to acquire the page, and control is returned to the calling 
macro with RC pointing at the start of the new page. 

The XTXRF Macro: The XTXRF macro is used to obtain the absolute address 
o~an item-identified by a text reference, i.e., the TA of a page and 
the offset of the item from the start of that page. XTXRF does not 
perform any of the function, but sets up information according to 
operands used in the invoking statement and then calls the control phase 
routine AA4000 directly. The text reference is passed in RB or in a 
defined area of storage. A register, or an area of storage, can be 
nominated for storing the absolute address of the item or the start of 
the page containing it. Other operands can be used to specify a status 
to be applied to the containing page, and whether overlapped 
input/output can be used in any spill operations. This information is 
passed to AA4000 in XCTLCD. AA4000 searches for the required page, 
reading it into main storage if necessary, applies the required status, 
and returns control with RC pointing at the star~ of the page. 

DICTIONARY PAGE HANDLING 

The basic difference between the handling of text data and the handling 
of dictionary data is the way in which the containing page is identified 
when a data item is referred to. 

Each reference to an item in text is five bytes long, and consists of 
the TA of the containing page and the offset of the item from the start 
of the page. Thus the page is directly identified for page handling 
purposes. 

Because of the large number of references to dictionary entries that are 
used, each reference to a dictionary entry is two bytes long, consisting 
of a unit number. Each section of the dictionary (names, variables, 
general, and storage) is built on a separate page or sequence of pages. 

30 Licensed Material - Property of IBM 



Within each section, the pages are numbered sequentially, starting at 
zero. (The section of the dictionary to which a page belongs, and the 
reference of its first entry, are shown in the ODCTP and ODCRF fields in 
the page header.) Entries within dictionary sections may be of fixed 
length or variable length, but within each section a fixed alignment 
length is used. Thus each dictionary section can be divided into units, 
and the start of each dictionary entry can be related to a unit. The 
number of units per page for each dictionary section varies according to 
the page size used in compilation. Dictionary references are two bytes 
long, and contain the unit number of the start of the required entry. 
To access the entry, the TA of the containing page, and the offset of 
the entry from the start of the page must be determined. To enable 
this, a directory is built at the start of the page area. The directory 
remains in main storage throughout compilation, and entries are made in 
it as new dictionary entries are created. Phase AE allocates 560 bytes 
of storage for the directory, or 1120 bytes if sufficient storage is 
available. 

The directory is divided into four sections, each corresponding to a 
dictionary section. Each directory section contains a list of the track 
addresses of pages containing entries in the relevant dictionary 
section, the entries being made in section-page-number order. Thus the 
first three bytes of the directory section relating to the general 
dictionary contain the TA of general-dictionary-page number zero, the 
second three bytes contain the TA of general-dictionary-pagenumber one, 
etc. 

To identify the dictionary section to which a dictionary reference 
belongs, an identifying operand is used in the macro statement used to 
make a request for a dictionary page. The macro invoked by the 
statement sets up a corresponding value in the dictionary code byte 
XCODBT, in XCOMM. The values set in XCODBT are as follows: 

XCODBT value 

X'OO' 

X'OS' 

X'lO' 

X'lS' 

Indicated dictionary section 

General dictionary 

Names dictionary 

variables dictionary 

storage dictionary 

XCODBT is used by the page-accessing routines and subroutines to index 
four 32-byte tables, XSQTBL, XMSKTB, XDRTBI, and XDICEN. (XDICEN is 
overlayed on XDRTBL.) Each of these tables, which are in XCOMM, 
consists of four S-byte sections, (one section for each dictionary 
section). Each S-byte section in the tables is organized as follows: 

Licensed Material - Property of IBM section 2: Method of Opera~ion 31 



r--------T------------T---------------T--------------------------------, 
I Table I Field name I Size in bytes I Field content I 
~--------+------------+---------------+--------------------------------~ 
I I I I I 
I XSQTBL I I' , 
I , 'I , 
I I XREF , 2 I Reference of next unused unit. I 
I I I' I 
I I XOFST I 2 I Offset within current page of I 
I I I I next unused unit. I 
I I I' I 
I I XALGLN I 1 , Alignment length. I 
I I I I I 
I I XTA , 3 I Track address of current page. , 
r--------+------------+---------------+--------------------------------~ 
, I " I 
I XMSKTB I I I I 
I I I I I 
I I XOFMSK' 4 I Not used. , 
I , 'I , 
I , XPGMSK I 2 , Not used. I 
I I I I I 
I I XELTH I 2 I Alignment length. I 
r--------+------------+---------------+--------------------------------i 

I I 
XDRTBL I , 

I I 
I XSHFT 2 Not used. (Number of , 

XDROFS 2 

XSECSZ 2 

XCRDRF 2 

dictionary units per-page, when' 
XDRTBL is overlayed with , 
XDICEN. ) , 

The offset, from ~he start of 
the directory, of the start of 
a directory section 
corresponding to the relevan~ 
dictionary section. 

I 
I 
I 
I 
I , 
I 

The size of the section of the I 
direc~ory allocated to the I 
relevant dictionary section. I 

I 
The offset, from the start of al 
directory section, of the next I 
free space. I ________ ~ ____________ ~ _______________ ~ ________________________________ J 

Requests for dictionary page handling operations are made by use of 
macro statements, in which operands are used to specify the precise 
function required of the subroutines and the control phase routines that 
may be called. The functions of the various macros used for dictionary 
accessing are shown in appendix A. The macros most generally used and 
most directly involved with dictionary-page handling are XRFAB and 
XRFSEQ. 

At compiler assembly time, any invocation of the XRFAB or XRFSEQ macros 
causes a few inline macro instructions to be generated. These 
instructions include a call to the XRFAB and XRFSEQ subroutines, which 
are respectively contained in the XRFABI and XRFSEQI macros. XRFABI and 
XRFSEQI are generated by the XROUT macro in response to the first inline 
invocation of the XRFAB and XRFSEQ macros respectively. The XRFAB and 
XRFSEQ subroutines may call control phase routines to perform part of a 
required function~ The relationship between the inline macro 
instructions, subroutines, and control phase routines is shown in figure 
2.5. 

32 Licensed Material - Property of IBM 



r-----------------------------------------, 
Inline macro 
instructions 

Macro 
subroutines 

Control phase 
routines 

r-----' 
IXRFABI 

L--r--J 
r-----' 
IXRFABI 
L ___ ~J 

r-~---' 
IAA40001 L ______ J 

r------, 
I XRFSEQ I L ______ J 

r--J---, 
I XRFSEQ I 

Z
L- ____ J 

r-- ---, 
IAA45001 L ______ J 

I 
I 
I 
I 
I ' 
I 
I 
I 
I 
I 
I 
I 
I _____________________________ ~-----------J 

Figure 2.5. Routines and subroutines called in dictionary page handling operations 

The XRFAB Subroutin~: The XRFAB subroutine is called by the XRFAB macro 
to find the absolute address of a dictionary entry identified by a 
dictionary reference. If necessary it has the relevant page read into 
main storage. 

The XRFAB subroutine uses the directory to determine the TA of the page 
that contains the referenced entry. If the reference is valid, it calls 
the control phase routine AA4000 to search for the page, ~assing any 
required information in-the XCTLCD field of XCOMM. If necessary, AA4000 
reads the page into main storage. The XRFAB routine then converts the 
unit number given in the reference into a byte-offset from the start 
address of the page, converts it into an absolute address, and returns 
it to the caller in RC or in some other specified register or location. 

The XRFSEQ Subroutine: The XRFSEQ subroutine is called by the XRFSEQ 
macro, to find the absolute address of the next alignment unit available 
in a specified dictionary section for the creation of a new dictionary 
entry. 

XRFSEQ examines the XOFST field in the relevant section of XSQTBL, to 
find the next available alignment unit in the current page identified in 
the XTA field. When the page and unit are identified, a check is made 
to see if there is sufficient space in the page to hold the new entry. 
All entries in the storage and variables dictionaries are of a known 
fixed length. For entries in the·names and general dictionaries, the 
length of the entry is specified in the invoking statement. If the new 
entry can be created in the space available in the current page, routine 
AA4000 is called to find the address of that page, reading it into main 
storage if necessary, and XRESEQ applies the necessary offset to obtain 
the absolute address at which the new entry is to be made. If there is 
insufficient space available in the current page, routine AA4000 is 
called to get a new page. The directory, and the XDRTBL table in XCOMM, 
are updated before the address is returned to the caller. 

Before the required address for a dictionary entry is returned to a 
caller, the XOFST and XREF fields of XSQTBL are updated in preparation 
for a subsequent request. 

Licensed Material - Property of IBM section 2: Method of Operation 33 



CONTROL STAGE 

The control stage of the compiler consists of two phases, AA and AE. 
These phases perform functions that enable the compilation process to be 
carried out, but do not directly perform any processing of the text. 

Phase AA is the resident control phase. It is the first compiler phase 
to be loaded and remains in main storage throughout compilation. It 
provides an interface between the compiler and the operating system, and 
performs various housekeeping operations required during the compilation 
process. 

Phase AE is the initialization phase. It performs the once-only 
housekeeping operations required to prepare the operating environment 
for execution of the compiler processing phases. If the compiler is 
operating in batched-processing mode, this phase is loaded and executed 
before the processing of each external procedure. 

Because some results of processing by Phase AE affect the way in which 
operation of the compiler is controlled, this phase is loaded and 
executed almost immediately after Phase AA has received control from the 
DOS supervisor program. Accordingly, for descriptive purposes, the 
operation of Phase AE is described here before the operation of phase AA 
is described. 

34 Licensed Material - Property of IBM 



Phase AE performs the housekeeping functions required to prepare the 
operating environment for the processing of source modules~ Some of 
these functions must be performed before the processing of each source 
module when the compiler is operating in batched-processing mode. Much 
of the information used by Phase AE is contained in Phase AA. The 
instructions that process this information are included in Phase AE to 
avoid the retention in main storage of instructions that are used once 
only. The functions of Phase AE include: 

• Determination of the partition size available to the compiler. 

• Initialization of the compiler communications area, and 
re-initialization of this area as required for batched compilations. 

• Opening of the input, print, and spill data sets. The punch data 
set is opened if it is required by compiler options. 

• Processing of compiler options. 

• Calculation of the main storage area available for use as the page 
area, and calculation of the page size. 

• Advising the operating system of the interrupt-handling routine to 
be used in the case of program check interrupts. 

• Obtaining time and date for compiler headings. 

PHASE INPUT 

When Phase AA passes control to Phase AE, the communication area exists 
as a control section in which some of the fields are already 
initialized. The fields that are initialized include: 

XACTL 

XBATCH 

DTFs 

the address of the start of Phase AA. 

a flag byte set by Phase AA to indicate the type of 
processing required of Phase AE. 

for the input, print, punch and spill data sets. 

When the input data set is open, Phase AE reads the *PROCESS statement 
(if present) at the front of the source program to determine the 
compiler options specified for the compilation. 

The DOS supervisor communication region is accessed by Phase AE to 
ascertain the size of the partition available to the compiler. 

PHASE OUTPUT 

On completion of processing by Phase AE, all fields in the compiler 
communication area have initial values set as required for operation of 
the processing phases. All data sets required are open. Main storage 
is allocated only as shown in figure 1.3 and initialized. 

Licensed Material - Property of IBM section 2: Method of Operation 35 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

PHASE OPERATION 

lni1ialization of the Compiler Communication Area 

When Phase AA passes control to Phase AE, Register 13 contains the 
address of the compiler communication area, XCOMM. Some of the fields 
in XCOMM have initial values set. Phase AE sets initial values in all 
other fields that are required at the start of the processing of a 
source program. 

Routine AEOOOO accesses XCOMM and examines a field, XBATCH~ This field 
contains a flag byte set by Phase AA (or by the XREAD macro in the case 
of batched compilation) to indicate whether Phase AE is required to 
perform initialization functions after invocation of the compiler, or 
whether re-initialization is required before the compiler processes the 
second or a subsequent member of a batched compilation~ 

If XBATCH indicates that the initial member of a batch is to be 
compiled, Phase AE copies into XCOMM the addresses of control routines 
in Phase AA. It also issues a COMRG macro to access the DOS supervisor 
communication region, and copies information from there into XCOMM. The 
information copied includes the start and end addresses of the partition 
allocated for use by the compiler. These addresses are copied into the 
XACTL and XAEND fields. 

Initialization of other fields is described in following paragraphs. 
Fields in XCOMM that do not have an initial value set by Phase AA or AE, 
and may be read by a processing phase before being set, have their 
initial value set to zero. 

I 
The input, print, spill, and punch are opened by Phase AE. The DTFs for 
these data sets are in XCOMM when it is loaded, and are partly 
initialized~ Completion of the initializat~on, required before a data 
set can be used, includes the insertion of the address of the LIOCS 
module into the DTF. 

I The spill data sets are required to be open for every compilation. If 
batched compilation is performed, the data set is opened and initialized 
for processing the first member of the batch, and remains open until all 
.compilations in the batch are completed. The requirement for opening 
and initialization is indicated by the setting of XBATCH, which is 
tested by Phase AE at the start of each compilation. The LIoes module 

I for the spill data sets is in Phase AA. When the page size has been 
calculated, the blocksize field in the DTF is completed, an OPEN 

I 
statement is issued to open the spill data sets, and the address of the 
LIOCS module is inserted in the DTF. If the spill data sets have been 
opened for a previous compilation, the track address of the first record 
on the data set is inserted in the XNWTA field in XCOSM, to indicate to 
the'page-handling routine in Phase A1 the TA on the first page to be 
used. 

The LIOCS modules for all other data sets are generated within the 
phases that use the data sets. A common LIoes module is used for the 
input, print, punch, and load data sets. This LIOCS module is generated 
by use of an XPRINTR macro instruction within the phase. A different 
entry point in the LIoes module is used for each data set, and the 
address of the relevant entry point is inserted in the appropriate DTF 
by use.of an XREADI, XPRINTI, XLOADI, or XPUNCHI macro instruction. 

The input and print data sets are used by Phase AE, and are therefore 
opened and· initialized by this phase for all compilations. Use of the 

36 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

punch and load data sets depends upon the compiler options that are 
specified. Phase AE examines the options and opens the punch data set 
if it is required. The LIOCS module is generated, and the DTF is 
initialized, by Phases CA or 51. The load data set is opened by Phase 
SI if required. Phase 51 contains the DTF and also the buffer area for 
that data set, and generates the LIOCS module as required. 

Processing the compiler·Options 

The standard defau~t specifications for all compiler options are defined 
in the PLIOAS module, which is link-edited and stored in the core-image 
library at system-generation time. In addition to indicating the 
default options, PLIOAS also indicates those options that are deleted 
from usage and which cannot be altered by options specified in the 
*PROCESS statement. If any compiler option deleted at system 
installation time is required for a particular compilation, it can be 
enabled by the use of the CONTROL option in the *PROCESS statement. 
This option must be specified with a password that is defined at system 
installation time. Use of an incorrect password will cause compilation 
to terminate. 

The default and delete indications are given in separate 16-byte fields 
within the PLlOAS module. The following table describes the relative 
poSitions of the default bits and delete bits, and gives the standard 
defaults with appropriate default bit settings. The same byte offset 
and mask apply to the default and delete tables for the same option. 
r---T----T----T------------T-----------------T-----------, 
IBitl Address I Option I Standard Default I Default 1 
1 I BytelMaskl I IBit setting I 
~---+----t----+------------t-----------------t-----------~ 

1 +0 80 IATTRIBUTES 1 NOATTRIBUTES 0 
2 40 IAGGREGATES 1 NOAGGREGATES 0 
3 20 1 DYNBUF 1 NODYNBUF 0 

4 
5 
6 
1 
8 
9 
10 
111 
121 
131 
141 
151 
161 

+1 

I 
171 +2 
181 
191 
201 
211 
221 
231 
241 
251 +3 
261 
271 
281 
291 
301 
311 
321 
331 +4 

ICHARSET I 
10 I EBCOICIBCO EBCDIC 
08 I 60148 60 
04 ICATALOG-
02 ILIST 
01 ICOMPILE 
80 I NC(W) 
40 I NC(E) 
20 I NC(S) 
10 IDECK 
08 I 
04 IDUMP 
02 I 
01 IESO 

I FLAG 
80 1 (I) 
40 I (W) 
20 I (E) 
10 I (5) 

08 ILIMSCONV 
04 1 
02 I 
01 IINSOURCE 
80 ILINECOUNT* 
40 I 
20 IMACRO 
10 IMARGINI 
08 IMARGINS-
04 IMOECK 
02 INAME-
01 INEST 
80 I 

NOLIST 
NOCOMPlLE(S) 

NOOECR 

NODUMP 

NOESD, 
FLAG(I) 

NOLIMSCONV 

INSOURCE 
I LINECOUNT (55) 
I 
INOMACRO 
I NOMARGINI 
IMARGINS(2,12) 
I NOMOECK 
I 
I NON EST 
I 

Licensed Material - Property of IBM 

1 
1 
o 
o 
o 
o 
o 
1 
o 

o 

o 

1 
o 
o 
o 
o 

1 
o 

o 
o 
o 
o 
o 
o 

Section 2: Method of Operation 37 



Order No. LY33-6010-1 r Page Revised by TNL LN33-6175 r October 1976 

34, 40 1 MAP 1 NOMAP 0 
351 20 1 I 
36, 10 1 OFFSET I NOOFFSET 0 
371 08 OPTIMIZE I NOOPTIMIZE 0 
38 1 04 TIME I 
39 02 TIME 1 
40 01 TIME I 0 
41 +5 80 OP'IICNS OPTIONS 1 
42 40 S'I'CRAGE NOS'IORAGE 0 
43 20 
44 10 
45 08 
46 04 
47 02 
48 01 SIZE· SIZE(MAX) 0 
49 +6 80 SOURCE SOURCE 1 
50 40 
51 20 GOSTM'I NOGOS'IMT 0 
52 10 
53 08 SYNTAX NOSYNTAX(S) 0 
54 04 NOSYN(W) 0 
551 02 NOSYN(E) 0 
561 01 NOSYN (S) 1 
571 +7 80 
581 40 FLOW NOFLOW 0 
591 20 XREF NOXREF 0 
601 10 
611 08 
621 04 ILINK NOLINK(S) 0 
631 02 1 NOLINK(W) 0 
641 01 I NOLINK (E) 0 
65, +8 80 NOLINK(S) 1 
661 40 
67 1 20 
681 10 
691 08 
701 04 
711 02 
721 01 
731 +9 80 
741 40 
751 20 
161 10 
711 08 
181 04 
191 02 
801 01 
811 +10 80 
821 40 
831 20 
841 10 
851 08 COUNT NOCOUNT 0 
861 04 
87, 02 
881 01 INCLUDE NOINCLUDE 0 
891 
901 
911 XREF(SHORT) 0 
921 
931 

38 Licensed Material - Property of IBM 



Order No. LV31-6('l1"-1, Paqe ~~r.en hv ""'n· :r,M1~-~1'?r::, October 1976 

1 941 1 TSTAMP 0 
1 951 I 
I 96 1 I I I I 1 
~---~----~----~------------~-----------------~-----------~ 
1 NOTE: For FLAG, COMPILE, and SYNTAX options, only the I 
I first of the corresponding DELETE bits is used to I 
I indicate that the option is non-deleteable. I 
I • Applies to the delete table only. I L ________________________________________________________ J 

Each time Phase AE is executed, the PROCOPS routine issues a LOAD macro 
instruction to have the PLIOAS rrodule leaded into an area of the phase 
working storage. Fer each corrpiler option specified in PLIOAS, an 
appropriate bit is set in the XNSYGBT field in XCOMM. Similarly, for 
each compiler option that is disabled, a bit is set in the XNDELET field 
in XCO~M to indicate that specification of that option in the *PROCESS 

Licensed Material - Property of IBM Section 2: Method of Operation 38.1 



statement is invalid and that a diagnostic statement should be 
generated. For those compiler options for which a specific value can be 
specified (e.g., the SIZE and MARGINS options), the values specified in 
PLIOAS are copied into appropriate fields in XCOMM~ 

If XBATCH indicates that the first source program is to be processed, an 
XREAD macro instruction is issued to read the first record from the 
input stream into an input buffer. A test is made to check that this is 
a *PROCESS statement. If XBATCH indicates that the second or a 
subsequent member of a batched compilation is to be processed, a 
*PROCESS statement will already be held in the input buffer; a *PROCESS 
statement is treated as the end of file marker by the XREAD macro 
routine in Phases BA, CA, or EA, and is retained in an input buffer 
while the previous batch member is being processed. 

Three subroutines, BLKSKP, CBSKP, and PNCSCN, are called to handle 
internal delimiters, such as blanks, commas, brackets, quotes, and 
equals signs, when scanning the record for an option keyword. When an 
alphameric character string is detected, its length to the n~xt 
delimiter is determined. The KEYSCN routine then searches the options 
keyword table at KEYTBS for keyword entries of the same length as the 
detected character string. 

Within the KEYTBS tables, valid keywords are grouped according to their 
length. Each entry in the tables consists of: 

1_ A DC instruction defining an option keyword. 

2. A TM instruction which is used to determine whether the option has 
been deleted from usage. 

3. An instruction which sets a bit in a field in XCOMM to indicate 
that the option is specified or, if the option has a value list, 
passes control to the appropriate processing routine. 

When a valid option keyword corresponding to the detected character 
string is found, the instructions at items 2 and 3 above are executed. 
If the character string detected is not a valid option keyword, or if 
there is an error in its option value list, the STRGAJ subroutine is 
called to generate an error message and locate the next keyword_ 

Records are read in and processed until a semicolon indicates the end of 
the *PROCESS statement. The next record is then read in and tested to 
see if it is a further *PROCESS statement. If it is, the options are 
processed on an additive basis. If an option is found that has been 
specified previously, the later specification is used. If the later 
specification is invalid, the default specification is used rather than 
reverting to the previous specification. When a record that is not part 
of a *PROCESS statement is found, it is assumed to be the first record 
of the source program, and is copied into the XREC1 field of XCO~M for 
use when the SOURCE option is implemented. On completion of processing 
by the PROCOPS routine, information about all option settings applicable 
to the compilation are available in XCOMM to any compiler phase. The 
enablement of specified options can be tested by use of the XCOPT or 
XTOPT macro, and individual fields can be accessed to test for specified 
values. 

Calculation of Pag~Ar~g 

The routine AESOOO calculates and identifies the space available for 
pages. The first operation performed by this routine is a comparison of 
the partition size allocated for use by the compiler (XAEND minus XACTL) 
with the partition size specified in the SIZE option (stored in XSIZE). 
If the specified size is the greater, an error message is generated and 
the maximum partition size is allocated. If the specified size is less 

Licensed Material - Property of IBM Section 2: Method of Operation 39 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

than or equal to the maximum partition size, the size of the page area 
is calculated using XSIZE. 

The amount of storage required for the resident control phase, the 
compiler communication area, and the phase area, (which is the total 
non-page area of the compiler partition), is stored as a constant value 
in ZOVHD is Phase lE. The size and address of the page area is found by 
subtracting ZOVHD from the compiler partition size. 

compiler design requires a minimum page area of 9544 bytes, i.e., space 
for eight pages of 1080 bytes each, plus space for headers and tables to 
look after the pages. If the page area is less than 9544 bytes, an 
error message is generated and compilation is terminated. To reduce 
spill file input/output operations, three different page sizes are used. 
These are: 1680 bytes if the page area is greater than 13600 bytes, 
3480 bytes if the page area is greater than 28000 bytes, 4040 bytes if 
the page area is greater than 32800 bytes, and the spill data sets are 
on either a 3330 or 3340 direct access storage device~ 

The page size determined is stored in XPAGS in XCOMM and the number of 
page spaces is stored in XPNO. 

When the page size is known, the record length for the spill data set is 
calculated. The record length is the usable page space (1080, 1680, 
3480, or 4040 bytes) plus 11 bytes for some of the page header 
information and the page delimiter. The XSPILL DTF is completed and the 
spill data sets opened. 

The first usable track address on the spill file data set is stored in 
XNWTA, and used by Phase AA when formatting the data set. The UNUSED 
page-status chain is set up, the page-header tables are initialized, and 
the dictionary tables XMSKTB, XSQTBL, and XDRTBL (in XCOMM) are 
initialized. 

If XBATCH indicates that batched processing is in operation, all the 
information about the page area, page S1ze, etc., will already be 
available and the spill file will be open. Phase AE checks the highest 
track address used in any of the previous compilations and stores it in 
XSAVTA. For the new compilation, no new page will have to be acquired 
until all the track addresses up to XSAVTA are used. XNWTA points at 
the next track address on the data set to be used when a new page is 
required. All pages in main storage are given the UNUSED status, and 
other page-status chains are set to null. 

The interrupt handling routine is at A10600 is Phase AA. To reduce the 
·storage space required by the resident control phase, routine AE6000 
identifies the interrupt handling routine and the dump save area, and 
.passes their addresses as arguments when issuing a STXIT macro. 

compiler Heading§ 

Routine AE0100 issues a GETIME macro to obtain the time of day from the 
computer timer feature. For each compilation, this time is printed out 
in the form HH.MM.SS at the head of any listing. 

40 Licensed Material - Property of IBM 



THE RESIDENT CONTROL fHA§~EHASE AA) 

Phase AA consists of a number of service routines. These routines are 
used by the processing phases of the compiler to provide standard 
services, and to provide interfaces with the DOS supervisor program. 
The phase is loaded by the DOS supervisor, and remains in main storage 
until compilation is completed. Its functions include: 

• operations required at the start of each compilation. 

• Control of the loading of all other compiler phases. 

• satisfaction of all requests from processing phases for new or 
existing data pages. 

• Handling of program check interrupts. 

• operations required at the end of each compilation. 

These functions are performed by the following routines: 

AAOOOO 
AA0300 
AA4000 
AA6000 
AA0600 
AA0500 

Compilation Start Routine 
Phase Loading Routine 
Page Handling Routine 
Spill Supervising Routine 
Program-interrupt Handling Routine 
Compilation End Routine 

PHASE OPERATION 

~§: Some of the routines described in the following paragraphs 
perform functions connected with page-handling operations. A general 
description of the page-handling scheme used by the compiler is given 
earlier in this section. The control phase routines involved in page 
handling- operations are shown in figure 2.6. 

The DOS supervisor has Phase AA loaded from the core-image library and 
passes control to AAOOOO. A CSECT named XCOMM is loaded with Phase AA 
to provide an area of main storage that can be used for communication 
between compiler phases. Phase AA identifies XCOMM by setting Register 
13 to point at it. The address of XCOMM is retained in Register 13 
throughout compilation. 

~hen XCOMM is loaded, some of its fields contain their requisite initial 
values. Phase AA stores its own start address in the field named XACTL. 
It also stores the time of the start of compilation in the XTIMU field. 
If the compiler is operating in batched processing mode, XTIMU is set 
for each source module. 

Some of the fields in XCOMM require initialization only on invocation of 
the compiler. other fields need to be re-initialized before compilation 
of each batch member. Phase AA sets the XBATCH field in XCOMM to zero 
to indicate that initialization is required for compilation of the first 
source module. (For batched compilation, XBATCH is subsequently set by 
the phase that reads the input records,. Phase BA, CA, or EA.) Phase AE 
is then loaded and control passed to it. 

Licensed Material - Property of IBM Section 2: Method of operation 41 



AA0300 
PHASE LOADI NG 

ROUTINE 

AA4000 

PAGE HANDLING 
ROUTINE 

AA6000 

SPILL SUPERVISING 
ROUTINE 

DOS DATA 

MANAGEMENT PROGRAMS 
(SAM) 

COMPILER 

PROCESSING 

PHASES 

Figure 2.6. Control-phase routines and subroutines used in page-handling operations 

42 Licensed Material - Property of IBM 



Phase Loading Routine (AA0300) 

The prime function of this routine is to issue instructions that cause a 
specified phase (or phase segment) to be loaded. The routin6 also 
performs some page-handling organization to ensure that data processed 
by a phase is made available in the most efficent manner. 

When a phase has completed its processing, it uSeS an XPST macro 
instruction to call the phase loading routine, and to specify the next 
processing phase to be loaded. Before the specified phase is loaded, 
the phase list at XPHSL (in XCOMM) is examined to see if an interphase 
dump has been specified in the compiler options. If so, Phase AI is 
executed before any preparation for the next processing phase is 
performed. 

In addition to specifying the name of the next phase, the XTEMP table 
generated by the XPST macro instruction also contains code bytes that 
indicate the paging requirements of the next phase. The code bytes are 
used to select th6 optimum page-spilling algorithm for the phase. The 
information in the code bytes is also used by the main routine, which 
has pages added to appropriate page chains and re-initializes fields in 
XCOMM that contain page-handling information. In order to perform theSE 
functions, the page handling routine (AA4000) and the spill supervising 
routine (AA6000) are called. When the required page reorganization is 
complete, the new phase is loaded. 

In addition to ensuring that data is available for any phase when it is 
loaded, this routine may also be called to perform similar functions 
during the execution of a phase, if the page-handling requirements alter 
because of a change in the nature of processing by that phase (e.g., if 
dictionary pages are required during part of its processing, but not 
required later). In such cases, the routine is called by use of an 
XFREE macro instruction, and control is returned to the phase when the 
page reorganization is complete. 

Selection of page SRilling Algorithm: For each processing phase there 
is an optimum method of selecting a spill candidate when a page space is 
required. The method of selection may be affected by: • 

• The scanning methods used -- sequential or non-sequential. 

• The ratio of the number of page spaces to the number of pages in 
use. 

• The type of processing performed, e.g., a phase that scans text only 
will require spill candidates to be selected on a different basis 
from a phase that accesses both text and dictionary. 

selection of the optimum page-spilling algorithm is performed in the 
phase-building routine; AA0300. 

At the end of each processing phase, an XPST macro generates a 6-byte 
table, XTEMP, which contains the name and details of the next phase to 
be loaded. (The details for each phase are predetermined.) The format 
of the table is as follows: 

r--- 2- bytes--T-l-byteT-l-byteT---2-bytes--, 
I PHASE NAME IPAGE I PHASE IPHASE INDEX I 
I I CONTROL I TYPE I I 
I I BYTE I BYTE I I L ____________ L _______ L _______ L ____________ J 

Licensed Material - Property of IBM Section 2: Method of Operation 43 



Page Control byte: 

Bit Number 

o not set 
set 

1 not set 
set 

2 - 4 
5 - 7 

Indication 

Spill text before dictionary. 
Spill dictionary before text. 
Bit 0 is used when looking for a spill 
candidate to replace with a text page. 

Phase simply adds to text stream. 
Phase creates new text stream. 
Bit 1 is used to determine relative 
sizes of text stream and page space. 
Factor 1. 
Factor 2. 

Phase Type byte: 

Bit Number 

0 not 

1 - 4 
5 not 

6 - 7 

set 
set 

set 
set 

separate logical phase. 
Another branch in same overlay structure. 
Spare. 
Dictionary not required. 
Dictionary required. 
Number of dictionary pages to be maintained in 
unmovable dictionary chain. 

The page-spill algorithm routine determines its algorithm from: 

1. The control byte, 

2. The size of the text stream, XTXC, and 

3. The number of pages in main storage, XPNO. 

The first bit in the control byte determines whether text-spill 
candidates are to be taken from the text (bit 0 = 0) or from the 
dictionary (bit 0 = 1); the former tends to increase the number of 
dictionary pages as opposed to text, the latter reduces it. 

The second bit determines how the size of the text stream after this 
phase is to be determined. Either the phase creates a new text stream 
(bit 1 = 1) in which case the size of the stream is just the number of 
new text page requests (XTXC = XNWTP) or the phase just adds to the 
existing stream (bit 1 = 0) in which case the size of the text stream is 
incremented by the new text pages (XTXC = XTXC + XNWTP). 

The last six bits contain two factors" F1 and F2, which enable the 
routine to calculate three different ranges for the ratio XTXC/XPNO. In 
general when this ratio is very large ,or very small, the spill candidate 
is taken as the oldest movable page, at intermediate values the newest 
page is chosen. However, the ranges are variable: some phases always 
spill the oldest (F1 = 0) whilst others always spill the newest 
(F1 = 7). 

Having determined the algorithm, XSSW bit 0 is set accordingly: bit 
o = 1 if the oldest is to be spilled, but 0 = 0 if the newest is to be 
spilled. 

The processing phase is then loaded and the page handling routines in 
Phase AA use the masks and switch as required during page handling 
operations. 

44 Licensed Material - Property of IBM 



Page-handlinq Routine (AA4000) 

This routine is called to handle all requests for pages required during 
processing. The routine may be called by macro routines in the 
processing phases, or may be called by the phase loading routine. In 
dealing with page requests, this routine calls the spill supervising 
routine to control input/output operations required if a request is made 
for a page not in main storage, or for a new page. 

The routine consists of a main routine that supervises the search for a 
requested page, and a number of subroutines that perform functions 
connected with the search. Some of these subroutines may be called 
directly from the processing phase routines. 

The main routine is called to handle all requests for text and 
dictionary pages, except when an existing dictionary page is identified 
by a dictionary reference (in such cases the routine is entered at 
AA4100). If a request is made for an existing page, the routine decides 
which chains to search, and builds a list indicating the order in which 
the chains ate to be searched. Control is then passed to either TACNOO 
or DRCNOO to search these chains. TACNOO searches for a text page that 
is identified by its track address. DRCNOO is used to search for a 
dictionary page that is identified by the dictionary reference of the 
first entry in the page. If the required page is found, the subroutine 
PECNOO is called, and, according to the setting of the first three bits 
in xssw, may choose which end of the chain to add a movable page. The 
address of the page is returned to the processing phase. 

For each phase there is a maximum number of dictionary pages that can be 
maintained with the unmovable status. The number is specified when the 
XPST macro statement is used to specify the phase. Before any page is 
added to the dictionary unmovable chain, the UDCNOO subroutine is called 
to ensure that the limit is not exceeded. If necessary, the oldest 
~, (i.e., the page at the start of the chain), is removed from the 
unmovable chain, and added to the movable chain by the PECNOO 
subroutine, which then adds the found page to the unmovable chain. 
Dictionary pages are always added to the newest end of the movable page 
chain. 

Spill Supervising Routine (AA6000) 

This routine is called to satisfy a request for a new page, or for an 
existing page that is not in main storage. The routine has no direct 
interface with the compiler phases. It can be called from a number of 
places in the page handling routine whenever input/output operations 
between main storage and the spill data set may be required. The 
routine contains a number of subroutines, some of which interface with 
the DOS BSAM data management programs by use of system macro 
instructions. 

The subroutine AA7200 is used to maintain a table, in the communication 
area, of the track addresses of DISCARDED pages. Re-use of these track 
addresses reduces the rate of expansion of the spill data set. The list 
is updated each time a track address is re-used. 

The subroutine AA7000 is called whenever a new page is requested. If 
there is a track address av~ilable in the list maintained oy AA7200, 
that track address is allocated to the new page. If there is no 
discarded track address available, the routine writes a new formatting 
record after the last record on the spill data set. The track address 
of the new record is obtained, and becomes the name of the new page. 
The system macro instruction instructions used in this subroutine are 
WRITE, CHECK, and NOTE. 

Licensed Material - Property of IBM Section 2: Method of Operation 45 



Subroutine AA7500 is called to read a page from the spill data set into 
a page space in main storage. Subroutine AA7700 is called to write a 
page from main storage to the spill data set. When a page is written, 
thE target track address is the name of the page. When a page is read, 
the source track address is the name of the page requested. These 
subroutines check for completion of input/output operations if 
overlapped input/output is specified in the p~ge request. The system 
macro instructions used in the subroutines are CHECK and POINTR. 

When the main routine is called to satisfy a page request, the 
subroutine FPCNOO is called. This subroutine searches page chains in an 
order specified by AA4000. The first page found in this search is the 
spill candidate. The action then taken depends upon the nature of the 
page request, and the status of the spill candidate. 

If the request is for a new page, the action taken is as follows. If 
the status of the spill candidate is UNUSED or DISCARDED, it can be used 
immediately for the new page. If the spill candidate is USABLE, a new 
track address is required, and subroutine AA7000 is called to provide 
the new track address. If the spill candidate is SPILLABLE, subroutine 
AA7700 is called to write the spill candidate to the spill data set, and 
AA7000 is then called to provide a track address for the new page. 

If the routine receives a request to read an existing page into main 
storage, the action is as follows. If the status of the spill candidate 
is DISCARDED, subroutine AA7200 saves its track address for future 
use, and subroutine AA7500 reads the requested page into the available 
page space. If the spill candidate is SPILLABLE, subroutine AA7700 is 
called to write it to the spill data set. Subroutine AA7500 is then 
called to read the requested page into the available page space. 

Interrupt-handling Routine (AA0600) 

If a program check interrupt occurs during compilation, the STXIT macro 
issued by Phase AE at initialization time causes the operating system to 
pass control to routine AA0600. 

This routine contains instructions which cause a branch-and-link to the 
address held in the XDMADR field of XCOMM. If an "abort" dump has been 
specified, the address in XDMADR is the entry pOint of the dump phase 
(Phase AI). Phase AI is executed to print the required dump, and 
control then returns to the interrupt-handling routine. If the DUMP 
option has not been specified, Phase AI will not have been loaded, and 
XDMADR contains an address which causes control to be returned 
immediately to the interrupt-handling routine. An XDIAG macro 
instruction is then executed to test which of the message-editing phases 
is to be loaded. Phase CE prints the compiler-error message and any 
diagnostic messages generated by Phase CAi Phase UA prints the 
compiler-error message generated by any other phase, plus any diagnostic 
messages generated prior to the interrupt. When control returns to the 
interrupt-handling 'routine, it passes control to the compilation end 
routine. 

Compilation End Routine (AA0500) 

This routine is entered on completion or termination of the compilation 
of a source module. 

The linkage to the system interrupt handling routine is cancelled. If 
the XBATCH switch indicates that there are more source modules to 
compile, control is passed to the start routine. If all compilations 
are complete, all data sets are closed and control is returned to the 
operating system. 

46 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6115, October 1916 

THE PREPROCESSOR STAGE 

The preprocessor stage consists of three phases: Phases BAw CAw and CE. 
The functions of Phase BA and CA are to modify the source prograR se 
that it is passed te the syntax analysis stage of the compiler in a 
format acceptable as compiler input. When necessary, the content of the 
PL/I source program is modified by translation into 60-character set 
EBCDIC format and by execution of any compile-time statements 
(identified by a preceding' character) that it contains. Phase CE 
edits and prints any diagnostic or cORpiler-errer messages generated 
during preprocessing. 1he flewpaths of input rec9rds are shown in 
figure 2.3. 

Phases in the preprocessor stage are loaded and executed only if the 
relevant compiler options are specified. These options are: 

MACRO Source program may include compile-time statements. 

CHARSET(48) Source program written in 48-character set and coded 
in EBCDIC. 

CHARSET (48, BCD) Source program written in 48-character set and coded 
in BCD. 

CHARSET(60 wBCD) Source program written in 60-character set and coded 
in BCD. 

INCLUDE Source 'program may contain 'INCLUDE statements. 

If the MACRO option is specified, Phase CA is loaded anq executed. 
Phase·CA perfor~s all preprocessing of the source prograre, including 
translation into 60-cbaracter set EBCDIC if CHARSET(48), 
CHARSET(48 wBCD)w or CHARSE1(60 wECD) is also specified. 

If the NCMACRC option is specified (by default) and one of the options 
CBARSET(48)w CHARSE1(48,BCD), CBARSET(60 wBCD) and INCLUDE is specified w 
Phase BA is loaded and executed. This phase translates the source 
program into 60-character set EECDIC and perforns any 'INCLUDE 
statements in the progran.. 

If any diagnostic or compiler-errer n.essages are generated during the 
execution of Phase EA or CA, Phase CE is called to edit and print them. 

If the options NOMACRO (by default) w' NOINCLUDE and CHARSE1( 60) are 
specified, no preproceSSing is required, and the phases of the 
preprocessor stage are not leaded. 

The diagnostic messages produced by the diagnostiC 
phase, Phase CE, are graded in order of severity. 
FLAG option permits specificaticn of messages of a 
of severity to be listed~ The choice is indicated 
option value list as follows: 

FLAG (I) All diagnostic messages listed. 

message editing 
Implementation of the 
chosen minin.ult level 
by means of the FLAG 

FLAG(W) All diagnostic messages except 'informatory' messages listed. 

FLAG (E) 

FLAG(S) 

All diagnostic messages except 'warning' and 'informatory' 
messages listed. 

Only 'severe' errors and 'unrecoverable' errors listed. 

Licensed Material - Property of IBM section 2: Method of Operation 47 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Note: ~he specification FLAG is equivalent to FLAG(I). 

Full details of the diagnostic message severity levels and of all 
preprocessor options are given in the Programmer's Guide for this 
compiler. 

48 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised ty ~NL LN33-6175, October 1976 

I 48-CEARACTER/ECD/INCLUDE PREPROCESSOR (FHASE BA) 

The function of this phase is to convert source stateKents written in 
the PL/I 48-character set to the Fl/I 60-character set, and tc process 
~INCLUDE statements if the INCLUDE compiler option ap~lies. In 
addition, if specification of the CHARSETCBCD) option indicates that the 
source prograrr is represented by ECD, the program will be translated to 
the EBCDIC representation. ~his ~hase is loaded only if the NOMACRO 
option applies. 

PHASE INPUT 

The input to the phase consists of records, with a maximum length of 
80-bytes, in card-image form. The records can contain PL/I statements 
(and comments) written in either the PL/I 48-character set or the PL/I 
60-character set and coded in BCD or EBCDIC. 

PHASE OUTPUT 

The output of the phase is to Phase EA in the syntax analysis stage, and 
consists of one or more text pages containing pairs of records, one or 
two 84-byte records being written for each record (the extra 4 bytes 
contain the record length). One record of the pair is used for the 
source listing on specification of the SOURCE option, and the other is 
the preprocessed record, used for compilation. 

Conversion and/or translation are carried out by the phase, depending on 
the format of the input records, providing the following output record 
formats: 

Input record Output records 

48-char. EBCDIC 
48-char. BCD 
60-char. BCD 

SOURCE listing 

48-char. EBCDIC 
48-char.. EBCDIC 
bO-char. EBCDIC 

Compilation 

bO-char. EBCDIC 
60-char. EBCDIC 
60-char. EBCDIC 

If the INCLUDE and CS(EBCDIC,60) options apply, then except during 
processing of ~INCLUDE statenents, only one record is put out for each 
input record. ~his a~plies to beth SYSIF~ input and included text. 

PHASE OPERA~ICN 

The aO-byte source records in card-image form are read into a buffer by 
the XREAD MACRO. All 'necessary proceSSing is carried out whilst a 
record is in this buffer, and the record is output from the buffer 
direct to the output text strean. 

Immediately after a record has teen read into the buffer, any 
BCD-to-EBCDIC conversion required is carried out by neans of the 
translate tatle ~REECDIC. A co~y of the record is then output to the 
current text page, to be used for the source listing on specification of 
the SOURCE option. 

Each byte of active source (that is, within the source margins) in the 
buffer is scanned by a translate-and-test instruction for one of the 
characters which are valid as the first character of a 48-character 
symbol. If one is found it is translated to a value between 1 and 11. 

Licensed Material - Property of IPM section 2: Method of Operation 49 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

A TRT on the next byte for a character which is valid as the second 
character of a 48-character symbol gives a value between 1 and 12. 
These two half-bytes are concatenated into one byte which is translated 
and tested for a valid combination of characters forming a 48-character 
symbol. 

There are five different types of 48-character symbols to be replaced by 
60-character symbols. The separate routines required for replacing the 
different types are selected by the translate-and-test instruction. 

1. 3-character symbols which must be preceded by a character which is 
not one of A-Z, 0-9, $, _, or &. For example, 'AND'. 
Replacement routines: BA2250, BA2260. 

2. 2-character symbols, with restrictions as for the above case. For 
example, 'GE'. 
Replacement routine: BA2240. 

3. 26-character symbols which must be tollowed by a character which is 
not one of 0-9. The only exanple is ',.'. 
Replacement routine: BA2230. 

4. 2-character sYIr,bols which must be followed by a character which is 
not an asterisk. ~he only example is the combination cif two 
slashes (/ /) • 
Replacement routine: EA2235. 

5. 2-character synbols without any such restrictions. For exaIrple, ... ' . 
Replacement routine: BA2220. 

When a 48-character symbol has been found, it is replaced by the 
60-character equivalent from the table REFO. It the 48-character symtol 
spans two records the replace is in two parts; the second part of the 
symbol is replaced in the XREAD buffer, the first part is replaced in 
the output text stream since the contents of the buffer have already 
been output. (As the last eight pages remian in main store, the 
required text page will still be available even if it is no longer the 
current output page.) 

comments within the records are found by treating /* as a 48-character 
symbol then skipping by TRT to */. 

Quotes are found by including the quote sign (') in the translate tables 
and skipping by TRT to the next quote sign that is not immediately 
followed by a second one. 

If the INCLUDE compiler option is specified, and the MACRO compiler 
option does not override it, Phase BA performs ~INCLUDE processing. 

If a ~ character is detected outside a comment or quoted string, and 
then the keyword INCLUDE (optionally preceded by a comment) is found, 
the statement is interpreted immediately. The DOS macros for searching 
and reading the source statement library (private and/or system) are 
used to incorporate the specified books into the text passed to Phase 
EA. Possible nesting of ~INCLUDE statements is catered for by the use 
of NOTE and POINT logic. 

Phase BA creates twc out~ut records for each in~ut source record if 
either of the options CHARSE~(48) or CHARSE~(BC~) apply. 

In the case where only the INCLUDE option applies, one output record is 
created for each input source reccrd except those input records which 
contain a ~INCLUDE stateIrent. In that case, t~c records are generated, 
the first to be printed by Phase EA, and the second to be processed. 
This applies equally to included records ~hich contain %INCLUDE 
statements. 

50 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Included books appear as new records: where one record specifies the 
inclusion of several books, only that part of the including record 
relating to a particular book will be passed to Phase EA at that point 
in the text stream: remaining parts of that record will be passed 
immediately before remaining books are read in. Asterisks will show 
where text has been erased. As far as the unseen 60-character-set 
record is concerned, all ~INCLUDE specifications and asterisks are 
blanked out. 

For example: 

Including record: 

Passed to Phase EA: 

CHAR48 : 

CHAR 6 0 

A=B: ~INCLUDE X, Y: J=Z: 

A=B: 'INCLUDE X,********************* 

included text from X 

*******************y: *************** * 

included text from Y 

******************** J=Zi 

as for CHAR48 but asterisks and ~INCLUDE 
specifications are blanked out. 

Licensed Material - Prooerty of IB~ Section 2: Method of Operation 51 



COMPILE-TIME STATEMENT PREPROCESSOR (PHASE CAl 

The main function of this phase is to read the source program into the 
compiler work area (text pages) and to execute any compile-time 
statements (identified by a preceding I character) so that the source 
program is modified as specified by the programmer and passed to the 
syntax analysis stage in a format that can be processed by phases in 
that stage. The phase is loaded and executed only if the MACRO compiler 
option is specified. 

If necessary, this phase also carries out translation from BCD to EBCDIC 
representation and/or PL/I 48-character set to PL/I 60-character set. 

ID.addition to providing input to later phases of the compiler, the 
phase can also generate listings and a punched-card deck if required by 
compiler options. 

PHASE INPUT 

Input to Phase CA is from source program records, cards, disk, or tape, 
using the compiler macro XREAD, or from a partitioned data set as a 
result of a IINCLUDE statement. Input may be in 48-character or 
60-character set, BCD or EBCDIC. 

PHASE OUTPUT 

Four forms of output can be produced by the preprocessor phase: 

1. The modified PL/I source program with all compile-time statements 
preprocessed, ready for processing by Phase EA, in the form of 
84-byte records held in text pages. If the CHARSET(48) option is 
specified, each 84-byte record is preceded by an 84-byte record in 
48-character form. These additional records enable Phase EA to 
satisfy the SOURCE option if specified. 

2. If the INSOURCE option is specified, the phase input from SYSIPT, 
followed by books specified in 'INCLUDE statements (in order of 
inclusion) are copied to SYSLST for printing. 

3. Punched card deck on SYSPCH, being copies of the 84-byte records 
passed to Phase EA in 48-character set or 60-character set, and 
EBCDIC or BCD as specified for input. Card columns 73 through 80 
contain 'MCDKnnnn ' , where nnnn is a serial number. This form of 
output is optional and is obtained by specification of the MDECK 
option. 

4. If any diagnostic messages have been produced, Phase CE is called 
to print them. The preprocessor general and variables dictionaries 
are passed so that identifier names may also be printed by Phase 
CE. If the dictionary pages are not so used they are freed for 
further use. 

52 Licensed Material - Property of IBM 



PHASE OPERATION 

Phase Structure 

Phase CA is the only phase in the compiler to employ a form of overlay. 
The phase consists of a total of eight assembled modules (CA, CAl, CB, 
CB1, CB2, CC, CC1, and CC2) organized into an initialization subphase 
(CAl) and two partial-overlay subphases (CB and CC), the storage area 
for the subphases being assembled with the root module CA. 

r------------------------------~------------, 
ICA (Root Module) I 

.-------------------------------------------~-------
IRoot Module working storage I A 

.-------------------------------------------~ , 
IXMCOMM-Communication Area for the Phase I I 

~-------------------------------------------~ I 
I Storage Area I XSTG 
I for I I 
ISubphase CAl Qf Subphase CB 2f Subphase CC I I 

.-------------------------------------------~ I 
I Buffers, stacks, tables, etc. , V L ___________________________________________ J----__ _ 

r---------, 
I I 
I CAl I 
I I L _________ J 

subphase CAl 

r---------, 
I I 
I CB I 
I I L _________ J 

r---------, 
I I 
I CBl I 
I I L _________ J 

r---------, 
I I 
I CB2 I 
I I L _________ J 

Subphase CB 

Figure 2.8. Structure of Phase CA 

r---------, 
I I 
I CC I 
I I L _________ J 

A 

I , 
I , 
I 
I r---------, , 

I I OVERLAY 
, CCl 'SEGMENTS 
I I' L _________ J I 

r---------, 
I I 
I CC2 I 
I I 

I 
I 
I 
I 
V 

L _________ J-------
Subphase CC 

The structure of the phase is illustrated in more detail in section 3, 
·Program Organization." 

sequence of Processing 

Module CA is the resident phase of the compile-time statement 
preprocessor, remaining in main storage during compile-time 
preprocessing and, via the control phase (Phase AA), loading the 
preprocessor subphases. Translation of input text to EBCDIC, if 
necessary, is also carried out by routine INPUT, contained in this 
module. 

Phase CA contains the initialization module CAl, which initializes 
tables, pOinters, and buffers for use by subphases CB and CC, the print 
file (if the INSOURCE option is specified), and the punch file (if MDECK 
is specified). 

Licensed Material - Property of IBM Section 2: Method of Operation 53 



Subphase CB, which is overlayed on the initialization module CAl, reads 
and analyzes the input to the compiler. Source text that does not 
contain compile-time statements is moved directly into the output text 
stream. Consecutive blanks are replaced by a special marker, and line 
numbers are encoded and placed in the text. Compile-time statements are 
decoded and placed into the text pages. An entry is made in the 
preprocessor general dictionary for each compile-time variable, 
constant, procedure, label, or·INCLUDE identifier. 

Subphase CC is overlayed on subphase CB, and scans the text pages 
produced as a result of the operation of that subphase, executing 
compile-time statements and writing out PLII source program text after 
effecting any necessary modifications. The output consists of text 
pages containing EBCDIC code, organized in 84-byte blocks ready for 
processing by the read-in routines of the syntax analysis stage. If the 
compiler option CHARSET(48) has been specified, the output consists of 
pairs of 84-byte blocks, the. first in each pair being in the original 
48-character set, for printing, the second in the 60-character set for 
processing. If the MDECK option is specified, the output is also passed 
to SYSPCH. 

If a ~INCLUDE statement is encountered by subphase CC, it searches the 
source statement library for the specified bookname and returns control 
to subphase CB for processing of statements within the book. 

When the end of the original input source is reached, subphase CC passes 
control to Phase CE if there are any diagnostic messages to be printed; 
otherwise control is passed to Phase EA. 

Input/Output Subroutines 

All routines in Phase CA and subphases CB and CC that either scan input 
or write out characters use routines GNC and OUTPTC to read in or write 
out one character. The calling routine sets a flag as a means of 
indication of the form of the I/O. This may be: 

1. From SYSIPT or SYSSLB (input only). 

2. Text page (input and output). 

3. Identifier value block (IVB) in the variables dictionary (input and 
output). 

4. Output buffer (XOOTBUF) for insertion ~nto text pages, which are 
passed to the read-in routines of the syntax analysis stage (output 
only). 

Routines GNC and OUTPTC act on buffers, which they refill by testing the 
I/O flag calling the the appropriate routine. 

Building and Osage of Preprocessor Dictionaries 

The various routines of Phase CA and subphases CB and CC use the 
preprocessor general and preprocessor variables dictionaries to 
communicate information regarding the compile-time preprocessor 
variables. General dictionary entries relate to compile-time variables 
and constants, whilst literal v.alues of character variables and 
constants are stored in the variables dictionary. Thus an entry in the 
general dictionary for a character-type identifier contains a pointer to 
an entry in the variables dictionary. Detailed descriptions of 
dictionary formats are given in section 5, "Data Area Layouts," figures 
5.126 and 5.127. 

54 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1,976 

During the first scan, compile-ti~estatements are analysed and, if an 
identifier is detected, an entry is made in the general dictionary. If 
an entry already exists for a particular identifier, the existing entry 
is used to check for any incompatibility between the uses of that 
identifier. A has.hing technique is employed to reduce the dictionary 
scan time required to check for and locate an existing identifier entry. 

Each entry made in the general dictionary is eighteen bytes long, plus 
the name of the identifier if necessary. 

The preprocessor uses the variables dictionary to hold character string 
values for variables and intermediate text during the replace«ent 
activity of the seccnd scan. Entries, which may be chained together, 
are of forty bytes. 

Reading and Analysis of Source Text 

After initialization in module CAl, Phase CA calls subphase CB to scan 
the input using the routine PB1SCN. This routine employs a subroutine, 
FINDPC, which calls routine GNC to get characters from the input medium. 
GNC, in turn, uses a subroutine, INPUT, to read a record from SYSIPT or 
from a book specified in a ~INCLUDE statement, to translate to EBCDIC if 
necessary and, if the INSOURCE option has been specified, to print each 
record on SYSLST. 

On receiving a character from GNC, subroutine FINDPC examines it for 
end-of-file or the ~ character. If either is found, it is passed to 
PH1SCN. If they are not found, FINDPC transmits the character, by means 
of the routine aDiPiC, to text page. When successive blanks are found, 
however, these are replaced by a special marker which is then 
transmitted. At the start ot each new line, PINDPC puts out a line 
marker followed by an updated line number. 

If PH1SCN receives back an end-ot-tile indication, it returns control ,to 
Phase CA, which then calls subphase CC. If PH1SCN is returned the I 
character, ittransnits a character (CP~A) to indicate compile-time text 
action and starts to scan the com~ile-time statement. 

Process.ing ot Compile-tine Statements 

The initial text scan examines and translates compile-time text into a 
postfix Polish format i.n preparation for the secondsc~n, wllich handles 
all conversions and retains operands in a Aush-downstack. 

Thus the statement D = (A + B) II CJ for example, would be translated 
into: 

PUSH A 

PUSH B 

ADD 

POSH C 

CONCAT 

ASSIGN D 

'The PUSH operator causes an operand t;O l:e added to its stack of 8-byte 
~l'itries during the second scan. Operands are repreEient'ed in the text by 

. 2-ty~e .'dictionary . references. 

Licensed Material - Property of'IBM Section 2: Met.hod of Operation SS 



All inst'ructions generated by the first scan begin·"w;l..tJl. an operation 
code byte. Depending. on the operation, this may be £'O':rl'()~,ed' by zero cr 
by more bytes whichtorm Fart of that operation. 

Each operand will usually have either or both of the follow.ing 
characteristics: 

STACl( 

FIXED 

Operators with this characteristic take their operands from the 
push-down stack. Afterconversion.to the required type 
(CHARACTER, BIT or FIXED), the resuit is usually added to the 
stack. 

These operators are followed by a fixed number of bytes, usually 
a 2~byte dictionary operand reference. 

Figure 2.9, ·Co.de bytes used in cCIrpile-time statements," provides a 
complete descriptive list of Fossitle operators. 

56 Licensed Material - Property of IBM. 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r--------T----T-------------T-------------------------T--~--------------------~---------l 
IMnemoniclcodel Type I Function I Remarks, 
~--------t----t-------------t------------------~------t---------------------------~---,--~ 
I ADD I 0 I STACK t A + B I Fixed result. , 
~-------i----i-------------i-------------------------i---------------------------------1 
, ~A 1 1 1 1 Entry interpreter scan. I Always precedes text for I 
I I I I 1 compile-time statements. , 
.--------t----t-------------t-------------------------t----------,----------------------i I' SUB I 2 I STACK I A -B I Fixed result. .I 
.--------t----t-------------t-------------------------t--------------------------------i 
I MUL 1 3 1 S'IACK I A • B 1 Fixed result. , 
.--------t----t-------------t-------------------------t-----------T--------------------i 
I OPDT I 4 I FIXED , Update line count. 1 Followed by 3-byte packed I 
I I I I I decimal line number. I 
.--------t----t-------------t-------------------------t-------------~------------------_i 
I DIV 1 5 I STACK , A/B I Fixed result. , 
~-------t----t-------------t-------------------------t---------------------------------i 
I ONMIN I 6 I STACK I -A I Fixed result. I 
.--------t----t-------------t-------------------------t---------------------------------i 
I ASSIGN 1 7 1 STACK/FIXED I A = B (assignment) , Dictionary reference of A I 
I 1 I 1 I follows code. A is not I 
I '" I stacked. B is unstacked. , 
~--------t----t-------------t-------------------------t--------------------------------_i 
I NOT I 8 1 STACK I .... A I Bit result. I 
~-------i----i-------------i-------------------------i---------------------------------1 
I AND I 9 I STACK , A & B I Bit result. , 
.--------t----t-------------t----~--------------------t---------------------------------i 
I OR I 10 I S'IACR I AlE I Bit result. I 
.--------t----t-------------t-------------------------t---------------------------------i 
I CONCAT I 11 I STACR , A II E I Character result. I 
.--------t----t-------------t-------------------------t---------------------------------i 
I EQU I 12 I S'IACK I A = E (equality) I 'Ihese produce a bit result of I 
.--------t----t-------------t-------------------------i length 1 which is '1' if true I 
I GT I 13 I STACK I A>B , and '0'1 if false. , 
.--------t----t-------------t-------------------------i J 
I LT I 14 I STACK I A<B I I 
~-------i----t-------------i-------------------------i---------------------------------1 
I INC I 15 I FIXED I Include A. 1 Dictionary reference of A I 
I I " I follows. I 
.--------t---~t-------------t-------------------------t---------------------------------i 
I ABORT I 16 1 1 Terminate processing. 1 Follows from error detected in , 
I 1 I I I first scan. I 
~-------t----t-------~~--~-i-------------------------t---------------------------------f 
I 'I'M I 17 I STACK/FIXED I Branch if A is true. I Dictionary reference of branch I 
I I 'I 1 1 location follows. A on stack. I 
.--------t----+------------~t~--------~---------------+---------------------------------i 
ITRAF I' 18 1 STACK/FIXED I Branch if A is false. I As for TRA. I 
~------~+----+-------------+-------------------------t---------------------------------i 

INV 19 I STACK/FIXED 1 Invoke procedure. 1 Arguments on stack. Dictionary I 
I' 1 reference of procedure (2, I 
I I I bytes), argllIJlent count (1 byte) I 

,I I 1 and flag byte follow. The I 
I ( I procedural text starts with a I 
I 1 I 2-byte procedure dictionary I 
I I I reference, and dictionary I 
" I references of the parameters. I 
I I I These are scanned so that the I 
I I I arguments may be matched. I 

r~~,----t---t-------------t----..;.-:-------------------+---------------------------------i 
"'IRAI I 20 I FIXED , GOTO out of current I Dictionary reference of cranch I 
I 1 I I INCLUDE. I location follows. I L ________ ~~---~--___________ ~ _____________ ~ ___________ ~-------__________________________ ~ 

Figure 2.9. (Part 1 of 2). Code bytes used in compile-time statements 

Licensed Material - Property of IBM Section 2: Method of Operation 57 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r--------T----T-------------T-------------------------T---------------------------------, 
IMnemoniclCodel Type I Function I Remarks I 
~--------t----t-------------t-------------------------t---------------------------------i 
I PUSH I 21 I STACR/FIXED I Put A on stack. I Dictionary reference of A and I 
I I I I I flag byte follow. I 
~--------t----+-------------+-------------------------+--------------------------------~ 
I PUSHI I 22 I STACK/FIXED I Put address of A I Dictionary reference of A I 
I I I I on stack. I and flag byte follow. I 
~--------+----+-------------+-------------------------t---------------------------------i 
I RTNS I 24 I I Return to second scan. I Follows text for compile-time I 
I I I I I statements. I 
~--------t----t-------------t-------------------------+---------------------------------i 
I END I 25 I FIXED I Activate A with rescan. I Dictionary reference of A I 
I I I I I follows. Also produced by I 
I I I I I DECLARE statement. I 
~-------i----i-------------i-------------------------i--------------------------~------f 
I DSB I 26 I FIXED I Deactivate A. I Dicticnary reference of A I 
I I I I I follo'Ns. I 
~--------+----t-------------t-------------------------+---------------------------------~ 
I RTN I 29 I STACK/FIXED I Return from procedure. I Return value on stack. I 
I I I I I Dictionary reference of I 
I I I I I procedure follows. I 
~--------t----t-------------t-------------------------t---------------------------------i 
I CNVT I 30 I STACK/FIXED I Convert for RETURN I Return value is co~verted to I 
I I I I statement. I procedure's type. I 

~--------t----t-------------t-------------------------t---------------------------------i 
I UPDCR I 31 I FIXED I Update current DO count. I 2-byte DO nest count follows. I 

~-------i----i-------------i-------------------------i---------------------------------f 
I ~RAC I 32 I FIXED I GOTO I Dictionary reference of branch I 
I I I I I location follo'Ns. I 
~--------+----+-------------+-------------------------t---------------------------------i 
I UNPLS I 33 I STACK I +A I Fixed result. I 
~--------t----t-------------t-------------------------t---------------------------------i 
I ENBN I 34 I FIXED I Activate A with no I Dictionary reference of A I 
I I I I rescan. I follows. I 
~--------t----t-------------t-------------------------+--------------------------------~ 
I PAGE I 35 I I Output. "PAGE I I 
~-------i----i-------------i-------------------------i---------------------------------f 
I S~IP I 36 I FIXED I Out~ut ~S~IF(n) I 2-byte count in packed decimal. I 
~--------t----t-------------+-------------------------t---------------------------------i 
I CNTRL I 37 I I Out~ut ~CCNTROL: I Option list follows in text. I 
I I I I I This list is not syntax I 
I I I I I analyzed. I 
~--------+----+-------------+-------------------------+---------------------------------~ 
I NOTE I 38 I STACK I "NOTE(A,B) I Produces an entry on the I 
I I I I I message page. I 

~--------+----+-------------t-------------------------+---------------------------------i 
I PRNT I 39 I I Output "PRINT; I I 
~--------+----t-------------t-------------------------t---------------------------------i 
I NOPRNT I 40 I I Output NOPRNT I I 
~ _______ ~---~ ____________ ~ ________________________ ~-------________________________ -J 

Figure 2.9. (Fart 2 of 2). Code bytes used in compile-time statelllents 

scanning of Compile-time Text: After a " character has been located, 
control passes from PH1SCN to the STMNT routine, which examines the 
syntax of the compile-time statement. 

After scanning for and checking labels, the type of the statement is 
determined and control passed to the appropriate routine to process that 
particular statelllent type (e.g. I, the DECLAR routine processes the 
"DECLARE statement). 

When the statement has been processed, control returns to PH1SCN at the 
entry point DONE. A code to indicate the end of the compile-time 
statement action (OPRTNS) is transmitted, and scanning of the source 
text recommences. 

58 Licensed Material - Property of IBM 



Order No. LY33-60l0-l, Page Revised by TNL LN33-6l15, October 1976 

Translation of Compile-time statements: The form of output from the 
various statement processing routines is generally a series of 3-byte 
operator-identifier pairs, each consisting of a l-byte operator and a 
2-byte dictionary reference for the identifier. 

As a routine locates an identifier within its input, it uses the routine 
InSRCH to check whether an entry exists in the preprocessor general 
dictionary for that identifier. If an entry is found, the existing 
dictionary reference is used; otherwise, an entry is inserted in the 
dictionary cy the rcutine ADICT. If the syntax rules for the stateroent 
perroit expressions, the subrcutine PARSE is used to translate the 
expression into a 3-byte forrrat. 

A ~INCLUDE staterrent is Flaced in the output text strearr in the same 
forrrat as any other staterrent. 

Compile-time procedures and the compile-time statements contained in 
them are placed in a second text stream, thus avoiding inter-leaving cf 
PL/I source text and ~PROCEDURE text. 

Processing Intermediate Text: When the end of the input stream has been 
detected, subphase CB hands control to the root module which calls 
subphase CC to scan the output from subphase CB. Subphase CC is entered 
at routine PH2SCN. 

PH2SCN scans the intermediate text, one token at a time, using the 
subroutine TORSCN. (Tokens are logical units ot text, and include 
identifiers, constants, operators, delimiters, etc.,) 

If the token is a ccnstant or an cFeratcr (e.g., plus, rrinus, serricclcn, 
etc.) it is transmitted directly. 

If the token is an identifier, routine SREDIC is called to determine 
whether or not the named identifier is in the preprocessor general 
dictionary. If it is, the current value of the identifier replaces the 
token in the output strearo, unless this current value itself contains 
replaceacle compile-time variables. If there is no entry in the 
dictionary for the named identifier, the token (identifier nane) is 
transmitted directly. 

If the token returned by ~OKSCN is the cFerator CPMA (indicating "enter 
corrpile-time text"), the routine INTPRT is entered in order that 
compile-time text statements may ce executed. 

When the end of the source text is encountered, control is passed to 
Phase CA so that phase operaticn can be terroinated. If, however, the 
source text scanned was the subject of a ~INCLUDE statement, scanning 
recommences irrmediately after the point in text at which the 'INCLUtE 
statement was invoked. 

The Output of Tokens: Each token to be written out is passed to the 
routine OUTP~. ~his routine employs a 1l-byte buffer, into which it 
atteropts to fit the current token, thus ensuring that the token does not 
span lines unnecessarily. When the buffer is full, routine CLSBUF is 
invoked to put out an 84-byte record to be printed by Phase EA. If the 
compiler option MDECK is speCified, CLSBUF invokes the subroutine PUNCH 
to send the record to SYSPCH. 

Rescanninq of Tokens: Before routine PH2SCN passes an identifier token 
to routine OUTPU~, the identifier must be examined to determine whether 
it is a compile-time variable. This examination process is repeated, 
unless inhibited by the NORESCAN option, until all active compile-time 
variables have been replaced. 

This res canning is achieved by a process of stacking input pointers. 
Thus, when a compile-time variable is detected by PH2SCN, the input 
pOinter is stacked and the input scanner is switched to examine the 
current value of the variable stored in the preprocessor variables 

Licensed Materia] - Property of IB~ ~ection 2: ~ethod of 0peration 59 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1~76 

dictionary as IVB storage. This process is repeated if the IVB contains 
another replaceable token. When the IVB value has been scanned, a 
pointer is unstacked so that the next lower level IVB is scanned. When 
the original IVB has been completely scanned, token scanning continues 
normally. 

Scanning of Compile-time Statement Text: When routine PH2SCN detects an 
OPMA character, the routine INTPRT is entered to scan and process 
compile-time text. 

When a IINCLUDE operator is detected, the text reference of the input 
pointer is saved. Control passes to Phase CA, .hich calls PH1SCN to 
read from the book naRed in the IINCLUDE statement. 1he saved 
input-pointer reference is placed in the dictionary entry for the 
IINCLUDE statement. 

60 Licensed Material - Property of IBM 



PREPROCESSOR_Q!AGNO§~§SSAGE EDITOR (PHASE CE) 

Diagnostic message entries are generated on the error pages by the 
preprocessor phase (Phase CAl by means of the XMESG macro. Phase CE 
receives these pages as input, and by reference to various tables, 
produces the final (sorted) listing of messages. These messages appear 
in the compiler listing immediately following the statements processed 
by the preprocessor, and are grouped according to their severity. The 
specification of the FLAG option (described below) indicates that 
messages of only selected severity levels must be listed. 

The major functions of Phase CE are: 

1. To sort the message entries in the message page stream into 
severity-code order, statement-number order within each severity 
code and, finally generation-sequence order within each statement 
number. 

2. To insert, and where necessary to decode, the arguments supplied to 
the message. 

3. To print out the message, with inserts, depending on the 
specification of the FLAG option. 

PHASE INPUT 

By means of the XMESG macro, a calling sequence is generated to a 
routine in XROUT. This routine uses a number of fields in the 
communication area (XCOMM) as follows: 

XMPRF contains the page reference of the current message page. This is 
zero if no message has been created. 

XMREM indicates the amount of space remaining in the current message 
page. 

XSTAT is a slot containing the number of the statement currently being 
processed by a phase. 

XMNUM contains an optional numeric argument for a message if one is 
specified as an argument to the XMESG macro. 

XMDRF contains an optional dictionary reference which is to appear in 
the message. 

XMDTP is a single byte used to contain a character indicating the type 
of dictionary to which XMDRF applies. Both the dictionary 
reference and the type code are specified as arguments to the 
XMESG macro. 

In addition to the fields described above, registers RB and RC are also 
used if text is supplied as an argument to the message. Two forms of 
such text are permitted by the XMESG macro: 

1. Implicit text pointers, where text is assumed to occupy the N bytes 
preceding the address in Register 1. (The value of N is a constant 
but it may be changed in the XMESG macro definition.) 

2. Explicit text pointers, where a pointer to the start of the text 
and the length of the text are supplied explicitly to the macro. 
These values are loaded into registers RB and RC respectively by 
the calling sequence generated. 

Licensed Material - Property of IBM section 2: Method of Operation 61 



The XMESGR routine in XROUT generates a message entry (the format of 
which is described in the XMESGP DSECT) in a stream of pages chained 
from XMPRF in XCOMM. The routine calculates the size of the message 
entry to be made, and checks that the current message page contains 
sufficient space for the entry. If enough space is available, the page 
is brought into main storage, and the message entry made by moving into 
the page the contents of all the XCOMM fields described above, plus the 
message text if the length is not zero. It should be noted that, 
although these fields are not necessarily used in the message, no 
attempt is made to determine this in XMESGR since testing would be more 
time- and space-consuming than moving the fields in every case. Whether 
or not the fields are actually used is determined by the structure of 
the message. 

If the current message page does not contain enough space to accommodate 
the latest message, it is not brought into main storage and a new page 
is requested. The old page reference is then placed in the new page, 
and the new page reference is placed in the XCOMM fields XMPRF. The 
message pages are thus chained in reverse order. The latest message is 
then entered on the new page in the manner described above. 

PHASE OUTPUT 

The output from Phase CE consists of diagnostic and error messages 
raised by error conditions occurring in Phase CA. 

The preprocessor-error message has the message number IEL0001I and the 
format 

$ PREPROCESSOR ERROR NUMBER n DURING PHASE pp. 

This message is described in detail in appendix B to this publication. 

The diagnostic messages output by Phase CE are identified by message 
numbers in the range IEL00611 through IEL0229I. 

TABLES USED BY THE DIAGNOSTIC MESSAGE EDITOR PHASE 

The tables used in the operation of Phase CE are all produced by the 
XMTAB macro and are as follows: 

~: The table is generated by the XMTAB macro, when XMTAB is called 
with MCDE as an argument, and consists of 1000 single-byte entries, one 
for each possible message. Each byte consists of a set of flags 
indicating the sev~rity code and information concerning parameters to 
the message, and editing of it. 

The MCDE table is used to set the severity code when building up the 
sort units. Its use avoids the necessity of specifying the severity 
code and the statement-number information, both in the message text and 
the macro call to XMESG, which creates the entry in the error message 
page stream. 

KEYRE~: The KEYREF table is produced by the XMTAB macro when called 
with the argument MESSAGE. XMTAB produces the. table by a nested call to 
the XMCDE macro, with COUNT as a second argument. 

KEYREF is used to obtain the appropriate keyword from the keyword table 
(KEYTAB) using the code obtained from the scan of the coded message 
string (refer to the sub-heading "Message Decoding" in the description 
of the phase operation given below). 

62 Licensed Material - Property of IBM 



The table consists of 16 pairs of 2-byte entries, one pair for each 
permissible length of words contained in messages. Thus the first entry 
is for i-letter words (and special and parameter keywords), the second 
for 2-letter words, and so on. The first member of the pair is the 
number, in bytes, counting from the start of the keyword table (KEYTAB), 
of the last word of that number of letters. For example, if there are 
12 single-letter words and 10 2-letter words, the first members of the 
first two entries in KEYREF are 12 and 22, respectively. The second 
member of each pair is the offset, in bytes, of the first word with the 
next highest number of letters from the start of KEYTAB. Thus, 
considering again the previous example, the second members of the first 
two entries in KEYREF would contain 12 and 32 respectively. 

KEYTAB: The KEYTAB table is produced, with KEYREF, by a call to the 
XMTAB macro. 

It consists of one DC instruction for each keyword which may appear in a 
message. The keywords are arranged in the table in order of length, 
shortest first, and for ease of updating they are arranged in alphabetic 
order within each length category. The order of the appearance of the 
keyword in the table determines the code that is assigned to the word in 
the coded form of messages. However, this fact is relatively 
unimportant since the keyword table and the message coding operation are 
both carried out by the XMCDE macro; the order in the table depends on 
the order of the arguments to the XKEY macro calls that are nested 
within XMCDE. 

MESREF: 
MESSAGE. 

This table is created by the XMTAB macro with an argument 
It is used to access the coded message for a particular 

message number. 

MESREF consists of 1000 halfword constants, one for each message. If 
message text for a particular message has not yet been supplied to the 
XMTAB macro, the relative halfword constant has a value of -1; otherwise 
the constant is the relative address of the corresponding coded message 
from the start of the message table (MESTAB). 

MESTAB: The message table is produced by the XMTAB macro with MESSAGE 
as an argument. The individual messages in the table are coded by the 
XMCDE macro calls nested within the XMTAB macro. 

MESTAB consists of strings of coded error messages with one or more code 
bytes for each word in the message. Each message is preceded by a byte 
which specifies the length of the message. The code strings appear in 
order of message number, purely for convenience of updating the macro 
that produces the table. 

All the tables described above are interrelated, but they may be 
classified into two groups: 

1. Glossary of keywords (KEYREF and KEYTAB) 

2. Lists of messages (MCDE, MESREF, and MESTAB) 

The interrelationships between the tables are generated automatically by 
the relevant macros. In order to add messages or translate them into 
other languages, two areas of the macros require change: the message 
list in the XMTAB macro and the keyword list in the XMCDE macro. 

The Message List 

The message list appears at the end of the XMTAB macro as a series of 
nested calls to the XMCDE macro in the form: 

Licensed Material - property of IBM Section 2: Method of Operation 63 



XMCDE N,S,Wl,W2,W3,W4, •••• Wx 

where 

N 

s 

is a decimal number which identifies the message. 

is the severity code of the message. This may be T,S,E,W, or 
I for 'unrecoverable', 'severe', 'error', 'warning', or 
'informatory'. (Note that this is the only place where the 
severity code is defined.) 

Wl-Wx are the words of the message. 

If a statement number is to be applied to the message, the character '$' 
is coded as an argument following the severity code field. 

One of the following special control characters may also appear anywhere 
in the word list: 

Z signifies that the preceding and following words must be 
concatenated. 

Q signifies that the following word must be enclosed in quotation 
marks. 

All the words in the word list must appear in the keyword list, either 
explicitly or without one of the endings ATION, lNG, LY, ED, ES, E, 5, 
IZE, IZED. 

The Keyword List 

The keyword list appears in the macro XMCDE in the form: 

.XLn XKEY C,Wl,W2,W3,W4, •••• Wx 

AIF (&XR7).X2 

XKEY C,wx+l,Wx+2, •••• 

AIF (&XKS).XI 

where 

n is the number of letters in the keywords Wi to Wx, and lSnS16. 

C is &Cl if nS8 and &Cl&C2 if n>8. 

~: The assembler has a limitation of 128 characters (for DOS) per 
macro call. In order to overcome this restriction, if the total number 
of letters in the argument list exceeds two records (one record with the 
macro call and one continuation record) a second (unlabeled) call to the 
macro is made, separated by the statement AIF (&XK7).X2. The end of all 
the keyword lists for a particular word length is terminated by the 
statement AIF (&XK8).X2. 

PHASE OPERATION 

The error-message editing phase operates in two stages, to sort and 
decode the message. 

64 Licensed Material - Property of IBM 



The Message Sort 

sorting is achieved by a sequential sc~nof the chain of message pages. 
As each message is encountered, a 12-byte 'sort unit' is created, 
consisting of the severity code, the statement number, the message 
number, the generation-sequence number, and the 5-byte text reference of 
the message. The information regarding the severity code, and whether 
or not a message contains a statement number, is obtained from the MCDE 
table that is generated as a by-product from the XMTAB macro. 

As the sort units are generated, they are placed in a new page stream. 
When each page is full, or when the end of the input stream is reached, 
the page is sorted by means of the SCHELL sort routine before the next 
output page is obtained. 

On its completion, the new output stream is rescanned and the sorted 
pages merged into new pages, the old pages being discarded as they are 
emptied. 

At the end of the message sort process~ two page streams exist: the 
original message stream and a stream of pages containing sort units in 
their correct sequence. 

Message Decoding 

When the message sort is complete, the sort-unit page stream is scanned 
sequentially. As each sort unit is encountered, the page reference of 
the corresponding message is obtained and converted to an address. Each 
message is maintained in the diagnostic message editor in the form of a 
string of code bytes generated by the XMTAB macro. The appropriate 
message string is obtained from the table by indexing the message 
reference table (MESREF) with the message number. 

The message string is scanned and each byte or group of bytes is 
converted to a keyword code, which is used to reference the table of 
keywords (REYTAB) by means of the keyword reference table (REYREF). The 
keyword may be one of three types: 

1. Ordinary keyword. In this case, the keyword is moved directly into 
the print buffer. 

2. Special-purpose keyword. This type is used to indicate either that 
the preceding and following keywords are not to be separated by a 
blank, or that some mUltiple of 256 must be added to the following 
code to construct the keyword code. 

3. Parameter keyword. If a keyword of this type is encountered, the 
appropriate parameter is obtained from the message entry, is 
decoded or translated as necessary, and then placed in the print 
buffer. 

When the print buffer is full, or when the message is complete, the 
message is printed and the scan moves on to the next sort unit. 

Message Editing Facilities 

In addition to the facilities described above (i.e., statement number, 
dictionary entry, text, and numeric arguments), the following inserts 
can also be generated in a message: 

Licensed Material - Property of IBM Section 2: Method of Operation 65 



1. Two text parameters 

2. A single attribute specification 

3. Two attribute specifications 

4. One attribute specification and a text parameter 

Thes~ inserts may be generated by their being passed as arguments to the 
XMESG macro. In all the cases above, a character must also be set as an 
argument in the severity-code field of the XMCDE macro. Thus, although 
the XMESG macro may generate a text string containing two text inserts 
for a message, the string will be decoded as one insert unless this 
character is specified in the XMCDE call for that message. The 
character used in this case is 'E', which must be concatenated with the 
severity code field. This sets a bit in the MCDE vector. 

In order to pass these arguments, explicit pointers must be set up to 
indicate the start and length of a formatted text string. The string 
would start with a code byte indicating which of the above four cases is 
concerned. This would be followed by a single-byte attribute 
specification and/or the text to be included, preceded by its 
corresponding length specification, depending on which of the four 
combinations is being passed. 

If an attribute specification is passed in this manner, the Single byte 
is decoded by Phase CE and the corresponding attribute is moved into the 
print buffer. 

A further editing facility accumulates several generations of the same 
message in a message page and then prints it only once (i.e., instead of 
the message appearing in the listing N times for N different statement 
numbers, it is printed only once, following a list of statement numbers 
to which that particular diagnostic applies). Once again, for this 
facility to be implemented at message-decoding time, the corresponding 
bit must be set in the MCDE vector. This is achieved by concatenating 
the character 'c' with the severity-code field argument to the XMCDE 
macro. This accumulating facility can be applied only to those messages 
generated by the XMESG macro and having the statement number as the only 
parameter. 

~hen, by reference to the MCDE table, a message in the message page 
stream is found to be of the cumulative type, two sort units are created 
for it. The first is created in the normal way, with the statement 
number field as specified in the XMESG call. 

The second, however, is created with the normal statement field set to 
zero, the actual statement number being saved elsewhere in the sort 
unit. An entry is then made in a push-down stack, which always contains 
the lowest statement for which a particular cumulative message is 
generated. In addition to the statement number, the entry also includes 
the message number and the page reference of the first 
'zero-statement-number' sort unit for the message. 

Each time a further generation of the same message is encountered in the 
page stream, another sort unit with a zero statement number is created 
and the push-down stack is"then checked to see if the new statement 
number is lower than the previous entry for that message. If this is 
the case, the previous entry in the stack is replaced by the new number 
and another sort unit is created with the statement number in the normal 
statement number field. 

When the whole of the message page stream has been scanned, therefore, 
for a cumulative message which has been generated for N statements there 
will exist: 

• N sort units with zero-statement-number fields (the actual statement 
number being held in the sort units). 

66 Licensed Material - Property of IBM 



• An entry in the push-down stack which contains the lowest statement 
number for which the message was generated, and a reference to the 
start of the zero-statement-number sort units • 

• A normal sort unit for the message, containing the lowest statement 
number. 

It should be noted that, if the first generation of the message in the 
message page stream should happen not to be the lowest statement number 
for which the message is relevant, a redundant sort unit will be 
created. TRis would be ignored at message-decoding time. 

During the message sort, all the zero-statement-number sort units are 
shifted to the beginning of the sort-unit stream, and the normal sort 
unit for that message is moved to the correct position for printing. 
When this normal sort unit is encountered at message-decoding and 
printing time, the stack entry is checked to see if the message has been 
printed already (i.e., if this is in fact one of the above-mentioned 
redundant sort units). If the message has not been printed, the 
zero-statement-number sort units are referenced and all printed out in 
the position where the lowest statement number would have been printed. 

Implementation at comEiler Options 

FLAG Option: Diagnostic messages produced during preprocessing are 
grouped in order of severity. The FLAG option specification indicates 
the minimum severity level for which diagnostic messages, if produced, 
will be listed. The severity level is specified in the value list of 
the FLAG option, as follows: 

FLAGCI) 

FLAGCW) 

FLAGCE) 

FLAGCS) 

All diagnostic messages listed. 

All diagnostic messages except 'informatory' messages listed. 

All diagnostic messages except 'warning' and 'informatory' 
messages listed. 

Only" severe' errors and 'unrecoverable' errors listed. 

Note that the specification ot FLAG is equivalent to FLAGCI). The 
severity levels are discussed fully in the Programmer's Guide for this 
compiler. 

If, due to the specification of the FLAG option, any levels of messages 
are to be suppressed, suppression takes place early in operation of the 
phase and no sort units are created for those levels of messages. 

SYNTAX or NOSYNTAX Option: Phase CE also implements the option 
SYNTAXINOSYNTAXCWIEIS). 

SYNTAX specifies unconditional syntax check after preproceSSing unless 
• unrecoverable' errors are encountered. 

NOSYNTAX specifies unconditional termination of the compilation after 
preprocessing, without any syntax check being carried out. 

The specification of NOSYNTAX with a value list makes the syntax check 
conditional upon errors detected during compile-time preprocessing. The 
value list specifies suppression ot the syntax check if a diagnostiC 
message equal to or exceeding the severity indicated by the value is 
encountered during preprocessing. Thus the syntax check is suppressed 
as follows: 

NOSYNTAX (W) When 'warning', 'error', 'severe', or 'unrecoverable' 
diagncstics have teen issued. 

Licensed Material - Property of IBM Section 2: Method of Operation 67 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

NOSYNTAX(E) 

NCSYNTAX(S) 

When 'error', 'severe', or 'unrecoverable' diagnostics 
have been issued. 

When 'severe' or • unrecoverable , diagnostics have been 
issued. 

If NOSYNTAX is specified, or the specified severity value is equalled or 
exceeded, Phase CE returns control to the control phase (Phase AA). If 
however, the option SOURCE has also been specified then the SYNTAX flag 
is set and Phase EA is loaded to print the required source listing. 
Phase EA will immediately pass control back to Phase AA after so 
printing. 

SYNTAX TABLE BUILDER (PHASE EC) 

Phase EC makes space for phase EA by copying Translate and Keyword 
tables onto a text page. If possible, a single page is used, otherwise 
two pages are used. The addresses of the tables (in 5-byte format) are 
stored in the XCOMM fields XRIOCH and XDOCH. 

68 ,Licensed Material - Property of IB~ 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

SYNTAX ANALYSIS STAGE 

The main function of phases in the syntax analysis stage is to analyze 
all data in the source program, and to process it so that only 
statements that are valid within the PL/I language implemented by this 
compiler are passed for processing by later phases. When an erroneous 
statement is detected, a phase may attempt to correct the error by 
making an assumption about the intention of the statement, or may delete 
the statement from the text ~assed to other phases. Diagnostic n.essages 
are generated to indicate errors that are detected. 

Because of the wide scope of the PL/I language, the function is 
performed by three phases, EA, EE, and EI. Each phase checks the syntax 
of a particular range of PL/I statements. Phases EA and EE are loaded 
and executed in every compilation; Phase EI is only loaded and executed 
if the source program contains stream oriented input/output statements. 

During processing, the text is translated into an internal, code and 
organized into a format that is convenient for processing by subsequent 
phases. Certain ty~es of statereent are collected in a separate stream 
of text for the convenience of phases in the dictionary build stage. 

SYNTAX ANALYSIS - PASS 1 (PHASES EA AND EC) 

Before syntax analysis commences, phase EC is loaded. Its function is 
to move Keyword and Translate tables into one or two text pages for use 
by syntax analysis. 

PhaseEA performs the following functions: 

1. Reads the source program input records into a text-page work area. 

2. Prints the source program listing if required. 

3. Removes comments and excess blanks from the text. 

4. Translates the input text into an internal format code. 

5. Identifies each statement and allocates statement numbers. 

6. Analyzes completely the syntax of a number of types of PL/I 
statements, and issues error messages if required. 

7. Builds the compiler ~ain text stream by coPyin9 all statements 
(including those not fully analyzed) onto text pages. 

8. Inserts chain fields in the text stream to assist Phase EE in 
de-nesting the program block structure. 

PHASE INPUT 

Input to the phase consists of records containing the compiler source 
text, written in 60-character BEeDlC. These records may be read into 
the compiler input tuffers from SYSIP'I, or may te passed to Phase EA on 
text pages as output from a compiler preprocessing phase (Phase BA or 
Phase CAl. 

Licensed Material - Property of IBM Section 2: Method of Operation 69 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

If the external forRat of text is not 60-character EBCDIC, the text 
passed to Phase EA from the FreFrocessing stage consists of record 
pairs, one record being in the original source form (used for the scurce 
listing), and the other record of a pair teing the preprocessed record 
in 60-character EECCIC form (used for comFilation). 

The input contains free format PL/I statements and coaments within the 
limits of the MARGINS option. 

PHA SE OUTPUT 

Output from the phase consists of the main text stream, plus a 
diagnostic message stream if the source program contained syntactical 
errors. 

The output text consists of a stream of PL/I statements in source 
statement order, in which all statements are nURbered, and statement 
elements are retained in source Frogram order. All characters are in 
compiler internal code (see figure 5.88). A statement header is 
inserted in front of every statement. 'Ihe following types of statement 
are checked for correct syntax, and appear in Type 1 text format (see 
figure 5.60): 

PROCEDURE statements (options are not processed at this tiRe) 

ENTRY statements (options are not processed at this time) 

BEGIN statements (options are not processed at this time) 

IF - THEN - ELSE statements and clauses 

IS~IP and IPAGE stateRents 

IPRINT and INOPRIN1 statements 

SIGNAL and REVER1 statements 

FETCH and ~ELEASE statements 

ASSIGN sta~ements 

FREE statements 

ON statements 

END statements 

GO'rO statements 

WAIT statements 

RETURN statements 

NULL st at ements 

LEAVE statements 

SELECT statements 

WHEN statements 

O'rHERWISE statements 

Following the statement header for each PROCEDURE, BEGIN, and ON 
statement, a 17-byte chain field is inserted for use by Phase EE (see 
figure 5.61). 

70 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Added by TNL LN33-6175, Octoher 107~ 

The page-handling routines in the control stage are called as required 
to acquire page spaces for the text stream output. 

PHASE OPERATION 

Source Text Read-in 

Phase EA acquires a page space for use as a read-in work area. This 
page is treated as a scratch page and is discarded on completion of 
processing by the phase. 

Licensed Material - Property of IBM Section 2: Method of Operation 70.1 



The READR routine has records copied from SYSIPT into the input buffers, 
and from there copies the records, one at a time, into the read-in work 
area. If the SOURCE option is specified, each source record is copied 
into the print file buffer, for inclusion in the printed source listing, 
immediately before the next record is read. 

If the source program is coded in either BCD or 48-character EBCDIC, the 
input to Phase EA consists of the output from either Phase BA or Phase 
CA. This output is passed to Phase EA in record format on text pages. 
Records are paired, the source record preceding ~he 60-character record. 
Each 60-character EBCDIC record is copied into the read-in work area. 
If the SOURCE option is specified, each source record is copied into the 
print file buffers for inclusion in the source listing. 

As each record is read in it is translated, byte for byte, from 
60-character EBCDIC into the compiler internal code. This code is shown 
in figure 5.88. Each character of all identifiers and constants is 
translated into internal code. All operators, including two character 
operators (e.g., II, -», are replaced by single code bytes. 

The translated record is scanned from the left. Comments (identified by 
their inclusion within /* */ characters), are replaced by blanks. 
All remaining characters are considered to be part of the PL/I program 
and control is passed to the STARTA routine for processing of the 
records as described later. 

When a record has been processed, the processing routines call the READR 
routine as required to read-in and translate further records. Within 
the read-in work area, records are concatenated so that they form a 
continuous stream of text. If there is insufficient space for a record 
containing part of a current statement to be read in, existing text 
within that statement is moved to the start of the read-in work area, so 
that the entire work-area page is available for the statement. If a 
statement, other than a DECLARE, DEFAULT, or ALLOCATE statement, cannot 
then be contained within the read-in work area, it indicates that the 
maximum permissible statement size has been exceeded: an error message 
is issued, the statement is ignored, and compilation continued. 
DECLARE, DEFAULT, and ALLOCATE statements can be split at any comma not 
contained within parentheses, and spanning of pages by these statements 
is permitted. 

If a statement containing a string item cannot be contained in the 
work-area, a quote character is insert~d in front of the first semicolon 
(if any) found within the string. The remainder of the string item is 
considered to belong to another statement. 

Detection of any invalid characters not contained by quote characters 
results in deletion of the containing statement. 

Statement Numbering 

The limits of statements are recognized by the appearance of semicolons. 
All statements, including compound statements, statements included in a 
compound statement, block- and group-delimiting statements, and null 
statements. are numbered as they are copied into the read-in work area. 
THEN clauses are not regarded as statements for numbering purposes. 
Diagnostic messages created throughout compilation refer to these 
statement numbers. The number of the first statement in each record is 
printed in the source listing. 

Licensed Material - Property of IBM section 2: Method of operation 71 



Statement Headers 

To enable statements to be easily identified, and basic information 
about each statement to be readily accessable, a 6-byte statement header 
is created and inserted before each statement. Information is inserted 
in the various fields of the statement header during processing by this 
phase. The format of statement headers varies slightly according to the 
type of statement; the statement header may be followed immediately by 
the body of the statement, or other information such as a label list or 
a chain field may be inserted. On completion of processing by this 
phase, the text is organized in a format referred to as Type 1 text. 
The general structure of a statement in this format is shown in figure 
2.10. 

r-------T---------T---------------------------------------------------------------------, I Bytes I content I Use I 
.-------+---------+---------------------------------------------------------------------i I 0 ISL or SN Marker to indicate labeled or unlabeled statement. 1< 
I I I 
I 1 Icode byte Indication of statement type, e.g., IF, GOTO, 1 
I I assignment. Statement , 
I I header I 
I 2-3 I statement Number of source statement. I 
I I number 1 

I I 
4-5 I Prefix Bits set to indicate conditions (e.g., SIZE, I 

I options OVERFLOW) that are enabled for the statement. 1< 
I t 

6 ••• (Label If the first byte indicates a labeled statement, these bytes show I 
I list the length of the label list and the length and name of each label, 
I e.g., LAB:L: would be shown as seven bytes containing 7 3 LAB 1 L. 
I 
IChain 
I field 
I 
I Statement 
I body 
I 
I 
I 

A 17-byte chain field is inserted in all PROCEDURE, BEGIN, and ON 
statements. 

The statement body with statement elements in source order. Keywords 
are represented by code bytes, identifier names are preceded by a 
length byte, and constants are preceded by a marker and a length 
byte. 

1Semicolon End-of-statement marker. 
-------~---------~------------------___________________________________________________ J 

Figure 2.10. General format of a statement in Type-l text 

Prefix Processing 

Each PL/I item is tested for the presence of a colon, indicating that it 
is a statement prefix. There are two types of prefixes, condition 
prefixes and label prefixes. Condition prefixes must precede label 
prefixes. 

Label prefixes are placed immediately after the statement header. Each 
label name is preceded by its length. If there is more than one label, 
the total length of the label list is inserted before the first label 
length. 

When condition prefixes are detected, bits are set in bytes 4 and 5 of 
the statement header to indicate the conditions or options that are 
enabled for that statement. Exceptions to this are the CHECK and 
NOCBECK condition prefixes, which may have argument identifier lists. 
These two condition prefixes are treated as separate statements, and are 
inserted before the main statement with their own statement headers. 
Thus, the source/statement: 

72 Licensed Material - Property of IBM 



(NOOFL, SUBRG, CHECK (A,B»:(NOCHECK(C»:LAB1:LAB(3):A,B,C=1; 

would appear in the output from Phase EA as: 

CHECK statement header (A,B): 

NOCBECK statement header (~); 

ASSIGN statement header, label list length, 4LABl 6LAB(3)lA lB lC=l; 

The prefix option field in the ASSIGN statement header would contain 
flag settings for the NOOFL and SUBRG conditions, plus any applicable 
default or inherited options. The prefix option fields in the CHECK and 
NOCHECK statement headers would contain zeros. If CHECK and NOCHECK 
condition prefixes precede a PROCEDURE or BEGIN statement, the block 
level and count are inserted in the prefix option bytes. 

Keyword Identification 

Each identifier in a statement is treated as a potential PL/I keyword. 
Phase EA contains tables that contain every PL/I keyword handled by the 
phase. These tables are searched for a keyword that matches the 
identifier. If a match is found, and if the identifier is in a position 
that makes it a valid keyword, it is replaced by a predefined i-byte or 
2-byte code (see figure 5.88). 

Keywords are classified according to their context in the source 
program, e.g., statement identifier, verb, ON-condition. Keyword tables 
are organized on the basis of class of keyword and length of keywords 
within that class. within each classification, keywords are grouped in 
tables containing keywords of similar length. The format of keyword 
table entries is shown in the following sample of entries in the tables 
of verb-class keywords of three bytes length: 

STL3 DC 
DC 
DC 
DC 
DC 

x ' number of keywords in this table' 
X'OE170D' (keyword in internal code) 
ALl (END) (replacement code) 
X'OOOC15' (keyword in internal code) 
ALl (OCL) (replacement code) 

Two levels of directory are used when searching the keyword tables. 
~hen a statement analysis routine calls the KYWO routine, it passes a 
numeric argument indicating the class of the potential keyword. This 
indicates the first level of directory to be used to find the address of 
the second level directory. The second level directory indicates the 
address of a keyword table for the same class and length as the 
potential keyword. 

When a matching keyword table entry is found, the replacement code is 
returned to the caller routine. If a matching entry cannot be found, a 
code of X'FF' is returned to the caller routine. 

Because there are more than 256 PL/I keywords, some of them are replaced 
by a 2-byte code. These keywords can always be recognized by their 
classification, and the first character (always X '09') is not shown in 
the keyword tables. 

Verb Identification 

When the first identifier that is not enclosed by parentheses and is not 
followed by a colon is found, it indicates that all prefixes to a 
statement have been processed. This identifier is treated as a 

Licensed Material - Property of IBM section 2: Method of Operation 73 



potential verb keyword and the keyword tables are searched for its 
replacement code. 

If a matching verb keyword is found, the replacement code is inserted in 
the second byte of the statement header to indicate that statement tYfe. 
The routine that processes the particular type of statement is called to 
analyze and process the body of the statement. 

If the identifier is found not to be a verb, it is assumed to be the 
left-hand side of an assignment statement. The ASSIGN code is inserted 
in the statement header and the appropriate routine is called. 

If the first identifier is a verb, analysis of the statement may reveal 
that the statement is an assignment statement, e.g., GOTO = 3; or 
PROC(A,B,C)=4;. Detection of the assignment character (=) will result 
in reprocessing of such a statement. 

Statement Analysis 

The syntax of each statement is checked for its compliance with the 
syntax defined for that type of statement within the PL/I language. As 
described above, the statement type is determined according to the 
presence of certain verb keywords or operators, and an appropriate 
routine is called to analyze and process each type of statement. 

The analyzing routine scans the statement body for the presence of 
mandatory and optional items. In general, these items consist of 
keywords that apply only to the particular type of statement, and 
optional arguments applying to the keywords. Keywords can often appear 
in variable order. When a keyword is found, it is replaced by its 
internal code, and a subroutine is called to process any arguments 
present. These optional arguments can be in the form of: 

• A constant. 

• A simfle identifier e.g., NAME. 

• A subscripted or qualified identifier e.g., NAME.A(3) ->Q. 

• An expression, which consists of one or more of the above items, 
plus operators and parentheses. 

These items are converted to a series of identifiers and constants, 
separated by operators and delimiters, by the following subroutines used 
by all statement analysis routines: 

Item type Subroutine name 

Arithmetic constant ACONST 

String constant SCONST 

Identifier IDENTR 

Qualified identifier SQUID 

Expression EXP 

When the syntax has been checked, the statement body is output, after 
the statement header and label list, in source-program order as follows: 

Keywords - replaced by i-byte or 2-byte code. 

Identifiers - the identifier name, preceded by a field containing its 
length value. 

74 Licensed Material - Property of IBM 



constants -

Delimiters -

the constant, preceded by a field containing its length 
value, preceded by a l-byte constant-marker. 

the delimiter for an IF clause is "THEN". The delimiter 
for a THEN clause followed by an ELSE clause is ":ELSE". 
In all other cases the delimiter is a semicolon. 

This is the basic format of Type-l text. 

statement Error Handling 

The handling of syntax errors within statements depends upon features 
peculiar to the statement type. Errors are mainly handled by deletion 
of the part of the statement in error. Depending upon whether the 
remaining part of the statement retains the sense of the program, 
subject to checking by later compiler phases, deletion is kept to a 
minimum. If cascading of errors throughout the program is likely, the 
erroneous statement is replaced by a null statement, thus enabling 
labels to be retained. In a few cases of simple errors, an attempt is 
made at correction. The following example indicates typical methods of 
handling errors in a statement for which the valid syntax can be 
represented as: 

VERB KEYWORDl KEYWORD2(NAME) KEYWORD3(EXP); 

If an error is found within "NAME" or "EXP", the complete KEYWORD option 
is deleted. 

If one or more parenthesis around "NAME" or "EXP" is missing, it is 
usually inserted. 

If "KEYWORD1" is mandatory but is misSing, the statement is replaced by 
a null statement. 

If "KEYWORD2" is optional but is in error, only "KEYWORD2(NAME)" is 
deleted. 

If "VERB" cannot be identified, the statement is replaced by a null 
statement. 

Program Block-structure Checking 

Blocks are numbered in order of their appearance in the source program. 
The block structure of the program is checked for the logical'occurrence 
of end-of-program and end-of-file indications. 

A push-down stack is used to check the block structure. The stack 
consists of a series of entries, one for each statement, or IF, THEN, 
and ELSE clause, that is significant in the program block structure. As 
each item is entered in the stack it is allocated a block number. The 
format of a stack entry is: 

Symbolic 
field name 

STCODE 
STBKC 
STPO 
STLLTH 
STLBL 

Field 
length 

1 byte 
1 byte 
2 bytes 
1 byte 
31 bytes 

Field 
content 

Code for type of entry (e.g., PROC) 
Block number 
Prefix options 
Length of label 
Label (if any) 

Licensed Material - Property of IBM section 2: Method of Operation 75 



The STCODE, and the stacking/unstacking action, for various statement 
types is as follows: 

statement 
~ 

PROC 
BEGIN 
DO 
END 

ON 
On-unit 
IF 
THEN 

ELSE 

STeODE 

80 
81 
82/84 

20 
AO 
41 
42 

44 

Stacking Action 

Make new stack entry 
Make new stack entry 
Make new stack entry 
Delete from the stack all entries 
for the block just ended. 
Make new stack entry 
Make new stack entry 
Make new stack entry 
At THEN clause change STCODE of IF 
entry to STCODE of THEN. 
STCODE of top entry must be THEN: 
delete this entry. 

After each statement is processed, the top entry in the stack is 
checked. THEN entries are deleted if no ELSE clause is found. Errors 
such as 'IF - THEN - END:' are checked for, and are corrected by 
inserting NULL statements in appropriate places. RETURN statements 
inside BEGIN clauses are deleted. 

If an end-of-file indication (/*> is detected before the stack entries 
indicate the logical end-of-program, END statements are inserted to 
enable compilation to continue. If the stack entries indicate the 
logical end-of-program before the end-of-file indication is detected, 
the current END statement is deleted and the remaining source statements 
are processed. 

If the push-down stack overflows, it indicates that a compiler 
limitation on nesting of blocks has been exceeded, and compilation is 
terminated. 

Chaining of Nested Blocks 

To assist Phase EE in the de-nesting of blocks, a 17-byte chain field is 
inserted between the statement header or the label list, and the body of 
the statement for each PROCEDURE, BEGIN, and ON statement. The format 
of thEse chain fields is shown in figure 5.61. 

ON statements are chained in a special way. If an ON statement is 
associated with SYSTEM, or is associated with a NULL on-unit, it is not 
treated as a block statement. All others are treated as a BEGIN block 
on-unit, even though they may be single statements. In the latter case, 
the chain field is inserted in the ON statement body; the following 
BEGIN statement (if any) has no chain field. If there is no BEGIN 
block, the END statement pointer is set to X'FF'. 

The following example illustrates chaining of statements in the output 
from Phase EA. 

The source statements: 

1. A:PROC(P,Q); 
2. B:ON SUBRG BEGIN; 
3. ON OFL(CHECR(X»:GOTO L; 
4. L:END 
5. E:ENTRY 
6. (CBECR(Y» :BEGIN; 
7. END A; 

would be chained on output from Phase EA as shown in figure 2.11. 

76 Licensed Material - Property of IBM 



The example of chaining illustrates the following features that are used 
during processing by Phase EE: 

1. Every block-heading statement contains a pointer to the END 
statement for that block, thus enabling Phase EE to skip all 
statements within a block. The exception is on-units that consist 
of a single statement, and therefore have no END statement. In 
such cases, Phase EE skips the next statement, plus any CHECK and 
NOCHECK statements attached to the on-unit. 

2. The chain of next-block references passes through dummy statement 
headers embedded within ON statements. These dummy headers have a 
unique code byte, X'9B' (ON-BEGIN) which Phase EE recognizes. The 
next-block chain points to the first CHECK or NOCHECK statement 
preceding a block so that these statements are included in a block. 
In the case of ON-BEGIN statements, the CHECK and NOCHECK 
identifier lists follow the ON statement. 

3. The ENTRY, statement chain fields are only used in PROCEDURE blocks; 
BEGIN blocks cannot contain ENTRY statements, (for uniformity they 
contain an unused chain field). 

4. The chain field of each block header is preceded by a 2-byte field 
containing values for the block nesting-level and block-count. 
Phase EA inserts the total block-count for the program in the 
XBLKCT field in XCOMM. When the block-count maintained by Phase EE 
reaches the value in XBLKCT, it indicates that the end of the 
next-block chain has been reached. For this reason, the next-block 
chain field in statement 6 in the example is shown as not-used. 

Licensed Material - Property of IBM Section 2: Method of Operation 77 



Source 
stmt. no. 
(in hdr.) 1'-'-'-'-'-' . .----, 

PROC header A l,evel:1 
count:1 

I END I Next I ENTRY I (P,O )1; 
chain bl1k chain 

2 ON header B SUBRG NOSNAP 

l

,evel=2 lEND 
count=2 Chain 

t 1'---'--'--'--'--'--
2 i BEGIN header; 

I ' I 
Next Dummy ON-
block BEGI N header 

J 

l

,evel=3 lEND INext I Dummy ON-
count=3 chain=FF block BEGIN (header 

3 I ON header OFL NOSNAP 

I 
3 I CHECK header (X) 

3 I GOTO header L; 

4 LEND header L; 
r--------

i 
ENTRY header E I,eve,=o I END chain I Next-block I ENTRY 

count=O not used chain not used chain=FF 
5 

6 CHECK header (Y); 

BEGIN header l,evel=2 I END 
cou nt=4 I ch~i n 

Next-block ENTRY chain 6 
chain not used not used 

J 

7 

r-·----.---J 
~ ~eader . __ . __ . __ . __ . __ . __ . ___ . __ . __ . __ J 

8 END header 

Figure 2.11. Chaining of statements in the main text stream output from Phase EA 

78 Licensed Material - Property of IBM 



SYNTAX ANALYSIS - PASS 2 (PHASE EE) 

Phase EE continues the analysis of the source program started by Phase 
EA. In doing so it performs the following functions: 

1. Completes the analysis of statement types partly processed by Phase 
EA, i.e., PROCEDURE, BEGIN, and ENTRY statements. 

2. Analyzes, and converts to Type-1 text, the following types of 
statement: 

ALLOCATE 
DELAY 
STOP 
EXIT 
DISPLAY 
CALL 
READ 
WRITE 

REWRITE 
DELETE 
UNLOCK 
OPEN 
CLOSE 
LOCATE 
DECLARE 
DEFAULT 

3. Builds a new main text stream in which the statements are written 
in de-nested block order (i.e., all statements within a block 
appear in a contiguous text stream preceding all statements within 
a contained block). 

4. Builds a second text stream containing types of statements for 
which easy access is particularly required by phases in the 
dictionary build stage. 

5. Scans for stream-oriented input/output statements (i.e., GET, PUT, 
and FORMAT statements) to determine whether the next phase to be 
loaded is Phase EI, which analyzes such statements, or Phase GA. 

PHASE INPUT 

The input to this phase consists of the main text stream generated by 
Phase EA. The input is written on text pages, chained in sequence. 

The text consists of a contiguous sequence of statements in 
source-program order. Each statement is numbered and preceded by a 
statement header. Block-heading statements have chain fields preceding 
the statement header or inserted in the body of the text. Statements 
analyzed by Phase EA are in Type-1 text format. Other statements are in 
the form of source-program statements translated into compiler internal 
code, with all keywords represented by a one or 2-byte code. 

PHASE OUTPUT 

Output from the phase consists of two streams of text, the main text 
stream and a second text stream known as the dictionary text stream. In 
both text streams, all statements (except stream-oriented input/output 
statements) are in Type-1 text format. 

In both text streams the statements are written in de-nested block 
order, e.g., if block A contains block B, all the statements in block A 
apPear before the first statement in block B. 

Some statements inserted in the dictionary text stream are also retained 
in the main text stream. The content of each statement may vary between 
the two text streams. 

Licensed Material - Property of IBM Section 2: Method of Operation 79 



The format of items in both text streams output by Phase EE are shown in 
section 5: "Data Area Layouts." 

The Main Text stream: a new text stream is built during processing by 
Phase EE, and the text pages input from Phase EA are discarded on 
completion of the processing of all text. 

The new main text stream contains no chain fields. All valid PL/I 
statements in the source program are written in the text stream in 
de-nested block order. statements are written in Type 1 text format, 
with the following exceptions: 

1. PROCEDURE, BEGIN, and ENTRY statements are represented by statement 
headers, labels, and prefix options only. In this form they 
indicate the positions of entry pOints. 

2. GET, PUT, and FORMAT statements are not processed by this phase, 
and appear in the same format as at input to the phase. 

BEGIN blocks are repositioned as required for de-nesting, and a 
compiler-generated label is placed before each one so that it can be 
identified in the CALL statement that is used to replace the BEGIN 
statement in its original in-line position. 

DECLARE and DEFAULT statements are not included in the main text stream 
output. 

The Dictionary Text stream: To simplify scanning in the dictionary 
build stage, PROCEDURE, ENTRY, BEGIN, DECLARE, DEFAULT, LOCATE, and 
ALLOCATE statements are copied into a separate text stream. These 
statements are written in de-nested block order and chained for rapid 
access (see figu~~ 5.72). PROCEDURE and ENTRY statements associated 
with contained blocks are included with statements in the containing 
block'(in which they are known in the PL/I sense). 

Each block is preceded by a 28-byte block header containing five chain 
fields (see figure 5.71). The first chain field contains a forward 
pointer to the next block. The other four chain fields, in order of 
appearance, contain chains for PROCEDURE and ENTRY, DECLARE, DEFAULT, 
and LOCATE and ALLOCATE statements within the block. These statements 
appear in source-program order and are chained backwards. BEGIN and 
ON-BEGIN statements appear with the compiler label generated for 
identification in the main text stream, and are chained with ENTRY 
statements. 

TO enable entry points in the main external procedure block to be 
handled by the same routines as entry points in the rest of the program, 
a header for an imaginary block of zero nesting level is inserted at the 
beginning of the dictionary text stream. 

PHASE OPERATION 

The input consists of a contiguous sequence of text in source program 
order. When this text is read sequentially, a read-ahead technique that 
employs the XBRIC macro is used, enabling page-handling requirements to 
be determined in advance. When chains are followed, and scanning of the 
text becomes non-sequential, it is sometimes necessary for the scan to 
shift forwards or backwards to a location within another text page. 
Such cases are handled by the JUMPTXT routine and special-case coding in 
the XBRICM routine. The XTXRF macro is used for non-sequential scanning 
of text. Input pages are given the status DISCARDED on completion of 
all processing by the phase. 

80 Licensed Material - Property of IBM 



statement Analysis 

The syntax of statement types processed by this phase is checked by 
special analyzing routines for each type of statement. The method of 
checking and the handling of errors is similar to that described for 
Phase EA. 

De-nesting of contained Blocks 

To assist in the resolution of names during the dictionary build stage, 
contained blocks are de-nested so that all statements within a block are 
contiguous on output from the phase. The chains set up by Phase EA are 
used for this purpose. The two output streams are built simultaneously 
as statements are scanned and processed. 

The output streams built by this phase are illustrated in the following 
example, showing output in the main text stream and in the 
dictionary-text stream. The source program example used is similar to 
that used in the Phase EA description. A few statements have been added 
for illustration purposes. 

The following source statements: 

1. A: PROC(P,Q); 
2. DCL BB FIXED; 
3. B: ON SUBRG BEGIN; 
4. DEFAULT RANGE ex) FLOAT; 
5. ON OFLeCHECKeX»: GOTO 1; 
6. L: END; 
7. E: ENTRY; 
8. DCL CC STATIC, AA CHAR (5)CTL; 
9. (CHECK(Y»: BEGIN; 
10. ALLOCATE AA CHAR 3; 
11. END A; 

would appear in the main stream output from Phase EE in de-nested block 
order as follows: 

1. PROC-header level=1 count=1 Ai 
2. ON-header B SUBRG NOSNAP FF0002; 
7. ENTRY-header level=1 count=1 Ei 
9. CALL-header FF0004; 
12. END-header ; 
3. ON-BEGIN-header level=2 count=2 FF0002i 
5. ON-header OFL NOSNAP FF0003i 
6. END-header L; 
5. CHECK-header level=3 count=3 (X); 
5. ON-BEGIN-header level=3 count=3 FF0003; 
5. GOTO-header Li 
5. END-header; 
9. CHECK-header level=2 count=4 (Y); 
9. BEGIN-header level=2 count=4 FF0004i 
10. ALLOCATE-header; 
11. END-header ; 

Note the following features shown in the example: 

1. Block nesting-level and count values are retained in the block 
headers to assist name resolution by later phases. 

2. CHECK and NOCHECK headers contain block nesting-level and count 
values for use by Phase KT. 

Licensed Material - Property of IBM Section 2: Method of Operation 81 



3. Special entry-names, consisting of FFOO and a 2-digit block-count 
number, are generated for BEGIN and ON-BEGIN blocks. 

4. DECLARE statements (statements numbers 2 and 8) and DEFAULT 
statements (statement number 4) are not required in the main text 
stream: they are included in the dictionary-text stream. 

5. ALLOCATE statement headers only appear in the main text stream to 
mark the statement position (statement number 10). The identifier 
and its attributes (if any) are included in the dictionary text 
stream. 

6. There are no chains in the main text stream output from this phase. 

The same source program statements would result in entries being made in 
the dictionary text stream as shown in figure 2.12. 

Note the following features illustrated in the example: 

1. Block nesting-level and count values are inserted in entry 
statements. For other types of statement, these values are shown 
in the block header. 

2. A block header is created for the on-unit block created by the 
expansion of source statement number 5 (see main text stream 
example). The ON-BEGIN header in this block is treated as being 
part of the containing block, and therefore all chains in the block 
header, except the next-block chain, are set to X'FF'. The block 
header is generated for block-nesting level and count information 
in the dictionary build stage. 

Determination of Next Processing Phase 

If stream-oriented input/output statements are found in the text stream, 
they are copied into the output stream without change. A flag is set in 
the phase work area to indicate the presence of such statements. When 
the end-of-program indication is detected, the setting of this flag is 
tested. If it is set, an XPST macro is issued to indicate that Phase EI 
is to be loaded. If it is not set, the XPST macro specifies that Phase 
GA is to be loaded. 

82 Licensed Material - Property of IBM 



Source 
stmt. no. 
(in hdr) 

7 

2 

3 

8 

9 

3 

4 

10 

Dummy Ilevel=O I Next I DEFAULT I PROC/ENTRY 

~B~c~h~d~r ____ ~I~~ _chain=F~ _ chai:..J 

: PROC header I Ne~t-item I level= 1 I A (P,O) ; 
I • chaln=FF count=l 
I I 

: ~---- -"' 
~ENTRY header I ~ext Ilevel=l IE; 

Item count= 1 

Blockheader Ilevel=l INext I DEFAULT I PROC/ENTRY 
count=l block chain=FF chain , 

,..- _______________________ .J 

I DCL header I Next itemlBB FIXED; 
I , chain=FF 
I : 

DECLARE 
chain=F F 

AlLOC 
chain=FF 

DECLARE I ALLOC 
chain chain=F F , 

! i~N.BE~I~ ~ea~~; ... , .. ~:~~~;;; ............... ~:~:~2 ...... ·~;:~2,1 . 
I : , ............................................................. : : 

I I DCl header I Next item I CC STATIC, AA CHAR (5) CTL; : 
I LA .............................................................................................. _, 1--------1 
~ BEGIN header I ~ext I level=2 I Name= 

Item count=4 F FOO04; 

Block header Ilevel=2 I Next I DEFAULT I PROC/ENTRY 

r- ____ count=2 ~IOCk ~hain j chain t DECLARE 
chain=FF 

ALLOC 
chain=FF 

: ON-BEGIN header I Next-item Ilevel=3 I Name = I I : t _______ chai:~ _ ~o~nt=3_ FF0003~ _ J 
~DEFAULT header I Next-item I RANGE(X) FLOAT; 

chain=FF , 
Block header level=3 I Next 

cou nt=3 block , I 

DEFAULT I PROC/ENTRY 
chain=FF chain=FF 

DECLAREIALLOC 
chain=FF chain = FF , 

Block header Ilevel=2 I Next block 
count=4 chain=FF 

I 

DEFAULT 
chain=FF 

PROC/ENTRY I DECLARE I ALLOC 
chain=FF chain=FF chain 

t L heade'.1 ~he~:~t;; . _I __ A~ CHAR:3_);_. __ •. __ . __ . __ J 
Figure 2.12. Chaining of statements in the dictionary text stream output from Phase EE 

Licensed Material - Property of IBM Section 2: Method of Operation 83 



§YNT~X'ANALYSIS - PASS 3 (PHASE EI) 

Phase EI is only loaded and executed if the source program contains GET, 
PUT, or FORMAT stream oriented input/output statements. These 
statements are checked for correct syntax, and output in Type 1 text 
format. Diagnostic messages are issued if errors are detected. 

While the stream I/O statements are being processed, the following 
functions are performed to assist processing by Phase II: 

1. The contents of DO specifications within data lists are re-ordered. 

2. Markers are inserted at each end of format item iterations. 

PHASE INPUT 

Only the main text stream output from phase EE is scanned. The 
dictionary text stream is not scanned or accessed. 

PHASE OUTPUT 

The output consists of the main text stream in which all statements 
appear in Type 1 text format in deblocked order. Only syntactically 
correct statements are included. 

PHASE OPERATION 

Every statement in the main text stream is scanned. Statements other 
than stream-oriented input/output statements are copied unchanged into 
the output stream. If a GET, PUT, or FORMAT statement is detected, 
appropriate routines are called to process them. 

Stream oriented input/output statements can contain three main types of 
item: 

Options e.g., PAGE, SKIP, etc., 

Data lists 

Format lists 

GET and PUT statements can contain all three types of item. FORMAT 
statements contain only format list items. The relationship between the 
three types of statement enables common routines to be used for much of 
their processing. 

A file entry is inserted by default if not specified in a PUT or GET 
statement. 

84 Licensed Material - Property of IBM 



Format List Iterations: Special markers are inserted in format lists to 
indicate the beginning of the format list, and the limits of iteration 
and repetition factors within the list. The markers are: 

Symeolic ~ !!!g!C a till 
~~ 

FMATLST X'C8' Format list follows 

FIT X'AC' Precedes format iteration factor 

FITE X'AB' Ends the format iteration factor 

DO Seecifications: The specifications contained in DO statements within 
data lists are r6-ordered so that they appear in a format similar to 
iterative DO statements. The clause 'BY l' is inserted in DO 
specifications by default if no BY clause is specified. Parentheses 
around DO specifications are removed and a special marker (X'38'), which 
has the same priority as a semicolon, is inserted at the end of each DO 
specification. A scratch text page is used as a temporary storage area 
when processing DO specifications. 

The processing described above is illustrated in the following example. 
The source statement: 

POT EDIT (P,Q,«AR(I,J)DO 1=1 TO 20) DO J=3 TO 4» «X)A,3B,(3*X)(4 B,A),A»; 

would appear in the output from Phase EI as follows: 

POT-header EDIT(P,Q, DO J=3 TO 4 BY 1 G38' DO 1=1 TO 20 BY 1 '38' 
AR(I,J) ENDDO;ENDDO;) 
FMATLST(FIT(X) (fmtA, FIT 3 fmtB FITE FIT(3*X) (FIT 4 fmtB FITE fmtA) 
FITE, fmtA)FITE) FILE(SYSOOT); 
FILE(SYSOOT); 

Licensed Material - Property of IBM Section 2: Method of Opera~ion 85 



THE_DIC~IONARY BUILD STAGE 

The dictionary build stage consists of four phases: GA, GI, GE, and GM. 
Each phase is invoked for all compilations. These phases build a 
dictionary in which entries describe all identifiers and some constants 
that appear in the text streams output from the syntax analysis stage. 
The purpose of the dictionary is to provide easy access to any of the 
information that is currently known about a particular identifier at the 
time of its appearance in any data area. Later phases of the compiler 
may use the dictionary to obtain this information, or to insert 
information that is determined during processing. 

The dictionary is built by extraction of information during several 
passes of the text streams against the phases that comprise this stage. 
In the final pass, each item for which a dictionary entry (or entries) 
has been made is replaced by a reference to its dictionary entry. This 
reference is accompanied by a brief description of the item's most 
important features, thus reducing the need to access the dictionary for 
regularly used information. 

DICTIONARY SECTIONS 

The dictionary is divided into four named sections, the names, 
variables, general, and storage dictionaries. The names dictionary is 
built completely in this stage. The main structures of the variables 
and general dictionaries are built in this stage, but many additional 
entries may be made by later phases. The storage dictionary is built in 
the storage allocation stage. 

Note: The formats of the various dictionary sections, and of the 
entries they hold, are shown at section 5: "Data Area Layouts." 

The Names Dictionary 

An entry is made in the names dictionary for each unique identifier in 
the text, including compiler-generated names for BEGIN-blocks. The 
entries have fixed alignment and variable length, (see figure 5.6). 

Each entry in the names dictionary ~ontains a reference to its 
associated entry in either the variables or general dictionary. The 
level and count numbers of blocks containing the identifier are also 
included. Entries for structure members contain references to the name 
of the immediately containing structure. All entries are connected by 
hash chains. 

Searching the Names Dictionary (Hashing): Each time an identifier is 
processed by a phase in this stage, the names dictionary must be 
searched to find whether an entry for that identifier alieady exists. 
Because an identifier may appear many times in a source program, a 
hashing technique is used to avoid repeated sequential searches of the 
dictionary. 

When a name in the text is read, an Exclusive-Or operation is performed, 
byte for byte, on that name. After each exclusive-or operation, the two 
hexadecimal digits in the hash-result-byte are interchanged. The value 
of the final hash-rEsult-byte is doubled. The resulting value indicates 
an offset in a 512-byte hash table. This table consists of a number of 
2-byte dictionary references, each of which is the head of a hash chain 

86 Licensed Material - Property of IBM 



linking existing entries. The chain referenced by the hash result is 
searched for an existing entry for the name. If there is no entry, the 
name is added to the chain. 

The scope of declarations in PL/I allows identical names to refer to 
different identifiers. Names with the higher block counts are arranged 
nearest to the head of each chain, so that the first name found, if it 
is known in the current block, will be the identifier required. 

A structure member can be referred to by various qualified names. In 
checking the identity of a qualified name, the right-most name in the 
qualifications is searched for. If found, the containing-structure name 
referred to in its entry is compared with the next left qualification 
name. This process is repeated so that each member of the qualified 
name and the structure are compared. If any structure name does not 
agree with the corresponding qualifying name, the containing structure 
name is then compared with the same qualification. If the structure and 
the qualifications end simultaneously, the name has been found. If Lhe 
structure ends before the qualifications end, the name found is not the 
required name. If the qualifications end before the structure ends, the 
qualification is incomplete (but may be valid), and the hash-chain 
search is continued. If no completely qualified reference is found, and 
if there is more than one incomplete but valid reference, these 
references are ambiguous and an error message is generated. 

The Variables Dict~onary 

An entry is built in the variables dictionary for each variable in the 
text. Each entry contains code indicating the attributes of the 
variable, and a reference to the corresponding entry in the names 
dictionary. 

All variables dictionary entries are of fixed length (40 bytes), and all 
entries have the same format. The usage of some of the fields in these 
entries varies at different stages of the compilation (see figure 5.7). 

Entries for variables aggregates contain references to corresponding 
entries in the general dictionary. Entries for structure members are 
contiguous in order of declaration (after LIKE has been expanded). Each 
structure member is allocated a sequence number (one for a major 
structure, zero for a non-structure member). Each entry for a structure 
member contains the sequence number of its containing structure. 

The General Dictionary 

The general dictionary is used throughout the compilation to store 
information about a wide variety of items. Entries in this dictionary 
section are of variable length but have a fixed alignment. 

Phases in the dictionary build stage make entries in the general 
dictionary for the following items: 

Label Constants: All entries for label constants are grouped at the 
beginning of the dictionary. This enables their references to be used 
as offsets in bit vectors that are used for flow tracing in the 
optimization stage. The entries for label constants are not made during 
the first pass, but space is reserved for them according to a value set 
in the XNLAB field in XCOMM during the syntax analysis stage. 

Label lists: Each label list entry contains a bit vector indicating the 
label constant values that can be assigned to a label variable. Label 
list entries are referenced by label variable entries in the variables 
dictionary. 

Licensed Material - Property of IBM Section 2: Method of Operation 87 



Block Headers: Entries for block headers follow the space reserved for 
label constants. An entry is made for each block in the source program. 

Entry Constants: Entry constants that appear as prefixes on PROCEDURE 
or ENTRY statements, or are generated by the compiler for BEGIN blocks, 
have entries which contain a reference to their associated entry in the 
names dictionary, a list of the attributes applicable to the RETURNS 
attribute, and a variable-length list of the references of variables 
dictionary entries for any parameters used on the entry point. External 
entry constants have similar entries but, instead of having a list of 
parameter dictionary entries, they contain th6 head of a chain linking 
all relevant parameter-descriptor entries in the general dictionary. 

Parameter Descriptors: Entries for parameter-descriptors are built from 
entry declarations. They are similar to variables dictionary entries 
(without names dictionary references). If the descriptor is omitted, a 
dummy entry is created. The descriptors are chained via their names 
dictionary reference fields. 

Generic Entry Points: An entry for a generic entry-point name contains 
references to every entry for the generic family, and also to entries 
for the associated WHEN arguments. 

constants: Integer constants of value less than 10**7 are held in text. 
Dictionary entries are made for all other constants, each entry 
containing the OED and the internal representation of the constant. 

File constants: An entry for a file constant contains the file 
attributes, a reference to an entry for any ENVIRONMENT attributes 
declared, and a reference to the associated names dictionary entry. 

ENVIRONMENT Attributes: Files declared with the ENVIRONMENT attribute 
have an associated entry containing the ENVIRONMENT options. Names and 
constants are replaced by 6-byte text references. 

Aggregate_Tables: Entries for structures and arrays contain details of 
the structuring or bounds. 

PICTURE SFeci~ications: An entry is made for each different PICTURE 
specification in the text. Each entry contains the picture 
specification (checked for errors) and the OED implied by the picture. 

DEFAULT Specifications: An entry is made for each different DEFAULT 
specification appearing in the text. The format of these entries is 
similar to that for entries in the variables dictionary. 

When impliCit declarations are processed, the appropriate entry is 
selected and copied into the variables dictionary. When contextual 
declarations are processed, dictionary entries are made by merging the 
contextual attributes with information in the appropriate DEFAULT 
specification entry. 

Overflow Entries: When the fixed format of dictionary entries· cannot 
accommodate information required in unusual situations, additional 
entries known as overflow entries are built. The information in such 
entries depends upon the source of reference. 

88 Licensed Material - Property of IBM 



EXPLICIT DECLARATIONS (PHASE GA) 

Phase GA performs the following three main functions: 

1. Builds dictionary entries for all explicitly declared items, except 
label constants. All relevant valid attributes, whether they are 
applied by explicit declaration or by default, are indicated in the 
entries. The following attributes, which have appended 
information, are not processed completely: 

a. string lengths that are expressions 

b. dimensions attributes 

c. label-variable value lists 

d. INITIAL attribute 

e. DEFINED attribute 

f. BASED attribute 

g. OFFSET attribute 

References to these attributes are placed in the appropriate 
variables dictionary entries so that they can be easily found by 
later phases. 

2. sets up DEFAULT statement information for use by the phases tha~ 
process contextual declarations (Phase GI) and implicit 
declarations (Phase GM). As this phase is not aware of the names 
of items that are declared implicitly, sample implicit-declaration 
entries are built in the general dictionary, one for each different 
default specification. A directory is built to assist later phases 
in the stage to access these entries. 

3. Diagnoses multiple declarations, conflicting attribute~, and 
unresolvable LIKE attributes. 

PHASE INPUT 

Phase GA scans the dictionary-text stream output from the syntax 
analysis stage. This file contains PROCEDURE, ENTRY, BEGIN, DECLARE, 
DEFAULT, LOCATE, and ALLOCATE statements. The main text stream is not 
used by this phase. 

PHASE OUTPUT 

Output from the phase consists of: 

1. The main text stream and the dictionary-text stream, neither of 
which are changed by this phase. 

2. Names dictionary entries for all identifiers that are declared 
explicitly, except label constants. 

3. Variables dictionary entries for all variables that are declared 
explicitly. 

4. General dictionary entries for block headers, entry points, generic 
entry points, parameter descriptors, file constants, environment 
attributes, picture specifications, and all default specifications. 

Licensed Material - Property of IBM Section 2: Method of Operation 89 



5. A scratch page containing the hash table and a directory to the 
default specification entries in the general dictionary. 

PHASE OPERATION 

The dictionary-text stream input is scanned, block by block, in order of 
appearance in the block-header chain. Within each block, the chains set 
up by Phase EE are used to scan and process items in the order of 
DEFAULT statements, PROCEDURE, ENTRY, and BEGIN statements, and DECLARE 
statements. ALLOCATE and LOCATE statements are not processed by this 
phase. 

Use of TablesL-1ist2L and Directories 

To assist in the correct application of attributes to identifiers, Phase 
GA creates and/or usee the following tables, lists and directories: 

The Default Directory 

The LIKE Directory 

The Structure Table 

The Factor-level Stack 

The Attribute Collection List 

The Attribute Tree 

Each of these items exists only within the phase. 

THE DEFAULT DIRECTORY: Because DEFAULT statement specifications can be 
applied to any declaration, a directory, which contains the text 
reference of the attributes associated with any DEFAULT RANGE 
specification, is built. 

The default directory is divided into sections corresponding to block 
levels. When the directory is used by routines within the phase, it is 
scanned in the opposite direction to that in which it is built, so that 
entries for the innermost level of known blocks are scanned first. 

At the end of processing by Phase GA, and when entries for sample 
implicit declarations have been built in the general dictionary, a new 
default directory is built for use by other phases. This new directory 
which is part of the phase output, provides direction to entries in the 
general dictionary instead of to items in the text. 

THE LIKE DIRECTORY: When a structure or structure member with the LIKE 
attribute is detected, information for resolving this attribute may not 
be available. To assist in the application of this attribute when all 
other declarations in the block have been seen, a LIKE directory, 
similar in organization to the DEFAULT directory, is built. 

Entries in this directory contain the statement number and the factor 
level at which the attribute appeared, and the text references of the 
start of the major structure. declaration. 

THE STRUCTURE TABLE: This table is built for the following purposes: 

1. To enable the true level of a structure member (as opposed to the 
declared level) to be determined. 

90 Licensed Material - Property of IBM 



2. To enable the sequence number of the containing structure to be 
determined. 

3. To enable the containing-structure chain in the names dictionary to 
be set up. 

4. To enable the inheritance of alignment declarations. 

When a structure is found in a declaration, an entry is made in this 
table for each true structure level (in level order). Each entry 
contains the declared level, the true level, the sequence number, the 
name reference, and declared alignment of-the last structure member, at 
that level, that was processed. 

When a structure member is processed, the table is scanned from the 
deeper levels upwards until an entry is found with a declared level 
deeper than that of the current structure member. The true level for 
the current member is one more than that in the entry found. Thus, a 
structure declared as follows: 

DCL lA, 3B, SC, 4D, 2Ei 

acquires true levels as if it was declared as follows: 

DCL lA, 2B, 3C, 3D, 2Ei 

THE FACTOR-LEVEL STACK: This stack is used to enable efficient scanning 
of declarations containing factored attributes. The stack is built at 
the same time as the attribute collection list de5cribed below. 

When a DECLARE statement is scanned, a stack entry is made for each 
depth of factoring (up to a maximum of 16). Each entry is six bytes 
long. The first byte indicates the structure level applicable at that 
factor level, and avoids the necessity for a backwards scan to determine 
the inheritance of a structure level from a containing factor level. 
The other five bytes contain the text reference of the end of the 
attribute list applicable to the factor level. This information enables 
repeated scanning of attributes at outer levels of factoring to be 
avoided. 

THE ATTRIBUTE CQLLECTION LIST: When an explicit declaration of an 
identifier is detected, a list is made of all its explicitly declared 
attributes. storage is allocated so that entries can be made, at 
predetermined offsets, for every attribute in the PL/I language, plus 
some pseudo attributes (e.g., I-N,ARITHMETIC> used for processing 
purposes. The compiler internal code for each attribute indicates the 
offset in the list at which a relevant entry is to be made. 

Each entry is two bytes long. The first byte contains a factor-depth 
value, representing one more than the number of factor levels between 
the attribute and the identifier to which it is applied. This value is 
updated as commas and parentheses are detected in the statement. 

The second byte is a flag byte, used to give the following indications: 

1. The attribute is derived from a default specification. 

2. The attribute is implied (e.g., the ENTRY attribute is implied in 
the statement: DECLARE X RETURNS (FIXED);). 

3. The attribute is to be applied. This indication is set according 
to the result of checking all the declared attributes in the list 
against the attribute tree described below. 

THE ATTRIBUTE TREE: The primary purpose of the attribute tree is to 
provid~ a guide to the selection of default attributes (from DEFAULT 
statement or standard default specification) when the attributes list in 
an explicit declaration is incomplete (e.g., the FLOAT attribute is 

Licensed Material - Property of IBM Section 2: Method of Operation 91 



applied to the statement: DCL X DEC;). The tree is also used to detect 
conflict bet~een declared attributes (e.g., DCL X FIXED FLOAT;). The 
'tree' consists of a list of 2-byte entries. In each entry, the first 
byte contains a code for a particular attribute. The second byte either 
indicates the offset in the list of another 'branch' to be examined if 
the attribute is selected for application, or is null, indicating the 
end of a 'branch'. Each 'branch' can usually be associated with a 
particular class of attributes, such as storage class or data type. 

When the attribute collection list entries for a declaration have been 
made, an interpreting routine accesses the relevant entries in the 
attribute tree. By following the branches indicated, the compatibility 
of attributes is checked and the 'attribute is to be applied' flags in 
the attribute collection list are set. If attributes are found to 
conflict, the appropriate attributes are not applied and diagnostic 
messages are issued. Branches containing attributes required by DEFAULT 
specification are then scanned, and attributes applied by selection. If 
no suitable DEFAULT specification exists, the standard default attribute 
is applied. 

sequence of Processing 

The dictionary-text stream is scanned, block by block. Within each 
block, statement chains are scanned in the order of DEFAULT statements, 
PROCEDURE and ENTRY (and BEGIN) statements, and DECLARE statements. The 
ALLOCATE statement chain is not scanned by this phase. 

DEFAULT statements: DEFAULT statement specifications can apply to many 
declarations. For this reason, the DEFAULT statement chain is scanned, 
and the default directory is built, at the start of processing of each 
block. 

Entry Points: In order that names on entry points internal to a block 
can be associated with any DECLARE statement references to them, 
statements in the PROCEDURE/ENTRY statement chain are scanned next. 
Dictionary entries are made for items in this chain as follows: 

Names dictionary entries are made as required. 

Entry-point entries are made in the general dictionary for each 
statement in the chain. 

Block-header entries are made in the general dictionary for all 
PROCEDURE, BEGIN, and ON-BEGIN statements in the chain. 

Parameters associated with statements in the chain are detected, even 
though the parameters are not in the same block. Names dictionary 
entries only are'made for the parameters at this stage. 

If there is a RETURNS option on a statement, entries are made for the 
attributes in the attributes collection list. Default attributes are 
added and the attributes are then selected and applied to dictionary 
entries. 

DECLARE Statements: Statements in the DECLARE chain are processed in 
sequence, although factoring of attributes causes some switching in the 
scanning sequence. The factor-level stack is used to avoid unnecessary 
rescanning of factored attributes. 

When a name is found, its attributes are scanned and added to the 
attribute collection list. If there are any outer factor levels of 
attributes that have not yet been seen., a scan ahead is made and those 
attributes are collected. 

92 Licensed Material - Property of IBM 



To determine whether an item is a major structure, a minor structure, or 
a base element, the structure level of the next declared name is 
checked. This may be found either after the next comma, or by checking 
the inheritance of a factored structure level by use of the factor level 
table. when the declared attributes have been collected, the default 
directory is scanned, backwards from the last entry, for a range 
specification that covers the current name. when an appropriate entry 
is found, the referenced text item is accessed and attributes on the 
specification and all containing factor levels are collected. The 
directory scan is stopped at the first change of block following 
detection of an applicable range specification entry. 

The names dictionary is then scanned for any previous declaration of the 
name. If any entry is found, a diagnostic message is generated. If no 
entry is found, a new entry is made and the hash chain is extended. 

The attribute tree is then used to select the attributes in the 
attribute collection list that are to be applied. The selected 
attributes indicate the type of dictionary entry required. The 
appropriate routines are called to make and initialize the general and 
variables dictionary entries, and to set bits indicating the applied 
attributes. The size and alignment of a variable is determined, and the 
information entered so that Phase GE can determine whether aggregate 
table entries can be commoned. 

Attributes Processi~g 

Each attribute that can appear in the attribute collection list has two 
processing routines associated with it. The functions of the first of 
these routines are: 

1. Marking the attribute in the attribute collection list. 

2. Taking special action for any value, or other appendage, on the 
attribute. 

3. Bumping the scan to the next attribute when processing is 
completed. 

The other routine applies the attribute to a particular dictionary 
entry. Bits are set to indicate the applied attributes. In some cases, 
references to attributes to be applied by Phase GE are inserted. 

Special features of attribute processing are described in the following 
paragraphs. 

Precision, Scale, and Fixed String Lengths: The values of these 
appendages to attributes are converted to binary values by the first 
processing routine for the particular attribute. 

The LIKE Attribute: Special problems associated with processing of the 
LIKE attribute are: 

1. The appearance of the LIKE attribute in a structure declaration 
means that reference must be made to another structure declaration. 
The declaration for this other structure may not be seen until 
later in the scan. 

2. Dictionary entries for. members of a structure are required to be 
consecutive. For this reason, it is not possible to make entries 
for some members of a structure and later add entries for members 
to which the LIKE attribute applies. 

3. If the LIKE attribute is applied by copying dictionary entries for 
previously-declared structures, the declared attributes (except 

Licensed Material - Property of IBM Section 2: Method of Operation 93 



inheri~ed alignment) will also be carried over. If the 
substitution is made across blocks, the default attributes that are 
applicable may vary. Therefore, only information about true-level 
structure numbers can be extracted from other dictionary entries. 

To assist in handling these problems, the text reference of the relevant 
declaration is inserted in the dictionary entry for each major or minor 
structure. When a LIKE attribute is found in a declaration, an entry 
which contains the text reference of the major structure is made in the 
LIKE directory. Any completed entries for that major structure in the 
variables dictionary are deleted and the spaces marked as re-usable; 
names dictionary entries are retained. 

When all declarations in a block have been processed, the LIKE directory 
is scanned and LIKE-structure declarations are re-accessed. 

These declarations are processed in the normal way except that when a 
use of the LIKE attribute is seen, the name referred to is replaced by 
the appropriate dictionary reference, and the declaration in the text of 
the corresponding structure is accessed via the dictionary entry. The 
structure referred to in the LIKE clause is then processed and the 
appropriate default attributes and alignment requirements are applied. 

The ENTRY Attribute: Declarations containing the ENTRY attribute 
present a special problem because the associated parameter descriptor 
list effectively contains other declarations. In particular, an entry 
declaration can appear within the parameter descriptor list of an entry 
point declaration. 

To simplify problems of recursion, parameter descriptors are not 
processed at the time when the ENTRY declaration is seen. Instead, a 
dictionary entry, which refers to the parameter descriptor entries, is 
built and added to a chain of such entries in the general dictionary. 
When all declarations in the block have been processed, this chain is 
scanned and parameter-descriptor declarations are processed. Nested 
ENTRY declarations automatically cause a new chain of dictionary entries 
to be started. The process is repeated until no new chains are created. 

The PICTURE Attribute: PICTURE specifications are checked for validity 
by the PICTURE attribute processing routines. Applicable precisions, 
scales, and string lengths are calculated and inserted in the PICTURE 
specification entries in the general dictionary. Identical 
specifications share a common dictionary entry. 

Attributes Processed by Phase GE: BASED, OFFSET, GENERIC, DEFINED, and 
INITIAL attributes, and any variables that have subscripts containing 
dimensions or adjustable string lengths, are processed by Phase GE. The 
routines in Phase GA which select and apply these attributes insert 
references in the dictionary entries to enable Phase GE to access the 
required information in the text. 

The dictionary entry for the item contains a 3-byte field which refers 
to the text page containing the declaration. Other fields in the entry 
contain the offsets, within the text page, of the declarations of the 
applicable attributes. If all the attributes appear in the same page as 
the items declarations, the text reference can be obtained from the page 
field and offset field in the dictionary entry. If, as a result of 
DEFAULT statements, the attributes appear in a page other than that 
containing the declaration, an overflow entry is made in the general 
dictionary. This entry contains the text reference of the attribute and 
a reference to the offset field. A flag byte is set to indicate the use 
of an overflow entry. 

94 Licensed Material - Property of IBM 



The ENVIRONMENT Attribute: The attribute lists of files declared with 
the ENVIRONMENT option may contain other names. When all declarations 
for the block have been processed, names and constants in dictionary 
entries associated with the ENVIRONMENT option are replaced by 6-byte 
text references. ENVIRONMENT option entries in the general dictionary 
which contain names that cannot be resolved at this time, are chained 
together for ease of accessing by Phase GI. 

Licensed Material - Property of IBM section 2: Method of operation 95 



CONTEXTUAL DECLARATIONS (PHASE GI) 

Phase GI detects all items that are declared by their context in the 
PL/I source program, and builds entries for them in appropriate sections 
of the dictionary. 

PHASE INPUT 

Input to the phase consists of the main text stream and the dictionary 
text stream, as output from the syntax analysis stage. Entries built by 
Phase GA in the names, general, and variables dictionaries are accessed 
as required when possible contextual declarations are found during a 
sequential scan of the two text streams. 

The default directory built by Phase GA, which contains references to 
sample entries created in the general dictionary for each DEFAULT RANGE 
specification, is accessed as required for application to contextual 
declarations. 

PHASE OUTPUT 

The main text stream and the dictionary text stream are not changed 
during processing by this phase. Additional entries are made in the 
names, general, and variables dictionaries as follows: 

General dictionary entries for contextually declared file names, label 
names, and programmer-defined CONDITION names. 

Variables dictionary entries for items declared contextually with the 
TASK, EVENT, POINTER, or AREA, attributes. 

Names dictionary entries for contextually-declared built-in function 
names, and for every item for which an entry is made in the variables 
or general dictionaries. An additional entry is made in the hash 
table for each new entry in the names dictionary. The default 
directory is not changed by this phase. 

PHASE OPERATION 

Detection of Contextual Declarations 

A single sequential scan is made of the main text stream and the 
dictionary-text stream. The contextual declaration of an item is 
indicated by the presence of various PL/I keywords (e.g., TASK, BASED, 
SET), subscripts lists, or the locator-qualifier symbol, ->, and by' the 
position of the identifier relative to any of these indications. For 
example: 

DCL B BASED (P)i 

and 

P-> Q = Ai 

In each of these statements, the variable P is contextually declared as 
a pointer variable. 

96 Licensed Material - Property of IBM 



The name being contextually declared may be remote from the indication 
of its context. For example: 

DEFAULT RANGE (T) BASED; 

CALL X TASK (ADDR(P-> Q)->T)i 

In the above statements, T is contextually declared as a task variable. 
Between the name and the keyword indicating its context are two other 
contextual declarations: 

1. ADDR is contextually declared as a built-in function because it is 
followed by a subscript list. 

2. P is contextually declared as a pointer variable because it is 
followed by the pointer symbol. 

Within valid PL/I syntax, the only contextual declarations that can 
appear between an identifier and its context indicator are locator 
qualifiers and built-in function names. In these cases, no other 
context can appear between the indicator and the name. 

In such situations, Phase GI avoids the use of read-ahead technique by 
maintaining a record of context in a simple 2-level stack. In the 
example, the context-indicator keyword ADDR when its subscript list is 
detected, and the context POINTER is applied to the identifier P when 
the -> symbol is detected. TASK is unstacked and applied to the first 
identifier that is not within a subscript list and is not a locator 
qualifier, (T in this example). 

When the NAMERTN routine determines that a name is in a position that 
could constitute a contextual declaration, the hash chains in the names 
dictionary are searched for any previous explicit or contextual 
declarations of the name that are currently known. If such a 
declaration is found, the previously declared attributes are checked for 
compatibility with the current context. If there are any 
incompatibilities, diagnostic messages are generated. 

If no previous declaration is found in the dictionaries, the current 
appearance of the name constitutes a contextual declaration, and this is 
processed by the appropriate routine within the phase. In most cases, 
the routine CONTEXT allocates the processing to a particular routine 
which then makes suitable dictionary entries. In the case of 
identifiers with the FILE attribute, the entire processing is done by 
the CONTEXT routine. In the case of contextually declared built-in 
function names, processing is done by the N13 and N13A routines which 
first check that the subscript list does not apply to an ENTRY statement 
label or a subscripted array name, and then checks against the table of 
built-in function names to ensure that the information in the dictionary 
entries is correct. 

Labels: If a statement is preceded by a label or labels, this is 
indicated in the Type-1 text statement header. The labels are processed 
by the SL1 routine which makes entries for them in the general 
dictionary. Corresponding entries are made in the names dictionary. 

Scope of Contextually Declared Names: A name declared contextually in 
an inner block has scope similar to that of a name declared explicitly 
in an outer block. When the scanning routine detects the start of a new 
source-program block in either the main or dictionary text streams, a 
list of known blocks, KNOLST, is updated. This enables the XSRCHR 
routine to check the scope of names 'when searching the hash chains. 

Licensed Material - Property of IBM Section 2: Method of Operation 97 



~ication of Default Attr!bu~: Any appropriate default attributes 
that are specified must be applied to contextual declarations. To 
facilitate this, Phase GA creates, in the general dictionary, a set of 
sample dictionary entries appropriate to each specified DEFAULT range. 
Before Phase GI makes an entry in the variables dictionary for a 
contextual declaration, the appropriate processing routine calls the 
DFTRTN routine. DFTRTN scans the default directory passed by Phase GA 
for any sample entry in the general dictionary containing the default 
attributes specified for the appropriate range of variables. If such an 
entry is found, it is copied into the variables dictionary and the 
processing routine in Phase GI merely overwrites those default 
attributes that conflict with the context of the variable. 

The default attributes specifying scope, alignment, and area length, may 
be dependent upon the attributes specified by context, e.g., 

DEFAULT (RANGE(A) INTERNAL UNAL, RANGE(B» CHAR VALUE(AREA(7»; 

SIGNAL CONDITION (Ai); 

ALLOCATE X IN (A2) SET (A3); 

SIGNAL CONDITION (Bl); 

ALLOCATE X SET (B3); 

On the basis of default attributes specified by Phase GA, identifiers in 
the example within RANGE(A) and RANGE(B) have the attributes CHAR(l) 
UNALIGNED INTERNAL. By context, the following attributes are applied: 

Al is CONDITION INTERNAL 

Bl is CONDITION EXTERNAL 

A2 is AREA (7) 

A3 is POINTER UNALIGNED 

83 is POINTER ALIGNED 

In order that the correct attributes can be applied, Phase GA includes 
in each sample default entry information to indicate to Phase GI: 

1. The area length to be applied to an area variable. 

2. Whether system default alignment is to be applied. 

3. Whether system default scope is to be applied. 

Using this information, Phase GI sets up area lengths, and overwrites 
the sample attribute entries for scope and alignment as required by 
context. 

Application of ENVIRONMENT Attributes: When the GITRT routine detects 
the end-of-program marker, and when dictionary entries have been made 
for all items declared contextually in the main and dictionary text 
streams, the ENVI and ENVERR routines are called if there are any 
identifiers in the source program declared with the ENVIRONMENT 
attribute. These routines scan the ENVIRONMENT chain built in the 
general dictionary by Phase GA. Dictionary entries are made for any 
contextually declared names found in the various format lists. 

When all processing is completed, the GIEND and GIOUT routines ensure 
that all text and dictionary pages are allocated their appropriate 
status before calling the control phase to pass control to Phase GE. 

98 Licensed Material - Property of IBM 



DECLARATION EXPRESSIONS (PHASE GE) 

Phase GE continues the process of building dictionary entries for 
explicitly or contextually declared variables. New entries are built in 
the general dictionary, and existing entries in the variables dictionary 
are modified in some cases. Items processed by this phase are: 

1. Variables declared with BASED, OFFSET, DEFINED, INITIAL, and 
GENERIC attributes. 

2. Variables that appear in ALLOCATE statements. 

3. Array and structures, for which aggregate-table entries are build 
in the general dictionary. 

4. Label variables, for which value-list entries are build in the 
general dictionary. 

This phase also builds a second text stream, known as the 
declaration-expressions file. This text stream is built by the 
generation of statements containing information that cannot be suitably 
held in dictionary entries. In general, this information consists of 
expressions resulting from declarations, e.g., adjustable array bounds, 
adjustable string lengths, expressions resulting from INITIAL attribute 
assignments. In building statements for inclusion in this text stream, 
items declared with the DEFINED attribute are examined and the type of 
defining is identified, i.e., simple defining, iSUB defining, or 
string-overlay defining. 

PHASE INPUT 

Input to the phase consists of: 

1. The variables dictionary. 

2. The general dictionary. 

3. The names dictionary and hash table. 

4. The default directory. 

5. The dictionary-temt stream. 

The main text stream is not accessed by this phase. 

PHASE OUTPUT 

output from the phase consists of: 

1. The general dictionary, containing aggregate-table entries, label 
variable value-list entries, and entries for generic entry points 
and WHEN clauses. 

2. The variables dictionary, with some entries modified. 

3. The names dictionary and hash table. 

4. The default directory. 

5. The declaration-expressions file. 

Licensed Material - Property of IBM Section 2: Method of Operation 99 



The dictionary text stream is discarded during processing by this phase. 
The main text stream is not altered by this phase. 

PHASE OPERATION 

Sequence of Processing 

A single scan is made of every entry in the variables dictionary, and 
parts of the general dictionary, testing for entries for variables with 
attributes that require processing by this phase. As it is desirable 
that statements output in the declaration-expressions file should afpear 
in a similar order to items in the main text stream (i.e., in deblocked 
order, outer block first), the scanning sequence is arranged so that 
entries relating to items in outer blocks are seen and processed first. 
According to the features of items detected in this scan, various 
routines are called to perform the requisite processing as described in 
later paragraphs. 

Because the sample implicit declaration entries, created in the general 
dictionary by Phase GA, apply as though the declarations were made in 
outermost block, these entries are scanned first. The chain that links 
these entries also links entries for entry points that have 
parameter-descriptor lists, and these items are processed as they are 
seen in the scan. Contextual declaration entries made in the variables 
dictionary by Phase GI also apply as though the declarations were made 
in the outermost block, and these entries are scanned next. The scan 
then switches back to the beginning of the variables dictionary, in 
which entries made by Phase GA appear in the required order. 

Throughout the scan, a list of known blocks is maintained and updated as 
changes of blocks are detected. Wherever a change of block occurs in 
the scan of the variables dictionary, the scan is switched to the 
general dictionary. All block-header entries for blocks that are known 
are searched for a dictionary reference, inserted by Phase GA, 
indicating the head of a chain of overflow entries created for items 
with the GENERIC attribute. Entries for all items in the chain are 
processed before the scan switches back to the first variables 
dictionary item in the next block. 

On completion of the processing of variables dictionary entries, the 
chain of ALLOCATE and LOCATE statements in the dictionary-text stream is 
scanned and processed •• 

During the scan, dictionary entries are created or changed, and 
declaration-expression file statements are generated and output, as 
described in the following paragraphs. 

Construction of Aggreqate Tables 

A skeleton aggregate table is built in the phase work area. When a 
dictionary entry for a variable that is an array or structure member is 
seen, information about dimensions and structure level are copied into 
the appropriate fields of the skeleton table. 

The information about the variable is obtained by accessing the 
declaration in the dictionary text stream indicated in the page and 
offset fields in the dictionary entry. If the YV2FL flag in the 
dictionary entry is set, the page and offset fields refer to the 
relevant overflow entry in the general dictionary, and information is 
copied from there instead of the text. 

100 Licensed Material - Property of IBM 



When all available information has been copi~d into the skel~ton table, 
the table is copied into the general dictionary, unless an identical 
tabl~ with which it can be commoned already exists in a dictionary 
entry. The format of aggregate table entries is shown in figure 5.11. 

To assist in the commoning of tables, the following chains are 
maintained: 

Fixed-extent structures 

Fixed-extent arrays 

AUTOMATIC adjustable-extent structures 

AUTOMATIC adjustable-extent arrays 

Aggregate tables that cannot be commoned 

New chains for aggregates with adjustable extents are started on entry 
to each block. 

Unstructured_~rrays: The skeleton of the aggregate table is built up in 
the work area, the text information concerning the array's dimensions is 
accessed, and details of the lower and upper bounds of each dimension 
are put into the aggregate table. The phase then determines which of 
the five chains (see above) this aggregate table should be placed in, 
and scans that chain to see whether it already contains an aggregate 
table entry identical to the one it has just built up in workspace. If 
an id~ntical entry is found, that reference is inserted into the 
variables dictionary entry being processed, and the table in workspace 
is discarded. If however, the whole of the chain is scanned without 
finding an identical aggregate table entry, the new table is copied into 
the next space in the general dictionary, and is also added to the front 
of the relevant chain. The reference of the new general dictionary 
entry is placed in the variables dictionary entry. The scan of 
variables entries is then resumed. 

structures: A separat~ aggregate table is built up for each element of 
the structure, to avoid the necessity of having a work area large enough 
to hold aggregate tables for a complete structure. A table (TAB) is 
maintained in the work area to indicate the general dictionary reference 
of the last aggregate table inserted (or commoned) at a given level, and 
also the total number of dimensions in the structure up to that level, 
including any inherited from higher logical levels. Text information 
concerning dim~nsions is processed as for arrays, and the bounds are 
inserted in the work-area table with an indicator to show the level from 
which each dimension was inherited. For major structures, however, only 
the basic part of the aggregate table is copied into the general 
dictionary (or compared, if commoning). When a base element is 
encountered, any tounds information is added to the work-area table, and 
the entire table, showing all bounds contained in and inherited by the 
base element, is copied into the general dictionary. When the last 
member of a structure has been added to the dictionary (or commoned), 
the information on inherited dimensions is cleared from the table (TAB). 

~hen the aggregate table for a major structure is ready for copying into 
the dictionary, the appropriate chain is scanned for an identical major 
structure aggregate table entry. If such a table is found, it is 
assumed that subsequent elements of the structure currently being 
processed will also common. The aggregate tables for subsequent 
elements are built up in the usual way. and each is compared with its 
corresponding element in the structure against which commoning is being 
attempted. If the comparison fails, the chain scan is resumed for any 
other major structurs against which commoning may be possible. If such 
a structure is found, its subsequent elements are each compared with the 
corresponding elsment in the structure against which commoning has 
failed, and if the comparisons are all successful, then the element in 
ths work area is compared with the next uncommoned element. If this is 

Licensed Material - Property of IBM Section 2: Method of Operation 101 



successful, TAB and all chaining fields are updated, the variables 
dictionary entries are reset to point to the newly commoned structure, 
and processing goes on to the next variables dictionary entry. 

If the comparisons fail, and the scan of the chain ends without any 
further commonable major structure being found, or if the structure 
against which comrooning is being attempted finishes before all elements 
of the current structure have been commoned, then it is necessary to 
create an entirely new series of entries in the general dictionary for 
the current structure. This is done by copying, into new spaces in the 
dictionary, all of the previously commoned elements of the structure 
against which commoning has now failed, updating the internal chaining 
as necessary. When all such elements have been copied, the aggregate 
table in the work area is moved into the next dictionary space and the 
new structure is added to the appropriate chain. 

The term 'declaration expression' is applied to any expression that 
aFpears in an explicit or contextual declaration, and to expressions 
generated by the compiler to assign the required value to a variable 
declared with the INITIAL attribute. 

If a variable is associated with a declaration expression, it is not 
possible to build a dictionary entry describing that variable until the 
expression has been analyzed and evaluated. The information required to 
do this may not be available until later in the compilation process, or 
until execution time. Phase GE therefore generates special Type-l text 
statements to contain and identify these expressions, and passes them to 
later phases of the compiler in a separate text stream. The previous 
second text stream, known as the dictionary-text stream, is discarded 
after processing by this phase. The new second text stream is referred 
to as the declaration-expressions file. 

The types of declaration expression for which statements are generated 
are as follows: 

Array bound expressions 

AOdjustable string length expressions 

Locator qualifier expressions 

DEFINED item expressions 

INITIAL value assignment expressions 

The scanning sequence is arranged so that items are output in the 
declaration expressions file in deblocked order, outer block first. The 
exceptions to this sequence are array-bound expressions, for which 
statements may be commoned with those for earlier identical expressions, 
and expressions arising from ALLOCATE statements, which all appear at 
the end of the file. All expressions corresponding to a single 
aggregate table appear in contiguous statements, even though they may 
refer to more than one variable. 

In general, the expression is analyzed and a routine appropriate to the 
type of expression is called. This routine generates a Type-l text 
statement which contains the expression, and identifies its type by 
inserting a compiler-generated verb in the statement header. The 
following types of statement are generated: 

102 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Identifying 
Name 

AGGASSN 

STRL 

INASSN 

INASSN2 

FTS 

OF'FA 

POSX 

DSUBS 

MAP 

LDASN 

FTSD 

Expression Type 

Array bound assignment. 

string length value assignment. 

INITIAL value assignment. 

INIiIAL value assignment - ARRAYS. 

Based pointer expression. 

AREA to which CFFSE'I attribute applies. 

Adjustable POSITION attribute expression. 

iSUB defining - associates base and subscripts with 
defined variable. 

DEFINED (simple defining) - base to be evaluated during 
compilation. 

string overlay or simple defining - locator of defined 
item and address of base item to be evaluated during 
execution of prologue code. 

string overlay or simple defining - locator of defined 
iteR and address cf base item to be evaluated during 
execution of Rain Frogram code. 

Processing Array-bounds Expressions 

Each expression that is used to define the bounds of an array is given a 
unique identifying number. When the work-area aggregate table for that 
array is tested for commoning with an aggregate table entry in the 
general dictionary, the expression is also tested for commoning. If the 
test succeeds, the reference of the common aggregate table entry and the 
number of the common expression are inserted in the variables dictionary 
entry for the variable. If the commoning tests fail, a new aggregate 
table entry is made in the general dictionary and a new declaration 
expression file statement is generated. 

Processing Variables with the DEFINED Attribute 

When a variable with the DEFINED attribute is scanned, a dictionary 
entry for the base item name is searched for. If an entry for an 
explicit or contextual declaration of that name cannot be found, an 
implicit declaration entry is made by copying the default attributes 
from the appropriate sample implicit declaration entry built by Phase 
GA. The reference of the dicticnary entry for the base item is copied 
into the variables dictionary entry fer the defined item. 

Routines are then called to analyze the declaration and deteruine 
whether it applies to simple defining, string overlay defining, or iSUE 
defining. For each type of defining, another routine is called to 
determine whether the address of the base item can be evaluated by later 
phases during compilation. during execution of the object module 
prologue code (e.g •• AUTOMATIC adjustable extent expressions). or during 
execution of the object module main text code (e.g •• CONTROLLED or 
adjustable extent subscripts). The routine then generates a 
declaration-expression-file staten,ent by inserting values inte the 

Licensed Material - Property of IB~ Section 2: Method of Operation 103 



Order No. LY33-601n-1, PaCTe ~dded by TNL LN33-6175, October 1976 

statements in the ALLOCATE/LOCATE statement chains in the dictionary 
I text stream are scanned, block by block. Within each statement, each 

allocated or located name is replaced by a 6-byte descriptor containing 

Licensed Material - Property of IBM Section 2: Method of Operation 1nl~.1 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

fields of an appropriate skeleton statement in the phase work area, and 
copies the statenent to an output text ~age. 

Processing Variables with the GENERIC Attribute 

When Phase GA processes DECLARE statements, it creates overflow entries 
which each contain the text reference of a variable declared with the 
GENERIC attribute. The entries for each item within a block are 
chained, and the head of the chain is stored in the YHNXB field of the 
appropriate block header entry in the general dictionary. This enables 
Phase GE to check the scope of names when processing GENERIC items. 

Phase GE scans the chain of overflow entries for each block. For each 
entry, the contained text reference is used to access the declaration 
for the generic name in the dictionary text stream. The names 
dictionary is then searched for an entry for that name, and the 
dictionary reference is inserted in the overflow entry. 

The scan of the declaration is continued and an overflow entry is made 
for each WHEN clause. Each entry contains the dictionary reference of 
the item named in the WHEN clause, plus the attributes specified. A 
forward chain connects all WHEN clause entries for a generic name. 
Thus, two WHEN clause entries, one for El and one for E2, would be made 
for the following declaration: 

DCL G GENERIC (E1 WHEN (FLOAT,COMPLEX), 
E2 WHEN (PICTURE • 99V9" ) ) ; 

Masks are built and used to check that the attributes declared in each 
attribute list are valid within the PL/I language, and do not conflict 
with each other. If a WHEN clause argument is a PICTURE specification, 
the dictionary reference of the PICTURE specification entry, built by 
Phase GA, is inserted in the WHEN clause entry. 

Processing Label Variables 

Phase GE builds a value list entry in the general dictionary for each 
label variable declared with an argument list. This entry contains a 
list of the label constant values that can be assigned to the label 
variable. 

Because entries for label constants are all made at the beginning of the 
general dictionary, the value list for a label variable can be 
represented by a bit vector. The setting of the nth bit in a value list 
indicates that the label constant at the nth entry in the general 
dictionary can be aSSigned to the label variable. 

The dictionary reference of the value list is inserted in the variables 
dictionary entry for the label. 

Processing ALLOCATE and LOCATE Statements 

When all declarations have been processed by Phase GE, a separate CSECT, 
containing routines that process ALLOCATE and LOCATE statements, is 
entered. These routines differ from those that process declarations, in 
that information is gathered in a diftfernt manner, and output is in a 
format applicable to the generation of executable statements rather than 
prologue code. The main processing routines within the phase are called 
to generate aggregate tables, and bound, string length, and INITIAL 
assignment statements. 

10/1 Licensed Material - Property of IBM 



its dictionary reference. If no dictionary entry resulting from an 
explicit or contextual declaration can be found, the sample implicit 
declarations created by Phase GA are used to create implicit declaration 
entriEs. 

A descriptive table for the allocated or located name is built in the 
phase work area, using the same format as that for a variables 
dictionary entry. Within this table, the declared attributes are merged 
with the ALLOCATE/LOCATE statement attributes. 

For level-one allocated or located names, an ALLOC or LOCATE statement 
is generated in the declaration expression file. The !ormat is: 

ISN2IALLOcI5-byte chain fieldl6-byte operandi 

No prefix o~tions are included in the statement header. They are 
contained in the statement in the main text stream. 

All the ALLOCATE and LOCATE statements for a block in the declaration 
expressions file are connected by a backwards chain. As a backwards 
chain is used to connect the statements in the dictionary text stream, 
backwards chaining in the output from Phase GE enables subsequent phases 
to read the statement in deblocked source program order. The chain 
header is inserted in a overflow entry in the general dictionary, 
referenced from the block header entry. 

The main phase routines are called to process the descriptive table for 
the name in the work area. If the name identifies an aggregate, an 
aggregate table is built and copied into the general dictionary. No 
attempt is made to common ALLOCATE or LOCATE statement aggregate tables. 
Declaration expression file statements, indicating evaluation when the 
code generated for the ALLOCATE or LOCATE statement is executed, are 
generated and output. Control is then returned to the special 
ALLOCATE/LOCATE statement routines. 

The declared extents are then compared with the allocated or located 
extents.- To enable optimization of subscript calculations, etc., only 
those extents that change on allocation or location are marked as being 
adjustable. The extents of external items or CONTROLLED items that are 
passed as arguments, are always marked as adjustable. 

On completion of this processing, control is passed to Phase GM. 

Licensed Material - Property of IBM Section 2: Method of Operation 105 



IMPLICIT DECLARATIONS AND NAMES RESOLUTION (PHASE GM) 

Phase GM completes the building of dictionary entries for items declared 
in the source program. Items for which dictionary entries are made or 
modified by this phase include: 

1. Implicitly declared names (i.e., names for which no explicit or 
contextual declaration has been found). 

2. Constants that cannot be held in text in their literal form. 

3. Attributes of files specified in OPEN statements. 

4. PICTURE items in format lists. 

5. Explicitly declared non-contextual built-in functions. 

Each identifier in the main text stream and the declaration expressions 
file is replaced by a 6-byte field that contains a brief description of 
the item and the reference of its main dictionary entry. 

Some statements in the declaration expressions file are modified or 
merged into the main text stream at appropriate places. 

PHASE INPUT 

Input to Phase GM consists of: 

1. The main text stream as output from the syntax analysis stage. 

2. The declaration-expressions file, output from Phase GB 

3. The names, variables, and general dictionaries. 

4. The hash table and default directory. 

PHASE OUTPUT 

output from Phase GM consists of: 

1. The main text stream, consisting of statements in Type-1 text 
format, in which the following changes have been made: 

a. Each name (or constant for which a dictionary entry has been 
made) is replaced by a 6-byte field containing a brief 
description of the item and the reference of the main 
dictionary entry for the item. 

b. Constants for which no dictionary entry has been made are 
replaced by a 6-byte field containing a description of the item 
(i.e., data type, scale, precision, length, etc.) and a binary 
representation of the constant value. 

c. For some structure references, a structure element descriptor 
(STRUD) for each base element is inserted in the text. 

d. Each array item is followed by an aggregate table reference 
(ATR). 

e. Each item in an argument list is preceded by a descriptor for 
its corresponding parameter (PARD). 

106 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

2. The names, general and variables dictionaries, in which entries 
have been made for implicitly declared variables, SELECT statement 
constants, and for sone constants. 

3. The declaration-expressions file, in which some statements have 
been modified or replaced, and fron which statements arising from 
ALLOCATE or LOCATE statenents have been renoved and merged into the 
main text stream. 

PHASE OPERATION 

Sequence of Processing 

The main text stream is scanned sequentially. As each item is 
identified, processing action is taken as described in the following 
paragraphs. Processing action includes the building of a new main text 
stream. Each input text page is discarded when processing of its 
contents is completed. 

When processing of the main text stream is completed, the 
declaration-expressions file (if it exists) is scanned sequentially. 
Items fer ~hich action is required are processed as they are detected, 
and the modified version of the file is built on new text pages. 

Implicit Declarations 

When a name is found in the text, the XSRCHR routine is used to scan the 
dictionary for an entry for that name. As dictionary entries have been 
made for all items declared explicitly or contextually, any name that 
has no dictionary entry at this stage is considered to be declared 
implicitly. The default directory is used to find a sample implicit 
declaration entry (built in the general dictionary by Phase GA) that is 
applicable to the item. The sample entry is then copied into the 
variables dictionary. An entry is made in the names dictionary and 
added to the hash chain. 

If the implicitly declared name is associated with a 
declaration-expression in the second text stream, the entry made in the 
variables dictionary is added to a chain. This chain links all copies 
of similar implicit-declaration entries to the sample entry in the 
general dictionary from which they were copied, and provides easy access 
for possible later processing. 

When dictionary entries for an implicitly declared name have been made, 
the name is processed as though existing entries had been found by the 
XSRCHR routine. 

Resolution of Names 

When a name is found during the scan of the text, the XSRCHR macro 
routine is used to find the relevant entries in the names and variables 
dictionaries. The reference of these entries are inserted in the last 
two bytes of a 6-byte field that is used to replace the name at every 
place where it appears in the text. The first byte of this field 
contains a code byte which identifies the type of data represented by 
the name (see figures 5.29 to 5,.38). Information inserted in the 
remaining bytes of the 6-byte reference varies according to the type of 
item it replaces. (The formats of various 6-byte references are shown 

Licensed Material - property of IBM Section 2: Method of Operation 107 



at section 5: -Data Area Layouts.-) The 6-byte references for some 
types of data item include a 3-byte data-element-descriptor (OED), the 
formats of which are shown in figure 5.59. Thus, for many items, the 
6-byte reference contains sufficient information to enable rapid 
scanning of the text without accessing the dictionary entries for every 
identifier. A text code, DREF, is placed in front of every 6-byte 
reference, to indicate the presence of the reference during text 
scanning. 

For some items, additional information is inserted in the text after the 
6-byte reference. SUch items are dealt with as follows: 

1. Array items - a reference (ATR) is inserted indicating the 
appropriate aggregate table entry in the general dictionary. The 
ATR is preceded by a marker (ATRM). 

2. Structure items - a structure descriptor (STRUD) is inserted after 
most structure references. The STRUD contains a 5-byte descriptor 
for each base el.ement. The beginning and end of the STRUD are 
indicated by 1-byte markers. structure descriptors are not 
inserted if the structure appears in a check list, a data list, a 
FROM or INTO clause, or as an argument to a built-in function. 

3. Subroutine calls and function references -- a 2-byte field 
containing the number of items in the argument list is inserted 
after the 6-byte reference. Except waere the statement calls an 
external procedure for which no ENTRY declaration has been ~ade, a 
reference to the appropriate parameter-descriptor entry in the 
general dictionary is inserted in front of eaCft item in the 
argument list. Each parameter descriptor reference is preceded by 
a PARD code byte. 

In order to reduce the number of dictionary-page input/output operations 
involved in name-resolution ~rocessing, a push-down stack (NAMSTK) is 
built and maintained in ~hase werking storage. Each entry in NAMST~ is 
32 bytes long, and can contain a name of up to 21 characters preceded by 
a two-byte field containing its length, and also tbe reference of the 
corresponding variables-dictionary entry. The number of entries in 
NAMST~ is indicated in NAMSTL. 

Entries are made in NAMS~~ for unqualified variables which have nanes of 
not more than 21 characters; for qualified names tne limitation depends 
upon the number of ~embers in the name. In addition to the overall 
name-length value inserted in a two-byte field preceding the name in the 
stack entry, each member of the name is preceded by a one-byte field 
containing the member-name length. Thus an entry for a name -A.B- will 
contain -0003 01 A. 01 B-. Where subscripts are involved, an entry is 
made in NAMST~ only if the last m~ber of a qualified name is 
subscripted (for example, -A.B(S)-); no entry is made if subscripts 
appear within the name (for example, -A(5).B-). 

When a name is seen during the text scan, NAMSTK is searched from the 
most recent entry. If an entry for the name is found, processing is 
performed without searching the names dictionary. If there is no entry 
for the name in NAMSTK, XSRCHR is used to search the names dictionary, 
information is inserted in the text, and a new entry is made in NAMSTK. 
only the 64 most-recently-used names are held in the stack. 

Resolution of Constants 

When a constant item is found in the text, processing varies according 
to the value of the constant. 

Decimal integer constants with value less than 10 •• 7, binary integer 
constants with value less than 2 •• 32-1, character constants of less t~an 

108 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

four charac1:.ers, and bit constants of less then 32 bits, do not have 
dictionary 4!ntries made. These items are converted to the required data 
form (binar), or string) and held in text as a 6-byte field which also 
contains th4! original precision or length of the constant. The 
dictionary c:ode byte for such items is nUll. 

A chain of general dictionary entries is created to enable Phase ID to 
perform optimization of SELECT statement constructs more eaSily. The 
entries are known as Select Optimization Tables (SOTs) and are chained 
in SELECT statement number order from an anchor in XCOM. A SOT is 
created each time a SELECT statement is found in the text, and a stack 
of information required in the SOT is maintained. An entry is made in 
the stack for each level of SELECT construct. A new entry is created in 
the stack (SELECT stack or SELSTACR) when a SELECT statement header is 
found in the text and the appropriate entry is updated when a SELECT 
expression, WHEN expression, or OTHERWISE statement header is located. 
At an ENDSELECT statement the SOT created for the corresponding SELECT 
statement is updated with the contents of the entry at the top of the 
SELSTACR and a new entry created in the stack. 

Dictionary entries are made for constants with values too large to be 
held in text. The precision and scale of the constant is inserted in 
the 6-bytereference, together with the dictionary reference. 

Argument Lists and subscripts 

When a reference to a programmer-defined function is processed, 
arguments have to be distinguished from subscripts so that any parameter 
descriptors can be correctly positioned before items in the argument 
list. 

A scan-ahead technique is used whenever a function reference is seen. 
Subscripts,are distinguished from arguments by comparing the number of 
subscripts with the nUmber of, declared dimensions. Any outstanding 
parenthesized items are assUmed to be arguments. The problem is 
illustrated in the foilowlng.example: 

In this case, the function name W.X.Y.Z is resolved as soon as W is 
seen. A scan-ahead is then made of the whole function reference, 
ignoring the qualifications ·.X·, ·.Y·, and ·.Z·. The subscripts are 
compared with the ,number of subscripts in the declaration, and merged 
into the subscript 'list (5, 2, 3, 5). The item (P,Q) is thus recognized 
as an argwnent list. 

Because subscript lists and argument lists can contain nested subscripts 
or argurnents,a stack is set up whenever a function reference is 
detected.' Anenti~ -is:, .-de in the stack for each argument level. Each 
entry contains details,6f;·t.he parenthesis level (to distinguish 
intervening subsc~ipt levelS), the number of subscript lists at this 
level preceding the argUment, and details of where the parameter 
descriptor 'for the ,next argument can 'be found (parameter descriptors for 
internal function references are -obtained from the parameter text 
references, and for external references ,are obtained frOID the dictionary 
entry) • 

Licensed Material - Property of IBM Section 2: Method of Operation 109 



Order No. LY33-6010-1, Page Added by TNL LN33-6175, October 1976 

PTSD statements: These statements contain information about defined 
items that cannot be addressed until reference at execution time. They 
are changed to PTS statements with the format: 

PTS header, ADDR(Base item); 

LDASN Statements: These statements set up locators for defined items 
that cannot be addressed until execution of prologue code. They are 
modified to tbe forRat: 

LDASN-header, Lccator = ADDR(Base iteR); 

On completion of processing, control is passed to Phase IA. 

Licensed Material - Property of IBM Section 2: Method of Operation 110.1 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Built-in Function Declarations 

Built-in functions can be declared in a number of ways. If a function 
is explicitly declared with the BUILTIN attribute, Phase GA builds a 
dictionary entry with an incomplete description. If a built-in function 
is declared contextually, Phase GI either completes an entry built by 
GA, or builds a complete dictionary entry if there has been no explicit 
declaration. 

The PL/I language allows a limited number of built-in functions to be 
declared explicitly but without a contextual declaration, or for the 
BUILTIN attribute to be applied by use of a DEFAULT statement without 
either an explicit or contextual declaration. Phase GM contains a list 
of such functions, together with the attributes that must be applied. 
When one of these function names is detected, the attributes are applied 
to the incomplete dictionary entry (if one exists> or used to build a 
new dictionary entry. The name is then resolved in the text. 

Merging ALLOCATE and LOCATE Statements 

Phase GE generates statements in the declaration expressions file that 
are associated with ALLOCATE or LOCATE statements in the main text 
stream. Phase GE also builds a chain of general dictionary overflow 
entries which contain the text references of tke relevant statements in 
the declaration expressions file. 

When Phase GM scans an ALLOCATE or LOCATE statement in the main text 
stream, it uses the chain of entries in the general dictionary to access 
the statements in the main text stream, immediately after the ALLOCATE 
or LOCATE statement. As the statements are copied, implicit declaration 
entries are built, and names are resolved, as for all other statements. 

processing Declaration-expressions Statements 

When the scan of the main text stream is completed, the declaration 
expressions file is scanned. Names are resolved, and dictionary entries 
are made for implicit declaraticns, in a similar manner to proceSSing of 
the main text stream. 

The special proceSSing of statements performed by Phase GM depends upon 
whether the information they contain is to be evaluated and used during 
compilation, during execution of prologue code, or on reference to the 
item during execution of the compiled code. All declaration expressions 
file statements that contain information about a particular item are 
contiguous. 

Where such statements contain information that may be required as 
reference during execution, the dictionary entry for the item is made to 
pOint at the first of the statements. This enables all such statements 
relating to a particular item to be readily accessed during compilation. 
Particular types of statements are processed as follows: 

AGGASSN and STRL Statements: These statements contain information about 
adjustable extent items that will require mapping in the prologue code. 
A MAP statement is generated to precede the first statement for each 
item. 

PTS and OFFA Statements: If the information contained in these 
statements consists of a single unsubscripted unqualified name, the 
dictionary reference of that name is inserted in the dictionary entry 
for the variable to which the statement app1ies. The statement is then 
de1eted. 

110 Licensed Material - Property of IBM 



EXPRESSION ANALYSIS AND TEXT FORMATTING STAGE 

ThE compilation process can be considered to consist of two main 
operations. The first of these operations consists of checking the 
validity of the PL/I source program, and organizing the internal 
representation of the source program into readily accessible and 
processable data forms, i.e., the main text stream and the dictionary. 
The second operation consists of determining the object code that is 
required to represent the source program for execution purposes, and 
generation of that code in the form of a relocatable object module. 

~hen the compilation process is considered in this way, the four phases 
that are grouped in the expression analysis and text formatting stage, 
(Phases lA, ID, IE, and II), perform functions which continue and 
complete the first operation. These functions include: 

• Merging of the text into one text stream. 

• Expansion of data aggregates into individual elements. 

• Matching of corresponding arguments and parameters, including 
creation of dummy arguments if required. 

• Resolution of expressions and determination of any data-type 
conversions that are required. 

The last phase in the stage, Phase II, changes the organization of the 
tExt stream from the format used during analysis of the source-program 
content (Type-l text) into a format more convEnient for indicating the 
object code required (Type-2 text). 

Licensed Material - Property of IBM Section 2: Method of Operation 111 



MERGING OF DECLARATION EXPRESSIONS (PHASE IA) 

The prime function of this phase is the repositioning of declaration 
Expressions and MAP operators, passed to the phase in the declaration 
expressions file, at appropriate places in the main stream. While 
performing this function, the phase also performs the function listed 
belo~: 

1. Constructs locator chains for all references to based variables. 

2. Detects all references to DEFINED items, and introduces information 
about the defined base into the text. 

3. Analyzes the extent to which storage for REFER structures will 
require remapping during execution, and generates 
extent-expressions and MAP operators in the correct sequence. 

4. Analyzes all array INITIAL assignments. 

5. Performs special processing on references to certain built-in 
functions and pseudovariables. 

6. ProcessEs ALLOCATE and FREE statements. 

PHASE INPUT 

Input to the phase consists of the main text stream and the 
declaration-expressions file, both in Type-l text format. 

ThE variables and general dictionaries are accessed. 

PHASE OUTPUT 

output from the phase consists of the modified main text stream only: 
thE declaration expressions file is discarded when the information it 
contains has been merged into the main text stream. No dictionary 
entries are created by this phase. 

Although the main text stream output from this phase consists mainly of 
statements in Type-l text format, the text generated when some 
statements are merged from the declaration expressions file differs from 
this £ormat. Phase IA generates some text in pseudo-text-table format, 
~here each pseudo text table is 20 bytes long and consists of a 2-byte 
operator and three 6-byte operands. The term "pseudo text table" is 
used because of the close similarity between this format and the format 
of the text tables into which all text is translated by Phase II. The 
text generated by Phase IA may also contain compiler-generated temporary 
operands, and a particular type of temporary operand known as 
qualified-name temporary operands <referred to in the published listings 
and throughout this manual as Q~temps). An example of the use of these 
text features is the text generated by this phase to represent the 
source statement: 

DECLARE A(M); 

This would appear in the text output from Phase IA as: 

112 Licensed Material - Property of IBM 



Statement OFFS 8 A Q-temp.n Q-temp.n ASSN M: 
header (2 bytes) (6 bytes) (6 bytes) (6 bytes) 

Pseudo text table Type-1 text 

where the function of the statement is to set the value of the upper 
bound of the array A (as represented by Q-temp.n), to the value M. The 
constant value "8" indicates the offset of the upper-bound field from 
the start of the object-time descriptor for the array A. 

The generation and use of Q-temps and text tables is more fully 
described in the description of Phase II. 

PHASE OPERATION 

Repositioning of Declaration Expressions 

The X2STRM field in XCOMM is accessed to see if a 
declaration-expressions file has been created in the dictionary build 
stage. If so, Phase IA repositions items contained ~n that file at 
appropriate places in the main text stream. The processing required to 
merge this information is performed for one procedure block at a ~ime, 
starting with the outermost block and repeating the processing for each 
block in sequence. For some items, e.g., element INITIAL assignments, 
merging consists of copying a particular expression from the 
declaration-expressions file into the appropriate place in the main text 
stream. For other items, e.g., locator-qualifier items, it may be 
necessary to reproduce an expression in several different places in the 
main text stream. 

For each procedure block, the first step in processing is a sequential 
scan of the declaration-expressions file statements related to that 
particular block. During this scan, only those statements which contain 
expressions that can be evaluated during execution of prologue code are 
accessed and processed. Such statements are: 

AGASSN statements 

INASSN statements 

STRL statements 

MAP statements 

Processing is performed so that these items (if present) are inserted in 
the main text stream, immediately following the relevant PROCEDURE, 
BEGIN, or ON-BEGIN statement, in the following order: 

1. INASSN statements for fixed-length items with no dependencies 
(i.e., the INITIAL specification does not contain any variable 
which itself requires initialization). 

2. AGGASSN and STRL statements. 

3. MAP statements. 

4. INASSN statements for adjustable-extent items with no dependencies. 

5. INASSN statements for fixed-length items with dependencies. 

6. INASSN statements for adjustable-extent items with dependencies. 

AGASSN statements, STRL statements, and INASSN statements for fixed 
items are copied directly into the appropriate places in the main text 

Licensed Material - Property of IBM Section 2: Method of Operation 113 



stream. MAP statements and INASSN statements for adjustable items are 
chained in the declaration-expressions file for later processing. This 
processing is performed on completion of the sequential scan for the 
block, when the chains of statements created in the 
declaration-expressions file are accessed. MAP statements are inserced 
in the main text stream in order of decreasing alignment requirements. 
An ACCUM marker is then generated to indicate that storage must be 
allocated for the items with adjustable extents. Any INASSN statements 
referring to adjustable-extent items are then inserted after the marker. 

A sequential scan is then made of the main text stream statements 
contained in the procedure block. Processing, including the 
repositioning of items still remaining in the declaration-expressions 
file, is performed during this scan as described in the following 
paragraphs. The entire process is repeated for each procedure block in 
turn. 

construction of Locator Chains for Based Variables 

Processing is performed to ensure that each based variable in the text, 
whether it is explicitly qualified or not, is accompanied by its 
relevant locator qualifier. Because locator qualifiers can themselves 
be based, it is sometimes necessary to construct a chain of qualifiers 
in order to define the correct generation of a based variable. As 
offset locators can be based, and can be associated with areas that are 
also based, more than one logical chain may be required to define a 
particular based variable. By use of a special stack, and by recursive 
calling of the text-scanning routine, chains are nested so that only one 
locator chain is generated for each reference to a based variable. 
During processing by this phase, offset qualifiers are converted into 
references to the POINTER built-in function, with appropriate arguments. 
The stack set up for the building of a locator chain is named LOCSTK. 
The stack is constructed and used on a last-in, first-out basis. The 
various types of entries that may be made in LOCSTK are listed below: 

Entry 
~ 

COMMA 

RPAR 

SCOLON 

SCLN2 

AREA 

SN 

SN2 

(Other) 

Code 
~~~ 

(X'30') 

(X'37') 

(X'34') 

(X'38') 

(X'4B') 

(X' FC' ) 

(X' FB') 

Length 
(in bytes) 

1 

1 

1 

1 

6 

6 

6 

6/4 

Indication when unstacking 

Comma (between offset and area in 
reference to POINTER b.i.f.). 

Generate right parenthesis to terminate 
reference to POINTER b.i.f. 

End of a section of the stack; stop 
unstacking and continue scanning text. 

End of a section of the stack: stop 
unstacking and continue scanning text. 

Text reference of an area expression. 

Text reference in main text stream. 

Text reference in declaration expressions 
file. 

6-byte operand if an area, 4-byte operand if a 
pointer or offset. 
(Precision and scale for a locator are 
not stacked.) 

If a locator is found during the scan of text, a preliminary read-ahead 
scan is made of the locator chain, if one exists. If this scan detects 
an offset in a qualifying position, a reference to the POINTER built-in 

114 Licensed Material - Property of IBM 



function is generated in the output text stream, followed by a left 
parenthesis in readiness for later building of the argument list. The 
offset in the text is flagged to indicate that, when the main scanning 
routine encounters the flagged offset, the relevant area must be 
identified for use as the second argument in the built-in function 
reference. If more than one offset is found, nested built-in function 
references are generated. When the look-ahead scan reaches the end of 
the locator chain, control is returned to the main scan, which is 
pointing at the first locator in the chain, and the main processing of 
the locator chain is started. 

If the main scanning routine finds an offset that was flagged during the 
preliminary scan, the flags are removed and entries are made in LOCSTK 
in the order: SCLN2, RPAR, associated area (or text reference of the 
area in the declaration expressions file.) The scan is then continued. 

If an unqualified based variable is found, a semicolon is stacked in 
LOCSTK, and the dictionary entry for the based variable is accessed to 
determine its qualifier, which is also stacked. If the qualifier is in 
turn based, then its qualifier is stacked, and the process is repeated 
as many times as is necessary. 

Detection of a non-based variable causes unstacking action down to the 
top SCOLON or SCLN2 in LOCSTK. Each qualifier is unstacked and copied 
to the output text stream, and a PTS operator is generated after each 
one unless it is followed by a SCLN2 entry in LOCSTK. When unstacking 
reaches a SCOLON or SCLN2 entry in LOCSTK, that entry is deleted and 
scanning of the text is restarted. 

If a locator is an expression, its reference in the main text stream is 
stacked and the main scanning routine is called r~cursively to scan the 
expression in the declaration-expressions file. The expression is then 
processed, with stacking, unstacking and text generation as required. 
When the end of the expression is reached, control ~s returned to the 
unstacking routine, and the stacked text reference is used to position 
the scanning routine for resumption of its text scan. 

When a saved text reference of an area is found during unstacking, it is 
replaced by the text reference of the current position of the scan, and 
the scanning routine is called recursively to scan the statement in the 
declaration-expressions file which contains the area expression. When 
the end of the expression is reached, control returns to the unstacking 
routine, and the stacked reference is used to position the resumed scan. 

Locator chains built by the processing described are illustrated in the 
following examples: 

1. Assuming the following declarations: 
DCL BV BASED(OF), 

OF OFFSET(A), 
A AREA; 

The statements: 
X = BV; or X = OF-> BV; 

become: 
X = POINTER(OF,A)-> BV; 

2. Assuming the following declarations: 
DeL BV BASED(OF), 

OF OFFSET(A)BASED(Pl), 
Pl POINTER BASED(P2), 
P2 POINTER, 
A AREA; 

The statement: 
X = BV + 1; 

Licensed Material - Property of IBM Section 2: Method of Operation 115 



becomes: 
X = POINTER(P2->P1->OF,A)->BV + 1: 

3. Assuming the following declarations: 
DeL BV BASED(OF1(OF2->J)->OF3), 

OF1(6) OFFSET(A1(2» BASED(P1), 
OF2 OFFSET(A2), 
OF30FFSET(A3), 
J BASED, 
A1(6) AREA, 
A2 AREA, 
A3 AREA BASED (P2), 
P2 POINTER BASED(P1), 
P1 POINTER; 

The statement: 
X = BV + 1; 

becomes: 
X = POINTER(POINTER(P1->OF1(POINTER(OF2,A2)->J), 

A1(2»->OF3,P1->P2->A3)->BV + 1; 

Repositioning DEFINED Statement Informgtion 

When a reference to a defined item is detected during the scan of a 
procedure block, the routine SCS is invoked to access the 
declaration-expressions file for a statement containing relevant 
information. such information is usually held in POSX statements, which 
contain adjustable POSITION attribute expressions for string overlay 
defining, and ,DSUBS statements, which associate the base and subscript 
of an iSUB defined variable. The information contained in these 
statements is merged with information in the main text stream. For 
example, the statement: 

DCL A(S,6?, B(4) DEFINED A(2*lSUB,lSUB); 

appears in the main text stream output from Phase IA as: 

B OSUBS A(2*lSUB,lSUB) RPAR2 

where the DSUBS and RPAR2 operators act as parentheses around a special 
subscript list. 

Generation of struct~f~~~EE~Information 

Based structures with adjustable extents (i.e., REFER structures) may 
require mapping of storage at the time they are referred to during 
execution of the statement code. Mapping cannot be completed prior to 
this stage, because the mapping depends upon which generation of the 
structure is being used by the REFER item. Routine HOWFA examines the 
position of the referenced structure-item in relation to adjustable 
items in the structure. It also examines the alignment requirements of 
various elements of the structure, and thus determines how far a 
structure must be mapped for any reference at execution time. 

The adjustable extents (string lengths or array bounds) of a REFER 
structure are contained in a preceding unsubscripted base element of the 
same structure. Therefore not all references to elements of the 
structure result in a requirement for remapping of the structure. 
Requirements for remapping are illustrated in the following example. 
For a structure declared as follows: 

116 Licensed Material - Property of IBM 



DCL 1 A BASED(P), 
2 B, 
2 C, 
2 D(X REFER(B», 
2 E(Y REFER (C» , 
2 F; 

Any references to D, E, or F would result in the structure having to be 
remapped, but references to B or C would not. 

At execution time, each reference to a REFER structure that necessitates 
remapping will result in the creation of a descriptor for the structure 
in question. To enable this, Phase IA generates a RESDES operator, 
~hich indicates to phases in the storage allocation stage that storage 
must be reserved for this descriptor. Each RESDES operator has a unique 
identification number to identify the relevant descriptor. Information 
is also inserted in the text to indicate mapping code which must be 
generated. This information consists of OFFS pseudo text tables, 
locator descriptor assignments, and MAP operators. The operands 
associated with the MAP operators supply the descriptor number (applied 
to the RESDES operator) and the reference of the start and finish points 
for the mapping operation. 

In addition to the previously mentioned processing of INITIAL 
assignments (i.e., the repositioning of the assignments), Phase IA 
further analyzes INITIAL assignments to array items. As a result of 
this analysis, IASSN (iteration assignment) operators are generated to 
indicate multiple assignments. The use of these operators is shown in 
the following example. The statement: 

DCL A (N) INIT «I+J) (2) (K), (M*N) 4» ; 

indicates that the first two elements of the array A are to be 
initialized to value K, the next (M*N) elements are to be initialized to 
the value 4, and that this sequence is to be repeated (I+J) times. 
After analyzing this declaration, Phase IA generates two iteration 
assignments: 

A IASSN (K); 

and 

A IASSN 4; 

The number of the elements of the array A that are to be initialized to 
the value (K) or 4 are supplied separately in array iteration 
descriptors generated by the phase. Each array iteration descriptor is 
preceded by an AID operator and followed by an ENDAID operator. 

Whenever a reference to certain built-in functions or pseudo-variables 
is found, the argument list is examined to see if processing by this 
phase or later phases can be simplified. The particular items examined 
are references to the STRING, UNSPEC, DIM, HBOUND, and LBOUND built-in 
functions, and the REAL and IMAG pseudo-variables. 

An example of the processing performed is where a single variable is 
passed as an argument to the UNSPEC built-in function. As the result 
returned by UNSPEC is a bit-string representation of the argument, the 

Licensed Material - Property of IBM Section 2: Method of Operation 117 



reference to the function can be deleted and the required result 
obtained by modifying the DED of the argument so that it indicates a bit 
string of the appropriate length. 

Other examples of special processing are in cases of references to the 
DIM, HBOUND, or LBOUND built-in functions with based-variable arguments. 
In such cases, the required information about the arguments can be found 
in the appropriate Aggregate Table entries in the general dictionary. 
Use cf this information can avoid the need for the creation of locator 
chains by this phase. 

This phase also detects the erroneous case where two or more arguments 
are supplied to an ADDR built-in function. 

~£essing of ALLOCATE and FREE statements 

ALLOCATE statements, together with any associated AGASSN, STRL, and 
INASSN statements, are merged from the declaration-expressions file into 
the main text stream by Phase GM. Phase IA repositions the associated 
statements in their correct positions relative to the ALLOCATE 
statement, similar to the repositioning of statements in the prologue. 
If storage mapping operations are required in connection with an 
ALLOCATE statements, RES DES and MAP pseudo text tables are generated as 
required. 

If the SET and IN options applicable to the ALLOCATE statement have not 
been specified explicitly, Phase IA will imply the correct locator or 
area variables as required by the PL/I language. 

If a FREE statement is found for which an IN option has not been 
specified explicitly, the implied option is generated. If the storage 
for a REFER structure is being freed, mapping code consisting of RESDES 
and MAP pseudo text tables, together with assignments to set up 
object-time descriptors, is generated to determine the storage to be 
freed. 

118 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

MATCHING OF DATA-AGGREGATE ARGUMENTS (PHASE ID) 

Phase ID performs four major functions. These are: 

1. EXc;1mination of arguHieilts st:ecified in procedure calls and functicn 
referencEs. If these arguments arE data aggregates, or if the 
parameters of a ~rocedure are data aggregates, the argurrents and 
parameters are checked fer Hatching of dimensions and attributes. 
Where necessary, (e.g., where an argument is an expression), a 
temporary operand is created to represent the argument in a format 
that is acceptable to the procedure or function (i.e., a dummy 
argument is created). 

2. Examination of operands following INTO, FROM, and LIST options in 
input/output statements and any event variables in WAIT statements. 
If such an operand is an array-expression or an array 
cross-section, a temporary operand is generated. 

3. Conversion of LEAVE to GOTO. 

4. Processing of SELECT groups. 

All references to Subscripted identifiers are checked for validity, and 
for compatibility with their declarations. 

PHASE INPUT 

Input to the phase consists of main text stream in Type-l text format. 
The variables dictionary and the general dictionary are accessed. 

PHASE OUTPUT 

Output from the phase consists of the main text stream in Type-l text 
format, modified as follows: 

1. Data aggregates that are used as arguments in procedure calls, in 
references to programmer-defined or built-in functions, or as 
operands in some input/output statements, are assigned in certain 
circumstances to aggregate tempOrary operands that are created by 
this phase. 

2. All aggregate parameter descriptors are reHoved from the text. 

3. RESDES and MAP pseudo text tables are generated wherever an 
aggregate temporary operand is generated, to enable later phases to 
reserve and map the necessary storage. 

4. If aggregate temporary operands with adjustable bounds are 
generated, OF'FS pseudo text tables and Q-temp. aSSignments are 
generated to set the values of the bounds in the relevant 
descriptor. 

s. statements containing invalid subscripted items are deleted. 

6. LEAVE statements have been converted to GOTO statements to the end 
of the appropriate DO-group. 

7. The output text stream for a SELEC'I group can be in one of two 
forms depending on whether the group will ce executed using branch 
tables at execution-time. 

Licensed Material - Property of IBM Section 2: Method of Operation 119 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

8. For "optimized" SELECT groups a secondary text stream containing 
the branch tables required at execution-time. The branch tables 
are built by phase 10 in the same format as phase PA builds STATIC 
entries for label constants (that is, 14 byte entries). 

An entry is made in the variables dictionary for each aggregate 
temporary operand that is created, and a corresponding aggregate-table 
entry is made in the general dictionary. 

PHASE OPERATION 

Sequence of Processing 

The main scanning routine, QSCAN, scans the main text stream 
sequentially, looking for the following items: 

1. Any reference to a built-in function that is followed by a left 
parenthesis (indicating the presence of an argument list). 

2. The appearance of an ANO code byte (X'3C'), indicating an argument 
list following a procedure call or function reference. 

3. The appearance of an INTO, FROM, or LIST option in an input/output 
statement. 

4. A WAIT statenent. 

5. A CALL statenent or optionw 

6. Any subscripted identifier. 

7. LEAVE, I~OO, ENOIT, and END statements. 

8. SELECT, WHEN, OTHERwISE, and END (cf SELEC~) statements. 

Items not included in the above list are copied to the output text 
stream unaltered. ~hen cne cf the listed items is found, a branch is 
made to an appropriate routine for processing of the item. 

The routine ARGLIST is branched to if any of items 1, 2, or 3 is found. 
This routine checks for the presence of data aggregates in arguments, 
parameters, or operands. If none are found, control is passed to OUTARG 
and the item is copied unaltered to the output text stream. If an 
argument is an expression that contains an aggregate, or if the 
corresponding parameter is an aggregate, an aggregate temporary operand 
is created to replace the argument. If an argument is a data aggregate 
that is not contained in an expression, it is checked for ~atching with 
the relevant parameter. It rratching is satisfactory, tbe argument is 
copied to the output text strearr. If an argument and parameter do nct 
match, an aggregate temporary operand is created and text is generated 
to assign the argument to the terrpcrary operand. When an aggregate 
temporary operand is created, an appropriate entry is made in the 
variables dictionary and an aggregate table entry is made in the general 
dictionary. Data-aggregate cperands in input/output statements do not 
require matching, but an aggregate tenporary operand nay be created 
where the operand is an expression, an array cross-section, or a 
subscripted structure. If the event variable in a WAIT staterrent is an 
array cross-section, a temporary operand is created. When the required 
text has been generated, control is returned to QSCAN and the text scan 
is continued. 

120 'Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Added by TNL LN33-6175, October 1~76 

If the operand of a CALL statement or option is an aggregate, the 
statement is deleted and a diagnos,tic message is generated. 

When QSCAN finds a reference to a subscripted identifier, a branch is 
made to the QSUBS routine. This routine checks that all items in the 
subscript list are data elements, and also checks that the number of 
items in the subscript list is equal to the number of dimensions 
declared for the identifier. If a subscript list is invalid, the 
containing statement is deleted and a diagnostic message is generated. 
In performing this function, QSUBS may process an identifier that has 
already been processed by the ARGLIST routine as part of an argument. 

Licensed Material - Property of IBM Section 2: Method of O~eration 120.1 



Calls and function-references to programmer-defined procedures are 
processed by the ARGLIST routine. If the procedure is internal, each 
argument is preceded by a reference to a dictionary entry for the 
associated parameter descriptor. Parameter descriptors may not be 
available for calls and references to external procedures. A reference 
in text to a parameter descriptor is identified by a preceding PARD code 
byte (X'3D'). In the case of an array parameter, the descriptor is 
followed ty the reference of its aggregate table in the general 
dictionary (ATR), identified by a preceding ATRM marker (X'39'). 
structure parameter descriptors are followed by a list of structure 
element descriptors, (STRUDS), one for each base element, and the start 
and end of the STRUD list is indicated by STDMK (X'3A') and ESTMK 
(X'3B') code bytes. Array and structure arguments also have similar 
associated information and markers. 

The subroutine SCANEXP is called to examine each argument in turn. It 
passes information to the ARGLIST routine in two i-byte fields, KTEMP 
and EXPRTYPE. Flags set in these fields indicate such things as whether 
the argument is an expression, whether it is connected, whether it is an 
array or a structure, etc. If the argument is an expression, an 
aggregate temporary operand is generated as described in later 
paragraphs. If the argument is not an expression, the argument and 
parameter are compared as follows. 

In the case of an array parameter, the DEDs of the parameter and 
argument are compared. In the case of a structure parameter, the 
structure element descriptors of the parameter and argument are 
compared. If the DEDs or STRUDs do not match, an aggregate temporary 
operand is generated. If the DEDs and STRUDs match, then a further 
check is made to see if the parameter and argument have the same 
aggregate table reference. If the ATRs are different, the dimensions 
and bounds of the argument are compared; if they match, an aggregate 
temporary operand is required, but if they do not, the statement is 
deleted. However, if the DEDs or STRUDs match, and both have the same 
ATR, no temporary operand is required. Control is passed to OUTARG, 
which copies the argument to the output text stream and deletes the 
parameter descriptor reference and the parameter and argument ATRs or 
STRUDs. 

When a reference to any built-in function is accompanied by an argument 
list, the ARGLIST routine passes control to the ABIF routine. Each 
argument is examined to see if it is a structure; structure arguments 
are only valid in references to the STRING, ALLOCATION, or ADDR built-in 
functions. If a structure argument is found in a reference to any other 
built-in function, a diagnostic message is generated. If a reference to 
a built-in function that is not an aggregate-manipulation built-in 
function is valid, control is returned to ARGLIST and the function 
reference is copied unaltered to the output text stream. 

The arguments to an aggregate-manipulation built-in function are checked 
for compatibility with the requirements of the PL/I language. For 
example: 

• A data-aggregate argument to the STRING or ADDR built-in function 
must be a connected array or structure, and must not be an 
.expres s ion • 

• Arguments to array-manipulation built-in functions must be arrays. 

Licensed Material - Property of IBM Section 2: Method of Operation 121 



• A reference to the POLY built-in fUnction must have two arguments, 
the first of which must be a single-dimension array, and the second 
must be a data element or a single-dimension array. 

If the argument list is invalid, the statement is deleted. If the flags 
set by SCANEXP indicate that a temporary operand is required, or if the 
attributes or precisions of aggregate arguments differ from those 
required, an aggregate temporary operand is created as described in 
later paragraphs. 

If the phase has to modify the argument to an ADDR built-in function, 
then it will output a two-argument AODR built-in function - the first 
argument being the modified input argument and the second being the 
original input argument. 

Processing of Operands in Input/Outgut Statements 

The ARGLIST routine is called to examine operands following the INTO, 
FROM, or LIST option in an input/output statement, and to replace the 
operands with aggregate temporary operands if required. An aggregate 
temporary operand is required in the following circumstances: 

• If a LIST option is followed by an array cross-section or by an 
expression containing an array. 

• If an INTO or FROM option is followed by a subscripted structure. 

If these circumstances exist, an aggregate temporary operand is created 
as described in following paragraphs. In all other circumstances, 
control is passed to OUTARG and the operand is copied to the output text 
stream. 

The TEMPi routine creates aggregate temporary operands in the 
circumstances described in preceding paragraphs, and in most cases 
generates text to assign the relevant argument or operand to the 
aggregate temporary operand. Unlike most of the temporary operands 
generated by the compiler, which are identified by a sequential number, 
aggregate temporary operands are identified by a reference to the 
variables dictionary entry that is made when each aggregate temporary 
operand is created. The general format of an aggregate temporary 
operand, which is similar to that for a 6-byte reference to a variable 
operand. is as follows: 

~--------------T------------------------------------------T-----------------------------, I I OED if array argument or operand I I 
I Code byte ~--------------------T---------------------~ Variables dictionary I 
I I Sequence number of I Aggregate-table I reference I 
I I structure element I reference I I L ______________ ~ ____________________ ~ _____________________ ~ _____________________________ J 

< 1 byte > < 3 bytes > < 2 bytes > 

When an aggregate temporary operand and its variables dictionary entry 
are created, an aggregate table entry is also made in the general 
dictionary. These aggregate tables are not commoned. The aggregate 
table reference for a structure temporary operand is included in the 
operand, but for an array temporary operand it is inserted in the text, 
preceded by an ATRM marker. structure temporary operands are followed 
in the text by a STRUO list and markers. All aggregate temporary 
operands are preceded by RESDES and MAP pseudo text tables, and those 
with adjustable bounds also have OFFS pseudo text tables and 
Q-temp. assignments. 

122 Licensed Material - Property of IBM 



An aggregate temporary operand cf the general form described is 
generated in the following circumstances: 

• If the DEDs of an argument and a parameter do not match, or if an 
argument to a built-in function is not the required data type. 

• If a parameter is declared with the CONNECTED attribute and the 
corresponding argument is not connected. 

• If an argument to an array-manipulation built-in function is 
unaligned. 

• If arguments to the POLY built-in function differ in mode or 
precision. 

• If an argument, or an operand following PUT LIST, is an expression. 

(Other situations where a special form of aggregate temporary operands 
are generated are described later.) 

An example of situations where aggregate temporary operands are 
generated is a source program containing the following statements: 

DCL A FLOAT, 
1 B, 

2 Bl CHAR, 
2 B2 BIT: 

CALL E(A,B); 

E: PROC(X,Y); 
DCL X(6) FLOAT, 
1 Y, 

2 Yl CHAR, 
2 Y2 FIXED; 

In this example: 

1. A data element, A, is used as an argument in a call to a procedure 
that bas an array parameter, X. 

2. The data type of the structure element B2, in the structure 
argument B, differs from the data type of the structure element Y2 
in the structure parameter Y. 

The format of the source statement: 

CALL E(A,B): 

on input to Phase ID can be represented as follows: 

CALL E(PARD pard-X ATRM ATR A, PARD pard-Y STRUO-list B STRUD-list); 

Aggregate temporary operands would be generated, and text generated to 
aSSign the arguments A and B to them. The text tnat would appear in the 
output from Phase 10 can be represented as follows: 

CALL E(RESDES MAP AGGASSN Tl ATR ASSN A; 
Tl, RESDES MAP AGGASSN T2 STRUD-list ASSN B STRUD-list; t2); 

This text sequence represents three statements: 

Tl = A: 

T2 = Bi 

CALI E(Tl,T2)i 

Licensed Material - Property of IBM section 2: Method of Operation 123 



Order No. LY33-6010-1, Page Revised by TNL LN33-617S, October 1976 

where the aggregate temporary o~erands have the same data type, 
dimensions, and structuring as the corresponding para«eters X and Y. 

A slightly different forn of terr~crary operand is generated when an 
expression is used as an argu«ent and no corresponding para«eter 
descriptor is available, or when an expression is used in a PUT LIST 
statement. In such cases, although an aggregate temporary operand which 
reflects the dimensions and structuring of the result of the expression 
can be generated, the DED of the tem~orary operand cannot be corrpleted 
by Phase ID. Instead, the first byte of the OED is set to X'41' to 
indicate that completion is required by a later phase. This form of 
temporary operand is referred to as a chameleon temporary operand. 

Another form of aggregate temporary operand is created in the following 
circumstances: 

• If an argument is an array cress-section or a subscripted structure, 
provided that, if there is a parameter descriptor, the argument 
matches it. 

• If an operand following INTO cr FROM is a subscripted structure. 

• If an operand following LIST or WAIT is a cross-section of an array 
that does not contain structures. 

In these circumstances, the argument or operand can be considered to be 
defined or overlaid on an existing data aggregate, and therefore no 
storage allocation is required for it. The temporary operand generated 
in such cases is referred to as a no-storage temporary operand. The 
variables dictionary entry created for a non-storage temporary operand 
is referred to as a reduced descriptor. 

Processing LEAVE statements 

Phase 10 keeps a stack of DO-groups, the stack being 50 levels deep. 
Each entry in the stack is made on encountering a DO statement. Entries 
are ·popped-off" the stack when ENDDO and ENDI'! text bytes are found. 
(Phase EA has expanded multiple END staterrents into separate ENDs and 
has created a syntactically correct set of DO-END pairs.) 

Each entry in the stack consists of the following: 

2 bytes - primary statement label of the DO statement. 'Ihis is set on 
seeing the DO statement. (This element is initialized to a 
null value when the stack is pushed.) 

2 bytes - Generated statement Label (GSL) number allocated at the LEAVE 
statement (this element is initialized to a null value at the 
DO statement and completed at the LEAVE statement). 

Action taken by Phase ID is as follows: 

At the DO Statement: A stack entry of primary statement labels, if any, 
is created, together with a null GSL number. The stack index is then 
incremented. 

At the LEAVE statement: If the LEAVE statement has an identifier the 
primary label is picked up from the DREF of the identifier, and the 
stack is scanned to find this statement label. A check is made to see 
if a GSL number has already been allocated (by a previous LEAVE for this 
DO-group), and if so an SN GO TO (in place of the LEAVE) is generated 
with target GSL number equal to the numter found in the stack entry just 
accessed. If a GSL number has not already been allocated, a GSL nu«ber 
is generated, the stack entry just accessed is completed with this GSL 
number, and the SN GO'IO (in place of the LEAVE) is generated. 

124 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Added by TNL LN33-6175, October 1976 

t 
If the LEAVE statement has no identifier the top entry of the stack (the 
stack entry for the immediately containing DO-group to be left) is 
accessed. A check is made to see if a GSL number has been allocated, 

I and then processing is continued as described above. 

At the ENDIT and ENDOO Statements: The top of the stack is accessed and 
if the entry has a GSL number allocated a GSL text table is generated 
with this number after the ENOIT or ENOOO. The stack is then 
·popped-up·. If the entry has a null GSL number the stack is just 
·popped-up·. 

Processing SELECT groups 

Phase 10 contains routines to process the following Statement Number 
(SN) tables: 

SN SELECT 

SN WHEN 

S N OTHERWISE 

SN ENDSELECT 

SN MAP 

SN CHECK/NOCHECK 

The routines are accessed after XSTAT and STMTYP have been set up and 
before output of the statement header. 

Action taken by Phase ID at each of the SN tables is as follows: 

At SN SELECT: A new entry in the SELECT ·stack is created and the text 
reference of the SELECT statement saved. The dictionary 'SELECT 
OPTIMIZATION' entry is then accessed followed by updating of the 
dictionary reference slot from the chain slot in the dictionary entry. 
If on scanning the expression is found to be scalar the expression is 
assigned to a temporary. If net scalar, message 644 is issued. Output 
text is then built using the SELECT optimization dictionary entry. 

At SN WHEN: The text reference of the WHEN statement and each 
expression is scanned for being scalar. If scalar, output consists of 
the correct text stream according to the opt flag in the dictionary. 
Otherwise. message 644 is issued and output built. 

At SN OTHERWISE: Output consists of the correct text stream according 
to the opt flag in the dictionary. 

At SN ENDSELECT: If ·OTHERWISE SEEN· flag is set OFF in dictionary 
entry the text for ·OTHERWISE RAISE ERROR· is issued. The SELECT stack 
is then ·popped-up·. 

At SN MAP for WHEN (SNOO): SNOO is reset to SN MAP. and output is 
produced that will be put out during processing of SN WHEN. 

At SN CHECK/NOCHECK: The text reference and statement number are saved. 

Licensed Material - Property of IBM Section 2: Method of Operation 124.1 



EXPANSION OF DATA AGGREGATES (PHASE IE) 

Phase IE examines all data aggregates in the text, and where necessary, 
generates text which expands the aggregates into elements. Much of ~he 
~ork of the phase is involved with the processing of data aggregate 
assignments. These aSSignments may stem directly from source program 
statements, or may be assignments generated by Phase ID in the course of 
aggregate argument matching or processing of some built-in functions. 
Array assignments are effectively converted into element assignments by 
placing them in appropriate do-loops. Structure assignments are 
expanded into individual base element assignments and, if the base 
elements are dimensioned, they are placed in appropriate do-loops. Some 
aggregate assignments are tested for possible optimization, whereby the 
assignment can be performed by Mve instructions without expansion into a 
number of individual element assignments. Phase IE indicates the 
assignments for which this is possible, so that they can be correctly 
processed by Phase II and KE. 

PHASE INPUT 

Input to the phase consists of the main text stream in Type 1 text 
fermat. Each statement header is examined in order to identify 
statements processed by the phase. Each of these statements is examined 
for the presence of data-aggregate operands (including aggregate 
temporary operands generated by Phase ID). 

The general dictionary is accessed. The names and variables 
dictionaries are accessed if the text contains structure BY-NAME 
assignments. 

PHASE OUTPU~ 

output from the phase consists of the main text stream in Type 1 text 
format, modified as follows: 

• Data aggregates in the text are expanded into individual elements 
or, if the aggregate is dimensioned, code bytes are inserted to 
indicate where do-loops are required to perform the expansion. 

• Aggregate assignments are expanded into individual element 
assignments. Where an aggregate assignment can be performed without 
such expansion, the statement-type code byte in the statement header 
is changed to SOASSN. 

• Temporary operands are generated and inserted in the text, as 
described in the details of processing. 

No dictionary entries are made by this phase. 

PHASE OPERATION 

seguence of Processing 

The input text stream is scanned sequentially. When a statement header 
is found, the routine TSTPROC examines the statement-type code byte. If 
the statement is a PROe, ENTRY, ON, or BEGIN statement, the entire 
statement is copied to the output text stream unaltered. For other 

Licensed Material - Property of IBM section 2: Method of Operation 125 



types of statement, the operands are examined by appropriate routines, 
and copied to the output unaltered unless they are either an operand in 
an aggregate assignment or an aggregate operand in an input/output 
statement. 

If the statement-type code byte indicates that the statement is an 
assignment statement or a stream-oriented input/output statement, the 
first operand is examined by the routine FRST. If this operand is a 
structure, the routine STRUCASS is branched to; if the operand is an 
array, the routine ARAS is branched to. If the first operand is not a 
data aggregate, it is copied to the output text stream unaltered, and 
any other oferands are examined in turn. Similarly, for statements 
other than the statement types mentioned, each operand is examined in 
turn. If any of these operands is a procedure call or a function 
reference with an argument list containing an aggregate assignment (as 
generated by Phase ID),' control is passed to either STRUCASS or ARAS 
according to whether the aggregate temporary operand is a structure or 
array. 

The routines STRUCASS and ARAS perform the main processing functions of 
the phase. Information about the first operand is extracted from 
appropriate dictionary entries and stacked. If the statement is an 
assignment statement, the right-hand side of the assignment is compared 
with the stacked information for possible optimization. Text is 
generated to indicate either optimized assignment or expansion of the 
aggregate operands by use of DO-loops. 

R£Q£~ssing of Assignments 

The first operand (left-hand side) of an assignment is referred to as 
the master-operand. By examination of the master operand, each 
assignment is classified as belonging to one of three types: 

• Element assignments, when the master operand is an element variable. 

• Array assignments, when the master operand is an array. 

• Structure assignments, when the master operand is a structure. 

Processing Element Assignments: Element assignments are copied to 
output text stream unaltered, except when the right-hand side of an 
assignment contains a function reference with an argument list which 
itself contains an aggregate assignment (generated by Phase ID). In 
this case, the aggregate assignment is always expanded, as described in 
following paragraphs. 

Processing Array Assig~nts: The aggregate table entry for the master 
operand is accessed and, for each dimension, an entry is made in a 
stack, DIMSTAK. Each entry contains the values of the upper and lower 
bounds (if known), and flags which are set if either of the bounds is 
adjustable. The entries in DIMSTAK are used for comparison when 
checking the validity of other operands, and when testing for the 
possibility of executing the assignment without expansion into 
individual element assignments. Full comparisons to test for the 
possibility of the optimized form of assignment are only carried out 
when the following conditions exist: 

1. The master operand is a connected array with fixed bounds, and is 
not a compiler-generated aggregate temporary operand 

the master operand is a cross-section of an array with connected 
elements. 

126 Licensed Material - Property of IBM 



2. The right-hand side of the assignment is not an expression, and is 
a connected array with fixed bounds, a cross-section of an array 
with connected elements, an element variable, or a constant. 

In checking whether these conditions are satisfied, a check is made to 
see if the source operand has the same aggregate table reference as the 
master operand (target). If not, the aggregate table entry for the 
source operand is accessed, and the bounds of each dimension are 
compared with the appropriate entry in DIMSTAK. If the dimensions and 
bounds match, the operand DEDs are compared. If the DEDs match, the 
assignment can be performed without expansion, and this is indicated by 
changing the code byte in the statement header to SOASSN (X'7C'). The 
assignment is copied to the output text stream unaltered, except that 
the ATRs (and ATRMs) of the operands are deleted (unless an operand is 
fCllowed by subscripts). 

Examples of aggregate assignment source statements which do not require 
expansions are shown below: 

DCL A(3,4,S), 
B(3,4,5), 
C(4), 
X DECIMAL FLOAT; 

A=B; 
A=C(2); 
A=X; 
B=l; 
A(2,*,*)=B(2,*,*); 

(But not A(*,*,2)=B(*,*,2);) 

If the conditions described are not satisfied, the assignment is 
expanded into a series of individual element assignments by the 
generation of appropriate do-loops. Phase IE generates markers to 
indicate the start and end of the required do-loops. It also generates 
temporary operands which are used to identify the loops, and to which 
values are assigned by Phase KE so that they can be used as loop control 
variables. This processing starts when entries for each dimension of 
the master operand are made in DIMSTAK. For each do-loop that is 
required, a temporary operand (which requires no storage and therefore 
requires no dictionary entry) is generated. Each temporary operand is 
identified by a unique number, and this identifying number is inserted 
in the appropriate entry in DIMSTAK. If it is found that the assignment 
does not require expansion, tha temporary-operand numbers are not used. 

If the assignment is to be expanded, the SASSN code byte is retained in 
the statement header, and a DOTMP marker (X'9F') is generated to 
indicate where the start of a do-loop is required. The validity of the 
dimensions and bounds of the first operand on the right-hand side of the 
assignment is checked by comparison with the entries in DIMSTAK for the 
master operand. If they are valid, text representing the master 
operand, the assignment operator, and the first source operand is 
generated. Each operand identifier is followed by subscripts, which are 
either derived from the source program statements or, in the case of 
array assignments, are asterisks or the loop-control temporary operand. 
If the right-hand side of the assignment is an expression, remaining 
operands are in turn checked for validity by comparison with the master 
operand, and appropriate text is generated. When all operands have been 
processed, an ENTMP marker (X'9E') is generated to indicate the end of 
the do-loop. Examples of the text generated are shown in the following 
examples: 

Licensed Material - Property of IBM Section 2: Method of Operation 127 



If identifiers are declared as follows: 

DeL A(3,4,S), 
B(3,4,S), 
C(3,4,S), 

then A 

X DECIMAL FLOAT; 

X+S; becomes: 

DOTMP tl; 
A(*,*,tl)=X+S; 
EN~MP tl; 

A(l,*,2)=B(3,*,4); becomes: 

DOTMP t2: 
A(1,t2,2)=B(3,t2,4)i 
ENTMP t2; 

A =B+C(2,3,4); becomes: 

DOTMP t3; 
A(*,*,t3)=B(*,*,t3)+C(2,3,4); 
ENTMP t3: 

Where an assignment includes an array cross-section with more than one 
asterisked dimension, one do-loop is generated for each group of 
contiguous asterisks. (This does not necessarily imply that the 
elements are contiguous in storage.) This is illustrated in the 
fcllowing example: 

DCL P(S,6,7,8,9), 
Q(S,6,7,8,9)FIXED BIN: 

P(*,*,5,*,*)=Q(*,*,2,*,*); becomes: 

DOTMP tl; 
DOTMP t2; 
P(*,tl,5,*,t2)=Q(*,tl,2,*,t2); 
ENTMP t2: 
ENTMP tl: 

Processing structure Assignments: The aggregate table entry for the 
master operand is accessed, and for each member up to the first base 
element, an entry is made in a stack, STSTAK. Each 8-byte entry 
contains details of the level of the structure member, and its 
dimensions (if any). If a base member is dimensioned, an entry is made 
im DIMSTAK for each dimension. The right-hand side of the assignment is 
then scanned. If it is a single structure, comparisons are made to 
check for the possibility of an unexpanded assignment. If it is an 
expression, the assignment must be expanded and comparisons are only 
made to check for validity. 

comparisons are made, one operand at a time, with the corresponding 
entries in STSTAK and then with the corresponding entries in DIMSTAK. 
If the first base elements match, and the assignment does not contain an 
expression, the corresponding STRUDs of all base members are compared. 
If the STRUDs match, the assignment is either suitable for optimization 
or is invalid because of variations in structuring. A flag, OPTSW, is 
set to indicate that expansion is not required, and further entries.are 
made in/STSTAK and DIMSTAK for the purpose of checking the structuring 
of the two operands. If all checks are satisfactory, the code byte in 
the statement header is changed to SOASSN (X'7C') and the assignment is 
copied unaltered to the output text stream. If the STRUDs do not match, 
or if the assignment contains an expression, the assignment must be 
expanded. The structure members of the first operand on the right-hand 
side, down to the first base element, are checked for validity by 

128 Licensed Material - Property of IBM 



comparison with the master operand entries in STSTAK and DIMSTAK. The 
process is repeated until all base elements have been checked and the 
individual assignments generated. Where a structure assignment is 
expanded, the SASSN code byte is retained in the statement header. Text 
output by the phase is illustrated in the following examples: 

DeL 1 R, 

R=R+1; 

2 S, 
3 T, 
3 U; 

is expanded into: 

T=T+1; 
U=U+1; 

If a structure is dimensioned, temporary operands, and DOTMP and ENTMP 
markers are generated to indicate do-loops, as shown in the following 
example: 

DeL 1 S(2), 

S=S+l: 

2 T(3,3), 
3 U(4), 
3 W; 

is expanded into: 

DOTMP tli 
DOTMP t2; 
DOTMP t3; 
U(t1,*,t2,t3)=U(t1,*,t2,t3)+1; 
ENTMP t3; 
W(tl,*,t2)=W(tl,*,t2)+1; 
ENTMP t2; 
ENTMP t1; 

The foregoing example illustrates the following features of optimization 
of do-loops: 

1. Where an inherited dimension is common, only one do-loop is 
generated. 

2. Where a structure member has more than one dimension~ only one 
do-loop is generated. 

Processing Structure BY NAME Assignments 

If the TSTPROC routine detects a statement containing a structure 
assignment with the BY NAME option, the BY NAME routine is branched to. 
This routine calls the BYNASN subroutine to process the assignment. The 
processing is similar to that for other structure assignments. Entries 
are made in STSTAK for each member down to the first base element. 
Entries are made in DIMSTAK for each dimension of a dimensioned member. 
Aggregate operands on the right-hand side of the assignment are then 
compared in turn with the entries in STSTAK, to detect any similarly 

Licensed Material - Property of IBM Section 2: Method of Operation 129 



qualified name at the same level of structuring. Where matching names 
are found, element assignments are generated, with indications for 
do-loop expansion where a base element is dimensioned. 

PrQ£essinq Aggregates in Stream I/Q statements 

If the TSTPROC routine detects a statement header for a GET or PUT 
statement, the statement is processed in a similar manner to assignment 
statements. The operands in the data list are examined in turn for the 
presence of data aggregates, and a branch is made to either the STRUCASS 
routine or the ARAS routine if a structure or array that requires 
expansion is found. The structures are expanded into a sequence of base 
elements, and arrays are expanded by the generation of surrounding 
do-loops • 

If an expression containing aggregates is found, the first aggregate in 
the expression is used as the master operand. If an aggregate with 
greater extents is found later in the expression, it is then treated as 
the master operand, and the expression is reprocessed. Examples of the 
processing performed are shown in the following examples: 

DCL 1 X, 
2 XA, 
2 XB, 

1 Y, 
2 YA, 
2 YB, 

P(5), 
Q(5); 

GET EDIT (X) (A(l»; 

is expanded to: 

GET EDIT (XA,XB) (A(l»; 

PUT EDIT (X+Y) (A(l»; 

is expanded to: 

PUT EDIT (XA+YA,XB+YB) (A(l»; 

The statement: 

PUT LIST (P+Q); 

will appear in the input to Phase IE as an assignment to an qggregate 
temporary operand, generated by Phase ID. After expansion, this 
assignment becomes: 

PUT LIST (OOTMP t1; 
T1(tl)=P(t1)+Q(tl); 
ENTMP t1; T1); 

The processing performed on various £orms of stream-oriented 
input/output statements is summarized in figure 2.13. 

130 Licensed Material - Property of IBM 



PrQ£essing of Based Structures 

If a based structure that is preceded by a locator chain (created by 
Phase IA), appears in an assignment, or in a data list in a 
stream-oriented input/output statement~ the locator chain is required to 
precede each base element in the output text stream when the structure 
is expanded into base elements. To avoid such repetition a pointer 
temporary operang (shown in examples as "p.temp.") is generated and the 
locator chain is assigned to it by use of a PCASSN operator. This 
assignment is generated before the first base element or base-element 
assignment. Each subsequent base element in the expansion is preceded 
by the pointer temporary operand. This is illustrated in the following 
example: 

DeL 1 A BASED(P), 
2 B, 
2 C, 
2 D; 

DeL P POINTER BASED(Q), 
Q POINTER BASED(R); 

A=li 

On input to Phase IE, this assignment statement is represented by: 

R PTS Q PTS P PTS A ASSN 1; 

On output from Phase IE, the assignment to the pointer temporary 
operand, and the expansion of the structure assignment appear as 
follows: 

R PTS Q PTS P PCASSN p.temp.1 PTS B ASSN 1i 
p.temp.1 PTS C ASSN 1; 
p.temp.1 PTS D ASSN 1; 

Licensed Material - Property of IBM Section 2: Method of Operation 131 



r-----------T---------------------------------------------------------------------------, 
IType of I Type of input/output statement 1 
I operand ~------------------------T-------------------------T------------------------~ 
I I Data directed I List directed 1 Edit directed 1 
I ~-----------T------------+------------T------------+------------T-----------~ 
I I GET 1 PUT I GET I PUT I GET 1 PUT I 

~-----------+-----------+------------+------------+------------+------------+-----------~ 
I Single I Unaltered I Unaltered I Unaltered I Unaltered 1 Unaltered I Unaltered I 

I element I I I 1 1 1 1 
I variable I 1 I 1 1 I 1 
lor constant I I I 1 1 1 1 

~-----------+-----------+------------+------------+------------+------------+-----------~ 
I Elemnt IInvalid I Invalid I Invalid 1 Unaltered 1 Invalid I Unaltered 1 
lexpression I I I 1 1 1 1 

~-----------+-----------+------------+------------+------------+------------+-----------~ 
I Single I Unaltered I Unaltered I Unaltered I Unaltered ISubscripted 1 Subscripted 1 
I array I I I I land land I 
I I I I I lenclosed in [enclosed inl 
I I I I I Ido-loop/s Ido-loop/s 1 

~-----------+-----------+------------+------------+------------+------------+-----------~ 
I Array I Invalid I Invalid I Invalid I Expanded I Invalid IExpression 1 
lexpression I I I 1 (aggregate 1 I expanded I 
I I I , I temporary I I with I 
I I I I I generated 1 Ido-loop/s 1 
, I I , Iby Phase ID)I 1 I 
~-----------+-----------+------------+------------+------------+------------+-----------~ 
I Array I Invalid ISubscripted 'Unaltered I Unaltered Isubscripted ISubscriptedl 
I cross- I land I (no-storage I (no-storage land land 1 
I section I lenclosed in Itemporary I temporary lenclosed in lenclosed inl 
I I Ido-loop/S I generated I generated Ido-loop/s Ido-loop/s I 
l I I Iby Phase ID)lby Phase ID) I 1 I 
~-----------+-----------+------------+------------+------------+------------+-----------~ 
ISing1e I Inva1id I Unaltered I Unaltered I unaltered I Unaltered I Unaltered I 
I array- I I I I 1 I 1 
I element I I I I I I I 
~-----------+-----------+------------+------------+------------+------------+-----------~ 
I Single I Unaltered IUnaltered I Expanded I Expanded I Expanded 1 Expanded I 
I structure I I linto I into linto indi- linto indi- 1 
I I I I individual I individual Ividual base Ividual basel 
I I I Ibase Ibase I elements I elements I 
I I I I elements I elements I (Subscripted I (Subscript-I 
I I I I 1 land enclosedled and en- I 
I I I I 1 lin do-loop/slclosed in 1 
I I I I I lif dimen- Ido-loop/s t 
I I I I I Isioned) lif dimen- I 
I I I I I I Isioned) I 
.-----------+-----------+------------+------------+------------+------------+-----------~ 
I Structure I Invalid I Invalid I Invalid I Expanded 1 Invalid I Expanded I 
lexpression I I I linto indi- I linto indi- I 
I I I I Ividual base I Ividual basel 
I I I I I elements I I elements I L ___________ ~ ___________ ~ ____________ ~ ____________ ~ ____________ ~ ____________ ~ ___________ J 

Figure 2.13. Summary of stream I/O data processing performed by Phase IE 

Processing Aggregates in Procedure Calls and Function References 

Where data aggregates are used as arguments in procedure calls and 
function references, they will have been examined by Phase 10, and 
assignments to dummy arguments (aggregate temporary operands) will have 
been generated in some cases. When these assignments are processed by 
Phase IE, no attempt is made to avoid expansion into individual 
elements. Aggregate arguments (including assignments) are expanded into 
elements in all cases, ex~ept where they are used in references to the 
STRING, ALLOCATION, or ADDR built-in functions, in which case they are 
copied to the output text stream unaltered. 

132 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

Because function references may be nested in argument lists, a nested 
stacking system is used. The subroutine FUNEST sets up a stack, DSTAK, 
when a procedure call or function reference with an argument list is 
found. As the argument list is scanned, a section of DSTAK is built for 
each level of nesting. If more than one section is required, a 
backwards pointing chain is created in the stack. This chain enables 
each section to be readily accessed when the stack entries are later 
processed from the innermost level of nesting to the outermost level. 

Each nesting-level section of DSTAK consists of a housekeeping area and, 
if the argument at that level contains an aggregate, a structure stack 
(STSTAK) and/or a dimensions stack (DIMSTAK). If a particular argument 
level does not contain an aggregate, information about the argument will 
be contained in the housekeeping section of DSTAK for that level, and 
STSTAK and DIMSTAK will not be set up in that section~ The basic 
structure of DSTAK is illustrated in the following example~ 

DCL E1,E2,E3,E4 ENTRY; 
DCL 1 STA (6) ; 

Basic structure of DSTAK for CALL statement 
at LAB. 

2 M1, 
2 M2, 

1 STB(6) LIKE STA, 

(P,Q) (4,4) , 
I,J FIXED DECIMAL; 

LAB:CALL E1(STA+E2(P+Q+E3(I*J+E4(STB+5»» ; 
1\ 1\ 1\ 1\ 

I I I I 
I I I I 
I I I I 
I I I I 

levelO level1 level2 leve13 

Level 0 housekeeping 

Level 0 DIMSTAK 

Level 0 STSTAK 

I Level 1 housekeeping 
I , 

i 

I----l 
I Level 1 DIMSTAK 

U Le:el 2 housekeeping 

I---' 
I Level 3 housekeeping 
I 
I 
I Level 3 DIMSTAK 
I 
I Level 3 STSTAK 

When DSTAK has been set up, expansion of aggregates is carried out, 
starting at the innermost level of argument. Where there are structures 
in an outer level of argument, the inner levels are processed for each 
base member of the outer level. 

I 
I 
I 
I .. 
I 
I 
I 
I 
I 
I 
I 

Licensed Material - Property of IBM Section 2: Method of Operation 133 



Phase II examines every statement in the main text stream and performs 
the following functions: 

1~ Translates the sequential input (Type 1 text) into a bracket free 
format consisting of fixed length text tables (Type 2 text). 
Within these text tables, statements and statement elements are 
organized in a standard form that enables ease of processing by 
later phases of the compiler. 

2~ Analyzes all expressions, breaking them down into components most 
suitable for evaluation. Temporary operands are created to hold 
the results of intermediate expression evaluation or operand 
data-type conversion. 

3. Generates qualified-name temporary operands (Q-temps.) to 
facilitate handling of subscripted variables and based variables. 

4. Analyzes built-in function references. The analysis includes 
checking the validity of arguments, generation of dummy arguments 
as required, and determination of the function result data-type. 

5. Checks that all non-aggregate arguments in procedure calls and 
function references match their corresponding parameters. 

6. Performs generic selection of procedure entry points. 

PHASE INPUT 

Input to the phase consists of the main text stream in Type 1 text 
format. Within this text stream, blocks have been de-nested and within 
each block statements are retained in source-program order. Each 
statement is preceded by a statement header which identifies the type of 
the statement. within each statement, its components (operators and 
operands) are retained in source-program order, but additional 
operators, operands, markers, and pseudo-text tables have been inserted 
by preceding phases. 

Some entries in the general and variables dictionaries may be accessed 
by the phase. 

PHASE OUTPUT 

Output from the phase consists of a completely rebuilt main text stream 
in which components of text are organized in a series of fixed length 
(3~-byte) text tables. A statement-header text table is inserted in 
front of each statement to hold general information about the statement. 
The body of each statement consists of a series of text tables in which 
operators and operands are organized in fixed-length fields in 
predetermined order. All parentheses are removed from the text. This 
format of text is referred to as Type-2 text. 

During analysis and translation of the text, special operators, 
temporary operands, and compiler-generated labels are generated as 
described in the description of phase operation. 

Some variables dictionary entries for aggregate temporary operands may 
be changed during processing by this phase. 

134 Licensed Material - Property of IBM 



PHASE OPERATION 

Translation to~-2 Text 

One of the most significant functions of Phase II is the translation of 
the entire main text stream from a continuous stream of operators, 
operands, and control information (Type-l text) into a format that is 
most suitable for further processing. The format used is referred to as 
Type-2 text, and consists of a series of fixed length (32 bytes) tables. 
with a few exceptions, such as the text tables used for statement 
headers or PRoe and ENTRY statements, a standard arrangement of fields 
is used in the text tables for holding operators, operands, and general 
information in the form of flags, chains, etc. The basic forma~ of a 
Type-2 text table is shown below: 

r---------------------T--------------, 
I Field content I Field length I 
I I in bytes I 
~---------------------+--------------i 
I I I 
I Operator I 2 I 
I Operand 1 I 6 I 
I Operand 2 I 6 I 
I Operand 3 I 6 I 
I Statement number I 2 I 
I General information I 10 I 
I (flags and chains) I I l _____________________ ~ ______________ J 

Each text table is classified by the first byte of the operator. The 
operator code bytes used in Type 2 text are shown in figure 5.89. Some 
types of text tables may be further classified by a code byte in the 
second byte of the operator. This is illustra~ed in figure 5.92, which 
shows the various types of text tables and the use of the operand 
fields. The order of the operator and operands ~n the text tables is 
the sequence in which algebraic operations are performed. For examFle, 
the statement: 

A = B + Ci 

is translated into: 

PLUS 
(Operator) 

B 
(Operand 1) 

e 
(Operand 2) 

A 
(Operand 3) 

Note that the Operand 3 field contains the result of evaluation of the 
operator-Operand i-Operand 2 ~ripl~. In some types of text table, some 
of the operand fields may not be used. For example, the statement: 

A = Bi 

is translated into: 

ASSN 
(Operator) 

B 
(Operand 1) 

null 
(Operand 2) 

A 
(Operand 3) 

During translation of the text expressions are analyzed, and in some 
cases a temporary operand is generated, e.g., to hold the result of 
intermediate evaluation of an expression or where data-type conversion 
of an operand is required. These temporary operands, which require no 
storage and therefore require no dictionary entry, are uniquely 
identified by a sequential number, and are represented in the following 
examples by "Tn", where "n" is an identification number. For example, 
during the translation of the statement: 

Licensed Material - Property of IBM Section 2: Method of Operation 135 



A = B + C - Oi 

a temporary operand is required to hold the result of an intermediate 
evaluation of the expression. The expression is translated as follows: 

PLUS B C T1 

MINUS Tl D A 

Temporary operands created during this phase are local temporaries, 
i.e., their use is confined to within a single statement. 

The translation technique used by this phase is based upon the 
allocation of various priority levels to operators used in the text. 
Figure 2.14 shows a list of some of the more commonly used operators and 
the priorities assigned to them. A complete list of operators and their 
priorities can be found in the table PRITAE in the published listing of 
Phase II. 

r------------------------T----------------------------T----------------, 
I Operator I Meaning I Priority Level I 
~------------------------+----------------------------+----------------~ 

LPAR Left parenthesis 32 (2) 
PPLUS, PMINUS Prefix plus/minus 28 (27) 
NOT Logical NOT 28 (27) 
POWER Exponentiation 28 (27) 
DIV, MULT Divide/Multiply 26 
PLUS, MINUS Infix plus/minus 25 
CONCAT Concatenate 24 
GT, EQ, LT, GE, LE, NE Comparison operators 23 
AND Logical AND 22 
OR Logical OR 21 
TO, BY DO specification operator 16 (15) 
DOEQ DO specification operator 14 
DO, ITDO DO specification operator 13 
COMMA Data-element separator 11 
IF IF statement operator 8 
THEN IF statement operator 7 (0) 
ELSE IF statement operator 6 (1) 
ASSN Assignment 5 
GOTO Branching operator 3 
ENDO, ENDIT DO loop delimiter 2 
SCOLON Statement delimiter 1 
RPAR Right parenthesis 0 I 

~------------------------~----------------------------~----------------~ 
I I 
INote: This is not a complete list of the operators used. Acomplete I 
I list may be found in the table PRITAB in the published listing I 
I of Phase II. I L ______________________ . ________________________________________________ J 

Figure 2.14. Priority levels of operators commonly used in text translation 

A pushdown stack, MSTACK, is used in the translation process, on a 
last-in, first-out (LIFO> basis. MSTACK can be considered as a 
temporary storage table consisting of two sections; one section being 
used for operators and the other for operands. 

For various reasons, such as the free format permitted in some PL/I 
statements, a number of operators have two priority levels. These are 
shown in figure 2.14 where the value shown in parentheses is the 
priority applied to the operator when it is in MSTACK. The other 
priority applies to the operator when it is in the input text. An 
example of the need for dual priorities is in the following statements: 

136 Licensed Material - Property of IBM 



DO I = 1 TO 10 BY 2; 

can also be written as: 

DO I 1 BY 2 TO 10; 

To enable correct processing of such statements, the operators TO and BY 
each have two priority levels. 

The input stream is scanned sequentially. At the beginning of each 
statement, a statement header text table is generated. MSTACK is not 
used for this purpose. The format of a statement header text table is 
shown in figure 5.90. 

Th~ body of the statement is scanned step by step, each step consisting 
of an operator-operand pair. Register 1 is used as a pOinter as the 
text is scanned. MSTACK is initialized with a special bottom-of-stack 
marker, which is a null operator with priority equal to that of a 
statement delimiter (semi-colon). One result of this is that an operand 
which has no associated operator, (e.g., the operand A in the statement 
A = B), can be stacked under the operator-operand pair concept. The 
initial operand is paired with the null operator. 

As each operator-operand pair is scanned, the priority of the operator 
in text is compared with the priority of the top operator in MSTACK. If 
the operator in text has the higher priority, then the operator-operand 
pair in text is added to the top of MSTACK. If the two operators have 
equal priority, or if the top operator in MSTACK has the higher 
priority, then unstacking action takes place. 

The unstacking action initially consists of the removal of the top 
operator and the top two operands from MSTACK. This action is 
ccntrolled by routine TG7, which examines the unstacked operator and 
calls other routines, appropriate to the operator type, to perform 
fUrther processing as required. In many cases, such processing merely 
involves the placing of information in the appropriate fields of a text 
table to be generated. In other cases, more involved processing is 
required. The processing required when an arithmetic operator is 
unstacked is described below. 

When an arithmetic operator is unstacked, routine TG7 calls the 
expression-analysis routine, EA1. This routine detects any operand 
data-type conversions that are required, and determines the data type of 
the result. The result forms the third operand in the text table that 
is then generated. The result operand is also placed at the top of 
MSTACK to replace the lower of the two unstacked operands. Scanning of 
the statement, with appropriate stacking and unstacking action, 
continues until the whole statem~nt has been processed. The statement 
delimiter (semicolon) has a very low priority and causes unstacking 
action until MSTACK is empty. 

An example of the translation of a statement containing an expression is 
shown in figure 2.15. Throughout the example the data types of the 
variables involved have been assumed to be such that no data-type 
conversions are required. Note that the processing stage numbers shown 
in the example have no significance except for illustrative purposes. 

Licensed Material - Property of IBM section 2: Method of Operation 137 



r---------------------------------------------------------------------------------------, 

STAGE 1. 

§Q2f£e Statemen~: A = B + C**2 - 1; 

statement header A ASSN B PLUS C POWER 2 MINUS 1 SCOLON 
A 

I 
I 
I 
I 
I 
Register 1 

Initialized with a special bottom-of-stack operator to enable 
of an operand. 

I 
I SCOLON I I L _________ ~ _________ J 

Operators Operands 

Output Text: Nil 

STAGE 2. 

Input Text: 

output Text: 

Statement header A ASSN B PLUS C POWER 2 MINUS 1 SCOLON 
A 
I 
I 
I 
I 
\ 

Register 1 

Unaltered 

I 
I SCOLON I I L _________ ~ _________ J 

operators Operands 

statement header text table 

\ 
stacking \ 

I 
I 
I 
I 
I 
I 
I 
\ 

I 
I 
\ 
I 
I 
\ 

I 
I 
I 

Figure 2.15. (Part 1 of 3). An example of translation from Type-1 text to Type-2 tex~ 

138 Licensed Material - Property of IBM 



r---------------------------------------------------------------------------------------, 

Input Text: 

MSTACK: 

Output Text: 

Statement header A ASSN B PLUS C POWER 2 MINUS 1 SCOLON 
A 

I 
I 
I 
I 
I 

Register 1. 

I I 
I POWER I 2 
IPLUS I C 
IASSN I B 
ISCOLON I A I L _________ ~ _________ J 

Operators Operands 

statement header text table (as before). 

Successive comparisons of operator priorities, where ASSN priority> SCOLON , PLUS 
priority> ASSN, and POWER priority > PLUS, cause the operator-operand pairs to be 
stacked as shown. No operator priority has caused unstacking or text table generation 
at this stage. 

STAGE 4. 

Input Text: 

MSTACK: 

output Text: 

Statement header A ASSN B PLUS C POWER 2 MINUS 1 SCOLON 
A 

I 
I 
I 
I 
I 

Register 1 

I I 
I PLUS I T1 
IASSN I B 
ISCOLON I A I L _________ ~ _________ J 

operators Operands 

Statement header text table 

POWER C 2 T1 
(Operator) (Operand 1) (Operand 2) (Operand 3) 

Comparison of the priority of the MINUS operator and the priority of the POWER 
loperator causes unstacking and the generation of a POWER text table. L ______________________________________________________________________________________ _ 

Figure 2.15. (Part 2 of 3). An example of translation from Type-1 text to Type-2 text 

Licensed Material - Property of IBM Section 2: Method of Operation 139 



r---------------------------------------------------------------------------------------, 
I I 
ISTA~. I 

Input Text: 

OutEut Text: 

statement header A ASSN B PLUS C POWER 2 MINUS 1 SCOLON 

" I 
I 
I 
I 
I 

Register 1 

I 
I MINUS 1 
I ASSN T2 
I SCOLON I A I L _________ ~ _________ J 

Operators Operands 

Statement header text table 

POWER C 2 Tl 
PLOS B T1 T2 

(Operator) (Operand 1) (Operand 2) (Operand 3) 

comparison of the priority of the MINUS operator with the priority of the PLUS operator 
causes further unstacking and the generation of a PLUS text table. The MINUS 1 
operator-operand pair are then stacked. 

STAGE 6. 

Input Text: 

Output Text: 

Register 1 pOints at the beginning of the next statement header. 

Comparison of the priority of SCOLON with operators in MSTACK causes 
all items in MSTACK to be unstacked. 

Translation of the statement to Type 2 text is completed when the MINUS 
and ASSN operator-operand pairs are unstacked. No intermediate result 
temporary operand is needed for the result of the MINUS operation, and 
the variable A is used in the third operand field. 

I 
Statement header text table I 
POWER C 2 T1 I 
PLUS B T1 T2 I 
MINUS T2 1 A I 

(Operator) (Operand 1) (Operand 2) (Operand 3) I _______________________________________________________________________________________ J 

Figure 2.15. (Part 3 of 3). An example of translation from Type-1 text to Type-2 text 

Translation of DO and IF Statements 
--------~-------

Labels are generated by the compiler, and inserted in the text to 
indicate the start and end of each do-loop, and possible branching 

140 Licensed Material - Property of IBM 



points in IF statements (e.g., if an ELSE clause is present in an IF 
statement, a GOTO operator is inserted at the end of the THEN clause, 
with a compiler-generated label indicating the branching point). The 
use of these labels is illustrated in the descriptions of the phases 
that process the statements in the statement processing stage. 

Each compiler-generated label is given a unique identifying number. 
Labels are represented in descriptions by the characters 'CLn t

, where n 
is the identifying number. 

To enable compiler-generated labels to be applied in the correct 
sequence during translation of DO and IF statements, two special stacks, 
DOSTACK and IFSTACK are used for temporary stacking of the labels. 

Expression Analysis 

As each statement is translated into Type-2 text, expressions within the 
statement are analyzed to determine the intermediate operations required 
in the evaluation of the expression. Text tables are generated to 
enable these operations to be performed, and temporary operands are 
created to represent the results of the intermediate operations (as 
shown in the example of text translation). 

Temporary operands are also created when the data types of operands in 
an expression require conversion before the expression can be evaluated, 
e.g., if a character-string operand is used in an arithmetic operation, 
the operand must be converted to an arithmetic data-type. 

As each operator/operand pair is unstacked from MSTACK, the routine EAl 
is called to determine whether the operand requires data-type 
conversion. If conversion is required~ a CONY text table is generated 
for later processing by Phase KX. The target operand of the CONV text 
table is a temporary operand, and this operand replaces the original 
operand in the text table for the operator concerned. The exact result 
type, including scale and precision, is then evaluated. The use of CONY 
text tables is illustrated in the following example: 

DECLARE X BIT(6), A FIXED DEC, B FIXED BIN, 

C CHAR(2), D BIT(3)i 

X = A + B < C I Di 

Translation and analysis of the expression results in the following text 
tables being generated: 

CONV 
PLUS 
CONV 
LT 
OR 

A 
Tl 
C 
T2 
Tq 

B 

T3 
D 

Tl 
T2 
T3 
Tq 
X 

Tl and T3 are the results of the conversion of operands A and C to 
binary data. T2 and Tq are temporary operands generated to hold the 
results of intermediate operations in evaluation of the expression. 

Each temporary operand has a unique identification number, and is 
represented in text as: 

r------------------T------------------T------------------, I Code byte I DED I Identification I 
I (See figure 5.36.)I(see figure 5.59.>1 number I L __________________ L __________________ L __________________ J 

1 byte 3 bytes 2 bytes 

Licensed Material - Property of IBM Section 2: Method of Operation lql 



The code byte illustrates: 

1. Whether the temporary operand is: 

a. local - its use is confined to within one statement. 

b. global - it may be used in several statements. 

2. Whether the temporary operand can reside in a register. 

3. The last usage of the temporary operand. 

Phase II completes the DED (data element descriptor) for all the 
temporary operands that it creates. For example, where temporary 
operands represent intermediate results, the data type will be that of 
operand 1 and 2, while scale and precision will be evaluated according 
to the rules of PL/I for the operation performed. 

Qualified-name TempQrary Operands (Q-temps.) 

Whenever a qualified item, such as an array-element or a based variable, 
is referred to, a means of referring to the qualifying information is 
required. During text translation and during processing by other 
p~ases, special temporary operands called qualified-name temporary 
Qperands are generated to replace such qualified items. These temporary 
operands are referred to in the published listing and in the following 
descriptions as Q-temps. A Q-temp. contains a description of the data 
type of the item referred to, and provides a means of identifying the 
qualifying information by chaining to the text table in which the 
Q-temp. was created. Each Q-temp. is uniquely identified by a 
sequential number. The formats of Q-temps. are illustrated in figures 
5.52 and 5.55. 

When an array element is referred to, it is necessary to evaluate the 
subscript in order to calculate the offset of that particular element 
from the start of the array. When a statement containing such a 
reference is translated and analyzed, a special stack~ SFSTACK, is used 
in conjunction with MSTACK. SFSTACK is used to hold the array 
reference, the index temporary operand (used in subscript evaluation), 
and the type of the subscript (e.g., iSUB defined). Use of SFSTACK 
enables multiple and nested subscripted-variable references to be 
processed in such a way that an NDX table, in which the requisite 
Q-temp. is created, is generated immediately prior to use of the 
subscripted variable. The generated Q-temp. then replaces the array 
variable in MSTACK. 

When a based variable is qualified by one or more pOinters, the based 
variable will be preceded by a PTS operator in the Type-1 text input to 
the phase. During translation, the qualifications are examined and one 
or more PTSAT text tables are generated. A Q-temp. which replaces the 
based variable reference is created in the final or only PTSAT table. 

The use of Q-temps. is illustrated in the following example. The source 
statement: 

P -> X A(I)i 

where 

P is a pointer, 

x is a based variable, 

A(I) is a subscripted array reference, 

142 Licensed Material - Property of IBM 



is translated by Phase II inT.c, tna following text-table sequence: 

PTSAT Sl X QT1 
SUBS1 I A T2 
NDX T2 A QT3 
ASSN QT3 QTl 

The following features are shown in this example: 

1. QT1 represents the based variable X, qualified by the pointer P. 

2. T2 is a temporary operand which contains the result of the 
subscript calculation, i.e., the offset of the array element. 

3. QT3 represents the Ith element of the array A. QT3 is created by 
its appearance in the Operand 3 field of the NDX text table. At 
any subsequent appearance of this Q-temp., it is possible to 
determine which variable (and which part of the variable) is 
referenced, by examining the text table in which the Q-temp. was 
created. 

Anal~sis of Built-in Functions 

Each reference to a built-in function is analyzed, and the number and 
data types of arguments are checked for validity. BIF text tables are 
generated to contain the arguments and the function result, with a code 
byte to indicate the built-in function name. 

When a built-in function reference is found in the input text, it is 
stacked in MSTACK with a BIF operator. It is also stacked in SFSTACK 
and information in this stack is used when checking the validity of 
built in function references. 

Each argument is stacked in MSTACK with a phase-generated BARG operator. 
When operator-priority comparisons cause the BARG operator-operand pairs 
to be unstacked they are held in a special save area until the BIF 
operator-operand pair is unstacked and the validity of all the arguments 
can be checked. 

The routine TGCAFU is used for processing all function references (and 
CALL statements), but this routine calls the BIFE routine to process 
built-in function references. BIFE matches the information against a 
table within the phase called PUNTAB. PUNTAB contains a list of all 
built-in functions in the PL/I language, together with the number and 
data type of the arguments that can be used, and the data type of the 
function result. If it is found that any argument requires conversion, 
the subroutine ACHE is called to handle the conversion. The subroutine 
FRED (Function Result Determination) examines the special result 
descriptor (SRD) in the built-in function operand to determine the data 
type of the result to be returned by the function. 

When all the argument testing and result determination is completed, 
control is returned to the TGCAFU routine. This routine generates ElF 
text tables in which the arguments are held in the Operand 1 and 2 
fields. If there are more than two arguments, more than one BIF text 
table is generated. The function result is held in the Operand 3 field 
of the last BIF table. 

Argument and Parameter Matching 

Phase II compares each data-element argument with its corresponding 
parameter descriptor, if one exists. (Phase ID processes data-aggregate 

Licensed Material - Property of IBM Section 2: Method of Operation 143 



arguments and parameters.) If the function entry point is INTERNAL, or 
if parameters are described in the declaration of an EXTERNAL entry 
point, Phase GM will have inserted a PARD operator and a parameter 
descriptor before the correspond~ng argument in the text. Argument 
operands are stacked in MSTACK with ARG operators, and parameter 
descriptor operands are stacked with PARD operators. When these 
operator-operand pairs are unstacked, the MATCH routine is called to 
check the matching of each argument with its corresponding parameter. 

If the attributes of an argument and its corresponding parameter are 
different, a dummy argument is created if possible, together with a 
WARNING diagnostic message. If the attributes of an argument differ 
from those of its corresponding parameter to such an extent that 
conversion of the argument is impossible, then the statement is ignored. 
The MATCH routine also creates dummy arguments whenever constants are 
passed as arguments. 

Selection of Generic Entry-Points 

Phase II selects the correct entry point from a generic family by 
comparing the argument list associated with a generic name with each 
WHEN descriptor list in turn. The process involves matching of complete 
argument and descriptor lists as well as matching of individual 
arguments and descriptors. The argument list is built by making one or 
more entries in MSTACKi expression arguments are evaluated prior to 
their inclusion in MSTACK. The SELECT routine is then called to access 
the WHEN descriptor lists in the general dictionary, chained entries 
created by Phase GE, and to compare them in turn with the argument list 
in MSTACK. Individual arguments and descriptors are compared in turn, 
starting with the first (lowest) entry in MSTACK. The subroutine BARD 
is called to convert the argument into a 2-byte format, for ease of 
comparison with the 2-byte descriptors in the dictionary entry. 

The first descriptor list that matches the argument list indicates the 
entry point to be selected. However, it is then necessary to perform 
the normal argument matching process. The process differs from that 
described for non-generic argument matching because there are no 
parameter descriptors in the text, and the appropriate dictionary 
entries must be accessed. Dummy arguments are generated as required, 
and ARG text tables are generated as each successful comparison is 
completed. 

~_Handling Features Organized by Phase II 

When Phase II translates the main text stream into Type 2 text it 
incorporates a number of features that enable ease of handling of this 
form of text by later phases. These features are mentioned briefly 
here; their usage is described later. 

The last four bytes of each 32-byte text table contain two 2-byte chain 
fields, as shown in figure 5.93. These chain fields can be used to 
indicate the offset from the start of a page of the preceding or 
following text table in a logical chain. On output from this phase, the 
value of these fields is always zero. At the beginning of each page, 
following the 16-byte page header, a 32-byte overflow-page index table 
is inserted. This table, the format of which is shown in figure 5.3, is 
used in connection with the text-table chain fields mentioned above, but 
is not used by this phase. 

The statement header tables which are generated before the text tables 
that comprise each statement (see figure 5.90), contain three 
statement-type chain fields. These chain fields are used by Phase KA to 

144 Licensed Material - Property of IBM 



link statements of similar types. Their contents affect the sequence of 
phase loading, as described in section 3. 

To allow for known expansion of the text by later phases, NULL text 
tables are generated to follow certain types of text tables. For 
example, DATAE text tables, which form part of some input/output 
statements, are followed by five NULL text tables. These text tables 
are overwritten during processing by Phase KQ. 

Licensed Material - Property of IBM Section 2: Method of Operation 145 



The main function of phases grouped in the statement processing storage 
is to determine the object code that is required to represent the PL/I 
source program, and to modify the text stream so that the code 
requirements are clearly indicated to phases in the storage and register 
allocation stage, and the final assembly stage. 

Throughout processing by phases within the stage, the text stream 
consists of a series of 32-byte text tables (Type-2 text). On infut to 
the stage, the text bears a close relationship to the PL/I source 
program. On output from the stage, the text bears a close relationship 
to the machine code required in the object module. One or more text 
tables in the text output from this stage can indicate one or more 
machine instructions that must be generated by a code generation phase, 
or can indicate processing required by phases in the storage and 
register allocation stage. The following example indicates the type of 
processing performed by phases in this stage. 

Previous processing of the following PL/I source program statements: 

DCL A CBAR(lO) , B CHAR(20)i 

A SUBSTR(B,2,10); 

results in the text input to the statement processing stage containing 
the following text tables: 

BIF(SUBSTR) 
BIF(SUBSTR) 
(Operator) 

B 
10 

(Operand 1) 

2 
null 

(Operand 2) 

null 
A 

(Operand 3) 

After processing by phases in this stage, the text contains the 
following text tables: 

OFFS 
MOVE 
ASSN 

(Operator) 

1 
Q-temp.n 

temp 
(Operand 1) 

B 
10 

null 
(Operand 2) 

Q-temp.n 
temp 

A 
(Operand 3) 

These text tables indicate to one of the code generation phases that the 
following machine instruction must be generated for inclusion in the 
object module: 

MVC A(10),B+1 

The stage consists of fifteen phases, Phases IK, KA, 1M, IQ, KE, KI, KT, 
KL, KM, KQ, KV, KK, OC, OX, and KX. Most of these phases process only 
those text tables that are connected with certain PL/I language 
features, and ignore the rest of the text. To enable this processing to 
be carried out most efficiently, the first phase in the stage (Phase KA) 
examines the whole of the text stream and sets up chains linking 
statements of similar type. These chains enable some of the phases that 
process particular types of statements to examine only those statements 
contained in the relevant chain. 

Some phases in this stage are loaded and executed for every compilation. 
Other phases are only loaded and executed if the PL/I source program 
contains certain features. Whilst scanning the entire text stream, 
Phase KA determines which phases are required, and sets up information 
to indicate the required sequence of phase loading. One phase, Phase 
IK, is only loaded and executed if either or both of the ATR and XREF 

146 Licensed Material - Property of IBM 



compilEr options has been specified. The sequEnce of phase loading is 
also affected if OPT (TIME) has been specified. In this case, the four 
phases of the global optimization stage are loaded and executed after 
Phase KV, anj before any of the last four phases of this stage. 

TEXT HANDLING DURING THE STATEMENT PROCESSING STAGE 

Apart froffi differences in the functions of phases, an important 
difference between phases in the statement processing stage and phase in 
preceding stages is the methods used for handling text. The Type-1 text 
format used in the main text stream prior to output from Phase II 
consists of ~ continuous stream of text, containing items of various 
lengths. Each phase reads and processes its input text stream, and 
builds a new text str~am into which items that are not processed by the 
phase are copied unaltered, and new or modified items are inserted, as 
the output text stream is built. Phase II translates the text s~ream 
into Type-2 text format, which consists of a series of fixed-Ieng~h text 
tables. This format allows tExt tables to be deleted, or new text 
tables to be inserted in the required logical sequen~e in the text 
stream, without completely rebuilding the text stream in each phase. 

During translation of the text into Type-2 text format, Phase II sets up 
chain fields in each text table, and in the overflow-page index table 
that is created in each text page. As Phase KA reads the text stream it 
acquires a number of additional text pages, known as 2Y~flow ~ges, at 
the rate of onE overflow page for every four existing text pages. 
Provision is made for a further seven overflow pages for each existing 
page to be acquired, one at a Lime, if necessary. These pages are used 
tc hold any additional text tables that are created in the statement 
proceSSing stage (and SUbsequent stages). New text tables created on 
these overflow pages are linked into the logical sequence of text tables 
by use of the forward chain field (IFCHN) in the text tables and the 
ISPLB field in the overflow-page index tables. 

If the logical sequence of text tables coincides with their physical 
sequence, the values in the text table forward chain fields remain zero 
and the text scanning routinES follow thE normal sequence of scan. No 
values are set in text table chain fields to link the last text table on 
a page to the first text table on the next page in the original tExt 
stream. If the content of a text table is to be changed, it is 
overwritten in situ. If a text table is deleted from usage, this is 
done by changing its operator code byte to NULL (X'79'). In some cases, 
e.g., when a series of NULL text tables occurs, the XLINK macro is used 
to bypass some text tables and move the scan to the next active text 
table in the logical sequence. This is done by inserting the offset, 
from the start of the page, of the next logically sequential text table 
into the last one and a half bytes of the forward chain field of the 
text table from which the scan is to be stepped. 

If a new text table is created, it is inserted in the first available 
space in an overflow page. The logical sequence of scan is maintained 
by inserting its offset, from the start of the overflow page, into the 
last one and a half bytes of the forward chain field of the preceding 
logical text table. The page containing the new text table is 
identified indirEctly by inserting a value, in the range 8 to F, in the 
first half-byte of the same forward chain field. This value is used to 
index the relevant 3-byte field in the ISPLB field of the overflow page 
index table on the current page. Each 3-byte field can contain the 
track address of a text page. As the text of any group of four pages 
can overflow onto up to eight overflow pages, there are eight of these 
fields, identified by names from REFO to REF7. The value '8' in the 
first half byte of a forward chain field indicates that the track 
address of the relevant page can be found in the REFO field of the 
overflow page index table, and the values '9' to 'F' have similar 
correspondence with the REF1 to REF7 fields. The same system is used to 

Licensed Material - Property of IBM Section 2: Method of Operation 147 



link from text tables in overflow pages back to text tables in the 
original text stream pages, or to text tables on other overflow pages. 
The system is illustrated in figure 2.16. 

148 Licensed Material - Property of IBM 



ORIGINAL TEXT STREAM OVERFLOW PAGES 

Overflow-Page Index 

f 
REFO REF1 REF2 .... 

t 
" 0000 """""" * {/ . 

0000 
J 

• r . 
8020 r--

-, "" 0000 Overflow-Page Index 
~. 0000 I , t 0000 • 
j REFO RE;1 REF2 .. ~ .. 

1 
La 8080 Overflow-Page Index -- --"r 0040 ~ + . 1- j j 

REF1 REF2 .... * 0060 REFO . 
9080 + -

... OOAO ----~ '" 
0000 " A020 

l. 0000 ~ 

" 8040 r--

..t .L 0000 

1 0000 

" 0000 

.t 
Overflow-Page Index 4~ 

r • 
REFO REF1 REF2 .... Overflow-Page Index 

t 
RJF1 REFO REF2 .... ----~ • 0000 

t + 1- 0000 • .: 0000 ---~L 80AO .. 80AO - " 
,...-~ ~ 0040 4~ 

t 0000 .1 0060 

0000 " 9080 

J ~ 
~ 

Overflow-Page Index 

+ 
REFO REF1 REF2 .... 

+ 
----~ --L 0000 

1 0000 
41' 

" 8040 -I---

.t: .L .WW. 
I 0000 

! 0000 .. 

Figure 2.16. Use of overflow pages and chaining of text 

Licensed Material - Property of IBM section 2: Method of Operation 149 



ATTRIBUTES AND CROSS-REFERENCES LISTING (PHASE IK) 

This phase builds lists of the attributes and/or cross references of all 
identifiers in the source program, and passes them to the SYSLST data 
set for printing. The phase is only loaded and executed if either or 
both of the ATTRIBUTES (A) and'XREF (X) compiler options are specified. 
The listings are organized in EBCDIC collating sequence of identifiers. 

PHASE INPUT 

Input to the phase consists of the main text stream, in Type-2 text 
format, and the names dictionary. The variables and general 
dictionaries are accessed as required. 

PHASE OUTPUT 

The main output from the phase is a printed listing, consisting of the 
attributes of each identifier in the program, and/or the number of the 
source statement in which an identifier is defined and the numbers of· 
the source statements in which the identifier is referred to. 

The main text stream is not changed by this phase. If a cross-reference 
listing is generated, each entry in the names dictionary has an 
additional 5-byte field inserted, but this additional field is not 
accessed by any later phases. The variables and general dictionaries 
are not changed by this phase. 

PHASE OPERATION 

Collection of Identifier Cross-references 

If the XREF compiler option has been specified, a text page, or sequence 
of text pages, is acquired to hold information collected during 
processing. Such pages are referred to as cross-reference pages, and 
they are used only as temporary working storage. 

A sequential scan is made of the main text stream. As each reference to 
an identifier is found, its entry in the names dictionary is accessed. 
If it is the first reference to that identifier, a new entry is made in 
a cross-reference page. Each cross-reference entry is 16 bytes long, 
and has the ·following format: 

Bytes 5 1 2 2 2 2 2 

r-------------------------T-----T----------T----------T----------T----------T----------, 
I I I I I I I I 
I I I I I I I I 
L------------T------------~--T--~----------~----------~ __________ ~ __________ ~ ______ ~---J 

I I • .. 
I I statement numbers of cross-r·eferences 
I I 
I I 
I I 
I L---Next available cross-reference slot in this entry 
I 
I 
L---Text reference of next entry in chain for this identifier 

(current entry contains reference of first entry in chain) 

150 Licensed Material - Property of IBM 



An additional item (in the form of a 5-byte text reference) is inserted 
at the end of each names dictionary entry, to point at the current 
cross-reference entry for the identifier. When each sUbsequent 
reference to an identifier is found, its names dictionary entry is 
accessed to obtain the reference of the current cross-reference entry, 
and the statement number of the new reference is inserted. 

When a cross-reference entry is full, a new entry is made and the names 
dictionary pointer is updated. The cross-reference entries for each 
identifier are chained together, as illustrated below: 

Cross-reference Entries Names Dictionary 

r--->r-------------------, I I 
I I I I I 
L-T-----------------J ~-------------------i 

I 
I 

IXYZ I I 
.-----------------T-~ L--->r-------------------, I I I 

I I I I I I 
L-T-----------------J 

I 
I 

I I I 
I 
I 

L--->r---------------~--~, I 
I I I I 
L-T-----------------J I 

I r---------------------------------------------J 

I I 
I V 
L--->r-------------------l -------------------------i I I I I I I I L _____________ --_---J 

The cross-reference pages are saved until the identifers have been 
sorted into the order required in the output. 

Sorting of Identifiers 

The routine at IK40 acquires one or more text pages, which are used to 
hold information required when the identifiers are sorted into the 
required output sequence (names dictionary entries cannot be sorted). 
These pages are referred to as ~ort pages, and are discarded at the end 
of processing by the phase. 

The names dictionary is scanned sequentially. As each entry is scanned, 
a modified entry is copied into a sort page. Each sort-page entry is 
40-bytes long, and contains the identifier name translated from compiler 
internal code into EBCDIC. 

A sorting operation is performed on the sort-page entries. Identifier 
names are compared, and entries are sorted so that they are eventually 
organized according to the EBCDIC collating sequence of the names. 
Where comparison of identifiers shows equality, the shorter name is 
placed first in the sorted sequence, e.g., ABC is placed before ABCD. 

output of Attributes and Cross-reference Listings 

The sorted sort-page entries are scanned sequentially. As each entry is 
accessed, the identifier is copied to the XPRBFl or XPRBF2 buffer for 
output to the SYSLST data set. If the ATTRIBUTES option is specified, 
the relevant entry in the variables dictionary is accessed, and a list 
of attributes is copied to output. In the case of data aggregates, 

Licensed Material - Property of IBM Section 2: Method of Operation 151 



attribute information is also extracted from relevant entries in the 
general dictionary. 

If the XREF option is specified, the entry in the names dictionary is 
used to access the entries for the identifier in the cross-reference 
pages. The cross-reference information is output as a series of 
statement numbers, following the identifier name or the list of 
attributes. Where there is no continuity in the arithmetic sequence of 
cross-reference statement numbers, it indicates a change of block level, 
and is caused by the de-nesting of blocks in the syntax analysis stage. 

152 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

IF-STATEMENT PROCESSING (PHASE KA) 

The main function of Phase KA is· the processing of IF and WHEN 
statements and WHILE and UNTIL clauses. Text tables representing these 
statements are replaced with conditional-branch tables (Be or BCB). 
Logical clauses within such statements or clauses are analyzed, and any 
comparison operations they contain are replaced by conditional branches 
with appropriate condition codes. This processing is performed during a 
sequential scan of the text. Other functions performed during this scan 
include: 

• Allocation of overflow pages, at the rate ot one to every four 
existing pages, to allow for later expansion of the text. 

• Chaining of certain types of statement, to enable later phases tc 
find these statements without scanning the whole text strearr. ~he 
phase also detects language features that affect the loading of some 
optional phases, and sets bits in XCO~M to indicate the requirenent 
for such phases. 

• Resolution of items declared with the UNALIGNED attribute, and 
modification of DEDs if required. 

• Resolution of string temporary operands and string 
chameleon-temporary operands. 

• Detection of situations where on-unit code can be optimized. 

PHASE INPUT 

This phase examines each item in the main text stream, which is in the 
Type-2 text format created by Phase II. Entries in the variables and 
general dictionaries are accessed. 

PHASE OUTPUT 

On output from the phase, the main text stream is modified as described 
in following paragraphs. Where additional text is generated it is 
created on overflow text pages, and linked into the logical sequence by 
use of chains. 

Some statement header tables are mOdified by the insertion of values in 
their chain fields, and associated chain fields in XCOMM also have 
v~lues inserted. 

The data element descriptors of some operands in text are completed, and 
associated entries in the variables dictionary for chameleon-temporary 
operands are also completed. 

PHASE OPERATION 

The main text stream is scanned sequentially and every item of text is 
examined to determine whether it requires processing by this phase. As 
pages of text are accessed, overflow text pages are allocated, at the 
rate of one overflow page to every four existing pages, as described in 
the introduction to the statement processing stage. All required 
modifications of text are then either performed in situ, by 
nullification or modification of text tables, or by creation of new text 
tables on overflow pages. 

Licensed Material - Property of IBM Section 2: Method of Operation 153 



Creation of StateR-ent-type Chains 

As statement headers are examined during the scan of text, certain types 
are linked to other statement headers of similar type for ease of access 
by later phases. The chaining addresses are inserted in various fields 
in the statement header, and the heads of the backwards-pointing chains 
thus formed are inserted in appropriate fields in XCOMM. The contents 
of th.ese fields affect the sequence of phase loading as described in 
section 3. The statement-type chains, and the chaining fields used, are 
shown in figure 2.17. One feature concerned with the chaining of DO 
statements is the creation (by Phase II) of dumrry staterrent headers for 
DO specifications within stream I/O statements. These specifications 
are thus linked in the BO staterrent chain. 

r-------------------------------------------------------T----------------T--------------l 
I statement Type I Chain Field in I Chain-~ead I 
I IStatement HeaderlField in XCOMMt 
~-------------------------------------------------------t----------------t--------------i 

Stream I/O statements 

Record I/O statements 

Locator and label variable assignments (plus CALL 
statements after Phase KV) 

System statements (PROC, END, BEGIN, DISPLAY, DELAY, 
WAIT, etc.) 

All statements containing subscripts 

DO statements (including compiler-generated DO 
statements) 

CHAIN1 XSIOCH 

CHAIN1 XRIOCH 

CHAIN1 XBELCH 

CHAIN1 XSYSCH 

CHAIN2 XSUBCH 

CHAIN3 XDOCH 
L _______________________________________________________ ~----____________ ~ ____________ _J 

Figure 2.17. Statement-type chains created by Phase KA 

When the statements are scanned, tests are made for the presence of 
language features that are processed by some optional phases of the 
compiler. When a particular language feature is detected, an 
appropriate subroutine is called to set a bit in the XOPPHS1 field of 
XCOMM to indicate the requirement for the relevant phase. The 
indications of bit settings in XOPPHS1 are shown in figure 3.2. 

Processing of IF statements and WHILE Clauses 

Note: To improve clarity, the following description refers mainly to IF 
statements but, unless there is special mention of differences, the 
description also applies to proceSSing of WHILE clauses. 

During the scan of text, the text tables following a statement header 
for an IF statement are scanned for the IF text table. In some cases, 
code optimization may be performed during this scan. For example, a 
source statement of the form: 

IF X - Y = 0 THEN •••• 

results in the input text containing the following text tables: 

MINUS 
EQ 

X 
temp. 

y 

o 
temp. 
Bit(l) temp. 

Detection of the MINUS text table causes the IFMIN routine to be called. 
This routine changes the text to an effective form of: 

154 Licensed Material - Property of IBM 



IF X = Y THEN ••.• 

by changing the text tables to the following format: 

Ee; 
NULL 

x Y Bit(l) temp. 

WhEn the IF tablE is detected, a register is set to pOint at it, and the 
preceding table is Examined to determine the type of IF statement as 
fellows: 

1. If the preceding table has ~ comparison operator, i.e., GT, EQ, LT, 
GE, LE, NE, control is passed to the COMPR routine. 

2. If the preceding table has a logical operator, i.e., AND, OR, or 
NOT, control is passed to the LOGEX routine. 

3. If the preceding text table has other than a logical or comparison 
operator, centrol is passed to the QUERY routine. 

The COMPR Routine: This routine processes IF statements that have a 
Single-comparison operator, e.g., IF A>B THEN X = Yi For such a 
statement, the input to Phase KA would be: 

SN 
G'I A B T1 
IF Tl CL.1 
SN 
ASSN Y X 
GSL CL.l 

The COMPR routine processes this type of statement by converting the IF 
statement to a branch-on-condition statement. The output from this 
phase would be: 

SN 
BC A B (BNH,CL.1) 
NULL 
SN 
ASSN Y X 
GSL CL.1 

The condition code in the output is the inverse of that for the 
comparison operator in the input (GT becomes BNH, EQ becomes BNE, etc.). 
ThE Bit(l) temporary operands (created by Phase II) are eliminated. 

The LOGEX Routine: This routine processes IF statements containing 
logical expressions, e.g., 

IF (A B) I (C = D) THEN------

or IF AlBIC THEN-------

The expression is analyzed in a single backwards scan of the text tables 
preceding the IF table, using the XTXEN macro. During this scan, a 
stack is built to determine the significance of any temporary operands. 
If the expression consists of comparison operations connected by logical 
operations, the comparison tables are converted to BC tables and the 
condition codes are set in accordance with the logical operator e.g., 

Licensed Material - Property of IBM Section 2: Method of Operation 155 



The source statement: 

IF (A = B) I (C D) THEN X = Yi 

would appear as the following input to Phase KA: 

SN 
EQ A B T1 
EQ C D T2 
OR T1 T2 T3 
IF T3 CL.1 
SN 
ASSN Y X 
GSL CL.1 

On output from Phase KA, the statement would appear as: 

SN 
BC A B (BE,CL.2) 
BC C D (BNE,CL.1) 
GSL CL.2 
SN 
ASSN Y X 
GSL CL.l 

If the expression consists of bit-string variables connected by logical 
expressions, the subroutine CONVPROC is called to process the 
expression. 

Th~QQERY Ro~tin§: This routine processes IF statements containing a 
single variable e.g., IF X THEN------, or containing a non-logical 
expression e.g., IF X+Y THEN------. The subroutine CONVPROC is called 
to perform the processing. 

The CONVPROC Subroutine: This subroutine is called from either the 
LOGEX routine-or the-QUERY routine. Its function is to process IF 
statements that do not contain comparisons or logical operations, or IF 
statements containing bit-string variables connected by logical 
expressions. The input to this routine will frequently contain CONV 
text tables, inserted by Phase II if the variables are not already 
bit-string variables. The processing by this subroutine depends upon 
whether variables can be converted in this way. Consider the following 
examples: 

1. IF X THEN------

appears as input to Phase KA in the form: 

IF x CL.l 

where X is the data type specified in the source program. 

2. IF AlB THEN------

appears as input to Phase KA in the form: 

CONV 
CONV 
OR 
IF 

A 
B 
T1 
T3 

T2 

Tl 
T2 
T3 
CL.l 

where A and B are converted if necessary to bit-string variables by 
Phase II. 

In example 1, the variable in the IF text table is examined, and in 
example 2, the variables in the CONV tables are examined. If the 
variables can be converted to fixed binary data and thence to bit-string 

156 Licensed Material - Property of IBM 



data without loss of significant digits, a literal constan~ of zero is 
generated. The IF table or the CONV table is then replaced by a BC 
table with the variable as the first operand and the constant as the 
second operand. 

Thus, 

IF X THEN Y=Z; 

becomes: 

and 

becomes: 

BC 
ASSN 
GSL 

x 
Z 
CL.1 

o 

IF AlB THEN P=Q; 

SN 
BC A 0 
BC B 0 
GSL CL.2 
SN 
ASSN Q 
GSL CL.1 

(BE,CL.1) 
Y 

(BNE,CL.2) 
(BE,CL.l) 

p 

If the variables cannot be converted without loss of significant digits, 
in example 1 a CONV table with a bit-temporary variable as the third 
operand is generated, followed by a BCB table. This is later expanded 
by Phase OX to test for bits in the string with a value of 1. Thus, 

IF X THEN Y=Zi 

becomes: 

SN 
CON V X 
BCB Tl 
SN 
ASSN Z 
GSL CL.l 

and 
IF AlB THEN P=Qi 

be.comes: 

SN 
CONV A 
BCB Tl 
CONV B 
BCE T2 
GSL CL.2 
SN 
ASSN Q 

GSL CL.l 

T1 
(BZ,CL.l) 

Y 

Tl 
(BNZ,CL.2) 
T2 
(BZ,CL.1) 

P 

THEN Clauses: When the processing of an IF statement is completed, the 
THEN clause is examined. If it contains only a GOTO statement, the 
GOTOY routine is called to reprocess the code. In general, this 
reprocessing consists of reversing the condition code of the conditional 
branch which replaced the IF table, and replacing the compiler generated 
branch around the THEN clause with a branch to the label specified in 
the GOTO statement. For example, the statement: IF A>B THEN GOTO Li 
after processing by the COMPR routine would be: 

Licensed Material - Property of IBM Section 2: Method of Operation 157 



SN 
BC A B (BNH,CL.l) 
GOTO L 
GSL CL.l 

The GOTOY routine replaces this with: 

SN 
BC A 

If a logical expression 
more than one BC table, 
reversed. 

after 

After 

e. g. , IF AlB 

processing 

BC 
BC 
GO TO 
GSL 

processing 

BC 
BC 
GSL 

t; CID 

by the 

A 
C 

CL.l 

ty the 

A 
C 
CL.l 

B (BH,L) 

in the IF statement causes the generation 
only the last one will have its condition 

THEN GOTO L; 

LOGEX 

B 
D 

GOTOY 

B 
D 

routine would 

(BNH,CL.l) 
(BNH,CL.l) 
L 

routine this 

(BNH,CL.l) 
(BH,L) 

become: 

would become: 

of 

ELSE Clauses: No special processing of ELSE clauses is performed by 
this phase. 

Pro£gssi~Identifiers Declared with the UNALIGNED Attribute 

An identifier that is declared with the UNALIGNED attribute has the 
third bit of the ZTYP byte of its data element descriptor set to 
indicate this attribute (see figure 5.59). This attribute is also 
reflected in the DEDs of Q-temps. and chameleon-temporary operands 
associated with these identifiers. This attribute is taken into account 
in processing functions such as argument matching, generic selection, 
defined matching, etc. For later processing it is necessary to know 
whether the attribute is really applicable, i.e., whether an operand is 
really unaligned. If an operand is really unaligned it means that: 

1. If it is a bit string it may occupy part of a byte that is also 
used by another operand, and may not start at the beginning of the 
byte. 

2. The operand may not start on the boundary required for the 
processing instructions; a situation that could result in a 
specification interrupt. 

Phase KA examines operands which are declared as unaligned, and changes 
the bit setting in the DED in text if they are not really unaligned. It 
does not change the DED in the dictionary. Examples of the relevant 
operands are shown in the following lists: 

158 Licensed Material - Property of IBM 



Variables declared to be unaligned which 
are NOT really unaligned 

1. All arrays. 

2. All decimal or character element variables. 

3. All bit element variables wftich are not 
members of structures or arrays, and--­
which are not defined or parameters. 

4. All varying bit strings (note that the 
length field will not be on a half word 
boundary if the string is a member ot an 
aggregate, however). 

5. All based element bit strings. 

6. All temporary strings not derived from 
built-in functions or pseudovariables. 

Resolution of String Temporary Operands 

Variables declared to be unaligned 
which are REALLY unaligned 

1. All bit strings, fixed binary, and 
float data, of structures or arrays 
which are not also varying. 

2. Element variables which are parameters 
and not character or fixed deciroal. 

3. Element bit variables which are string 
overlay defined. 

4. Element variables Which are Simple 
defined, or a member of an array or 
structure, and are not character or 
fixed decimal. 

5. Bit temporary operands derived from 
SOBSTR built-in function or 
pseudovariable, where the second 
argument is not a multiple of 8 or 
where the first argument is really 
unaligned. 

6. Temporary operands derived from ONSPEC, 
where the argument is really-unaligned 
bit string. 

7. All based variables that are fixed 
binary or float. 

All temporary operands and chameleon-temporary operands that represent 
string items are examined, and information is determined from related 
text so that their DEDs can be completed. In the case of chameleon 
temporary operands, the DEDs in the relevant dictionary entries are also 
completed. 

Detection of Optimizable On-units 

ON statements are examined for situations where on-unit code can be 
optimized. SUch situations can occur in statements where the on-unit 
consists only of a branch to a label-variable or label-constant, e.g., 
ON condition GOTO label-variable;. If Phase KA detects such a 
statement, a bit is set (bit 5 in YH2FL, overlayed on YHPOPT) in the 
general dictionary block-header entry for the ON block. The setting of 
this bit is tested by Phase KV. 

Licensed Material - Property of IBM Section 2: Method of Operation 159 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

INTERLANGUAGE COMMUNICATION (PHASE 1M) 

Phase 1M performs functions required"to enable communication between a 
PL/I program and FORTRAN, COBOL, or RPGII programs. This facility is 
required in the following circumstances: 

• When a FORTRAN, COBOL, or RPGII program calls a subroutine that bas 
been compiled on the DOS PL/I Optimizing Compiler. 

• When a FL/I program calls a subroutine that has been compiled on the 
IBM systen/360 DOS FORTRAN IV F Compiler, or on an IBM Systen/360 
DOS COBCL conpiler. 

• When a FL/I program uses a data set that has been created by a COBOL 
program, or when a FL/I program creates a data set that nay be used 
by a COBOL progran. 

Note: A full list of COBOL, FORTRAN, and RPGII compilers supported can 
be found in the publications: DOS PL/I Optimizing compiler: General 
Information, and DOS PL/I Optimizing Compiler: Installation. 

The main problems involved in communication between these different 
programming languages are: 

1. The existence of different data types in the different languages. 
Phase 1M checks the validity of data items involved in 
interlanguage communication. 

2. Differences in the methods by which the different programming 
languages hold data aggregates in storage. If a data aggregate is 
involved in interlanguage communication, Phase 1M determines 
whether there is any difference between the methods of mapping used 
by the two languages involved. If there is, it creates an 
aggregate temporary operand, assigns the item to it, and indicates 
the type of mapping required of Phase IQ or a library subroutine. 

3. The need for the existence of an operating environment appropriate 
to a particular programming language, before a program or 
subroutine written in that language can be executed. Phase 1M 
generates calls to library subroutines that create the required 
operating environment, or restore the original environment. 

PHASE INPUT 

Input to the phase consists of the main text stream, which is scanned 
sequentially, (and also scanned by subsidiary routines), and the general 
dictionary, in which all entries for external entry points are scanned. 
Other entries in the general dictionary and in the variables dictionary 
are accessed as required. 

PHASE OUTPUT 

This phase modifies t~e Rain text strean ty deletion or by insertion of 
new or modified text tables as described in following paragraphS. 
Entries may be rrade in the general and variables dictionaries for a 
block header, entry paints, fararreters, aggregate temporary operands, 
and aggregate tables. All relevant newly-generated items are linked to 
appropriate chains in the text and dictionaries, and chain-header fields 
in XCOMM are updated if necessary. 

160 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

PHASE OPERATION 

General Considerations 

Most of the functions required to enable interlanguage communication are 
performed by Phase 1M, and are only performed if the facility is 
required. These functions duplicate some of the logical functions 
performed by other phases, e.g., creation of dictionary entries and text 
for PROC and ENTRY statements, generation of aggregate terrporary 
operands and aggregate-teHporary-c~erand assignnents. Because of the 
position of Phase I~ in the sequence of pbase loading, SORe further 
duplication of logical functicn is also requirea in order to rraintain 
compatihility with the general state of processing, e.g., staterrent-type 
chains created by Phase KA must be updated to include text generated by 
this phase, aggregate operands Rust be eXFanded in keeping with the 
processing performed by Phase I~, etc. 

RPG is processed as if it were a CCBOL invocation, with the exception of 
diagnostics which will indicate RPG. 

sequence of Processing 

The phase first processes any invocations of PL/I procedures by COBOL or 
FORTRAN programs. The routine PRCFND examines all general dictionary 
entries for external entry pOints, and checks tor the presence of the 
COBOL or FORTRAN option of the OPTIONS option. If one of these options 
is found on an entry pOint, the subroutine PRCFFF is called to create a 
special PL/I procedure block. The subroutine BRGOOO is called to 
generate the required text and dictionary entries, which are later 
linked into any relevant chains. For each subsequent FORTRAN or COBOL 
option found, an entry point is created in the interface procedure 
block. 

Control is then passed to the routine TXTSSS to perform any processing 
required for calls to FORTRAN or COBOL subroutines, or in connection 
with COBOL files. The entire text stream, with the exception of new 
text generated by this phase, is scanned. Each staterrent header is 
examined for indication of a record-oriented input/out~ut staterrent, and 
the text tables of such statements are examined for references tc COECL 
files. The subroutine REDFND is called to generate any text that is 
required in such a case. During the main scan cf the text, each 
statement is examined for the presence of text tables indicating a 
procedure call or function reference. If such an iterr is found, control 
is passed to the routine ARGOOO. This routine deterrrines whether any 
text is required to provide an interface ~ith a COBOL or FORTRAN 
subroutine, and generates the necessary text ano dictionary entries. On 
completion, the scan of the statement is continued so that any nested 
calls or function references can be processed. On corrpletion of the 
scan of each statement, any relevant chains are updated. 

Processing Invocations of PL/I from COBOL or FORTRAN 

All entries in the general dictionary for external entry points are 
examined by the routine PRCFND. If any external entry pOint is found to 
have been declared with the FORTRAN or COBOL option of the OPTIONS 
option, the subroutine PRCFFF is called to create a PL/I procedure block 
which contains the text required to provide an interface between a PL/I 
procedure and a COBOL or FORTRAN ~rograrr. This procedure can be 
considered as a dumny procedure hlock which surrounds the actual 
procedure block required, and is referred to in these descriptions as 

Licensed Material - Property of IBM Section 2: Method of Operation 161 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

the encompassing procedure. It is given the nane of the first relevant 
external entry point found in the dicticnary, and is characterized by a 
block level of one, a block ccunt of zero, and ty all its contained text­
having a statement number of zero. (When Phase GA creates dictionary 
entries for procedure blocks, the block count of zero is reserved for 
possible use by Phase 1M.) 

The subroutine BRGOOO is called to generate the text required in the 
encompassing procedure, and create any dictionary entries that are 
required. The text that indicates the prologue code for the 
encompassing procedure includes a call to a subroutine in the library 
module IBMDIEF. This subroutine sets up an operating environnent in 
which the required procedure can be executed, and restores the FORTRAN 
or CeBeL environment when that execution is complete. 

The dictionary references of paraneters on the required procedure are 
stacked in entries in ARGSTX, and NOMAP/NOMAPIN/NCMAPOUT opticns are 
analyzed and rr.erged into the stack. For each parameter that is a data 
aggregate requiring mapping according to FL/I rules, an aggregate 
temporary operand (and associated dictionary entry) is created, and text 
corresponding to the follcwing fUncticns is generated: 

1. To initialize the locatcr tor the parameter. 

2. To reserve storage for a descriptor for the temporary operand. 

3. To map the temporary operand according to FL/I rules. 

4. To assign the parameter to the temporary operand. 

When this proceSSing is complete, text is generated to build an argument 
list which can be passed tc the required FL/I procedure. This argument 
list contains either the original parameters or the aggregate tenporary 
operands. A call to the required procedure is then generated. 

In preparation for the return of control, text is generated to assign 
each temporary operand back to the original parameter, (unless 
suppressed by the NOMAPOUT option), to invoke the library routine 
required to restore the COBOL or FORTRAN environment, and to return 
control to the calling program. 

The scan of entries in the general dictionary is resumed and, for each 
relevant external entry point, an entry point is created in the 
encompassing procedure, and processing as described is repeated. Each 
entry point in the encompassing procedure has the same name as the 
corresponding entry pOint in a required procedure. To avoid conflict 
during linkage editing, entry pOints in the req~ired procedure are 
flagged to inhibit the creaticn of external symtol dictionary entries 
(:ESDs) • 

If the FORTRAN opticn is applied to an entry pOint, and the required 
procedure returns a data type that is valid in FORTRAN, it is assumed 
that the entry pOint can be invoked as a function. In this case, the 
argument list passed to the required procedure is extended to include a 
returned value, and modified epilogue code for the encompassing 
procedure is generated. 

ProceSSing Invocations of COBOL or FORTRAN from PLl1 

In preparation for invocations of COBOL or FORTRAN subroutines from 
within a PLiI program, Phase 1M generates text to call a library 
subroutine to set up a COBOL or FORTRAN operating environment, and 
another call to a library SUbroutine to restore the PL/1 environment, 
before and after each relevant pOint of invocation. Text is also 

162 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Added by TNL LN33-6175, October 1976 

generated to process any arguments as required before the library 
subroutine is invoked, and after control is returned to the PL/I 
program. In contrast to the processing performed when a FORTRAN or 
COBOL program calls a PLiI subroutine, all the text generated to provide. 
the interface facility is contained within the same PL/I block as the 
procedure call or function reference. 

Licensed Material - Property of IBM Section 2: Method of Operation 162.1 



The routine TXTSSS scans the main text stream (except for text 
previously generated by this phase). If a text table indicating a 
procedure call or function reference is found, a check is made to see if 
it corres~onds to an external entry point declared with the COBOL or 
FORTRAN option. If so, preceding text tables within the statement are 
rescanned to check for the presence of an argument list (indicated by an 
ALIST text table followed by an ARG text table for each argument). The 
dictionary references of any arguments are stacked in entries in ARGSTX. 
Any NOMAP/NOMAPIN/NOMAPOUT options are analyzed and the result is also 
stacked. The code bytes of the ALIST and ARG text tables are changed to 
NULL. The arguments are then examined and processed as required ~o 
create an argument list in a form acceptable to the COBOL or FORTRAN 
subroutine. 

If an argument is a data aggregate that is mapped differently in PL/I 
and COBOL or FORTRAN, (and remapping is not suppressed by the 
NOMAP/NOMAPIN/NOMAPOUT options), an aggregate temporary operand, mapped 
as required for COBOL or FORTRAN, is generated and the argument is 
assigned to it. If the argument is already an aggregate temporary 
operand <created by Phase ID), Phase 1M flags it to indicate to Phase IQ 
that it requireS mapping according to either FORTRAN or COBOL rules. To 
ensure that the temporary operand is allocated storage, mapped, and 
initialized as necessary, text corresponding to the following functions 
is generated: 

1. To reserve storage for a descriptor for the temporary operand. 

2. To initialize adjustable fields in the descriptor. 

3. To map the temporary operand according to COBOL or FORTRAN rules. 
(A special dummy assignment text table, MASSN, is generated to 
assign each element of the record variable that is a varying-length 
string to the corresponding element of the record variable.) 

4. To assign the PL/I argument to the temporary operand (expanded into 
elements assignments as required). 

When all arguments have been processed as required, an argument list 
ccntaining the original arguments or the temporary operands (dummy 
arguments) is generated. The arguments are flagged to indicate that the 
address of the storage, and not the address of its locator, is to be 
passed as an argument. 

A call is then generated to invoke a library subroutine, in either the 
IBMDIEC or IBMDIEF library modules, to set up the COBOL or FORTRAN 
operating environment. This is followed by a call to the required COBOL 
or FORTRAN entry point. To restore the PL/I operating environment, a 
call to another library subroutine is generated. The process is 
completed by aSSigning the value returned by a FORTRAN function to the 
appropriate temporary operand, or by assigning the specially created 
temporary operands back to the appropriate arguments, unless NOMAPIN has 
been specified. 

Processing COBOL Files 

If a statement header indicating a record-oriented input/output 
statement is found during the scan of the main text stream, control is 
passed to the REDFND subroutine. This subroutine examines the text 
tables within the statement, and any relevant dictionary entries, to see 
if they refer to a file declared with the COBOL option of the 
ENVIRONMENT attribute. If so, the statement is checked to ensure that 
it is not LOCATE, DELETE, or UNLOCK, and each record variable is 
examined to determine its validity in PL/I and in COBOL. 

Licensed Material - Property of IBM section 2: Method of Operation 163 



Each record variable is also examined for the presence of structures. 
If structures are not present, no further processing is required. If 
structures are present, the subroutine PLCBMP is called to determine 
whether the structure is mapped in a similar manner in bo~h PL/I and 
COBOL. If the structure is mapped differently in the two languages, 
text is generated to create an aggregate temporary operand that can be 
mapped according to COBOL rules, and to assign the PL/I variable to the 
temporary operand. The text tables generated by this phase indicate 
whether the record variable and the temporary operand are to be mapped 
by Phase IQ, or whether they require mapping during execution by a 
resident library subroutine. 

According to the type of statement, and features of the record variable 
involved, text is generated by this phase corresponding to the following 
functions: 

1. To reserve storage for the temporary operand descriptor. 

2. To initialize adjustable fields in the descriptor. 

3. To map the temporary operand according to COBOL rules. (A special 
dummy assignment text table, MASSN, is generated to assign each 
element of a record variable that is a variable-length string to 
the corresponding element of the temporary operand.) 

4. To insert into the statement the dictionary reference of the 
COBOL-mapped temporary operand. 

5. To assign the PL/I record variable to the COBOL-mapped operand (if 
the statement is WRITE or REWRITE), 

To assign the COBOL-mapped temporary operand to the PL/I record 
variable (if the statement is READ). 

On completion of processing of the statement, all relevant items in the 
newly generated text are linked into appropriate chains. 

164 Licensed Material - Property of IBM 



ARRAY AND STRUCTURE MAPPING (PHASE IQ1 

The main function of Phase IQ is the mapping of arrays and structures in 
order to set up the requisite locator-descriptors or, where the mapping 
cannot be performed by this phase, the generation of text defining 
inline code for the execution-time mapping of arrays and the generation 
of calls to library subroutines for the execution-time mapping of 
structures. The mapping is carried out in accordance with the PL/I 
algorithm (as described in the data-mapping section of the PL/I 
optimizing Compiler Language Reference Manual) or the FORTRAN or COBOL 
algorithms as applicable. 

In addition to aggregate mapping, the phase also performs the following 
functions: 

• Generates text to determine the length of aggregate temporary 
operands containing strings, where they represent parameters whose 
length is specified by means of asterisks. 

• Generates the necessary library-subroutine calling sequences for the 
execution of ALLOCATE and FREE statements. 

• Generates text to allocate aggregate temporary operands. 

• Generates text required to determine the length of a concatenation 
expression where the final result is a temporary operand. 

PHASE INPUT 

Initial input to the phase is the general dictionary, in which the 
chains of aggregate-table entries, partly constructed by Phase GE and 
linked from the XAGHEDA and XAGHEDS fields of XCOMM, are scanned. When 
processing of these entries is completed, the main text stream is 
scanned for MAP, RESDES, ALLOe, FREE, CONCAT, and ASSN text tables. 
Aggregate table entries in the general dictionary for arrays and 
structures with adjustable bounds or extents, not linked in the chains 
mentioned above, are accessed when a reference is seen in the text. 
Entries in the variables dictionary for aggregate temporary operands are 
also accessed. 

PHASE OUTPU'I 

On output from the phase, the aggregate table entries in the general 
dictionary are modified and completed as far as possible. The lengths 
of aggregate temporary operands are inserted in their variables 
dictionary entries. The text is modified as described in the following 
paragraphs. 

PHASE OPERATION 

During phase initialization, the XAGHEDA field of XCOMM is accessed to 
find the general-dictionary reference of the first aggregate-table entry 
in a chain of entries for array·s. The subroutine IQMAP is called to 
process the information in the entry, and to complete the entry as far 
as possible (see figure 5.11). The process is repeated for each 
aggregate table entry in the chain, and for each entry in the chain of 
entries for structures headed by the XAGHEDS field. These chains, which 
link aggregate tables entries via their YTCHN fields, include entries 

Licensed Material - Property of IBM Section 2: Method of Operation 165 



for all aggregates wi~h fixed extents, non-controlled aggregates ~hat 
are notldeclared with the CONNECTED attribute, and all based and 
controlled aggregates (including parameters). Aggregate table entries 
for aggregates with adjustable extents, for defined aggregates, and fer 
aggregates that are non-controlled parameters declared with the 
CONNECTED attribute are not linked into these chains; they are processed 
later when a reference is encountered in the text. 

The existing information in each aggregate table entry is used to 
calculate multipliers and other values required to modify or complete as 
far as possible the values for size, relative virtual origin, and 
element offset, and to set flags indicating adjustable values that 
cannot be calculated during compilation. The en~ry fields that are 
comFleted include YTKEFL, YTHNG (for major structures), YTSZ (for 
aggregate temporary operands), YTROFF (for arrays not in structures), 
YTSB, YTBFLG, YTRVO, and YTMULT. (The hang value in YTHNG indicates the 
number of bytes, at the beginning of storage for an aggregate, that are 
unused because of alignment requirements.) 

The setting of flag bits in the YTSZFL field indicates whether the PL/I, 
FORTRAN, or COBOL algorithm is to be used for mapping the aggregate. 
The algorithm used for calculating multipliers according to PL/I 
requirements is illustrated in the following example. For an array 
declared as follows: 

DCL A (LB1:HB1, LB2:HB2, LB3:HB3); 

the address of an element A(I,J,K) is: 

Virtual origin of A+I*Ml+J*M2+K*M3 

where M3 = element length 
M2=M3*(HB3-LB3+1) 
Ml=M2*(HB2-LB2+1) 

Virtual origin of A=Start of array-«Ml*LB1)+(M2*LB2)+(M3*LB3» 

The sum of the products of multipliers and lower bounds is called the 
relative virtual origin of the array. This value is inserted in the 
YTRVO field of the entry. 

In some cases multipliers are later recalculated by Phase KE according 
to a slightly modified algorithm, in order that more efficient 
addressing code can be generated. 

When the scan of the chained aggregate table entries is complete, 
control is passed to the routine SCO, which scans the main text stream 
for text tables of interest to the phase and branches to appropriate 
processing routines as follows: 

MAP text tables - processed by routine SC2 
RESDES text tables - processed by routine SC25 
ALLOC text tables - processed by routine SC14 
FREE text tables - processed by routine SC26 
CONCAT text tables - processed by routine SC60 
ASSN text tables - processed by routine SC91 

The main scanning routine also scans for OFFS text tables that are 
associated with structure or array descriptors. If the descriptor 
applies to an aggregate temporary operand, a controlled aggregate, or a 
based adjustable aggregate, the reference to the aggregate table in the 
second operand of the OFFS text table is replaced by the temporary 
descriptor from the associated RESDES text table. If this descriptor is 
a dimensioned member of a structure, the offset value in operand 1 is 
incremented by four bytes to allow for the offset field in the structure 
descriptor. 

166 Licensed Material - Property of IBM 



Processing MAP Text Tables 

All MAP text tables in the text input to Phase IQ have an IOP2 code of 
X'OO'. When one cf these text tables is seen, its aggregate table entry 
in the general dictionary is accessed. If the entry is included in the 
chains linked from either the XAGHEDA or XAGHEDS field in XCOMM, the 
aggregate will have been mapped as far as is possible at compiler time. 
If an entry shows that the aggregate has been completely mapped, the MAP 
text table is deleted. For all other aggregates, the aggregate table 
entry is completed, as far as is possible at compile-time by the 
subroutine IQMAP. Text is then generated to complete the mapping at 
execution time, either during execution of prologue code or on reference 
to the variable during execution of main code. For structures, mapping 
at execution time is performed by a library subroutine, and this phase 
generates text defining the required calling sequence. For arrays, ~his 
phase generates text-defining code to perform the mapping inline. 

If a MAP text table refers to a temporary structure or array with one or 
more string lengths specified by means of asterisks, a call is made to 
the subroutine CALLEN. This subroutine scans the text following the MAP 
table for string-handling operations that affect the length of the 
string to be assigned to the temporary operand. Information derived 
from these operations is stacked and used to determine the maximum 
length of each element. Where the information is insufficient to enable 
the subroutine to determine this length at compile-time, text is 
generated to indicate the code required to determine the length during 
execution. 

If a MAP table refers to a structure that cannot be completely mapped at 
compile time, the subroutine GENSDD is called. This subroutine uses the 
XCADD macro to construct a structure-descriptor-descriptor for the 
variable {see figure 5.122> and to insert it in an entry in the general 
dictionary. The subroutine GENLIB is then called to generate text 
tbbles defining a calling sequence to the structure-mapping library 
subroutine; the reference of the structure-descriptor-descriptor is 
included in the argument list. If the structure is based and has 
adjustable extents it will require mapping on reference during 
execution. In such a case, a call to another entry point in the library 
structure-mapping module is generated. 

If the MAP text table refers to an array that cannot be completely 
mapped at compile-time, text is generated defining inline code required 
for mapping during execution. Unless the item is a FORTRAN array, (in 
which case a MAP04 text table is generated), the input MAPOO table is 
replaced by another MAPOO table, defining code to be generated for 
mapping during execution. 

Pro£~ssing RESDES Text Tables 

A RESDES text table indicates that temporary storage is to be reserved 
for the descriptor of an aggregate that is a temporary operand, is 
controlled, or is cased with adjustable extents. The RESDES text tables 
are created by Phases IA and ID. Routine SC25 examines the aggregate 
table for the variable specified in the RESDES table. If the aggregate 
has fixed extents, (a RESDES table is generated by Phase ID for each 
aggregate temporary operand that it creates,) the RESDES table is 
deleted. Otherwise, the required size of the descriptor is determined, 
and the length is inserted in the third operand of the text table. If 
the aggregate is a temporay operand, text defining the code required to 
move the address of the temporary descriptor into its locator is also 
generated. 

The routine also generates a RESDES text table for any controlled 
aggregate that has extents specified by asterisks but has no other 
adjustable extents. 

Licensed Material - Property of IBM Section 2: Method of Operation 167 



When an ALLOe (or LOCATE) text table is seen, routine SC14 examines the 
allocated variable. If the extents of the variable are not known at 
compile time, the ALLOC table will be preceded by a MAP text table. In 
cases where the extent of the variable is indicated by a single 
asterisk, (e.g., ALLOCATE A(*);), subroutines are called to generate the 
requisite MAP text table. The length of the variable determined by the 
MAP table is used as the basis for the length of the required 
allocation. 

If the variable is controlled and requires a locator (i.e., if it is an 
aggregate, a string, or an area), the length of ~he locator is added to 
the length of the required allocation. If the variable also requires a 
descriptor, thE length of the descriptor is added to the allocated 
length if the variable has adjustable extents. 

The subroutine GENLIB is called to generate text tables defining a 
calling sequence to a library subroutine to perform the allocation. The 
library subroutine called is one of ~hree, depending on whether the 
allocated variable is controlled, based and allocated in an area, or 
based but not allocated in an area. 

Processing FR~~Text T~Bl§§ 

FREE text tables are processed by routine SC26 in a manner similar to 
the processing of ALLOC text tables. The conditions affecting selection 
of the library subroutine to be called are the same. 

Processing CONCAT Text !~El~§ 

All CONCAT text tables are examined by routine SC60, but processing is 
only performed if the result (third) operand is a string-address 
temporary operand. 

If the operands are bit strings, processing consists of the generation 
of a GETVDA text table to indicate the code requ~red to acquire storage 
for the result. If the operands are character strings, a read-ahead 
scan is made to see if the string-address temporary operand result is 
used in another CONCAT text table. If it is, the result operand of the 
first CONCAT text table is replaced by the result operand of the second 
table. The process is repeated until a CON CAT text table is found in 
which the result is not a string-address temporary operand, in which 
case control is returned to the main scanning routine, or until the 
result operand is found to be used in a text table other than a CONCAT 
text table. In this case, the CALLEN subroutine is called to analyze 
the expression in which the string operands are used, and to generate 
text defining the code required to calculate the maximum length of the 
result of .the final concatenation operation. Control is returned to the 
main processing routine and a VDA(OO) text table for the calculated 
length is generated. 

Processing Assig~nt ~~ Tables 

Routine SC91 examines all text tables involving assignment. If the 
result operand is a string-address temporary operand that is not derived 
from a pseudovariable, a VDA(OO) text table is generated to acquire 
storage for the result. 

168 Licensed Material - Property of IBM 



The CALLEN subroutine is called from a number of routines in the phase, 
to analyze string expressions and to determine the maximum length of the 
target to which the expression is assigned. Examples of this are when 
arrays or structure members have extents specified by asterisks, or when 
a concatenation operation is assigned to a temporary operand result. 

rh~ subroutine makes two scans of the string expression. During the 
first scan a stack is built, in which an entry is made for each 
operation in the expression that has a temporary operand result, or a 
result that is a Q-temp. derived from a temporary operand that is b~ing 
processed. Each entry consists of three 2-byte fields, representing 
respectively operand 3 (result operand), operand 1, and operand 2. The 
identifying number of the result temporary operand is inserted in the 
first field. If operand 1 or operand 2 is an intermediate string 
t~mporary operand, its identifying number is inserted in the appropriate 
field; ctherwise, the field is set to X'FFFF'. The stack is then 
scanned recursively, starting at the entry for the final result operand. 
For each operand in the stack that is directly involved in the 
expr~ssion, bit zero of its stack entry is set. 

The string expression in the text is then scanned again. As each text 
table representing a string operation is seen, a search of the stack is 
made to see if the result operand has been flagged as a significant 
temporary operand. If it has, a length calculation is made according to 
the type cf operation the operand is involved in, as shown below: 

Qperatio~§ 

SUBSTR bif 

REPEAT bif 

NOT, ASSN, CONV 

CON CAT 

AND, OR 

STRING, bif 

Basis for length calculation 

length of operand 1 

(length of operand 1+1) * operand 2 

length of operand 1 

length of operand l+length of operand 2 

MAX (length of operand 1, length of operand 2) 

a call to a library subroutine is generated to 
d~termine the maximum length. 

(If any operand has a varying length, the maximum length is used.) 

If the lengths of the operands are known at compile time, the calculated 
length is set as a constant value in the operand 1 position in the stack 
entry, and the operand 2 position is then used as a switch that is set 
to indicate the presence of the constant value. If the lengths of the 
operands are not known at compile time, text tables are generated which 
define the code required to calculate the lengths at execution time. If 
the text table contains a temporary operand that is generated to hold 
the length of an intermediate result, the identifying number of the 
temporary operand is inserted in the operand 1 field of the appropriate 
stack entry, and the operand 2 field of that entry is used as a switch, 
which is set to indicate a variable result. 

When the scan of the expression in the text reaches the last text table 
in the expression, either the maximum constant length of the result is 
known, or a temporary operand has been generated to hold the required 
length value. A VDA(OO) text table for the required length is then 
generated. 

Licensed Material - Property of IBM section 2: Method of Operation 169 



The main function of this phase is the processing of subscripts. This 
involves evaluation of constant subscripts, and the provision of 
information that enables variables subscripts to be evaluated during 
execution. In addition to this processing, the phase performs the 
following functions: 

1. Generates text indicating optimized aggregate-assignments by use of 
MVC instructions. 

2. Inserts array bounds information in compiler-generated do-loops. 

3. Applies base array information to iSUB-defined items. 

4. Processes INITIAL assignments to arrays. 

5. Checks for occurrences of the SUBSCRIPTRANGE condition or, if this 
cannot be done during compilation, enables the condition to be 
tested during execution. 

PHASE INPUT 

Input to the phase consists of the main text stream in Type 2 text 
fermat. Only those statements in the XSUBCH chain created hy Phase KA 
are examined. 

Entries in the variables and general dictionaries are accessed to obtain 
information about arrays. 

PHASE OUTPUT 

output from the phase consists of the main text stream, in which text 
tables have been deleted or modified, or new text tables generated, as 
described in the following paragraphs. No dictionary entries are made 
by this phase. 

PHASE OPERATION 

seguence of Processing 

The main scanning routine uses the XTCH macro to scan statements in the 
XSUBCH chain. As each statement header is found, the statement-type 
code byte is examined. If this code byte is SOASSN (X'7C'>, indicating 
an optimizable array or structure assignment, control is passed to the 
MVC1 routine to process the assignment. When this processing is 
complete, the scan is moved to the next statement. 

If the statement is not SOASSN, the prefix-option bytes in the statement 
header are examined. If these indicate that the statement contains a 
compiler-generated do-loop, the text tables of the statements are 
examined and any do-loops that are found are processed by the DOlTO 
routine. 

When any do-loop processing that may be required is complete, the 
prefix-option bytes are further examined for indication of iSUB 
definition in the statement. If this is indicated, the text tables of 

170 Licensed Material - Property of IBM 



the statement are again scanned, and iSUB defined items are processed by 
the DEFO routine. 

When any do-loop or iSUB-definition processing that is required is 
complete, the text tables of the statement are scanned by the LABA 
routine, which processes any subscripted items indicated by SUBSl and 
SUBS text tables. If, during this scan, any IASSN cr AID text tables 
(indicating array INITIAL assignments) are found, then a flag is set to 
indicate that initial processing is required. Duripg the processing of 
subscripts, the SUBRGSUB subroutine is called to check for the 
occurrence of the SUBSCRIPTRANGE condition, or to generate text to 
enable the condition to be checked during execution. When the end of 
the statement is reached, the array initial flag is tested and ~ call 
made to the INITO routine if array initial is present. The main 
scanning routine is then called to get the next statement. 

Optimized Aggregate Assignments 

Phase IE determines whether assignments of arrays and structures must be 
expanded into individual element assignments, or whether the whole 
aggregate can be assigned without expansion. Where expansion is not 
necessary, it indicates this fact by creating an SOASSN statement. When 
an SOASSN statement is found, the routine MVCl is called to generate 
text for the optimized assignment. 

The proceSSing involves accessing the appropriate aggregate table 
en~ries in the general dictionary to determine the virtual origin of 
each aggregate. This enables the creation of Q-temps., between which 
assignment can be made. This processing is indicated in the following 
example. The source statements: 

DCL A(10), 
B(10) FIXED BIN; 

A Bi 

result in the following text tables being generated by the phase: 

OFFS 
OFFS 
MOVE 

V.O. of A 
V.O.of B 
Q-temF2 

A 
B 

length 

Processing compiler~enerated Do-loops 

Q-templ 
Q-temp2 
Q-temp1 

Examination of the prefix-option bytes in the statement header will 
indicate whether the statement contains subscript tables that are 
surrounded by do-loops created by Phase IE. If so, bounds information 
must be inserted before the do-loop can be processed by Phase KI. 

The required processing is performed by the DOlTO routine. Appropriate 
aggregate-table entries in the general dictionary are accessed to obtain 
information about the lower and upper bounds of arrays, which is 
inserted into the first and second operand fields of the lTDO text 
table. In a case where an asterisk subscript is used, this is replaced 
in the subscript text tables by the lower-bound value. The subscript 
text tables are later processed by the LABA routine. 

Licensed Material - Property of IBM Section 2: Method of Operation 171 



In cases of iSUB-defining, the subscript tables for the defined item are 
always preceded by text tables for the base array. These text tables 
arc DSUBS1, DSUBS, and DSUBSL tables, preceded by a DLST table. 

The DEFO routine converts the subscripts of the defined item to those of 
the base array, and substitutes them in the base array text tables. The 
text table operators are changed, and some text tables deleted, as shown 
in the following example. The source statements: 

DCL A (5,6) , 
B (4) DEFINED A (lSUB,lSUB); 
B (2) = 1; 

will result in the following text tables being input to Phase KE; 

{DLIST B A 
Base DSUBS1 1SUB A T1 
Array DSUBSL 1SUB A T1 

{SUBSi 2 B Tl 
Defined NDX Ti B Q-tempi 
Item ASSN 1 Q-tempi 

After processing by the DEFO routine, the modified text tables appear as 
follows: 

SUBSi 
SUBS 
NDX 
ASSN 

2 
2 
Ti 
1 

A 
A 
A 

Ti 
Tl 
Q-temp1 
Q-temp1 

During this processing, the SUBRGSUB subroutine is called to check for 
occurrence of the SUBSCRIPTRANGE condition in the defined item. 
Occurrence of this condition in the base array is checked later, when 
the subscripts are being processed by the LABA routine. 

The LABA routine processes all subscripts in the text as modified by 
earlier processing performed by the phase. To do this it scans all text 
tables in the statement. 

For each reference to a subscripted variable (i.e., in a SUBSi or SUBS 
text table) Phase KE provides information which enables the offset of 
that variable, from the actual origin of the array in which it is 
contained, to be calculated. The information provided by this phase is 
in the form of subscript multipliers. If the subscripts themselves are 
variables, then the subscript multipliers are inserted in the second 
operand fields of the appropriate SUBSl or SUBS text tables. This 
enables code to be generated to calculate the required offset during 
execution. If the subscripts are constant values, then Phase KE 
calculates the required offset and generates an OFFS text table to 
replace the appropriate SUBSi, SUBS, and NDX text tables. 

Where the elements of an array occupy contiguous areas of storage, and 
do not have adjustable bounds, the LABA routine calculates the value of 
each subscript multiplier, using the expression: 

Multiplier=Hbound-Lbound+i 

and the length of each array element. 

172 Licensed Material - Property of IBM 



If the subscripts are constant values, the routine calculates the offset 
of the element, using the ex~ressicn: 

Element Offset=Array Virtual Origin+(lLFAR.Nl Sl.Ml+S2) 
.M2+SI).MI+SI).MN) 

subscript (and SI is the Ith subscript), where S 
~ 

and N 
= subscript multiplier (and MI is the Ith subscript-multiplier), 
= the number of dimensions of the array. 

In this expression, the value of each multiplier other than the first is 
dependent upon the values of preceding multipliers. 

Processing performed by the phase is illustrated in the following 
example. 

The statements: 

DeL A(7,2) FLOAT DEClMAL~ 

A(3,2)=I; 

would result in the following text tables being input to Phase KE: 

SUBSl 
SUBS 
NDX 
ASSN 

3 
2 
Tl 
I 

A 
A 
A 

Tl 
Tl 
Q-templ 
Q-templ 

The subscript multipliers are calculated and, because the subscripts are 
constant values, the offset of the element is calculated. Output from 
the phase is: 

OFFS 
ASSN 

32 
I 

A Q-tempi 
Q-tempi 

If the subscripts are variables, as in the statement: 

A(I,J)=I~ 

the input to the phase contains: 

sUBSI 
SUBS 
NDX 
ASSN 

I 
J 
Tl 
1 

A 
A 
A 

Tl 
Tl 
Q-tempi 
Q-templ 

Phase KE would not be able to evaluate the offset, but would calculate 
the subscript multipliers and modify tae text so that later phases could 
generate code to enable the calculation to be made during execution, 
using the same algorithm. The cut~ut text would be: 

SUBSl 
SOBS 
NDX 
ASSN 

I 
J 
Tl 
1 

2 
4 
A 

Tl 
Tl 
Q-tem~l 
Q-teK:pl 

Where the elements of an array are not contiguous in storage, Phase R! 
does not calculate the subscript multipliers, but uses the multipliers 
calculated by the aggregate mapping phase (Phase lQ) and inserted in the 
aggregate table entry in the general dictionary. The expression used to 
calculate the element offset differs from that used for contiguous 
arrays, and is 

Element Offset=Array Virtual Origin+(SI*MI+S2*M2---SI*MI+SN*MN) 

Licensed Material - Property of IBM section 2: Method of Operation 173 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

where the symbols are the same as previously described. In this 
expression, the value of each multiplier is independent of the values of 
preceding multipliers. The text tables output are similar to those 
previously described, but the second operator code byte is set to 
indicate to phases in the register allocation stage that registers must 
be allocated according to the modified algorithm. 

Processing the SUBSCRIPTRANGE Condition 

When the LABA routine is processing subscripts, it calls the SUBRGSUB 
subroutine to check for situations where the SUBSCRIPTRANGE condition 
would be raised during execution. This subroutine is also called during 
processing of iSUB defined items, when the defined array is checked for 
this condition. The base array is checked during processing of 
subscripts. 

Where subscripts are constants and the bounds are known, situations 
where the SUBSCRIPTRANGE condition would be raised can be checked by 
this phase. The checking is performed in all such cases, regardless of 
whether the condition has been enabled by the source programmer or not. 
A diagnostic message of the SEVERE ERROR type is generated for each 
relevant situation. 

If a subscript is a variable, or if the bounds of an array are not known 
during compilation, text indicating the code required to check the 
condition during execution is generated. This text is only generated 
for situations where the SUBSCRIPTRANGE condition is enabled. The text 
consists of conditional branch text tables and compiler-generated 
labels, as illustrated in the following example. 

If the SUBSCRIPTRANGE condition is enabled, the following source 
statements: 

DCL A(M:N); 

ACI) = 1; 

will cause Phase KE to generate the following text tables: 

BC 
BC 
GSL 
SIGNAL 
GSL 
SUBS1 

I 
I 
CL.1 
SUBRG 
CL.2 
I 

M 
N 

A 

BL,CL.1 
BNH,CL.2 

T1 

Processing Array INITIAL Assignments 

The input to the phase for array items with the INITIAL attribute will 
be similar for either contiguous arrays or interleaved arrays. The 
routine INITO determines the environment of the array. 

For contiguous arrays with constant repetition factors, initial values 
will be assigned by the generation of MOVE tables. 

For contiguous arrays with variable repetition factors, a flag is set in 
the XCOMSTR field, in XCOMM, to indicate that a compiler-generated 
subroutine is required to generate move instructions at execution time. 

FOr interleaved arrays, initial aSSignment is made by addressing each 
element in turn and then making the appropriate aSSignment. 

174 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised'by TNL LN33-6175, October 1976 

DO-STATEMENT PROCESSING (PHASE KI) 

This phase processes all iterative forms of the DO statement, DO 
specifications in the data lists of stream-oriented input/output 
statements, and do-loops resulting from array assignments. 

Processing consists of replacing or deleting Type-2 text tables in the 
main text stream, and inserting additional text tables where necessary, 
so that the output text indicates the machine code that must be 
generated for inclusion of these items in the object module. 

During processing, indications of possible optimization may be inserted 
for use by phases in the global optimization and register allocation 
stages. 

PHASE INPUT 

Input to the phase consists of Type 2 text tables that indicate the PL/I 
format of the source program. Phase KI examines all statements in a 
chain built by Phase KA, the head of this chain being in the XDOCH field 
in XCOMM. Pointers in the chain enable the following items to be 
accessed: 

• Statement headers -- SN or SL tables -- for iterative DO statements. 

• Dummy statements headers -- GSN tables -- generated in the case of 
do-loop specifications preceding array assignments in input/output 
statement data lists. 

• 003 text tables, generated in connection with the END statements of 
do-loops. 

• 001 text tables, generated with 002 text tables during the 
translation of DO statements by Phase II. 

001, D02, and 003 text tables contain the following operands: 

DOl tables 

Operand 1. 

Operand 2. 

Operand 3. 

002 tables 

Operand 1. 

Operand 2. 

Operand 3. 

003 tables 

Operand 1. 

Null. 

1he reference of a compiler generated label indicating 
either the start of the next' loop specification in a 
multiple loop specification, or the D03 table if the DOl 
table is either the cnly loop specification or the last of 
a multiple loop specification. 

The loop control variable (lcv). 

A constant or a temporary variable indicating the value of 
the TO clause. 

A constant or a tem~orary variable indicating the. value of 
the BY clause. 

A statement label reference, or a compiler-generated label, 
indicating the first statement in the body of the DO loop. 

A compiler-generated label indicating the first statement 
after the end of the do-loop (with only one operand). 

Licensed Material - Property of IBM Section 2: Method of Operation 175 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

If a do-loop specification contains a WHILE clause, the output from 
Phase II contains a WHILE text table or, if tRere is no TO or BY clause 
in the specification, a DOWHYL text table. These tables are preceded by 
a GSN table, which is included in the IF chain, and they are therefore 
processed by Phase RA. On input to Phase KI, the WHILE and DOWHYL 
tables appear as a branch table or series of branch tables (preceded by 
a GSN table), indicating flow through or around the do-loop, according 
to the evaluation of the expression in the WHILE clause. 

I If a do-loop specification contains an UNTIL clause, the output from 
I Phase II contains an UNTIL text table preceded by a GSN table which is 
I included in the IF chain and thus processed by Phase RA. On input to 
I Phase KI, the UN~IL tables a~pear as a series ot branch tables. These 
I tables indicate flow through cr out of the do-loop according to the 
I evaluation of the expression in the UNTIL clause. The tables are 
I delimited by the GSN table at the tront and by the UN~IL table at the 
I end of the clause. 

I If a do-loop specification ccntains a REFEAT clause, the output from 
I Phase II contains a REPT table, preceded by a GSN table. On input to 
I Phase RI, the REPEA~ clause a~pears as a series of evaluations, 
I ultimately to the loop contrel variable, delimited by a GSN table at the 
I front and by a REP~ text table at the end of the clause. 

Each pair of D01/D02 tables is ~receded by an ASSN table, in which an 
initial value is assigned to the leop centrol variable. A CONY table 
may appear instead of an ASSN table if the data types of the loop 
control variable and its initial value differ. If the values in the TO 
or BY clauses are nct constants, ASSN or CONV tables that assign these 
clause values to terrporary variables also appear before the do-loop 
tables. The dictionary is not accessed by this phase. 

PHASE OUTPUT 

Output from the phase is in"the Type-2 text format. Text tables 
associated with do-loops are reordered and/or replaced by tables that 
have a direct correspondence with machine instructions. Types of tables 
that are commonly used for replacerrent include: 

BC 
GOTO 
SCI 
DINC 

branch-on-condition table 
unconditicnal-branch tacle 
set-corrparand-and-index table 
increment-DO-loop-contrcl-variables table 

Typical usage of these tables is shown in the examples used to 
illustrate phase operation. 0 

PHASE OPERATION 

The CHAINDO routine uses the XTCH macro to scan the DO statement chain. 
When the appropriate statement header tables are found, the SCAN1 
routine examines tables within the statement for DOl, GSN (WHILE 
clause), and CONY tables, and calls appropriate routines and subroutines 
to analyze and process them~ 

In general, if the initial and final values of a loop specification are 
constant values, the conditions for branching are tested at the end of 
the loop. If the initial and final values of a loop specification are 
not constant values, a BC table is generated at the head of the loop to 
test whether the body of the loop should be entered or branched around. 
If there is more than one specification, the BC test for the first 
specification is generated at the head of the loop, and tests for the 

176 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised cy 1NL IN33-6175, October 1976 

rema1n1ng specifications are generated immediately after the D03 table 
at the end of the lco~. 

WHILE, UNTIL, or REPEAT Clause 

WHILE:, Having recognised that a WHILE clause is present, Phase KI 
ensures that the GSN at the tront of the clause becomes a GSL01, and 
that this label is the target of the branch/test at the end of the loop. 
Int~e case of an iterative do-loop specification, Phase KI will ensure 
that the GSL01 label, already inserted in front of the loop body, is' 
deleted. 

UNTIL: Having recognised that an UNTIL clause is present, Phase KI 
moves the clause from the front of the loop to a point immediately after 
the loop body. It ensures that the target of the branch/test at the end 
of the clause is the label at the front of the loop preceding a WHILE 
clause if present. 

REPEAT: Phase KI recognises that the specification contains a repeat 
clause and moves it from the front of the loop to a point immediately 
after the loop body, or immediately after an UNTIL clause if present. 
Phase KI then generates an unconditional branch to the front of the 
loop, or to the WHILE clause if present. 

Multiple Loop Specifications 

If multiplespecificat10ns are provided for a do-loop"a temporary label 
variable is used to inQicate which loop specification is being used at 
any particular time during execution. The label variable, which appears 
before the loop, is given an initial value corresponding to a label 
constant that appears before the loop increment code at the end of the 
loop. When execution 9f the first loop specification is completed, the 
label variable is re-initialized to correspond with the label constant 
in front of the increment code for the second specification. The 
process is repeated for each specification .• 

Thus, a loop that is specified as follows: 

DC 1=1 to N, 20 to M; 

(cody of loop) 

END: 

would appear in the input to Phase RI as: 

ASSN N tN 
ASSN 1 I 
DOl Null CL.l I 
D02 tN 1 CL.2 
GSL CL.l 
ASSN M tM 
ASSN 20 I 
001 Null CL.3 I 
D02 tM 1 CL.2 
GSL CL.2 

(body ot loop) 
D03 CL.3 

Licensed Material - Property of IBM 

Text tables 
for first 
sp ecif icat ion. 

Text tables 
for second 
specification. 

Loop head table. 

End of loop-

Section 2: Method of Operation 177 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

After processing Phase KI, the output from the phase would appear as 
follows: 

ASSN 
ASSN 

ASSN 

N 
1 

CL.4 

tN 
I 

tLV 

TO clause value and control 
variable initialization. 

latel variable set to label 
on 1st specification 
increment code. 

SCI (see following paragraph) 
BC I tN (BH,CL.1) Test to determine whether 

GSL CL.2 

loop to be entered for 
1st specification. 

loop head table. 

(body of loop) 

GOTO tL 

GSL 

DINC 
BC 

GSL 
ASSN 
ASSN 
ASSN 
SCI 
BC 
Gc-.rC 

GSL 

DINC 
Be 

GSL 

(see 

CL.4 

I 
I 

CL.l 

1 
tN 

Branch to current 
specification 
increment code. 

Label of 1st 
specification 
increment code. 

I Increment tatle 
(ENH,CL.2)~est for branch back 

through loop or fall 
through to next 
specification. 

M tM 
20 I 
CL.5 tLV 
following paragraFh) 
I tM (ENH,CL.2) 

CL.3 

CL.5 

Code to initialize 
2nd loop. 

Latel cf 2nd sFecificaticn 
increment code. 

I 
I 

1 
t~ 

I Increroent tatle. 

CL.3 

(ENH,CL.2)iest for branch back 
through loop or 
fall through to END 
statement. 
End of loop label. 

Optimization Indication 

If the loop control variable does not require conversion before it is 
incremented and compared with the TO clause value, an SCI (set comparand 
and index) table is generated in the loop .header code. This table 
indicates to phases in the global optimization and register allocation 
stages that optimization, by use of BXLE instructions, is possible. If 
loops are nested, an SCI table is generated for the inner loop only. If 
the foregoing conditions are satisfied, SCI tables are generated for the 
initialization of every multiple specification. 

178 Licensed Material - Property of IB~ 



Order No. LY33-60l0-l, Added by TNL LN33-6175, October 1976 

Variable TO and BY clauses 

It neither the TO nor the BY clauses in a loop specification contain 
constants, the compiler does not know whether the increments are 
positive or negative. Consequently the condition code for the end of 
the loop cannot be determined. The problem is overcome by using a label 
variable in a siroilar manner to that used for multiple loop 
specifications. 

Tables are inserted in the loop-head code to test the direction of 
looping, and to assign a label constant to the label variable 
accordingly. At the end of the loop, and after the loop control 
variable has been incremented, a GOTO label-variable table is used to 
transfer control to the appropriate test for the end of the loop. 

For example, the loop specification: 

DOI=JTO K BY L: 

would appear as input to Phase KI as follows: 

ASSN J tJ 
ASSN R t~ 

ASSN L tL 
ASSN tJ I 
DOl Null CL.l I 
D02 tR 'IL CL.2 
GSL CL2 
(body of loop) 
D03 CL.l 

Licensed Material - Property of IBM Section 2: Method of Operation 178.1 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

After processing by Phase KI output from the phase would appear as 
follows: 

ASSN 
ASSN 
ASSN 
ASSN 
BC 

ASSN 

GO'.l'O 
GSL 
ASSN 

GOTO 
GSL 

(tody 

DINC 
GO TO 

GSL 
BC 
GO'l'O 

GSL 
BC 
GSL 

J 
K 
L 
tJ 
tL 

CL.4 

CL.3 
CL.5 

CL.2 
of loo~) 

I 

CL.4 
I 

CL.5 
I 
CL.1 

0 

tL 

tK 

tK 

Do-loops in Arrav ASSignments 

tJ 
tR 
tL 
I 

(BL.CL.3) 

tLV 

Cl.4 

tLV 

CL.5 

I 
tLV 

(BNH,CL.2) 
CL.1 

(BNL,CL.2) 

Branch if BY clause 
value is negative. 

Initialize label variable 
for positive value 
BY clause. 

Initialize label variable 
for negative value 
BY clause. 

loop head label 

Increment control variable 
Branch to appropriate 
end-of-looptest. 
Non-negative-value 
BY clause end-of-
loop test. 

Negative value BY 
clause end-of-
loop test. 

Do-loops that result from array assignment appear in the input to Phase 
XI as follows: 

IT DO lowbound 

(body of loop) 

ENDIT 

highbound temporary 
control variable 

temporary 
control variable. 

Phase XI processes such loops as if the input were as follows: 

ASSN 
DOl 
D02 
GSL 
(body of 
D03 

lowbound 
Null 
highbound 
CL.2 

loop) 
CL.1 

CL.1 
1 

temp. 
temp. 
CL.2 

If the array aSSignment has more than one dimension, Phase IE expands 
the statement into nested pairs of ITDO-ENDIT tables. When Phase XI 
expands the array assignment loops, the subscripts of the aSSignments 
within the loops are examined. If the subscripts have multipliers with 
a highest common factor that is not 1, the looping increment is set to 
this B.C.F. and the bounds are modified accordingly. This process 
minimizes the number of multiplication operations necessary within the 
loop. 

Licensed Material - Property of IBM Section 2: Method of Operation 179 



SYSTEM-INTERFACE STATEMENT PROCESSING (PHASE KT) 

Facilities provided by the system control-program are required to enable 
the execution of certain types of statements. Examples of these types 
of statements are input/output statements, which are processed by 
particular phases of the conpiler. Phase RT processEs other statements 
requiring systen facilities, such as DISPLAY, SIGNAL, DELAY, and WAIT 
statements. It generates text indicating the code and/or call to a 
library subroutine required to prcvide the interface with the system. 

In addition to these statell\ents, Phase I<T processes statements which 
require only prologue or epilogue code, such as PROCEDURE, ENTRY, BEGIN, 
RETURN, and STOP statements. The phase also processes the CBEC~ 
condition prefix, by indicating the library subroutine call that is 
required if the condition is raised. 

PHASE INPUT 

Input to the phase consists of the main text stream in Type 2 text 
format. For all compilations, statements linked in a chain headed by 
the XSYSCH field in XCOMM are examined and processed. If the CHECK 
prefix option has been used in the source program, the who1e text stream 
is examined for situations where the condition is enabled. 

The general and names dictionaries are accessed during processing. 

PHASE OUTPUT 

Output from the phase consists of the main text stream, in which text 
tables in the stateJ(:ents processed by the phase have been modified or 
replaced by new text tables inserted in the text stream. 

No dictionary entries are created by this phase. 

PHASE OPERATION 

Seguence of Processing 

The main scanning routine, KT1, uses the XTCH macro to scan the 
backwards-pointing XSYSCB chain. As each statement header is found, the 
statement-type byte is examined and control is passed to the appropriate 
routine for processing of the statement. When all statements in the 
chain have been processed, the XSCLNGl field in XCOMM is examined. If 
the first bit in this field has been set by Phase EA, it indicates that 
the CHECK prefix option is used in the program. Control is passed to 
routine ~T2, which scans the entire text stream and carries out the 
required processing. If the CB!C~ option is not indicated, control is 
passed to the next phase immediately after processing of the XSYSCH 
chain statements. 

Processing of Statements Requiring System Interface Facilities 

For all statements requiring the facilities of the system control 
program for their execution, the interface with the system program is 

180 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

provided by library subroutines. When such a statement is found in the 
XSYSCH chain, control is passed to an appropriate routine for processing 
as described in the following paragraphs. 

Processing DISPLAY statements: Display statements are processed by the 
DISPO routine. A statement can consist of the keyword-operator and an 
element-expression only, or this can be followed by the REPLY option and 
a character-variable, and the EVENT option followed by an event-variable 
can also be specified. Thus the body of the statement on input to Phase 
KT can consist of one, two, or three text tables. If both options are 
present, input to the phase can be represented as follows: 

SN 
SN 
REPLY 
EVa 

null 
null 
null 

null 
null 
null 

Display expression 
Reply expression 
Event variable 

Each operand is checked for validity, and the text tables are then 
replaced by an argunent list and a call to the library subroutine 
required to execute the statement. The text output can be represented 
as follows: 

SN 
ALIST 3 null Arg.list-temp no. 
ARG Display var. 1 w • • 
ARG Reply var~ 2 • • • 
ARG Event var. 3 • • • 
CALL Arg. list Library-entry- null 

temp. no. pOint no. 

The appropriate bit in the XLIBSTR field in XCOMM is set. 

Processing DELAY and WAIT Statements: DELAY statements are processed by 
the WAITl routine. 'In each case, the delay expression or the event 
variable is checked for validity, and the text tables are replaced by 
ALIST, ARG, and CALL text tables indicating a call to the appropriate 
library subroutine. The relevant bit in the XLIBSTR field in XCOMM is 
set. 

If a WAIT statement contains more than one event variable and an 
expression, the expression is evaluated before text is generated. The 
first operand of the first ARG table indicates that there is an 
expression and also indicates ,the number of event variables. This is 
followed by an ARG table containing a temporary operand indicating the 
evaluated result of the expression followed in turn by an ARG table for 
each event variable. 

Processing SIGNAL Statements: SIGNAL statements are processed by the 
SIGNALA routine. If the specified condition is a program-checkout or 
c~putational condition, the prefix options are examined to check 
whether or not the condition has been disabled. If it has been 
disabled, the statement is deleted and a diagnostic message is 
generated. If the condition is valid, it is passed as an argument in a 
call to the appropriate library sUbroutine. 

Processing PROCEDURE, BEGIN, and ON-BEGIN statements 

Phase KT processes those statements which indicate the block structure 
of the program, PROCEDURE, BEGIN, and ON-BEGIN statements. These 
statements require prologue code to provide save areas and to acquire 
automatic storage (referred to in the fcllowing descriptions as GET DSA 
code), and prologue code to initialize the storage. Phase KT determines 
the requirement for prologue code, and generates text to define some of 
tha~ code. In dOing so it generates labels which are required to enable 
branching to various sections of the code. 

Licensed Material - Property of IBM Section 2: Method of Operation 181 



The processing performed by the phase can best be illustrated by 
reference to a simple example. The source statements: 

A: PROCEDURE(Pl,P2,P3); 

B: ENTRY(P2); 

END Ai 

result in the text input to Phase ~T containing the following text 
tables: 

SL 
PROC 
PEND 02 
PEND 00 

SN 
GSL 

SN 
END 

diet .ref. 
CL.03 
CL.03 

null 

null 
null 

null 

null 
null 

CL.08 

Note: The compiler-generated label identifying numbers are shown for 
illustration purposes, and do not necessarily relate to numbers 
appearing in the text. 

Information about the entry-point names, any applied options, and 
parameters is held in dictionary entries. 

Phase KT modifies the text, to indicate to later phases that prologue 
oode is required as shown in figure 2.18. 

182 Licensed Material - property of IBM 



Order No. LY33-6010-1, Revised by TNL LN33-6175, October 1976 

r---------------------------------------------------, 
I I 
1 Actual entry Faint A I 
I I 
I Branch to CL.Ot I 
.---------------------------------------------------f 
1 CL.05 I 
1 GET DSA prologue code I 

PEND 01----->1 CL.06 I 
r---------------------------------------------------i 
1 Private prologue code for entry point A I 
1 1 
1 CL.Ol Call CL.05(BALR) • I 
1 Parameter list (Pl,P2,P3) I 
1 Call CL.03(BALR) I 
I Branch to CL.07 I 
~---------------------------------------------------i 
I Private prologue code for entry point B 1 
I (Actual entry point B) I 
1 CL.02 Call CL.05(BALR) I 
1 Parameter list(P2) I 
1 Call CL.03(BALR) I 
1 Branch to CL.08 I 
r---------------------------------------------------i 

PEND 02----->1 CL.03 Q I 
I Common prologue code for I 
I the blcck DSA I 

PEND 00----->1 CL.04 1 
.---------------------------------------------------i 
I CL.07 Apparent entry pOint A I 
I I 
I 1 
1 (Executable code) I 
1 I 
1 I 
.---------------------------------------------------~ 
1 CL.08 Apparent entry point B I 
I I 
I I 
1 (Executable code) I 
.---------------------------------------------------1 
I 1 
1 Epilogue code I 
1 I L ___________________________________________________ J 

Figure 2.18. Simplified illustration of prologue code for a procedure 
block with a secondary entry point. 

Because the XSYSCH chain is a backwards-pointing cRain, the END 
statement for a block will be seen before other statements in the block. 
No significant processing of END statements is performed by this phase. 
ENTRY statement headers, which are~followed by a GSL text table to 
indicate an apparent entry pOint to the block DBA, are not included in 
the XSYSCB chain, and therefore processing in connection with the 
prologue code for entry statements is performed when the block header 
statement is found. 

Wben a PROCEDURE, BEGIN, or ON-BEGIN statement header is found, the 
dictionary entry for the entry pOint is accessed. TRis entry is linked 
to the entries for all other entry points in the block, and entry-point 
entries point to their related parameter-descriptor entries. 

Each PROCEDURE, BEGIN, or ON-BEGIN statement header in the input text 
stream is followed respectively by a PROC, BGIN, or ONB text table. If 
such an entry point is declared with the COBOL, FORTRAN, or RPG option, 
the IOP2 byte of the PROC, BGIN, or ONB text table is set to X'02', 
X'OJ', or X"04'respectively. For each secondary entry point in the 

Licensed Material - Property of IBM Section 2: Method of Operation 183 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

block, an NTRY text table is generated to indicate the real entry pOint 
in the prologue code, and indications of COBOL or FORTRAN options are 
similarly set in this text table. The IOP2 byte of a PROC text table 
may also be set to X'Ol' during processing of RETURN statements, 
described later. 

A PEND 01 text table is inserted after each PROC, BGIN, or ONB text 
table, containing the number of a compiler-generated label to be used to 
indicate the end of the "GET DSA section" of the prologue code. The 
PEND02 and PENDOO text tables following PROC, BGIN, or ONB text tables, 
or inserted after NTRY text tables, are set to indicate the start and 
end respectively of the common prologue code for the block. CALL text 
tables are generated to indicate the code that is required for branching 
between various sections of the prologue code and the executable code. 

If the parameter lists for all entry pOints on a block are identical, a 
single parameter list can be moved into the common prologue code, and a 
MOVE text table to indicate this is generated. If there is more than 
one entry pOint, and the parameter lists are not identical, then MOVE 
text tables are generated for each entry point, to move the individual 
parameter lists into the appropriate sections of private prologue code. 

Processing RETURN statements 

If a RETURN statement is used without a parameter list, no processing is 
performed by this phase. If a RE'TURN statement with a parameter list is 
found, its text reference is saved and the scan is continued until the 
related PROCEDURE statement is found. All entry points on the block are 
then processed as previously described, with the addition of processing 
of the RETURNS option. The dictionary entry for each entry point 
indicates the explicitly or implicitly declared attributes for the entry 
point. If the attributes for all entry points in the block are the 
same, no special action is taken. It entry points in the block have 
different attributes, then a MOVE text table is generated to insert 
return switches in the prologue code for each entry point. Text is then 
inserted in the RETURN statement to indicate the code required to test 
the return switches and determine the required entry point. CONV text 
tables are generated to indicate data type conversion of the RETURN 
parameter to satisfy the requirements of the selected entry point. 

An operand in the RTRN text table is set to indicate whether the return 
is made to an entry point in the same block or in another block. The 
IOP2 field of the PROC text table is set to X'Ol' to indicate that the 
PRCCEDURE staterrEnt has teen precessed eut of the norrr·al chain-scanning 
sequence. 

Processing STep and EXIT Staterrents 

If a STCP or EXIT statement is found, centrol is passed to the STOPA 
routine. This routine generates a call to the appropriate library 
sutroutine, and sets the appropriate tit in the XLIESTR field in XCOMM. 

Processing the CHECK Option 

When the scan of statements in the XSYSCH chain is complete, the XSCLNGl 
field in XCOM~ is examined. If the fir st bi t in this field is set, it 
indicates that the CHECK prefix option is used in the prograre. If the 
tit is not set, contrel is passed to the next phase. If the bit is set, 
control is passed te the routine KT2 which checks for situations where 

18U Licensed Material - Property of IB~ 



the CHECK condition is raised. For each occurrence of the condition, a 
call is generated to a library subroutine, passing the identifiers for 
which the condition is raised as arguments. 

Testing for the condition is performed during a sequential scan of the 
whole text stream. If the CHECK or NOCHECK prefix option is used on a 
statement in the source program, it will have bean converted into a 
SEparate CHECK or NOCHECK statement by Phase EA, and translated 
accordingly by Phase II. Thus, the source statement: 

(CHECK(A,B,»:P:PROCi 

results in the text input to Phase KT containing the following text 
tables: 

SN (CHECK) 
CHCK 
CHCK 
SLCPROC) 
PROC 

A 
B 

This phase modifies the text by overwriting the CHECK or NOCHECK 
statement header with the true statement header (SL(PROC) in the 
example). It then examines the CHCK or NCHK text tables in the 
statement, and creates an entry in a stack for each variable in the 
value list. Each entry contains the 6-byte reference of the variable, 
followed by a code byte (X'AO' for CHECK, X'BO' for NOCHECK) and the 
block level of the statement. If the option is used without a value 
list, a CHCK or NCHK text table with null operands appears in the input, 
and an appropriate entry is made in the stack. 

~hen the stack has been built during examination of the block-header 
statement (PROCEDURE or BEGIN), statements within the block are scanned. 
If the CHECK option applies, then each text table in the statement is 
examined. If a variable or Q-temp~ appears in the third operand, it 
indicates that its value is being set. The appropriate stack entry is 
accessed to see if the CHECK condition is enabled for the variable (an 
intermediate stack is used for Q-ternps.). If so, a call is generated to 
the library subroutine that executes the CHECK condition, passing the 
variable as an argument. 

When an END statement is found, the block level of the next statement is 
examined to determine whether the next block inherits the prefix 
options. If not, the stack is cleared and new entries created as 
required for the new block. 

The first time the CHECK option is applied to a variable in a block, the 
IOP2 field of the relevant CHCK text table is set to X'Ol' to indicate 
that storage must be allocated for an ON control block (ONCB) for the 
variable, unless an ONCE has been inherited from a preceding block. 
~here the CHECK option is applied other than on a PROCEDURE or BEGIN 
statement, it may also be necessary to create a NOCHECK ONCB. Where 
CHECK is specified without a checklist, one ONCB is created for the 
block. 

Identification of Returned VARYING CHAR strings 

To ensure that the library interface is aware when a returned string is 
VARYING, the compiler generates code in the prologue of any entry point 
returning VARYING. This code sets the bit in the returns string 
descriptor (passed by the calling program to indicate VARYING. The 
library SORT interface routine may then interpret this bit. 

This sequence of proceSSing is initiated by Phase KT. When the MOVE 
text table which copies the return address in the DSA is generated, IST2 

Licensed Material - Property of IBM Section 2: Method of Operation 185 



bit 6 in the table is set on if the returned string type is VARYING 
CHAR. During later processing, IST2 bit 6 is examined by Phases QA and 
SQ, and if the bit is set on, the identification sequence is completed. 

186 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Revised by TNL LN33-6175, October 1976 

I PROCESSING FILE DECLARATIONS (PHASE KL) 

This phase checks the validity of each file declaration and, for each 
file, huilds a dictionary entry ccntaining a File Contrel Block (FCB), 
an Envirenment Block (ENVB), and [efine-the-File tlock ([1F). (Nete 
that for a file declared ENV(VSAM) a DTF is not tuilt.) 

To conserve space, the following CSECTs are overlaid: XINIT, CHKENVO, 
DUNOlI, DUNOlO, DUN02I, DUN020, DUNl3I, DUNl30, DUN26I, DUN260. All the 
CSECTs except XINIT and CHKENVO contain models DTFs for the 3540 
diskette unit. 

PHASE INPUT 

Entries for file constants and for ENVIRONMENT options in the general 
dictionary are scanned and accessed as required. Entries for file names 
in the names dictionary are also accessed. 

PHASE OUTPUT 

The phase builds FeB, ENVB, and DTF entries in the general dictionary. 
LIOCS names are generated and entries made for them in the names 
dictionary. 

PHASE OPERATION 

Checking of File Declarations 

The routine DCLSET scans the chain of file constants entries in the 
general dictionary and checks whether any attributes have been declared. 
If attributes are declared, the CHRATS routine is called to check that 
the attributes do not conflict. As the check is carried out, the 
routine generates two words, ATTWRD and ILGWRD, which are stored in the 
phase for checking purposes. ATTWRD has a bit set for each valid 
declared attribute, and is used when selecting default attributes to be 
applied to the declaration. ILGWRD sets a mask to show which attributes 
conflict with the declared attributes, and is used in checking the 
attributes on OPEN statements. 

The declaration is checked for the presence of the MEDIUM option and any 
other ENVIRONMENT options. The MEDIUM option is mandatory (except for 
ENV(VSAM) where it is not specified); if it is incorrectly specified or 
is missing, default values (SYS001,2311) are assumed, a diagnostic 
message is generated, and an error flag is set which will cause the 
UNDEFINEDFILE condition to be raised WRen the file is opened. If any 
other ENVIRONMENT options are declared, the CHKENV routine is called. 
This routine checks for any conflict in the ENVIRONMENT options and 
builds a 3-word field, later used when the DTF is built, in which bits 
are set to indicate each valid ENVIRONMENT option. This is stored in 
the phase together with a temporary environment block (ENVB) which is 
not output to the dictionary until the DTF is built. The ten.porary ENVB 
consists of twelve 4-byte entries; the first is set to zero and each of 
the others contains a code byte and either a 3-byte constant or a 
variable dictionary reference specified in the options. The format of 
the second part is: 

Licensed Material - Property of IBM Section 2: Method of Operation 187 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

NBL~ 
NREC 
NRRP 
NKYL 
NNDX 
NADD 
NOFF 
NPASS 
NBND 
NBNI 
NBSP 

Blocksize 
Record length 
REYLOC value 
Keylength 
Index area size 
Additional-buffer size 
Overflow tracks 
Password 
BUFND 
BUFNI 
BUFSP 

The main declaration-checking routine, CHKDCL, then examines the 
declared and default attributes. and the options on the ENVIRONMENT 
attribute, and determines the type ot DTF required, and the length of 
the DTF. The length of the DTF is saved. The attributes and options 
are used to set a code byte. BRCHWD. which is used to index a branch 

I table to select the appropriate subroutine for the building of the DTF. 
I For VSAM files, a D~F is not required and so this part of the ~hase is 
I by~assed. 

The phase contains a nurober of skeleton DTFs of different types. 
According to the ty~e of D~F required, a subroutine is selected to 
modify the skeleton DTF in accordance with information dec1ared (and in 
accordance with the detailed specifications in the IBM SysteR/360 DOS 
LIOCS Program Logic Manual, Order No. GY24-5020). The selection of the 
DTF type and the aPFropriate subroutine is shown in the flowchart for 
this phase in secticn 3. 

During the building of the DTF, the LIOCS module name is generated and 
an entry made for it in the names dictionary. All LIOCS module name 
entries are chained together. 

When building of the DTF is completed. a DTF header table is constructed 
to assist in the allocation of static storage for each individual field 
of the DTF. This table is placed in a general dictionary entry, which 
contains the header table followed by the DTF. The format of the 
dictionary entry is shown in figure 5.19. 

When the DTF dictionary entry has been completed. control is passed to 
the ENDDTF routine. This routine creates an ENVB dictionary entry (if 
any environment options other than the MEDIUM option have been 
specified), using the temporary environment block created earlier (see 
figure 5.18). 

A file control block dictionary entry is then built. This entry 
contains the file control block (FCB), completed as far as possible at 
this stage (see figure 5.15), followed by a 28-byte block if the file is 
declared STREAM, or a 48-byte block if the file is declared RECORD,. No 
entries are made in a stream I/O block during compilation but, for a 
record I/O block. the last three fields are completed as follows: 

r--------------T----------T------------------------------------, 
I Field name I Length I Field content I 
I I (bytes) I I 
~--------------+----------+------------------------------------i I FHSV I 2 I 0 for scalarvarying. 2 otherwise I 
I FECL I 1 I 2 for backwards. 12 otherwise I 
I FEMT I 1 16th character or error module name I ~-____________ ~ _________ ~ ___________________________________ J 

Both stream 1/0 and record I/O ~locks in the FCE dictionary entry are 
followed by a 2-byte field indicating the length of the file name, which 
is followed by the file nane. 

At the end of processing by this routine, the dictionary entries for 
each file declaration are chained as shown below: 

188 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 q-6~ ·'5, Octo 

YDCL 
r-------T--------------T------T-------, 
I OF I File entry I I I L _______ ~ ______________ ~ ___ ~~-------~ 

r--~---T--------------T------T-------, 
I 06 I FCB entry I I I 
~------~-------------~--~------~ 

r---i---T--------------T------T-------, 
I OE I ENVB entry I I I L _______ ~ ______________ ~ ___ ~~-------~ 

r---j---T--------------T------T-------, 
I 07 I DTF entry I 0000 I I L _______ ~ ______________ ~-_____ ~ ______ ~ 

Licensed Material - Property of IE~ Section 2: ~ethcd of Operation 189 



Order No. LY33-6010-1, Page Revised by ~NL LN33-6175, October 1976 

I PROCESSING OPEN, CLOSE, AND RECORD I/O STATEMENTS (PHASE KM) 

The main function of Phase KM is processing of record-oriented 
in~utloutput statements. It replaces some of the text tables that 
represent these statements with text tables which indicate either the 
code to be generated for inline execution of the statement or indicate 
the code to be generated to call a library subroutine for execution of 
the statements. If a call to a library subroutine is required, this 
phase determines the information required to be passed in the argument 
list, creates request control block, key descriptor, and record 
descriptor entries in the general dictionary, and builds the argument 
list. 

It also checks that the attributes specified for each OPEN and CLOSE 
statement do not conflict with the attributes declared for the file. 
For each file referred to in an OPEN statement, an OPEN Control Block 
(OCB) is constructed. Text tables are created to generate calls to the 
appropriate library routines, togetfter with the required arguments list. 

Another function of the phase, which is performed before the proceSSing 
of record I/O statements, is optimization of OPEN and CLOSE statements. 
This optimization consists of the insertion of information in the FCB 
and DTF of the associated file, thus reducing the number of calls to 
library subroutines that would otherwise insert such information at 
execution time. 

BIF text tables which refer to the STORAGE and CURREN~S~~RAGE built-in 
functions are replaced by text to evaluate the tunction. 

PHASE INPUT 

Initial input to the phase consists of the file-declaration entries in 
the general dictionary, which are chained together and linked from· the 
XFILCH field of XCOMM. Chaining from each of these entries enables the 
associated FCB, ENVB, and DTF entries created by Phase XL to be accessed 
as required. 

OPEN, CLOSE, and record I/O statements in the main text stream are 
accessed by scanning the chain of statements linked from the XRIOCH 
field of XCOMM. Variables-dictionary entries for the record,and key 
variables are accessed to determine the lengths of these variables (if 
known). Aggregate-table entries in the general dictionary may also be 
accessed. FCB dictionary entries (created by Phase XL and possibly 
modified during earlier processing by this phase) are accessed if it is 
necessary to build an argument list for a library-subroutine call. If 
STORAGE or CURRENTS~ORAGE are present, then all the text is scanned. 

PHASE OUTPUT 

If optimization of OPEN and CLOSE statements is found to be feasible, 
this phase modifies the appropriate FCB and DTF entries in the general 
dictionary by completing them as far as is possible at compile ti~. 
This includes the insertion of record size and block size in the FCB, 
and insertion of buffer sizes, buffer-address information, and CCW 
information in the DTF. Relocation information is also inserted in the 
DTF and in an overflow entry chained from the YCDED field of the PCB 
entry. 

The phase builds OCB and ENVB entries in the general dictionary as 
required for OPEN and CLOSE statements. ALIST, ARG, and CALL·text 
tables are generated for calls to library OPEN and CLOSE routines. 

190 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Output resulting from the processing of record I/O statements consists 
of the main text stream, in which some of the text tables contained in 
record I/O statements have been replaced by text tables specifically 
indicating object code to be generated. Depending on the features of 
each statement processed, these text tables either indicate code to be 
generated for inline executicn, or indicate a call to a subroutine in 
library module IBMDRIO. If a library call is generated, entries are 
made in the general dictionary to hold arguments such as a request 
control block, a record descriptor, and a key descriptor. 

PHASE OPERATION 

sequence of Processing 

Optimization of OPEN and CLOSE statements is the first main function 
performed by the phase; it is performed by routines and subroutines 
starting at FILSC. All file-declaration entries in the general 
dictionary are accessed in turn by scanning the chain of entries linked 
from the XFILCH field of XCOMM. Each file entry contains a painter 
which enables access to associated FeB, ENVB, and DTF entries. These 
entries are examined to determine whether optimization is possible; if 
so, the FCB and DTF entries are modified by completing them as far as is 
possible at compile time. 

When all entries in the XFILCH chain have been examined and processed as 
necessary, control passes to the STMSCN routine. This routine uses the 
XTCH macro routine to scan the chain of statements in the main text 
stream that are linked from the XRIOCH field of XCOMM, and control is 
passed to the routines OPENPR, CLOSER, and RECIO, which process OPEN, 
CLOSE, and record I/O statements respectively. 

Processing of any STORAGE and CURRENTSTORAGE built-in function 
references takes place after all record I/O statement processing. 

Optimization of File Opening and ClOSing 

The function of routines starting at FILSC is to check compatibility of 
associated files, and to determine, and insert into the relevant FeB and 
DTF, information which would otherwise be determined and inserted by 
library SUbroutines at the time of file opening or clOSing during 
execution. 

The chain of file-declaration entries in the general dictionary is 
scanned. Each entry contains a pOinter (in the YDCLfield) which 
enables the associated FCB, ENVB, and DTF entries created by Phase KL to 
be accessed. The file, FCB, and ENVB entries are examined to ascertain 
whether or not optill'ization can be atteltpted. The criteria that Rust be 
satisfied at this time are: 

• The file must have the EXTERNAL attribute. 

• There must be nc variables in the options list of the ENVIRONMENT 
attribute. 

• The file declaration must not have been flagged by Phase ~L as being 
erroneous (lCFER field ot FCB set to X'41' indicates error). 

If these conditions are satisfied, the DTF entry and part of the FeB 
entry are copied into phase working storage (XSTG). Subroutines 
starting at PA 032, which are similar to subroutines contained in the 
library modules IBMDOPA and IBMDOPB, are called to ascertain or 

Licensed Material - Property of IBM Section 2: Method of Operation 191 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

calculate values to be inserted into various fields of the FeB and DTF. 
These values include record size, block size, key length, key locaticn, 
numter and sizes of buffers, index-area sizes, and CCWs. When these 
values have been inserted into the copies of the FCB and DTF, the 
subroutines RFCBRT and RDTFRT are called to calculate the offsets of the 
various fields from the origins of the FCB and the DTF, and the 
relocation factors to be applied to enable items in the DTF to be 
addressed relative to the origin of the FeB. The dictionary entries 
created by Fhase KL contain a number ot tields ~hich are initially set 
to zero, and which are overwritten by these offset and relocation 
values. An overtlow dictionary ent+y is built to hold additional 
entries to the FCB, and a pOinter to this overflow entry is inserted in 
the YCDED field ot the existing FeB entry. 

When all the required values have been determined and inserted in the 
working copies ot the dictionary entries, the size ot the file centrol 
section as moditied by the allocation at tutfers, index areas, etc., is 
calculated. If the size is greater than or equal to 32K bytes, 
optimization performed by this phase cannot be applied, existing entries 
in the dictionary are left un~odifiedr and all the calculations 
performed by this phase in the attempt at optimization are left for 
recalculation by library subroutines at execution time. If the file 
control section is less than 32K bytes long, the dictionary entries for 
the file are modified by use of the copies in the phase working storage. 
The scan of the file chain is then stepped to the next entry. 

Processing OPEN and CLOSE Statements 

All OPEN and CLOSE statements are included in the XRIOCH chain. Phase 
KM scans this chain, using the routine STMSCN. 

I When an OPEN text table is found, the OPENPR routine is invoked. This 
I routine examines the attribute declared in the OPEN statement (only 
I INPUT or OUTPUT are allowed) and checks that it does not conflict with 
I the file declaration. An open control block (OCB) (see figure 5.23) is 
I then constructed for use as an argument in the library call. The OCB is 
I a Single word which indicates which attritute was specitied. ALIST, 
I ARG, and CALL text tables are then created to generate a call to the 
I library OPEN routine. 

When a CLOSE statement is tound, the CLCSER z'.outine is invoked. 'Ihis 
routine examines the ENVIRONMENT option on the statement; only the LEAVE 
option is permitted. It then creates an ENVB entry in the general 
dictionary, (see figure 5.18) and creates ALIST, ARG, and CALL text 
tables to generate a call to the library CLOSE routine. 

Processing Record I/O Statements 

The main scanning routine, STMSCN, scans the statem~nts chained from the 
XRIOCH field of XCOMM. When the statement header of a record-oriented 
input/output statement is found, the routine RECIO is cal1ed to process 
the statement. 

Within each statement, the main features are contained within two text 
tables. Whilst scanning for these text tables, certain items of 
information that may be contained in other text tables are copied into a 
save area for use in later processing. These items include: 

• References to Q-temps., which are saved so that variables being 
qualified can be identified. 

192 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

• Information about keys, contained in sorre CCNY and CONCAT text 
tables, which may be used for optimization of key processing for 
some REGIONAL(3) files. 

The contents of the operator and c~erand fields of the two text tables 
that indicate the main features of the statement are as follows: 

1. 

{

IOP1 
Operator 

IOP2 

Operand 1 

Operand 2 

Operand 3 

2. 

{

IOP1 
Operator 

IOP2 

Operand 1 

Operand 2 

Operand 3 

statement type (e.g., READ, WRITE, LOCATE, etc •• ) 

statement index number (uniquely identifies the 
statement type and the options used) 

File,reference 

KEY/KEYTO/KEYFROM option 

INTO/FROM/SET/IGNORE variable reference or LOCATE 
variable if it is a LOCATE statement. 

EVO 

Zero 

Length of COBOL variable (if a COBOL file) or 
Abnormal-Locate-Return label (if a LOCATE 
statement). 

Null 

EVENT variable or SET pointer if LOCATE or READ-SET 
statement. 

When these text tables are found, their operands are copied into two 
save areas, OPNDSV and OPNDSV2 within the phase. 

The statement index number is used to control searches of two tables in 
the phase, RCBTAB and TMTAB. RCBTAB contains a request-control-block 
word (RCB word) for each basic type of record I/O statement. Each RCB 
word consists of a bit pattern indicating'the statement type and options 
used. When an appropriate RCB word is found, it is copied into RCBSAV 
for later use. Each entry in TMTA2 contains a test-under-mask 
instruction which is used, together with the RCB word, to form the 
request-control-block that is used as a library argument. The 
appropriate test-under-mask instruction is saved in TMINST. 

If the file referred to in the statement is not a variable or a 
parameter, the validity of the statement is checked by comparison of the 
statement type with the declared file attributes as shown in the 
file-control~plock in the FCB entry, built in the general dictionary by 
Phase RL. Unless the statement is found to be invalid, flag bits are 
set in the first six bytes of an a-byte field named INLFLG. These flags 
indicate the declared file attributes and any environment options 
applicable to the statement. INLFLG is later completed and used by a 
subroutine, INMON, to test for the feasibility of generating inline 
code. 

Appropriate routines are then called to process any of the INTO, FROM, 
SET, or IGNORE options that are specified on the statement. Similarly, 
other routines are called to process any KEY, KEYTO, or KEYFROM options, 
and finally the EVENT option is processed. During processing of SORe of 
these options, the INMON subroutine is called and, if the generation of 

Licensed Material - Property of IBM section 2: Method of Operation 193 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

inline code is feasible, appropriate routines are called to generate the 
required text tables. If INMON finds that inline code is not feasible, 
control is returned to the opticn processing routine, and arguments are 
constructed for use in a library call. 

GENERATION OF INLINE CODE: Before it can be determined whether inline 
code can be generated instead of a library call, information about 
various features of the statement must be collected in a usable form. 
This is done by setting flag bits in an 8-byte field, INLFLG. The main 
processing routine sets flags in the first four bytes of INLFLG to 
indicate the declared file attributes (as shown in the FCB dictionary 
entry) and in the fifth and sixth bytes to indicate any options of the 
environment attribute that are used in the statement. These flags are 
set when information required for building the request control block has 
been collected, and the statement has been checked for compatibility 
with the declared file attributes. 

During processing of the INTO, FROM, or SET options, (which is described 
in later paragraphs,) the routine INFRRT builds a record descriptor ~or 
the record variable or the locate variable as applicable. The record 
descriptor is passed as an argument if a library call is generated. 

Before the record descriptor is bUilt, but when some of the information 
required for it has been collected, the subroutine INMON is called. 

The function of the INMON subroutine is to monitor the feasibility of 
generating inline code. If it is found to be feasible, control is 
passed to routines which generate the required text tables. Otherwise, 
INMON returns control to the options proceSSing routine from which it 
was called. 

One of the first actions of IN~ON is to complete the collection of 
information about the statement in INLFLG. Flag bits are set in the 
seventh byte (the eighth byte is not used,) to indicate: 

• Whether the record variable is a varying-length string. 

• Whether the SCALARVARYING option of the ENVIRONMENT attribute is 
specified. 

• Whether the record variable is an area. 

• Whether the record (or block) size is known. 

• Whether the record variable length is known. 

• Whether the statement is an input statement. 

• Whether the IGNCRE option is specified. 

When these flags are set, the bit pattern in INLFLG is compared with 
preset bit patterns in a table named INLR1;S. This table contains a 
number of entries, each consisting o~ a pair of 8-byte fields. The 
preset bit patterns in these fields indicate a number of conditions 
which must be satisifed before inline code can be generated. INLFLG is 
compared with the first field of each entry in turn to determine whether 
certain conditions are satisfied. When a satisfactory comparison is 
found, INLFLG is then compared with the second field of that particular 
entry, to ensure that certain features do not apply to the statement. 
These two comparisons are required because certain features are not 
always critical, and therefore an exact match of bit patterns would not 
always be a valid test. 

If a satisfactory comparison is not found in INLRTS, it indicates that 
inline code cannot be generated, and control is returned to the 

194 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6115, Octo 

option-processing routine so that arguments required in a library call 
can be constructed. If a satisfactory comparison is found, the 
sequential number of the matching entry in INLRTS is used to index a 
directory, RTCADS. This directory contains the address of an entry in a 
table named INCODS. The entry referred to is applicable to the type of 
statement being processed. 

Entries in INCODS are of varying length, and each byte of each entry 
indicates a 2-digit hexadecimal number. Each hexadecimal number 
indicates a particular routine that is called to generate text tables 
indicating a particular code sequence. The selected entry is scanned, 
one byte at a time, and the text-table-generating routines are called in 
the sequence indicated. 

BUILDING THE LIBRARY-CALL ARGUM!NT LIST: If a record I/O statement is 
to be executed by reeans of a library call, an AIIST text table, a series 
of ARG text tables, and a CALL text table are generated. The ARG text 
tables indicate the arguRents to be passed to the library subroutine, 
which are: 

1. File control block (FCB) 

2. Request control block (RCB) 

3. Record descriptor or ignore factor 

4. Rey descriptor or zero 

5. Event variable or zero 

6. Abnormal locate return or zero 

The dictionary entry for the file control block is built by Phase KL, 
and is accessed during ~rocessing by this phase. Inforrration required 
for building the request control block is collected in early ~rocessing 
by this phase, but the associated dictionary entry is not created until 
after it has been determined that inline code cannot be generated. The 
tests for the feasibility of inline code are made during the processing 
of some of the options in the statement, when much of the information 
required tor building the record descriptor has been determined. If 
inline code is not to be generated, processing of the options is 
completed and the arguments are constructed. When all the arguments 
have been constructed, the required ALIST, ARG, and CALL text tables are 
generated. 

Building the Record Descriptor: If the statement contains the INTO or 
FROM option, the routine INFRRT is called to examine the record variable 
and create a record descriptor (RD). The routine is also used to create 
a record descriptor if the statement is a LOCATE statement. 

A record descriptor is a 2-word control block, with the following 
format: 

r----------------~------~--------------------l I Address of I Flag I Length of I 
I record variable I byte I variable (in bytes) I L _________________ 4 ______ 4 ____________________ J 

4 bytes 1 byte 3 bytes 

Bits are set in the flag byte if the variable is a varying-length 
character-string, a varying-length bit string, or an area. 

When examination of a record variable indicates certain conditions, a 
skeleton RD is created. 1he conditions are: 

1. The address of the record variable will be known during execution 
of the prologue code. 

Licensed Material - Property of IBM 8ection 2: ~ethod of Operation 1q5 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

2. The length of the record variable can be found during corrpilation 

The length of the record variable cannot be greater than 32K bytes, 
and prologue code to insert the length in the RD can be generated. 

If the above conditions can be satisfied, a skeleton RD is built and 
placed in the general dictionary (see figure 5.21), where it can be 
accessed by a phase in the storage allocation stage for allocation of 
the requisite static storage. Flags are set in the dictionary entry to 
indicate whether prologue code will be required for the purpose of 
inserting the variable length in the RD, and whether the RD needs to be 
moved from static storage into automatic storage during execution. 
Where possitle, BD dictionary entries are commoned, to save static 
storage space and to avoid duplication of prologue code. 

If the conditions for creation of a skeleton RD are not satisfied, text 
tables are generated to enable the RD tc te built inline, in terrporary 
storage, during execution. 'Ihe intormation required in the text tables 
is found by use of various subrcutines, and a number of temporary 
storage fields and flags are used by the phase to pass information 
between these subroutines. 

The type of the statement (input or output), and the data type of the 
record variable are examined. Subroutine LTHFND is invoked, and, if the 
length of the record variable is known it stores this value in the 
SIZVAL field and sets a flag in LTHFLG to indicate that the length is 
kno~n. If the record variable length is not known, LTHFND sets other 
flags in LTHFLG to indicate certain other cbaracteristics of the 
variable. If the variable is an unaligned bit string, this subroutine 
also attempts to find the hang (the numter of unused tits in the first 
and last bytes). If the hang is found, another flag in LTHFLG is set. 
If LTHFLG indicates that both length and hang are known, the value in 
SIZVAL is reset to allow for the hang. 

If the record variable is a structure or array, the subroutine LTHFND 
examines the aggregate table entries in the general dictionary. The 
information used varies according to the type of the array or structure. 
If the variable is a structure with adjustable extents, the data type of 
the last base elerrent has a ccnsiderable effect on the calculation of 
the variable length. For exarrple, if the last base elerrent is an AREA 
variable, the length required fer an output statement is the current 
extent of the area plus the length of the other elements of the 
structure. If the last base element is an interleaved array of 
unaligned bit strings, a library call must be made to find the length of 
the variable. On return cf control from LTHFND, INFRRT examines the 
record variable and sets various flags, including flags in DSCFLG tc 
indicate any flag settings required in the RD. 

The subroutine INMON is then called to test whether inline code can be 
generated. If so, no further processing is performed by INFRRT, and 
control is passed to the text-table-generating routines. If inline code 
cannot be generated, control returns to INFRRT. 

The subroutine RLTHGN is then invoked. If the length of the record 
variable is known, BLTHGN generates an ASSN text table to assign the 
length value in SIZVAL to a temporary operand. If the length is not 
known, text tables are generated tc enatle the length to be calculated 
during execution. The processing required varies according to whether 
the record variable is a base eleffent, a structure, an array, or a 
cross-section of an array. In each case, the generated text tables 
include an aSSignment of the length to a temporary operand. 

On return from the subroutine RLTHGN, another SUbroutine, TDSCIN is 

196 Licensed ~aterial - Property of IBM 



Order No. LY33-6010-1, Page .l\oded hv ~N·t T,1<.J'1-1!:1.,r:;, October 1976 

invoked TDSCIN creates an a-byte temporary RD, and places a 6-byte 
reference to it into the buffer TMPDSC. Subroutine ASLDSC is then used 
to assign the temporary operand that holds the record variable length to 
the second word of TMPDSC, and MVFLAG is called to assign the flag byte 
to TMPDSC. Finally the MVADDR subroutine is called to generate a LADDR 
text table, to nove the address of the record variable (or the SET 
pOinter, if the state«ent is a LOCATE statement) into the first word of 
TMFDSC. 

Text tables are then generated, in which the contents of TMPDSC are 
assigned to a temporary operand, and which indicate code to be generated 
to enable the record descriptor to be created at execution time. 

The sequence of operations performed by the INFRRT routine is shown in 
figure 2.19. 

Licensed Material - Property of IBM section 2: '~ethod of Operation 1!l~. 1 



Order No. LY33-6010-1 w Page Revised by TNL L,N33-6175 w October 1976 

Call LTHFND 
for last 
ba.element 

IFigure 2.19. 

Call L THFND to find 
record variable length 

No 

Call RL THGN to find 
length and assign to 
temporary operand 

Call TDSCIN to create 
temporary R D 

Call ASLDSC to assign 
length to RD 

Call MVFLAG to aaign 
fleg DSCFLG to RD 

Call MVADDR to move 
eddr .. toRD 

Build RD dictionary 
entry (if one doe$ not 
already exist) 

Address 

Flags I Length 

RD dictionary entry (fields 
completed if known) 

Routines define code to build 
RD in temporary storage at 
execution time 

. I . 

Creation of record-descriptors by Phase KM 

Licensed Material - Property of IBM Section 2: Method of Operation 197 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October. 1976 

Processing the IGNORE Option: The routine IGNRRT processes the IGNORE 
option. It examines the IGNORE factor from the input text, which has 
been saved in OPNDSV, and if necessary has text generated to convert the 
factor to fullword binary· integer format. The factor is then saved for 
used in building the argument list. 

Processing the SET Option: The SET option is processed by the SETRT 
routine. If the statement is of the form READ---SET---, the routine 
simply saves a reference to the SET pOinter, for use in building the 
argument list. If the statement is a LOCATE statement, a reference to 
the abnormal-locate return address is also saved. For a LOCATE 
statement, the pOinter reference is moved into PTRREF. If the statement 
does not contain an explicit pOinter, the implicit pOinter is found fron 
the PTSAT text table containing the record variatle. The INFRRT routine 
is then entered. at IF0100 to create an RD for the LOCATE variable. 

Building the ~ey DescriEtor (~D): If the ~EY, REITO, or KEYFROM opticn 
is used in the statement, the KEYRT routine is used to build a key 
descriptor (KD). The KD is a 2-word control block with the format: 

r------------T------r-----------, 
I Address of I Flag I Length of I 
I key I byte I key I L ____________ 4-____ -4 ___________ J 

The flag byte is used to indicate whether the key is a variable length 
string in a KEYTO option, and whether a binary region number is 
supplied. If the region·number is supplied a word containing the number 
is added to the end of the KD. This enables some optimization when 
processing REGIONAL(l) and REGIONAL(3) files. 

The KD is buil.t in a simil.ar manner to 'the RD. If the key is a 
character-string variable for which the address will be known during 
execution of the prologue code, a skeleton KD is created and placed in 
the general dictionary, for use by a storage allocation phase. 

If a skeleton KD is not used, a temporary ~D must be constructed inline. 
The sutroutines LTHFND, RL'IBGN, and ASLDSC are used to construct the 
code in similar way to the cede fcr the RD. 

Processing the EVEN'I Option: If the EVENT option is used in the 
statement, the routine EVNTRT is invoked. This routine saves the event 
variable for use in building the argument list .• 

Processing STORAGE and CURRENTSTORAGE Built-in Function References: 
Since a reference to either of these functions can appear in most 
statement types, including record I/O ahd stream I/O, Phase KM scans the 
whole of the text when XSCLNG2 Bit 5 indicates that such a function is 
referenced by the program. Processing involves the use of routine 
RECIO, with calls being made (as appropriate) to LTHFND and then RLTHGN. 

Initially, a QT stack is not maintained for STORAGE/CURRENTSTORAGE 
processing. However, if operand 1 of the BIF text table is a QT, then 
the statement is re-processed with a QT stack being maintained. 

198 Licensed Material - Property of IBM 



PROCESSING STREAM I/O STATEMENTS (PHASE KQ) 

Phase KQ processes all stream-oriented input/output statements, and 
replaces the text tables that represent these statements with text 
tables that indicate the code required for execution of the statements. 

Execution of stream-oriented input/output statements is always performed 
in some part by one or more library subroutines. Phase KQ determines 
which library subroutine is required, and generates text representing 
the argument list to be passed in the call to the appropriate library 
subroutine. The phase also determines what data-type conversions (i.e., 
~o and from character-type data) are required for transmission to and 
from I/O devices, and generates calls to library routines that perform 
these conversions during execution. If global optimization has been 
specified, the phase will define the code to be generated to perform 
some of these conversions in line. 

specification of a global optimization option affects the processing 
performed on edit-directed I/O statements. If optimization is 
specified, the phase performs processing to match and merge items in the 
data list and format list of a statement, so that repeated branching 
du.ring execution is minimized. 

A feature of edit-directed stream I/O statements i$ that certain 
sequences of generated code are repeated a number of times. In order to 
reduce object-module size whilst avoiding the degradation of 
execution-time performance resulting from repeated calls to a library 
subroutine, common sections of code are collected in subroutines. These 
subroutines are generated by the phase e and can be called from any point 
in the compiled objec~ code during execution. 

PHASE INPUT 

Input to the phase consist of the main text stream in Type 2 text 
format. Only those statements linked by Phase KA into the chain headed 
by the XSIOCH field in XCOMM are examined and processed. These 
statements contain text tables peculiar to stream oriented input/output 
statements, as shown in figure 2.20, and these are the text tables that 
are replaced by this phase. Each DATAE text table identifies an element 
of a data list, which may be an element variable, an array, or a 
structure. Each FORME text table identifies an element of a format 
list, the type of the element being identified in the IOP2 field of the 
operator. A FIT text table indicates the start of a format-list 
iteration, with the iteration factor being contained in the first 
operand field. The end of a format list iteration is indicated by a 
FITE text table. When Phase II translates the text into Type-2 text 
format, it generates five NULL text tables after each GET, PUT, and 
DATAE text table to allow for expansion of text during processing by 
this phase. 

The variables and general dictionaries are accessed for information 
about files and pictured format items appearing in the processed 
statements. 

PHASE OUTPUT 

output from the phase consists of the main text stream in Type 2 text 
format, in which text tables peculiar to stream-oriented I/O statements 
have been replaced by general-type text tabels indicating object code to 
be generated. The text that is generated is described in the paragraphs 
describing phase operation. 

Licensed Material - Property of IBM section 2: Method of Opera~ion 199 



Some entries may be made in the general dictionary for format-element 
descriptors (FEDs). 

PHASE OPERATION 

Sequence of Processing 

The routine KQSSOO uses the XTCH macro to scan statement headers in the 
XSIOCH chain. As each statement header is found it is examined, and 
certain items of information are saved for use in later processing. 
Control is then passed to a routine appropriate to the statement type. 
If the statement is a GET or PUT statement, control is passed to the 
routine KQGPOO. This routine scans the text tables of the phase until 
the GET or PUT text table is found. Using information in this table and 
in relevant dictionary entries, it builds an argument list and generates 
a call to the appropriate library subroutine. 

When this preliminary processing, which is performed for all GET or PUT 
statements, is completed, control is passed to appropriate routines for 
processing other text tables in the statement. Routine KLSCOO processes 
LIST directed statements, routine KDSCOO processes DATA-directed 
statements, and routine KESCOO processes EDIT directed statements. In 
general, these routines process data and format lists by replacing DATAE 
text tables in DATA and LIST directed statements, and replacing DATAE, 
FIT, FITE, and FORME text tables in EDIT-directed statements. On 
completion of this expansion, any compiler-generated subroutines 
required for EDIT-directed I/O statements are output, and calls to 
library subroutines required to perform data-type conversions are also 
generated. The scan is then stepped to the next statement in the XSIOCH 
chain. If it is a FORMAT statement, control is passed to the KQFMOO 
routine, which performs processing similar to that performed on the 
format list of GET EDIT and PUT EDIT statements, and uses the same 
subroutines to perform this processing. 

A feature of phase operation is that before each input text table is 
processed l it is copied into a field named QVBFTX in the phase working 
storage. Fields within QVBFTX are identified by symbolic names similar 
to those used to identify fields in text tables, e.g., BOPND2 holds the 
operand equivalent to the IOPND2 field of a text table. 

200 Licensed Material - Property of IBM 



r------------------T---------------------T--------------T-----------------, 
I OPERATOR I OPERAND 1 I OPERAND 2 I OPERAND 3 I 

t------------------t---------------------+~-------------+-----------------~ 
I {LIST} I I I I I GET EDIT [PAGE] I FILE{filename) or I [SKIP(exprn)]I [COPY{filename)]I 
I DATA I STRING(stringname) I I I 
r------------------t---------------------t--------------t-----------------i 
I {LIST} I I I I I PUT EDIT [PAGE] I FILE(filename) or I I I 
I DATA I STRING(stringname) I (SKIP(exprn)] I [LINE(exprn)] I 
t------------------t---------------------+--------------+-----------------~ 
I DATAE I data-list element I null I null I 
r------------------t---------------------+--------------+-----------------~ 
I PAGE I null I null I null I 
I LINE I w I null I null I 
I COLUMN I w I uull I null I 
I SKIP I w I null I null I 

I REMOTE I label const./vble I null I null I 
I FORME X I w I null I null I 
I F I w I Cd] I [p] I 
I E I wid I [s] I 
I Sl I picture spec. I null I null I 
I A I w I null I null I 
I B I w I null I null I 
t------------------t---------------------t--------------t-----------------i 
I FIT I n I null I null I 
r------------------t---------------------t--------------t-----------------i 
I FITE I null I null I null I L __________________ ~ _____________________ ~ __________ - ___ ~ _________________ J 

Figure 2.20. Text tables used in stream I/O statements prior to Phase KQ 

Pro£~ssinq GET and PUT Text Tables 

The routine KQGPOO scans for the GET or PUT text table following a GET 
or PUT statement header. When the text table is found, the second 
operator code byte (IOP2) is examined to determine whether the statement 
relates to LIST, DATA, or EDIT directed input/output, and whether the 
PAGE or COpy options apply to the statement. If the statement is EDIT 
directed, a flag is set in the ISF field of the statement header to 
indicate this fact to phases in the global optimization stage; the 
complicated branching involved in EDIT-directed input/output makes such 
statements unsuitable for optimization. The routine KQSFOO is used to 
check the validity of SKIP, LINE, and PAGE control format items on GET 
FILE and PUT FILE statements. This routine accesses the FCB entry, 
created in the general dictionary by Phase KL, to obtain information 
about the relevant file attributes, which is then used for validity 
checking. 

The text tables that are generated to replace a GET or PUT text table 
include an ALIST text table, indicating the number of arguments in a 
following argument list, a number of ARG text tables, each indicating an 
argument, and a CALL text table, indicating the library subroutine that 
is to be called at execution time. These text tables, which are created 
by various subroutines, indicate the initial code required for execution 
of the statement. One of the items in the argument list is the stream 
input/outfut control block (SIOCB) in which a number of fields must be 
initialized at comfile time. A temporary operand is generated to 
indicate that temporary storage must be allocated for the SIOCB, and 
OFFS and MOVE text tables are generated to initialize various fields. 
The format of the text that is generated is illustrated in the following 
example: 

The source statement: 

Licensed Material - Property of IBM Section 2: Method of Operation 201 



GET DATA SKIP(S); 

results in tExt input to Phase KQ containing a text table which can be 
represented as follows: 

GET (DATA) SYSIN 
DTF 

S null 

After processing by PhaSe KQ, the sequence of text tables that are 
generated to replace the input text table can be represented as follows: 

ALIST 

ARG 
ARG 
OFFS 
MOVE/OS 

OFFS 
MOVE/OS 
OFFS 
LA/02 
ARG 

CALL/Ol 

3 
(no.of args.) 

SYSIPT DTF 
SIOCB temp. 
offset of field 
null 

offset of field 
null 
offset of FIELD 
EOS GSL 

S 

a.rgument­
list no. 

null 

1 
2 
SIOCB temp. 
code for 
'GET DATA' 
SIOCB temp. 
DSA LEVEL NO. 
SIOCB temp. 
NULL 
3 

library entry 
point no. 

argument­
list no. 

" 
Q-temp.l 
Q-temp.l 

Q-temp.2 
Q-temp.2 
Q-temp.3 
Q-temp.3 
argument 
list no. 
null 

SIOCB 
initialization 

SKIP option 

The library subroutine that is called depends upon whether any PAGE, 
SKIP, LINE, or COPY optional control format items are specified. The 
subroutine SLMEPO sets the appropriate bit in the XLIBSTR field of 
XCOMM, to indicate to Phase SI the library subroutine that is required. 

When this initial text for the statement has been generated, control is 
passed to the KLSCOO routine if the statement refers to list-directed 
I/O the KDSCOO routine if the statement refers to data-directed I/O, or 
KESCOO if the statement refers to edit-directed I/O. 

Routine KLSCOO scans the input text tables of a GET LIST or PUT LIS~ 
statement, searching for DATAE text tables. These indicate items in the 
data list of such a statement. As each DATAE text table is found, its 
operand is checked for validity within a data list. If the operand is 
valid, control is then passed to either KLAEOO, if the operand is an 
array, or to KLSEOO if the operand is an element. Different library 
subroutines are used to control the transmission of these two types of 
data, and each of the two routines mentioned generates an argument list 
appropriate to the relevant library subroutine. 

If the operanj is an element, the argument list consists only of the 
SIOCB. Routine KLSEOO generates text to point Rl at the SIOCB, and then 
to store the address of the data item and its DED in SIOCB. A CALL text 
table is then generated to indicate the required library subroutine, and 
the apppropriate bit in the XLIBSTR field of XCOMM is set. 

If the operand is an array, the required argument list consists of the 
SIOCB, the array locator, the DED of the array, and the number of 
dimensions. Routine KLAEOO generates an ALIST text table, four ARG text 
tables containing the arguments, and a CALL text table to indicate a 
call to the appropriate library subroutine. It also ensures that the 
appropriate bit in XLIBS~R is set. 

On completion of proc~ssing of a DATAE text table, control is returned 
to KLSCOO which then scans for the next DATAE text table. 

202 Licensed Material - Property of IBM 



Processing DATAE Text Tables in Data-directed I/O statements 

The routine KDSCOO searches the text tables of a GET DATA or PUT DATA 
statement, searching for DATAE text tables. If all the operand fields 
of the first DATAE text table found are null, it indicates that the 
statement does not have a.data list. The text expansion for this type 
of statement is performed by routine KDNLOO. If any DATAE text tables 
contain a valid operand, either routine ~DILOO or KDOLOO is branched-to, 
to control the processing of the data list of a GET DATA or PUT DATA 
statement. 

For a statement without a data list, routine KDNLOO generates text 
tables to create an argument list with two arguments, and to indicate a 
call to the appropriate lJi,brary subroutine. The arguments are the 
SIOCB, and the first element in a chain linking symbol tables for 
variables active at the t~me the statement is executed. Because this 
chain' cannot be construct~d at this stage of compilation, a marker is 
set in the ARG text table'to indicate that Phase PC is required to 
create the chain of symbol tables and to complete the ARG text table. 

For a GET DATA statement with an argument list, one call is made to a 
library subroutine to control the transmission of the entire data list. 
When the first DATAE text; table is foumd, routine KDILOO generates an 
ALIST text table, and an ARG text table to indicate the SIOCB. It then 
generates an ARG text tab~e containing the first item in the data list, 
and this text table is flagged to indicat~ to Phase PC that a symbol 
table is required to replace this argument. Control is then returned to 
routine KDSCOO whicl\ find.s the next text table. KDILOO generates one 
ARG text table, similarly marked for action by Phase PC, and the 
sequence is repeated until the last DATAE text table in the statement is 
replaced. A CAL:J;,text table, indicating a call to the required library 
subroutine is generated, and the appropriate bit in XLIBSTR is set. 

For a PUT DATA statement with an argument list, it may be necessary to 
generate calls to morl'!,than one library subroutine to control the 
transmission of the'data'list. Library subroutine IBMBSDOA deals with 
elements and compiete arrays; library subroutine IBMBSDOB deals with 
array elements.' The argument list passed with each invocation of one of 
these library subroutines must contain only the appropriate data type. 
Therefore the processing ofa data list may contain a number of calls to 
these library subroutines, each preceded by an argument list. 

When the first DATAE text table is foumd, an ALIST text table is 
generated, followed by the appropriate ARG text table. The next DATAE 
text table is examined and, if it contains an operand in the same 
category as the preceding one, an ARG text table is generated 
accordingly. When a DATAE text table is found to contain an operand in 
a different data category ·from those preceding it, it is not processed 
until a library call for the preceding category has been generated, 
followed by an ALIST text table to indicate a new argument list. The 
current DATAE text table is then replaced, and the process is repeated 
until all DATAE text tables have been replaced. Before the last call to 
a library subroutine is generated, an OFFS text table and an OR text 
table are generated to indicate code required to set a flag in the 
SIOCB. This flag indicates that the library SUbroutine is required to 
generated a terminating semicolon in the output stream. 

Processing Edit-directed I/O Statements 

After rep~acing the GET or POT text table of an edit-directed I/O 
statement, routine KQGPOO passes control to routine KESCOO for initial 
processing of the datalist and format list. This routine generates a 
LADDR text table to indicate code required to point Rl at the SIOCB, and 
an ASSN text table which indicates to Phase QA (register allocation 

Licensed Material - Property of IBM Section 2: Method of Operation 203 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

phase) that Rl should always pOint at the SIOCB if possible. A check is 
then made of the XNSYGBT field in XCOMM to determine whether OPT=TIME 
has been specified. If global optimization has been specified, control 
is passed to routine KEMTOO; if not, control is passed to routine 
REDTOO. 

Routine KEMTOO examines the data lists and format lists to see if the 
items they contain can be organized into matching pairs of items. 
Because a statement can have ncre than cne pair of data and fcrnat 
lists, REMTOO may be called nore than once during the processing of a 
statement, and text is generated after each pair of lists has been 
examined. If this routine finds that the items contained in a pair of 
lists can be individually matched, control is passed to KEPTOO for 
generation of the o~timized text. If a pair of lists cannot be matched, 
control passes to routine KED~OO for generation of non-o~tinized text. 
Although the sequence of text tables generated ~y routine REP~OO and 
REDTOO differs, rouch of the text is comnon, and both call subroutines 
SELDDO, SCDLEO, SECSRO, and SEFMTO to create text tables. 

The text generated for list-directed and data-directed data transmission 
consists, to a great extent, of calls to library subroutines, preceded 
by appropriate argument lists. In the case of edit-directed 
input/output, most of the data transmission is controlled by 
compiler-generated subroutines, which are generated at the end of 
processing by this phase. In processing the statement, calls to these 
subroutines are generated. The arguments to these subroutines are 
passed in the SIOCB for the statement, at which Rl is set to point. The 
text generated for an item in a data list indicates the code required to 
insert the address of the source data item and the address of its DED in 
appropriate fields of the SIOCB. Similarly, for a format item, the text 
indicates the code required to insert the address of the target field 
and the address of its format element des~riptor (FED) in other fields 
of the SIOCB. Text indicating a call to the appropriate 
compiler-generated subroutine is then generated. 

If data-type conversion is required for edit-directed I/O, it is usually 
controlled by a library format-director subroutine, and text is 
generated to indicate the required calls. In some cases, e.g., 
conversion of fixed decimal or fixed binary data with F-type format to 
character form for output, text is generated to indicate code required 
to perform the conversion inline. 

When the processing of a data list/format list is complete, routines 
KEPTOO and KEDTOO return control to routine KESCOO for processing of the 
next pair of lists or, if all lists in the statement have been 
processed, pass control to routine RQSEOO for end-of-statement 
processing. 

End-of-statement Prccessing 

When the data list or the data and format lists of a GET or PUT 
statement have been processed, control is passed to routine RQSEOO. 
This routine generates the text required at the end of such a statement. 
The text consists of a GSL text table, containing a compiler-generated 
label allocated during initial processing of the statement, to mark the 
logical end of the statement so that global optimization phases can 
branch around the statement. This is followed by a KONST text table, 
which indicates to the register and storage allocation phases that the 
SIOCB for the statement is no longer required, and that Rl can be 
reallocated • 

. 204 Licensed Material - Property of IBM 



When the main scanning routine finds a FORMAT statement, control is 
passed to routine KQFMOO for processing of the statement. BecaUSE 
edit-directed I/O statements are not suitable for processing by the 
global oftimizaticn phases, a flag is set in the ISF field of the 
statement header, and text is set up to enable branching around the 
statement. This is done by generating a copy of the statement header 
table, and replacing ~he original statement header with a GOTO text 
table. This indicates a compiler-generated label that is generated in a 
GSL text table at the end of ~he statement. 

The text tables of the statement are then scanned, and the text 
references of the first FORME or FIT text tables and the last FORME or 
FITE text tables are saved. These text references are saved to enable 
all the text tables between the two references to be duplicated. One 
copy of the text tables can then be replaced with text indicating the 
cede for an output statement, and the second copy replaced with text 
indicating code for an input statement. 

The scan is then reset to the start of the statement and text is 
generated to: 

1. Save the return address of the format list of the calling GET or 
PUT statement. 

2. Test whether the calling statement is a GET or PUT statement, and 
to indicate a branch to the second part of the FORMAT statement if 
it is a GET statement. 

The text tables of the statement are then rescanned, and subroutines 
SEFMTO, SEFITO, and SEFIEO are called as required to replace FORME, FIT, 
and FITE text tables with the required output text. During,this 
processing, and when the output-statement format list has been replaced, 
text is generated to load the calling statement return address into R9 
and to return control to the calling statement. The text tables of the 
input statement format list are then replaced, and the end-of-statement 
text is generated as for an edit-directed GET or PUT statement. 

If edit-directed input/output statements have been processed by the 
phase, control is passed to routine KQSROO when all statements have been 
processed. This fhase generates subroutines that are called from 
various places in edit-directed input/output statements. 

The phase coding includes a table of text-table skeletons. This table 
is divided into five main sections, each containing text to be generated 
to define a subroutine. Of the five subroutines that can be generated 
by the compiler to control edit-directed transmission, two are used for 
data input, two are used for data output, and one is used for output of 
X-format items. When the requirement for one of these subroutines is 
recognized during statement processing, an appropriate bit is set in the 
XCOMSTR field in XCOMM. This bit indicates processing required by the 
final assembly phase (Phase SI> and also indicates to routine KQSROO 
which section of the text-table-skeleton table is to be copied into the 
text stream. 

The text for each of these subroutines consists of a CGSR text table, a 
number of GEN and LLAD text tables, and a CGSROl text table. Each GEN 
text table contains a sequence of object code that is to be included in 
the final assembly. 

Licensed Material - Property of IBM Section 2: Method of Operation 205 



Identification of Library~ubroutines~uired for Conversions 

Stream input/output data transmission involves the conversion of data to 
and from character-type data. The conversions are performed by library 
subroutines, and the need for ~hese subroutines is indicated when the 
conversion requirement is known, even though the subroutines are not 
called from compiled code. The requirement for the library subroutines 
is indicated to the final assembly phase by the setting of appropriate 
bits in the XLIBSTR field in XCOMM. 

Each time a data item in a data-directed or list-directed input/output 
statement is checked for validity, the subroutine SILCRO is called. 
This subroutine examines the data type, and checks whether the item is 
in a GET or PUT statement, to determine which library subroutine is 
required to perform data conversion. It then sets the appropriate bit 
in XLIBSTR. 

In edit-directed I/O statements, the selection of conversion subrcutines 
depends on the format item. A subroutine that processes format lists, 
SFEDOO, contains a list of the conversion subroutines required for each 
type of format item for either input or output transmission. This table 
is accessed each time a format item is seen, and the appropriate bit is 
set in XLIBSTR. 

206 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

SPECIAL-CASE PROCESSING (PHASE KV) 

This phase scans the main text stream, searching for situations where 
the text can be reodified in sucn a way that more efficient object code 
will be generated by the cOR~iler. This form of optireization is 
performed for every ccm~ilaticn, regardless of ~hether or not the 
compiler options specify that phases in the glotal optimizaticn stage 
shall be executed, (although cne of the functions performed by the phase 
is mainly preparation for global optireization stage processing). 

The functions of the phase are: 

1. To mark the beginning of flow units, for use by phases in the 
optimization stage. 

2. To optimize the use of compiler-generated labels and branching 
instructions. 

3. To de-nest argument lists for programmer-defined functions and 
procedure calls. 

4. To optimize operations involving ccnstant value exponents and 
multipliers, by replaCing them by repeated multiplication 
operations or addition operations respectively. 

5. To optimize corrparison operations by replacing the bit-string 
result of an operation by the variable to ~hich the bit-string is 
assigned after conversion. 

6. To optimize arithmetic operations (ADD, SUBTRACT, and MULTIPLY) 
involving fixed-decimal operands. 

7. To process references to the SUBSTR, UNSPEC, CHAR, and BIT built-in 
functions, the SUBSTR pseudovariable, and concatenation operations 
involving bit strings. 

PHASE INPUT 

Input to this phase consists of the main text stream in Type-2 text 
format, in Which the logical sequence of text tables is indicated by 
chain fields. The dictionary sections are not accessed by this phase. 

PHASE OUTPUT 

Output from the phase consists of the main text stream, modified by the 
insertion or deletion from use of various text tables. The 
modifications are mentioned in the description of phase operation. 

PHASE OPERATION 

The text stream is scanned sequentially by use of the XNEXT macro. 
Where situations requ~ring processing are encountered, text tables are 
added to the text in logical sequence by use of the XNSRT macro, or are 
deleted from use by employing the XLINK macro to modify the forward 
chain fields. 

Licensed Material - Property of IBM Section 2: Method of Operation 207 



Marking of Flow Units 

A flow unit is a sequence of text that can only be logically entered at 
the beginning and left at the end. Division of the text stream into 
flow units is required by phases in the global optimization stage of the 
compiler. This phase marks the beginning of each flow unit by setting 
the ISF field of the appropriate statement-header text table to a value 
of X'80'. Flow units are detected by scanning for labels, or for CALL, 
FNCT, or BC text tables. 'Ihe first text table (other than a NULL text 
table) following these indicaticns is the table in which the tlag is 
set. In the case of labels, the tlag is set in the table containing the 
label. 

Optimization of Compiler-Generated Branching Instructions and Labels 

The text is examined for situations where compiler-generated branching 
instrcuctions cause sequences of code to be unreachable, or where 
compiler-generated GOTO instructions are redundant. In such cases, 
redundant text is deleted. 

The text is also examined for situations where compiler-generated labels 
appear in juxtaposition, allowing excess labels to be removed. To 
detect such situations, a text page is acquired for the building of a 
label directory. An entry is made in the label directory for each 
compiler-generated label detected, either in a GSL text table or as an 
operand in a BC, LA, or GOTO text table. 

When a GSL text table is found, a scan ahead is made to determine 
whether a group of GSL or SL text tables appear together. If they do, 
the situation is examined to determine whether one label can be selected 
to serve the function of the group ot labels. Whenever possible, a 
source-statement label (SL) is selected in preference to a 
compiler-generated label (GSL). The label directory is used to direct a 
scan of all references to the label group: the references are changed to 
references to the selected label. 

During the search through juxtaposed labels, the previously described 
optimization of GOTO statements is carried out. 

De-nesting of Arguments to Programmer-defined Functions and Procedures 

Argument lists passed in calls to procedures and references to 
programmer-defined functions are de-nested as required by this phase. 
Although procedure calls cannot be nested, their argument list may be 
nested if any function references are nested within the call. For 
example, de-nesting of the argument lists required by the source 
statement: 

CALL P(Fl(F2(F3(X»»i 

(where P is a procedure and Fl, F2, and F3 are references to 
programmer-defined functions) 

will effectively result in text to indicate the following sequence: 

CALL F3(X),F2(Tl),Fl(T2),P(T3) 

where Tl, T2, and T3 are temporary operands representing values returned 
by functions and passed as arguments to another function or procedure. 
To assist in de-nesting argument lists, a stack is maintained, with an 
entry for each level of nesting. Entries are made when a CALL, FNCT, or 

208 Licensed Material - Property of IBM 



ALIST text table is seen. Each entry contains a table-type marker and 
the text reference of the table. 

When an ALIST text table is seen, the entry in the stack is examined. 
If that entry is an ALIST entry, a new entry is made for the new ALIS~ 
text table. If the top entry is a CALL or FNCT entry, it is overwritten 
with the ALIST entry, thus maintaining one entry for each level of 
nesting. When a second ALIST entry is made in the stack, ~he forward 
chains in the text tables are modified so that the text table preceding 
the one for the first ALIST entry in the stack points at the ALIST text 
table related to the second ALIST entry in the stack. Thus, the 
processing for the source statement: 

A=Fl(F2(X»i 

is illustrated below. (Note: The text tables shown are symbolic and do 
not indicate the operand fields). 

I 
I I SN 
~--------~ 

~~::::_~=~ALIST 
IALIST Fl ALIST 
~--------~ 
I I ARG 
I I 
I I FNCT 
I I 
I I ARG 
I I 
I I FNCT 
I I 

Fl 

F2 

X 

F2 

Result 

Fl 

of F2 

Modified 
Chain--

When the text table forward chain has been modified, the top ALIST stack 
entry is overwritten by an entry for the relevant function reference, so 
that the situation appears as illustrated below: 

Forward Chain 

I I 
I I SN 
~--------~ 
IFNCT F2 I><ALIST Fl 

. ti~i~;-;it ALIST F2 
~--------f 
I I ARG X 
I I 
I I FNCT F2 
I I 
I I ARG Result of F2 
I I 
I I FNCT F'l 
I I 

The text table scan is resumed. If a FNCT text table is found when the 
top entry in the stack is a FNCT entry~ this entry is effectively 
deleted and the penultimate entry in the stack is accessed. This entry 
will be the ALIST entry corresponding to the FNCT table found in the 
text. This entry is used as a pointer for modifying the text-table 
sequence. Starting at the ALIST text table pOinted at by this stack 
entry, each text table is reposit.ioned in the text, after the FNCT text 
table pointed to by the top entr~' in the stack (the insertions are made 
by use of overflow pages and chains). As each table is copied, the 

Licensed Material - Property of IBM section 2: Method of Operation 209 



original text table is deleted by changing its code byte to NULL. When 
a nested ALIST table in the original text stream is encountered during 
this copying process, the copying is suspended until the corresponding 
FNCT text table is encountered. Copying is resumed after this text 
table, and continues until the FNCT text table pointed at from the top 
stack entry is encountered. The situation at this stage of processing 
is illustrated below: 

Forward Chain 

I I 
I I SN 
~--------~ 
I FNCT F2 KNULL 

t~~~~~-;11 ALIST F2 
~--------., 
I I ARG X 
I I 
I I FNCT F2 
I I 
I I ALIST Fl 
I I 
I I ARG Result of F2 
I I 
I I FNCT Fl 
I I 

If the currently-accessed entry in the stack is the only entry, the 
de-nesting is complete. If there are other entries remaining in the 
stack, the preceding (ALIST) entry is overwritten with the FNCT entry, 
and the processing is resumed. 

optimization of EXEonentiation and MultiElication Operations (Strength 
Red~£tiQ!!l 

When a MULT (multiplication) or POWER (exponentiation) text table is 
encountered, the second operand field is examined to determine whether 
the exponent or multiplier is a constant with a value in the range 0-18, 
or of 20, 24, or 32. If this is found to be so, optimization is 
possible. MULT text tables are converted to a series of PLUS text 
tables, and POWER text tables are converted to a series of MULT text 
tables. 

This optimization is not performed for MULT text tables with fixed 
decimal operands, as the execution of addition instructions for packed 
decimal data is not significantly faster than execution of 
multiplication instructions. 

Optimization_of Co~parison Operations 

Text tables indicating comparison operations (GT, EQ, LT, GE, LE, and NE 
text tables) are examined to see if the first and second operands are.of 
the same data type, and if the third operand is a bit string. When 
these text tables are generated (by Phase II), a bit string temporary 
operand of length 1 is generated in the third operand field if the 
result of the comparison is not used in a bit-string operation. 

When Phase KV detects one of these text tables with a bit-string 
temporary third operand, it carries out a look-ahead search for a 
reference to the temporary operand in another text table. If the 
temporary operand is used as the source operand in a CONV (convert) text 

210 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

table, the target (third operand) of the conversion is used to replace 
the third operand in the comparison text table, and the CONY text table 
is changed to NULL. 

The modified comparison text table is later processed by Phase OC and 
re~laced by the following sequence of text tatles: 

ASSN 
Be 
ASSN 
GSL 

1 
operandi 

o 
CL.l 

operand 2 
Result 

CL.l 
Result 

Optimization of Decimal Arithmetic Operations 

The code generated for evaluaticn cf sone expressions containing fixed 
decimal operands can be made nore efficient than the ninimum required 
for implementation cf the language. The DECOPT routine examines the 
text for expressions in which addition, subtraction, and multiplicaticn 
operations involve fixed decimal operands, and modifies the text 
generated by Phase II to enable this o~timization. 

The optimization is perforned during compilation because of a difference 
between the machine implementation of fixed decimal operations, and of 
float or binary operations. This difference is best shown by reference 
to the following example. The source statement: 

A = B + C * Di 

causes Phase II to generate text containing the following text tables: 

MULT 
PLUS 

C D 
temp. 1 E 

temp.i 
A 

For operations involving fixed binary or float operands, the operations 
are executed using registers which hold the intermediate temporary 
results. Registers are not used in the same way in fixed decimal 
operations, so that if A, E, C, and D in the example are fixed decimal 
operands, the code generated to re~resent the expression would contain 
the following sequence of instructions: 

ZAP 
MP 

MVC 
AP 

terop.l, C 
temp.l, D 
A, temp.i 
A, B 

The DECOPT routine examines all expressions involving fixed deciroal 
operands and, where possible, modifies the text so that it indicates 
instructions in which the operaticns are carried out into the target, 
thus eliminating intermediate temporary operands. thus, for the exam~le 
given, the code generated would ccntain the following o~timized 
sequence: 

ZAP 
MP 
AP 

A,C 
A,D 
A,B 

This form of optimization is not possible in the following 
circumstances: 

• If any intermediate temporary operand bas a precision which exceeds 
that of the final result. sucstitution of the final result might 
cause an overflow interrupt • 

• If the operand used to hold the final result is also an active 
operand in the expression, e.g., A=E+C*t+Ai 

Licensed Material - Property of IE~ Section 2: Method of Operation 211 



Order No. LY33-6010-1, Page Revised by iNL IN33-6115, October 

In such cases, a temporary operand with the maximum precision required 
is used to accumulate the interroediate result until the final operaticn. 
when the real result is used as the target of the operation. 

Optimization of Cn-units 

For each ON statement that is not associated with SYSTEM or a null 
on-unit, Phase EA creates an ON-BEGIN block, even though the on-unit may 
not be a BEGIN block. Text for this block is generated and processed by 
various phases of compiler. If the on-unit consists of an unconditional 
branch to a label variable or a label constant, Phase KA sets a flag bit 
in the block-header entry in the general dictionary. The ONTAE routine 
in Phase KV checks this flag. If it is set, text is generated (before 
the ONS text table that represents the CN statenent) to load the address 
of the branched-to label intc the ONCE. If the label is a label 
constant, it is first aSSigned to a label-variatle tenporary cperand. 
~he text representing the ON-EEGIN block is then deleted. 

212 Licensed Material - Property of IE~ 



BUILT-IN FUNCTION AND PSEUDOVARIABLE PROCESSING (PHASE KK) 

Phase KK examines all built-in function (BIF), pseudovariable (PSV), and 
exponentiation (POWER) text tables. It replaces them with sequences of 
text tables which indicate, to later phases of the compiler, the code to 
be generated in order to obtain one of the following results at 
execution time: 

1. Inline evaluation of the built-in function or pseudovariable. 

2. A call to a library routine for evaluation of the built-in function 
or pseudovariable. 

This phase also reorganizes the text stream so that the logical sequence 
of text tables coincides with their phYSical sequence, and no text 
tables output from this phase appear on overflow text pages. At the 
same time it allocates overflow text pages at the rate of one to each 
four existing pages, in a similar manner to the allocation made by Phase 
KA. 

PHASE INPUT 

This phase scans the whole of ~he main text stream, and accesses the 
general and variables dictionaries as required. On input to the phase, 
the logical sequence of the text tables on the original text pages and 
on overflow pages is maintained by use of a chain via the IFCHN fields 
(see figures 2.16 and 2.24>. Because the text tables that are processed 
by this phase are not linked in any statement-type chain, the whole of 
the main text stream is scanned by use of the XNEXT macro so that all 
BIF, PSV, and POWER text tables can be detected. All of these text 
tables, except those relating to string-handling operations, are 
processed by this phase. Before the text is scanned by Phase KK, some 
items have been processed so that they do not require processing by this 
phase. These items include: 

REAL and IMAG pseudovariables, in which the data-type code bytes of 
the arguments have been changed by Phase IA. 

The format of a typical BIF text table on input to Phase KK is as 
follows: 

(IOPI Code byte indicating BIF text table. 
operator { 

(IOP2 Code byte indicating type of built-in function. 

operand 1 First argument, or null if BIF has no arguments. 

Operand 2 Second argument, or null if BIF has less than 2 
arguments. 

Operand 3 The function result or target. 

The arguments will have been converted to the required data type by 
Phase II, but may have varying precisions and modes. Phase II will also 
insert a temporary function result in the Operand 3 field if the target 
is not of the correct data type, or if the target is fixed binary data 
with a scale factor not equal to that of the function result. The BIF 
table will then be followed by ap ASSN or CONV table which assigns the 
function result to the target. 

Typical input to the phase is shown in the following examples. 

1. The source statement: 

Licensed Material - Property of IBM Section 2: Method of Operation 213 



x = COMPLEX (A,B); 

~ill result in the following text table appearing in the input to 
Phase KK: 

BIF(COMPLEX) A B x 

2. The source statements: 

DCL X COMPLEX FLOAT, (I BINARY, J DECIMAL) FIXED; 

x = COMPLEX(I,J); 

will result in the following text tables appearing in the input to 
Phase KK: 

CONV 
BIF(COMPLEX) 
CON V 

J 
I 
t2 

tl 

where tl is a fixed binary temporary operand 

tl 
t2 
X 

and t2 is a fixed binary complex temporary operand. 

3. Where a built-in function has more than two arguments, additional 
BIF tables are used. The source statement: 

x = MAX (A,B,C,D); 

will result in the following text tables appearing in the input to 
Phase KK: 

BIF(MAX) 
BIF(MAX) 

PHASE OUTPUT 

A 
C 

B 
D X 

The main text stream output from the phase is organized so that the 
logical sequence of text tables coincides with their physical sequence, 
and all IFCHN fields contain a value of X'OOOO'. For each four text 
pages, an overflow page is allocated to allow for text expansion by 
later phases. If global optimization has been performed, all hash-chain 
tables except those immediately following flow-unit-header tables are 
deleted. BIF, PSV, and POWER text tables that appeared in the input 
text are replaced by general-type text tables, examples of which a~e 
shown in the descriptions of phase operation. 

Where constant operands are generated during phase operation, general 
dictionary entries are made as required. 

PHASE OPERATION 

The main text stream is 'scanned in logical sequence by use of the XNEXT 
macro. As each text table is seen it is copied into the output text 
stream so that the text tables are physically reorganized in logical 
sequence. If the text has been processed by phases in the global 
optimization stage, flow-unit-header tables are copied, but only those 
hash-chain tables immediately following the flow-unit headers are 
copied. The input text stream is discarded. 

As each text table is copied into the output stream, its IOPl field is 
examined to see if it is a BIF, PSV, or POWER text table. If it is, 
control is passed to an appropriate processing routine which generates 

214 Licensed Material - Property of IBM 



text tables to replace the original one in situ. For a BIF or PSV 
table, the processing routine is selected by using the IOP2 value to 
index a branch vector table. The routines that process particular types 
of text tables can be grouped into two general classes. Those routines 
that generat~ text for inline evaluation of the built-in fUnction or 
pseudovariable at execution time, and those routines that generate text 
defining a call to a library subroutine. (A library subroutine is 
always called to evaluate exponentiation.) The general processing 
performed by these two classes of routines is described in following 
paragraphs. 

Generation of Text Tables for Inline Evaluation 

In general, the sequence of text tables to be generated for a particular 
function or pseudovariable is predetermined. variations of this 
sequence are required according to the data type of the argument/so The 
first function of the processing routine is to test the data type of the 
argument/s and select the appropriate text-table sequence. 

The operands and flag bytes of the input text tables are copied into two 
tables within the routine, OPNDTB and FLGTBL respectively. The data 
type of the argument operands is tested and the required text-table 
sequence is selected. Temporary and constant operands required in the 
output text tables are then created, and stored in two holding tables, 
TEMPTB and CONSTB. Routine TMPSET creates a skeleton 6-byte reference 
to a temporary operand, and places it in TEMPTB, where the DED is 
completed as required. Routine CNSSET creates a constant operand and 
stores it in a 6-byte field in CONSTB. If necessary, a general 
dictionary entry is made for the constant and the dictionary reference 
is used in CONSTB. 

When all required temporary and constant operators have been created and 
placed in their respective holding tables, the selected sequence of text 
tables is generated. For each text table required, the XBFSK macro is 
used to generate a 9-byte driver tabl~. defining the contents required 
in the various fields of the output text table. Each operand is defined 
in the driver table according to its type, (i.e., an operand in the 
input text, a newly created temporary or constant operand, etc.,), and 
its location (i.e., in OPNDTB, TEMPTB, CONSTB, etc.,). 

The output text generation routine, GENTXT, is then called to create the 
required sequence of output text tables. This routine either copies the 
contents of the driver table to build the operator and null operand 
fields, or copies the contents of OPNDTB, TEMPTB, CONSTB, and FLGTBL as 
directed by the operand type and locator bytes in the driver table. The 
operand type byte may also indicate the status of the operand (e.g., a 
temporary operand being used for the last time) and GENTXT will set the 
operand code byte to reflect this status. 

If a required operand is indicated as a compiler generated label, GENTXT 
will generate a label with the appropriate identifying number, and with 
the branch condition indicated in the driver table. 

Typical processing by the phase is illustrated in the following example: 

The PL/I source statement: 

I = SIGN(X); 

would result in the following table being input to Phase KK: 

BIF (SIGN code) x I 

The operands and flag bytes would be copied into the tables OPNDTB and 
FLGTBL: 

Licensed Material - Property of IBM section 2: Method of Operation 215 



OPNDTB FLGTBL 
r--------, r--------, 

11 X 1 11 Flag(X) I 
~--------~ 

21 NULL I 
~---------t 

21 X'OO' 1 
.---------t ~---------t 

31 I 1 31 Flag(I) 1 L ________ J L ... _______ J 

Examination of the argument, X, would indicate that the following coding 
sequence must be produced by the compiler: 

LA R,l R is result register 
LE S,X 
LTER S,S test argument for sign 
BP CL.1 
BZ CL.2 
BCTR R,O 

CL.2 BCTR R,O 
CL.1 STH R,I 

The text table sequence required to cause the above code to be generated 
would be selected. This would indicate that two temporary operands, 
representing register Rand S, and one constant operand, with a value of 
1, must be generated by the processing routine, and stored in the tables 
TEMPTB and CONSTB. 

TEMPTB CONST'B 

r--------------------, r----------, 
1lRegister-temporary RI llConstant 11 

~--------------------~ ~----------~ 
2lRegister-temporary sl L ____________________ J 

The GENTXT subroutine would then be invoked; a pointer to the following 
driver tables would be passed to this subroutine as an argument: 

XBFSK 
XBFSK 
XBFSK 
XBFSK 
XBFSK 
XBFSK 
XBFSK 
XBFSK 
XBFSK 
XBFSK 

LADDR,,(NULL), (CONST,l),(TEMP,l) 
ASSN"(OPND,l,LAST), (NULL), (TEMP,2) 
GOTO,LTER, (TEMP,2,LAST).(NULL), (CL,l,BP) 
GOTO,GOCND,(NULL), (NULL), (CL,2,BZ) 
ASSN, BCTRO, (TEMP,l),(NULL),(TEMP,l,RESET) 
GSL,,(CL,2),(NULL), (NULL) 
ASSN,BCTRO,(TEMP,l),(NULL),(TEMP,l,RESET) 
GSL,,(CL,l),(NULL),CNULL) 
ASSN"CTEMP,l,LAST), CNULL), (OPND,3,LAST) 
END 

Using these tables, the GENTXT subroutine would generate any necessary 
compiler labels (with the required branch condition codes) and generate 
the following text tables: 

r----------------------T----------~--~---------T-------------T--------T--------T--------, 
1 Operator 1 Operand 1 IOperand 21 Operand 3 1 Flag 1 I Flag 2 I Flag 3 I 
1 IOP1 IOP2 I 1 1 '" I 
.----------------------+-------------+---------+-------------+--------+--------+--------~ I LADDR 00 I I 1 I R temp I I I I 
I ASSN 00 I X , I s temp 1 Flag (X) , I I 
I GOTO 08 IS temp(last) 1 I CLl (BP) I I I I 
I GOTO 03 I , 1 CL2 (BZ) 1 I 1 I 
I ASSN oe I R temp I IR temp (reset) 1 I I I 
I GSL 00 1 CL2 I I I I I I 
I ASSN oe 1 R temp I IR temp (reset) I I I I 
I GSL 00 I eLl I I I I I I 
I ASSN 00 IR temp(last) 1 1 I 1 1 ,Flag(l) , L ______________________ ~ _____________ ~ _________ ~ ______ --_____ ~ ________ ~ ________ ~ ________ J 

216 Licensed Material - property of IBM 



The appropriate processing routine constructs a 6-byte reference for 
each argument, and places each reference, in its appropriate argumen~ 
list position, in a table, OPNDTB. Any flag bytes (in the input text 
table> which refer to these arguments v are copied into corresponding 
positions in another table,_ FLGTBL. 

The processing routine then calls the PLISTG routine. This routine 
generates an ALIST text table, and an ARG text table for each argument 
in OPNDTB. The corresponding flags are copied from FLGTBL into the 
appropriate flag fields of the output text tables. Because most library 
routines require all floating-point arguments to be of the same mode and 
length, the routines FLCONV and FLCTRG are called to convert arguments 
and create temporary operands as required. 

When PLISTG returns control to the processing routine, a CALL text table 
is generated. The second operand field of this text table is used to 
indicate the entry pOint of the library routine to be called. The 
selection of the library routine is based on the type of the built-in 
function or pseudovariable. The selection of a particular routine (or 
entry pOint within a routine> may depend on the precision and mode of 
the arguments. The entry points of all library routines used by the 
compiler are allocated a unique number~ and the phase contains a list of 
these entry-point numbers. The routine SETEPT is used to convert the 
argument type into a number, which is then used to index the entry-point 
list. The entry-point number found is inserted in the CALL text table. 
It is also used to set the appropriate bit in the bit vector in the 
XLIBSTR field in XCOMM. 

Text Deleted by Phase KK 

If global optimization has been performed, the text will contain flow 
unit header tables. Routine RDNEXT examines bit 6 the IFOFI field of 
each flow unit header to (see figure 5.99) to see if the flow unit is to 
be deleted If so, all the text tables of the flow unit are deleted, and 
a diagnostic message indicating this fact is generated. If such a flow 
unit consists of an END statement, the text is not deleted, but bit 1 of 
its ISF field is set to indicate that no epilogue code is required. 

Licensed Material - Property of IBM Section 2: Method of Operation 217 



STRING-HANDLING OPERATIONS - PART ONE CPHASE OC) 

Phase OC and OX both process text tables that involve string-handling 
operations. The operations processed by Phase OC include: 

• String assignments. 

• The string-handling built-in functions BaaL and TRANSLATE. 

• String operations involving the operators ANDC&), ORCI), NOT(~), 
GTC», GE(>=), EQ(=), LE«=),. and LTC<). 

• Concatenation of character strings~ and of some types of bit 
strings. 

PHASE INPUT 

The phase scans the whole of the main text stream for text tables of the 
types processed by this phase. String assignments are indicated by ASSN 
or CONV text tables, built-in functions are indicated by BIF text 
tables; the second byte of the operator CIOP2) indicates whether text 
tables of these types are of interest to Phase ~C. The logical and 
comparison operations are identified by text tables with the equival~nt 
lOP1 codes. Concatenation operations are identified by CON CAT text 
tables that have not been processed by Phase KV. 

The phase accesses entries in the general dictionary for 
character-string constants. 

PHASE OUTPUT 

output from the phase consists of the main text stream, modified as 
described in the description of phase operation. Although this modified 
text stream may include calls to compiler-generated string-handling 
subroutines, the subroutines themselves are not generated by this phase, 
but are generated by Phase ox. OC sets appropriate bits in the XCOMSTR 
field of XCOMM to indicate this requirement. 

Some entries for character constants may be created in the general 
dictionary if the TRANSLATE built-in function is present in the text. 
An entry may also be created in the general dictionary for masks used in 
bit-string assignment operations. 

PHASE OPERATION 

The main scanning routine scans the entire text stream, using the XNEXT 
macro. When a text table of possible interest to the phase is seen, 
control is passed to the appropriate processing routine as follows: 

SCANASSN routine - examines ASSN and CONV text tables 

SCANBIFS routine - examines BlF text tables 

SCANLOG routine - examines AND, OR, and NOT text tables 

SCANCAT routine - examines CONCAT text tables 

218 Licensed Material - Property of IBM 



SCANCOMM routine - examines BC text tables (comparison operators) 

These routines examine the pertinent features of the text tables to 
determine whether they are to be processed by this phase. If so, 
control is passed to the appropriate processing routine. 

In addition to the types of text tables previously mentioned, NDX, OFFS, 
and PTSAT text tables are also examined for te presence of Q-temps. 
representing string data items. A stack of active Q-temps. is built 
and maintained to enable the qualifications of a Q-temp. to be accessed 
whenever it is used as an operand in a text table processed by this 
phase. 

PrQ££ssing string Assignments 

ASSN and CONV text tables involving assignments of character strings, or 
of bit strings not processed by Phase KV (i.e., variable-length bit 
strings and bit strings that are unaligned) are processed by a ser~es of 
routines starting at SCANASSO. These routines are also used by other 
routines requiring movement of string data. 

The source and target operands are examined to determine whether 
movement of a string can best be executed by inline code, by a 
compiler-generated subroutine, or by a library subroutine. A call to 
library subroutine is generated if an operation involves movement of an 
unaligned bit string (i.e., really unaligned as against declared 
UNALIGNED), movement of an aligned bit string to a target field that is 
really unaligned, or movement of a bit string to a target field that 
either has an adjustable extent or is more than 2048 bits long. The 
CALL text table generated in such cases is preceded by the appropriate 
argument list. A call to a compiler-generated subroutine, (the CGSMV 
SUbroutine generated by the Phase OX) is generated if an operation 
involves movement of a character string longer than 1536 bytes. 
However, before such a call is generated, the situation is examined to 
determine whether the code inVOlved in calling the subroutines satisfies 
the conditions required if OPT (TIME) has been specified. If not, text 
is generated to define inline code in the form of MVC or MVI 
instructions which may be contained in a loop controlled by a BCT 
instruction. For all other operations involving movement of bit or 
character string, text defining inline code is generated. 

Where inline code is required, the main features of the movement 
operation are defined in one or more MOVE text tables. According to the 
attributes of the source and target operands, the type of operation to 
be performed is identified by an appropriate code in the IOP2 field of 
the MOVE text table (see figure 5.96). Some types of MOVE text tables 
are always preceded by a KONST text table, containing operands which can 
effectively be considered as additional operands of the MOVE text table. 
Where the source and target fields overlap, a temporary operand is 
created, into which the source field is initially moved, and a second 
MOVE text table is generated to indicate movement of this temporary 
operand into the target field. If the temporary operand is adjustable, 
a VDA text table is generated to indicate that storage is required for 
the temporary operand; the length used in the VDA text table is derived 
from the length of the target operand. Where a string movement 
operation requires padding of the target field, MOVE text tables are 
generated to move the required padding characters. Where movement of a 
bit string results in the last bit of the source operand being 
positioned ether than on a byte boundary, padding to the next byte 
boundary cannot be defined in a MOVE text table, particularly if the 
source operand is a varying string. An entry is made in the general 
dictionary, consisting of seven mask bytes defined in BITSMASK. The 
dictionary reference of the mask entry is inserted in a MOVE OA text 
table, which indicates code to be generated to enable selection of the 
appropriate padding mask during execution. 

Licensed Material - Property of IBM Section 2: Method of Operation 219 



~hen control is passed to the SCANASSO routine for movement of strings 
in connection with other 'functions performed by the phase, a code is set 
in a field, MOVE1, to indicate the type of movement code to be defined 
by SCANASSO. 

Processing concatenation Operations 

Bit-string concatenations not processed by Phase KV are performed by a 
library subroutine. Phase OC builds the necessary argument lists and 
generates calls to the requisite library subroutine. 

CON CAT text tables with operands that are non-varying character strings 
with fixed extents are replaced by a series of MOVE and OFFS tables. 
This is illustrated in the following example: 

The following source statements: 

DCL TAR CHAR(S), Cl CHAR(3), C2 CHAR(2)j 

TAR = Cli I C 2 ; 

result in the text input to Phase OC containing the following text 
table: 

CONCAT Cl C2 

This text table is replaced by: 

MOVE 
OFFS 
MOVE 

Cl 
3 

C2 

3 
TAR 

2 

TAR. 

TAR 
Q.temp.l. 
Q.temp.l. 

If a concatenation operation involves varying or adjustable character 
strings, field lengths and offsets cannot be calculated at compilation 
time. Text tables indicating the code required to perform the 
calculations at execution time are generated, and the routines starting 
at SCANASSO are used to generate inline code or a call to a 
compiler-generated subroutine to perform the string-movement operations. 

If it is possible for an operand (other than the first operand) in a 
concatenation operation to overlap the target field, a temporary operand 
is generated to acquire an area of temporary storage in which the 
concatenated string can be built up. The string is then moved to the 
target field. 

Erocessing BaaL and TRANSLATE Built-in Functions, and AND, OR, and NOT 
QEerlli~ 

~hen a BlF text table is detected in the input text, the SCANBIF routine 
examines the IOP2 byte to determine whether it refers to either the BOOL 
or TRANSLATE built-in functions. If so, control is passed to either the 
aOOLF routine or the TRANSLF routine. 

The routines starting at BOOLF examine the third argument to BaaL, which 
is in the second of two BIF text tables. If this argument does not 
represent an AND, OR, NOT, or EXCLUSIVE OR logical operation, a call to 
a library subroutine is generated. If the third argument does represent 
one of these logical operations, the arguments are further examined. If 
the target operand is adjustable, a call to a library subroutine is 
generated. If any of the operands are unaligned, a call to a different 
library subroutine is generated. If all operands are aligned, the 
target is not adjustable, and the third argument specifies one of the 

220 Licensed Material - Property of IBM 



logical operations, inline code is defined. If the operation involves a 
temporary result that is adjustable, a GETVDA text table is generated to 
acquire storage for the temporary operand that is generated. Control is 
then passed to the SCANASSO routine to generate text defining the 
requisite move operations. 

AND, OR, and NOT text tables are processed in a similar manner by 
routines starting at NDRNT. (Some of these routines are used in 
processing BOOL operations.) If any operand in one of these text tables 
is unaligned, a call is generated to the same library subroutines as is 
used in similar circumstances in BOOL. If the first or second operand 
is adjustable, or if the length of the result is greater than 256 bytes, 
a call to a library subroutine is generated. In other cases, inline 
code is defined. An appropriate code is set in the MOVE1 field to 
indicate to the SCANASSO routine the type of movement code required. 

The processing performed by the TRANSLF routine in connection with the 
TRANSLATE built-in function depends upon whether a.position string is 
specified, and upon the attributes of the argument strings. In general, 
a call to a library subroutine is generated if the replacement string or 
the position string is adjustable or varying or longer than 256 bytes. 
Ioline code is generated in other cases; the MVCL compiler-generated 
subroutine is not called. If the replacement string is non-varying and 
is less than 256 bytes long, it is assigned to a temporary operand which 
is 256 bytes long; a dictionary entry is created to hold the string 
constant used to pad the replacement temporary operand to 256· bytes. A 
dictionary entry may also be made to hold the translation table, which 
is moved by the SCANASSO routine if OPT (TIME) is specified. If OPT 
(TIME) is not specified, the translation table is built by generating 
text defining movement operations within a loop controlled by a BCT 
instruction. 

Processing ComE2rison Operations 

Text tables indicating comparison operations (GT, GE, EQ, LE, and LT 
text tables) are processed by routines starting at SCANCOMP. Prior to 
input to this phase, the text tables are generated by Phase II with the 
two operands to be compared in the first two operand fields, and with a 
bit-string temporary operand in the third operand (result) field. Thus 
the following source statements: 

DCL (A,B,C) FIXED BINARY; 

A = B > C; 

cause the following text tables to appear in the output from Phase II: 

GT 
CONV temp. 

C temp. 
A 

During p~ocessing by Phase KV, the bit-string temporary operand is 
changed to the data type to which the bit result is ultimately 
converted. Thus, on input to Phase OC. the text contains the following 
text table: 

GT B C A 

The SCANCOMP routine determines the type of the result of the operation, 
and generates text to assign a value of one or zero in the appropriate 
representation to the result, with a conditional branch between the 
assignments. The text output from the processing can be represented as 
follows: 

Licensed Material - Property of IBM Section 2: Method of Operation 221 



ASSN 
BC 
ASSN 
GSL 

1 
B 
o 
CL.l 

C 
A 

(BGT,CL.l) 
A 

If the data type of the result is a string, the SCANASSO routine is used 
to define the move code required by the assignments. Otherwise, the 
assignments are left for processing by Phase KX. 

222 Licensed Material - Property of IBM 



STRING-HANDLING OPERATIONS - PART 2 AND COMPLEX-EXPRESSION EXPANSION 
(PHA§~_QX) 

Phase OX processes text tables that involve string-handling operations, 
and also text tables involving complex expressions (but not the COMPLEX 
built-in function). 

The string-handling items processed by the phase include the HIGH, 
INDEX, LENGTH, LOW, REPEAT, STRING, and VERIFY built-in functions, the 
STRING pseudovariable, and string comparisons defined in BC and BCB text 
tables. Text is generated to define inline code, a call to a 
compiler-generated subroutine, or a call to a library subroutine 
required for execution of these operations. This phase generates the 
text defining any of the five compiler-generated subroutines concerned 
with string handling that are called from text generated by this phase 
or Phase OC. 

If an expression contains a variable declared with the COMPLEX 
attribute, Phase OX expands the text so that both the real and imaginary 
parts of the variable are included. 

PHASE INPUT 

Input to the phase consists of the main text stream, which is scanned 
sequentially. Entries in the variables and general dictionaries may be 
accessed if it is necessary to create a descriptor-descriptor for a 
complex variable. 

PHASE OUTPUT 

Output from the phase consists of the main text stream, modified as 
described in the description of phase operation. If compiler-generated 
string-handling subroutines are required, they are inserted in the text 
immediately following the first labeled statement header (SL). The 
subroutines that may be generated are: 

• CGSCB - Compare long bit strings. 

• CGSBO - Test tits for zero, branch on not ones. 

• CGSBB - Test bits for zero, branch on not zeros. 

• CGSCL - Compare long character strings. 

• CGSMV - Move long character strings. 

Some of the text tables generated for these subroutines contain actual 
code sequences to be copied into the object module, rather than 
indicating the code sequences to be generated by the code generation 
phases. 

Entries for descriptor-descriptors, and also for translate-and-test 
tables used in processing the INDEX and VERIFY built-in functions, may 
be made in the general dictionary. 

Licensed Material - Property of IBM Section 2: Method of Operation 223 



PHASE OPERATION 

The main text stream is scanned by use of the XNEXT macro. When the 
first SL statement header is seen, its text reference is saved to 
indicate the position at which any compiler-generated subroutines that 
are required should be inserted at the end of phase operation. When 
other text tables of possible interest to the phase are seen, control is 
passed to an appropriate routine for further examination as follows: 

SCANBIFS routine - examines BIF text tables 
STRNGFO routine - examines PSV text tables 
SCANBCB routine - examines BCB text tables 
SCANBC routine - examines BC text tables 
CPOOl routine - examines PLUS, PPLUS, MINUS, PMINUS, MULT, DIVIDE, 

ASSN, CONV, BC (with non-string operands), sl, sn, 
sinit, and IASSN text tables. 

If examination reveals that these text tables are of interest to the 
phase, they are processed accordingly. otherwise, the scan is step~ed 
to the next text table. 

In addition to the types of text tables previously mentioned, NDX, OFFS, 
and PTSAT text tables are also examined for the presence of 
Q-temps. representing data types processed by the phase. A stack of 
active Q-temps. is built and maintained to enable the qualifications of 
a Q-temp. to be accessed whenever it is used as an operand in a text 
table processed by this phase. 

Processing string Built-in Functions 

If the IOP2 code byte of a BIF text table indicates that it is a 
reference to a string-handling built-in function processed by this 
phase, control is passed to the appropriate processing routine as 
follows: 

VERIFY bif - VRFNCT routine 
INDEX bif - INDEXOO routine 
REPEAT bif - REPEATF routine 
LENGTH bif - LENBIF routine 
HIGH or LOW bif - BIGHLOW routine 
STRING bif - STRNGFOO routine (this routine also processes STRING 

pseudovariables) 

None of these routines generate calls to compiler-generated subroutines. 
The LENBIF and BIGBLOW routines always generate inline code in the form 
of ASSN text tables. The VRFNCT, INDEXOO, REPEATO, and STRNGFOO 
routines may generate inline code or calls to library SUbroutines, 
according to the attributes of the operands. The subroutine GENLIB is 
used to generate library calling sequences, using information set up in 
the GLOPNDl and GLNUM fields of XSTG, and in RE. 

Processing BC and BCE Text T~~ 

BCB text tables, and BC tables with string operands are processed by the 
routine SCANCOMP. Where possible, they are replaced by text defining 
inline code. If the lengths of the fist two operands are known to be 
equal, the BC or BCB text table is replaced with a COMPARE text table 
followed by a GOTO text table with the appropriate branch condition. If 
the lengths of the first two operands are not equal, a COMPARE text 
table with the length of the shorter operand is generated, followed by a 
GOTO text table with a condition code that is the inverse of the 

224 Licensed Material - Property of IBM 



original branch condition. This is followed by another COMPARE text 
table, with the remainder of the longer operand and an equal length 
string of zeros or blank characters, and followed by a GOTO text table 
with the original branch condition. 

Where the lengths of the operands make the generation of inline code 
unsuitable, a call is generated to a compiler-generated subroutine. If 
either of the operands is a varying string. a call to a library 
subroutine is generated. 

Processing Expressions with Complex Operands 

Routines starting at OX2 (the second module of the phase) examine text 
tables which may contain complex data operands. If a statement contains 
a complex data item. it is expanded, either by the generation of 
text-defining inline code or by a call to a library subroutine. into one 
or more statements which handle the real and imaginary parts of the item 
separately. 

The text tables that are examined are PLUS, PPLUS, MINUS. PMINUS, MULT, 
DIVIDE. ASSN. IASSN. SINIT. CONV. and BC (with non-string operands). 
Each of the operands in a text table are examined in turn and for each 
operand a switch. OlSW. 02SW. or 03SW respectively. is set to indicate 
whether the data type is real. complex, or the real or imaginary part of 
a complex item. If all the operands are imaginary. or either real or 
the real part of a complex item. then no expansion is required. If the 
divisor operand of a DIVIDE text table is complex or does not have the 
FLOAT attribute. the GENLIB subroutine is called to generate a call to a 
library subroutine to perform the expansion. 

If expansion is to be performed. a value set according to the 
indications of 01SW and 02SW is added to the value of the IOPl code 
byte, and the result. TABNO. is used to index a table. TABAD. Each 
entry in TABAD is the address of an entry in a second table, CONV1. 
Entries in CONVl are of varying length. and the number of significant 
bytes in an entry indicates the number of new text tables to be 
generated. Some of the entries have internal code bytes with values set 
to inhibit further processing if the result operand is real. The value 
of each other byte in the entry (except the end marker, X'FF') indicates 
an entry in a third table. INSTAB. Thus, a text table: 

PLUS B C A 

in which B, C, and A are all complex data items, results in TABAD 
indicating an entry in CONVl with the following format: 

PLUSl DC X'lDFDFE1FFF' 

In this entry, the last byte, XI' FF' is the end marker. and the two 
bytes, X'FDFE' are the internal code bytes mentioned previously. There 
are two Significant bytes, X'lC' and X'lF', which pOint to two entries 
in INSTAB. Each entry in INSTAB is six bytes long, and defines a text 
table to be generated. The first two bytes define the IOPl and IOP2 
code bytes of the text table. The next three bytes, each of which can 
have a value in the range XI' 01" to XI' OFI,. deser ibe operands 1. 2. and 3 
respectively. The last byte contains an end marker, X'PP'. The entries 
referred to in the foregoing exam~le are: 

X'6300010305FP' lC 
X·6300020406FP· lF 

Licensed Material - Property of IBM Section 2: Method of Operation 225 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Each of these entries defines a PLUS text table to be generated. In the 
first, the real part of the original operand 1 is added to the real part 
of the original operand 2, and the result is stored in the real part of 
the original operand 3. The second text table indicates a similar 
operation using the imaginary parts of the original operands. The 
original text table is changed to NULL. 

Routine SCANLAB/SCANSN 

~his ~outine examines information concerning the last statement and 
determines: 

1. Whether a VDA was used and if any ~revious VDAs should be freed 
before the VDA is obtained. 

2. whether any previously obtained VDAs should be freed in statement. 

226 Licensed Material - property of IBM 



DATA CONVERSION PROCESSING (PHASE KX) 

The main function of this phase is to analyze the conversions of data 
types that are required for various operands in the text, and to modify 
the text so that it indicates the object code required to enable the 
conversions to be performed at execution time. The code to be generated 
enables the conversion to be done either by inline code or by a call to 
a library routine that performs the conversion. The method is chosen by 
this phase according to two factors - the type of conversion required, 
and the type of optimization specified in the compiler options. 

The phase also examines the data types of the operands in a number of 
other types of text tables, and sets code bytes or flags in those text 
tables to indicate the format of the object code required. 

Picture specifications in the general dictionary are examined and 
converted to a format required by use by library routines at execution 
time. 

PHASE INPUT 

The phase scans the main text stream, searching for text tables that are 
processed by the phase. Because some of the preceding phases are 
optionally executed, depending upon the contents of the PL/I source 
program or the compiler options that are specified, text input to the 
phase may be the text output from Phase KV, OM, KK, OC, or OX. The 
logical sequence of the text may be indicated only by the contents of 
the forward chain fields in the text tables or, if the text has been 
processed by the phases in the global optimization stage, flow-unit 
header tables, hash tables, statement header tables, and end-of-program 
tables may also be used to follow the logical sequence. The text tables 
processed by this phase are: CONV(convert), PLUS (add) , PPLUS(prefix 
plus), MINUS (subtract) , PMINUS(prefix minus), DIVIDE,' COMP(compare) , 
ASSNCassign), GOTO, SUBSCsubscript) and DINCCDo-loop increment). 

The general dictionary entries for picture specifications are scanned 
and processed. 

PHASE OUTPUT 

output from the phase consists of the input to the phase, with 
modifications and insertions made where necessary. 

Text tables processed by this phase (except the CONV text tables) are 
modified but do not cause other text tables to be generated. Each CONV 
text table has a value set in the IOP2 field, and may have additional 
text tables created before and/or after it. 

During processing, bits are set in the XLIBSTR field in XCOMM to 
indicate library modules for which calls must be generated. 

The picture specification entries in the general dictionary have 
characters replaced in situ. 

Licensed Material - Property of IBM Section 2: Method of Operation 227 



PHASE OPERATION 

Processing Picture Specifications. 

The entries for picture specifications in the general dictionary are 
scanned sequentially. Each picture specification is translated in situ 
into a format acceptable to library routines at execution time. Ihe 
phase contains a table that indicates replacement characters and formats 
equivalent to the picture specifications in the dictionary entry. Items 
in the table are used as direct replacements for the existing items in 
the dictionary entries. 

Processing Text !~2 

Although the physical sequence of the text tables 'in the main text 
stream input may vary according to which phases have been executed, this 
phase scans the text tables in logical sequence by use of the XNEXT 
macro routine. A single sequential scan is made, during which text 
tables processed by the phase are detected. As each text table is 
detected, a routine that processes that type of text table is branched 
to. 

The processing of CONV text tables is described later. For all other 
text tables, the attributes of the operands are found by examination of 
the DEDs. Constant operands are treated as variables during this 
processing and, where necessary, the target operand is examined to 
determine their object-time attributes. The examination of the 
attributes indicates the particular sequence of object code required. 
Bits are set in the second byte of the operator (IOP2) and/or the status 
flag bytes <IST2) of the text table to indicate the code skeleton to be 
used by the code generation phases. 

Processing Conversions. 

~hen a CONV text table is detected, the CONVERT routine is branched to. 
This routine contains a number of subroutines, each of which processes a 
particular combination of source attributes <i.e., the attributes of the 
first operand in the text table), and target attributes <i.e., the 
attributes of the third operand in the text table). The following eight 
attributes or combination of attributes are recognized as being unique 
and valid in their application for conversion purposes: 

1. BIT 

2. CHARACTER 

3. FIXED DECIMAL 

4. FLOAT PICTURE DECIMAL 

5. FLOAT 

6. FIXED PICTURE DECIMAL 

7. PICTURE CHARACTER 

228 Licensed Material - Property of IBM 



8. FIXED BINARY 

The main routine examines the source attributes and branches to the 
appropriate one of eight routines, each of which processes conversion 
tables with a particular source attribute/so The selected routine then 
examines the target attributes. For each combination of source and 
target attributes, a branch is made to a particular subroutine. There 
are sixty of these subroutines. A few subroutines process more than one 
combination of source and target attributes e.g., processing of 
CHARACTER to BINARY conversion uses the CHARACTER to DECIMAL conversions 
routine. 

Each subroutine determines whether the required conversion is to be 
performed by the generation of inline code, or whether a library routine 
is to be called to perform the conversion. In order to determine the 
processing required, the prevailing statement options <indicated in 
XCOMM) are checked, and the text table is examined. 

~hen possible, code for inline conversion is generated. However, under 
certain conditions, for example the possible presence of invalid data 
types in PICTURE specifications, adjustable or varying character 
strings, and SIZE or CONVERSION conditions enabled, inline conversion 
code cannot be generated and a library-call conversion is initiated as 
described below. 

In some cases, a hybrid system of conversion is performed, i.~., code is 
generated to perform some of the conversion process in line, but this 
code includes a call to a library routine to perform a particular 
operation in the processing. when the particular method of performing 
the conversion has been decided, the processing is performed as 
described below. 

Library-call Conversions: All indications for the code required for 
library-call conversions are generated in a similar manner by the 
subroutines that test for the required type of conversion. The IOP2 
code byte in the CONV text table is set to a value of X'Ol' and the 
first byte of the second operand is set to a value of X'2F'. Both these 
settings indicate to later phases that code for a library call is 
required. The index number of the particular library module required is 
set in other bytes of the text table second operand. The appropriate 
index bits are also set in XLIBSTR (in XCOMM) to indicate the main entry 
point, and all possible secondary entry points, of the library module. 
No other text tables are generated. 

Inline Conversions: A further branch is made to a subroutine that 
generates text tables to indicate the particular code sequence required. 
This subroutine examines the statement prefix options, which have been 
saved in a phase save-area during the text scan, to see if the 
enablement of the NOSIZE and CONVERSION conditions affects the attempt 
to perform conversion und~r certain conditions. 

Whenever possible, standard text tables (e.g., ASSN, MOVE, etc.) are 
used in the text sequence, and only the CONV text table will generate 
code peculiar to the particular conversion. The code skeleton required 
is indicated by setting a value (X'02'gX'03',---X'16') in the IOP2 code 
byte of the CONV text table. A number of conversions are performed by 
generating the code for two fundamental conversions in series. 

The output code required for each type of inline conversion is 
illustrated in the published listing, and is also described in the 
publication: DOS PL/I Optimizing Compiler, Guide to Execution. 

Licensed Material - Property of IBM section 2: Method of Operation 229 



Hybrid c~~sions: Some of the processing required for the conversion 
from FLOAT to CHARACTER can be performed by code inline. This 
conversion requires an interpretive routine to analyze the 
floating-point data, in order to generate the correct scale factor. 
This part of the processing is best performed by a library routine. A 
character string of the correct length is set up before calling the 
library routine, and the subsequent string assignment is processed in 
line. 

230 Licensed Material - Property of IBM 



GLOBAL OPTIMIZATION STAGE 

The four phases that comprise this stage are only loaded and executed if 
the OPTIMIZE (TIME/2) (or OPT(TIME/2» compiler option is specified. 
The first three phases in the stage, Phases OA, OE, and OI, extract 
information about variables and their usage in the program, and about 
the paths along which control can flow within the program. This 
information is collected in special tables in the text and in dictionary 
entries. The last phase in the stage, Phase OM, uses this inforrration 
to enable it to detect situations where the text can be modified or 
reordered so that it defines a more efficient sequence cf code. The 
extent to which this form of optimization can be performed varies 
according to the efficiency of the source prograrr, according tc the 
content of the source ~rogram (e.g., the number of blocks, the number of 
variables, etc.), and also depends upon whether the REORDER option has 
been specified in the scurce prograrr. 

GLOSSARY OF TERMS USED IN GLOBAL OPTIMIZATION 

The descriptions of the processing performed by the phases of the global 
optimization stage contain a number of terms that are used almost 
exclusively within those descriptions. For convenience of the reader, a 
number of those terms are explained and illustrated in this special 
glossary. The terms are arranged in logical sequence of definiticn 
rather than in alphabetic order. 

flow unit: a sequence of text defining a sequence cf code that has no 
intermediate branching points, and therefore can only be logically 
entered at the beginning and left at the end. (Each flow unit is 
allocated an identifying number by Phase OI.) 

entry unit: a flow unit that begins with a block-entry statement 
(PROCEDURE, BEGIN, ON-BEGIN, or ENTRY) or which has a label that can be 
branched-to from a dynamically contained block (procedure block, begin 
block, or on-unit). 

forward connector (of a flow unit, F): a flow unit tc Which F can pass 
control directly. (See figure 2.21.) 

backward connector (of a flow unit, F): a flow unit which can pass 
control directly to F. (See figure 2.21.> 

level number (of a flow unit, F): a number that is cne greater than the 
smallest number of flow units through which control must pass tc get 
from an entry to F. (See figure 2.21.> Entry units have a level number 
of one. 

Licensed Material - Pro~erty of IBM section 2: Method of operation 231 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

r---------------------------------------------------------------------, I Flow units (PL/I source) and I Forward I Backward I Level 
I identifying numbers Iconnectorslconnectors numbers 

ENTUNIT: BEGIN; ] A = 5-I 
B = 0; 1* 2 0 1 

LOOPENT: IF B = 0 ] 2 3,4 1,7 2 

THEN e = A+B; ] 3 5 2 3 

ELSE e = A/B: ] 4 5 2 3 

IF e 1 ] 5 6,7 3,4 4 

THEN GOTO EXIT: ] 6 8 5 5 

PUT LIST (e); ] B = B+l: 7 2 5 5 
GOTO LOOPENT: 

EXIT: PUT LIST ('A=B t
);] 

END; 8 6 6 

* indicates entry unit 

L---------------------------------------------------------------------J 
Figure 2.21. Example showing flow uni ts u forward and backward 

connectors, and level numbers 

back dominator (of a flow unit, F): the flow unit nearest to F through 
which control must flow before F receives control for the first time. 
(See figure 2.22.) 

232 Licensed Material - Property of IBM 



A 0 

c B F E G E 

D c H E 

I A 

Figure 2.22. Illustration of back dominators 

looE_ent~~it: a flow unit that starts with the entry point of a 
loop. A flow unit is a loop entry unit either if it has itself as a 
backward connector or if it has one or more backward connectors for 
which it is the back dominator. (See figure 2.23.) 

back target ~a loopl: the flow unit nearest to the loop entry unit 
through which control must pass before the loop is entered. A loop back 
target is the back dominator of the loop entry unit. (See figure 2.23.) 

back target (of a flow unit. Fl: the back target of the loop in which F 
is contained. 

forward tarq~21-~looPl: the flow unit to which control passes when 
the execution of a loop is complete. (See figure 2~23.) 

IOOE deEth number: a number associated with a loop to indicate its 
depth of nesting; equal to the number of containing loops plus one~ 
(See figure 2.23.) 

Licensed Material - Property of IBM Section 2: Method of Operation 233 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, 

A 
~ 

B 
J 

C 
i 
D 

--1 
E 

1 
F 
~ 

G 
~! 

H 
~! 

I 
~l 

J 

* = Entry flow units 

· 

· 

· 

* 

} 

Back target = F 
Forward target = H 
Loop depth no. = 4 

Back target = B 
Forward target = E 
Loop depth no. = 3 

Back target = E 
Forward target = I 
Loop depth no. = 3 

Back target = A 
Forward target = J 

Loop depth no. = 2 

October, 1973 

Back target = 0 
Loop depth no. = 1 

, Figure 2.23. Illustration showing back targets, forward targets, and loop depth numbers 

234 Licensed Material - Property of IBM 



EXTRACTION OF ALIAS AND CALL INFORMATION (PHASE OA) 

As a preliminary step towards global text optimization, Phase OA 
determines which variables can be referred to by alias names, and which 
blocks can be called from other blocks in the program. 

The information is collected in value lists which are used to build 
value list entries in the general dictionary. An entry is made for each 
parameter, locator, label variable, entry variable, defined variable, 
and each ~rogram block. 

Entries containing summaries of the alias information and the 
block-calling information for the whole compilation are also made in the 
general dictionary. 

PHASE INPUT 

The main text stream is scanned sequentially for text tables containing 
the following features: 

Label assignments 
Locator assignments 
Entry-variable assignments 
Argument lists 
Function references 
Calls to PROCEDURE, BEGIN, and ON-BEGIN blocks 

The variables dictionary is scanned for entries for variables with the 
DEFINED attribute, and the variables and general dictionaries are 
accessed as required. 

PHASE OUTPUT 

The main text stream is not altered by this phase. Value list entries 
are built in the general dictionary (see figure 5.26). Each entry 
contains a bit vector which indicates either: 

1. The variables, label constants, and blocks (as opposed to internal 
entry points) that can be accessed under one or more alias names, 
by means of a locator variable, parameter variable, label variable, 
or entry variable. 

2. The blocks that can be called, either directly or indirectly, from 
a particular block in the compilation. 

A summary of the alias information for the whole compilation is stored 
in an entry in the general dictionary~ and the reference of this entry 
is stored in the XALIAS field in XCOMM. 

For each block in the compilation, an Optimization Entry is built in the 
general dictionary (see figure 5.25). This entry is mainly a skeleton 
entry for use by other phases in the stage, but this phase inserts in it 
a value list indicating all blocks that can be called from the block to 
which the entry relates. 

For each variable that has a value list entry built in the general 
dictionary, th~ reference of that entry is inserted in the variables 
dictionary entry. 

Licensed Material - Property of IBM Section 2: Method of Operation 235 



PHASE OPERATION 

The main scanning routine, TSCAN1, uses the XNEXT macro to scan the main 
text stream sequentially in order to detect all the items listed in the 
description of input to the phase. On the first appearance of one of 
these items, a value list entry is created in the general dictionary. 
Each entry contains a bit vector, in which bits are set to indicate a 
particular item. Thus, the setting of the nth bit in a value list bit 
vector can be used to indicate a reference in the nth entry in the 
general dictionary, the nth entry in the variables dictionary, or the 
nth block in the compilation. Bits are set in the appropriate value 
list entry on each appearance of an item, so that each entry can 
indicate a number of aliases or a number of blocks that can be called. 

Because the information collected in a value list cannot be complete 
until all locator assignments, label assignments, entry assignments, 
argument/parameter matches, or CALL statements and function references 
have been seen, temporary data areas are created in the phase working 
storage to enable sifting and commoning of collected information. These 
temporary data areas are referred to as the Primary Value List Transfer 
Table, the Secondary Value List Transfer Table, and the Call Table. 
When the text scan is complete, the variables dictionary is scanned for 
entries for defined variables. Value list entries are made for these 
variables, and entries are also made in the primary transfer table as 
required. When the dictionary scan is complete, the information 
collected in the temporary data areas is reorganized, and the value list 
entries in the general dictionary are completed. Finally, summaries of 
the alias information and the block-calling information for the whole 
compilation are entered in the general dictionary. 

Note: In some cases of very large or very complex source programs, 
either of the transfer tables or the call table may overflow. This 
prevents further collection of information required for global 
optimization, and this makes execution of Phases OE, 01 and OM 
impossible. If this happens, a diagnostic message is generated, flags 
are set to indicate that global optimization has not been performed, and 
an XPST macro statement is invoked to have Phase KK loaded. 

Value Lists for Variables 

Value lists are built for label variables, locator variables, entry 
variables and parameter variables with the following exceptions: 

1. Label variables with label lists have value lists built by Phase GE 
during the dictionary build stage. 

2. Base variables serve only to give the attributes of the data being 
accessed. They have no unique storage allocated to them and the 
address of the data is given solely by the pointer that always 
precedes a based variable in text. For example, P -> V does not 
equal Q -> V unless P = Q. For optimization purposes, only the 
locator is €ignificant, and based data does not appear in value 
lists. 

For each variable that has a value list built, a reference is inserted 
in its variables dictionary entry indicating the location of its 
associated value list entry in the general dictionary. 

Label Variables: Each label variable has a value list built, in which 
bits are set to indicate the label constants it can represent. The 
coordinate of each bit set indicates the reference of a general 
dictionary entry for a label constant (all label constant entries are 
grouped together at the beginning of the general dictionary). The 
length of label variables value lists" in bytes is (number of 

236 Licensed Material - Property of IBM 



labels+16)/18. The last byte in the list is used to indicate if the 
associated label variable could transfer control from the current 
external procedure (or a contained block) to another external procedure. 

Ent~~riable~: Each entry variable has a 32-byte value list built, in 
which bits are set to indicate the blocks that the variable can 
represent. The block-count values in the entry-constant entries are 
used. 

Parameters: Each parameter has a value list built in which bits are set 
to-Indicate variables in argument lists that the parameter can 
represent. Bits are not set in the value list if an argument passed is 
a based variable, a locator, a label variable, a variable with the 
DEFINED attribute, or a parameter in its own right. 

The coordinate of a bit in a value list corresponds to the effective 
number of an entry in the variables dictionary. Value lists for 
variables are 32 bytes long, enabling the first 256 variables in the 
program to be represented. The technique used to refer to variables 
outside this range is described later. 

Locator Variables: Each pointer or offset variable has three value 
lists built for it. The first is a variables value list (32 bytes long) 
in which a bit is set whenever the address of a non-based variaple which 
is not a locator, label variable, a variable with the DEFINED attribute, 
or a parameter, is assigned to the locator. 

e.g., P = ADDR(V)i 

where P is a pointer and V is a non-based variable. In this case, V is 
considered to be a value of P so the bit for V is set in the value list 
for P. 

The second value list built for locator variables is one in which bits 
are set to indicate any block (as opposed to internal entry points) that 
can be accessed by the locator. The third value list has bits set to 
indicate any label constants at which the locator can point. 

Use of Value List Transfer !able2 

The nature of information extracted during the scan of the text tables 
may make it impossible for every alias to be indicated in a particular 
value list at that time. To overcome this problem, certain value list 
information is stored in temporary data areas, known as Value List 
Transfer Tables, that are built in working storage during the scanning 
process. When the scanning process is complete, the information stored 
in the transfer tables is analysed and used to complete the value lists 
in the dictionary. Two value list transfer tables are used, the Primary 
Transfer Table and the Secondary Transfer Table. 

The Primary Value List Transfer Table: Entries are made in the primary 
transfer table when: 

1. Assignment is made to a non-based label variable of another 
non-based label variable, or when a non-based entry variable is 
assigned to another non-based entry variable. 

2. An argument that is passed·to a parameter is a based or defined 
variable, or is itself a parameter. 

3. Assignment is made to a locator of any value other than the address 
of a non-based variable which is not a parameter, label variable, 
locator, or a variable with the DEFINED attribute. 

Licensed Material - Property of IBM section 2: Method of Operation 237 



The format of an entry in the primary transfer table is as follows: 

r-----------T----------T----------T----------, 
I I I I I 
I TOREF I TOFLG I FRMREF I FRMFLG I 
l ___________ i ___ -------i----------i----------J 
FRMREF is the dictionary reference of the value list from which 
information is to be transferred to the value list at the dictionary 
reference given at TOREF. 

TOFLG and FRMFLG indicate the type of variable, e.g., locator, 
label-variable, defined variable, etc. 

An example of the use of the primary transfer table is: 

LABA=LABBi 

where LABA and LABB are both label variables. At the time the 
assignment statement is scanned, all the label constants that can be 
assigned to LABB may not be known and therefore not indicated in the 
value list of LABB. An entry is made in the primary transfer table and, 
when scanning is completed, any label constant alias indicated in the 
value list of LABB can also be set in the value list of LABA. 

The secondary Value List Transfer Table: An entry is made in the 
secondary transfer table whenever an assignment is made to or from a 
based label variable or entry variable. The format of the entry is 
similar to that for an entry in the primary transfer table. Because of 
its use, one of the value lists referred to (in either TOREF or FRMREF) 
will always be that of a locator and the other will be the value list of 
a locator, a label variable, or an entry variable, or the value-list 
coordinate of a label constant or entry constant. 

Transference of Variables Value Lists: When the text scan and initial 
building of value lists is complete, entries in the transfer tables are 
expanded and value lists transferred as required. The TRNSl routine 
expands each entry in the secondary transfer table into several entries 
which are added to the primary transfer table. Each entry in the 
secondary transfer table is examined in turn. If the FRMREF field 
refers to the value list of a locator, it is replaced by a list of value 
lists of label variables or entry variables that can be addressed by the 
locator. This list is built by searching the primary transfer table for 
label or entry variables or other locators whose value lists are to be 
transferred to that pointer. If the FRMREF field refers to the valUe 
list of a label or entry variable, no expansion is necessary. The TOREF 
field is expanded in a similar way. All possible combinations, of 'To' 
and 'From' value list references are then added to the primary transfer 
table. When this has been done for entry in the secondary transfer 
table, that table is discarded. 

The TRNS2 routine scans the primary transfer table and accesses the 
value lists referred to in its entries. A logical OR operation is 
performed between the value list to be transferred from and the value 
list to be transferred to, thus effectively transferring the contents of 
one value list to the other. A flag is set to indicate which value 
lists are changed. Successive scans are made in which only the value 
lists that are flagged are accessed. Processing is complete when a scan 
is made during which the OR operations do not change any value lists. 
The primary value list transfer table is toen discarded. 

Alias Information Summaries 

The amount of detailed information that can be contained in value lists 
is limited by the size of the value lists. Value lists for label 

238 Licensed Material - Property of IBM 



variables are of variable length and can indicate the aliases of all 
label variables in the program. Value lists for other variables are 32 
bytes long and can only indicate aliases for the first 256 variables in 
the program. For this reason, bit vectors are built during the initial 
scan of the text by the TSCANI routine. summarizing the alias 
information for a greater number of variables than those for which value 
lists can be built. Bit vectors are built showing the following 
information: 

1. Those variables with dic~ionary references less than 2048 that have 
value lists. 

2. Those variables with dictionary references less than 256 that 
appear in value lists. 

3. Those variables with dictionary references between 256 and 2047 
that do not appear in any value list but would do so if value lists 
were larger. 

On completion of processing by the phase, these summaries of alias 
information are stored ~n the general dictionary, with the reference of 
the entry being stored in the XALIAS field of the communication area. 

Value Lists for Blocks 

Calling information for blocks is collected initially in a temporary 
data area named the Call Table. When the TSCANI routine detects a CALL 
or FNCT text table, an entry is made in the call table showing the block 
count of the calling block and the block count of the called block. The 
block count used is that set up during the syntax analysis stage. If an 
invocation of an entry variable is detected, the entry made in the call 
table consists of the block count of the calling block and the 
dictionary reference of the value list entry for the entry variable. 

The TRNS3 routine builds in working storage a value list for each block, 
consisting of a bit vector with all bits initially set to zero. The bit 
vector is 32 bytes long, enabling the maximum number of blocks (255) to 
be represented. The call table is scanned and, for each entry, the bit 
representing the called block is set in the value list of the calling 
block. When an entry for an entry variable is encountered, the value 
list entry is accessed and the call table entry is expanded into series 
of calling block/called block entries before any value list bits are 
set. When this scan is complete, the Call Table is scanned again and, 
for each entry, a logical OR operation is performed between the value 
list of the calling block and the value list of the called block. In 
this way, bits are set in the value list for the calling block showing 
which blocks are in turn called by the called block and thus indirectly 
called by the calling block. Scans of the call table are repeated until 
no value lists are changed by a logical OR operation. 

During the text scan, an Optimization Entry is created in the general 
dictionary for each block (see figure 5.25). The value list for each 
block is entered in the optimization entry and the refer~nce of the 
optimization entry is stored in the block header entry for the block. 
The call table is discarded. 

Licensed Material - Property of IBM Section 2: Method of Operation 239 



The following fields are completed at this time: 

YALABL(2 bytes) 

YALABL1(2bytes) 

YALABS(2 bytes) 

YALABS1(2bytes) 

Dictionary reference of first user-supplied label in the 
block. 

Dictionary reference of first compiler-generated label 
associated with label-array initializati6n in the block. 

Number of user-supplied labels in the block. 

Number of compiler-generated labels associated with 
label-array initialization in the block. 

240 Licensed Material - Property of IBM 



EXTRACTION OF VARIABLES USAGE AND FLOWPATH INFORMATION (PHASE OE) 

The functions of Phase OE are preliminary steps in the global 
optimization proc~ss. They are: 

1. Reorganization of text. The text stream is reorganized so that all 
text tables within a logical flow unit are physically grouped 
together. Flow Unit Header (FUB) tables and hash tables are 
crEated in the text stream. 

2. Extraction of variables usage and flow path information. 
Information indicating which variablEs are used in each logical 
flow unit, and how they are used. is collected in each flow unit 
header table. Information indicating possible flow paths between 
logical flow units is similarly collected. This information is 
consolidated for each block in the program and stored in block 
optimization entries in the general dictionary. A summary of 
information about variables used or set in on-units is collected in 
one entry for the whole program (see figure 5.24). 

PHASE INPUT 

The text stream output from Phase OA is scanned in logical sequence. 
ThE physical sequence may not coincide with the logical sequence because 
of the expansion of text onto overflow pages during the statement 
processing stage. 

The variables dictionary is accessed for the general dictionary 
references of value lists created by Phase OA. 

The general dictionary is accEssed for value lists and block 
optimization entries created by Phase OA. 

PHASE OUTPU~ 

A reorganized text stream is built in which the Type-2 text tables are 
physically arranged according to their logical sequence within logical 
flow units. A flow unit header table (see figure 5.98), is built for 
each flow unit. Information indicating the usage of variables within 
the flow unit, flow paths out of the flow unit, and the label at the 
head of the flow unit is stored in the FUH. Flow units are chained 
together and text pages within a flow unit are chained. Hash tables are 
inserted after each FUB table and at the beginning of each text page. 
Forward and backward chains link all text tables to the hash tables. 
One type of text table may be changed by this phase. 

The optimization entry in the general dictionary for each block in the 
program is completed. Each entry contains information about the usage 
of variables in the block, possible flow paths from the block, and usage 
of variables within blocks that can be called. (The format of the 
optimization entry is shown in section 5, "Data Area Layouts.") 

If the program contains on-units, a special entry is made in the general 
dictionary in which informat~on about the usage of variables within all 
on-units and within blocks called from on-units is stored. 

This phase also sets up the appropriate bits in the IFOF3 field of the 
FUR table (see figure 5.99) to mark the first flow unit in a block, and 
the first and last flow units in a DO group. 

Licensed Material - Property of IBM Section 2: Method of Operation 241 



PBASE OPERATION 

~2Eganization of Text 

The SCANl routine uses the XNEXT macro to scan the text tables in the 
input text stream, and calls the appropriate routines or subroutines to 
perform processing as required. At the beginning of the scan, a new or 
discarded text page is acquired for the building of a reorganized text 
stream, and further text pages are acquired as necessary. As each page 
is acquired, an overflow-page index table is inserted after the page 
header, and the TA of the page is inserted in the REFO field of the 
ISPILB field. Thus each new page is treated as an overflow page, and 
the forward chain field (IFCHN) of all the text tables later copied or 
inserted into the page has the initial character'S'. 

When the scan encounters a statement-header text table, its ISF field is 
examined. If this field has been set to X'SO' by Phase KV, it indicates 
that the text table is the beginning of a flow unit, and the FLOWl 
routine is branched to. This routine creates skeleton 164-byte tables, 
referred to as flow-unit header tables (FUBs), and inserts one of these 
tables in the reorganized text stream at the beginning of each flow 
unit. The format of an FUB is shown in figure 5.9S. Some of the fields 
in each FUB are completed during processing by this phase; other fields 
have values inserted by later phases in the stage. All flow-unit 
headers are linked by a forwards pointing chain in the IFOUNC field. 

Immediately following each FUH, a 32-byte hash-chain table is inserted. 
The format of a hash-chain table is shown in figure 5.100. These tables 
are so called because Phase OM uses a hashing technique to aid searches 
for particular types of text tables, and the heads of the hash chains 
are inserted in the IHASHC fields of these tables (by Phase OM). If a 
flow unit extends over a page boundary~ a hash-chain table is also 
inserted after the overflow-page index table of the second and any 
subsequent pages used by the flow unit. Thus a page may contain more 
than one hash-chain table, even if it contains only one FUH. A typica£ 
arrangement of these tables is shown in figure 2.24. The IBPCH, IBCHN, 
and IFCBN fields of the hash-chain tables are used as described in 
following paragraphs. 

The CHTAB routine copies text tables in logical order in the new text 
tables, so that the physical sequence of text tables coincides with 
their logical sequence. The IBCHN and IFCHN fields of each text table 
are used to create backwards and forwards pointing chains linking all 
text tables. For the last text table in a flow unit or in a page, the 
IBCHN field points to the hash-chain table preceding it. The IFCHN 
field of the last text table on a page points to the nearest preceding 
hash-chain table. 

242 Licensed Material - Property of IBM 



- -. Page header 

Overflow page index 

Flow unit header 

r-i Hash-chain table 1 IBCHN 1 IFCHN 

I (~ / 

I / 

I 
Text tables / 

./ 

I ---- - ----
I ....... - -b / 

I ~( 

IIBCHN I I 
\ ~ Last text table 
"I. in page 

IFCHN 

I _J 1 l.- - - - - - - -

Flow unit 1 

- · Page header -· Overflow page index -
r - .. 

I 
• I IBC~N IIFCHN Hash-chain table IBPCH 

I ~ J 

I 
\. ./ 

Text tables - -D 
"'~ - - - - - -I ( \ 

IIBCHN I ~ Last text table 
I "- ~ in flow unit 

IFCHN 

I 
I- - -- - - - - - -+ J 

C ~ Flow unit header 

IIBCHN IIFCHN 1--
Hash-chain table 

I (~ 
Flow unit 2 

1 
Text tables -h 

1 
( 
~ Last text table 

IIBCHN IIFCHN 

I 
in page 

l- - - - ---- - 1 

Figure 2.24. Arrangement of tables and chaining in main text stream 
reorganized by Phase OE 

Licensed Material - Property of IBM section 2: Method of Operation 243 



Extraction of Variables Usage Information 

While the SCANl routine is building the reorganized text stream, it 
checks on the position of variables in each text table. With a few 
minor exceptions, the position of a variable within a text table enables 
its usage within a flow unit to be classified as follows: 

• Used - if it appears as operand 1 or operand 2 in a text table 

• Set - if it aFpears as operand 3 in a text table 

• BUSy on entry -- if it is used in a flow unit without first being 
set in the same flow unit. 

This classification of variables enables information about their usage 
within each flow unit to be collected in fields in the flow unit header 
table as follows: 

IFOVU - Variables used in the flow unit. 

IFOVS - Variables set in the flow unit. 

IFOBEN - Variables busy on entry to the flow unit. 

IFOVS2 - Variables set more than once in the flow unit. 

Each of these fields contains a 32-byte bit vector. The offset of a bit 
from the start of a field can be used to indicate a particular entry in 
the variables dictionary, i.e., the nth variable in the variables 
dictionary can be referred to by setting the nth bit in a bit vector. 

Because of the fixed length of the FUH fields, direct usage of the first 
256 variables only can be indicated in an FUH. However, for any 
variable that is active in a flow unit. any relevant alias information 
collected by Phase OA (in the value list entries and the alias 
information summaries in the general dictionary) is examined and 
incorporated. Similarly, examination of alias information can affect 
th~ usage classification of a variable. For example, when determining 
whether a particular variable has been used before being set, the value 
list for that variable (if it has one) is compared with the IFOVS 
(variables set) string. Only if no item in the value list has been set 
in IFOVS can the variable be classified as busy on e!ltry, in which case 
each item indicated in its value list. as well as the bit for the 
variable itself, is set in the IFOBEN string. 

When the variables in all the flow units within a block have been 
processed, two bit vectors, each 32 bytes long, are built in the block 
optimization entry in the general dictionary. The variables usage 
information collected in each FUH within the block is used to complete 
the following bit vectors: 

~AVUB-Variables used in the block 

YAVSB-Variables set in the block 

Extraction of Flow Path Information 

The CALLRl and BRCH2 routines extract information from each flow unit 
about the entry pOint and about flow paths which can be followed at 
exit. This information is stored in each FUH and consolidated in the 
block optimization entry in the general dictionary. 

244 Licensed Material - Property of IBM 



FLOW UNIT ENTRY INFORMATION: If a flow unit starts at an ENTRY 
statement, this fact is detected by Phase KV and indicated to Phase OE 
by setting a flag in the third bit of the ISF field of the statement 
hEader table. Phase OE passes this information to later optimization 
phases by setting the first bit of the flag byte IFOFL2 in the FUB. 

Except in some cases of flow units following CALL statements and 
function references, the entry point to a flow unit will be indicated by 
a label. Phase OE sets a code byte IFOCDE to indicate whether this 
label is user-supplied or compiler-generated. If it is a user-supplied 
label, the dictionary reference of the label is inserted in the IFOLAB 
field in the FUH. If it is a compiler-generated label, the 
identification number is inser~ed. If a flow unit is the first flow 
unit in a block, then the label on the PROCEDURE, BEGIN, or ON statement 
is external to the block and cannot be used as the flow unit label. In 
this case, the block-count number is inserted in the IFOCDE COdE byte 
and the dictionary reference of the first user-supplied label in the 
block is inserted in the IFOLAB field. As this label will usually 
indicate the start of the next flow unit, its dictionary reference will 
appear in the IFOLAB fields of two flow unit header tables. 

FLOW UNIT EXIT INFORMATION: At the end of a flow unit, flow may be 
direct-to the-next flOW-unit in the text stream or it may branch to one 
or more other flow units. Phase OE examines the text tables and sets a 
flag byte, IFOFL in the FUH, to indicate either direct or branching 
flo~, or both. When set, the flag bits of IFOFL give the following 
indications: 

Bit no. Indication when set 

o Flow passes directly to the next flow unit in the text stream. 
(This tit is always set unless branching to other than the next flow unit 
is unconditional.) 

1 A branch to other than the next flow unit exists. 

2 T~o branches exist. 

3 The flow unit ends at a CALL statement or function reference. 

4 The flow unit ends at a RETURN or END statement 

5 This is the last flow unit in a block. 

6 The flow unit is the beginning of an iterative do-loop. 

7 Spare (set to 0 before Phase 01). 

Where branches from the flow unit exist, the BRCBl routine inserts in 
the FUH information about the labels external to the flow unit that can 
be branched to. The information is stored in one or two 5-byte label 
descriptors, according to whether one or two branches exist. The format 
of Each label descriptor varies according to whether the item branched 
to is a label constant, a compiler-generated temporary label variable, 
or a label variable. 

If the branched-to point is a.label variable, the relevant GOTO table 
will have been changed to a GOOB (go out of block) table by Phase II as 
the label constant values will not have been resolved at the time of 
processing by that phase. Phase OE examines the value list entry for 
the label variable and changes to GOOB text table to a GOTO text table 
if the branched-to point can only be internal to a non-recursive block. 

Licensed Material - Property of IBM Section 2: Method of Operation 245 



Consolidation of Block Information 

When the SCAN1 routine detects th6 end of a block, control branches to 
the BLOCK1 routine. This routine examines the information stored in 
each FUB with the block and uses it to complete fields in the block 
optimization entry (built by Phase OA for each block) in the general 
dictionary. 

Much of the information is stored in fields organized as bit vectors. 
The fields completed when SCAN1 detects the end of a block are: 

YAVUB (32 bytes) 

YAVSB (32 bytes) 

YAXLAB (variable) 

variables used in the block. 

variables set in the block. 

Labels in other blocks that are branched-to from 
within the block. 

When these fields have been completed for every block in the program, 
the BLOCK1 routine accesses the optimization entry for the first block 
in the program. Using the information inserted by Phase OA in the YABCB 
field, which indicates the blocks called by a block, it completes other 
fields in the optimization entry. By accessing the optimization entries 
for each block called, and performing logical OR operations on the bit 
vectors in appropriate fields, the following fields are completed: 

YAVUBCB (32 bytes) 

YAVSBCB (32 bytes) 

YAXLAB (variable) 

variables used in blocks called from the block. 

variables set in blocks called from the block. 

1. Labels not internal to blocks called from 
the block but branched-to from within 
these called blocks. 

2. Labels in this block that are branched-to 
from other blocks. 

(Note: YAXLAB contains three variable length bit vectors. They each 
allow one bit for each label constant in the program and are rounded up 
to the next complete byte. The total length of YAXLAB is shown at 
YALEN.) 

The process is repeated for each block in the program. 

Extraction of On-unit Information 

When the SCAN1 routine detects an on-unit (indicated by an ONS text 
table), it checks whether it is an I/O or AREA on-unit or a 
computational on-unit. Appropriate bits are set in the YAFLAG field in 
the block optimization entry. 

When the optimization entries for all blocks have been completed, 
information about the usage of variables in on-units and blocks 
branched-to from on-units is extracted from the optimization entries. 
Such information for the whole program is stored in a single entry in 
the general dictionary, and forms part of the entry for the alias 
information summary built by Phase OA. The reference of the entry is 
held in the XALIAS field of the communication area. The fields 
completed by Phase OE are: 

~ACONU (32 bytes) Variables used in computational on-units and in 
blocks called from them. 

246 Licensed Material - Property of IBM 



YACONS (32 bytes) 

YAIONU (32 bytes) 

YAIONS (32 bytes) 

YAGOBL (256 bytes) 

Variables set in computational on-units and in 
blocks called from them. 

Variables used in input/output or AREA on-units 
and in blocks called from them. 

Variables set in input/output or AREA on-units 
and in blocks called from them.. 

Labels that are branched-to from on-units, or 
from blocks called from on-units. and which 
cause a 'go out of block'. 

On completion of this process, control is passed to Phase OI. 

Licensed Material - Property of IBM Section 2: Method of operation 247 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

FLOW ANALYSIS (PHASE 01) 

This phase continues the process u started by Phase OA and OE, of 
extracting information required ~or efficient global optimization of the 
program by Phase OM. Phase 01 examines the information (extracted by 
Phase OE) about the possible paths of control flow between flow units, 
and expands it. It then identifies those flow units which are contained 
in loops, and chains the text for each block so that it can be scanned 
by Phase OM from the innermost level of loops to the outermost level. 
Having performed this detailed flow analysis" the phase is then able to 
modify the information about the usage of variables (extracted by Phase 
OE) so that it is more accurate and detailed. 

If it is not possible to complete flow analysis on a block basis, it 
will then be performed on a DO group basis. 

PHASE INPUT 

Input to the phase consists of the main text stream, in which only the 
flow unit header tables (FUEs) are examined. The phase also accesses 
entries for label variables in the variables dictionary, and block 
optimization entries in the general dictionary. 

PHASE OUTPUT 

On output from the phase, the main text stream is unaltered except for 
the flow unit headers, ~lich are changed to the format shown in figure 
5.99. The modified format contains the information obtained during the 
flow analysis performed by the phase. 

Existing dictionary entries are not changed by the phase, but a loop­
data entry for each loop detected during the flow analysis is inserted 
in the general dictionary.. The format of a loop-data entry is shown in 
figure 2.25. 

PHASE OPERATION 

~: A number of the terms used in this description of phase operation 
are explained or illustrated under the heading, "Glossary of Terms Used 
in Gobal Optimization" in the introduction to the description of the 
global optimization stage. 

Use of Tables and Lists 

At the beginning of the phase, a number of tables and lists are set up 
in the phase working storage area (XSTG)" or in text pages specially 
acquired for this purpose, for the collection and storage of information 
during processing. These tables include a flow unit information table 
(FUIT), a forward connector table (FeT), a backward connector table 
(BeT), a label/flow-unit-number table (LFUN) r and a number of 32-byte 
bit strings. A stack is used by a number of routines for various 
purposes. 

The flow unit information table (FUIT) consists of up to 256 l8-byte 
entries. Each entry" which relates to one flow unit, has the following 
format: 

248 Licensed Material - Property of IBM 



Page of LY33-G010-1, Revised June 1974 by TNL LN33-6115 

r----------------------------------------------------------------------, I Byte I symbolic I Field content 
I no. I name I (some fields are temporarily used for 
1 1 1 other purposes) 

0-4 FUITR Text reference of flow unit 
5 FUIDT Flag to indicate -drop through' flow 

6-7 FUIFC pointer to FCT entry 
8-9 FUIBC Pointer to BCT entry 
10 FUIBD Identifying number of back dominator 
11 FUIBT Identifying number of back target 
12 FUIDN Depth number of loop 
13 FUILC Loop chain 
14 FUICH Flow-unit chain 
15 FUILN Level number 
16 FUILEP End-of-loop pOinter 
17 FUIFL Flags 

L----------------------------------------------------------------------J 
Bits in the FUIFL field may be set to give the following indications: 

~----------------------------------------------~-----------------------, 
1 Bit i symbolic I Indication when set 
I no. I name I 
I~---------------------------------------------------------------------I 0 I INITUN I Unit has a true back target (initialization 
1 I I unit) 
I 1 I NONLOP I Unit is not contained in a loop 
1 2 I LOOPEN 1 Unit is a loop entry unit 
1 3 I ENDLOP I Unit is the last in a loop 
I 4 I DOLOPN 1 Unit heads a DO-loop 
I 5 J ENDLCH I Unit is at the end of a loop chain 
I 6 J IMABAT I Unit is a back target 
1 7 I I Not used 
L----------------------------------------------------------------------J 
The forward-connector table (FCT) and the backward-connector table (BCT) 
each hold up to 1024 two-byte entries. Each entry has the following 
format: 

r----------------·-----------------------------------------------------, 
IByte no. 1 Bit no. I Content or indication when set 
1------------------ ---------------------------------------------------
I 1 0 
1 
1 
I 
I 
1 
I 
1 
1 
1 
1 

2 

1 

2 

3 
4-7 

First entry in the list of forward/backward 
connectors for this flow unit 
Last entry in the list of forward/backward 
connectors for this flow unit 
control drops through to the forward 
connector, or control drops through from the 
backward connector 
Control is passed by a branch out of the block 
Not used 
Identifying number of forward/backward 
connector L-------- -----________________________________ . _______________________ J 

The forward connector table is used to hold provisional information 
before the foregoing format is adopted. 

The label/flow-unit-number table (LFUN) is used to relate a label 
constant to the flow unit on which it appears. The table consists of up 
to 256 3-byte entries. In each entry v the first two bytes contain the 
dictionary reference of the label, and the third byte is used to hold 
the identifying number of the flow unit. 

Licensed Material - Property of IBM Section 2: Method of Operation 249 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

Extraction of Forward-connector Information 

The routine INSFCT accesses the XTRFLO field of XCOMM to find the text 
reterence of the first flow unit header table (FUH) in the first block 
in the text stream. It then follows the chain of text references in the 
IFOUNC field of each FUH, until all FUBs in the block have been seen. 
Other routines are then called to complete the processing for the flow 
units in the block before those in the next block are scanned. 

The main function of the INSFCT routine is to extract information from 
each FUB, to use some of it to complete some of the fields in the FUIT 
entry for the flow unit, and to use some of it to make provisional 
entries in the FCT. 

As each FUH is examined, the following fields in the FUIT are completed 
as required: 

FUITR -

FUIDT -

FUICH -

text reference of the flow unit. 

a flag which is set if control can drop through to the next 
physically sequential flow unit (Bit 0 of IFOFL in FUH). 

This field is used initially to construct a chain linking 
all flow units beginning with block-entry statements (PROC, 
BEGIN, ON-BEGIN, and ENTRY) or which have a label which can 
be branched-to from another block (indicated by IFOFL2 in 
FUB) • 

DOPLOPN bit in FUIFL - a flag that is set if the flow unit heads a 
do-loop (Bit 6 of IFOFL in FUH). 

The 32-byte bit strings IFOVS and IFOBEN in the FUB, which indicate 
usage of variables in the flow unit, are copied into a save area. A 32-
byte field corresponding to the IFCBEX field of the FUB is set to zero 
at this stage. 

A marker, X'FF v
D is inserted in the first byte of the next available 

field of the FCT to indicate that it is the first entry for a flow unit. 
An identifying number, 1-255, is allocated to the flow unit and inserted 
in the second byte of this entry. In order to insert provisional 
branching information in other FCT entries, the optimization entry for 
the block in the general dictionary is accessed. An entry is made in 
the FCT for each label constant that can be branched-to from the flow 
unit. If a label variable is branched to, the alias information 
extracted by Phase OA is accessed, and an entry is made for each 
possible value of the label variable. If a label has a higher 
containing-block-value than the current block u a special out-of-block­
entry is made. If a flow unit ends with an END statement. no entry is 
made. At this stage, each entry contains the dictionary reference of 
the label. Because each dictionary reference reqUires to be converted 
to a flow-unit number, a list of labels is kept in LFUN and appropriate 
flow-unit numbers are applied to them. 

At the end of the scan, entries are made in the tables for a dummy flow 
unit with an identifying number of zero. This durr,my flow unit acts as 
the backward connector for the first flow unit in the block, and for 
flow units that end in a RETURN statement, a branch out of a block 
(GCOB), or a CALL statement which passes control to the containing 
block. The entries set up for this flow unit are later used to provide 
backward connector information and to collect variables-busy-on-exit 
information. 

When the initial scan for a block is complete" control passes to the 
GENFCT routine. This routine uses the information collected in the LFUN 
table and in the provisional FCT entries" to modify the FCT entries so 
that each entry indicates a flow unit which is a forward connector of 
the flow unit associated with the entry. The FUIFC field of the FUIT is 

250 Licensed Material - Property of IBM 



set to point at the first of its list of associa~ed FCT entries. If 
control can drop through to the next sequential flow unit, the X'FF' 
Entry is replaced by the appropriate forward connector entry. If a flow 
unit ends at a RETURN statement or a CALL which can pass control to a 
label outside the block, bit 3 of the flag byte in the FCT is set, and 
the identifying number (zero) of the dummy flow unit is set in the 
sEcond byte. 

Collection of Backward Connector Information 

During the Frocessing of FCT entries by the GENFCT routine, information 
about the number of BCT entries is collected. Each flow unit that has 
forward connectors is a backward connector for those flow units. 
Therefore, each time a flow unit identifying number is seen in the FCT 
entries, a count temporarily maintained in the FUIBC field of its FUIT 
entry is incremented. 

GEN~CT passes control to the FCTOBC routine to generate the BCT entries, 
which indicate the backward connectors of each flow unit. The counts 
maintained in the FUIEC slots are used to allocate the required number 
of BCT entries to each flow unit, and each FUIBC slot is then changed so 
that it points to the first BCT entry for that flow unit. A sequential 
scan is made of the FCT, and information in the entries is modified and 
used as required to make the BCT entries. If a flow unit has no 
backward connectors, and does not contain a label mentioned in an 
ON-unit, the code in the flow unit cannot be reached and therefore 
cannot be executed. The flow unit is flagged to indicate this. 
Exceptions to this are flow units that are FORMAT statements, which are 
not flagged as being unreachable. 

calculation of Level Numbers 

~hen the information about forward connectors and backward connectors 
has been collected, control passes to the CALCLN routine. This routine 
calculates the smallest number of flow units through which control must 
pass to get from an entry unit to a particular flow unit. It then adds 
one to that number to arrive at the level number for the flow unit. 
Thus each flow unit has a level number one greater than that of its 
backward connector. 

The chain of entry units is scanned. The forward connectors of each 
entry unit are allocated a level number and added to the end of the 
chain. When all entry units have been processed, the scan of the chain 
continues, examining and allocating level numbers to the forward 
connectors of items added to the chain. In this way, all flow units 
that have backward connectors are chained in ascending order of level 
number. 

During the aSSignment of level numbers g a check is made of those flow 
units that have only one backward connector. For control to reach such 
a flow unit, it must pass through the backward connector, and therefore 
the backward connector is also the back dominator of that flow unit. 
The identifying number of a flow unit's back dominator is inserted in 
the FUIBD field of its FUIT entry. If a flow unit has more than one 
backward connector, it is chained to other similar flow units: the ~UILC 
field of its FUIT entry is temporarily used for this purpose. 

Licensed Material - Property of IBM Section 2: Method of Operation 251 



Control then passes to the routine CALCBD, which finds the back 
dominator of each flow unit for which one has not already been found. 
The FUIT entries of each flow unit are accessed in ascending order of 
level number by scanning the chain in the FUILC fields. Each flow unit 
has a backward connector with a lower level number and, because the flow 
units are processed in ascending order of level number, the back 
dominator of that backward connector will have already been determined. 
~ list is made of all the flow units on the path between the backward 
connector and its back dominator. Then each backward path from the 
current flow unit is traced until a flow unit which is in the list is 
met; this flow unit is a possible back dominator. (During the trace of 
back paths, any flow unit that is met which is not on the list is added 
to the list, so that a check can be made if a looping path is being 
traced.) The tracing of a back path is stopped when a flow unit that 
has a lower level number than the current flow unit is found; the chain 
of back dominators is followed from that point. When all back paths 
have been traced, and all possible back dominators have been found, the 
pcssible back dominator that has the lowest level number is the actual 
back dominator. 

The FLOOEN routine examines the information collected for each flow unit 
to determine those that are loop entry units. A loop entry unit is a 
flow unit which either has itself as a backward connector, or has one or 
more backward connectors for which it is the back dominator. Flow units 
for which the DOLOPN bit in the FUIFL field of the FUIT entry was set by 
the INSFCT routine, indicating that the flow unit heads an iterative 
do-loop, are loo~ entry units. 

When a loop entry unit is found, information about other flow units 
logically connected with it is examined to determine the nearest flow 
unit through which control ~~~ flow before the loop is entered. That 
flow unit is referred to as the back target of the loop, and of each 
flow unit in the loop. Optimization may involve the moving of text from 
within a loop to its back target, in order to avoid unnecessary repeated 
executions during execution of the loop. A back target is identified in 
any of the following ways: 

1. If the immediate back dominator of a loop entry unit has only one 
forward connector, that back dominator is also the loop back 
target. 

2. If control drops through to the entry unit of a do-loop from its 
back dominator, the back dominator is the do-loop back target. 

3. If the foregoing conditions are not satisfied, the loop entry unit 
is flagged as having a distant back target, i.e., a back target 
which is not its back dominator. A backwards scan is made of the 
back dominator chain of the loop entry unit, until a flow unit is 
found which is a loop entry unit with a non-distant back target. 
If a backward path exists from the current loop entry unit to this 
found unit~ and does not pass through the back target of the found 
unit, the back target of the found unit is also the back target of 
the current loop entry unit. 

4. If no flow unit which satisfies the foregoing conditions is found, 
the dummy flow unit (zero) is nominated as the loop back target. 

The back targets of loop entry units are identified in the FUIBT field 
of their FUIT entries. When all loop entry units and their back targets 
have been identified, the routine FLOODA makes a further scan of the 
chain of FUIT entries. 

252 Licensed Material - Property of IBM 



During this scan, the loop in which each flow unit is contained is 
identified. As each flow unit that is not a loop entry unit is seen, 
its back dominator chain is examined until a back dominator that is also 
a loop entry unit is found. If this loop entry unit lies on a forward 
path from the current flow unit, and the forward path does not pass 
through the back target of the lOOF entry unit, then the current flow 
unit and the loop entry unit have the same back target and belong to the 
same loop. The current flow unit is linked into the loop chain after 
its loop entry unit. A stack is used to identify the last flow unit in 
a loop, and the identifying number of the end-of-loop flow unit is 
inserted in the FUILEP field of each FUIT entry in the loop. 

Back targets are stacked so that any nesting of loops can be recognized. 
The method of stacking enables each back target to be given a number 
which indicates its depth of nesting. A depth number one greater than 
that of its back target is applied to each loop, and the appropriate 
number is inserted in the FUILEP field of each FUIT entry. Flow units 
that cannot be identified as belonging to a loop are allocated to a 
false loop with a depth number Jf one. 

The FUILC field of each FUIT entry is used to construct a chain of flow 
units according to their grouping within loops. Loops are chained in 
de~cending order of depth number, i.e., from the innermost to the 
outermost loop. Within each loop, flow units are chained in ascending 
order of level number. The direction of the existing chain of flow 
units, via the FUICH field of the FUIT entries, is reversed so that it 
links flow units in descending order of level numbers. 

Extraction of "Busy-on-exit" Information 

The BUSYEX routine scans the flow unit chain (FUICH), and accesses the 
IFOVS and IFOBEN bit strings copied from the flow unit headers, to 
extract information about variables that are busy-on-exit from any flow 
unit. A variable is busy-on-exit from a flow unit if it is used <i.e., 
apFears as operand 1 or 2 in a text table) before it is set (i .• e., 
afpears as operand 3 in a text table) on any forward path from the flow 
unit. In addition, a variable is busy-on-exit from a block-exit flow 
unit if it is declared in the containing block, or if it is explicitly 
declared with either the CONTROLLED attribute or the STATIC attribute in 
the current block. If a variable is busy on exit from a flow-unit, and 
is not set in that flow unit, it is also busy-on-entry. 

The flow unit chain is scanned so that flow unit tables are seen in 
descending order of level numbers; this ensures that each flow unit is 
processed before its back dominator. For each flow unit, the paths of 
backward connectors are traced as far as its back dominator. As each 
flow unit on the backward path is seen, its IFOBEX string (set to zero 
by INSFCT) is modified by performing a logical OR operation between it 
and the IFOBEN string of the flow unit currently being processed. 

The following operations are then performed on the bit strings of each 
backward connector: 

1. A bit string is generated which contains those bits set in its 
IFOBEX string and not set in its IFOVS string. 

2. A logical OR operation is performed between the bit string thus 
generated and its IFOBEN string. 

3. The string thus produced is ccmpared with its IFOBEN string. If 
the two strings are identical, no further action or tracing of this 
backward path is performed. If the two strings differ, the IFOBEN 
string is replaced with the modified string, and the trace of the 
backward path continues <unless the backward connector is the back 
dominator of the flow unit currently being processed). 

Licensed Material - Property of IBM section 2: Method of Operation 253 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

The process is repeated for each flow unit in the flow unit chain, until 
all the busy-on-entry and busy-on-exit information has been collected or 
updated. 

Insertion of Flow Analysis Information in the Dictionary and Text 

The routine LOODAT scans the loop chain in the FUILC field of the FUlTs. 
As each loop entry unit is found, the flow unit header in the text 
stream is accessed" and a skeleton loop-data entry is created in the 
general dictionary. The format of a loop data entry is shown in figure 
2.25. 

r---~---~- -----~------~------------------------------~-~--, 
Bytes Symbol Meaning 

---~-~--- -------- -.---------------------~----~---~---~--

o 
1 
2 
3 
4 
5 

ILCDE 
ILBAT 
ILFOT 
ILDEN 
ILOON 
ILFLGS 

Code byte (X'12') 
Back target 
Forward target 
Depth number 
Not used 
Flags copied from FUIFL field of FUIT 
for the loop entry unit 

6-10 ILBATR Text reference of back target 
11-42 ILSET Variables set in the loop 
43-74 I LUSE Variable used in the loop 
75-106 ILBEX Variables busy-an-exit from the loop 

107-138 ILSET2 Variables set twice in the loop 
L--------------------------------------------------------__ J 
Figure 2.25. Format of a loop-data entry created in the 

general dictionary by Phase 01 

The ILCDE, ILBAT, ILDEN, and ILOON fields of the loop data entry are 
completed by copying the FUIT entries. The flow unit header for the 
loop entry is altered to the format shown in figure 5.99. The FUIT and 
bit strings of each member of the loop are then accessed in turn, and 
processing performed to complete the dictionary and FUH entries. 

The forward connections of each member of the loop are examined; if this 
reveals only one forward connector for the loop, this is the forward 
target to be inserted in the loop data entry. The back target chain is 
followed until a flow unit with a depth number of zero is found; this is 
the non-looping back target to be inserted in each FUH. The variables­
usage bit strings modified during the phase operation are used to 
complete the loop-data entry. 

If the REORDER option has been specified for a block u a flag bit in the 
phase is setH and this indicates the setting required for bit 7 of the 
IFOF2 byte in the FUH. 

If a block contains more than 256 flow units u the flow analysis 
described in preceding paragraphs cannot be performed. This fact is 
detected by the INSFCT routine, which then passes control to the GUBLOK 
routine~ In such a case, all flow units in the block are treated as if 
they belong to a non-looping loop (depth-number zero), and bit 7 of the 
IFOF1 byte of each FUH is not set. 

When the flow analysis of a block is complete, and all relevant text and 
dictionary entries have been made, control returns to the INSFCT routine 
for analysis of the next block if one exists. 

254 Licensed Material - property of IBM 



TEXT OPT1MIZATION (PHASE OM) 

T-his phase modifies the text stream, by changing the order of text 
tables, by modifying or replacing text tables. or by a combination of 
both methods. in such a way that the object code defined or indicated by 
the text can be executed more efficiently. The information extracted 
and collected by Phases OA, OE, and OI is used as an aid to this 
optimization process .• 

The principal features of this optimization process are: 

• Common Expression Elimination: the elimination of expressions that 
give a result which has been calculated elsewhere in the same loop. 
This process is performed for all flow units. 

• Backward Movement of Expressions: the removal from a loop to its 
back target of those expressions which do not need to be recalculated 
for each execution of the loop. This process is performed for all 
loops~ but may be restricted if the REORDER option is not specified 
for the block in which a loop is contained. 

• strenqth Reduction: reduction of the complexity of operations 
performed within a loop. This can involve the replacement of a 
multiplication operation by a series of addition operations. It can 
also involve some backward movement e.g., if a subscript variable 
within a loop is incremented, the subscript calculation is moved 
backwards outside the loop, and the variable inside the loop is 
incremented by addition. A similar form of strength reduction may be 
performed where conversion operations are involved. In addition, 
strength reduction is performed in cases where the affected variable 
is contained in an inert text table. An inert text table is a text 
table which indicates an incrementation of a variable that is not set 
anywhere else in the loop. 

PHASE INPUT 

Input to the phase consists of the main text stream in Type-2 text 
format. Each flow unit within the text is headed by a flow unit header 
table, modified and completed by Phase OI (see figure 5.99) and each 
flow unit contains one or more partially completed hash-chain tables o 
inserted by Phase OE (see figure 5.100). Entries for locators in the 
variables dictionary are accessed. Loop data entries, block 
optimization entries, and the program optimization entry in the general 
dictionary are accessed. 

PHASE OUTPUT 

Output from the phase consists of the main text stream, modified as 
described under the heading "Phase Operation." No dictionary entries 
are made by this phase. 

PHASE OPERATION 

The text is scanned by following the loop chain, set up by Phase OI, via 
the IFOLC field of each flow unit header. The organization of this 
chain ensures that the innermost of any nested loops are processed 
first. All the processing required for a loop is performed before the 
next loop is examined. Within each loop, flow units are scanned in 

Licensed Material - Property of IBM section 2: Method of Operation 255 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

ascending order of level number. and text tables within each unit are I scanned by following the pointers in the IFCHN fields. 

As each text table is seen, its IOPl code byte is examined to see if it 
is a text table likely to be involved in the processing performed by 
this phase.. Such text tables include: MULT" SUBS, SUBS1, CON V , PLUS, 
MINUS, ASSN, DIVIDE, SHIFT, AND., OR, NOT, CONCAT, BIF, EQ, GE" LE, NE, 
GT, LT. ~nd MOVE text tables. All these text tables are initially 
considered as candidates for common expression elimination, and are 
processed by routines beginning at CEE100. Text tables that are 
assessed as movable are also considered as candidates for backward 
movement out of the loop, and are further processed by the routine 
BAKMOV. In additionn MULT, SUBS, and SUBSl text tables, and CONV text 
tables which have arithmetic targets are linked in a special chain" 
which is later scanned by the routine STREDU for strength-reduction 
processing,. 

Conmen Expression Elimination 

The routines starting at CEE100 attempt to eliminate repeated evaluation 
within a loop of expressions which represent a value previously 
calculated. For example, if a loop (as determined by Phase 01) contains 
the following source statements: 

X=A*B; 

Y=A*B; 

then, provided that the values of A and B have not been changed (set) in 
intervening statements, the text can be changed so that it represents 
the following source statements: 

X=A*B; 

Y=X; 

To enable a check to be made on the usage of variables (and their 
aliases)" the dictionary entries created by preceding phases in this 
stage are accessed. A number of fields are set up and maintained in the 
phase working area to enable relevant information to be accessed. Two 
of the fields maintained are: 

VSSFP - variables set so far in current page. 
VSSF - variables set so far in current flow unit. 

Each of these fields is 32 bytes long, and consists of a bit vector 
indicating relevant entries in the variables dictionary. 

This information is used to determine whether global temporary operands 
(i.e., temporary operands that can be used in more than one statement) 
need to be generated to enable common expres3ion elimination. For 
example, if a loop contains the following source statements: 

X=A*B; 

X=X+2; 
Y=A*B; 

the variable X is set between the statements containing the common 
expression A*B. In such cases, a global temporary operand is generated 

256 Licensed Material - Property of IBM 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

and the common expression assigned to it, so that the text represents 
the following source statements: 

G.temp.l=A*B; 
X=G.temp.l: 

X=X+2; 
Y=G.temp.l; 

Global temporary operands are also used to avoid repeated evaluation of 
common subscripts. For example, on input to Phase OM, text representing 
the source statement: 

ACJ)=BCJ); 

contains the following text tables: 

SUBSl 
NDX 
SUBsl 
NDX 
ASSN 

J 
t1 
J 
t2 

Q-temp.2 

4 tl 
A Q-temp.l 
4 t2 
B Q-temp.2 

Q-tempol 

The result of the first evaluation of the common subscript is assigned 
to a global temporary operand, so that on output from Phase OM the text 
is modified as follows: 

SUBSl 
ASSN 
NDX 
NDX 
ASSN 

J 
tl 

G-temp.l 
G-temp.l 
Q-temp.2 

4 tl 
G-temp .. l 

A Q-temp.l 
B Q-temp.2 

Q-temp.l 

subscripts are also commoned for multidimensional arrays. For example 
in the PL/I statement: 

AeJ"K.L)=B(J"K,L) ; 

the calculations of the subscripts would be commoned in the same way as 
that described above,. A further attempt is made to common partially 
conmon subscript calculation. In the statement: 

the calculation of the first two subscript items will be commoned. The 
conmcning of parts of subscript calculations is complicated by the fact 
that the compiler uses two algorithms for subscript calculation. The 
more common algorithm works from left to right and relies on the value 
of previously calculated results. The algorithm is: 

Element offset=( ••• (Sl*Ml+S2)*M2 ••• +SI)*MN 

Where SI= the Ith subscript, 
M= subscript multiplier and MI the Ith subscript multiplier, 

and N= the number of dimensions in the array. 

This is known as the optimizer algorithm. as it was adopted for the 
optimizing compiler. 

The other algorithm calculates the subscript for each dimension 
separately and then adds the results. The algorithm is: 

Element offset=CS1*Ml+S2*M2 •••• SN*MN) 

Where SI= the Ith subscript, 
M= subscript multiplier and MI the Ith subscript multiplier, 

and N= the number of dimensions in the array. 

Licensed Material - Property of IBM Section 2: Method of Operation 257 



Page of LY33-6010-1, Added June 1974 by TNL LN33-6115 

If the current text table is a MULT table., a CONV table, or a SUBS1 or 
SUBS table associated with dependent subscript multipliers, it is a 
candidate for strength-reduction processing. Regardless of the result 
of hashing one of these text tables, it is linked into the ninth hash 
chain. SUBS1 and SUBS text tables associated with independent subscript 
multipliers are candidates for strength-reduction processing after they 
have been moved into a back target, and these text tables are linked 
into the tenth hash chain. When common-expression-elimination and 
backwards-movement processing for the loop is complete, these chains are 
scanned by the STREDU routine. 

Before an attempt is made to common expressions" tests are made to 
determine whether a text table is movable or not. A text table is 
considered to be movable if the following conditions are satisfied: 

• Its result (third) operand is a variable. 

• The result variable is not set elsewhere in the loop. 

• The result variable is not busy-on-exit from the back target of the 
loop. 

• The result is in a flow unit always executed in the loop. Thus, an 
ASSN text table is not movable unless the REORDER option is 
specified for the current block. 

If a text table is movable, it can be moved to the loop back target or 
commoned with a matching text table in the loop target. Control is 
passed to the BAKMOV routine for processing of such a text table. If a 
text table satisfies all the conditions for being movable except that it 
is not in a flow unit always executed in the loop, the search for a 
matching text table with which it can be commoned is made through back 
dominators up to and including the loop back target. If a text table is 
not movable, the search for a matching text table with which it can be 
corrmcned is made on the backward paths as far as the loop entry unit. 

I The backwards search for a matching text table is made using the 
information and chains previously extracted or set up. If a match is 
found, tests are made to see if either of the first two operands is set 
between the matching text table and the current text table. If an 
operand is set" no expression eliminati on ca"n be performed. If no 
operands are set between the two text tables ff control passes to routine 
CE1700, which examines the result operands in the two text tables and 
determines the action to be taken to eliminate the common expression. 
When the required action is determined, control passes to routine 
CEE900, which modifies, deletes, or generates text tables as required. 
The text modifications can be summarized as follows: 

• If the result operand of the matching text table is not set between 
the two text tables, the current text table is changed to an 
assignment from the result operand of the matching text table. 

• If the result operand of the matching text table is set between the 
two text tables u an ASSN text table assigning the result operand to 
a global temporary operand u is generated and inserted after the 
matching text table. The current text table is changed to an 
assignment from the global temporary operand. 

• If the result operand of the current text table is a temporary 
operand, the current text table may be deleted, and subsequent uses 
of the temporary operand replaced by the global temporary operand. 

Licensed Material - Property of IBM Section 2: Method of Operation 258.1 



Page of LY33-6010-1, Added June 1974 by TNL LN33-6115 

Backward-movement Processing 

The routine BAKMOV checks £or situations where repeated execution within 
a loop of instructions defined in a text table will always produce the 
same result,. and where movement of the text table to the loop back 
target will not affect the final result of execution.. The conditions 

258.2 Licensed Material - Property of IBM 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

This algorithm is known as the independent algorithm or r algorithm, it 
was previously used in the PL/I (F) compiler. The optimizer algorithm 
has the advantage that it requires less space for calculation. However, 
when it is used, subscript calculation can only be commoned to the point 
where the first difference in the subscript list occurs. With the F 
algori thm" commoning can take place regardless of previous entries in 
the subscript list. 

The optimizer algorithm is used provided that all extents of the array 
are known and the array is not an array within a structure of more than 
one dimension. (Note: the number of dimensions includes any that may be 
inherited from a structure.> Take the statement: 

A(J,K,I~L,M.N)=B(J,K,I2,L,M,N); 

With the optimizing algorithm, commoning could only take place on the 
calculation of the first two elements in the list. With the F 
algorithm., commoning could also take place for the calculation of the 
last three elements in the list. 

When the F algorithm is used, commoning only occurs when the subscript 
calculation is moved out of a loop. Subscript calculation is moved out 
of a loop if the subscript value is a loop constant. (A loop constant 
is a value that cannot be altered during the execution of a loop). Take 
the loop: 

DO I=l TO N; 
B(!) =B(N) ; 
END: 

The calculation of the address of B(N) will be done once outside the 
loop and placed in a temporary. The temporary will then be used for the 
assignment. 

As each text table is seen, its operands are examined to determine 
whether it can be optimized. If a text table contains an operand that 
is used or set in an on-unitv or in a block that can be called from an 
on-unit" the operand is classed as abnormal and no optimization can be 
performed on the text table. 

If a text table is classified as optimizable .• special proceSSing is 
performed to aid any search along its backward paths for a text table 
which contains an expression common to the current text table. The 
subroutine HASHER is called to perform this special processing, which is 
referred to as hashing. The values of the operator code byte and the 
first operand (also the second operand if applicable) are manipulated in 
such a way as to produce an arithmetic result, which is known as the 
hash result. Subroutine HASHER produces two hash results for each text 
table it processes. The first has result is a value between zero and 
2047, and is referred to as the larger hash result. It is used to index 
a 256-byte bit string, HASTRI. Bits are set in HASTRI to indicate that 
a text table producing a similar hash result has been processed earlier, 
and it is therefore worthwhile making a search along the backward paths 
to find such a table for the purposes of commoning expressions. If the 
bit in HASTRI corresponding to a larger hash result is not set, a 
backward search is not performed, but the bit is set for future 
reference. The second hash result produced by HASHER is a value between 
zero and seven. This value indicates one of the eight chain fields in 
the IHASHC field of the hash-chain table for the flow unit or page. 
Each field contains the reference of the first text table in a chain of 
text tables with similar hash results. If a search is to be made for 
the purpose of commoning text tables, following the chain indicated by 
the smaller hash result speeds the search. If a search is not to be 
made, the current text table is added to the chain. 

258 Licensed Material - Property of IBM 



affecting the movability of a text table have already been tested before 
control is passed to the BAKMOV routine. This routine determines 
whether a text table can be removed in its entirety, or whether the 
result operand of a moved text table is to be changed to a global 
temporary operand which can be used in the original position inside the 
loop. Backward movement is accompanied by common expression 
elimination. When a text table is moved into the back target, it is 
also linked into its appropriate hash chain. Any sUbsequent candidate 
for backward movement can then be checked for commoning with a 
previously-moved text table. The subroutine COMBAT is called to search 
the back target for a matching text table. If no match is found, the 
text table is moved as required. 

When all requirements for backward movement have been determined, 
control passes to routine CEE900, which makes the required text changes. 
Some of the text changes that may be made are illustrated in the 
following examples. 

If the source program contains the statements: 

DO J 1 TO 10: 

R x + Y; 

END; 

the text input to Phase OM will contain the following text table within 
the do-loop: 

PLUS x Y R 

If neither X nor Yare set within the loop, then the expression "X + Y" 
is considered invariant. The backward-movement processing is as 
follows: 

1. If R is a variable then: 

a. If the REORDER option applies~ the entire PLUS text table is 
moved from within the loop to the loop back target. 

b. If the ORDER applies, or if R is set more than once in the 
loop, a new text table, "PLUS X Y G-temp.1", is 
generated in the loop back target, and the original text table 
within the loop is replaced by "ASSN G-temp.1 R". 

2. If R is a local temporary operand~ then: 

a. If either the ORDER or REORDER option applies, a text table, 
"PLUS X Y G-temp.1" is generated in the loop back 
target, the original text table within the loop is replaced 
with a NULL text table, and all other references to R within 
the loop are replaced by the global temporary operand. 

b. The only form of local temporary operands that can validly be 
set more than once within a loop are string-address temporary 
operands, which can effectively be set in string-handling 
operations such as concatenation, etc. If R is a 
string-address temporary operand, no backward-movement 
processing is performed. 

Licensed Material - Property of IBM section 2: Method of Operation 259 



When all the text tables in a loop have been scanned and processed for 
common expression elimination and backward movement, control passes to 
the routine STREDU. This routine scans text tables linked by the 
special hash chain, containing only MULT, SUBSi, and SUBS text tables, 
and CONV text tables that have arithmetic target operands. The 
direction of the hash chain is reversed so that text tables are scanned 
and processed in the order in which they appear in the phase input. 

In addition to simplification of operations performed, strength 
reduction may also involve some common expression elimination and 
back~ard movement of text. The process of strength reduction involves 
analysis of the use of a control variable within a loop, and movement, 
modification, or replacement of MULT, SUBS1, SUBS, and CONV text tables. 
This form of optimization is only attempted for a DO-loop with a single 
specification which contains an inert text table, i.e., a text table in 
which a variable that is not set elsewhere in the loop is incremented 
(e.g., control variable = control variable + constant (loop or 
absolute». (A loop constant is a variable that is not set inside the 
loop. ) 

Strength Reduction of MULT Text Table2: A situation in which a MULT 
text table can be optimized is represented by the following source 
statements: 

DO I = L TO M BY N: 

R = I * Ki 

END: 

The action taken is as follows: 

1. During the text scan, the text table, "MULT I K R", is 
tested to see whether either operand 1 or operand 2 is the 
loop-control variable and the other is a loop constan~. If this is 
so, the MULT text table is linked into the strength-reduction hash 
chain. 

2. When the MULT text table is seen by routine STREDU during its scan 
of the strength-reduction hash chain, global temporary operands 
(G-temp.l and G-temp.2) are generated, and text tables representing 
the statements "=G-temp.l = L * K:" and "G-temp.2 = N * Ki" are 
inserted in the loop back target. (Depending upon the values of K, 
L, and N, these text tables may themselves be involved in 
strength-reduction processing.) A text table representing the 
statement w=G-temp.l = G-temp.i + G-temp.2:" is generated at the 
end of the loop, immediately preceding the TO text table for the 
loop~ 

3. The MULT text table within the loop is either replaced by a NULL 
text table (and all other references to R are replaced by G-temp.l) 
or, if R is a variable that is busy-on-exit from the loop, it is 
replaced by a text table assigning R to G-temp.l. 

4. If the loop-control variable is not busy-on-exit from the loop, and 
all references to it within the loop occur in strength-reducible 
text tables, the loop-control variable is assigned to a global 
temporary operand (G-temp.3) within the loop back target. The loop 
control is thus changed so that the loop can be effectively 
represented by the statements: 

260 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, 

G-temp.1 = L * K; 
G-temp.2 = N * K; 
G-temp.3 = M * K; 

DO G-temp.1 = G-temp.1 TO G-temp.3 BY G-temp.2; 
R = G-temp.1 

END; 

IAlternativelY, if the control variable is busy-on-exit from the loop, 
and the loop increment is ±1, and there is a unique exit from the loop, 
then the loop control mechanism can be changed, provided the following 
is inserted: 

PLUS final value control variable 

ASSN final value control variable 

~treY~Eedu£tiQ~of fONV Text Table: If a CONY text table involves 
usage of the loop control variable under conditions similar to those 
described for a MULT text table, the CONY text table is removed from the 
loop. This is done by maintaining the conversion control variable in a 
temporary operand, and incrementing the temporary operand. 

October, 1973 

Licensed Material - Property of IBM Section 2: Method of Operation 261 



~IQRAGE AND REGISTER AL10CATION STAG] 

This stage consists of seven phases. The first five phases determine 
the static or automatic storage requirements of all the variables and 
constants in the text, and define the code required to make these items 
addressable. Dynamic storage requirements are determined and mapped as 
far as is possible at compilation time. Phase QA allocates specific 
registers for use during execution of the code in the object module. 
The last phase in the stage, Phase QE, is an optional phase. It is only 
loaded and executed if global optimization is specified; its function is 
to delete text indicating the storage of register contents in situations 
where elimination of these instructions enables the object program to be 
executed more efficiently. 

262 Licensed Material - Property of IBM 



This phase partially builds the Pseudo constants Pool (PCP), which is 
used by the final assembly phase (Phase SI) to build the constants pool 
in static storage. Entries are made in the pseudo constants pool by 
this phase for object-time DEDs and FEDs, symbol tables, and symbol 
table element lists. Further entries are made by later phases. 

PHASE INPUT 

Input to the phase consists of the main text stream output from Phase 
KX. The text consists of Type-2 text tables chained in logical 
sequence. The physical sequence of the text tables varies according to 
whether or not phases in the global optimization stage have been 
executed. 

The general, variables, and names dictionaries are accessed. In certain 
circumstances, the general and variables dictionaries are also scanned, 
either sequentially or by following chains of entries flagged as 
requiring symbol tables. 

PHASE OUTPU'I 

output from the phase consists of a partly-built pseudo constants pool, 
a scratch page containing information about the pseudo constants pool 
for use by later phases, and a modified main text stream. 

The pseudo constants pool is built on a page (or pages) that is handled 
separately from the main text stream. Entries in the PCP are of three 
kinds: object-time DEDs and FEDs, symbol table elements, and symbol 
tables. The entries in the pseudo constants pool contain the entries 
that are used in the constants pool in the object-module, plus 
information which enables the entry to be relocated correctly in the 
constants pool. 

The TA of the scratch page is inserted in the XSCRCH field of XCOMM. 
The scratch page contains the TA of the page containing the pseudo 
constants pool, and information indicating the next available space on 
that page is inserted in the XOUTARG2 field of XCOMM. 

In order to make the order of the constants pool as efficient as 
possible, the PCP output from Phase PC may be in two. halves; the first 
half comprising the DEDs and FEDs, the second half (commencing on a new 
text page) the symbol table and symbol table elements. The status of 
the two text streams is passed to Phase PA on the scratch page, so that 
it can insert entries between them. This ensures that the most commonly 
used entries in the constants pool are in the most readily addressable 
part. 

Text tables containing items for which object-time DEDs and FEDs have 
been built h~ve the compile-time DED or FED replaced by the offset in 
the constants pool of the object-time DED or FED. Variables dictionary 
entries. for items for which symbol tables have been built, have the 
offset of the symbol table inserted. 

The formats of various items for which entries are made in the pseudo 
constants pool are shown in figures 5.101 to 5.123. 

Licensed Material - Property of IBM Section 2: Method of Operation 263 



PHASE OPERATION 

Processing Reguirem~nt~ 

The processing required by this phase varies according to the appearance 
of certain features in the PL/I source program, or in the text output 
from previous processing phases. The features that require processing 
by this phase can be classified as follows: 

Class 1: PUT DATA, GET DATA, and SIGNAL CHECK statements without data 
lists~ 

Each data-directed input/output statement without a data list (or 
argument list at this stage of compilation) requires a symbol table fer 
each variable declared (explicitly or implicitly) in blocks within the 
scope of the block in which the source statement appeared. A similar 
requirement exists for SIGNAL CHECK statements, except that symbol 
tables are only required for those variables for which the CHECK 
condition is currently enabled. In all the above cases, a symbol table 
element list must also be created for each program block involved. Each 
list consists of a contiguous series of addresses, containing an address 
for each symbol table associated with the block, and the address of the 
symbol table element list for the containing block. An object-time DED 
is required for each item for which a symbol table is required. 

Class 2: PUT DATA and GET DATA statements with data lists, and the 
raising of the CHECK condition for a particular variable. 

In these cases, symbol tables are required only for those variables 
specified in the data list, or for each variable for which the CHECK 
condition is raised. An object-time OED is required for each item for 
which a symbol table is required. 

Class 3: Text tables indicating that object-time DEDs or FEDs are 
required to be passed as arguments to a library routine called at 
execution time. Examples of this requirement are calls to library 
routines for conversion operations or for input/output operations. 

In these cases, object-time DEDs are generated by this phase, using the 
existing compile-time DEDs as a basis for their construction. 
Object-time FEDs will have been created by Phase KQ (compile-time FEDs 
are not created), and will be in text if they are four bytes long, or in 
the general dictionary if they are more than four bytes long. 
Picture-item FEDs are created by this phase. 

Note: The class numbers shown above are used in the descriptions of 
processing in the following paragraphs, to indicate the items that are 
processed and to avoid lengthy repetitions of item descriptions. 

In addit~on to these primary functions. the phase performs several 
miscellaneous functions, chiefly to provide more efficient input for 
later phases, particularly Phase PA. The more important of these 
functions are: 

1. Determination of the target attribute for constant conversions. 

2. Preliminary mapping of static initial storage. 

3. Testing for requirement of static ONCB. 

4. Reordering of argument lists. 

5. Extinction of string address temporaries. 

6. Determination of locator type required in less common cases 
(UNSPEC, area temporaries, etc.). 

264 Licensed Material - Property of IBM 



~§guence of Processing 

Most of the processing is performed during a sequential scan of the text 
stream, an optional scan of the variables dictionary (made only if Class 
1 items are found in the text), and a further optional scan of the 
variables and general dictionaries (made only if Class 1 or Class 2 
items are found in the text). Only the text scan is required for 
processing Class 3 items. 

The text stream is scanned sequentially, using the XNEXT macro routine, 
and items requiring processing by this phase are detected. Where items 
described in Class 1 are recognized, the block header entries in the 
general dictionary are accessed to obtain block-nesting information. 
This information is used to set flags in a phase save area, to indicate 
those blocks for which a symbol table element list must be built. Where 
items described in Class 2 are recognized, a flag is set in the 
variables dictionary entry for each variable for which a symbol table is 
required. If the variable is a structure, then the text reference to 
the structure is replaced by successive references to each of its base 
elements. If a symbol table is required for a label constant or an 
entry-point constant, a flag is set in the general dictionary entry for 
the constant, and the flagged entries are chained together for ease of 
access during later processing. 

As each Class 2 or Class 3 item is seen in the text, a number of 
subroutines are called in sequence to build a DED or FED entry in the 
pseudo constants pool. For a Class 3 item, the sequence is as follows: 

SRTDOO - obtains information about the required DED or FED from the 
text. 

SRBDOO - sets up the PCP environment for the converted DED or FED. 

SROBOO - converts the 3-byte compile-time DED or FED into its 
object-time form. 

SRODOO - creates the required entry in the PCP, checking for duplicates 
if required. 

For a Class 2 item, only the last three of the subroutines (SRBDOO, 
SROBOO, and SRODOO) are used because information about the required DED 
is obtained from the variables dictionary. For non-pictured FEDs (which 
are constructed by Phase KQ) only SRODOO is used to make the entries in 
the PCP. Picture FEDs cannot be built by Phase KQ because information 
which is inserted in the general dictionary by Phase KX is required: 
these items are processed in a manner similar to that used for pictured 
DEDS, using the subroutines SROBOO and SRODOO. 

All DED and FED entries occupy contiguous storage at the beginning of 
the pseudo constants pool. As each new entry is made, an offset counter 
in the OFFSDED field is updated. Allowance is made for the difference 
between pseudo constants pool entries and constants pool entries so that 
the value in OFFSDED indicates the offset of the next DED or FED entry 
in the constants pool. This value is passed to the SRODOO subroutine 
each time it is called, and the offset for the new entry is returned and 
replaces the compile-time DED in text for Class 3 items, or is 
temporarily placed in the symbol table slot in the variables or general 
dictionary entry for Class 2 items. 

Before a DED or FED entry is made, a test is made for an existing entry 
of identical form and value. Entries are commoned wherever possible, 
and the existing entry offset is returned in such cases. 

~hen the text scan is completed, a scan is made of the variables 
dictionary if Class 1 items have been found. During this scan, DED 
entries are made in the pseudo constants pool for internal variables 
with dictionary entries flagged to indicate that they required symbol 

Licensed Material - Property of IBM Section 2: Method of Opera~ion 265 



tables because a symbol table element list is required for the block in 
which they are declared. The number of symbol table elements required 
for each block is stored in the phase save area in which blocks 
requiring symbol table element lists were flagged. This number is used 
to construct the required number of du~my symbol table elements in the 
pseudo constants pool. 

If Class 2 items have been found, a second scan of the variables 
dictionary is made, during which the SRSEOO subroutine is called to 
insert the required values in the dummy symbol table elements. This 
routine calls the SRSTOO subroutine to build the symbol tables in the 
pseudo constants pool. Entries in the variables and names dictionaries 
are accessed for the required information. As the symbol tables a~e 
built, the required addresses are inserted in the symbol table elements, 
and the offset of the symbol table is inserted in the variables 
dictionary entry. 

If symbol tables are required for any external variables, the DEDs for 
them are built during this scan, to ensure that the DEDs and symbol 
tables for a given external variable (which may be a structure) are in 
the same external control section. If necessary, the symbol table 
element is completed at this time. 

If entries for constants in the general dictionary have been flagged to 
indicate that a symbol table is required, the chain of flagged entries 
is scanned and the symbol tables are constructed. 

On completion of processing, the pseudo constants pool contains 
contiguous entries organised as shown below: 

r--------------T------------------T------------, 
I All DED and I All Symbol Table I All Symbol I 
I FED entries. I Elements. I Tables. I L ______________ ~ __________________ ~ ____ --______ J 

o OFFSDED OFFSTE OFF SST 

Note that the symbol table elements start a new page in the PCP so that 
Phase PA can insert more commonly required items nearer the start of tne 
constants pool. 

The TA of the current pseudo constants pool page, and the relocation 
factors of the various classes of entry, are passed to Phase PA on a 
scratch page, to enable that phase to continue construction of the PCP. 

266 Licensed Material - Property of IBM 



CONSTAN~S ANALYSIS (PHASE PA) 

This phase identifies all items in the text that are constants, or can 
be considered as constants, and for each item creates an entry in the 
pseudo constants pool which indicates the storage to be allocated for 
the item in the constants pool, (which is a part of static storage). 
Items for which storage is allocated in the constants pool include: 

Source-program constants 
Compiler-generated constants 
Address constants 
Label constants 
Static ONCBs 
static locators 
Static descriptors 
Descriptor descriptors 
File control blocks 
Record descriptors 
Key descriptors 
Environment blocks 
DTFs 
CONDITION condition names 

Source-program constants and compiler-generated constants may require to 
be converted before being entered in the pseudo constants pool. The 
library conversion routines are link-edited with this phase. A PL/I 
environment is created in the phase to enable the library routines to be 
called, and the conversions executed, during compilation. 

The phase also maps completely the storage required for static variables 
declared with the INITIAL attribute. During processing, this phase 
rebuilds the text stream so that on output, the physical sequence of the 
text coincides with the logical sequence. 

PHASE INPUT 

This phase scans the main text stream output from Phase PC. The text 
consists of Type-2 text tables, chained to enable the logical sequence 
to be followed. The variables dictionary is scanned, and the variables 
and general dictionaries are accessed during the text scan. 

Other input consists of the partially-built pseudo constants pool output 
from Phase PC, which is accessed by use of the information in the 
scratch page also output from that phase. The scratch page contains the 
TA of the pseudo constants pool page. The TA of the scratch page is 
found by accessing the XSCRCH field in XCOMM. 

PHASE OUTPUT 

Output from the phase consists of a rebuilt text stream in which text 
tables, flow unit headers, etc., are organized in logical order. Some 
text tables, e.g., static initial (SINIT) tables, and argument tables 
referring to static arguments, are deleted because the information they 
contain is conveyed by other means. 

The pseudo constants pool is output on a second stream of one or more 
text pages. Entries in the pseudo constants pool contain all the 
information required by the final assembly phase (Phase SI> for building 
the constants pool in static storage. 

Licensed Material - Property of IBM Section 2: Method of Operation 267 



The phase also generates information required by later phases in the 
storage and register allocation stage~ and adds this information to the 
scratch page output by Phase pc. The information includes the sizes of 
the areas of the pseudo constants pool that are built by this phase. 

PHASE OPERATION 

A scan of the variables dictionary is first made identifying those 
variables which require some form of storage in the constants pool 
regardless of any references in the text. These include: 

• anchor slots for controlled variables, with adcons if external. 

• adcons for external symbol tables CSECTs. 

• locators and descriptors or adcons for static external variables. 

• some classes of defined variables. 

A scan of the main text stream is then made using the XNEXT macro. 
During this scan, all forms of entry in the constants pool not already 
processed are identified and constant descriptors created accordingly. 

The phase creates a new, sequential output text stream. It also deletes 
text tables which are no longer required; for example, NULL and GHOST 
tables, ARG tables referencing static arguments, static initial and 
related tables, and unwanted flow-unit header tables. 

At the end of the ~hase, the scratch page of information about the PCP, 
as received from Phase PC, is updated and passed to Phase PEe 

creation of Pseudo Constants Pool Entries 

This phase continues the construction of the pseudo constants pool 
initiated by Phase pc. The pCP is processed by Phase SI to produce the 
execution-time constants pool. 

The PCP entries are identified in a random order from the text and 
dictionary whilst in the constants pool they are required to be grouped 
according to type. consequently, the entries are first created in an 
intermediate~temporary form, existing solely within this phase, known as 
a constant descriptor. The constant descriptor comprises a 16-byte 
field on the front of the pCP entry. 

1. constant descriptor header. 

o 5 10 12 16 

r--------------T--------------T----------------------T-----------, I Type chain I Commoning I Number of adcons I Offset I 
I I chain I in arg. list I I L ______________ ~ __ - ___________ ~ ______________________ ~ ___________ J 

268 Licensed Material - Property of IBM 



2. PCP header. 

16 17 18 20 22 
r--------T--------T-----------T------------------------, 
I Flag I Code I Length I Dictionary ref. or I 
I byte I byte I I replication factor I L ________ ~ ________ ~ ___________ ~ ________________________ J 

3. Constants pool entry. 

22 
r----------------------
I Constant 
I L _____________________ _ 

When created, constant descriptors are divided into eleven classes 
according to type. 

Doubleword aligned 

Label constants 

Static ONCBs 

Adcons 

Word aligned 

Halfword aligned 

Byte aligned 

Doubleword ) 
) 

word ) 
) 

Balfword ) 
) 

Byte ) 

(Long float, extended float, locators, 
locators/descriptors) 

(Addressing adcons and argument lists) 

(Short float, fullword binary, files, descriptors) 

(halfword binary) 

(Character, bit, fixed decimal, pictures) 

Aligned static initial variables 

When created, constants within the same type are chained together with a 
back chain in the typE field. In most cases, before the constant 
descriptor is actually output, a search is made within the constant 
descriptors of the same type for a duplicate of the present constant. 
If the duplicate is found, the present constant descriptor is not 
output; instead, the offset of the duplicate constant, as found in the 
constant descriptor, is returned. The search is expedited by the 
presence within the constant descriptor of a second chain, the commoning 
chain, which chains together those items within a type chain which can 
possibly be duplicate; thus the word-aligned chain is divided for 
commoning purposes into short float and fullword binary commoning 
chains. Items within a type which are excluded from commoning (for 
example, files and descriptors in the word-aligned chain) are excluded 
from the commoning chain. Certain whose chains are excluded from 
commoning attempts; these are the static ONCBs and static initial 
chains. The adcon chain is handled rather differently, in that its 
entries comprise groups of argument lists which must be kept intact. If 
global optimization is requested, an attempt is made to common complete 
argument lists in which case the commoning chain links together the last 
member of each argument list; the number-of-adcons slot is used to 
ensure that commoning is only attempted upon argument lists with an 
identical number of adcons. 

When the scan of the text is complete" the back chain of each of the 
eleven classes is scanned and converted into a forward chain. From 
these forward chains the constant descriptors are scanned sequentially, 

Licensed Material - Property of IBM Section 2: Method of Operation 269 



class by class, to produce the pseudo constants pool entries. The 
chains are scanned in such an order that the most efficient order of the 
constants pool ensues; for the same reasons, the classes produced by 
this phase are interleaved with three classes produced by Phase PC 
(DEDs/FEDs, symbol table elements, and symbol tables). The final order 
is: 

1. DEDs and FEDs. 

2. Halfword aligned constants. 

3. Doubleword aligned constants. 

4. Word aligned constants. 

5. Adcons. 

6. Byte aligned constants. 

7. Label constants. 

8. Static ONCBs. 

9. Symbol table elements. 

10. Symbol tables. 

11-14. 8-, 4-, 2-, i-byte aligned static initial variables. 

A brief description follows of each of the various pseudo constant pool 
enttries ~roduced by this phase. 

PL/I Source constants: This phase allocates storage for all types of 
PL/I source constants used in the program, that is, character, bit, 
decimal, and binary constants. As far as possible, the phase attem~ts 
to convert the constant to the form in which it will be needed at 
execution time. To achieve this in the more difficult cases (for 
example, conversions from character to arithmetic and vice-versa, 
conversions to and from float, and conversions to picture) the phase has 
link-edited as an integral part of it some of the object-time library 
conversion package. To make use of this package, the phase has to 
simulate an execution-time PL/I environment and library call; this 
involves the setting-up of a DSA TCA, and library workspace as well as 
the calling sequence involving argument lists, DEDS, and, where 
appropriate, locators. It is to avoid this expensive overhead in 
compile-time that the simpler and commoner conversions are performed by 
inline code. 

Fil~~: Reference to a file constant in the text causes the phase to 
allocate storage for the various components of the file; the FCB, 
environment block, DTF, and if Phase KM has performed the optimization 
of the opening of the external file, the buffers. External files also 
require an adcon to be generated to be used for addressing purposes. 
File entries are not commoned in the normal way, via constant 
descriptors. Since each file has its own dictionary entry it is 
possible to flag the allocation and store the offset of the file (or 
adcon if external) in the dictionary for use by subsequent references. 

If the file is an associated one, Phase PA will leave the offset of the 
DTF of that file in the field YFATT. For an EXTERNAL file this offset 
will be that from the EXTERNAL CSECTi for an INTERNAL file, the offset 
will be that from the start of the 4-byte aligned items in the INTERNAL 
STATIC CSECT. 

270 Licensed Material - Property of IBM 



sta!!c ONCBs: Phase PC flags tables which require ONCBs. This phase 
merely takes the ONCB flags and identifiers from the text and stores 
them in the a-byte ONCB. Static ONCBs are not checked for duplication. 

Lo£ators_~nd_Q~§£ri2tof§: The phase must allocate storage for structure 
and array locators and descriptors, string and area locator-descriptors, 
and record and key descriptors. Their requirement arises from three 
sources: 

1. For addressing static external and certain classes of defined 
variables in which case the scan of the variables dic~ionary 
indicates that they are needed. 

2. For execution-time mapping code produced by Phase IQ in which case 
operands are encountered in the text which make explicit reference 
to the locator or descriptor of the variable. 

3. For library calls where the argument to be passed is an aggregate, 
string, or area in which case the variable is found in a LOAD 
ADDRESS, ARG, or CONVERT(Ol) text table. 

Record/key descriptors are created by Phase KM and are simply copied 
from the dictionary when referenced in the text. 

All the information required in some of these locators is known at the 
time. string locator-descriptors will have the string length, and, if 
afpropriate, the varying flag and bit offset set, but will only have the 
address portion filled in if the string is constant (this address will 
also have been allocated by the phase). Area locator/descriptors 
contain the area length. Aggregate locators contain the address of the 
descriptors, since that is also allocated by this phase, but not the 
address of the data. The missing addresses are supplied by Phase SI 
when it creates the constants pool. 

Labels: Labels (user or compiler) only require static storage in 
certain circumstances: in label variable assignments, if passed as a 
library argument, or if the target of a go-to-outer block. Each of 
these occurrences can be detected by the presence of the label in 
particular text tables. 

CONQ1T10N Conditions: The phase allocates a bytes of static storage for 
user conditions. Phase S1 filles these eight bytes with the name of the 
condition. The requirement is detected from the text scan. 

CONTROLLED variabl~_Anch2r Slots: The implementation of controlled 
adressing requires a 4-byte slot for each controlled variable. The 
variables dictionary scan performs this allocation for each controlled 
variable in the program. In additi6n~ if the variatle is external, an 
adcon is generated to address the anchor slot. 

~dcog§: Adcons are required for two principal reasons: 

1. For the addreSSing of static external CSEC~Ss. These CSECTs exist 
for static external variables, external files, anchor slots for 
external controlled variables, and symbol tables for external 
variables and external entry names. The requirement for the 
variable and symbol tables can be detected from the variables 
dictionary scan; the generation of adcons for external files and 
entry names is triggered by references to these items in the text. 

2. For the construction of argument lists used in execution-time calls 
to the library and other procedures. In this case an adcon is 
required for an operand within an ARG text table. A wide range of 
different adcons can be produced depending upon the type of 
operand: variable, constant, null operand, OED, temporary, 
record/key descriptor, file, locator, entry name, symbol table, 
symbol table element, condition CSEC~, controlled anchor slot, and 
label. 

Licensed Mat~rial - Property of IBM Section 2: Method of Operation 271 



If the adcon references an item in static, other than a variable, then 
the address of the item is replaced in thE adcon by this phase and the 
ARG table can be deleted (static variables are not mapped until Phase PE 
and so the adcons must be filled by Phase SIlo Adcons for temporaries 
and non-static variables must be filled with code at execution-time: in 
these cases, the ARG table is not deleted. 

Static Initial: ~his phase performs thE complete allocation of static 
initial variables. Static initial is detected in the input by the 
presence of SINIT text tables (for scalars),and IASSN, AID (start of 
array iteration), and ENDAID (end of array itera~ion) for arrays. All 
these tables are deleted by this phase. 

Upon encountering a static initial table, the phase first outputs a 
constant descriptor with sufficient empty storage to hold the whole of 
the variable, whether it is scalar, array, or structure. In any 
reference to the same variable it then first determines, using the 
aggregate table in the general dictionary if required, the offset within 
this storage at which the particular variable being initialized is 
located. The source constant must then be converted to the data 
attributes of the variable and moved into pre-allocated storage. Unlike 
normal source constants, all replication factors must be applied at this 
time; AID and ENDAID text tables must be processed to give the correct 
initialization of arrays. 

Text Deleted ~Pha~PA 

This phase will delete flow unit headers (but not associated text) for 
those flow units for which bit 4 of the IFOF3 field of the flow unit 
header (see figure 5.99) has been set. 

272 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised ty 'INL LN33-6175, October 1976 

STORAGE ALLOCATION (PHASB PE) 

This phase identifies all items that require allocation of storage 
(except those items that have their storage in the constants pool) and 
allocates static or automatic storage as required. This can necessitate 
the mapping of static and automatic storage for up to 2.55 blocks in any 
one compilation. This phase does not allocate storage for adjustable 
items: variable data areas for these items are defined by other phases 
(RR, IQ, OC, and OX). 

In order to minimize the padding required to maintain the cor~ect 
storage boundary alignments, storage is mapped in decreaSing order at 
alignment requirements for the items. In order to minimize the amount 
of addressing code require~, the size of each item is also taken into 
account when storage is mapped. Items are allocated to three size 
classes, according to whether their size is eight bytes or less, between 
eight bytes and 2048 bytes, or greater than 2048 bytes. Within each 
storage class, storage is allocated in order of decreasing alignment. 
The storage dictionary is built by this phase. An entry is made for 
every item that has an entry in the variables dictionary, and entries in 
both dictionaries have similar alignment, length, and sequence. 

Some entries in the general dictionary are also scanned by this phase, 
and modified to indicate storage requirements. 

Phase PE a·lso scans the main text stream. The primary reason for dOing 
this is to look at all register temporaries whose use spans labels are 
marked as 'global'. 

PHASE INPUT 

Input to the phase consists mainly of the variables dictionary and the 
general dictionary. The scratch page, containing phase-to-phase 
information output cy Phases PC and PA, is accessed for the purpose of 
adding more information. 

PHASE OUTPUT 

This phase builds the storage dictionary, in which entries indicate the 
size a~d location of storage allocated in static or automatic storage 
regions for each variable that has an entry in the variables dictionary. 
Entries in the storage dicticnary have the same length and al~gnment as 
entries in the variables dictionary, and are made in the same sequence 
(see figure 5.28). 

Entries in the general dictionary for record descriptors and key 
descriptors have storage allocation information inserted by this phase. 

~he page containing storage allocation informatio~, Which was passed 
from Phases PC and PA, is output with its original content unaltered, 
but with the addition of information abcut the base numbers for each 
variable for which storage has been allocated. This information is 
passed in a table, Which is referred to as the base table. 

~he variables dictionary is not altered by tllis phase, but SOJl'le entries 
in the general dictionary· have additional information inserted. 

The main text stream has been modified to ensure that register tempories 
are 'global' if required. 

Licenaed Material - Property of IBM Section 2: Method of Operation 273 



PHASE OPERATION 

Building the storage Dictionary 

The storage dictionary is used to hold information about the storage 
required at execution time for each variable item. This phase makes a 
sequential scan of the variables dictionary and, from the information 
held in the dictionary entries, determines the storage requirements for 
each item. 

At execution time, the output from each compilation requires a dynamic 
storage area (DSA) for each block, and a static storage area (storage in 
a DSA is referred to as automatic storage). As each compilation can 
contain up to 255 blocks, this phase may be required to map up to 256 
areas of storage. Each area can contain many variables of different 
sizes and with different storage boundary alignnent requirements. 

Each variables dictionary entry is examined to determine whether the 
item requires static or autonatic storage. If automatic storage is 
required, the block number is used to indicate the DSA in which storage 
is required. For each storage area, an offset counter table is built in 
the phase working area to facilitate mapping of storage for the various 
items. 

The storage-mapping requirements for each variable can be classified 
according to its storage boundary alignment and the size of storage 
required for the item. storage boundary alignment requirements are 
classified according to whether the item must be aligned on a 
doubleword, word, halfword, byte, or bit storage boundary. Storage size 
requirements are grouped into three classes: small-sized items 
requiring up to eight bytes (Class A); medium-sized items requiring nine 
to 2048 bytes (Class B), and large-sized items requiring more than 2048 
bytes (Class C). Combinations of the two requirements result in 15 
classes of storage mapping requirements, and a further three classes are 
used for miscellaneous items used for addressing purposes. 

Storage is mapped by calculation of offsets from the origin of storage 
allocated for-variable items within a storage area. The storage mapping 
classifications (described above) are used to facilitate calculation of 
the offsets·. 

The Offset-Counter Table used for mapping storage for each DSA is shown 
in figure 2.26. 

274 Licensed Material - Property of IBM 



r-------~T----------------------------------l I OFF8A I Class A size, doubleword aligned I 
I OFF8B I Class B size, doubleword aligned I 
I OFF8C I Class C size, doubleword aligned I 
~--------+----------------------------------~ I OFF4A I Class A size, word aligned I 
I OFF4B I Class B size, word aligned I 
I OFF4C I Class C size, word aligned I 
~-------;----------------------------------f 
I OFF2A I Class A size, halfword aligned I 
I CFF2B I Class E size, halfword aligned I 
I OFF2C I Class C size, halfwcrd aligned I 
~--------+----------------------------------~ I CFFIA I Class A size, byte aligned J 
I OFFlE I Class E size, byte aligned I 
I OFFIC I Class C size, byte aligned I 
.--------+----------------------------------~ I OFFBA I Class A size, bit aligned I 
I OFFBB I Class B size, bit aligned I 
I OFFBC I Class C size, bit aligned I 
~--------+----------------------------------i I OFFBT I Bit Offset counter I 
I OFF4P I Parameter counter I 
I OFFADC I Addressing Adcon counter I L ________ ~ __________________________________ J 

Figure 2.26. Offset counter table for a DSA 

Storage is mapped so that items with the highest storage boundary 
alignment stringency are stored closest to the origin of the variable 
storage area. Variables are grouped first by si:ze and secondly by 
alignment. 

As storage is mapped for an item, a storage dict:ionary entry is created 
for the item. Entries in the storage dictionary have the same 
alignment, length and sequence as entries in the variables dictionary. 
The value of the offset counter for the item is :inserted in the storage 
dictionary entry. 1his value is rrodified during later ~rocessing in the 
stage. The format of entries in the storage dic1tionary is shown in 
figure 5.28. 

Base Numbering 

To facilitate addressing of items, allocated stoI~age is divided into 
blocks of 4096 bytes. Each of these blocks is ccllled a region, and each 
region is uniquely identified by its base number •. 

Ease number I is associated ~ith the first regioll of static storage, 
base number 2 with the second region of static s't:orage, and so on. When 
all required static storage has been maFped, the next available base 
number is associated with the first region of aut:omatic storage. The 
process is continued until all required DSAs haVE! been IIIa~ped. when 
base numbers have been allocated, each item for 1IIihich storage is 
allocated can be addressed by its offset 'from thE! origin of a particular 
region of storage, identified by its base number. 

The base number associated with a variable is inserted in the YSESE 
field of the storage dictionary entry for the variable. It is also 
inserted in a table, referred to as the base table, which is built in 
the scratch page passed from Phase PA, (the constants relocation and 
base numbers information page) and passed to Phase Fl. The storage 
dictionary reference of a variable is used to index its entry in the 
base table. No entries are made in the table for indirectly-addressed 
variables, (e.g., based or controlled variables), and therefore 
initialization of the table causes these variables to appear with an 
apparent base number of zero. 

Licensed Material - Property of IBM section 2: Method of Operation ?75 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Relocation of Offsets 

The offsets calculated for the storage for each variable require to be 
relocated as offsets from the start of each DSA or static storage area. 
To do this, a relocation factor must be calculated and applied to each 
offset. 

At the beginning of each DSA, storage is required for housekeeping 
information. The format of this information is standard for all DSAs, 
but it contains a variable length field which is used to store the 
ON-cells for the program block. To calculate the length of this field, 
the block header entry in the general dictionary is accessed to find the 
number of ON-cells in the block (stored in the entry by Phase PAl. This 
information enables the total amount of storage required for 
housekeeppng information to be calculated, and the offset fron the start 
of the DSA at which variables can ~e stored can thus be ascertained. 

Using this relocation factor, and the offset counters previously 
calculated, a scan is made of the storage dictionary for the purpose of 
relocating the offset of each variable for which static or automatic 
storage has heen allocated. when this process is complete, the offset 
counter tables are discarded. 

Storage for Parameters 

In order that parameter lists can be addressed directly, storage for the 
parameter list for a block is reserved in temporary storage within the 
appropriate DSA. The temporary storage is not allocated by this phase. 
During the scan of the variables dictionary, parameters are recognized, 
and the number of parameters for each block is counted and saved for use 
by the addressing phase (Phase PI). The requisite amount of temporary 
storage is determined by a routine in that phase. 

Phase PE allocates a unique base number, separate from the base nunlber 
for the region, to each parameter. This allows each parameter to be 
addressed directly from its base. The base number is inserted in the 
storage dictionary entry for the parameter. 

Storage for Record and Rey Descriptors 

When the phase has completed its building of the storage dictionary, the 
general dictionary is examined for the presence of skeleton record 
descriptors or key descriptors built by Phase KM. If a chain of such 
entries exists, flag bytes in each entry are examined to determine the 
required location of the descriptor at execution time. 

Using information already determined for storage allocation, a base 
number and offset value is inserted in each dictionary entry to allocate 
storage in the apprcpriate region. 

Text ProceSSing 

Two scans of text are made. During the first scan information is 
collected on register temporary usage (e.g., when the temporary is used 
and for what purpose). 

During the second scan of text the information on register tenpcraries 
is used to deternine if a tenpcrary should be marked as 'global', or if 
it can be made 'local', or even eliminated. 

276 Licensed Material - Property of IBM 



ADDRESSING OF STORAGE (PHASE PI) 

The phase generates information that enables any item for which storage 
is allocated to be addressed. The information is either inserted in 
text tables that indicate the addressing code to be generated, or passed 
in a separate text stream to enable a later phase to generate the 
required code. 

1. Offsets of items in the constants pool are relocated relative to a 
static storage base number. 

2. Text tables are generated to indicate prologue code required for 
addressing various items (e.g., the temporary storage area for a 
block), or for initialization of various items (e.g., aggregate 
locators, record and key descriptors). 

3. Text tables are generated to indicate the code required for 
addressing indirectly addressed variables (e.g., based, 
controlled). 

4. Information is passed to Phase QI to enable variables that are 
external to the .current block to be addressed. 

5. Temporary operands are allocated storage offsets within internal 
classes of temporary storage. Information is passed to Phase QI to 
enable these offsets to be relocated. 

This phase also deletes from the text flow units that are flagged as 
"unreachable". 

Partially optimized blocks are treated in the same manner as wholly 
unoptimized ones. Bit 7 of the IFOF1 field in the flow unit header 
(figure 5.97) will be off. 

PHASE INPUT 

Input to the phase consists of the sequential Type-2 text stream output 
from Phase PA, the text page containing constants pool and base numbers 
information collected by Phases PC, PA. and PE, and another text page 
containing block structure information output from Phase PEe The 
storage, general and variables dictionaries are accessed as required. 
The pseudo constants pool text page(s) is not accessed by this phase. 

PHASE OUTPUT 

This phase generates modified or additional text tables which indicate 
the addressing code that is required to be generated by later phases. 
The text tables are output so that a logical sequence is maintained 
without the use of overflow pages and chains. 

A text page containing addressing and temporary storage information is 
passed to Phase QI separate from the main text stream. 

No changes are made to entries in the variables or general dictionaries. 
The offset values in some entries in the storage dictionary are 
modified. 

Licensed Material - Property of IBM section 2: Method of Operation 277 



PHASE OPERATION 

The main text stream is scanned sequentially. Text tables, flow uni~ 
headers, etc., that do not require processing by this phase are copied 
directly to the output text pages. Where a situation that requires 
processing is recognized, dictionaries are accessed and text tablEs are 
mcdified or generated so that a logically sequen~ial main text stream 
output is maintained without the need for overflow pages or text table 
chains. 

The text page containing constants pool and base numbers information is 
copied into the phase working storage for ease of access. The text page 
containing block structure information is accessed as required. 

Relocation of constants Pool Offsets 

If a text table contains a reference to an item for which storage in the 
constants pool has been allocated, the offset shown in the text will be 
an offset within a particular alignment/size classification. Using ~he 
information supplied by Phase PE, this phase relocates the offset so 
that it is relative to a particular region of static storage, and 
inserts the appropriate base numbers in the text. 

when Phase PI receives control, allocation of static storage will be 
similar to that shown in figure 2.27. 

Region 1 

. . . . 
. . 

Region 2 

Region 3 

Static Storage 

Storage for address constants 

Storage for constants pool . . . . . . . 
. . . . • I. ~onst. A J • 

• ( ;o~st~ s· i · . . . . . . . . . . . . . . . . 
. . . . . . . . . . 

Storage for 

static variables 

AI ignment/size 
classifications 

Figure 2.27. Relocation of constants pool offsets 

The function of Phase PI is to modify the relocation factors inserted in 
the text by Phases pc and PA, allowing for the static storage allocated 
for address constants. In the illustration shown, the modified 
relocation factor would allow the offset of constant A to be relocated 
relative to Base Number 1. For constant B in the illustration, the 

278 Licensed Material - Property of IBM 



relocation factor would have ~o be further modified so that the offset 
would be relocated relative to Base Number 2. All offsets are 
calculated relative to the origin of the appropriate region, and the 
relocated offset and the base number are inserted in the text. 

Geg~f~tion~~foI2gue Code for Addressing and Initialization 

When a prologue-end (PEND 01) text table is found, the storage 
dictionary is scanned for any items which require addressing or 
initialization code to be generated in the prologue. Text tables 
indicatng the required code are generated and output before the PEND 
table is copied to output. 

GENERATION OF ADDRESSING CODE: There are a number of cases where 
addressing-code~e:, code-required to load the base of an item into a 
register) is required in the prologue. Examples of such cases are the 
code required to address the first STATIC ONCE in a block, or code 
required to address the temporary storage area for a block. In such 
cases, the required offsets and bases are determined by this phase, and 
generated in text tables that indicate the code required. 

The address of the first STATIC ONCB is required to be inserted at a 
standard offset (92) from the origin of the housekeeping area of the 
DSA. The address of the ONCB is determined from the constants pool 
information ~assed from Phase PA, and an LA text table is generated to 
load the address into the predetermined offset. 

Information in the block-structure-information page passed by Phase PE 
is used to calculate the address of the temporary storage area of a DSA. 
This page contains a number of a-byte entries, each of which contains 
information about the DSA for a particular block. The format of each 
entry is as follows: 

r----------T----------T-----------T------------, 
INumber of ITotal sizelBase numberlSize of I 
I parameters I of DSA I of DSA I housekeeping I 
I I I larea of DSA I L __________ ~ __________ ~ ___________ ~ ____________ J 

1 byte 3 bytes 2 bytes 2 bytes 

Using this information, the offset from the base of a storage region of 
the start of the temporary storage area is calculated. The temporary 
storage area is then allocated its own region and base number by 
obtaining the next available base number from the XNABN field of XCOMM 
and applying it by generation of a BADDR text table. 

GENERATION OF INITIALIZATION CODE: This phase generates text tables 
indIcating the prologue code required to initialize locators for 
aggregates and string items, and for some key and record descriptors. 
Static storage for the skeleton descriptors will have been allocated (in 
the constants pool) by Phase PA. This phase generates text tables to 
indicate code required to copy the skeleton descriptor or locator into 
the DSA and insert the address of the aggregate, string item, or record. 
The process is illustrated in figure 2.28. 

Licensed Material - Property of IBM section 2: Method of Operation 279 



Skeleton locator 
or descriptor moved 
into DSA by code 
defined in MOVE 
text table 

Static Storage 

Skeleton locator or descriptor 

DSA 

Address of item 

Length of item and flags 

String item or aggregate, 
or key or record variable 

Code for the operations illustrated is defined in text tables shown: 

MOVE Offset and base Length of Offset and base 

no. in static skeleton no. in DSA 

LADDR Offset and base Length of Offset and base 

no. of item item no. of locator 
or descriptor 

Address of item 
copied into 
locator or 
descri ptor by 

code def i ned 
in LADDR text 

table 

Figure 2.28. Initialization of locators and descriptors 

280 Licensed Material - Property of IBM 



For aggregate or string item locators. the necessary information is 
obtained from entries in the storage dictionary. For record and key 
descriptors, the necessary information is obtained by scanning a chain 
of entries in the general dictionary. 

During the scan of text, the storage~dictionary reference of each 
variable operand is used to index the base table created by Phase PEe 
The base number of the variable is inserted into the IBA1, IBA2, or IBA3 
field of the text table as applicable. This processing can only be 
performed for static internal and fixed automatic variables. Indirectly 
addressed variables (e.g., parameter, controlled, based, etc.,) do not 
have annotated entries in the base table, and therefore are shown with 
an apparent base number of zero. This indicates to the phase that the 
INOAD routine must be used to generate text tables that define the 
required inline addressing code. The storage dictionary fields that 
indicate the base and offset of the variable, and of the variable's 
locator and/or descriptor, are accessed as applicable for the required 
information. A table indicating the information used is contained in 
the phase listing. 

Addressing Variables in Outer Blocks 

If a text table contains a reference to a variable declared in an outer 
block, addressing code is required to enable the variable to be 
accessed. This phase does not generate the addressing code, but sets up 
information which enables Phase QI to do so. The information is passed 
to Phase QI on a separate text page (or pages), referred to as the 
addressing and temporary storage i.nformation page. The TA of this page 
(or chain of pages) is stored in the XACORF field in XCOMM. 

Allocation of Temporary storage 

If a text table contains a reference to a temporary operand, the code 
byte of the operand is examined to determine whether storage is 
required. If storage is required, the amount of storage can be 
determined from the OED of the temporary operand. 

Within the temporary storage area of each DSA storage is divided into 
four classes: 

1. Parameters storage 

2. Global temporary register storage 

3. Global temporary identifier storage 

4. Local temporary identifier storage 

Each temporary operand is allocated storage at a particular offset from 
the origin of the appropriate storage class. The offset value is used 
to overwrite the identification number of the temporary operand in the 
text. 

If the code byte of a temporary operand indicates that it is being used 
for the last time, the storage allocated for it is freed and can be 
re-used. This technique helps to reduce the amount of temporary storage 
required. 

Licensed Material - Property of IBM Section 2: Method of Operation 281 



When all the required temporary storage has been allocated, information 
about the temporary storage area is inserted in the addressing and 
temporary storage information page, to enable Phase QI to relocate the 
allocated offsets. 

282 Licensed Material - Property of IBM 



Phase QI completes the allocation of storage and addressing of items not 
addressed by Phase PI. Where addressing code is generated, note is made 
of whether or not the code has been optimized by phases in the global 
optimization stage. Division of the code into flow units, and 
identification of back dominators by optimizing phases, enables 
optimization of some addressing code. Functions performed by this phase 
include: 

1. Insertion of addressing code in the optimum places in the code 
sequence. 

2. Relocation of offsets in temporary storage areas. 

3. Modification of DSA sizes, to allow for temporary storage and 
address constants required to address items in outer blocks. 

4. A number of operations in preparation for register allocation, but 
which are independent of register status. These include some 
loop-processing operations. 

The phase will also recognize partically optimized blocks and will 
perform full register allocation for optimized DO groups. 

PHASE INPUT 

Input to the phase consists of the main text stream, with Type-2 text 
tables organized in logical sequence. The text page output from Phase 
PI, containing addressing and temporary storage information, is accessed 
and copied into the phase working area. 

If the phases of the global optimization stage have been executed, the 
summaries of variables usage information inserted in the general 
dictionary by Phase OE are accessed. No other dictionary sections are 
accessed by this phase. 

PHASE OUTPUT 

Output from the phase consists of the main text stream, in which text 
tables required for generation of addressing code have been inserted in 
logical sequence, and the storage offsets in references to temporary 
operands have been modified. 

PHASE OPERATION 

The text is scanned sequentially. Text tables, etc., that do not 
require processing by this phase are copied directly to the output text 
stream. Where situations requiring processing are recognized, text 
tables are modified or additional text tables are generated, and output 
in the text stream in logical sequence. 

Licensed Material - Property of IBM Section 2: Method of Operation 283 



Addf~ing and TemporafY-Storage Information 

Phase PI passes a text page containing information which enables Phase 
QI to generate addressing code for variables in outer blocks, and to 
relocate the offsets of items for which storage has been allocated 
already. For each program block (i.e., each section of code that 
requires a DSA), Phase PI passes information in the format shown below: 

o 3 7 11 15 20 52 
r---------------------------------T---------------T---------------, 
I I I I 
I Temporary_2j;~g~Area__2!~ I Flow unit I Outer Block I 
I I I I I I I 
ISize of ISize ofl ISize ofl Information I Bit Vector I 
IParameterlGlobal IGlobal ILocal I I I 
I Storage I Temp. I Temp. I Temp. I I I 
I I Reg. I Ident. I Ident. I I I 
I IStoragelstoragelstoragel I I l _________ ~ _______ ~ _______ ~ _______ ~ _______________ ~ _________ ------J 

The flow unit information consists of: 

1. Identification byte (X'9A I
). This serves to distinguish flow unit 

information from 'endpage'. 

2. Flow unit identification number (IFOFUN in FUH) 

3. Back target identification number (IFOBTN in FUB> 

4. Back dominator identification number (IFOBD in FUH) 

5. Flow unit flags (IFOF2 in FUH) 

The information varies according to whether the phases in the global 
optimization stage have been executed or not. If the compilation has 
not been globally optimized, the flow unit information word will be 
undefined because the information will not be available. Also~ the 
outer block bit vector will have bits set for all the outer blocks 
containing variables referred to in the current block. 

If the compilation has been globally optimized, the entry for the 
current block will contain the temporary storage area size information. 
The flow unit information and an outer block bit vector are repeated for 
each flow unit in the block. The outer block bit vector will have bits 
set to indicate only those blocks containing variables addressed from 
within the particular flow unit. 

As each block header is seen in the sequential text scan, the PROCZ 
routine is called to copy the addressing and temporary storage 
information for the block into the phase working storage, for ease of 
access. 

Addressing Code for ~riables in outer Blocks 

This phase generates text tables which indicate the code required for 
addressing variables declared in blocks outside the blocks in which the 
variables are referreQ to. The place in which the addressing code is 
inserted depends upon whether the compilation has been globally 
optimized (i.e., phases in the optimization stage have been executed) or 
not. 

If the compilation has not been globally optimized~ the addressing code 
is generated in the prologue code for the appropriate block. When a 

284 Licensed Material - Property of IBM 



BADDR (02) text table is seen, the INAC routine is called to generate 
text tables indicating the prologue code required to chain back to any 
outer blocks requiring addressing. 

The blocks which require addressing are indicated in the outer block 'bit 
vector passed by Phase PI. The chaining code enables access to a base 
at a standard offset from the start of the relevant DSAs, so that the 
variable can then be addressed relative to that base. The bases for 
outer blocks are saved in the temporary storage area of the current DSA, 
and this phase allocates the temporary.storage. 

If the compilation has been globally optimized, then the addressing code 
can be optimized. Instead of inserting the addressing code in the 
prologue, where it must be processed,for every execution, the addressing 
code is inserted at a position in the executable code, where it is only 
executed if required. This optimization is enabled by the flow unit 
information generated by the phases in the optimization stage, and 
passed by Phase PI. It is only possible for the first 256 flow units. 

In the optimized case, the addressing code is generated when a flow unit 
header tatle is seen. The outer block bit vector for the particular 
flow unit is examined to determine the outer blocks which must be 
chained back to. 

The flow unit information is also examined to determine the situation of 
the flow unit. If the flow unit exists in a loop, then a logical OR 
operation is performed to merge the addressing information into the back 
target, thus removing the addressing code from the loop. 

If a flow unit has a back dominator, then addressing code previously 
generated is deleted and the addressing data is carried forward to 
generate code in the flow unit, thus avoiding duplication of code. As 
in the non-optimized case, the bases for outer blocks have storage 
allocated in the temporary storage area of the appropriate DSA. 

When the amount of temporary storage required for bases for outer blocks 
has been determined, most of the information required for the relocation 
of the temporary storage offsets allocated by Phase PI is available. 
All that remains to be done is for Phase QI to ascertain whether it has 
to make an allowance for the storage of local 
register-temporary-operands, or whether that storage can be mapped 
directly by Phase QA. 

The need for storing register-temporary-operands implies that there are 
no free registers; therefore they must be stored in the first region of 
temporary storage for the block so that an additional register is not 
required to enable them to be addressed. Because the maximum number of 
local register-temporary-operands that can be active is restricted to 
32, the maximum amount of storage that can be required for them is 256 
bytes. If the known requirement for other items in temporary storage is 
less than 3840 bytes (4096 minus 256)_ the area for storage of local 
register-temporary-operands can be mapped directly by Phase QA when 
precise requirements are know~. If the known requirement for other 
items in the temporary storage area is greater than 3840 bytes, Phase QI 
allocates the maximum requirement of 256 bytes in the first region of 
temporary storage for the block, immediately following the storage for 
parameter bases. When this requirement has been determined, the 
temporary storage area for the bloc~ is mapped as follows. 

Licensed Material - Property of IBM Section 2: Method of Operation 285 



REgister 4 ------------> 
at execution time 
(or Register 13 if DSA, 
including temporary 
storage area, <4K bytes) 

r------------------------------, 
I I 
IParameter bases I L ______________________________ J 

.256 bytes of storage for 

.local register-temporary­

.operands <allocated by Phase 

.QI if more than one region 

.of temporary storage) 
r------------------------------, 
IBases for outer blocks I 

~------------------------------~ 
IBases for temporary storage I 
Iregions beyond first 4096 I 
I bytes I 
~------------------------------~ 
IStorage for global register- I 
I temporary-operands I 
t------------------------------~ 
IStorage for global identifier-I 
I temporary-operands I 

~------------------------------~ 
IStorage for local identifier I 
I temporary-operands I 

Value inserted in IPAMS 
field of block header 

___ > L ______________________________ J 

.Storage for local register­

.temporary-operands (mapped by • 
• Phase QA if only one region 
.of temporary storage) 

Information about the DSA for the current block is inserted in the 
appropriate block-header text table. The known total size of the 
parameter bases area is inserted in the IPAMS field, the total size of 
the DSA is inserted in the IDSASZ field, and the number of regions in 
the DSA (excluding the temporary storage area) is inserted in the IFCHN 
field. The offsets (from the start of the ~emporary storage area) of 
the local register-temporary-operands storage and the global 
register-temporary-operands storage are inserted in a KONST(12) text 
table generated after the block-header table. 

The sequential scan of the text tables is resumed. As each text table 
that may contain a temporary operand is zound, the RDIR routine is 
called to examine the operands. If a temporary operand is found, the 
RELOC routine is called. This routine examines the storage offsets 
inserted by Phase PI. These offsets are calculated from the origin of 
the temporary storage for that class of item. RELOC calculates the 
offset from the base of the temporary storage area. If the modified 
offset is greater than 4096, a new base number is allocated and the 
offset recalculated. The offset in the operand reference is overwritten 
with the relocated offset. 

LOop Processing 

Phase QI examines iterative DO-loops for situations where the code can 
be optimized. In general, this optimization consists of modifying text 
to enable Phase QA to allocate registers for a BXLE loop wherever 
possible. Because much of the information used by Phase QI is generated 
by phases in the Global Optimization Stage, the extent to which Phase QI 
can set up this optimization varies according to whether or not phases 
in the Global Optimization Stage have been executed. 

The processing includes: 

286 Licensed Material - Property of IBM 



• Determination of situations where BXLE loops can be generated. 

• Replacement or modification of DINC text tatles. 

• Tests for glotal temporary operands that are set within loops. 

• Movement out of loops of parameter-addressing code. 

• Determination of flow-unit range for a loop. 

• processing of based loop-control variables. 

Testing for BXLE Loops: On input to the phase, each iterative DO-loop 
is preceded by an SCI text table, which indicates the loop comparand and 
increment values. The IOP2 field of the SCI text table indicates the 
type of the loop as follows: 

SCIOO - unnested or innermost loop 

SCIOl - all loops in nest other than the innermost 

SCI02 - loop with multiple specifications (inner or outer> 

In addition, each loop is also preceded by an ASSN, CONV, or MOVE text 
table, in which bit 0 of the IOP2 field indicates that the text table 
sets the initial value of the loop control variable (lcv). The lcv may 
also be set by library call. In this case the library call is preceded 
by a KONST(15) text table which indicates that an lcv is being set, and 
gives the identity of the lev. 

For each DO-loop, the SCI text table and the text table setting the lcv 
are examined to see whether the lcv can be permitted to flow into the 
loop in register 5. The criteria for this are: 

• The lcv, the campa rand , and the increment must be fixed binary 
values. 

• The lcv, the comparand, and the increment must have the same scale. 
If the scales differ, shifting will occur during comparison or 
incrementation at the end of the loop and register 5 might not 
contain the correct value during subsequent executions of the loop. 

• The loop must not have mUltiple specifications. 

• The loop must not occur in a remote format list or within an 
edit-directed I/O statement which has a remote format list. This is 
because register 5 is used as a base for the format code. 

• The lcv must not be an abnormal variable as indicated by the program 
optimization entry in the general dictionary. If global 
optimization has not been performed, this entry will not be 
available, and all variables except temporary operands are 
considered to be abnormal. 

If these conditions are not satisfied~ bit 0 in the IOP2 field of the 
lcv-setting text table is set off. If the conditions are satisfied, a 
KONST09 text table is generated after the seT text table to ensure that 
register 5 is allocated. Further tests are then made to determine 
whether a BXtE loop can be generated. The additional conditions for 
this are: 

• The loop must be unnested or an innermost nested loop. 

• The SIZE condition must be disabled, unless the REORDER option is 
specified. This is because no interrupts are raised from a BXLE 
instruction. 

Licensed Material - Property of IBM Section 2: Method of Operation 287 



• Both the comparand and the increment must be constants in the first 
region of static storage. If they are in any other region there may 
be difficulty in reloading then into registers 10 and 11 if they are 
lost during execution of a loop. 

If the conditions are not satisfied, the SCI text table is deleted. If 
the conditions are satisfied, the SCI text table is copied to output to 
indicate to Phase QA that a BXLE loop is to be generated if registers 
can suitably be allocated. 

Processing DINC Text Tables: Each iterative DO-loop is terminated by a 
DINC text table, followed by a BC text table. If the loop is not an 
optimizable inner loop, the operator code of the DINC text table is 
changed to PLUS. If the loop control variable enters the loop in 
register 5, an ASSN text table assigning the loop control variable to 
register 5 is generated immediately prior to the DINC or PLUS text 
table, thus ensuring that the loop control variable enters the next 
execution of the loop in register 5. 

If, in the case of an optimizable inner loop, there are BADDR text 
tables (containing addressing code for the BC) between the DINC text 
table and its associated BC text table~ the DINC text table is moved to 
immediately precede the BC text table. This enables Phase QA to re~lace 
this pair of text tables with a BXLE. If any other text tables appear 
between the DINC and BC text tables, a BXLE cannot be generated; the 
DINC text table operator is changed to PLUS and the SCI text table in 
the output text stream is changed to NULL. 

If the BY clause associated with a loop contains a variable or an 
expression, the loop is terminated by two DINC text tables. The IOP2 
field of the first one is set to X'09- to indicate to Phase QA that it 
is not the end of the loop. This DINC text table is changed by Phase QA 
to BXLE (executed if the BY clause is positive) and the second DINE text 
table is changed by Phase QA to BXH (executed if the BY clause is 
negative). 

Examination of Global Temporary Operands: Phase QA moves load 
instructions which involve global temporary operands out of optimizable 
inner loops. This movement is not possible for global temporary 
operands that are set within the loop. In preparation for this 
processing, Phase QI examines all text tables within a loop in which a 
global temporary operand can be set. If a global temporary operand is 
found in such a position, a bit is set in a bit vector that is passed to 
Phase QA in the text, following the SCI text table. The bit vector is 
32 bytes long and each bit offset is calculated from: 

storage offset for temporary operand/4 

If this value exceeds 256, the load instruction is assumed to be 
unmovable. 

Movement of Parameter addressing Code: Text defining code to address a 
parameter consists of a sequence of BADDR text tables. The start of a 
sequence is indicated by a BADDR06 or BADDR07 text table in which the 
IBA2 field (see figure 5.93) contains a base number. The sequence can 
contain any BADDR text tables with an IOP2 value of 06-09, and the end 
of a sequence is indicated by the presence of any other text table or by 
the start of a new sequence. 

As a loop is processed, subroutine BADCHK is called to search for and 
process parameter-addressing sequences. If such a sequence is found 
within an optimizable inner loop, it is moved outside the loop. This is 
enabled by the generation of a series of twelve NULL text tables 
following the SCI text table when this table is processed. These tables 
are overwritten by the BADDR text tables that are moved out. Each moved 
sequence is followed KONST10 text table, which indicates a dummy store 
of the resultant base. Inside the loop, the addressing sequence before 
each parameter is replaced by a KONSTll text table which represents a 

2BB Licensed Material - Property of IBM 



dummy load of the stored base. At the end of the loop (preceding the 
DINC text table) a KONSTll and a KONST08 text table are generated to 
ensure that the base is in the correct register for subsequent 
executions of the loop. counts of the number of sequences moved out of 
the loop are maintained in the KONST10 and KONSTll text tables. 

Determination of Flow-unit Rang§: If there is a branch out of a loop, 
and if the loop-control variable is busy on exit, the loop-control 
variable must be stored before the branch out. QI inserts the 
identifying numbers of the flow units in the loop into the IREF3 field 
of the SCI text table, to enable Phase QA to detect possible branches. 

Pr2£es§ing~~§ed-1Q2E=£2n~~l variabl~: If a loop-control variable is 
based, the value of the base at the end of the loop must be the same as 
its value at the loop head. For example, if a loop is based on a 
pOinter P, the value of P at the head of the loop is used as the base of 
the loop-control variable at the end, even though the value of P may be 
changed in the loop. 

Phase QE builds a stack which can contain 50 six-byte entries (one entry 
for each possible level of DO-loop nesting). If a loop-control variable 
is a Q-temp. which was defined in a BADDROl text table, the loop-central 
variable is based. An entry which contains th~ Q-temp. number and the 
base number is made in the stack, and a KONST10 text table is generated 
to indicate a dummy store of the base. At the end of the loop, if the 
loop-control variable is represented by a Q-temp. in the operand 1 field 
of the DINC text table, the most recent stack entry is accessed. If the 
Q-temp. Number in text and in the stack are the same, the stack entry is 
deleted and a KONSTll text table is generated to indicate a dummy load 
of the base. Counts of the operations are maintained to enable 
elimination of redundant store and load operations by Phase QA. 

Licensed Material - Property of IBM section 2: Method of Operation 289 



REGISTER ALLOCATION (PHASE~ 

This phase assigns absolute registEr numbers to operands and operand 
bases which require the general or floating-point registers at execution 
time. The Fhase also allocates storage for temporary registers when 
required. 

Registers are allocated in a way which enables execution to be performed 
as efficiently as possible. If the compilation has been globally 
optimized, use is madE of the control-flow information so that, whenever 
possible, items are carried in registers within a flow unit and across 
flow unit boundaries. 

Inner do-loops are optimized by generating text tables which indicate 
BXLE instructions and, where possible, carrying items into the loops in 
registers. 

This phase will also recognize partially optimized blocks and will 
perform full register allocation for optimized DO groups. 

PHASE INPUT 

The only input to this phase is the main text stream, consisting of Type 
2 text tables in logically sequential order, with base numbers inserted 
for all operands except temporary registers. 

PHASE OUTPUT 

output from the phase consists of the main text stream, with actual 
register numbers inserted in the IREG1, IREG2, and IREG3 fields of the 
text tables, e.g., IREGl = X'FD' indicates that, for the first operand 
in the text table, Register 15 is assigned as a work register and 
Register 13 is assigned as a base register. In addition, flag bits are 
set in the ISTl field of a text table to give the following indications: 

!§!! bit !!2.!. Indication when set 

0 Operand 1 in a register 
1 Operand 1 to be retained unmodified in a register 
2 Operand 2 in a register 
3 Operand 2 to be retained unmodified in a register 
4 Operand 1 base in a register 
5 Operand 2 base in a register 
6 Operand 3 base in a register 
7 Operand 3 to be stored 

PHASE OPERATION 

The main text stream is scanned sequentially. When the scan reaches a 
text table which affects register usage, either by requiring base 
registers or work registers, or by affecting the control flow within a 
compilation, a branch is made to a routine which processes that 
particular type of text table. Each routine is identified by the 
text-table mnemonic concatenated with a Z character, e.g., PLUS text 
tables are Frocessed by the PLUSZ routine, CONV by the CONVZ routine, 
flow unit headers by the FLOWZ routine o etc. The branch to the 
appropriate routine is made by indexing an addressing vector with a 
value of 2*IOPl for the particular text table. 

290 Licensed Material - Property of IBM 



Each routine calls a set of subroutines to find suitable registers for 
the text table operands. These subroutines access a table, created and 
maintained in the phase working area, which indicates the current 
content of registers. This table is called the Register Usage Table 
(RUT). It indicates the items within a flow unit that are already held 
in registers, and is updated as registers are allocated. 

At the beginning of each flow unit, a new RUT is built. If the 
compilation has been globally optimized, up to five previous RUTs are 
saved. These saved tables are accessed for previous allocation 
information, which is used to set up initial conditions before 
allocating registers in the current flow unit. Whenever possible, 
registers are allocated so that items are carried in registers across 
flow unit boundaries, to be merged with other input. This use of 
registers rejuces the number of storing operations, and thus reduces the 
spaCE and time required for execution. 

when allocating a register to an item, a hashing technique is used to 
convert the dictionary reference of the item to a decimal value between 
1 and 15. The resulting value indicates the identifying number of the 
register to be allocated to the item if it is available. Registers 
allocated in this manner are referred to as preferred registers. 

The initial status of registers used in inner Do-loops is saved in a 
special phase 

The initial status of registers used in inner DO-loops is saved in the 
appropriate register usage table. Items required within the Do-loop are 
loaded into any spare possible. At the end of the loop, the initial 
status of the registers is restored by reference to the appropriate RUT. 
This processing is only performed when global optimization is specified. 

The allocation of registers conforms to the execution time usage shown 
in figure 2.29. 

Licensed Material - Property of IBM Section 2: Method of Operation 291 



r--------T-------------------T--------------------T----------------T--------------------, 
I Register I Dedicated I Work I Preferred I comments I 
I Number I Registers I Registers I Registers I I 
I I I (plus special usage) I (selected when I I 
I I I I available) I I 
~--------+-------------------+--------------------+----------------+--------------------~ 
I I I General use, or I I 
I 0 I I arithmetic I I 
I 1 I operations I I 
~--------+-------------------+--------------------+----------------~ 
I I Address of DTF I General use, I I 
I 1 Ifor inline record IArg. list pointer, I I 
I 11/0 routines lor EDMK instruction I I 
~--------+-------------------+--------------------+----------------~ 
I IAddress of program I I I 
I 2 Ibase (or FCB for I I I Normally saved 
I linl~ne record 1/0) I I I by library 
~--------+-------------------+--------------------+----------------~ routines 
I IAddress of I I I 
I 3 Ibase of first I I I 
1 ISTATIC region I I I 
~--------+-------------------+--------------------+----------------~ 
I IAddress of base I I I 
I 4 lof first temporary I I I 
I Istorage region I I I 
I I(if total size of I I I 
I IDSA >4K bytes) I I I 
~--------+-------------------+--------------------+----------------+----------T---------~ 
I I IGeneral use, or IRegister for I Used to I I 
I 5 I Istatic chain back onlDo-loop control I pass I I 
I I lentry to block I variable I arguments I I 
~--------+-------------------+--------------------+----------------~ to ~---------~ 
I 6 I IGeneral use I I library IUsed to I 
~--------+-------------------+--------------------+----------------~ routines Ipass I 
I 7 I IGeneral use I I I arguments I 
~--------+-------------------+--------------------+----------------+----------~to I 
I 8 I IGeneral use I I ICGSRs I 
~--------+-------------------+--------------------+----------------~ I I 
1 IAddress of program I I I I I 
I 9 Ibase when R2 IGeneral use I I I I 
I lused I I I I I 
~--------+-------------------+--------------------+---_____________ ~ L _________ ~ 

I 10 I IGeneral use IDo-loop control I I 
~--------+-------------------+-------~~-----------iwhen BXLE I I 
I 11 I IGeneral use linstruction usedl I 
~--------+-------------------+--------------------+----------------~ I 
I IAddress of task I I I I 
I 12 Icommunication area I I I I 
~--------+-------------------+--------------------+----------------~ I 
I IAddress of I I I I 
I 13 Icurrent DSA I I I I 
~--------+-------------------+--------------------+----------------+--------------------~ 
I 14 I IGeneral use or I I I 
I I I Return when I I Normally saved I 
t--------+-------------------~ BALR ~----------------~ by library I 
I 15 I I Entry used I I routines I L ________ ~ ___________________ ~ ____________________ ~ ________________ ~ ____________________ J 

Figure 2.29. Allocation of general registers for program execution 

292 Licensed Material - Property of IBM 



ELIMINATION OF UNNECESSARY STORAGE OPERANDS (PHASE QE) 

The main function of Phase QE is to eliminate stores of global temporary 
operands and stores of loop control variables at the head of BXLE loops 
when these stores are not necessary. 

Phase QE is only loaded and executed, following Phase QA, when the 
compiler option OPT (TIME) is specified. 

PHASE INPUT 

The input to this phase is the main text stream from Phase QA, 
consisting of Type 2 text tables in logically sequential order. 

The four text tables immediately following each block header table 
(PROC, BEGIN, etc.) are bit strips. 

1. GBVEC shows which global temporary operands do not require storage. 

2. LCVEC shows which BXLE loops require loop control variable stores 
at their heads. Those BXLE loops which may require stores each 
have a KONST(OC) text table at the pOint where the store should be 
made. 

3. BLCVEC shows of the KONST(10) text tables are to be changed to 
stores. The RONST(10) is a dummy store of a base of a based loop 
control variable or of the base of a parameter of the head of a 
loop out of which Phase QI has moved the parameter addressing code. 

4. ACMVEC shows which of the global temporary operands used as 
accumulators do not require storage. 

PHASE OUTPUT 

The output from Phase QE is passed direct to Phase SA in the final 
assembly stage. It consists of a sequential text stream (Type 2 text 
tables) with KONS~ (OC) text tables either replaced by loop control 
variable stores or removed, and, where possible, with text-table store 
flags cleared in operations involving global temporary operand results. 
Unused temporary register storage has been eliminated by relocating 
temporary operands and appropriately modifying the DSA size of each 
block. 

PHASE OPERATION 

The input text stream is scanned sequentially, and all valid text tables 
recognized. 

For each text table, subroutine RDIR is called to examine operand 3. If 
it is an ordinary global temporary, then the bit in GBVEC corresponding 
to that global temporary is tested. If it is a global temporary being 
used as an accumulator, then the bit in ACMVEC corresponding to that 
accumulator is tested, the bit offset having been obtained from the 
IREF2 field of the .ACCUM text table at the head of the loop. In either 
case, if the bit is set off, the store flag in the text table is 
cleared. This operation is only carried out for the first 256 global 
temporaries encountered, the remainder are always stored. 

Licensed Material - Property of IBM section 2: Method of Operation 293 



The bits in GBVEC or ACMVEC will have been set on by Phase QA if either 
the appropriate temporary has not been retained in a register throughout 
its lifes~an, or the address of the temporary is required (implying that 
it is being passed as an argument). 

During the text scan, the KONST(OC} text tables contained in certain 
BXLE loo~s cause vector LCVEC to be examined. The bit in the vector 
specified by the IREF2 field of the KONST(OC> table is tested. If this 
bit is set on the KONST(OC> table is changed to a loop control variable 
store at the head of the BXLE loop. 

The KONST(OC) table is also changed to a store if the loop control 
variable is used in an 1/0 ON-unit or if it is used in a computational 
ON-unit with ORDER specified for the current block. Otherwise the 
KONST(OC) table is eliminated. This operation is only carried out for 
the first 256 BXLE loops; the remainder always have a store at the head. 

KONST(OC) tables only appear at the head of BXLE loops which mayor may 
not require loop control variable stores. These are: 

1. Single flow unit loops. 

2. Multiple flow unit loops where the control variable is not busy on 
exit. 

If, in addition to the above, it is found that the loop control variable 
need not be accessed or addressed in main storage, then the store is, 
again, not required. 

Also during the text scan, KONST(10) tables cause vector BLCVEC to be 
examined. The bit in the vector specified by the IREF2 field of the 
KONST(lO) table is tested. If this bit is set in, the KONST(10) table 
is changed to a store of a base. If the bit is set off, the KONST(lO) 
table is eliminated. This operation is only carried out for the first 
256 KONST(10) tables. The remainder always become stores. 

A KONST(lO) table must be changed to a store if the base is lost from 
its register before the end of the loop in which it is referenced. If 
this is the case Phase QA sets the appropriate bit. 

294 Licensed Material - Property of IBM 



This stage consists of seven phases. The first four phases examine the 
text generated by preceding phases of the compiler, and generate code 
defined in or indicated by that text. The first two of the code 
generation phases, Phases SA and SQ, are loaded and executed for every 
compilation. The requirement for Phases SO and SC is determined by 
Phases SA and SQ, according to the types of text tables contained in the 
main text stream. Phase SK completes the processing required before 
final assembly of the object module by Phase SI. Phase SM generates any 
object listings specified by compiler options. 

OBJECT CODE GENERATION (PHASE~~-22L-2D, AND SC) 

Each of these phases examines the whole of the text stream and selects 
particular types of text tables to process. The processing consists of 
generation of machine instructions indicated by each type of text table 
and the contents of each individual text table. Together, these phases 
translate the whole of the text into machine instructions, and insert 
information which enables later phases to assemble the code into a 
relocatable object module. If the LIST compiler option is specified, 
the phases also generate information for use by the listing phase (Phase 
SM). 

Because each of the five phases performs a similar function, using a 
similar method of operation, the description of the five phases is 
combined. Only major differences are mentioned. 

The prime difference between the phases is the type of text tables each 
one processes. The list for each phase is too extensive to list here; a 
complete list can be determined from the directory tables contained in 
each phase. Some of the main classes of text table are shown below: 

Licensed Material - Property of IBM Section 2: Method of Operation 295 



r--------T-------------------------------------------------------------, I Phase I Text Tables Processed or Partly Processed I 
~--------+-------------------------------------------------------------i 

SA All system or housekeeping text tables, e.g., PROC, ENTRY, 
BEGIN, ONB, CALL, ONS, PEND, CHANE, VDA, etc. 

All statement header and label text tables. 

All GOTO and GOOB text tables 

All binary to float and float to binary 
conversion tables. 

Some addressing text tables. 

~--------+-------------------------------------------------------------~ 
I 

SQ I All binary arithmetic operations. 
I 
I All floating-point arithmetic operations. 
I 
I Further processing of ONS text tables. 
I 
I All simple string operation tables, for 
I example, MOVES, ANDS, ORs o for fixed 
I length strings. 
I 
I Further addressing text tables. 

~--------+-------------------------------------------------------------~ 
I I I 
I SD I All conversion operations. I 
I 1 I 
I I All decimal arithmetic operations. I 
I I I 
I I All rema~n~ng conversions. I 
~--------+-------------------------------------------------------------~ 
I I I 
I SC I All remaining character and bit string operations. I 
I I I 
I I All remaining logical and concatenation operations. I 
I I I 
I I All rema~n~ng addressing and mapping operations I L ________ ~ _____________ ~ _______________________________________________ J 

Phases SA and SQ are always required. They determine the need for 
Phases SD and/or SC. 

PHASE INPUT 

Input to Phase SA consists of the main text stream output from Phase QA 
or QE. This text stream consists entirely of Type 2 text tables. The 
input to pha~es SQ, SD, and SC consists of a mixture of Type 2 text 
tables not yet translated, object code generated by preceding phases, 
and markers inserted for use by the label resolution phase <SK), the 
object module assembly phase (SI), or the object module listings phase 
<SM). This mixed input/output is referred to as extended code. 

Each of the phases accesses the storage dictionary for information 
required for cede generation. Phase SA accesses the general dictionary 
for information about each block, and also for the reference of the 
names dictionary entry for each procedure name. Phase SA creates 
general dictionary entries to hold information about ON-cells; these 
entries are accessed by Phase SQ. 

296 Licensed Material - Property of IBM 



PHASE OUTPUT 

I 
The output from Phases SA, SQ, and SD consists of the extended code 
described above. Phase SA also generates entries in the general 
dictionary, as mentioned above. The output from Phase sc consists 
entirely of object code (hexadecimal representation of machine 
instructions), with markers inserted to indicate all entry points, 
labels, branch points, and other places where Phases SK, SI, or SM must 
take special action. 

Within the output stream, items are aligned as follows: 

• Text tacles - halfword aligned. 

• Markers (and any associated code) - byte aligned. 

• Object co1e instructions (and any associated listing information) -
byte aligned. 

To force halfword alignment, padding bytes X'OE' are inserted in the 
extended code. 

No item (as listed above) is allowed to span page boundaries. 

Phases SA and SQ also set bits in the XOPPHSl field of XCOMM to indicate 
which of Phases SD and SC arc required. 

PHASE OPERATION 

Each phase consists of a root module, which is common to all phases, and 
a non-root module, which is peculiar to each phase. The non-root module 
contains information about the text tables that are processed by the 
phase, and about the object code to be generated in response to the text 
tables it processes. The root module contains routines to generate the 
required extended code output. Each phase that is executed (Phase SA 
and SQ always, Phases SD and SC as required) makes a single sequential 
scan of the text. 

In order to determine whether it processes a particular type of text 
table and, if so, to locate information about the object code to be 
generated, each phase contains two directories. The first-level 
directory is a table of 256 one-byte entries, in which each entry 
corresponds to a possible text-table operator-code (IOPl) value. When a 
text table is seen during a scan of the text stream, its IOPl value is 
used to index the corresponding entry in this directory. If the value 
in the entry is zero, it indicates that the type of text table is not 
processed by the phase. In this case. the text table is copied 
unaltered to the output stream, preceded by a 4-byte marker which 
indicates that it is an unprocessed text table. The marker is deleted 
when the text table is processed by a later phase. 

If the indexed entry in the first level directory contains a non-zero 
value, it indicates that the type of text table is processed by the 
phase. The value in the entry is determined by the number of IOP2 codes 
that can be used with the type of text table that the phase processes, 
and execution of the macro that defines the first-level directory 
enables the entry to point at a group of 2-byte entries in the 
second-level directory. Each entry in the second-level directory 
corresponds to a text table identified by an IOPl value and an IOP2 
value, and execution of the macro that defines the second-level 
directory causes each entry to point at an offset from the start of the 
non-root module of the phase. The IOP2 code of the current text table 
is used to index the appropriate entry in the second-level directory, 
and thus to obtain the address of the code-generation information for 
that text table. 

Licensed Material - Property of IBM Section 2: Method of Operation 297 



Information about the object code corresponding to a text table is 
defined in a dummy section. It consists of a code-skeleton array, a 
bit-strip array, and (in some cases) special-case coding and a control 
mask which indicates processing required for special cases. The use of 
this information is described in following paragraphs. Use of the 
directories to locate information about an imaginary text table 0901 is 
illustrated in figure 2.30. 

298 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, 

E ntr 

IOP1 IOP2 IOPND1 IOPND2 IOPND3 

l 09 I 01 I 1 , 
~----- - - - --, 

"II' y for IOP1 =: 00 

01 

02 

03 

04 
05 

06 
07 

08 
09 

OA 

OB 

OC 

First-level I Second-level 
Directory 

I 
Directory 

~ 

00 Offset for 0400 

00 I 0401 

00 I 0700 

00 
I - 0900 

02 L_ .... 0901 
00 0902 
00 0800 
01 0801 

00 0802 
03 etc. 

00 

08 

01 
etc. 

INF0901 DC A(SK0901) 
DC A(BT0901) 
DC A(CS0901) 
DC 2 X' .. control mask .. 

SK0901 Code-skeleton array 

BT0901 Bit-strip array 

CD0901 

Secondary bit-strip array 
(If there is no secondary bit-strip array, 
a flag is set in the control mask.) 

Special-case code 

- -.. A (INF0901) 

Figure 2.30. Use of directories to locate code-generation information 

Between them, the directories for SA and SQ contain entries for every 
legal combination of IOP1 and IOP2. Obviously there are entries for the 
text tables which these phases will convert to extended code; in 
addition there are entries for the text tables which SC and SD will 
process. These latter entries simply direct the flow of control to a 
routine which sets the appropriate bit in XOPPHS1 to indicate the need 
to load either SC or SD. The text table is then transferred to the 
output stream, preceded by the luntranslated l text table marker. 

Standard Information in Text Table Area 

I The levels in the level two directory indicate an area in the phase 
where information regarding a particular text table will be found. The 
first 14 bytes of this information are as follows: 

ACcode skeleton array) 
A(bit strip array) 

October, 1973 

Licensed Material - Property of IBM Section 2: Method of Operation 299 



A(any special case code) 
2 bytes information mask 

If any of the above addresses are 0, it indicates that the item does not 
exist. For instance, a number of tables do not produce code and so 
there will be no skeleton or bit array. Further, this scheme allows 
text tables to share a skeleton or special case code where appropriate. 

The information area for each type of text table processed by a phase 
contains an array of code skeletons. Each code skeleton is the mnemonic 
representation of an object-code instruction; typical code skeletons are 
shown below: 

L,R3,operand 3 
NI,01,operand 1 
LM,R1,R3,operand 2 
SLL,R2,8 

The array contains a code skeleton for each instruction that may be 
required in the object module to represent the text table. The contents 
of various fields in the text table control which particular code 
skeletons are required.. Selection is made by use of a bit vector 
selected from the bit-strip array for the text table~ 

For some text tables, the code skeleton array contains skeleton 
instructions with the mnenomic OF. There is no machine instruction 
corresponding to this mnemonic; it indicates that the code skeleton 
consists of the hexadecimal representation of object code which is to be 
copied directly to the output stream. For processing purposes, code 
skeletons of this type are handled as pseudo RR instructions. 

Bit-strip ArraY§ 

The information for each text table type indicates a dummy section, 
BTOP, which contains an array of bit strips from which one is selected. 
The selected bit strip is used as a vector to indicate the instructions 
in the code skeleton array that are to be generated. The general layout 
of a bit strip array, which is word aligned, is shown below: 

Length Number Size 

Bit strips 

No-store word 

Additional bit-strips when necessary 

Length length of a bit-strip in bytes (1,2, or 4). 

Number number of bit strips in the array (4, 8, or 16). 

Size = number * length 

Each bit that is set in a bit strip indicates an instruction in the code 
skeleton array that is to be generated. The bit-strip array contains a 
bit strip for each possible combination of instructions required by the 
text table. The required bit strip is selected by examining the status 
byte, IST1, in the text table. Phase QA sets bits in this byte to 
indicate the status of the operands (whether they are currently held in 

300 Licensed Material - Property of IBM 



registers or not) Bits 0 to 3 of ISTl are used to index the bit strip 
array. 

Each bit in the No-store word corresponds to an instruction in the code 
skeleton array. Each bit that is set on indicates a store instruction. 
Bit 7 in ISTl is examined to see if storc instructions are required, and 
whether the No-store word is to be used to modify the bit strip. If so, 
a sequence of logical operations is then performed with the selected bit 
strip and the no-store word, to eliminate selection of unnecessary store 
instructions. 

For some text tables, an additional bit-strip array may be used to 
select additional code skeletons. The additional instructions are 
required by conditions indicated in the IST2 flag byte of the text 
table, set by various processing phases and sometimes modified by this 
phase. For example, additional instructions may be required according 
to the scale and precision of some operands. The last four bits of the 
IST2 byte are used to select the second bit strip in a manner similar to 
the selection of the first bit strip. The two bit strips are then 
merged by use of a logical OR operation. The resulting bit strip is 
used by the routine SHIFT to select the appropriate code skeletons in 
the code-skeleton array. 

Special Case Coding 

For some tyfes of text table, special processing is required before code 
skeletons are selected. For example, before an MVC instruction is 
generated, the length of one or more operands may have to be determined. 
This processing is performed by compiler code located at an area named 
CDCP, following the bit-strip-array for the text table. Compiler code 
may also modify the contents of IST2 before it is used to select a 
secondary bit strip. 

Extended-code Generation 

When a code-skeleton sequence has been selected from the array, routines 
and subroutines in the phase root module are used to generate the 
required output. The mnemonic code of each code skeleton is used in 
turn to index a 256.byte table. This table contains an entry for each 
mnemonic code that may be. used. Each entry contains a value which, as 
shown below, indicates the basic format of the instruction code to be 
generated, and which is also a branch vector indicating the routine or 
subroutine to which control is to be passed for code generation. 

Entry 
Value 

11 
12 
15 
16 
20 
01 
21 
28 
29 
30 
31 

Instruction Format 

Branch RX instruction 
Branch RS instruction 
RS instruction using 2 registers 
RS instruction using 1 register 
Ordinary RR instruction 
Pseudo RR instruction 
ordinary RX instruction 
SI instruction 
LA instruction 
SS instruction containing 2 lengths 
SS instruction containing 1 'length 

Routine or 
Subroutine 

BRRX 
BRRS 
LMSTM 
RSSH 
RRR 
PSEUDO 
RXX 
SI 
RXX/BRRX 
SS2L 
SSlL 

The selected routine or subroutine completes all operand, register, 
immediate and length fields required in the instruction. The subroutine 
BSDP is called to convert 6-byte operands from the text table into the 

Licensed Material - Property of IBM Section 2: Method of Operation 301 



base and offset form required in the object code, accessing the storage 
dictionary as required. Absolute register values are obtained from the 
IREG1, IREG2, INDXA, and INDXB fields of the text table. Length and 
immediate values may be absolute values in the code skeleton, or may be 
calculated from information in the text table. 

In addition to the markers inserted to indicate unprocessed text tables, 
other markers are inserted in the extended code, for use by the label 
resolution phase (Phase SK), the object module assembly phase (Phase 
SI), and the object code listing phase (Phase SM). The general format 
of a marker is as follows: 

r-----T---~--T-----T-----T----------------------, 
,X'OF', Type' TXT' COD ,varies for marker type, 
, , code I , I I L _____ ~ ______ ~ _____ ~ _____ ~ ______________________ J 

Bytes 0 1 2 3 

X'OF' 

Type 

TXT 

COD 

- identifies a marker. 

- type of marker. 

- normally the length of the marker but, if the marker is 
associated with following generated code, TXT = length 
of marker + code. 

- normally zero, but if the marker is associated with following 
generated code, COD = length of code. 

For unprocessed-text-table markers, type = O. These markers are deleted 
from the extended code by Phases SQ, SB and SC. Other markers remain in 
the code until deleted by Phases SI or SM, or until the end of 
compilation. The formats of the various markers used are shown in 
figure 5.125. 

Identification of Returned ~ARYI~§ CH~trings 

To ensure that the library interface is aware when a returned string is 
VARYING, the compiler generates code in the prologue of any entry point 
returning VARYING. This code sets the bit in the returns string 
descriptor (passed by the calling program) to indicate VARYING. The 
library SOR~ interface routine may then interpret this bit. 

This sequence of processing is initiated by Phase KT by setting on IST2 
bit 6 in a MOVE text table if the returned string type is VARYING CHAR. 

If IST2 bit 6 is on, then Phase SQ generates the following code: 

L 
01 
ST 

R,x(R1) 
6(R),X'80' 
R,y(13) 

Load return pOinter 
set VARYING bit in return descriptor 
Store return address in DSA 

302 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

LABEL RESOLUTION (PHASE SK) 

This phase examines the executable code generated by the compiler to 
reflect the source program instructions, and makes sequences of code 
individually addressable by allocating region numbers to sequences that 
occupy 4096 bytes of storage or less. 

The allocation of region numbers makes it possible to assign an address 
to each label, thus enabling branching code to be generated. A table, 
known as the label table, is built, in which the addresses of all labels 
in the compilation are ~assed to the final asserrtly phase (Phase SI). 

Whilst examining the code to deterrrine region sizes, etc., this phase 
performs some final optirrizaticn functions, including removal of 
redundant instructions, modification of some inefficient instructions, 
removal of unreferenced labels, and modification of scn.e register 
allocations. 

This phase generates code to support the FLOW and COUNT compiler 
options, if they are specified. It also places the required compiler 
subroutines at the head of text. 

PHASE INPUT 

Input to the phase consists of the extended code output from Phase SQ, 
SD, or SC. This consists of a series of machine instructions, with 
various markers inserted in the stream. 

PHASE OUTPUT 

Output from the phase consists of the extended-code stream, with 
compiler-generated labels inserted in front of these items selected as 
region entry points. A label number, and the offset of the entry pOint 
from the start of the first program region, is inserted in each 
entry-point entry in the general dictionary. Each block-header entry in 
the general dictionary has the size of the code in the block inserted, 
and also the number of entries required in the statement-numbers table 
which is generated in response to the GOSTMT option. The label table 
created by this phase is output on one or more text pages. Absolute 
offsets of the regions from the start of the program are output on a 
further text page whose reference is passed to Phase SI in the XADCPG 
field in XCOMM. 

PHASE OPERATION 

sequence of Processing 

The XNLAB field of XCOMM is accessed to ascertain the total number of 
labels (user-supplied and compiler-generated) in the program. This 
value indicates the number of a-byte entries that are required in the 
label table, to which an allowance is added for additional labels that 
may be generated by the phase. The appropriate number of pages is then 
acquired and initialized with zeros. 

Part of the pseudo constants pool is scanned and, for those label 
constants that have an allocation in static storage, an entry is partly 
built <i.e., flags are set) at the appropriate offset in the label table 
pages. 

Licensed Material - Property of IBM Section 2: Method of Operation 3n3 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Label constants appearing within rranch-tables for optirrized SELECT 
statements are processed in the same way ry means of a scan of the 
associated constants pool, the text reference for which is held in the 
XBCEREF field of XCCMM. 

The extended-code text stream is then scanned twice. During the first 
scan, when a new output text stream is built, the code is examined to 
see if there are any instructions that can be merged, or are redundant 
and can be deleted. Each branching instruction is examined, and storage 
is allowed for addressing code to be inserted according to the location 
of the branching instruction target. This enables the ultimate length 
of sequences of code to be estimated fairly accurately. The sequences 
of code are divided at suitable break points, and a region number is 
allocated to each code sequence, similar to the way in whick base 
numbers are allocated to data storage areas. As each label is seen in 
this scan, an entry is made in the label table, and the appropriate 
region number is assigned to the label. A record is kept of the number 
of branching instructions transferring control to each label. 

Two code counts are held in each entry in the label table during the 
first scan. ~he first count assu~es that all forward branches are to 
labels within the current region. The second count assumes that they 
are not. At the end of each blcck a test is made to discover whether 
all of the branches found were to the current region. If not, a flag is 
set indicating that a second scan is required. 

The second scan modifies the output from the first scan. All region 
boundaries have been established and the amount of code required at each 
branching can be calculated according to whether the target label is 
internal or external to the region containing the branching instruction. 
With this information available, the exact offset of each label from the 
origin of its containing region can be calculated. These offsets are 
entered in the label table and thus each label is made addressable. Any 
label that is not referenced is deleted from the text and from the label 
table. During this scan, the code may be further optimized, but this 
does not affect the region to which the code belongs. 

The absolute offset of each region from the start of the program is 
inserted in another text page, the reference of which is passed to Phase 
51 in the XADCPG field in XCOMM. The entries in this text page are 
three bytes long, one entry per region. 

Elimination of Redundant Instructicns 

During the first scan of the text, this phase searches for situations 
where translation of text tables into machine code has resulted in an 
inefficient sequence of code. An example of this situation is where a 
numher of MVC instructions are used to rr.ove contiguous items cf data. 
In such a situation it may be possible to use only one MVC instruction. 
Another example is where an item is loaded into a register which already 
contains the item. In such a case, the LOAD instruction is redundant 
and is deleted if global optimization is specified. Instructions are 
deleted by not copying them to the output stream during the first scan, 
and by overwriting them with X" OE' bytes during the second scan. 

Establishment of Region Numbers and Boundaries 

Region numbers are allocated to sequences of code, so that every label 
within the code sequence can be addressed as an offset from an 
identifiable base. 

304 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

The markers inserted by the code generation phases are used to determine 
the code sequences to which region numbers are to be applied. A regicn 
numter is applied tc each tlock (PROCEDURE, BEGIN, and on-unit). The 
nominal size of a region is 4096 tytes. If the code contained in a 
program block occupies more than 4095 bytes of storage, a new region 
number is applied to the next labeled item. This ensures that no label 
has an offset greater than 4095 bytes from the start of the region. 
Some unlabeled instructions may have greater offsets but do not require 
addressing. 

In calculating the size of a region and the position of its region 
boundary, allowance is made for a load of the base register in branching 
instructions. (Branching instructions are identified by markers 
inserted by the code generation phases.) A branch to a label within the 
same region as the branching instruction requires the normal four bytes 
of code. An unconditional branch to a label in another region requires 
an extra four bytes of code, and a conditional branch to a label in 
another region requires an extra eight bytes of code. When an 
instruction that indicates a branch backwards is seen, the allowance for 
addressing can be calculated exactly. When a forward branch is seen, it 
is not possible to determine the region in which the branched-to label 
will be contained, and the maximum allowance is made for addressing. 
However, a count is maintained (in the label table) of the number of 
forward branches to each label. The label counts are reset to zero 
whenever a new region boundary is established. If a branched-to label 
is reached tefore a new region boundary is estatlished, the count 
enables the allowance for addressing to be adjusted. 

Building the Label ,able 

An entry is made for each label existing or generated in twelve the 
code. All entries are eight bytes long and have the following fermat: 

Byte No. 

0-1 
2-3 
4 
5 
6-7 

Content 

Offset of label within a region. 
Number of region containing the label. 
Flags. 
Forward-branch count. 
statement number of the label. 

The flag bits are set as follows: 

Bit 2 Label is not first with this code count. 
Bit 3 Label is referenced in another statement. 
Bit 4 Label is referenced in static. 
Bit 5 Label is referenced. 
Bit 6 Label has been met in scan. 
Bit 7 Label is at the start of a region. 

In the first scan, a label is generated and applied to each region's 
real entry point. ,he identifying number of the compiler~enerated 
label for the apparent entry pOint is inserted in the general aictionary 
entry for the entry point, but is not required in the label table entry. 

The label table entries are built during the first scan of the code. It 
is possible to roake entries in the forward-branch-count field because 
latel tatle entries are Koade in the same sequence as late Is aFpear in 
the code. When the flag-bit-6 is set, actual tranch-addressing 
allowances can be nade instead cf estimates. The offset values 
calculated during the first scan include any forward-branching 
addressing estinates. 

Licensed Material - Property of IB~ Section 2: Method of Operation 305 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

The region boundaries are established during the first scan, but a 
second scan is made for the purpose of relocating the label offsets when 
accurate allowances can be made for branch addressing. The offsets are 
inserted in label table entries during this scan. The TAs of the label 
table text pages are passed to Phase 51 in the XPH5CM field of XCOMM. 

Insertion of Alignment Code 

In the extended code input to the ~hase, a narker with a code byte ef 
X'20' appears before any RX instruction with operands that require 
alignment. During the first scan of the text, the necessary alignment 
code is generated and the narkers are removed. The arrount of code 
generated depends u~on the particular instruction. For example: 

the instruction LH 4,1 (6) 

becomes MVC WK5P+16(2),l(6) 
LH 4,WI<5P+16 

the instruction STD 2,FIELD(1) 

becomes STD 2,WI<SP+16 
5T 1,WK5P+32 
LA 7, FIELD (7) 
MVC 0(S,7),WI<5P+16 
L 7,WI<SP+32 

Implementation of the FLOW and COUNT Cptions 

Two scans of text are always required if FLOW or COUNT has been 
specified. 

During the first scan of the text, tests are made to ascertain whether 
the FLOW or COUNT compiler options have been specified. If so, code to 
call a library subroutine is generated at each branch-out or potential 
branch-in point. The code sequence generated is either: 

L 15,A •• IBMBEFLB 
BALR 14,15 
DC X· •••• • (a halfword containing 

or L 
BAL 
DC 

the statement number) 

15 ,A •• IBMBEFLB 
14,0(0,15) 
X· •••• • (a halfword containing 

the statement number) 

The second example of code enables the library subroutine to cancel the 
branch-out of the statement when the COUNT option is in effect. 

The first two bits of the statement-numrer constant are used as flags to 
indicate the following branching information: 

Bit 0 
Bit 1 

Cn: branch-in ~oint. 
On: change in current 

blcck naIre. 

Off: branch-out point. 
Cff: no change in 

block name. 

Flow code is not generated for a branch within a statement. If, at the 
time of the first scan, it is net known whether a branch is within a 
statement, a marker is generated before the flow code. During the 
second text scan the marker is removed, and the flow code is also 
removed if the branch is within a statement. 

306 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Flow code is generated for "branches" round procedures and on-blocks. 
These branches are not executed as blocks are denested, but flow code is 
generated as if the branches were executed at this tiue. The places at 
which such code is required is detected ty finding gaps in the stateuent 
numbers in the statement header markers. 

If there are no branches frou one region to another, the second scan in 
SR is not needed, unless FLOW or COUNT have been specified. 1wo code 
counts are held in each entry in the latel tatle during the first scan; 
an optimistic (assuuing that all forward tranches are to labels within 
the current region) and a pessimistic. At the end of each block a test 
is made as to whether any of the branches in it were to another regicn; 
if so a switch is set indicating that a second scan is required. 

Licensed Material - Property of IB~ Section 2: Method of Operation 306.1 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

OBJECT MODULE ASSEMBLY (PHASE SI) 

The prime function of this phase is to collect all the data and 
instructions processed by preceding phases, and to assemble them in the 
order required in the object module. The assembled object module is 
then transmitted to the SYSLNK and/or SYSPCH data sets (as specified in 
the compiler options) in records of the appropriate length. If output 
to SYSLNK is required, this phase opens the data set and allocates part 
of its working storage as a buffer area. 

This phase also organizes data and instructions in such a way that the 
listings phase (Phase SM) can produce any listings specified in the 
compiler options. 

PHASE INPUT 

Input to the phase consists of the stream of extended code (instructions 
and mar.kers), output by Phase SK. In this stream, all the instructions 
are complete, except that code is required in branching instructions. 

In addition to scanning the extended code stream, the phase accesses the 
label table and the text page containing the absolute offset of each 
region from the start of the program (output from Phase SK), the pseudo 
constants pool (output from Phase PAl, and the general, names, and 
storage dictionaries. 

PHASE OUTPUT 

The main output from the phase is a series of SO-byte (card-image 
format) records which together comprise a relocatable object module. 
The main conten~ of the records is machine instructions, and external 
and/or internal addresses to be resolved by the linkage editor program. 
The records are referred to as TXT (text) records, RLD (relocation list 
dictionary) records, and ESD (external symbol dictionary) records. 

The ESD records contain all the external symbols and external storage 
requirements for the object module. For example, they contain any 
symbols defined in this module that are referred to within another 
module. They also conta.in all symbols referred to wi thin this module 
that are defined in another module. 

The TXT records contain the machine instructions, and any constant data 
acted upon by those instructions, that are eventually loaded into main 
storage for execution. The code required to complete branching 
instructions is generated and inserted by this phase. TXT records are 
organized as a number of control sections. Each TXT record contains a 
field which identifies the control section in which the instructions and 
data contained in the record appear, and also their offset from the 
assembled origin of the control section. 

An RLD entry is generated for each item that must be relocated by the 
linkage editor. such as relocatable address constants. Each RLD entry 
contains the offset of the item from the assembled origin of the control 
section in which it appears. An END record is generated to indicate the 
end of the object module. The END record can contain a transfer 
address, for use h¥ the linkage editor. 

If the DECK and/or LINK options have been specified, the object module 
records are copied into the XPFBF1, XPFBF2, and/or XOFBF buffers, and 
transmitted to the data sets assigned to SYSPCH and/or SYSLNK. Output 
to SYSPCH is in the form of 81-byte records (80 bytes plus 1 byte 

Licensed Material - Property of IBM Section 2: Method of Operation 307 



control character). Output to SYSLNK is in the form of 322-byte records 
(four aO-byte records concatenated, and preceded by two bytes containing 
the number and length of the records). 

Other output from the phase is passed to Phase SM on text pages. This 
output consists of: 

1. The extended code stream as input, bu·t with branching instructions 
completed. 

2. An internal representation of the object module, which enables the 
external symbol table to be listed. 

3. Inforroation about itens in the static CSEC~. 

4. The pseudo constants Fool. 

Each of the iteros listed above is output on a separate chain of text 
pages. 

PHASE OPERATION 

Sequence of Processing 

Processing is organized so that records are output to build the object 
module in the sequence of ESD, TXT, RLD, and END records. 

The ESD records are generated first. As ESD entries are built they are 
copied to the required output buffer(s), three entries per aO-byte 
record, and also copied onto output text pages, for use by Phase SM. 
Some ESD requirements are standard for each compilation, and the 
information about them exists within the phase. For other ESD entries, 
various fields in XCOMM are accessed to obtain information required in 
the entry or to determine the necessity for optional ESDs. Information 
for ESD entries for input/output modules and for external entries to the 
outer block is obtained from the general dictionary. Other information 
is found by scanning the pseudo constants pool. 

TXT and RLD records are created next. ~x~ records are generated as 
required in various centrel secticns. As these records are generated, 
RLD records are alse generated ~here a situation requiring relocation is 
recognised. Both types ot records are copied to the second strearr of 
text pages (following the ESD records) ~ut only the TXT records are 
copied to the output buffers at this time for transmission to SYSPCH 
and/or SYSLNK. When all the control sections have been built, the RLD 
records, saved in the text pages, are copied to the output buffers sc 
that they appear in the o~ject ncdule after the ~XT records. when the 
last RLD record is output, an END record is output to indicate the end 
of the object modu!e. 

The information required for generation of TXT and RLD records is 
obtained from various places. The PLISTART control section is required 
in every object module, and the information for it exists within the 
phase. Other control sections, e.g., PLIMAIN, PLIFLOW, are generated 
only if required by specified options. The need for these control 
sections is determined by examining various fields in XCOMM, but the 
information for the required records exists within the phase. 

Information for building control sections for external items is obtained 
during a sequential scan of the pseudo constants pool, and the records 
are output in the order in which they are detected. 

The address constants that arpear in the static contro! secticn are 
found during a scan of the label table (output trom S~), examination cf 

308 Licensed Materia! - Property of IEM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

various fields in XCOMM, and a scan ot the pseudo constants pool for 
items flagged as being external. During the building of the static 
CSECT, a check is made to see whether the GOSTMT option has been 
specified. If so, a scan is made of the extended code input strea~ and 
a statement-number table is built at the end of the static CSECT. 

During the building of the static CSECT, another output stream is built 
on a third chain of text pages. This stream contains details of the 
first three classes of item for which entries are made in the static 
CSECT, and is built to enable Phase SM to list itelns in static storage 
if the MAP option is specified. 

A second scan of the extended code input stream is made for the purpose 
of generating records to build the program control section. Where 
required, instructions are completed or additional instructions are 
generated. 

When all records for the program CSECT have been output to the second 
stream of text pages, the RLD records and the ENO record are copied to 
the output buffers. 

On completion of processing, control is passed to Phase SM if any of the 
object listing options have been specified. Otherwise, the XOIAG nacro 
is used to pass control to Phase UA if there are any diagnostic messages 
to be printed, or to the compilation-end routine in Phase AA. 

Generation of ESO Records 

The five types of ESO entries that may be generated by the compiler are 
listed below. 

ESD entry type 

SD 

PC 

LD/LR 

ER 

eM 

Purpose and contents 

Section definition: provides control section 
name, assembled origin, and length. 

Private code detinition: provides assembled 
origin and length of an unna~ed control section. 

Label definition: specities the assentled 
address and the associated SD of a label that nay 
be referred to by another module. The LD entry 
is termed LR (label reference) when the entry is 
matched to an ER entry. 

External reference: specifies the location of a 
reference to another module. 

Common: indicates the amount of main storage to 
be reserved for common use by different phases. 

Licensed Material - Property of IBM Section 2: Methcd of Operation 309 



The format of an Est entry is as fellows: 

r-------------------------T---T---------T---T---------, 
I 1-8 I 9 I 10-12 I 131 14-16 I 
L-T----------------------~T--~-T-------~T--~-T-------J 

t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L-----24 

I 
I 
I 

Zero - if length is on END card 

~-----
I 
I 
I 
I 

Length of control section Cif type is 
SD, PC, CM) 

r----
I 
I 
I 

Identifier of SD entry containing name 

~-----
I 
I 
I 

Blank if type is ER 
L ____ _ 

Length of pseudo-register CPR) 

L____ Blank - alignment factcr for type FR 

bit address (SD, PC, LD, LR) 

L-----~ - Hex (OO=SD,Ol=LD,02=ER,03=LR,04=PC,05=CM,06=PR) 

~-----Name - when type is: SD, LD, LR, ER, CM, PRo 
I 
I 
L-----Blank - when type is: PC or blank CM 

310 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Each aO-byte output record ccntains three 16-byte ESD entries. The 
format of an ESD record is as fcllcws: 

r-T---T------T-----T-----T-----T-------------T---------, 
1112-41 5-10 111,12113,14115,161 11-65 1 66-aO 1 
Lr~T--~-T----~-T---~-T---L-T---L-T-----------LT--------J 

1 1 1 1 1 
1 1 1 I L---Not used 
I 1 1 I 
1 1 -I L---Three ESD entries 
1 1 I 
1 1 ~---Blank if all ESD items are LD 
1 I 1 
I I L---ESI: IDEN'IIFIER of first ESD iterr (ether than LD) 
I 1 
I L---Elank 
1 
L---Number of bytes of ESD data 

L---Blank 

L---ESD 

L---12-9-2 (0000 0010) 

ESD records are created in this format and output to the second chain of 
text pages, and to the output buffers fer transrrission to SYSLNR and/or 
SYSPC2B. 

The first ESD entry to be generated is an SD type entry defining the 
PLISTART control section. The entry is a standard one for all 
compilations, and the format is defined within the phase. 

Entries are then generated to define the program and static control 
sections. The sizes of these CSECTS will have been stored in XCOMM by 
Phase SR. ESDs are then generated for PLlMAIN (if OPTIONS(MAIN) is 
specified), PLIFLOW (if the FLOW option is specified), PLICOUNT (if the 
COUNT option is specified), and any other CSECTS required by compiler or 
PL/I options. 

ESD entries are also required for each compiler-generated subroutine or 
library routine that is cal~ed. The format of entries tor these 
routines are defined within the phase. The requirement for them is 
determined by examining the bit strips in the XLIBSTR and XOOMSTR fields 
of XCOMM. 

The need for ESD entries for LIOCS modules is determined by examining 
the chain of general dictionary entries headed by the entry in the 
XLIOCS field of XCOMM. The need for ESD entries for external entries to 
the outer block of the compilation is determined by accessing the XBH 
field of XCOMM to find the reference of the block header entry for the 
outer block. The entry-pOint entries for any external entries to this 
block are also accessed to provide information tor ESD entries. In 
certain cases where an interlanguage communication option is specified 
on an entry pOint, the outer block will have a count of zero and the 
dictionary entries for entry points on the next block will have to be 
examined. 

The storage dictionary is then scanned for other items requ1r1ng ESD 
entries, e.g., external variables, external symbol tables, files, 
external conditions, etc. The relevant entries in the storage 
dictionary are accessed to obtain the reference of the names dictionary 
entry for the item, and all the requisite ESD entries are generated. 
For STATIC EXTERNAL uninitialized variables appearing within an RLABL 
option for RPG, storage must not be reserved by PL/I since the storage 
for such variables is allocated within the RPG program. This is 
achieved by generating an ER-type ESD instead of a CM-type for the 
variables. 

Licensed Material - Property of IBM Section 2: Method of Operation 311 



Generation of TXT and RLD Records 

When all ESD records have been output, TXT and RLD records are generated 
as required. 

The format of a TXT record is as follows: 

r,---,-,---,----,-----~-----,-----,------------------------T--------, 
1112-41516-819-10111,12113,14115,161 11-12 I 13-80 I 
Lr~T--~T~T--~T---~-T---~-T---~-T---L-T--------------------__ ~-y ______ J 

I I I I 
1 I I L-----Not used 
I I L-----Text data (machine 
I 1 language code) 
1 I 
I I 
I L----ESD Identifier of SD for control section of this text 
1 
I 
L-----Blank 

L-----Number of bytes of text data 

L-----Blank 

L-----24 bit address of first byte of text data 

L-----Blank 

~----TXT 

L-----12-9-2 (0000 0010) 

The number of instructions contained in one record varies according to 
the length of the instructions. All of the text data field (bytes 
11-12) is used, and instructions may overflow to the next record. 

The format of RLD records is as follows: 

r'---'-~----'-----'------'---------------------------------T--------, 
1112-41 5-10 111-121 13-161 11-72 I 73-80 1 
LrLT--L-T----L-T---~-T----~T------------------------------__ L-y ______ J 

I I I I I 
I I I I I 
I I I L-----RLD data - see below L-----Not used 
I I I 
I I I 
1 I L-----Blank 
I I 
I I 
1 L-----Number of bytes of RLD data 
I 
1 L _____ ~ 

L-----RLD 

L-----12-9-2 (0000 0010) 

312 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

The number of RLD entries varies from record to record. The basic 
format of an RLD entry is as follows: 

r---T---T-T-----' 
11,21 3 ,41 5 16 ,1,81 
Lr--~T--LT~-T---J 

1 1 
I I 
I L-----Assigned address of address constant 
I 
I 
L-----Flag field -- (TTTTLLSTn) 

TTTT=type 

OOOO=non-branch 

000l=branch 

0011=pseudo register cumulative 
length 

LL=length of address constant 

01=2 bytes 

10=3 bytes 

11=4 bytes 

S=direction of relocation 

O=positive (+) 

l=negative (-) 

Tn=type of next RLD item 

O=next RLD item has a different R or P 
pointer: they are present in the 
the next item 

l=next RLD item nas the same R and P 
pointers, hence they are omitted. 

L-----Position pointer (P) - ESDID of SD for control section that 
contains the address constant 

I 

L-----Relocation pOinter(R) - ESDID of CESD entry for the symbol being referred to. 
Zero (00) if type=PR cumulative length 

If the relocation pointer and position pointer of consecutive RLD 
entries have the same value, they are not repeated. Therefore entries 
may be eight or four bytes long. 

The first control section for which TXT records are generated for all 
compilations is the PLISTART module. This module contains the address 
of PIR (program initialization routine) and code to branch to it, the 
address of SYSPRINT, and the address of PLlMAIN if a PLIMAIN control 
section is generated for the compilation. 

Optional Control sections: The XCOPT macro is used to'determine the 
options that are specified and for which control sections must be built, 
e.g., PLlMAXN, PLIFLOW, etc. TXT and RLD records are generated as 
required, the information being contained within the phase • 

. 
The pseudo constants pOol is then scanned for external items requ1r1ng 
con1:rol sections. 'These items include static external variables, static 
external symbol tables,,; external conditions, and external file control 
blocks. The code for each of these items exists within the pseudo 
constants pool, but a number of items within each control block may 
require modification, (usually the addi!ion of a relocation factor, 
defined at the beginning of the pseudo constants pool). The TXT entries 
are generated in the order in which they are found during the scan, and 
RLD entries are generated when their requirement is detected. On 
finding the -initial- string item associated with a suitably declared 
PLIXOPT variable, this string is' scanned and analysed at compile-time 
and an IBMBPOPT control section is generated for high-speed 
interpretation at program initialization on execution under DOS/CICS. 

Licensed Material - Property of IBM Section 2: Method of Oper.t1on 313 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

The Static Control Section: Records required for building the static 
control section are generated. The label table is scanned for items 
flagged as indicating the start of a program region, and entries 
containing their,address constants are generated. If the size of static 
storage is greater than 4096 bytes, (the size of the static storage is 
inserted in XCOMM by Phase SK), address constants for the second and any 
subsequent regions are generated by this phase and appropriate entries 
are output. The bit strips in XLIBSTR and XCOMSTRare then scanned 
again to determine the compiler-generated subroutines and the library 
routines for which address constants are required. As these adcons are 
generated, the appropriate TXT and RLD records are output. In addition 
to copying these records to the second stream ot text pages, all the 
records output thus far for the static control section are also copied 
to a third stream of text pages. This data is collected to enable Phase 
SM to list items in static storage if the MAP compiler option is 
specified. Dictionary references are retained in entries in this data 
stream. 

The building of the static CSECT is continued during another scan of the 
pseudo constants pool (the second scan). Output from this scan forms 
the constants pool. TXT records are built for all items not flagged as 
external items. Records for external items will have been output 
already, except for external address constants, for which records are 
generated during this scan. Any items which require relocation are 
relocated at this time, even though RLD entries may be generated to 
enable further relocation by the linkage editor. 

At this point a scan of the branch-tables label constants pool is 
incorporated in order to set up the tables required in the static CSECT 
for use by optimized SELECT statements. 

If the GOSTMT option has been specified, a scan of the extended code 
input stream is then made, for the purpose of building the 
statement-number table in the static control section. This table and 
branch-tables for optimized SELECT statements are located immediately 
after the storage allocated for' static variables. Whenever a statement 
number, or a statement-change marker is found during the scan, an entry 
containing the statement number and the address of the statement is 
built in the statement-number table. 

Finally, if the TSTAMP option was specified at compiler installation 
time, phase SI will place the date and time of compilation at the end of 
the static CSECT (within the 20 bytes preceding the fullword location 
addressed by the first word of the CSECT). This is achieved by moving 
in the XCOMM fields XDATE and XTIME whic~ have previously been set up by 
the control phase. 

The Program Control Section: A second scan of the extended code input 
stream is made for the purpose of building the program control section. 
Records are output as the code is scanned. When a branching instruction 
is found, the label table is accessed and code to indicate the 
appropriate label offset is inserted to complete the instruction. 
Instructions required to load addresses before or after branching 
instructions are generated by this phase, and inserted in the code 
stream. 

When the end of the extended code input stream is found, an END record 
is generated and output to .the second chain of text pages. The RLD 
records in these text pages are then copied to the output buffers, so 
that they appear in the Object module after the TXT records. The END 
record is then copied to the output buffers, to indicate the end of the 
object module. 

314 Licensed Material - Property of IBM 



This phase collects information about various items or areas of code in 
the object module, and passes this information to the SYSLST data set 
for printing in suitably formatted lists. The phase is only loaded and 
executed if one or more of certain mutually independent compiler options 
are specified. These compiler options, and the information listed if 
they are specified, are as follows: 

AGGREGATE Aggregate-length table. 

STORAGE Storage requirements for each CSECT or OSA. 

ESO List of external symbols dictionary entries. 

MAP Static internal storage map. 

OFFSET Tables of offsets and statement numbers. 

LIST Object code listing. 

PHASE INPUT 

The input data available for use by the phase includes: 

• The extended code stream, output from Phase SI. 

• The second text stream output from Phase 51, consisting of an 
internal representation of the object module. 

• The third text stream output from Phase 51, containing information 
about items in the static control section. 

• The text page containing the pseudo constants pool, output from 
Phase PA and modified by Phase SI. 

• The names, variables, general, and storage dictionaries. 

The particular input data used by the phase depends on which of the 
relevant compiler options has been specified, as detailed in the 
description of processing for each option, given below under the heading 
"Phase Operation." 

PHASE OUTPUT 

Output from the phase consists of information to the SYSLST data set to 
allow the printing of the listings appropriate to the specified compiler 
options. The content and format of these listings are described in the 
following descriptions of option processing. 

PHASE OPERATION 

The appropriate bit settings of the XNSYGBT field in XCOMM are checked 
to determine which of the compiler options requiring object listings 
have been specified. Where applicable, the following processing is 
performed. 

Licensed Material - Property of IBM Section 2: Method of Operation 315 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

Processing the AGGREGATE OPti2~ 

The variables dictionary is scanned sequentially for array or structure 
variables. When a data aggregate entry is found# the names and general 
dictionaries are accessed to obtain the name and length of the found 
item. All the found data aggregate entries &re chained together, by 
name, in alphabetic o~der, by means of a prescan of the names 
dictionary. This chain is then rescanned, and the aggregates listed 
against their sizes. For each adjustable aggregate found, the size of 
the item is replaced in the length table by a comment, and no name is 
printed for aggregate temporaries. The listing is completed by the 
printing of the sum of the lengths (in bytes) of fixed-size aggregates. 

Processing the STORAGE Opti2~ 

The storage requirement for each program procedure is obtained from the 
general dictionary procedure entries. 

To obtain the names and lengths of the program and static control 
sections, the second text stream output from Phase SI is scanned and the 
information obtained from the first three entries of the external 
symbols dictionary. These entries, which make up the first ESD record, 
define the PLISTART, program, and static CSECTS. Full details of the 
composition of ESD entries are given in the description of Phase SI, 
earlier in this section. 

IProcessing the ESD Option 

To obtain the information required for the ESD listing, a scan is 
carried out of the second text stream output from Phase SI, and a list 
made from each ESD entry of the name (up to eight characters), a 
2-character type identifier, a 3-byte address constant, and the lengths 
of all entries other than types LD, ER, and LR. Also included in the 
printed listing is a 2-byte identification number for each entry, 
generated by Phase SM,. 

Following the ESD listing, a single line of source program statistics is 
printed, giving the numbers of source records and program text 
statements (obtained from the XCOMM fields XNSREC and XTSTAT 
respectively), and the size, in bytes, of the object program. 

Processing the MAP Option 

The chain of text pages initialized by Phase SI and containing 
information about items in the static CSECT is scanned, and a list of 
ad'cons for library modules and compiler-generated subroutines produced 
on scratch pages. 

The text page chain containing the pseudo constants pool is also scanned 
sequentially, and all static storage entries (constants, DEDs, 
descriptors, locators, labels, various adcons, DTFs, symbol tables, 
etc.) accessed. 

The final static internal storage map listing comprises a 3-byte 
location counter for each item, followed by the item and its 
description, incorporating, where possible, the source program name. 

316 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, 

A second scan of the pseudo constants pool is carried out if static 
external items (constants, DTFs, condition CSECTS, environment blocks, 
etc.) are encountered. These items are then listed separately. 

The MAP option also produces a variable storage map. This map shows how 
PL/I data items are mapped in main storage. It names each PL/I 
identifier, its level, its offset (in both decimal and hexadecimal form) 
from the start of the storage area, its storage class, and the name of 
the PL/I block in which it is declared. 

Processing the OFFSET OptioB 

The table of offsets and statement numbers is produced by performing a 
scan of the extended code stream from Phase SI. In this stream, the 
start of each new statement is indicated by a marker, inserted by Phase 
SA,. This marker will be one of X'OB' (statement number), X'1D' 
(statement number from where code came), and X'24' (statement number 
reverted to). Full details of these and all other extended-code markers 
will be found in section 5, "Data Area Layouts," figures 5.124 and 
5.125. 

When one of these three markers is encountered in the text scan, the 
current value of the location counter and the statement number are 
printed. 

The main input text stream to the phase consists of a mixture of markers 
and generated code. The markers, inserted by Phase SA, consist of a 
code byte, X'OF', a qualifying byte, (one of X'OO' through X'36'), and a 
length field (see figure 5.125). They are used to indicate such items 
as label numbers, dictionary references, statement numbers, etc., and 
the presence of a marker in the text stream will result in an 
appropriate comment being printed in the object listing. Each comment 
incorporates information carried within the marker, either directly or 
via a dictionary entry. 

Following each generated code instruction in the input text stream are 
certain information bytes (3 bytes for RX and SI instructions, and 6 
bytes for SS instructions). These bytes contain flags to denote that 
the address in the assembled instruction refers to a compiler-generated 
subroutine, a library module, decimal workspace, the base or length of a 
variable, a locator, a DED, or other qualifier. In addition, a 
dictionary reference may appear in the information bytes to enable the 
name of the variable to be decoded. 

If no listing information is supplied, instructions may be preceded in 
the text stream by markers type X'10' or X'23'. 

A sequential scan of the main text stream is carried out, and the object 
listing built up, normally in double-column format, in a one-page buffer 
in the phase storage area. 

The format of the listing is so designed as to resemble as closely as 
possible programmer-coded assembler language. Each column contains: 

• A 3-byte counter, which is incremented and printed at the start of 
each instruction. 

• The assembled instruction in hexadecimal form, and printed with 
2-2-1-3-1-3 half-byte spacings. 

October, 1973 

Licensed Material - Property of IBM Section 2: Method of Operation 317 



• The interpreted instruction, in assembler language, with operands 
consisting of register numbers, immediate values, storage addresses 
in base and offset form with optional index register or length 
fields, or identifier names, possibly qualified with an offset and 
preceded by qualifying prefixes such as VO, BASE, DED~ etc. 

When the end-of-program marker (X'14') is encountered, if no compiler 
diagnostics have been generated, a message to this effect is printed. 
Finally, the time taken for compilation is calculated and printed. 
Control is then passed to the resident control phase, Phase AA, and 
compilation terminated. 

If compiler diagnostics do exist, control is passed to the diagnostic 
message-editor, Phase UA. 

318 Licensed Material - Property of IBM 



EDITING OF D1AGNOSTIC MESSAGES (PH!~E UAl 

Diagnostic message entries are generated on the error pages by the 
compiler phases by means of the XMESG macro. Phase UA receives these 
pages as input, and, by reference to various tables, produces the final 
(sorted) listing of messages. These messages appear in the compiler 
listing immediately following the cross-reference list, and are grouped 
according to their severity. The messages produced by the 
initialization stage will appear on the first page of the listing - not 
with the other messages produced by the error editor. Messages 
pertaining to the syntax checking of options will appear immediately 
following the printout of the corresponding *PROCESS card or parameter 
field. The specification of the FLAG option (described below) indicates 
that messages of only selected severity must be listed. 

The major functions of Phase UA are: 

1. To sort the message entries in the message page stream into 
severity-code order, statement-number order within each severity 
code, and, finally, generation-sequence order within each statement 
number. 

2. To insert, and where necessary, to decode, the arguments supplied 
to the message. 

3. To print out the message, with inserts, depending on the 
specification of the FLAG option. 

Phase UA can be loaded and executed at different stages in the compiler 
operation, depending on the reason for its call. 

Under normal conditions, with an object-module listing required, Phase 
UA is loaded, via the XDIAG macro and Phase AA (control phase), and 
executed following Phase SM (object-code listing phase). 

If no object module listing is required and is so specified in the 
compiler option list, Phase UA is loaded and executed in the same way, 
following Phase S1 (object module assembly phase). 

If the NOCOMPILE option has been specified, (together with a value list: 
see "Implementation of Compiler Options," below) Phase UA will be 
loaded, via the XDIAG and XPST macros and Phase AA, following the 
dictionary build stage, provided that diagnostic messages have been 
generated by the syntax analysis and dictionary build stages. 
Compilation will then be suppressed or not, depending on the severity of 
the messages and the NOCOMPILE value list. If compilation is not 
suppressed, Phase UA will again be loaded and executed as the the final 
phase of the compiler (i.e., following Phase SI or Phase SM, as detailed 
above) • 

If an 'unrecoverable' error occurs at any point in the compiler, Phase 
UA is immediately loaded, via the XDIAG macro, Phase AA, and the 
error-handling routine, and executed. 

If a program check interrupt occurs at any point in the compiler, Phase 
UA is again loaded, via the XSTOP macro and Phase AA, and executed, the 
diagnostic and error messages being listed following the abort dump, if 
such a dump has been specified. 

PHASE INPUT 

By means of the XMESG macro, a calling sequence is generated to a 
routine in XROUT. This routine uses a number of fields in the 
communication area (XCOMM) as follows: 

Licensed Material - Property of IBM Section 2: Method of Operation 319 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

XKPRF 

XKREK 

XSTAT 

XKNUK 

XKDRF 

XKDTP 

Contains the page reference of the current message page. 
This is zero if no message has been created. 

Indicates the amount of space remaining in the current 
message page. 

Is a slot containing the number of the statement currently 
being processed by a phase. 

Contains an optional numeric argument for a message if one 
is specified as an argument to the XKESG macro. 

Contains an optional dictionary reference which is to 
appear in the message. 

Is a single byte used to contain a character indicating 
the type of dictionary to which XKDRF applies. Both the 
dictionary reference and the type code are specified as 
arguments to the XMESG macro. 

In addition to the fields described above, registers RB and RC are also 
used if text is supplied as an argument to the message. Two forms of 
such text are permitted by the XMESG macro: 

1. Implicit text pointers, where text is assumed to accupy the N bytes 
preceding the address in register 1. (The value of N is a constant 
but it may be changed in the XMESG macro definition.) 

2. Explicit text pointers, where a pointer to the start of the text 
and the length of the text are supplied explicitly to the macro. 
These values are loaded into registers RB and RC respectively by 
the calling sequence generated. 

The XMESG routine in XROUT generates a message entry (the format of 
which is described in the XMESGP DSECT) in a stream of pages chained 
from XMPRF in XCOMM. The routine calculates the size of the message 
entry to be made, and checks that the current message page contains 
sufficient space for the entry. If enough space is available, the page 
is brought into main storage, and the message entry is made by moving 
into the page the contents of all the XCOKM fields described above, plus 
the message text if the length is not zero. It should be noted that, 
although these fields are not necessarily used in the message, no 
attempt is made to determine this in XKESGR since testing would be more 
time-and-space consuming than moving the fields in every case. Whether 
or not the fields are actually used is determined by the structure of 
the message. 

If the current message page does not contain enough space to accommodate 
the latest message, it is not brought into main storage and a new page 
is requested. The old page reference is then placed in the new page, 
and the new page reference is placed in the XCOMM field XMPRF. The 
message pages are thus chained in reverse order. The latest message is 
then entered on the new page in the manner described above. 

PHASE OUTPUT 

The output from Phase UA consists of diagnostic and compiler-error 
messages raised by error conditions occurring in all compiler phases 
with the exception of those forming the preprocessor stage. 

I
The compiler-error message has the message number IEL0230I or IEL09701 
if severe errors are detected and the format 

$ COMPILER ERROR NUMBER n DURING PHASE pp. 

320 Licensed Material - Property of IBM 



This message is described in detail in appendix B to this publication. 

The diagnostic messages output by Phase UA can be identified with the 
phase during the execution of which the appropriate error condition 
occurred by means of the message number as described in section 6, 
figure 6.1. 

TABLES USED BY THE DIAGNOSTIC-MESSAGE EDITOR PHASE 

The tables used in the operation of Phase UA are all produced by the 
XMTAB macro and are as follows: 

~CDE: The table is generated by the XMTAB macro, when XMTAB is called 
with MCDE as an argument, and consists of 1000 single-byte entries, one 
for each possible message. Each byte consists of a set of flags 
indicating the severity code, and information concerning parameters to 
the message and editing of it. 

The MCDE table is used to set the severity code when building up the 
sort units. Its use avoids the necessity of specifying the severity 
code and the statement-number information both in the message text and 
in the macro call to XMESG, which creates the entry in the error message 
page stream. 

KEYREF: The KEYREF table is produced by the XMTAB macro when called 
with the argument MESSAGE. XMTAB produces the table by a nested call to 
the XMCDE macro, with COUNT as a second argument. 

KEYREFis used to obtain the appropriate keyword from the keyword table 
(KEYTAB) using the code obtained from the scan of the coded message 
string (refer to the the sub-heading "Message Decoding" in the 
description of the phase operation given below). 

The table consists of 16 pairs of 2-byte entries, one pair for each 
permissible length of words contained in messages. Thus the first entry 
is for i-letter words (and special and parameter keywords), the second 
for 2-letter words, and so on. The first number of the pair is the 
number, in bytes, counting from the start of the keyword table (KEYTAB), 
of the last word of that number of letters. For example, if there are 
12 single-letter words and 10 2-letter words, the first members of the 
first two entries in KEYREF are 12 and 22 respectively. The second 
member of each pair is the offset, in bytes, of the first word with the 
next highest number of letters from the start of KEYTAB. Thus, 
considering again the previous example~ the second members of the first 
two entries in KEYREF would contain 12 and 32 respectively. 

KEYTA~: The KEYTAB table is produced, with KEYREF, by a call to the 
XMTAB macro. 

It consists of one DC instruction for each keyword which may appear in a 
message. The keywords are arranged in the table in order of length, 
shortest first, and for ease of updating they are arranged in alphabetic 
order within each length category. The order of the appearance of the 
keyword in the table determin~s the code that is aSSigned to the word in 
the coded form of messages. However, this fact is relatively 
unimportant since the keyword table and the message coding operation are 
both carried out by the XMCDE macro; the order in the table depends on 
the order of the arguments to the XKEY macro calls that are nested 
within XMCDE. 

MESREf: This table is created by the XMTAB macro with an argument 
MESSAGE. It is used to access the coded message for a particular 
message number. 

Licensed Material - Property of IBM section 2: Method of Operation 321 



MESREF consists of 1000 halfword constants, one for each message. If 
message text for a particular message has not yet been supplied to the 
XMTAB macro, the relative halfword constant has a value of -1; otherwise 
the constant is the relative address of the corresponding coded message 
from the start of the message table (MESTAB). 

MESTAB: The message table is produced by the XMTAB macro with MESSAGE 
as-an-argument. The individual messages in the table are coded by the 
XMCDE macro calls nested within the XMTAB macro. 

ME STAB consists of strings of coded error messages with one or more code 
bytes for each word in the message. Each message is preceded by a byte 
which specifies the length of the message. The coded strings appear in 
order of message number, purely for convenience of updating the macro 
that produces the table. 

All the tables described above are interrelated, but they may be 
classified in two groups: 

• Glossary of keywords (KEYREF and KEYTAB) • 

• Lists of messages (MCDE , MESREF, and MESTAB). 

The interrelationships b~tween the tables are generated automatically by 
the relevant macros. In order to add messages or translate then into 
other languages, two areas of the macros require change; the message 
list in the XMTAB macro and the keyword list in the XMCDE macro. 

The message list appears at the end of the XMTAB macro as a series of 
nested calls to the XMCDE macro in the form: 

XMCDE N,S,W1,W2,W3,W4, •••••. Wx 

where 

N 

S 

WI-Wx 

is a decimal number which identifies the message. 

is the severity code of the message. This may be T, S, E, 
W, or I for 'unrecoverable·, 'severe', 'error', 'warning', 
or 'informatory'. (Note that this is the only place where 
the severity code is defined.) 

are the words of the message. 

If a statement number is to be applied to the message, the character '$' 
is coded as an argument following the severity code field. 

One of the following special control characters may also appear anywhere 
in the word list: 

Z signifies that the preceding and following words must be 
concatenated. 

Q signifies that the following word must be enclosed in 
quotation marks. 

All the words in the word list must appear in the keyword list, either 
explicitly or without one of the endings ATION, lNG, ED, ES, LY, E, S, 
and (S). 

If required, certain messages can be generated with extra phrases, the 
wordings of which are set up by invocations to the XMCDE macro, with 
number parameters 41 through 45. The position of this wording in the 

322 Licensed Material - Property of IBM 



message is denoted by the appearance of one of the 'alternative text' 
markers Ai through A5 in the XMCDE invocation for the message. The 
appearance of the wording is requested by setting on the X'40' bit in 
XERFLGS at the time of invoking the XMESG macro. 

The Keyword List 

The keyword list appears in the XMCDE macro in the forro: 

.XLn XKEY C,Wl,W2,W3,W4, .••••• Wx 
AIF (&XK7).X2 
XKEY C,Wx+l,Wx+2, •••••• 
AIF (&XK8).X2 

n is the number of letters in the keywords Wl to Wx, and 
1~n~16. 

C is &Cl if n58 and &Cl&C2 if>8. 

No!§: The assembler has a limitation of 128 characters (for DOS) per 
macro call. In order to overcome this restriction, if the total number 
of letters in the argument list exceeds two rtcords (one record with the 
macro call and one continuation record) a second <unlabeled) call to the 
macro is made, separated by the statemen~ AIF (&XK7).X2. The end of all 
keyword lists for a particular word length is terminated by the 
statement AIF (&XK8).X2 

PHASE OPERA~ION 

The diagnostic-message editor phase operates in two stages, to sort and 
decode the message. 

The Message Sor! 

Sorting is achieved by a sequential scan of the chain of message pag~s. 
As each message is encountered, a 12-byte 'sort unit' is created, 
consisting of the severity code, the statement number, the message 
number, generation-sequence number, and the 5-byte text reference of the 
message. The information regarding the severity code, and whether or 
nc~ a message contains a statement number, is obtained from the MCDE 
table that is generated as a by-product from the XMTAB macro. 

~s the sort units are generated, they are placed in a new page stream. 
When each page is full, or when the end of the input stream is reached, 
the page is sorted by means of the SCHELL sort routine before the next 
output page is obtained. 

On completion, the new output stream is res canned and the sorted pages 
merged into new pages, the old pages being discarded as they are 
emptied. 

At the end of the message sort process, two page streams exist: the 
original message stream and a stream of pages containing sort units in 
their correct sequence. 

Licensed Material - Property of IBM Section 2: Method of Operation 323 



~hen the message sort is complete, the sort-unit page str~am is scanned 
sequentially. As each sort unit is ~ncountered, the page reference of 
the corresponding message is obtained and converted to an address. Each 
message is maintained in the diagnostic-message editor ~n the form of a 
string of code bytes generated by the XMTAB macro. Th~ appropriate 
message string is obtained from the table by indexing the message 
reference table (MESREF) with the message number. 

The message string is scanned and each byte or group of bytes is 
converted to a keyword code, which is used to reference the table of 
keywords (KEYTAB) by means of the keyword reference table (KEYREF). The 
keyword may be one of three types: 

1. Ordinary keyword. In this case, the keyword is moved directly into 
the print buffer. 

2. Special-purpose keyword. This type is used to indicate either ~hat 
the preceding and following keywords are not to be separated by a 
blank, or that some multiple of 256 must be added to the followir.g 
code to construct the keyword code. 

3. Parameter keyword. If a keyword of this type is encountered, the 
appropriate parameter is obtained from the message entry, is 
decoded or translated as necessary, and then placed in the print 
buffer. 

~hen the print buffer is full, or when the message is complete, the 
message is printed and the scan moves on to the next sort unit. 

~essaqe Editing Facilites 

In addition to the facilities described above (i.e., statement number, 
dictionary entry, text, and numeric arguments), ~he following inserts 
can also be generated in a message: 

• Two text parameters. 

• A single attribute specification. 

• Two attribute specifications. 

• One attribute specification and a text parameter. 

These inserts may be generated by their being passed as arguments to the 
XMESG macro. In all the cases listed above, a character must also be 
set as an argument in the severity-code field of the XMCDE macro. Thus, 
although the XMESG macro may generate a text string containing two text 
inserts for a message, the string will be decoded as one insert unless 
this character is specified in the XMCDE call for that message. The 
character used ~n this case is 'E', which must be concatenated with the 
severity code field. This sets a bit in the MCDE vector. 

In order to pass these arguments, explicit pOinters must be set up to 
indicate the start and length of a formatted text string. The string 
would start with a code byte indicating which of the above four cases is 
concerned. This would be followed by a single-byte attribute 
specification and/or the text to be included, preceded by its 
corresponding length specification, depending on which of the four 
combinations is being passed. 

If an attribute specification is passed in this manner, the single byte 
is decoded by Phase UA and the corresponding attribute is moved into the 
print buffer. 

324 Licensed Material - Property of IBM 



A further editing facility accumulates several generations of the same 
message page and then prints it only once (i.e., instead of the message 
appearing in the listing N times for N different statement numbers, it 
is printed only once following a list of statement numbers to which that 
particular diagnostic applies). Once again, for this facility to be 
implemented at message-decoding time, the corresponding bit must be set 
in the MCDE vector. This is achieved by concatenating the character 'C' 
with the severity-code field argument to the XMCDE macro. This 
accumulating facility can be applied only to those messages generated by 
the XMESG macro and having the statement number as the only parameter. 

When, by reference to the MCDE table, a message in the message page 
stream is found to be of the cumulative type, two sort units are created 
for it. The first is created in the normal way, with the statement 
number field as specified in the XMESG call. The second, however, is 
created with the normal statement number field set to zero, the actual 
statement number being saved elsewhere in the sort unit~ An entry is 
then made in a push-down stack, which always contains the lowest 
statement for which a particular cumulative message is generated. In 
addition to the statement number, the entry also includes the message 
number and the page reference of the first 'zero-statement-number' sort 
unit for the message. 

Each time a further generation of the same message is encountered in the 
page stream, another sort unit with a zero statement number is created 
and the push-down stack is then checked to see if the new statement 
number is lower than the previous entry for that message. If this is 
the case, the previous entry in the stack is replaced by the new number 
and another sort unit is created with the statement number in the normal 
statement number field. 

When the whole of the message page stream has been scanned, therefore, 
for a cumUlative message which has been generated for N statements there 
will exist: 

• N sort units with zero-statement-number fields (the actual statement 
number being held in the sort units) • 

• An entry in the push-down stack which contains the lowest statement 
number for which the message was generated, and a reference to the 
start of the zero-statement-number sort units~ 

• A normal sort unit for the message, containing the lowest statement 
number. 

It should be noted that, if the first generation of the message in the 
message page stream should happen not to be the lowest statement number 
for which the message is relevant, a redundant sort unit will be 
created. This would be ignored at message-decoding time. 

During the message sort, all the zero-statement-number sort units are 
shifted to the beginning of the sort-unit stream, and the normal sort 
unit for that message is moved to the correct position for printing. 
When this normal sort unit is encountered at message-decoding and 
printing time, the stack entry is checked to see if the message has been 
printed already (i.e., if this is in fact one of the above-mentioned 
redundant sort units). If the message has not been printed, the 
zero-statement-number sort units are referenced and all printed out in 
the position where the lowest statement number would have been printed. 

Implementation of comEiler O~tiQn§ 

~1~tion: Diagnostic messages produced during compilation are 
grouped in order of severity. The FLAG option specification indicates 
the minimum severity level for which diagnostic messages, if produced, 

Licensed Material - Property of IBM section 2: Method of Operation 325 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

must be listed. The severity level is specified in the value list of 
the FLAG option, as follows: 

FLAG (I) All diagnostic messages listed. 

FLAG(W) All diagnostic messages except 'informatory' messages 
listed. 

FLAG (E) All diagnostic messages except 'warning' and 'informatory' 
messages listed. 

FLAG(S) only 'severe' errors and 'unrecoverable' errors listed. 

Note that the specification of FLAG is equivalent to FLAG(I). The 
severity levels are discussed fully in the Programmer's Guide for this 
compiler. 

If, due to the specification of the FLAG option, any levels of messages 
are to be suppressed, suppression takes place early in the operation of 
the phase and no sort units are created for those levels of messages. 

COMPILE or NOCOMPILE Option: Phase UA also implements the option 

COMPILE I NOCOMPILE[ (W lEI 5) ] 

NOCOMPILE(S) (default option) specifies unconditional compilation 
following the syntax analysis and dictionary build stages unless 
'severe' or • unrecoverable' errors are encountered. 

The specification of NOCOMPILE makes the compilation conditional upon 
errors detected during these two stages. The value list specifies 
suppression of compilation if an error equal to or exceeding the 
severity indicated by the value list is encountered during operation of 
the above two stages. 

NOCOMPILE (W) 

NOCOMPILE (E) 

NOCOMPILE (5) 

Compilation suppressed when any 'warning' messages 
and errors are detected. 

Compilation suppressed when any errors or 'severe' 
errors are detected. 

Compilation suppressed when any 'severe' or 
'unrecoverable' errors are detected. 

If NOCOMPILE is specified, or the specified severity value is equalled 
or exceeded, Phase UA returns control to Phase AA. 

LINK or NOLIN~ion: The option 

LINK I NOLINK[ (W I E IS) ] 

specifies that link editing will or will not be suppressed. 

NOLINK(S) (default option) specifies that link-editing is to follow 
compilation unconditionally unless 'severe' or 'unrecoverable' errors 
are encountered. 

The specification of NOLINK followed by a value list will suppress 
link-editing according to the severity level of messages produced during 
compilation~ The NOLINK value list interpretation is as for that 
described above for the NOCOMPILE option. 

326 Licensed Material - Property of IBM 



Note: Uses of the facilities provided by this phase are described in 
section 6, "Diagnostic Aids." 

Phase AI provides printed dumps of the contents of various areas of-main 
storage. If dumps of the text and dictionary areas are required, the 
compiler page-handling routines are used to copy requisite pages into 
main storage so that they can be dumped. 

The loading and execution of Phase AI is optional, depending upon 
options specified by the user in the *PROCESS statement. However, if 
the DUMP option is specified for any member of a batch other than the 
first it must also be specified for ~he first member. This is because 
Phase AE has Phase AI loaded, and it then remains loaded throughout 
compilation. Phase AI requires approximately 16K bytes of storage on 
the compiler partition. This phase can be executed in the case of an 
abnormal termination of the compilation, or can be executed after the 
execution of any specified phase. Dumps can be formatted or 
unformatted. 

PHASE INPUT 

Phase AI accesses the XDPOPT field (in XCOMM) ~hich has values set by 
Phase AE to indicate the required features of a dump, as specified in 
the *PROCESS statement. It then scans the requisite areas of main 
storage. The compiler communication area is accessed as required during 
execution. 

If dumps of text or dictionary are required, Phase AI has any required 
pages that have been spilled copied into main storage. 

PHASE OUTPUT 

Phase AI provides printed dumps of the hexadecimal values of the 
contents of specified areas of main storage. Areas that can be dumped 
include: 

Registers 
Compiler communication area (XCOMM) 
Phase work area (XSTG) 
Text 
Dictionary 
Page header information 
Current error page 

Options exist to enable the dumping of a particular range of statements 
or particular text pages. Similarly, particular dictionary sections can 
be specified. 

For all dumps, headings are printed to sho~ the type of dump (abort or 
interphase), and the compiler phase during or after which the dump was 
provided. subheadings indicate each section of storage dumped. 

If a formatted dump is specified, the following features are provided: 

1. Text 

a) Page header tables are formatted. 

Licensed Material - Property of IBM Section 2: Method of Operation 327 



b) Each statement or text table is formatted, with appropriate 
headers for most fields. 

c) Flow unit headers are formatted. 

2. Dictionary 

a) Each dictionary section is identified. 

b) Each dictionary entry is formatted, with appropriate headers 
for each field. 

3. Working storage 

a) A particular area of working storage can be formatted. At the 
moment, this facility only applies to the register usage table 
built in XSTG by Phase QA. 

PHASE OPERATION 

On entry, Phase AI tests whether i~ has been called to provide a dump on 
abnormal termination of a phase or to provide an interphase dump. It 
then prints the appropriate heading. 

The XDPOPT field in XCOMM is accessed to determine which of the dump 
options have been specified and which data areas are to be dUmped. 
various routines copy the required areas of main storage into the XPR~NT 
buffers for printing. Subheadings are printed at appropriate places. 

The compiler page-handling routines are used to copy text and dictionary 
pages from the spill file into main storage in the required sequence. 
The directory and normal dictionary-accessing routines are used to 
produce a sequential dump of each dictionary section. Text-scanning 
routines appropriate to the stage of compilation are used because of the 
different text types and chaining sequences. 

fQB~~!!ED_DU~E§: If a formatted dump is specified, each item (e.g., a 
dictionary item or a single statement in text) is printed on a separate 
line and spaced out into its component fields. A heading is provided to 
identify these fields. 

Formatting strings are used to space out the fields in each item. There 
is one formatting string for each type of item. The string is in the 
form: 

where 

X'aabbcc-----dd' 

aa is the number of fields in the item 
bb is (2*length-l) of the last field 
cc is (2*length-l) of the next-to-last field 

dd is (2*length-l) of the first field 

For example if an 8-byte item consists of three fields, the first being 
four bytes long, the second being three bytes long, and the third being 
one byte long, its formatting string would be: 

X'03010501' 

328 Licensed Material - Property of IBM 



If th~ 8-byte item is, say, X'0102030405060708', the above formatting 
string produces the following printout: 

01020304 050607 08 

Each item has associated with it a code byte, which is a mUltiple of 4 
(for indexing purposes). In the case of the names, variables, and 
storage dictionaries, the code byte is the same as that of the 
dictionary concerned; this is possible because there is only one item 
type (i.e., dictionary entry format) for each of these dictionaries. 
The general dictionary, however, has several item types (the format of a 
constant entry, for instance, is different from that of an entry-point 
entry). ~hus a table is used to translate general dictionary entry code 
bytes into item code bytes. Text items are assigned code byteS 
depending upon text type; on any particular invocation of the dumping 
routine, the required code byte is picked up by using the name of the 
current com&iler &hase and scanning down the ~able PHSTAB. 

Adcons for titles and formatting strings are placed in their respective 
tables in item code byte order; hence the item code byte may be used to 
pick up the item's title and formatting string. 

~2fm~~1-te~~~ump2: The routine TXDUMP decides upon the format code 
byte appropriate to the type of text being handled. The PRSQTP routine 
uses this code to produce a formatted dump of one text page. It 
performs certain housekeeping (including the printing of page reference, 
location, page header and/or flow unit header) and then calls SQLTXT (if 
the text is sequential) or NOSQTP (if the text is non-sequential). 

SQLTXT ensures that no printing is performed unless the text is within a 
statement range specified (if any). It employs the code byte to invoke 
a scanning and printing routine appropriate to the type of text being 
handled; the text is spaced into a print buffer, using the formatting 
string technique. The routine which performs this spacing is TXHERE (an 
entry point of FMTBUF). 

NOSQTP uses the XNEXT macro to chain down text; TXHERE is invoked to 
format the entry in the print buffer. 

~QE~atted di£ti2~fY~~mE~: Each dictionary page to be dumped is 
accessed by the DICDMP routine (as for unformatted dic~ionary dumps). 
The formatted printout is achieved by routine FORMDC, which basically 
contains one scanner for each dictionary. As the scan encounters a 
dictionary entry, the FMTBUF routine is invoked; this routine spaces out 
the entry (using the formatting string for the entry) into a print 
buffer. 

Licensed Material - Property of IBM Section 2: Method of Operation 329 



SECTION 3: PROGRAM ORGANIZATION 

330 Licensed Material - Property of IBM 



Section 3: Program Organization 

This section aescribes the organization of thE compiler, and the 
structure of the component parts of the compiler. 

At the beginning of the section are descriptions of the yeneral 
organization of the compiler program; how it is divided into a number of 
phases which can be loaded individually and loaded. The basic sequence 
of phase loading is illustrated in a fold-out figure at appendix C, to 
enable cross-reference from any part of the manual. The conditions 
affEcting the sequence of phase loading are shown in figure 3.1. 
General features of the structure of a phase are also described. 

Following the general descrip~ions are descriptions of the physical 
organization of each phase, arranged in the basic sequence of phase 
leading. These descriptions are in tabulated form. Each table contains 
a list of the labels that identify the main sections of code in a phase, 
in the order in which they appear in a phase listing. Each label is 
accompanied by a type-key, which indicates whether a label identifies a 
control section, a dummy section, a routine, a subroutine, a routine or 
subroutine entry point, or a tabla, and a brief description of the 
function of that section of code. These descriptions are intended to 
provide a positional guide to areas of code in the phase listings which 
may require examination. With each list showing the physical 
organization of a phase there is a flowchart showing the logical 
organization of the phase. 

BASIC ORGANIZATION OF THE COMPILER 

The compiler consists of 52 phases. Each phase consists of a collection 
of System/360 Assembler Language instructions and definitions, which can 
be executed and used to perform one or more particular functions in the 
compilation process. The phases reside in the core-image library. Each 
phase is identified by a symbolic name, consisting of the characters 
·PLIO· followed by two uniquely-identifying alphabetic characters. Each 
phase can be loaded individually. For descriptive purposes, phases 
which perform related functions can be grouped into stages, but these 
stage names have no other function. 

The first phase to be loaded when the compiler is invoked is Phase AA. 
This phase remains resident in main storage throughout all compilations. 
It provides services for the other phases, communicating with the system 
control program when the system facilities are required, e.g., for the 
loading of phases, input/output operations, etc. The remaining phases 
are loaded individually in sequence, so that only Phase AA and one other 
phase are in main storage at anyone time. Each phase is executed 
individually, but all phases use the services provided by routines in 
Phase AA. 

Not all the phaSES are loaded and executed for every compilation. Some 
phases are required each time, but the requirement for other phases is 
determined acording to the specification of certain compiler options or 
the inclusion of certain PL/I language features in the source program. 
In relation to the sequence of phase loading, phases can be divided into 
three general categories as follows: 

1. Non-optional phases, i.e., those phases which perform functions 
mandatory to all compilations. This category includes Phases AA, 
AE, EA, EE, GA, GI, GE, GM, IA, ID, IE, II, KA, KT, KV, KK, KX, PC, 
PA, PE, PI, QI, QA, SA, SQ, SK, and SI. 

2. Optional phases that perform functions for which the requirement is 
determined by the specification of certain compiler options, e.g., 
preprocessing, global optimization, some li&ting features, compiler 

Licensed Material - Property of IBM section 3: Program Organization 331 



dumps, etc. This category includes Phases CA, BA, CE, IK, OA, OE, 
01, OM, QE, SM, UA, and AI. 

3. Optional phases that perform functions for which the requirement is 
determined by the inclusion of certain language features in the 
source program, e.g., built-in functions, stream or record oriented 
input/output statements, etc. This category includes Phases EI, 
1M, IQ, KE, KI, KL, KM, KQ, OC, OX, SD, and SC. 

332 Licensed Material - Property of IBM 



DETERMINATION OF PHASE LOADING SEQUENCE 

Note: A summary of conditions affecting the sequence of phase loading 
is shown in figure 3.2. 

The resident control phase, Phase AA, is loaded whenever the compiler is 
invoked. The transient control phase, Phase AE, is loaded in response 
to a LOAD macro instruction generated by Phase AA. This instruction is 
generated automatically for the first or only member of a batch. On 
completion of the processing of a batch member, the compilation-end 
routine tests whether the XBATCH switch in XCOMM has been set, by either 
Phase AE or Phase EA, to indicate that there is another batch member to 
compile. If so, control is passed to the routine containing the LOAD 
macro instruction, so that Phase AE can be loaded to re-initializ€ the 
compiler partition prior to the next compilation. 

During processing of the compiler options, Phase AE sets bits in the 
XNSYGBT field of XCOMM to indicate the compiler options that have been 
validly specified or applied by default. It then scans a skeleton list 
of phase identifiers in the XPHSL field of XCOMM, modifying identifiers 
if necessary (see "Facility for Testing Modified Phases" in section 6), 
and setting flags to indicate the phases after which a compiler dump is 
required in accordance with options specified. 

If the DUMP option facilities are required for any member of a batch, 
the option must be specified before the first member of the batch. If 
the option is so specified, Phase AE will allocate storage accordingly 
and issue a LOAD macro instruction to have Phase AI loaded. Phase AI 
then remains in main storage throughout all compilations in the batch, 
and can be executed as required according to options specified on any 
batch member. 

Apart from Phases AA and AI, each phase uses an XPST macro instruction 
to indicate to the phase-loading routine (in Phase AA) the identity of 
the next phase to be loaded. The last two characters of the phase name 
are used as an operand in the XPST instruction (refer to figure 3.1 
"Phase Loading Operations"). An index number is also used in the 
instruction, and this enables the phase-leading routine to access the 
appropriate entry in the XPHASE field of XCOMM to ascertain whether 
certain options are applied to the phase. 

In some cases, the next phase to be loaded is obligatory, e.g., Phase PA 
always specifies Phase PE as the next phase. In such a case, the phase 
contains the appropriate XPST instruction at the end of its processing 
instructions. In other cases there are alternatives in the sequence of 
phases, e.g., Phase KK can be followed by anyone of phaSeS OC, OX, or 
KX. In such a case, a phase performs a series of tests to determine 
which of the alternatives is required. If a following phase is an 
optional phase which is dependent upon whether one or more particular 
compiler options have been specified, one or more XCOPT macro 
instructions are used to check whether Significant bits in XNSYGBT have 
been set. If a following phase is an optional phase which is dependent 
upon the presence of certain language features in the source program, 
the requirement for the phase may be indicated in one of two ways. 
certain types of statement are chained together by Phase KA and linked 
from fields in XCOMM. The presence of a text reference in one of these 
fields indicates a requirement for the phase which processes statements 
in that chain, e.g., a value in XRIOCH indicates that Phase KQ is 
required. An XIF macro instruction is used to test whether a particular 
statement-type chain exists, indicating a requirement for a particular 
phase. The presence in the source program of other language features is 
indicated by the setting of appropriate bits in the XOPPHS1 field of 
XCOMM by various phases. The requirement for phases which subsequently 
process these language features is determined by the use of one or more 
XTM macro instructions to test for the setting of the appropriate bits 
in XOPPHS1. (Indications given in XOPPHSl are shown in figure 3.3.) A 

J phase may use a combination of XCOPT, XTOPT, XIF, and XTM instructions 

Licensed Material - Property of IBM Section 3: Program Organization 333 



to test the requirement for various alternative phases. These testing 
instructions are accompanied by branching instructions to or around 
related XPST instructions. 

In response to an XPST instruction, the phase-loading routine first uses 
the index number to access and examine the entry in XPHASE for th€ 
current phase, to determine whether an interphase dump is required. If 
a dump is not required, or after a required dump has been provided, the 
entry in XPHASE for the phase indicated in the XPST instruction is 
further examined. If the facility for testing modified phases (see 
section 6) has been used, the entry indicates the modified phase name. 
If it is a valid phase name, any page-handling changes required in 
preparation for the new phase are carried out. A LOAD macro instruc~ion 
is then issue1, and the syst8m control program loads the required phase 
into the phase area. 

334 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175. October 1976 

Data Set containing 
compiler accessed for 
the specified phase 

Specified phase 
loaded into 
Phase Area 

MAIN STORAGE 

DOS SUPE RVISOR ~ 
'--___________________ ~I·~OAD instructions 

RESIDENT CONTROL PHASE (AA) 

Phase Loading Routine (AA0300) 
Performs page- handling organization where necessary. 
Issues instructions that cause a specified phase to be 
loaded. 

COMMUNICATION AREA (XCOMM) 

PHASE AREA 

Phase GA 

XPST GI ••••• 

issued by 

Cb 

XPST macro instruction 
specifies next processing 
phase 

Figure 3.1. Phase loading operations 

Licensed Material - Property of IBM Section 3: Program Organization 335 



Loading of Diagnostic stage Phases 

In general, none of the processing phases is executed more than once 
during each compilation. Exceptions to this are the phases that produce 
diagnostic information, Phases UA and AI. The method used to indicate 
the requirement for Phase AI to produce interphase dumps has already 
been described. The DUMP option can also be used to specify that this 
phase is to be executed to provide a dump (compiler-abort dump) in the 
case of a program-check interrupt. In such a case, both Phase UA and 
Phase AI receive control via the interrupt-handling routine in Phase AA, 
which is called in response to the STXIT macro issued by Phase AE at 
initialization time. Any program-check interrupt that occurs during 
compiler operation causes control to be passed to the interrupt-handling 
routine. One form of program-check interrupt, the occurrence of an 
unrecoverable compiler error during execution of a processing phase, 
causes an XSTOP macro instruction to be invoked. This instruction 
contains a decimal-numeric operand which uniquely identifies the 
compiler error, and an appropriate error message is written onto the 
current error-message for later printing by Phase UA. The XSTOP 
instruction then terminates phase execution and, as with other 
program-check interrupts, control is passed to the interrupt-handling 
routine. This routine has Phase AI loaded to provide a compiler-abort 
dump if one is required by compiler options. It then has Phase UA 
loaded to print the compiler error message and any diagnostic messages 
generated prior to the interrupt. 

In special circumstances, Phase AI can be called by use of the XDYDP 
macro instruction at any time during compilation. This facility can 
also be controlled by use of the DYSTMT option. Use of these facilities 
is described in section 6, "Diagnostic Aids. w other conditions 
affecting the use of Phase UA are described in the following paragraphs. 

Effects of the NOSYNTAX, NOCOMPILE, and NOLINK Options on the Phase 
Loading sequence 

The NOSYNTAX and NOCOMPILE options can be used to control the number of 
compiler phases that are executed. If these options are used with a 
qualifying value, then the execution of certain phases is made 
conditional, dependent upon the severity of diagnostic errors discovered 
during the execution of preceding phases. 

If the NOSYNTAX option is specified, compilation is terminated after 
execution of Phase CA, unless that phase generates any diagnostic 
messages, in which case Phase CE is also loaded and executed for the 
printing of those roessages. If the SOURCE option is also specified, 
then Phase EA is loaded after Phase CA or CE, and partly executed for 
the printing of the source listing before compilation is terroinated. 

If the NOSYNTAX option is specified with a qualifying value, then the 
execution of phases subsequent to Phase CA (other than as mentioned 
above) is conditional, dependent upon whether any diagnostic messages 
with severity level greater than that of the qualifying value have been 
generated. 

If the NOCOMPILE option is specified, compilation is terminated after 
execution of Phase GM, unless any diagnostic messages have been 
generated, in which case Phase UA is loaded and executed for the 
printing of those messages. If the NOCOMPILE option is specified with a 
qualifying value, then the execution of phases subsequent to Phase GM or 
UA is conditional, dependent upon whether any diagnostic messages with a 
severity level greater than that of the qualifying value have been 
generated. Note that if an attribute and cross-reference table is 
requested when the NOCOMPILE option is specified with a qualifying 
value, phase IK will be executed to provide the table regardless of 
where compilation is terminated. 

336 Licensed Material - Property of IBM 



Use of the NOLINK option does not restrict operation of the compiler, 
but inhibits link-editing of the object module produced by the compiler. 
Use of the NOLINK option with a qualifying value makes link-editing of 
the object module conditional, dependent upon whether any diagnostic 
messages have been generated during compilation with a severity level 
greater than that of the qualifying value. 

Testing for the conditions mentioned in the preceding paragraphs is 
performed by use of the XDIAG macro. This macro is used in Phases CA, 
EA, GM, IK, 51, and SM, and in the interrupt-handling routine in Phase 
AA. Thus indications of the requirement for loading of Phases CE and UA 
are only generated via the XDIAG macro, which contains the appropriate 
XPST instructions. 

Licensed Material - Property of IBM Section 3: Program Organization 337 



Order No. LY33-6010-1, Page Revised by 1NL LN33-6115, October 1976 

r---------------------------------------------------------------------------------------, 
I~: I 
11. The tests for loading subsequent phases are applied in the order indicated. I 
I Hence, for a list of phases, the last is the 'fall through' case. I 
12. A phase can only be loaded ty another when the loading ~hase has itself been I 
I loaded and executed, and when the sFecified conditions apply. 1hus, with the I 
I exception of Phase UA, anyone phase will only be loaded and executed once during I 
I a compilation. , 
~--------T-----T------------------------------------T-----------------------------------~ I Optional I Phase I Loads these phases if these lIs loaded by these phases if these I 
I or not I I conditions apply I conditions apply I 
~--------+-----+------------------------------------+-----------------------------------i 
I Not I AE ICA if MACRO option specified. IAA I 
I I I I I 
I I IBA if CHARSET(48) and/or I I 
I I I CHARSET(BCD) and/or INCLUDE I I 
I I I and not MACRO I I 
I I I I I 
I I I EA otherwise. I I 
~--------+-----+------------------------------------+-----------------------------------i 
I Opt I CA ICE IAE if MACRO option specified. I 
I I I I , 
I Opt I BA ICE IAE if CHARSET(48) and/or I 
I I I I CHARSE1 (BCD) and/or INCLUDE I 
I I I I !nd nct MACRO. I 
~--------+-----+------------------------------------t-----------------------------------i I opt I CE lEA if SOURCE £! NOSYNTAX(qualifier ICA I 
I I I with qualifier not exceeded. I , 
I I I I I 
I I IAA ctherwise lEA , 

~--------+-----+------------------------------------t-----------------------------------~ 
I Not I EA IAA if not SYNTAX. IAE if not MACRO and neither I 

I I I I I CHARSET(48), CHARSE1(BCD), nor , 
I I I I I INCLUDE. I 
I I I lEE otherwise I I 
~--------i-----i------------------------------------i-----------------------------------i 
I Not I EE lEI if source Frogram contains streamlEA if SYNTAX. I 
I I I I/O statenents. (Decision I I 
I I I internal to EE.) I I 
I I I I I 
I I IGA otherwise. I I 
~--------+-----+------------------------------------+-----------------------------------i 
I Opt I EI IGA lEE if source program contains I 
I I I I stream I/O statements (decision I 
I I I I internal to EE). I 
~--------+-----t------------------------------------+-----------------------------------i 
I Not I GA IGI lEE if source program does not con- I 
I I I I tain stream I/O statements I 
I I I I (decision internal to EE). I 
~-------+-----+------------------------------------+-----------------------------------~ 
I Not I GI I GE I GA I 
~-------+-----+------------------------------------t-----------------------------------i 
I Not I GE I GM I GI I L ________ ~ _____ ~--__________________________________ ~ ___________________________________ J 

Figure 3.2. (Part 1 of 6). Conditions determining phase loading sequence 

338 Licensed Material - Property of IBM 



r--------T-----T------------------------------------T-----------------------------------, 
I Optional IPhasel Loads these phases if these lIS loaded by these phases if these I 
I or notl I conditions apply I conditions apply I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Not I GM IUA (via XDIAG) if NOCOMPILE or IGE I 
I I I NOCOMPILE(qualifier) and I I 
I I I XMPRF :1= o. I I 
I I I I I 
I I I AA (automatically in XDIAG for UA) I I 
I I I if XMPRF = 0 I I 
I I I and NOCOMPILE or NOCOMPILE I I 
I I I (qualifier) with severity or I I 
I I I errors exceeding qualifier. I I 
I I I I I 
I I IIA otherwise. I I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Not I IA lID IGM if COMPILE ~nd XMPRF = 0 I 
I I I I or I 
I I I I if XMPRF :1= 0 I 
I I I I and COMPILE or NOCOMPILE (qual.) I 
I I I I with qualifier not exceeded. I 
I I I I I 
I I I IUA if bit 7 XOPPHSl set ~nd I 
I I I I NOCOMPILE (qualifier) with qual-I 
I I I I ifier not exceeded. I 

~--------+-----+------------------------------------+-----------------------------------~ 
I Not I ID lIE IIA I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Not I IE III lID I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Not I II 11K if XREF ~ ATR. I I 
I I IKA otherwise. I I 
~--------+-----+------------------------------------+-----------------------------------i 
I opt I IK .1 KA I I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Not I RA 11M if bit 0 XOPPHSI set. III if neither XREF gQ~ ATR. I 
I I I I I 
I I IIQ if bit 1 XOPPHS1 set. 11K otherwise. I 
I I I I I 
I I IKE if XSUBCH not empty. I I 
I I I I I 
I I IKI if XDOCH not empty. I I 
I I 1 I I 
I I I KT otherwise. I I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Opt I 1M IRA if bit 0 XOPPHSl set. IRA if bit 0 XOPPSHl set. I 
I I I I I 
I I IRE if XSUBCH not empty. I I 
I I I I I 
I I IKI if XDOCH not empty. I I 
I I I I I 
I I IKT otherwise. I I L ________ ~ _____ ~ _____________________________________ ~ ___________________________________ J 

Figure 3.2. (Part 2 of 6). Conditions determining phase loading sequence 

Licensed Material - Property of IBM section 3: Program Organization 339 



r--------T-----T------------------------------------T-----------------------------------, 
IOptionallPhasel Loads these phases if these lIS loaded by these phases if these I 
I or notl I conditions apply I conditions apply I 
.--------+-----+------------------------------------+-----------------------------------~ I opt I 10 IKE if XSUBCH not empty. IKA if bit 0 XOPPHSl not set ang bitt 
I I I I 1 XOPPHSl set. I 
I I IKI if XDOCH not empty. I I 
I I IKT otherwise. 11M if bit 1 XOPPHSl set. I 
.--------+-----+------------------------------------+-----------------------------------~ I Opt IKE IKI if XDOCH not empty. IKA if bits 0 and 1 XOPPHSl not set.1 
I I I I I 
I I IKT otherwise. I and XSUBCH not empty. I 
I I I I I 
I I I 11M if bit 1 XOPPHSl not set ~9 I 
I I I I XSUBCH not empty. I 
I I I I I 
I I I IIQ if XSUBCH not empty. I 
.--------+-----+------------------------------------+-----------------------------------~ 

Opt KI KT (KA if bits 0 and 1 XOPPHSl not set 
I ~g XSUBCH empty ~gg XDOCH 
I empty. 
I 
11M if bit 1 XOPPHSl not set ~g 
I XSUBCH empty ~nd XDOCH not 
I empty. 
I 
I1Q if XSUBCH empty ~gg XDOCH not 
I empty. 
I 
IKE if XDOCH not empty • 

• --------+-----+------------------------------------+-----------------------------------i 
Not KT KL if either XFILCH or XR10CH not KA if bits 0 and 1 XOPPHSl not set 

empty. and both XSUBCH and XDOCH empty. 

KQ if XS10CH not null. 

KU otherwise. 
1M if bit 1 XOPPHSl not set and 

both XSUBCH and XDOCH empty. 

IQ if both XSUBCH and XDOCH empty. 

KE if XDOCH empty. 

KI 
.--------+-----+------------------------------------+-----------------------------------~ I Opt I KL I KM if XR10CH not empty. I K'I if either XF1LCH or XRIOCH not:. I 
I I I I empty. I 
I I I KQ if XSIOCH not empty. I I 
I I I I I 
I I I KV otherwise. I I L ________ ~ _____ ~ ____________________________________ ~ ___________________________________ J 

Figure 3.2. (Part 3 of 6). Conditions determining phase loading sequence 

340 Licensed Material - Property of IBM 



r--------T-----T------------------------------------T-----------------------------------, 
10ptionaliPhasEI Loads these phases if these lIs loaded by these phasEs if these I 
I or notl I conditions apply I conditions apply I 
~--------+-----+------------------------------------+-----------------------------------~ 
I opt I KM IKQ if XSIOCH not empty. IKL if XRIOCH not empty. I 
I I I I I 
I I I KV otherwise. I I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Opt I KQ IKV IKT if both XFILCH and XRIOCH emp~y I 
I I I I and XSIOCH not null. I 
I I I IKL if XRIOCH empty ~n£ XSIOCH not I 
I I I I empty. I 
I I I IKM if XSIOCH not empty. I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Not I KV IDA if OPTIMIZE IKT if both XFILCH and XRIOCH ewpty I 
I I I I ~2 XSIOCH null. I 
I I IKK otherwise. I I 
I I I IKL if both XRIOCH and XSIOCH empty. I 
I I I I I 
I I I I KM if XSIOCH empty. I 
I 'I , I 
I 'I IKQ I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Opt I OA IKK if program unsuitable fer IKV if OPTIMIZE. I 
I I I optimization. I I 
I I I I I 
I I IOE otherwise. I I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Opt I OE 101 lOA when program suitable for I 
I I I I optimization. I 
~--------+-----+------------------------------------+-----------------------------------i 
I Opt I 01 10M IDE I 
~--------+-----+------------------------------------+-----------------------------------~ 
I opt I OM IKK 101 I 
r--------+-----+------------------------------------+-----------------------------------i 
I Not I KK IOC if bit 3 XOPPHS1 set. IKV if NOOPTIMIZ~ I 
I I I I I 
, 'loX if 'bit 4 XOPPHSl set. IDA if OPTIMIZE but program I 
I I I I unsuitable 'for optimization. I 
I I IKK otherwise. 10M if OPTIMIZE and program I 
I I I I suitable for optimization. I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Opt I OC lOX IKK if bit 3 XOPPHS1 set. I 
~--------+-----+------------------------------------+-----------------------------------~ 
I opt I OX IKX IKK if bit 3 XOPPHS1 not set ang bitl 
I I I I 4 XOPPHS1 set. I 
I 'I I I 
I I I I OC I L ________ ~ _____ ~ ____________________________________ ~ ___________________________________ J 

Figure 3.2. (Part 4 of 6). Conditions determining phase loading sequence 

Licensed Material - Property of IBM Section 3: Program Organization 341 



r--------T-----T------------------------------------T-----------------------------------, 
IOftionallPhasel Loads these phases if these lIS loaded by these phases if ~heoe I 
I or notl I conditions apply I conditions apply I 
.--------+-----+------------------------------------+-----------------------------------~ I Not I KX I PC IKK if bits 3 and 4 XOPPHSl net set.1 
1 I I I I 
I I I lOX I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Not I PC I PA IKX I 
.--------+-----+------------------------------------+-----------------------------------~ 
I Not I PA I PE IPC I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Not I PE I PI IPA I 
.--------+-----+------------------------------------+-----------------------------------~ 
I Not I PI I QI IPE I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Not I QA I QE if OPTIMIZE. IQI I 
I I I I I 
I I I SA otherwise. 1 I 
.--------+-----+------------------------------------+-----------------------------------~ 
I opt I QE I SA IQA if OPTIMIZE. I 
~--------+-----+------------------------------------+-----------------------------------~ 
I Not I SA I SQ IQA if NOOPTIMIZE. I 
I I I I I 
I I I IQE I 
.--------+-----+------------------------------------+-----------------------------------~ 
I Not I SQ I SC if bit 6 XOPPHSl set. ISA I 
I I I I I 
I I I SK otherwise. I I 
~--------+-----+------------------------------------+-----------------------------------~ 
I opt I SC I SK ISQ if bit 5 XOPPHSl not set ~~Q I 
I I I I bit 6 XOPPHSl set. I 
.--------+-----+------------------------------------+-----------------------------------~ 
I Not I SK I SI ISQ if bits 5 and 6 XOPPHSl not set.1 
I I I I I 
I I I I SC I L ________ ~ _____ ~ ____________________________________ ~ ___________________________________ J 

Figure 3.2. (Part 5 of 6). Conditions determining phase loading sequence 

342 Licensed Material - Property of IBM 



r--------T-----T------------------------------------T-----------------------------------, 
IOptionallPhasel Loads these phases if these lIs loaded by these phases if these, 
I or net" conditions apply , conditions apply , 
~--------+-----+------------------------------------+---------------------------~-------i 
I Not I S1 I SM if at least one of MAP, EXTREF, ISK I 
I I I STORAGE, CODE, AGGREGATE, and , , 
I "OFFSET. I , 
I I I , , 
I I I , , 
, I I UA (via XDIAG) if XMPRF *0. , , 
I I' I I 
I I I AA otherwisE. I , 
~--------+-----+------------------------------------+-----------------------------------i 
I opt I SM' UA (via XDIAG) if XMPRF *0 lSI if at least one of MAP, ESD, , 
I I I , STORAGE, LIST, AGGREGATE, and I 
I I I AA othErwise. I OFFSET. , 
~--------+-----+------------------------------------+-----------------------------------~ 
I Opt I UA I IA if bit 7 XOPPHSl set ~~~ IGM (via XDIAG) if NOCOMPILE or I 
I I I NOCOMPILE(qualifier) with qual- I NOCOMPILE(qualifier) ~nd I 
I I I ifier not exceeded. I XMPRF * o. , 
I 'I I , 
I I' lSI if none of MAP, EXTR~F, STORAGE" 
I I I I CODE, AGGREGATE, and OFFSET ang , 
I I I I (via XDIAG) if XMPRF * o. I 
I I I I I 
I I I ISM (via XDIAG) if XMPRF * o. I L ________ ~ _____ ~ ____________________________________ ~ ___________________________________ J 

Figure 3.2. (Part 6 of 6). Conditions detErmining phase loading sequence 

Licensed Material - Property of IBM Section 3: Program Organization 343 



r--------------------------------------------------------.------, 
INot~: Bits set to '1' if phase required, '0' otherwise. I 
~---------T-----------------------------------------------------~ 
I Bit I Remarks I 
t---------+---------------------·--------------------------------~ 
IX ••••••• IPhase 1M required. I 
I IBit set by Phase GA if program contains: I 
I I COBOL environment option. I 
I I OPTIONSCCOBOL or FORTRAN) on ENTRY statement or I 
I I declaration. I 
~---------+-----------------------------------------------------~ I . X.. • ••• I Phase 1Q required. I 
I IBit set by Phase KA if program con~ains: I 
I I MAP table. I 
I I CONCAT table. I 
I I ALLOC table. I 
I I FREE table. I 
I I string arguments to functions. I 
I IBit set by Phase GE if: I 
I I XAGHEDA or XAGHEDS not empty. I 
t---------+---------------------------------------~-------------~ 
I •• X. • ••• I Not used. I 
~---------+-----------------------------------------------------~ 
I ••• X •••• IPhase OC required. I 
I IBit set by Phase KA if program contains: I 
I I Any Compare. I 
I I string assignment. I 
I I Concat, And, Or, Not operators. I 
I I Bool built-in functions. I 
I I TRANSLATE. I 
I I CONV. I 
~---------+-----------------------------------------------------~ 
I .... X.··IPhase OX required. I 
I IBit set by Phase KA if program contains: I 
I I Complex built-in functions. I 
I I String pseudovariable or function. I 
I I REPEAT, HIGH, LOW built-in functions. I 
I I Compare - string or complex. I 
I I ConvErsions on strings. I 
I IBit set by Phase GA if program contains: I 
I I Complex variables. I 
I IBit set by Phase GM if program contains: I 
I I Complex constants. I 
t---------+-----------------------------------------------------~ 
I •..... X·IPhase SC required. I 
I IBit set by Phase SA if program contains: I 
I I Strings. I 
~---------+-----------------------------------------------------~ 
I ••••••• XIPhase IA required. I 
I IBit set by the XDIAG macro if: I 
I I NOCOMPILECqual.) parameter specified. I l _________ ~ _____________________________________________________ J 

~igure 3.3. Indications of XOPPHSl bit settings 

BASIC STRUCTURE OF A PHASE 

Each phase consists of one or more modules. A module is the smallest 
unit of the compiler that can be assembled individually, but a module 
cannot always be loaded and executed individually. This is only 
possible where a phase consists of a single module. The max~rnum size of 
a module is 28K-8 bytes, which is the size of the main storage area 
allocated as the phase area. Many modules Cand phases) in the compiler 
are smaller than 28K bytes. 

344 Licensed Material - Property of IBM 



Where a phase consists of more than one module, the first module is 
referred to as the root module, and all other modules are referred to as 
frQll=~~odule§. The-rQot module acquires all the working storage 
r~quired by all modules in the phase. In almost all cases, all the 
medules that comprise a phase are loaded together. The exception is the 
compile-time preprocessor phase (Phase CAl. For that phase, the root 
module and one non-root module are loaded together. The root module 
remains in main storage throughout execution,of the phase, but overlay 
segments containing other non-root modules are loaded to overwrite the 
nen-root module. 

The general format of a compiler module is shown in figure 3.4. The 
order of some of the items shown varies from phase to phase. Most of 
the items shown are self explanatory, but references to some of the 
macros used in compiler module assembly are explained below. 

r---------------------------------------------------------------------------, 
1. I comments describing the function of the module, (or phase if root modul~).1 

~---------------------------------------------------------------------------i 
2. I Private DSECT definitions, with comments. I 

~---------------------------------------------------------------------------~ 
3. I General compil~r DSECTS, invoked by 'COPY statements. I 

~---------------------------------------------------------------------------i 
4. I COpy statements providing general and private EQU definitions. I 

~---------------------------------------------------------------------------i 
5. I XBUG, setting the debugging level for the module. I 

~---------------------------------------------------------------------------i 
6. I USING instructions for module addressability. I 

~---------------------------------------------------------------------------~ 
7. I XINIT, to provide necessary initialization code, and a USING instruction I 

I for macro and private storage. I 
~---------------------------------------------------------------------------~ 

8. I Code, consisting of macro invocations, assembler instructions, and I 
I comments. I 
~---------------------------------------------------------------------------~ 

9. I XROUT, to provide macro subroutines as required. I 
.---------------------------------------------------------------------------i 

10. I XSTG, to provide storage required by macro subroutines. I 
~---------------------------------------------------------------------------~ 

11. I Private storage definitions required by the module (in the XSTG CSECT). I 
.---------------------------------------------------------------------------i 

12. I XENDSTG, to delimit all storage. I 
~---------------------------------------------------------------------------~ 

13. I END. I l ___________________________________________________________________________ J 

Figure 3.4. General format of a compiler module 

Item 8 in figure 3.4 refers to code consisting of macro invocations and 
assembler instructions. This is the area of code which performs the 
main functions of the phase. When the module is assembled, the 
invocation of many of the macros results in the generation of code 
inline. In cases where the function performed by the macro requires a 
large number of assembler language instructions, the minimum· amount of 
code is generated inline, together with a call to a uniquely-labeled 
subroutine which contains code to perform the function. At the same 
time, a flag bit is set in a global bit variable (GBLB) uniquely 
associated with the macro. This operation is performed at each 
invocation of a macro. 

Every module contains an invocation of the XROUT macro. The full 
expansion of this macro includes all the general subroutines called by 
other macros in the phase. The subroutine code is generated 
conditionally as a result of a. series of tests made on the GBLB 
variables set by macros invoked in the general code. If a particular 
GBLS variable is set, XROUT invokes a subroutine macro within itself, 
which in turn generates the subroutine called by the macro in the 
general code area. In most cases, the macro, the subroutine macre, the 
subroutine itself, and the GBLB variable, have similar or identical 

Licensed Material - Property of IBM section 3: Program Organization 345 



names. For example, one or more invocations of the XSRCH macro within a 
module (to search the dictionary for an entry identified by name) will 
set the GBLB variable &SRCH, and generate a call (or calls) to the XSRCH 
subroutine. When the XROUT macro is invoked, the assembly-time macro 
code generated will detect the setting of XSRCH and invoke the XSRCHR 
subroutine macro, which in turn will generate the XSRCH subroutine 
within XROUT. 

The XSTG macro is invoked to allocate all storaga required by macros, 
and read/write storage required by the phase. If the phase consists of 
a single module, the storage allocated by XSTG is a CSECT. If the phase 
consists of a root module and one or more non-root modules, the storage 
allocated by XSTG in the root module is a CSECT. storage allocated by 
XSTG in a non-root module is a DSECT within the root module CSECT, its 
offset from the CSECT origin being specified in the OFS rarameter. This 
enables the commoning of storage for macros invoked in more than one 
module within a phase. 

Use of the XBUG macro is described in the DIAGNOSTIC AIDS section of 
this manual. 

The module initialization macro, XINIT, is invoked once at the start of 
each phase. The format of the invoking statement is: 

symbol I XINIT I PAGEHDR= 

The optional keyword parameter PAGEHDR=, used for XOUT and XBREAK, 
specifies the address of the page header required to be put at the start 
of each page. The page header length is taken from the length specified 
for the constant or storage area given in this parameter. If the page 
header is not a Type-2 text table, this parameter is a 2-operand 
sublist, in ~hich the first sub-operand specified the header and the 
second sub-operand is 'NOT' - e.g., PAGEHDR= (HEADER, NOT). 

other initialization automatically performed by XINIT includes 
dynamically filling in the start and end of storage addresses in 
appropriate fields in XCOMM, saving the page-header address and length, , 
inserting the page size into the header, initializing the output stream 
if necessary, and initializing the trace information fields if operating 
in debugging mode. Many of these functions are performed by the XINIT 
subroutine generated by XROUT. 

346 Licensed Material - Property of IBM 



The following pages contain flowcharts for the individual phases of the 
compiler. Each flowchart is accompanied by a table that indicates the 
physical organization of the phase. Each table contains a list of the 
labels appearing on the main sections of code. Beside each label name 
is a type key, and a brief description of the function of the sec~ion of 
cede. 

The type-keys, appearing in the column headed "Type", have the following 
meanings: 

R routine s = subroutine T = table E = entry point 

Not~: A number of phases contain code sequences that are only executed 
in the os version of the compiler. This feature is indicated at 
appropriate places in the following tables. 

Licensed Material - Property of IBM Section 3: Program Organization 347 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+-~-------+---------+-----------------------------------------------------------~ 

IELOAA 

AAOOOO 
AA0204 
AA0208 
AA0212 
AA0216 
AA0220 
AA0224 
AA0229 
AA0300 

AA0400 
AA0500 
AA0600 
AA1000 
TTTT04 
AA4000 
AA4100 

AA4200 

AA4500 

TACNOO 
FPCNOO 
UDCNOO 
AA5700 
PECNOO 
AA6000 
STTAOO 
AA7000 
AA7500 
AA8000 
Y'IIME ••• 

IJGWZRZU 

CSECT 

R 
R 
R 
R 
R 
R 
R 
R 
R 

S 
R 
R 
S 
S 
R 
R 

R 

R 

s 
S 
S 
S 
S 
s 
S 
S 
S 
R 
T 

CSECT 

R9 

RF 

I 
I Initial entry point to the resident control phase (AA). 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Compilation initialization routine. 
Select spill algorithm on factor in XTEMP. 
Change text mask, and apply AA0204. 
Set text page count, and apply AA0204. 
Reset mask, and spill oldest text. 
Set dictionary page count only. 
Spill newest text. 
Apply factor to text and dictionary. 
Phase-loading routine, using AA0204 to AA0228 to select 
the optional page spill code. 
Scan the phase list in XCOMM for a specified phase. 
Compilation-end routine. 
Program interrupt-handling routine. 
Return control to a phase. 
Debugging routine to dump all page headers. 
Page-handling routine. 
Access a dictionary page identified by its dictionary 
reference. 
Get a dictionary page into core, when the page is known 
not to be in core. 
Obtain a new directory page. 

Search a list of page chains for a specified page. 
Search a list of page chains for the first page. 
Transfer a page from an UNMOVABLE to a MOVABL~ ch~in. 
Maintain the directory page chains. 
Add a page to the start or end of a chain. 
Spill file supervising subroutine. 
Save a re-usable track address. 
Provide a track address for a new page. 
I/O interface subroutine for the spill data set. 
Discard a list of text pages. 
Constants, save slots, and 2600 byte page buffer area 
(XMBUF). 

I LIOCS module for the spill data set. 
I 

IXCOMM CSECT RD I Communication area. I L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

348 Licensed Material - Property of IBM 



........................................................................................................................ 

START ROUTINE 
(COMPILER MAIN ENTRY) 

COMPILATION END 
ROUTINE 

AA0500 

•••• B1......... • ••• B2 ••••••••• · .. . 
• ENTR~ .-----]. ENTR~ • · .. . ••••••••••••••• • •••••••••••••• 

FROM:: 1\ jFROM: 
PHASE UA 1 FINAL PROCESSING 

----------> PHASE ... 
• • • B1 • AA0510 
•• ••••• C2 •••••••• •• 
•••• .CANCEL PROGRAM • 

• CHECK INTERRUPT. 

INTERRUPT 
HANDLING 
ROUrINE 

AA0600 

•••• 01 ••••••••• 
• • 
• ENTR~ • · . 
······1······ 

••• ··E1·.········ 
• • • SAllE REGISTERS • 
• AS AT INTERRUPT. 
• • • • 
········i········ 

... 
Fl •• .. .. 

NO •• ABORT DUMP •• 
---•• SPECIFIED? •• 

*. .* .. .. .... 
• ~ES 

.. 0680 I 
•••• ·G1·········· • • • PASS CONTROL TO. 
: PHASE AI : · . 

---::::::::1······ .. 

..... 81·········· · . 
:~gA~Ri~~~R~~~ : 
• MESSAGES • · . 
········l········ 

•••• J1 •••••• ••• · . 
r
---. EXIT • • • ••••••••••••••• TO: 

•••• PHASE UA 
•• (ERROR MESSAGE 
• 81 • EDITING PHASE) . . 
•••• 

• HANOLING • 
• ROUTINE • · . ................. 

I ... 
02 •• 

•• ANY·. 
•• MORE SOURCE •• YES 

•• MODULES TO •• ----­
·.COMPILE ?. .. .. .... 

i"' 
·····E2·········· • • • • • CLOSE ALL FILES • • • · . 
········l········ 

•••• F2.·· •• •••• • • • RETURN • · . ••••••••••••••• TO: 
OPERATING 
SYSTEM 

IELOAA 

.···AJ·.······· · . • ENTRY • • • ••••••••••••••• 
SYSTEM b~~~f.TING 1 

AA0010 
·····BJ·········· • • 
• IDENTIF~ • 
·COMMUNICATIONS • 
• AREA • • • ••••••••••••••••• 

MOOOO j 
••••• CJ •••••• •• •• · . • TIME START OF • 

-->. COMPILATION • • • • • 

Mo:~:""l""" 
• ••• ·DJ ••• ••••••• • • • LOAD THE • 
·INITIALIZATION • 
• PHASE (AE) • · . ••••••••••••••••• 

1 
•••• E3 ••••••••• · . • EXIT • • • . ............. . 

TO: PHASE AE 

PHASE LOADING 
ROUTINE 

AAOJOO 

•••• B4 ••••••••• · . • ENTRY • · . • •••••••••••••• 
g~~iLER j PROCESSING 
PHASE 

••• AA0200 
C4 •• • •••• C5* ••••••••• 

. * *. * ~ * 
•• PAGE RE- •• NO .OETERMINE BEST • 

..ORGANIZATION •• -------->.SPILL ALGORITHM* 
*. ONLY? •• .FOR NEXT PHASE * 

*. .• • * 

··I:~::-------------::::::::j········ 
AA0310 .*. 

04 •• • •••• 05 •••••••••• 
•••• .PASS CONTROL TO • 

..INTERPHASE •• YES • PHASE AI FOR • 
•• DUMP REQD? •• -------->. INTER PHASE * 

•• •• • DUMP • 
*..* * * 

··i:~:--------------::::::::j········ 
AA03JO ••• 

E4 •• • •••• E5 •••••••••• .... . . 
•• DICT RE- •• YES • ADD UNMII DICT • 

..ORGANIZATION •• -------->. PAGES TO MIIBL • 
•• REQD? •• .OICT PAGE CHAIN. 

*. . * • • .. .. . ............... . 
I<::-------------------J AA0350 ••• 

F4 •• • •••• F5 •••••••••• 
•••• • ENSURE 1ST • 

..NEXT PHASE .0 YES .DIRECTORY PAGE. 
•• USES DICT? •• -------->. IS IN MAIN * 

*. .* * STORAGE * .... . . 
··l:~:--------------::::::::j········ ... 

G4 .0 ..•.. G5 •••••••••• 
•• TEXT •• • • 

• • PAGE •• YES • ADD UNMV TEXT • 
•• REORGAN- 0.-------->. PAGES TO MVBL • 

*. IZATION .* .TEXT PAGE CHAIN* 
•• REQD?. • • 

··l:~:--------------:::::]········ 
. .. 

H4 •• • •••• H5 •••••••••• .. .. . . 
•• PAGE RE- •• NO • LOAD NEXT • 

•• ORGANIZATION •• -------->. PROCESSING • 
•• ONLY? •• • PHASE • .... . . 

AA1000 

.'j.';ES ········1········· 

.... J4......... . ... J5 ........ . · .. . 
• RETURN. • EXIT • • •• • ••••••••••••••• • •••••••••••••• TO: CURRENT TO: 

PROCESSING NEXT 
PHASE PROCESSING 

PHASE 

Chart 3.1. (Part 1 of 2). Resident Control Phase (Phase AA 

Licensed Material - Property of IBM Section 3: Program Organization 349 



PA.3E HA.NDLING 
RJUTINE 

M4000 

****B1 ********* 
* * * ENTRY' * 
* * *************** 

FROM: 1 PRO:::E:SSIN3 
PHA.SE 

A.A.4005 UDCNOO 
* ** * *:::1 **** ****** *****:::2******* *** 
* IJENTIFY PAGE * *ENSURE THAT MAX* 
* CHA.IN SEA.R:::H * * NO. OF UNMV * 
* SE:QUENCES FOR * *DICT PA3ES WILL*-----------------, 
: rHE RE~D PA.GE : :NOT BE EXCEEDED! 

***************** ************.*.** 

"'009 .1. I ,.S AA6000 
01 *. D2 *. *****D3********** 

.* *. .* *. * * 
.* ~EN JR *. NEN .* DICT PAGE *. NO * GET REQUIRED * 

*.EXISTIN3 PA.GE.*-------->*. REQUIRED? .*-------->*PA.GE INro MAIN * 
*. RE~D? • * 1\ * • • * * STORAGE * 

*. * *..* * • 
••• * * •• * ***************** 

TA.:::NOO 

* * 1 j
EXISTIN3 

*.***E1**.*.***** *****E3********** 
* * * * * SEA.RCH FOR * * GIVE PAGE * 
* E:XISTIN3 PA.3E * *REQUIRED STATUS* 
*IN MA.IN STORAGE* * * *. * * ***************** ***************** 

.1. ..cooo 1 
F1 *. *****F3******.*** 

. * *. * * 
.*PA.GE FOUND *. NJ *ADD PAGE TO THE* 

*. IN CORE? .*----- -->* CORRE:::T CHAIN * 
*. • * * * 

*. * * * *. • * ***************** 

* ll'ES 1 
•• '2l2 •• ".! ....... . 

* * ****G3********* 
[J~:::HA.I~ THE * * 

PA.GE * RETURN * 
* * * * * *************** 

***********.*.*** TO: 

PHASE j 
CALLIN3 

. *. 
H1 *. *****H2******* •• * 

•• DICT. •• *BNSURE THAT MAX. 
.• PA.GE CHAIN •• YES • NO. OF UNMV • 

•. ~A.INTENA.N:::E . *-------->*JI:::T PAGE:S WILL. 
*. REQD.* *NOT BE EXCEEDED* 

•. ?. * • 

··i:~:--------------::::::::j········ 
A.A4060 .*. 

J1 *. *** •• J2.*** ••• * •• 
.... *. * ... 

. * PA.GE 1/0 *. YES * CHECK FJR I1J • 
*. ItiICJMPLETE? • *-------->. C01>1PLETION 

.... . * * 
*. • * * * 

··i:~:--------------::::::::j········ 
*.***K1.**.****** 
* * *COMBINE OLD AND* 
.NEN PA3E STA.TUS*-------------------------------. . 
• * •••••••• *.******. 

SPILL SUPERVISING 
ROUTINE 

AA600 

****B4*.**.**.* 
* * * ENTRl( * 
* * ******* •• ***.** 

FROM: 1 PROCESSING 
PHASE 

FSCNOO 
*****C4********** 
* * *FIND BEST SPILL. 
• CANDIDATE • 
* * * * **.* ••• * •• * •• **** 

I 
•• ···D4·*·**····* 
* * * UNCHAIN THE * 
• PAGE * 
• * • • ******.***.****** 

1 
.*. AA7700 

E4 *. *****E5**.****** • 
• * IS *. * * 

.* STATUS OF *. YES * WRITE OUT THE * 
*. SPILL CAND ••• -------->*SPILL CANDIDATE* 

·.READ/WRTE.* * * 
•• ? •• * * 

··i:~:--------------:::::]········ 
. *. F4 •• 

. * * . .* NEW OR *. NEW 
*. EXISTING PAGE. *----------------­*. REQD? • * 

*. . * 
* •• EXISTING 

* 

1 
.* . 

G4 *. . * IS *. 
NO • * STATUS OF *. 

---*. SPILL CAND •• * 
*.DISCARDED.* 

*. ? • * * .. $ * YES 

AA7200 1 
*****84*.*·**** •• 
* * * SAVE TRACK • 
* ADDRESS OF * 
*DISCARDED PAGE * 
* * ** •• **.* •• *** •••• 

:::::---->1 
**·.*J4*.*** •• * •• 
* * • READ EXISTING • 
*PAGE INTO MAIN * 
* STORAGE * 
* * ***************** 

I 
****K4********* 

* * * RETURN * 
* * *************** 

TO: 
CALLING 
PHASE 

AA6100 
*****G5********** 
* * * RESET PAGE * 
: HEAD~R : 

* • 
***************** 

j 
.* . 

H5 *. 
.* IS *. 

l(ES .* STATUS OF *. 
---*. SPILL CAND •• * 

*.DISCARDED.* 
*. ? .* 

* .• * * NO 

AA1000 1 
*****J5********** 
* * *GET A NEW TRACK* 
* ADDRESS * 
* * * * 

---::::::::1···· .... 

****K5********* 
* * * RETURN * 
* * *************** 

TO: 
CALLING 
PHASE 

Chart 3.1. (Part 2 of 2). Resident Control Phase (Phase AA 

350 Licensed Material - Proper~y of IBM 



Initialization Phase (Phase AE) 

r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I \ registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOAE 

AE0010 

AE2000 
AE0040 
PROCOPS 
AE4000 
AE4260 
AE5000 

\AE5200 
AE5400 
AE5600 
AE6000 

AE7000 

ARGNUM 

ERRSPC 

OPARG 
OPTAR 
SZEPR 
DMPSCN 
FNDICT 
DYSTPR 

XPRNTN 
XPRNT 

IJJCPDON 

CSECT 

R 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

R 

s 

s 

S 
S 
S 
S 
S 
S 

CSECT 
E 

CSECT 

I 
I 
I 
I 
I 
I 
I 
\ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

R8,R9, 
RB,RC 

I R9 
I 
I 
I RF 
I 

Entry pOint to Phase AE. 

Perform preliminary initi~lization of XCOMM, and register 
initialization. 
open the input and print files, and initialize partition. 
Perform remaining initialization of XCOMM. 
Process the compiler options. 
optionally open and initialize the punch and load files. 
Batch processing routine. 
Determine page space availability and hence page size. 
Initialize and open the spill data set. 
Initialize the page spaces. 
Initialize the dictionary tables in XCOMM. 
Pass information identifying the interrup~-handling 
routine to the operating system. 
Determine the next phase to be loaded and return control 
to the phase loading routine in AA. 

Subroutines used by PROCOPS: 
Calculate values of option arguments written in the form 
(Al,A2). 
Diagnose an incorrect option specification, and continue 
scan. 
Check parenthesis level for an option. 
Process the optimization option. 
Scan the SIZE option. 
Scan the DUMP option. 
Analyze the dictionary type of a character string. 
Process the DYSTMT option. 

Print-file subroutine. 

LIOCS module for input and print data sets. 

IXSTG CSECT \ RA I Private storage for Phase AE. l _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM Section 3: Program Organization 351 



IELOAE 

FROM: 

····A2········· • • 
• ENTRY • · . ............... 

PHASE AA 

1 ... 
B2 •• 

•• IS rfHS •• 
NO •• THE FIRST •• 

-----------------.. MEMBER OF A •• 
•• BATCH? •• .. .. .. .. 

• YES 

,,"0000 1 
·····C2·········· 
• SET UP • 
• ADDRESSES OF • 
• CON'rROL PHASE • 
• ROUTINES IN • 
• COMM. AREA • ••••••••••••••••• 

A.2000 1 
••••• 02· •• • •••••• · . • OPEN THE INPUT • 
• AND PRINT FILES. · . • • ................. 

AEOO<O 1 

• •••• B4 •••••••••• 
•••• • ALLOCATE • 

• • • STORAGE FOR • 
: B4 :---->:AND L~ftf~EDUMP : ..... . 

• •••••••••••••••• 

AE5000 1 
••••• C4 •••••••••• 

•••• • CALCULATE THE • 
• • .SPACE AVAILABLE. 
• C4 .---->. FOR PAGES AND • 
• • • THE PAGE SIZE • ..... . 

• •••••••••••••••• 

AE5200 1 ·····04 ......... . • • .OPEN THE SPILL • 
• FILE • • • • • 

AE5:::····r···· .. 

••••• E1.......... • •••• E2 •••••••••• ·····E4·········· • • .CHAIN THE PAGES. 
• REINIrIALIZE •• • 
.. rHE • .INITIALI ZE THE • 
·COMMUNICArIONS ._----1 ·COMMUNICATIONS· ---------------->.IN MAIN STORAGE. 
• AREA. • AREA • • •• • ••••••••••••••••• • •••••••••••••••• 

:::::::--->1 
••• ·.F2·········. · . • PROCESS 'rHE • 
• COMPILER • 
• OPTIONS • · . ................. 

A"OOO 1 
·····32·········· · . • OPEN THE PUNCH • 
• AND LOAD FILES • 
• IF REQUIRED • • • ................. 

1 
••• AE4272 

H2 •• • •••• H3 ••••••••• 
•• IS THIS.. .RECORD NUMBERS. 

•• THE FIRST •• NO • OF RECORDS/ • 
•• MEMBER OF A •• -------->.TRACK & rRACKS/. 

•• BATCH? •• • CYLINDER ON • 
•• •• .SPILL DATA SET • .. .. . ............... . I YES 

... 
J2 •• 

•••• ..IS DUMP.. • ••• 
• • YES.. OPTION •• NO • • 
• B4 .<----•. SPECIFIED? •• ---->. C4 • .. .. .. .. .... .... . ... .. .. 

• 

Chart 3.2. Initialization Phase (Phase AE) 

352 Licensed Material - Property of IBM 

· . • • • •••••••••••••••• 

AE5'" ! ·····F4.·· •• • •• •• 
• SET UP THE • 
• DICTIONARY • 
• TABLES IN THE • 
·COMMUNICATIONS • 
• AREA • • •••••••••••••••• 

AUOOO 1 
·····G4·········· 
.PASS ADDRESS OF • 
• INTERRUPT- • 
• HANDLING • 
• ROUTINE TO • 
.CONTROL SYSTEM • . ............... . 

AE7000 1 
·····H4.· •••••• • • 
• DETERMINE THE • 
.NEXT PROCESSING • 
• PHASE TO BE • 
• LOADED • • • 
········1········ 

• ••• J4 ••••••••• · . • EXIT • • • . ............. . 
TO 
~~~S~RBh 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+---------------------------------------------------------- I 
IELOBA CSECT R8,R9 Entry point to Phase BA. I 
BA2020 R Search for first valid character of 48-character symbol. I 
BA2l40 R Search for valid second character of 48-character I 
BA2220 R) I 
BA2230 R ) Routines for checking characters following a valid 
BA2240 R ) 48-character combination. Appropriate routine is 
BA2250 R ) selected by TRT on result. 
BA2260 R ) 
BA3000 R Decide where to continue scan of buffer if char 

BA3l00 R 

BA4000 R 
BA4l00 R 
BA6000 R 
BA6040 S 

BA7000 R 
BA7040 S 
BA8004 R 
BA8010 R 

BA9000 R 

TR~l T 
TRT2 T 
TRT12 T 

TRTD T 
TRT60 T 

TRTQ T 
TRTC T 
TREBCDIC T 
REPO T 

XINIT CSECT 
XMESGR CSECT 
XOUT CSECT 
XOPGE CSECT 
XMESGI CSECT 
MESGE CSECT 
XBREAK CSECT 
XBREAK2 CSECT 
XOUT2 CSECT 

pair not valid. 
After alphabetic characters which are not par~ of a 
48-character symbol, look for delimiter at end of 
identifier. 
Replace 48-character symbol by 60-character version. 
Entered when 48-character symbol spans two records. 
Deals with quotes. 
Branched to from BA6000 if quote is in last byte of 
record. 
Deals with comments. 
Branched to from BA7000 if * is in last byte of record. 
output 60-character record. 
Entry point for initial read. Read next 48-charac~er 
record, translate to EBCDIC if necessary, output 
48-character record. 
End phase processing. 

TRT table for valid first character, quote, or LCA. 
TRT table for valid second character, quote, or LCA. 
TRT table for valid first two characters of 48-character 
symbol. 
TRT table for valid delimiter. 
TRT table for 60-character symbol and associated 
information. 
TRT table for quote only. 
TRT table for '*' at end of comment only. 
BCD-to-EBCDIC translation table. 
Table of 60-character symbols and associated lengths. 
Accessed by TRT60. 

) 
) 
) 
) 
) XROUT 
) 
) 
) 
) 

IXSTG CSECT Private storage for Phase BA. L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM Section 3: Program Organization 353 



IELOBA 

•••• A1········· • • 
···A2··········· 

READ RECORD 

• E~TRY .--------> • FROM I~PUT 
FILE INTO 
COMPILER 

INPUT BUFFER • •• ••••••••••••••• 
FROM: 
PHASE EA 

Chart 3.3. 

. .............. . 
1 

···B2··········* 
READ RECORD 

.FROM COMPILER. 
INPUT BUFFER 

INTO DATA * 
BUFFER 

wo~~::~:~~:l;~~~~~::-------------------------------------------------------'-------------------------1 • MOVE 1 BYTE • 
• FROM DATA • 
• BUFFER TO WORK • 
• BUFFER • • • •••••• * •••••••••• 

1 
••••• 02·········· 
• LOWER CASE TO • * UPPER OUTSIDE • 
• COMMENTS OR • 
• QUOTES • • • •••••••••• ** ••••• 

I ... 
E2 *. .. .. 

•• END OF THIS •• YES 
•• DATA BUFFER ? .--------> .. .. . 

. .. 
••• E3........... E4 •• 

READ NEXT •• * • 
• RECORD INTO • •• IS WORK •• NO 

NEXT DATA --------> •. BUFFER FULL ? .---
BUFFER •••• .. .. .. .. • ••••••••••••••• 

.. . . . ... 
l<::---------------------------------------------J 

YES 

WORKGET2 ••• MATCH1 ••• 
F2 •• F3 •. • •••• F4 •••••••••• .... .... . . 

•• INSIDE •• ~O •• INTERESTING •• YES • REPLACE BY • 
•• COMMENTS OR •• -------->.. CHARACTER •• -------->. CHAR60 • 

•• QUOTES ? •• • • STRING ? •• • EQUIVALENT • .... .... . . .. .. .. .. . ............... . 
WO,.,"" i<:::---------------------I-::----------------------I 

.· .. ·~2.········· • MOVE 1 BYTE • 
• FROM WORK • 
: BUFF~~F~~R DATA : <--------------------------------------------------------------------, · . ••••••••••••••••• 

1 _ 
• • • ••• WORKPUT2 • • 

H2 •• • •••• H3 •••• **.... H4 •• H5 •• .• *. • • .••. ..MORE TO •• 
•• I;:ND OF THIS •• YES • OUTPUT CHAR48 • •• WAS THIS •• NO •• MOVE FROM •• NO 

•• DATA BUFFER ? .-------->. AND CHAR60 .-------->.. THE LAST •• --------> •. WORK BUFFER? •• ---
•• •• • VERSIONS. •• RECORD ? •• 1\ •• •• •. .'" • • •..• 1 •. .• .. .. ................. .. .. .. .. 

1 NO 1· YES ! ::.! · 
•••• • ••• · . • a5 • BAEND • • •••• • ••• J4 ••••••••• · . • EXIT • · . ••••••••••••••• 

TO 
PHASE Ell. 

48-character Preprocessor (Phase·BA) 

354 Licensed Material - Property of IBM 



Compile-time statement PreErocessor (Root Module CAl 

r---------T---------T---------T-----------------------------------------------------------, I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOCA 
ROOTPH 
INIT 

DISCTR 
BCKUPl 
BCKUP2 
COMENT 
COMEND 
NUNFRE 

HASH 

INPUT 

UPNEWL 

GNC 

GNCF 

OUTPUTC 

ENDIVB 

SRHDIC 
TOKSCN 

TKSCNS 
S~RING 

S~RrNG 

STRNGD 
SKPSTR 
INRD 

LISTER 

LISTER2 

CSECT 
S 
R 

R 
R 
R 
R 
R 
E 

R 

R 

R 

R 

E 

R 

E 

R 
R 

E 
R 

E 

E 
E 
R 

R 

E 

R9 
R9 
R9 

R9 
R9 
R9 
R9 
R9 

R9 

R9 

R9 

R9 

R9 

R9 
R9 

R9 

R9 
R9 
R9 

R8 

R8 

I 

Entry point to root module CA. 
Load initialization module and pass on control. 
Perform interphase initialization and control. Load 
sub-phases CB and CC. 
Enter a TTR into a list maintained in XSTG. 
Back the input cursor 1 byte. 
Back the input cursor 2 bytes. 
Read and print comments. 
Read and delete comments. 
Entry point in routine GETIVB for when there are no free 
rVBs and a new one is ge~erated in the preprocessor 
variables dictionary. 
Produce a 7-bit index which, when added to the base of thel 
hash table, identifies the particular slot in the hash 
table to be searched for the EBCDIC name being hashed. 
Read in an input record either from the source data set or 
from included text. Translate to EBCDIC if necessary and 
calculate the beginning and end of significant text. set 
margin indicators if required via subroutine AGUT1. 
Called when an update linecount character is encountered. 
Puts the new line count into XNEWLIN which is a temporary 
linecount buffer. 
Step up input cursor to point to the next character in a 
particular input stream. 
Special entry point for when routine GNC is called from 
routine FINDPC. 
output a single character into one of the three output 
media: IVB, text block, or external record. 
Entry point in routine OUTPUTC used to close out an IVB 
chain and insert the end of IBV mark and count. 
Search the dictionary for the presence of a named item. 
Examine text, character by character, recognizing and 
returning each token. The routine handles the 
peculiarities of the 48-character set, the existence of 
line numbers in the text, and the existence of compressed 
blanks. 
Special entry point to routine TOKSCN. 
Scan the limits of a string constant and outPUt according 
to entry pOints detailed below. 
Scan and output the string unchanged. 

Delete one layer of quotes. 
Skip over a string. 
Read from the %INCLUDE file one record at a time using th~ 
special DOS system macro DTFSL. 

Second section of Root Module CA. 
Output source in lieu of the XBUF macro because the 
listing control statements %SKIP and %PAGE require that 
the line is printed after processing. This fact and the 
interpretation of %SKIP mean that a check has to be kept 
on the current number of lines in the page. 
Entry point to routine LISTER. Used when it is required 
to skip a given number of lines on the current page, or to 
leave a count which forces the next call ~o LISTER to 
start a new page. 

Continued on next page 

Licensed Material - Property of IBM Section 3: Program Organization 355 



FREVAL R 

GETIVB R 

ASKEY T 

R8 

R8 

Release a chain of IVBs containing a no longer needed 
value, and return the chain to a free-list. 
Remove an IVB from the free-list for use by tne calling 
routine. 
48-character keyword table used in routine TOKSCN. 

XINIT CSECT R9 ) 
XMESGP CSECT R8 ) 
XMESGR CSECT RF ) 
XRFSEQ CSECT R9 ) XROUT - Held in root segment for COffirron 
XRFAB CSECT R9 ) use by Root Module CA and 
XDIREC CSECT R9 ) sub-phases CB and CC. 
XDSTAT CSECT R9 ) 
XPRNTN CSECT R9. ) 
XTXPG CSECT R9 ) 

IXSTG CSECT RA Private storage for root module CA. I L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Func~ion 
I I I registers I . 
~---------+---------+---------+----------------------------------------------------------
IIELOCAl I CSECT I R8 I Entry paint to sub-phase CAl. 
IM~AB I T I I Translate table. 
IWWEBCDIC I T I I EBCDIC to BCD translation table. 
IWWBCD I T I I BCD to EBCDIC translation table. 
I KYITAB I T I I Keyword table. 
I KY2TAB I T I I Keyword pointer table. 
I I I I 
IXSTG I DSECT I RA I Private storage for sub-phase CAl - storage in Root Module 
I I I I CA. L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

356 Licensed Material - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------1 
I Name I Type I Base I Function I 
I I I registe:rs I I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOCB CSECT 
PH1SCN R 

PH1EOF E 

STMNT E 

llA2 R 
DONE R 

DONE2 S 

CLSTHN S 
REFSTK S 
DO R 
DTEST T 

PARSE R 

XACLSTR 'I 
XAOPRES T 
XAOPCD T 
XATRAN2 T 
XATRANl T 

IELOCBO CSECT 
INCLUD R 
LABELS R 
GOTO R 
ACT R 
ELSE R 
ELSUB S 

IF R 
PAGE R 
SKIP R 

CNTRL R 

DOTEST T 

XSTG DSECT 

IELOCBl CSECT 
PUSHV R 

POPV R 

ADCONS R 

R8 
R8 

R8 
R8 

R8 

R8 
R8 
R8 

R8 

R8 
RB 
R8 
R8 
R8 
R8 
R8 

R8 
RB 
RB 

RB 

RA 

R8 

Entry point to module CB. 
Move te~t into text blocks until a compile-time statement 
is found and encode the statement into tht instrument set. 
Entry pOint to rou~ine PH1SCN for unexpected 'end-of-file' 
from other routines. 

Entry pOint to identify statemen~ type, ana build ~he 
label list. 
Process and stack THEN and ELSE clauses. 
Close out compile-time statements and destack THEN and 
ELSE clauses. 
Test where to go on completion of the statement and return 
any non-empty label list. 
Close THEN and ELSE clauses. 
Get dictionary entry for variable on the top of the push 
DO statement processor. 
contains the prototype for the XCODE to test for tne cnd 
of the do-loop. Used by routine DO. 
Check syntax of and generate code for compile-time 
expressions. The following tables are all used by this 
routine. 
Token class translation table. 
Precedence table. 
operation XCODE table. 
Transfer table if preceaed by operator. 
Transfer table if preceded by operand. 

Second section of module CB. 
INCLUDE statement processor. 
Process and check the LABEL list. 
GOTO statement processor. 
ACTIVATE and DEACTIVATE statements processor. 
ELSE statement processor. 
Locate the dictionary entry for the variable at the top of 
the push-down stack and insert the current value of the 
output pointe:r. 
IF statement processor. 
Handle the listing control markers %PAGE and %SKIP. 
Insert special markers into the output stream so that on 
the second scan the same markers may be output, for the 
benefit of Phase EA. Also format INSOURCE. 
Insert special marker into text. No insource format 
action. 
Contains the prototype for the XCODE to test for the end 
of the do-loop. Used by routine DO. 

Private storage for module CB - storage in Root Module CA. 

Entry point to module CB1. 
Move up to next slot on push-down stack and check if it is 
above the top. 
Move down to next slot on push-down stack and check if it 
is below the bottom. 
Obtain the dictionary reference of a constant, enter it 
into the dictionary if necessary. 

continued on next page 

I 
I 

Licensed Material - Property of IBM Section 3: Program Organization 357 



IADDSP 
IADICT 
I 
I EOFCHK 
IPROCHK 
DELETE 

CMASCN 

SMISCN 
PRSCN 
FINDPC 

RQRPC 
EATAB 
IDSRCH 

KYWDSR 

OPNIVB 
CLSIVB 
OUTDIC 
TOKEN 

TKTAB 

TRMIVB 
RMVCHK 
OPNLAB 
ATRCHK 
RDIVB 

FINIVB 
UPDLIN 
ASSIGN 
RETURN 

XSTG 

IELOCB2 
TTTOP 

DECLAR 

D1D3A 
D1F3 
D1G2 
D2C3A 
D2Cl 
D2K3 
D2H3 
D2H4 
PROC 
END 

IXSTG 

R 
R 

S 
S 
R 

E 

E 
E 
R 

E 
T 
R 

R 

R 
S 
R 

R 

T 

R 
R 
R 
R 
S 

S 
R 
R 
R 

DSECT 

CSECT 
R 

R 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

DSECT 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

RA 

R8 

I RA 
I I 

Add a preprocessor-generated item to the dictionary. 
Add a named item to the end of the appropriate hash chain 
and return the dictionary referenCe. 
Process undefined labels in the outer block of code. 
Process undefined identifiers in a procedure. 

I 
I 
I 
I 
I 

Skip over bad text up to the end of a statement, field, 
procedure. 

orl 

Entry point to routine DELETE, to find comma or semicolon 
and skip if comma. 
Entry point to routine DELETE, to find semicolon. 
Entry pOint to routine DELETE, to find end of procedure. 
Scan source text, character by character, searching for a 
% character. until this is found, characters are placed 
into text blocks. 
Initial entry point to routine FINDPC. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I Type processing offset table. Used by routine FINDPC. 

Obtain the dictionary reference of an identifier, entEr 
into the dictionary if necessary. 

i~1 

Determine whether the current token is one of a selected 
group of keywords. 
Set up output pointers to IVBs. 
Restore output pointers to original state. 

I 
I 
I 
I 
I 
I Put out code for compile-time action on variables. 

Handle unwanted tokens for routine PH1SCN <module CB> 
output diagnostics for tokens in error. 

and I 

Token type and routine offset table. 
TOKEN. 

Used by rout~ne 

Move text saved into the output stream. 
Remove a dictiunary entry from the check list. 
Provide the next label on the LABEL list. 
Check for attribute conflic~ion and consistency of use. 
Save the current status and position of the scan pOinter 
to allow IVBs to be read. 
Restore current status and scan pointer position. 
Generate an update line count instruc~ion. 
Assignment statement processor. 
RETURN statement processor. 

Private storage for module CBl - storage in Root Module 
CA. 

Entry point to module CB2. 
Transfer to routine on XCODE value - used by DECLAR. 
routine. 
DECLARE statement processor. 

The following routines are used in the 
Left factoring parenthesis routine. 
Right factoring parenthesis routine. 
Checks validity of identifier. 
Declared identifier routine. 
Comma routine. 
Stack maintenance routine. 
Builtin routine. 
Entry routine. 
PROCEDURE statement processor. 
END statement processor. 

DECLAR routine: 

Private storage for module CB2 - storage in Root Module 
CA. 

I 
I 
I 
I 
I 
I 

L _________ ~ _________ ~ _________ ~ __________________________________________________________ _ 

358 Licensed Material - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------, I Name , Type , Base , Function I 
I I Iregisters, I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOCCD 

DOSDTF 

IELOCC 
OUTPUT 
SRTNEW 
ENDNEW 
SYNCH 

CONVRT 

ZACOP 
GETDIC 

PH2SCN 

DABTAB 
DAOTAB 
TPEEK 
INCONT 

XSTG 

IELOCCl 
INTPRT 

IZATRV 
CHKPDS 

ADINVK 
CHKLST 
POPSTK 
ZAGET 
ZAPUT 

ZALGCL 
ZACOMP 

ZARITH 
ZATRAN 

ZATRAC 
ZAASSIGN 

VALCHK 
PUSHSTK 
ZARTN 
ZACVT 

I , I , 
I I I I 

CSECT 

CSECT 

CSECT 
R 
E 
E 
S 

R 

R 
R 

R 

R 
T 
R 
R 

DSECT 

CSECT 
R 
T 
R 

S 
R 
R 
R 
R 

R 
R 

R 
R 

R 
R 

R 
R 
R 
R 

, RF I This CSECT is inSerted for DOS in order to branch to , 
I , routine PH2SCN. , 
, RD I This special macro DTFSL is included here at its logical , 
, ,place. However, the linkage editor is used to make the , 
I I CSECT generated part of the next phase overlay. The , 
I , function of DTFSL is to retrieve books from the sourC5 , 
1 , statement library. , 

R8 I Entry point to module CC. I 

R8 

I Handle output of tokens. I 
I ) Entry points for routine OUTPUT. Initialize , 

) and close replacement values respectively. , 
Check if line count has changed and close out current , 
buffer if it has. , 
Handle conversion between three datatypes used in the , 
preprocessor. 
Transfer contents of IVBs one to another. 

I , 
Locate a dictionary entry for a variable with reference 
text, perform some error checking on the entry, handle 
indirect references, and return both the relative and 
absolute addresses of the entry. 

in' , 

Scan the text output by the first scan, perform 
replacements, and pass control to the interpreter when 
compile-time text is found. 
Branch offset table. Used by routine PH2SCN. 
Branch offset table. Used by routine PH2SCN. 
Check procedure reference argument list for syntax. 
Initialize %INCLUDE dataSet. 

I , , 
I 
I , 
I 
I 
I 
I 

Private storage for module CC - in storage Root Module CA., 

Entry point to module CC1. 
Interpret compile-time code generated by the first scan. 
Interpreter transfer vector. 
Resolve indirect references on the top of the push-down 
stack. 
Set up argument list and invoke a procedure. 
Process arguments being passed to invoke a procedure. 
Remove one item from the top of the push-down stack. 
Act as two-stream input. 

, , , , 
I , , 
I 
I 
I 

output, via routine OUTPUTC (root 
character for logical operations. 
Process all logical operations. 
Process all comparison operations 
'false' result. 

module CA), the result I , 
I 

and produce a 'true' or I 

Process all arithmetic operations. 
Consists of two transfer operations: transfer, and 
transfer on false. The effect of a transfer is to cause 
the interpreter to alter the location from which it 
obtains an encoded operator. 
Execute a user-requested GOTO after checking its legali~y. 
Assign a new value to an identifier. If necessary, the 
old value is disposed of. 
Check item to be added to FUsh-down stack. 
Add item to push-down stack. 
Request a return from a procedure. 
Convert a stack item to the type required by the RETURNS 
attribute. 

continued on next Fage 

Licensed Material - Property of IBM Section 3: Program Organization 359 



IZARTNS 
I 
ZAABORT 
ZACONCAT 
CATFUT 
ZAPAGE 

ZASKIP 
ZACNTRL 
XSTG 

IELOCC2 
PH2SCN 

FUNCTN 

FUNCN2 

ZJSUBS 

ZJLENG 

ZJINDX 

ZJIGNC 
CHEXAR 

LOCIVB 
CLOUT 

CLSBUF 
PUNCH 

PUNTAB 
TEMP NT 

E 

R 
R 
S 
R 

R 
R 
DSECT 

CSECT 
~ 

R 

E 

R 

R 

R 

R 
R 

S 
R 

E 
R 

T 
R 

RA 

R8 

Entry point to the routine ZACVT to return conLrol to the 
final scan. 
Terminate processing on request. 
Concatenate two strings. 
Used by subrouLine ZACONCAT to get new IVB. 
Interpret the listing control statements %PAGE, %SKIP, and 
%CONTROL. 

Private storage for module CCl - storage in Root Module 
CA. 

Entry point to module CC2. 
Entry point to CSECT IELOCC2. The starting point for the 
final scan. 
Direct invocations of built-in functions to the 
appropriate invoked routine. 
Entry paint to routine FUNCTN from routine INTPRT (module 
CC1). 
Unstack SUBSTR function arguments, convert, and perform 
validity checks. 
Unstack and check arguments for the LENGTH function, 
perform validity checks, and return fixed item to top of 
push-down stack. 

Check arguments to INDEX function and return the fixed 
decimal result to the top of the push-down stack. 
Scan second input stream to implement the INDEX function. 
Check that a built-in function has not been passed too 
many arguments and remove any excess ones. 
Obtain an IVB from the preprocessor variables dicLionary. 
Close output buffer and output record to SYSUTl in text 
pages. Normally invoked via the entry poinL CLSBUF from 
routine OUTPUT (module CC) or OUTPUTC (root module CAl, or 
on an unrecoverable error. 
Entry point to routine CLOUT. 
Test if MDECK option is specified. If so, punch onto 
SYSPCH the last record put onto SYSUTl by routine CLOUT. 
EBCDIC to BCD translation table. 
Terminate compile-time processing and pass control to the 
next phase. If there are no diagnostic messages, Phase EA 
is called. Otherwise Phase CE is called to print the 
messages. 

XROUT for module CC2 (not used by any other phase, so heIdi 
locally). I 

I 
IXSTG DSECT RA Private storage for module CC2 - storage in Root Module I 
I CA. I L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

360 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

IELOCA 
81----..... 

ENTRY 

FROM: 
PHASE AE 

B2 ____ .... 

INITIALIZE STORAGE, 
OAT A SETS ETC. 

CB C2 3.4(2) 

INITIAL SCAN 

02 ....... ;.......--.... 

USE CB TO PROCESS 
INPUT AND PRODUCE 
MACRO TEXT 

E2 ....... ----, 

TURN THE INCLUDE 
SWITCH OFF 

FINAL SCAN 

G2----;.......--.... 

USE CCTO 
PRODUCE OUTPUT 
FROM MACRO TEXT 

J3 ----
EXIT 

TO: 
PHASE CE 

IChart 3.4. (P art 1 0 f 3). Compile-time Statement Preprocessor (Sub-phase CA) 

Licensed Material - Property of IBM Section 2: Method of Operation 361 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

IELOCS 
Al ----..... 

FROM: 
ROOT MODULE CA 

FINDPC A2 ____ -., 

WRITE OUT 'MACRO 
TEXT' OPERATOR 

IDENTIFY TYPE OF 
STATEMENT. ENTER 
ROUTINE 

F2......l11:...... __ --. 
TYPICAL ROUTINE 

EXTRACT THE NEXT 
IDENTIFIER 

H2------, 
WRITE OUT CODE 
FOR STMNT. AS 
OPERATOR AND DICT· 
IONARY REF. PAIRS 

YES 

DONE 

TO; 
ROOT MODULE CA 

ADICT G3 ____ .." 

IChart 3.". (Part 2 of 3). Ca.pile-time Statement Preprocessor (Sub-phase CB) 

362 Licensed Material - Property of IBM 



IELOCC 
** * * *A2** * * * ** ** * 

••• *A1********* *TClKS:::N * **** 
* * *-*-*-*-*-*-*-*-* * * 
* E~TRY *-------->* 3ET THE NEXT *<----* A2 * 
* * A *ITEM (IVa ClR CB* * • 

***.>1"********** 1 * OUTPUT) * **** 
FROM: *oo**oo**oooo*******oo 
ROClT MODULE CA *** 1 

* * * "2 * 
* * ***'* 

.*. .*. ClUTPUT 
B2 oO. B3 '*. *'**'**B4**'***'**'*'** 

• * *. • '* '*. '* * .*IDENTIFIER oO. YES .'*ACTIVE CTP '*. NO '*OUTPUT ITEM FOR'* 
*. FOUND? .*-------->*. VARIABLE? .*-------->* PRINTING BY '* 

*. .oO '*. .* A '* PHASE EA * 
*. • '* '*.. '* * '* * •. * * •• * *'****'***********'* 

.i.'O i YE' 

C2 *. '*****C3********** 
****:::1********* .* '*. '* STACK INPUT * 

* * YES .*END OF TEXT*. *PDINTER. CHANGE* 
'* RETURN '*<--------*. FOUND?'* * INPUT TO LOOK *---1 
* * *. .* * AT V"LUE OF * 

'****'*'*********'* '* .. * '* VARIABLE * 
TO: * •. * *****'*'****'****'*'** 
ROOT MClDULE :::A 1* NO :*:~*: 

'**** 
.'*. 

D2 *. ***'**03********** 
· * *. * * .*END OF IVB *. YES * UNSTACK INPUT * 

*. INPUT? .*-------->* POINTER *---1 
*. .* * * *. • * * * 

* •• * **************>toO* 

1
* NO : *::* : 

* * 
. *. E2 *. 

· * '* • • * MACRO *. NO 
'*. M,;'rI ON MARKER. * -------------------------------'*. (OPMA)?* 

*. . * * .. * '* YES 

,,,eo, 1 
***'**F2*'********'* 

**'** * • 
'* .. *INTERPRET MACRO'* 
* F2 '*---->'* TEXT '* 
'* .. * * 
**** * '* 

* * * ** *** * *** * * * '** 

1 .... 
G2 *. 

· * *. .. * YES.* END OF *. 
'* A2 '*<----*.MA:::RO "eTION?'* 
'* * *. . * '*'*** *... 

*. . * 

1"0 
. *. H2 '*. 

***. .* *. 
• * NO.* INCLUDE •• 
* F2 *<----*. STATEMENT .* 
.. '* '*. FOUND? • * 
**** *.. * 

* .. * 

rEO 
*** * *J2** * * ***** * *INCONT * 
*-*-*-*-*-*-*-*-* 
: RE~go~E~~5~ED : 
* LIBRARY * 

········1········ 

****K2********* 
* '* '* RETURN * 
* '* '*'***'*********** TO: 

~~gTc~t£U~~D8~E CB). 

Chart 3.4. (Part 3 of 3). Compile-time Statement Preprocessor (Sub-phase ee) 

Licensed Material - Property of IBM section 3: Program Organization 363 



~reprQ£§sso!-Qiagnostic-messa~Editor (Phase CE) 

r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
t---------+---------+---------+-----------------------------------------------------------i 

IELOCE. 
CEC 
OF1 
U1 

SOl 
SU2 
SCHELL 

097 

055 

038 

MED 
UR3 
0100 

U99 

U90 

035 

U32 
0115 
026 

028 

U27 

U29 

U30 

CSECT 
R 
R 
R 

DSECT 
DSECT 
R 

R 

R 

R 

DSECT 
R 
R 

R 

R 

R 

R 
R 
R 

R 

R 

R 

R 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Entry pOint to the root module of Phase CE 
Initialize registers, storage, etc. 
Test FLAG option. 
Build sort units, i.e., generate a page stream of 
entries from the input message stream for sorting 
purposes. 
) Describe sort units. 
) 

message 

units in one page in~o order 
message number. 

Sort routine to sort all sort 
of severity, line number, and 
This routine takes the sorted 
single text stream. 

pages and merges them in~o 0.1 

Initialize print dataset. Print error-message page 
headings. 
Start of message printing loop. Deterrr.ine the message 
number of the next message to be printed. 
Describe entries in the table of edited messages. 
Skip over a special purpose edited-message sort unit. 
Determine whether ~n edited message is to be printed, and 
if so, obtain the start of the list of special purpose 
edited-message sort units. 
Print the message severity subheading before the first 
message of a new severity level, and the message 
introduction information (i.e., message number, severity 
code, and statement number or numbers, if edi~ed). 
Examine the message table (MESTAB) to determine whether a 
message has been provided for the number in the error 
message entry. If not, print a diagnostic. 
Message interpreting routine. Exarr.ine each code of a 
coded message to determine whether it is; 
1. a keyword, 
2. a level marker, 
3. an end-of-message marker, 
4. a text parameter, 
5. a statement number parameter, 
6. a dictionary parameter, 
7. a quote marker, 
8. an alternative text marker. 

If it is a level marker, multiply the level number by 256 
to add to the keyword code following and to construct ~he 
correct keyword code with which to reference the keyword 
table (KEYTAB). 

Obtain a keyword from KEYTAB, given the keyword code. 
Add a keyword to the print buffer. 
Handle 'no blank' characters by concatenating words in a 
sub-buffer. Concatenate punctuation characters with 
keywords, if necessary. 
Scan to the next message, or invoke the control phase 
clean-up routine if the end of the message stream is 
reached. 
Convert a statement number to character form, when found 
in the middle of the message. . 
Access a names dictionary entry when a dictionary 
reference parameter is encountered in a message. 
Determine a text parameter's type, and place the 
appropriate text in the message stream. 

Continued on next page 

I 
I 

364 Licensed Material - Property of IBM 



UEDLST 

UBUF 
UBUF 

UBUF1 

UBUF3 

ZTRAN1 

XINIT 
XDISC 
XRFAB 
XDIREC 
XPRNTN 
XBREAK 
XTXPG 
XBRIC2 
XPRNT 
XSTG 

CET 
MESTAB 
MESREF 
KEYTAB 
KEYREF 

S 

S 
E 

E 

E 

T 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

CSECT 
T 
T 
T 
T 

I MCDE T 
I 
I 
I 
I I 

R9 
R9 
R9 
R9 
R9 
R9 
R9 
R9 
R9 
RA 

l _________ ~ _________ ~ ________ _ 

Search edit table for a particular message number entry. 
If found, check that statement number in table entry is 
lowest encountered.so far. If there is not table entry 
for that message, make one. 
Has three entry points as follows: 
Normal entry point. Text pointed to by RB, the length of 
which is in'Re, is moved into the print buffer, and the 
line length, ULINE, updated by the amount moved in. If 
the line is full, it is printed, and the next buffer 
initialized. ULINE is incremented by one more than the 
length of the text moved into the buffer, to leave a space 
between each item on the line. 
As for UBUF (E), except that the previous buffer is 
printed and a new line established for the new text item. 
A space is not left after this item, because the first 
item moved into the buffer is always ~he message 
identification letters. 
As for UBUF (E), except that no allowance is made for 
space after each item. 
Internal code-to-EBCDIC translation table. 

) 
) 
) 
) 
)XROUT 
) 
) 
) 
) 

Private storage for Phase CEo 

second module, containing message tables. 
Table of coded messages. 
Table relating message number to coded message in MESTAB. 
Table of keywords used in messages. 
Table relating length of a keyword to its position in 
KEYTAB. 
Table of codes giving, for each message number: 
1. severity of message, 
2. editing requirements for message, 
3. presence or absence of line number parameter in 

message. _ __________________________________________________________ J 

Licensed Material - Property of IBM section 3: Program Organization 365 



IELOCE 
•• ·.A1 ••••••••• 

• • 
• EtUR~ • · . 

MOOULE 
~~o~b~;······l········ 

····.B1····· .. ··· · . • INlrIALIZE • 
• ERRJR PA3E SCAN. • • • • 

01 ········l········ 

····.:1····· ... ·· • BULLa SORT • 
: UN~~3H~~~E !< ___________________________ _ 
• SEVERlr~ • • • 
········1········ 

... 
01 •• • •••• D2 •••••••••• .... . . 

•• OUrpUT PAGE •• ~ES. • 
•• FULL? •• -------->. SORT PA3E • .. .. . . .. .. . . 

··I~~:--------------::::::::j········ ... 
E1 •• • •••• E2 •••••••••• .. .. . . 

•• ENO OF •• NO • GET NEXT • 
•• MESSAGE .• -------->. MESSAGE .---•• STREAM? •• • • .... .... : ............... : I '" 
····.F1.·.·· ..... · . · . • SORr PAGE • · . · . ••••••••••••••••• 

1 
••• U97 

31 •• • •••• G2 •••••••••• .. .. . . 
•• MORE THAN •• ~ES. • 

•• ONE SJRr •• -------->. MERGE PAGES • •• PAGE? •• • • .... . . .. .. . ............... . 
• NO J 

U55 1<------------------------
..... H1.····· .. ·. · . • INlrIALlZE SJRT. 
:U~~f~~:ft~~o~~g : 
• • ................. 

1 
•••• 
• 02 • 

->. A1 • • • .... 

Chart 3.5. (Part 1 of 2). Compile-time Preprocessor Error Editor (Phase eE) 

366 LiCensed Material - Property of IBM 



.... 
·02 • 
• 11.1 .--t · . .... 

••• IJ3S 
11.1 •• • •••• A2.......... • •••• 11.3 ••••• • ••• • .' '. . .. . 

• • 15 ItESSA:;E •• III ":;£1' ::00£0. • SCA" CODED • 

I
--> •. A::CIJMIJLArIVE? .-------->" MESSAGE FROM .-------->. MISSAGE • 

•• •• ". TABLE·· " .. .. . .. . 
: :;": ··j·;ES ••••••••••••••••• ········1········· 
.... ~ 

B1···.. 63···.. IJ32 ••••• B" •••••••••• . ' '. ...... '. . . 
NO •• 15 MES3A:;E •• •••••• 'tES • GET WORD FROM. 

r
---.. U 3nCI<? •• • B3 .----> •. NORMAL WORD? •• -------->. TABLE 

I..e •• '. .' • '. .* •••• I... . . . ... 
" .' ' •• t ••••••••••••••••• • • 

•••• • YES • NO I · B3 • 
: S1 : I · .... · · . " •••• 1 

IJ11S ..... ::1.......... . .... Cll.......... . .... CS ........ . · . . .. . 
• ADO MBSSAGE • • ADD WOROS TO •• ' • 
• HUItBIR TO SrACI<. • PRINT BUFFER .-------->. GET NEXT CODE. · . . .. . · . . .. . 
;::~:;::l········· ................. . ....... ~) ....... . 
•••• ..... 01.......... . .... 05 ........ . · . . . 

• SlIP ro HEXT • • ADD INSERT TO • 

r
---. SORr liMn • • BUFnR • · . . . · . . . ................. . ............... . 

:-::.: III II) .... 
ns 

In' '.. E3···.. • •••• E".......... • •••• ES ••••••••• . ' '. .e...... 
__ >. : • :t3UifM!HS? • : • .: • Hlft¥' .: .!~ _____ >:GET E~~lAG! : ________ ~CON¥o&Ri~~f~RT : 

I ·· .. .. .. · .. · " .e I. .' • •• • ' •• ' ' •• e ••••••••••••••••• • •••••••••••••••• 

: :;.: 1. 110 I· NO .... 
. .. 

F1 •• • •••• F3 •••• •••••• .e '. •• 
'tiS ,.jiAS IIISSA.'., •• 

1 
___ .. BIU PRUrIO?,· ·IND or II&SSAGI • 

'. .e •• '. .' .. .... :::::: ,or .... · .. T ...... · :'I:~': 

..... 31.......... G3···., ..... G" ........ . 
: ilr rlu : •• i:o OF SO:~ •• NO : GET NEXT SORT: 
:.RIF R.'i!,,'ROM :. .'., UNITS? e.' .-------->: UNIT : 

'..' . . ......... ·1 ...... · H'J

3 

.;E.S' ••••••••••••••••• 

···111 ••• •••••··• 
• P!l!!' • • 5mbnNr

• ........ T .. · .. 
.•. 

J1 •• 
•• ··1110 ; •••• YIS 

• • M:CUllUL riD •• ----.; 
.,MlSSAa S?. .. .. 'r 

,. 18 ., 

.:. o~r~1it .: .~~-----------------------------------'. .' e. .' 
' •• e 

ra 

J3···., ••••• J" •••••••••• 
.e '. • • 

•• IS SIVE,I'l"l.. NO • SET COIIPIU • 
•• •• IXW~Io? ••• -------->: 0"'1'10" OM :----------------> 
'..' . . .. .. . ............... . r .•. 

• 3 ., •••••• " •••••••••• .· •• K2.········ .... . • . .•.• , •••..•••• 
: IKU :<------~~.:. Hg3¥XI&' .:.!~----->: 8JfIronl :------:J IXIT 

..... "' ......... . 
: 31r Mlfl 13Rl : 

r---. Oll r • • • • • ................. .... • • 
• ~1 • • • .... 

. . .. .. . .. . ............... .... . . . ............. . 
&gl •• •• ••••••••••••••••• TO! 

T~JlttrIO" INO • PBASI .. 
ROIJ1'IICII 

Chart 3.S. (Part 2 of 2). Compile-time Preprocessor Error Editor (Phase eB) 

Licensed Material - Property of IBM Section 2: Method of Operation 367 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Syntax Analysis Pass 1 (Phase EA) 

r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I Iregistersl I 
~---------t---------t---------+-----------------------------------------------------------~ 
I 
IIELOEA 
EAA 

SINGLE 
EXP 
OPTOR 

SQUID 
IDENTR 
ACONST 
DECINT 
MOVRl 

SCONSTR 
SCONST 
INCR 
BUMP 
STRNG 
SKPLST 
READS 

IREADR 
I 
IXINIT 
IXMESGR 
IXPRNTN 
IXBREAJ(; 
IXTXPG 
XBRIOl 

XSTG 

EAC 
ECBASEl 
RSTART 

BADSTl 
NUL INS 
ERRORS 
CHECKS 
NONEX 

ILBLGEN 
IINLBL 
I 
I NOPROC 
I LSCRD 
I 
IEACHNR 
I STACKER 
INTRY 
IPROCST 
ILEAVST 
IWHENST 
ISELECTST 
10TBERST 
IPRNTST 
I NPRNST 
IENDST 
IATNST 
IDOST 

CSECT 
R 

S 
S 
S 

S 
S 
S 
E 
S 

S 
E 
S 
E 
S 
S 
S 
E 

CSECT 
CSECT 
CSECT 
CSECT 
CSEC'I 
CSECT 

CSECT 

CSECT 
R 
R 

R 
S 
S 
S 
S 

S 

R 
S 

S 
S 
R 
E 
S 
S 
S 
S 
S 
S 
R 
R 
R 

R6,R9 

R9 
RF 
R9 
R9 
R9 
R9 

RA 

R1,R8 

Entry point to the root module of Phase EA. 
Initialize registers, storage, input/output, etc. Call 
module EAC for main scan of text. 
Precess and output an expression enclcsed i~ parentheses. 
Precess an expression. 
write out operator code and obtain next non-blank 
characte~, if the current input is an operator. 
Process subscripted/qualified identifier. 
Test input identifier for validity, and output it. 
Process an arithroetic constant. 
Entry pOint to ACONST for a decimal integer constant. 
Scan to next byte and call READR if end of last section in 
read area. 
Process a string constant. 

Get the next non-blank character in the current record. 

Skip over a string constant without moving the text. 
Delete some invalid text and issue a diagnostic. 
Read an input record into the read area, convert it 
to internal format, and test for invalid characters. 

} 

) 
) 

} XROUT 
} 
} 

Private storage for Phase EA. 

Entry pOint to module EAC. 
Initialize registers, storage, and scan of text. 
Scan text, identifying verbs and prefixes, and calling the 
relevant statement processing routines. 
Deal with unrecognizable statement start. 
Insert a null statement ~n the output text stream. 
Examine erroneous statement as an assignment. 
Check push-down stack for IF or ON nesting. 
Process non-executable statement (i.e. IF X THEN;, ELSE;, 
or ON condition;) and insert NULL statement. 
Generate label for an unlabeled PROC or ENTRY statement. 
Process initialization of label variable. 

Generate dummy PROC and ONPROC statements. 
Handle end-of-file on the input stream, and end-of-space 
in the read area. 
Load the chain field for a block-heading statement. 
Stack an item in the pUSh-down stack. 
Process PROC or ENTRY statement~ 

Process LEAVE statement. 
Process WHEN statement. 
Process SELECT statement. 
Process OTHERWISE statement. 
Process JPRINT statement. 
Process JNOPRINT statement. 
Generate END statement for PROC, BEGIN, or DO statement. 
Process RETURN statement. 
Process DO statement. 

368 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

I ASSIGN 
IBGINST 
IONLAB 
I GOTOST 
IIFST 
IELSEST 
10.NST 

I IPAGERTN 
I ISKIPRTN 
I ICHRRTN 

I 

R 
R 
S 
R 
R 
R 
R 
R 
E 
R 

Process ASSIGN statement. 
Process EEGIN/ONB statement. 
Process label on an ON statement. 
Process GOTO statement. 
Process IF statement. 
Process ELSE phrase. 
Process ON statement. 
Process listing control keywords PAGE and SKIP. 

Check the syntax of checkout compiler verbs found in 
stream. (applies to OS version only.) 

input 

I DCLDFST 
I 

R .Output dummy NULL statement for DCL/DFT following ~HEN, 
ELSE, or ON. 

I STAT 2 
I EAT 
I 
IZTRANl 
ILETTAB 
IBLTAB 
IKYWD 
I 
ISTATID 
IMISCID 
IONID 
I LISTER 
ILISTER2 
I 
ICHECKLST 
I ABORT 
IXTRCEL 
I 

R 
DSEC'! 

T 
T 
T 
S 

T 
T 
T 
S 
S 

S 
R 
S 

R5,R9 
Copy out a statement which is not handled by this p~ase. 
Modul.e containing tables and subroutines. Note that 
actual tables are on text pages created by phase EC. 
External (EBCDIC) to internal translate table. 
Table for XLET macro. 
TRT tab1e for the INCR routine in EAA. 
Subroutine to replace a PL/I keyword by an internal 
character. 
Verb names. 
Miscellaneous tables used by the RYWD subroutine. 
Condition names 
Subroutine to control the source listing format. 
Subroutine·to handle SPACE and EJECT on the source 
listing. 
Process names in a CHECK list. 
Abort routine, to print buffer and exit to phase OA. 
Label trace subroutine. 

IPOPLST R Condition prefix routine. 
I DOSTMT S DO statement subroutine. 
I FREEST R FREE statement routine. 
IWAITST R WAIT statement routine. 
IFRST R FETCH and RELEASE statement routine. (Applies to OS 
I version only.) 

I 
I 
I 
I 
I 
I 
I 
I 
I 

L---------~-________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM Section 3: Program Organization 369 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

.IELOEA 

FROM: 
PHASE EC 

EAA B2 --IL.-__ __ 

INITIALIZE 

STARTA 
02 --"~---

OUTPUT HEADER. 
PROCESS PREFIXES OF 
ANY) 

NOTE 3. TEST FOR IF, ON, 

SKPLST 

K1 

DO, SIGNAL, REVERT, 
GOTO, RETURN, 
ASSIGN, NULL, FREE, 
WAIT, END, LEAVE, 
SELECT, WHEN, OTHERWISE 

ERROR HAS OCCURRED, 
DIAGNOSE, AND DELETE 
THE STATEMENT 

E2----__. 

IDENTIFY 
STATEMENT 

84-----RESTART 
B3 ------

STOK 

TIDY UP AT THE END OF 
THE STATEMENT 

CHECK FOR 
SEMICOLON 

C4 
EXIT 

TO: 
PHASE EE 

NOTE 1. EVERY SUBROUTINE CALLS THE READR 
ROUTINE TO GET MORE INPUT. THIS ROUTINE 
READS THE INPUT, TRANSLATES IT TO INTERNAL 
FORM, WRITES THE SOURCE LISTING, AND SKIPS 
COMMENTS. 

NOTE 2. ERRORS ARE DETECTED IN EVERY SUBROUl'INE. 
DIAGNOSTICS ARE ISSUED AND FIXUP OR DELETION 
PERFORMED ON THE TEXT. 

F3 

H3 -----

F4 

G4 
PROCESS STACK FOR 
IF, ON, DO, RETURN, 
END, SELECT, WHEN, 
OTHERWISE 

IChart 3.6. Syntax Analysis - Pass (Phase EA) 

370 Licensed Material - Property ct IBM 



2yntax Analysis - Pass 2 (Phase EE) 

r---------T---------T---------T-------------------------~---------------------------------, 
I Name I Type I Base I Func~ion I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOEE 
EEA 
SINGLE 
EXP 
OPTER 

SQUID 
IDENTR 
ACONST 
DECINT 
SCONSTR 
SCONST 
INCR 
S'IOFLD 
SKIPT 
PSQUID 
XTRCEL 

XINIT 
XMESGR 
XBREAK 
XTXPG 
XBRIC2 

XSTG 

EEE 

EEE 
SCNA 
PLAB 
BGNLAB1 
READLAB 
LOCATLAB 
CALLAB 
EXPLST 
BADST3 
ONEND 

ELAB 
CHKLAB 
ONLAB 
ONBGNLAB 

COPYIO 
OPTNSE 
OPTNS 
SKSTMT 
PROCOUT 

NEWBLK 
STOK 
JMPTXT 

DELAYLAB 
DSPLYLAB 

CSECT 
R 
S 
S 
S 

S 
S 
S 
E 
S 
E 
S 
R 
S 
S 
S 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

CSECT 

CSECT 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

R 
R 
R 
R 

R 
S 
E 
S 
S 

S 
R 
S 

R 
E 

R6 

R9 
R9 
R9 
R9 
R9 

RA 

R7,R8, 
R9 

I 
I 
I 
I 
I 
I 

Entry point to Phase EE. 
Initialize registers and storage. 
Process and output an expression enclosed in parentheses. 
Process an expression. 
Write out operator code and obtain the next non-blank 
character if the current input is an operator. 
Process a subscripted/qualified identifier. 
Test input identifier for validity, and outpUt it. 
Process an arithmetic constant. 
Entry pOint to ACONST for a decimal integer constant. 
Process a string constant. 

Get the next non-blank character in the current record. 
Nesting overflow routine. 
Skip over invalid text in the input text stream. 
Process parenthesized subscripted/qualified identifier. 
Label trace subroutine. 

) 

) 

) XROUT 
) 

) 

Private storage for Phase EE. 

Initial entry point to module EEE. 

Initialize registers and text input/output. 
Main text scanning loop. 
PROC statement processor. 
BEGIN statement processor. 
READ/WRITE/REWRITE/UNLOCK/DELETE statement processor. 
LOCATE statement processor. 
CALL statement processor. 
Process a parenthesized list of expressions. 
Invalid statement routine. 
Insert a generated END statement for a single-statemen~ 
on-unit. 
END statement processor. 
Final processor of CHECK/NOCHECK prefix options. 
Final processor of ON statements. 
Process an ONB block. 

Skip text or copy it from input to output. 
options list processor. 

Skip to the end of the current statement. 
Handle internal block for chaining in the dictionary text 
file. 
Handle chaining where new blocks are started. 
Skip to the next semicolon and output it. 
Branch to a different location (RB) in the input text 
stream. 
DELAY statement processor. 
DISPLAY statement processor. 

Continued on next page 

Licensed Material - Property of IBM Section 3: Program Organization 371 



ISTREAMIO R Set switch and copy stream I/O into output for Phase EI. 
OPEN statement processor. 10PENLAB R 

I CLOSE LAB E CLOSE statement processor. 
ITERMINAT R Wind up processing and exit to Phase EI. 
I 
IEEC CSECT R5,R8, Module containing tables and attribute processing 

routines. I 
ILETTAB T Table for the XLET macro. 
I 
ICSTRT T Branch table offsets for the COPYIO routine. 

TRT table for picture characters. IPICTAB T 
ATTRTAB T 
KYWD S 

RIOOP T 
RDOP T 
CALLID T 
OPENID T 
DSPID T 
ATTID T 
DFTID T 
ENTID T 
OPTID T 
MISCID T 
ENVID T 
ENVIR S 
DECLBASE S 
DECLN S 
ATTLST R 
RADIXL R 
FLOATL R 
STRNGL R 
ENVIRAT R 
ATTVLD R 

ATTIVD R 

TRT table for DCL attributes. 
Subroutine to replace a PL/I keyword by an in~ernal 
character. 
) 
)Record I/O keywords. 
) 
OPEN/CLOSE statement options. 
DISPLAY statement options. 
Attribute table. 
DFT statement options. 
PROC/BEGIN/ENTRY statement options. 
PROC/BEGIN options. 
Miscellaneous. 
ENVIRONMENT attribute options. 
Process the ENVIRONMENT attribute. 
Process text containing a DCL, DFT, or ALLOC statemen~. 
Process a declaration. 
Process an attribute list. 
Process BINARY/DECIMAL/FIXED/REAL/COMPLEX attributes. 
Process FLOAT attribute. 
Process CHAR/BIT attribute. 
Process ENV attribute. 
Process ALIGNED/UNAL/AUTO/STATIC/PTR/VARYING/CTL 
attributes. 
Illegal attribute routine. 

FTTLST R Complete processing of a factored attribu~e list. 
DIMENS R Process dimensions. 

ICHARBT S Process CHAR/BIT attribute. 
IREFOP S Process REFER attribute. 
I DCLOPTNS R Process OPTIONS list. 
ILIKEAT R Process LIKE attribute. 
IPICTUR R Process PICTURE attribute. 
IPMOVE S Move characters from START3 to output. 
PREC S PRECISION routine. 
FLOATAT E Ent~y pOint to PREC for a FLOAT variable. 
DEFLT R Process DEFAULT statement. 
GENER R Process GENERIC attribute. 
RTRNS S Process ENTRY/RETURNS/AREA attributes. 
BASE R Process BASED attribute. 
SETIN R Process SET/IN options or ALLOCATE statement. 
INITIAL R Process INITIAL attribute. 
CALLOPT S Process CALL option in an INITIAL declaration. 
POSTN R Process POSITION attribute. 
LABATT R Process LABEL attribute. 
DEFINED R Process DEFINED attribute. 
ALLOCST R Process header for ALLOCATE statement. 
LABOPT R Process labels on DCL/DFT/ALLOCATE statements. 

IEEDINT S I Storage initialization subroutine. I 
L _________ ~~--------~---------~--------_---___________ ----------_________ ~ ________________ J 

312 Licensed Material - Property of IBM 



SCN!\. 
IELOEE ·.···11.2.······ .. · • • .. ··!\.1.········ • • 

• ENTRY • • • 
• GET NEXT • -->. STATEMENT AND .<-----------------------~------___________ _ 

~~K~~ ~~·····l········ 

EE!\' 

• COpy LABELS • • • ••••••••••••••••• 

1 
••• PLAB ••• PROCOUT 

<----------

..... 61·········· • • · . • INITI!\'LIZE • · . • • 
•• ~·······l········ 

..... C1·········· • • 
• PRJ CESS • 

62 •• 63 •• • •••• B4 ••••••••• 
•• •• •••• • PROCESS 

•• •• YES •• CONTAINED •• YES • CONTAINED 
•••• PROC? •• ' "'--------> •••• IN BLOCK? ••• -------->: ~&~~~, S~~~~~ 

•. . * *.... .. • .. .. .. .. . ............... . 
.i.'" ""LK i .0 

C2 .. . .... C3.......... . .... C4 ......... . 
•• • • • •• CHAIN PROC OR • 

•• •• YES • COMPLETE OLD • • ENTRY IN DICT • 
• EXTERNAL PROC .-----
• FOR DICT FILE • • • ••••••••••••••••• 

•• ENTRY? •• -----1 · BLOCK CHAINS, ·-------->.FILE, AND WRITE.---•• •• • SET UP NEW • ~ • OUT ONTO TEXT. ~ .. .. · · 1· · .. .. ................. . ............... . i '0 -----------------------

... . .. 
02 •• 03 •• • •••• 04 •••••••••• 

•••• •••• .INSERT A CALL, • 
• .. "'. YES • '" CONTAINED "'. YES '" ADD oro ENTRY '" 

•••. BE~IN? •••• --------> •••• BLOCK? •••• -------->:CHAI~hES~~t TO !---~ .. .. .... . . .. .. .. .. . ............... . 
• '0 I .0 

..... E3.......... . .... E4 .........• 
• NE~BLK •• • 
• -.-.-.-.-.-.-.-. • WRITE BLOCK • 
• COMPLETE OLn .-------->. HEADER ONTO .---
: B~~iKU~H~~~S, ! ! TEXT FILE : ~ ................. . ............... . 

. .. 
F2 •• • •••• F3 •••••••••• 

•••• • PROCESS • 
•• CALL RECORD •• YES .COMPLETELY AND. 

··.:b~sp~~~~Y~ ••• -------->: OUT~~tETEXT :---A-------------------------
•. . * .. .. .. .. . ............... . 

{"O 
•• , EED 

G2 •• • •••• G3 •••••••••• 
•••• • PROCESS • 

•• DCL •• YES .COMPLETELY AND • 
• , DEFAUiTk •• -------->.OUTPUT TO DICT .---

.,~~LOCAT.l·· :F~tfE ~~S~LI~~T! h ., .. . ............... . 
ro 

, .. 
H2 •• • •••• H3 •••••••••• .... . . 

• '" •• NO .COPY STATEMENT • 
•. END? • *-------->* INTO OUTPUT .---

., •• • TEXT STREAM. ~ .. ... .. .. .. .. . ............... . 
i'" ... 

J2 •• • •••• J3 •••••••••• 
•••• • JUMP BACK TO • 

•• ANY MORE •• YES • NEXT BLOCK • 
• , BLOCKS? •• -------->.HEADER (PROC OR.---

•• •• • BEGIN) • .... . . .. .. . ............... . 
i"0 

, ., 
K2 ., .... K1......... ,... . ... K3 ........ . 

• • YES ,.ANY STREAM ., NO. • 
• EXIT *<--------*, 1/0 IN THE .*-------->. EXIT • 
* • .,PRO~RAM ?,* • • ............... .". . ............. . 

TO: •• ,. TO: 
paASE E1. PHASE GA 

Chart 3.7. Syntax Analysis - Pass 2 (Phase EE) 

Licensed Material - Property of IBM section 3: Program Organization 373 



§~~~~!~nalysis - Pass 3 (Phase EI) 

r---------T---------T---------T-----------------------------------------------------------1 
I .Name I Type I Base I Function I 
I I I rE:gisters I I 
~---------+---------+---------+-----------------------------------------------------------~ 
I I 
IIELOEI CSECT R5,R6, Entry point to Phase EI. I 
I R7 I 
IEIEI R Initialize registE:rs, storage, and scan of text stream. I 
ICLENS T Table of maximum lengths for arithmetic constants. I 
ILE~TAB T Table for the XLET macro. I 
ICSTPT T Branch table offsets for the COPY/SKIP routine in EEE. I 
IPICTAB T TRT tables for picture characters. I 
I SINGLE S Process and output an expression enclosed in parentheses. I 
IEXP S Process an expression. I 
tOPTOR S write out opera~or code and obtain next non-blank I 
I character if the current input is an opera~or. I 
I SQUID S Process subscripted/qualified identifier. 
I IPENTR S Test input identifier for validity, and output it. 
I ACONST S Process an arithmetic constant. 
ISCONSTR S Process a string constant. 
ISCONST E 
IINCR S 
I BUMP E 
STOFLO R 
SKIPT S 
PSQUID S 
KYLID S 

FMTID 
GPID 
MISCID 
SCNA 
FORMATLB 
GETLAB 
PUTLAB 
DATLST 
DOSPEC 
FMATLST 
EXPLST 
BADST3 
STOK 
TEMINAT 

T 
T 
T 
R 
R 
E 
E 
R 
S 
S 
S 
R 
R 
R 

I 
I 
I 
I 
I 
I 

Get the next non-blank character in the input text stream. 

Nesting overflow routine. 
Skip over invalid text in the inpu~ text stream. 
Process parenthesized subscripted/qualified identifier. 
Subroutine to replace a PL/I keyword by an in~ernal 
character. 
Format items ) 
GET/PUT options ) tables used by the KYWD subroutine. 
Miscellaneous ) 
Main text scanning loop. 
Common processing routine for format lists, and 
statement header processor. 

Data list processing routine. 
Process DO repeat specification in a data list. 
Process format list. 
Process an expression list enclosed in parentheses. 
Invalid statement routine. 
Skip remainder of statement and output a semicolon.: 
Wind up Phase EI and exit to Phase GA. 

XINIT CSECT R9 I ) 
XMESCR CSECT RF I ) 
XBREAK CSECT RF I )XROUT 
XTXPG CSECT R9 I ) 
XBRICl CSECT R9 I ) 

IXSTG CSECT RA I Private storage for Phase EI. l _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

374 Licensed Material - Property of IBM 



IELOEI 

.... /\1········· · . • ENTR~ • · . 
~::::,:: ..... [ ...... . 

· .. ··B1·········· • • • INITI/\LIZE 
• IIlE'UT TEXT 
• 5TRE/\M · . 

,c,~"'"'T''''''' 
••••• ~1 ••• •••• ••• • • *SC/\Il TEXT F~R 1\* L *.: :!~!j~:::'" i:; ~ 1 ;------------------------------------------------------------------------------------, 

* ••• 
YES 

01'·'., GP1 ••••• D2•••••••••• D3···., D4···.. D5' •• ,. .. . . .... .... .... 
•• •• YES • S~l\N FOR NEXT. •• •• NO •• •• NO •• END OF •• 

•• GET, PUT? .*-------->. OPTION IN THE .--------> •• DATA LIST? •• --------> •• FORM/\T LIST ?.--------> •• STATEMENT? •• 
•. •• • STATEMENT • •• •• •• •• •• •• .. .. . . .... .... .... 

* .. * ******* •• *....... *. .• *. .• * .. * 
illl~ " . .... . j. YES j. YES j. NO 

<-. D2 • . . .... 
• •••• E3.......... • •••• E4.......... • •••• E5 •••••••••• 
• PROCESS DATA •• •• • 
• LIST AND. .PROCESS FORMAT • • PROCESS ALL • 

-----------------. REPETITIVE. r---· ITEMS • 1---· OTHER OPTIONS • ·SPECIFICl\TIONS •• •• • 
• •• •• • ................. ................. . ............... . ...." .... · . . . 

• D2 • • 02 • • • • • 
~ •••• • ••• ... 

.. 1 •• .. .. 
•• •• ~E5 

• • FORKAT? •• ----------------------------.--------------------_____________________ J .. .. .. .. . ... 
•• •• • * 

• NO • C1 • 

1 .. ~ ... 
.•. 1 :;1 •• • •••• :;2 ••••••••• 

.••• .COPY STATEMENT. 
•• •• N~ • INTO OUTPUT • 

•• END OF FILE ?.-------->.STRE/\M WITHOUT. 
•• •• .I\N~ PRO~ESSIN:; • .. .. . . .. .. . ............... . 

1'"' 
.... Hl········· · . • EXIT • • • ............... 

1'0: 
PH/\SE G/\ 

Chart 3.8. Syntax AnalySis - Pass 3 (PhaSe EI) 

Licensed Material - Property of IBM section 3: Program Organization 375 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type \ Base I Function I 
\ I \ registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 
I I I I 
I I 
IIELOGA CSECT RS,R9 Entry point to Phase GA. I 
IGAA R Initialize registers, storage etc. I 
\RESPCE R Reserve space in the general dictionary for block headers I 
I and labels. I 
IGADCL R Select next item in the block header, OFT, PROC, ENTRY, orl 
INEWBLK E DCL statement chain. I 
I DCL02 E I 

DCLSTAT R Initialize processing of a DCL statement. I 
DCLSTl E I 
DCLA R Find a new declared item and process, ignoring its I 

structure level. Scan the statement and 'collect' all 
declared attributes for the item. Make 'arithmetic' or 

SKPATT 

DCL4 
DCL6 

DCL? 

DCLS 

STRUCTR 
ATTIMPS 
DCL9 
DCLVQ 
DCL102 
GASZAL 
GANXDCL 
GANXDO 
GANXDCLl 
EPIDSC 

DE FACTOR 
MJSTRAL 

LPSO 

LPSl 
NXTLIKE 
NXL2 
LPS10 

GAPARM 

NXTPARM 
,I GAPM5 
I 
IGAPM6 
I NXTDSCRO 
I NXTDSCR 
IVRSOO 
I 
IGAIMP 
I 
I 
I 

R 

R 
R 

R 

R 

R 
R 
R 
R 
R 
R 
R 
E 
E 
E 

S 
S 

R 

R 
R 
R 
R 

R 

R 
E 

E 
R 
E 
R 

R 

'coded' implications. 
Skip the attribute pointed at by the inpu~ text point~r 
CR1). 
Find structure level of the next declared item. 
Search the default directory and 'collect' all specified 
default attributes. 
Determine whether the item is a major structure, ~inor 
structure, base element, or is not in a struc~ure. 
Make a names dictionary entry and detect multiple 
declaration. 
Set up structuring information. 
Generate variable, file and entry attribute implications. 
Make attribute selections using th6 attribute tree. 
Make a general or variables dictionary entry. 
Set the appropriate attributes bits. 
Calculate size, alignment, precision and scale, or length. 
Select the next declaration. 

Scan to the next .). at the current parenthesis level. 
Set the alignment of a major structure to the maximum 
alignment of its members. 

Deal with endpage and end-of-statement during LIKE 
processing. 
Expand a LIKE declaration for a structure. 
Locate the next LIKE declaration in the LIKE directory. 
Access the next member in the current LIKE structure. 
Return to scan of like structure on completion of the 
expansion of a minor structure, if more exists. 
Access the block header dictionary entry for a block, and I 
initialize the processing of contextually declared 
parameters. 
Scan to the next parameter, and branch as required. 
Access the next entry-point dictionary entry for this 
block and initialize the parameter scan. 
Process the next parameter for this entry point. 
set up descriptor list declarations. 

Resolve explicitly declared names appearing in ENV 
options. 
Generate sample implicit declaration entries for each 
different DEFAULT range. 

continued on next page 

376 Licensed Material - Property of IBM 



NXTIMP 
PRENTRY 

ENTiO 
ENTNXT 

DFSTAT 

XINIT 
XRFSEQ 
XRFAB 
XDIREC 
XTXPG 
XSRCH 

XSTG 

GAB 
R'IN 

STATR 
CLTR 
SMSTR 
SALR 
UNALR 
DIMSR 
PTRR 
BSDR 
EVNTR 
TASKR 
INITR 
DEFR 
POSR 
OFFR 
FIXR 
BINR 
CHARR 
BITR 
AREAR 

STRINGl 
S'IRGRET 
CHARR3 
BITR3 
AREA3 

STVR 

REF2FL 

VALR 
\lARR 
CPLXR 
PRC2R 
PRC1R 
LABR 
PCNR 
PCRR 
LIKE 

IPARMR 
IRTNR 
I 
I 

E 
R 

R 
E 

R 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

CSECT 

CSECT 
T 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 

R 
R 
R 
R 
R 

S 

S 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 

R9 
R9 
R9 
R9 
R9 
R9 

RA 

R7 

Process entry point, making names dictionary entries 
any formal parameters. 
Make a dictionary entry for the en~ry poin~1 

I 
for I 

I 
I 
I clear default attributes, and make a block header 

dictionary entry if there are no more entry pOints 
block. 

for thE: I 

Process OFT statements, and build a GA~time default 
directory. 

) 

) 

) XROUT 
) 
) 

) 

Private storage for Phase GA. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Table of addresses to attribute-processing 
below. 

routines shown I 

STATIC 
CONTROLLED 
SYSTG (system default storage) 
SYSAL (system default alignment) 
UNALIGNED, 
DIMENSIONS 
POINTER 
BASED 
EVENT 
TASK 
INITIAL 
DEFINED, iSUB definition 
POSITION 
OFFSET 
FIXED 
BINARY 
CHAR 
BIT 
AREA 

) 
) 

)Common processing routines for data variables. 
) 
) 

String length or area size (set in STRVAL). 

Make overflow for text references of an attribute, if 
necessary. 

VALUE (in DEFAULT statement) 
VARYING 
COMPLEX 
Two-value precision 
One-value precision 
LABEL 
PICNUM 
PICHAR 
LIKE 
PARAMETER 
RETURNS 

continued on next page 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Licensed Material - Property of IBM Section 3: Program Organization 377 



FILR 

FILER 
ENTR 
ENVR 

SKPATT 

BIFR 

IMBIF 

s 

S 
S 
S 

S 

S 

s 

I 
I 
I 
I 
I 
I 

BUFF, UNBUFF, EXCL, KEYED, STREAM, RECORD, BACK, SEQ, 
DIRECT, PRINT, INPUT, OUTP, UPDATE 
FILE 
ENTRY 
ENV 

I Skip an attribute. 
I 
I BIF 
I 
I Mark an entry as implicit built-in. 
I 

INTR S I INTERNAL 
EXTR S I EXTERNAL 
REDR S I REDUCIBLE 

IGENR S I GENERIC I L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

378 Licensed Material - Property of IBM 



IEr..OGA GAA NEWBLK 
••••• A2.......... • •••• A3 •••••••••• 

•• •• Al·.·· ••• •• • •• • * •• • .REFERENCE NEXT • 
• ENTR~ .-------->. INITIALIZE .-------->. TEXT BLOCK .<--1 
• •• •• HEADER • ............... . .. . 

FROM: ••••••••••••••••• • •••••••••••••••• 
PHASE EE OR Ell ••• · . • A3 • · . .... 

NEwBLl .*. GAIMP 
••••• Bl.......... B3 •• • •••• B4 ••••••• * •• •• .• *. • MAKE SAMPLE • • ••• BS ••••• * ••• 
• UPDArE LIST OF • NO.. END OF *. YES • IMPLICIT *. * 
• KNOwN BLOCKS .<-----------------------------------•. BLOCK HEADER •• -------->. DECLARATIONS .-------->. EXIT • 
•• •• CHAIN? •• * (COMMON WITH •• • • * •..•• EXPLICIT)· ••••••••••••• *. 
••••••••••••••••• •• •• ••••••••••••••••• TO: 

OFrSCp I 
* PHASE GI 

••••• Cl •• • ••• • ••• 
• DELETE • 
• I:ilAPPLICABLE • 
·SPECIFICArIONS • 
• FRO~ DEFAULT • 
• DIRECTOR~ • ••••••••••••••••• 

;~~~~~---->l ..... 01·.·· .... ·. • • • SELECT NEXT 
• TEXr CHAIN • • • 
········1········ 

... 
El •• .. .. 

•• ENO OF TEXT •• ~ES 
•• CHAINS? •• ---1 .. .. ~ 

····l·~;· .... • • 
• 1\3 • • • 

OCL02 
•••• ·Fl •••••••••• 
• • 
• SELECr NEXr • 

.... 
• SrArEMENT IN .<--1<------------• CHAIN • • • 
········t········i·;: : .... ... 

31 •• .. .. 
~ES.. END OF •• 
---.. SrATEMENr •• 

•. CHAIN? •• .. .. .. .. 
l" 

<----------
DFrSTAT 

• •••• 32· •••••••• · . .1\00 INFORMArION. 
-->.ro THE DEFAULT • 

• OIRECTOR~ • • • •••••••• *.*.* •••• 

••• PRENrR~ 
Hl •• • •••• H2 •••••••••• 

.••• • BUILD 3EN. • 
•• •• ~ES • DICT. ENTRIES. 

•. DEFAULr? •• ----- • FOR BLOCK .---
•• •• • HEADER AND • 

•• . • • ENTRY POINT • .. .. . ............... . 
"oro:~ N •• ~1 ••• J2.I ....... . 

•••• • BUILD NAMES • 
•• •• ~ES • DICTIONARY • 

•• PROC/ENrRY ? •• -------->. ENTR~ FOR • 
•. •• • PARAMETER • .. .. . . .. .. . ............... . 

I" ... 
Kl •• • •••• K2 •••••••••• 

•••• • • • ••• K3.····.··· 
~ES •• •• NO .INTERNAL ERROR... • 

r
---.. DECLARE? •• -------->·GENERATE ERROR .-------->. EXIT • 

•. •• • MESSAGE·· • *..* • * ••••••••••••••• * •. * ••••••••••••••••• TO: 
•••• • INTERRUPT 

. ... · . • A3 • • • • ••• .... . . 
NXTLIKE A • 05 .--l 
NXTDSCR 1 • • NXTPARM DCL3 ** •• 

DC LA 
• •••• 04. •••••••• • •••• DS ••••••• * •• 
• PROCESS LIKE, • • COLLECT • 
• ENTR Y. • STRUCTURE LEVEL. 
:ABgs5~~te~~~ED : -->: A~~T~f~t~~§D : 
• PARAMETERS.. • ................. . ............... . 

NEWCBN I y" OCL. 1 
E4· ••• • •••• ES •••••••••• 

•• LAST •• • • 
NO •• DECLARE IN •• • FIND NEXT • 

r
---.. THIS BLOCK ? •• .STRUCTURE LEVEL· *. .• • • .. .. . . .. .. . ............... . ..... 1 •• A 

: Fl : 1 • ••• YES 
GANXDCL F4· .•• DCL~ •••• FS •••••••••• 

•• •. • * 
• • END OF •• NO .COLLECT DEFAULT. 

•• STATEMENT? •• ----- • ATTRIBUTES • .. .. . . 
*. .• • • 

OCL102 'OJ:O' OCL:·······1········ 

• •••• G4. •••••••• • •••• GS •••••••••• 
• •• • • APPLY. • DETERMINE • 
• ATTRIBUTES. • STRUCTURING • • •• • • •• • 

OCL::······:I········ OCL:·······1········ 

••••• H4. •••••••• • •••• HS •••••••••• 
• •• RESOLVE NAME, • 
• MAKE MAIN. • MAKE NAMES • 
• DICTIONARY. • DICTIONARY • 
: ENTRY: : ENTRY : 

••••••••••••••••• • •••••••••••••••• 

OCL1 .... J..!........ ATT.~l~'"j ........ 
• SELECT·· • 
• ATTRIBUTES AND • .MAKE ATTRIBUTE • 
• DIAGNOSE .<--------. IMPLICATIONS • 
• CONFLICTS·· • • •• • ................. . ............... . 

• • HANDLING ROUTINE 
• 05 • (PHASE AA) · . •••• 

Chart 3.9. Explicit Declarations Phase (Phase GA) 

Licensed Material - Property of IBM section 3: Program Organization 379 



r---------T---------T~--------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 
I I I 
IIELDGI I CSECT Entry pOint to Phase GI. I 
IGI I R Initialize registers, storage, tables, and scan of text. I 
IGITRTA I R Dump text, text scan pOinter (Rl) ~o skip a byte. I 
IGITRT I E Test the text code byte pOinted at by Rl, and branch ~o I 
I I the relevant processing rou~ine. I 
CLEARTN I R A semicolon has been found. Test for error and continue I 

I scan. I 
SLSNRTN I R New statement has been found. Test the statement type andl 

I branch accordingly. I 
SLl I R Process any labels on this statement, and make dictionary I 

I entries. I 
SCOPE2 R A PROC block header has been found in the dic~ionary text I 

SL3A 

SL3 

SL4 

SL5 
SL7 
SL8 
SL9A 
SL1D 
DFTRTN 
NAMERTN 

SLVLRTN 
POINTRTN 
LAPRTN 
RPARTN 
ODDSRTN 

CONTEXT 

CONDRTN 

ENVl 

GIEND 

GIOUT 

XINIT 
XRFSEQ 
XRFAB 

IXDIREC 
IXDSTAT 
IXPRNTN 
IXTXPG 
IXBRIC2 
IXSRCH 
I 

R 

R 

E 

R 
R 
R 
R 
R 
S 
R 

R 
R 
R 
E 
R 

S 

R 

R 

R 

R 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

R9 
R9 
R9 
R9 
R9 
R9 
R9 
R9 
R9 

stream. Update the list of known blocks (KNOLST), and I 
skip to the next statement. I 
Skip over a BEGIN, CALL, PROC, SIGNAL, or ONB sta~emen~ in 
the dictionary text stream. 
A PROC block header has been found in the main tex~ 
stream. 
Update the list of known blocks (KNOLST), and skip to the 
next statement. 
Signal contextual BIF found, and branch to SL1. 
Scan over the statement header and continue processing. 
Check for ambiguous label reference. 
Branch to SLl if ALLOCATE statement in main text stream. 
Process a WAIT statement. 
Create a variables dictionary entry for a DFT variable. 
Check a contextual declaration and create a names 
dictionary entry. 
Analyze the context of a second-level marker. 
Skip over a qualifying name. 
Keep track of the current parenthesis level and context 
indicator CCTX. 
Trap any relevant byte which may have been missed by 
SLVLRTN. 
Partially process a contextual declaration involving a 
file. 
Make a dictionary entry for a programmer ON-condition 
name. 
Scan a chain of ENV attribute dictionary entries, and make 
entries for any undeclared variables appearing in the 
format list. 
Test for completion of a dictionary text stream scan, and 
commence if it has not been done. 
Wind up proceSSing by this phase. 

) 
) 
) 
) 

) XROUT 
) 
) 
) 
) 

IXSTG CSECT R4 Private storage for Phase GI. I L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

380 Licensed Material - Property of IBM 



IELO:>I 

****11.2********* 
* * * ENTRY * 
* * *************** 

FROM 
PHASE GA I GI 

**·**B2****·*···· 
* SET UP BASE ... 
* REGISTERS AND • 
* INITIALIZE • 
• PHASE STORA3E • 

• * 

o,'~:······l········ 
•• ***C2********** 
* :ONTINUE S:AN * 
*OF TEXT STREAM * 

-->* FOR A • 
* CON:rEXTUAL • 
• DECLARA'TION * " ........ 1" ..... . 
** * * *D2** ***. *. *. 
'" RESOLVE THE * 
"'N1I.!'iE ASSOCIATED. 
* WITH THIS • 
* :ONTEXTUAL * 
* DECLARATION • .. · .... T ...... · 

. *. N9.*. 
E2 •• E3 * . 

• *HAS THE*. .* * • 
• * NAME BEEN •• YES .*CONFLICTING*. NO 

*. DECLARED .*-------->*.ATTRIBUTES? .*---
"'.ALREADY ?* *. .* 

*. . * *.. * * .. * * .. * 

I NO .15 1''' 
**.**F2*.**** •• ** .****F3********** 
* * * • * MAKE NAMES *. * 
* DICTIONARY * *DIAGNOSE ERROR *---
• ENTRY * * • 
* • * * ········1········ ......•.......... 

*****32*·**·***** 
* MAKE EITHER A * 
• 3ENERAL OR * 
* VARIABLES • 
* DICTIONARY * 
* ENTRY * 

········1········ 

*****H2****··**** 
*SET CONTEXTUAL * 
* ATTRIBUTES. * 
* CLEAR THE • 
* INDICATOR SET * 
* IN GITRT * 

········1::::::::----------------------------. *. 
J2 * • 

• *SCAN OF*. 
NO .* BOTH TEXT *. 

---*. STREAMS .* 
*.:OMPLETE .* 

*. ? .* 
*. . * 

1'" 
****K2********* • • 

• EXIT • 
'" * •••••• * •• ** •• ** 

TO 
PHASE GE 

Chart 3.10. contextual Declarations Phase (Phase GI) 

Licensed Material - Property of IBM Section 3: Program Organization 381 



r---------T---------T---------T----------------------~------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
t---------+---------+---------+-----------------------------------------------------------~ 

IELOGE 
GEX 
GEA 
GEl 
GE2 

GE3 
GE4A 
GE12 

GE16 

E801 
EXIT1 
GEND 
GEOUT 

GE20 

GEQ 
GEQ 

GEJ 

GENRTN 

DEFCSECT 
DEFVAR 

GE6 

XINIT 
XMESGR 
XRFSEQ 
XRFAB 
XDIREC 
XBREAK 
XTXPG 
XSRCH 

XSTG 

GEB 

CSECT 
R 
R 
R 
R 

R 
R 
R 

R 

R 
R 
R 
r 

CSECT 

CSECT 
R 

R 

CSECT 

CSECT 
E 

CSECT 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

CSECT 

CSECT 

R8,R9 

R9 

R9 

R9 

R9 

R9 

R9 
RF 
R9 
R9 
R9 
RF 
R9 
R9 

RA 

R8,R9 

I 
Entry pOint to Phase GE. I 
Initialize registers, storage etc. I 
Initialize scan of DEFAULT entries. I 
Initialize scan of variables dictionary. I 
Get the next dictionary page and lock it in~o main I 
storage. I 
Determine whether processing is required for an entry. I 
set up an aggregate table in workspace (YGTAB). I 
Attempt commoning for array or major structur~, or I 
generate a branch to a structure commoning routine. I 
Complete the processing of a dictionary entry, and scan to 
the next entry. 
E801 to LERR are error and diagnostic routines. 
EXITl to EX2 are exit-testing routines. 
Close Phase GE. 
Pass control to Phase GM. 

Carry out commoning, and, when necessary, uncommoning, of 
aggregate tables for structures. 

Carry out the uncommoning of declaration expression file 
statements for aggregates which fail to common. 
Copy an aggregate table from workspace into the general 
dictionary and maintain various tables of information on 
structuring, chaining etc. 

Process GENERIC entry. 

Process DEFINED entry. 
Entry point to DEFCSECT. 

Process adjustable bounds, including creation and 
commoning of declaration expressions file statements. 

) 
) 

) 

)XROUT 
) 
) 

) 
) 

Private storage for Phase GE. 

Second module of Phase GE. 

BOUNDS DSECT RF Array bound (8 bytes). 
RGDSECT DSECT R6 Chain header (2 bytes). 
LVLSTACK DSECT R7 Entry in structure information table (8 bytes). 

IFDTBENT DSECT R3 DEFAULT entry (4 bytes). L _________ ~ _________ ~ _________ ~ __________________________________________________________ _ 

382 Licensed Material - Property of IBM 



IELOGE GEX 
*****A2********** 

FROM: 

•••• A1* •• ****** * SET UP BASE • 
* *... REGISTERS AND * 
* E~TR~ *-------->* INITIALIZE • 
• * * STORAGE * 
••• ************ * • 

•• •••• • ** * * *** ** * 
PHASE GI 

1 

Chart 3.11. 

* ** * * B2* * *** * * ** * 
* * *PRO:ESS GENERIC* 
* DECLARATIONS * 
* • 
* * .*.*****.*******. 

1 
**·**C2********** 
* CONTINUE SCAN * 
*OF'DEFAULT' AND* 

-->* VARIABLES * 
* DICTIONAR~ * 
* ENTRIES • 
**. ** * * * ****** *** 

1 . *. . *. 
D2 *. D3 *. ** •• *D4*****.** •• 

•• IS THE *. •••• * ACCESS BOUNDS • 
• *ITEM DIMENS •• ~ES •• IS rHE ITEM*. YES *INFORMATION AND. 

* • IONED OR INA •• --------> •• DIMENSIONED? • *-------->*CREATE 2ND FILE* 
*.STRucrURE.* *. .* • STATEMENTS IF * 

•• • * ••• • * NECESSARY * 

··.·:0 • t: ______________ ::::::::j·***····* 

GE88 
·*··.E4 •••••• **** 
* * .BUILD AGGREGATE* 
*TABLE IN PHASE • 
• WORKING STORAGE. 
* • 
•••• *.*******.*** 

I .•. 
F4 •• 

• *IS THE *. 
YES • * TABLE *. <------------------------------------------•. COMMONABLE? •• *. . * *. . * * .• * 

GE, r 
*.***G4*· •••• ***· 
• COPY THE AGG • 
*TABLE INTO THE • 

<------------------------------------------. GENERAL * • DICTIONARY • 
* * ••••••• **** ••• * •• 

GE 16 • • • DEFCSECT 
H2 •• • •••• H3 ••• ******* .• ... * • 

• *IS THE ITEM •• YES * PROCESS THE * 
*. 'DEFINED' ? • *-----,--->* 'DEFINED' 

*. .* * INFORMATION 
*. . * * * 

··1~:0--------------::::::::~::::::::-----------------___________ _ 
J2···*. J3· '*. GEB*****J4*******.** 1 

•• •• •• *. • PROCESS ALL * ***.JS.** •••• ** 
NO • * IS THE SCAN.. YES • • ANY •• YES • ENTRIES IN THE * * • 

___ ot. COMPLETE? •• --------> •• 'ALLOCATE' •• -------->. 'ALLOCATE' *-------->. EXIT • 

*'.. ..'* *.~:MTS. : •• * ! CH~i~tA~£E~OR : •• ** •••• * •• **.*** 
* •• * •• •• **************.** TO: 

• * PHASE GM 

Declaration Expressions Phase (Phase GE) 

Licensed Material - Property of IBM section 3: Program Organization 383 



!mplicit Declaration (Phase GM) 

r---------T---------T---------T----------------------------~------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
.---------+---------+---------+-----------------------------------------------------------~ 
I I I I 
I I I I 
IIELOGM CSECT I R8,R9 I Entry pOint to Phase GM. I 
IGM R I I Initialize registers, storage, etc. 

GMTRTA R I I Scan the text for the next implicit declaration, and pass 
GMTRT E I I control to the relevant statement-body processing routine. 
GMPMNS R 1 I Process prefix minus. 
SYSNOL R I 
GMNSTD R I 
GMEPROG R I 
GM2END E I 
GM1BT R I 
GMSL R I 

GMPROC 
GMOPEN 
GMCHECK 
GMENTRY 
GMASN 
GMGEN 
GMGOTO 
GMEOPG 
GMSC 
GM2SC 
GMLPAR 
GMRPAR 
GMPRD 
GMPARD 
GMNAM 
GM810 
GM811 
GMSTRUC 

GMIMP 
GMASGN 
GASLVL 
NOTINT 
STRCB 
GMCOND 
GMPIC 
GM2FILE 
GM2PROC 
LAIGEN 
GMAGASSN 
GMINIT 
GMSTRL 
GMOFFS 
GMBPSED 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
E 
R 
R 
R 
E 
E 
R 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
E 

QULEXT 
TXT20UT 

IOUT2TST 
I 

R 
S 
S 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

Set bit 8 of GMFLG on. 
Output end-of-text marker. Initialize 2nd file scan if 
not already processed, or else exit from this phase to IA. 
Output item to Type 1 text stream. 
Test statement type, and branch to relevant processing 
routine. 
Initialize processing of PROC/BEGIN/ONB statement. 
Initialize processing of OPEN statement. 
Initialize processing of CHECK statement. 
Initialize processing of ENTRY statement. 
Initialize process~ng of ASSN statement. 
Common label-processing routine. 
Initialize processing of GOTO statement. 
Process end-of-page marker. 
Process end of OPEN statement and make dictionary entry. 
Prepare for 2nd file processing. 
Process parenthesis. 

Process period. 
Process argument. 
Resolve a name. 
Set type byte. 
Create and output a 6-byte reference for the name. 
Output descriptions of base elements, process structure 
member. 
Make an implicit declara~ion. 
Process question mark. 
Process second level marker. 
Process non-integer constant. 
Process string constant. 
Process a condition name. 
Process picture table. 
Scan second file and process next item of interest. 
Process a second file PROC statement. 
Generate label array initialization statements. 
Process a second file AGASSN statement. 
Process a second file INASSN statement. 
Process a second file STRL statement. 
Process a second file locator qualifier statement. 

Place a locator qualifier expression in 2nd file output. 
Output the start of a second file statement. 
Initialize the second file output stream and/or output a 
block header if necessary. 

continued on next page 

384 Licensed Material - Property of IBM 



XINIT 
XRFSEQ 
XRFAB 
XDIREC 
XBREAK 
XTXPG 
XSRCH 

XSTG 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

CSECT 

R9 
R9 
R9 
R9 
RF 
R9 
R9 

RA 

I 
I ) 
I ) 
I ) 
I ) XROUT 
I ) 
I ) 
I ) 
I 
I Private storage for Phase GM. 
I 

ARGENT DSECT R3 I 6-byt6 entry in ARGSTK for an argument. 
LBARINIT DSECT R2 I i3-byte label array initialization statement. 

IDFTBENT DSECT R2 I 4-byte entry in DFTAB for a DEFAULT specification. l _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM Section 3: Program Organization 385 



IELOGM 3MrRr1\ 
*****A2******·*** 

.·.*1\1*******·· * • 
• * * SC1\N TEXT FOR * 
* E~TR~ *-------->* NEXT IMPLICIT • <--------------------------------------------------------------------* * * DECLARATION * II 
.*.********.*.. * * 

,»~~ ,. 5-----------------::::::::
j········ 

••. GMPRO: 
B1 •• ****.B2*.* ••••• ** .. .. . . 

. * *. ~ES * UPDATE SCOPE. * 
*.PRO:/BEGIN 1 .*-------->* OUTPUT T~E *---

•. •• • STATEMENT • .. .. . . *. .• ** ••••••••••••••• 

i" <----------
NO 

:1'·' *. GMN1\N C2··· *. 3MI~~* •• C3 •• * •• **... GM8~2 ••• C4* •• *.***.* C5' *. 
.••• ..H1\S THE*. * * * CREArE AND * .*IS THIS* • 

. * •• YE3 .*N1\ME BEEN *. NO • COP~ THE * * OUTPUT THE * .* ITEM A •• 
*. N1\~E? .*-------->*. PREVIOUSL~ •• -------->* 1\PPROPRI1\TE *-------->* SIX-BYTE *-------->*. MEMBER OF A .* 

*. • * *. DECL1\REO • * • DEFAULT ENTR~ * II * REFERENCE * *. STRUCTURE. * 
*. • * •• 1 .• * *. • *. 1 •• 

•• .• • .. * *.*****.*****.*.* ****** •• ********* * ••• 
[ NO i_~~~ ________________________________ , 'l YES 

· * . GMLP1\R GMSTRUC 
01 •• ..***02.* •• ****.. ..*.*05 •••• **.*.* 

.• *. • * * • 
• * LEFT *. ~ES • BUMP THE * • OUTPUT • 

•. p1\RENrHESIS 1 •• -------->. PARENrHESIS * .DESCRIPTIONS OF*---
*. •• • COUNT • * BASE ELEMENTS * II *. .• • • • * '"r";' ········i········ •................ 

• *. .*. GMPARD 
E1 *. E2 *. *****E3.**.****** 

.• *. .* *. *OUTPUT A (PARDl* 
.* *. ~ES .*IN ARGUMENT*. YES *M1\RKER. 1\CCESS * 

•. COMM1\ 1 .*-------->*. LIST? •• -------->. rHE PARAMETER .---
*. . * *. . • * DESCRIPTOR * •. .• *... * * 

*. •• * •. * *.**.*** ••• * ••• ** 

1
* NO L:~ .::. : 

* * ***. 
.•• GMRP1\R 

F1 *. * •• *.F2 •••• * ••• ** 
.* *. • * **.* 

• * RIGHr *. ~ES * DECREMENT rHE * * * 
*. P1\RE~HHESIS 1. *-------->* PARENr~ESIS *---->* A2 * 

*. . * * COUNT * * * 
*..* * * **.* 

*. .• *.*************** 

( 
• *. GMSLVL • * • • *. 

31 •• G3 *. G4 *. *****G5********** 
. * *. . * *. • * *. *OUTPUT VALUE AS* 

.:·co~srANT 1 ·:*::~ _______________________________ >*:*C~~~~G~~r 1*:.::~ _____ >*:~ES~I~~A~N32·:.::~----->: c~N~~I~~ArN ! __ _ 
*. . • c • • •• •• BITS? . * • TEXT * /I 

* •. * .*** * •. * * •• * * * 
* .. * * • • •• * *. •• * •• * ••••••••••••• 

i " : ':1':': L::---------------------[---------•• soN-------l 
· •• GMPI: STRCON V 

~1 *. • •••• H2 ••• *** •• * •• **.H5.******** • 
.• PI:TURE.. .1\NAL~SE PICTURE. • CREATE AND • 

• * IrEM IN *. YES .1\NO OUTPUT IrS * • COMMON DICT. • 
". FORMAr LIsr 1 .• -------->* DICTIONARY • * ENTRY. ourpUT .---

*. .* • REFERENCE • • SIX-BYTE * 
• . • * * * * REFERENCE • 

*. .• ****.********.*** ** •• * •••••• * •• **. 

[" 
• *. 3MEPRO:; 

J1 *. *****J2*******.** .*.. • • • ••• 
*:.EN~r~~1\~Exr.:..~~------>! °hlRigTBy~~D ! ____ >! 1\2 ! 

*. .* * • II· • 
*..* * * ••• * 

* •. * •••• ** ••••••••••• 

I'" 
GMEPRJ3 · *. K1 *. • ••• *K2 ••• *.** •• * 

.• *. *RE-INITIALIZE, • ****K4 •••• **** • 
•• HAS rHE 2ND •. NO • 1\ND SCAN THE * • * 

*. FILE BEEN .*-------->*SE~ONO FILE IN *--- j-->* EXIT * 
*.S:ANNED 1.* • THE SAME WA~ * •• 

•. • * * * **.***.**** •••• 
•. .• .** ••••• * ••• *.*** TO: PHASE 11\ 

• ~ES l ________________________________________________________________ _ 

Chart 3.12. Implicit Declarations Phase (Phase GM) 

386 Licensed Material - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I Iregistersl I 
~---------+---------+---------+-----------------------------------------------------------~ 

LOCSTK 
IELOIA 
IA 
MT28 
BUMOUT 

MTOUT 
M'I2 

M'I25 
SCAN 

SCi 
SC2 

SC2i 
SFi 
SF13 

SF2 
SF3 
SF4 
SF47 

I SF5 
SF6 
SF8 

SF84 

SC3 
S'IACKA 
SC5 
SC5l 
SC54 
SC6 
SC65 
SC66 
RFO 

RFl 
RF2 

RF3 
RF3l 
RF7 
RF9 

FUl 
I FU2 
IFU3 
I FU4 
I 
I FU5 
IFU9 
I 
I 
I 

I I I 
I I 
I DSECT R3 I 
I CSECT R5-R9 I 
I R I 
I R I 
I S I 
I I 

S 
S 

S 
S 

R 
R 

R 
R 
R 

R 
R 
R 
S 
R 
R 
R 

S 

R 
R 
R 
S 
S 
S 
S 
S 
R 

S 
S 

S 
S 
S 
S 

R 
R 
R 
R 

R 
R 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Stack for implicit locator chain. 
Entry pOint to Phase IA. 
Initialize registers and stacks. Call subroucine SCAN. 
End-of-program routine. 
Call main text output routine, and increment input text 
pointer Rl. 
Main text output routine. 
Process a statement header in the maiL text stream, and 
branch to the relevant processing routine. 
Process a block-heading statemen~. 
Main processing routine. Scan the main text stream and 
declaration expressions file, processing and inserting as 
required. 
Declaration expressions file sta~ement processing routine. 
Test statement header type and branch to MT2 if not 2nd 
file. 
Branch to relevan~ 2nd file statement-processing routine. 
Partially process a PROC statement. 
Scan through all alignment chains, putting ou~ MAP 
operators. 
Process a locator expression. 
Process an extent expression. 
Process an INITIAL assignment. 
output fixed INITIAL assignments. 
Process a MAP statement. 
Process a defined addressing statement. 
Complete the prologue code relating to a declaration 
expression by outputting the INITIAL assignments. 
End of current prologue code has been reached. Reset 
input text pointer, and process the main text stream. 
Operand analysis and locator-chain construction. 
Stack an AREA associated with an offset. 
Defined variable routine. 
Examine ~ype of defining. 
Process iSUB defined operand. 
Process string overlay defined expressions. 
Process based-addressing defined expressions. 
Process POS (or DSUBS) expressions. 
Examine and act on the results of a REFER scan of a 
statement. 
Prescan action on finding a REFER item. 
Pres can action on finding an operand which is not a REFER 
item. 
REFER scan of text. 
REFER item found. 
REFER scan action on finding change of statement level. 
All REFER items having been mapped, reprocess the whole 
statement, thus qualifying all the REFER items in the 
statement. 
Analyze a user function, ElF, or pseudovariable. 
Process the STRING BIF. 
Process the UNSPEC BIF. 
Process the DIM, HBOUND, and LBOUND array manipulation 
BIFs. 
Process the REAL and IMAG BIFs. 
Output a function and branch to operand processing 
routine. 

Continued on next page 

Licensed Material - Property of IBM Section 3: Program Organization 387 



SKIPOVER S 

t\Ll R 
PSUD R 

IMP R 

IMPAR R 

t\CC2 R 
SETOFF R 

MEM S 

OFSOUT R 
RESCON R 
GENMAP S 

GDAS S 
ffOWFA S 
PSEUDO S 
OFAS S 

MAPO S 
RFAB S 
TABS S 

TB2 S 
TABS3 S 
TREF S 
DELEAT R 
IAERl to 
ERR4 R 
MISCER R 
M'ISCER R 
FREDI R 

XINIT CSECT R9 
XBAKTX CSECT R9 
XMESGR CSECT R9 
XDISC CSECT R9 
XRFAB CSECT R9 
XDIREC CSECT R9 
XBREAK CSECT R9 
XTXPG CSECT R9 
XBRIC3 CSECT R9 

IXSTG CSECT RA L _________ ~ _________ ~ _________ 

Skip over input text to an extent decided by Lhc se~ting 
of SPECSW. 
Process an ALLOCATE statement. 
General purpose routine to output up ~o 20 bY~Es of 
information. 
Imply the locator for the SET option in an ALLOCATE 
statement. 
Imply the area a~plicable for a given FREE 
statement/ALLOCATE statement. 
General routine for random second-file access. 
Routine to generate assignments to set up any OFFSET 
expression. 
Analyze an operand to see if it is a structure member. 
so, access the current major structure entry. 
construct and output OFFS ~seudo text table. 
Construct RES DES pseudo text table. 

If 

Access a statement in a given alignment chain, 
chain slot, and output mapping operators. 
Generate locator/descriptor assignments. 

u~da~e the I 

Determine how far a REFER structure should be mapped. 
Output pseudo text tables (e.g., OFFS, RESDES). 
Generate an OFFS/ASSN pair ~o set up the bounds slot in 
the descriptor. 
Output a MAP pseudo text table. 
Access any dictionary entry. 
Convert a given text reference to an absolute address, 
fetch the appropriate page into main storage. 
Routine used for second-file page accessing. 
Routine used for accessing output text pages. 
Convert an absolu~e address in Rl to a text reference. 
Delete any statement. 

Error routines. 
Error routines. 
General purpose error routine. 
Free one dictionary page to allow 
page. 
) 

) 

) 

) 

) XROUT 
) 

) 
) 

) 

Private storage for Phase IA. 

access for the ~rror 

I 
I 
I 
I 
I 
I 
I 
I 

andl 
I 
I 
I 
I 
I 
I 
I 
I 

_ __________________________________________________________ J 

388 Licensed Material - Property of IBM 



IELOIA II'. 

E'ROL-I: 

·.···1'.2····.····· 
...... • ... 11.1· ... • ... •• ... •• • ... ... •• INITIALIZE • 

• E~TR!l .-------->. RE3ISTERS AND * 
• •• STACKS ... ................. ... . 

....................................... 
PiiA.SE GM 

1 
............... 82 ••• • ....... ••• 
·SCAN • . - ... -.-.-.- ... -.-.-. 
:SCAN ~~fESECOND:<--l<------------------------------------------.---------------------

• • ......................... 

1 
:.:: : 
• • •••• NO ... .•. . .. 

C2 •• C3 •• C4 •• CS •• 
.••• •••• .*IS ITEM.. •••• 

.• END OF •• NO •• IS ITEM •• NO •• EXTENT •• NO •• IS ITEM MAP •• 
.... SECOND FILE ?.--------> •• INITIA.L ASSN •• --------> •• EXPRESSION •• -------->*. STATEMENT? •• .... .... ....?. ..?. .. .. 

*. . * ...* *... •..• .. .... .. .. .. .. . ... 
rES SF< I ,"s r~ SF5 I YES 

....... 02............ • •••• 03.......... D4 •• • •••• DS •••••••••• 
• •• • • ... IS ITEM.. • • 
• OUTPUT. • CONSTRUCT. YES .... ALLOCATE •• • CONSTRUCT • 
... REMAINING'" r---· INITIAL CHAIN • r---·· STATEMENT? •• r---· APPROPRIATE • • PROL03UE CODE.. • •• •• .ALIGNMENT CHAIN. • *'. • *... • • ........................... ................. .. .. . ............... . 

1 
.... ..... NO •••• 

: 82 : : 82 : 1 : B2 : ... ... ... ... . . .... ........ . ... 
SF13 SF3 

....... £2................ • ...... E4 •••••••••• 
•• •• • SCAN THRUUGH • • OUTPUT • 

-->. ALI3NMENr .<---------------- • EXPRESSION IN • 
• CHAINS • • PROLOGUE CODE • .. .. 
·········l········ ········l::~:;;:~ 

• • •••• ••• GENMAP 
F2 •• • •••• F3 ••••••••• 

•• END OF •• • • 
•• ALIGNMENr •• NO • OUTPur 'MAP' • 

.... CHAIN REACHED.*-------->. OPERATOR • 
•• ? •• • • .. .. . ... *. .... ... ............................. ... 

1 .. , i:~~:i~l· YES 

SF196 G2·*·.... GS· ••• 
•• ALL .... ...... .... •• 

NO .... ALIGNMENT .... • ... ..IS IT A NEW .... NO 
---.. CHAINS .* • GS .----> •. PROCEDURE? •• ---t 

.... PROCESSED. • •• •• •• 
•• ? •• •••• •••• .. .. . ... 

... !lES • • •••• 

I ~~I::·--l ~~l::·--l ::~l: •••• •••• v 
••• SF84 ••• SEao 

H2 •• • •••• H3.......... • •••• H4.......... HS •• 
•••• .END OF 2ND FILE. .SCl • ••• • 

•• ARE rHERE .... NO • PROLOGIJE CODE. .-••• -.-.-.-.-.-. •• IS END OF •• NO 
•• ANY INITIAL •• -------->. FOR rHIS ·-------->·SCAN 14AIN INPUT·-------->·. PROGRAM •• ---1 

•• ASSNS ? •• • PROCEDURE. • TEXT STREAM • ..REACHED ?. 
*. .• • •• • *..* ... * .... *............ ................. . .. . 

SF81 J2.1.::' ..... J3.1........ . .... J4.I........ Js. l.::' :::::: 
•••• • •• SCAN OUTPUT • •••• 

•• ARRA!l •• NO • PLACE INITIAL. • TEXT AS NEW. !lES •• IS SPECIAL •• 
•• INITIAL? •• -------->. ASSNS IN THE • • INPUT TEXT .<--------•• REFER SCAN •• 

•. •• A. PROLOGUE CODE. • STREAM'" •• NEEDED ? •• .. .. . .. . ... . .. .. ............................. ................. . .. . 
..... K2.1.:::.... I NO 
• rAKE SPECIAL ... • ••• KS ••••••••• 

: ~~5~g~~ ~R~AY !----- : EXIT : 
• ITERATION ... ... • 
... DESCRIPTORS • • •••••••••••••• 
................... TO: 

PHASE 10 

Chart 3.13. (Part 1 of 2). Merge Declaration Expressions Phase (Phase IA) 

Licensed Material - Property of IBM Section 3: Program Organization 389 



.... 
·02 • 

• Al .--~ · . •••• . *. .*. . •. 
Al •• A2 •• • •••• A3 ••••• ****. A4 •• .*.**AS ••• *** •••• 

• *IS ITEM.. ..ARE ANY.. .MERGE RELEVANT • •••• • • 
•• ALLOCATE •• YES • *DECLARATION.. YES • EXPRESSIONS * •• ALLOCATION •• YES • SET UP REFER * 

*. VARIABLE? .*-------->*. EXPRESSIONS •• -------->.FROM 2ND FILE •• -----.. -->*. OF A REFER .*-------->* OBJECT * 
*. •• *.INVOLVED •• • GENERATE MAP • ..STRUCTURE.* * 

•• • * •• ? • • * TEXT * • • ? • • • 

'. [. ;0 • ·l:~: ______________ :::::::::::::::: _______________ :r:_--_______ ::::::: :1* * * * * •• * * 

SC3 .*. scs .*. 
Bl •• B2 *. • •••• B3** ••••• *** .** •• BS**** •• * •• * 

•• IS ITEM.. .*.. • MERGE BASE * • * 
•• A BASED •• NO • * IS I'TEM •• YES • INFORMATION • • COPY TEXT TO • 

•• VARIABLE? •• -------->*. DEFINED? .*-------->* FROM 2ND FILE *---1 • OUTPUT STREAM ·---t 
*. •• A.. .* .INTO MAIN TEXT * * UNALTERED * 

•• • • I *. • * • STREAM • • * *. •• *. •• ••••••••••••••••• • •••••••••••••••• 
• YES •••• • NO ••••• A ••••• 

1 
..! .01 • •••• *01 • 
• B2 • • HLI* * .. HLI. 
* • * • <-* BS • • • * •• * •••• • • •• 

• • •••• ••• • BS • • •• 
Cl •• • • C4 •• 

•• IS THIS*. ..** .* •• 
• * A SPECIAL •• YES .* IS ITEM A •• NO 

• • SCAN FOR • *------------------------------------------------------------> •• REFER ITEM ? •• ----------------> 
•• REFER • * *. • * 

·.ITEMS.· *. •• •. .• * .. * 

i"0 .'. J '" 
**.*.01.* ••• *.... D2 •• • •••• 03.......... 04 •• 
• USE STACK • •••• • SET REFSW TO * •••• 
• (LOCSTK) TO * •• IS ITEM A •• YES .INDICATE THAT A. •• DOES IT •• NO 
• BUILD LOCATOR *-------->*.REFER ITEM? .*-------->. SPECIAL SCAN • *. RE~UIRE .*-----------------
* CHAIN * *. .* *FOR REFER WILL * *.MAPPING ?* 
• * *.. * * BE REQUIRED • ••• * 
.*............... • •• * * •• * •• * •• *.*..... * ••• *..... )* NO 1. YES 

: .::. :<1 ns 

El' '.. • •••• E4 ••••••• * •• 
•• IS ITEM.. • GENERATE TEXT • 

• • EXPLICITLY •• • TO RESERVE • 
•• QUALIFIED ? .*<------------------------------------------ * SPACE FOR A • 

• • • • • DESCRIPTOR • .. .. . ... 

---------::1·;' ········1········ 

••••• Fl ••••• ***.* .****F4* ••••••••• 
• ACCESS • • GENERATE TEXT • 
• DICTIONARY FOR. * TO COMPLETE • 
* LOCATOR • • ADJUSTABLE * 
• ~UALIFIER * * BOUNDS/LENGTH. 
* • .FIELOS IN DES C •• ••••••••••••••••• • •••••••••••••••• 

J 1 
G1 *. • ••• *G2**.******* ••• **G3**........ • •••• G4 •••••••••• 

•• IS •• • STACK CURRENT. .CALL SCAN (MAIN. .HOWFA • 
•• QUALIFIER •• YES • TEXT REF. SET. • SCANNING. .-.-.-.-.-.-.-.- • 

•• AN EXPRESSION •• -------->.SCAN POINTER TO.-------->. ROUTINE). • DETERMINE HOW. 
•• ?. • EXPRESSION IN • *RECURSIVELY TO • • FAR STRUCTURE * 

*. •• • 2ND FILE. *SCAN EXPRESSION. .MUST BE MAPPED • 

··r·;o ................. ········1········ ········1········ 

.** •• al.......... • •••• H3.......... • •••• H4.......... • •••• HS ••••• * •••• 
*. • RETURN SCAN •• •• REPOSITION • 
:STA~~ ~g~~~pER: :P~~~:E~A~~D TI~T: : RE8~~~~~T~AP : ________ >:T~~~AI~¥E~H~~~ ! __ _ 
*. * LOCSTK· • TEXT * • TEXT • t .. ..... . 
••••••••••••••••• ••••••••••••••••• ••••••••••••••••• • •••••••••••••••• 

1,--------------------------------------------------1 ::~;: 
••••• Jl.......... • •••• J2 •••••••••• 
• EXAMINE ENTRIES. .BRANCH TO MAIN • 
• IN LocsrK.. • SCANNING • 
• UNSTACK AND • .ROU'TINE (SC1) •• ---
• 3ENERATE TEXT • • EXAMINE NEXT • 1 
: •• ~~.~~~~I~~~ •• : : ••••• ii~~ •••••• : ~ 

.1. .I.y.. I!!;! . ~ 
Kl •• K2 •• K3 •• • •••• K4 •• ******* • 

• • IS TOP •• •••• •••• *BRANCH TO MAIN * 
YES •• ENTRY AN •• NO • • IS TOP •• NO •• IS TOP •• YES • SCANNING • 
---*.U~~UAL. BASED.*-------->*.ENTRY SCLN2 ?*-------->*.ENTRY SCOLON •• -------->.ROUTINE (SCS). *---1 

• • I7ARIABLE • * *. • * ..? * * EXAMINE NEXT * 
*. ? • • • • •• ••• * * ITEM * •. .• •. . * •. .• • •••••••••••• ** •• • * • • ••• · . • B2 • · . .... 

Chart 3.13. (Part 2 of 2). Merge Declaration Expressions Phase (Phase IA) 

390 Licensed Material - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Func~ion I 
I I Iregistersl I 
I I Iregistersl I 
~---------+---------+---------+-----------------------------------------------------------~ 
I 
I 
I DSTAK 
IIELOID 
lIe 
I QSCAN 
I 
I 
I QSUBS 
I 
I 
IARGLIST 

NEXTPA 

NEXTARG 
OUTARG 

OUTARG5 

OUTARG8 
COMPl 

TEMPl 
ARGEND 

ARGEND3 
ARGEND5 

ABIF 

ABIF2 
ABIF3 
ABIF5 
POLYCODE 
SCANEXP 

KMDE 

SKIPOVER 

IDERRO to 
IDERR19 
ERTN 

PUTHOP 
BRIC 

ACCGD 
ACCVD 
LUKPOS 
CGNGHD 

SKSTRUD 
OUTSTRUD 

DSECT 
CSECT 
R 
R 

R 

R 

R 

R 
R 

E 

E 
R 

R 
R 

S 
S 

R 

S 
S 
S 
R 
R 

R 

R 

R 
S 

R 
R 

S 
S 
S 
S 

S 
S 

R3 
R6-R9 

Stack for nested-function entries. 
Entry point to Phase ID. 
Initialize registers, storage, e~c. 
Main scanning routine. Scan the inpu~ text stream, and 
transfer text immediately to the output stream unless 
special action is needed. 
If a subscript list has been found, check tha~ the number 
of subscripts is correct and that all the subscripts are 
scalar. 
Start of a parameter/argument list found. Increment the 
stack pointer to the next level. 
Scan to the next parameter/argumen~. If a parameter is 
present, store information. 
Process the next argument. 
Output an argument. At this entry point to the routine, 
the argument is output with slight changes, no temporary 
operand being required. 
Srecial entry point to OUTARG for when a structure 
reduced-descriptor has been created. 
Entry point to OUTARG to output the argument unaltered. 
The argument is a single (possibly subscripted) variable. 
Compare it with the parameter. 
Create an aggregate temporary in text and dictionary. 
Complete the outputting of an argument. Output a 
temporary operand if required. 
Test for the end of an argument list. 
If found, go back to the previous level in the stack and 
continue processing. 
BIF processing routine. At this entry paint, process an 
array BIF. 
Process ALL and ANY BIFs. 
Process SUM and PROD BIFs. 
Process the STRUCTURE BIF. 
Process the POLY BIF. 
Scan an expression (e.g., an argument cr a subscript) to 
see if it is structured and/or dimensioned. Take the 
appropriate action if so. 
Make dimension entries if a dimensioned variable is found 
in an argument. 
Skip over input text to an extent declded by the setting 
of SPECSW. 

Error routines. 
Produce an error message, and delete the incorrec~ 
statement. 
Scan and output text. 
Increment the input pOinter and handle pages in the text 
stream. 
Acess a general dictionary en~ry. 
Access a variables dictionary entry. 
Skip over DSUBS/POSX expressions, if present. 
Re-access a statement header in the output text stream, 
and set bits in the PREFIX option byte. 
Skip over a STRUD list, if present. 
Output a STRUD list. 

Continued on next page 

Licensed Material - Property of IBM Section 3: Program Organization 391 



I ! 
IXBREAK I CSECT 
IXBRICl I CSECT 
IXINIT I CSECT XROUT 
IXTXPG I CSECT 
IXDIREC I CSECT 
IXSTG I CSECT RA Private storage for Phase ID. 
I I 
IXTXEQU I ) 
IZTEXT I ) 
IYDICTl I ) 
IYDICT2 I ) Copybooks invoked. 
IXCOMM I ) 
!XEQU I ) 
IXBIF I I ) I L _________ i _________ ~ _________ ~ ___________________________________________________________ J 

392 Licensed Material - Property of IBM 



IELOID 10 
····.A2·.·· •• •••• •••• 1'.1......... • INITIALIZE • 

ENTRr : ________ >: s~~gl~~~RlbD : 
• •• SCAN OF TEXT • ••••••••••••••• • • 

FROM: ••••••••••••••••• 
PHASE II'. 

QS,., 1 
••••• B2 •• •• •• •••• •••• • SCAN TO THE • 

• • • NEXT STMNT. • 
• B2 .---->. HEADER IN THE • 
• • • INPUT TEXT • 
•••• • STREAM • ••••••••••••••••• 

1 ..... :1.......... . .... C2 •••••••••• 
• REPJSITIJ~ THE • .OUTPUT CURRENT. 
• INPUT P~INTER • .FIELD AND SCAN • 
• TJ THE START JF.-------->. TO THE NEXT .<----------------
• THIS SUBSCRIPT • 1\. ITEI>! IN THE • 
• LIsr • '. INPUT STREAM • 

.... ········~l········ :·::·i·······t········· 

QSUBS ••• 
••••• 01. •••••••• D2 •• 
• SKIP ~\lER IT, • •••• 
• CHECKIN3 THE. rES •• SUBSCRIPT •• 
• NUMBER ~F .<--------.. LIST? •• 
• SUBSCRIPrs· •• . * • • *... * ••••• ** ••• *..... • ••• 

ro 
· .. 

E2 •• .. .. 
•• •. rES 

•• LIST I/O? •• ----------------.. .. .... .... . . .. .. 
• C2 • • NO .. ~... 1 

---:::::~~:l........ F2··· •• 
• * .*ARG TO *. 
• OUTPUT A * •• FUNCTION, •• rES 
:SEMf~~~g~A~~D A: *· •• ~~~kY ~~F •• ··----------------
• • •• ? •• •••••••••••••••• * * ..• I YES I '0 

31' '.. G2·*· •• 
•• WAS A •• •••• 

NO •• TEMP •• rES •• END :}F AN •• 
---•• CREATED FOR .*<--------.. AR3UMENT? •• 

* . THIS ARG •• • . • • *. ? •• *... 
*. .• *. . * · i '0 

· *. H2 *. 
**** .* *. * • NO.· *. 

* c2 *<----*. DELIMITER? •• *. •. .• 
**** ...* .... 

l'ES 

· .. J2 •• *... . * •. * • NO. • END OF •• 
• B2 .<----.. PR03RAM? .* • * •. .• **.. •..• *. .• 

1

m 

• •• ·K2 •• • ••• ••• • • 
• EXIT • • • ••••••••••••••• 

TO: 
PHASE IE 

•••• • • 
• H4 • · . •••• I!. I rES 

1'.4' ' •• .. .. . ... 
•• END OF.. •• 

-->.. ARGUMENT? •• <----. 1'.4 • .. .. .. .... .... . ... .. .. . . 
• NO • E4 • 

1 "f':: 
•••• *B4.......... BS' ••• 
• • .• *. 
• SCAN TO THE * • • • • 
• NEXT OPERAND .--------> •• STRUCTURE? •• · . .. .. · . ... . ................. . .. . 

r' ... 
••••• c4.......... cs •. 
• • •• IS •• 
• STORE THE. NO •• STRUCTURE •• 
• STRUCTURE .<--------•• INFORMATION •• 
• INFORMATION • •• STORED? •• · . ... . ................. . .. . i lE' 

• •••• DS····.· ••• • • • 
• COMPARE • 

<----------------. STRUCTURING • 

••• * • • 
• E4 .-> • • .... . .. 

E4 •• .. .. 
NO •• •• 

-----------> <--•• DIMENSIONED? •• .. .. 

• • • • • •••••••••••••••• 

.. .. . ... .. .. . . i .~ :.;:.: 
••• KMDE 1 

F4 •• • •••• FS ••••••••• 
•• IS •• • • 

•• DIMENSION •• NO • STORE THE • 
-----------> •• INFORMATION •• -------->. DIMENSION • 

•• STORED? •• • INFORMATION • .. .. . . .. .. . ............... . 
l'" 

• ••• ·G4 •••••••••• 
• • 
• COMPARE • 

---. DIMENSIONS • · . • • ................. 
•••• • • 

• H4 .--1 • • •••• 
• ••• ·H4 •••••• * •• * 
• * * CHECK THAT • 
• ARGUMENT TrPE • 
• IS CORRECT • 

• * ········1········ 

. .. 
J4 •• • •••• Js •••••••••• 

•• IS •• • OUTPUT A TEMP • 
•• AGGREGATE *. YES • AND AN • 

•• TEMPORARr •• -------->. ASSIGNMENT • 
•• REQD? • • • OPERATOR • .... . . 

··I~~:---C---_------::::::::j········ 
•• •• ·K4 •••••••••• 
• REPOSITION • 
• INPUT TEXT • 

-----------------. POINTER TO • 
• START OF • 
• ARGUMENT • • •••••••••••••••• 

Chart 3.14. Aggregate Argument-matching PhaSe (Phase ID) 

Licensed Material - Property of IBM Section 3: Program organization 393 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function 1 
~---------+---------+---------+-----------------------------------------------------------~ 
I I I I 
I I I I 
I DSTAK I DSECT R3 I DSECT for all the stacks used. I 
IMEMENT I DSECT R9 I Description of member entry in structure stack. I 
lDIMENT I DSECT R2 I Description of dimension entry in structure stack. I 
I BOUNDS I DSECT RF I Description of bounds entry in aggregate tabl~. I 
IIELOIE I CSECT R5 to RBI Entry pOint to the main module, lEi. I 
I TSTPROC I R I Analyze type of statement. I 
IOUTHDR 'R I Output complete statement if it is one of PROC, END, I 
I I I BEGIN, ON, or ENTRY. Otherwise output the statement I 
I I I header only. I 
I TSTASS I R I Check for assignment and stream I/O statements. I 
NOTOFINT I R I Examine each operand, in turn, in all sta~emen~s o~her I 

NIDE 
NIOPEN 
FUNEST 

BYNAME 

BYNERR 

I I than assignment and stream I/O statements. I 
I R t Check for illegal use of aggregates in OPEN statement. I 
I R I Check for illegal array in OPEN and GOTO statements. I 
, R t Look for embedded aggregate assignmen~s withiu the I 
I I arguments generated by Phase ID. I 
I R 1 Calls the BYNASN subroutine to process sta~ements I 
I I containing a structure assignment with the BY NAME option, I 
I I and checks for any error conditions raised by the I 
I I subroutine. I 
I R I Deal with the error condition raised by the illegal use ofl 
I I the BYNAME option. I 

IOSET I R I Handle stream I/O statements. I 
FRST I R 1 Process and analyze assignment statements. l 
SCALPUT I R I Process and analyze element variable assignment statements I 

STRUCASS 
10PRTR 
I 
ICHKSP 
I 
I~~RII 

I 
IZDIMl 
I 
IARAS 
lA~ 
I 
IOUTII 
I 
IARRII 
I 
IIERRl 
I LUKPOS 
IPUTCHAIN 
I 
I 
ICOPYSUB 
I RESET 
IDISC 
IREFSV 
IXSTG 
IIE2 
I 
IBLDOUT , 
I 
I 
I 

1 I and pseudovariable assignment statements. I 
I R I Process structure assignment statements. I 
I R I Analyze second and subsequent operands in structure or I 
I I element-variable assignment statements. I 
I R I Analyze second and subsequent array operands in structure I 
I I aSSignment statements a I 
I R I Analyze second and subsequent structure operands in I 

R 

R 
R 

R 

R 

R 
R 
R 

R 
R 
R 
R 
CSECT RA 
CSECT R5,R6, 

R7 
S 

I structure assignment statements. I 
I Output structure assignment statements: modify the 
I statement header if required. 

Process array assignment statements. 
Text scan after the master operand in array assignment 
statements. 
Output array assignment statements; modify the statement 
header if required. 
Analyze second and SUbsequent array operands in array 
aSSignment statements. 
Error handling routine. 
Look for DSUBS/POSX lists in text. 
Called when outputting a pOinter-chain in the expansion of 
a structure expression/assignment. Calls the routine I 
PCHRTN to actually process the pointer-chains. 
Output SUBS lists. 
Reset text pointer back to a given point within a page. 
Build a table of all discardable input text pages. 
Convert an absolute address into a 5-byte text reference. 
Private storage for module IE1. 
Second module of Phase IE. Contains all the sub-routines 
called from the main module, IE1. 
Build a 7-byte operand from the STRUDs and the major 
structure operand in text, in the 7-byte field IAREA, to 
be output. 

continued on next page 

394 Licensed Material - Property of IBM 



GENSUB S 

CHNGHD S 

MDE S 
MMEi S 

MME S 

DLUP S 
PUTHOP S 
BRTN S 
ACCGD S 

SCAN SUBS S 

STKRTN S 

GDE S 
S'IAKAR S 

Generate subscripts in expansion of assignments for array 
and structure operands. 
Access the header of the statement currently being 
processed (in the output text stream) and modify it with 
the contents of the i-byte slot lOP. 
Make entries in the dimension stack. 
Make first member entry in the structure stack and carry 
out other initializations for housekeeping, etc. 
Make the second and subsequent entries in the structure 
stack. 
Output DOTMP and ENDIT. 
Output and jump over text. 
output and/or skip over a subscript/argument list. 
Access the aggregate table entry for an array or a member 
of a structure. 
Scan the subscript list, analyze it, and store the 
necessary information to be used for checking and 
outputting all labels starting with SUB. 
Initialize stack pointers and bump the stack pointers up 
to the next higher level. 
output DOTMPs and ENTMPs. 
Access the dictionary entry for an array operand. Make 
dimension entries in the stack if not subscrip~ed or if 
asterisks present in SUBS list. Check number of 
subscripts. 

SKSTRD S Skip over STRUDs in the text stream. On the first text 
scan, store the level increment and the dimensions of the 
major structures from the counters (LINC and MID 
respectively) into the first two bytes of the spare STRUD. 
Also count the number of base elements and store the count 
in the third byte of the spare STRUD. On the second and 
subsequent text scans load the three respective counters 
from the text. 

OPSKP S Skip over a structure operand and DSUBS/POSX expressions 
if they are present in the text, and set the input pointer 
(Ri) to point to the first STRUD. Used in the expansion 

COMDED S 
BYNASN S 
ACCVD S 

REINIT S 

PSCHRTH S 
ERTN S 

of structure expressions only. 
Compare the DEDs in the STRUDs of two structures. 
Handle BYNAME structure assignments. 
Access variables dictionary. Used in BYNAME struc~ure 
assignments only. 
Reinitialize the text (structure operands) in a nested 
function when the function is in a structure assignment. 
Handler pointers, etc. in the text. 
Called when the phase finds an error in the PL/I source 
program~ It deletes the statement from the text and 
passes a message to be processed by the error editor 
(Phase UA). 

IXBREAK CSECT ) 
IXRFAB CSECT ) 
IXTXPG CSECT ) 
I XMESGR CSECT ) XROUT 
IXDISC CSECT ) 
IXRFSEQ CSECT ) 
IXDIREC CSECT ) 
IXSTG DSECT RA I Private storage for module IE2. 
l _________ ~ _________ ~ _________ ~ _______________________ -------------------------------____ _ 

Licensed Material - Property of IBM Section 3: Program Organization 395 



IELOIE TSTPROC ,., ~OTOFINT FUNEST •• , 
••••• A2.......... ~3 ., ••••• A4.......... AS •• 

• ••• ~1 •• •• •• ••• • • ,... • • ,... • • .M~AL~ZE l'~PE OF. ,.~SSIGNMENT ., NO • EXAMINE E~CH • • .FUNCTN REF ., NC 
• E~TR~ .-------->. ST~TEMENI'? .-------->.,OR STRE~M I/O,.-------->.OPERAND IN TURN.--------> •• OR ARRA~ BIF?,.---
• •• • ., SI'~lT? •• • • /I., •• 
•••••••••••••••• • •••• • • I •• •• 

FROM: ••••••••••••••••••• •• ••••••••••••••••• •• •• 
PHASE 10 /I • YES "h... YES ...... l ...... 1 l ...... : AS : ••••• 1 

•• ~5 •• <-1 --. A2 • --. A4. • • B5 .-> • • • • ••••• • .... .... .... . ... 
SC~LPUT FRSI' ,.. ••• FUNEXP •• , 

••••• Bl. •••••••• • •••• B2.......... B3 •• B4 ., B5 •• 
• •• STATEMENT IS • ,* FIRST •• •••• •• ARGS •• 
• EXAMINE ~EXT • • ELEMEt~T. NO •• OPER!'.ND IS •• STRC •• ARRA~ OR.. YES •• CONTAIN ., 
• OPER~~D .<--------. ~SSIGNMENT, .<--------., AGGREGATE?* r---*' STRucrURE •• <--------., AGGREGATE •• 
• •• OUTPUT FIRST • ., •• •• ASSNMT? ,. •• ASSNMT? •• 
• •• OPERAND· ." • .,.. •••• ................. ................. .. .. .. .. . .. . I '" ::~:: : j. Al<RAY j. <~~--------

STRUC~SS ,.. ARAS 
••••• cl.......... • •••• C2.......... C3 •• • •••• c4.......... • •••• c5 •••••••••• 
• •• ST~CK LEVEL • •••• • STACK.. • 
• EXAMINE NEXT • .DIMENSIONSL kND. STRC •• STRUCTURE •• ARRY .DIMENSIONS AND. .COPY OPERAND TO. 
• OPER~ND .<--1<----. BOUNDS uF • <--------. , OR ARRAY? ,.-------->. BOUNDS OF THE • • OUTPUT • • • .FIRST/NEXT BASE. .0 .. . FIRST ARRAY • • UNALTERED • 
• •• ELEMENT· ., ,. • •• • 

········1········~·::: ········t::~::;:; ..... ········1········· ........ j ........ . 
•••• • • •••• 

•• , •• 0 ATRII AAB ••• 
D1 ., D2 •• • •••• D3.......... • •••• 04.......... D5 •• 0.· ·'.0 ns .• O;r~T~~SA~· •• NO :g~ru;~~iofu~V~~b : : EXAMINE NEXT: NO •• ,. END OF •••• 

-->., STRUCTURE? •• -------->., EXPRESSION? •• -------->. BOUNDS WITH. 1-->* OPEHAND • l---·· STATEMENT? •• 
• 0 .* ., ,. • FIRSI' OPERAND.. • •• •• .. .. .,.. . .. . ... . •. o· •. ,. ••••••••••••.••.. ••••••••••.•••••. • ..• I O. , 'ES j! ::'! 1 !'::'; j. YES 

0.. ... ...•... ·:::YES 
E1 .0 E3 •• E4 •• • •••• E5 •••••••••• o. .. .... .......0.. o. FONCTI::lN •• ~ES. • NO •• OPERANDS •• • .FUNCTN REF •• YES • END OF • ·0 REF. OR •• ---->. B5 • <----------------.. M~TCH.· ·.OR ARRAY BIF?.---! 1-->. STATEMENT • 

.,ARR~Y-BIF.. •• ..EXACTLY? a. .. .• . ACTION • 
•• ? •• •••• •••••• •• • • .. .. .. .. .. .. . ............... . 

·1 NO 1· ~ES 1· NO :.::.: ::.: 1 
•• , ••• ·······;:;:ND ••• 

F1 •• • •••• F2.......... • •••• F3.......... F4 •• F5 •• 
,.ELEME~T.. • OUTPUT BASE- • • OUTPUT STRUCT • • .15 RHS •• ••• • 

•• ~SSIGNED 1'0., :lES .ELEMENT ASSNMT,. • ASSIGNMENT. YES •• OF STMT AN •• NO •• • • 
•• STRUCTURE? •• -------->. !'.ND GENERATE • • UNEXPANDED. ·---1 r---·· EXPRESSION? •• ---·.END OF TEXT? •• "'. o. . DO-LOOPS AS • • INDICATE MVC • •• •• •• •• 

•.•. .•.• ! .•. ~~2~!~~~.***: :***~~~~~!!~~ ••• : •••• •••• • ••••••• 

·1 NO 1 :.::.:.::.: 1· NO 1· YES 

••••••••••• 
•• , ARII 

••••• 31.......... 32 •• • •••• G4 •••••••••• 
• • ..., • COMPARE. • ••• G5 ••••••••• 
• OUTPUT THIS. NO.. END OF •• .DIMENSIONS AND.. • 
• OPERAND • r---.' STATEMENT? • • • BOUNDS WITH • • EXIT • · . .0 .. . FIRST OPERAND.. • · . .,.. .... . . . ............. . ................. .0 o. .. ....••••...••...• TO: 

1 
..... YES • E5 • 1 PHASE II 

: C1 : 1 ..... . 
Hl .0 82 ., ••••• H3. •••••••• H4 •• • •••• H5 •••••••••• 
,... •••• • OUTPUT ~RRAY • .*.. • * 

. ·0 ...... .., ]---------->"1 ... -----------l 

NO o. END OF •• ~E5 NO.* LAST •• YES • ASSIGNMENT * YES •• OPERANDS •• • MOVE SCAN TO • 
---*. STATEMENT? •• ---! r---.. BhSE-ELEMENT •• ----- • ONEXPANDED. .<--------.. MATCH •• r---.NEXT STATEMENT • •• •• *. OUTPUT? •• • INDIC~TE MVC • ..EXACTLY? ,. • • 

•• •• •••• • OPERATION • •••• • • • 0 .• .0 ,. ••...•.......•... .. .. . ............... . 
· :.:;.:.:;.: · ...... 1. NO :.:;.: 

• • • • J4 .-> •• .... .... . . . ... .... 
••••• J4 •••••••••• 
• OUTPUT EXPANDED. 
• ARRAY • 
: w~~~Ig~~f~6Ps : : .. ~~.~~~n~~~ •• : 

j 
, .. 

K4 •• .... .. .. . ... 
• • NO.. END OF •• YES. • 
• D4 .<----•. STATEMENT? •• ---->. E5 • .. .. .. .. .... .... . ... 

* .. * • 

Chart 3.15. Aggregate-expression Phase (Phase IE) 

396 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Expression Analysis and Text Formatting (Phase II) 

r--------,---------,---------,-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I Iregistersl I 
~---------t---------t---------+-----------------------------------------------------------1 
I 
IIELOII 
I 
III 
IIELOII3 
ITGl 
ITG23 
ITG24 
ITG5 
ITG51 
IPENDO 
IUNSTK 
ICHIP 
ITG6 
I 
ITG8 
ITG89 
IBIFQ 
ISUPP 
ITGOUT 
I NULTAB 
ITG1 
I 
I 
ITGSl 
ITGS2 
ITGS3 
ITGS4 
ITGS5 
ITGS6 
ITGS1 
ITG16 
ITGS8 
ITGS9 
ITGSA 
ITGSA3 
ITGSE 
ITGSC 
ITGSCl 
ITGS91 
ITGR 
ITGSD 
ITGCAFU 
ITGEIFA 
ITGSIG 
ITGPTSF 
ITGSE 
ITGSE2 
ITGPOS 
ITGSG 
ITGSH 
ITGSl 
ITGSJ 
ITGSR 
ITGGEN 
IXGCF 
ITGONX 
IFIXEO 
IOUSTAR 
I NXVLABL 
IGDC 

CSECT 

R 
CSECT 
R 
R 
R 
R 
R 
S 
S 
R 
R 

R 
S 
S 
S 
S 
S 
R 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
S 
R 
R 
R 
R 
R 
R 
S 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
S 
S 
R 
S 

R6,R7, 
R8,R9 

Entry ~oint to rcot module of Phase II. 

Initialize registers, storage, and text streams. 
Translate tables used in II. 
Basic text scanning routine. 
End-ot-program routine. Transfer control to next phase. 
Deal with pseudo-text-table input, created by Phase IA. 
Generate a statement header table. 
Generate PROC and BEGIN text tables. 
Output a PEND text table. 
Delete an MSTACR entry. 
Input text stream handling routine. 
Compare the text operator priority with that of tne top 
operator in MSTACK, and take appropriate action. 
Process MSTACK furtRer, and continue scan. 
Make stack entries for 'non-standard' operators. 
Test for a BlF operand, and make relevant stack entry. 
Determine when output should be suppressed. 
output up to four text tables. 
Output NULL text tables. 
Process operators, take any special unstacking action 
required (as indicated by the following routines), and 
generate text tables. 
Special action for IF 

• 

II .. 
II 

II .. 

ELSE 
THEN 
TO,BY,DOEQ 
ITDO 
WHILE 

.. ENDIT 
assignments. 
LPAR 
DO 
SUBSl/SUBS 
SBAR 
PREF'I:X 
DO 'IEMP 
ENTMP 
ENDDO 

operator .. 
• 

• 

operator 

.. 
II 

• 

.. I/O and systerr-interface stmts. 
arguItents. 

special action for CALLS/function cperator. 

• .. II 

• .. 
II .. 

.. .. 

BIF arguments. 
SIGNAL, REVERT operator. 

• PTS~'I • 
GOTO, GOOB, MAP, TASKO, 

• FIT,FITE text tables • 
.. POS expressions • 
• WHEN (SELECT) operator • 

SELECT operator. 
OTHERWISE operator. 
END (SELECT) operator • 
stacked SELECT operator • 
GENERIC arguments. 
COMPLEX operator. 
ON statements. 

Output FITE text tables. 
Stack-control subroutine. 
Generate compiler labels (GSLs). 
Generate DO conversion. 

etc. 

Licensed Material - Property of IBM Section 3: Program Organization 397 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, Octo 

I GSNGEN 
IINVP 
IPOPR-rN 
INDXGEN 
t 
I 
ITGARG 
ITREF 
IPRITAB 
ITRTAB 
tGENTAB 
I RIOT 
I 
lEA 
I 
lEA 
lEAl 
IEA2 
ICVCEER 
IEA4 
ICONEXP 
ITE~PAN 
ICN'rAR 
I 
ITRUDED 
ILIEDED 
I SCALP 
ICONC 
IBIPE 
tACHE 
I FRED 
I CRUD 
I SELECT 
I BARD 
I 
I QSRCH 
I MATCH 
IMAERR 
IBIFERR 
IMISCER 
IDELEAT 
IDELR 
IGNPSV2 
I 
IRFAB 
I FUNTAB 
I FAT 
I 
I 
IXINIT 
IXMESGR 
IXBREAK 
IXTXFG 
IXBRICl 
IXBARTX 
IXRFAB 
IXDIREC 
t 

5 
R 
R 
R 

S 
5 
T 
T 
T 
T 

CSECT 

5 
R 
R 
S 
5 
S 
5 
S 

S 
5 
S 
s 
S 
R 
R 
S 
S 
5 

5 
R 
R 
S 
5 
5 
R 
5 

5 
T 
T 

CSECT 
CSEC'I 
CSECT 
CSEC'I 
CSECT 
CSECT 
CSEC'I 
CSECT 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

R6,R8, 
R9 

R9 
RF 
RF 
R9 
R9 
R9 
R9 
R9 

Output extra statement header. 
Invoke O-ARG functions. 
Pc~ the main stack. 
Generate NDX text tables. 

Unstack an argument. 
Save the current text reference for a statement 
Operator priority table. 
Table for statement-type special action. 
Generation action table. 
Translate table for record I/O statements. 

Expression analyzer module of Phase II. 

Expression analyzer subroutine. 
Call EA and return to TG75 in root module. II. 
Precess assignments. 
Arithmetic operation checking routine. 

rescan. 

Analyze information provided by subroutine CVCHER. 
Evaluate result for fixed exponentiaticn. 
Ccnstruct temporaries. 
Generate intermediate temporary operands when assignments 
are made to string targets. 
construct a standard DED for a literal constant 
Restore DED for a literal constant. 
Calculate scale and precision. 
Ccnvert arguments to the correct string type. 
Examine EIIs. 
Analyze arguments and generate conversions where necessary 
Function result determination routine. 
Check a result for user compatibility. 
Perform a GENERIC selection. 
Convert the usual data byte of a GENERIC argument to the 
2-byte form used in the argument descriptor. 
Determine the code byte corresponding to a Q-temp. 
Argument matching routine. 
Error message routine. 
BIF error message routine. 
General purpose error message routine. 
Perform ·tidy-up· action after error situation detected. 
Output DEL text tables. 
Output a pseudovariable text table for a non-string type 
pseudovariable (PSV2). 
Access any dictionary entry. 
Function table for BIFs. 
Punction access table. Used tc determine the offset of 
any particular BIF. 

) 
) 

) 
) 

) XROUT 
) 
) 
) 

IXSTG CSECT I RA Private storage for Phase II. 
~--------~--------~--------~----------------------------------------------------______ J 

398 Licensed Material - Property of IBM 



IELOII 

.... 1\.1 ........ * 
* * * ENTRY * 
* * •• *** •• ***.***. 

F,,;)"1: I Ptill.SE IE 

TGINIT 
*****B1********** 
* * 

TG7 
*****B4********** 
* * * INITIII.LIZE * * * * * * REGISTERS II.ND * * 84 *---->*GENERATE ACTION* 

* STII.CKS * * * * * 
* * ***. * * ", ........ ! ....... . 

TG6 

*oO.**~1********** *****:2********** 
* * * * **** 
• SCII.N INPUT TEXT* * BUMP TEXT. * • 
* 3TREII.M • j-----.POINTER TO NEXT.<----* C2 • 
* * * ITEM * * * 
* • * * **.* 
** * * * * * * **. * * * * *. .** *** * ********** 

1 <---------- 'I 
· *. 01 *. *.***D2* ******** 

. * oO. * * •• IS ITEM II.N *. YES * PLII.CE OPERII.ND * 
*. OPERII.DOR? .*-------->* IN MSTACK * 

*. .* * * *. .• >I< >I< 
*. •• .**.************* i N;) 

V 
· *. TG23 

E1 •• *****E2********** 
.* oO. * * ****E3********* 

.* IS ITEM *. YES *PII.SS CONTROL TO* * * 
*. ENOPROG? .*-------->* NEXT PHASE oO-------->* EXIT * 

•. .* * * * * 
*. • * * * *************** 

*. ." ***************** TO: I NO b~A~~ IK, 

. *. TG5 
Fl *. *****F2********** *****F3********** 

• * *. * * * GENERATE * 
.* IS ITEM *. YES * ~ONSTRUCT * * STATEMENT * 

*. STATEMENr • *-------->*STATEMEIH TYPE *-------->* HEII.DER TEXT * 
*. HEII.OER? .* * CHAIN * * TII.BLE * 
*..* * * * * 

*. .• *.* •••••• *** •••• * .***.********* •• * 

• NO 1 I ..... . 
.*. TG21 • C2 • 

Gt •• • •••• G2 ••••••• *.. . * 
.*IS ITEM*. * * **** 

.• SUBSCRIPr *. YES * MAKE ENTRY IN * 
*. OR FUNCTI;)N •• -------->. SFSTII.CK 

*.REFERENCE.* * 
*. ? .* * * 

* •• * ***.* •• *.***.* ••• 

1
* NO l .. ** 

->! J 1 : 

* * **** 
· *. Hl *. *****H2********** 

. * *. * * • * IS ITEM *. YES * TAKE * 
*.LOCII.TOR CHAIN.*-------->* APPROPRIII.TE * 

•• OPERII.TOR? * * ACTION * •• . * • • 

:':~':::l':~:--------------::::::::j"""" *.** 
*****Jl·********* 
• CO~PII.RE * 
* PRIORITIES OF * 
*TEXT AND MSTACK*<---­
.. OPERArORS • 
.. * 
········i········ 

· *. Kt *. .• *. 
YES.* IS TEXT •• NO 

········i········ 

. *. 
C4 *. 

• * *. NO • *IS SPECIAL •• 
---* • ACTION • * 

*. NEEDED? .* *. .• 
* •. * 

r~ 
*****D4********** 
* GENERATE A * 
! ~~~¥E~~~L~§ : 

: (~T~T~M~~fs~O : 
***************** L _________ _ 

-----------Q 
. *. 

E4 *. .* IS *. 
NO •• EXPRESSION •• 

---.. ANALyZER TO • * 
*. BE • * *CALLED?* 

'r~ 
**·**F4 •• **.**** • 

• * .INVOKE ROUTINE * 
* TO DETERMINE • 
• RESULT TYPE * • • *** •• * •••• *.*** •• 

l .. *. ·02 • ->. A2 * . . 
.*.* 

---::~~~---l 
* H4 .-> • • **.* 

**··*H4*.* •• * •• *. · . • GENERATE * 
• RELEVANT TEXT • 
• TABLE • 

• * .... · .. ·F:::::---
** •• *J4 •• **.* •••• • • 
• UN STACK * 
• OPERATOR PAIR • 
• FROM MSTII.CK * * • 
········i········ 

.*. K4 •• .• *. 
NO •• IS MSTACK *. 

1
---*· PRIORIrY '*---1 

*. HIGH? • * 
-------------------------------------------------------*. EMPTY? .* 

*. . * * •. * 
**** * **** 

* * * • * B5 * * B4 * 
* * * * **** **** 

•. . * *. .• .... 
* YES 

t 
*.*. • • • C2 • 

* • •• ** 

••••• B5 •• *.**.* •• 
* • 
• * 

I-->~·:::::*::::::··~ : ::.: j 
• • ••• * 

.*. c5 •• .* •. 
NO •• IS SPECIAL •• 

---to ACTION •• 
*. NEEDED? .* 

*. .* .... 
r"' 

.****D5*****.***. 
* SELECT * 
• APPROPRIATE • 
:r~gT§~~T~~E~T~): 
• * ***.*** ••• ******* 

---------->1 
.****E5****** •• ** 
* * *STACK .OPERATOR * 

1
---. PAIR(S) IN * 

• MSTACK * 
* * *****.*** •• **** •• 

**** 
* * * C2 * 
* * .* •• 

Chart 3.16. (Part 1 of 2). Expression Analysis and Text Translation (Phase II) 

Licensed Material - Property of IBM section 3: PrQgram Organization 399 



EA1 

•••• • 02 • 
• A2 .--1 • • •••• 
•• ***A2******+*** 
* * + ANALYZE * 
.OPERATION TYPE • 

• * • • ··· .. ··1 .. · .... 
CV~HEK ••• 

* ••• *B1* ••• * ••• +. B2 +. • •••• B3 •••• * ••••• 
• • •• IS IT •. • • 
... ANALYZE • YES •• ARITHMETIC •• NO .CHECK OPERANDS • 
• OPERA~DS .<--------•• OPERATION? .*-------->*FOR STRING TYPE.---

1 · . .. .. . . · . .... . . . * ......... *..... . .. * ••••••••••••••••• 

EA4 

• • ••• • • 
• C2 * • • •• * • • t~-----------------------~l.NO EA6 

C2 •• C3 •. • •••• C4.......... • •••• C5 •••••••••• 
•• IS •• •• HAVE •• • •• • 

•• CONVERSION •• NO •• BOTH •• YES • ANALYZE. .COMPLETE RESULT. 
----------------> •• NECESSARY? •• --------> •• OPERANDS BEEN •• -------->.OPERATION TYPE .-------->. DESCRIPTION • 

" •• • * " •• PROCESSED4 • • •• • 

i ·· .. ! ..? * * *. • •• .• •• .• ..** •••••• **.*.** ***.** ••••••••••• 
•• * • YES .** • l .. 1 * * " ** •• * C2 * • C3 ... .01 • • ,. • • ->* H4 * 

.*.* *.*. • * * ••• 
• *.··02**.*·**··· 
* * • SET UP SOURCE • 
• AND TARGET * 
• DESCRIPTIONS • 

• * ········1········ 

... 
E2 *. ..*.*E3 •• * •••••• 

• * *. • • 
•• IS OPERAND •• YES • TAKE * 

•• A CONSTANT? .*-------->* APPROPRIATE • 
• • • • * ACTION * 

*. .• • • 
•• . * * •• ** ••• * ••• ** •• * 

I" 
.***.F2··*.······ 
... CREATE A NEW • 
• TEMPORARY FOR * 
• CONVERSION * 
* RESULT • 

• * ········1········ 

SCALP ••. STYLE 
••••• 31* ••• * •• *.. 32 *. * ••• *G3.* •• ****.* 
* * .*.. • * 
* CALCULATE * NO • *IS RESULT A*. YES • CALCULATE * 
* TAR3ET SCALE *<--------.. STRING? •• -------->* TARGET STRING * 
* AND PRECISION. *. .* • LENGTH * 
• * *..* • • 

........ [::::::--------------:~~~:---------------:::::] ....... . 
··*··H2·**·****** • • • COMPLETE THE • 
• OED FOR THE 
• TEMPORARY 

• * ········I········ 

.·*·*J2*·*.··.··· • • • 3ENERATE CONV • 
• TEXT TABLE • • • • • 
········1········ 

··.··K2··.··· •• •• 
• REPLACE. • ••• 
• CONVERTED· * • 
• OPERAND BY .---->. C3 • 
• TEMPORARY * • • · . . ... ••••••••••••••••• 

Chart 3.16. (Part 2 of 2). Expression Analaysis and Text Translation (Phase II) 

400 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6019, October, 1913 

Attributes and Cross-reference Listing (Phase-l]) 

Name 

IELOIK 
IELOIK 
IK05 
IK04 
IK13 

IK21 

IK40 

IK43B 

SORT 

IK50 
IK60 

IK90 

PUTID 

PUTAT 

PUTXR 

QPXR 
PXRBIF 

PRNTCON 
PRNTCON 

PRNTCON1 

, i 

Type I Base I 
Iregistersl 
I I 

CSECT R9 
R 
R 
R 
R 

R 

R 

S 

R 

R 
S 

R 

S 

S 

S 

S 
S 

S 
E 

E 

Function 

Continued on next page 

Entry point to Phase IK. 
Phase initialization. 
pick up the source text for scanning. 
pick up operands and see if they are variables. 
Having identified a variable, go to its variables 
dictionary entry to access its name table reference. 
Take the text reference of the next available 
cross-reference entry and insert it (a) in the previous 
cross-reference entry (if any), and (b) in the name table 
entry. 
Copy names dictionary entries into spare text pages in 
preparation for sorting. 
Keep a count of the number of names dictionary entries 
copied. 
Sort the names dictionary entries on the text pages into 
PL/I collating sequence. A SCHELL sort is used. 
Initialize the printing of the information collected. 
Access the variables in the order now given by the sorted 
text pages. Analyze each entry in turn. 
At this point the status is as follows: 

1. The identifier and its declaration number (if any) 
have been put out. 

2. If the ATTRIBUTE option has been specified, the 
appropriate attributes have also been put out. This 
routine tests to see if cross-references are 
required. If not, the next item in the sorted list 
is accessed. If cross-references are required, 
subroutine PXR is called to output them. 

pick up the identifier's declaration number (if any), 
convert it to external form. Also pick up the identifier 
itself and convert it to external form. Insert both items 
in the print line. 
Accept an attribute and its length as parameters. Check 
for room in the current print line: if none, output that 
line and commence a new one. 
Accept the address of a 2~byte cross-reference as a 
parameter. Convert it to external form and left adjust 
it. Check for room in the current print line: if none 
output that line and commence a new one. 
Print out the cross-references for each identifier. 
Identical to PXR except that dictionary references are 
used instead of text references. 
Deal with printing constants contained in parenthesis. 
Entry point to subroutine PRNTCON. Accept a parameter 
addressed by RB. The parameter is a binary number 
preceded by its length which can be one or two bytes. 
Output is of the form (n). 
Entry point to subroutine PRNTCON. Back up the position 
in the line by one, insert a comma, the number itself, and 
a right parenthesis. Thus output is of the form (n,m). 

Continued on next page 

Licensed Material - Property of IBM Section 3: Program Organization 401 



XINIT 
XTXPG 
XBRIC2 
XRFAB 
XSEQRT 
XPRNTN 
XPRNT 
XDISC 
XDIREC 
XSTG 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT RA 

) 
) 
) 
) 
) XROUT 
) 
) 
) 
) 
Private storage for Phase IK. 

402 Licensed Material - Property of IBM 



IELOIK 

****A3*****.*.· · . • ENTRY * * • 
:~ :;·····1······· 

IK ••• 
83 •• 

•• ARE •• 
NO.. CROSS •• 

---*. REFERENCES •• 
•• REQUIRED .* 

•• ? •• .. .. 
* YES 

OCHAIN I 
*.**·C3.···***.·· 
* ESTABLISH • 

CORRECT • 
SCANNING • 

SEQUENCE OF • 
• TEXT * 

IRo:·······l········ 

*.*.*D3··*·***··* 
• SCAN TEXT TO • 
*BUILD UP CROSS • 
• REFERENCE • 
* CHAINS • • • 

::::=~~f""" 
****·E3*··***···· 
• SORT * 
• IDENTIFIERS • 
• INTO EBCDIC • 
• COLLATING • 

I.6:···~~~~I~i~ .... : 
•••• *F3.···*··*·· 
• PRINT • 
• IDENTIFIERS AND* 

-->* DECLARATION • 
* NUMBERS • 

• * ········i········ 

••• PUTXR 
G3 •• • •• G4 ••••••••••• .. .. 

•• ARE •• YES PRINT 
•• ATTRIBUTES •• --------> ATTRIBUTES 

·.REQUIRED?. • .. .. 
··l:~:-------------:~:::::J······ 

IK90 ••• PXR 
H3 •• ..*H4 •• * •• **.*** 

• * ARE •• 
• * CROSS •• YES * PRINT CROSS 

*. REFERENCES •• --------> REFERENCES 
•• REQUIRED •• • 

*. ? •• 

··l:~:------------::::::]······ 
IK91 .•• 

J3 *. .. .. 
NO .*IS PRINTING*. 

---*. FINISHED? .* *. .• *. .• .. .. 
1 YES 

***.K3.**·**··· 

• * * EXIT • 

• * .*****.* ••••••• 
TO: 
PHASE K!I. 

Chart 3.17. Attribute and Cross-reference Listing Phase (Phase II) 

Licensed Material - Property of IBM Section 3: Program Organization 403 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Func~ion I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

I 
I 

XTXEN CSECT R7 I CSECT for routine XTXEN. 
XTXEN R I Invoked by the X~XEN macro when ~he text table required is 

I on a new page. It obtains ~he page specified by the macro 

IELOKA CSECT R4,R5 
R6,R7 

KAl R 
KA10 R 
BOSS R 
BSl S 
CBO R 

CH1 S 
CH2 S 
CH3 S 
CH4 S 
CB5 S 
CH6 S 
CB7 S 
BS4 S 
CBAINIF R 
PROCESS R 
IFMIN R 
QUERY R 
COMPR R 

LOGEX R 
LOSCAN R 

LOVELY S 

LOQUER R 

LORA NO R 
LONOT R 
LOCOMP R 
LOBUNG R 

LOBOUTT R 
TEXTeR R 
CONVPROC S 

BZERO R 

I 
ISETTEMP R 
I GOTOQ R 
I GOTOY R 
ISTRNG R 
I 
I 
I 
I 
I 
I 
I 
I 

I and checks that it is the right on~. 
Entry point for Phase KA. 

Initialize registers, storage, and overflow space. 
Overflow page allocation. 
Initialize text scanning. 
Examine text table. 
Analyse statement to see whether or not it should be 
placed in one of the statement type-chains. 
Update XSYSCH field in XCOMM. 
Update XOOCH field in XCOMM. 
Branch to PROCESS routine. 
Update XRIOCH field in XCOMM. 
Update XSIOCH field in XCOMM. 
Update XSUBCH field in XCOMM. 
Update XBELCH field in XCOMM. 
Examine text table for special action cases. 
Reset switches. 
Process IF statements (including WHILE clauses). 
Optimize MINUS text table. 
call the subroutine CONVPROC. 
Process IF statements that have a single comparison 
operator. 
Process IF statements containing logical exprtssions. 
Scan a logical expression backwards to the next text 
table. 
Branch to the processing routine relevant to the text 
table found. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Text table is not COMP, AND, or OR. Process it and 
its stack entry. 

deletel 

Process an AND or OR text table. 
Process a NOT text table. 
Process a COMP text table. 

I 
I 
I 
I 

Routine for recovery from abnormal conditions in the 
routine. 

LOGEXI 

Output a BCB table. 
Text housekeeping routine. 
Process a non-logical expression table whose result is 
used in a logical operation. 
If a constant cannot be generated, this routine converts 
the variable to a bit-string. A test is carried out ~o 
ensure that the variable is of a type that can be 
converted to bit, and the re~evant diagnostic generated. 
Generate a CONVERT text table. 
Test for a THEN GO TO expr~ssion. 
Optimize a THEN GO TO expression. 
This routine performs the following functions: 

1. Look at every locator-assignment and if the source 
and target do not match change the ASSN table into an 

I 

appropriate BlF table. 1 
2. set appropriate bits in XOPPHS1 in XCOMM for optional I 

phase loading. I 
I 

Continued on next page I 

404 Licensed Material - Property of IBM 



IQSET 

KKSET1 

OCSET1 

OXSETY 

UNAL1 

Sl 

CVAS 
S32 
S330 
S35 
FR31 
FR32 
FR33 
FR34 
FR35 
S'IRIMP 
STYLE 
SCALP 
TRUDED 
ERTN 
BIFERR 
MAERR 
SINCH 
EP 

XINIT 
XNXROUT1 
XNXROUT2 
XTXPG 
XTCH 
XNSRT 
XTXEN 

IXTUNL 
IXLINK 
IXSTG 
I 

S 

S 

S 

S 

S 

S 

S 

S 
S 
S 
S 
S 
S 
S 
S 
S 
R 
R 
S 
R 
R 
S 
S 
R 
R 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

R9 
R9 
R9 
R9 
R9 
R9 
R9 
R9 
R9 
RA 

3. Look at each operand in turn and set the ALGN/UNAL 
bit in the data byte of all chameleon temporary 
operands, variables, and QTs. 

4. Detect and resolve chameleon operands. 
5. Detect all string-temps and resolve them as required. 

Bit setting for optional loading of Phase IQ (XOPPHS1, bi~ 
1), 
Bit setting for optional loading of Phase KK (XOPPHS1, bit 
2), 
Bit setting for optional loading of Phase OC (XOPPHS1, bit 
3) • 

Bit setting for optional loading of Phase OX (XOFPHS1, bit 
4) • 

Check if the operand is a chameleon. If so, access the 
variables dictionary entry and fill the text DED from the 
dictionary. 
Check if the operand is a data variable. Manipulate the 
ALGN/UNAL bit in the data byte as required. 
Replace references to temporaries by their evaluated form 
(including the string length if known at compile time). 
Convert any source to string. 
Process CONCAT text table. 
Process bit-string operations. 
Analyse and process some STRING BIFs. 
Process SUBSTR and BOOL BIFs. 
Process REPEAT BIF. 
Process HIGH/LOW BIF. 
Process TRANSLATE BIF. 
Process BIT/CHAR BIF. 
Construct string temporary operands. 
Calculate target-string length. 
Calculate scale and precision. 
Provide a standard DED for literals. 
Error-message handling routine. 
Generate BIF Error messages. 
Generate error messages. 
Static initial error-checking routine. 
End of phase. Test the optional phase loading bits in 
XOPPHS1 in XCOMM and release control to the appropriate 
phase. 

) 
) 
) 

) 

) XROUT 
) 

) 

) 
) 

Private storage for Phase KA. 

IXEQU ) 
IZTEX2A ) 
IZTEX2B ) 
IXTXEQU ) 
IZTEX2C )Books invoked by a COpy statement. 
IXBIF ) 
I YDICT1) I L ___ ~ _____ ~ ____ ~ ____ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM Section 3: Program Organization 405 



IELOKI'. KA10 
····.1'.2·········· .... 1'.1 ...... ··· . . 

• •• I'.LLO::::I'.TE • 
• ENTRY .-------->. OVERFLOW TEXT • 

FROM: 

• •• PA3ES • ••••••••••••••• • • ................. 
PHASE II OR IK 

I 

Chart 3.18. 

·····B2·········· • • · . • S::::I'.N TEXT • • • · . ••••••••••••••••• 
: .:;. :_>[ 
• • .... 
... ··::::2.·.··.·.·· · . • 3ET NEXT • 
• STATEMENT • • • • • • ••• ••••••••••••••••• • • 

1 
· DS • • • •••• 

•• • LOGEX LOSCAN 1 <----------
D2 •• • •••• D4.......... • •••• DS •••••••••• 

•• •. • ••• D3......... • •• GET THE NEXT • 
•• •• YES. •• MAKE STACK. .PRECEDING TEXT • 

•• END OF TEXT ?.-------->. EXIT • I-->.ENTRY FROM 'IF'.<--------. TABLE IN THE • 
•• •• • •• TI'.BLE. • LOGICAL • 
•••• ••••••••••••••• • •• EXPRESSION • 

•• •• TO: ••••••••••••••••• • •••••••••••••••• 

1
· NO I~~S~~, K~E, : ::.: 1 

•••• 
••• LOVELY... LONOT 

E2 •• • •••• E3.......... E4 •• • •••• ES •••••••••• 
•••• .BUILD STMT TYPE. •••• • • 

•• •• NO • CHAINS-XDOCH • •• 'NOT' •• YES. • 
.'.: IF' STMT :.' .-------->:XSi~8~CH;R~~gH,: •••• OPERATOR? ••• -------->: PROCESS TABLE :---11 .... . . .... . . .. .. ................. .. .. . ............... . 

SCA' i YES :'!;': .i.'O LOP,"O 

••••• F2.......... • • F4 •• • •••• FS •••••••••• 
• • •••• •• *. • MAKE STACK • 
:3~A~wg~i~f ~~~~! .:.'~~~~~;g~; .:.:~~ _____ >: co~~i~1 ~~~LE !---
.TABLE IS FOUND. •• .• • TO 'GSL' OR • 
•• ••••• DELETE IT • ................. .. .. . ............... . 

IFFY 
1 

· ..... 1· NO 

: .~:. :<-1 YES 

G2···.. G3' '.. CON~n~~G4 ......... . 
.••• •• 'OR', •• • • 

• :. ~~~t~~E .: .~~ ______ >.:., ~~~~' 6p~~-.:. : P~~gE5~LI~~LE : 
•• •• •• I'.TOR?. • STACK ENTRY • .. .. .... . . .. .. .. .. . ............... . 

'OMP i YES QUERY i '0 .1 . 
••••• H2.......... • •••• H3.......... 84 •• 
• • ·CONVPROC· •••• • ••• 
• CONVERT TO A • .-.-.-.-.-.-.-.-. YES •• •. NO • • 
• • Be' TI'.BLE. [---. CREATE BCB OR. j-----.. STACK EMPTY? •• ---->. DS • 
• • .COMPARISON WITH. •• •• •• 
.. •• ZERO· •••• • ••• 

........ i:::::::-------:::::::::::::::::--- ..... 

GOTOQ ••• 
J2 •• .... .. .. 

• • NO •• OOES 'THEN •• 
• C2 .<----•. GOTO' FOLLOW •• 
• • II •• ? •• .... .... .. .. 

G"" i YES 

••• •• K2·········· .INVERT THE LAST. 
___ ! B::::R~~~~EiT~ND ! 

.DESTINATION TO .. 
• THAT OF GOTO • ••••••••••••••••• 

IF-statement PrOCessing Phase (Phase KA) 

406 Licensed Material - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 
IIELOIM CSECT R8 Entry pOint to Phase 1M. 
11M R Initialize registers, storage, scan of text, ~tc. 

I 

MCRAGE S R6,R7 

QTCOLV S 

GTFIND S 
QTENT S 
PDNEXT S 

QTDELR S 
PRCARG S 

PQQOOO S 

PZZOOO S 

REDFND S R8 

LDUFND S 

ARGOOO R 

MAGGAS S R6,R7 

CXNSRT S 

MXNSRT S 
CALLEP S 
CALLGN S 

ARGGEN S 
ALSTGN S 
PLCBMP S 

RDSMAP S 
MPPMAP S 
MAPCOD S 

EXTMAP S 

PLFRMP S 

COBFLT S 
MCRVDE S 

MCRFAR S 

TXTSSS S R8 

Create an aggregate table entry for a structure, by 
copying an existing aggregate table, and flag it as COBOL, 
if required. 
Search a list of Q-temps. for a base referenc~, its 
associated pointer, and whether ~he Q-temp. is a sCdlar 
reference. 
Search a list of Q-temps. for a given Q-temp. 
Allocate space in the list for a new Q-temp. entry. 
Return the next text tatle in the text stream, removing 
any dead Q-temps. from the list, and adding any new ones. 
Delete a dead Q-temp. from the list of Q-temps. 
Analyze the dictionary entries for the op~ions on an entry I 
pOint, and merge the options lists into a stack (ARGSTK). I 
'AND' the mapping options into ARGSTK for all parameters I 
on an entry. I 
'AND' the mapping options into ARGSTK for a specified listl 
of parameters on an entry. I 
Generate any addi~ional tex~ necessary to provide ~he I 
interface with a COBOL file, for a record I/O statemen~. I 
Check that a COBOL option is not specified for a file I 
referenced by a LOCATE, DELETE, or UNLOCK statemen~. I 
Routine for handling calls and function references. IL I 
generates any additional text necessary to provide the I 
interface on invocation of a FORTRAN or COBOL entry point. I 
Create an aggregate assignment in text, for source and I 
target aggregates having different maf~ing rules. I 
Insert a new text table having the same operator and t 
operands as the previous ~able. I 
Insert a new text table. I 
Create a CALL text table for invocation of an entry point. I 
Create a CALL text table for invocation of a library I 
routine. I 

I 
I 

Create an ARG text table. 
Create an ALIST text table. 
Set MAPSAM on if a structure 
and COBOL. 

is mapped similarly in PL/I I 

Create a RESDES text table. 
Create a MAP text table. 
Create an OFFSET and an ASSN 
assignment. 

table for aggregate exten~ 

Analyze an aggregate to determine whether it is 
adjustable, and if so invoke the a~propriate routines for 
extent assignment. 
Set MAPSAM on if an array is mapped similarly in PL/I and 
FORTRAN. 
Set COBFIL on if a file has the COBOL option. 
Create a variables dictionary entry by copying an existing 
entry and changing fields as required. 
Create an aggregate table entry for an array, and flag it 
as FORTRAN"if required. 
Scan the text stream for statements containing record 
calls, or function references with COBOL or FORTRAN 
options, and call the appropriate processing routines 
time one is found. 

I 
I/O, I 

Continued on next page 

I 
eachl 

I 
I 
I 

Licensed Material - Property of IBM Section 3: Program Organization 407 



IPRCFND R Examine all external entry points with FORTRAN or COBOL 
I options, and invoke PRCFFF for each such entry point. 
IPRCFFF S Create a special procedure to contain the interface text 
I for invocation of PL/I by a FORTRAN or COBOL procedure. 
IARGCHK S R6,R7 Check the validity of arguments passed to a COBOL or 
I FORTRAN entry point. 
IBRGCHK S Check the validity of arguments passed from a COBOL or 
I FORTRAN procedure. 
IRETCHK S Check return values of function calls between FORTRAN and 
I PL/I for validity. 
I MYTBFL S Ensures that aggregatE temporary operand creaced in the 
I encompassing procedure will be mapped during compilation. L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

408 Licensed Material - Property of IBM 



IELOIM 

.··.11.1·····.··. ... . 
• ENTRY • ... . •• * •••••••••••• 

FKOM: 1 PHII.SE KII. 

PRCFNO 
•• • ... ·B1·····.· ••• ... . 
• II.CCESS • 
• OICTIONARY FOR • 
• EXTERNAL PROC * • • ••••••••••••••••• 

1 
••• TXTSSS 

C1 *. • •••• C3 •••••••••• 
•• II.NY •• • • 

• *MORE ENrRY •• NO .INITIALIZE SCAN. --> •. POINrS FOR •• ---------------------------------->. OF TEXT •• THIS •• • 
·.PRO~?· •• 

•... :,' ········1········ 

1 TXT'CM .' • 
••••• 01.......... 03 •• 
• A.C~ESS • •••• • ••• 04 ••••• * ••• 
... ENrR:l-POINr • •• LAsr TEXT •• :lES. • 

E~TRY IN -->.. TABLE? •• -------->. EXIT • 
:;E~ERAL •• •• • • * DICTIONARY • ••.• • •••••••••••••• 

········1········ ··.·~o ~i.E 'i .E 

.'. 1 kI. OR t • 

E1 •• • •••• E3 ••••••••• * .. .. .. 
NO.* COBOLI •• • ACCESS NEXT • <--* . FORTRAN • • • rExr TABLE • 

*. OPTION? •• • .. .. . 
"1';" ········1········ 

••• srMFND ••• REOFND Fl.. . .... F2.......... F3 •• • •••• F4 •••••••••• 
.••. • CREATE NEW • •••• • • 

•• FIRST •• YES • EXTERNI\L PROC • ..RECORD 1/0 •• NO • FIND I/O TEXT • 
•• COBOL/FORTRAN •• -------->. IN TEXT ANO •• STMNT HEADER?.-------->. TABLE IN 

•. ENrRY? •• ... DICTIONARY •••• • STATEMENT .... .. . . .... . . .. .. . ..... *.. .......... .. .. . ............... . 
• ~O J · YES 

1<------------------------ 1 
PR~050 TXTSCP ••• 

••••• :;1 •••••• **.. G3 •• 
• CREATE • •• • • 
• 'ENrR:l-POINr IN • NO •• •• 
• NEW EXTERNI\L • <--.. CALL TABLE? •• <--
... PROC • •• •• 
*. •. . * 
········1········· "1':" 

BR:;100 ARG030 ••• REDFNA ... ..... ~1.......... H3 •• H4 •• • •••• H5 •••••••••• 
• CREI\TE TExr TO • •• •• 
• PERFORM • NO •• COBOLI •• 
• INTERLAN:;UAGE • <--.. FORTRAN •• 
• FUN~TIO~S ON • •• OprION? •• 
• ENTRY • •• •• 

·········1········ ··l··~ES 

BR3400 ARG100 ..... J1.......... . .•.. J3 ......... . 
•• .CREATE TEXT TO • 
• INSERT CII.LL TO • • PERFORt>1 • 
• OLO ENTRY-POINr. • INTERLANGUAGE • 
•• .FUNCTIONS AFTER. 
• * • CALL • ••••••••••••••••• • •••••••••••••••• 

""00 1 RRG600 1 ..... K1.......... . .... K3 •••••••••• 
• CREATE TEXT TO • • RESTORE TEXT • 
• PERFORM • • POINTERS TO • 

---. I~TERLAN:;UI\:;E • ---. TABLE AFTER • 
• FUNcrrONS ON • • STMNT HEADER • 
• RETUR~ • •• ................. . ............... . 

•••• .CREATE TEXT TO • 
•• •• YES .ASSIGN TO COBOL. 

•• COBOT. FILE? •• -------->. TEMP FOR • 
•• •• • REWRITE/WRITE • .. .. . . 

··.·~o ········1········· 

RED330 •• ••• Js •••••••••• • • 
• MODIFY RECORD • 
• 1/0 STMNT TO • 
• ADDRESS TEMP • .' . • •••••••••••••••• 

1 TXT~~~ •• K4.... •••••• • •••• KS •••••••••• 
• RESTORE TEXT • .CREATE TEXT TO • 
• POINTERS TO • • ASSIGN FROM • 

-----. TABLE AFTER .<--------.COBOL TEMP FOR. 
• STMNT HEADER • • READ • • •• • ................. . ............... . 

Chart 3.19. Interlanguage Communication Phase (Phase IM) 

Licensed Material - Property of IBM Section 3: Program Organization 409 



~~~2~ and structure Mapping (Phas~ 

r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
t---------+---------+---------+-----------------------------------------------------------i 

IELOIQ 

SCO 
SC26 
SC2 
CALLEN 

GENASN 
FINDTP 
SETSZ 
STRFL 
GENSDD 

ICDESC1 
EXTEXP 

GENLIBl 
GENMVl 

GENOFFS 
SC39 
SC25 
SC10 
SC54 
SC14 
SC60 
SC91 
SC3 
IQNSRTZ 
LENBIF 
GENLIB 
GENMV 

IELOIQ2 
IQMAP 

XINIT 
XRFAB 
XTXPG 
XTUNL 
XRFSEQ 
XNSRT 
XNXROUTl 
XNXROUT2 
XDIREC 
XLINK 

CSECT 

R 
R 
R 
R 

R 
R 
R 
R 
R 

R 
R 

R 
R 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
S 
R 
R 

CSECT 
R 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

I I 
R6,R7, I Entry point to Phase IQ. I 
R8 I I 

R6,R7 

I I 
I Main text scan. I 
I Process FREE text tables. I 
I Process MAP text tables. I 
I Generate code to calculate the length of a temporary array I 
1 of adjustable strings. I 

Generate assignment statement for the leng~h of a string. I 
Find a temporary result in the result stack. 
Determine the size and alignment of temporary aggregates. 
Calculate the length of the result of the STRING bif. 
Called if a MAP text table refers to a structure that 
cannot be completely mapped at compile time. Uses the 
XCADD macro to construct a structure descriptor-descriptor 
for the variable and to insert it in an entry in the 
general dictionary. 
Set descriptor offsets in the aggrega~e table. 
Call the GENVM routine to create assignments from the old 
descriptor of a controlled variable to the temporary 
descriptor which is being used to map the variable. 
Generate library calling sequence tables. 
Generate MOVE text tables for adjustable bounds and the 
virtual origin of adjustable arrays. 
Generate OFFSET text tables. 
Process statement header tables. 
Process RESDES text tables. 
Process PEND text tables. 
Process ACCUM text tables. 
Process ALLOCATE text tables. 
Process CONCAT text tables. 
Process ASSN text tables. 
End-of-program routine. 
Insert new text tables into main text stream. 
Process LENGTH bif. 
Routine to enter the GENLIBl routine. 
Routine to enter the GENMVl routine. 

Entry point to second module of Phase IQ. 
Complete the aggregate table entries in the general 
dictionary, as far as is possible at compile time, for 
those aggregates that have not been completely mapped. 

) 

) 
) 
) 

) XROUT 
) 

) 
) 

) 
) 

XSTG CSECT RA Private storage for Phase IQ. L _________ ~ _________ ~ _________ ~ __________________________________________________________ _ 

410 Licensed Material - Property of IBM 



IELOI;l SCO 
··***A3 •• * •••• *.* ••• **A2 * ... * *** * ** * 

****,,1***·***** • * * * * * * INITIALIZE * * * * ENTR~ .-------->* PHASE * 
* * * * *ot<*******.***** * * * * FROM: ** * * ** ** * ... * **. ** * * * '" "'** •• '" *.* '" '" * '" * PHASE: KA 

OR 1M 

LQ1 j 

---->: TEXT SCAN :<--l<------------A-------------------------

1 
: *:: : 

* * ... * *82 * * * **** * ** 
* * ... PREPARE F~R * 

OICT SCAN ... 

• * *.* • 
• *. SC14 

.83 *. *. :****84* ***.***: 
.* IS IT *. YBS • 

*. ALLOCATE? .*-------->* 
*. .. * * *. ." * 

PROCESS 
ALLOCATE 

***.************* * •. * ***************** 1 I '0 •••••• 

• *. .*. SC2:*:~*:<-1 
*****:1*** •• **.** C2 *. C3 *. *****C4* ******** 
• * .* *. .* *. * * 
* MAP ARRAYS AS * YES .* ARRAYS IN *. .* "'. YES * '" 
*FAR AS POSSI8LE*<--------*. PRO:;? . * *. IS IT FREE? • "'-------->* PROCESS FREE * 
., .. *. .* *. .* .. .. 
* * ...* *..* * * 
**"'***."'***.***** * * * •• '" *********"'**.**** 

1 ________________________ :l*·NO 1· NO i*:;*i<-l 

*.** NO 
• *. .•. SC91. . 

.****D1* •• ** •• *.* D2 *. 03 *. 04 *. *.**.05 •• **** •• * 
* * •••• •• *. .* *. * * 
*MAP STROCTORES * YES .*STROCTOR3S *. NO NO .* *. YES.* •• YES • GENERATE VDA * 

AS FAR AS "'<--------*. IN PRO:;? .• --- ,---*. IS IT ASSN? .*-------->*.IS TARG ADJ? •• -------->* FOR LENGTH • 
POSSI8LE * *. .* *. •• *. .* • * 

• * *.. * *.. * *.. * * * 
**·*·**·1··****·** *.*.* .'*'* *'.'* ******** •• ****"'.* 

•• *. 
• * * A3 *<-

* **** * {j------------- * **** * 1 
* A3 * .*. SC60 .*. 
* * E2 *. *****E3.*.******* E4 *. *****E5* ******.* 

***. .* *. * * .* *. * * 

Chart 3.20. 

. * *. YES * SCAN STM'T TO * . * *. YES * GENERATE VDA * 
*.IS IT CONCAT?*-------->* FIND TARG *-------->*.IS TARG ADJ? .*-------->'" FOR LENGTH '" 

*. .* * '" *. .* * * *..* .. .. *..* .. * 
* .. * *"' ••• * ••• *.**.*** * •• * *** •• *****."'** •• * · " I " 

.*. sc25 

*. ** * F4'" * * * *** ** * 
* * *CALC LENGTH IF * 

1
---* VAR * 

* * * * ** ** * .. *** * **** **. 
**** 

* * **.* 
: A3 : * * 

**** :*:~*:<-l 
:;2 *. *****G3*********. *****G4********** *****G5* ******** 

.* *. * * * * * * 
.* *. YES *DETERMINE SIZE * *RESERVE SPCE IF* .PUT ADDRESS OF • 

*. IS IT RESDES? *-------->* OF DESCRIPTOR .-------->* ADJ *-------->* DESCRIPTOR IN * 
* . * * * * *. LOCATOR * 
*..* • * * * * * 

••• * ***** •••• * •• **.*. • ••••••••• ***.... • ••••••••• *.**.** 

I " (::>1 
••. SC2 

H2 *. * •••• H3 •••••• *.* 
. * *. * * .* *. YES *PRODUCE CODE OR* 

*. IS IT MAP? .*-------->*LI8RARY CALL TO* 
*. .* • MAP VARIA8LE • 

*. •• * * •. . * ••••••••• * ••••••• 

i " (::>1 
••• SC54 

J2 *. • •••• J3 ••••••••• 
... *. .. .. 

• * *. YES • GENERATE VDA * 
•• IS IT ACCU~? •• -------->* FOR LENGTH IF * 

•. .* * ADJ. • ... ... .. .. 
* •• * .*.* ••••••• *****. 

i" 
. *. SC3 

K2 •. 
•• *. *.·.K3***·***·* 

NO.* IS IT *. YES * * 

r
---.. ENDPROG? .*-------->. EXIT ... 

*. .* * * *..* .****.* •••• **.* 
* .. * ro: 

.*.* * PHASE KE, KI, * • OR KT 
• A3 * 
* * **.* 

Aggregate and structure Mapping Phase (Phase IA 

Licensed Material - Property of IBM section 3: Program Organization 411 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
r---------+---------+---------+-----------------------------------------------------------i 

IELOKE CSECT 

NDXS DSECT 

MULTS DSECT 
TAB DSECT 

DAZI E 
DAZ2 E 
STARTl R 

MVCl R 

SUBl S 
SUB3 S 
LENGSUB S 

LAB A R 

LABB R 
TCa20 R 

LOAC R 
CDE R 
CJH R 
EACl R 

EAG R 
tSUBOP2 S 
OFFSUB S 

SUBRGSUB S 
PFBSUB CSECT 

DEFO R 
DEFSUB CSECT 
DOITO R 
DOlT SUB CSECT 

DOITSUBl S 
NEXTl CSECT 
NEXT3 CSECT 
NSRTl CSECT 
NSRT3 CSECT 
PTSATSUB CSECT 
XDIREC CSECT 
XTXPG CSECT 
XTUNL CSECT 
XLINK CSECT 
XSTG CSECT 

R9,R6, 
RS 
R7 

R2 
R5 

R7 

R9 

R9 

R2 
R2 
R5 
R5 
R5 

Root module of Phase KE. 

Contains the corresponding offset and temporary number for 
the index commoning in the subscript. For the iSUB 
defining routine it contains the index. 
Contains the calculated multipliers. 
Contains information about ~he current array being 
processed. 
) 

) Entry points to module REl. 
Point to the first statement header in the XSUBCH chain 

I 

and subsequently at the preceding statement headers. 
Handle SOASSNs by generating the various sequences of 
for array and structure assignments where they can be 
by sequences of MVC instructions. 

code 
donel 

I 
Output the source offset table (OFFS 00). 
output the target offset table (OFFS 01). 
Calculate the length, in bytes, of a structure for 
assignments done by moves. 

I 
I 
I 
I 

Handle subscript assignments by processing the 
calculating the multipliers and offsets, etc. 
Calculate the required multipliers. 

subscripts, I 

Check the current multiplier and if i~ is not known at 
compile time, output the appropriate OFFS and SUBS(l) 
tables to address the multiplier in the object-time 
descriptor. 
Handle the constant subscripts. 
Handle variable and temporary subscripts. 
Output the current RS value. 
Output the current offset value (if any) by outputting on 
OFFS text table. 
Process INDEX text tables. 
Place the appropriate code byte in the MULT text table. 
Place the appropriate code bytes in operand 1 of an OFFS 
text table. 
Check for occurrence of SUBSCRIPTRANGE condition. 
CSECT for a subroutine used to calculate, at compile time, 
subscripts of the forms A(l+l), A(I*l), A(I*2+l), A(I-l), 
and A(I*2-1). 
Process iSUB defining. 
CSECT for routine DEFO. 
Process SEASSNs. 
CSECT for routine DOlTO. 

Calculate the bounds of do-loops. 

) 

) 

) XROUT 
) 

Private storage for module KE1. 

Continued on next page 

I 
I 
I 

412 Licensed Material - Property of IBM 



I I 
IKE2 CSECT R9,R6, I Non-root module of Phase KE. 
I R8 I 
IAIDN DSECT R2 I 
IINIT106 R I Handle array INITIAL assignments. 
IINITO S I Check for IASSN or AID text tables. 
IINIT81 R I Process array INITIAL assignments for interleaved arrays. 
IINIT100 R I Handle array INITIAL assignments for contiguous arrays. 
I MOVESUB S I Generate the required number of MOVE text tables for the 
I I array assignment. 
I I 
tXRFAB CSECT I ) 
IXTUNL CSECT I ) XROUT 
IXMESGR CSECT I ) 
IXSTG DSECT I RA I Private storage for module KE2. L _________ ~ _________ ~ _________ ~ __________________________________________________________ _ 

Licensed Material - property of IBM Section 3: Program Organization 413 



IELOKE 

****~1·****.*** 

• * • ElURY * 
• * ******* ••• *.*** 

I FROM: flH!>"S!': 
KI\, IM, 

**** . OR I;.) 

:0~1 * *_>' 
* • I 

** * * I 
Dl\Z V 

*****61********** 
• * * POINT TO NEXT • 
* STI\TE~E~H IN *<--1 
• XSYSCH CHAIN * 
* * 
**·*****1************ 

* B1 
**** 

. * . LAB. * . . * . . • • • •• 
21 *. :::2 *. C3 *. C4 *. C5 * • 

. * *. .* *. .*.. .* *. .* •• 
. * •• NO .* SOASSN •• NO .* PROC *. NO •• IS ARRAY *. NO .* SEASSN •• NO 

*.E~D OF CHAIN?*-------->*. STAT!MENT? .*--------> •• STATEMENT? .*-------->*. DEFINED? •• -------->*. STATE~NT? '*---1 
•. .• *. .* •. .* •• .* 1\ *. .* 
*..* *..* *..* *..* *..* 

* .. * * .. * * .. * * .. * * .. * 
... 'lES ... YES * YES * YES • YES ..... 

1 "" ..... 02.t....... m ..... ".!........ . .... D'J....... c," ..... D5.1. ....... ::: 1: 
****D1*******.* * • * *. CONVERT ISUB * * PROCESS * 

* ..* GENLRATE CODE * * PROCESS ArtRAY • * REFERENCES TO * *DO-LOOPS AROUND* 
* EXIT * ---* FOR THE * * INITIAL FOR * • THOSE OF BASE *----- * SUBSCRIPTS. * 
* * f * I\SSIGNM~NT * * THIS BLOCK * * ARRAY * *FIIL IN BOUNDS * 

****.*.******** b * * * • * * * OF DO-LOOPS * 
~~i~~ KI : *:~* ~******.**** •• *** ********1···****** *.**** ••••••••• *. **·**·**1********· 

**.* 

Chart 3.21. (Part 1 of 2). 

... 
E3 •. *****E5***.*.*.*. 

•• •• .*.. * FILL IN LOWER. 
NO • * IS ARRAY ... • * * * BOUNDS OF * 

---*. CONTIGUOUS? .*<----* E3 • * ASTERISKED ... 
•. .• .... • DIMENSIONS * 

•. . * * •• * • * * .. * •••••••••• ***** •• 

INIT100 1

• YES l **** 
*02 * 

->* A1 .. 
* * * ... * 

*****F3*********· 
* * • GENERATE CODE * 
• FOR THE ARRAY * 
*INITIALIZATION * 
* * •• *.** .. ****.**.** L _________ _ 

-----------~ 

·····G3·*·*··**·· 
* GENERATE CODE * 
• TO INITIALIZE * 
.EACH ELEMENT IN* 
* TURN * 
* * 
········1::::::::_--

... 
H3 •. 

•• l\NY •• 
* * YES .*MORE ARRAYS*. 
* E3 *<----*. TO INITIA- •• 
* * *. LIZE? .* 

**** ••• * 
*. .:+ 

* NO 

l **** 
* * ->* B1 * 
* * **** 

Subscript ProceSSing Phase (Phase KE) 

414 Licensed Material - Property of IBM 



••• * 
*02 ... 

• Al .--~ · . .... 
LAB A 

··.··1\.1·········* · ... • SUBSCRIPT • 
• PROCESSIN~ • 
• ROUTINE • · . 

"B~"'''''I'''''''' 
····.B1········.· · . • DETERMINE ARRAY. 
* ENVIRONMENT • · . 
• * ••• *** •• *.* ••• *** 

1 ·····:::1·········· • CAL:::ULATE NEW • 
• STYLE MULTIPLI-* 
• ERS OR ~ET F- *<--------------------------------------------------------------------
• STYLE FROM * 
:~t~E*.~~,.~~:2*: 

I 
& 

*···*D1·········· * • 
• POINT TO SUBSI • 
... TI\.BLE • 
* • ... . 
•••••••• * •••••• ** 

j 
T2fU ... 

E1 •. 
.• *. 

. *IS INDEX A •• YES 

r

-->*. CONSTANT? •• -----------------------------*. . * *. . * .. .. 
: :~.: *1 NO 
* • 

. .. 
f1 •• 

. * OTHER *. 
NO •• VI\.RIABLE •. 

---.. INDEX •• 
... PRO:::ESSED. * 

*. ? • * *. .• 

i'" 
*****:.;1****·*·*** 
* OUTPUT RS IF * 
*NEw STYLE MULTS* 
* USED. OUTPUT * 
.MULT IF F-STYLE* 
• USED • 

---::::::::i········ 

HHH ••. 
fl1 •• 

. * "'. NO.* IS *. 
--- •• SUBS:::RIPT- • 

•. RAN~E ON?* 
*. .• ... . * 

i''' ..... J1····· .... * 
• ~ENERATE • 
• OBJECT-TIME • 
*SUBS:::RIPTRAN~E • 
* CODE wITH • 
• LI BRARY CALL • 
****.**.* •••••••• 

:::-------,j 
•• * •• Kl·*··*·*··· · . * RS=MULT • 
• RO=RO·MULT *----------------------------> · .. 
• * * •••••• *.* ••• * ••• 

-------------?, 
· *. D3 *. .. . . 

NO.. IS •• 
---*. SUBSCRIPT- .• 

..RAN~E ON?. .. . . .. .. 
• YES 

"BRGSUB j 
..* * ·E3* ** *** .**. 
* CHECK FOR .. 
*SUaSCRIPTRANGE * 
*AT OBJECT-TIME • 
* (AND OUTPUT ... 
.ERROR MESSAGE) • 
* ** ... *.* .... **.* .. * * 

:::~------' J 

BEB 

* ••• *F 3 ••• **. * * * * 
* * * RO=RO+INDEX * 

RO=RO*MULT * 
RS=MULT * 

* * ***.*.**** ••• **.* 

j 
· *. G3 •• 

· * *. • ••• 
.* IS NEXT *. YES * • 

---->*. TABLE SUBS? •• ---->. E1 * 
A·. .* * * 
J * .. * **** 1 ... . * 
: :;*: 1* NO 

* * .*** 
DRH .*. 

H3 •• 
· * * . 

CJHA . *. 
H5 *. .. .. 

•• IS NEXT *. YES 
*. TABLE NDX? .*----------------

•• ARE THERE *. NO 
--------------->*. RS VALUES? .*---

*. . * •. . * •• . * 

1"U 
· * . J3 *. .• *. :****J4* ***.***: 

.* IS NEXT *. YES ... OUTPUT • 
•. TABLE SUBSI? .*-------->*APPROPRIATE ~S.* 

*. •• * RO VALUES • 
•• . * * * 

* •. * .**.*.* •••••••••• 

I" ... 
K3 *. 

· * *. NO.* IS NEXT *. 
-----*. TABLE STMT .* 

*. HEADER? .* 
*. . * *. . * 

* YES 

t 
***** 
*01 * 
.. B1* 
* * * 

.. .. 
•• • * 

* .. * 

i'" 
..***J5********** 
*CUTPUT THEM (OR* 
• MULT), OFF * 

J
---: Tt~LfT ~~~ ~O : 

* VALUE * 
.*.* * *. * *** * *. * * * 

***. 
* * * ::;3 * 
* * ***. ~----------­

• * •• * K 5*. * * * * * * * * 
* CHANGE NDX * 
* TABLE TO OFFS * 
* TABLE AND * 
* OUTPUT RO • 
* * ***************** 

L>! *::*! 

* * **** 

Chart 3.21. (Part 2 of 2). Subscript Processing Phase (Phase KE) 

Licensed Material - Property of IBM section 3: Program Organization 415 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type 1 Base I Function I 
I I I registers' , 
~---------+---------+---------+-----------------------------------------------------------1 
I I I , 
IIELOKI I CSECT I R6,R5 Entry point to Phase KI. I 
IKIl I R 1 Initialize registers, storage, and scan of text. I 
tCHAINDO I R Scan along the statement chain to the next DO statement, , 
lPROCESS I E and initialize its processing. I 
lSCANl I R Branch to the re.levant processing routine, and process , 
I I immediately if the current table is a CONV for a 'TO' or , 
I I 'BY' variable. , 
ISCANDOl I R Process a 001 table and determine whether BXLE is , 
I I possible. I 
SCAN2 I R Scan to the associated 002 table, and process it. I 

MULTIP 

DOIT1 
WHYLDO 
SINGLE 
INCREM 
INBYVA 

INCON 

I MULTI 
1 
I BYVARI 
I 
DOIT10 

DOESAV 

KNEXTL4 

KNEXT4 

KNEXTLl 

ENDTAB 
ENDTABl 

GNOMORE 

XINIT 
XNXROOTl 
XNXROOT2 
XTXPG 

IXTCH 
IXNSRT 
IXTUNL 
IXLINK 
I 

I Generate a SCI table if BXLE is not possible. De~ermine I 
I whether multiple specifications ar~ present. Check tha~ I 
I the loop specifications converge. , 
I R Generate loop head tables for multiple specifications, I 
1 i.e., generate code to initialize the label variable I 
I temporary and to test the first specification initial , 

R 
R 
R 
R 
R 

R 

S 

S 

S 

R 

S 

S 

S 

S 
E 

R 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

R9 
R9 
R9 
R9 
R9 
R9 
R9 
R9 

value against the final value. I 
Save the base register and call DOIT10. , 
Process a DOWHYL table without a control variable. I 
Single specification processing routine. I 
Generate increment and test code at the end of a loop. I 
Generate alternative end-of-loop test code for a variable I 
BY specification. I 
Generate increment code for an all-constant loop I 
specification. I 
Generate label variable assignments for multiple I 
specifications after the first. I 
Generate label variable assignments for a variable BY , 
specification. I 
Process array assignment ITDO tables by searching I 
subscripts for multipliers with a coromon HCF. I 
Stack the text reference of a 003 table, for use when I 
loops nested. I 
Scan along the forward chain to the next table, using R4 I 
as pointer. Unlock the old table, and lock the new table I 
into main storage. I 
Scan along the forward chain to the next table, using R4 I 
as pOinter. I 
Scan along the forward chain to the next table, using Rl I 
as pointer. I 
Insert GSN and ENDIT tables within iterative stream. I 
Input/output statements to provide the necessary format I 
list matching information for Phase KQ. I 
Free the current page and exit to Phase KK. I 

) 
) 
) 
) XROUT 
) 

) 
) 
) 

I 
I 
I , 
I , 
I 
~ 
I , 

IXSTG I CSECT I RA Private storage for Phase KI. I L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

416 Licensed Material - Property of IBM 



GNOMORE 

IELOKI 

•••• A2.· ••••• •• • • 
• ENTRY • · . ............... 

f~~~¥Q~AbR KE! 

CHAINOO 
••••• B2·········· • • 
• 3ET NEXr • -->. STATEMENT IN • 

I · '~o' =HAIN • · . ................. : :;.: I • • •••• .. . 
::2 •• 

•••• ::1 •• ••••••• •••• 
• • YES .* •. 
• EXIT .C--------•• ENO OF CHAIN?. · . .. .. ............... .... 

TO: ••.• 
,.," 'T I '0 

PRO::ESS ... 
02 •. 

• *** .... *. 
• • NO.. 'END' •• 
• F2 .C----•• STATEMENT? •• .. .. .. 

•. .* .. .. 
• YES 

00'''. I 
·····E2····.····· · . • SAVE TEXT • 

r
---. REFERENCE OF • 

• 003 IN STACK • • • ................. .... · ..... 
• B2 • • 
• • F2 .--b ••••• • .. "'. 

SCANl ••• 
F2 *. . *.. .. .. 

.... 
• • 
• B3 .--1 • • •• *. 

DOITl 
····.B3 •••••••••• 
.SCAN FOR MATCH-. 
*ING ENDIT. NOTE. 
.LOCATION OF 1ST. 
.NESTED 11'00, IF. 
• ANy.... • . ............... . 

1 
·····C3··.··.···· 
• •• AND MULTIPLI-. 
• ERS IN THIS * 
*LOOP'S SUBS AND. 
• SUBS 1 TABLES • 
.11'00 INTO ASSN '" • •••••••••••••••• 

I . .. 
03 •• 

•• DO •• 
NO •• MULTIPLIERS •• 

--- •• HAVE A COMMON •• 
•• FACTOR? •• 

*. . .. .. .. 
• YES 

oon'C2 I 
• ••• ·E3 ••••••• • •• 
• RES CAN LOOP, • 
• DIVIDING • 
.MULTIPLIERS BY • 
.COMMON FACTOR •• 
• ADJUST BOUNDS • . ............... . 

:::::----->1 
·····F3·· •• •• •• •• · . • GET TEXT TABLES. 

SCANOOl ·····84· .. · ... * •• .PROCESS SPECNS • 
• FROM 001 AND • 

1
-->. 002 OPERANDS. • 

.SCAN UNTIL GSL • 

• * • •••••• * •••• **.*. : ::.: j 
* * . ... 

PARKMQ • •• MULTIP 
C4 •• • •••• C5* •••• * •••• 

.• *. • • 
•• MULTIPLE •• YES .INSERT ASSN TO • 

•• SPECNS? .*-------->* TLV. CONVERT • 
*. .* *J03 TO GOTO TLV. 

*. • * * * 

".GLE '"r":o ········1········ 

• •••• 04.......... * •••• 05 •••••••••• 
* *. ... .ACCESS THE 003 * .GET TEXT TABLES. 
.TABLE TO CREATE. j-----. FOR INCREMENT • 
:INCREMENT CODE : : CODE : 

••••••••••••••••• • •••••••••••••••• 

,"c"" 1<----------
·····E4 •••••••• *. 
• CREATE • 
.INCREMENT CODE • 

-->. IN TABLES .C--

1 
• AVAILABLE • • • . ............... . 

1 
: .:: : 

. .. 
F4 •. 

... *. 

. . .... 
•• MORE •• YES 

MULTl 
·····E5·········· 
• SCAN AND COpy • 
.TEXT UNTIL 001 • 

-->. NOTE ANY ITDO • 
• IF NONE FOUND • 
• HITHERTO • • •••••••••• * ••••• 

.uo". 1 • •••• FS •••••••••• 
.PROCESS SPECNS • 
• FROM DOl AND • • • uOl •• SCAN FOR *. IrOO 

* &4 *C----·. DO 1, 11'DO . • ---t • FOR INCREMENT .----- •• MULTIPLE •• ----­
•• SPECS? • * 

• 002 OPERANDS •• .. .. .. • CODE • •••• *... • • .. .. ••••••••••••••••• 
NBITHER1* ;*::*; 

•••• 
. "'. G2 •• .... .. "'. . .. '" 

• • END •• SCAN FOR •• NEITHER • 
: B2 :C----•• '" ~SNST~~~ 0:* •• ---->: F2 ! .... .... . ... .. .. 

• 3SN 

W",~O I 
·····H2·········· 
• TURN THIS TABLE. 
: ~~~OD8~LIN~~D : 
• G01'O • 
• * ••••••••••••••••• 

l · ..... ->. F2 • . . 

*. .• 
* .. * r 

**···G4*** ••• * ••• · . • UNSTACK 003 * 
• REFERENCE • 
* * • • • ••••••••••••••• * 

I ... 
H4 *. .'" .. 

NO •• ANY ITDO •• 

!
---.. UNPROCESSED? •• .. .. .. .. . ... 

• • 
:.::.: j. YES 

····.J4·.· ••••••• 
• • 
• RESET SCAN • 
*POINTER TO THE * 
• ITOO TABLE • · . ••••••••••••••••• 

L>! .;;*: 
• * .... 

• MAKE ASSN TO • 
.TLV SCAN TO GSL • ••••••••••••••••• 

1 
MUNXTW ... 

G5 •• .. .. 
NO •• IS THIS THE •• 

---.. LAST SPECN? •• 
*. .* .. . . .... I YE' 

..···H5 •••• • ••••• • • 
• LINK FIRST • 
• SPECIFICATION • 
.TO HEAD OF LOOP. · . • •••••••••••••••• 

:::::::--->1 ·.···Js· ........ . 
• FINISH PRO- • 
.CESSING SPECNS •• 
* COPY ANY • 
• 'WHILE' CLAUSE. 
• TO OUTPUT • • ••••••••••• * •••• 

1 
·····K5 ••• • ••• ••• ••••• • 

• • .GET TEXT TABLES. 
• E4 .C--.-. FOR INCREMENT • 
• • • CODE • ..... . 

••••••••••••••••• 

Chart 3.22. DO-statement ProceSSing Phase (Phase KI) 

Licensed Material - Property of IBM section 3: Program Organization 417 



r---------T---------T---------T-----------------------------------------------------------1 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 
IELOKT CSECT R5,R8, Root module of Phase KT. Processes PROCEDURE, ENTRY, I 

S'IART 

PROCA 
GSLSUB 
MOVESUB 

RTRNSUB 
PENDSUB 
BEGINA 
RTRNl 
STOPA 
DELAYl 
DISP 
CONV04 

DECFAC 

SIGNALA 
WAITl 
DELSUB 
XSTG 
XDIREC 
XTXPG 
XTUNL 
XLINK 

KT2 

CA 

CALLl 
ITDOl 
DISPl 

READl 

DATAl 

SIG1 
PUTl 

VAR1 

ICK1S0B 
I 
ICHKSUB 
I 
ICKSTROC 
I 
I 
I 

R 

R 
S 
S 

S 
S 
R 
R 
R 
R 
R 
S 

R 

R 
R 
S 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

CSECT 

R 

R 
R 
R 

R 

R 

R 
R 

R 

S 

S 

S 

R9 BEGIN, RETURN, SlOP, EXIT, DELAY, DISPLAY, SIGNAL, and I 

R5 

WAIT statements. I 
Point to the first statement header in the XSYSCH chain, I 
and subsequently at the preceding statement headers. I 
PROCEDURE statement processor. I 
Generate GSL text tables. 
Generate the appropriate number of MOVE text ~ables for 
moving the parameter(s} into the DSA. 
Output the appropriate text table for the RETURN slot. 
Generate PEND text tables. 
BEGIN ON-BEGIN statement processor. 
RETURN statement processor. 
STOP and EXIT sta~ement processor. 
DELAY statement processor. 
DISPLAY statement processor. 
Generate the appropriate text table to convert a given 
element to charac~er. 
Calculate the ceiling (N/3.32) for a given N. It is used 
to calculate decimal preciSion and scale in 
binary-to-decimal conversions. 
SIGNAL statement processor. 
WAIT statement processor. 
Delete illegal statements. 
Private storage for module KT1. 
) 

} 

) XROUT 
) 

Non-root module of Phase KT. Only loaded if the CHECK 
prefix option is used in the program. Scans the entire 
text stream and carries out the required processing. 
Delete the CHECK/NOCHECK statement headers and move the 
PROC/BEGIN statement header and PROC/BEGIN statement in 
front of any CHECK/NOCHECK text tables. 
CALL statement processor. 
Handle the CHECK condition for do-loop control variables. 
Handle CHECK condition for the REPLY option of a DISPLAY 
statement. 
Handle CHECK condition for the identifiers appearing in 
the KEYTO and INTO identifier of the READ sta~emen~. 
Handle CHECK condition for the identifiers in the data 
list of an edit-directed or list-directed GET statement. 
Handle SIGNAL CHECK statements. 
Handle CHECK condition for the STRING option of the PUT 
statement. 
Scan the text looking for the actual variable being se~ in 
some form of assignment. Also look for arguments on 
function references. 
Scan the current stack of enabled CHECK Rarameters to look 
for CHECK. 
Generate the appropriate ALIST, ARG, and CALL text tables 
to signal CHECK. 
Expand CHECK list containing structures to their base 
elements. 

Continued on next page 

418 Licensed Material - Property of IBM 



IENDSUB 
IARRAYl 
I 
IARRAY4 
I 
! 
IXMESGR 
!XRFAB 
IXTUNL 
!XTXPG 
! 
IXSTG L ________ _ 

s 
s 

s 

CSECT 
CSECT 
CSECT 
CSECT 

I 
! 
I 
I 
I 
J 
I 
I 
I 
I 
I 

Point Rl at the last table in the sta~ement. 
stack the array reference together with its associated 
Q-temp. number. 
Find the array reference associated with its 
correspondingQ-~emp. number. 

) 

) 

) XROUT 
) 

DSECT I Private storage for module KT2. _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM section 3: Program Organization 419 



IELOKT .. ··~1.· .. ···.· · . • ENTR~ ... • • 

!i~::~~~:""I""'" .'. .'. .'. "'INA 
••••• B1.......... B2 •• B3 •• B4 •• • •••• B5 ••••••••• 
• • • .IS IT A.. • .IS IT A.. • .IS IT A.. • • 
• POINT TO NEXT • •• PROCEDURE •• NO •• RErURN •• NO •• BEGIN •• YES. • 

h • XS~SCH CHAIN • •• •• •• •• •• •• • • 1 • • •..• •..• •..• • • 
---->. STATE~ENT IN .<-- ,--> •• STATEMENT? .*--------> •• STATEMENT? •• --------> •• STATEMENT? •• ----____ >. PROCESS BEGIN. 

:.:::;······:1:······· 1- ':1:<0' .. ,DRNA ':I:YES ':I:~o STo~~~~:;::l········· 
:1 •. :2 •. C3 •• C4 •• • •••• c5 ••••••••• 

•• •• •• HAS •• •• IS •• • .IS IT A.. • • 
•• •• NO ~ES •• PROC BEEN •• NO.. THERE ~ •• •• STOP •• ~ES. • 

•• END OF CHAIN?·--- r---·· PROCESSED.. r---·· RETORN.. •• STATEMENT? •• -------->. PROCESS STOP • • . •• • • ALREAD~? • '" •• PAR~METER. • •• • '" '" '" 
•• •• •••• •• ? •• •••• • • .. .. .. .. .. .. .. .. . ............... . i rES :'::': [' NO : ';;': r rES 1"0 ..... . 

••• ·:::SUB •••• ••• ••• :·:~~:<-1 
01 •• • •••• D2.......... 03 •• D4 •• • •••• D5 ••••••••• 

• • •• • OUTPUT 'TABLES • •• HAS •• •• IS IT •• • • 

EN)LAB 

NO •• IS THERE •• • FOR OSA • NO •• RETURN •• •• AN EXIT •• ~ES. • 
---••• j~~~~AM •••• ! ~~~~~3g~t~~~D ! <--------•• ~~~~Sg~s~~~~ •. • •.• ~TATEMENT? •••• -------->! PROCESS EXIT ! 

•• •• • • •• ? •• •••• • • 

··i·· YES 
········i········ ··.·YES ··r·~o ;:~;:;::·1········ 

KT2 ••• ••• DISP 
••••• E1 ••••••••• • E2 •• E4 •• • •••• E5 ••••••••• 
• • •• IS •• ..IS IT A.. • • 
• • NO.. THERE •• •• DISPLA~ •• YES. • 
• PROCESS CHECK. ---.. RETURN IN •• •• STATEMENT? •• -------->.PROCESS DISPLAY. 
• • ·.PROCEDURE.. •• •• • • 
• • •• ? •• •• •• • • 

---::::::::j......... ··r·YES ··r·;o :::::: .......... . 

••• ••• DEL:~~~·!<-l 
F2 •• F4 •• • •••• FS ••••••••• 

•••• F1......... •• ARE •• ..IS IT A.. • • 
• • NO •• OIFFERENr •• • • DELAY •• YES. • 
! EXIT : ---. ". ~~};~5~g};~S •••• .'. ~TATEMENT? •• ' .-------->: PROCESS DELAY ! 
••••••••••••••• •• ? •• •• •• • • 

TO: •• •• •• •• • •••••••••••••••• 

:~~S~RKkwl • .ss I NO •••••• 

MOVESUB ••• SIG::i~· :<-1 
·····G2···.··.... G4 •• • •••• Gs ••••••••• 
• OUTPUT TABLES. ..IS IT A.. • • 
• FOR PUTTING THE. •• SIGNAL •• YES. • 
.RE:TURN SWITCHES. •• STATEMENT? •• -------->.PROCESS SIGNAL • 
• IN THE DSA • •• •• • • •• *..*.. ••••••••••••••••• •• •• • •••••••••••••••• 

---------->1 1· NO 

·····H2·········· • OUTPUT TABLES • • ••• H4 ••••••••• 
• FOR PARAMS (IF • •• 
! ~~~~6NA~~ ! : EXIT (ERROR) : 
• POSSIBLE • • •••••••••••••• 
••••••••••••••••• TO: 

1 
PHASE KV .... · . • J3 .-> • • •••• . *. RTRN1 

J2 •• • •••• J3 •••••••••• .. .. . . . ... 
NO •• HAS CONTROL •• YES. •• • 

-------------------------------.. COME FROM •• -------->.PROCESS RETURN .---->. B1 • 
·.RETURN ? •• • •• • 

•• •• • • • ••• ..... . ............... . 

Chart 3.23. System Interface Processing Phase (Phase KT) 

420 Licensed Material - Property of IBM 



t---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOKL 

BEGKL 

DCLSET 

VMASK 
BUFSET 

ENDCAL 

MKENT 

DTFCON 

MKMOD 

ISCON 
MKDA 
MKDI 
MKPR 
MKCD 
MKMT 
MKSDW 
MKSD 
MKIS 
ENDDTF 
ENDENV 
NAMACC 

STHSCN 
OPENPR 
CLSPR 
GETDCL 

HLFCNV 
ALSTGN 
ARGGEN 
CALLGN 
REFSAV 
CBKATS 
CHKENV 
RDNEXT 
RAHDST 

RAHFIN 

STKTBL 

WRTTBL 
QTFIND 

CONVCH 

CSECT 

R 

R 

R 
R 

R 

S 

S 

S 

S 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

R 
R 
R 
S 

S 
S 
S 
S 
S 
S 
S 
S 
S 

S 

S 

S 
S 

S 

I I 

R6,R7, 
R8,R9 

Entry pOint to Phase KL. 

Initialize registers, storage, and scan of file entry 
chain. 
Access the next entry in the file constant chain in the 
general dictionary 
Evaluate the 'valid statement' mask. 
Check declared attributes, ENV options, and medium for 
DTF. 
Reserve space for a DTF entry, and branch to the routine 
for producing the required DTF dictionary entry. 
Obtain space for a DTF dictionary entry, and set up the 
first eleven bytes. 
store the first seven characters of the file name in the 
DTF entry, and set up bytes 6-7 to indicate which logical 
name (SYS---) the file has been given in the medium 
specification. 
Make a names dictionary entry for the LIOCS module name 
for the DTF 
Subroutine used by DTF15 to set flag bytes. 
Make a DTFDA entry for a REGIONAL file. 
Make a DTFDI entry for SYSIPT, SYSLIST, or SYSPCH. 
Make a DTFPR entry for the printer. 
Make a DTF entry for the card reader or punch. 
Make a DTFMT entry for magnetic tape. 
Make a DTFSD entry for a CONSECUTIVE UNBUFF disk file. 
Make a DTFSD en~ry for a CONSECUTIVE BUFF disk file. 
Make a DTFIS entry for an INDEXED file. 
Make an ENVB entry and insert in chain, if ENV declared. 
Generate the FCB entry for this file. 
Check for conflict between ENV options and declared 
attributes. 
Scan the text chain for the next staterr.ent. 
Process an OPEN statement. 
Process a CLOSE statement. 
Access the general dictionary entry for the file, if it 
exists. 
Convert an element to the required arithmetic form. 
Generate an ALIST text table. 
Generate an ARG text table. 
Generate a CALL text table. 
Convert an absolute address to a text reference. 
Check declared attributes for validity and set up ATTWRD. 
Process ENV attribute options. 
Scan to the next input text t~ble. 
Access the next input text table, locking in ~he current 
table. 
Reset the scan pointer on completion of a 'Read Ahead' 
operation. 
Stack current input table for use by the WRTTBL 
subroutine. 
Access the next table to be output. 
Locate a 6-byte qualified variable, given its Q-temp. 
reference. 
Generate a text table to convert a given element to 
character. 

continued on next page 

I 
I 
I 
I 
I 
I 

Licensed Material - Property of IBM Section 3: Program Organization 421 



IDECFAC I S I Calculate pr~cision and scale in a BIN-to-DEC convErsion. 
IELTCHK I S I Test a 6-byte raference for convertability to arithmetic 
I I I or string. 
IVMASK I R I Evaluate the 'valid statement' mask for a file. 
I ASMBUF I S I Check for a BUFFERS declaration. 
I I T I Tables, constants, and DTF macros. 
I I I 
IXROUT I CSECTS R9,RF I 
I I I 
IXSTG I CSECT I RA I Private storage for Phase KL. I L _________ ~ _________ ~ _________ ~ ____________________________________ -----------------------J 

422 Licensed Material - Property of IBM 



IE:LOKL DCLSET • *. STMSCH • *. ENDRTN 
A2 *. *****A3********** A4 *. 

*.**1\1***.***** .* *. * • .*.. • ••• AS ••••••••• 
* * .* ARE ANY *. NO • SCAN TEXT FOR. •• •• YES. * 
* ENTRY *-------->.. FILES •• -------->*OPi:N AND CLOSE .-------->*. END OF TEXT? •• -------->. EXIT • 
* • * . DECLARED? * • STATEMENTS. •• • • • • 
••• **.*.***.*** *... • * ....... • •••••••••• * ••• 

Fil.::ll~: *. . * *.***.*.******... *. •• TO: 
PHASE: KT 

I· YES *1
A
<.-.--------- 1· NO •• ~... RgA~~ ~~ 

• A3 .<-1 . . 
* ***. NO 

BUF~~I**B1*.*.* •• **. CHK~I~**B2**** •••• *. : A3 • B4···*. B5' ' •• 
* ... * • **.. •••• •••• •• *. 
* CflECK J>N\l * * CHECK ATTRIB- * * • •• OPEN •• NO •• CLOSE •• 
* ::>PTI::>~S DECLD *<--------. UTES DECLARED *<----. B2 • •• STATEMENT? •• --------> •• STATEMENT? •• 
* FOR FILE * * FOR FILE • • • •••••••• . .. . .... ...... . . 
••• ************** ***************** *. .• * .. * 

1 
· YES • YES 

.,'0.' O.,'OL "EN" 1 OLS', I ••• *.C1 ••••••• *** ****.C2***** •• *** •••• *c4 •••• *..... • •• *.C5 •••••••• *. 
* CHECK MEDIUM * * CALCULATE • • CREATE AN OCB • • CREATE CLOSE • 
* OPTION DECLO * • LENGTH ::IF THE • • GENERATE ARG • .ENV BLOCK. GEN- • 
• C::>RRECrLY. SEr *-------->. DTF 1'0 BE -----* LIST AND CALL. !---.ERATE ARG LIST. 
* UP \lALID. • CREATED .1'0 LIBRARY OPEN. • AND CALL TO • 
*STiUEMENT MASK *.. * • MODULE. .LIBRY CLOSE ~JOD. 
*************.*.. ****·*·*t··**····· ••••••••••••••••• :.:;.; •••••••••••••••• 

.... 
• *. MKIS ••• 

D2 *. * •• **D3*** •••••• * 05 •• •• •. •• .• * • 
. " IS FILE *. YES * BUILD DTFIS * •• ANY ENV •• NO 

*. INDEXED? • *-------->*TYPE ENTRY FOR *---------------------------------->*. OPTIONS DECLD. *---
*. .* • INDEXED DECLN * A A •• ? •• 
*..* * • J .. . . •• • * ••••••• **........ * ••• 

1"' [----------- I· YES 

.*. MKDA ENDDTF 
E2 *. • •••• E3. •••••••• • •••• E5 •••••• * ••• . * .. .. . . 

. " IS ["ILE *. YES • BUILD DTFDA * * BUILD AN • 
*. REGIONAL? •• -------->*TyPE ENTRY FOR. • ENVIRONMENT * 

*. .* .REGIONAL DECLN * • BLOCK • *..* •• •• 

'0,0;, ········1·::::::::------------------------------> *·*·····1·::::::::---

.*. MKDI ENDENV 
F2 •• • •••• F3. •••••••• • •••• F5 •••••••••• 

• * IS IT *. • BUILD DTFOI. * * • 
• * DEVICE *. YES .FILE ;JAS DECLO • * BUILD THE FCB • 

*.;~DE~ENDENT. *.*-------->: F~&~~, C~~g. : ENTRY : 
* • • * • SYS--- • * * 

'or

o

;' ·········1::::::::-----------------------------,- ········i········ 

.*. MKPR NAMACC ••• 
32 *. .*.**G3 •••• ** •• * GS •• . * *. •• .• • . 

. *DOES MEDIUM*. YES .BUILD DTFPR FOR* •• ANY MORE •• YES 
*. SPECIFY PRINT •• -------->* PRINTER r-->·· FILE DECLNS) • ·---1 

*. UNIT? .* • DECLARATION •• .* 
*. ... •• *. . .. *. . * * •••••••••••• **.. • •• * 

1* NO I------------------------------------>A: :;.: 1 NO :*::.: 
•••• .*.* *.*. 

• • ••. ~IKCO • A3 • 
H2 *. • •••• H3. •••••••• • • 

.• *. .BUILD DTFCD FOR* ••• * 
• *DOES MEDIUM.. YES • CARD • 

*.SPECIFY CARD •• -------->. READER/PUNCH • 
*. UNIT? .* • DECLARATION • .... . . * .. * ••••••••••••••••• 

o C ",eo 1------------------------------------> 
J2 *. • •••• J3* * ••••••• 

. * *. * * .*DOES MEDIUM •• YES .BUILD DTFSD FOR. 
*.SPECIFY DISK •• -------->. DISK FILE 

*. UNIT? •• * 
•••• *..* • * • • * .. * ••••••••••••••••• 

:·;1:': oio

NO 

HKMT 1-------------------------------------

* •••• K1. * ••• *.** K2 *. • •••• K3 ••• * •••• * * • •• *. • • 
*GENERATE ERROR * NO .*DOES MEDIUM •• YES .BUILD DTFMT FOR. 
* MESSA3E *<--------*. SPECI["Y MAG .*-------->. TAPE FILE • 
• • •• TAPE? •• • • 
* * *...* * • ****.************ •• •• • •••••••••••••••• 

• 

Chart 3.24. OPEN/CLOSE and File Declarations Phase (Phase KL) 

Licensed Material - Property of IBM Section 3: Program Organization 423 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type t Base I Function I 
I I 'registers' I 
~---------+---------+---------t-----------------------------------------------------------~ 
I I I I I 
I I I I I 
IIELOKM I CSECT I R6-R9 ,Entry point for Phase KM. COPY-book definitions. I 
IIBMDZFCB 'DSECT I I Execution-time (library) FCB. , 
IIBMDZNVB 'DSECT I R2 I Execution-tim6 (library) ENVB. I 
IFILSC=O I R I I Scans file-entry chain in general dictionary. Tests I 
I I I I whether optimization of file open and close is feasible. I 
IFILFIN I R I I Checks size of file CSECT: if >=32K, no optimization; I 
I I I I else modify FeB and DTF entries. I 
IFILF10 I R I Create buffer entry in DTF header. I 
I SETUP I R I Start of a series of routines similar to subroutin~ in I 
I I , library modules IBMDOPA and IBMDOPB. Determine values fori 
I' , insertion in FCB and DTF. I 
I LONGMV IS' copies FCB and DTF entries from dictionary in~o XSTG, and I 
I I I copies modified entries back. I 
IRFCBRT 'S I Sets up an entry in the FCB-overflow entry to indicate an I 
I I FCB entry that needs reloca~ion. I 
IRDTFRT S , Indicates a field in the DTF that needs relocation. I 
STMSCN R I Scan the text chain for record I/O statements. I 
RECIO R I Process record I/O statements. Check the statements for I 

I , 

IGNRRT 
INFRRT 

IFQT 

LTHFND 

I NXTENT 
I 

TRFTS 

LIBLTH 

SETRT 
KEYRT 

RLTHGN 

I 
IMHCONS 
I , 

R 
R 

R 

R 

R 

R 

R 

R 
R 

R 

R 

I validity against the FCB (if accessible) and generate a I 
I call to the library input/output interface module. I 
, Process the IGNORE option. 
I Examine the INTO and FROM options in a record I/O 
I statement. Main task is to create a record descriptor 

(RO), and produce text tables to set this descrip~or up a~ 
execution time. 
Process the INTO/FROM option in those cases where ~he 
record descrip~or does not have a skeleton in static 
storage. 
Attempt to find the length of a record variable. If this 
length is unknown at compile-time, then a study is made of 
those factors which are used in calculating the length at 
object-time. such factors as are known at compile-time 
are saved, and flagged as known in LTHFLG. 
Access the next variable dictionary entry (and hence the 
next item in a structure). 
Determine whether the YTROFF field in the aggregate table I 
dictionary entry (if any) is known for the given variable., 
Also set CBLKCD and DSCROFF to indicate whether descriptorl 
fields are accessed via a locator descriptor or via a I 
descriptor. I 
Generate a call to the library module which calculates the' 
length of a given structure. I 
Process the SET option. I 
Examine the KEY/KEYTO/KEYFROM options in a record I/O I 
statement. Create a key descriptor (KD) for the key, and I 
leave a 6-byte reference to the descriptor in RCARG4, so I 
that an ARG table for the key descriptor can be I 
constructed later. I 
Generate text tables to calculate the length of a record I 
or key variable. If the variable is a structure, the , 
length of the last base element is added. I 
These two routines calculate I 

Continued on next page 
I 
I 

q2q Licensed Material - Property of IBM 



MHVAR R 

PRECST R 

OFFSGN R 
ASSTGN R 
TTGEN R 

IEGEN R 
ASLDSC R 

MVADDR R 

MVFLAG R 

EVNTRT R 
PGLSET R 

GETDCL R 
QTFIND R 

QTSQZE R 

TDSCIN R 

CONVCH R 

DECFAC R 

FLLCNV R 
ELTCHK R 

ALSTGN R 
ARGGEN R 
CALLGN R 
GHOSTG R 

REFSAV R 
GTXTBL R 

fSCRBST R 
INMON R 

RDNEXT R 

RAHDST R 

RAHFIN R 

STKTBL R 

SUM(M*H) - (VO-AO) where M,H are multipliers and bounds 
of given array; AO = actual origin; VO = virtual origin. 
Thus, in effect, the routines calculate the offse~ of the 
last element of an array from its actual origin. Rou~ine 
MHCONS calculates the part of this expression known at 
compile time; MHVAR generates text to calcula~e the rest 
of the expression. 

I 
I 
I 
I 
I 
I 
I 
I Determine whether a given constant needs halfword or 

fullword precision, and generate a 6-byte reference to 
constant accordingly. 

thel 

Generate an OFFSET text table. 
Generate an ASSN text table. 
Generate a text table. 
Calculate one of the factors used by rcutine RLTHGN. 
Generate text to assign the contents of LTSTMP to ~he 
length field in a record or key descriptor. 
Move the address of a variable into a record or key 
descriptor. 

I 
I 
I 
I 
I 
I 
1 
I 
I 

Generate text to move the descriptor flag into a record 
key descriptor. 

orl 

Process the EVENT option. 
Determine whether the LINESIZE and/or PAGESIZE options on 
an OPEN statement conflict with attributes for the data 
set to be opened, and set the PGLNSW switch accordingly. 
Access the FCB dictionary entry for a given data set. 
Locate a 6-byte qualified variable, given a reference to 
its qualified temporary. 
Locate the NDPTAB entry which corresponds to a given QT, 
and 'squeeze the entry out of the table. 
set up a field TMPDSC with a 6-byte reference to a new 
temporary a-byte record or key descriptor. Move ~he 
6-byte descriptor reference into a field pointed a~ by R2 
and ensure that the code byte in this field indicates a 
'dead' temporary. 
Generate a text table to convert a given element to 
character. 
Calculate the ceiling (N/3.32) for a given N. Routine is 
used co calculate decimal precision and scale in 
binary-to-decimal conversions. 
Convert an element to FULLWORD BINARY(31,O), if necessary. 
Examine a 6-byte reference to an element, and decide 
whether it is a scalar and convertible to ari~hmetic or 
string. If not, signify an error. 
Generate an ALIST text table. 
Generate an ARG text table. 
Generate CALL text tables. 
Generate a GHOST text table to indicate to the optimizer 
that a variable is being used or set. 
Convert the address of a text table into a text reference. 
Convert a text reference to an absolute pointer. 
Delete the current statement. 
Check whether inline I/O code is possible, and if so, call 
routines to generate such code (routines RTO-RT22). 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Access the next input text table and upda~e the input scan 
pointers CURTBL (which points to the new table) and CURPAG 
(which points to the start of the page containing CURTBL).j 
Access the next input text table, ensuring that the I 
previous table is locked inco main storage. Used at the I 
start of a 'read-ahead' operation. I 
Used when a 'read-ahead' operation is complete. It resetsJ 
the input scanner to the value it had before the operation I 
commenced. I 
Stack the current input table so that it may be used by I 
the routine WRTTBL. I 

I 
I 

Continued on next page I 

Licensed Material - Property of IBM Section 3: Program Organization 425 



!WRTTBL 
IRTO 
IRT1 
I 
I 
IRT2 
I 
IRT3 
RT4 

RT5 

RT6 

RT7 

RT8 

RT9 

RT10 

RTll 

RT12 
RT13 

RT14 

RT15 

RT16 

RT17 

RT18 

RT19 

R 
R 
R 

R 

R 
R 

R 

R 

R 

I R 
I 
I R 
I 
I R 
I 
I R 
I 
I R 
I R 
I 
I R 
I 
I 
I R 

I 
I R 
I 
I 
I R 
I 
I R 
I 
I R 
I 

RT20 I R 
I I 
IRT21 I R 
( I 
IRT22 I R 
I I 
I RCBTAB I T 
I I 
ITMTAB I T 
I I 
I ! 
( I 

Access the next output text table. 
Perform record checking for fixed format records. 
Initialize an inline record input/output sequence and 
generate text to indicate to Phase QA the registers being 
used and set. 
Generate code to load the address of the error routine 
generated by routine RT3. 
See routine RT2, above. 
Generate code to load the address of a library error 
routine and branch to that routine. 
Generate ERRLAB EQU * The compiler label ~RRLAB has been 
set up by a previous routine. 
Generate the clear-up code of an inline record I/O 
statement, and indicate that registers 1 and 2 are now 
free. 
Generate 
which is 
Generate 
buffer. 

code to assign the buffer address to the fointer 
tc be set. 
text to move the record variable from/to the 

Generate code to load the address of the ABNORMAL PUT 
RETURN label. 
Generate PUTRN EQU * This label is the ABNORMAL PUT 
RETURN label. 
Generate text to indicate to Phase QA that register 8 is 
now free for use. 
Generate code to deblock FB-format records on infut. 
Generate code to load the address of th~ ABNORMAL LOCATE 
RETURN label. 
Perform record checking for areas and varying strings 
(with SCALARVARYING option) on (non-locate) output 
statements. 
Generate code to check for a record variable being too 
long. 
Generate text to move data (whose length is in LTSTMP) 
between buffer and record variable. The text generated 
produces a call to the general move routine. 
perform compile-time record checking for U-format records, 
when possible. 
Generate text to indicate to Phase QA that register 10 is 
set. 
Generate text to indicate to Phase QA that register 10 is 
free. 
Generate text to perform record checking for input 
statements of U-format data sets. 
Generate text to assign the record variable length to 
field FREL in the FCB. 
Generate text to pick up the length cf the last U-format 
record in the buffer. 
contains flags indicating the type of each record I/O 
statement. 
Each entry contains the immediate and offset bytes of a 
TEST UNDER MASK instruction which tests flags in the FCB 
for statement validity. 

IXMESGR I CSECT ) 
IXRFAB I CSECT ) 
IXRFSEQ ! CSECT ) XROUT 
IXTUNL I CSECT ) 
IXSTG I CSECT I Private storage for Phase KM. l _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

426 Licensed Material - Property of IBM 



IELOKM 

****1\ 1********* · . * ENTR~ * 
• * **.***** ••••••• 

E'ROM: j PHI\SE KL 

FILSC 
••• ·.B1· •• *· •• ••• 
*SC/U" FILE ENTR~. 
• CHAIN IN • 
* GENERAL * 
* DICTIONAR~ * 

* * ............ *.***. 

I 
**** ·C1 **** .... **. .. . 
*GET NEXT ENTR~ .. 

-->* IN CHAIN • · . * • 
········i········ 

· .. 
D1 •• 

.• *. 
•• END DE' *. ~ES 

*. CHAIN? • *----> ... . .. .. . . ... ... 

i" 
· *. E1 ... 

. * *. 
NO • * SUITABLE ... 

<-- •• E'OR OPT.? • * ... . * 
*. . * *. . .. * ~ES 

I 

1 
**.**F1* •• ·**.· .. • 

• * * COMPLETE FCB * 
• I\ND DTF • * • · . •••••• ** ••••••• *. 

I · .. ::; 1 •• .. .. 
NO •• E'ILI!: CSECT *. 

<--*. <32K? •• •. . * .. .. .. .. 
• ~ES 

RFCBRT I 
RTDTRT 

• ·*·*H1*·***····· • • • COP¥ MODIFIED • 
--- .. E'CB AND DTF TO .. 

.. DICTIOl"'I\R~ * .. .. 
** •••••• * •• * •• *** 

STMSCN 
.****11.2**··.**·** 
* SCAN XRIOCH • 
*TEXT CHAIN FOR * 

-->*NEXT RECORD 1/0. 
* STATEMENT * 
* * * .... * •• * .. ****.** •• 

I 
• * . 

B2 * . 
• *.. ··*.B3********. 

..RECORD I/O •• NO. * 
*. STATEMENT •• -------->. EXIT • 

•• FOUND? .* * * 
•• •• ***.*********** * •. * TO: 

R"'D i '" PHA" KO DR KO 

*·.*.C2 •• **.**·*. 
* .. 
.SCAN FOR RECORD. 
*1/0 TEXT TABLE .. · .. .. .. 
• .... **.* •• **.***. 

1 
* •• *.D2*··******* * • 
: ~g~~~o~E~~~~~ : 
* FOR STATEMENT * · . **.**** •• ****** •• 

I 
•• • PGLSET SETRT 

E2 *. ** ••• E3.......... .* ••• J:;4 ••• ***.**. 
..IS E'ILE.. • CHECK * * * 

..11. VARIABLE *. NO * COMPATIBILIT~ * * ACCESS 'SET' * 
*. OR PARAt4ETER •• -------->* WITH DECLARED * j-->* POINTER * 

•• ? • * • ATTRIBUTES·· • •..• * • * * 
· ·1· ~~~~ _____________ ::::::::r **. * **. ** * * * ** .j* •••• * * * * 

.•. .r~NO---------- .*. 
F2 •• F3 *. F4 *. 

•••• •• *. ..IS THIS". 
•• 'INTO' OR *. NO •• 'IGNORE' *. .* A LOCATE *. NO 

*. • FROM' • *-------->... OPTION? •• ... STATEMENT? •• -----------------1 ... OPTION? .* •• .* *. •• 
*..* •••• *. 

"'RRr "i';'S ",RRT "i';" "'l';~' 
* •• **G2 •••• *.* •• * ••• **G3.*.* •• **". • •••• G4.* •• ***... * •• *.G5* •• * •••••• 
• •• SET UP IGNORE * * BUILD RECORD ... * 
• CONSTRUCT" • FACTOR AS * *DESCRIPTOR AND • *SET UP POINTER .. 
* RECORD • !---. LIBRARY • !---. SET ABNORMAL· 1-----. AS LIBRARY * • DESCRIPTOR. • ARGUMENT. • LOCATE RETURN. • ARGUMENT • 
... •• • * ADDRESS·· • 

··· .. · .. i:::::::·········::::::::::::::::·········:::::::::::::::::... . ............... . 

••• KEYRT 
H2 *. ****.H3*.*.* ••••• 

.• *. * * .* *. ¥ES • CONSTRUCT KEY" 
*. KEY OPTION? •• -------->* DESCRIPTOR • 

•. .* * *. .• • 

··i:~ ...... ····· .... ~:::::::j········ 
••• EVNTRT 

J2 ... .*.*.J3***.**.*.* 
•••• • SET UP EVENT • 

• * *. YES • VARIABLE AS .. 
•• EVENT OPTION?.-------->. LIBRARY .. 

* • • * * ARGUMEN'T * .. .. .. . 
RECO ··i:~:··············:~::::::j········ 

.*"*.K2···**·*··· 
* • 
'*S~T UP LIBRARY '* 

--- '* CALLING • 
.. SEQUENCE .. 
* • •••••• * •••••••••• 

Chart 3.25. Record I/O statement Processing Phase (Phase KM) 

Licensed Material - Property of IBM section 3: Program Organiza~ion 427 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers, , 
~---------+---------+---------+-----------------------------------------------------------~ 
I I I I 
I I I I 
IIELOKQ CSECT I R5,R6, ,Entry pOint to Phase KQ. , 
, ,R8,R9 I I 
IKQOOOO R I I Initialize registers, storage, and scan of text. , 
IKQSSOO R I , Scan to the next statement in the stream inpu~/outfut I 
I I I chain. I 
IKQGPOO R I I Scan a GET/PUT text table, and prepare the table for , 
I I I optimization if found. , 
IKQSTOO R I I Check the syntax of a GET/PUT STRING statement. I 
IKQSFOO R I I Check the syntax of a GET/PUT FILE statement. I 
IKQICOO R I , Convert a GET/PUT FILE text table from input to output. I 
IKQSAOO R I , Generate string arguments for an initial library call for I 
I I' a GET/PUT STRING statement~ I 
IKLSCOO R I I Text table scan for a LIST-directed input/outPUt I 
I I I statement. I 
KLSEOO R I I Process a DATAE table in a LIST directed input/output I 

KLAEOO 

KESCOO 

KEDTOO 

KDSCOO 

KDNLOO 

KDILOO 
KDOLOO 
KQFMOO 
KQSEOO 
KQSROO 

QCSRGT 
KQLCOO 

KQNDOO 

SGNITO 
SGNOTO 
SREMBO 
SFREEO 
SRECLO 

SRETNO 
SCURRO 

SALSTO 
SARGTO 

lSCALTO 
ISCDLEO 
ISILCRO 
ISLMEPO 
ISOFFTO 
ISLADTO 
ISGENTO 
I 
I 

R 

R 

R 

R 

R 

R 
R 
R 
R 
R 

T 
R 

R 

5 
5 
s 
S 
5 

5 
S 

s 
S 
S 
5 
S 
S 
S 
S 
S 

I I statement. I 
, I Process an array data list element in a LIST directed I 
I I input/output statement. I 
I I start the procEssing of an EDIT directed input/output I 
I I statement. I 
I I Process an EDIT directed input/output statement in NO OPT I 
1 I mode. I 

, Text table scan for a DATA directed input/output I 
I statement. I 

Process a DATA directed input/output statement without a I 
data list. I 
Process a DATA directed GET statement with a data list. I 
Process a DATA directed PUT statement with a data list. I 
Process a FORMAT statement. . , 
Complete the processing of a staterrent and con~inuE scan. I 
Add compiler-generated subroutines for stream input/output I 
to the start of the text stream. I 
Subroutine genEration table. I 
set XLIBSTR to show library conversion rou~ines required I 
at execution time. , 
Exit to the next phase. I 

I 
Get the next input text table. , 
Get the next output text table space. I 
Store the address of a current text position, and lock it., 
Free a text position previously locked in core by SREMBO. , 
Retrieve a previous text position, and save the current I 
position. , 
Retrieve a previous text position. I 
Return to the current text position after processing by I 
SRECLO. I 
Create an ALIST text table. I 
Create an ARG text table. , 
Create a CALL text table. , 
Check a data list element for validity. , 
Identify required library conversion routines. I 
set a library module entry point bit on in.XLIBSTR. I 
Create an OFFS text table referencing the SIOCE. I 
Create an LADDR text table. I 
Create a GEN text table. I 

Continued on next page 
I , 

q28 Licensed Material - Property of IBM 



SAQTLO 
SSQTLO 

SCVFBO 
SELSBO 
SELFCO 

SELDDO 

SEBALO 

SEFEDO 

SEFDDO 

SELFIO 

SECFFO 

SECSRO 

SECLCO 

SEGOTO 

SEGSLO 
SEFHTO 
SEFITO 
SEFIEO 
SEKDNO 

XINIT 
XRFAB 
XDIREC 
XNEXT 
XTXPG 
XTCH 
XNSRT 
XLINK 

S 
S 

S 
S 
S 

S 

S 

S 

S 

S 

S 

S 

S 

S 

S 
S 
S 
S 
S 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

R9 
R9 
R9 
R9 
R9 
R9 

I R9 
I R9 
I 

Add an element to the Q-temp. list. I 
search the Q-tEmp. list to find the real operand I 
referenced. I 
convert a text table operand to fixed binary. I 
Produce a text table to generate code to locate the SIOCB.I 
Produce a text table to generate code to locate the start I 
of a format list. I 
Produce text tables to generate code to locate a data iteml 
and its OED, and store their addresses in the SIOCB. I 
Produce a text table to generate code to branch and link I 
between a data item and its format list. I 
construct a FED for a format item, construct a text table I 
operand referencing the FED, and identify library I 
conversion routines required for the FED. I 
construct a dictionary entry for a FED, if required, and a 
text table operand (6-byte reference) referencing the FED. 
Produce a text table to generate code to locate the 
current format item. 
Produce text tables to generate code to call a library 
routine for processing a format item. 
Produce text tables to generate code to call a 
compiler-generated subroutine. 
Produce a text table ~o generate code to call a library 
routine for an EDIT-directed input/output conversion. 
Produce a text table to generate code to branch to a 
compiler-gEnerated label. 
Produce a text table to generate a compiler label. 
Process a format item. 
Process a format iteration start (FIT) text table. 
Process a format iteration end (FITE) text table. 
Create a KONST text table in the output text stream. 

) 
) 
) 
) XROUT 
) 
) 
) 
) 

IXSTG CSECT I RA I Private storage for Phase KQ. L _________ ~ _________ ~ _________ ~ __________________________________________________________ _ 

Licensed Material - Property of IBM Section 3: Program Organization 429 



IELOKQ 

··**Al·**·***** 
* * * ENTRY * 

• * *** •• * •••••• *** 

FROM: 1 PHASE KT, 
KL, OR KM 

K~OOOO 
**** * B 1 * **. * * ** * * ... ... 
* INITIALIZE * 
• PHASE * 
* * * * * * * ... * * * * *** * * * ** * 

"ssoo 1 
*****~1********** 
* * * S~AN TEXT FOR * 

-->* STREAM 1/0 * 
* STATEMENT * · . • ** •• *.*.** ••• *** 

1 
. *. 

D1 *. 
. * *. •• END OF *. NO 

*. STATEMENT .*--­
*. ~HAIN ? .* .. .. 

* .. * 
* YES 

'03ROO 1 
* ••• *E1 •• ·.**·.** 
* ~ENERATE * 
.SUBRJUTINe:S FO,,* 
* EDIT DIRECTED * 
* STREAM 1/0 * 
* * ****************. 

","00 1 
*****Fl ********.* 

• * * IDENTIFY NEXT * 
* PHASE • 
* * * ... 
********** •• *.*** 

I 
*.**31.* •• *.*** 

* * * EXlr ... • • • ****.***.***** 
TJ: 
PHASE KV 

KQGPOO • *. K2SYOO K2STOO 
*****A2 ••••• ***** A3 *. *****A4**.**.*.** *****AS****.**.*. 
* • •••• * • * * 
*SCAN STATEMENT * .* *. NO * SYNTAX CHECK * * PROCESS THE • 

f~bGH~rgT :-------->*.~~LE OPTIONJ.*-------->:GET/PUT STRING :-------->: STRING OPTION: 
* * *..* * • * • 
***************** *. •• ************.**** * •••••••••••• * ••• 

1\ * YES J 

","00 1 ""COO r---------------

C2 *. 
. * *. • * FORMAT *. 

---->*. STATEMENT ? • * 
*. . * *. . • * .. * .. YES 

RQFMOO 1 
* * * * *D2 ***** ** **. * .. 
* FORMAT * 

r
-->.STATEMENT TEXT * 

* TABLE SCAN * 
* * * .. * ** * * .. * * * * ** *. * 

: :;*: 1 
* * **** 

**. ** E2* * .. * *. * * * * 
* * *PRO~ESS FORMAT * 
* ELEMENT, OR •• * 

• * * * .**** •• *.*.* ••• *. 

1 
** * ... * F2* * * * * * * * ** 
* •• PROCESS START* 
* OF FORMAT * 
* ITERATION, * 
• OR... * 
* * · ...... T .... · .. 
····*G2*···*·**** 
* * * ••. PROCESS END * 
• OF FORMAT ... 
* ITERATIONS * · . .*** ••••• * ••• *.*. 

1 ... 
H2 *. . * •• 

YES.* END OF •• NO 

*****83.****** •• * *****84** ••••• **. 
* * *PRODUCE LIBRARY. 
* SYNTAX CrlECK * * CALL TEXT' FOR * 
* GET/PUT FILE .-------->. STATEMENT * 
* • *INITIALIZATION * 
* • * • 
*.**.**.* •• **.*** ****.***********. 

1 ... 
C4 *. 

.* *. 

[
-------------:~::*:~~~:~IgI~:6~::*~~:~-------------1 

*. .• 
* .. * • LIST 

KESCOO KLSCOO 1 KOSCOO 
*.**.D3 •• ****.*** •• *.*D4**.****.** **.*.DS •••• *** •• * • •• •• • • EDIT-DIRECTED • • LIST-DIRECTED * • DATA-DIRECTED • 

r
-->.I/O TEXT TABLE • -->*1/0 TEXT TABLE • -->.1/0 TEXT TABLE • 

• SCAN • • SCAN * • SCAN • 
* * * *. • 
• •• *............. • ••••• ** •• * ••• *** •••••••••• **.* ••• 

: ::*: 1 1 1 * ••• 
KEDTOO KLSEOO KDNLOO 

••••• E3 ••• *.**... * •••• E4 •••• **.... *.**.£S •• *****.** 
* * * •• PROCESS DATA • 
* PROCESS DATA * *PROCESS SCALAR * *STATEMENT WITH * 
*ELEMENT, OR ••• * * DATA ELEMENT, * * NO DATA LIST, * 
* * * OR. • . * • OR. • • * • *. •• • .****** •• ******** * •• **** •• ** •• **** **.***.* ••• *** ••• 

1 K~EOO 1 KOILOO 1 
.*.**F3.*****.*** •• ***F4 •• ******** **.**FS******* •• * 
* *. * * • 
.PROCESS FORi'~AT • • PROCESS ARRAY • • PROCESS GET • 
.ELEMENT, OR... • * DATA ELEMENT * .DATA STATEMENT,. · *. .. OR... • 
* * * * * * 
******.*.******** * ••• * •••• *.*****. *.**.*.* •• * ••••• * 

1 J ~OOLOO 1 
**·*.G3.******.** G4 •• • •••• Gs •••••• *.*. 
• PROCESS START * • • * • • • 
• OF FORMAT. NO.* END OF.. • PROCESS PUT • 
* ITERATIONS,. ---•• STATEMENT ? •• .DATA STATEMENT. 
* OR. •• * *. • * • • 
* * ...* • * 

········1········ ··.·;ES ·······:1:······· 

.···.H3· •• *.*.*.. HS •• 
• * .• * • .PROCESS END OF • NO.. END OF •• 
* FORMAT * ---*. STATEMENT? •• 
* ITERATIONS * •• •• 
• * •• • * 
········1········ ··.·~ES 

-----------------*. STATEMENT? • *---l •. . * *. .• 
*. . * 

• **** 
• * * D2 * • * .*.* ... 

J3 •• 
• * *. .*** 

YES.. END OF *. NO • • 
<-----------------------------------------•. STATEMENT ? •• ---->* D3 • *. ... •• *. . * •••• ..... 
<------------------------------------------------------------------------------------------------------

K2Se:OO 
*****Kl***.****** 
* * *PROCESS END OF * ---! STATEMENT : 

• * •••• * *. * *** * * *** * 

Chart 3.26. Stream I/O Statement Processing Phase (Phase KQ) 

430 Licensed Material - PrOpErty of IBM 



r---------T---------T---------T-----------------------------------------------------------, I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOKV 
KVl 
SCANT 

SCANGLAB 

LOCKON 

MPO 
LABENT 
DESTN 

I I I 
I CSECT I I 
I R I I 

R I I 

S 

S 

S 
S 
S 

I , 
I I 
I , 
I ! 
I I 
I I 
I I 
I I 
I I 

I 
I 
I 

lXINIT CSECT R9 I 
IXNXROUTl CSECT R9 , 
IXNXROUT2 CSECT R9 I 
'X~XPG CSECT R9 I 
IXNSRT CSECT R9 , 
IXTUNL CSECT R9 , 
'XLINK CSECT R9 I 
I I 

Entry point to Phase KV. 
Initialize registers, storage, etc. 
Scan the input ~ext stream, processing and outputting 
special-case tables including the following types: 
DINC,NULL,BC,BCB,GOTO,PROCEDURE,BEGIN,END,CALL,FNCT,AL1ST, 
statement header, end-of-program. 
Process generated statement labels, eliminating those 
which are redundant. 
Scan text to the next non-NULL text table, deleting any 
NULL tables found. 
Process constant multipliers and exponents. 
Find or make a label directory entry. 
Process the label operands of a conditional branch or GOTO 
text table. 

XROUT 

!XSTG CSECT RA I Priva~e storage for Phase KV. , L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM Section" 3: Program Organi~ation 431 



IELOKiT SKANT 

•••• !\1 ••••••• •• · . ... ENTR~ • 
• • 

..... A2.......... . .... A4 ......... . 
•• •• • S~AN TO NEXT • • REPLACE ALL •• • 

• • " • BY EQUIV.. • 

~~~~~ :;:·::~l······· .. 
KM, OR K..! 

KVl 

-->. TABLE .<--1<------------------------------. CHAINED GSL'S .<--------. EQUIV = Sl • 

•• •••• 
········1········:··· · ········~l········ ········I~········ 

• A2 • 
• • .... 

••• • .YES 
• ···.61 .•• · •••.•. .. . 
• INITIALIZE TEXT. 
• SCAN .-----· . · . ................. 

.1 ... . 
B1 • 

• 

62 •. • •••• B3. •••••••• • •••• B4. •••••••• BS •• .... . .. . .... 
•• •• YES • INITIALIZE.. • NO •• HAS SL BEEN •• 

..PROC, BEGIN? a.-------->.LABEL DIRECTOR~. • EOUIV = GSL .<--------.a FOUND? a. •. .• • •• • ·a .. ..,.. . .. . .a .. 
~. .. ................. ................. . .. . 
.1.'· 1:;~:1~1 .I.y .. 

c2 • a ••••• C3. •••••••• C5 • a .. .. .. .. .. 
.• •• YES • SET FLO~ UNIT. NO •• MORE THAN •• 

•• SL? •• -------->. FLAG r---. a ONE LABEL? •• *. • • *. .• *. .• •• •. . * .a .• ••••••••••••••••• .a a. 

1
· NO :.:;.: l~ 

•••• NO 
D2···.. • •••• D3.......... 04 a.... DS' a.a 

... ... * • ...... .* *. 
• • •. YES • ENTER LABEL IN. • .L~ EXT TABLE •• NO a .NEXT TABLE •• 

•. 3SL? .• -------->. DIRECTORY .-------->.. IS GSL? •• -------->.. IS SL? a. .. .. . . .. .. .. .. .. .. . • .a.. •. a. •. .. .•••.•••••...•••• •. a· •..• 
• NO " • YES • YES 

1 l------·------A-----------j 1 ... l E2 *. • •••• E3.......... • •••• ES •••••••••• 
. * *. •• •• 

•• •• YES • STACK ALIST • •• 
•. ALIST? .• -------->. NUMBER .---1 -----------------------------. SET SL FLAG • .. .. .. .. .. .'" .. .. * .. * ••••••••••••••••• J ••••••••••••••••• 

1
. NO •••••• :.:;.: •••••• 

:·~~·:<-l NO •••••• :·:~·:<-1 
F2···.. F3' '.. ..* .. F4 ••••••••• 

... ... ... *. • • 
• :. Fu~~~~bN? .: .. !~~----->.:. A=~T~I~~K .:.!~~ _____ >: UN-NEST ALIST : ... ." •. a· . • •. a" ••.• • • .. .. .. .. . ............... . 

1· NO • :*:;. :<-1 :*:;. :<-1 
•••• NO •••• 

G2···.. • •••• G3.......... G4
a 

'.. • •••• GS ••••••••• 

••.• • .•. YES :SCAN AHEAD FOR: •• i; TEMP I~· •• YES :R~~ti~~ gg~~~RE: 
•. COMPARE? •• -------->. RESULT TEMP .-------->.. CONV? •• -------->.RESULT BY CONV • 

•. •• • • •• ." • RESULT • ... .. * • • *.... • • .. .. ................. .. .. . ............... . 
. 1.'0 !:~~:!<-l '0 !:~~:!~l· 

H2 .a H3' '.. • •••• H4 ••••••••• 
. • • • . • • a • REPLACE BY • 

.• MULTIPLY, •• YES .• IS ONE •• YES • REPEATED • 
... POWER? ... -------->.. OPERAND A a.-------->. ADDITION OR • 

... •• ..CONSTANT?. .MULTIPLICATION • .. .. ..... . . .. .. •. a· ••••••••••••••••• 

1'0 .: . :::~::<-l 
J2 .. a J3 •. • •••• J4.......... • •••• JS ••••••••• .. .. .... . .. . 

• :. BC BCg~TO, .: .!:~ _____ >.: • MR~~¥5~l~·: .~~ ______ >:D~~~C~~~~L C~~IN:-------->: SET ~t~~ UN IT : 
•. .• •• •• .TABLE rtEFERENCE.. • .... .... . .. . .. .. .. .. ................. . ............... . 

.. NO .. YES 

l .... . . 
-------------------------t- : .:~. :<-1 

. .. 
K4 •• • •••• KS ••••••••• 

1 a· . K2 •• ·.··Kl............. .••. .... .... . . 
.. * YES •• •• 
• EXIT *<--------•. END OF TEXT? •• 
• • *. . *' ••••••••••••••• •. a· 

ro: •..• 
PHASE OA • NO 
OR KK ! .... · . • 81 • · . ...... 

: A2 :<--~~.:~~~LI~~~~N~ ~:.:~~----->:R~~~~fo~AB~rt : 
.... •• .... • FLAG • .••• .a a. • • .. a· ••••••••••.•...•• 

• 

Chart 3.27. Special-case Processing Phase (Phase KV) 

432 Licensed Material - Property of IBM 



Extraction of Alias aud Call Information <Phase OA) 

r---------T---------T---------T-----------------------------------------------------------, I Name I Type I Base I Function I 
I I I r6gistersl I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOOA CSECT 
OA R 
TSCANl R 

ENDTXl R 
DEF10 R 
TRNSl R 
TRNS2 R 
TRNS3 R 
PTRASNl R 
LABENT R 
ARGRl R 
CALLRl R 
ASSNRl R 
SETUPVL R 
DEF20 R 

XINIT CSECT 
XRFAB CSECT 
XRFSEQ CSECT 
XDIREC CSECT 
XDSTAT CSECT 
XTXPG CSECT 
XNXROUT CSECT 

R9 
R9 
R9 
R9 
R9 
R9 
R9 

I 

Entry pOint to Phase OA. 
Initialize registers, storage, text scan, etc. 
Scan to the next text table, and branch to the required 
processing routine. 
End of text-scan routine. 
Scan to the next entry iri the variables dictionary. 
Process the secondary transfer table) 
Process the primary transfer table )Bit vector 
Process the CALL table ) manipulation 
Process a pointer assignment. 
Process a label or entry assignment. 
Argument/parameter matching routine. 
Process a CALL statement. 
Preliminary processing of assignment statements. 
Set up value lists. 
Process a defined variable. 

) 

) 

) 

) XROUT 
) 
) 

) 

IXSTG CSECT RA I Private storage for Phase OA. l _________ ~ _________ ~ _________ ~ __________________________________________________________ _ 

Licensed Material - Property of IBM Section 3: Program Organization 433 



IELO:>!>. 
** * * *A2** * *** **.* *** * *A3***** *** * * 

••• ·Al**·**·.*. * * * * 
.* • ________ >**sTEQRUOENU~HIATLEXSTCAN!: * GET NEXT TEXT * 
: ..... ::::~ .... * * : H - : 1-----: TABLE :<--1<-------------;..-------------------------

FROM: ***************** ***************** 

PHASE KV 1<---------- :*:; : * * **** 

Chart 3.28. 

TSCANl .*. prRASN 
B2 *. *****B3********** 

.* *. * CREATE VALUE * 
.* POINTER *. YES * LISTS & SET * 

*.ASSI3NMENT ? .*-------->*BITS ON IN THEM*---l 
*. .* ... ACCORDING TO ... 

* . . * * OPERANDS * 
* •• * ***************** 

1
* NO : *::*: 

* * **** 
.*. LABENT 

C2 *. *****c3********** 
.* LABEL *. * CREATE VALUE * 

• * OR ENTRY *. YES * LISTS 6 SET * 
*.ASSI3NMENT ? .*-------->*BITS ON IN THEM*---l 

*. .* * ACCORDING TO * 
* . . * * OPERANDS * 

* •. * ***************** 

1
* NO :*::*: 

* * **** 
.*. ARGl 

02 *. *****D3********** 
.* *. * CREATE VALUE * 

.* CALL *. YES *LISTS FOR PARA-* 
*. STATEMENT? .*-------->* METERS & SET *---1 

*. .* *BITS ON IN THEM* 
* • . * * FOR ARGUMENTS * 

* •• * ***************** 

*1 NO : *::*: 

* * 
• *. DEF20 

E2 *. *****E3********** 
• * *. * CREATE VALUE * 

· * END OF TEXT*. NO * LIST AND * 
*. SCAN? '*---1 -->* ENTRIES IN ... 

*. .* * PRIMARY TEXT * 
*..* *TABLES IF NECES* 

* •• * ***************** 

I· YES :*::* : 1 
**** **** 

* * DEF10 * H2 * 
*****F2********** * * 
* * **** 
*SCAN VARIABLES * 
* DICTIONARY * 
* '" * * ***************** 

I 
. *. 

G2 *. 
• * *. · * DEFINED *. YES 

-->*. VARIABLE? • *---
*. . * *. . * *. . * 

:*:;*:->*1 NO 

* * **** . *. 
H2 *. .• *. 

NO .* *. 
---*. END OF SCAN ? * 

*. .* 
*. . * *. . * 

**** 
* * * G3 * 
* '" **** 

! 
. *. 

G3 * • 
. *WAS ANY*. 

YES • *VALUE LIST *. 
---*. CHANGED .* 

*. DURING .* 
*.SCAN .* ••. * * NO 

r~S3 1 
*****H3 •••• ** •• *. 
.SCAN CALL TABLE* 
* AND CREATE • 
*VALUE LIST FOR * 
* EACH BLOCK * 
* * * •• *.***.******.* 

*****BLI* **** •• ** 

• * • MAKE; ENTRY IN • 
• PRIMARY • 
.TRANSFER TABLE • 

• * *****.*********** 

**** 
* * 
: A3 :<-1 

**** 

*****cLI. ******** 
* MAKE ENTRY IN * 
• PRIMARY OR * 
* SECONDARY * 
*TRANSFER TABLE * 
* * **.*.*****.***.** 

CALLRl 
*****DLI* •• ******* *****D5* ******** 
* MAKE ENTRY IN * * * 
* PRIMARY OR * * MAKE ENTKY IN * 
* SECONDARY *-------->* CALL TABLE * 
.TRANSFER TABLE • * • 
* * * * ****.************ *.*.************* 
***. 

* * 
• ELI .--1 * * *.* • 
* ••• *ELI.*.******* 
* • 
*CHECK TABLE FOR* 
* OVERFLOW * 

• * * * ***************** 

I 
. *. 

FLI *. *****F5********** 
. * *. * * .* OVERFLOW *. YES *SET 'OPT' FLAG * 

*. OCCURRED? .*-------->* TO 'NOOPT' 
*. .* * 

*. . * • * 
"1';0 ········1·******** 

*****G4*********. 
* * ****G5********* 
*RETURN TO CALL * * • 
* POINT * * EXIT * 
* * * * * * .************** 
*****.*********** TO: 

PHASE KK 

TRNSl 

• YES 

l .**'" 
* * ->* ELI • 
* * ***'" 1<-----------------------1 '"' *****J3* •• ****.** JLI' • * • • ***.J2 •• ***.**** 

*FOR EACH ENTRY * 
• IN SECONDARY ... 
• TRANSFER TABLE * 
*PUT SEVERAL IN • 
* PRIMARY T.T. * 
* •• *.* .*. * * •• *. *. 

TRN" 1<------------***.·K2*.*.· ••• *. 

* SCAN CALL * ."'WAS ANY"'. 
.TABLE. FOR EACH* • *VALUE LIST •• 
*ENTRY OR BLOCK *-------->*. CHANGED .• 
* VALUE LISTS * *. DURING . * 
* TOGETHER * "'.SCAN .'" 
•••• *.*****.*.*** * .. * 

r
NC 

•• *·*K4*· * .* •• **. 
• SCAN PRIMARY. .* •• • STORE BLOCK * **.*K5 •• **"'**** 

*VALUE LISTS IN * * * 
*DICT STORE SUM-.-------->* EXIT * 
* MARY OF ALIAS * * * 
* INFO IN DICT * *************** 
.*** •• **** •• *.**. TO: 

.TRANSFER TABLE. * * * 
*FOR EACH ENTRY .---->* G3 * 
*OR VALUE LISTS • • • 
• TOGETHER * **** ••••••••••••••••• 

PHASE OE 

Extraction of Alias and Call Information (Phase OA) 

434 Licensed Material - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Func~ion I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOOE 
\lARO! 
OE 
SCAN! 

ARGR! 
CALLRl 

S'IHDl 
FLO~! 

BLOCK! 

SLAB! 
BRCH2 

ENDTXl 
CBl 

SETSUB 

BENSUB 

TLINK 
BLKSUB 
NPSUB 

XINIT 
XRFAB 
XDIREC 
XBREAK 
XNXROU'I 
XTXPG 
XRFSEQ 

CSECT 
R 
R 
R 

R 
R 

R 
R 
R 

R 
R 

R 
R 

R 

R 

R 
R 
R 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I 
I 
I 

R9 
R9 
R9 
RF 
R9 
R9 
R9 

Entry point to Phase OE. 
Scan variables dictionary for controlled variQbles. 
Initialize registers, storage, text scan, etc. 
Scan to the next relevant text table, and branch to th~ 
required processing routine. 
Process ARG text tables. 
Process CALL text tables. Extract branching and flowpa~h 
information and store in flow-unit header. 
Process a statement header table. 
Insert a flow-unit header into the text stream. 
Store variable usage information in a block op~imization 
dictionary entry when text scan reaches end of block. 
Extract statement label information. 
Extract branching and flowpath information, and store it 
in the flow-unit header. 
End of text-scan routine. 
Bit-vector manipulation routine, used to complete the 
block optimization entries in the general dic~ionary, and 
store information on variables used in on-uni~s. 
Extract information about variables set in current 
flow-unit. 
Extract information about variables used in curren~ 
flow-unit. 
Chain together two text tables. 
End-of-block routine. 
Routine to handle the case of a flow-unit which extends 
over more than one page. 

) 

) 
) 

) XROUT 
) 

) 

) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

IXSTG CSECT I RA Private storage for Phase OE. I L _________ i _________ i _________ i ___________________________________________________________ J 

Licensed Material - Property of IBM section 3: Program Organization 435 



IELOOE 
••••• A2.......... • •••• A3 •••••••••• 

•••• A1......... • BE3IN.. • 

E"TRY ** ________ >.·SS~QNUE. N~EIALT FITRESXrT.. ·GET NEXT INPUT • 
• *. TEXT TABLE • ~ _A - 1-----.·· rEXr TABLE ··.<------------------------------------------1 .... *.......... . . 

FROM: ................. . ............... . 
PHASE OA 

1<------
SCANl ••• FLOWl CHTAB 

32 •• • •••• 03.......... • •••• B4.......... • •••• B5 ••••••••• 
•• •• • 'OR' VARIABLE • • PUT OUT. • MOVE TABI.E TO • 

•• 15 IT A !lEW •• YES • USAGE STRINGS. • SKELErON. • OUTPUT STREAM • 
•• FLOW-UNIr 7 •• -------->. FOR OLD F.U. .-------->. FLOW-UNIT *-------->. AND CHAIN • 

•• •• • INTO STRING€ • • HEADER • A .TABLES TOGETHER. 
•• •• ·FOR CURRENT BLK·· • J. · .. .. ................. ................. . ............... . J '0 BLOCK' 1-------------------------;.---------

C2 •• • •••• C3 ••••••••• 
•••• • SrORE OLD • 

•• IS IT A NEW •• YES • BLOCK'S • 
•• BLO~K? •• -------->.INFORMATION IN • 

•• •• • DICTIONARY • .... . . 
*. ". • •••••••••••••••• 

I'O 
••• BRCH2 

D2 •• • •••• D3.......... • •••• D4 ••••••••• 
•••• • EXTRACT VAR. • • EXTRACT ANY • 

•• IS IT •• NO .OSAGE INFO FROI~. .BRANCHING INFO • 
•• ENO-OF-PR03 ••• -------->.TEXT TABLE AND .-------->.AND STORE IT IN • 

•• MARKER 7 •• • PUT IN LATEST. • LATEST F.U. • ...* • F.U. HEADER • •. HEADER • .. .. ................. . ............... . 
CB' i Y.' 

••••• E2.......... • •••• E3 •••••••••• 
• •• GET • 
• •• OPTIMIZATION • 
• LET N=l ·-------->·ENrRy FOR BLOCK.<--l 
• •• N • • •• • ••••••••••••••••• • ••••••• j •••••••• ; .:: : 

. . 
~---~--------------------- .... 

• ····F2·····.··.* 
.'OR' USAGE AND • 
• BRANCHIN3 INFO •• 
• INTO THIS ENTRY • 
• FOR ALL BLOCKS ,.. 
• CALLED FROM N • ................. 

1 ... 
G2 •• • •••• G3 •••••••••• 

•••• .'OR' IT'S USAGE • 
•• IS BLOCK N •• YES • INFORMATION • 

•• AN ON-UNIT 7 •• -------->. INTO ON-UNIT • ...... ...... I : .... ::::::: .... : 
1"0 I 

••• I 

H2·. 1 .. . . 
• • IS BLOCK N •• YES 

*. C~LLED FROM •• ----­
•• ON-UNIT 7 •• .. . . .. .. 

1<=---------------------... 
J2 *. ..**.J3* ••• * ••••• 

•• ARE ALL.. • • 
• • BLO~KS •• NO. • 

•• PROCESSED 7 •• -------->. LET N=N+l .---1 .. .. . . .... . . .. .. . ............... . 
1
. YES :.:;.: . . 

•••• 

·····K2·········· .... ((1......... . . 
• •• STORE ON-UNIT • 
• EXIT .<--------.STRINGS IN THE • 
• ... DICTIONARY • ............... . . 

ro: ••••••••••••••••• 
PHASE 01 

Chart 3.29. Extraction of Variable Usage Flowchart Information (Phase OE) 

436 Licensed Mat~rial - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------1 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

lELOOI 
01 
INSFCT 

BLVSUB 
GENFCT 
FCTOBC 
CALCLN 

CALCBD 
FLO DEN 
FLOODA 
BUS~EX 

LOODAT 

XINIT 
XRFSEQ 
XRFAB 
XTXPG 

CSECT 
R 
R 

R 
R 
R 
R 

R 
R 
R 
R 
R 

CSECT 
CSECT 
CSECT 
CSECT 

R9 
R9 
R9 
R9 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Entry point to Phase 01. 
I 
I 
I Initialize registers, storage, scan of text, etc. 

Scan through the text stream inserting provisional 
connectors. 

forward 

Extract value list information for a label variable. 
Generate a forward connector list. 
Generate a back connector list. 
Order flow-units and assign level numbers and some back 
dominators. 
Calculate back dominators for all flow-units. 
Establish loop entry pOints and back targets. 
Identify and order loops, and reorder flow-units. 
Generate busy-on-exit information for each flow-unit. 
Scan the text stream for a second time, modifying 
flow-unit headers, and collecting loop data information 
the general dictionary. 

) 

) XROUT 
) 

) 

inl 
I 
I 
I 
I 
I 
I 
I 

IXSTG CSECT RA I Private storage for Phase 01. I l _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM section 3: Program Organization 437 



IELOOI 01 • *. 
*****A2********** A3 *. 

**."'~1*****.*** * ,.. .* *. ****A4********* 
,.. * * INITI~LIZE * • * ANY MORE *. NO * * 
* ENTRY *-------->* SrORA3E AND *-------->*. BLOCKS IN • *-_______ >* EXIT * 
• * * ADDRESSES * II *.PROGRAM ?* .. .. 
•••••••••• ****. * .. *... *.**********.*. 

FROM: .**************** ••• * TO: 
PH~SE OE * YES PHASE OM 

Chart 3.30. 

,"SFer 1 
*****B3********** 
* * *INIT SC~N OF FU* 
*HEADERS AND FWD* 
* BRANCH INFO. * 
* * ***************** 

GE.Fer 1 
**.**C3********** 
• GENERATE * 
* FORWARD • 
• CONNEcrION • 
• TII.BLE * 
* * ••• *.** •• *.** ••• * 

Fero~ 1 
.* •• *D3 •• • •••• * •• • • • GENERII.TE BACK • 
• CONNEcrION • 
• TII.BLE • * • 

eA~~~""T""" 
·.···E3·*·* •• **.* • • * FOR EA.CH FU: • 
:~S~CFbE~~Lc~~if;J: 
* * .**.** •• * •• * •••• * 

CALC", j 
• ••• ·F3.*·**··.·· 

• * * CALcu~rE BACK * 
* DOMINATOR FOR • 
*EACH FLOW-UN'T * 
* * 

F~~~""T""" 
·**··G3···*·*·*** 
* LOCArE LOOP * 
*ENTRY UNITS AND • 
• IDENrIFY LOOPS • 
• AND BII.CK • 
• TARGETS • 
* ••••• *.**.****** 

FWOO> 1 
***·*H3**.·*·*.** 

• * * PUT EII.CH UNIT * * IN A LOOP * 
• * • * ******.*****.* ••• 

SaSYEA 1 
·····J3.·******** 
* * *CII.LC. VII.RIII.BLES* 
* BUSY-ON-EXIT * 
• FROM E~CH FU • 

• * 

wo~~~'"'T''''''' 
**··*K3··· ••••••• 

• * • FINII.L SCAN OF • 
---:Mo5~F~E~~f~~~s : · . ••• * ••••••••••••• 

Flow Analysis Phase (Phase 01> 

438 Licensed Material - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------1 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 
I I I I 1 
IIELOOM I CSECT I I Entry pOint to Phase OM. I 
10M I R I 1 Initialize registers, storage, text scan etc. 1 
ICOMEXE I R I I Scan through the text stream, elimina~ing common I 
1 I 1 I expressions and performing other optimization. 1 
IBAKMOV I R I Back movement of invariant-expressions routine. 1 
ISTREDU I R I Strength reduction routine. I 
ICLENBT I R Tidies up back targets. I 
ISBSOOO I R Collect special casing necessary for dependent subscript I 
I I lists. I 
IGENTEM I S Generate a new temporary operand. 1 
IHASHSB S Process hash operands in a text table. 1 
ISEMGT S Maintain a list of movable global temporary operands. 1 
ITEMGT R Test whether a global temporary operand is in the list 1 

I created by SEMGT. I 
ISINERT R Process special PLUS tables for strength reduc~ion. I 
IDEFALT R Calculate default scale and precision for ~he resul~ of ani 

DELSUB 
REPSUB 
INSUBl 
INSUB2 
FSMOOO 

XINIT 
XRFAB 
XNXROUTl 
XNXROUT2 
X'IXPG 
XNSRT 
XTUNL 

S 
S 
S 
S 
CSECT 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

R9 
R9 
R9 
R9 
R9 
R9 
R9 

expression. I 
Delete a table from the text stream. 1 
Replace a temporary operand in text. I 
Insert a table into the text stream. 1 
Process independent subscript lists. I 

) 
) 

) 

) XROUT 
) 

) 
) 

I 
1 
1 
I 
1 
I 
I 
I 
I 
I 

IXSTG CSECT RA Private storage for Phase OM. I L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM Section 3: Program Organiza~ion 439 



IELOOK 

FROM: 

•••• Al········· • • 
• E~TRY • · . ••••••••••••••• 

PHASE 01 

1 OM 
• ····B1 •••••••••• · . • INITIALIZE • 
• STJRAGE AND • 
• ADDRESSES • • • 

•••• • • 
• B4 .--t · . .... ... . .. 

B4 •• BS •• 
•• TABLE •• •••• 

• • FOR •• NO • • SPECIAL •• NO 
•• STRENGTH •• --------> •. (INERT) TABLE •• ---

•• REDUCTION. • ..?. 
•• ? •• •••• .. .. . ... 

• YES • YES 

C""J 1 CB"'8 1 ••••• C4.......... • •••• cs •••••••••• 

m:::·····r······· 
..... :1.......... . .... C2 ......... . · .. . . ... · .. .. . 
• GET tU:XT LOOP .<--------. CLEAR FLA3 .<----. C2 • · .. .. . • •• • • ••• ·······T······· ................ . 

... 
01 •• 

•••• ····D2········· 
•• •• NO· • 

•• MORE LOOPS 1 •• -------->. EXIT • .. .. . . .... . ............. . 
•• •• TO: 

• •• • .PUT IN SPECIAL • • MARE NOTE OF • 
• HASH CHAIN. • TABLE • · .. . • •• • ••••••••••••••••• • •••••••••••••••• 

c..... 1<---------­
• •••• DS •••• • ••••• • • • HASH OPERATOR • <----------------. AND OPERANDS • • • • • • •••••••••••••••• 

I 
YES PHASE KK. 

CO~EXE CEE467 ••• 
••••• E1.......... • •••• E3.......... E4 •• 
• GET FIRST FLO • • INSERT TABLES • • • •• 
: g~~ T L~~P Lg~~A : _____________________________ :I~NEAif ~~BG~i : .: ••• MviHt~ .•• : .~~ _____________ I 
• ENTRY FROM • • LOOP • 
• DICTIONARY • •••• •• 

;:~;:;:r"'''' ........ r:..... 'r~ 
:EE100 Fl···.. STRf~~ •• F2.......... F3' '.. BAK~~~ •• F4.......... CEE~22 •• FS •••••••••• 

• * IS •• .GET NEXT TABLE. •••• .COMBAT • • SEARCH FOR • 
•• STRENGrH •• YES .IN FLOW UNIT ON. •• •• .-.-.-.-.-.-.-.-. .MATCH IN UNITS. 

•• REDUCrI::>N •• -------->. SPECIAL HASH .--------> •. END OF UNIT 1.. .LOOK FOR MATCH. • UP TO LOOP • 
•• FLAG SEr •• • CHAIN. •• •• .IN BACK TARGET. • ENTRY • *. ? •• • • •••• • OF LOOP.. • 

:,::' ::~1' ~~:--------------::::::::l········· · ti~::' : ····· .. ·1········· ········1········· 
•••• NO •••• 

:EE200 • • 3AM100 ••• • •• 
••••• 31.......... G2 •• • •••• G3.......... G4 •• r.S •• 
• • ••• • .. MOVE TABLE TO .. • • • • • • •• 

~ GET ~~K~HiABLE : __ >.: ~p~~Mr~:~fE ;: .~::~1 ! B~t~ i~I"~~~ii :<------~~. : ~~ATCH FOUNI: ;:. .: :mTCH FOUND ;: .~~-
• FLOW-UNIT • •• •• • CHAIN IN BACK. •• •• •• •• 
• • • • •• • TAR3ET· ••• • ••• • ................. . . ................. .. .. . .. . 

1 
'.' (::) L>:*::·! 1· YES 1· YES .... 

••• BAM300 CEE600 
ill.. • •••• H4.......... • •••• 8S •••••••••• . * •• • •• • 

•• •• NO • PREPARE TO. • PREPARE TO • 

.. ~~~.:~ ~:~:.i··-~--- 1 •• ::::::.:::: •• ~ I-----~ .. ::::::.:::: .. ~ 
::::::->1 YES .::::. CEE900 1<---------- CEEBAI< r-----------

:EE050 ••• CEE:~:l :<-1 v :11 .. . .... J2. •••••••• • •••• J4.......... • •••• Js ...•••.••• .... .. .... 
•• •• NO • GET NEXT UNIT. •• • PUT TABLE IN • 

•• END OF LOOP •• -------->. IN LOOP • • MODIFY TEXT • .ITS HASH CHAIN. .. .. .. .... .... . . .... . .. . .. .. ................. .. ................. . ............... . 
1
· YES • .... • : .~:. : L • •••• · l • •••• • 

•• F1 •• <-1 ~ >. G1 • ->. G1 • 

1 •• • • •••• •••• • ••• CEE070 ••• CLENBT 
Kl •• • •••• K2. •••••••• • •••• K3 ••••••••• 

•••• • • .ATTEMPT FURTHER • 
•• IS SrRENGTH •• NO • SET FLAG.. • STRENGTH • 

•• REDUCTION •• -------->. PREPARE TO. • REDUCTION ON • 
•• FLAG SET?. .RgSCAN THE LOOP. .TABLES MOVED TO. 

• • • • • •• BACK TARGET • .. .. ................. . ............... . 
• YES ~ l __________ p _____________________________________ J 

Chart 3.31. Text Optimization Phase (Phase OM) 

440 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

Built-in Function Processi~JEha~!lU 

i i 
Name Type I Base I 

Iregistersl 

IELOKK CSECT R6,R7 
R8,R9, 
RS 

KK1 R 
BIFSCN R 

BIFFND R 
CEILRTN R 
CONVRT R 
MAXRTN R 
MODRTN R 
ABSRTN R 
RNDRTN R 
SGNRTN R 
TRCRTN R 
SPADIM E 
ARYBDS S 
SPAART R 

MATH R 

GNRCRT R 
POLYRT R 
EMPTRT R 
NULLRT R 
ADDRTN R 
FCBRTN R 
CNJGRT R 
REALRT R 
IMAGRT R 
CPLXRT R 
STATRT R 
CMPLRT R 
TIMERT R 
ONCDRT R 
ONLCRT R 
CONDRT R 
POWERT R 

CRBN1 S 
BIFEND S 
ALSTGN S 
ARGGEN S 
CALLGN S 
REFSAV S 
SETBAS S 
SETFL E 
SETEPT S 
DEDCRE S 
FLCONV S 
FLCTRG E 

I 

Function I 
t 
I 
I 
I 

Entry point to Phase KK. I 
I 
I 

Initialize registers, storage, and text scan. I 
Scan to the next text table. If NDX, OFFS, or PTSAT I 
table, then carry out QT processing on IOPND3 and continue 
the scan. If BIF, PSV, or PSV2 table, then branch to 
BIFFND. If POWER or ARG table, then branch to relevant 
routine. Otherwise continue the scan or exit to the next 
phase. 
Identify the Bif and branch to its processing routine: 
Process CEIL. 
Process BINARY,DECIMAL,FIXED,FLOAT,PRECISION. 
Process MAX,MIN~ 
Process MOD. 
Process ABS. 
Process ROUND. 
Process SIGN. 
Process TRUNC. 
Entry point to ARYBDS from SUM,PROD,ALL, or ANY. 
Process HBOUND,LBOUND, and DIM. 
Process SUM, PROD, ALL, ANY. Call SPADIM if Bif to be 
evaluated inline. 
Generate library calling sequence for a mathematical 
function. 
Process Bif argument in an ARG table. 
Process POLY. 
Process EMPTY. 
Process NULL. 
Process ADDR. 
Process LINEND,COUNT. 
Process CONJG. 
Process REAL. 
Process IMAG. 
Process COMPLEX. 
Process STATUS. 
Process COMPLETION. 
Process TIME,DATE. 
Process ONCODE. 
Process ONLOC. 
Process DATAFIELD,ONFILE,ONKEY,ONSOURCE,ONCHAR,bNCOUNT. 
Process exponentiation. 

Create a 'nearly l' binary constant. 
Clear up after a Bif has been processed, and return. 
Generate an ALIST text table. 
Generate an ARG text table. 
Generate a CALL text table. 
convert a text table address into a text reference. 
Determine the arithmetic type of an operand, and set bits. 
Entry point to SETBAS for an operand known to be FLOAT. 
Calculate the value of EPTNDX. 
Create a DED for a 6-byte reference. 
Compare two float arguments and convert if necessary. 
Introduce an intermediate result temporary if the target 
is not of the correct type. 

Continued on next page 

Licensed Material - Property of IBM section 3: Program Organization 441 



ASNINT 

PLISTG 
PLISTA 
RDNEXT 
RAHDST 

RAHFIN 

STKTBL 

WRTTBL 
GENTXT 
TMPSET 
CNSSET 

QTSET 
CRE10 
CLRFRC 

CONPREC 
NEWTRT 
QTFIND 
QTSQZE 
QTDTX 

LIBSET 

XINIT 
XRFSEQ 
XRFAB 
XNEXT 
XTXPG 
XNSRT 
XTUNL 

XSTG 

S 

S 
E 
S 
S 

S 

S 

S 
S 
S 
S 

S 
S 
S 

S 
S 
S 
S 
S 

S 
T 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

CSECT 

R9 
R9 
R9 
R9 
R9 
R9 
R9 

RA 

Generate text to assign an intermediate result temp. to at 
target. 
Generate an ALIST table and ARG tables corresponding to 
6-byte references in OPNDT3. 
Scan to the next input text table. 
Access the next input text table, locking in the current 
table. 
Reset the scan pointer on completion of a 'read ahead' 
operation. 
Stack current input table for use by the WRTTBL 
subroutine. 
Access the next table to be output. 
Generate a text table and write it into the text stream. 
Process a 6-byte operand contained in the TEMPTB table~ 
Create CONSTB and general dictionary entries for a 
constant. 
Create a TEMPTB entry. 
Set up a decimal constant 10**N. 
Set up constants and QTs to clear the fraction part of a 
FIXED DEC variable. 
Determine the storage requirements for a binary constant~ 
Create new Temp number and move it into the TEMPTB entry. 
Access the QTTBL entry for a given QT. 
Access the QTTBL entry for a given QT, and remove it. 
Remove from QTTBL any entries corresponding to dead QT 
operands in a given text table. 
Set a library module inclusion bit in XLIBSTR. 
Tables, transfer vectors, etc. for the phase. 
) 
) 
) 
) XROUT 
) 
) 
) 

Private storage for Phase KK. 

442 Licensed Material - Property of IBM 



IELOKK 

."'**131·*"' •• "'.*'" 
* '" '" ENTRf * 
* * 

:~::~:::;:"'l""'" 
*·"'**::1***·"''''**'''* 
* * * S::AN TEXT FOR * 
: 'r~~X~E~rBnF :<--1 <------------------------

* * *"'* •••• ********** 

I :*::*: 
* * •• ** 

. *. 
D1 * • 

• *.. ****D2********* 
•• ARE THERE *. NO * • 

•• ANf MORE BIF .*-------->* EXIT * 
*. TABLES? .* * * 

*. • * ***********.*** * .. * TO: 

i YES '1:S~'~1 

*· •• *E1* •••• ***** 
* liSE SECJND * 
'" OPERATOR BfTE * 
*JF TABLE (IJP2)* 
*TO INDEX BRANCH* 
* VEC'TJR * 
***** ••• * ••• ***.* 

"".0 1 ** •• *Fl·**.***.** 
• SELECT THE * 
* PROCESSING • 
* ROUTINE *----------------------------
: RE~g1~EgI~OR : 
** •• *"'*.**.****** ~;~;;;;:;~::::::::---------------------jl 

(PRClDUCES IN-LINE 
TEXT) ---- --------------

. *. 

TYPICAL BlF 
PROCESSING ROUTINE 
(PRODUCES LIBRARY 
CALL) 

*.***G3******.... G4 •• .* ••• G5***.****** 
'" * .* *. * CONSTRUCT * 
*SAVE ARGUMENTS * • * BRANCH TO *. * LIBRARY * 
• AND TARGET IN *<--------*. REQUIRED • *-------->. ARGUMENTS liND * 
* OPERAND TABLE * *. ROUTINE. * *MOVE THEM INTO. 
• * ••• * * OPERAND TABLE • 

········1········ ..... ········1········ 

***.*H3**.*** ••• * ** ••• H5 •••• ****.* 

:c~~~n~~5I~~~D : : C~~tI~~gF~~ : 
*TEMPS, AND MOVE* • GENERATE • 
* THEM INTO THE. • LIBRARY * 
• TEMP TABLE • * ARGUMENT LIST * ········1········ ········1········ 
*****J3***.****** ***.*J5**.******. 
:cgg~§~~~¥sR~~g : * **** * !T~~~ ¥KB~~A~~~ : 

:Mg~~ Eg~~Tf~~~ : ! C1 :<----! ~~~~A~~ ~~~~Y : 
* TABLE * **** * POINT * 
········1········ ................ . 

*****K3********** 
• INVOKE TABLE- * 
*DRIVEN ROUTINE * 

-----* 'GENTXT' TO * 
* GENERATE REQD * * TEXT SEQUENCE * 
*.*.******.**.*.* 

Chart 3.32. Built-in Function Processing Phase (Phase KK) 

Licensed Material - Property of IBM section 3: Program Organization 443 



r---------T---------T---------T--------~--------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOOC 
OCl 
SCANEXT 
SCANTEST 

SCANBIFS 

BOOLO 
TRANSLO 
SCANCOM 
SCANCAT 
SCANASSN 

HASH LAB 
SCANNDX 
SCANPTS 
SCANLAB 
SCANSNO 
OCPIC 
SCANASSO 
GENVDA 
GENVDAl 

GENVDA2 

GENVDA3 

ASSNSXOO 

ASSNOPO 

BSSNSXPO 

QTENT 

QTFIND 
OLAPQ 
GENLIB 
CONCATO 
GETOPND 
SAVEREFl 

CLEARSTK 
CURLEN 
MAXLEN 

SCANNED 
SAVESORl 

SAVEATRl 

CSECT 
R 
R 
S 

S 

S 
S 
S 
S 
S 

S 
S 
S 
S 
S 
R 
S 
S 
E 

E 

E 

R 

R 

R 

S 

S 
R 
S 
S 
S 
S 

S 
S 
R 

S 
R 

R 

R6,R7 

I 
J 

Entry point to root module, OC1, of Phase ~C. 
Initialize registers, storage, etc. 
Scan text table in input text stream. 
Check type of text table and branch to appropriate 
processing rouLine. 
BIF text table found. Check type of BIF and branch 
accordingly. 
Branch to routine BOOLF in module OC2. 
Branch to routine TRANSLF in module OC2. 
Branch to routine SCANCOMP in module OC2. 
CONCAT text table found. Branch to routine CONCATO. 
ASSN or CONV text table found. Branch to rouLine 
SCANASSO. 
HASH text table found. Get next input texL page. 
NDX or OFFS text table found. Branch to subroutine QTENT. 
PTSAT text table found. Branch to subroutine QTENT. 
SL text table found. Save block level. 
SN text table found. 
Process PICTURE assignments and conversions. 
Process ASSN or CONV text table. 
contains three entry points, as follows: 
Generate a GETVDA table using the length of the variable 
in the source. 
Generate a GETVDA table, together with LOAD and COMPARE 
tables, to get a VDA for the shorter of the maximum length 
of the source and the current length of the target, and 
assign the source string to the temporary after obLaining 
it. 
As for GENVDA2, except that no assignment is generated, 
and the current length of the target, not the maximum, is 
used in the comparison for the length of the VDA to be 
obtained. 
Padding routine. Generate OFFSET and MOVE tables for 
padding CHAR or BIT strings of up to 1536 bytes. 
Generate tables for padding spare bits in a fixed-length 
bit-string target. 
Entered when there is less than 8 bytes of padding in a 
fixed-length bit-string. Generate different Lypes of MOVE 
tables, depending the number of padding bytes needed. 
Allocate a new sFace in the list of Q-temps. for a new 
entry, and test for overflow of the stack. 
Search the qualified temporary list for a given temporary. 
Test to see if two operands may overlap. 
Generate library calling sequence tables. 
Process CONCAT text tables. 
Get the next operand in a CON CAr text table. 
Save the reference to an operand which contains a 
temporary created by the CONCATO routine. 
Remove a temporary from the stack. 
Set up the current length of a string in operand 1. 
Set up IOPND2 with the maximum length of a Lixed or 
adjustable string. 
End-of-program routine. 
Used by routine SCANASSO to save the location of the last 
table containing the source. 
Used by routine SCANASSO to save the location of the last 
table containing the target. 

Continued on next page 

444 Licensed Material - Property of IBM 



I 
IOC2 CSECT 
IOClSR S 
I EXOP R 
ICLRBIT R 
j 
BOOLF S 
TRANSLF S 
rR29 S 
SCANCOMP S 

GENBC S 

ALOL S 

FILL S 

ZTRANl T 
XNXROUT CSECT 
X~XPG CSECT 
XRFAB CSECT 
XNSRT CSECT 
XRFSEQ CSECT 
XDIREC CSECT 
XLINK CSECT 
XMESGR CSECT 

R6,R9 
I 

Entry pOint to non-root module, OC2. I 
Call subroutines contained in the root module, OCl. I 
Exchange operands. I 
Generate MOVE(OD) text tables to clear the odd bits in the 
top part of a byte used in string operation. 
Process BOOL BIF text table. 
Process TRANSLATE BIF text table. 
Create library routine call. 
Determine the type of the result of a comparison 
operation, and act accordingly. 
Generate a BC text table using the original first and 
second operands from a COMP text table. 
Scan the three operands of a string operation and set a 
switch according to the types of operands. 
Generate MOVE(05) or MOVE(06) text tables to fill string 
operands. 
Internal code-to-EBCDIC translation. 
) 
) 

) 

) XROUT 
) 
) 

) 
) 

IXSTG CSECT RA Private storage for Phase ~C. L _________ ~ _________ ~ _________ ~ __________________________________________________________ _ 

Licensed Material - Property of IBM Section 3: Program Organ~za~ion 445 



IELOOC 

... ***1\1 ....... ·*.·** .. . 
* E~TRY • 
.. * ***** ••• * •• * ••• 

fROM: 1 PHA.5E KK 

SCI\:-lEXr 
• •• ·*B1*.***.·*"'· ... . 
* GET NEXT TEXT * 

'[:::~:::::'::l*:::::*~<----------------A-----------~---------------------------------------A

1
-------------------------

* B1 * 
* **** '" I < ________ ~_ 

& NO YES 
SCI\NTESr .*. SCI\NCI\T .*. SCANASSN • • SCANBIFS •• 

~1 *. C3 *. C4 *. CS. • • 
. * *. .* *. .*IS THIS*. .* * • 

. * ~:)NCI\T- *. YES •• IS TARGET •• YES •• A •• ..NON-STRING •• 
•• ENl\rION? .• ---------------- ---------------> •• BIT STRING? .*--- 1-->.' ASSIGNMENT.· r-->·· BIF? •• 

*. .* *. •• *. •• •• .* *. .• •. .• •..• •..• 
* .. * * .. * * .. * * .. * 

·1 NO 1* NO : ::.: I· YES : ::.: I· NO .... . ... 
. *. . *. .*. 

01 *. *****03***.***.** D4 *. DS * . 
. * *. **** *PRODUCE IN-LINE* •• IS •• .* •• • * •. YES * * • CODE FOR. NO .* SOURCE OR *. NO •• * • 

•. I\SSI3N~ENT? .• ---->. C4 * <----------------. CHARACTER'" ---.. TARGET •• ---•• BOOL BIF •• 
•. .• • * * CONCATENATION * •• UNALIGNED.. •• •• 
*..* **** *. ..BIT? •• ...* 

*. .• ** ••••• * ••••• *.... .• * •••• 

. i." .~:---------- .1.'" BOOLF I YES 

E1 *. E3 *. E4.. • •••• ES •••• * ••••• 
. * •. ...**. .• IS *. .• ANY.. • • 

• * *. I'ES. * NO .• TAR3El' OR •• • ... OPERAND •• YES • PROCESS BOOL • 
*. BIF? .• ---->. C 5 * ---.. ANY OPRND • .. •• MAPPED •• ---1 • BUILT- IN .---

•. • * *. •• UNALIGNED.. •• UNALIGNED.. • FUNCTION • A •..• •••• *. ? •• *. ? •• • • •• . * •• •• •• •• • •••••••••••••••• 

[

* NO [. YES ---------->1. NO :*::.: .... -----------~ 
F1·"·.. • •••• F2. ........ F3·*·.. OLAPQ F4···.. FS··· •. 

.••• * PRODUCE ASSN • .* ANY *. •• *. ••• • 
• *~:)~PARIS:)N *. YES .I\NO BC TABLES. * NO.. OPERAND *. .*MAY SOURCE •• NO •• TRANSLATE •• NO 

*. OPERArOR .*-------->* FURTHER PRO-· <--.. MAPPED.· *. AND TARGET '.---1 ., BIF? ,.---*. .* .~ESSING DONE ay* •. UNALIGNED.. ..OVERLAP? .* •• •• A 
*..* ... 1\ LATER PElASE * *. ? .* "'..* ...* 

* .. * ***************** * .. * * .• * * •. * 

.
1. NO (:~: : j. YES 1· YES :~:~: 1· YES 

~ SCI\NL03 TRANSLF 
31 •• ..***G2* ....... *... • •••• G3 •• *.* •• *** ••• *.G4 •••••• ***. * •••• GS ••••• **.** 

.*.. • • .PRODUCE LIBRARY"'. •• PROCESS • 
• • •• YES • PROCESS THE • * CALLIN3" * MAKE THE. * TRANSLATE • 

*.NOT, AND, OR?*-------->* OPERi\TOR *---1<----* SEQUENCE FOR * ·ASSIGNMENT VIA * * BUILT-IN *---
*. .* '" *. BIT STRING '" * WORKSPACE '" • FUNCTION * 

"'. . * ... .... CONCATENATION .... ... * * 
*. •• **.******.**.*.** ****.************ •••••••• ** •••••• * ••••••••••• * ••••• 

r 
• *. SCI\NNDX 

••• * • • 
• 61 • 

• * *.** 

H1 *. .* •• *H2* ••• ** ••• * . * •. • • 
• • OFFSEr •• YES * MAKE Q·T LIST * 

•. PTS,NOK~ .• -------->. ENTRY *---1 
*. .* * * 

*. . * * * * .... *' ***************** 

[

* ~o :.::*: 
* • * ••• 

• *. SCI\NSNO 
31 •. ..*.*32 ••••• ** ••• 

..*. * • 
• H3 .--1 • • .... 
·····H3 ••• ·.*· .. · .PRODUCE INLINE * 
• CODE FOR BIT • 
• STRING • 
• CONCATENATION • 
* * ******** *. * •••••• 

l ***. ... .. 
->* B1 • . .. 

•••• 
. * *. • * •• ** 

• '" *. ~ES * SAVl!: BLOCK * * • 
•• SL, SN? .*-------->.L~V~L AND CLEAR.---->. B1 • 

'" . • • • QT LIST * • * *. . * ... * •••• *. .• • ••••••••• * •• * •• * 

r 
. *. SCANNED 

K1 •. . * *. ·**.K2 ••• • ••••• 

• ••• "'J4 •••••••••• 
* PRODUCE A. • ••• 
.LIBRARY CALLING. • • 

1
---. SEQUENCE FOR .<----. J4 • 

*BIT ASSIGNMENT • • • • • • ••• ••• * ••••••••••••• ...... 
• • • B1 • 
* * .... 

NO . * END OF •. YES * * 
·····K4 •• * ••••••• · . .PRODUCE INLINE • 

r
---.. PR03RI\~? .• -------->* EXIT * 

*. .• * * "'. .• • •••••• *** ••••• * .. * TO: ..... PHASE OX 
* * OR KX ... 61 • 
• * * ••• 

• STRING ... 
.ASSIGNMENT CODE. 
• • ••••••••••• ** •••• 

1 •••• • • 
~>. B1 • • • **** 

Chart 3.33. String Handling Operations - Par~ 1 (Phase OC> 

446 Licensed Material - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
t---------+---------+---------+-----------------------------------------------------------~ 

IELOOX 
OXl 
SCANEXT 
SCANTEST 

SCANBIFS 

REPEATOO 
LENGTHO 
VERIFYO 
HIGHO 
LOWO 
SCAN MOVE 
SCANNED 
SCANNEDO 

STRNGFO 
SCANCOMP 

GENCAS 

S'IRNGFOO 
REPEATF 
OCSUB 

GTSTART 
ALOL 

HIGHLOW 
OGOTO 
GETVDA 
H1S 
VRFNCT 
FILL 

HASHLAB 
SCANNDX 

SCANPTS 
SCAN LAB 
SCANSNO 
QTENT 

QTFIND 
LENBIF 
OXNSRT 
SCANQT 

OLAPQ 

CLBITS 

INDEXOO 

CSECT 
R 
R 
R 

R 

R 
R 
R 
R 
R 
R 
R 
R 

R 
R 

R 

R 
R 
R 

T 
S 

R 
R 
R 
S 
R 
S 

R 
R 

R 
R 
R 
S 

S 
S 
S 
R 

R 

S 

R 

R6 

I 
I 
I 
I 
I 
I 

Entry point to root module, OXi, of Phase ox. 
Initialize registers, storage, etc. 
Scan text table in input text stream. 
Check type of text table and branch to appropriate 
processing routine. 
BIF text table found. Check type of BIF and branch 
accordingly. 
Branch to routine REPEATF. 
Branch to subroutine LENBIF. 
Branch to routine VRFNCT. 
Branch to routine HIGHLOW. 
Branch to routine HIGHLOW. 
Branch to subroutine GENCONS. 
Exit from phase when end-of-program marker encountered. 
Test for compiler-generated subrou~ines. Branch to 
routine OCSUB. 
Branch to routine STRNGFOO. 
Determine the type of the result of a compari50n 
operation, and act accordingly. 
Generate assignments from constants to variables for the 
comparison of labels, files, and entries. 
Process STRING BIF text table. 
Process REPEAT BIF text table. 
Insert the code in GEN text tables for compiler-generated 
subroutines. 
Subroutine genEration table. 
Scan the three operands of a 
byte switch according to the 
Process HIGH BIF and LOW BIF 
Generate GOTO 05 text tables 
Generate GETVDA text tables. 
Process CONV text tables. 

string operation and set a 
types of operands. 
text tables. 
for LTR instructions. 

Process VERIFY BIF text tables. 
Generate MOVE 05 or MOVE 06 text tables to fill string 
operands, depending upon the length of the operand in 
• target' • 
HASH text table found. Get next input text page. 
NDX or OFFSET text table found. Branch to subroutine 
QTENT. 
PTSAT text table found. Branch to subroutine QTENT. 
SL text table found. Save block level. 
SN text table found. 
Allocate a new space in the list of Q-temps. for a new 
entry, and test for overflow of the stack. 
Search the Q-temp. list for a given temporary. 
Process LENGTH BIF text table. 
Clear Q-temps. which have been processed. 
Scan text tables for dead Q-temps. and remove them from 
the Q-temp. list when found. 
Test to see if two operands may overlap. The result of 
the test is returned in the condition code setting. 
Generate an OFFSET text table followed by a MOVE 00 table 
to clear the top bits of an aligned bit string prior to a 
comparison. 
Process INDEX BIF text table. 

continued on next page 

Licensed Material - Property of IBM Section 3: Program Organization 447 



GENCONS 

OC1NSRT 
GENLIB 
TRTAB 
ZTRANl 

IELOOX 
OX2 
CPOOl 

rMPSTl 

TABAD 

S 

S 
S 
T 
~ 

CSECT R6. 
R 
R 

R 

T 

Examine all string operation text ~ables for cases of 
adjustable temporary strings. If such a striilg is found, 
a KONST table is generated in front of the string 
operation table. 
Obtain the nex~ text table from the infut s~reaffi. 
Generate library calling sequence tables. 

In~ernal code to EBCDIC translation. 

Entry pOint to non-root module, OX2. 
Initialization routine. 
Test if text table is of interesting type. For SINIT and 
IASSN tables of complex variables, res can ~he sta~ement to 
find the actual initial values. 
Set up 6-byte operand for temporary operand. Temforary is 
created as REAL and LOCAL. If COMPLEX is required, change 
data type and code on re~urn. 
Table of addresses of text table s€quences. 

IXMESGR CSECT ) 
IXTXPG CSECT ) 
IXNXROOT2 CSECT ) 
IXNXROOTl CSECT ) 
IXRFSEQ CSECT ) XROUT 
IXDIREC CSECT ) 
IXINIT CSECT ) 
IXRFAB CSECT ) 
IXLINK CSECT ) 
IXSTG CSECT RA Private storage for Phase ox. L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

448 Licensed Material - Property of IBM 



IELOOX SC6 

·····A2· •• ••••••• .... ~1......... . . 
• •• SCAN TO NEXT • 

~U~~E: ENTaf: ~ •• ::::.::::: ••• ~<--l<----------------------------------------------------------------------------

OR oc ::·····1········ 1 (:: : 
•••• 

SC~NNED ••• SCANNEDO ••• OCSUB 
••••• Bl.......... B2 •• B3 •• • •••• B4 •••••••••• 
• • •••• •• ANY.. • • • ••• BS ••••••••• 
• INITIALIZE TEXT. •• •• YES •• COMPILER •• YES • GENERATE.. • 
• SCAN .--------> •. END OF TEXT 1 •• --------> •. SUBROUTINES 1 •• -------->. COMPILER .-------->. EXIT • 
• • •• •• •• •• • SUBROUTINES • A. • · · .... .... · · I .............. . ••••••••••••••••• •• •• •• •• ••••••••••••••••• TO I .0 i_~________________________________ PHASE .. 

SCANTEST ••• SCANBIFS ••• INDEXOO ••• 
C2 •• C3 •• C4 •• • •••• CS •••••••••• 

•••• •••• ..2ND ARG.. • • 
NO •• •• fES • • •• YES •• FIXED <256.. YES .GENERATE INDEX • 

1

-----------------.. BIF 1 •• -------->.. INDEX 1 .·-------->·.IF VARiING 1 •• -------->. OPERATIONS .---•• •• •• •• •• •• • • A .... .... .... . . .. .. .. .. .. .. . ............... . 
:·:~·:<-·l 1· NO ~:~.::.: 
•••• • ••• ••• ••• VRFNCT ••• 

01 •• • •••• 02. •••••••• 03 •• D4 •• • •••• 05 •••••••••• .... . . .... .... . . 
•• •• fES • GENERATE. •• •• YES •• 2ND ARG •• YES .GENERATE VERIFY • 

•• STRING PSV 1 .• -------->.IN-LINE CODE OR. •• VERIFY 1 •• --------> •• CONSTANT OR •• -------->. OPERATIONS ._--
•• •• • LIBRARY CALL • •• •• •• FIXED 1 •• • • A .. .. . . .... .... . . .. .. ................. .. .. .. .. . ............... . 

1
· NO :·:~·:<-l 1· NO l-:i·;:·: 

•••• NO •••• 
El···.. E2· '.. E3···.. STRINGFO~4···.. • •••• E5 •••••••••• 

•••• •••• •••• .·STRUC. •• • • 
•• •• YES •• STRIN:; •• •• •• YES •• CONTAINS •• NO • GENERATE LOAD. 

• • BCtBCB? •• -------->.. OPERANDS 1 •• •• STRING 1 •• --------> •• VAR OR ALGND •• -------->. ADDRESS TABLE .---
• • • • • • • • •• • • • • STRINGS 1.. • • A .. .. .... .... .... . . .. .. .. .. .. .. .. .. . ............... . 

i NO i YES • NO :.;:.:->1· YES 

!! .... ... . .. 
Fl.. F2 •• • •••• F4 •••••••••• 

•• ::::AN •• •• BOTf{ •• •• 
NO •• TEXT TABLE •• NO •• OPERANDS • • • GENERATE • 

r
---·· HAVE CO~PLEX •• ---•• NON-VARYING •• • LIBRARY CALL ·---1 •• OPERANDS •• •• FIXED 1 •• •• 

•• 1 •• •••• • '" .. .. .. .. . ............... . 
:.::.: 1· fES 1· YES Aj :.::.: 

• • • • .... 
YES 

••• ••• REPEATF •• 
31 •• • •••• G2.......... G3 .. G4 •• • •••• GS •••••••••• 

•••• • • •••• •• STRUC •• • • 
NO •• ARE ANY •• • GENERATE. •• •• YES •• CONTAINS •• NO • GENERATE MOVE • 

r
---·· OPERA~OS.· • IN-LINE CODE ·---1 •. REPEAT? •• --------> •. VAR OR ADJ •• -------->. TABLES .---•• COM£'LEK 1.. • TABLES. •• •• 4o. STRING ? •• • • II .... . . .... .... . . 

4o. •• ••••••••••••••••• •• •• •• •• • •••••••••••••••• 

:.::.: 1. YES :.::.: 1· NO • . . . . 
•••• • ••• 

••• LENBIF ..... H1.......... . .... H2.......... H3 •• • •••• 85 •••••••••• 
• EXPAND TEXT 4o. • •••• •• 
• ITE~ TO REAL • • GENERATE. •• •• YES • GENERATE ASSN. 
• ~ND IMAGINARY. -->. COMPILER. •• LEN:;TH? •• ---------------------------------->. TABLES .---
'" PART '" .SUBROUTINE CALL. •• •• •• A '" "'. '" .... .. ................. ................. .. .. . ............... . 

l .... l .... 1· NO ->: A2 : ->! A2 ! • * • • •••• • ••• ••• 8IGBLOW 
J3 *. • •••• J4.......... • •••• JS •••••••••• .... . .. . 

•• •• YES .FILL PAD FIELD. • GENERATE ASSN. 
•• HIGH •• -------->. (FILLC) WITH .-------->. TABLES .---

•• •• • X'FF' • A. • ...* • •• • .. .. ................. . ............... . 
1

00 

... 
K3 *. *.* •• K4 •••••••••• .... . . 

•• •• YES .FILL PAD FIELD • 
•• LOW •• -------->. (FILLC) WITH .-----*. .* • X'OO' • .... . . .. .. . ............... . 

• NO 

l * ••• • • ->* A2 • • • •••• 
Chart 3.34. String Handling Operations - ParL 2 (Phase OX) 

Licensed Material - Property of IBM Section 3: Program Organization 449 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------t-----------------------------------------------------------~ 

IELOKX 
KXA 
SCAN 

ASSIGN 
SUBTRACT 
ADDITION 
MULTIPLY 
DIVISION 
GOTOLAB 
DINCLAB 
SUBSLAB 
FUHLAB 
STAT HEAD 
HASLAB 
TERMINAT 
SETFLTP 
CONVZBOT 

CONVDBOT 

CONVFBOT 

CONVBXOT 

CONVBDOT 

CONVBFOT 

CONVCBOT 

CONVBCOT 

CBAOTS 
CABOTS 
CCAOTS 
CACOTS 
CONVEX 
TXTINl 
TXTIN2 
STPATT 
OFFSHOVl 

OFFSHOV2 

XINIT 
XMESG 
XRFSEQ 
XRFAB 
XDIREC 
XNXROUTl 
XNXROUT2 
XTXPG 
XNSRT 
XTUNL 
XLINK 

CSECT 
R 
R 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
S 

S 

S 

s 

S 

S 

S 

S 

S 
S 
S 
S 
S 
S 
E 
S 
S 

E 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

R5,R6 

R9 
RF 
R9 
R9 
R9 
R9 
R9 
R9 
R9 
R9 
R9 

Entry pOint to Phase KX. 
Initialize registers, storage, scan tExt, etc. 
Scan the input text stream to the next relevant table, 
identify it, and branch to its processing routine. 
Process an ASSN table. 
Process a MINUS table. 
Process a PLUS table. 
Process a MULT table. 
Process a DIVIDE table. 
Process a GOTO table. 
Process a DINC table. 
Process a SUBS table. 
Process a FLWUNT table. 
Process a statement header table. 
Process a HASH table. 
Process an ENDPRG table. 
Process a float precision expression. 
Produce text tables to generate inline code. for FIXED BIN 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I to BIT conversion. 

Produce text tables 
to BIT conversion. 
Produce text tables 
BIT conversion. 

to generate inline code for FIXED DEC I 
I 

to generate inline code for FLOAT to I 

Produce text tables to generate inline code for BIT to 
FIXED BIN conversion. 
Produce text tables to generate inline code for BIT to 
FIXED DEC conversion. 
Produce text tables to generate inline code for BIT to 
FLOAT conversion. 
Produce text tables to generate inline code for CHAR ~o 
BIT conversion. 
Produce text tablES to generate inline code for BIT to 
CHAR conversion. 
Check a BIT source for inline conversion suitability. 
Check a BIT target for inline conversion suitability. 
Check a CHAR source for inline conversion suitability. 
Check a CHAR target for inline conversion suitabili~y. 
Expand one input conversion to two fundamental types. 
Insert a new table into the text stream. 

Load an edit pattern into the dictionary. 
Insert OFFS and MOVE tables into the text stream after the 
current text table. 

) 
) 

) 
) 

) XROUT 
) 

) 
) 

) 
) 

) 

Continued on next page 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

450 Licensed Material - Property of IBM 



I 
\XSTG 
I 
I 

KXC 
CONVERT 

CONVB 
CONVC 
CONVD 
CONVE 
CONVF 
CONVP 
CONVQ 
CONVX 
CONVXFOT 

CONVFXOT 

ICONVDFOT 

CONVFDOT 

PREASSN 

KXE 
CONVXDO'I 

CONVDXOT 

CONVCDOT 

CONVCFOT 

CONVCXOT 

CONVDCOT 

CONVXCOT 

CONVFCOT 

KXG 
CONVDPOT 

CDPOT04 
CDPOT40 
CDPOT50 

CONVXPOT 

CONVFPOT 

CONVPDOT 

CONVPXOT 

CONVPFOT 

CSECT 

CSECT 
R 

R 
R 
R 
R 
R 
R 
R 
R 
S 

S 

S 

S 

S 

CSECT 
S 

S 

S 

S 

S 

S 

S 

S 

CSECT 
S 

S 
S 
S 

S 

S 

S 

S 

S 

RA 

R7,R8 

R7,R8 

R7,R8 

Private storage for Phase KX. This contains a storage 
region (COMSTG) common to all four modules of the phase, 
as well as local automatic and explicit storage for each 
of the modules. 
Second module of Phase KX. 
Test the source attributes, and branch to the relevant 
routine. These routines (CONVB to CONVX) contain the 
library call processors, and branch to the special case 
routines for inline code where applicable. 
Handle conversion from a BIT source. 
Handle conversion from a CHAR source. 
Handle conversion from a FIXED DEC source. 
Handle conversion from a FLOAT DEC PIC source. 
Handle conversion from a FLOAT source. 
Handle conversion from a FIXED DEC PIC source. 
Handle conversion from a CHAR PIC source. 

I 
I 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Handle conversion from a FIXED BIN source. 
Produce text tables to generate in line code 

I 
for FIXED BIN I 

I to FLOAT conversion. 
Produce text tables to 
FIXED BIN conversion. 
Produce text tables to 
to FLOAT conversion. 
Produce text tables to 
FIXED DEC conversion. 

generate inline code for FLOAT to I 
I 

generate inline code for FIXED DEC I 
I 

generate inline code for FLOAT to \ 
I 

Insert an ASSN table into text in front of 
to generate the correct float precision. 

a CONV table, I 
I 
I 
I 

Third module of Phase KX. 
Produce text tables to generate inline code for BIN to 

I 
DEC\ 

conversion. 
Produce text tables to generate inline code for DEC to 

I 
BINI 

conversion. 
Produce text tables to generate inline code for CHAR to 
FIXED DEC conversion. 
Produce text tables to generate inline code for CHAR to 
FLOAT conversion. 
Produce text tables to generate inline code for CHAR to 
FIXED BIN conversion. 
Produce text tables to generate inline code for DEC to 
CHAR conversion. 
Produce text tables to generate inline code for BIN to 
CHAR conversion. 
Produce text tables to generate inline code for FLOAT to 
CHAR conversion. 

Fourth module of Phase KX. 
Produce text tables to generate inline code for DEC to 
FIXED DEC PIC conversion. 
As in CONVDPOT, for FIXED DEC PIC Type 1. 
As in CONVDPOT, for FIXED DEC PIC Type 2. 
As in CONVDPOT, for FIXED DEC PIC Type 3. 

Produce text tables to generate inline code for BIN to 
FIXED DEC PIC conversion. 
Produce text tables to generate inline for FLOAT to FIXED 
DEC PIC conversion. 
Produce text tables to generate inline code for FIXED DEC 
PIC to DEC conversion. 
Produce text tables to generate in line code for FIXED DEC 
PIC to BIN conversion. 
Produce text tables to generate inline code for FIXED DEC 
PIC to FLOAT conversion. 

Continued on next page 

I 
I 

Licensed Material - Property of IBM Section 3: Program Organization 451 



ICONVPPOT 
I 
I 
IPICTRANS 
I 
IPCHECK 
I 
I MVIS 

s 

S 

s 

S 

I 
I 
I 
I 
I 
I 
I 
I 

Produce text tables to generate inline code for FIXED DEC 
PIC to FIXED DEC PIC conversion (via FIXED DEC). 

convert a picture specification in the dictionary to the 
form required by the library at execution time. 
Scan a picture specification for inline code suitabiliLY 
and classification. 
Insert OFFS and MOVE tables in the text st~eam, to 

I I I I generate MVI instructions for picture punctuation. I L _________ ~ _________ ~ _________ ~ ________ ---________________________________________________ J 

452 Licensed Material - Property of IBM 



IELOKX 

•• ··A1 ••• • ••••• · . • ENTRY • · . ............... 
FR:>M: 1 PHASE KK 
OR OX 

KXA 
••••• Sl ••••••••• • · . • 
• INITIALIZE · · . ................. 

",CTRANS l . '. ""LTIPL' ••••• ~1.......... C3 •• • •••• C4 •••••••••• .. ......... . 
• CONVERr DICr • •••••• YES • PROCESS • 
• SPE~S I~ DICT • • C3 .---->.. MULTIPLY? •• -------->.MULTIPLY TABLE .---l 
• ro LIB FORMAT • •••••••• .. ...... .. . . .......... *...... .. .. . ............... . 
:oj:·._>1 1· NO :.:~.: · . ~ .... .... 

SCAN ••• ADDITION 
••••• 01.......... 03 •• • •••• D4 •••••••••• 
•• .• *. • • 
• GET NEXr TEXT. •••• YES • PROCESS ADD • 
• TABLE FROM ·<--1<------------ .. ADD? •• -------->. TABLE ·---1 • INPUT • •• •• • • .. .. .. . . ................. .. .. . ............... . 

l : .:: : 1· NO : .:~. : 
• • • • .... . ... 

CO~ST1 ••• SUBTRACT 
••••• E1.......... E3 •• • •••• E4 •••••••••• 
• SEr UP • •••••• 
• CONSTANTS TO • •••• YES • PROCESS • 
• LOOK LIKE • •• SUBTRACT? •• -------->·SUBTRACT TABLE .---1 
• VARIABLES • •• •• • • .. .. .. . . ................. .. .. . ............... . 

I 1
· NO :.:~.: 

•••• 
••• ••• GOTOLAB 

F1 •• F3 ., ••••• F4 •••••••••• ,. ., ,..... 
,. •• YES •••• YES • PROCESS GOTO • 

• , CONVERr? '·---1 .. GOTO? •• -------->. TABLE ·---1 *. .* *. .* • • .. .. ..... . .. .. .. .. . ............... . 
• NO ••••• • NO •••• 

1 :O~2: 1 : D1 : • • • • • • ••• 
, ., COMPARE •• , SUBSLAB 

31 •• • •••• 32. •••••••• G3 •• • •••• G4 •••••••••• ,... . . .... . . 
,. ., YES .PRO~ESS ~OMPARE. •• •• YES • PROCESS SUBS • 

• , COMPARE? •• -------->. TABLE· •• SUBS? •• -------->. TABLE .---1 ., .. . . .. .. . . 
*. .• • • *..* • • .. ,. ................. .. .. . ............... . 

1
· NO 1· NO :.::.: 

•••• 
••• ASSI3N ••• HASHLAB 

H1 •• • •••• H2.......... H3 ., ••••• H4 •••••••••• 
. * *. • * .* *. • • 

•• •• YES .PROCESS ASSIGN. •• •• YES • PROCESS HASH • 
•• ASSI3N? •• -------->. TABLE ·----1 •. HASH? •• -------->. TABLE ·---1 *. .* • • *. .* • • .. ,. . ... ..,. . . . , .. ................. .. ,. . ............... . 

i NO - :.::.: 1· NO :.:~.: 
l .•...• . •.••. 

•• , DIVISION •• , J1 ., ..... J2.......... J3 ., ,.., . . ,... ····J4···.····· NO ,. ., YES .PROCESS DIVIDE. NO •• ., YES. • 

1
---·, OIVIGE? •• -------->. TABLE ·---1<----·· E.O.F.? •• -------->. EXIT • .. .. . . ., .. . . .. .. . . .... . ............. . 

•• ,. ••••••••••••••••• •• ,. TO: 
•••• • ••••• PHASE PC · . . . 

• C3 • • 01 • · . . . .... . ... 

Chart 3.35. {Part 1 of 2}. Arithmetic Operations and Conversions Phase (Phase KX) 

Licensed Material - Property of IBM Section 3: Program OrgQniza~ion 453 



CONVERr 

***. 
*02 • 

* A2 *--1 * • ***. 

THE CHART SHOWS ONLY BIT-TO-FIXED-DECIMAL CONVERSION 
IN DETAIL. THE OTHER 63 POSSIBLE COMBINATIONS ARE 
~~~~Lf~B~~R~ ~1~UA~R~Ahs~~5~OUGH IN SOME CASES 

• .** *i' 1 •• *. ****** *****A2********** 
• BRANCH *. • 
* ACCORDI~3 TO • • STORE DATA • 
* SOURCE *<--------. DETAILS IN A * 
* ATTRIBUTE. *CONVENIENT FORM. 
* • * • ········i········ ........•.......• 

• *. CONVB ••• 
B1 *. *****B2********** B3 *. *****B4********** 

.• *. *ROUTINE FOR BIT. .* *. * * 
.• *. YES *SOURCE. BRANCH * .* •• YES * ERROR. BIT -> * 

*. BIT? • *-------->* ACCORDING TO *-------->*. BIT? • *------~->* BIT SHOULD BE * 
*. .* * TAR3ET * *. .* * ASSIGN * 
*..* * ATTRIBUTE * *..* * * 

* •• * **************.*. *. •• ***********.*.*** 

*1 NO *1 NO t_>:*:~*: 
•• ** .*. CONVC .*. CONVBC 

:::1 •• • •• **C2********** C3 *. *****C4***.***.** 
.* *. * * .* *. • • 

• * *. YES * ROUTINE FOR * .* *. YES *ROUTINE FOR BIT* 
*. CHAR? •• -------->* CdAR SOURCE * *. CHAR? •• -------->. -> CHAR * 

*. .* • * *. .* • • 
*..* * * *..* • * 

••. * *.***.* •••• **.**. * •• * •• ** •• ** ••••••••• I ,0 I NO 

••• CONVD • •. CONVBo • * .• 
01 •. • •• *.02 •• * •• *.... 03 •. *.***04****.*.*** 05 *. 

.• *. • • •• *. • * •• * • 
. * *. YES * ROUTINE FOR * .* *. YES *ROUTINE FOR BIT* .* OPTIMI- *. NO 

*. FIXED DEC? .*-------->* FIXED DEC. *. FIXED DEC? .*-------->* -> FIXED DEC *-------->*.ZATION REQD? .*---
* . • * * SOURCE· •• • • * * *. • * 
*..* • • *..* • * *...* 

* •. * ***************** * •• * *******.*****.*** * •• * 

.i.NO CONV' .i.
NO 

CO""BE CONVBOOT i YES 

E1 *. .****E2***.****** E3 *. .****E4*** ••• * •• * *****ES********** 
.*.. * • .* *. * * * * 

.• FLOAT PIC *. YES * ROUTINE FOR * .* FLOAT PIC *. YES *ROUTINE FOR BIT* *GENERATE INLINE* 
*. DEC? • *-------->* FLOAT PIC DEC • *. DEC? • *-------->* -> FLOAT PIC * CODE FOR * 

•. •• * SOURCE * *. .* • DEC * OPTIMIZATION * 
...* * * *..* * *. * 

•• .• .* •••• ** ••• *..... •• •• *.****.*.*****.** *.*************** 

1
* NO 1* NO L>~~~~:. 

**** 
• *. CONVF • *. CONVBF 

.*F1 .'*. :*.**F2*********: .*F3 *'.. :.***F4.***.****: 
.• •• YES • ROUTINE FOR • .* *. YES *ROUTINE FOR BIT* 

*. FLOAT? . *-------->* FLOAT SOURCE * *.. FLOAT? • *-------->. -> FLOAT 
*. .* * * *. .* * 
*..* * * *..* * * 

* •. * * •• ************** * •• * ************ •• *** i .0 I NO 

.*. CONVP .*. CONVBP 
31 *. *****G2*********. G3 *. *****G4**.***.*** •• *. • • .* *. • * 

.* FIXED PIC *. YES * ROUTINE FOR * .* FIXED PIC *. YES *ROUTINE FOR BIT* 
•• DEC? .*-------->* FIXED PIC DEC * *. DEC? .*-------->* -> FIXED PIC 

*. .* * SOURCE * *. .* * DEC 
"'. • * * * *.. * * * 

•• • * .***.****.******* *. • * ************** •• * r" INC 
H1·*·.. CON~~*.*H2****.****. H3·*·*. CON~~~**H4**.**.**** .••. • * .* *. * * 

.* *. YES *ROUTINE FOR PIC. .* * .• YES *ROUTINE FOR BIT* 
*. PIC CHAR? .*-------->* CHAR SOURCE • *. PIC CHAR? •• -------->* -> PIC CHAR • 

*. .* * * *. .* • • 
••.• * * *..* * * 

* •• * ******* •• *.****.* * •• * .*.***.**.******* I " I NO 

.*. CONVX .*. CONVBX 
J1 *. *****J2*******.** J3 *. ***.*J4********** 

.• *. * * .* *. * * 
• * *. YES * ROUTINE FOR. NO •• *. YES *ROUTINE FOR BIT* 

*. FIXED BIN? .*-------->* FIXED BIN * j-----*. FIXED BIN? .*-------->* -> FIXED BIN * 
* . • * * SOURCE * *. • * * * 
*..* * * *..* • • 

* •• * ***************** * •• * ***************** * ~O * 

::::::->1<------------------------------------
*****K1********** 
* * ****K2********* 
*COMPILER ERROR.* * * 
• TER~nIATE .-_______ >. EXIT • 
* * * • • * •••••••••••• *** 
•• ********.*.***. TO: 

INTERRUPT HANDLING 
ROUTINE (PHASE AA) 

CONVBD1 !-----------
*.***GS.****.**** 
* * * GENERATE * 
* LIBRARY CALL * 
* * • * 
***********.***.* 

t 
.* •• 
*01 • 

->* 01 * 
* * .**. 

Chart 3.35. (Part 2 of 2). Arithmetic operations and Conversions Phase (Phase KX) 

454 Licensed Material - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 
ZDSECT DSECT I Fields in Type 2 text tables. I 
PCPDSC DSECT R3 I Format of entries in the pseudo constants pool, block I 

IELOPC 
PClOOO 
PC2000 

PC2200 
PC2300 
PC2400 
PC2500 

PC2600 
PC2700 
PC2800 

PC2900 
PC29l0 
PC2920 
PC2930 
PC2940 
PC2950 
PC2960 
PC2970 
PC2980 
PC2990 
PC3000 

PC3l00 
PC3200 
PC3300 
PC4000 

PC5000 

PCS100 

PC5200 

PC5300 
PC5400 

PC5500 

CSECT 
R 
R 

R 
R 
R 
R 

R 
R 
R 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

R 
R 
R 
R 

R 

R 

R 

R 
R 

R 

R6-R9 

I field, QT table, AID/ENDAID table, and temporary I 
I replacement stack. I 

Entry point to Phase PC. 
Phase initialization. 
Scan the text tables of the input text stream and pass 
control to the appropriate processing routine. 
Start of block processor. 
Process symbol tables for all known variables. 
Process symbol table for a given identifier. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Test if the text table indicates that an object-time 
is required (other than for a symbol table). 

DED I 

FED construction processor. 
I 
I 
I 
I 
I 

Target of constant conversion detects for Phase PA. 
Static initial processing routine (for Phase PA). 
Determine size of storage required for static initial 
variables, offset within structure storage, e~c., for 
by Phase PA in the mapping of static initial storage. 
Q-temp. table entry creation routine. 

use I 

Q-temp. table entry annihilation routine. 
KONST text table processing routine. 
ONCB testing routine. 
Argument reordering routine. 
Address temporary extinction routine. 
VDA length operand routine. 
Statement options flag byte clearing routine. 
GOOB text table processing routine. 
Locator processing routine. 
Scan the variables dictionary, identifying those variables 
which require symbol tables by virtue of ~he fact that 
they are declared in blocks currently active when a PUT 
DATA, GET DATA, or SIGNAL CHECK of all known variables 
occurs. 
Non-structured variable processing routine. 
Structured variable processing routine. 
Create a locator-required text table (ARG 02). 

I 
I 
I 
I 
I 
I 
I 
I 

Round the pseudo constants pool to a 4-byte boundary, and 
write in the pseudo constants pool the requisite number ofl 
dummy symbol table elements (as counted by routine 
PC3000). 
Scan the variables and general dictionaries, building 
symbol tables for those identifiers requiring them. 
Build the symbol tables for external variables, and, if 
required, build the DEDs and fill the dummy symbol table 
elements. 
Entered when a variable is encountered which requires a 
symbol table element, and which is in a different block to 
the previous such variable. 
End-of-variable processing routine. 
Scan down the chain of general dictionary references of 
label constants requiring symbol tables, and build the 
tables. 
S~an down the chain of general dictionary references of 
entry pOints requiring symbol tables, and build the 
tables. 

Continued on next page 

Licensed Material - Property of IBM Section 3: Program Organization 455 



PC6000 

SRTMOO 
SRQTOO 
SRTPOO 

SRCNOO 

SRLCOO 

SRLDOO 
SRMJOO 

SRTDOO 

SRBDOO 
SROBOO 

SRODOO 
SRSEOO 

SRSIOO 
SRSTOO 

SRPDOO 

ZTRANI 

XBREAK 
XNXROUT 
XTXPG 
XRFAB 
XDSTAT 
XNSRT 
XBRIC 
XMESGR 
XDIREC 
XLINK 

R 

S 
S 
S 

S 

S 

S 
S 

S 

S 
S 

S 
S 

R 
S 

S 

T 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

Phase termination routine. Complete the creation of the 
pseudo constants pool and pass control to the next phase. 
Handle references to temporaries arising from constants. 
Handle Q-temp. references. 
Test if a given member of the variables dictionary 
requires a long or a short symbol table, and if 
identifier, if BASED or DEFINED, is allowed by this 
compiler for PUT DATA. 
Determine which library modules (for conversions) are 
required for the variables in PUT/GET DATA. 
Test if a given member of the variables dictionary 
requires a locator. 
Create compile-time DEDs for literal constants. 
Insert ARG (02) text tables into the output text stream to 
inform Phase PA that the variable referenced in operand 1 
requires a locator and a descriptor. 
Entered when a text table is encountered in which operand 
1 is flagged as requiring a OED. This subrou~ine sets up 
a 3-byte compiler DED and assigns a dictionary reference 
to the field VARREF to be passed to subroutine SRBDOO. 
Control the building of object-time DEDs. 
Convert a 3-byte compiler DED in the field DEDSTG into 
object form in the pseudo constants pool workspace. 
Output OED and FED entries into the pseudo constants pool. 
Called when a particular variable requires a symbol table 
element. It calls subroutine SRSTOO, and also fills in 
the dummy symbol table element created by routine PC4000. 
Static initial allocation subroutine. 
Construct symbol tables for variables, label constants, 
and entry points. 
Insert dummy entries in the pseudo constants pool for 
rounding purposes. 
Used in subroutine SRSTOO to translate the symbol table 
identifier name from the internal representation into 
EBCDIC. 

I ) 
I ) 
I ) 
I ) 
I ) XROUT 
I ) 
I ) 
I ) 
I ) 
I ) 
I 

tXSTG CSECT I Private storage for Phase pc. L _________ ~ _________ ~ _________ ~ __________________________________________________________ _ 

456 Licensed Material - Property of IBM 



IELOPC 

·.··1'.1······.·· · . • g~TRY • • • 

~~:.~~··"r·"" 
• • ••• 81· •••••••• • • • 
• INIrIALIZE • 
: S~~~I~~~R~~C. : 
• • ................. 

OC2"0 1 · .... :1····· ... ·· • I~ITIALIZE TEXT. 
• SrREAMS AND • 
• SCI'.N T:l rHE 
• FIRST TEXT 
• rl'.BLE • 

········1········ 

. .. 
01 •• 

•• SYMTI'.B •• • ••• 

-~~.:·p~~~~CUr~: .:.<.---: 01 : 
·.VARIABLE •• •• 

•• ? •• • ••• 
* .. * 1 YES 

..... El·······.·· ·SRrooo • . -.-.-.-.-.-.-.-. • BUILO I'. OED FOR. 
• THE VARII'.BLE • • • 

---:::~~~~:1"""" 
... 

Fl •• .. .. 
NO •• IS A OED :lR •• 

---•• ~~D RE~IRE~ ••• .. .. .... 
r~ 

·····:;1·········· • SRrDOO • . -.-.-.-.-.-.-.-. 
• SUlLO rHE • 
• RE~UIRED DEO :lR. 
• FED • 

---::::::::1········ 

..... Hl·········· • • 
• SCAN TO THE • • NExr INPur TEXr. 
• TI'.SLE • • • ........ 1" ...... 

... 
Jl •• .. .. 

NO •• IS THIS THE •• YES 

r
---····L~~AL~~xr •••• -----------------------------.. .. .. .. .... . · . • D1 • • • .... 

-------------Q 
PC3000 ••• 

B3 •• 
•• ARE •• 

NO •• SYMTI'.BS •• 
---··~~8~RIK~fE~~~·· 

•• ? •• .. .. 
r"' 

····.C3 •••••••••• 
.SET POINTER TO • 
• THE FIRST • 
• DICTIONARY • 
• ENTRY • • • ................. 

D3.!~:~-------------------:::::::--------------::::::;:1 ....... . 
•••• •• IS A •• .SET POINTER TO • 

• • LI'.ST •• NO • • SYMBOL •• NO • THE NEXT • 
•• DICTIONARY •• -------->.. TABLE 0.--______ >. DICTIONARY • 

•• ENrRY? •• ..REQUIRED •• A. ENTRY • ·0 o. •. ? •• • • 
•• •• •• •• • •••••••••••••••• 

PC"" 1 YES I YES 

..... E3.......... . .... E4 ......... . 
• • ·SRBDOO • 
• BUILD DUMMY • .-.-.-.-.-.-.-.-• 
• SYMBOL TI'.BLE • .SUILD A OED FOR.-----
• ELEMENTS. • THE VARIABLE • • •• • ••••••••••••••••• • •••••••••••••••• 

::::::---->1 
····.F3·· •• • •• ••• .SET POINTER TO • 
• THE FIRST • 
• DICrIONARY • 
• ENTRY • • • 
········1········ 

... 
G3 •• • •••• G4 •••••••••• 

•• IS I'. •• *SRSTOO • 
•• SYMBOL •• YES .- ••• -.-.-.-.-.-. -->.. TABLE •• -------->. BUILD SYMBOL • 

• oREQUIRED •• .TABLE FOR VARI- • 
•• ? •• .ABLE OR CONSTNT. 

.... =. ········1········ 

... 
H4 •• 

•• IS A •• 
NO.. SYMBOL •• 

<----------------•• TABLE ELEMENT •• 
·.REQUIRED •• 

•• ? •• 
* .... 

. '. I YES 

J3 .0 ..... J4 •••••••••• 
•••• ·SRSEOO • 

NO •• LAST.. .-.-.-.-.-.-.-.-. 
---•• DICrIONI'.RY •• <--------.FILL THE DUMMY. 

•• ENTRY? •• • SYMBOL TABLE • 
• • • • • ELEMENT • •. o· ••••••••••••••••• 

• YES 

OC6Ooo ! . .... K3.......... . .... K4 ......... . 
• CALCULI'.TE. • WRITE. • ••• KS ••••••••• 
• CONSTANrS POOL • .INTERPHASE DATA.. • 
• RELOCATION .-------->. ON A SCRATCH .-------->. EXIT • • FACTORS. • PAGE •• • • •• • • •••••••••••••• ••••••••••••••••• ••••••••••••••••• TO: 

PHASE PA 

Chart 3.36. Symbol Table Resolution Phase (Phase pc> 

Licensed Material - Property of IBM Section 3: Program Organization 457 



r---------T---------T---------T-----------------------------------------------------------, 
I N~me I Type I Base I Function I 
I I I rt:gisters I I 
~---------+---------+---------+-----------------------------------------------------------~ 

YDSECT I DSECT I R4 I 1. Layout of FCB entries in the general dictionary. I 
I I I 2. Layout of CONDITION condition entries in the general I 
I I I I 
I I I dictionary. I 

YDSECT2 I DSECT I R5 I Layout of entries in the chaining fields. I 
CONDES I DSECT I R3 I 1. Format of entries on the constant descriptor pages. I 

IELOPA 
PA10l0 
PA2000 

PA3000 

PA3100 

IPA3l00 
SRDSOO 
SROPOO 
SRFLOO 
SRENOO 
SRLCOO 
SRDMOO 
SRCOOO 
SRC100 

SRC200 
SRC300 

SRC3l0 

SRC320 

SRC330 

SRC350 

SRC360 
SRC400 

SRC420 
SRC425 
SRC430 
SRC435 
SRC440 
SRC445 
SRC450 
SRC455 
SRC460 
SRC465 
SRC470 
SRC475 
SRC485 
SRC490 
SRC500 
SRC5l0 
SRC530 
SRC540 
SRC550 

I I 2. Temporary stack format. I 
I CSECT R6-R9 I Entry pOint to Phase PA. I 
I R I Phase initialization. I 
I R I Perform a preliminary scan of the variables dictionary I 

R 

R 

E 
S 
S 
S 
S 
S 
S 
S 
E 

E 
E 

E 

E 

E 

E 

E 
E 

E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 

I allocating locators for static external items and anchor I 
I slots for controlled variables. I 
I Text scanning routine. Control th~ scan of the input 
I text. Pass control to one of the processing rout~nas 
I according to the ~ype of text tabl~ encountered. 
I Target DED determination routine. Determine the target 
I DED required for possible constant conversions. The DED 
I depends upon both the text ~able and operand types. 
I Entry point for BC text tables. 
I Page discarding subroutine. 
I Operand examination subroutine. 

File allocation subroutine. 
Environment block allocation subroutine. 
Locator/descriptor allocation subroutine. 
Descriptor mapping routine. 
Subroutine to allocate all types of PCP entry. 
Output space in the pseudo constants pool for a STATIC 
INITIAL variable. 
Allocation of storage for RECORD and KEY descriptors. 
Entry point for when an entry is required in STATIC for a 
label. 
Entry point for when an entry is required in STATIC for a 
CONDITION CSECT. 
Entry point for when an entry is required in STATIC for a 
STATIC ONCB. 
Entry pOint for when an adcon is required for symbol 
addressing. 
Entry is required for padding purposes to correct 
alignment. 
Adcon required for addressing an external variable. 

table 

Entry pOint to assign the information common to different 
sorts of adcon and determine which sort is required. 
Adcon for variable. 
Adcon for constant. 
Adcon for DED. 
Adcon for temp. or Q-temp. 
Adcon for record/key descriptor. 
Adcon for FCB. 
Adcon for locator. 
Adcon for symbol table. 
Adcon for CONDITION condition. 
Adcon for symbol table element list. 
Adcon for controlled variable anchor slot. 
Adcon for label. 
Adcon for entry name. 
Adcon for FETCH control block. 
File - FCB. 
File - environment block. 
File - environment block constant. 
File - constant part of DTF. 
File - variable part of DTF. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

458 Licensed Material - Property of IBM 



ISRC560 
ISRC570 
ISRC580 
ISRC600 
I 
ISRC700 
I 
ISRC800 
I 
SRC900 

SRSMOO 
SRLBOO 

SRCBOO 
SRLMOO 
SRLZOO 

SRBKOO 

SRFBOO 
PA3200 
PA3300 
PA3400 
PA3500 
PA3600 

PA3700 
PA3800 
PA4000 
PA5000 
PA6000 
SRFLOO 

XRFAB 
XDSTAT 
XBREAK 
XNXROUT 
XTXPG 
XMESGR 
XDIREC 

E 
E 
E 
E 

E 

E 

E 

S 
S 

S 
S 
S 

S 

S 
R 
R 
R 
R 
R 

R 
R 
R 
R 
R 
S 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

File - adcon for external file. 
File - generate padding for alignment. 
File - buffer if OPEN has been optimized. 
convert constants in the text into the correc~ form for 
insertion in the pseudo constants pocl. 
Convert constants in the dictionary into ~heir required 
form for output to the pseudo constants pool. 
Assign the initial values to storage previously allocated 
at SRC100 for static initial variables. 
Chaining routine common to all ~onstants. Functions 
include offset determination, constant descriptor 
creation, duplicate checking, and output of constant 
descriptor. 
Static initial mapping subroutine. 
Subroutine to call the library to perform a constant 
conversion. 
Subroutine to perform character-to-bit conversion. 
Subroutine to perform long move operations. 
Subroutine to clear long fields; either to zero or to 
blanks. 
Subroutine to output entries (constant descriptors or PCP 
entries) in the second output text stream. 
Subroutine to access the dictionary. 
Process HASH and FLWUNIT text tables. 
Process SINIT, IASSN, AID, and ENDAID text tables. 
Process ALIST, ARG, and CALL text tables. 
ON statement handling routine. Process ONS text tables. 
Process FETCH/RELEASE statements. (Applies to the OS 
version of the compiler only.) 
Operand examination routine. 
End of text table processor. 
Forward chaining routine. 
Pseudo constants pool creation routine. 
End-of-phase routine. 
File allocation subroutine. 

XROUT 

I 
I 

IXSTG CSECT Private storage for Phase PA. I L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM section 3: Program Organization 459 



IELOPA 

*···1'.1.······*· 

• * * E~TRY * 
* * 

'~:::o::·····l······· 
***·*81**·*·***** 
• INITIALIZE * 
* STORA3E, • 
:REGr§~~~~Y~TC. : 
• • •••••• * •• * ••••••• 

.. 2000 I 
····*~1*·*··· •••• 

• * • PRELIMINARY • 
*DI~TIO~ARY SCAN. • • · . ................. 

.A3000 I 
••• ··01·*········ 
• INITIALIZE TO • 
• READ THE TEXT • 
• STREA~ ALONG • 

:No~~~5~~Ni1~tLY: ........ [ ....... . 
••••• El*···***.·· 
• ANALYZE EACH • 
• OPERAND FOR • 

-->. ENTRY IN THE * 
.CONSTANTS POOL • 

• * ••••••• *.* ••••• ** 

I 
. *. 

Fl t. .. .. 
•• ITEM FOR •• YES 

*****A3********** 
*CONST ROUTINE * 
*-*-*-*-*-*-*-.-* 

---->. ANALYZE ITEM * 
: THA§T~~ig~RES : 
*******.****.***. 

I 
*****a3****·*.*** 
* ITEM MAY BE: * 
:CONr6~'5ES~ED, : 

: cS~ig~t ~t~~1< : . ....... 1" .... .. 
.*. 

c3 *. .• *. 
NO .* *. 

---to DICT ENTRY? .* 
*. .* *. .• 

* .. * I YES 

****.D3********** 
* ACCESS THE * 
* RELEI1ANT * 
* DICTIONARY * 
* ENTRY * 
* * ****.********.*** 

--------->1 
.*. 

E3 *. 
. * *. 

NO .*CONVERSION *. ___ to REQUIRED? .* 
*. ..* *. . * * .. * 

1
m 

*****F3********** 
• DETERMINE • 
.LIBRARY MODULE * 

•• CONSTANTS •• ----------------------------- :S~~ ~~ ~~~&~~&T: •• POOL? •• .. .. * LIST • .. .. 
• NO 

,AlBOO I 
. ....... { ....... . 

••• ··:;1* •• **·**.· 
.WRITE TABLE TO • 
• OUTPUT TEXT • 
• STREAM .<--
• (SE~UENTIALLY) • • • • * •••• *** •••••••• 

I 
·*···al·***··**·. 
.SET POINTER 1'0 • 

*****G3********** 
*LIBRARY ROUTINE* 
*-*-.-*-*-.-*-*-* 
* CONVERT * 
* CONSTANT • 
* * 

---::::::::i········ 

... 
H3 •• 

.* *. 
YES • * DOES *. .NEXT TEXT TABLE. 

• IN TaE INPUT • 
• TEXT STREAM • 

-------------------------------*. DUPLICATE .* 

• * ········1········ 

... 
Jl •• 

.* *. **** 

A *. EXIST? .* 
*. .* 

* .• * 

INC 

*****J3****.***** 
* CREATE A * 

NO.. END OF •• YES. • * CONSTANT • 
---.. PROGRAM? .*---->. 05 • *DESCRIPTOR FOR • .. .. .. • THE ITEM * .... ..*. * * ****.*******.*.** .... 

• 

I 
****.1<2* *.****** .**.*K3** •• ****** 
.STORE OFFSET OFt * ADD TO THE • 
• ITEM IN TEXT • • RELEVANT * 
• AND/OR .<--------* CONSTANT * 
• DICTIONARY * * DESCRIPTOR • 
• •• CHAIN * 
*********** •• **.. ** •• *******.****. 

Chart 3.37. Constants Analysis Phase (Phase PA) 

460 Licensed Material - Property of IBM 

PA4000 
*****05********** 

**** * FILL FORWARD * 
* * * CHAIN IN EAC8 * 
* 05 *---->* CONSTANT * 
* * * DESCRIPTOR * 

**** * CLASS * 
*******.********* 

PASO 00 1 
*****E5********** 
*INITIALIZE 2ND * 
* FILE FOR THE * 
* PSEODOCONSTANTS* 
* POOL * 
* * 
········1········ 

**··*FS*.··· •••• * 
*FOLLOW FORWARD * 
• CHAIN IN EACH * 
* CONST. DESCR. * 
!C~~'2~~I~1~~ : 

. .. ::: ..... 1' ...... . 
*··.*G5·*·*·.*.·* 
• COMPOTE THE * 
* RELOCATION * 
*FACTORS FOR THE* 
*CONSTANTS POOL * 

• * ...... ·T· ...... 
*** •• 85.*.****.** 
• DISCARD THE * 
• CONST. DESCR. * 
:s~~li ~6=~~~§TS: 
*POOL TEXT PAGES. 

········1········ 

••••• Js*.*****.** 
* WRITE OUT * 
* INTER-PHASE * 
* DATA ONTO A • 
* SCRATCH TEXT * 
• PAGE • * •••••• * ••• ***.*. 

1 
****1<5*·**·*.*· 

* * * EXIT • • • • *.* ••••••••••• 
TO: 
PHASE PE 



r---------T---------T---------T-----------------------------------------------------------1 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

YSDICT DSECT 
OFFTBLE DSECT 

IELOPE CSECT 

PE R 
NXT R 

NXTP S 
ADAVAR R 

TST8 R 

TST4 R 
TST2 R 
TSTl R 
TSTB R 
CONT R 

DEFND S 
CTLDOl S 
PARAM S 
S'IARAUT S 

STRUC S 
SKNTRY S 
LOCDESC R 

CMNLD S 
SDAVAR R 

SSB R 

TST4S R 
TST2S R 
TST1S R 
TSTBS R 
STARST S 

S'IINIT S 
STEXT S 

CaNTS R 

I 
INDICT R 

I 
I 
I 
I 
I 
I 

R3 
R6 

R7-R9 

storage dictionary structure. 
Layout of storage counters for each DSA. 

Entry point to Phase PEe 

Initialization routine. 
Scan the variables dictionary and examine the code byte of 
every entry for data variable. Branch to ADAVAR or 
SDAVAR, dep~nding on the type of variable. 
End of dictionary page detected. Discard it. 
create a storage dictionary entry for the data variable if 
it is AUTOMATIC, BASED, CONTROLLED, DEFINED, or a 
parameter. 
Allocate a storag~ offset in the DSA for the variacle. At 
this point, test if the variable requires a-byte 
alignment. 
Test if the variable requires 4-byte alignment. 
Test if the variable requires 2-byte alignmen~. 
Test if the variable requires 1-byte alignmen~. 
Test if the variable requires bit alignmenL. 
After the variable offset has been stored in the storage 
dictionary, and if the table of offse~s has been updated 
for the current block, store the updated Lable in the 
second file, and the reference to ~he table in the list in 
XSTG. 
Process DEFINED variable. 
Process CONTROLLED variable. 
Make storage dictionary entry for a parameter. 
Make storage dictionary entry for AUTOMATIC strucLure or 
array. 
Process AUTOMATIC structure. 
Build skeleton storage dictionary entry. 
Allocate storage in the DSA for the locator, and store the 
locator's offset in the storage dictionary entry. 
Determine if storage for a descriptor is required. 
Create a storage dictionary entry for the data variable if 
it is STATIC. 
Allocate a storage offset in S'IATIC for the variable. At 
this point, test if the variable reqUires 8-by~e 
alignment. 
Test if the variable requires 4-byte alignment. 
Test if the variable requires 2-byte alignment. 
Test if the variable requires 1-byte alignment. 
Test if the variable requires bit alignment. 
Make a storage dictionary entry for a STATIC structure or 
array. 
Make a storage dictionary entry for a STATIC INITIAL item. 
Make a storage dictionary entry for a STATIC external 
item. 
Bump the dictionary reference to the next entry. Mark thel 
next available location in the storage dictionary with the I 
end-of-page marker. I 
Scan the RECORD/KEY descriptor chain in the general I 
dictionary. Reserve 8 bytes in AUTOMATIC storage for eachl 
RECORD/KEY descriptor that requires it. store the offset 
of this storage in the descriptor entry in the general 
dictionary. 

Continued on next page 

Licensed Material - Property of IBM section 3: Program Organization 461 



EOTRK R 

OFFLP R 

NONCST S 

LIBADC R 

CGSADC R 

SCAN2 R 

LDRTN R 

REGNl S 
NODSCR R 

ABP8 S 
ABP4 S 
ABP2 S 
~BPl S 
ABPB S 

SC2Al R 
SC2Bl R 
SC2Cl R 

I 
ABPARM R 
TMPVAR R 
COMNA R 
AUTAR R 
STRUC2 R 
STROKC E 
STROKD E 
CHKREL S 
STAT R 

SBP8 S 
SBP4 S 
SBP2 S 
SBPl S 
SBPB S 
SC2A1S R 
SC2B1S R 
SC2C1S R 
RSTIC S 
SLDLP S 

STATAR R 
RELSIN R 

lCTLD02 R 
I 
ICOMN R 
ISCNRKD R 
I 
I 
IBITRVO S 
I 
I 
I 

Calculat~ the total size of the variables in S~A~IC 
storage after the last entry in the variables dictionary 
has been processed. 
Create a base table for variables in AUTOMATIC storage. 
Calculate the number of regions of AUTOMATIC storage in 
each procedure entry in the table and assign ~he 
appropriate number in the base table. 
Test if decimal arithmetic storage is required by final 
assembly. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Scan the bit string XLIBSTR in XCOMM, and count the 
of bits set on. 

numberl 
I 

Scan the bit string XCOMSTR in XCOMM, and count the 
of bits set on. 

numberl 

Scan through the citorage dictionary and relocate the 
offsets by the relocation factors previously calculated. 
if the storage dictionary entry contains a locator 
calculate the number which must be located. 
Test if a descriptor is present, and relocate accordingly. 
Process AUTOMATIC variable. The following subrOU~lnes 
determine the storage class and relocate the variable 
according to its alignment: 
Variable is a-byte aligned. 
Variable is 4-byte aligned. 
Variable is 2-byte aligned. 
Variable is 1-byte aligned. 
Variable is bit aligned. Bit variables are allocated to 
Class A storage. 
Relocation routine for AUTOMATIC variables 
Relocation routine for AUTOMATIC variables 
Relocation routine for AUTOMATIC variables 

Calculate the first parameter base. 
Allocate a base for a temporary operand. 

Class A. 
Class B. 
Class C. 

Create an entry in the byte array for the variable. 
Relocate an AUTOMATIC array. 
Process a structure. 
Entry point to STRUC2 if the structure is CONTROLLED. 
Entry point to STRUC2 if the structure is DEFINED. 
Check relocated item for addressability. • 
Relocate the offset by the relocation factor calculated 
previously if the entry in the storage dictionary is 
flagged as STATIC. The following subroutines determine 
the storage class and relocate the variable according to 
its alignment: 
Variable is 8-byte aligned. 
Variable is 4-byte aligned. 
Variable is 2-byte aligned. 
Variable is 1-byte aligned. 
Variable is bit aligned. 
Relocation routine for STATIC variables C~ass A. 
Relocation routine for STATIC variables Class B. 
Relocation routine for STATIC variables Class C. 
Compute base number and offset for locator and descriptor. 
compute storage base and offset in STATIC after 
relocation. 
Relocate a STATIC array. 
Relocate a STATIC INITIAL item. 
Relocate the STATIC INTERNAL adcon for the CONTROLLED 

I 
I 
I 
I 

I 
I 
I 

variable. I 
Assign the relocated offset to the storage dictionary. I 
After relocation of the offsets to the storage dictionary, I 
scan the. RECORD/KEY desciptor chain and "relocate offsets. I 
Test if there are any entries which require location. I 
Locate the virtual origin of STATIC or AUTOMATIC bit I 
arrays. 

continued on next page 

I 
I 
I 

462 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

ISCAN3 R Scan the storage dictionary to resolve DEFINED references., 
I I Test if DEFINED flag is set to determine whether or not a , 

I further scan of the storage dictionary is required. , 
I SCAN33 S DE!'INED dictionary entry found. I 
ITXTOOO R Controls scan through text. TXT010, TXT020 etc., I 
, represent pieces of code executed for different classes ofl 
I text tables. , 
ITMPACC S Accesses information for any given tem~orary. I 
IT~PLEN S Determines lengths of temporary operands. I 
I , 
IENDPB R Test if offset tables exist on a set of text pages. If I 
I so, these text pages can be discarded. ~ake the last pagel 
I referenced spillable and pick up the reference to the I 
I first page. Fol~ow the text page chain, discarding t~e I 
I text pages. I 
IXRFAB CSEC~ ) I 
IXRFSEQ CSECT ) I 
IXBREA~ CSEC~ ) XROUT I 
IXTXPG CSECT ) I 
I XDIREC CSEC~ ) I 
I I 
IXSTG CSECT Private storage for Phase PEe I L _________ L _________ L-________ L-__________________________________________________________ J 

Licensed Material - Property of IBM section 3: Program Organization 463 



IELOPE 

FROM: 

•• •• A1··.·.···. • • • ENTRr • • • ••••••••••••••• 
PHASE PA 

1 ···.·81 ......... . • • ·INITIALIZATION • 
• OF STORAGE, • 
: REGS, ET::... : 

········1········ 

···.·C1 ••••••• • •• • • 
• READ 1N • 
• INTER-PHASE • • 0ArA INTO XSTG • · . 
········1········ 

·····01·········· 
• INITIALIZE TO • 
• SCAN THE • 
• VARIABLES • 
• OICTIONARf • • • 
········1········ 

···.·E1.· •••• •• •• 
• SET POINT~R TO • 
• VARIABLES • 

MAVER 
·····A)·.········ ••••• • • • • CREATE STOR • 

• A) .---->.OICT ENTRY FOR • 
• • • AUT VAR • ••••• • • •••••••••••••••• 

1 ... 
B) •• • •••• B4 •••••••••• 

•• •• • ASSIGN fOUR • 
•• •• YES • BYTES IN • 

•• PARAMETER? •• -------->. PARAMETER • 
•• •• .STORAGE REGION. .... . . 

··l·~ ········1········· 

••• PARAM 
•• C) •••• : •• :~~:;~.: ••• : 

NO •• ARRAY OR •• • UNI~UE BASE • 
---•• STRUCTURE?· l---.NUMBER IN STOR • 

•• •• • DICT FOR • • • • • • PARAMETER • •• •• • •••••••••••••••• 

1
. YES : .:~. : 

• • •••• 
·····0)·.·····.·· • GET STORAGE • 
:p~giui~~i~I~E : 
• TABLE IN • 
• GENERAL OICT • • •••••••••••••••• 

--------->1 ... 
E) •• • •••• E4 •••••••••• 

•••• • ALLOCATE A • 

-->. OICTIONARf • .:·BASEO ITEM?·:.!~~ _____ >:NU~~lau~NB~¥~R : 
• ENTRr • • • 
········1········ 

••• SOAVER 
F1 •• • •••• F2 •••••••••• .. .. . . 

•• STATIC •• YES • CREATE STOR • 
•• VARIABLE? •• -------->.OICT ENTRY FOR. 

•• •• • STATIC VAR • .. .. . . 
··i·~O ········i········ 

. *. . •. 
G1 •• G2 •• 

•• ·~A~~6°·0;· •• fES NO •• ·:RRAY OR·· •• 
•• PARAMEt~R? •• ---1 ---•. STRUCTURE? •• .. .. .. .. .... .... 

*. .• • ..• 

.i.'" ::~!:: i YES 

81 •• • •••• H2 •••••••••• 
•• t. • GET STORAGE • 

•• END OF •• YES • REOUIREMENTS • 
•• OICTIONARf? •• ---1 ·FROM AGGREGATE • •• •• • TABLE IN • 

•••• • GENERAL OICT • 

··.·:0 •••• ········1········· 

1 
: BS : ----------> 
•••• 

STARST ....• J1.......... . .... J2 ......... . 
• CREATE DUMMY •• • 
• STORAGE OICT • • ASSIGN OFFSET • 
• ENrRf - TO. ---. TO STORAGE • 
• REF AS VAA OICT.. • ••••••••••••••••• • •••••••••••••••• 

•• •• .OICT FOR BASED. 
•••• • ITEM • 

STARAUT ··1·~ ········1········ 

..... F).......... . .... F4 ......... . 
• ASSIGN OFFSET • • ASSIG~ OfFSET • 
• TO STORAGE. .OF ZERO TO ITEM. -----. DICTIONARY • ____ e. IN THE STORE • 
• ENTRY. • OICT • • •• • ••••••••••••••••• • •••••••••••••••• 

• MAINTAIN SAME • I. DICTIONARY • 

:·:;·:->1<-------------------------------------------------------------­· ' . •••• CONTS 
·····l1·· ... ····. • • 
• BUMP VAR OlXT • 

---. REFERENCE • • • • • ................. 

Chart 3.38. Storage Allocation Phase (Phase PEl 

464 Licensed Material - Property cf IBM 

.····85·········· • COMPUTE THE • 
• RELOCATION • 

1
-->. FACTORS FOR • 

.STATIC OFFSETS • • • 
: :;·;·······1········· 
• • •••• 

EOTRIC ••••• CS •••••••••• 
• • • COMPUTE THE • 
.SIZE Of STATIC • 
• STORAGE • · . • •••••••••••••••• 

1 
.· .. ·05.··.··.··· • COMPUTE THE • 
• RELOCATION • 
• FACTORS FOR • 
• AUTOIo!ATIC • 
• VARIABLES • 

sCA~:""'T"'''' 
• •• ··ES·······.·· • • • SCAN THROUGH • 
• THE STORAGE • 
• DICTIONARY • • • 
········1········ 

• •••• FS·········· 
• RELOCATE • .0fFSETS IN EACH. 
• STORAGE DIeT • 
• ENTRY • • • 
········1········ 

..···Gs .. ····.··· • COMPUTE BASE • 
• NU~BERS FOR • 
• EACH ITEM IN • 
• STOR, OICT • • • • •••••••••••••••• 

1 
•••• ·HS·········· 
.CREATE THE BASE. 
.ARRAY ANt PROC • 
.TABLE FOR PHASE • 
• PI • • • 
········1········ 

..... Js·········· • • • WRITE OUT • 
• INTER-PHASE • 
• DATA • • • . ....... ! ....... . 
. ... lts········· • • 

• EXIT • • • • •••••••••••••• TO: 
PHASE PI 



r---------T---------T---------T-----------------------------------------------------------1 
I Name I Type I Bas~ I Function I 
I I I registers I I 
~---------+---------+---------+----------------------------------------------------------~i 
I I 
I I 
IYSDICT DSECT I R3 
IQTEL DSECT I R2 
ISKDS DSECT I 
I 
IIELOPI 
IIELOPI 
I TXTLP 
I 
I TOPl 
I 
I TOP2 
I 
I TOP3 

ONTXT 
CNVTBL 

LLADR 
MOVEPAR 
SETENV 
RELADC 
EOTT 
BCOFFT 

SHDR 
DSAONS 

J 
ADDT 

BLKOR 
PRC3 

PGERTN 

PROLG 

MVRTN 

PROLG2 

FNDQT 
MODBSE 
GENBAD 
OUTTXT 
OUTRl 
FLWNT 

QTLCHK 
ONPCHK 

OP2QT 

OFFCHK 

BLDT 

CSECT 
R 
R 

R 

R 

R 
R 
R 

R 
R 
R 
R 
R 
R 

R 
R 

R 

S 
R 

R 

R 

S 

R 

S 
S 
S 
s 
S 
R 

S 
R 

R 

R 

R 

R6-R9 

Storage dictionary structure. 
Layout of QT table element. 
Stack description field DSECT. 

Entry pOint to Phase PI. 
Phase initialization. 
Scan the text, examining every text tacle for variables 
which may require addressing code. 
Test operand 1 for a constant, a tempory operand, a DED, 
or a variable. 
Test operand 2 for a constant, a temporary operand, a DED, 
or a variable. 
Test operand 3 for a variable. 
Process ON text tables. 
When text table is a CONV table, check to see if a library 
call is involved. 
Entered when a LADDR(02) text table has been found. 
Entered when a MOVE COl) text table has been found. 
set the environment for entry points. 
Relocate entry point address constants. 
Test the text table operator for end-of-program. 
Test operand 2 for an offset from the DSA. If it is an 
offset, fill in the base number. 
Process PROC, BEGIN, or ON-BEGIN text tables. 
Generate a text table in the prologue to allow the final 
assembly stage to chain together the dynamic ONCBs. 
Create a BADDR text table to enable the register 
allocation phase CQA) to address the temporary storage 
area at the end of the DSA. 
output the relocation factors for temporary storage. 
If required, output the addressing information for this 
block. 
set R4 to pOint at the base table entry for the current 
block. 
Generate text tables in the prologue to initialize 
AGGREGATE and STRING locators. 
Create a text table to move locator skeleton from STATIC 
to AUTOMATIC. 
Create text tables in the prologue to initialize RECORD 
and KEY descriptors in AUTOMATIC. 
Search the QT stack for a Q-temp., or space for a Q-temp. 
Modify offsets to module 4096. 
Generate a BADDR(06) text table for indirect addressing. 
Generate statementS from ADDTXT. 
Generate BADDR(08) or (09) text tables. 
Entered if a flow unit header is encountered in the text 
scan. 
Check whether locators are required for Q-temps. 
Test for OFFS text table. If found, check if the total I 
offset if less than 4096. I 
Operand 2 is a Q-temp. Search OFFLST for an entry I 
qualified by the Q-temp. I 
Examine each operand for a Q-temp. marked as last use. Ifl 
one is found, then check if it appears in OFFLST, and I 
delete it. I 
Build OFFS or NDX text table from the information in the I 
QT stack. I 

I 
Continued on next page I 

Licensed Material - Property of IBM Section 3: Program Organization 465 



IADDRT 
I 
I 
ITALQT3 
1 
1 
ILIBADC 
I 
ICGSRTN 
I 
I 
CGSTXT 

LIBCNV 

CMN 

CONST 

TSIZ 
RKDSC 
DECWSP 

TPV 

ARQD 

ADLOC 
INDAD 
RETN 

I TCMPLX 
I 
lTREQ 
1 
lDEDC 
I 
lDEDK1 
ITEMALL 
IFNDT 
I 
IARGTMP 
I 
IQTMP 
I 
INQT 
IEOT 
I 
I 
I 
IOPTAB 
lADDTXT 
I 
IXTXPT 
IXRFAB 
IXBRIC 
IXBREAK 
lXDIREC 
I 

R 

S 

S 

S 

R 

S 

R 

R 

S 
S 
S 

R 

R 

R 
S 
R 
R 

R 

R 

S 
R 
R 

R 

S 

S 
R 

T 
T 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

Change OFFS text table to (ASSN + NDX) table. If the 
offset is a literal number, change OFFS table to (LA + 
NDX). 
Entered if operand 3 is a Q-temp., in any text table 
except OFFS and PTSAT. Test if code is required to align 
an unaligned variable. 
Scan ~he bit string XLIBSTR in XCOMM and create a 2-byte 
entry in an output table for each bit in the string. 
Scan the bit string XCOMSTR in XCOMM and create a 2-byte 
entry in an output table for each bit set on in the 
string. 
Entered if the text table is a CGS table. Fill in the 
offset of the address constant for the compiler-genera~ed 
subroutine. 
Test if the current text table contains a call to a 
library routine. If so, take the appropriate action. 
Entered if one of the operands in the text table being 
analyzed is a constant, or a STATIC or AUTOMATIC variable. 
If the operand references a constant, relocate the offset 
by the relocation factor passed by the constants phase 
(PA). 
Test if the relocated offset exceeds 4095 bytes. 
Entered if the operand references a RECORD/KEY descriptor. 
If the operand contains an offset in decimal workspace, 
fill in the base number of the workspace. If the operand 
references an offset in the DSA, fill in the DSA's base 
number. 
Test if the text ~able operand is a STATIC or an AUTOMATIC 
variable. 
Set bit in the addressing vector to indicate the 
addressing required. 
Address either locators or descriptors. 
Used for all indirect addressing. 
Continue text scan. 
Test if the imaginary part of a COMPLEX variable can be 
addressed using the same base as the real part. 
Analyze the DED of the temporary operand and perform any 
necessary rounding of the offset to maintain alignment. 
If a OED/FED has been encountered, relocate the offset by 
the relocation factor passed by Phase PA. 
Relocate DED offsets in a KONST(01) text table. 
Allocate storage for all temporary operands. 
Search the temporary storage stack for a temporary operand 
or the next available space for one. 
Entered if a temporary operand or a Q-temp. requires a 
string locator. 
Generate a text table to move a skeleton locator from 
STATIC to temporary storage. 
Generate a text table to initialize address in locator. 
After text has been scanned, write out end-of-program 
marker, spill the output page, discard the input page, 
complete the second file, and dump it. 

Table of operand code bytes for address processing. 
Addressing table. 

) 
) 
) XROUT 
) 
) 

IXSTG 1 CSECT Private storage for Phase PI. L _________ ~ _________ ~ _________ ~ __________________________________________________________ _ 

466 Licensed Material - Property of IBM 



**** * • 

IELOPI 
: *:~* :--1 <----------------------------------------------------------------------------------------
*****11.2********** 

****11.1********. * S~AN TO NEXT * 
* * * TABLE IN THE • 
* ENTR~ * * INPUT TEXT * 
* •• STREAM • 
•••••••• ******* * * 

~:~~~ ,. I ·······:1········ '0' 

**.**B1.* •• ****.. B2 •• • •••• B3 •••••••• *. • •••• B4 •••••••••• 
• * .* *. * •• DISCARD. • ••• B5 ••• ** •• *. 
• READ IN * . * •• YES • COMPLETE 2ND • * UNWANTED TEXT • • 
:DA~~T~~TbH~~~G : •. ~~D OF TEXT: * .*-------->:FIL~~S~N~A~fuIf.L:------~->:A~~~~SANDB~~~C :-------->! EXIT • 
... * •••• • • * TABLE. • ••••••••• * •••• 
* ••••••• * ••••• *** *. .• • •• *............. ••••••••••••••••• TO: 

1 ,.'" fO p~," 01 
••••• ~1............ C2 •. • •••• C3 ••• *...... . .... C4 •• *....... . .... C5 •••••••••• 
* • •••• • •• GENERATE TEXT. • WRITE TEMP • 
• INITIALIZE TO • •• PROC OR *. YES .FILL IN SIZE OF. • TABLES IN THE. • STORAGE • 
• REII.D THE INPUT .-------->*. BEGIN? • *-------->. DSA AND BASE .-------->. PROLOGUE TO • • RELOCATION .---
• TEXT STREAM ... •• •• • NUMBER OF DSA • .INITIALIZE LOC-. .FACTORS TO THE. A 
• • ...... • • .DESCRS ON-UNIT. • 2ND FILE • ................. ··1·~0 ................. ·······'1········ ......... jA ....... . 

•••• · . 

* ••• *D2 ••• * ••• *.* ••••• 04 •••••••• *. • •••• 05 ••••••••• 

: ANALYZE EACH : :T~~~~R~&Ep~~t6G: : A~S~~sI~~ : 
• OPERAND • .1'0 ADDRESS TEMP.-------->. VECTOR TO THE • 
•• .STORAGE AREA IN. • 2ND FILE • 
•• • THE DSA.. • .... · .. T .. ·.... ................. .. ............. .. 

.. . 
E2 *. * •••• E3.......... • •••• E4.......... • •••• E5 •••••••••• 

•• *. *TEMP STG RTN. .ANALYZE OED OF • .ALLOCATE OFFSET. 
•• •• ~ES .-.-.-.-.-.-.-.-. • THE TEMP TO • • IN TEMPORARY • 

•• TEMPORAR~? .• -------->. ALLOCII.TE TEMP .-~------>. DETERMINE .-------->.STORAGE AND PUT.---
.'.. .••• :STORAGE OFFSET : :STO~~~ET~~~D BY: :IT I~p~~iN5EXT: A 

•• •• ••••••••••••••••• ••••••••••••••••• • •••••••••••••••• r 
••••• F2·.···.···· 
.TEST IF OPERAND. 
: ~~8~6~E~E~S~~ : 
• NUMBER • · . ••••••• * ••••••••• 

I ... . .. 
G2 •. • •••• G3.......... G4 *. • •••• G5 ..••...••. 

•••• .RELOCN RTN. •••• • ANALYZE THE • 
. • RELOCII.TION *. YES .-.-.-.-.-.-.-.-. ..RELOCATION •• YES • OPERAND AND • 

•• II.ND/OR BASE? •• -------->. RELOCATE .-------->.. REQUIRED? •• -------->.DETERMINE WHICH • 
• '.. ..'. : ~n:~~TBA~~D : .'.. •••• : RE~C~p~t~TOR : 

··.·:0 ••••••••••••••••• ':1::0 ········1········ 

••••• H3.......... H4 •• • •••• H5 •••••••••• 
• ACCESS THE • • • HAS ••. .RELOCATE OFFSET. 
• STORAGE DICT. NO •• ITEM ENTRY.. .AND ASSIGN NEW. 
• FOR BASE OF .<--------•. IN THE BASE.. .OFFSET AND BASE.---
• ITEM. •• ARRAY? •• • TO THE TEXT. A 
• • •••• • TABLE • 

..... *. ·l· ::::::: ______________ J . ~., ................ . 
... 

••••• J3.......... J4 •• • •••• J5 •••••••••• 
• • •••• • SET BIT IN • 
• ASSIGN THE BASE. • • ADDRESS •• YES .ADDRESS VECTOR • 
• NUMBER TO THE .--------> •• CODE REQUIRED •• -------->. TO INDICATE .---
• TEXT l'ABLE • ..? • • PROC TO BE • A 
• • • • •• • ADDRESSED • 
* •••••• *.*.****** ••• * * •• ** •••••••••••• 

• NO 

L •••• . . 
>. 11.2 • 
• • •••• . *. . * . 

: .:!* :<-r 
••••• K1* •• ****.* K2 •• .*.**K3*.* •• *.*.* K4 •• • •••• K5 •••••••••• 
• wRITE TABLE TO • •••• .OFFSET CHCK RTN* .*.. • CHANGE OFFSET • 
• OUTPUT TEXT. YES •• *. NO *-*-.-.-.-.-*-.-. • * TOTAL •• YES * TABLE TO ASSN. 
• STREAM .<--------•. OFFSET l'ABLE?.-------->* CHECK IF ITEM .-------->*.OFFSEl' >4095 .*-------->. AND NDX TEXT .---
* (SEQUENTIAL) * •• •• .IS 'OFFSETABLE'. ..?* • TABLES • * * ...* • * ...* • • ••• * •••• ** •••••• * * •. * *.* ••••••• ***.... • •• * ••••••••••••••••• 

• • NO 

Chart 3.39. Addressing of storage Phase (Phase PI) 

Licensed Material - Property of IBM 

! .... 
• * • A2 • 
* * •••• 

section 3: Program Organization 467 



r---------T---------T---------T-----------------------------------------------------------, I Name I Type I Base I Function I 
I I ,registers I I 
~---------+---------+---------+-----------------------------------------------------------~ I , I 
IIELOQI CSECT' R4-R7, Entry pOint to Phase QI. I 
I I R9 I 
IIELOQI R I Initialize phase and scan of input text pages. I 
I LAB! R' Examine text table and branch to appropriate routine. I 
IFLWZ R I Examine and process flow unit information. I 
IPROCZ R I Copy the addressing and temporary storage information for I 
, I each block seen in the sequential text scan into the phasej 
I I working storage, for ease of access. I 
LLADZ R I Process LLAD text table. I 
VDAZ R I Process VDA text table. I 
LAZ R' Process LA text table. I 
BCZ R Process BC text table. I 
GKBC R Carries out further proceSSing of branch tables (BC, GOTO,I 

OFFSZ 
CONVZ 
BADDRZ 
MASSNZ 
ASSNZ 
OIVZ 
MULTZ 
PLUSZ 
MINUSZ 
DINCZ 
SCIZ 
GOTOZ 
GOOBZ 
CALLZ 
ENTRYZ 
MOVEZ 
PENOZ 
FTCBZ 
ONCAOZ 
GSLZ 
ARGZ 
KONSTZ 
SNZ 
ACUMZ 
PLONK 

ENDPROGZ 
STOPUM 
RELOC 

RDIR 

ACMCHK 

INAC 
BADCHK 

EXCBK 

LFCBK 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

R 
R 
S 

s 

5 

5 
5 

5 

s 

etc.). I 
Process OFFS and NDX text tables. 
Process CONV text table. 
Address optimization. 
Process MASSN text table. 
Process ASSN text table~ 
Process OIVIDE text table. 
Process MULT text table. 
Process PLUS text table. 
Process MINUS text table. 
Process DINC text table. 
Process SCI text table. 
Process GOTO text tables. 
Process GOOB text table. 
Process CALL text table. 
Process ENTRY text tables. 
Process MOVE text table. 
Process PEND text table. 
Process FETCH text tables. 
Process ONCAD text table. 
Process GSL text tables. 
Process ARG text table. 
Process KONST text table. 
Process SN and SL text tables. 
Process ACCUM text tables. 
Process text tables which merely require possible 
relocation of temporary operands. 
Carry out final housekeeping and pass control to Phase QA. 
Stop on invalid code byte. 
Relocate the offset of a temporary operand, and 
recalculate its base number. Check for global temporary 
operands set in optimized inner loops and set bit in 
vector if so. 
Examine the current text table for items requiring 
relocation. For each one found, call subroutine RELOC. 
Check for occurrences of the accumulator in a loop and 
replace them by the global temp. used to accumulate the 
result. 
Insert addressing code to address outer blocks. 
Stack BADDR text tables and output them when the tables 
requiring addressing are reached. 
Move parameter addressing out of loops. 
Common BADDR 05 text tables in non-optimized case. 
Saves the bases of based LCVs for future storage. 
Check if an operand of a text table is floating and of 
extended precision. 
Check MOVE and CONV text tables for setting of loop 

I 

468 Licensed Mat~rial - Property of IBM 



STHED 
BLCVA 
BLCVB 

BLCVC 
OUTSR2 
OUTSR2K 
RRGEN 

ABTST 

XINIT 
X'IXPG 
XRFAB 
XBREAK 
XBRICl 
XDIREC 

S 
S 
S 

S 
S 
R 
S 

S 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

I 
I 
I 
I 
I 
I 
I 
f 
I 
I 
I 
I 

control variable. 
Process SN and SL text tables. 
Process head of loop with based loop control variable. 
Recalculate temporary storage size at the end of the block 
when storage for based LCVs is known. 
Process end of loop with based LCV. 
output a text table. 
output a KONST(09) text table. 
when, in a PLUS or MULT text table, operand 1 = operand 2, 
generate assignment of operand 1 to a temporary operand. 
Check operand for abnormality. 

I ) 
f ) 
I ) 
I ) XROOT 
I ) 
f ) 
I 

IXSTG CSECT RA I Private storage for Phase QI. l _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM section 3: Program Organization 469 



IELOQI 
* ••• 1'.1**.****.. :****1<2*********: 

* * .INITII'.LIZE FOR • 
* ENrR~ *-------->*TEXT TABLE SCANt 
* • * * * ••• *.********* * * 

FiWM: ******** •• *****.* 
PBI'.SE PI 

,"OC2 t 

Chart 3.40. 

·****B2***.****** 
* READ IN * 
* RELOCI'.TION * 
* FI'.CTORS FOR * 
* TEMPORARIES * 
* * .... · .. T ...... · 
****·C2··***····* * • * READ IN * 
*I'.DDRESSIN3 DATA* 
... * • • 
········l········ 

··**·02********** • • 
• SCAN TEXT * 
• SEClUENTIALLY *<----------------------------

• * * * **OoOo************* 

I 
**··*E2·.·*··.··. 
* • 
• RELO::rn'E * 
* TEMPORARIES • 
• ~BERE REQUIRED * • • 
········i········ 

... 
F2 *. .** •• F3.* •••••• *. 

•••• • INSERT * 
.* GLOBAL •• YES .ADDRESSING CODE* 

•• OPTIMIZATION •• -------->.AT HEAD OF FLOW* 
*. ? • * * UNITS * 

*. . * * * 
.... ;, ········i········ 

1 .'. 
****.:;2*****"'**** G3 *. * • .* *. 
• INSERT * .* •• NO 
*I'.DDRESSING CODE.-------->*.END OF TEXT? •• ---
• IN PROLO:;UE * *. •• 
• • *.. • • * ••• * •••• Oo...... • ••• 

lYES 

···.H3.*Oo •• • •• • • * 
: EXIT : 
•• * ••••••••• *** 

TO: 
PHASE QA 

Optimized Addressing (Phase QI) 

470 Lic~nsEd Material - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------, I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOQA 
QA 
GRETA 
RRES 
FBAS 
SCAN1 

SCAN2 

SCAN3 

TEST3 

FRF1 
FRF2 
FRF3 
FBF1 
FBF2 
FBF3 
HOLD1 

HOLD2 

HOLD3 

FORIT 
I~ONIN 

FPAR 
SHIFTY 
SWIT12 
QSR 
GTA 
FFR 
FTO 

XINIT 
XBREAK 
XTXPG 
XBRIC 

I I I 
I CSECT I I 
I R I 
I R I 
I R I 
f R I 

R I 

R 

R 

R 

R 
R 
R 
R 
R 
R 
R 

R 

R 

R 
R 

R 
R 
R 
R 
R 
R 
R 

CSECT 
CSECT 
CSECT 
CSECT 

I 
I 
I 
I 
r 

R9 
RF 
R9 
R9 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Entry pOint to Phase QA 
Initialize registers, storage, etc. 
Get a suitable register usage table element. 
Determine whether an item is register-resident. 
Determine whether a base is register-resident. 
Determine whether operand 1 of a text table is 
register-resident. 
Determine whether operand 2 of a text table is 
register-resident. 
Detemine whether operand 3 of a text table is register 
resident 
Clear operand 3 of a text table from a register, if 
necessary. 
Find a work register for operand 1. 
Find a work register for operand 2. 
Find a work register for operand 3. 
Find a base register for operand 1. 
Find a base register for operand 2. 
Find a base register for operand 3. 
Determine whether operand 1 is to continue to be 
register-resident. 
Determine whether operand 2 is to continue to be 
register-resident. 
Determine whether operand 3 is to continue to be 
register-resident. 
Reserve a specified register. 
Find an even/odd register pair when one item in an 
operation is register-resident. 
Find an even/odd register pair. 
Handle an operand 1 shifting operation. 
Switch operands 1 and 2. 
Process a Q-temp. 
Acquire temporary storage for a register. 
Find a free register. 
Calculate the offset of a register-resident item which 
been relegated to main storage-resident. 

XROUT 

I 
I 
I 
I 
I 

hasl 
I 
I 
I 
I 
I 
I 
I 

IXSTG CSECT RA I Private storage for Phase QA. I l _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM Section 3: Program Organization 471 



FIRST 
••• ··A2······*··· 

IELOQA 
•••• Al......... *INITIALISE FOR. 

• •• TEXT TABLE • 
: ENTRY :-------->: ~~~~T ~~~~ : 
••••••••••••••• • TABLE • 

~'ROM: 
PHASE QI 

L":·······r········ 
••••• 32·········· 
• CHECK FOR • 
:8~~~H~E~N5E~kr:< ___________________________________________________________________ _ 

.TEXT TABLE TYPE. • • •• * •• * •• **.* ••••• 

I ... 
C2 •. .... :1......... .... 

• • YES •• LAST TEXT •. * EXIT .<--------.. TABLE? •• · . .. .. ............... .... 
T:l: ••• * 
PHASE ~E * NO 
OR SA l 

• •• • * . • * • LAB2 
02 •• 03 •• 04 *. • •••• D5 •••••••• * 

.*.. .* *. •••• • • • * NEW FLOW •• YES •• GLOBAL *. NO •• ONE ENTRY •• YES • REINITIALISE • 
•. UNIT? .• --------> •• OPTIMIZATION •• -------->.. PATH? •• -----.. -->.ANO READ A TEXT. 

•• •• ..?. •• •• A. TABLE • *... •..• •..• • • .. .. .. .. .. .. . ............... . 
1"0 FLO' I YES • NO , 

••••• E2 ••••••• *.. . .••. E3 •••••••••• 
• ALLOCATE. • CARRY FORWARD • 
• RE3ISTERS AND • • CURRENT • 
*SET STATUS BITS. • REGISTER • 
• IF REQUIRED • • CONTENTS TO • 
• •• SUCCESSORS • 

········l········ ·······:1········ 

••••• F2.......... F3 •• • •••• F4 •••••••••• 
* • .* *. • • 
• UPDATE RUT. •• ARE ALL •• NO • SET REGISTER • 
• TABLE CONTENTS. ..PREDECESSORS •• -------->. CONTENTS TO .-.. --> 
* • ..PROCESSED~. • NULL • · . .... . . 
········1········ '-i-;ES ................ . 

••••• 32.......... • •••• G3 •••••••••• 
• UPDATE. .INITIALISE RUT • 
• TEMPORARY. • WITH DATA • 
*SrORAGE MAP IF * .CARRIED FORWARD.----------------------------__ _ 
• NECESSARY. • FROM • 
• *. PREDECESSORS • ................. . ............... . l ____________________________________________________________________________ _ 

Chart 3.41. Rtgister Allocation Phast (Phase QA) 

472 Licensed Mat6rial - Property of IBM 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

IELOQE CSECT 
HERE R 
FIRST R 
LAB2 R 
LAB3 R 
LAB1 R 

FLWZ R 

PROCZ R 

ASSNZ R 
ITDOZ R 
ACUMZ R 
KONSTZ R 
PLONK R 

ENDPROGZ R 
STOPUM R 
RDIR S 

VECTOR 

GBVEC 

LCVEe 

R4-R7 Entry pOint for Phase QE. 
set up base registers. 
Phase initialization. 
Output the text table after it has been processed. 
Input the next text table. 
Examine the text ~able and branch to the appropriate 
processing routine. 
Process flow-unit header. Only the first flow-unit header 
of each block is passed from Phase QA. 
Process block header table. If this block has been 
optimized, optimization bit vectors follow the block 
header. These are read in. 
Process ASSN text tables. 
Process ITDO text tables. 
Process ACCUM text tables. 
Process KONST text tables. 
Process text tables which merely require testing for 
temporary operands. 
Carry out final housekeeping and pass control to Phase SA. 
Stop on invalid input code byte. 
Check operand 3 of each text table to see if it is a 
global register temporary operand. If so, one of two 
vectors is inspected. 
1. If it is the accumulator global temporary, the 

accumulator bit vector is inspected, using the 
accumulator number (picked up from the ACCUM text 
table) as an index. If the bit is on, the accumulator 
was lost from its register and a store is required. 

2. If it is any other global temporary, the storage 
offset (divided by 4) is used as an index to the I 
global bit vector. If the bit is on, the temporary I 
was lost from its register and a etore is required. I 

Addressing vector. Elements contain offsets of start of I 
code for each text table. I 
Phase QE examines the following 256-bit bit vectors output I 
after each block header table by Phase QA. These vectors I 
are stored in the phase storage area (XSTG) of Phase QE. 
This shows which global temporary operands were never 
loaded and hence need never be stored. Phase QE switches 
the store flag off in tables which have them as results. 
If the bit in the vector is on, the temporary requires 
storage and is loaded. 
This shows which of the KONST(OC) text tables which appear 
at the head of inner do-loops should be changed to stores 
of the loop.control variable. A store will be necessary 
if the LCV is addressed in the loop or is busy-on-exit at 
some branch out of the loop (except for simple cases which 
are optimized by Phase QA). For this determination two 
other vectors are also examined. These are the vectors on 
abnormal information, which have been obtained from the 
general dictionary by Phase QI and passed to Phase QE in 
the text stream. The KONST(OC) table must be changed to a 
store if the LCV is used in an I/O on-unit (test vector 
ABIONU) or if it is used in a computational on-unit (test 
vector ABCONU) with order specified. If the bit in LCVEC 
is on, it indicates that the KONST(OC) table must be 
changed to a store. 

continued on next page 

Licensed Material - Property of IBM Section 3: Program Organization 473 



BLCVEC 

ACMVEC 

ABIONU 

ABCONU 

XINIT 
XTXPG 
XBREAK 
XBRICl 
XMESGR 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

This shows which of the KONST(10) text tables are to be 
changed to stores. The KONST(10) table is a dummy store 
of a base of a based Lev or of the base ~f a parame~er at 
the head of a loop out of which Phase QI has moved the 
parameter addressing code. A store is necessary if the I 
base is lost from its register before the end of the loop. I 
If the bit in the vector is on, a store is requirEd. I 
This shows which of the global temporary operands used as I 
accumulators werE never loaded and hEncE need never be I 
stored. Phase QE switches the store flag off in text I 
tables which have them as results. If the bit in ~he I 
vector is on, a store is required. I 
Abnormal information bit vector (see LeVEe above). If thel 
bit in the vector is on it indicates ~hat the LCV is used I 
in an I/O on-unit. I 
Abnormal information bit vector (see LeVEC above). If thel 
bit in the vector is on it indicates that the LCV is us~d I 
in a computational on-unit. I 
) I 
) I 
) XROUT I 
) I 
) I 

I 
IXSTG I CSECT RA Private storage for Phase QE. 1 L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

474 Licensed Material - Proper~y of IBM 



IELODE 
** * ** A2"'· * •• *. "' •• 

*+**1\.1+*·*·**** * • 
* * "'INITIALIZE FOR • 
: E~TR,{ :-------->:se~~~~~I~~lI&EXT: 

** •••• ******.*. • * 
FR::>M: 
PdliSE QA .... ···1 ...... · 

* •• **B2.*** •• ** •• · . • SCAN T::> THE * 
·NeXT TEXT TABLE"'<--l<------------
'" . 
* * * •• ************** 

**. . . 
• B2 * 
* * .*** 

·**·*C3. .*.*"' •• * * • • OUTPUT THE * 
*~ROCEOURE TABLE. 
* ONLY * . '" 
.*."'."'.********"'''' 

1\ 

... I 
D2 *. **"'*.03 •• ***.* •• 

• * *. • READ IN THE * 
•• MAIN •• YES * GLOBAL TEMP • 

•• PROceDURE •• -------->.STORAGE VECTOR '" 
•• TABLE? .* • FOLLONING THE * 

* • •• * PROC TABLE * 
*. • * .*** •••••••••• "'*. 

1" ... 
E2 *. 

***.E1*···"'*"'·· .* •• 
* * YES •• LAST TEXT •• 
* EXIT *<--------"'. TABLE? •• 
* * *. .* ...... "' .... *... "'... . ... 

T::>: ••• * * * 

PH'" " I "' :.;:.: 
.•. 1 

F2 "'. .."' •• F3. *.* •• **. 
.• *. * * .*IS OPERAND3 •• NO *OUTPUT THE TEXT. 

"'.A GLOBAL TEMP.*-------->* TlIBLE • *. ?'" 1\. • •. .• • * 
•• ." •••••••• * ••• * •• ** 

i''' 
··.·*G2****"'.**·· 
* * • EXAMINE THE • 
* GLOBAL TeMP • 
• STORAGE VECTOR. 
* • • * •• *** •••• "''''.''''''* 

1 
. *. 

H2 *. .• * . 
• "'ISTHE TEMP"'. YES 

"'.eVER LOADED? •• ----> 
*. . * "'. .. •• . * 

I" 
*··*"'J2*·····*··· 
'" * • • *SUPPRESS STORE *-----

• * * * * •• ******.**.* ••• 

Chart 3.42. Elimination of Unnecessary store operations (Phase OE) 

Licensed Material - Property of IBM Section 3: Program Organization 475 



~g~~: Each of the code generation phases consists of two modules, a root module and a 
non-root module. The root modules of all four phases are identical in organization. The 
non-root modules are similar, the major difference being that each phaSe processes only 
certain types of text table, thus the code skeleton blocks and direc~ories are different 
for each phase. The following organization table outlines the organization of root and 
non-root modules, showing, in ~he case of the non-root module, the minor differences 
between phases, and listing those text tables either processed or partly processed by 
each phase. 

r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
t---------+---------+---------+-----------------------------------------------------------~ 

SART 

CONCON 
NLIST 

MKOUT 
SCALMV 
SCMV 
DECLGTB 
STARTUP 
INITIO 
MAINl 
LOADl 
MAIN4 

MAINS 
R03 
TRTABLE 

RRR 
PSEUDO 
PSCOpy 
PSMARK 
PSTTLAB 
P5TTBR 
PSTTBXLE 
RXX 
RX4BIT 
RX2 
RXO 

BRRX 
BALl 
LARX 
BRR5 
RXD 
LMSTM 
R55H 
SSlL 
SS2L 
SI 
BSDP 
LISTRX 

CSECT 

s 
S 

5 
S 
5 
R 
R 
R 
S 
S 
S 

S 
S 
T 

S 
5 
S 
5 
5 
5 
S 
R 
5 
5 
S 

R 
5 
R 
R 
S 
R 
R 
5 
5 
R 
R 
R 

I I 
I R6-R8 I 
I I 
I I 
I I 

I 
I 
I 

Entry point to the root module of the phase. This'CSECT 
is identical for all five phases. 
Generate a constant in a form suitable for output. 
Process a sequence of code which will not be followed by 
listing information even when the CODE option has been 
specified. 
Output a text table marker. 
Align to a full word boundary then output code. 
Output routine. 
Calculate the length of a decimal operand in bytes. 
Initialize scan of input pages. 
Examine first text table in the input stream. 
select bit strips. 
Set base loads in bit strip if necessary. 
Build register and operand arrays to facilitate further 
processing. 
select skeleton instructions for processing. 
Use the skeleton op code to index translate table. 
Changes op code in preparation for instruction processing 
routine selection. . 
RR instruction processing routine. 
Handle pseudo markers in text tables. 
Copy a number of bytes from text table to output buffer. 
Move a marker from a code skeleton to output buffer. 
Deal with internal text table labels. 
Deal with branches within text tables. 
Process markers for BXLEs within text tables. 
RX instruction processing routine. 
Process the 4 bits which refer to the operand. 
Entered when the operand field is a register operand. 
Change the operator if the operand has greater than 
default precision. 
RX branch instruction processing routine. 
Fill register fields for RX branch. 
LA instruction processing routine. 
RS branch instruction processing routine. 
Deal with label references. 
LM/STM instruction processing routine. 
SHIFT instruction processing routine. 
SS instruction processing routine (one length). 
S5 instruction processing routine (two lengths). 
51 instruction processing routine. 
Calculate a base and offset. 
Append listi.ng information to object code. 

Continued on next page 

476 Licensed Material - Property of IBM 



XTXPG CSECT R9 
XRFAB CSECT R9 
XBRICl CSECT R9 
XBREAK CSECT RF 
XINIT CSECT R9 
XDIREC CSECT R9 

XSTG CSECT RA 

SASEG CSECT R7-R8 

SASEG R 
SCSCHB R 
SCSCHBl S 

BRI R 
SCSRCHl S 

SCSRCH2 S 

SCSRCH3 S 

SCSRCH5 S 

NEXTPZ R 

LEVELl T 

LEVEL2 T 

T 

) 

) 
) 

) XROUT 
) 

) 

Working storage for the phase 

Entry point to the non-root module of the phase. 

Initialization routine. 
Scan input text stream. 
Test the type of the found text table against the 
directories to determine whether it can be processed by 
this phase. 
Entered if the text table can be processed. 
If the input pointer has found a marker, process this 
marker and continue input scan. 
If the input pointer has found a text table which cannot 
be processed by this phase, put out special marker and 
move text table to output. 
If the text table was preceded by special case code, 
output the contents of the output buffer and return to 
routine SCSCHB to continue input scan. 
Entered when the input pointer points to code which must 
be transferred directly to the output. 
Pass control to the next phase. 

First-level directo!y (256 bytes), used to determine 
whether a table with a given value of IOPl (see figure 
5.96) is to be processed by the phase, and if so, how many 
second-level directory entries exist for that value of 
IOPl. 

Second-level directory, containing one entry for each 
different type of text table, as defined by IOP1/IOP2, to 
be processed by the phase. Each entry contains the 
address of the code skeleton block used in generating code 
for this type of table. 

One £gde skeleton block for each type of table processed 
by the phase. 
Each block contains: 
• a code skeleton array containing a list of 

skeleton instructions, 
• bit-strip arrays used in selecting 

instructions from the code skeleton array, 
• special case coding for the table. 
The text tables either processed or partly processed 
by each phase are as follows: 

Phase SA: 
PROC 
ENTRY 
BEGIN 
ONB 
CALL 
ONS 
RETURN 
PEND 

CHANE 
CHECKC 
NOCHECK 
SN 
SL 
GSN 
GSL 
VDA 

CGSR 
GEN 
GOTO 
GOOB 
ITDO 
BADDR 
O:f'FS 

Continued on next page 

Licensed Material - Property of IBM Section 3: Program Organization 477 



CONREG 
STNOCH 
OFFCD 
OFFCD 
LENCD 

LENCD 
SHCD 
SHCD 
IMCD 

XERICl 
XBREAK 
XTXPG 
XRFAB 
XDIREC 
XRFSEQ 

S 
R 
R 
CSECT 
R 

CSECT 
R 
CSECT 
R 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

R9 

R9 

R9 

R9 
R9 
R9 
R9 
R9 
R9 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Phase SQ: 
ASSN 
PLUS 
PPLUS 
MINUS 
PMINUS 

Phase SD: 
LADDR 
OFFS 
CONV 

Phase sc: 
COMP 
BCB 
RESDES 
OFFS 

MULT 
DIVIDE 
SHIFT 
DINC 
SCI 

ONCAD 
ALOBIF 
ARG 

MASSN 
AND 
OR 
NOT 

BC 
LADDR 
OFFS 
KONST 
REVERT 

ALIST 
KONST 

MAP 
MOVE 
TRT 
KONST 

set base registers for operands 4, 5, and 6 in OPTAB. 
(Phase SA only) Output text table markers. 
Evaluate coded offset modifiers. 
CSECT for routine OFFCD. 
(Phases SD, and SC only.) Evaluate coded length 
modifiers. 
CSECT for routine LENCD. 
Process coded shifts from skeletons. 
CSECT for routine SHCD. 
(Not Phase SQ.) Compute an immediate field. 

I ) 
I ) 
I ) 
I ) XROUT 
I ) 
I ) 
I 

XSTG I DSECT I RA I Private working storage for module. L _________ ~ _________ ~ _________ ~ _________ ~ ________________________________________________ _ 

478 Licensed Material - Property of IBM 



IEl-OSA. 
IBLOSQ 
IEl-OSB 
IELOSD SCA.NO 
IELOSC ••••• A3 •••••••••• 

•••• A.1········· •• 
• '" • SCAN TO NEXT • 
* ENTR~ *---------------------------------->. ITEM IN THE • 
• '" 1\ 1\ * INP[H STREAM * 

**.*********.** I 1 • * 
n~~h QA. OR QE : :;* ; ..... U

j 
........ * 

SQ OR SB • • 
SQ, SB, OR SO NO •••• 

. . . *. 
B2 *. B3 •• 

·***B1*** •• ***· .* *. •• *. 
* '" ~ES .* *. ~ES .*MARKER FROM •• 
* EXIT *<--------*.END OF TEXT?. -----*. PREVIOUS .* 
* * *. .* *. PHA.SE? •• 

*.******** •• *.* *..* *..* 
ro: •.. * * .. * 
PHA.SES SQ * * NO 
SB, SO, S~~ OR SK 1\ 1 
so, SC OR ~K j 
S: OR SK 
SK 

SCA.LMV SCSCHBI .* • 
• ****:2* ******** C3 * • 
., * .* *~ 
*TRA.NSFER TA.BLE • NO .*DOES PHASE *. 
• TO OUTPUT *<--------•• PROCESS THIS .* 
* * *. TABLE? .* 
* * *..* 
************.**** * .. ., 

au 1 y", 

***.*03*** •• ***** 
* SELE:T CODE * 
*SKELETON ARRA~,* 
* BIT STRIP * 
: s~~~~rt ~ggE : 
***************** 

MAINl 1 
*****E3********** 
* * • SELECT BIT • 
*STRIP FROM BIT * 
• ARRA~ * 
* * .* ••••• * ••••••• *. 

MAINS I 
···*·F3·**·****** 

• * * INITIA.LIZE * 
* REGISTER AND * 
*OPERA.ND TA.BLES * 
* • 

SBI~~"""I"""" 
***.*G3*·*·*·**** 
• SELECT CODE * 
• SKELETON FOR • 

-->*FIRST/NEXT BIT • 
• SET IN STRIP • • • 
········1········ 

**·**H3********** 
* * • COMPLETE * 
• REGISTER A.ND * 
* OFFSET FIELDS * 

• * 

'CM~"""'1"""" 
*****J3********** 
* * * TRANSFER * 
*INSTRUCTION TO * 
* OUTPUT * 
* * 
········i········ 

. *. 
K3 *. 

•• •• **** 
YES .* MORE BITS *. NO * * 
---•• SET IN STRIP •• ---->* A3 * 

*. ? • * * * *..* **** 
*. . * • 

Chart 3.43. Code Genera~ion - Passes 1, 2, 3, and 4 (Phases SA, SQ, SD, and SC) 

Licensed Material - Property of IBM section 3: Program Organization 479 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I , 'registersl I 
~---------+---------+---------+-----------------------------------------------------------i 
, I I 
I , I 
IZTEXTL DSECT 'Rl Describes the input stream. I 
I LABELS DSECT I R3 Describes label table entries. I 
REGTAB DSECT I R5 Describes register-us age-table entries. I 

I I 
IELOSK CSECT I R6-R8 Entry point to Phase SK. I 
IELOSK R I Initialize registers, storage, text page handling, label I 

MSCAN R 

SRl R 
LAl R 

SLAl R 

MVCl R 
XCl R 
RXD R 

SCANl R 

SCAN2 R 

BREAK S 

I table handling, etc. 
Examine next item in input; branch to one of the following 
routines or, if no special action required, skip to next 
item and update code count. 
Remove NOPRs if not required. 
Remove LA R,OCO,R). 
Change LA R,O(O,R') to LR R,R' • 

change SLA R,l to AR R,R • 

Merge contiguous MVCs if possible. 
Change XC FIELD(1),FIELD to MVI FIELD,O • 
Deal with RX instructions where the operand is not aligned 
on the correct boundary. such an operand is moved to/from 
correctly aligned work space. 
First scan of the input text stream, examining marker 
bytes. Divides the code into addressacle regions. 
Branches to one of the following subroutines, depending on 
the marker examined: 

NEXT TTLABP 
LABP TTABLEP 
UGOP LADP 
CGOP TTSTMTP 
PROCP LABVARP 
BASEP BUMP4 
FINP ALIGNMP 
STP LOOPMKP 
PROLBP KALLP 
KALLVP GOBACKP 

Second scan of the input text stream. Offsets of labels 
from the origin of their containing region are calculated 
as the code is scanned and are put into the label table. 
Because the regions are fixed, exact space can be 
calculated. Branches to one of the following subroutines, 
depending on the marker examined: 

NEXT 
LABO 
UGOP 
CGOP 
PROCO 
FINO 
STOO 
TTLABO 
ECGSO 

LADP 
RLDDO 
LABVARO 
ENTO 
BUMP4 
MOVEDO 
BLENDO 
SCGSO 

Called with RB pOinting at an instruction or marker. 
Updates the register-usage table to reflect the new state, 
then deletes, output, and/or bumps over the instruction or 
marker, and increments the code count as applicable. 

continued on next page 

480 Licensed Material - Property of IBM 



LABPAGE 

DIAGX 

FLO~ 

OPTAB 
MKTAB 

s 

s 

s 

T 
i 

Called with RB pointing at a label number. Calculate 
which page this label lies in, check whether the page is 
in main storage, and if not, fetch it in. 
Note that an entry will be generated in the diagnostic 
statement number table. If the offset exceeds 32K, the 
dictionary reference diagnostic statement counters are 
updated. 
Generate the code to provide execution flow trace. 

Interpretation of System/360 OPe codes. 
Interpretation of marker identifier bytes. 

XlNIT CSECT ) 
XTXPG CSECT ) 
XBRlC1 CSECT ) 
XBRIC3 CSECT ) XROUT 
XBREAK CSECT ) 
XRFAB CSECT ) 
XMESGR CSECT ) 
XDlREC CSECT ) 

IXSTG CSECT I Private storage for Phase SK. I L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J 

Licensed Material - Property of IBM section 3: Program Organization 481 



IELOSK 

**"*1>1**··*··*· * • 
• E~TRY * * • 

~~~~E :::·::~l·····*·* 
so, OR S_ 

PPI>SS 
····*B1······.··* 
• INITII>LIZE * 
.Pfil>SE CONSTI>NTS. 
* I\ND GET THE • 
• LI>BEL TABLE • 

• * ········1········ 

..... :1.......... . .... e2 ......... . 
• •• • • SCAN TO TfiE • • TRANSFER ITEM • 
·FIRST/NEXT TEXT·<-------_· TO THE OUTPUT .<--1<--------------------------------------
• ITEM. • TEXT STREAM • A * •• • 
········1········* •••• **.** •• ***** •• ;; : 

• • .*.. <----------
. *. . *. 

D1 •• 02 •• • •••• 03 •• * •••••• .. ... ..... .. . 
•• END::>F •• NO .• OBJECT C::>DE •• YES • OPTIMIZE THE • 

•• PR03RAM F::>UND •• -------->*. FOUND? •• ---_---->. CODE IF • 
• • ? • • •• •• • POSSIBLE • 
*..* *..* * *' •. .• *. .• • ••••••• * •••••••• 

E'" i V,s .1.NO ""0' 
••••• E1 ........... * B2 •• ..***E3**.* •• **.* 
* * .* *. * • 
*RE-S:AN TEXT IN* .* 'GOT::>' *. YES .ESTIMATE SPARE * 
*REI\D/WRITE M::>DE* *. MARKER? .*-------->. FOR LOADS AND *---
* * • • • • * BRANCH * A 
* * *..* * • 
········l········ "1'~0 ................ . 

LAB::> • • • LOOPMKP 
••••• F1 •• * ••• **** F2 *. .****F3*.****.*.* 
* * .* *. * * 
• ASSIGN LABEL * • * 'DO' LOOP *. YES *STACK LOOP TEXT* 
*::>FFSETS HI THE * *. MARKER? •• -------->*REFERENCES AND *---
• LABEL TABLE * *. • * * NEST LEIlEL * 
* * *..* * * 

F,,~"""'l"""" ,::1::° ................ . 
****31********* •••• **** 

• *. * *. NO * • * EXIT • *. LABEL MARKER •• ---->* C2 • 
• * •. •• *. **.* •••••••• **. •••• • ••• 

TO: •••• 

"ASE " 1 'KS 

LABP ••• LABP2 
H2 •• .* ••• H4 •• * ••• * •• 

•• >1<. • * 
.* IS REGION *. NO • MAKE A REGION. 

*. SIZE GREATER •• ----------------------... ----------->. ENTRY IN THE 
*.THAN 4K? .* • LABEL TABLE •. .• *. 

"'. . '" ••• *.****.** •• *** J YES LABPS 'I 
32 *. *****34* *** •• *** 

.* *. * • 
•• IS LABEL IN*. NO *MARK LABEL AS 11.* 

•• A NESTED LOOP •• ---------------------------------->*REGION BOUNDARY* 
*. ? .* *. 

*. .* •• 
* •• * *** •••• **.* ••• * •• 

• YES A 

LAB:: •••• 2.1........ . .... K3.......... • •••• K •• l ....... . 
'" •• INITI!l.LIZE"· • 
• RESET POINTERS. .COUNTERS FOR A • .CONSIDER START. 
• TO OUTER LOOP .-------->. RESCAN FROM .-------->. OF LOOP AS A * 
• •• THIS LOOP. .REGION BOUNDARY. • .. * •• • •••• * •• * •• * ••• *** ••• *.********.*.* *** •• *.**.* •••••• 

Chart 3.44. Label Resolution Phase (Phase SK) 

482 Licensed Material - ProperLY of IBM 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------1 
1ELOS1 CSECT R6,R7, Entry pOint to Phase S1. I 

R8,R9 I 
51 
INITT 
SCANl 
OBJOUT 
REC 
EMPTY 
PSOUT 
RLDO 
RLDOUT 
ESDEXTN 

SIADOUT 
DIAGX 

LABPAGE 
ESDSD 
ESPOUT 
PSPL 

XINIT 
XRFAB 
XTXPG 
XBRIC3 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

R 
R 

R 
R 
R 
R 

CSECT 
CSECT 
CSECT 
CSECT 

R9 
R9 
R9 
R9 

I 
I 
I 

Initialize registers, storage, etc. 
Initialize TXT and RLD cards. 
Scan the input text stream. 
Add code to TXT records. 
output a card/card image. 
Complete not fully used TXT/RLD records. 
Add code to TXT records if code requires replication. 
Make an RLD entry. 
Add an RLD entry to an RLD card. 
Create an external 7-character name from a uSer 
identifier. 
Make an entry in the third output text stream. 
Determine the need for an entry in the diagnostic 
statement table, and calculate its space requirement. 
Get a required label page and index to the required label. 
Add information to an ESD entry. 
Make an ESD entry in a card/card image. 
Index to routines which process the constants pool. 

) 
) XROUT 
) 

) 

XSTG CSECT RA I Private storage for Phase SI. L _________ i _________ i _________ i _____________________ --___________________________________ _ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Licensed Material - Property of IBM Section 3: Program Organization 483 



IELOSI 

FROM: 

•••• A2········· • • 
• ENTRY * • • •••••••••••• **. 

PHASE SK 

1 
••• ··B2·.··.**·*· 
.INITIALIZE TEXT. 
• BUFFERS A~D • 
• LABEL PAGE • * INDEX • · . ••••••••••••••••• 

1 
·····C2 •••••••• •• • • • GET THE FIRST • 
• LABEL PA3E • 
• INDEX • 

• * ••• * ••• * ••••••••• 

s"s, 1 ••••• D2·········· • • .INITIALIZE THE • 
.THIRO OUTPUT • 
• TEXT STREAM • • • ·······T ...... · 

~~~~~~~gI~~~E~§~ug~T~~~~~~~T~y .··E2.···.······ 
§~~t~sOI:TIONARIES, AND BIT • OUTPUT ESO 

RECORDS 

•••••••••••••••• 

RLDTxr 1 
••• F2 •••••••••• • 

• OUTPUT • 
STANDARD CSECTS • • 

·········1······· 
FLLl 

TiiESE CSECTS ARE INITIALIZED ••• G2 .......... . 
USIN:; DATA FROM THE PSEUDO 
CONSTANTS POOL .OUTPUT CSECTS • 

Chart 3.45. 

FOR EXTERNAL 
ITEMS 

•••••••••••••••• 

1 
•• *H2···.······· 
OUTPUT PROG­

*RAM ADCONS IN * 
STATIC. MAKE -------------------------------* ENTRY IN 3RD * 
OUTPUT STREAM •••••••••••••••• 

Final Assembly Phase (Phase 81) 

484 Licensed Material - Property of IBM 

AOCONl 
••• B4 ••••••••••• CGS AND LIBRARY MODULE ADCON 

.2Up~gT!~ggija • ~~RM~~~~E~~8Mg~~E~~5N~£I~§TR 
--> ADCONS IN 

• STATIC. MAKE • 
ENTRY IN 3RD 

ST~~"""T"" 
••• C4 ••••••••••• 
OUTPUT STATIC 

• ADDRESSING 
ADCONS. MAKE 

• ENTRY IN 3RD • 
OUTPUT STREAM 

.s:~"""r"" 
.~~~~~;.;:~ ••••• gg~~~~~~~DP~~LS~f~gf~~M¥~iS 

• PSEUDO • PSEUDO CONSTANTS POOL (FROM 
CONSTANTS POOL PAl • • .. ...... 1 .... · 

••• DIAG 
E4 •• • •• E5 ••••••••••• 

•• D~AG~~STI~· •• YES • 3ij~~u~¥~~G • 
•• STMNT TABLE •• --------> DIAGNOSTIC STMT 

•• REQUIRED •• • TABLE TO • 
.... ? •• STATIC STORAG 

OeJO ··i~~:-------------::::~:j······ 
•• ••• F4 •••••••••• 
:SC~~c~~~Tfou~ND : 
.LABEL TABLE FOR. 
• BRANCH • 
• INFORMATION • 

········1········ 

·.·G4 ••••••••••• 

· .. · .... 1 .... · 
.•. 

H4 •• 
•••• • ••• H5 ••••••••• 

•• IS LIST •• YES. • 
•• OPTION ON? •• -------->. EXIT • .. .. . . .... . ............. . 

•• •• TO: I .0 .. AS. SM 

•••• J4 ••••••••• 
• • 
• EXIT • • • ••••••••••••••• TO: 

COMPILATION END 
ROUTINE (PHASE AA) 



Listings (Phase SM) 

r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Func~ion I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------i 

IELOSM 
SMOO 
ALTO 0 
SROO 
ESDOO 
SLO 
SLEO 
OFFOO 
SCAN 
MARKERS 
RRINST 
RXINST 
RSINST 
SIINST 
SSINST 
NEXTPZ 

SCA 
SCANl 
SCAN2 
SCAN3 
SCAN4 
SCAN5 
SPACE 
COUNTER 
COMM 
ONE 
HALFl 
HALF2 
OE 
OPCODE 
PAD 
REGISTER 
PRINTIT 
CHECK 
PUTITIN 
EXPAND 
BUMPl 
BUMP2 

XINIT 
XRFAB 
XOIREC 
XPRNT 
XTXPG 
XBRICI 

CSECT 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
E 
S 
8 
S 
S 
S 
S 
S 
S 
S 
E 

CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 

R9 
R9 
R9 
R9 
R9 
R9 

Entry pOint to Phase SM. 
Initialize registers, storage, input/output, 
Generate an aggregate length table. 
List the storage requirements. 
List the ESO entries. 
List the static storage. 
List the static external entries. 
List statement offsets. 
Scan the input text stream. 
Process markers. 
Process an RR instruction. 
Process an RX instruction. 
Process an RS instruction 
Process an SI instruction. 
Process an SS instruction. 
Exit to the next phase. 

Scan over a marker. 
Scan over an RR instruction. 
Scan over an RX instruction. 
Scan over an RS instruction. 
Scan over an 81 instruction. 
Scan over an S8 instruction. 
Insert a blank in the print buffer. 
Print the location counter. 
Insert a comma in the print buffer. 
Insert a byte in the print buffer. 
Insert a half-byte in the print buffer. 
Entry point to subroutine HALF1. 
Skip over a null byte. 
Insert an operation code in the print buffer. 
Insert a decimal field in the print buffer. 
Insert a register value in the print buffer. 
output the buffer contents to the print file. 
Check the print buffer painter position. 

etc. 

Move a symbolic field into the print buffer. 
Expand a pseudo-constant into the print buffer. 
Increment the print buffer pointer. 
Entry point to subroutine BUMP1. 

) 

) 

) XROUT 
) 
) 

) 

IXSTG CSECT RA Private storage for Phase SM. L _________ ~ _________ ~ _________ ~ __________________________________________________________ _ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Licensed Material - Property of IBM section 3: Program Organization 485 



IELOSM SHOO ··.·.A2 •.•••••.•. .... ~1......... . INITI~LIZE • 
• • .PHASE CONSTANTS. 
: E~TR~ :-------->:R~~~:~EBg~~~~~H: 
••••••••••••••• • PA3ES • 

~ROM: ••••••••••••••••• 
PHASE SI 

· .. 
B1 •• 

•• IS •• 
NO •• AGGREGArE •• 

---•. OPTION SET? •• <----------------.. .. .. .. .. .. 
• ~ES 

RLTOO 1 
•• ·:::1 ••• • •• • •• •• 

SCAN 
.. IlARIABLES • 
OI:::T. AND PRINT 

• AGGR. LENGTH • 
T~BLE 

--::::::::r···· 

••••• 01 •••••••••• 
• • 
• INITIALIZE • 
• SECON~ STRE~M • • • • • 
········1········ 

· .. 
E1 •• .. .. 

•• IS STORAGE •• NO 
•• OPTION SEr 7 •• ---.. .. 

*. .* .... 
SROO 

{'EO 

••• ~1 ••••••••••• 

PRINT our 
STORAGE 

• RE>:!UIRE:.1ENTS • 

·········1::::::-----

••• ESDOO 
31 •• • •• :;2 ••••••••••• .. .. 

•• IS ESO •• YES .PRINT OUT ESO • 
•• OPTION SEr 7 •• --------> ENTRIES .. .. . .. .. 

··i~~:------------:::=:i······ · .. 
Hl •• .. .. 

•• IS MAP •• NO 
•• oprION SEr •• ----------------------------> .. .. .. . . .. .. 

• YES 

RLOOO 1 
• ·.J1 •• ••••• •• •• 

• PRUIT our 
LIsr OF STArIC 

• STORA3E • 
................ 

1 ... 
Kl •• • •• K2 ••••••••••• 

•••• PRINT LIST OF 
NO •• IS OFFSET •• YES • STATEMENr • 

r
---.. OPTION SEr ? •• --------> NUMBER OFFSETS 

*. .* • * .. .. .. .. . .............. . 
•••• • • • 

• 11.3 • • • .... 

•••• • • 
• A3 • · . 

------------:1"'. ... 
11.3 •• .. . . DOWNO 

.··.·Aq·········. · . RRINST 
···AS··········· 

NO.. IS LIST •• • TEST TYPE OF. RR .PRINT OUT RR 
TYPE 

INSTRUCTION • r
---.. OPTION SET •• _->. INSTRUCTION .--------> .. .. • •• .. .. .. .. 

:.:;.: 1. YES . . 
•••• 

SLOO 
• •• B3···.······· 

ACCESS HEAD 
.OF CONSTANTS 
POOL AND PRINT 

• CONST. • 
ENrRIES .. ....... 1" .... 

·····C3 •• • •• ••••• · . • ACCESS MAIN • 
rExr STREAM .. 

• · . ••••••••••••••••• 

----,1 
SCAN ••• 

03 •• .. .. 
•• TEXr ITEI~ •• TEXT 

•• OR MARKER 7 •• -----
:4-. .* .. . . .. .. . 

MARKER 1 
MARKERS 

••• E3 •• • •• • ••••• 
PRINT OUT 

.CORRESPONDING • 
ITEM OR COMMENT • • 

· . • •••••••••••••••• • ••••••••••••••• 

RXINST 
••• BS·· •• •••• •• • 

RX • PRI NT OUT RX 
---> TYPE 

• INSTRUCTION. 

• ••••••••••••••• 

RSINST 
• •• CS········.·· 

RS .PRINT OUT RS 
---> TYPE 

• INSTRUCTION. 

•••••••••••••••• 

SIINST 

SI 
---> • 

• •• 05·· •• • •• • ••• 
.PRINT OUT SI 

TYPE 
INSTRUCTION • 

•••••••••••••••• 

SSINST 
• •• E5··.···.·· •• 

15S .PRINT OUT SS 
---> TYPE 

• INSTRUCTION· 
................ . .............. . 

1<---------------------------------------------... 
F3 •• .. .. 

•• •• YES 
•• END OF TEXT 7 •• ---.. .. .. .. .... 

ro 
• •••• G3 •• • •• • •••• • • • • ---. GET NEXT ITEM. • • • • ................. 

• •• H3.·· •• • ••••• 

• PRINT OUT • 

r
--> TIME FOR <--

• COMPILATION· 

: :;=;·······1······· 
•••• 

NEXTPZ ••• 
J3 •• 

•••• • ••• Jq ••••••••• 
• .ANY ERRORS •• YES. • 

•• OR WARNINGS ?.-------->. EXIT • .. .. . . .... . ............. . 
•• •• TO: I NO PHR,. UR 

• ... K3 •• • ........ .. 
•••• Kq ••••••••• 

• •• • PUT OUT MESSAGE -------->. EXIT • · .. . . 
• ••••••••••••••• • •••••••••••••• TO: 

PHASE All. 
(COMPILATION 
ROUTINE) 

END 

Chart 3.46. Object-code Listing Phase (Phase SM) 

486 Licensed Material - Property of IBM 



I Name 
I 
I 

• I 
I,IELOUA 

IELOUAS 
UFl 

I 
1 
I 
I 

Ul 

SUl 
SU2 
SCHELL 

U97 

IELOUAC 
UEDLST 

U55 

U124 
U38 

MED 
UR3 
Ul00 

U99 

U90 

U35 

IU32 
IU26 
1 
I 
1 U28 
I 
1 
IU27 
1 
IU29 
1 

Type 

CSECT 
CSECT 
R 
R 

DSECT 
DSECT 
R 

R 

CSECT 
R 

R 

R 
R 

DSECT 
R 
R 

R 

R 

R 

R 
R 

R 

R 

R 

Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

I 

I Base 1 
Iregistersl 
I t 

R9 
R9,R7&R6 

R4 
R5 

R9,R7&R6 

Rl 

i 

Function 1 
1 
t 
1 
1 

Entry point to root module of Phase UA. I 
Entry point to sort module of Phase UA. 1 
Test FLAG option. 1 
Build sort units, i.e., generate a page stream of message f 
entries from the input message stream for sorting 1 
purposes. 1 
) 1 
) Describe sort units. f 
Sort routine to sort all sort units in one page into orderl 
of severity, line number, and message number. I 
This routine takes the sorted pages and merges them into al 
single text stream. I 
Entry to point to print module of Phase UA. I 
Search edit table for a particular message number entry~ I 
If found, check that statement number in table entry is I 
lowest encountered so fa~. If there is no table entry for 
that message, make one. 
Initialize print dataset. Print error-message page 
headings. 
Test FLAG option. 
Start of message printing loop. Determine the message 
number of the next message to be printed. 
Describe entries in the table of edited ~essages 
Skip over a special purpose edited-message sort unit~ 
Determine whether an edited message is to be printed, and 
if so, obtain the start of the list of special purpose 
edited-message sort units. 
Print the message severity subheading before the first 
message of a new severity level, and the message 
introduction information (i~e~, message number, severity 
code, and statement number or numbers, if edited). 
Examine the message table (MESTAB) to determine w~ether a 
message has been provided for the number in the error 
message entry. If not, print a diagnostic. 
Message interpreting routine. Examine each code of a 
coded message to determine whether it is 

1. a keyword, 
2. a level marker, 
3. an end-of-message marker, 
4. a text parameter, 
5. a statement-number parameter, 
6. a dictionary parameter, 
7. a quote marker, 
8. an alternative text marker~ 

If it is a level marker, multiplj the level number by , 
256 to add to the keyword code following and to construct 
the correct keyword code with which to reference the 
keyword table (KEYTAB). 

Obtain a keyword from KEYTAB, given the keyword code~ 
Handle 'no blank' characters by concatenating words in a 
sub-buffer. Concatenate punctuation characters with 
keywords, if necessary. 
Scan to the next message, or invoke the control phase 
clean-up routine if the end of the message stream is 
reached. 
Convert a statement number to character form, when found 
in the middle of the message. 
Access a names dictionary entry when a dictionary 
reference parameter is encountered in a message .• 

Licensed Material - Property of IBM Section 3: Program Organization 487 



U30 

UBUF 
UBUF 

UBUF1 

UBUF3 

ZTRAN1 
XINIT 
XDISC 
XDIREC 
XPRNTN 
XBREAK 
XTXPG 
XBRIC2 
XPRNT 

XSTG 
IELOUAT 
MCDE 

MESTAB 
MESREF 
KEYTAB 
KEYREF 

IELOUAK 

R 

S 
E 

E 

E 

T 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSECT 
CSEC 
CSECT 

CSECT 
CSECT 
T 

T 
T 
T 
T 

CSECT 

Determine a text parameter's type, and place appropriate 
text in the message stream. 

Has three entry points as follows: 
Normal entry point. Text pointed to by RB, the length of 
which is in RC, is moved into the print buffer, and the 
line length, ULINE, updated by the amount moved in. If 
the line is full, it is printed, and the next buffer 
initialized. ULINE is incremented by one more than the 
length of the text moved into the buffer, to leave a space 
between each item on the line. 
As for UBUF (E), except that the previous buffer is 
printed and a new line established for the new text item~ 
A space is not left after this item, because the first 
item moved into the buffer is always the message 
identification letters. 
As for UBUF (E), except that no allowance is made for 
space after the item. 
Internal code-to-EBCDIC translation table. 
) 
) 
) 
) XROUT 
) 
) 
) 
) 

Private storage for Phase UA. 
Second module, containing message tables. 
Table of codes giving, for each message ~umber; 

1. severity of message, 
2. editing requirements for message, 
3. presence or absence of line number parameter in 

message. 
Table of coded messages. 
Table relating messages number to coded message in MESTAB. 
Table of keywords used in messages. 
Table relating length of a keyword to its position in 
KEYTAB. 

488 Licensed Material - Property of IBM 



IELOUA 

FRO,",: 

•• ··;\1 •• ••••• •• · . • ENrR~ • · . ••••••••••••••• 
PHASE AA I 

Ul 

••••• Bl·········· · . • INITIALIZE • 
.ERROR PA~E SCAN. • • • • ................. 

[ 
••••• ~1 ••••••••• • 
• BUILO SORT UNIr. 
• AND NOTE • 

6---------------------------------------------------------------... . .. 
A3 •• A4 •• • •••• AS •••••••••• 

•••• .* *. .* *. • • 
• • • .IS MESSAGE •• :lES •• IS MESSAGE •• YES • ADD MESSAGE • 
• A3 .----> •• ACCUMULATIVE •• -------->.. IN STACK •• -------->.NUMBER TO STACK. 
•• •• 1 ,. •• .• • • .... .... .... . . .. .• ·0 .• . ...•.....•...••. 

I'0 .1."" 
••••• B3.......... B4 •• · . ..-. • GEr CODED. •• STArEMENr .0 YES 
• MESSA3E FROM .<-- •. NUMBER=O 1 •• ----------------> 
• TABLE· •• •• • • *... 
········1········ ':I:~O 

••••• C3.......... C4 •• • •••• es •••••••••• · . 0··. . . 
r
-->. UI~HE5r • 

• SEVERIT~ • • • 
············1········ 

: sC~~sg2g~D: .: ~~~~ ~~¥~~~~.: .:~~ _____ >: SK~gRr U~~~T : · . ..?. . . · . .... . . ................. ., .. . ............... . 
l
· NO l ... . . . 

~1 • · 
. .. 

01 •• • •••• 02 •••••••••• .... . . 
•• ourpUT PA~E •• YES. • 

•• FULL. 1 •• -------->. SORT PA3E • .. .. . . ... .. . . 
··i~~:--------------::::::::j········ ... 

El •• • •••• E2 •••••••••• 

->: A3 : • • •••• 
. .... D4.......... . .. DS ••••••••••• 
• • 
• GET ·rEXT • 
.REFERENCE FROM .--------> 
• srACK· • • • 

PRINT 
STATEMENT 

NUMBER 
................. . .............. . 

r--------------------J ... 
E4 •• • •••• ES •••••••••• .... . . . ... ..END OF •• • • 

•• END ~F •• NO • GET NEXT • • • YES •• ACCUMULATED., NO • GET NEXT SORT • 
•• ~ESSA3E •• -------->. MESSA3E .---->. Cl • -----.. MESSAGES? •• -------->. UNIT .---•• STREAM 1 •• • •• • *. .* • • .... . . . ... .,.. . . .. .. . ............... . 

I rES ::::::<-1 rES 

Fl···.. F2' '., 
•••• ,. HAS ., 

•• IS COl1PILE •• NO •• SEVERITY •• 
•• OPTION ON ? •• --------> •. LEVEL BEEN •• 

•. •• ·.EXCEEDEO ,. 
•••• •• ? •• 

* .. * * .. * 

:.:~.:->l. ~ES [. NO 

.... 
••••• 31 •••••••••• 
· . · .. ·G2········· · .. . 
• SORr PAGE. • EXIT • 
• • + • · . . ............. . 
••••••••••••••••• TO: 1 'HAS' I. 

••• U97 
81 •• • •••• U2 •••••••••• .... . . 

•• MORE rHAII •• YES. • 
•• ONE SORrED •• -------->. MERGE PAGES • 

•• PA~E? •• • • .. .. . . 
··i~~:--------------:::::]········ 

• ••• ·Jl •• •••••••• · . . ... 
.I~IrIALIzE SORr. • • 
: p~~~i ~~~~fN3 :---->: A3 : .. . .... ................. 

.. .. . ............... . . 
. .. 

F3 •• • •••• F4 •••••••••• ···FS·· •• ••••••• ..., . . .. .0 YES • GET WORD FROM. .ADD WORDS TO • 

r
--> •. NORMAL WORD 1.·-------->· TABLE .--------> PRINT BUFFER .. .. . .. .. .. . . 

: ;:.: ··l··~O ................. . ........ [ ...... . 

.... 
. .. 

G3 •• • •••• G4.......... . .... GS •••••••••• 
• * *. • •• • 

o • MESSAGE •• YES .GET ERROR PAGE •• • 
., INSERT 1 •• -------->. ENTRY J---.. GET NEXT CODE •• .. o· . .... . .. . 

··l··~O ........ [......... :·;;·i·······j·A ....... . 

. ... 
• •••• H3.......... • •••• H4.......... . .. HS •••••••••• · .. . 
• • .CONVERT INSERT • .ADD INSERT TO • 

BUFFER • END OF MESSAGE. • TO EBCDIC .--------> · .. .. · .. . ········i········ ................ . ................ 

... 
J3 •• .. .. 

•• END OF SORT •• YES 
•• UNITS 1 •• ---.. o· .. .. . ... 

1'" 
··.··K3.········· 

. .. 
J4 •• • •••• JS •••••••••• 

• • HAS ., .SET NOLINK FLAG • 
NO •• SEVERITY •• YES • IN • 

r
---.. LEVEL BEEN .·-------->·COMMUNICATIONS· 

•• EXCEEDED •• • AREA • 
•• ? •• • • 

:.::.: ·'~l·· ~::;:~::l········· 
•••• • • YES •••• 

K4' ' •• ..... . •••• ..·.KS···.····· 
• • • GET NEXT SO~T • 
• A3 .<----. UNIT • · .. . ..... . ...........•..... 

• • IS LINK •• NO. • 
----> •• OPTION ON 1 •• ------_ ... >. EXIT • .. .. . . .... . ............. . 

., •• TO: 
• PHASE AA 

(COMPILATION 
END ROUTINE 

Chart 3.47. Diagnostic-message Editing Phase (Phase UA) 

Licensed Material - Property of IBM section 3: Program Organization 489 



r---------T---------T---------T-----------------------------------------------------------, 
I Name I Type I Base I Function I 
I I I registers I I 
~---------+---------+---------+-----------------------------------------------------------~ 

I 
I 

IELOAI CSECT R8,R6, Entry pOint to Phase AI. I 

DUMP 
PGHDTS 
REGTST 
COMRGD 
XSTGDP 
RUTDMP 
TRCTDP 
EXTDMP 
DICDMP 
FORMDC 
GENFMT 
\lRSFMT 
UPSLTS 

IDENTDP 
TXDUMP 
NOTXFM 
WHLTXT 
NOCURT 
ERPDUMP 
DMPENT 

PRSQTP 

FLHDP 
SQLTXT 
RDINSC 
RDINPR 
DICTSC 
PRTSTR 

TXTBSC 
I TXTBPR 
NOSQTP 

PRTNSQ 

OFTPRT 

PRTSBD 
TXMRTN 
DMPTTL 
FMTBUF 
TXHERE 
DPTRCB 
TRL40 
DPTRCS 
DMPCOR 
DMPTR 
TRLSIX 
PRT325 
TRLBIT 

TXBYTES 

R 
R 
R 
F 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

S 

S 
S 
S 
S 
S 
S 

s 
S 
S 

s 

s 

s 
S 
S 
S 
E 
S 
S 
S 
S 
S 
S 
S 
S 

T 

CSECT 

R9 
Initialize registers, storage, files, and parameters. 
Dump page header and chain information, if required. 
Dump registers, if required. 
Dump the communicatiQns region (XCOMM), if required. 
Dump the variable storage area (XS~G), if required. 
Dump the register usage table, if required. 
Dump the flow trace table. 
Dump the execution trace table. 
Dump the dictionaries. 
Produce a formatted dictionary dump. 
Routine used by FORMDC to dump a general dict. entry. 
Routine used by FORMDC to dump a variables dict. entry. 
Update dictionary type text byte and continue dump. 
Dump a single dictionary entry. 
Initialize code bytes for dumping routines. 
Dump current output pages. 
Dump current input page. 
Dump the current output text stream. 
Dump the error text page. 
Print range dump, if required, and exit from the phase. 

Produce a formatted dump of a text page, or group of 
pages. 
Dump a flow-unit header. 
Process non-chained text. 
Scan Type 1 text produced by the syntax analysis stage. 
Print Type 1 text produced by the syntax analysis stage. 
Scan Type 1 text at dictionary build time. 
construct formatting strings for use by the TXHERE 
routine, and print text if necessary. 
Scan past a text table. 
Print a text table. 
Scan along a text table chain, printing the tables in 
formatted style. 
Output a text table reference to a buffer, and prepare to 
output the table itself. 
Output to a buffer the offset of a text entry from the 
start of the page. 
Set up a subheading for text entry fields. 
Set up and print a message giving a pagels text 
Print the buffer pointed at by Ri. 
Formatting subroutine. 
Entry point for text. 
Print the contents of TRCBUF on the next line. 
Translate 40 hex bytes to character form. 
Skip two lines and print the contents of TRCBUF. 
Produce a hex dump of main storage area Rl to R2. 
Dump a line of X'20' bytes. 
Translate three bytes into six characters~ 
Print a number of 32-byte strings. 
Translate a fullword into a string of character bits. 

Miscellaneous constants, messages, and tables. 

Table for converting text code bytes into symbolic form. 

Continued on next page 

490 Licensed Material - Property of IBM 



IXINIT CSECT R9 I 
IXRFAB CSECT R9 I 
IXPRNT CSECT R9 I XROUT 
IXNEXT CSECT R9 I 
IXTXPG CSECT R9 I 
I I 
IXSTG I CSECT I RA I Private storage for Phase AI. I L _________ ~ _________ ~ _________ ~ ___________________________________________________________ J , 

Licensed Material - Property of IBM Section 3: Program' Organization 491 



IELOAI 

... ·A1········· • • 
• E~TRY • • • 

K~::.::·····I······· 
• •••• 81 •••• ••• ••• 
• INlrIALIZE • 
• PARA~ErERS FOR • 
• DUMP AND PRINT. 
• HEADINGS • · . ••••••••••••••••• 

.. ROTS 1 · .... C1.······ .. · • DUMP PAGE • 
• HEADER AND • 
.CHAIN INFO. IF • 
: RE~UIRED : 

••••••••••••••••• 

1 
• •••• 01 •••• ••• ••• • DUMP REGISrERS • 
: IF R~ag~REO. : 
·CO~MuNICArIONS • 
• AREA • 

········1········ 

••••• E1 •• ••••• ••• 
• DUMP VARIABLE • 
• SrORAGE AREA • 
• (XSTG) IF • 
: REQUIRED : 

········1········ 

••••• F1 •••••••••• 
• • • DUMP REGISTER • • USAGE rABLE IF • 
• RE~UIRED • • • ........ [ ....... . 

... 
31 •• 

•• rRACE •• 
NO •• rABLE REQD •• 

---.. AND IN •• 
•• EXISTENCE •• 

•• ? •• .... 
rEO 

• •••• H1 •••• ••• ••• 
• DUMP rRACE • 
• TABLE OFFSETS • 
• IN ORDER OF • 
• EXECUTION • · . 

---::::::::1········ 

OICDMP ••• 
J1 •• .. .. 

NO •• DICTIONARY •• YES 

r
---. . USED? •• -----.. .. .. .. .. .. •••• • • • 

• A4 • · . .... 

••• DENTDP TXDUMP ••• 
A2 •• • •••• A3.......... A4 •• • •••• A5 •••••••••• 

•• • • • DUMP SINGLE • •••• .SET PARAMETERS • 
•• DICT DUMP •• NO • DICTIONARY. • .STMNT RAlmE.. YES .INDICATING TYPE. -->.. REQUIRED? •• -------->. ENTRY LOCATED .--------> •. DUMP REQUIRED •• ------>. AND FORMAT OF • 
•• •• • BY XRFAB • h h •• ?. • DUMP REQUIRED. 
•... · · J 1 •..• • • •• •• ••••••••••••••••• •• •• • •••••••••••••••• 

1 r-:::------- =.::.= 1 
• YES ••• • NO 1 

NSTMRG ••• RGCOMN 
••••• B2.......... B3 •• B4 •• • •••• B5 •••••••••• 
.SET. DICT. TYPE • •••• •••• .SET UP BITS TO • 
• TEST BITS AS NO •• DUMP.. •• FORMATTED •• YES • INDICATE THE • 
• REQUIRED. ,-----.. COMPLETE? •• •• DUMP REQD? •• -------->. FORMAT OF THE • • INITIALIZE • •• • • •• •• • CURRENT TEXT • 
• HEADINGS Erc. • •••• •••• • • 

.. ...... 1::::::--- '. :j.' 'l~------_-::==r""" 
NXTYPE ••• UPSLT5 NOTXFM ••• 

C2 •• • •••• C3. •••••••• c4 •• • •••• cs •••••••••• 
•• IS DUMP.. • UPDATE TEST • ..DUMP OF.. • DUMP CURRENT • 

..OF THIS DIC •• NO • BYTE TO NEXT • •• CURRENT •• YES .OUTPUT PAGE FOR. 
··~~~gT~IM~s :I··-------->: DICi~g~~RY: ••• ~UT~g~D~AG~ ••• -------->: ST~~ I~~D : 

•• ? •• • • •••• .FILE IF PRESENT. .. .. ................. . . . ............... . 
I· YES , r=---------J 

WHLTXT ••• • •• 
••••• 02.......... D4 •• DS •• 
•• • .DUMP OF.. ••• • 
.INITIALIZE THE. •• CURRENT •• NO •• WHOLE DUMP •• NO 
• SCAN OF THIS • •• INPUT PAGE •• ------>.. REQUIRED? •• __ _ 
• DICTIONARY •• REQD? •• •• •• • ...* *..* 

sco~~~''''T'''''' E3. ~NO------ ··.·;ES · rES 
••••• E2............ ES •• 
.BUMP DIRECTORY • •• LOOK- •• •• ANY •• 
.POINTER UPDATE. YES •• AHEAD STILL.. YES •• REASON FOR •• 
• OIR. S&CTION .<--1 r---·· IN OPERATION •• <----------------·.DUMPING INPUT.· .OFFSET OF DICT.. ..?. •• PAGE? •• 
.PAGE TO BE DMPD. •••• •• •• ................. .. .. . ... 

1 
· ... · ..... ~ 1· NO 

• E2 • H3 • 1 • • • •••• • ••• 
NO 

F2···.. DIRSPL F3· •• IPP~ •••• F4.......... NOC~:I •• FS •••••••••• 
•••• •••• • •• DuMP OUTPUT • 

•• END OF •• YES •• DOES NEXT •• • DUMP CURRENT • • TEXT STREAM • 
•• DIRECTORY •• -------->.. DIR. PAGE •• • INPUT PAGE. ->. USING DMPCOR • 

• ••• PAGE?... • •• ~XIST? •••• : :: ~g~i~~D~f~~) : 

··.·;0 Ol~ ··r·:" ·······:1:······· ..... ··1········ 

PRCLOP 

• •••• G3.......... G4 •• • •••• Gs •••••••••• 
• • •• ERROR •• • DUMP SECOND • 
• GET NEXT. YES •• IN SCAN OR.. • OUTPUT TEXT • 

<----------------.DIRECTORY PAGE. --_ •• UNFORMATTED.. • STREAM AND • 
• • ..DUMP REQD.. .SCRATCH PAGE IF • 
• • •• ? •• • PRESENT • 

::::::........... ·'1·':0 ········1·::::::::---
• H3 .--1 • • •••• ••. TAISZO 

H2 •• • •••• H3.......... • •••• H4.......... • •••• HS •••••••••• 
•• • • • STOP LOOK-.. •• • 

• .END OF THIS •• YES • AHEAD AND. • COMPLETE. .DUMP ERROR PAGE. 
•• DICTIONARY? •• ------~->. UPDATE THE. .FORMATTED DUMP .----> • IF REQUIRED • 

.'.. ..'. :DICTIONARY PAGE: : OF INPUT PAGE!! : 

··I··~o ········1········· ................. . ............... . 

GTLAPG DODIC ----------! 
• •••• J2.......... • •••• J3.......... • •••• J4 •••••••••• 
• •• •• PRODOCE • 
• GET NEXT.. •• UNFORMATTED • 
.DICTIONARY PAGE.-------->. DUMP THE PAGE • • DUMP OF INPUT .----_ 
• •• •• PAGE US.ING • 
• •• •• DMPCOR • ................. ................. . ............... . 

1 
FINFRM ... 

K3 •• 
•••• •• LOOK- •• 

• • YES •• AHEAD STILL •• NO 
• E2 .<----•• IN OPERATION •• ---.. ..?. .... .... .. .. . 

DMPEND 

• ••• KS· ••• • •• •• · . • EXIT • • • • •••••••••••••• TO: 
PHASE AA 

Chart 3.48. Dump Phase (Phase AI) 

492 Licensed Material - Property of IBM 



Section 4: Directory 

This section is a directory to ~he phases of the compiler that perform particular 
processing functions involved in compilation. It is based on features of the PL/I 
language that can be included in source programs submitted for processing by Lhe compiler. 
To enable the directory to be used for different purposes, the information it contains is 
presented in two differently-organized lists. 

The first list is arranged for use when the processing of a particular language feature, 
(e.g., statement type, problem-data type, problem-data attribute, program-conLrol-data 
type, etc.), is to be examined. The various language features that can appear in a PL/I 
program are listed in alphabetic order. Beside each language feature, the phases tha~ can 
be involved in its processing are listed in alphabetic order, together with a brief 
description of the processing performed. 

The second list is arranged for use when the processing performed by a particular phase is 
to be examined. The phase identifiers, (i.e. the last two characers of each phase name), 
are listed in alphabetic order. Beside each phase identifier, Lhe language features 
processed by the phase are listed in alphabetic order, together with a brief description 
of the processing performed. 

494 Licensed Material - Property of IBM 



COMPILER PROCESSING FUNCTIONS LISTED BY LANGUAGE FEATURE 

r----------------T----------------T--------T--------------------------------------------, 
I LANGUAGE r FEATURE I COMPILER r I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------+--------------------------------------------i 
~----------------+----------------+--------+--------------------------------------------~ 

All language r I BA r Convert 48-char source to 60-char, and BCD I 
I I I to EBCDIC (MACRO not specified). I 
I ~--------+--------------------------------------------~ I r CA I Print listing if INSOURCE specified. I 
I I I I 
I I I Convert 48-char source to 60-char, and BCD I 
r I I to EBCDIC (MACRO specified). I 
I ~--------+--------------------------------------------1 
I I II I Translate from Type 1 to Type 2 text. I 
I ~--------+--------------------------------------------i 
I I IK I On specification of the XREF and/or I 
I I I ATTRIBUTES compiler options, prints I 

I I cross-references and attributes of all I 
I I identifiers. I 
~--------+--------------------------------------------i I QA I Assign absolute register numbers where I 
I I required. I 
~--------+--------------------------------------------~ 
I QE I Allocate storage for global temporaries. I 
I I I 
I I Remove unnecessary stores of global I 
I I temporaries. I 
~--------+--------------------------------------------i 
I QI I Relocate temporary storage. I 
I I I 
I I Insert addressing code in prologue or I 
I I optimal flow unit, if OPT=TIME. I 
I I I 
I I Diagnose compiler error conditions. I 
I I I 
I I Reserve loop control register for binary I 
I I loops. I 
~--------+--------------------------------------------~ 
I 8M I Diagnose compiler error conditions. I 

~----------------+----------------+--------+--------------------------------------------i 
Arithmetic Ope r I EA I Operator/operand syntax analysis. I 

r ~--------+--------------------------------------------i 
r I EE r Syntax analysis: operator/operand. I 
r ~--------+--------------------------------------------i 
I J EI I Check for syntax errors local to the I 
I I I statement. I 
I I I I 
I I I Syntax analysis: operator/operand. I 
I r--------t--------------------------------------------i 
I I II I Analyze expressions. I 
I ~--------+--------------------------------------------i I I KV I Optimize multiplication and exponentiation. I 
I r--------+--------------------------------------------f 
I I KX I Set flags for code generation. I 
I ~--------+--------------------------------------------~ I I OM r Commoning and moving of expressions. I 
J r--------t--------------------------------------------i. I I PA I Generate constants used in arithmetic I 
, J I operations. I 
J r--------+--------------------------------------------i 
J I SQ I Generate object code (binary, float, and I 
t I I ext. float ops.'. J ________________ ~ ________________ ~ ________ ~ ___________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 495 



r----------------T----------------T--------T--------------------------------------------, 
I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------~-----+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------~ Array x-section, , EI 'Check for syntax errors local to the I 

, I I statement. I 
, I 10 I Create reduced descriptors in arguments, I 
1 I 1 LIST 1/0, and WAIT. I 

I 1 I 
I I Insert text for filling in reduced I 
I I descriptors. I 
~--------+--------------------------------------------t 
, IE I Check for errors. I 
I I I 
, I Syntax expansion: generation of do-loop I 
I I control temporaries in assignments and I 
I I stream I/O expressions. , 

~--------+--------------------------------------------~ I IQ I Map arrays. I 
~--------+--------------------------------------------t I KE I Expand array cross-section text. , 

~----------------+----------------+--------+--------------------------------------------~ 
Assignment Array/struc, 1 IE 1 Check for errors in non-scalar assignments., 
statement multiple, I I , 
(aggregate) BY NAME I I Syntax expansion: nOft-scalar assignments. I 

I I I 
I I Expand character and bit string aggregate I 
I I assignments. , 

~--------+--------------------------------------------~ I IQ 'Map aggregates. I 
~--------+--------------------------------------------i I KA I Insert statements into statement-type I 
I , chains. I 
~--------+--------------------------------------------i I KE I Expand array and structure assignments, andl 
I I compiler-generated do-loops. I 
~--------+--------------------------------------------t I KX I Set flags for code generation: , 

~--------+--------------------------------------------~ I OC I Expand STRING assignments. I 
~--------+---------------------~----------------------i I 01 I Analyze connection information. I 

~------~---------+----------------+--------+--------------------------------------------~ 
Assignment Data types, , GM I Check for errors on left hand side. , 
statement multiple ~--------+--------------------------------------------i 
(element) I IE I Check for errors in scalar assignments I 

I I (when the statement contains I 
I I scalar-returning functions which in turn I 
I I have embedded aggregate assignments). I 
I I I 
I I Syntax expansion: scalar assignments. I 
~--------+--------------------------------------------i I II I Check for mismatch between source and I 
I I target, and for illegal target. I 
, I I 
I I Complete diet. entries for targets in I 
I I chameleon temp. assignments. I 
I I I 
I I Translate Type 1 text assignments to ASSN I 
I I and CONV tables. I 
~--------+--------------------------------------------t I KX I Set flags for code generation. , L--______________ L ________________ L ________ 4-___________________________________________ J 

compiler processing functions listed by language feature 

496 Licensed Material - Property of IBM 



r----------------T----------------T--------T--------------------------------------------, I LANGUAGE , FEATURE ,COMPILER, , 
, FEATURE , QUALIFICATIONS ,PHASE, COMPILER PROCESSING FUNCTIONS , 
~----------------+----------------+--------+--------------------------------------------f 
~----------------+----------------f--------+--------------------------------------------f 
, Assignment , Data types, , OA ,Extract alias information concerning , 
, statement I multiple , , locator, label, and entry assignments. , 
I (element) I ~--------+--------------------------------------------f 
I I I OC I Expand STRING assignments. I 
I I ~--------+--------------------------------------------i I I I OM I Commoning and moving of expressions. , 
~----------------+----------------f--------+--------------------------------------------f I ALIGNED/ I I GA I Check for conflicting attributes. , 
, UNALIGNED I " I 
I I I I Set a bit in the dictionary entry. , 
I , ~--------+--------------------------------------------i 
, , , II 'Argument matching/generic selection. , 

I I ~--------+--------------------------------------------f I I I IQ I Map ALIGNED/UNALIGNED BIT strings in I 
, , " aggregates. , 

I , ~--------+--------------------------------------------f , , I SK I sign unaligned operands of RX instructions., 
~----------------+----------------+--------+--------------------------------------------i 

ALLOCATE stmt. CONTROLLED/ I EA I Syntax analysis: page splitting. I 
BASED,SET,IN t--------+--------------------------------------------f 

I EE I Set up a dictionary text file ALLOCATE I 
I I chain for each block. I 
I , , 
I I Check attributes of allocated variables, I 
I I and check SET/IN options. I 
~--------+--------------------------------------------i 
I GE I Check allocate attributes against I 
I I declaration attributes. I 
I I I 
, I Merge allocation and declaration , 
I , information. I 
I , , 
, I Create allocate-time aggregate table I 
I I dictionary entries. I 
I I I 
I I Generate extent and INITIAL assignments. , 
~--------+--------------------------------------------i I IA I Reposition/generate bound assignments to I 
I I aggregate descriptors. I 
I I I 
I I Generate mapping operators for allocated , 
I I variables. I 
, I I 
, , Syntax expansion: extent expressicn , 
, I aSSignments. , 
I I , 
I , convert offset locators to pointers. I 
t--------+--------------------------------------------~ I IE I Check for illegal use of aggregates in I 
I I attribute specification. , 
~--------+--------------------------------------------i I II ,Translate Type 1 text extent expressions, , 
, , MAP statements, and ALLOCATE statements to , 
I I Type 2 text tables. , 

~--------+--------------------------------------------f I IQ I Allocate storage for BASED and CONTROLLED , 
I I aggregates. I 
t--------t--------------------------------------------f , KA ,Process and error-check resulting ARRAY , 
I I INITIAL and STATIC INITIAL assignments. I L-________ - ______ ~ ________________ ~ ________ ~ ____________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 491 



r----------------T----------------T--------T--------------------------------------------, 
I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER P~OCESSING FUNCTIONS I 

~----------------+----------------+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------t 
I ALLOCATE stmt. I CONTROLLED/ I PA 1 Allocate storage for controlled anchor I 
I I BASED, SET, IN I I slot. I 
I I ~--------+--------------------------------------------~ 
I 1 1 PI I Addressing of CONTROLLED variables. I 
I I I 1 I 
I I I I Create locator-descriptors for CONTROLLED I 
I I I I variables. I 

~----------------+----------------+--------+--------------------------------------------t 
I AREA I I EE I Syntax analysis: AREA arguments. I 
I I ~--------+--------------------------------------------~ 
I I I GA I Check for conflicting attributes. I 

I I I I I 
I I I I Set a bit in the dictionary entry. I 
~----------------+----------------+--------+--------------------------------------------~ 

I ~--------+--------------------------------------------t 
I I PA I Allocate storage and initialize static I 
I I I areas. I 
I I I I 
I I I Construct area locator/descriptor if I 
I I I required. I 

AUTOMATIC stge.l I GA I Check for conflicting attributes. I 
I I I I 
I I 1 set a bit in the dictionary entry. I 
I ~--------+--------------------------------------------~ 
I I IQ I Map AUTOMATIC aggregates. I 
I ~--------+--------------------------------------------~ 
I I PE I Allocate storage for AUTOMATIC variables. I 
I ~--------+--------------------------------------------~ 
I I PI I Addressing of AUTOMATIC variables. I 

~----------------+----------------+--------+--------------------------------------------~ 
Base I DECIMAL/BINARY I EE I Syntax analysis: arguments. I 

I ~--------+--------------------------------------------~ I I GA I Check for implementation limit violations. I 
1 ~--------+--------------------------------------------~ 

I II 1 Check for illegal conversions. I 
I I I 
I I Analyze expressions prior to generation of I 
I I CONV etc., tables. I 
I I I 
I I Generat: Type 2 text tables from I 
I I expreSS10ns. I 
~--------+--------------------------------------------t 
I KK I Expand arithmetic and mathematical bifs. I 
~--------+--------------------------------------------~ 
I OM I Examine precision, scale, etc., in commonedl 
I I express ions. I 

~----------------+----------------+--------+--------------------------------------------~ 
Built-in I I GA I Create dictionary entries for I 

I I I explicitly-declared bifs. I 

I ~--------+--------------------------------------------~ 
I I GI I Create dictionary entries for contextually I 
I I I declared bifs. I 
I ~--------+--------------------------------------------~ 
I I GM I Create dictionary entries for implicitly I 
I I I declared bifs. I 
I ~--------+--------------------------------------------i 
I I IA I Check for illegal use of bifs as lccator I 
I I I qualifiers. I 
I I I I 
I I I Syntax expansion: special cases. I L ________________ L ________________ L ________ L ____________________________________________ J 

Compiler processing functions listed by language feature 

498 Licensed Material ~ Property of IBM 



r----------------T----------------T--------T--------------------------------------------, 
I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------t----------------t--------t--------------------------------------------i 
~----------------+----~-----------t--------t--------------------------------------------i 

Built-in I ID I Check for errors in aggregate-manipulation I 
I I BIFs and pseudovariables. I 
I I I 
I I create temporaries or reduced descriptors. I 
~--------t--------------------------------------------i I IE I Syntax expansion: aggregate bifs and I 
I I ps eudovariables • I 
~--------t--------------------------------------------i I II I Argument checking. I 
I I I 
I I Generate BIF tables and CONV tables for I 
I I arguments. I 
~--------t--------------------------------------------i I KA I Process STRING bifs and check for errors. I 
~--------t--------------------------------------------i I KK I Check the validity of arguments to cert~in I 
I I bifs. I 
I I I 
I I Expand all non-string bifs. I 
~--------t--------------------------------------------i I KV I Expand CHAR, BIT, UNSPEC, SUBSTR bifs. I 
~--------+--------------------------------------------i I oc I Expand TRANSLATE and BOOL bifs. I 
~--------t--------------------------------------------i I ox I optimize REPEAT, LENGTH, INDEX, VERIFY, I 
I I HIGH, LOW, and STRING bifs. I 

~----------------t----------------t--------t--------------------------------------------i BASED storage REFER I GA I Check for conflicting attributes. I 
I I I 
I I set a bit in the dictionary entry. I 
~--------t--------------------------------------------i I GE I Detects errors in REFER declaration. I 
I I I 
I I Puts REFER information in aggregate I 
I I descriptors. I 
~--------t--------------------------------------------i I IA I Generate RESDES operators to reserve space I 
I I for special temporary locator-descriptors. I 
I I I 
I I Examine references to BASED REFER, etc., I 
I I and decide whether or not mapping is I 
I I necessary. If 50, generate code to set up I 
1 I descriptors and MAP operators. I 
I I I 
f I syntax expansion: map-on-reference cases I 
I I and unqualified BASED variables. I 
~--------t--------------------------------------------i I IE I Check for errors. I 
I I I 
I I syntax expansion: generation of I 
I I temporaries. I 
I---------t------------------------------------------i I 10 I Map BASED aggregates. I 
~--------+---~--------~------------------------------i I PE I Associate a storage base number with each I 
I I BASED variable to assist in BASED-variable I 
I I addressing. I 
~--------+-------------------------------------------i I PI I Addressing of BASED variables. I ________________ L-_______________ L ____ ----L------------_______________________________ J 

Licensed Material - Property of IBM Section 4: Directory 499 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r----------------T----------------T--------T--------------------------------------------, 
I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 

~----------------+----------------+--------+--------------------------------------------i 
~----------------+----------------+--------+--------------------------------------------i BEGIN stmt. Options I EE I Set up a dictionary text file entry chain I 

I I for each block, and a block-header chain. I 
I I I 
I I Syntax analysis: options and arguments. I 
~---,-----+--------------------------------------------i I GA I Check the validity of options on BEGIN I 
I I statements. I 
I I I 
I I create a block-header dictionary entry for I 
I I the block. I 
~--------+--------------------------------------------i I OA I Create a blOCk optimization entry. I 
~--------+--------------------------------------------i I OE I Complete the block optimization entry. I 
~--------+--------------------------------------------i I 01 I Analyze connection information. I 
~--------+--------------------------------------------i I SA I Generate object code. I 

~----------------+----------------+--------+--------------------------------------------i I compile-time I I CA I Remove all ~ symbolS except from ~PAGE, I 
I (J) stmts. I I I JSKIP, ~CONTROL, ~PRINT, and INOPRINT I 
I I I I statements. I 
I I I I I 
I I I I Execute all compile-time (~) statements. I 
I I ~--------+--------------------------------------------i I I I EA I Execute JPAGE, JSKIP, ~CONTROL, JPRINT, andl 
I I I I ~NOPRINT statements if SOURCE specified. I 
~----------------+----------------+--------+--------------------------------------------i Constant I EA I Syntax analysis: format constants. I 

~--------+--------------------------------------------i I EE I Syntax analysis: format constants. I 
~-------+--------------------------------------------i I EI I Check for syntax errors local to the I 
I I statement. I 
I I I 
I I Syntax analysis: format constants. I 
~--------+--------------------------------------------i I GM I create dictionary entries for constants. I 
~--------+--------------------------------------------i I II I Check for illegal usage, and convert I 
I I arguments to temps. I 
I I I 
I I Generate Type 2 text. I 
~--------+--------------------------------------------i I OM I Optimize the production and usage of I 
I I literal constants. I 

~--------+--------------------------------------------i 
I PA I Allocate storage for constants. I 

~----------------+----------------+--------+--------------------------------------------i 
I Conversion I I II I Check for illegal conversions. I 
I I I I I 
I I I I Generate CONV Type 2 text tables. I 
I I ~--------+--------------------------------------------i I I I KX I Expand text for 1nline conversions. I L ________________ L-_______________ ~ ________ ~ ____________________________________________ J 

Compiler processing functions listed by language featUre 

500 Licensed Material - Property of IBM 



r----------------T----------------T--------T--------------------------------------------, 
, LANGUAGE , FEATURE ,COMPILER, , 
, FEATURE , QUALIFICATIONS ,PHASE, COMPILER PROCESSING FUNCTIONS , 
~----------------+----------------+--------+--------------------------------------------i 
~----------------+----------------+--------+---------------------------~----------------i 
, Conversion I I OC ,Expand text for inline conversions. , 
, I ~--------+--------------------------------------------~ 
, I I OM I Commoning and moving of expressions. I 
I I ~--------+--------------------------------------------~ I I I PA I compile-time conversion of constants. I 
I , ~--------+--------------------------------------------~ 
I I , SO I Generate object code. I 
~----------------+----------------+--------+--------------------------------------------i 
I CALL stmt. I Argument list,' GI ,create dictionary entries from contextual , 
I , function ref., I I declarations for bifs, and TASK or EVENT I 
I I options. I , variables. I 
I , ~--------t--------------------------------------------~ 
I I I 10 I Create aggregate temporaries, including I 
I I I' reduced descriptors. , 
, I ~--------+--------------------------------------------i 
, I I IE I Check for errors in CALL statements. I 
I I I , 
I I I Syntax expansion: CALL statements. I 
, ~--------+--------------------------------------------i 
I I II I Check for errors in argument matching. , 
I I I , 
I I I Translate CALL statements from Ty~e 1 to , 
, I , Type 2 text, generating ALIST, ARG, CALL, I 
I I , FNC'I', etc., text tables. I 

~--------t--------------------------------------------i I 1M ,create dictionary entries for temps. I 
I I created for arguments needing to be I 
, I remapped before calls to FORTRAN/COBOL. I 
, I I 
I , Insert library calls into text to set up , 
I I correct environments before and after CALL., 
~--------+--------------------------------------------t 
, KA ,Check for errors (match number of arguments, 
I , against number of parameters). , 
~--------+--------------------------------------------~ 
I KT 'Produce calling sequence. , 
~--------+--------------------------------------------i 
, KV I Unnest calls. I 
~--------t--------------------------------------------~ 
, OA I Extract calling information for blocks. , 
~--------+--------------------------------------------i 
, OE 'Analyze flow information. , 
~--------+--------------------------------------------f 
I 01 ,Analyze connection information. , 
~--------+--------------------------------------------i 
I PA I Common argument lists. I 
I I I 
, , Allocate storage for argument lists. , 

, ~--------+--------------------------------------------f I I SA ,Generate object code. I 
~----------------+----------------+--------+--------------------------------------------i 
, CHECK condition, Name list ,KT I Process CHECK statements, and insert the , 
I , " appropriate library calls for check I 
, , " variables in the text. , 
, , ~--------t--------------------------------------------~ 
, , , PC 'Construct symbol tables for items in check , 
, I " lists. I L ________________ ~ ________________ ~ ________ ~ ___________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 501 



r----------------T----------------T--------T--------------------------------------------, 
I LANGUAGE 1 FEATURE ,COMPILERI I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------+-----------------------------------------~--~ 
~----------------+----------------+--------+--------------------------------------------~ 
I CHECK condition, Name list I SA I Generate object code (for CHECK condition , 
I I I I without list). I 
I 1 ~--------t--------------------------------------------~ 
I " I SQ I Generate object code (for CHECK condition I 
I , I I with list). I 
~----------------+----------------+--------t--------------------------------------------~ 
I CLOSE stmt. I ENV. I EE I Syntax analysis: options. I 
I I ~--------+--------------------------------------------~ 
I I I KL I Generate an argument list and library I 
I I I I module call for the statement. I 

I I ~--------+--------------------------------------------~ 
I I I KM I Optimize by completing FCB and DTF at I 
I I I I compile time if possible. I 
~----------------+----------------+--------+--------------------------------------------~ 

CONTROLLED I I GA ,Check for conflicting attributes. I 
storage I I 1 I 

I I I Set a bit in the dictionary entry. I 
I ~--------+--------------------------------------------~ 
I I IQ 'Map CONTROLLED aggregates. I 
, ~--------+--------------------------------------------~ 
, I PA ,Allocate storage for controlled anchor I 
I I I slot. I 
I ~--------+--------------------------------------------~ 
I I PI I Addressing of CONTROLLED variatles. I 
I I I I 
I I I Allocate storage for CONTROLLED variables. I 

~----------------t----------------+--------+--------------------------------------------~ 
I Data-list item , I PC 'Check validity of based iteITIs in data I 
I I 'I directed I/O. I 
~----------------t----------------t--------t--------------------------------------------~ 

Dimension 1 I EE I Syntax analysis: expressions and REFER , 
, I f I items. I 
t ~--------t--------------------------------------------~ 1 I GE 1 Create aggregate descriptor dictionary I 
I I I entries. I 

I ~--------t--------------------------------------------~ 
I I ID I Check number of subscripts in subscript I 
I I I lists. I 

1 I I 1 
I I I Create aggregate temporaries and reduced I 
, 'I descriptors in arguments, I/O, and WAIT. I 
I I I I 
, I I Flag statement header to indicate I 
I I I subscripted variable present. I 
1 ~--------+--------------------------------------------~ 
1 I IE I Check for errors in expressions. I 
I I I I 
1 I I Syntax expansion: expressions. I 
I ~--------+--------------------------------------------1 I I II I Check for illegal usage in expressions. I 
I ~--------+--------------------------------------------i 
I I 1M I Create dictionary entries for I 
I I I FORTRAN-mapped temp. arrays created for 1 
I I I arguments or parameters in ILC. I 
I I I I 
I 1 I Remap temp. arrays for calls to or from I 
1 I I FORTRAN. I ________________ ~ ________________ ~ ________ ~ ____________________________________________ J 

Compiler processing functions listed by language feature 

502 Licensed Material - Property of IBM 



r----------------T----------------T--------T--------------------------------------------, 
, LANGUAGE I FEATURE ,COMPILER, , 
I FEATURE f QUALIFICATIONS ,PHASE I COMPILER PROCESSING FUNCTIONS , 
~----------------+----------------+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------~ 
I Dimension, f 1M I Create assignments between FORTRAN-roapped I 
, , f' temps. and original arrays. I 
, , ~--------+--------------------------------------------~ 
I I I PA I construct array locators and descriptors if' 
, , " re qu ired. , 
~----------------+----------------+--------+--------------------------------------------~ 
, DECLARE stmt. , I EA I Syntax analysis: page splitting. f 

I , ~--------+--------------------------------------------i 
I I , EE I Set up a dictionary text file DECLARE chainl 
I I I I for each block. f 
f I 'f I 
f I I I Syntax analysis: nesting and factoring. I 
, I ~--------+--------------------------------------------~ 
I I I GA I Detect declaration errors. I 
, I I I I 
I I 'I Create dictionary entries for explicitly , 
, I 'J declared name s • , 
I I " , , , I I Unfactor attributes. I 
f I ~--------+--------------------------------------------~ 
I I , IE J Check for illegal use of aggregates in , 
f I I I attribute specifiea tion. I 
, ~--------+--------------------------------------------~ 
, I KA I Process and error-check resulting ARRAY , 
f f , INITIAL and STATIC INITIAL assignments. f 
f ~--------+--------------------------------------------~ 
, f KL J Check FILE declaration for conflicting I 
I I , ENVIRONMENT options and attributes, and fori 
I , I correct MEDIUM specification. I 
I I I f 
f I I Create DTF, ENVB, and FCB entries in the , 
I I I general dictionary, and a names dictionary I 
I I f entry for the generated LIOCS module name I 
I f I required for the DTF. , 
, ~--------+--------------------------------------------~ 
, , KM ,Check file declaration, FCB, and ENVB for , 
, Iff possible open and close optimizaticn. I 
f I I I Complete FCB and DTF if possible. I 
~----------------+----------------+--------+---------------------------~----------------~ 
I DEFAULT stmt. I , EA I Syntax analysis: page splitting. I 
I , ~--------+--------------------------------------------~ 
I , , EE ,Set up a dictionary text file DEFAULT chain, 
J , J J for each block. J 
I f Iff 
I J J J Syntax analysis: nesting and factcring. J 

J I ~--------+--------------------------------------------~ 
, f f GA 1 Detect DEFAULT specification errors. , 
Iff I 1 

, f I Build the DEFAULT directory. , 

I ~--------t-----------~--------------------------------~ I I GE I Use the DEFAULT directory. I 
I ~--------+--------------------------------------------~ r I GI ,Use the DEFAULT directory. f 

I ~--------+--------------------------------------------~ I , GM f Use the DEFAULT directory. , 

, ~--------+--------------------------------------------~ 
, f IE ,Check for illegal use of aggregates in , 
If' attribute specification. I 

I ~--------+--------------------------------------------~ I I KK I Process and error-check resulting ARRAY I 
J I I INITIAL and STATIC INITIAL assignroents. 1 ________________ ~ ________________ ~ ________ ~ ____________________________________________ J 

Licensed Material - Property of IBM section 4: Directory 503 



r----------------T----------------T--------T--------------------------------------------, 
I LANGUAGE 1 FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------+--------------------------------------------t 
~----------------+----------------+--------+--------------------------------------------t 

DEFINED I POSITION/iSUB I EE I Syntax analysis: bases. I 
1 ~--------+--------------------------------------------~ 
I I GA I Check for conflicting attributes. I 
I I I I 
I I I Set a bit in the dictionary entry. I 
I ~--------+--------------------------------------------t 
I I GE I Diagnose source errors. I 

I I I 
I I Generate addressing statements. I 
I I I 
I I Classify defining. I 
~--------+--------------------------------------------~ 
I IA I Generate ASSN tables for creation cf I 
I I locator-descriptors. I 
I I I 
I I Insert MAP operators into the main text I 
I I stream. I 
I I I 
I I Insert POS expressions and iSUB lists into I 
I I the main text stream. I 
~--------+--------------------------------------------~ I 10 I Flag statement header to indicate I 
I I iSUB-defined item present. I 
~--------+--------------------------------------------~ I IE I Syntax expansion: iSUB-U statements I 
I I containing functions with aggregate I 
I I assignments. I 
~--------+--------------------------------------------f I KE I Expand iSUB defining text. I 
~--------+--------------------------------------------~ 
I OA I Create value lists for defining bases. I 

~----------------+----------------+--------t--------------------------------------------t 
I I ~--------t--------------------------------------------f I I I PA I Allocate addressing adcon or locator if I 
I I I I required. I 
I DELAY stmt. I I EE I Syntax analysis: options. I 
I I ~----.---+--------------------------------------------~ 
I I I IE I Check for illegal use of aggregates. I 
I I t--------t_-------------------------------------------i 
I I I KT I Check that a DELAY expression is scalar. I 
I I I I I 
I I I I Expand the DELAY statement. I 

~----------------t----------------+--------t_-------------------------------------------~ 
I DISPLAY stmt. I REPLY, EVENT I EE I syntax analysis: options. I 
I I ~--------t_-------------------------------------------f 
I I I IE I Check for illegal use of aggregates. I 
I I ~--------+--------------------------------------------~ 
I I I KT I Check the attributes of DISPLAY, REPLY, andl 
I 1 I I EVENT expressions. I 
I I I I I 
I I I I Expand the DISPLAY statement. I L ________________ ~ ________________ ~ ________ ~ __________ --___________ --___________________ J 

Compiler processing functions listed by language feature 

504 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-617S, October 1976 

r----------------T----------------T--------T--------------------------------------------, I LANGUAGE I FEATURE I COMP ILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+_---------------+--------+--------------------------------------------i 
~----------------T----------------+--------+--------------------------------------------i 

DO stmt. TO,BY,WHILE, I EA I Analyze type compatibility and syntax of I 
UNTIL, REPEAT I I repetitive specifications. I 

~--------T--------------------------------------------i 
I II I Check for illegal DO specifications. I 
I I I 
I I Translate Type 1 text into Type 2 text I 
I I tables (001, 002, etc.,). I 
~--------+--------------------------------------------i 
I KA I Insert statements into statement-type I 
I I chains. I 
I I I 
I I complete the processing of the OOWHILE I 
I I statement. I 
I I I 
I I Complete the processing of the OOUNTIL I 
I I statement. I 
~--------+--------------------------------------------i 
I KI I Process do-loops. I 
I I I 
I I Expand 001, 002, and 003 into appropriate I 
I I assignments and branch to produce codes. I 
~--------+--------------------------------------------i 
I OE I Analyze flow information. I 
~--------+--------------------------------------------i 
I 01 I Analyze connection information. I 
~--------+--------------------------------------------i 
I OM I Modify control variable usage. I 

~----------------T----------------+--------T----------------~---------------------------i 
I Expression I Data type I EI I Check for syntax ertors local to the I 
I I I I statement. I 
I I ~--------+--------------------------------------------i I I I 10 I Check the validity of aggregate expression I 
I I I I arguments. I 
I I I I I 
I I I I Insert text-assigning aggregate expression I 
I I I I arguments to temporaries. I 
I I ~--------+--------------------------------------------i 
I I I II 1 Check validity of expressions containing I 
I I I I file, entry, label, etc. I 
~----------------+----------------+--------+--------------------------------------------i I END stmt. I Label I EA I Syntax analysis: block nesting. I 
I I ~-------+--------------------------------------------i I 1 I KA I ,Insert statements into statement-type I 
I I I I chains. I 
I I ~--------+--------------------------------------------i 1 I' I OE 1 Analyze flow information. 1 
I I ~--------+--------------------------------------------i 
I I I 01 I Analyze connection information. I 

I I ~--------+--------------------------------------------i I I I SA I Generate object code. I 
~----------------+----------------+--------+--------------------------------------------i I ENTRY attribute I Parameter I EE I Syntax analysis: parameter attribute I 
I I attribute list I I lists in ENTRY declarations. I 

I I ORDER/REORDER ~--------+--------------------------------------------i 
I I I GA I create parameter descriptor entries in the I 
I I I I general dictionary. I 
I I ~--------+--------------------------------------------i I I I PE I Count the number of parameters in each I 
I I I I block and pass' this number to Phase PI. I L ________________ L-_______________ ~ ________ ~ ____________________________________________ J 

Licensed Material - property of IBM Section 4: Directory 505 



r----------------T----------------T--------T--------------------------------------------, 
, LANGUAGE I FEATURE ,COMPILER, I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 

~----------------+----------------+--------+--------------------------------------------i 
~----------------+----------------+--------+--------------------------------------------~ 

ENTRY stmt. Multiple labs. I EE ,Set up a dictionary text file entry chain I 
I , for each block. I 
I I I 
I I Syntax analysis: options. I 
~--------+--------------------------------------------~ 
I GA ,create entry-point entries in the general , 
I , dictionary. , 
~--------+--------------------------------------------~ 
I II I Translate from Type 1 to Type 2 text, and I 
I I generate GSLs. , 
~--------+--------------------------------------------~ 
I IM I Create dictionary entries for new external I 
I I procedure to be called by FORTRAN/COBOL. I 
I I I 
I I Insert library calls into text to set up I 
I I correct environments before and after CALL., 
I , , 
I I Create new external procedure and entry I 
I I points, and calls to old procedure and I 
I I entry points. I 
~--------+--------------------------------------------i 
I KT 'Produce appropriate branch code in I 
I , prologue. I 
~--------+--------------------------------------------i I OE I Analyze flow information. I 
~-------+--------------------------------------------i 
, OI ,Analyze connection information. I 
~--------+--------------------------------------------i 
I SA I Generate object code. I 

~----------------+-~--------------+--------+--------------------------------------------~ 
, EVENT attribute, , KK I Expand EVENT bifs. , 
~----------------+----------------+--------+--------------------------------------------i 
, EXIT stmt. I I KT I Expand the EXIT statement. , 
~----------------+----------------+--------+--------------------------------------------i 
, Format item I , KQ ,create dictionary entries for FEDs. , 
, , ~--------+--------------------------------------------i 
I I , PC 'Allocate storage for FEDs. I 
~----------------+----------------+--------+--------------------------------------------~ 
I FILE I Const/var, I EE I syntax analysis: record I/O arguments. I 

I I STREAM/RECORD, ~--------+--------------------------------------------i 
, ,KEYED, INPUT, I EI 'Check for syntax errors local to the , 
I I OUTPUT, etc. , I statement. I 
, I I I I 
I I I I Syntax analysis: stream I/O arguments. , 
I I ~--------+--------------------------------------------i 
, I I GA I Check for conflicting attributes. I L ________________ ~ ________________ ~ ________ ~ ____________________________________________ J 

Compiler processing functions listed by language feature 

506 Licensed Material - Property of IBM 



r----------------T----------------T--------T--------------------------------------------, 
, LANGUAGE , FEATURE ,COMPILER, , 
, FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------~ I FILE Const/var,' GA 'Create file constant dictionary entries. I 
I STREAM/RECORD, , , I 
I KEYED, INPUT, I , set a bit in the dictionary entry. , 
I OUTPUT, etc. ~--------+--------------------------------------------~ 
I I GI 'Create dictionary entries for contextually I 

I , declared files. , 

~--------+--------------------------------------------~ I GM I Create dictionary entries for implicitly I 
I I declared files. I 
~--------+--------------------------------------------~ I II 'Check for illegal usage in expressions. , 
~--------+--------------------------------------------~ 
I 1M ,create dictionary entries for COBOL-mapped I 
I I temporary structures for I/O with COBOL I 
I I files. I 
I I Create assignments between COBOL-mapped I 
I I temporary structures and original I 
I I structures. I 
~--------+--------------------------------------------~ 
I KL J Check file declaration for conflicting I 
I I ENVIRONMENT options and attributes, and fori 
I , correct MEDIUM specification. I 
I I I 
I I Create DTF, ENVB, and FCB entries in the I 
I I general dictionary, and a names dictionary I 
I I entry for the generated LIOCS module name I 
I I required for the DTF. I 
~--------+--------------------------------------------~ 
I KM I Check file declaration, FCB, and ENVB for I 
I I possible optimization of open and close, I 
I I and complete FCB and DTF where possible. I 
I I Check record I/O files. I 
~--------+--------------------------------------------~ 

I I PA I Allocate storage for file constants. I 
~----------------+----------------+--------+--------------------------------------------~ 
I FORMAT stmt. I EI I Check for syntax errors local to the I 

I I statement. I 
I I I 
I I Syntax analysis: arguments, repetitive I 
I I specifications, and factored items. I 
~--------+--------------------------------------------~ I II I Generate FORME, FIT, etc., Type 2 text , 
I I tables. I 
~--------+--------------------------------------------~ 
I KQ ,construct FEDs. I 
I I Expand FMTLST/FORME/FIT/FITE text tables tol 
I I GEN/LA/CAIL, etc. I 
~--------+--------------------------------------------~ I PC I Allocate storage for FEDs. I 
~--------+--------------------------------------------~ I I SK I Remove unnecessary code. I 

I I I Detect statement too large. I 
~----------------+----------------+--------+--------------------------------------------~ 
I FREE stmt. 1 CTL/BASED I EA I Syntax analysis: namelists. I 
I I ~--------+--------------------------------------------~ I I I IA I Syntax expansion for implied AREAs. I 
I , ~--------t--------------------------------------------~ I I I IQ I Free allocated storage. I 
I I ~--------+--------------------------------------------~ I I I PI I Addressing of BASED variables. I L. ________________ ~ ________________ ~ ________ L_ ___________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 507 



r~---------------T----------------T--------~-------------------------------------------, 
I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------t--------------------------------------------~ 
~----------------+----------------+--------t--------------------------------------------~ I FUNCTION refs. I I KA I Check for errors (match number of arguments I 
I I I' against number of parameters). , 
~----------------t----------------+--------t_-------------------------------------------~ 

GENERIC , EE I Syntax analysis: valid clauses. I 
~--------+--------------------------------------------~ I GE I Check for attribute and entry pOint errors., 
I I I 
, I Create dictionary entries. I 
~--------+--------------------------------------------i I II I Check for possibility of selection. I 
1 I I 
I I perform selection. I 
I I , 
, I Generate ALIST, ARG, CALL, etc., Type 2 I 
I I text tables. , 

1 ~--------t--------------------------------------------i I , RK 'Process bifs passed as arguments. I 
~----------------+----------------+--------+--------------------------------------------~ 

GET stmt. I FILE/STRING, I EI I Check for syntax errors local to the , 
I EDIT/LIST/DATA, I I statement. , 
I COPY,SRIP,COL, , I , 
I data-list, I I Syntax analysis: options, data lists, and I 
I format-list I I DO-groups. I 
I ~--------t--------------------------------------------i 
I I KA I Insert statements into statement-type I 
, I I cha ins. , 

~--------+--------------------------------------------i 
KQ I Check for: 

I errors in statement-type chains, 
I invalid items in data lists, 
I invalid options on statements. 
1 
I Match data and fODmat lists. 
I 
I Create dictionary entries for FEDs. 
I 
I Allocate registers for special usage in 
I stream I/O. 
I 
I Expand stream I/O statements to include 
I library calls, CONV tables, etc. 

~--------t_-------------------------------------------i 
I PC I Allocate storage for symbol tables built I 
I I for GET DATA. I 

I ~--------+--------------------------------------------i I I SK I Detect statement too large. I 
~----------------t----------------+--------+_-------------------------------------------~ 
, GO TO stmt. I Label const/varl EA I Analyze target syntax. I 
I I ~--------+--------------------------------------------1 I I I GM I Check for label constant or variable. I 
I I r--------+_----------------------------------------~--~ 
I I I IE I Check for illegal use of aggregates. I 
I 1 ~--------+--------------------------------------------i , I I KV I optimize branching. I 
, I ~--------+_-------------------------------------------~ 
I I I OE I Analyze flow infoDmation. , 

I I ~--------+--------------------------------------------i I I , 01 I Analyze connection information. , l ________________ ~ ________________ ~ ________ L_ ___________________________________________ l 

Compiler processing functions listed by language feature 

508 Licensed Material - Property of IBM 



r----------------T----------------T--------T--------------------------------------------, 
I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------t--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------~ 
I GO TO stmt. I Label const/varl SA I Generate object code. I 
~----------------+--------------- .. -+--------+--------------------------------------------~ 

~--------+--------------------------------------------~ I PA I Allocate storage for label constant if I 
I I go-to-outer block. I 

IF stmt. THEN, ELSE I EI I Syntax analysis: nesting and position. I 
~--------t_-------------------------------------------~ I IE 1 Check for illegal use of aggregates. I 
~--------+--------------------------------------------~ 
I II I Check for illegal expressions in IF I 
I I clauses. I 
I I I 
I I Translate Type-l text IF statements into I 
I I Type-2 text IF, GOTO, and GSL tables. I 
~--------t--------------------------------------------i 
I KA I complete the statement processing. I 
I I I 
I I Insert statements into statement-type I 
I I chains. I 
I I I 

I I I Representative text table processing, and I 
I I I statement analysis. I 

~----------------+----------------+--------+--------------------------------------------~ 
INITIAL CALL/nocall I EE I Syntax analysis: INITIAL values, with I 

I I replication and nesting. I 
~--------+--------------------------------------------~ 
I GA I Check for conflicting attributes. I 
I I I 
I I Set a bit in the dictionary entry. I 
~--------t--------------------------------------------~ 
I GE I Generate INITIAL assignment tables. I 
~--------+--------------------------------------------~ I IA I Generate multiple assignments and AID I 
I I operators in the main text stream. I 
~--------+--------------------------------------------~ 
I KE I Expand automatic array initial text. I 
~--------+--------------------------------------------~ I PA I Allocate STATIC INITIAL storage. I 

~----------------+----------------+--------+--------------------------------------------~ 
I Label , Constant I GI I Create dictionary entries for label I 
I I I I constants. I 
I I ~--------+--------------------------------------------f I I I II I Check for illegal usage in expressions and I 
I I I I assignments. I 
I I ~--------+_-------------------------------------------~ I I I OE I Analyze flow information. I 
I I ~--------t--------------------------------------------~ I I I 01 I Analyze connection information. I 
I I ~--------+--------------------------------------------f I I I PA I Allocate storage for label constants. I 
~----------------t----------------+--------+--------------------------------------------i I Locator I POINTER/AREA I GA I Check for conflicting attributes. I 
I I I I I 
I I I I Set a bit in the dictionary entry. I 
I I ~--------+--------------------------------------------~ 
I I I IA I Check for illegal qualifier chains. I 
I I I I I 
I I I I Generate locator chains. I L ________________ ~ ________________ ~ _______ -L------------________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 509 



r----------------T----------------T--------T---------------------------~----------------1 
, LANGUAGE , FEATURE I COMPILER, , 
I FEATURE I QUALIFICATIONS I PHASE' COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------~ 
I Locator I POINTER/AREA I IE I Check for errors. I 
I I I I I 
I , I I Syntax expansion: generation of I 
I 1 I I temporaries. I 
I I ~--------+--------------------------------------------~ 
I I I II I Generate PTS, PTSAT, etc., Type-2 text I 
I I I I tables. I 
I I ~--------+--------------------------------------------~ 
I r I OA I create value lists for locators. I 
~----------------+----------------+--------+--------------------------------------------i 

LABEL Variable I II I Check for illegal usage in expressions and I 
I I assignments. I 
I I I 
I I Chaining. I 
~--------+--------------------------------------------i 
I OA I Create value lists for LABEL variatles. 1 
~--------+--------------------------------------------~ 
I OE I Analyze flow information. I 
~--------+--------------------------------------------i 
I 01 I Analyze connection information. I 
~--------+-----~--------------------------------------~ I PE I Allocate storage for LABEL variables. I 
~--------+--------------------------------------------~ 
I SK I Remove if not referenced. I 

~----------------+----------------+--------+--------------------------------------------~ I LIKE I I GA I Check for conflicting attributes. , 
I I r I I 
I I I I Expand 'LIKE' specifications. I 
~-------~--------+----------------+--------+--------------------------------------------i 
I LOCATE stmt. I FILE, SET, I EE I Syntax analysis: options. I 
I I KEYFROM ~--------+--------------------------------------------~ 
I I IA I Create special locator-descriptors for I 

, I REFER structures. , 
I I I 
I I speCial aggregate-mapping action fer REFER I 
I I structures. I 
I I I 
I , Special syntax expansion action for REFER I 
I I structures. , 

~--------+--------------------------------------------~ I 1M I Create dictionary entries for COBOL-mapped I 
I I temporary structures for I/O with COBOL I 
I I files. I 
, , I 
I , Create assignments between COBOL~mapped I 
I I temporary structures and original I 
I I structures. I 
~--------+--------------------------------------------i I IQ I Map aggregates as for BASED variables. I 
~--------+--------------------------------------------~ 

I I KM I Generate library call, or inline code when I 
I I I possible. , 
~----------------+----------------+--------+--------------------------------------------~ 
I Mode I REAL/COMPLEX I EE I Syntax analysis: arguments. I 
I I ~--------+--------------------------------------------i 
I I I EI I Check for syntax errors local to the I 
I I I I statement. I 
I I ~--------+-------------------------.------------------i I I I GA I Check for implementation limit violations. I L ________________ ~ ________________ ~ ________ ~ ____________________________________________ ~ 

compiler proceSSing functions listed by language feature 

510 Licensed Material - Property of IBM 



r----------------T----------------T--------T----------------------------------------~---, 
, LANGUAGE , FEATURE ,COMPILER, I 
, FEATURE I QUALIFICATIONS ,PHASE, COMPILER PROCESSING FUNCTIONS , 
~----------------+----------------+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------i I Mode REAL/COMPLEX , II ,Check for illegal conversions. , , , , , 
, , , Analyze expressions prior to generation of , 
I , , CONV, etc., tables. I 
, , I I 
, , , Generate Type-2 text tables from , 
, I I express1ons. , 
I ~--------+--------------------------------------------~ 

, KK I Expand arithmetic, mathematical, and , 
I I COMPLEX bifs. , 
~--------+--------------------------------------------~ 
, OM 'Examine precision, scale, etc., in commoned, 
, I expressions. I 
~--------+--------------------------------------------~ , PA ,Allocate storage for COMPLEX constants. I 
~--------+--------------------------------------------i 
I PE I Allocate storage for COMPLEX variables. , 
~--------+--------------------------------------------~ 
, PI I Addressing of COMPLEX variables or COMPLEX , 
, I temporaries. , 

~----------------+----------------+--------+------------~-------------------------------~ I Object code I I SI ,Produce ESD/TXT/RLD records for program, I 
I I I' and all external CSECTs for inFut into , 
I I " linkage editor. , 
I , ~--------+--------------------------------------------i 
I I I SM I List the object code. I 
~----------------+----------------+--------+----------------------------~---------------~ 

ON stmt. ,On-unit/SYSTEM" EA ,Syntax analysis: block handling and , 
, SNAP I I condition argument lists. , 
I ~--------+--------------------------------------------~ 
, , GI I Create dictionary entries for contextually I 
, " declared conditions. , 
I ~--------+--------------------------------------------~ I , KA ,Insert statements into statement-type , 
I I I chains. , 
I ~--------+--------------------------------------------~ I , OE I Analyze abnormal information (variables set, 
I I t and used in on-units). I 
I ~--------+--------------------------------------------~ I I PA I Allocate storage for static ONCBs. , 
I ~--------+--------------------------------------------~ 
I I PE I Allocate storage for dynamic eNCBs. I 
I ~--------+--------------------------------------------i I , PI ,Addressing of on-units. , 
I ~--------+--------------------------------------------i 
, , SA ,Generate object code. , 

~----------------+----------------+--------+--------------------------------------------~ 
ION-condition I , EA I Syntax analysis: ·arguments. , 

I I ~--------+--------------------------------------------~ , I I OE I Analyze variable usage information, and I 
I , I' abnormal information. I 
, , ~--------+--------------------------------------------~ I I I SA ,Generate object code (unqualified I 
I I 'ION-condition) • , 
, I ~--------+--------------------------------------------~ 
I I I SQ 1 Generate object code (qualified 1 
, , I ION-condition) • I L ________________ ~ ________________ ~ ________ ~ __________ - __ -----__________________________ J 

Licensed Material - Property of IBM Section 4: Directory 511 



r----------------T----------------T--------T--------------------------------------------1 
I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE 1 QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------~ 

OPEN stmt. 1 ENV, I EE I Syntax analysis: options. I 
I options ~--------+--------------------------------------------~ 
I I GM I Gather OPEN file attributes into a I 
r I I dictionary entry. I 

~--------+--------------------------------------------~ I IE I Check for illegal aggregates. I 
~--------+----~---------------------------------------~ I KA I Insert statements into statement-type I 
I I chains. I 
~--------+--------------------------------------------~ I KL I Check attributes with those declared. I 
I I I 
I I Create OCB <Open Control Block) and I 
I I generate an argument list and library I 
I I module call for the statement. I 
~--------+--------------------------------------------~ I KM .', I optimize by completing FCB and DTF at I 
I I compile time if possible. I 

~----------------+----------------+--------+--------------------------------------------~ 
I PARAMETER I I GA I Check for conflicting attributes. I 
I storage I I I Set a bit in the dictionary entry. I 
I I ~--------+--------------------------------------------~ I I I OA I Create value lists for parameters. I 
I I ~--------+--------------------------------------------~ 
I I I PI I Reserve the appropriate storage for the I 
I I I I parameter list for each block (number of I 
I I I I parameters in each block is passed by I 
I I I I Phase PEl in the temporary storage area I 
I I I I based on R 4. I 
~----------------+----------------+--------+--------------------------------------------~ 
I Precision I I EE I Syntax anlysis: arguments. I 

I I ~--------+--------------------------------------------~ 
I I I KK I Expand arithmetic and mathematical bifs. I 
I I ~--------+--------------------------------------------~ I I I OM I Examine precision, scale, etc., in commonedl 
I I I I expressions. I 

~----------------+----------------+--------t--------------------------------------------~ 
I Prefix r I EA r Syntax analysis: checklists and prefix I 
I I I I switches. I 
I I ~--------+--------------------------------------------~ 
I I I II I Generate Type-2 text. I 
I I ~--------+--------------------------------------------l 
I I I SA I Generate object code. I 
~----------------+----------------+--------+--------------------------------------------~ 

Prologue text I IE I Scan-analysis and error checking in I 
I I prologue text. I 
I I I 
I I Sorting of prologue text. I 
I I I 
I I Syntax expansion: prologue text (in I 
I I functions with embedded aggregate I 
I I aSSignments). I 
~--------+--------------------------------------------i I QI I Insert addressing code in prologue or I 
I I optimal flow unit, if OPT=TIME. I 
~--------+--------------------------------------------~ I SA I Generate object code. I 

------------_---~ ________________ ~ ________ ~ ___________ ---------_______________________ J 

Compiler processing functions listed by language featUre 

512 Licensed Material - Property of IBM 



r----------------T----------------T--------T--------------------------------------------, 
I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS , 
~----------------+----------------+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------t 

Pseudovariable I IA I Detect illegal arguments. I 
I I , 
I I Syntax expansion: special cases. I 
~--------+--------------------------------------------i I IE I Check for errors in aggregate bifs and , 
I I pseudovariables. I 
, , I 
, , Syntax expansion: aggregate bifs and I 
I I pseudovariables. I 
~--------+--------------------------------------------~ I KK I Check the validity of arguments to certain , 
I I pseudovariables. I 
I I I 
I I Expand non-string pseudovariables. I 
~--------+--------------------------------------------~ I KV I Process UNSPEC and SUBSTR pseudovariables I 
I I to produce correct object code. I 
~--------+--------------------------------------------~ 
I ox I Process STRING pseudovariable to produce I 
I I library call, if necessary. I 

~----------------+----------------+--------+--------------------------------------------~ 
PICTURE data Alpha/numeric I EE I Syntax analysis: expanded PICTURE I 

I I specifications (declare). I 
~--------+--------------------------------------------~ 
I EI I Check for syntax errors local to the I 
I I statement. I 
I I I 
I I Syntax analysis: expanded FICTURE I 
I I specifications (format list). I 
~--------+--------------------------------------------i 
I GA I Check for illegal pictures in declarations. I 
I I I 
I I Create picture table entries for PICTURE I 
I I declarat ions. I 
~--------+--------------------------------------------i I GM 1 Check for illegal pictures in format lists., 
I I I 
I I Create picture table entries in the general I 
I I dictionary, for PICTURE format items. I 
~--------+--------------------------------------------i I KV ,Optimize PICTURE comparisons. I 
~--------+--------------------------------------------~ I KX I Expand PICTURE conversions. I 
~--------+-----~--------------------------------------~ , oc I Expand PICTURE conversions. I 
~--------+--------------------------------------------~ I OM I Examine precision, scale, etc., in cornrnonedl 
I I expressions. I 
~--------+--------------------------------------------f I I PC I Build and allocate storage for pictured I 

I I I DEDs and FEDs. I 
~----------------+----------------+--------+--------------------------------------------t I PROCEDURE stmt.1 OPTIONS, I EE I Set up a dictionary text file entry chain I 
I I data attributes I I for each block, and a block-header chain. I 
I I multiple labels I I I 
I I I I Syntax analysis: blocking, and statement I 
I I I I options. I 
L_---------------~----------------~--------L-----------_________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 513 



r----------------T----------------T--------T--------------------------------------------, 
, LANGUAGE I FEATURE ,COMPILER I , 
, FEATURE I QUALIFICATIONS I PHASE, COMPILER PROCESSING FUNCTIONS , 
~----------------+----------------+--------+--------------------------------------------i 
~----------------+----------------+--------+--------------------------------------------i 
, PROCEDURE stmt., OPTIONS, I GA ,Create block-header and entry-point , 
, I data attributes' I entries in the general dictionary. I 
I I multiple labels~--------+--------------------------------------------i 
, I I 1M Chain in new external procedure to be 
, I ,called by FORTRAN/COBOL. 
I I , 
I I I , , 

I , 
I , 
I I 
I , 

Create dictionary entries for new external 
procedure to be called by FORTRAN/COBOL. 

Insert library calls into text to set up 
correct environments before and after CALL. 

I I Create new external procedure and entry 
, I points, and calls to old procedure and 
I ,entry points. 
I ~--------+-----------------------------~--------------i 
I , KT 'Generate prologue code for procedure and , 
I I I entry points. , 
, ~--------+--------------------------------------------i 
I , OA ,create a block optimization entry. , 
I ~--------+--------------------------------------------i 
I I OE I Complete the block optimization entry. I 
, ~--------+--------------------------------------------i 
I I 01 I Analyze connection information. , 
I ~--------+--------------------------------------------i I I SA I Generate object code. , 

~----------------+----------------+--------+--------------------------------------------i 
PUT stmt. ,FILE/STRING" EI 'Check for syntax errors local to the , 

I EDIT/LIST/DATA,' , statement. , 
I COPY,SKIP,COL, I , I 
I LINE, PAGE, I I Syntax analysis: options, data lists, and, 
, data-list, I I DO-groups. I 
I format-list ~--------+--------------------------------------------i 
I I KA I Insert statements into statement-type I 
I I I chains. I 
I ~--------+--------------------------------------------i 
I I KQ I Check for: I 

I I errors in statement-type chains, I 
I invalid items in data lists, , 
, invalid options on statements. , 
I I 
I Match data and format lists. , 
I I 
, create dictionary entries for FEDs. , , , 
, Allocate registers for special usage in , 
, stream I/O. , 
I , 
, Expand stream I/O statements to include , 
, library calls, CONV tables, etc. , 

~--------+--------------------------------------------i 
, PC I Allocate storage for symbol table built fori 
, , PUT DATA. , 

, I ~--------+--------------------------------------------1 
I I I SK I Detect statement too large. I 
~------------~---+----------------+--------+--------------------------------------------i 
, RE/IRREDUCIBLE I , GA ,Set a bit in the entry-point dictionary , 
I I I I entry. I L ________________ ~ ________________ ~ ________ ~_--_________________________________________ J 

Compiler processing functions listed by language feature 

514 Licensed Material - Property of IBM 



r----------------T----------------T--------T--------------------------------------------, 
, LANGUAGE I FEATURE 'COMPILER' , 
, FEATURE I QUALIFICATIONS ,PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------+--------------------------------------------i 
~----------------+----------------+--------+--------------------------------------------i 

READ stmt. I FILE,INTO/SET, I EE I Syntax analysis: options. I 
I KEY/KEYTO, ~--------+--------------------------------------------1 
I IGNORE,EVENT, I II I Check for illegal options. I 
I NOLOCK ~--------+--------------------------------------------~ 
I I 1M I Create dictionary entries for COBOL-mapped I 
I I I temporary structures for 1/0 with COBOL I 

I I I files. I 
, I' I 
1 I I Create assignments between COBOL-mapped I 
I I I temporary structures and original I 
I I I structures. I 
I ~--------+--------------------------------------------~ 
I I KA I Insert statements into statement-type I 
I I I chains. I 
, ~--------+--------------------------------------------1 
, I KM I Generate library call, or inline code when I 
I '1 possible. I 

~----------------+----------------+--------+--------------------------------------------~ 
, RECURSIVE opt. I I GA I Set a bit in the block-header entry. I 
~----------------+----------------+--------+--------------------------------------------i 
I RETURN stmt. I Expression I EA I Syntax analysis of RETURN expressicns. I 
I I ~--------+--------------------------------------------~ 
I I I IE I Check for illegal use of aggregates. I 

I I ~--------+--------------------------------------------i 
, I , KT I Check that a RETURN expression is scalar. I 
I , I' I 
, I I I Expand the statement. I 
I I ~--------+--------------------------------------------1 I I , OE I Analyze flow information. I 
, I ~--------+--------------------------------------------~ 
I , , SA I Generate object code. I 
~----------------+----------------+--------+--------------------------------------------~ 
, RETURNS I Attribute I EE I Syntax analysis: returned-value attributes, 
I I 'I (on DCL and PROC/ENTRYs statements). I 
, , ~--------+--------------------------------------------1 
I I , GA I Check for conflicting attributes. I 
I , 'I 1 
I I I I Set a bit in the dictionary entry. I 
~----------------+----------------+--------+--------------------------------------------~ 
I REVERT stmt. I I EA I Syntax analysis of condition names. I 
~----------------+----------------+--------+--------------------------------------------i 
I REWRITE stmt. I FILE,KEY, I EA I Syntax analysis of condition names. I 
I I FROM, EVENT ~--------+--------------------------------------------i 
I I I EE I Syntax analysis: options. I 
I I ~--------+--------------------------------------------t I , I II I Check for illegal options. I L ________________ ~ ________________ ~ ________ ~ ______________________________________ - _____ J 

Licensed Material - Property of IBM Section 4: Directory 515 



r----------------T----------------T--------T--------------------------------------------1 
I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 

~----------------t----------------+--------+--------------------------------------------~ 
~----------------t----------------+--------+--------------------------------------------~ 

REWRITE stmt. I FILE,KEY, I 1M I Create dictionary entries for COBOL-mapped I 
I FROM, EVENT I I temporary structure for I/O with COBOL I 

I I files. I 
I I I 
I I Create assignments between COBOL-mapped I 
I I temporary structures and original I 
I I structures. I 
~--------+-------------------------------.--------------I 
I KA I Insert statements into statement-type I 
I I chains. I 

~--------+--------------------------------------------~ 
I KM I Generate library call. I 
~--------+--------------------------------------------~ I KT I Check whether a computational condition is I 
I I enabled. I 
I I I 
I I Expand the statement. I 

~----------------t----------------t--------+--------------------------------------------f I Scale FIXED/FLOAT I EE I Syntax analysis: arguments. I 
I ~--------+_-------------------------------------------~ 
I I GA 1 Check for implementation limit violations. I 
J ~--------t--------------------------------------------~ I II I Check for illegal conversions. I 

I I I 
I I Analyze expressions prior to generation of I 
I I CONV, etc., tables. I 
I I I 
I I Generate Type 2 text tables from I 
I I expreSS10ns. I 
~--------+--------------------------------------------~ I KK 1 Expand arithmetic and mathematical bifs. I 
~--------+--------------------------------------------f 
I OM I Examine precision, scale, etc., in commonedl 
I I expressions. I 

~----------------+----------------+--------+--------------------------------------------f I Scope I IN/EXTERNAL I GA I Check for conflicting attributes. I 
I I I I I 
I I I I Set a bit in the dictionary entry. I 
I I ~--------+------------------------------~-------------~ 
I I I PE 1 Allocate storage for ADCONs for EXTERNAL I 
I I I I variables. I 

~----------------+----------------t--------+_--------------------------------------------1 
storage class 1 I EE I Syntax analysis: BASED pointers. I 

~--------t---------------------------~----------------~ 
I GA I Check for conflicting attributes. I 
I I I 
I I Set a bit in the dictionary entry. I 
~--------t--------------------------------------------~ 
I PA I Create entries in the constants poel. I 
~--------t--------------------------------------------f I PE I Allocate static and dynamic storage. I 
~--------+--------------------------------------------~ 
I PI I Allocate temporary storage. I 

~--------t--------------------------------------------f 
I QA I Assign absolute register numbers where I 
I I required. I l ________________ ~ ________________ ~ ________ ~ ____ - _______________________________________ J 

Compiler processing functions listed by language feature 

516 Licensed Material - Property of IBM 



r----------------T----------------T--------T--------------------------------------------, 
I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I CO~PILER PROCESSING FUNCTIONS I 
r----------------t----------------f--------f--------------------------------------------~ 
r----------------t----------------t--------+--------------------------------------------~ 
I Storage class I I QE I Allocate storage for global temporaries. I 
I I ~--------+--------------------------------------------~ 
I I I QI I Relocate temporary storage. I 
r----------------t----------------f--------f--------------------------------------------~ 

String data I BIT/CHAR/PIC, I EE I Syntax analysis: arguments and REFER I 
I fixed/VARYING, I I items. I 
I non-adjustable/~--------+--------------------------------------------i 
I adjustable I GA I Add details of attributes to string item's I 
1 I I dictionary entry. I 
I ~--------+_-------------------------------------------i I I IA I Create locator-descriptors for I 
I I I adjustable-length cases. I 
I I I I 

I I Aggregate mapping for adjustable-length I 
I I cases. I 
I I I 
I I Syntax expansion for adjustable-length I 
I I cases. I 
~--------+--------------------------------------------i I II I Analyze expressions, perform argument I 
I I matching, etc., and generate Type 2 text I 
I I tables. I 
~--------+--------------------------------------------~ 
I IQ I Map and allocate storage for adjustable I 
I I strings. I 
~--------+--------------------------------------------~ I RV I Optimize usage of the UNSPEC, CHAR, BIT, I 
I I and SUBSTR bifs and PSVS. I 
~--------+--------------------------------------------~ I OC I Expand TRANSLATE and BOOL bifs. I 
I I I 
I I Expand character and bit string I 
I 1 assignments. I 
~--------+--------------------------------------------1 I ox I Expand REPEAT, LENGTH, INDEX, VERIF-Y, HIGH, I 
I I LOW, and STRING bifs and pseudovariables. I 
~--------+--------------------------------------------~ I PA I Create locator-descriptor skeletons. I 
I I I 
I I Allocate storage for locator-descriptor I 
I I skeletons. I 
~--------+--------------------------------------------~ 
I PE I Map temporary storage for aggregate I 
I I temporaries. I 
~--------+------------------~-------------------------~ I PI I AddreSSing of strings. I 
I I I 
I I Addressing of locator-descriptors. I 
I I I 
I I Map temporary storage, with the exce~tion I 
I I of aggregate temps. I 

I ~--------+--------------------------------------------~ I I sc I Code production for string operaticns. I 
~----------------f----------------+--------f--------------------------------------------i I String Ope I BIT/CHARACTER I EE I Syntax analysis: arguments and REFER I 
I I I I items. I 
I I ~--------+--------------------------------------------i I I I II I Analyze expressions. I L ________________ ~ ________________ ~ ________ L ____________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 517 



r----------------T----------------T--------T--------------------------------------------, 
, LANGUAGE I FEATURE ,COMPILER, , 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 

~----------------+----------------+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------~ 

String Ope I BIT/CHARACTER I IQ 'Map adjustable strings. , 
I ~--------+--------------------------------------------~ I I KA 'Process all STRING-Operation staterrents, I 
I I' and check for errors. I 
I ~--------+--------------------------------------------~ 
I 1 OC I Expand =, II,&I",GT,GE,E,NE,LE,LT string I 
I I I operations. , 
I ~--------+--------------------------------~-----------~ 
I I OM I Commoning and moving of expressions. I 
I ~--------+--------------------------------------------~ 
I I OX ,Optimize BC, BCB, and complex string , 
1 I I operations. I 
I ~--------+--------------------------------------------~ 
I I SC I Generate object code. , 

~----------------+----------------+--------+--------------------------------------------~ 
structure I I EE I Syntax analysis: level numbers. I 

I ~--------+--------------------------------------------~ 
I I GE I Create aggregate descriptor dictionary , 
I I I entries. I 

~--------+--------------------------------------------i I 1D ,create aggregate temporaries and reduced , 
I I descriptors in arguments and LIST I/O. I 

~--------+--------------------------------------------~ I IE I Check for errors in expressions. I 
I I I 
I I syntax expansion: expressions. , 
~--------+--------------------------------------------~ I II I Check for illegal usage in expressions. I 
~--------+--------------------------------------------~ I 1M I Create dictionary entries for COBOL-mapped , 
I I temp. structures for ILC calls or I/O with I 
I I COBOL files. I 
I I I 
I I Create assignments between COBOL-mapped I 
I I temporary structures and original I 
I I structures. I 
~--------+--------------------------------------------~ 

IQ I Generate text tables to produce maFping and 
I storage allocation code. 
I 
I Create aggregate table entries in the 
I general dictionary. 
I 
I Create locator-descriptors for string and 
I aggregate mapp~ng. 
I 
I Map structures. 
I 
I Generate text tables to produce mapping 
I code. 

~--------+--------------------------------------------i 
I PA I Construct structure locators and I 
I I descriptors if required. I 
~--------+--------------------------------------------~ 
I PC I Expand structure text in DATA-directed 1/0.1 

~--------+--------------------------------------------~ I PE I Allocate storage for structure. I ________________ ~ ________________ ~ ________ ~ ___________________________________________ J 

Compiler processing functions listed by language feature 

518 Licensed Material - Property of IBM 



r----------------T----------------T--------T--------------------------------------------1 
, LANGUAGE I FEATURE ,COMPILER, I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------f 

Subscripted I , EA 'Syntax analysis: arguments, I 
qualified name, I I qualifications, and double subscri~ts. I 

I ~--------+--------------------------------------------i 
I I EE I Syntax analysis: arguments, I 
I I I qualifications, and double subscri~ts. I 
I ~--------+--------------------------------------------i I I EI I Check for syntax errors local to the I 
I 'I statement. , 
I I' , 
I I I Syntax analysis: arguments, I 
I I I qualifications, and double subscripts. I 
I ~--------t--------------------------------------------i 
I I GM I Resolve names. I 
I ~--------+--------------------------------------------i 
I , II ,Generate Type 2 text. , 

~----------------+----------------+--------t--------------------------------------------~ 
I SIGNAL stmt. I I PC J Allocate storage for symbol tables built I 
I , 'I for SIGNAL CHECK. I 
~----------------+----------------+--------t--------------------------------------------~ 

STATIC storage I I GA I Check for conflicting attributes. I 
I 'I , 
I 'I set a bit in the dictionary entry. I 
, ~--------+--------------------------------------------f I I IA ,STATIC INITIAL syntax expansion. , 

, ~--------t--------------------------------------------~ I I IQ I Map STATIC aggregates. I 
I ~--------t--------------------------------------------i I , PA I Create entries in the constants pool. , 
I I' , 
I " Allocate storage for and map static initial, 
I I I storage. I 
I ~--------+--------------------------------------------i I I PE I Allocate storage for STATIC variables. I 
I ~--------t--------------------------------------------~ 
I I SI 'Expand constants into TXT records. I 
I ~--------+--------------------------------------------i I , SM ,List static storage. , 

~----------------+----------------+--------+--------------------------------------------~ 
I STOP stmt. I I KT I Expand the statement. I 
~----------------+----------------+--------+--------------------------------------------i I TASK attribute I I KK I Expand tasking bifs. , 
~----------------+-------~--------+--------t--------------------------------------------i 
I WAIT stmt. I I EA I Syntax analysis: options. I 
I I ~--------+--------------------------------------------i 
I I I IE I Check for illegal use of aggregates. I 
I I ~--------t--------------------------------------------i 
I I I KA I Insert statements into statement-type I 
I I I I chains. , 
L _______ ---------~----------------~--_--___ L ______________________________________ --____ J 

Licensed Material - Property of IBM Section 4: Directory 519 



r----------------T----------------T--------T--------------------------------------------1 I LANGUAGE I FEATURE I COMPILER I I 
I FEATURE I QUALIFICATIONS I PHASE I COMPILER PROCESSING FUNCTIONS I 
~----------------+----------------+--------+--------------------------------------------~ 
~----------------+----------------+--------+--------------------------------------------~ I WAIT stmt. I I KT I Expand the statement. I 
~----------------+----------------+--------+--------------------------------------------~ 

WRITE stmt. FILE, FROM, I EE I Syntax analysis: options. I 
KEYFROM,EVENT ~--------+--------------------------------------------~ 

I II I Check for illegal options. I 
~--------+--------------------------------------------~ 
I 1M I Create dictionary entries for COBOL-mapped I 
I I temporary structures for I/O with 'COBOL I 
I I files. I 
I I I 
I I Create assignments between COBOL-mapped I 
I I temporary structures and original I 
I I structures • I 
~--------+--------------------------------------------~ I KA I Insert statements into statement-type I 
I I chains. I 
~--------+--------------------------------------------f I KM I Generate library call, or inline code when I 
I I possible. I ________________ ~ ________________ ~ ________ L_ ___________________________________________ J 

Compiler processing functions listed by language feature 

520 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

COMPILER PROCESSING FUNCTIONS LISTED BY PHASE 

Note: For ease of reference, this part of the directory is organized in alphabetic 
order of phase name, rather than in phase-loading order. 

r--------T----------------T----------------T--------------------------------------------, 
I COMPILER I LANGUAGE I FEATURE I I 
I PHASE I FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 

~--------+----------------+----------------+--------------------------------------------i 
~--------+----------------+----------------+--------------------------------------------i I BA I All language , , Convert 48-char source to 60-char, and BCD I 
I I I , to EBCDIC (MACRO not specified). I 
~--------+----------------+----------------+--------------------------------------------i 
, CA I All language I I Print listing if INSOURCE specified. I 
I I I I I 
I I I , Convert 48-char source to 60-char, and BCD I 
I I I , to EBCDIC (MACRO specified). I 
I ~----------------+----------------+--------------------------------------------i I I Compile-time I J Remove all % symbols except from %PAGE, , 
I , (I) stmts., I ISKIP, %CONTROL, IPRINT, and %NOPRINT I 
I I I I statements. I 
I I 'I , 
I I I I Execute all compile-time (I) statements. I 
~--------+----------------+----------------+--------------------------------------------i 
, EC ,All language I I Move keyword and Translate tables onto lor, 
'I , I 2 text pages for use by syntax analysis. I 
~--------+----------------+----------------+--------------------------------------------i 

EA ,Arithmetic Ope , I Operator/operand syntax analysis. I 
~----------------+----------------+--------------------------------------------i 
I ALLOCATE stmt. I CONTROLLED/ I Syntax: page splitting. I 
I I BASED, SET, IN , I 
~----------------+----------------+--------------------------------------------i 
I Compile-time I I Execute IF-AGE, ~SKIP, ~CONTROL, %PRINT, and, 
I (I) stmts. I I INOPRINT statements if SOURCE specified. I 
~----------------+----------------+--------------------------------------------i I Constant, , Syntax analysis: format constants. I 
~----------------+----------------+--------------------------------------------i 
, DECLARE stmt. I , Syntax analysis: page splitting. I 
~----------------+----------------+--------------------------------------------i 
I DEFAULT stmt. I I Syntax analysis: page splitting. I 
~----------------+----------------+--------------------------------------------i 
, DO stmt. 'TO,By,WHILE' Analyze type compatibility and syntax of , 
, , I repetitive specifications. I 
.~----------------+----------------+--------------------------------------------i 
, END stmt. I Label I Syntax analysis: block nesting. , 
~----------------+----------------+--------------------------------------------i I FREE stmt. I CONTROLLED/ I Syntax analysis: namelists. , 
, , BASED , , 

~----------------+----------------+--------------------------------------------i 
, GO TO stmt. 'Label const/var, Analyze target syntax. I 
~----------------+----------------+--------------------------------------------i 
ION stmt. IOn-unit/SYSTEM,' Syntax analysis: block handling and I 
I I SNAP , condition argument lists. I 
~----------------+----------------+--------------------------------------------i 
ION-condition , , syntax analysis: arguments. I 
~----------------+----------------+--------------------------------------------i I Prefix I I Syntax analysis: checklists and prefix I 
, I I switches. I 
~----------------+----------------+--------------------------------------------i 
I RETURN stmt. ,Expression I Syntax analysis of RETURN expressions. I 
~----------------+----------------+--------------------------------------------i I REVERT stmt. I I Syntax analysis of condition names. I ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 521 



r--------T----------------T----------------T--------------------------------------------, I COMPILER, LANGUAGE , FEATURE , , 
,PHASE, FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------i 
~--------+----------------+----------------+--------------------------------------------i I EA I REWRITE stmt. I FILE,KEY, , Syntax analysis of condition names. I 
I I I FROM, EVENT I I 
I ~----------------+----------------+--------------------------------------------i 
I I Subscripted I I Syntax analysis: arguments, I 
I I qualified name I I qualifications, and double subscripts. I 
~--------+----------------+----------------+--------------------------------------------~ 

EE I Arithmetic Ope I I Syntax analysis: operator/operand. I 
~----------------+----------------+--------------------------------------------i 
I ALLOCATE stmt. I CONTROLLED/ I Set up a dictionary text file ALLOCATE I 
I I BASED,SET,IN I chain for each block. I 
I I I I 
I I , Check attributes of allocated variables, , 
I I I and check SET/IN options. , 
~----------------+----------------+--------------------------------------------i I AREA I , Syntax analysis: AREA arguments. I 
~----------------+----------------+--------------------------------------------i 
, Base , DECIMAL/BINARY , Syntax analysis: arguments. I 
~----------------+----------------+--------------------------------------------i I BEGIN stmt. I options I Set up a dictionary text file entry chain I 
I , I for each block, and a block-header chain. , 
, " I I I I Syntax analysis: options and arguments. I 
~----------------+----------------+--------------------------------------------i 
, Constant I I Syntax analysis: format constants. I 
~----------------+----------------+--------------------------------------------i 
I CLOSE stmt. I ENV I Syntax analysis: options. I 

~----------------+----------------+--------------------------------------------i 
I Dimension I I Syntax analysis: expressions and REFER I 
I I I items. I 

~----------------+----------------+--------------------------------------------i I DECLARE stmt. I , Set up a dictionary text file DECLARE cnainl 
, , I for each block. I 
I I I I 
I I , Syntax analysis: nesting and factoring. I 
~----------------+----------------+--------------------------------------------i I DEFAULT stmt. I I Set up a dictionary text file DEFAULT chain I 
I I I for each block. I 
I I I I 
I I , Syntax analysis: nesting and factoring. , 
~----------------+----------------+--------------------------------------------i I DEFINED I POSITION/iSUB I Syntax analysis: bases. I 
~----------------+----------------+--------------------------------------------i , DELAY stmt. I I Syntax analysis: options. I 
~----------------+----------------+--------------------------------------------i I DISPLAY stmt. I REPLY,EVENT ,Syntax analysis: options. I 
~----------------+----------------+--------------------------------------------i I ENTRY attribute, Parameter I Syntax analysis: parameter attribute I 
I I attribute list I lists in ENTRY declarations. I 
I I ORDER/REORDER I I 
~----------------+----------------+--------------------------------------------i I ENTRY stmt. I Multiple labs. I Set up a dictionary text file entry chain I 
, I , for each block. I 
I I I I 
I I I Syntax analysis: options. I ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

Compiler processing functions listed by phase 

522 Licensed Material - property of IBM 



r--------T----------------T----------------T--------------------------------------------1 
,COMPILER, LANGUAGE , FEATURE , , 
,PHASE I FEATURE 'QUALIFICATIONS , COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------i 
~--------+----------------+----------------+--------------------------------------------i 

EE I FILE I Const/var, I Syntax analysis: record I/O arguments. I 
, I STREAM/RECORD, J I 
I I KEYED, INPUT, I , 
, I OUTPUT, etc. , , 

~----------------+----------------+--------------------------------------------i I GENERIC' I Syntax analysis: valid clauses. , 
~----------------+----------------+--------------------------------------------i I INITIAL I CALL/nocall I Syntax analysis: INITIAL values, with I 
, , I replication and nesting. I 
~----------------+----------------+--------------------------------------------i I LOCATE stmt. ,FILE, SET, I Syntax analysis: options. I 
, I KEYFROM I , 
~----------------+----------------+--------------------------------------------i I Mode 'REAL/COMPLEX' Syntax analysis: arguments. , 

~----------------+----------------+--------------------------------------------i I OPEN stmt. I ENV, I Syntax analysis: options. I 
I I options. I I 
~----------------+----------------+--------------------------------------------i I Precision I I Syntax analysis: arguments. I 
~----------------+----------------+--------------------------------------------i 
, PICTURE data I Alpha/numeric I Syntax analysis: expanded PICTURE I 
I I I specifications (declare). I 
~----------------+----------------+--------------------------------------------1 
, PROCEDURE stmt.1 OPTIONS, I Set up a dictionary text file entry chain I 
, I data attributes I for each block, and a block-header chain. I 
I I multiple labels1 I 
I I 1 Syntax analysis: blocking, and statement I 
I I I options. I 
~----------------+----------------+------------------~-------------------------~ I READ stmt. I FILE, INTO/SET, I Syntax analysis: options. I 
I I KEY/KEYTO, I I 
I ,IGNORE, EVENT, I I 
, I NOLOCK , I 
~----------------t----------------+--------------------------------------------i I RETURNS I Attribute I Syntax analysis: returned-value attributes, 
I I I (on DCL and PROC/ENTRYs statements). I 
~----------------+----------------+--------------------------------------------f 
, REWRITE stmt. I FILE, KEY, I Syntax analysis: options. I 
I I FROM, EVENT I I 
~----------------+----------------+--------------------------------------------i I Scale ,FIXED/FLOAT I Syntax analysis: arguments. I 
~----------------t----------------+--------------------------------------------i I Storage class I 1 Syntax analysis: BASED pointers. I 
~----------------+----------------+--------------------------------------------i I String data 1 BIT/CHAR/PIC, I Syntax analysis: arguments and REFER I 
1 I fixed/VARYING, I items. I 
I I non-adjustable/I I 
I I adjustable I I 
~----------------+----------------+--------------------------------------------i I String Ope 1 BIT/CHARACTER I Syntax analysis: arguments and REFER I 
I I I items. I 
~--------------~-+----------------+--------------------------------------------f I Structure I 1 Syntax analysis: level numbers. I 
~----------------+----------------+--------------------------------------------i 
1 Subscripted I I Syntax analysis: arguments, I 

I I qualified name I I qualifications, and double subscripts. I L ________ ~ ________________ ~ ________________ L ________________________________________ ~---J 

Licensed Material - Property of IBM section 4: Directory 523 



r--------T--------~-------T----------------T--------------------------------------------1 
I COMPILER I LANGUAGE I FEATURE I I 
I PHASE I FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
r--------+----------------+----------------+--------------------------------------------f r--------+----------------+----------------+--------------------------------------------f 
I EE I WRITE stmt. I FILE,FROM, I Syntax analysis: options. , 
" I KEYFROM,EVENT t , 
r--------+----------------+----------------+--------------------------------------------f 
I EI I Arithmetic Ope I I Check for syntax errors local to the , 
'I I I statement. I 
I I I I , 
'I I I Syntax analysis: operator/operand. , 
I r----------------+----------------+--------------------------------------------f 
I I Array x-section, I Check for syntax errors local to the I 
'I I , statement. , 
I ~----------------+----------------+--------------------------------------------f 
I I Constant I I Check for syntax errors local to the , 
" I , statement. , 

, " I , I I Syntax analysis: format constants. , 

~------~---------+----------------+--------------------------------------------f I Expression I Data type , Check for syntax errors local to the , 
, I , statement. I 
~----------------T----------------+--------------------------------------------f , FILE I Const/var, , Check for syntax errors local to the , 
, , STREAM/RECORD, , statement. , 
, ,KEYED, INPUT, t , 
I I OUTPU!,etc. 1 syntax analysis: stream I/O arguments. , 
~----------------+----------------+--------------------------------------------f 
, FORMAT stmt. I I Check for syntax errors local to the , 
I , , statement. , 
I I I I 
I I I Syntax analysis: arguments, repetitive I 
I I I specifications, and factored items. I 
~----------------+----------------+--------------------------------------------i 
, GET stmt. I FILE/STRING, 'Check for syntax errors local to the I 
, , EDIT/LIST/DATA,' statement. I 
I I COPY,SKIP,COL, I I 
, I data-list, , Syntax analysis: options, data lists, and I 
I ,format-list I DO-groups. I 
~----------------+----------------+--------------------------------------------i 
I IF stmt. I THEN, ELSE I Syntax analysis: nesting and position. I 
~----------------+----------------+--------------------------------------------i 
, Mode ,REAL/COMPLEX' Check for syntax errors local to the , 
, I I statement. I 
~----------------+----------------+--------------------------------------------i 
I PICTURE data 'Alpha/numeric 'Check for syntax errors local to the I 
I I I statement. I 
I I I I 
I I I Syntax analysis: expanded PICTURE I 
I I I specifications (format list). I 
~----------------+----------------+--------------------------------------------f I PUT stmt. I FILE/STRING, I Check for syntax errors local to the I 
, , EDIT/LIST/DATA,' statement. , 
, , COPY,SKIP,COL, , , 
I , LINE, PAGE, I Syntax analysis: options, data lists, and I 
I I data-list, , DO-groups. I 
I I format-list I I 
~----------------+----------------+--------------------------------------------i I Subscripted , I Check for syntax errors lcoal to the I 
I qualified name , , statement. , ----____ ~ ________________ ~ ________________ ~ ____________________________________________ J 

Compiler processing functions listed by phase 

524 Licensed Material - Property of IBM 



r--------T----------------T----------------T--------------------------------------------1 
I COMPILER I LANGUAGE I FEATURE I I 
I PHASE I FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+-----~----------+--------------------------------------------~ 
~--------+----------------+----------------+------------------------------------------~-f 
I EI I Subscripted I I Syntax analysis: arguments, I 
I I qualified name I I qualifications, and double subscri~ts. I 

~--------+----------------+----------------+--------------------------------------------~ 
GA I ALIGNED/ I I Check for conflicting attributes. I 

I UNALIGNED I I I 
I I I Set a bit in the dictionary entry. I 
~----------------+----------------+--------------------------------------------i 
I AREA I I Check for conflicting attributes. I 
I I I I 
I I I Set a bit in the dictionary entry. I 
~----------------+----------------+--------------------------------------------f 
I AUTOMATIC stge.1 I Check for conflicting attributes. I 
I I II 
I I I Set a bit in the dictionary entry. I 

~----------------+----------------+--------------------------------------------i I Base , DECIMAL/BINARY , Check for implementation limit violations. I 
~----------------+----------------+--------------------------------------------f 
I Built-in I I Create dictionary entries for I 
I I , explicitly-declared bifs. I 
~----------------+----------------+_-------------------------------------------f 
I BASED storage I REFER I Check for conflicting attributes. I 
I I I I 
I I I Set a bit in the dictionary entry. I 
~----------------+----------------+--------------------------------------------i I BEGIN stmt. I options , Check the validity of options on B~GIN I 
I I I statements. I , I' , 
I I I Create a block-header dictionary entry for I 
I , I the block. I 
~----------------+----------------+----------------~~--------------------------~ I CTL storage I , Check for conflicting attributes. I 
, 'I I 
, I I Set a bit in the dictionary entry. I 
~----------------+----------------+_-------------------------------------------i I DECLARE stmt. , , Detect declaration errors. I 
, I I I 
, , I Create dictionary entries for explicitly , 
I I I declared names. I 
I I' I 
I I I Unfactor attributes. I 
~----------------+----------------+--------------------------------------------~ 
I DEFAULT stmt. I I Detect DEFAULT specification errors. I 
I I I I 
I I I Build the DEFAULT directory. I 
~----------------+----------------+--------------------------------------------f I DEFINED I POSITION/iSUB I Check for conflicting attributes. I 
I I' I 
I I I Set a bit in the dictionary entry. I 
~----------------+----------------+--------------------------------------------i , ENTRY attribute, Parameter , Create parameter descriptor entries in the I 
I , attribute list I general dictionary. I 
I I ORDER/REORDER I I 
~----------------+----------------+--------------------------------------------f 
, ENTRY stmt. ,Multiple labs. , Create entry-point entries in the general I 
, I I dictionary_ , ________ ~ ______________ --~----------------L--------____________________________________ J 

Licensed Material - Property ot IBM Section 4: Directory 525 



r--------T----------------T----------------T--------------------------------------------1 I COMPILER I LANGUAGE I FEATURE I I 
I PHASE I FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------~ 
~----~---+----------------+----------------+--------------------------------------------~ 
I GA I FILE I Const/var, I Check for conflicting attributes. I 
I I I STREAM/RECORD, 1 I 
I I I KEYED, INPUT, I Create file constant dictionary entries. I 

I I OUTPU~,etc. I I 
I I , Set a bit in the dictionary entry. I 
~----------------+----------------+--------------------------------------------i 
I INITIAL I CALL/nocall 1 Check for conflicting attributes. I 
I I I I 
I I I Set a bit in the dictionary entry. , 
~----------------+----------------+--------------------------------------------~ I Locator I POINTER/AREA I Check for conflicting attributes. , 
I I I , 
I I I Set a bit in the dictionary entry. I 
~----------------+----------------+--------------------------------------------~ 
I LIKE I I Check for conflicting attributes. I 
I I I I 
I I I Expand 'LIKE' specifications. I 
~----------------+----------------+--------------------------------------------~ I Mode 'REAL/COMPLEX I Check for implementation limit violations. I 
~----------------+----------------t--------------------------------------------i 
I Parameter I I Check for conflicting attributes. I 
I storage I I I 
, , , Set a bit in the dictionary entry. I 
~----------------+~---------------+--------------------------------------------~ 
, PICTURE data I Alpha/numeric I Check for illegal pictures in declarations., 

I " I I I I Create picture table entries for PICTURE I 
I I I declarations. I 
~----------------+----------------+--------------------------------------------~ 
, PROCEDURE stmt.1 OPTIONS, I Create block-header and entry-point I 
, I data attributes, entries in the general dictionary. I 
I I multiple labels, , 
~----------------+----------------+--------------------------------------------~ 
I RE/IRREDUCIBLE I I Set a bit in the entry-point dicticnary I 
I I I entry. I 
~----------------t----------------+--------------------------------------------~ 
I RECURSIVE opt. 1 I Set a bit in the block-header entry. I 
~----------------+----------------+---------------------------~----------------~ 
I RETURNS I Attribute I Check for conflicting attributes. I 
I I I , 
I 1 1 Set a bit in the dictionary entry. I 
~----------------+----------------+--------------------------------------------1 
, Scale ,FIXED/FLOAT' Check for implementation limit violations. I 
~----------------+----~-----------+--------------------------------------------~ 
I Scope I IN/EXTERNAL 1 Check for conflicting attributes. I 
, " t I I I Set a bit in the dictionary entry. , 
~----------------+----------------+--------------------------------------------~ 1 Storage class , 1 Check for conflicting attributes. , 
I I I I 
I 1 I Set a bit in the dictionary entry. I 
~----------------+----------------+--------------------------------------------~ 
) String data 'BIT/CHAR/PIC, I Add details of attributes to string item's I 
, , fixed/VARYING, 1 dictionary entry. , 
, I non-adjustable/, , 
I 'adjustable I I 
~----------------+----------------+--------------------------------------------~ I I STATIC storage I 1 Check for conflicting attributes. I L ________ ~ ________________ ~ ________________ ~ __________________________________________ -_J 

Compiler processing functions listed by phase 

526 Licensed Material - Property of IBM 



r--------T----------------T----------------T--------------------------------------------1 
,COMPILER, LANGUAGE , FEATURE , , 
,PHASE, FEATURE , QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------i 
~--------+----------------+----------------+--------------------------------------------i 
I GA I STATIC storage I I Set a bit in the dictionary entry. I 

~--------+----------------+----------------+--------------------------------------------~ 
GE I ALLOCATE stmt. I CONTROLLED/ I Check allocate attributes against I 

I I BASED,SET,IN I declaration attributes. I 

I 1 I I 
I I 1 Merge allocation and declaration I 
I I I information. I 
, I I I 
I J I Create allocate-time aggregate table I 
, , I dictionary entries. I 
, I I I 
I I I Generate extent and INITIAL assignments. I 
~----------------+----------------+--------------------------------------------~ 
, BASED storage I REFER I Detects errors in REFER declaration. , 
I I I I 
, I I puts REFER information in aggregate , 
, , , descriptors. , 

~----------------+----------------+--------------------------------------------~ 
, Dimension, I Create aggregate descriptor dictionary , 
I I , e nt r i es • I 
~----------------+----------------t--------------------------------------------1 
, DEFAULT stmt. I I Use the DEFAULT directory. I 
~----------------+----------------+--------------------------------------------i 
I DEFINED I POSITION/iSUB I Diagnose source errors. I 
I I I 1 
I I , Generate addressing statements. , 

I 'I I , I , Classify defining. , 

~----------------+----------------+--------------------------------------------~ I GENERIC' I Check for attribute and entry pOint errors., 
I I' , 
, I , Create dictionary entries. I 
~----------------+----------------+--------------------------------------------i 
, INITIAL ,CALL/nocall, Generate INITIAL assignment tables. , 

~----------------+----------------+--------------------------------------------~ 
, Structure, I Create aggregate descriptor dictionary I 
I I I entries. I 

~--------+----------------+----------------t--------------------------------------------~ 
, GI I Built-in I I Create dictionary entries for contextually I 
I I I I declared bifs. I 

~----------------+----------------+--------------------------------------------~ 
, CALL stmt. I Argument list, I Create dictionary entries from contextual I 
I I function ref., I declarations for bifs, and TASK or EVENT I 
, , options. I variables. I 
~----------------+----------------+--------------------------------------------i 
I DEFAULT stmt. I I Use the DEFAULT directory. I 
~----------------t----------------+--------------------------------------------1 
I FILE I Const/var, I Create dictionary entries for contextually , 
, I STREAM/RECORD, I declared files. , 
, ,KEYED, INPUT, , I 
I I QUTPUT,etc. I I 
~----------------+----------------+--------------------------------------------i 
I Label I Constant , Create dictionary entries for label I 
I I I constants. I 
~----------------+----.-----------+--------------------------------------------~ I ON stmt. , On-unit/SYSTEM" Create dictionary entries for contextually I 
I I SNAP I declared conditions. , ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 527 



r--------T----------------T----------------~-------------------------------------------, I COMPILER, LANGUAGE I FEATURE , I 
I PHASE, FEATURE I QUALIFICATIONS , COMPILER PROCESSING FUNCTIONS I 
~--------t----------------+----------------t--------------------------------------------f 
~--------t----------------+----------------+--------------------------------------------f 

GM I Assignment I Data types, I Check for errors on left hand side. , 
I statement I multiple I I 
I (element) I I I 
~----------------+----------------+--------------------------------------------~ 
, Built-in I I create dictionary entries for im~licitly I 
I I I declared bifs. I 
~----------------+----------------+--------------------------------------------~ I Constant I I Create dictionary entries for constants. I 
~----------------+----------------t--------------------------------------------i I DEFAULT stmt. I I Use the DEFAULT directory. I 
~----------------+----------------+--------------------------------------------~ I FILE I Const/var, , Create dictionary entries for implicitly I 
I I STREAM/RECORD, I declared files. I 
I I KEYED, INPUT, I I 
I 'OUTPU'I,etc. I I 
.----------------+----------------+--------------------------------------------~ I GO TO stmt. I Label const/varl Check for label constant or variable. , 

~----------------+----------------+--------------------------------------------~ I OPEN stmt. I ENV, I Gather OPEN file attributes into a I 
I I options I dictionary entry. I 
~----------------+----------------t--------------------------------------------f I PICTURE data I Alpha/numeric I Check for illegal pictures in format lists., 
I I I I 
I I I create picture table entries in the general I 
I I I dictionary, for picture format iterrs. I 
~----------------+----------------t--------------------------------------------f 
,Subscripted I , Resolve names. I 
I qualified name I I I 

~--------+----------------+----------------t--------------------------------------------f 
IA I ALLOCATE stmt. I CONTROLLED/ I Reposition/generate bound aSSignments to , 

I I BASED,SET,IN I aggregate descriptors. I 
I I I i 
, , I Generate mapping operators for allccated , 
I I I variables. I 
I I I I 
I I I Syntax expansion: extent expression I 
I I I assignments. I 
I I I I 
I I I Convert offset locators to pointers. I 
~----------------+----------------t--------------------------------------------f I Built-in I I Check for illegal use of bifs as locator I 
I I I qualifiers. I 
I I I I 
I I I Syntax expansion: special cases. I 
~----------------t----------------t-----------·--------------------------------i I BASED storage I REFER I Generate RESDES operators to reserve space I 
I I I for special temporary locator-descriptors. I 
I I I I 
I I , Examine references to BASED REFER, etc., I 
I I I and decide whether or not mapping is I 
I I I necessary. If so, generate code to set up I 
, I I descriptors and MAP operators. I 
I I I I 
I I I Syntax expansion: map-on-reference cases I 
I I I and unqualified BASED variables. I ________ ~ ________________ L ________________ L_ _____________________________ --____________ J 

Compiler processing functions listed by phase 

528 Licensed Material - Property of IBM 



r--------T----------------T----------------T----------------------------------------~---1 
,COMPILER, LANGUAGE , FEATURE I I 
,PHASE, FEATURE ,QUALIFICATIONS , COMPILER PROCESSING FUNCTIONS I 
r--------+----------------+----------------+--------------------------------------------~ 
r--------+----------------+----------------+--------------------------------------------~ 

IA ,DEFINED I POSITION/iSUB I Generate ASSN tables for creation of I 
, , I locator-descriptors. I 
I I I I 
I I I Insert MAP operators into the main text I 
I I , stream. , 
I 'I I 
, I I Insert POS expressions and iSUB lists into I 
I I , the main text stream. I 
r----------------+----------------+--------------------------------------------~ 
I FREE stmt. I CONTROLLED/ I Syntax expansion for implied AREAs. I 
I I~m I I 
r----------------+----------------+--------------------------------------------~ 
, INITIAL I CALL/nocall I Generate multiple assignments and AID I 
, I 1 operators in the main text stream. I 
r----------------+----------------+--------------------------------------------~ 
I Locator I POINTER/AREA I Check for illegal qualifier chains. I 
I I' I 
I I I Generate locator chains. , 
~----------------t----------------+--------------------------------------------i 
I LOCATE stmt. I FILE, SET, I Create special locator-descriptors for I 
I I KEYFROM I REFER structures. , 
I I I I 
I I I Special aggregate-mapping action for REFER I 
I I I structures. , 
I I' I I I , Special syntax expansion acticn for REFER I 
I , I structures. I 
~----------------t----------------+--------------------------------------------i I pseudovariable I , Detect illegal arguments. I 
I I I I 
I I I Syntax expansion: special cases. I 
r----------------+----------------+--------------------------------------------~ I String data I BIT/CHAR/PIC, I Create locator-descriptors for I 
I I fixed/VARYING, I adjustable-length cases. I 
I I non-adjustable/I I 
I I adjustable I Aggregate mapping for adjustable-length I 
I I I cases. I 
I I I 1 
I I I Syntax expansion for adjustable-length I 
I I I cases. , 
r----------------+----------------+--------------------------------------------~ 
, STATIC storage I I STATIC INITIAL syntax expansion. , 

~--------+----------------+----------------+--------------------------------------------i I ID I Array x-section, , Create reduced descriptors in argurrents, I 
I I I I LIST I/O, and WAIT. I 
I I 'I I I I I I Insert text for filling in reduced I 
I I I I descriptors. I 

I r----------------t----------------+--------------------------------------------~ 
I I Built-in I , Check for errors in aggregate-manipulation I 
I I I I bifs and pseudovariables. , 
I I I I I 
I I I 1 Create temporaries or reduced descriptors. I 
I r----------------+----------------+--------------------------------------------~ 
I I CALL stmt. I Argument list, I Create aggregate temporaries, including I 
I I I function ref., I reduced descriptors. I 
I I I options. , I l ________ L ________________ L ________________ L ____________________________________________ J 

Licensed Material - property of IBM Section 4: Directory 529 



r--------T----------------T----------------T--------------------------------------------1 I COMPILER, LANGUAGE , FEATURE I , 
,PHASE I FEATURE I QUALIFICATIONS , COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------f 
~--------+----------------+----------------+--------------------------------------------f 

10 'Dimension 1 , Check number of subscripts in subscript I 
I I I lists. , 
I I I 1 
I I I Create aggregate temporaries and reduced I 
I I , descriptors in arguments, I/O, and WAIT. I 
I '1 , 
, , I Flag statement header to indicate I 
t , 1 subscripted variable present. , 

~----------------+----------------+--------------------------------------------f 
, DEFINED 'POSITION/iSUB ,Flag statement header to indicate I 
I 1 , iSUB-defined item present. I 
~----------------+----------------+--------------------------------------------f 
, Expression I Data type , Check the validity of aggregate expression I 
, 1 I arguments. I 
I 1 1 , 
I 1 I Insert text-assigning aggregate ex~ression I 
I I I arguments to temporaries. I 
~----------------+----------------+--------------------------------------------i 1 structure I I Create aggregate temporaries and reduced I 

I' I I descriptors in arguments and LIST I/O. , 

~--------+----------------+----------------+--------------------------------------------~ I IE I Array x-section, I Check for errors. I 
" 'I , I I , I syntax expansion: generation of dc-loop , 
" , , control temporaries in assignments and , 
I I , I stream I/O expressions. I 
, ~----------------+----------------+--------------------------------------------f I I Assignment I Array/struc., I Check for errors in non-scalar assignments., 
I 1 statement I multiple, I I 
I I (aggregate) I BY NAME I Syntax expansion: non-scalar assignments. I 
I I I I I 
I' I I Expand character and bit string aggregates I 
I I I I assignments. I 
, r----------------+----------------+--------------------------------------------f 

, Assignment I Data types, I Check for errors in scalar assignments , 
1 statement I multiple I (when the statement contains , 
, (element), I scalar-returning functions which in turn I 
, , I have embedded aggregate assignments). , 
I I I I 
I I I Syntax expansion: scalar assignments. t 
~----------------+----------------+--------------------------------------------f 
, ALLOCATE stmt. I CONTROLLED/ I Check for illegal use of aggregates in I 
I I BASED, SET, IN I attribute specification. I 
~----------------+----------------+--------------------------------------------f I Built-in I I Syntax expansion: aggregate bifs and I 
I I I pseudovariables. I 
~----------------+----------------t--------------------------------------------f I BASED storage I REFER I Check for errors. , 
I I I I 
, I I Syntax expansion: generation of I 
, I , temporaries. , 

r----------------+----------------t--------------------------------------------f I CALL stmt. I Argument list, , Check for errors in CALL statements. I 
I I function ref., I I 
I I options. I Syntax expansion: CALL statements. I 
~----------------+----------------+--------------------------------------------~ I Dimension I I Check for errors in expressions. I ________ ~ ________________ ~ ________________ ~-----------_________________________________ J 

Compiler processing functions listed by phase 

530 Licensed Material - Property of IBM 



r--------T----------------T----------------T--------------------------------------------, 
,COMPILER, LANGUAGE , FEATURE , , 
,PHASE, FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS , 
~--------+----------------+----------------+--------------------------------------------~ 
~--------+----------------+----------------+--------------------------------------------~ 

IE I Dimension I I Syntax expansion: expressions. , 
~----------------+----------------+--------------------------------------------~ I DECLARE stmt. I I Check for illegal use of aggregates in , 
I I I attribute specification. I 
~----------------+----------------+--------------------------------------------i I DEFAULT stmt. I I Check for illegal use of aggregates in I 
I I I attribute specification. , 
~----------------+----------------+--------------------------------------------~ I DEFINED I POSITION/iSUB I Syntax expansion: iSUB-U statements I 
I I I containing functions with aggregate I 
I I I assignments. I 
~----------------+----------------+--------------------------------------------i I DELAY stmt. I I Check for illegal use of aggregates. I 
~----------------+----------------+--------------------------------------------i I DISPLAY stmt. ,REPLY, EVENT I Check for illegal use of aggregates. I 
~----------------+----------------+--------------------------------------------i I GO TO stmt. I Label const/varl Check for illegal use of aggregates. , 
~----------------+----------------+--------------------------------------------~ 
I IF stmt. I THEN, ELSE I Check for illegal use of aggregates. , 
~----------------+----------------+--------------------------------------------i 
, Locator ,POINTER/AREA I Check for errors. , 
I I I I 
I I I Syntax expansion: generation of , 
I I I temporaries. , 

~----------------+----------------+-----------------------------~--------------i 
, OPEN stmt. I ENV, I Check for illegal aggregates. I 
I I options I I 
~----------------+----------------+--------------------------------------------i 
I Prologue text I I Scan-analysis and error checking in I 
I I , prologue text. I 
, I' I 
I I I sorting of prologue text. I 
I I I I 
I I I Syntax expansion: prologue text (in I 
I I I functions with embedded aggregate I 
I I I assignments). I 
~----------------+----------------+--------------------------------------------i I Pseudovariable I I Check for errors in aggregate bifs and I 
I I I pseudovariables. I 
I I I , 
I I I Syntax expansion: aggregate bifs and I 
I I I pseudovariables. I 
~----------------+----------------+--------------------------------------------i I RETURN stmt. I Expression I Check for illegal use of aggregates. I 
~----------------+----------------+--------------------------------------------i I Structure I I Check for errors in expressions. I 
I I I I 
I I I Syntax expansion: expressions. I 
~----------------+----------------+_-----------~-------------------------------i I I WAIT stmt. I I Check for illegal use of aggregates. I 

~--------+----------------+----------------+--------------------------------------------i 
I II I All language I I Translate from Type-l to Type-2 text. I 

I ~----------------+----------------+--------------------------------------------i I I Arithmetic Ope I I Analyze expressions. I 
I ~----------------+----------------+--------------------------------------------i 
I I Assignment I Data types, I Check for mismatch between source and I 
I I statement I multiple I target, and for illegal target. I 
I I (element) I f I 
L __ ------~----------------L----------------L----------__________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 531 



r--------T----------------T----------------T--------------------------------------------1 
,COMPILER, LANGUAGE , FEATURE , , 
,PHASE, FEATURE , QUALIFICATIONS , COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------~ 
~--------+----------------+----------------+--------------------------------------------~ 

II ,Assignment , Data types, ,complete dict. entries for targets in I 
I statement I multiple I chameleon temp. assignments. , 
, (element'" I 
I I I Translate Type-l text assignments to ASSN , 
I , I and CONV tables. I 
~----------------+----------------+--------------------------------------------~ 
I ALIGNED/' , Argument-matching/generic selection. , 
I UNALIGNED' I I 
~----------------+----------------+--------------------------------------------~ I ALLOCATE stmt. I CONTROLLED/ I Translate Type-l text extent expressions, , 
I I BASED,SET,IN I ~AP statements, and ALLOCATE statements to I 
I I I Type-2 text tables. , 

~----------------+----------------+--------------------------------------------~ I Base , DECIMAL/BINARY I Check for illegal conversions. I 
I I I I 
I I I Analyze expressions prior to generation of I 
I , , CONV, etc., tables. I 
I 'I I 
I , I Generate Type-2 text tables from I 
I I , express10ns. I 
~----------------+----------------+--------------------------------------------~ 
I Built-in' I Argument checking. I 
I 'I I , I I Generate BIF tables and CONV tables for , 
, I I arguments. , 
~----------------+----------------+--------------------------------------------~ 
t Constant, t Check for illegal usage, and convert I 
, I , arguments to temps. I 
, I I , 
I I I Generate Type 2 text. I 
~----------------+----------------+--------------------------------------------~ I Conversion I I Check for illegal conversions. , 
I I I , 
, I I Generate CONV Type-2 text tables. , 
~----------------+----------------+--------------------------------------------~ 
I CALL stmt. I Argument list, I Check for errors in argument matching. I 
I I function ref., I , 
I I options. , Translate CALL statements from Type-l to , 
I I I Type-2 text, generating ALIST, ARG, CALL, I 
I , , FNCT, etc., text tables. I 
~----------------+----------------+--------------------------------------------~ 
I Dimension I I Check for illegal usage in expressions. I 
~----------------+----------------+--------------------------------------------i 
I DO stmt. I TO,By,WHILE I Check for illegal DO specifications. I 
I I I I 
I I I Translate Type-l text into Type-2 text I 
I I I tables (001, 002, etc.). I 
~----------------+----------------+--------------------------------------------~ 
I Expression I Data type I Check validity of expressions containing I 
I I 1 file, entry, label, etc. I 
~----------------+----------------+--------------------------------------------~ 
I ENTRY stmt. I Multiple labs. 1 Translate from Type-l to Type-2 text, and I 
I I I generate GSLs. I 
~----------------+----------------+--------------------------------------------~ 
I FILE I Const/var, I Check for illegal usage in expressions. I 
I I STREAM/RECORD, I I 
I I KEYED, INPUT, t I 
I I OUTPUT, etc. I I L ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

Compiler processing functions listed by phase 

532 Licensed Material - Property of IBM 



r--------T----------------T----------------T--------------------------------------------, 
,COMPILER, LANGUAGE , FEATURE , , 
,PHASE, FEATURE , QUALIFICATIONS , COMPILER PROCESSING FUNCTIONS , 
~--------+----------------+----------------+--------------------------------------------i 
~--------+----------------+----------------+--------------------------------------------i 
, II ,FORMAT stmt. , , Generate FORME, FIT, etc. Type-2 text , 
" , , tables. , 
, ~----------------+----------------+--------------------------------------------i 
, , GENERIC I I Check for possibility of selection. I 

, 'I I 
I I I Perform selection. I 
, I I I 
I I I Generate ALIST, ARG, CALL, etc. Type-2 I 
I I I text tables. , 
~----------------+----------------+--------------------------------------------i I IF stmt. I THEN, ELSE , Check for illegal expressions in IF , 
, I I clauses. , , " , 
, , , Translate Type-l text IF statements into , 
, , , Type-2 text IF, GOTO, and GSL tables. , 

~----------------+----------------+--------------------------------------------~ 
, Label , Constant , Check for illegal usage in expressions and , 
, , , assignments. , 

~----------------+----------------+--------------------------------------------~ 
, Locator 'POINTER/AREA, Generate PTS, PTSAT, etc. Type-2 text , 
, , , tables. , 

~----------------+----------------+--------------------------------------------~ 
, LABEL , Variable , Check for illegal usage in expressions and , 
I I I assignments. , , " , 
I I I Chaining. , 
~----------------+----------------+--------------------------------------------~ 
I Mode 'REAL/COMPLEX I Check for illegal conversions. I 
I I I , 
I I I Analyze expressions prior to generation of , 
I I I CONV, etc., tables. , 
I I I , 
I I I Generate Type-2 text tables from I 
I , , express10ns. I 
~----------------+----------------+--------------------------------------------i 
I Prefix I I Generate Type-2 text. I 
~----------------+----------------+--------------------------------------------~ 
, READ stmt. I FILE, INTO/SET, I Check for illegal options. I 
, I KEY/KEYTO, , I 
, I IGNORE, EVENT, , , 
I I NOLOCK , , 
~----------------+----------------+--------------------------------------------f 
, REWRITE stmt. 'FILE, KEY, I Check for illegal options. I 
I I FROM, EVENT I , 
~----------------+----------------+--------------------------------------------~ 
, Scale I FIXED/FLOAT I Check for illegal conversions. I 
, I I , 
, , I Analyze expressions- prior to generation of I 
I I I CONV, etc., tables. i 
I I I I 
I , , Generate Type-2 text tables from I 
I I , expressions. , 
~----------------+----------------+--------------------------------------------1 
, String data 'BIT/CHAR/PIC, I Analyze expressions, perform argument I 
, I fixed/VARYING, , matching, etc., and generate Type-2 text I 
I , non-adjustable/, tables., 
, , adjustable , I 
~----------------+----------------+--------------------------------------------i 
, String Ope 'BIT/CHARACTER I Analyze expressions. , 
~----------------+----------------+--------------------------------------------~ 
, Structure, I Check for illegal usage in expressions. , ________ ~ ________________ ~ ________________ L_ ___________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 533 



r--------T----------------T----------------T~-------------------------------------------, 
I COMPILER I LANGUAGE I FEATURE I I 
I PHASE I FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
r--------+----------------+----------------+--------------------------------------------~ 
r--------+----------------+----------------+--------------------------------------------~ 
I II I Subscripted I I Generate Type-2 text. I 
I I qualified name I I I 
I r----------------+----------------+--------------------------------------------~ I I WRITE stmt. I FILE, FROM, I Check for illegal options. I 
I I I KEYFROM,EVENT I I 
r--------+----------------+----------------+--------------------------------------------~ 
I IK I All I I On specification of the XREF and/or I 
I I language. I I ATTRIBUTES compiler options, prints I 
I I I I cross-references and attributes of all I 
I I I I identifiers. I 
r--------+----------------+----------------+--------------------------------------------~ 

1M I CALL stmt. I Argument list, I Create dictionary entries for tem~s. I 
I I function ref., I created for arguments needing to be I 
, I options I remapped before calls to FORTRAN/COBOL. I 
, I I I 
, I I Insert library calls into text to set up I 
I I , correct environments before and after CALL. I 
r----------------+----------------t--------------------------------------------~ 
, Dimension I , Create dictionary entries for 1 
I I , FORTRAN-mapped temp. arrays for calls to orl 
I I I from arguments or parameter in ILC. I 
I I I I 
I I I Remap temp. arrays for calls to or from I 
I I I FORTRAN. I 
, I' I 
I , I Create aSSignments between FORTRAN-mapped I 
I I I temps. and original arrays. I 
r----------------+----------------+--------------------------------------------~ 
I ENTRY stmt. I Multiple labs. I Create dictionary entries for new external I 
I I I procedure to be called by FORTRAN/COBOL. I 
I I I I 
, , I Insert library calls into text to set up I 
, I , correct environments before and after CALL.' 
I I' I 
I , I Create new external procedure and entry I 
I , I points, and calls to old procedure and I 
I , I entry points. I 
r----------------+----------------t--------------------------------------------~ 
, FILE I Const/var, , Create dictionary entries for COBOL-mapped I 
I I STREAM/RECORD, I temporary structures for I/O with COBOL I 
, I KEYED, INPUT, I files. I 
, I OUTPUT, etc. I I 
I I I Create assignments between COBOL-mapped I 
I I I temporary structures and original I 
I I , structures. I 
r----------------+----------------+--------------------------------------------~ I LOCATE stmt. I FILE, SET, I Create dictionary entries for COBOL-mapped, 
I , KEYFROM I temporary structures for I/O with COBOL I 
, , I files. , 
, 'I , 
, I I Create assignments between COBOL-mapped I 
, , I temporary structures and original , 
I I I structures. I 
r----------------t----------------+--------------------------------------------~ I PROCEDURE stmt.1 OPTIONS, I Chain in new external procedure to be , 
, , data attributes, called by FORTRAN/COBOL. I 
I I multiple labels I I 
I I I Create dictionary entries for new external I 
I I , procedure to be called by FORTRAN/COBOL. I ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

Compiler processing functions listed by phase 

534 Licensed Material - Property of IBM 



r--------T----------------T----------------T--------------------------------------------, 
,COMPILER, LANGUAGE , FEATURE , , 
'PHASE' FEATURE 'QUALIFICATIONS , COMPILER PROCESSING FUNCTIONS I 
r--------+----------------+----------------+--------------------------------------------f r--------+----------------+----------------+--------------------------------------------f 
, 1M ,PROCEDURE stmt., OPTIONS, , Insert library calls into text to set up , 
" , data attributes, correct environments before and after CALL., 

, , multiple labels, I 
, , , Create new external procedure and entry , 
, , , points, and calls to old procedure and , 
I , I entry pOints. I 
~----------------+----------------+--------------------------------------------f 
, READ stmt. , FILE, INTO/SET, I Create dictionary entries for COBOL-mapped , 
, , KEY/KEYTO, , temporary structures for I/O with COBOL , 
, I IGNORE, EVENT, I files. I 
, I NOLOCK I , 
, , , Create assignments between COBOL-mapped , 
, I I temporary structures and original , 
I , , structures. , 

~----------------t----------------t--------------------------------------------1 
, REWRITE stmt. ,FILE, KEY, I Create dictionary entries for COBOL-mapped , 
, 'FROM, EVENT I temporary structure for I/O with COBOL I 
, , , files. I 
, " I I I I Create aSSignments between COBOL-mapped I 
, , I temporary structures and original I 
, , I structures. I 
~----------------+----------------t--------------------------------------------~ 
I Structure, I Create dictionary entries for COBOL-mapped I 
, , , temp. structures for ILC calls or I/O with I 
, , I COBOL files. , , " , 
, , , Create assignments between COBOL-mapped , 
, , , temporary structures and original , 
, , , structures. , 

r----------------+----------------+--------------------------------------------f 
, WRITE stmt. ,FILE, FROM, , Create dictionary entries for COBOL-mapped , 
I 'KEYFROM,EVENT I temporary structures for I/O with COBOL I 
I I I files. I 
I I I , 
I J J Create aSSignments between COBOL-mapped , 
, 1 J temporary structures and original , 
, , , structures. I 

~--------+----------------+----------------+--------------------------------------------i 
, IQ 'Array x-section, , Map arrays. I 
, r----------------+----------------+--------------------------------------------f 
I I ASSignment I Array/struc, t Map aggregates. I 
I , statement , multiple, I , 
J ,(aggregate), BY NAME I J 

, ~----------------+----------------+--------------------------------------------~ 
J , ALIGNED/ I , Map ALIGNED/UNALIGNED BIT strings in I 
I , UNALIGNED' I aggregates. I 
I ~----------------+----------------+--------------------------------------------~ 
I I ALLOCATE stmt. I CONTROLLED/ I Allocate storage for BASED and CON~ROLLED I 
J I , BASED, SET, IN ,aggregates. , 

I ~----------------t----------------+--------------------------------------------i I I AUTOMATIC stge·1 1 Map AUTOMATIC aggregates. I 
I r----------------+----------------+--------------------------------------------f 
, , BASED storage J REFER I Map BASED aggregates. I 
I ~----------------+----------------+--------------------------------------------~ I I CONTROLLED I I Map CONTROLLED aggregates. I 
I I storage I I I 
I ~----------------+----------------+--------------------------------------------~ I I FREE stmt. t CONTROLLED/ I Free allocated storage. I 
I I I BASED I I L ________ L ________________ L ________________ L ____________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 535 



r--------T----------------T----------------T--------------------------------------------, 
(COMPILERI LANGUAGE ( FEATURE ( I 
I PHASE I FEATURE I QUALIFICATIONS , COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------~ 
~--------+----------------+----------------+--------------------------------------------~ 

IQ I LOCATE stmt. I FILE, SET, I Map aggregates as for BASED variables. I 
I I KEYFRCM I I 
~----------------+----------------+--------------------------------------------~ 
I string data I BIT/CHAR/PIC, (Map and allocate storage for adjustable I 
I , fixed/VARYING, I strings. I 
I , non-adjustable/, I 
I , adjustable , I 
~----------------+----------------+--------------------------------------------~ 
I String Ope I BIT/CHARACTER I Map adjustable strings. , 
~----------------+----------------+--------------------------------------------~ 

Structure I Generate text tables to produce mapping and 
, storage allocation code. 
r 
1 
I , 
I 
I 
I 
I 
I 

Create aggregate table entries in the 
general dictionary. 

Create locator-descriptors for string and 
aggregate mapping. 

Map structures. 

I Generate text tables to produce ma~ping 
I code. 

~----------------+----------------+--------------------------------------------~ 
I STATIC storage I 1 Map STATIC aggregates. I 

~--------+----------------+----------------+-----------------------------------------~--~ 
KA I Assignment I Array/struc, I Insert statements into statement-type I 

r statement I multiple, t chains. I 
I (aggregate) I BY NAME I I 
~----------------+----------------+--------------------------------------------~ 
J ALLOCATE stmt. I CONTROLLED I I Process and error-check resulting ARRAY I 
I I BASED, SET, IN I INITIAL and STATIC INITIAL assignments. I 
~----------------+----------------+--------------------------------------------i I Built-in ( I Process STRING bifs and check for errors. I 
~----------------+----------------+--------------------------------------------~ I CALL stmt. , Argument list, I Check for errors (match number of I 
I I function ref., I arguments against number of parameters). I 
I I options. 1 I 
~----------------+----------------+--------------------------------------------~ 
I DECLARE stmt. I I Process and error-check resulting ARRAY I 
I 1 I INITIAL and STATIC INITIAL assignments. , 
~----------------+----------------+--------------------------------------------~ 
I DO stmt. I TO,BY,WHILE I Insert statements into statew.ent-type I 
I I I chains. , 
1 I I I 
, I , complete the processing of the DOWHILE I 
I I I statement a I 
~----------------+----------------+--------------------------------------------~ I END stmt. I Label I Insert statements into statement-type I 
I I I chains. .. I 
~----------------+----------------+--------------------------------------------~ I FUNCTION refs. , I Check for errors (match number of arguments, 
I I I against number of parameters). I ________ ~ ________________ ~ ____ . ____________ ~ __ --------__________________________________ J 

Compiler proceSSing functions listed by phase 

536 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r--------T----------------T----------------T--------------------------------------------, I COMPILER I LANGUAGE I FEATURE I I 
I PHASE' FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------i 
~--------+----------------+----------------+--------------------------------------------i KA I GET stmt. I FILE/STRING, I Insert statements into statement-type I 

I , EDIT/LIST/DATA, I chains. I 
I I COPY, SKIP ,COL, 1 I 
I I data-list, I I 
, I format-list I I 
~----------------+----------------+--------------------------------------------~ I IF stmt. , THEN, ELSE I complete the statement processing. I 
I I' I I I , Insert statements into statement-type I 
I I I chain. I 
I I I I 
I t I Representative text table processing, and I 
I I I statement analysis. I 
~----------------+----------------+--------------------------------------------i I ON stmt. , on-unit/SYSTEM,' Insert statements into statement-typE: • I 
, I SNAP I chains. I 
~----------------+----------------+--------------------------------------------i I OPEN stmt. I ENV, I Insert statements into statement-type I 
I I options I chains. I 
~----------------+----------------+--------------------------------------------~ I PUT stmt. I FILE/STRING, ,Insert statements into statement/type I 
, I EDIT/LIST/DATA,' chains. , 
, , COPY,SKIP,COL, , I 
I I LINE, PAGE, I I 
I I data-list, , I 
I I format-list , , 
~----------------+----------------+--------------------------------------------i I READ stmt. I FILE, INTO/SET, I Insert statements into statement-type I 
I , KEY/KEYTO, I chains. , 
I I IGNORE, EVENT, I I 
I I NOLOCK I I 
~----------------+----------------+--------------------------------------------i I REWRITE stmt. I FILE, KEY, I Insert statements into statement-type I 
I I FROM,EVENT I chains. I 
~----------------+----------------+--------------------------------------------i I String Ope I BIT/CHARACTER I Process all STRING-operation statements, I 
, I , and check for errors. I 
~----------------+----------------+--------------------------------------------i , WAIT stmt. I , Insert statements into statement-type , 
, , I chains. I 
~----------------+----------------+--------------------------------------------i I WRITE stmt. ,FILE, FROM, I Insert statements into statement-type I 
, I KEYFROM,EVENT I chains. I 

~--------+----------------+----------------+--------------------------------------------i I KE I Array x-section I I Expand array cross-section text. I 
I ~----------------+----------------+--------------------------------------------i I I Assignment I Array/struc, ,Expand array and structure assignments, I 
I I statement I multiples, I and compiler-generated do-loops. I 
I I (aggregate) I BY NAME I I 
I ~----------------+----------------+--------------------------------------------i I I DEFINED I POSITION/iSUB I Expand iSUB defining text. I 
, ~----------------+----------------+--------------------------------------------~ I I INITIAL ,CALL/nocall I Expand automatic array initial text. I 
~--------+----------------+----------------+--------------------------------------------i I KI I DO stmt. ,TO,BY,WHlLE, I Process do-loops. I 
I I I UNTIL, REPEAT I I L ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 537 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r--------T----------------T----------------T--------------------------------------------, I COMPILER I LANGUAGE I FEATURE I I 
I PHASE I FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------i 
~--------+----------------t----------------+--------------------------------------------i I KI I DO stmt. I TO, BY,WHILE, I Expand 001, 002, and 003 into appropriate I 
I I I UNTIL, REPEAT I assignments and branch to produce codes. I 
~--------+----------------+----------------+--------------------------------------------i KK I Base I DECIMAL/BINARY I Expand arithmetic and mathematical bifs. I 

~----------------+----------------+--------------------------------------------i I Built-in I I Check the validity of arguments to certain I 
I I I bifs. I 
I I I I 
I I I Expand all non-string bifs. I 
~----------------+----------------+--------------------------------------------i I DEFAULT stmt. I I Process and error-check resulting ARRAY I 
I I I INITIAL and STATIC INITIAL assignments. I 
~----------------+----------------+--------------------------------------------i I EVENT attribute, I Expand EVENT bits. , 
~----------------+----------------+--------------------------------------------i I GENERIC I I Process bifs passed as arguments. I 
~----------------+----------------+--------------------------------------------i I Mode I REAL/COMPLEX I Expand arithmetic, mathematical, and I 
I I I COMPLEX bifs. I 
~----------------+----------------+--------------------------------------------i I Precision I I Expand arithmetic and mathematical bifs. I 
~----------------+----------------+--------------------------------------------f I pseudovariable I I Check the validity of arguments to certain I 
I I I pseudovariables. I 
I I I I 
I I I Expand non-string pseudovariables. I 
~----------------+----------------+--------------------------------------------i I Scale I FIXED/FLOAT I Expand arithmetic and mathematical bifs. I 
~----------------t----------------+--------------------------------------------i I TASK attribute I I Expand tasking bifs. I 

~--------+----------------+----------------+--------------------------------------------i KL I CLOSE stmt. I ENV I Generate an argument list and library I 
I I I module call for the statement. I 
~----------------+----------------+--------------------------------------------i I DECLARE stmt.. I I Check FILE declaration for conflicting I 
I I I ENVIRONMENT options and attributes, and fori 
I I I correct MEDIUM specification. I 
I I I I 
I I I Create DTF, ENVB, and FCB entries in the I 
I I I general dictionary, and a names dictionary I 
I I I entry for the generated LIOCS module name I 
, , I required for the DTF. , 
~----------------+----------------+--------------------------------------------i I FILE I Const/var, I Check file declaration for conflicting I 
I I STREAM/RECORD, I ENVIRONMENT options and attributes, and I 
I I KEYED, INPUT, I for correct MEDIUM specification. I 
I I OUTPUT, etc. I I 
I I I Create DTF, ENVB, and FCB entries in th9 I 
, I I general dictionary, and a names dictionary I 
I I , entry for the generated LIOCS module name I 
I I I required for the DTF. I 
~----------------+----------------+--------------------------------------------i I OPEN stmt. I ENV, I Check attributes with those declared. I 
I I options I I 
I I I Create OCB (Open Control Block) and I 
, , I generate an argument list and library I 
I I I module call for the statement. I ________ L ________________ L ________________ L ____________________________________________ J 

compiler processing functions listed by phase 

538 Licensed Material - Property of IBM 



r--------T----------------T----------------T--------------------------------------------, 
,COMPILER, LANGUAGE , FEATURE , I 
'PHASE I FEATURE , QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------~ 
~--------+----------------+----------------+--------------------------------------------~ 
I KM 'FILE , Const/var, , Optimize opening and closing by completing , 
" , STREAM/RECORD, I FCB and DTF at compile time where ~ossible., 
I' I KEYED, INPUT, I , 

I I OUTPUT, etc. 'Check record I/O files. , 
~----------------+----------------+--------------------------------------------~ 
, LOCATE stmt. I FILE, SET, , Generate library call, or inline code , 
I I KEYFROM , when possible. , 
~----------------+----------------+--------------------------------------------1 
, READ stmt. , FILE, INTO/SET, I Generate library call, or inline code , 
, , KEY/KEYTO, , when possible. I 
, I IGNORE, EVENT, I I 
I I NOLOCK I I 
~----------------+----------------+--------------------------------------------~ I REWRITE stmt. 'FILE,KEY, I Generate library call. I 
I , FROM, EVENT I , 
~----------------+----------------+--------------------------------------------~ I WRITE stmt. I FILE, FROM, , Generate library call, or inline code I 
I ,KEYFROM,EVENT I when possible. , 

~--------+----------------+----------------+--------------------------------------------~ I KQ I Format item I I Create dictionary entries for FEes. I 
I ~----------------+----------------+--------------------------------------------~ 
, I FORMAT stmt. I I Construct FEDs. I 
I I I I , 
I' I I Expand FMTLST/FORME/FIT/FITE text tables to, 
I' , I GEN/LA/CALL, etc. I 
, ~----------------+----------------+--------------------------------------------~ 
I GET stmt. 'FILE/STRING,' Check for: 
I ,EDIT/LIST/DATA" errors in statement-type chains, 
, , COPY,SKIP,COL, I invalid items in data lists, 
, , data-list, ,invalid options on statements. 
, I format-list , 
, J' Match data and format lists. , 'I I I I Create dictionary entries for FEDs. 
, I I 
I 'I Allocate registers for special usage in 
I I' stream I/O. 
I I I 
, I' Expand stream I/O statements to include 
I " library calls, COBV tables, etc. 

~----------------+----------------+--------------------------------------------~ 
, PUT stmt. ,FILE/STRING, I Check for: I 
I 'EDIT/LIST/DATA,I errors in statement-type chains, I 
, I COPY,SKIP,COL, I invalid items in data lists, I 
I I LINE, PAGE, I invalid options on statements. I 
I , data-list, I I 
I I format-list I Match data and format lists. I 
I I I I 
I I I Create dictionary entries for FEDs. I 
I I I I 
I , I Allocate registers for special usage in I 
I I I stream I/O. I --------~ ________________ ~ ________________ ~ ____________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 539 



r--------T----------------T----------------T--------------------------------------------, 
I COMPILER I LANGUAGE I FEATURE I I 
I PHASE I FEATURE I QUALIFICATIONS , COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------~ 
~--------+----------------+----------------+--------------------------------------------i I KQ I PUT stmt. ,FILE/STRING, I Expand stream I/O statements to include I 
I I I EDIT/LIST/DATA,' library calls, CONV tables, etc. I 
'I I COPY, SKIP, COL, I , 
'I I LINE, PAGE, I , 
I' I data-list, I , 
I I ,format-list I I 
~--------+----------------+----------------+--------------------------------------------i I KT ,CALL stmt. I Argument list, J produce calling sequence. , 
I I 1 function ref., I I 
'I I options. J , 

~----------------+----------------+--------------------------------------------~ 
, CHECK condition' Name list , Process CHECK statements, and insert the , 
, , , appropriate library calls for check , 
I , I variables in the text. , 

~----------------+----------------+--------------------------------------------~ I DELAY stmt. I I Check that a DELAY expression is scalar. , 
I I I , 
I I , Expand the DELAY statement. , 

~----------------+----------------+--------------------------------------------~ 
, DISPLAY stmt. I REPLY,EVENT I Check the attributes of DISPLAY, REPLY, and, 
I I , EVENT expressions. I 
, I , . , 
I I I Expand the DISPLAY statement. , 

~----------------+----------------+--------------------------------------------~ 
, ENTRY stmt. ,Multiple labs. I Produce appropriate branch code in , 
I , I prologue • I 
~----------------+----------------+--------------------------------------------~ 
, EXIT stmt. I , Expand the EXIT statement. , 
~----------------+----------------+--------------------------------------------i 
I PROCEDURE stmt.1 OPTIONS, I Generate prologue code for procedure and I 
, I data attributes, entry pOints. I 
I I multiple labels' , 

~----------------+----------------+--------------------------------------------~ I RETURN stmt. I Expression , Check that a RETURN expression is scalar. , 
, I I I 
I I I Expand the statement. , 
~----------------+----------------+--------------------------------------------~ 
, REWRITE stmt. ,FILE, KEY, , Check whether a computational condition is , 
, , FROM, EVENT , enabled. , 
I I 1 I 
I I I Expand the statement. I 
~----------------+----------------+--------------------------------------------~ I STOP stmt., I Expand the statement. , 
~----------------+----------------+--------------------------------------------i 
I WAIT stmt. I I Expand the statement. , 

~--------+----------------+----------------+--------------------------------------------~ 
, KV I Arithmetic Ope I , optimize multiplication and exponentiation., 
, ~----------------+----------------+--------------------------------------------~ 
I I Built-in, I Expand CHAR, BIT, UNSPEC, SUBSTR bifs. , 
I ~----------------+----------------+--------------------------------------------~ 
I I CALL stmt. I Argument list, I Unnest calls. I 
I' , f unct i on re f., I I 
" , options , , l ________ ~ ________________ ~ _____________ ---~_-__________________________________________ J 

Compiler processing functions listed by phase 

540 Licensed Material - Property of IBM 



r--------T----------------T----------------T--------------------------------------------, 
,COMPILER, LANGUAGE , FEATURE I , 
,PHASE, FEATURE , QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------~ 
~--------+----------------+----------------+--------------------------------------------~ 
, KV I GO TO stmt. I Label const/varl optimize branching. , 
, ~----------------+----------------+-----------------------------~--------------i 
, , Pseudovariable , , Process UN SPEC and SUBSTR pseudovariables , 
I I I I to produce correct object code. I 
, ~----------------+----------------+--------------------------------------------i I I PICTURE data I Alpha/numeric I Optimize picture comparisons. , 
, ~----------------+----------------+--------------------------------------------~ I , String data I BIT/CHAR/PIC, I Optimize usage of the UNSPEC, CHAR, BIT, I 
I I I fixed/VARYING, I and SUBSTR bifs and psvs. I 
I I , non-adjustable/I I 
I I I adjustable I I 
~--------+----------------+----------------+--------------------------------------------~ 

KX I Arithmetic Ope I I Set flags for code generation. I 

~----------------+----------------+--------------------------------------------i 
I Assignment I Array/struc, I Set flags for code generation. I 
I statement I multiple, I I 
I (aggregate) I BY NAME I I 
~----------------t----------------t--------------------------------------------~ 
I Assignment I Data types, I Set flags for code generation. I 
, statement I multiple I , 
I (element~" , 
~----------------+----------------+--------------------------------------------i 
, Conversion' , Expand text for inline conversions. I 
~----------------+----------------+--------------------------------------------~ 
, PICTURE data I Alpha/numeric I Expand PICTURE conversions. I 

~--------+----------------+----------------+--------------------------------------------i 
OA I Assignment I Data types, I Extract alias information concerning I 

I statement I multiple I locator, label, and entry assignments. I 
I (element) I I , 
~----------------+----------------+--------------------------------------------i 
, BEGIN stmt. I options , Create a block optimization entry. , 

~----------------t----------------+--------------------------------------------i 
, CALL stmt. I Argument list, I Extract calling information for blocks. I 
, , function ref., , , 
I , options I I 
~----------------t----------------+--------------------------------------------~ 
I DEFINED I POSITION/iSUB I Create value lists for defining bases. I 
~----------------+----------------+--------------------~-----------------------i 
I Locator I POINTER/AREA I Create value lists for locators. , 

~----------------+----------------+--------------------------------------------~ 
I LABEL I Variable I Create value lists for LABEL variatles. I 

~----------------+----------------+--------------------------------------------i 
, Parameter, , Create value lists for parameters. , 
I storage I I I 
~----------------+----------------+--------------------------------------------i 
I PROCEDURE stmt., OPTIONS, I Create a block optimization entry. , 
I 1 data attributes I , 
, , multiple labels, I 

~--------+----------------+----------------+--------------------------------------------~ 
, oc I Assignment I Array/struc, I Expand STRING assignments. , 
, I statement I multiple, I I 
I I (aggregate) I BY NAME I I 
I ~----------------+----------------+--------------------------------------------i , I Assignment I Data types, I Expand STRING assignments. I 
t , statement t multiple I I 
I I (element)" I l ________ ~ ________________ ~ ________________ ~ ___________________ - ________________________ J 

Licensed Material - Property of IBM section 4: Directory 541 



r--------T----------------T----------------T--------------------------------------------, 
,COMPILER, LANGUAGE , FEATURE , , 
I PHASE, FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------t 
~--------+----------------+----------------+--------------------------------------------t 

oc ,Built-in I , Expand TRANSLATE and BOOL bifs. , 
~----------------+----------------+--------------------------------------------~ 
, Conversion I I Expand text for inline conversions. I 
~----------------+----------------+--------------------------------------------t 
, PICTURE data 'Alpha/numeric 'Expand PICTURE conversions. , 
~----------------+----------------+--------------------------------------------~ I String data I BIT/CHAR/PIC, I Expand TRANSLATE and BOOL bifs. I 
I I fixed/VARYING, , , 
I , non-adjustable/, Expand character and bit string , 
, I adjustable , assignments. , 
~----------------+----------------+--------------------------------------------~ 
, String Ope I BIT/CHARACTER ,Expand =, I',&I,~,GT,GE,E,NE,LE,LT string , 
I I I opera tions. I 

~--------+----------------+----------------+--------------------------------------------t 
, OE ,BEGIN stmt. I options I Complete the block optimization entry. , 

I ~----------------+----------------+--------------------------------------------~ 
, , CALL stmt. I Argument list, I Analyze flow information. , 
I' , function ref., I , 

I , options. , I 
~----------------+----------------+--------------------------------------------t I DO stmt. I TO,BY,WHILE I Analyze flow information. , 
~----------------+----------------+--------------------------------------------~ 
, END stmt. , Label , Analyze flow information. , 

~----------------+----------------+--------------------------------------------t 
, ENTRY stmt. I Multiple labs. , Analyze flow information. , 
~----------------+----------------+--------------------------------------------~ 
I GO TO stmt. I Label const/varl Analyze flow information. I 
~----------------+----------------+--------------------------------------------t I Label I Constant I Analyze flow information. , 
~----------------+----------------+--------------------------------------------~ 
I LABEL I Variable , Analyze flow information. , 
~----------------+----------------+--------------------------------------------t 
I ON stmt. , On-unit/SYSTEM,' Analyze abnormal information (variables set, 
I I SNAP I and used in on-units). I 
~----------------+----------------+--------------------------------------------t 
'ON-condition I , Analyze variable usage information, and , 
I I , abnormal information. , 
~----------------+----------------+--------------------------------------------t 
, PROCEDURE stmt.1 OPTIONS, I Complete the block optimization entry. I 
, , data attributes, , 
I , multiple labels, , 

~----------------+----------------+--------------------------------------------~ I RETURN stmt. 'Expression I Analyze flow information. , 
~--------+----------------+----------------+--------------------------------------------t 

01 I ASSignment 'Array/struc, I Analyze connection information. I 
I statement I multiple, I I 
, ( aggrega te) ,BY NAME I , 
~----------------+----------------+--------------------------------------------~ 
I BEGIN stmt. I options I Analyze connection information. , 
~----------------+----------------+--------------------------------------------t I CALL stmt. , Argument list, I Analyze connection information. , 
I , function ref., I I 
I I options , , 

~----------------+----------------+--------------------------------------------i I DO stmt. I TO, BY, WHILE I Analyze connection information. I 
~----------------+----------------+--------------------------------------------t 
, END stmt. I Label I Analyze connection information. I ________ ~ ________________ ~ ________________ ~ _________________ ------_____________________ J 

Compiler processing functions listed by phase 

542 Licensed Material - Property of IBM 



r--------T----------------T----------------T--------------------------------------------, 
,COMPILER, LANGUAGE , FEATURE , , 
,PHASE, FEATURE , QUALIFICATIONS , COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------~ 
~--------+----------------+----------------+--------------------------------------------~ 
, 01 ,ENTRY stmt. 'Multiple labs. I Analyze connection information. I 
, ~----------------+----------------+--------------------------------------------i 
I , GO TO stmt. I Label const/varl Analyze connection information. I 
I ~----------------+----------------+--------------------------------------------i I , Label , Constant , Analyze connection information. I 
I ~----------------+----------------+--------------------------------------------i 
, , LABEL I Variable I Analyze connection information. I 
I ~----------------+----------------+--------------------------------------------~ I , PROCEDURE stmt.1 OPTIONS, , Analyze connection information. I 
'I I data attributes, I 
I I , multiple labels, I 
~--------+----------------+----------------+--------------------------------------------i 
I OM I Arithmetic Ope I I Commoning and moving of expressions. I 

, ~----------------+----------------+--------------------------------------------~ 
, Assignment I Data types, ,Commoning and moving of expressions. I 
I statement I multiple I I 
I (element) I I I 
~----------------+----------------+--------------------------------------------i 
I Base I DECIMAL/BINARY I Examine precision, scale, etc., in commonedl 
, I I expressions. I 
~----------------+----------------+--------------------------------------------i I Constant, I Optimize the production and usage of I 
, I I literal constants. I 
~----------------+----------------+--------------------------------------------i 
, Conversion' I commoning and moving of expressions. I 
~----------------+----------------+--------------------------------------------~ I DO stmt. I TO, BY, WHILE I Modify control variable usage. I 
~----------------+----------------+--------------------------------------------i I Mode I REAL/COMPLEX I Examine preciSion, scale, etc., in commonedl 
I I I expressions. I 
~----------------+----------------+--------------------------------------------~ I Precision, , Examine precision, scale, etc., in commonedl 
I I I expressions. I 
~----------------+----------------+--------------------------------------------~ I PICTURE data I Alpha/numeric I Examine precision, scale, etc., in commonedl 
I I I expressions. I 
~----------------+----------------+--------------------------------------------i I Scale I FIXED/FLOAT I Examine precision, scale, etc., in commonedl 
I I I expressions. I 

I ~----------------+----------------+--------------------------------------------~ I I String Ope I BIT/CHARACTER I Commoning and moving of expressions. I 
~--------+----------------+----------------+-----------~--------------------------------i 

OX I Built-in I I Optimize REPEAT, LENGTH, INDEX, VERIFY, I 
I I I HIGH, LOW, and STRING bifs. I 
~----------------+----------------+--------------------------------------------~ 
I pseudovariable I I Process STRING pseudovariable to produce I 
I I I library call, if necessary. I 
~-------------.--+----------------+-----~--------------------------------------~ 
I String data 'BIT/CHAR/PIC, I Expand REPEAT, LENGTH, INDEX, VERIF'Y, HIGH, I 
I I fixed/VARYING, I LOW, and STRING bifs and pseudovariables. I 
I , non-adjustable/I I 
I I adjustable I I 
~----------------+----------------+--------------------------------------------~ 
I string Ope I BIT/CHARACTER I Optimize BC, BCB, and complex string I 
I I I operations. I ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 543 



r--------T----------------T----------------T--------------------------------------------, 
I COMPILER I LANGUAGE I FEATURE I I 
I PHASE I FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 

~--------+----------------+----------------t--------------------------------------------~ 
~----~---+----------------+----------------+--------------------------------------------~ 

PA I Arithmetic Ope I I Generate constants used in arithmetic I 
I I I operations. I 
~----------------+----------------+-----------------~--------------------------~ I ALLOCATE stmt. I CONTROLLED I 'Allocate storage for controlled anchor I 
I I BASED,SET,IN I slot. I 

~----------------+----------------+--------------------------------------------~ I AREA I , Allocate storage and initialize static , 
, , I areas. I 
I 'I I 
, 1 , Construct area locator/descriptor if 1 
1 I I required. I 
~----------------+----------------+--------------------------------------------i , Constant, 1 Allocate storage for constants. I , " , 
I , 1 Convert constant to correct type if , 
, I I required. , 
~----------------+----------------+--------------------------------------------i , Conversion I , Compile-time conversion of constants. I 
~----------------+----------------+--------------------------------------------~ , CALL stmt. , Argument list, I Common argument lists. I 
I I function ref., I I 
, , options I Allocate storage for argument lists. I 
~----------------+----------------+--------------------------------------------i , CONTROLLED I J Allocate storage for controlled anchor I 
I storage, I slot. I 
~----------------+----------------+--------------------------------------------f I Dimension I I construct array locators and descriptors if 1 
I I , required. I 
~----------------+----------------+--------------------------------------------f I DEFINED I POSITION/iSUB I Allocate addressing adcon or locator if I 
I I , required • I 
~----------------+----------------+--------------------------------------------i 
I FILE I Const/var, I Allocate storage for file constqnts. I 
I I STREAM/RECORD, , I 
I I KEYED, INPUT, , I 
I I OUTPUT, etc. I I 

~----------------+----------------+--------------------------------------------f , GOTO stmt. I Label const/varl Allocate storage for label constant if I 
I I I go-to-outer block. I 
~----------------+----------------+--------------------------------------------f 
I INITIAL I CALL/nocall I Allocate STATIC INITIAL storage. I 

~----------------+--------~-------+--------------------------------------------~ 
, Label , constant I Allocate storage for label constants. I 
~----------------+----------------+--------------------------------------------f 
I Mode I REAL/COMPLEX I Allocate storage for COMPLEX constants. I 

~----------------+----------------+--------------------------------------------~ , ON stmt. , On-unit/SYSTEM" Allocate storage for static ONCBs. I 
, I SNAP , I 
~----------------+----------------+--------------------------------------------~ I Storage class I , Create entries in the constants pocl. , 
~----------------+----------------+--------------------------------------------i , String data I BIT/CHAR/PIC I Create locator-descriptor skeletons. I 
I , fixedIVARYING, , I 
I , non-adjustable/, Allocate storage for locator-descriptor I 
I I adjustable I skeletons. , 
~----------------+----------------+--------------------------------------------f I Structure I , Construct structure locators and I 
, , I descriptors if required. I 
~----------------+----------------+--------------------------------------------i I STATIC storage , , Create entries in the constants pool. I 
I " , I , I Allocate storage for and map static initial, 
I , , storage. , 

544 Licensed Material - Property of IBM 



~--------+----------------+----------------+--------------------------------------------~ 
I PC ,CHECK condition' Name list I Construct symbol tables for items in check , 
I' I , lists. I 
I ~----------------+----------------+--------------------------------------------~ I I Data-list item I I Check validity of based items in data I 
I I I I directed I/O. I 
I ~----------------+----------------+--------------------------------------------i I I Format item r r Allocate storage for FEDs. I 
I ~----------------+----------------+--------------------------------------------~ I I FORMAT strnt. I I Allocate storage for FEDs. I l ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

Licensed Material - Property of IBM Section 4: Directory 545 



r--------r----------------T----------------T--------------------------------------------, 
, COMPILER I LANGUAGE , FEATURE , , 
I PHASE I FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------t----------------+----------------+_-------------------------------------------~ 
~--------+----------------+----------------+--------------------------------------------~ 

PC I GET stmt. J FILE/STRING, I Allocate storage for symbol tables built I 
I I EDIT/LIST/DATA" for GET DATA. I 
J J COPY,SKIP,COL, I , 
, I data-list, , , 
1 I format-list J , 

~----------------+----------------t--------------------------------------------f 
I PICTURE data 'Alpha/numeric I Build and allocate storage for pictured , 
, , I DEDs and FEDs. , 

~----------------t----------------+_-------------------------------------------f I PUT stmt. 'FILE/STRING, I Allocate storage for symbol tables built , 
, I EDIT/LIST/DATA,' for PUT DATA. , 
, J COPY, SKIP,COL, , J 
I , LINE, PAGE, I I 
I I data-list, I I 
I I format-list I I 
~----------------t----------------+--------------------------------------------f 
I Structure I I Expand structure text in DATA-directed I/O.' 
~----------------+----------------t--------------------------------------------~ 
, SIGNAL stmt. I I Allocate storage for symbol tables built , 
, , I for SIGNAL CHECK. , 

~--------+----------------t----------------t--------------------------------------------~ I PE 'AUTOMATIC stge.1 I Allocate storage for AUTOMATIC variables. I 
I ~----------------t----------------+--------------------------------------------f I I BASED storage I REFER I Associate a storage base number with each , 
" , , BASED variable to assist in BASED-variable , 
J 1 I , addressing. 1 
, ~----------------t----------------t--------------------------------------------~ , 1 ENTRY attribute, Parameter , Count the number of parameters in each I 
I I , attribute list, block and pass this number to Phase PI. I 
" 'ORDER/REORDER , , 
I ~----------------t----------------+--------------------------------------------f 
, , LABEL I Variable I Allocate storage for LABEL variables. , 
1 ~----------------t----------------+_-------------------------------------------~ 

I Mode I REAL/COMPLEX I Allocate storage for COMPLEX variatles. , 
~----------------t----------------+--------------------------------------------f I ON stmt. IOn-unit/SYSTEM" Allocate storage for dynamic CNCBs. , 
I I SNAP I , 
~----------------t----------------+--------------------------------------------f 
I Scope I IN/EXTERNAL I Allocate storage for ADCONs for EXTERNAL I 
I I I variables. I 
~----------------t----------------+--------------------------------------------f 
I Storage class I I Allocate static and dynamic storage. , 

~----------------+----------------t--------------------------------------------~ 
I String data I BIT/CHAR/PIC, 1 Map temporary storage for aggregate , 
, I fixed/VARYING, I temporaries. I 
I , non-adjustable/ I I 
, I adjustable I I 
~----------------t----------------+_-------------------------------------------~ 
I structure, , Allocate storage for structures. , 
~----------------t----------------+--------------------------------------------f 
I STATIC storage , I Allocate storage for STATIC variables. I 

t--------+----------------t----------------t--------------------------------------------i 
, PI I ALLOCATE stmt. I CONTROLLED/ I Addressing of CONTROLLED variables. , 
I' I BASED, SET, IN I I 
" 1 I Create locator-descriptors for CON~ROLLED I 
I I I I variables. I L ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

546 Licensed Material - Property of IBM 



r--------T----------------T----------------T--------------------------------------------, 
,COMPILER, LANGUAGE I FEATURE I I 
,PHASE, FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------~ 
~--------+----------------+----------------+--------------------------------------------i 

PI I AUTOMATIC stge., I Addressing of AUTOMATIC variables. I 
~----------------+----------------+--------------------------------------------~ 
I BASED storage I REFER 1 Addressing of BASED variables. I 
~----------------+----------------+--------------------------------------------i 
, CONTROLLED, , Addressing of CONTROLLED variables. , 
, storage I I I 
I I I Allocate storage for CONTROLLED variables. I 
~----------------+----------------+--------------------------------------------1 I FREE stmt. I CONTROLLED/ I Addressing of BASED variables. , 
I I BASED I I 
~----------------+----------------+--------------------------------------------~ I Mode I REAL/COMPLEX ,Addressing of COMPLEX variables or COMPLEX I 
I I I temporaries. I 
~----------------+----------------+--------------------------------------------i I ON stmt. lon-unit/SYSTEM" Addressing of on-units. I 
I I SNAP I I 
~----------------+----------------+--------------------------------------------i 
I Parameter I I Reserve the appropriate storage for the I 
I storage J I parameter list for each block (number of I 
I I I parameters in each block is passed by I 
I I I Phase PE) in the temporary storage area I 
I J J based on R4. I 
~----------------+----------------+--------------------------------------------i I Storage class I I Allocate temporary storage. I 
~----------------+----------------+--------------------------------------------i I String data I BIT/CHAR/PIC, I Addressing of strings. I 
I I fixed/VARYING, I I 
I I non-adjustable/, Addressing of locator-descriptors. , 
, I adjustable I I 
1 I I Map temporary storage, with the exception I 
I I I of aggregate temps. I 

~--------+----------------+----------------t--------------------------------------------i 
I QA I All language I , Assign absolute register nurr.bers where I 
" , I required. I 
, ~----------------+----------------+--------------------------------------------i 
I QE 'All language , I Allocate storage for global temporaries. , 

" " I I I I , Remove unnecessary stores of global , 
'J , J temporaries. , 
, ~----------------+----------------+--------------------------------------------1 
, , Storage class , J Allocate storage for global temporaries. I 
~--------+----------------+----------------+--------------------------------------------i 
J QI I All language , , Relocate temporary storage. , 
I I J II 
I I I , Insert addressing code in prologue or I 
I' I I optimal flow unit, if OPT=TIME. I 
" I I I 'I I , Diagnose compiler error conditions. I 
I J I' I 
I I I I Reserve loop control register for binary. I 
I I I , loops. I 
, ~----------------+----------------+--------------------------------------------1 I , Prologue text t I Insert addressing code in prologue or f 
J J , , optimal flow unit, if OPT=TIME. , 
L ________ ~ ________________ ~ ________________ L-_________________ ~-------------------------J 

Compiler processing functions listed by phase 

Licensed Material - Property of IBM Section 4: Directory 547 



r--------T----------------T----------------T--------------------------------------------1 
I COMPILER, LANGUAGE I FEATURE I , 
,PHASE, FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------t--------~-------+--------------------------------------------~ 
~--------+----------------t----------------+--------------------------------------------~ 
, ~I ,Storage class , , Relocate temporary storage. , 
~--------+----------------+----------------t--------------------------------------------~ 

SA ,BEGIN stmt. 'Options 1 Generate object code. , 
~----------------t----------------+--------------------------------------------~ I CALL stmt. , Argument list, , Generate object code. I 
, I function ref., , , 
, , options , , 

~----------------t----------------+--------------------------------------------~ 
, CHECK condition' Name list , Generate object code (for CHECK condition , 
, I I without list). I 
~----------------+----------------t--------------------------------------------~ 
, END stmt. , Label , Generate object code. I 
~----------------+----------------+--------------------------------------------~ 
, ENTRY stmt. I Multiple labs. I Generate object code. , 
~----------------+----------------t--------------------------------------------~ 
, GO TO stmt. 'Label const/var, Generate object code. , 
~----------------t----------------+--------------------------------------------~ 
, ON stmt. , On-unit/SYSTEM,' Generate object code. , 
, , SNAP , , 

~----------------t----------------+--------------------------------------------~ 
,ON-condition I , Generate object code (unqualified , 
, , , ON-condition). , 

~----------------+----------------+--------------------------------------------~ 
I Prefix' I Generate object code. I 
~----------------t----------------t--------------------------------------------~ 
, Prologue text , , Generate object code. , 

~----------------t----------------+--------------------------------------------~ 
I PROCEDURE stmt., OPTION5, I Generate object code. I 
, , data attributes, , 
, I multiple lables, , 
~----------------t----------------t--------------------------------------------~ 
, RETURN stmt. 'Expression , Generate object code. , 

~--------t----------------t----------------+--------------------------------------------~ 
, SC ,String data 'BIT/CHAR/PIC" Code production for string operat~ons. , 
" , fixed/VARYING, , I 
" , non-adjustable/, I 
" I adjustable , , 
I ~----------------t----------------+--------------------------------------------~ 
I I String Ope I BIT/CHARACTER I Generate object code. , 
~--------+----------------t----------------t--------------------------------------------~ 
, SD 'Conversion' , Generate object code. , 
~--------+----------------t----------------+--------------------------------------------~ 
I SI ,Object code I I Produce ESD/TXT/RLD records for program, , 
'I I I and all external CSECTs for in~ut into , 
'I , , linkage editor. I 
I ~----------------t----------------t--------------------------------------------~ I , STATIC storage , I Expand constants into TXT records. I l ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

548 Licensed Material - Property of IBM 



r--------T----------------T----------------T--------------------------------------------, 
,COMPILER, LANGUAGE , FEATURE , , 
,PHASE I FEATURE I QUALIFICATIONS I COMPILER PROCESSING FUNCTIONS I 
~--------+----------------+----------------+--------------------------------------------~ 
~--------+----------------+----------------+--------------------------------------------~ 

SK ,ALIGNED/ I ! Sign unaligned operands of RX instructions., 
, UNALIGNED" I 
~----------------+----------------+--------------------------------------------~ 
, FORMAT stmt. , I Remove unnecessary code. , 
, I' I 
, ! , Detect statement too large. I 
~----------------+----------------+--------------------------------------------~ 
, GET stmt. I FILE/STRING, I Detect statement too large. I 
, , EDIT/LIST/DATA,! I 
, I COPY,SKIP,COL, , I 
, I data~list, I I 
I I format-list I I 
~----------------+----------------+--------------------------------------------i 
, LABEL , variable , Remove if not referenced. , 

~----------------+----------------+--------------------------------------------f 
, PUT stmt. I FILE/STRING, ,Detect statement too large. I 
I I EDIT/LIST/DATA" I 
, I COpy, SKI P, COL, , I 
, I LINE, PAGE, , , 
I , data-list, , I 
I , format list I I 

~--------+----------------+----------------+-~------------------------------------------~ I SM I All language , , Diagnose compiler error conditions. , 
, ~----------------+----------------+--------------------------------------------i 
I , Object code I I List the object code , 
, ~----------------+----------------+--------------------------------------------~ 
, , STATIC storage , I List static storage. I 
~--------+----------------+----------------+--------------------------------------------~ 
I SQ I Arithmetic Ope I I Generate object code (binary, float, and I 
I I I I ext. float ops.). I 
I ~----------------+----------------+--------------------------------------------~ I , CHECK condition' Name list , Generate object code (for CHECK condition I 
'I , , with list). I 
I ~----------------+----------------+--------------------------------------------~ 
, ,ON-condition, I Generate object code (qualified I 
" I ION-condition). I L ________ ~ ________________ ~ ________________ ~ ____________________________________________ J 

compiler processing functions listed by phase 

Licensed Material - Property of IBM section 4: Directory 549 



Section 5: Data Area Layouts 

This section describes the format and usage of most data areas that are processed by more 
than one phase. The meanings of some fields in the data areas described may vary 
according to the phase and/or the usage of the data area. In this section, the 
descriptions of alternative meanings for fields are separated by double vertical lines. 
A single vertical line indicates a general description applied to two or more fields. 
Symbolic names for fields are shown where they are common to all phases which process 
them. Data areas are described under the following main headings: 

Communication area (XCOMM) 
Basic data-handling information 
Dictionary entries 
Operand code bytes 
Six-byte references to operands 
Compile-time DEDs 
Type-1 text formats 
Type-2 text formats 
Pseudo constants pool 
Extended code formats 
Preprocessor dictionary entries 

COMMUNICATION AREA - XCOMM 

r------------------T-------T------------------------------------------------------------, 
I Bytes ISymbol 1 Meaning 1 
1 Hex Dec 1 1 I 
~--------T---------t-------+-----------------------------------------T------------------1 
1 000- 041 1 0-11 IXSA1 ISystem-calls save area. ISave areas. I 
~--------+---------t-------t-----------------------------------------1 I 
I 048-08FI 12-143 IXSA2 Icontrol-calls save area. 1 1 
r--------t---------t-------t-----------------------------------------t------------------1 
I 090-0931 144-147 IXACTL IControl Phase address. IControl Phase 
~--------t---------t-------t-----------------------------------------~addresses. 
1 094-097 1 148-151 IXDMADR IDump Phase address. I 
r--------t---------t-------+-----------------------------------------i 
1 098-09BI 152-155 1 XAA0300 1 Phase loading routine. IThese 4-byte 
~--------+---------t-------+-----------------------------------------1 entries ccntain 
I 09C-09FI 156-159 IXAA4200lDictionary reference page search routine. 1 the start 
r--------t---------+-------+-----------------------------------------iaddresses of the 
I OAO-OA31 160-163 IXAA4000lPage accessing routine. Ivarious routines/ 
~--------t---------+-------t-----------------------------------------iphases. 
I OA4-0A11 164-167 IXAA4100lDictionary reference page search routine. I 
r--------t---------t-------t-----------------------------------------i 
1 OA8-0ABI 168-111 IXAA4500lSpili I/O check routine. 1 
~--------+---------t-------t-----------------------------------------i 
1 OAC-OAFI 112-115 I 1 1 
r--------t---------t-------+-----------------------------------------i 
1 OBO- OB3 1 116-119 IXAA8000lDiscard page routine. 1 
r--------+---------+-------+-----------------------------------------1 
I OB4-0B71 180-183 I I I 
r--------t---------+-------t-----------------------------------------i 
I OB8-0BBI 184-181 IXAA0600lProgram interrupt handler. I 
~--------t---------+-------t-----------------------------------------i 
I OBC-OBFI 188-191 IXAA0500lEnd of compilation return address. I 
~--------f---------t-------+-----------------------------------------t------------------i 
1 OCO- 137 1 192-311 IXINPUT IInput dataset. 11/0 dataset DT~ 1 
~--------+---------t-------t-----------------------------------------iblocks. I 
I 138-1CFI 312-463 IXPRINT IPrint dataset. I I 
r--------f---------t-------+-----------------------------------------i 1 
1 1DO-267 1 464-615 IXSPILL ISpill dataset. 1 I L ________ ~ _________ ~ _______ ~ _________________________________________ L __________________ J 

Licensed Material - Property of IBM Section 5: Data Area Layouts 551 



I 268-26FI 616-623 IXCTXUN IText UNMOVABLE. 00 IPage chain head 
~--------+---------+-------+-----------------------------------------~and tail pointers. 
I 210-2711 624-731 IXCTXMV IText MOVABLE 08 I 
~--------+---------+-------+-----------------------------------------~OO, 08, etc. are 
I 278-27FI 632-639 IXCDCUN IDictionary UNMOVABLE. 10 Istatus chain codes 
~--------+---------+-------+-----------------------------------------~used in OSTAT in 
I 280-281 1 640-647 IXCDCMV IDictionary MOVABLE. 18 leach page header. 
~--------+---------+-------+-----------------------------------------i 
I I IXDIRPA IAddress of dictionary directory. I 
~--------+---------+-------+-----------------------------------------~ 
I 288-28FI 648-655 IXCDRUN IDirectory UNMOVABLE 20 I 
~--------+---------+-------+-----------------------------------------i 
I I IXCDIRY I I 
~--------+---------+-------+-----------------------------------------~ 
I 290-297 1 656-663 IXCdrmv IDirectory MOVABLE 28 I 
~--------+---------+-------+-----------------------------------------i 
I 298-29FI 664-671 IXCUNUS IUNUSED pages. 30 I 
~--------+---------+-------+-----------------------------------------i 
I 2AO-2A71 672-679 I INot used. I 
~--------+---------+-------+-----------------------------------------i 
I 2A8-2AFI 680-687 IXCDISC IDISCARDED pages. 40 I 
~--------+---------+-------+-----------------------------------------+------------------f 
I 2BO-2B 21 688-690 IXTXINF IText page, page in main storage. IPage search 
~--------+---------+-------+-----------------------------------------isequences for, 
I 2B3-2B81 691-696 I IText page, page not in main storage. Itext, dictionary, 
~--------+---------+-------+-----------------------------------------iand directory 
I 2BA I 691 IXDUREQ IDummy required after this phase I pages 
~--------+---------+-------+-----------------------------------------i 
I 2BA-2BBI 698-699 IXPCNT lIn-core page count. I 
~--------+---------+-------+-----------------------------------------~ 
1 2BC I 100 IXDUCNT INumber of abort calls to dump phase. 1 
~--------+---------+-------+-----------------------------------------i 
I 2BD I 101 IXDICNT INumber of abort calls to error-editor 1 
1 I 1 Iphase. 1 
~--------+---------+-------+-----------------------------------------~ 
I 2BE-2BFI 102-103 IXNRT INumber of pages/track. I 
~--------+---------+-------+-----------------------------------------i 
1 2CO-2C 21 704-106 IXDCINF IDictionary page, page in core. I 
~--------+---------+-------+-----------------------------------------i 
I 2C3-2C81 707-112 I IDictionary page, page not in core. 1 
~--------+---------+-------+-----------------------------------------i 
I 2C9 I 113 IXSSW IPage chain select flag byte. 1 
~--------+---------+-------+-----------------------------------------i 
1 2CA-2CBI 714-115 IXPNO INumber of core pages. I 
~--------+---------+-------+-----------------------------------------~ 
1 2CC-2CDI 716-717 IXTXC INumber of text pages in compiler. 1 
~--------+---------+-------+-----------------------------------------i 
I 2CE-2CFI 718-719 IXDCC INumber of dictionary pages in compiler. I 
~--------+---------+-------+-----------------------------------------i 
1 2DO-2D~1 120-122 IXDRINF IDirectory page, page in core. 1 
~--------+---------+-------+-----------------------------------------~ 
I 2D4-2D81 723-728 I IDirectory page, page not in core. I 
~--------+---------+-------+-----------------------------------------i 
1 2D9 I 729 1 IPadding bytes. 1 
~--------+---------+-------+-----------------------------------------~ 
I 2DA-2DDI 730-733 IXOBJSZ ISize of object code. ) Note: These two I 
~--------+---------+-------~--------------------- ) fields are liablel 
I 2DE-2DFI 734-135 lXNUMST INumber of statements. ) to change. 1 
~--------+---------+-------+-----------------------------------------~ 
I 2EO-2E31 736-139 IXATASL IAddress of latest spare TA slot. I Discarded track 
~--------+---------+-------+-----------------------------------------~ address table. 
1 2E4-2E61 140-142 IXTASL I 1 
~--------+---------+-------+-----------------------------------------~ 
I 2E1-33DI 143-829 IXTASL1 IDiscarded TA slots. I 
~--------+---------+-------+-----------------------------------------i 
1 33E-33FI 830-831 I I 1 
~--------+---------+-------+-----------------------------------------+------------------~ 
I 340-34FI 832-841 IXDIRTA IDirectory page TAs. I Directory I 

552 Licensed Material - Property of IBM 



r--------T---------T-------T-----------------------------------------1 variables. , 
I 350-3531 848-851 I INot used. " 
~--------t---------t-------t-----------------------------------------i 1 
1 354-3551 852-853 IXDIRNO 14*number of directory pages. I 1 
~--------+---------t-------+-----------------------------------------i , 
1 356-3511 854-855 1 INot used. 1 1 
~--------t---------t-------t--------------------------T--------------t------------------f 
1 358-359 1 856-857 IXREF INext reference in general I XSQTBL 1 Dictionary , 
1 I I I dictionary. I Information Information , 
~--------t---------t-------+--------------------------~ on current Tables. , 
I 35A-35B, 858-859 ,XOFFST ,Offset of next reference ,entries. 1 
I I I lin general dictionary. , 
~--------t---------t-------t-------------------~------i 
I 35C ,860 IXALGLN IGeneral dictionary I 
I I I lalignment length=10 bytes. 1 
~--------t---------+-------+--------------------------~ 
1 35D-35FI 861-863 IXTA ITA of current general I 
1 1 I Idictionary page. I 
~--------t---------+-------t--------------------------~ 
I 360-3611 864-865 IXREF IThese four fields as above 1 
~--------+---------+-------ibut for the names I 
1 362-3631 866-867 IXOFFST 1 dictionary. I 
~--------t---------+-------~ I 
I 364 I 868 IXALGLN IAlignment length=S bytes. I 
~--------t---------+-------i I 
1 365-361 1 869-811 IXTA I 1 
~--------t---------+-------t--------------------------~ 
, 368-3691 812-813 IXREF IThese four fields as above I 
~--------+---------+-------ibut for the variables , 
I 36A-36BI 814-815 IXOFFST I dictionary. I 
~--------t---------+-------~ 1 
I 36C I 816 IXALGLN IAlignment length=40 bytes. 1 
~--------+---------+-------i , 
I 36D-36FI 817-819 IXTA I I 
~--------+---------+-------+--------------------------~ 
1 310-371 1 880-881 IXREF IThese four fields as above I 
~--------+---------+-------ibut for the storage I 
1 372-3731 882-883 IXOFFST I dictionary. I 
~--------t---------+-------i , 
1 314 1 884 IXALGLN IAlignment length=40 bytes., 
~--------+---------+-------i 1 
1 315-371 1 885-887 IXTA 1 I ~ ________ i _________ ~ _______ ~ __________________________ ~ ______________ ~-________________ _ 

Licensed Mate~ial - Property of IBM Section 5: Data Area Layouts 553 



1 318-37BI 888~891 , 'Not used. , XMSKTB 
~--------+---------+-------+--------------------------~ MaSKS for 
I 31C-37DI 892-893 1 ,Not used. I dictionary 
~--------+---------+-------+--------------------------i references. 
1 37E-37FI 894-895 IXELTH IGeneral dictionary entry 1 
I 1 1 Ilength = 10 bytes. 1 
~--------+---------+-------+--------------------------i 
1 380-38 31 896-899 1 IThese three fields as 1 
~--------+---------+-------~above but for the names I 
1 384-385 1 900-901 1 1 dictionary. 1 
~--------+---------+-------i 1 
1 386-387 1 902-903 IXELTH IEntry length = 5 bytes. 1 
~--------+---------+-------+--------------------------~ 
I 388-38BI 904-907 1 IThese three fields as I 
~--------+---------+-------iabove but for the 1 
1 38C-38DI 908-909 1 Ivariables dictionary. 1 
~--------+---------+-------i I 
1 38E-38FI 910-911 IXELTH IEntry length = 40 bytes. 1 
~--------+---------+-------+--------------------------i 
1 390-3931 912-915 1 IThese three fields as I 
~--------+---------+-------iabove but for the 1 
I 394-3951 916-917 1 Istorage dictionary. 1 
~--------+---------+-------i I 
I 396-3971 918-919 IXELTH ,Entry length = 40 bytes. 1 
~--------+---------+-------+~-------------------------+--------------~ 
1 398-3991 920-921 'XDICEN INo. of entries/page - 1 XDRTBL 
I I , 'general dictionary. 1 Directory 
~--------+---------+-------+--------------------------~ segmentation 
1 39A-39BI 922-923 'XCRDRF ICurrent directory section 1 table. 
, , 'Ioffset. , 
~--------+---------+-------+--------------------------~ 
J 39C-39DI 924-925 IXDROFS IOffset of section from I 
, 1 1 1 directory page. , 
~--------+---------+-------+--------------------------~ 
I 39E-39FI 926-927 IXSECSZ ISize of section in I 
, , I I directory page. , 
~--------+---------+-------+--------------------------~ 
I 3AO-3All 928-929 IXDICEN IThese four fields as above, 
~--------+---------+-------ibut for the names I 
1 3A2-3A3 1 930-931 IXCRDRF 1 dictionary. I 
~--------+---------+-------i I 
I 3A4-4A51 932-933 IXDROFS I I 
~--------+---------+-------i I 
1 3A6-3A7 1 934-935 IXSECSZ 1 I 
~--------+---------+-------+--------------------------~ 
I 3A8-3A91 936-937 IXDICEN IThese four fields as above I 
~--------+---------+-------ibut for the variables I 
1 3AA-3ABI 938-939 IXCRDRF I dictionary. I 
~--------+---------+-------~ 1 
I 3AC-3ADI 940-941 IXDROFS 1 I 
~--------+---------+-------i 1 
1 3AE-3AFI 942-943 IXSECSZ 1 I 
~--------+---------+-------+--------------------------i 
I 3BO-3B1 1 944-945 IXDICEN IThese four fields as above 1 
~--------+---------+-------1but for the storage 1 
1 3B2-3B31 946-947 IXCRDRF Idictionary. I 
~--------+---------+-------i I 
1 3B4-3B51 948-949 IXDROFS I I 
~--------+---------+-------1 I 
I 3B6-3B71 950-951 IXSECSZ I I I 

Dictionary 
Information 
Tables. 
(contd. ) • 

~--------+---------+-------+--------------------------~--------------+------------------i 

~_~~~=~~~t_:~~=:~::~~~~:= __ +:~:_:~~~::_~::~rd: _______________________ ~ Control variables, 

1 408 11032 IXSYNSV Iseverity of SYNTAX option. 1 1 
~--------+---------+-------+-----------------------------------------~ , 
,409 11033 'XCMPSV ,severity of COMPILE option. I 1 
~--------+---------+-------+-----------------------------------------1 I 
I 40A 11034 IXFLGSV ISeverity of FLAG option. I I 

554 Licensed Material - Property of IBM 



t--------~---------T-------T-----------------------------------------~------------------, 
I 40B 11035 IXLNKSV ISeverity of LINK option. I Control variables I 
~--------+---------+-------+-----------------------------------------~ (cont'd.) I 
1 40C-43311036-1075IXNAME ICharacter string for phase card. I I 
~--------+---------+-------+-----------------------------------------1 I 
I 434-43Dll016-1085IXNSYGBTISystem generation option bits. I I 
~--------+---------+-------+-----------------------------------------~ I 
I 43E-44111086-1095IXNDELBTIOption delete bits. I I 
~--------+---------+-------+-----------------------------------------~ I 
I 448-46711096-1127 IXCGRSZ ICompiler-generated subroutine sizes. I I 
~--------+---------+-------+-----------------------------------------~ I 
I 468-46BI1128-1131 IXLOCK IDict. type and reference of locked page. I I 
~--------+---------+-------+-----------------------------------------1 
I 46C-46FI1132-1135 IXLOADL list component of loaded phase name. I 
~--------+---------+-------+-----------------------------------------~ 
I 410-41311136-1139IXLPHSN 12nd component of loaded phase name. I 
~--------+---------+-------+-----------------------------------------1 
I 474-41711140-11 43 IxAPHS IPhase start address. 1 
~--------+---------+-------+-----------------------------------------~ 
I 418-47BI1144-1141 IXPGST 1Start of page area. I 
~--------+---------+-------+-----------------------------------------1 
I 41C-47FI1148-1151IXPGND lEnd of page area. / 
~--------+---------+-------+-----------------------------------------i 
I 480-48311152-1155IXABIF IAddress of next buffer - input dataset. I 
~--------+---------+-------+-----------------------------------------1 
I 484-48111156-1159IxABPF IAddress of next buffer - print dataset. I 
~--------+---------+-------+-----------------------------------------i 
I 488-48DI1160-1163IXAPFSH IAddress of print dataset subheading. 1 
~--------+---------+-------+-----------------------------------------1 
I 48C-48F11164-1167IxNWTAl ~TA of latest I/O page. / 
~--------+---------+-------+-----------------------------------------~ 
I 490-491 11168-1169IXRTKLl IRemainder track length. I 
~--------+---------+-------+-----------------------------------------~ 
I 492-49311170-1171IXNTCl INumber of tracks/cylinder. I 
~--------+---------+-------+-----------------------------------------~ 
I 494-49111112-1175IXSAVTAlILast TA in previous member of batch. I 
~--------+---------+-------+-----------------------------------------i 
I 498-49BI1116-1179IXOPICA IOld program-interrupt control 
I I I larea address. 
~--------+---------+-------+-----------------------------------------
I 49C-4C311180-1219 1XTEMP ITemporary storage. 
~--------+---------+-------+-----------------------------------------
I 4C4-4C7/1220-1223I XDSTP INumber of discarded text pages. 
~--------+---------+-------+-----------------------------------------
I 4C8-4CBI1224-1221 IXABCF IAddress of next buffer - punch dataset. 

~--------+---------+-------+-----------------------------------------
I 4CC-4CFI122B-1231IXABOF IAddress of next buffer - load dataset. 
~--------+---------+-------+-----------------------------------------
I 4DO-4DlI1232-123 3 IXPFLN ILine number of print dataset. 
~--------+---------+-------+----------------------------------------- I 
/ 4D2-4D 3112 34-1235IXPFPN IPage number (decimal) of print dataset. I 
~--------+---------+-------+----------------------------------------- I 
I 4D4-4D5 11236-1231IXMUNDP IMax. number of UNMOVABLE dict. pages. I 
~--------+---------+-------+----------------------------------------- I 
I 4D6-4D111238-1239IXNUNDP INumber of UNMOVABLE dictionary pages. I 
~--------+---------+-------+----------------------------------------- r 
I 4DB-4DBI1240-1243IXAEND IPartition end address. I L ________ ~---------~ _______ ~ _________________________________________ ~ __________________ ~ 

Licensed Material - Property of IBM section 5: Data Area Layouts 555 



I 4DC-4E311244-12511XMXDRF IMaximum directory offset for each Control variables 
I 1 I Idict. reached by the preprocessor (cont'd.). 
I I I I stage. 
~--------t---------+-------+-----------------------------------------
I 4E4-4E61 1252-1254IXCIOTA ITA of unchecked I/O page. 
~--------+---------+-------+-----------------------------------------
I 4E7-4E811255-1256IXCPHSN IName of current phase or overlay. 
~--------t---------+-------+-----------------------------------------
I 4E9 112 57 IXPHSIN IPhase description byte. 
~--------+---------+-------+-----------------------------------------
I 4EA 11258 IXDCSTA IType bits of current phase. 
~--------+---------+-------+-----------------------------------------
1 4EB 112 59 IXCTLCD IControl request code. 
~--------+---------+-------+-----------------------------------------
I 4EC 11260 IXCSWS Icontrol phase switches. 
~--------t---------+-------+-----------------------------------------
I 4ED 112 61 IXBATCH IBatching progress switch. 
~--------+---------+-------+-----------------------------------------
I 4EE 11262 IXPROG ICompilation progress switch. 
~--------t---------+-------+-----------------------------------------
1 4EF 11263 IXRETCD IReturn code. 
~--------+---------+-------+-----------------------------------------1 
I 4FO-4FlI1264-1265IXAREF IDictionary ref. of AREA INIT constant. I 
~--------+---------+-------+-----------------------------------------1 
I 4F2-4F311266-1267IXNSREC INumber of source records. I 
~--------+---------+-------+T----------------------------------------+------------------~ 
I 4F4-4F711268-1271IXCPLO IIXCONO Constant O. IAbsolute constants. 
~--------t---------+-------++----------------------------------------1 I 
1 4F8-4F91 1272-1213IXCONZH IIXCON1 Constant 1. I I 
~--------+---------+-------~I 1 I 
I 4FA-4FBI1274-1275 IXCPL1 I I I I 
~--------t---------+-------++----------------------------------------1 1 
I 4FC-4FDI1276-12771 IIXCON2 Constant 2. 1 I 
~--------+---------+-------i I I I 
I 4FE-4FFI1278-1279IXCPL2 II I 1 
~--------t---------+-------++----------------------------------------1 
I 500-501 11280-12811 II XCON3 Constant 3. 1 
~--------+---------+-------il I 
I 502-50311282-1283IXCPL3 II I 
~--------t---------+-------++----------------------------------------i 
I 504-50511284-12851 IIXCON4 Constant 4. 
~--------+---------+-------++----------------------------------------
I 506-50711286-1287 IXCPL4 II 
~--------+---------+-------++----------------------------------------
1 508-50911288-12891 IIXCON16 Constant 16. 
~--------+---------+-------i 1 
I 50A-50BI1290-1291IXCPL16 II 
~--------+---------+-------f+----------------------------------------
I 50C-50AI1292-1295IXMNl IIXBPO Bit pattern (-). 
~--------+---------+-------++----------------------------------------
1510-51111296-12911 IIXBP1 Bit pattern (-4). 
~--------t---------+-------il 
I 512-51 311298-1299IXBP1H II 
~--------+---------+-------++----------------------------------------
1514-51511300-13011 l1XBP2 Bit pattern (zero top byte). 
~--------t---------+-------il 
I 516-5111 1 302-1303IXBP2H JI 
~--------+---------+-------++----------------------------------------
I 518-51BI1304-1307IXTPCLR IIXBP3 Bit pattern (zero top halfword). 
~--------~---------~-------~~-------------------------------_________ ~ __________ ~ _______ J 

556 Licensed Material - Property of IBM 



I 51C 11308 IXUPSI IUser program switch indicators. I Compilation 
~--------+---------+-------+----------------------------------------~constants. 
I 51D-52411309-1316IXJOBN IJob name. I 
~--------t---------+-------+----------------------------------------~ 
I 525 11317 I INot used. I 
~--------+---------+-------+----------------------------------------~ 
I 526-52111318-1319IXPFLS IPrint-line size - number of characters. 1 
~--------+---------t-------+----------------------------------------~ 
1 528-5291 1 320-1321 IXPFPS IPrint-page size - number of lines. I 
~--------+---------+-------+----------------------------------------i 
I 52A-52BI1322-132 3 IXSOR lLeft-hand source margin. I 
~--------t---------+-------+----------------------------------------~ 
I 52C-52DI1324-1325 IXMAG IRight-hand source margin. I 
~--------+---------+-------+----------------------------------------~ 
I 52E-52FfI326-1321 IXCC ICarriage control character pOSition I 
I I 1 I in source. I 
~--------+---------+-------+----------------------------------------i 
I 530-53111328-1329IXTRCN IExecution time trace number. I 
~--------+---------+-------+----------------------------------------~ 
1 532 11330 IXMGIN IMargin indicator character. 1 
~--------+---------+-------+----------------------------------------~ 
I 533 11331 I INot used. I 
~--------t---------+-------+----------------------------------------i 
I 534-53711332-133 5 IXPHSM IMaximum length of phase. I 
~--------+---------+-------+----------------------------------------~ 
I 538-53BI1336-133 9 1XSIZE ISIZE option, or default partition size. I 
~--------t---------+-------+----------------------------------------i 
I 53C-53DI1340-1341 IXPAGS IOverall page size. I 
~--------+---------+-------+----------------------------------------~ 
I 53E-53FI1342-1343IXPAGSU IUseable page size. I 
~--------t---------t-------+----------------------------------------~ 
I 540-54311344-1341 IXTIMU ITime of day (units of 1/300 sec.'. I 
~--------+---------+-------+----------------------------------------i 
I 544-54BI1348-135 3 IXTIME IJob time of day. I 
~--------t---------+-------+----------------------------------------~ 
I 54C-5551 1 356-1365 IXDATE IDate. I 
~--------+---------+-------+----------------------------------------i 
I 556-55111366-1361IXILRECLIInput record length. I 
~--------+---------+-------+----------------------------------------~ 
I 558-55BI1368-13 71 IXMCOUNTINumber of pages used during I 
1 I 1 Ithis member of the batCh. 1 
~--------t---------+-------+----------------------------------------~T------------------f 
I 55C-55FI1312-1315IXSTX IText reference of first input page. I Text variables. 
~--------+---------+-------+-----------------------------------------1 
I 560-56311316-1 379 IXCABS ICUrrent output page address. 1 
~--------t---------+-------+-----------------------------------------1 
1 564-56711380-1383IXSIPT IStart of current input page. I 
~--------+---------+-------+-----------------------------------------1 
1 568-56BI1384-1381IXINSV IText reference of text start in page. 1 
~--------t---------+-------+-----------------------------------------1 
I 56C-56FI1388-1391 IXSCRCH IScratch page pOinter. I 
~--------+---------+-------+-----------------------------------------i 
1 570-57111392-13931 INot used. 1 
~--------+---------+-------+-----------------------------------------~ 
1 512-57311394-1395IXNABN INext available base number. I 
~--------+---------+-------+-----------------------------------------i 
I 514-51511396-1397 IXSPOP ISpace left in current output page. I 
~--------+---------+-------+-----------------------------------------i 
I 516-51AI1398-1402IXACDRF IHead of addressing code reference. 1 
~--------+-~-------+-------+-----------------------------------------i 
1 51B 11403 1 INot used. I L ________ ~ _________ ~ _______ ~ _________________________________________ ~ __________________ J 

Licensed Material - Property of IBM Section 5: Data Area Layouts 551 



I 57C-58011404-1408I XDOCH IHead of statement type chain. I Text variables 
~--------+---------+-------+-----------------------------------------i (cont'd.). 
I 581-58511409-1413IXRIOCH IHead of statement type chain. , 
~--------+---------+-------+-----------------------------------------~ 
, 586-58A,1414-1418IXLABREFIPhases SA-SK: 1st label in pseudo I 
I I I Iconstants pool. , 
I I ~-------+-----------------------------------------~ 
I I IXSIOCH IPhases KA-KQ: Head of GET/PUT/FORMAT , 
I I I Istatement chain. 1 
~--------+---------+-------+-----------------------------------------~ 
I 58B-58FI1419-1423IXADCPG IPhases SK-SI: Adcon page. I 
I I .-------+-----------------------------------------~ 
1 I IXSYSCH IHead of statement type chain. I 
~--------+---------+-------+-----------------------------------------~ 
I 590-59411424-1428IXIFCH INot used. I 
~--------+---------+-------+-----------------------------------------i 
I 595-59911429-14331XSUBCH IHead of statement type chain. I 
~--------f---------f-------+-----------------------------------------~ 
1 59A-59EI1434-1438 IXLOGCH INot used. I 
~--------+---------+-------+-----------------------------------------i 
I 59F-5A311439-1443IXBELCH IHead of statement type chain. , 
~--------f---------+-------+-----------------------------------------~ 
, 5A4-5A611444-1446IX2STRM ICurrent 2nd text stream page reference. 1 
~--------+---------+-------+-----------------------------------------i 
I 5A7-5A911447-1449IXTRFL IText reference of first loop. I 
~--------f---------f-------+-----------------------------------------~ 

5AA 11450 XNSRTSWISwitches for Type 2 text handling macros., 
, ~----------~------------------------------i 
I 11. •• •••• , XNSRT. Inserted table is on I 
1 I 1 same page as table before. , 
, ~----------+------------------------------i 
I 1·1 •••••• I XNSRT. No 'LINK=' parameter. I 
I ~----------+-----------------------~------~ 
1 1 •• L. •••• , XLINK. n IND' specif ied. 1 
I ~----------+------------------------------i 
I 1···1 •••• I XLINK. 1IREF=' specified. , 

1 ~----------+------------------------------~ 
I , •••• 1 ••• I XNSRT. No third parameter 1 
1 1 I specified. 1 
I ~----------+------------------------------i 
1 IBits 5-7 1 Not used. , 

~--------+---------+-------+----------~------------------------------i 
I 5AB 11451 IXTXBO 1XTXPG macro information byte. I 
~--------f---------+-------+-------------------------------+---------~ 
1 5AC-5AFI1452-1455IXCR 10utput pOinter. I XOUTARG 1 
.--------+---------+-------+-------------------------------i (First I 
I 5BO-5B311456-1459IXBK ILast break paint. I text I 
~--------+---------+-------+-------------------------------i stream). 1 
1 5B4-5B711460-1463IXSP IStart of current page. 1 1 
~--------+---------+-------+-------------------------------i I 
1 5BB-5BBI1464-1467IXPGEND lEnd of current page. I I 
~--------+---------+-------+-------------------------------i I 
I 5BC-5BEI146B-1410IXCREF IReference of current page. I I 
~--------+---------+-------+-------------------------------i I I 5BF 11471 IXOUTST Istatus of old pages. I I I 
L ________ ~---------+-------~------------------------------_~---------+ __ ----_-----------J 

558 Licensed Material - Property of IBM 



I 5CO-5C311472-1475IXCR2 IOutput pOinter. I XOUTARG2 ~ext variables 
~--------+---------+-------+-------------------------------i (Second (cont'd.>. 
I 5C4-5C7 11476-1479IXBK2 ILast break pOint. I text 
~--------t---------t-------+-------------------------------~ stream). 
I 5C8-5CBI1480-1483IXSP2 IStart of current page. I 
~--------+---------+-------+-------------------------------i 
I 5CC-5CFI1484-1487IXPGEND2IEnd of current page. I 
~--------t---------+-------+-------------------------------~ 
I 5DO-5D 2 11488-1490IXCREF2 IReference of current page. I 
~--------+---------+-------+-------------------------------i 
I 503 11491 IXOUTST21Status of old pages. 1 
I I I. I I 
I 5D4-5D111492-1495IXATERM IUser end of dictionary chain routine. Dictionary 
~--------t---------+-------+-----------------------------------------i variables. 
I 5D8 11496 I I Padding. 1 
~--------+---------+-------+-----------------------------------------i 
1 509 11497 IXCODBT IDictionary type of reference. I 
~--------+---------+-------+-----------------------------------------1 
I 5DA-5DBI1498-14991 IDictionary reference used for XRFAB. I 
~--------+---------+-------+-----------------------------------------i 
I 5DC-5DDI1500-1501IXAGHEDAIHead of static array chain. I 
~--------+---------+-------+-----------------------------------------i 
I 5DE-5DFI1502-1503IXAGHEDSIHead of static structure chain. I 
~--------+---------+-------+-----------------------------------------i I 5EO-5ElI1504-1505tXDCRF IDictionary reference in current call. I 
~--------+---------+-------+-----------------------------------------1 
I 5E2-5E311506-1501IXDCLTH IDictionary entry length. I 
~--------+---------+-------+-----------------------------------------i 
I 5E4-5E511508-1509IXBH IBlock header chain. I 
~--------t---------+-------+-----------------------------------------i 
I 5E6-5E111510-1511IXDFCH IHead of default chain. I 
~--------+---------+-------+-----------------------------------------i 
I 5E8-5E911512-1513tXBSCH IBased chain. I 
~--------t---------+-------+-----------------------------------------i 
I 5EA-5EBI1514-1515IXPICCH IHead of picture chain. I 
~--------+---------+-------+-----------------------------------------i 
I 5EC-5EDI1516-1517IXALIAS lDictionary reference of alias strings. 1 
~--------+---------+-------+-----------------------------------------1 
I 5EE-5EFI1518-1519I XFILCH IHead of file chain. 1 
~--------+---------+-------+-----------------------------------------i 
I 5FO 11520 IXSCNSW IDictionary scan switch. 1 
~--------+---------+-------+-----------------------------------------1 
I 5F1 11521 IXCTLSV IDictionary routine control code. I 
~--------t---------+-------+-----------------------------------------i 
I 5F2 11522 IXDICSW JDirectory routine calling switch. J 
~--------t---------+-------+-----------------------------------------+------------------f 
I 5F3-5F4 11523-1524IXRKDCH IRecord/key descriptor chain I I 
~--------+---------t-------+-----------------------------------------i I 
1 5F5 11525 IXDEVSW IDevelopment switch. 1 1 
~--------t---------+-------+-----------------------------------------1 I 
1 5F6-5F7 1526-527 IXNREF 1Head of contextual declarations. I I 
~--------+---------+-------+-----------------------------------------t------------------i 
I 5F8-5FBI1528-1531IXTCOF IIndex slot address - XN5. I Statement trace I 
~--------+---------+-------+-----------------------------------------i information. I 
I 5FC-5FFI1532-1535IXTCEND ITrace table end address - XN9. I I l ________ ~ _________ ~ _______ ~ _________________________________________ ~ __________________ ~ 

Licensed Material - Property of IBM Section 5: Data Area Layouts 559 



I 600-60111536-15 43 IXDPPSW IAbort PSW. I Dump routine 
~--------f---------+-------+-----------------------------------------~ information. 
1 608-64 7 11 544-1601IXDPRGS IAbort registers. 1 
~--------t---------t-------t-----------------------------------------i 
1 648-64BI1608-1611IXSTGAD IStart of storage address. I 
~--------f---------+-------t-----------------------------------------~ 
I 64C-64FI1612-1615IXSTGND lEnd of storage address. I 
~--------t---------t-------t-----------------------------------------i 
1 650-66111616-1633IXDPOPT IDump options. 1 
~--------f---------+-------t-----------------------------------------~ 
I 662-66 311 634-1635IXDYSTS IStart of dynamic dump statement range. I 
~--------t---------+-------+-----------------------------------------i 
1 664-66511636-1631 IXDYSTE lEnd of dynamic dump statement range. I 
~--------+---------+-------t-----------------------------------------~ I 
I 666-66111638-1639IXTTOP IHighest temporary storage base number. I I 
~--------+---------+----~--+-----------------------------------------t------------------i 
I 668-66BI1640-1643IXSTATSZISize of static storage. I Source program 
~--------f---------+-------t-----------------------------------------~ variables. 
1 66C-66FI1644-16 41 IXCPSIZ ISize of Qonstants pool. 1 
~--------t---------+-------+-----------------------------------------i 
I 670-61111648-16491XSTAT Icurrent statement number. I 
~--------f---------+-------+---4-------------------------------------~ 
1 612-6131 1 650-1651 IXNLAB ITotal number of laQels in program. 1 
~--------t---------t-------+-----------------------------------------i 
I 674-67 5 11652-165 3 1XNTEMP ITotal number of temporaries. I 
~--------+---------+-------+-----------------------------------------~ 
1 616-671 11 654-1655IXADCS Istorage allocated - estimate of number 1 
1 I I lof program adcons. I 
~--------f---------+-------t-----------------------------------------~ 
1 678-67911656-1651IXSAADCSlcode generated - estimate of number 1 
I I 1 lof program adcons. I 
~--------f---------+-------+-----------------------------------------~ 
I 67A-67BI1658-1659IxULAB INumber of user labels in source program. I 
~--------t---------+-------+-----------------------------------------i 
I 67C-67DI1660-1661IXBLKCT IBlock count. I 
~--------+---------+-------+-----------------------------------------~ 
1 67E 11662 IXNML ILength of procedure name. I 
~--------t---------+-------+-----------------------------------------i 
I 67F-68511663-1669IXNM IProcedure name. I 
~--------+---------+-------+-----------------------------------------i 
1 686-68811670-1672 IXCPREF Iconstants pool text page reference. I 
~--------t---------t-------+-----------------------------------------i 
I 689 11673 IXDECAR IDecimal arithmetic flag. I 
~--------+---------+-------t-----------------------------------------~ 
1 68A-68BI1674-1615IXSAVOFFIStatic address vector offset. 1 
~--------t---------+-------+-----------------------------------------i 
I 68C-68DI1676-1617 IXADCON11First adcon offset in static. I 
~--------+---------+-------t-----------------------------------------i 
I 68E-68FI1678-16791XNARG Icurrent argument list number. 1 
~--------t---------+-------+-----------------------------------------t------------------i 
1 690-69111680-1681IXSTAD INumber of static address adcons. 1 1 
~--------f---------+-------t-----------------------------------------~ I 
I 694-6971 1 684-16871XRUTAD IAddress of RUT table. I I 
~--------+---------+-------+-----------------------------------------~------------------~ 
I 698-6E5 11688-176SIXLIBSTR1Bit vector indicating library subroutines called. I 
t--------f---------+-------t~-----------------------------------------------------------f 
I 6E6-6 E7 11 766-1767 IXCOMSTRIBit vector indicating compiler-generated subroutines called. 1 

~--------~---------~-------~------------------------------------------------------------~ 

560 Licensed Material - Property of IBM 



uraer ~O. ~X~~-bUIU-l, page Rev1sed by TNL LN33-6175, October 1976 

, 6E8-6E911768-1769IXAAERR IControl phase terminal error. I Error message 
.--------t---------t-------t-----------------------------------------i variables. 
I 6EA 11770 I INot used. , 
.--------t---------t-------t~----------------------------------------i I 6EB 11771 I XACTS I Highest diagnostic I 
I I I I severity to date. , 
.--------t---------t-------t-----------------------------------------i 
,6EC-6EDI1772-1113IXMREM IRemaining space in error page. , 
~-------i---------i-------i-------------------------------T---------, I 6EE-6EFI1774-1175IXMNUM INumeric parameter for I XMESS. , 
I I 1 Inessage. I Total 1 
.--------t---------t-------t-------------------------------i error 1 
I 6FO-Fl 11176-11171XMDRF I Error message dictionary I message., 
I I I I reference. " 
.--------t---------t-------t-------------------------------i 1 I 6F2 11778 I XMDTP 1 Error message dictionary type. 1 1 
~-------t~--------t-------t-------------------------------~---------i 
I 6F3 11779 IXERFLGSIErrOr and message flags. , 
.--------t---------f-------t-----------------------------------------i I 6F4-6F611780-11821~RF 'Error message page reference. , 
~--------t---------t-~~~---t-----------------------------------------i I 6F7 11783 I, .... , ~. INot used. I 
.--------t---------t-------t~--------------j-------------------------4------------------i 
I 6F8-6FFI1784-1191IXN12 Isave area for RE and RF. I 
~--------t------~--t-------t------------------------------------------------------------i 
I 700-70311792-1795IXN1 ILength of trace table. I 
.--------t---------t-------t------------------------------------------------------------i 

704 1796 XSCLNGllSource language flags. I 
~----------T-------------------------------------------------i 
11. •• .•••• I Check prefix. I 
~----------t-------------------------------------------------i 
1·1 •••••• 1 Allocate with attributes. I 
·~----------t-------------------------------------------------i 
I • .1. .•••• I Aggregates. I 
.----------t-------------------------------------------------i 
, ••• 1 •••• I PLICOM required. I 

.----------t-------------------------------------------------i I .... 1 ••• I Expressions in default specification in I 
1 . 1 outer block. I 
~----------t-------------------------------------------------i I. .... .1... I Main outer procedure. I 
.----------t-------------------------------------------------i 
I •••••• 1. I Extended FLOAT in source. I 
.----------t-------------------------------------------------i I ....... 1 I ILC outer block. I 

~--------t---------t-------t----------4-------------------------------------------------i I 705 11791 IXSCLNG2Ispare. I 
~--------i---------t-------t------------------------------------------------------------i 
I 706 11798 IXOPPHS110ptional phases flag. I 
~~------i---------i-------t------------------------------------------------------------f I 707 11199 IXOPPHS21 0pticnal phases flag 2. I 
~--------t---------t-------t------------------------------------------------------------i I 708-70BI1800-1803IXBCBLNFIID:PE total I 
I I I Ibranch-table length. I 
I I I IPE:SM offset in I 
I I I I STATIC of first branch-table. , 

~-------t---------t-------t------------------------------------------------------------i , 10C-70EI1804-1806IXBCBREFIAnchor point I 
I I I Ifor text page containing label I 
I I I Iconstants in branch-tables. I 

.--------t---------t-------t------------------------------------------------------------i I 10F 11807 I I spare. I 
~-------t---------t_------t------------------------------------------------------------i I 110-711.11808-1809IXENVCH IEnvironment chain lleader. ., 

.--~----t---------+_------+_-----------------------------------------------------------i I 712-71911~10-1817IXCATNM ILibrary name. , 
~-------t-~-------t-------t------------------------------------------------------------i 

Licensed Material - Property of IBM Sect.ion 5: Data Area Layouts 561 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

I 71A-71BI1818-1819IXLIOCS IChain head for LIOCS names (dictionary). I 
~--------t---------+-------+------------------------------------------------------------i 
I 71C-71DI1820-1821IXCNDCH ICondition cRain head. I 
~--------+---------t-------+------------------------------------------------------------i 
I 71E-71FI1822-1823IXEXECH IExternal entry chain head. I 
~--------t---------t-------+-----------------------------------------y------------------i 
I 720-72111824-1825IXLVLAB ILabel variable range. I I 
~--------t---------t-------+-----------------------------------------t------------------i 
I 722-77111826-1905IXIFBFl IInput dataset buffers. I Buffers. I 
~--------+---------+-------~ I I 
I 772-7ClI1906-1985IXIFBF2 1 I I 
~--------t---------t-------t-----------------------------------------i I 
I 7C2-83411986-2106I XPRBFl IPrint dataset buffers. I I 
~--------t---------t-------i I I 
I 83B-8B312107-2227IXPRBF2 I I I 
~--------t---------t-------t-----------------------------------------t------------------i 
I 8B4-92312228-2339IXPHSCM ICommunication area for consecutive phases. I 
~--------t---------t-------t-----------------------------------------t------------------i 
I 924-92712340-2343 IXNWTP INumber of new text page requests. I Page monitoring I 
~--------t---------t-------t------------------------~----------------i variables. I 
I 928-92BI2344-2347IXNWDP INumber of new dictionary page requests. I I 
~--------t---------t-------t-----------------------------------------i I 
I 92C-92FI2348-2351 IXEXTP IExisting text page requests. I I 
~--------t---------t-------t-----------------------------------------i I 
I 930-93312352-2355 IXEXDP IExisting dictionary page requests. I I 
~--------t---------t-------t-----------------------------------------i I 
I 934-93712356-2359IXEXTPI 11/0 for existing text requests. I I 
~·--------t---------t-------t------------------------------------------i I 
I 938-93BI2360-2363IXEXDPI 11/0 for existing dictionary requests. I I 
~--------t---------t-------t-----------------------------------------i I 
I 93C-93FI2364-2367IXRWSC ISpill candidate - read/write. I I 
~--------t---------t-------t-----------------------------------------i I 
I 940-94312368-2371IXDSSC ISpill candidate - discard. I I 
~--------t---------t-------t-----------------------------------------f I 
I 944-94712372-2375IXROSC ISpill candidate - read only. I I 
~--------t---------t-------t----------------------------------~------f I 
I 948-94BI2376-2379 IXPRRW INumber of unwritten read/write pages. I I 
~--------t---------t-------t-----------------------------------------f I 
I 94C-94FI2380-2383IXWRRO INumber of unwritten read-only pages. I I 
~--------t---------t-------t-----------------------------------------f I 
I 950-95312384-23 87 IXNOPG INumber of existing pages. I I 
~--------t---------t-------t-----------------------------------------~-----------------i 
I 954-98FI2388-2447IXPHASE IPhase options (Dump and/or test phase identifier) I 
~--------t---------t-------t------------------------------------------------------------i 
I 9AO-A8712464-2695 IXPUNCH IPunch dataset. I 
~--------t---------t-------t--------------------------------------~---------------------i 
I A88-AD812696-2776IXPFBFl IPunch dataset buffers. I 
~--------t---------+-------i I 
I AD9-B2BI2777-2859tXPFBF2 I , 
L-------_~ _________ ~ _______ ~ ________ ~---------------------------------------------------J 

562 Licensed Material - Property of IBM 



B2C-B2FI2860-2863IXCFILE IFile parameter address. 
1 I I 

B30-B3312864-2867tINWTA2 INew track address. 
1 I 1 

B34-B3512868-2869IIRTKL2 IRemainder track length~ 
I I I 

B36-B3712870-2872IINTC2 INumber of tracks/cylinder. 
I I I 

1 Second spill 
I file parameters~ 
1 
I 

B38-B3BI2872-2875IXSAVTA2ILast track address in previous member 
I 1 lof batch. 
I I I 

B3C-B3FI2876-2819IICRF ICurrent read file address. 
I I 1 

B40-B4312880-2883IICWF ICurrent write file address. 
I I I 

B44-B4712884-2881IXCSPC ICurrent spill candidate. 
I I t 

B48 12888 IIFILE ICurrent dataset. 
I I I 

B49 12889 I IWork space~ 
1 I 1 

B4A-B4BI2890-2891IICRFC ICurrent read file code~ 
I I I 

B4C-B4FI2892-28951 INot used. 
I I I 

B50-BE712896-3047IISPILL2ISecond spill dataset. 
I I I 

BE8-BEBI3048-3051IIMINTA2ITrack address at start. 
1 I I 

BEC-BEFI3052-3055IXCSP ICurrent spill candidate. 
I , , 

Figure 5.1. communication Area - XCOMM 

Licensed Material - Property of IBM Section 5: Data Area Layouts 563 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

BASIC DATA-HANDLING INFORMAT1QB 

Page-space format Figure 5.2. 
Figure 5.3. 
Figure 5.4. 

Format of overflow page index tables in Type 2 text 
Five-byte text reference format 

i 
I Bytes I Symbol Meaning 
, I i 

I 0-3 I OCNFD Forward chain field for I Page 
I I the status chain. I header. 

• I I I 4-7 I OCNBK Backward chain field for I 
I I the status chain. I 
, I I 
,8 I OSTAT Page Status: I 
I I .O~. OO~. UNMOVABLE read/write. I 
I , .0 •• 01.. UNMOVABLE read only. I 
I I . 0 •• 10.. MOVABLE read/write,. I 
I , .0 •• 11.. MOVABLE read only. I 
I I .• 1.. 0 l.. DISCARDED. I 

• , Ii I I 9 I ODCTP Dictionary typeIIOTXCN. I 
I I if dict. page. II I 
~~------~I~--------~--------------~IIText pagel 
I 10-11 I ODCRF Dictionary pagellchain, I 
I I number. I I if text. I 
, I "I 
I 12-15 I OTKAD Track address (TA). I 

I '~ 16- :' 1080, 1680, 3480, or 4040 bytes of 
processable data (directory, 

I I dictionary, text, or scratch). The 
I I first 32 bytes are taken up by an 
I I overflow page index table (see 
I I figure 5.3) during Type 2 text 
I I processi~g. 

• I I I 
I I , , 

Four-byte page delimiter 
(X' 99000000' ) • 

Figure 5.2. Page-space format 

564 Licensed Material - Property of IBM 

This part of the page 
space is not written onto 
the spill dataset at any 
time during compilation. 

I Record. 
I 
I 
I 
I 
I 
I 
I 



I 

Order No .• LY33-6010-1, Page Revised by TNL LN33-6079, 

I 
Bytes Symbol Meaning t 

I 
0-3 OCNFD Chain forward I 

I 
4-7 OCNBK Chain back I 

I 
8-12 OSTAT I 

ODCTP See figure 5.2 for meaningl 
ODCRF 

12-15 OKTAD Track address 

16-19 Pointer to page 

Note: The page header table is a copy of page 
header information held contiguously. For 
meaning of bit settings, see figure 5.2. The 
page header table is addressed from the page 
header chains starting in XCOMM. 

I 
I 
I 
I 
I 
I 

Page header 1 

Page header 2 
(contents as above) 

Page header n 

october, 1973 

Figure 5.2.1 Format of page header table 

Bytes Symbol 

o IPHCOD 

1 IPHFLG 

2-25 ISPILB 

26-27 IOFSPA 

Meaning 

Type 2 text code byte (STPGE), indicating table type. 

Flag byte. 

Eight three-byte fields to contain the TAs of overflow pages,. 
A TA consists of cylinder number, track number, and record 
number within the track. 

Offset within this page at which free space commences. 

28-31 Not used. 

Figure 5.3. Format of overflow page index ~ables in Type-2 text 

Licensed Material - Property of IBM Section 5: Data Area Layouts 565 



Order No. LY33-6010-1, Page added by TNL LN33-6079, October, 1973 

Both Type 1 and Type 2 text refer to items in the text stream by use of five-byte text 
references, and to dictionary entries by use of two-byte dictionary references. To 
access a dictionary entry, the two-byte reference is first converted to a page address 
and offset (as described below for a text reference). The conversion is described in 
section 2, "Method of Operation". The format of a five-byte text reference is shown 
below. 

Bytes 

o Cylinder number. 

1 Track number within the cylinder. 

2 Record number within the track. 

Meaning 

Unique lrack address (TA), 
constituting the name of a compiler 
page. 

3-4 Offset within the page identified above~ 

Figure 5.4. Five-byte text reference format 

Licensed Material - Property of IBM Section 5: Data Area Layouts 565.1 



DICTIONARY ENTRIES 

The four types of dictionary, with the main features of their entries, are shown in the 
following table. 

< 
i 

Dictionary Alignment Format Length of Created in 
type of entries of entries entries phase 

Names 5-byte fixed variable GA onwards 

Variables 40-byte fixed 40 bytes GA onwards 

General 10-byte variable variable or GA onwards 
fixed 

Storage 40-byte fixed 40 bytes PE 

Figure 5.5. Dictionary entry types 

The format of a dictionary entry is indicated by the dictionary type and the entry's 
operand code byte. 

The different types of dictionary entry are described in figures 5.6 to 5.28 as 
follows: 

Figure 5.6. 
Figure 5.7. 
Figure 5.8. 
Figure 5.9. 
Figure 5.10,. 
Figure 5.11. 
Figure 5.12. 
Figure 5.13. 
Figure 5.14. 
Figure 5,. 15,. 
Figure 5.16. 
Figure 5.17. 
Figure 5. 18,. 
Figure 5.19. 
Figure 5.20. 
Figure 5,.21. 
Figure 5.22. 
Figure 5.23. 
Figure 5.24 .• 
Figure 5,.25. 
Figure 5.26. 
Figure 5.27. 
Figure 5.28,. 

Format of names dictionary entries 
Format of variables dictionary entries 
Format of general dictionary block-header entries 
Format of general dictionary entry-constant entries 
Format of general dictionary parameter-descriptor entries 
Format of general dictionary aggregate-table entries 
Format of general dictionary picture-table entries 
Format of general dictionary constant entries 
Format of general dictionary file-constant entries 
Format of general dictionary FCB entries 
Format of FCB entry STREAM I/O block 
Format of FCB entry RECORD I/O block 
Format of general dictionary ENVB entries 
Format of general dictionary DTF entries 
Format of general dictionary record and key descriptor entries 
Contents of a RECORD descriptor 
Contents of a KEY descriptor 
Format of general dictionary OCB entries 
Single optimization entry for the whole program, in the general dictionary 
Optimization entries for blocks, in the general dictionary 
Format of general dictionary value-list entries 
Format of general dictionary overflow entries 
Format of storage dictionary entries 

Bytes Symbol Meaning 

o YCDE Operand code byte indicating type of indentifier (see figure 5.29). 

1-2 YBHSH Hash chain field. 

3-4 YLC Block level and count. 

Figure 5.6. (Part 1 of 2). Format of names dictionary entries 

566 Licensed Material - Property of IBM 



r-------T-~-------T---------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 

~-------+---------+----------------------------------------T----------------------------i 
I 5-6 I YBCNG I Dictionary reference of the names I YBBIF. Description of a I 
I I I dictionary entry for the containing I built-in function (bif) ,. I 
I I I structure. I These entries are created I 
~-------+---------+----------------------------------------i in Phase GI. I I 7 I YBMNTP I Byte indicating whether the associated I I 
I I I entry is in the variables or general I I 
I I I dictionary. I I 
~-------+---------+----------------------------------------~ I I 8-9 I YBMNRF I Dictionary reference of the associated I I 
I I lent ry • I I 
~-------+---------+----------------------------------------~----------------------------i 
J 10 I YBCDL I Length of the name. I 
~-------+---------+---------------------------------------------------------------------1 I 11- I YBCD I Name. I l _______ ~-________ ~ _____________________________________________________________________ J 

Figure 5.6. (Part 2 of 2). Format of names dictionary entries 

r-------T---------T---------------------------------------------------------------------, I Bytes I Symbol I Meaning I 
~-------+---------+---------------------------------------------------------------------~ 
I 0 I YCDE I operand code byte (X·80· to X·FF·). See figures 5.30 to 5.31. I 
~-------+---------+---------------------------------------------------------------------i I 1-2 I YSN I Statement number of declaration statement. I 
~-------+---------+---------------------------------------------------------------------1 I 3-4 I YLC I Block level and count. I 
~-------+---------+---------------------------------------------------------------------i I 5-6 I YNMRF I Reference of names dictionary entry. I 
~-------+---------+---------------------------------------------------------------------1 I 7-9 I YDED I Data element descriptor (DED). See figure 5.59. I 
~-------+---------+----------------------------------------------------TT---------------i 
110-11 I YPIC I Reference of picture table entry, if picture. IIOffset of I 
I I YPTAT I Reference of value list entry, if locator or label. I I symbol table I 
I I I II element. I 
~-------+---------+----------------------------------------------------LL---------------1 I 12-13 J YVPOS I Value of POS expression, if DEFINED string or picture. I 
I I YAREA I Reference of AREA, if OFFSET variable. I 

~-------+---------+---------------------------------------------------------------------1 
,14 I YVALN I Object-time alignment. I 

~-------+---------+---------------------------------------------------------------------i 
, 15-17 ,YVSIZ I Object-time size. I 
~-------+---------+---------------------------------------------------------------------1 I 18 I YVNDIM I Object-time dimensionality. I 
~-------+---------+---------------------------------------------------------------------i 
,19 I YVSEQ I Sequence number of this structure member. I 
~-------+---------+---------------------------------------------------------------------1 
I 20 I YVCTG I Sequence number of the containing structure. I 
~-------+---------+---------------------------------------------------------------------i I 21 J YVSLVL ,Structure level. , 

~-------+---------+-------------------------------------------~-------------------------1 I 22-23 I YDV , Dictionary reference of an aggregate descriptor. I 
I I YDSCR I Dictionary reference of a record or key descriptor. I 

~-------+---------+---------------------------------------------------------------------1 
I 24-25 I YVPTR I Dictionary reference of a base pointer. I 
I I YVDEF I Dictionary reference of defined base. I 
I I YVSIN I Offset of STATIC INITIAL information. I 
~-------+---------+---------------------------------------------------------------------i 
I 26 I YVPGE ,Text page in which the I 
I I I rr---------------------------1 
I 21-28 I I variables declaration is held. I 'Offset of static locator. I l _______ ~ _________ ~ ________________________________________ ~~ ___________________________ J 

Figure 5.7. (Part 1 of 2). Format of variables dictionary entries 

Licensed Material - Property of IBM Section 5: Data Area Layouts 567 



r-------T-----------T-------------------------------------------------------------------, I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------f 

29 YV1FL First flag byte: I 

1 .•• 
.1 •.• 
•• 1. 
••• 1 

1 ••• 
.1 •• 
.1 •• 

Last member of a structure. 
Major structure containing adjustable extents. 
External. 
Initialized • 
DEFINED, or argument to the ADDR function. 
Pre-GM: alignment is specified (i.e., not system default). 

I 
I 
I 
I 
I 
I 
I 
I 

•• 1. 
.•• 1. 

Post-GM: the variable is in a check list. 
Pre-OE: Connected parameter or apparently 
Post-OA: Parameter appears at every entry 
in which it is declared. 

connected aggregate. 1 
point to the procedure I 

I 
.••• 1 Default entry for a default bif. I 

~-------+-----------+-------------------------------------------------------------------1 
30 I YV2FL Second flag byte: 

I 
I 
I 
I 
I 
I 

x •• ,. 
• X •• 
• .• x,. 
• ' •• X 

1 ••• 
.1 •• 
.•• 1. 
•• 1. 

' ••. 1 

x. , .. 
• x •• 

Post pc: Variable has symbol table element. 
Post pc: Variable has symbol table. 
Pre-GE: last descriptor in a parameter list. 
Post-GE: the variable has a corresponding declaration 
text stream statement. 
Post-PA: a skeleton locator exists in static. 

expressions 

The remaining bits of the byte are used to indicate how the 
information represented by certain fields is referenced. ~he 
bits are related to fields in the entry as follows: 

Bytes 12-13. 
Bytes 24-25. 
Bytes 31-32. 
Bytes 10-11: this is used only on GA output, for a label variable. 
Bytes 8-9: used only for adjustable string or AREA. 
Bytes 22-23 • 

1111 11.. Phases GA-GM: a '1' bit in any of the positions shown indicates 
that the corresponding field contains the general dictionary 
reference of an overflow entry (figure 5.21) containing a text 
reference to the required information. 

0000 00.. Phases GA-GM: a '0' bit in any of the positions shown 
indicates that the text reference to the required information 
(if any' is YVPGEllfield. 

1... Post-GM: the text reference to the required information is 
YVPGEll field. 

0.00 0... Post-GM: a '0' bit in any of the positions shown indicates 
I that the required information is contained in the field. 

~-------+-----------+-------------------------------------------------------------------f I 31-32 I YVOFF I Offset in YVPGE of a declaration expression of INITIAL I 
I I I information, or the symbol table offset. I 
~-------+-----------+-------------------------------------------------------------------~ I 33-34 I YVLCTR I Code byte and data byte of the variables locator, if BASEt. I 
~-------+-----------+-------------------------------TT----------------------------------1 I 35-36 I YVDSCR I Descriptor's dictionary IIYVALTH. AREA length if default I 
I I I reference, if ENTRY I I entry. I 
~-------+-----------+----'---------------------------1 I I 
I 31-39 I I I t I L _______ ~ ___________ ~ _______________________________ ~~ __________________________________ J 

Figure 5.7. (Part 2 of 2). Format of variables dictionary entries 

568 Licensed Material - Property of IBM 



r-------T-----------T-------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------~ I 0 I YCDE I Operand code byte: I 
I I I I 
I I 0011 0000 I PROCEDURE block. I 
I I 0011 0001 I BEGIN block. I 
I I 0011 0010 I ON block. I 
I I 0011 0011 I ONB block. I 
~-------+-----------+--------------------------T----------------------------------------~ I 1-2 I YSN I Statement number. I Post PC: No. of static ONCBs in block. I 
~-------+-----------+--------------------------L-------_________________________________ J 

I 3-4 I YLC I Block level and count. I 
~-------t-----------+---------------------------------TT--------------------------------~ I 5-6 I YHNXB I Dictionary reference of next I I Post pc: Size of dynamic ONCB I 
I I I entry in the block-header chain. I I storage for block. I 
~-------+-----------+---------------------------------LL ________________________________ ~ 
I 7 I YHCOND I Code for on-unit (zero if the block is not an on-unit). I 
~-------+-----------+-------------------------------------------------------------------~ 
I 8 I I Not used. I 
~-------+-----------+-------------------------------------------------------------------~ I 9-10 I YHCB I Dictionary reference of containing block's block-header entry. I 
~-------+-----------+-------------------------------------------------------------------~ I 11 I YHFL I Flag byte, set by Phase GA: I 
I I I I 
I I 1... I There are parameters in the block. I 
I 1 .1.. I All parameter lists are the same. I 
I I .. 1. I There is more than one entry point to the block. I 
I I ... 1 I There is more than one RETURN type in the block. I 
I I 1 ••• I REORDER option applies. I 
I I .1 •• I MAIN option applies. I 
I I .. 1. I REENTRANT option applies. I 
I I ... 1 I RECURSIVE option applies. I 
~-------+-----------+-------------------------------------------------------------------~ I 12-13 I YPTAT I Dictionary reference of the optimization entry. I 
~-------+-----------+-------------------------------------------------------------------~ I 14-15 I YHPOPT I Prefix options for this block. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 16 I YH2FL I Flag byte: I 
I I I I 
I I 1..... I FILE condition in the block. I 
I I .1.. I Block contains CALL FORTRAN or COBOL. I 
I I .. 1. I BEGIN block. I 
I I ... 1 I ON block. I 
I I 1 ••• I ON FILE condition in the block. I 
I I ,.1 •• lon-unit with GO TO label constant.. I 
I I •. 1. I CALL with TASK option. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 17 I I Not used. I 
~-------+-----------+-------------------------------------------------------------------~ I 18-19 I YHOPCH I Options changed in the block. I 
~-------+-----------+-------------------------------------------------------------------~ I 20-21 I YENCH I Circular entry chain for internal entry-point entries. I 
~-------+-----------+-------------------------------------------------------------------1 I 22-23 I YHSYLST I Offset of symbol table element list. I 
~-------t-----------+-------------------------------------------------------------------~ I 24-26 I YBLSZ I Block size. (excluding names). I 
~-------t-----------+------------------------------------------------------------------·1 I ~7-29 I YDIAGl I Number of entries in statement-number table. I 
~-------+-----------+-------------------------------------------------------------------~ I 30-32 I YDIAG2 I Number of entries in statement-number table. I L _______ L ___________ L ___________________________________________________________________ l 

Figure 5.8. Format of general dictionary block-header entries 

Licensed Material - Property of IBM Section 5: Data Area Layouts 569 



r-------T---------~---------------------------------------------------------------------, I Bytes I Symbol I Meaning I 
~-------+---------+---------------------------------------------------------------------i 
I 0 I YCDE I Operand code byte. See figure 5.34. I 

~-------+---------+---------------------------------------------------------------------i I 1-2 I YSN I Statement number. I 
~-------f---------+---------------------------------------------------------------------f I 3-4 I YLC I Block level and count. I 
~-------+---------+---------------------------------------------------------------------i I 5-6 I YNHRF I Reference of the corresponding names dictionary entry. I 
~-------f---------+---------------------------------------------------------------------f 
I 7-13 I I Information concerning the characteristics of the returned value I 
I I I (if any), as described for bytes 7-13 in figure 5.7, "Forrrat of I 
I I I variables dictionary entries." I 
~-------+---------+-----------------------------------TT--------------------------------i 
114-15 I YECL I GSL(compiler prologue label'. IIPost PC: YEPSYM: Offset of I 
I I , II symbol table. I 
~-------+---------+-----------------------------------~~--------------------------------i 
I 16-11 I YENCH I Entry-point chain field. I 

~-------f---------+---------------------------------------------------------------------f I 18-19 I YEADC I static storage offset of the adcon. I 
~-------+---------+---------------------------------------------------------------------i I 20 'YENFP , Number of formal parameters in the following list. I 
r-------f---------+---------------------------------------------------------------------f I 21- I YEFP I Variable length list containing either variables dictionary entry I 
I , I reference for each parameter if this is an INTERNAL entry I 
I I I constant, or parameter descriptor entry reference for each I 
I I I parameter if this is an EXTERNAL entry constant. I L _______ ~ _________ ~ _____________________________________________________________________ J 

Figure 5.9. Format of general dictionary entry-constant entries 

r-------------------T-------------------------------------------------------------------, 
, Parameter Type I Format of Descriptor Entry I 
~-------------------+-------------------------------------------------------------------·i I Variable I As for a variables dictionary entry, but the names dictionary is I 
I I not used. I 
r-------------------+-------------------------------------------------------------------i I File constant I As for a file constant entry. See figure 5.14. I 
r-------------------+-------------------------------------------------------------------f I Entry constant I As for an entry constant. See figure 5.9. I L ___________________ ~ ___________________________________________________________________ J 

Figure 5.10. Format of general dictionary parameter descriptor entries 

570 Licensed Material - Property of IBM 



r-------T-----------T-------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------~ I 0 I YCDE I operand code byte (X'lO',. I 
~-------+-----------+-------------------------------------------------------------------~ I 1-2 I YTCHN t Chain field - each entry is linked into one of five chains, I 
Itt mainly for commoning purposes. I 
~-------~-----------~-------------------------------------------------------------------~ 
1 I 
I Pre-GE I 
I I 
I 3-1 I YTAJEXT I Text reference to the declaration expressions text stream. I 
~-------~-----------~-------------------------------------------------------------------i I Phases GE-IA I 
I I 
I 3-4 I YTCMN I Chain head of aggregates to which this tables refers. I 
I 5 I YTNMEM I Number of members in major structure. f 
I 6-1 I I Not used. I 
~-------~-----------~-------------------------------------------------------------------~ I Post-IA t 
I I 
I 3 I Not used. I 
I 4-5 YTMJR I Text-reference of major structure. I 
I 6-1 I YTCNG I Text reference of containing structure member. I 
~-------~-----------~-------------------------------------------------------------------i I Post-PA I 
I I 
I 3 I YTKEFL I Flag byte: I 
I I •... 1 ••• I Aggregate descriptor in static. I 
I 4-5 I I Offset of descriptor in static. I 
~-------+-----------+-------------------------------------------------------------------~ I 8-9 I YTNXT I Dictionary reference of the next member within this structure. I 
~-------+-----------+-------------------------------------------------------------------~ I 10 I YTDM I Total number of dimensions. I 
~-------+-----------+---------------------------------------------------------~---------~ I 11 I YTXDM I Number of dimensions excluding inherited dimensions. I 
~-------+-----------+-------------------------------------------------------------------1 I 12 I YTLVL I structure level. I L _______ ~ ___________ ~ ___________________________________________________________________ ~ 

Figure 5.11. (Part 1 of 3'. Format of general dictionary aggregate table entries 

Licensed Material - Property of IBM Section 5: Data Area Layouts 571 



r-------T-----------r-------------------------------------------------------------------, I Bytes I Symbol I Meaning I 
~-------+-----------+---------------------------------------TT--------------------------~ 
I 13 I YTFLG I Flag byte or code byte of aggregate. II YTCDE: Code byte of I 
I I I See figure 5.30. II aggregate. I 
~-------+-----------+---------------------------------------~~--------------------------~ I 14 I YTALN I Alignment. I 
~-------+-----------+-------------------------------------------------------------------i 
I 15 I YTHNG I Hang. I 
~-------+-----------+-------------------------------------------------------------------~ I 16-19 I YTROFF I Relative offset of this member of the structure. I 
~-------+-----------+-------------------------------------------------------------------i I 20-23 I YTSZ I Size of the structure. I 
I I I I 
I I 1 ••.•••• I Size adjustable. I 
I I .1 •••••• I Bounds specified by asterisks. I 
I I .. 1 • •••• I REFER bounds. I 
~-------+-----------+-------------------------------------------------------------------~ I 24-25 I YTADD I Reference of aggregate descriptor descriptor. I 
~-------+-----------+-------------------------------------------------------TT----------~ I 26 I YTSZFL I Flag byte: I YTSPA 
I I I I 
I I 1... I Area. I 
I I .1." I Varying. I 
I I .. 1. I String. I 
I I ... 1 I No-storage temporary operand. I 
1 I 1. •• I COBOL • I 
I I .. 1 •• I FORTRAN. I 
I I .. 1. I Unaligned BIT. I 
I I •.. 1 I BIT. I 
~-------+-----------+-------------------------------------------------------~ 

21 YTKEFL Flag byte: 

1.... Adjustable bounds present • 
• 1.. Not all bounds come from the same level • 
• ,. 1. All lower bounds = 1 • 
••• 1 Bounds specified by asterisks. 

1... Used by Phase PA - storage for descriptor only. not 
locator • 

• 1.. Used by Phase KE • 
•• 1. Used by Phase GE - connected non-controlled 

parameter • 
•• 1. Used by Phase IQ - aggregate mapped. reinitialized 

by Phase PEe 
•• 1. Used by Phase PI - locator/descriptor initialized • 
••• 1 Used by Phase PE - descriptor allocated storage 

(initialized by Phase GE'. 

~-------+-----------+-------------------------------------------------------++----------1 
128-29 I YTSPB I For an adjustable or unstructured array, size of II YTSP I 
I I I descriptor. Otherwise. offset within descriptor of II I 
I I I element entry. II I 
~-------+-----------+-------------------------------------------------------~I I I 30-31 I YTDEF I Dictionary reference of descriptor of aggregate on II I 
I I I which this one is defined. II I 

~-------+-----------+-------------------------------------------------------~~----------f I 32-35 I YTRVO I Relative virtual origin. I 
~-------+-----------+-------------------------------------------------------------------1 I 36- I I Eight-byte descriptor for each dimension and/or adjustable string I 
I I I length. The format is described below. I 
L _______ ~ ___________ ~ ___________________________________ -----------------------------___ J 

Figure 5.11. (Part 2 of 3). Format of general dictionary aggregate table entries 

512 Licensed Material - Property of IBM 



r-------~-----------T-------------------------------------------------------------------, 
I Bytes I symbol I Meaning I 
~-------t-----------t-------------------------------------------------------------------i 

0-3 YTMULT 

FIXED EXTENT The multiplier is calculated during compilation, 
in Phase IQ. 

Multiplier used in calculating addresses of subscripted elements 
n 

Address = relative virtual origin + ~Si*Mi 

where Si 
Mi 
n 

= value of ith subscript 
= value of ith multiplier 

i=1 

= total number of dimensions 

4-5 YTLBD Lower bound I YTBNDS. Collective name 
I for bounds. 

6-7 YTUBD Upper bound I 
~-------t-----------t----------------------------------------~--------------------------i 

o 

1 

2-3 

YTBFLG 

1 ••• 
. 1 .. 
• . 1. 
• ' •. 1 

YTBLV 

1 •.. 
• 1 •• 
• • 1 • 
. . . 1 

ADJUSTABLE EXTENT The mu1tiplier is calculated at execution time. 

Flag byte: 

Adjustable upper bound. 
* upper bound • 
REFER upper bound • 
Multiplier not known • 
Adjustable lower bound. 
* lower bound • 
REFER lower bound • 

Structure level from which this bound originates. 

Not used. 

4-5 YTLBD Lower bound. I YTBNDS. Collective name 
I for bounds. 

6-7 YTUBD Upper bound. I L _______ ~ __________ ~ ________________________________________ ~ _________________________ J 

Figure 5.11. (Part 3 of 3). Format of general dictionary aggregate table entries 

r-------~----------T-------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~------i-----------i-------------------------------------------------------------------f I 0 I YCDE I Operand cede byte (X'll'). I 
~-------t-----------t-------------------------------------------------------------------i I 1-2 I YPCHN I Chain field, used for commoning purposes. I 
.-------t-----------t-------------------------------------------------------------------i I 3 I YPMFL I Mantissa flag, as required by the library. I 
~-------t-----------t-------------------------------------------------------------------i I " I YPEFL I Exponent flag, as required by the library. I 
.-------t-----------t-------------------------------------------------------------------i I 5-6 I YPOBLTH I Length of object-time representation of picture (not of datum). I . 
~-------t-----------t-------------------------------------------------------------------i I 7-9 I I OED. See figure 5.59. I 
~------i-----------t--------------------------------~----------------------------------f I 10-11 I YPICLTH I Picture length. I 
~------t-----------t-------------------------------------------------------------------i I 12- I YPICT I Picture. I L _______ ~----------~ __________________________________________________________________ -J 

Figure 5.12. Format of general dictionary picture table entries 

Licensed Material - Property of IBM section 5: Data Area Layouts 573 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r-------~-----------T-------------------------------------------------------------------1 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------i 
I 0 I YCDE I Operand code byte. See figure 5.31. I 
~------,-----------,---------------------------------------TT--------------------------i 
I 1-2 I YCCHN I Chain fields linking items of I I Pest FA: Offset of I 
I I I the same alignment class. II constant in static. I 
~-------+-----------+---------------------------------------LL--------------------------i 
I 3 I YCFLG I Flag byte indicating whether or not the constant requires a I 
I I I descriptor or object-time OED. I 
~-------+-----------+-----------------T-------------------------------------------------i 
1 4 I YCTYP I Type. I YCDED. Data element descriptor. See figure 5.59.1 
~-------+-----------+-----------------i I 
I 5 I YCP I Precision. I I 
~-------+-----------+-----------------i I 
I 6 I YCQ I Sea Ie • I I 
~-------+-----------+-----------------~--------------------------------~----------------i 
I 7-8 I YCLTH I Length of the constant in its present form. 1 
~-------+-----------+-------------------------------------------------------------------i 
I 9-10 I YCREP I Replication factor, if present. I 
~-------+-----------+-------------------------------------------------------------------i 
I 11 I YCONS I Constant. I L _______ ~ ___________ ~ _________________________________ ----------------------____________ J 

Figure 5.13. Formats of general dictionary constant entries 

r------,-----------~--------------------------------------------------------------------1 
I Bytes I Symtol I Meaning I 
~-------+-----------+-------------------------------------------------------------------i 
I 0 I YCDE I O~erand cede tyte (X'48'). I 
~-------+-----------+-------------------------------------------------------------------1 
I 1 I YOFL I Optimization flag. I 
~-------+-----------+-------------------------------------------------------------------i 
I 2-3 I YOCHN I Chain. I 
~-------+-----------t-------------------------------------------------------------------~ 
I 4-5 I YOSN I Select Statement Number. I 
~-------+-----------+-------------------------------------------------------------------i 
I 6-9 I YOWMX I Maximum WHEN expression value. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 10-13 I YOWMN I Minimum WHEN expression value. I 
~-------+-----------t-------------------------------------------------------------------i 
I 14-15 I YOWCC I WHEN clause count. I 
~-------+-----------+-------------------------------------------------------------------i 
I 16-11 I YOWEC I WHEN expression count. I 
~-------+-----------+-------------------------------------------------------------------i 
I 18-19 I YOWOEC I WHEN optimizable expression count. I 
~-------+-----------+-------------------------------------------------------------------i 
I 20 I YOTYP I SELECT data type. I 
~-------+-----------t-------------------------------------------------------------------~ 
I 21 I YOP I SELECT precision. I 
~-------+-----------+-------------------------------------------------------------------i 
I 22 I YOQ I SELECT scale. I 
~------+-----------+-------------------------------------------------------------------i 
I 23 I YOLEN I SELECT length. I L _______ ~----_______ ~ __________________________________ ----------------________________ --J 

Figure 5.13.1. Format of general dictionary SELECT optimization table 

574 Licensed Material - Property of IBM 



r-------T-----------T-------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 

~-------+-----------+-------------------------------------------------------------------~ 
I 0 I YCDE I Operand code byte (X·OF'). I 

~-------+-----------+--------------------------TT--------~------------------------------~ 
11-2 I YSN I Statement number II Post PA: Offset of file in static I 
I 3-4 I YLC I Block level and count. I I I 

~-------t-----------+--------------------------~~---------------------------------------~ 
I 5-6 I YNMREF I Reference of names dictionary entry. I 

~-------+-----------+-------------------------------------------------------------------~ I 7 I YFLCD I Flag byte indicating type of constant. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 8-9 I YFCHN I General dictionary reference of the next entry in the file I 
I I I chain. The chain is headed by XFILCH in the communication area. I 
~-------+-----------+-------------------------------------------------------------------1 
I 10-11 I YFDCL I General dictionary reference of the FCB entry. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 12-13 I YFENV I General dictionary reference of the ENVB entry. I 
~-------+-----------+-------------------------------------------------------------------1 I 14-15 I YFATL I Length of the following attribute list. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 16- I YFATT I Attribute list, used in the construction of FCB and ENVB entries. I l _______ ~ ___________ ~ ___________________________________________________________________ ~ 

Figure 5.14. Format of general dictionary file constant entries 

r-------T-----------T----------------~--------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------~ 
I 0-10 I I As for a constant entry, with YCCHN pointing to the ENVB entry, I 
I I I or to the DTF entry if ENVB does not exist. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 11-18 I YCFST I Valid statement mask. I 

~-------t-----------+------------------------------------------~------------------------i I 19-22 I YCFAS , Reference of LIOCS module name in names dictionary. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 23-26 I YCFTM I Reference of LIOCS module name in names dictionary. I 

~-------+-----------+-------------------------------------------------------------------1 
, 27-30 I YCFNM I A (File name). I 
~-------+-----------+-------------------------------------------------------------------~ I 31-34 I YCFEN I A (ENVB). I 
~-------+-----------+-------------------------------------------------------------------1 
I 35-38 I YCFDF I A (DTF). I 
~-------+-----------+-------------------------------------------------------------------~ 
I 39-42 I YCFAF I Opened-file chain: object time only. I 

~-------+-----------+-------------------------------------------------------------------1 
I 43-44 I YCFTY I Fifth and sixth characters of transmitter. I 

~-------+-----------+-------------------------------------------------------------------~ 
, 45-46 I YCFER I Error flag (X'41' if declaration error). I 
~-------t-----------+-------------------------------------------------------------------1 
I 41-50 I YCFAT I Attributes of the file. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 51-58 I YCFAG I Flag bytes. I 
~-------+-----------+-------------------------------------------------------------------1 I 59-60 , YCFBK I Block size; Post Phase KM or object time. I 
~-------+-----------+-------------------------------------------------------------------~ 
J 61-62 J YCFKL I Keylength-1: Post Phase KM or object time. J 

~-------+-----------+-------------------------------------------------------------------~ I 63-66 I YCFRL I Record length: Post Phase KM or object time. I 
~-------+-----------+-------------------------------------------------------------------~ I 61-70 I YCFREC I A (Current or hidden buffer): Post Phase KM or object time. I 
~-------+-----------+-------------------------------------------------------------------~ 
J 71-74 I YCFIOA I A (Buffer space); Post Phase KM or object time. I l _______ ~ ___________ ~ ___________________________________________________________________ J 

Figure 5.15. (Part 1 of 2). Format of general dictionary FCB entries 

Licensed Material - Property of IBM Section 5: Data Area Layouts 575 



r-------T-----------T-------------------------------------------------------------------, 
, Bytes ,Symbol , Meaning , 

~-------+-----------+-------------------------------------------------------------------~ I 75-78 I YCFIOL I L (Buffer space); Post Phase KM or object time. I 
~-------t-----------+-------------------------------------------------------------------~ 
I 79-86 I I Spare. I 
~-.------+-----------+---------------------------------------------------------- ----------1 
I 87- 1 , The remainder of the FCB is either a STREAM I/O block (see I 
" , figure 5.16) or a RECORD I/O block (see figure 5.17). I L _______ ~ ___________ ~ ___________________________________________________________________ J 

Figure 5.15. (Part 2 of 2). Format of general dictionary FCB entries 

r--------T-~--------T-------------------------------------------------------------------, 
,Bytes 1 Symbol , Meaning I 
~--------+----------+-------------------------------------------------------------------~ I 81-11q I YCSTRM I STREAM I/O block; unused at compile time. I 
~--------+----------+-------------------------------------------------------------------~ 
, 115-1161 YCFLS ,Length of file name. I 
~--------+----------+-------------------------------------------------------------------~ 
I 117- ,YCFS , File name. 1 l ________ ~ __________ ~ ___________________________________________________________________ J 

Figure 5.16. Format of FCB entry STREAM I/O block 

r--------T----------T-------------------------------------------------------------------, 
1 Bytes 1 Symbol 1 Meaning I 
~--------+----------t-------------------------------------------------------------------~ 
, 87-100 I YCRECI 1 Part of RECORD I/O block which is unused at compile time. 1 

~--------+----------+-------------------------------------------------------------------~ 
1 101, 1 Pointer to the DTF entry for the first file in associated chain. I 
~--------+----------+-------------------------------------------------------------------~ 
, 102-1271 YCRECI ,Remainder of RECORD I/O block unused at compile time. 1 

~--------+----------+-------------------------------------------------------------------~ I 127-1301 YCFAML 1 Address of LIOCS module. I 
~--------+----------+-------------------------------------------------------------------~ 
1 131-1321 YCFHSV 1 1 
I 1 I I 
I 1 1 ••••••• 1 READ file. I 
, , .1 •••••. , PUNCH file. I 
1 , •• 1 .•.•• 1 PRINT file. I 
~--------+----------+-------------------------------------------------------------------~ 

133 1 YCFEGL 
t 
I 0000 File does not have ASSOCIATE option. 
1 1000 Function R,RP 
I 0100 P,RP 
I 0000 R,RW 
I 0001 W,RW 
1 0000 p,pw 
I 0001 W,PW 
I 1000 R,RPW 
I 0111 P,RPW 
I 1001 W,RPW 

~--------+----------+-------------------------------------------------------------------~ 
I 13q 1 YCFEMT I Sixth character of error module name. 1 

~--------+----------+-------------------------------------------------------------------i 
1 139-1QOI YCFLR I Length of file name. I 
~--------+----------+-------------------------------------------------------------------~ 
I lQ1- I YCFR 1 File name. 1 L ________ ~ __________ ~ _____________________________ - _____________________________________ J 

Figure 5.17. Format of FCB entry RECORD I/O block 

576 Licensed Material - Property of IBM 



r-------T-----------T---------------·---------------------------------------------------1 
, Bytes, Symbol , Meaning , 

~-------+-----------+-------------------------------------------------------------------i 
,0-10 , , As for a constant entry, with YCCHN pOinting to the D~F entry. , 

~-------+-----------+-------------------------------------------------------------------f I 11-14 I I Flag bytes (initially set to zero). I 
~-------t-----------+--------------------------~----------------------------------------i 
,15, , Code byte. I 
I 16-18 I I Block size. , 
~-------t-----------t-------------------------------------------------------------------i 
,19 I , Code byte. I 
, 20-22 , , Record length. I 
~-------t-----------+-------------------------------------------------------------------~ 
I 23 I r code byte. I 
I 24-26 I , REYLOC value. I L _______ ~ ___________ ~ ___________________________________________________________________ J 

Figure 5.18. (Part 1 of 2~. Format of general dictionary ENVB entries 

r-------T-----------T-------------------------------------------------------------------, 
, Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------i 
I 21 I r Code byte. r 
, 28-30 , , Keylength. , 

~-------t-----------+-------------------------------------------------------------------i 
I 31 I I Code byte. I 
r 32-34 , r Index area size. r 
~-------+-----------t-------------------------------------------------------------------i 
I 35 I I Code byte. I 
, 36-38 I , Additional buffer size. , L _______ ~ ___________ ~ ___________________________________________________________________ J 

Figure 5.18. (Part 2 of 2). Format of general dictionary ENVB entries 

r---------T---------T-------------------------------------------------------------------, 
r Bytes ,Symbol I Meaning I 
~--~------t---------+-------------------------------------------------------------------i 
I 0-10, I As for a constant entry. See figure 5.13. I 
~---------+---------+----~--------------------------------------------------------------i I 11-12 I r NF = number of fields in the DTF which must be relocated to the I 
I r I DTF location in static. r 
~---------+---------+-------------------------------------------------------------------i 

1 byte 
3 bytes 

4 bytes 

I DTF header table. One entry is made for each section of the DTF 
I that is to be relocated. The entry can be one of two types, 

according to whether the section is constant or not. 

Flag byte - X·Ol'. 
Length of a constant section of 
the DTF. 

II 
II 

" II 
00 - Ignore this entry. II 
02 - Buffer entry-reserve this II 

amount of space for buffers. II 
05 - Describes fullword field in II 

body of DTF which is pointer II 
to another DTF (diet. ref. in II 

Flag byte - X'OF'. 
Length and offset from the 
DTF origin of a DTF section 
that is not constant. 

I this entry). II 
~---------+---------+------------------------------------~~-----------------------------i 
1133 + 4*NF-1 I Skeleton DTF. I L ___ - _____ ~ _________ ~ ___________________________________________________________________ J 

Figure 5.19. Format of general dictionary DTF entries 

Licensed Material - Property of IBM Section 5: Data Area Layouts 577 



r-------T-----------~-------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------~ 
I a I YCDE I Operand code byte: I 
I I I I 
I I 0001 01111 Record descriptor. I 
I I 0001 10001 Key descriptor. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 1 I YKL I Block level. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 2 I YKC I Block count. I 
~-------+-----------+-------------------------------------------------------------------~ I 3-4 I YKCHN I Descriptor chain linking items of similar type (for commoning). I 
~-------+-----------+-------------------------------------------------------------------~ 
I 5-6 I YKAUT I Offset of descriptor in AUTOMATIC storage. I 
~-------+-----------+-------------------------------------------------------------------1 I 7-8 I YKAUTB I Base of descriptor in AUTOMATIC storage. I 
~-------+-----------+-------------------------------------------------------------------i 
I 9-10 I YKBOFF I Address vector offset in AUTOMATIC storage. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 11 I YKFLG I Flag byte: I 
I I I I 
I I 1 ••••••• 1 The address of the 'length bytes' (see YKRLTH below) is required. I 
I I .1 •••••• 1 The address of a VARYING string is required. t 
I I •• 1 ••••• 1 The length field includes two length bytes. I 
I I ••• 1 •••• 1 The length field is the current length of the string. I 
I I 1.··1 The descriptor will be in AUTOMATIC storage. I 
~-------+------~----+-------------------------------------------------------------------i 
I 12-13 I YKVAR I Dictionary reference of the variable corresponding to this I 
I I I descriptor. I 
~-------+-----------+-------------------------------------------------------------------i 
I 14-15 I YKOFF I Storage offset of this RECORD/KEY descriptor. I 
~-------+-----------+-------------------------------------------------------------------~ I 16-23 I YKDESC I Descriptor bodYr containing object-time information concerning I 
I I I this RECORD/KEY. This descriptor may be processed by the I 
I I I constants analysis phase in the same way as other object-time I 
I I I constant information. The contents are described in the I 
I I I following two tables. I L _______ ~ ___________ ~ ___________________________________________________________________ J 

Figure 5.20. Format of general dictionary RECORD and KEY descriptor entries 

578 Licensed Material - Property of IBM 



r-------T-----------T-------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------~ I 16-19 I YKDAD I Address of the data to be written out (WRITE) I 
I I I OR I 
I I I Address of the area to which the data is to be read in (READ). I 
I I I OR I 
I I I Address of the area at which the buffer address is to be I 
I I I stored (LOCATE). I 
~-------+-----------+-------------------------------------------------------------------1 
I 20 I YKDFL I Flag byte: I 
I I I I 
I I 1 ••••••• 1 INTO or FROM argument is a VARYING scalar string. I 
I J .1... ... J INTO argument is a VARYING scalar bit string. I 
I J •• 1 •••.• 1 INTO argument ends with a scalar AREA variable. This implies I 
I I I that the RECORD condition is not to be raised if the record is I 
J I I too short. I 
~-------t-----------+-------------------------------------------------------------------~ 
J 21-23 J YKRLTH I Length, in bytes, of the data to be transmitted, including two I 
I I I -length bytes· if it is a VARYING string. For output operations I 
I I I it is the current length. For input operations it is the maximum I 
I I I length. I l _______ ~ ___________ ~ ___________________________________________________________________ J 

Figure 5.21. Contents of a RECORD descriptor 

r-------T-----------T-------------------------------------------------------------------1 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------1 I 16-19 I YKDAD I Address of the source key, excluding length bytes if VARYING. I 
I I I OR I 
I I I Address of where to put key, excluding length bytes if the target I 
I I I is varying. I 
~-------+-----------+-------------------------------------------------------------------i I 20 I YKDFL I Flag byte: I 
I I I I 
I I 1 ••••••• 1 The KEYTO string is VARYING. I 
J J .1.... ... J The object-time descriptor will have an additional four bytes I 
I I J containing a region number. J 

~-------+-----------+-------------------------------------------------------------------~ 
I 21 I I Zero. I 
~.-------+-----------+-------------------------------------------------------------------1 
I 22-23 I YKKLTH I Length, in bytes, of the KEY string, excluding the two length I 
I I I bytes if it is a VARYING string. I 
I J I For KEY or KEYFROM it is the current length. I 
I I I For KEYTO it is the maximum length, if the string is not VARYING. I l _______ ~ ___________ ~ ___________________________________________________________________ J 

Figure 5.22. Contents of a KEY descriptor 

Licensed Material - Property of IBM Section 5: Data Area Layouts 579 



r-------~-----------T-------------------------------------------------------------------, 
1 Bytes 1 Symbol 1 Meaning 1 

r-------t-----------t-------------------------------------------------------------------~ 
1 0-10 1 I As for a constant entry. See figure 5.13. 1 

~-------t-~---------t-------------------------------------------------------------------~ 
1 11-14 1 YDOATT I Bit vector indicating (compatible) attributes specified in the I 
1 1 1 OPEN statement. I 
r-------t-----------t-------------------------------------------------------------------~ 
1 15-18 1 YDOCON I Bit vector indicating all file attributes which would be in 1 
1 1 1 conflict with the attributes specified above. 1 
r-------+------~----t-------------------------------------------------------------------~ 
1 19-22 1 YDOENV 1 Pointer to OPEN environment options. I L _______ ~ ___________ ~ ___________________________________________________________________ J 

Figure 5.23. Format of general dictionary open control block (OCB) entries 

r--------T----------T-------------------------------------------------------------------, 
I Bytes 1 Symbol I Meaning 1 
r--------t----------t-------------------------------------------------------------------~ 
I 0 1 YCDE 1 Operand code byte (X078 1

). 1 
r--------t----------t-------------------------------------------------------------------~ 
I 1-256 I YAWVL 1 Bit vector: which of the first 2048 variables have value list I 
1 1 1 entries. 1 
~--------t----------f----------------------------------------------------------T--------~ 
1 257- 288 1 YAIVLA 1 Bit vector: which of the first 256 variables are in valuelYAIVL 1 
1 1 1 lists. 1 1 

r--------f----------t----------------------------------------------------------~ I 
1 289-5121 YAIVLB 1 Bit vector: which of the next 1792 variables are in valuel I 
1 1 I lists. 1 I 
r--------t----------t----------------------------------------------------------~-------~ 
1 513-5441 YACONU 1 Bit vector: which of the first 256 variables are used in 1 
1 1 1 computational ON-units. I 
r--------f----------f-------------------------------------------------------------------~ I 545-5761 YACONS 1 Bit vector: which of the first 256 variables are set in 1 
1 1 1 computational ON-units. I 
r--------t----------t-------------------------------------------------------------------~ 
1 577-6081 YAIONU 1 Bit vector: which of the first 256 variables are used in I/O 1 
1 liON-units. 1 
r--------f----------t-------------------------------------------------------------------~ 
1 609-6401 YAIONS 1 Bit vector: which of the first 256 variables are set in I/O 1 
1 liON-units. 1 
r--------t----------t-------------------------------------------------------------------~ 
1 641-8961 YAGOBL 1 Bit vector: labels that are branched-to from on-units or 1 
1 1 1 from blocks called from on-units, and cause a branch out cf a 1 
1 1 1 block. 1 L ________ ~ __________ ~ ___________________________________________________________________ J 

Figure 5.24. Single optimization entry for the whole program, in the general dictionary. 
It consists of eight bit vectors giving alias information for the whole 
program and variable usage information for ON-units. Its dictionary 
reference is held in XALIAS in the communication area (XCOMM). 

580 Licensed Material - Property of IBM 



r--------T----------T-------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~------.-t----------t-------------------------------------------------------------------f 
I 0 I YCDE I Operand code byte (X'11·). I 
~--------+----------+-------------------------------------------------------------------i 
I 1 I YAFLAG 1 Flag byte: I 
I 1 I I 
I 1 1 ••••••• 1 Block is an ON-unit. I 
I I .1 •••••• 1 Block is a computational ON-unit. I 
I 1 •• 1 ••••• 1 Block is recursive. I 
~--------t----------t-------------------------------------------------------------------f 
I 2-3 I YALEN I Total length of the last three bit vectors in this entry. I 
~--------+----------+-------------------------------------------------------------------i 1 4-5 I YALABL I Dictionary reference of the first label on the chain for this I 
I 1 I block. I 
~--------t----------t-------------------------------------------------------------------i I 6-1 1 YALABS 1 Number of labels in this block. I 
~--------t----------t-------------------------------------------------------------------f 
I 8-9 1 YALABLl I Ident number of first compiler-generated label in this block. I 
~--------+----------+-------------------------------------------------------------------i 
I 10-11 I YALABSl I Number of compiler-generated labels for the block, (that can be I 
I I I assigned to label variables), existing at the end of the r 
I I I dictionary-build stage. I 
~--------t----------t-------------------------------------------------------------------f 
I 12-43 I YABCB I Bit vector: which blocks are called from this block. r 
~--------t----------+-------------------------------------------------------------------i 
1 44-75 I YAVUB I Bit vector: which of the first 256 variables are used in this I 
I I 1 block. I 
~--------t----------+-------------------------------------------------------------------i 
I 16-101 I YAVSB I Bit vector: which of the first 256 variables are set in this I 
1 1 1 block. r 
~--------t----------+-------------------------------------------------------------------i 
1 108-1391 YAVUBCB I Bit vector: which of the first 256 variables are used in blocks I 
r I I called from this block. I 
~--------+----------+-------------------------------------------------------------------i I 140-1711 YAVSBCB 1 Bit vector: which of the first 256 variables are set in blocks I 
I I I called from this block. I 
~--------t----------t-------------------------------------------------------------------i 

112- I YAXLAB Three bit vectors, each containing a bit for every label constant 
I in the program, rounded up to the next byte. The three bits 
I corresponding to a label have the following meaning if on: 
I 
I Vector 1 bit: the label is external to this block and is 
1 branched to from within it. 
I 
I Vector 2 bit: the label is external to this block and labels 
1 a block called from within it. 
I 
, Vector 3 bit: control can be passed to this block by a go-to out 
I of a contained block. 

--~----~~----------~----------~-~---~--------------------------------------------------
Figure 5.25. optimization entries for blocks, in the general dictionary 

Licensed Material - Property of IBM Section 5: Data Area Layouts 581 



r-------T-----------T-------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------~ 
I 0 I YCDE I Operand code byte (X'16'). • I 
~-------+-----------+-------------------------------------------------------------------i I 1 I YAFLAG I Flag byte (X'40·) indicating that the owner of the list is a I 
I I I label variable, and that only a label value list is present. I 
~-------t-----------+-------------------------------------------------------------------~ 
I 2-3 I YALEN I Length of the following bit vector. I 
~-------t-----------+-------------------------------------------------------------------~ I 4- I YALV I Label value list containing a bit for every label constant in I 
I I I the program. An on bit indicates that the owner of the list I 
I I I assumes the value of the label constant corresponding to the bit, I 
I I I at some point in the program. t 
l _______ ~ ___________ ~ __________________________________ ----------------------------_____ 1 

Figure 5.26. (Part 1 of 4). Format of general dictionary value list entries - label 
variables 

r-------T-----------T-------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------~ t 0 I YCDE I Operand code byte (X'76'). I 
~-------+-----------+-------------------------------------------------------------------1 I 1 I YAFLAG I Flag byte (X' 80'") indicating that the owner of the list is a I 
I I I parameter or DEFINED base, and that only a variables list is I 
I I I present. I 
~-------t-----------+-------------------------------------------------------------------~ I 2-3 I YALEN I Length of the following bit vector. I 
~-------t-----------+-------------------------------------------------------------------~ I 4-35 I YAP I Variables list containing a bit for each of the first 256 I 
I I I variables in the program. An on bit indicates that the owner of I 
I I I the list assumes the value of the variables corresponding to the I 
I I I bit, at some point in the program. I L _______ ~ ___________ ~ ___________________________________________________________________ ~ 

Figure 5.26. (Part 2 of 4). Format of general dictionary value list entries - parameter 
or DEFINED bases 

r-------T-----------T-------------------------------------------------------------------1 I Bytes I Symbol I Meaning I 
~-------t-----------t-------------------------------------------------------------------1 I 0 I YCDE I Operand code byte (X'16'). I 
~-------+-----------+-------------------------------------------------------------------~ 1 1 I YAFLAG I Flag byte (X'20') indicating that the owner of the I 
I I I list is an entry variable. I 
~-------+-----------t-------------------------------------------------------------------~ I 2-3 I YALEN I Length of the following bit vector. I 
~-------t-----------+-------------------------------------------------------------------1 I 4-35 I YAE I Block list containing a bit for each block in I 
I I I the program. If bit 0 is on, it indicates that I 
I I I the entry variable can transfer control to an I 
I I I external procedure. If any other bit is on, it I 
I I I indicates that the entry variable can transfer I 
I I I control to an entry point of the corresponding I 
I I I block. I l _______ ~ ___________ ~ ___________________________________________________________________ 1 

Figure 5.26. (Part 3 of 4). Format of general dictionary value list entries - entry 
variables. 

582 Licensed Material - Property of IBM 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

r---------------------------------------------------------------------------------------, 
Bytes I Symbol I Meaning 

o I YCDE 1 Operand code byte (X'76'). 

-------------------~--------------------------------~---~------------------~-~---------
1 1 YAFLAG 

1 
I 

I Flag byte (X'EO)' indicating that the owner of the list is a 
I locator. and that a label value list, a block value list, and a 
I variables list are present. 

-----------------------~---------------------------~-----------------------------------
2-3 I YALEN 1 Total length of the following bit vectors. 

4-35 YAP I Variables value list, as described in figure 5.26, Part 2. 

36-67 I YAPENT I Block value list, as described in figure 5.26, Part 3. 

68 I YAPLAB I Label value list, as described in figure 5.26, Part 1. 
L----~ __________________ ~ ________________________ ~ ____ --------------~ ___________________ J 

Figure 5.26. (Part 4 of 4).. Format of general dictionary value list entries - locators 

r-------------------------~-------------------------------------------------------------, 
1 Bytes I Symbol I Meani ng I 
1-------------------------------------------------------·_------------------------------1 I 0 I I Operand code byte (X'lF'). I 
1---------------------------------------------------------------------------------------1 I 1 1 1 Total length of this dictionary entry. I 
1---------------------------------------------------------------------------------------1 
1 2- I I Data. I 
L---------------------------------------------------------------------------------------J 
Figure 5.27. Format of general dictionary overflow entries 

Licensed Material - Property of IBM Section 5: Data Area Layouts 583 



r---------------------------------------------------------------------------------------, 
1 Bytes, symbol 1 Meaning 

1-------------------------------------------------------.-------------------------------1 0 1 YCDST 1 Operand code byte, as for the corresponding variables 
1 I I dictionary entry. 

1---------------------------------------------------------------------------------------
1 1 ) YLST 1 Block level. 

1---------------------------------------------------------------------------------------
, 2 I YCST 1 Block count. 
1---------------------------------------------------------------------------------------
1 3 I YSALN 1 Object-time alignment. 
1---------------------------------------------------------------------------------------
1 4 1 YFLGST 1 Flag byte. 

\---------------------------------------------------------------------------------------\ 5-6 J YLOCB 1 LocatorVs base (in AUTOMATIC storage). 

\---------------------------------------------------------------------------------------
1 7-8 1 YLOCO 1 LocatorDs offset (in AUTOMATIC storage). 

\---------------------------------------------------------------------------------------
1 9-10 1 YSTB 1 Size of symbol table's external CSECT. 
\---------------------------------------------------------------------------------------
I 11-12 1 YSTO I Symbol table offset. 

\----------------------------------------------------------------------------------.-----I 13-14 J YDESCB I Descriptor's base. 
1---------------------------------------------------------------------------------------
1 15-16 I YDESCO 1 Descriptor's offset. 
1---------------------------------------------------------------------------------------I 17-20 I YVOST I Relative virtual origin (AO-VO). 

1---------------------------------------------------------------------------------------
1 21-24 \ YELST 1 Offset of variable from region. 

1---------------------------------------------------------------------------------------
1 25-27 1 YSSIZ 1 Size of variable. 
I------------------------------------------------~---------------.----------------------
1 28-29 I YSNMRF I Reference of names dictionary entry .• 

1---------------------------------------------------------------------------------------
I 30-32 I YDEDST 1 DED of variable. 
1---------------------------------------------------------------------------------------
1 33-34 1 YSBOFF I Offset of ADCON. 
1---------------------------------------------------------------------------------------
1 35-36 1 YSBSE 1 Base number. 
1---------------------------------------------------------------------------------------
1 37-38 I YSHSK 1 LocatorUs offset (in STATIC storage). 

1---------------------------------------------------------------------------------------
1 39 I YBTOFF 1 Bit offset. 
L---------------------------------------------------------------------------------------J 
Figure 5.28. Format of storage dictionary entries 

584 Licensed Material - Property of IBM 



OPERAND CODE BYTES 

Operand code bytes are used to identify operand types, and an operand code byte is 
therefore the first byte of any six-byte reference (see "Six-byte References to 
Operands"). Also, all dictionary entries referenced directly in text corrrnence with the 
same code byte as their corresponding six-byte references. Some entries (e.g., FCBs) are 
associated with operands in text only indirectly, by chaining to other dictiona~y 
entries, and have no corresponding six-byte references. In such cases, the 'operand code 
byte- does not classify an operand type, but only indicates a particular type of 
dictionary entry. 

The figures included under the heading "Operand Code Bytes" are as follows: 

Figure 5.29. Operand classifications 
Figure 5.30. Variable operand classifications 
Figure 5.31. Operand code bytes X·OO· to X-OF' 
Figure 5.32. operand code bytes X'lO· to X'1F' 
Figure 5.33. Operand code bytes X·20· to X'2F' 
Figure 5.34. Operand code bytes Xot1 30' to X' 3F' 
Figure 5.35. Operand code bytes X1I 40' to X'"4F' 
Figure 5.36. Operand code bytes X'60' to X"6F' 
Figure 5.31. Operand code bytes X'70il to X-1F' 
Figure 5.38. Operand code bytes X· 80 11 to X"FF' 

The first hex digit of an operand code byte indicates the class of operand, as shown in 
figures 5.29 and 5.30. The second hex digit identifies the particular operand and/or 
dictionary entry type, as shown in figures 5.31 to 5.38. 

r-----------T---------------------------------------------------------T-----------------, 
I First hex I Class of operand ISeccnd hex digit., 
, digit , ISee figu~e no. , 

~-----------f---------------------------------------------------------+-----------------~ 
,0 I constant. , 5.31 , 
~-----------t-~-------------------------------------------------------t-----------------i 
I 1 , Table or descriptor reference. , 5.32 , 

~-----------+---------------------------------------------------------+-----------------~ I 2 I BlP. I 5.33 I 
~-----------t---------------------------------------------------------t-----------------i I 3 I Block header or entry point. , 5.34 , 

~-----------+---------------------------------------------------------+-----------------~ 
I" I I I 
~-----------t---------------------------------------------------------t-----------------~ 
I 5 I 'I 
~-----------f---------------------------------------------------------+-----------------~ I 6 I Temporary (Six-byte reference format shown in ,5.36, 
I I figures 5.52 to 5.58'. I' 
~-----------+---------------------------------------------------------+-----------------~ I 1 I Miscellaneous , 5.31 I 
t-----------t---------------------------------------------------------t-----------------i 
I 8 to F I Variables, as described in figure 5.30. I 5.38 I l ___________ ~ _________________________________________ -------_________ ~ _________________ ~ 

Figure 5.29. Operand classifications 

Licensed Material - Property of IBM Section 5: Data Area Layouts 585 



r---------T-----------------------------------------------T--------------T--------------, 
,First hex' Type of variable ,Six-byte ref. , Dict. entry , 
I digit I I format. I format. I 
, I ,See figure no.lsee figure no.1 
~---------+-----------------------------------------------t--------------t--------------~ 
, 8 ,Undimensioned structure. , 5.39 f 5.7 , 
~---------+-----------------------------------------------+--------------+--------------1 
, 9 ,Dimensioned structure. , 5.39 I 5.7 , 

~---------+-----------------------------------------------+--------------+--------------~ 
, A ,Undimensioned label, event, file, or task. I 5.42 , 5.7 , 
, , , 5.43, , 

~---------+-----------------------------------------------+--------------+--------------~ 
, B ,Dimensioned label, event, file, or task. , 5.42 , 5.7 , 
, I I 5.43, I 
~---------+-----------------------------------------------+--------------+--------------~ 
I C 'Undimensioned entry. , 5.42 I 5.7 I 
I I I 5.43, , 
~---------t-----------------------------------------------t--------------t--------------i I D I Dimensioned entry. I 5.42 , 5.7 , 
I , I 5.43 I , 
~---------+-----------------------------------------------+--------------+--------------~ 
, E ,Undimensioned data. , 5.40 , 5.7 , 
~---------+-----------------------------------------------+--------------+--------------1 
, F I Dimensioned data. , 5.40 , 5.7 , L _________ ~ _______________________________________________ ~ ______________ ~ ______________ J 

"Figure 5.30. Variable operand classifications 

r-----T---------------------------------------------------T--------------T--------------, 
,code , Type of operand and/or dictionary entry ,Six-byte ref. , Dic't. entry , 
I (hex~ I I format. I format I 
I , ,See figure no. ,see figure no.1 
~-----t---------------------------------------------------+--------------+--------------~ 
,00 ,Source program constant. I 5.41 , 5.13 I 
~-----+---------------------------------------------------+--------------+--------------~ 
,01 ,Literal decimal integer constant in range 0 to , 5.44, , 
, I ± 10**7. "I 
~-----+---------------------------------------------------+--------------+--------------~ 
,02 ,Literal binary integer constant in range 0 to I 5.44 I I 
I I ± 10**7. I I I 
~-----+---------------------------------------------------+--------------+--------------i 
,03 I Literal character constant of length 1 to 4 bytes.' 5.45, , 
~-----+---------------------------------------------------+--------------+--------------i I 04 ,Literal bit constant of length 1 to 31 bits. , 5.45, , 

~-----+---------------------------------------------------+--------------+--------------~ I 05 I Literal FED constant of length 4 bytes. ,5.45 I , 
~-----+---------------------------------------------------+--------------+--------------i 
,06 ,File control block - FCB (general dictionary" I 5.15 , 
I ,post-KL). Referred to by the file constant entry., I I 
~-----+---------------------------------------------------+--------------+--------------~ I 07 I Define the file - DTF(general dictionary, post, ,5.19, 
, I KL'. Referred to by the ENVB entry. , , , 
~-----+---------------------------------------------------+--------------+--------------i 
,08 ,Source program label constant. I 5.48 , 5.13 I 
~----+---------------------------------------------------+--------------+--------------~ 
I 09 I Internal condition condition. I 5.48 I , 
~-----+---------------------------------------------------+--------------+--------------i 
,OA ,Generated statment label (GSL). , 5.48 I , 
~-----+---------------------------------------------------+--------------+--------------~ I OB ,Local compiler label. I S.48 , , L _____ ~ ___________________________________________________ ~ ______________ ~ ______________ ~ 

Figure 5.31. (Part 1 of 2). Operand code bytes X'OO' to X'OF' 

S86 Licensed Material - Property of IBM 



r-----T---------------------------------------------------T--------------T--------------l 
,Code, Type of operand and/or dictionary entry ,Six-byte ref. / Dict. entry / 
, (hex) , ,format. ,format. , 
, , 'See figure nO./See figure no., 
~-----+---------------------------------------------------+--------------+--------------~ 
/ OC 'Compiler label. ,/, 
~-----+---------------------------------------------------+--------------+--------------f 
I OD / External condition condition. / 5.41 , 5.14 I 
~-----+---------------------------------------------------+--------------+--------------i 
J OE ,Environment block - ENVB (general dictionary, post, I 5.18 , 
I , KL). Referred to by the FCB entry. I , , 
~-----+---------------------------------------------------+--------------+--------------1 I OF ,File constant. , 5.41 , 5.14 I l _____ ~ ___________________________________________________ ~ ______________ ~ ______________ J 

Figure 5.31. (Part 2 of 2). operand code bytes X'OO' to X'OF' 

r-----T---------------------------------------------------T--------------T--------------, 
/code , Type of operand and/or dictionary entry ,Six-byte ref. I Diet. entry , 
I (hex) I I format. ,format. , 
/ , ,See figure no./see figure no., 
~-----+---------------------------------------------------+--------~-----+--------------i 
,10 / Adjustable descriptor reference. , 5.49, I 
~-----+---------------------------------------------------+--------------+--------------f 
,11 I Picture table. Referred to by variables ,5.41, 5.12 / 
, , dictionary entry. "I 
~-----+---------------------------------------------------+--------------+--------------f 
,12 ,Loop data entry. '" 
~-----+---------------------------------------------------+--------------t--------------~ 
/ 13 I Format element descriptor - FED. , I I 
~-----+---------------------------------------------------+--------------+--------------f I 14 'Data element descriptor - OED. , , I 
~-----+---------------------------------------------------+--------------+--------------i 
I 15 J Varying length string descriptor. , I I 
~-----+---------------------------------------------------+--------------+--------------f 
/ 16 ,Adjustable string descriptor. , I I 
~-----+---------------------------------------------------+--------------+--------------1 
I 17 I Record descriptor. I I 5.20 I 
~-----+---------------------------------------------------+--------------+--------------f 
I 18 ,Key descriptor. ,/ 5.20 / 
~-----+---------------------------------------------------+--------------+--------------~ 
I 19 / Aggregate descriptor. / / 5.11 / 
~-----+---------------------------------------------------+--------------+--------------f I 1A / Structure offset field in an aggregate descriptor./ 5.50 / / 
~-----+---------------------------------------------------+--------------t--------------1 
I 1B I FED to be passed as an argument to a library J I I 
I , routine. / I / 
~-----+---------------------------------------------------+--------------+--------------i 
I 1C I DED to be passed as an argument to a library I I I 
I / routine. I I I 
~-----+---------------------------------------------------+--------------+--------------1 I 10 I GET/PUT (no data list) argument - text only. I I , 
~-----+---------------------------------------------------+--------------+--------------f 
,1E / Aggregate descriptor descriptor. / I / 
~-----+---------------------------------------------------+--------------+--------------1 
I 1F I Overflow entry. I I 5.27 I l _____ ~ __________________________________________________ -~--------------~ ______________ ~ 

Figure 5.32. operand code bytes X'10' to X·1F' 

Licensed Material - Property of IBM Section 5: Data Area Layouts 587 



r-----T---------------------------------------------------T--------------T--------------, 
Icode I Type of operand ISix-byte ref. I Dict. entry I 
I (hex) I I format. I format. I 
, , ,see figure no.ISee figure no.1 
~-----t---------------------------------------------------t--------------t--------------i 
I 20 I Arithmetic bif. I I I 
~-----+---------------------------------------------------+--------------+--------------~ 
,21 I Mathematical bif. I" 

~-~---t---------------------------------------------------t--------------t--------------1 
I 22 ,String-handling bif. "I 
~-----+---------------------------------------------------t--------------+--------------~ 
,23 ,Array manipulation bif. I J , 
~-----+---------------------------------------------------t--------------t--------------i 
,24 I Condition bif. 'I' 
~-----t---------------------------------------------------+--------------+--------------~ 
I 25 I Based storage bif. I I I 
~-----+---------------------------------------------------t--------------t--------------1 
I 26 I Multitasking bif. I' I 
~-----t---------------------------------------------------+--------------+--------------~ 
I 21 ,Miscellaneous bif. I" 

~-----t---------------------------------------------------t--------------t--------------i 
I 28 I Arithmetic pseudovariable. '" 
~-----+---------------------------------------------------t--------------+--------------~ 
I 29 I Mathematical pseudovariable. '" 
~-----t--------------~------------------------------------t--------------t--------------1 I 2A ,string-handling pseudovariable. , , , 
~-----+---------------------------------------------------t--------------+--------------~ I 2B I Array manipulation pseudovariable. , , , 
~-----t---------------------------------------------------t--------------t--------------1 
I 2C I Condition pseudovariable. I I I 
~-----t---------------------------------------------------+--------------+--------------f 
I 20 'Based storage pseudovariable. I , I 
~-----t---------------------------------------------------t--------------t--------------1 
,2E ,Multitasking pseudovariable. '" 
~-----t---------------------------------------------------+--------------+--------------f 
,2F ,Library module. I 5.41, , L _____ L ___________________________________________________ L ______________ L ______________ J 

Figure 5.33. operand code bytes X'20' to X'2F' 

r-----T---------------------------------------------------T--------------T--------------, 
'Code I Type of operand ,Six-byte ref. , Dict. entry , 
, (hex) , , format. I format. , 
I I ,See figure no.ISee figure no. I 
~-----t---------------------------------------------------+--------------+--------------f I 30 I PROCEDURE or BEGIN block header. , ,5.1 I 
~-----+---------------------------------------------------+--------------+--------------1 
,31 I PLIDUMP, PLISORT, etc., entry pOint - irreducible., I 5.1 I 
~-----+---------------------------------------------------+--------------f--------------~ I 32 I FORTRAN entry pOint - irreducible. I I 5.1 I 
~-----+---------------------------------------------------+--------------t--------------1 
,33 ,COBOL entry point - irreducible. , I 5.1 I 
~-----t---------------------------------------------------+--------------f--------------~ I 34 I External entry point - irreducible. ,5.41 I 5.9 , 
~-----t---------------------------------------------------+--------------+--------------1 
I 35 ,Internal entry pOint - irreducible. I 5.41 I 5.9 I 
~-----+---------------------------------------------------+--------------t--------------f 
I 36 I I I I 
~-----t---------------------------------------------------+--------------+--------------1 
,31 , 'I I 
~-----t---------------------------------------------------t--------------t--------------f I 38 , , I I 
~-----+---------------------------------------------------+--------------+--------------1 ,39 , , I I L _____ ~ _____________________________________________ ~--___ ~ ______________ ~ ______________ J 

Figure 5.34. (Part 1 of 2). Operand code bytes X'30' to X'3F' 

588 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r-----T---------------------------------------------------T--------------T--------------l 
Icode I Type of operand ISix-byte ref. I Diet. entry I 
I (hex) I I format. I format. I 
I I Isee figure no.lsee figure no.1 
~-----t---------------------------------------------------t--------------t--------------~ 
I 3A I FORTRAN entry point - reducible. I I I 
~-----t---------------------------------------------------+--------------t-------------~ 
I 3B I COBOL entry point - reducible. I I I 
~-----t---------------------------------------------------t--------------t--------------~ 
I 3C I External entry pOint - reducible function I 5.41 , 5.9 I 
I I procedure. I I I 
~-----t---------------------------------------------------t--------------t--------------~ 
I 3D I Internal entry pOint - reducible function I 5.41 I 5.9 I 
I I procedure. I I I 
~-----t---------------------------------------------------t--------------t--------------~ 
I 3E I Generic entry point. I I I 
~-----t---------------------------------------------------t--------------t--------------~ 
I 3F I I I I l _____ ~ _______________________________________________ ----~ ______________ ~ ______________ J 

Figure 5.34. (Part 2 of 2). Operand code bytes X'30' to X'3F' 

r-----T---------------------------------------------------T--------------T--------------l 
Icode I Type of operand ISix-byte ref. IDict. entry I 
I (hex) I I format. I format. , 
I I ISee figure no. Isee figure no.1 
~-----t---------------------------------------------------t--------------t--------------i 
I 40 I Length of an adjustable non-varying string, or I 5.58 I I 
I I maximum length of an adjustable varying string. I I I 
~-----t---------------------------------------------------t--------------t--------------~ 
I 41 I Controlled va~iable anchor. I I I 
~-----t---------------------------------------------------t--------------t--------------~ 
I 42 I Controlled parameter anchor. I I I 
~-----t---------------------------------------------------t--------------t--------------~ 
I 43 I Skeleton descriptor. I I I 
~-----+---------------------------------------------------+--------------t--------------~ 
I 44 I Reference to slot in TCA. I I I 
~-----+---------------------------------------------------t--------------t--------------i 
I 45 I Actual origin of array. I I I 
~-----t---------------------------------------------------t--------------t--------------i 
I q6 I I I I 
~-----t---------------------------------------------------t--------------t--------------i 
I q7 I I I I 
~-----t---------------------------------------------------t---------------t--------------i 
I 48 I I I I 
~-----+---------------------------------------------------+--------------t-------------~ 
I 49 I I I I 
~-----t---------------------------------------------------t--------------t--------------i 
I qA I I I I 
~-----+---------------------------------------------------t--------------t-------------~ 
I 4B I I I I 
~-----t---------------------------------------------------t--------------t---------------1 
I 4C I I I I 
~-----t---------------------------------------------------t--------------t--------------i 
I 40 I I I I 
~-----t---------------------------------------------------t--------------+--------------i 
I 4E I I I I 
~-----t---------------------------------------------------t--------------t--------------i 
I 4F I I I I L _____ ~ _______________________________________________ - ___ ~ ______________ ~ ______________ J 

Figure 5.35. Operand code bytes X'40' to X'4F' 

Licensed Material - Property of IBM Section 5: Data Area Layouts 589 



In the following table, "both" indicates that the temporary can exist both in a register 
and in storage. 

r-----T---------------------------------------------------------------------------------1 
,Code, Type of temporary operand (Type-2 text only) I 
I (hex) I I 
~-----t---------T--------T---------------------------------T----------------------------i 
,60 I both I local I If operand 1 or 2, the temp. is I I 
.-----t---------i I being used for the last time. , I 
I 61 ,storage, I If operand 3, the temp. is beingl , 
.-----+--------t--------i created. I I 
,62 I both I global I I I 
.-----t--------i I I , 
I 63 ,storage I I I I 
~-----t---------t--------t---------------------------------i I 
I 64 I both I local I If operand 1 or 2, the temp. is I I 
.-----t---------~ I alive. I J 
I 65 I storage I I If operand 3, the temp. ~s being I I 
.-----t---------t--------i reset. I I 
I 66 ,both I global , , I 
.-----t--------i , I I 
I 61 I storage I I I I 
~-----t---------t--------t---------------------------------t----------------------------1 
I 68 ,both I local I As for 60 to 63 above. I The temp. is either a 
.-----t---------i I I global temp., dead at the 
I 69 I storage I I , end of current flow-unit, 
.-----t---------1 I I or a local controlled temp. 
I 6A I both I global I I 
.-----t---------i I I 
I 6B 'storage I I I 
~-----t---------t--------t---------------------------------i 
I 6C I both I local I As for 64 to 61 above. , 
.-----t---------~ I , 
,6D ,storage, I , 
.-----t---------t--------~ , 
I 6E I both I global , I 
.-----t---------~ I , 
I 6F I storage , , I 
L-----~ _________ ~--______ ~ ____________________________ ----~ ____________________________ J 

Figure 5.36. Operand code bytes X'60' to X'6F' 

r-----T------------------------T----------------T-----------------------T---------------, 
,Code I Operand type I Six-byte ref. I Dictionary entry type I Dict. entry I 
I (hex) I I tormat. , , format. , 
I I I See figure no. I I See figure no., 
.-----t------------------------t----------------t-----------------------t---------------i 
I 10 I I I I I 
~-----t------------------------t----------------t-----------------------t---------------i 
I 11 I I I I I 
.-----t------------------------t----------------t-----------------------t---------------i 
I 12 I I , I I 
~-----t-----------------------t----------------t-----------------------t---------------i 
I 13 I Workspace I I I I 
.-----t------------------------t---------------t-----------------------t---------------1 
,14 I Q-temp. (status alive) I 5.51 I I I 
~-----+------------------------+----------------+-----------------------t---------------1 
I 15 I Q-temp. (status dead) I 5. 51 I I I 
~-----t------------------------t----------------t-----------------------t---------------i 
,16 I VDA I 5.46 I Value list entry. I 5.26 I L-____ ~ ________________________ ~ ________________ ~--___ -----------------_~-______________ J 

Figure 5.31. (Part 1 of 2). Operand code bytes X'10' to X'1F' 

590 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r-------T------------------T----------------T--------------------------T----------------, 
I Code I Operand type I Six-byte ref. I Dictionary entry type I Diet. entry I 
I (hex) I I format. I I format. I 
I I I See figure no. I I See figure no. I 
~-------t------------------t----------------t--------------------------t----------------1 
I 77 I Argument for I ~.46 I Optimization entry for a I 5.25 I 
I I lister. I I block. I I 
~-------t------------------t----------------t--------------------------t----------------i 
I 78 I Base code for a I 5.46 I optimization entry for I 5.24 I 
I I BASED variable I I the whole program. I I 
I I (QA output). I I I I 
~------i------------------i----------------i--------------------------i----------------i 
I 19 I Null operand. 1 I I I 
~-------t------------------t----------------t--------------------------t----------------i 
I 7A I Temp. address I 5.46 I I I 
I I (QA output). I I I I 
~-------t------------------t----------------t--------------------------t----------------1 
I 7B I Constant address I 5.46 I I I 
I I (QA output). I I I I 
~-------t------------------+----------------t--------------------------t----------------1 
I 7C I Variable address I ~.46 I I I 
I I (QA output). I I I I 

~-------t------------------t----------------t--------------------------t----------------1 
I 1D I Base code (QA I 5.46 I I I 
I , output). I I I I 
~-------t------------------t----------------t--------------------------t----------------i 
I 1E I Miscellaneous I 5.46 I I I 
I I compiler- I I I I 
I I generated I I I I 
I I literal data. I I I I 
~-------+------------------t----------------t--------------------------t----------------i 
I 7F I Return value. I 5.11 I End-of-dictionary I I 
I I I I marker. I I L _______ ~ __________________ ~ ________________ ~ __________________________ ~ ________________ J 

Figure 5.37. (Part 2 of 2). Operand code bytes X'70' to X'1F' 

r------------T--------------------------------------------------------------------------, 
I Second hex I storage characteristics of the variable I 
I digit I I 
~------------t--------------------------------------------------------------------------i 
I 7 I STATIC temporary (abnormal). I 
~------------+------------~-------------------------------------------------------------1 
I 8 I CONTROLLED parameter I 
~------------+--------------------------------------------------------------------------i 
I 9 I CONTROLLED. I 
~------------+_-------------------------------------------------------------------------i 
I A I AUTOMATIC parameter. I 
~------------t--------------------------------------------------------------------------i 
I B I DEFINED. I 
~-----------t_-------------------------------------------------------------------------f 
I C I BASED. . I 
~------------t--------------------------------------------------------------------------1 
I D I S'lAT IC • I 
~------------t--------------------------------------------------------------------------1 
I E I AUTOMATIC. I 
~------------t--------------------------------------------------------------------------i 
I F I AUTOMATIC temporary. I 
L ____________ ~-----------------------------------------________________________________ J 

Figure 5.38. Operand code bytes X'80' to X"FF' (see figure 5.30) 

Licensed Material - Property of IBM Section 5: Data Area Layouts 591 



SIX-BYTE REFERENCES TO OPERANDS 

A ·six-byte reference' does not necessarily represent a single value. It may contain 
either literal data (e.g., a binary constant 10**1), or a dictionary reference or 
references, or both. After Phase GM, all operands in text are represented in this form. 
Six-byte references in Type 1 text are always preceded by text code byte DREF, to 
identify them as such. 

The content of six-byte reference depends on the type of operand which it represents, 
and is indicated by the 'operand code byte' with which it commences (refer to previous 
sub-heading "Operand Code Bytes"). 

The different types of six-byte references, described in figures 5.39 to 5.58 are as 
follows: 

Figure 5.39. 
Figure 5.40. 
Figure 5.41. 
Figure 5.42. 
Figure 5.43. 
Figure 5.44. 
Figure 5.45. 
Figure 5.46. 
Figure 5.41. 
Figure 5.48. 
Figure 5.49. 
Figure 5.50. 

Figure 5.51. 
Figure 5.52. 
Figure 5.53. 
Figure 5.54. 
Figure 5.55. 

Figure 5.56. 
Figure 5.51. 
Figure 5.58. 

Six-byte reference to a structure member 
Six-byte reference to a data variable 
Six-byte reference to a source program constant 
Six-byte reference to an EVENT or TASK variable 
Six-byte reference to a LABEL variable 
Six-byte reference to a literal binary/decimal integer constant 
Six-byte reference to a literal character/bit constant 
Six-byte reference to a literal compiler-used constant 
Six-byte reference to a library subroutine 
Six-byte reference to a label constant 
Six-byte reference to an adjustable aggregate extent 
Six-byte reference to a structure offset field in an aggregate descriptor 
(BASED REFER structure member) 
Six-byte reference to a non-string temporary operand 
Six-byte reference to a non-string Q-temp.operand 
Six-byte reference to an adjustable string temporary operand 
Six-byte reference to a non-adjustable string temporary operand 
Six-byte reference to ~ string Q-temp.operand (for accessing part of a 
string) 
Six-byte reference to the maximum length of a non-adjustable string 
Six-byte reference to the current length of a VARYING string 
Six-byte reference to the maximum length of an adjustable string 

r-------T--------T----------------------------------------------------------------------, I Bytes I Symbol I Meaning I 
~-------t~-------t----------------------------------------------------------------------i I 0 I ZCDE I Operand code byte - refer to figure 5.29. I 
~------+--------+----------------------------------------------------------------------i 
I 1 I ZSEQ I sequence number of member (1 for major structure). I 
~-------t--------t----------------------------------------------------------------------i 
I 2-3 I ZSTR I Aggregate descriptor dictionary reference. I 
~-------+--------+----------------------------------------------------------------------i I 4-5 I ZREF I Variables dictionary reference. I L _______ ~ _______ ~ ____________________________________________________________________ ~ 

Figure 5.39. Six-byte reference to a structure member (refer to figure 5.68) 

592 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-617S, October 1976 

r-------~--------T----------------------------------------------------------------------1 I Bytes I Symbol I Meaning I 
~-------+--------t----------------------------------------------------------------------i I 0 I ZCDE I Operand code byte - refer to figure 5.29. I 
~-------t--------+_------------------------------TT-------------------------------------~ I 1 I ZDED I ZTYP - data type - refer to I I Base number, and offset in STATIC I 
I I I figu.re 5.59. II storage of the object-time DED/FED - I 
~-------i ~----------------TT-------------ilused after Phase PA if this variable I 
I 2 I I ZP - Precision IIZLTH-containsllis passed to a library I 
~-------i ~----------------iIPIC reference I I module for conversion. I 
I 3 I I ZQ - Scale Ilif PIC var. II I 
~,-------t--------+_---------------~4-------------~-------------------------------------~ I 4-5 I ZREF I Variable dictionary reference. I L _______ ~ ________ ~ ______________________________________________________________________ J 

Figure 5.40. Six-byte reference to a data variable 

r-------T--------T----------------------------------------------------------------------1 I Bytes I symbol I Meaning I 
~-------t--------t_---------------------------------------------------------------------i I 0 I ZCDE I Operand code byte - refer to figure 5.31. I 
~-------t--------t----------------------------------------------------------------------i I 1 I ZDED I ZTYF - Data type. (Refer to figure 5.59.) I 
~-------i .----------------TT-------------TT-------------------------------------i I 2 I I ZP - Precision II ZLTH - String II Not used. I 
~-------i .----------------illength II I 
I 3 I I ZQ - Scale. II II I 
~-------+_-------t_---------------~~-------------tt------------------------------------~ I 4-5 I ZREF I General dictionary reference. I I Post PA - contains offset of I 
I I I II constant in static. I L---____ ~ ________ 4_ ______________________________ ~~ ____________________________________ -J 

Figure 5.41. Six-byte reference to a source program constant 

r-------T--------T----------------------------------------------------------------------, I Bytes I symbol I Meaning I 
~-------t--------+_---------------------------------------------------------------------i I 0 I ZCDE I Operand code byte - refer to 'figure 5.29. I 
~-------+--------+---------------------------------------------------------------------~ I 1 I ZTYP I Flag byte indicating EVENT or TASK variable. I 
~-------t--------t----------------------------------------------------------------------i 
I 2-3 I I I 
~-------+--------+---------------------------------------------------------------------~ I 4-5 I ZREF I Variable dictionary reference. I L _______ ~ ________ 4_ ________ ~ ____________________________________________________________ J 

Figure 5.42. Six-byte reference to an EVENT or TASK variable 

r-------T--------T----------------------------------------------------------------------1 I Bytes I Symbol I Meaning I 
~-------+--------+----------------------------------------------------------------------~ I 0 I ZCDE I Operand code byte - refer to figure 5.29. I 
~-------+--------+_---------------------------------------------------------------------i I 1 I I Flag byte indicating LABEL. I 
~-------+--------+----------------------------------------------------------------------~ I 2-3 I ZLBLST I General dictionary reference of value list entry. or zero. I 
~-------+--------+-------------------------------TT-------------------------------------i I 4-5 I ZREF I Variable dictionary entry. II Post PA - Contains offset in static. I 
I I I II if required. I L _______ ~ ________ ~ _______________________________ ~ ____________________________________ -J 

Figure 5.43. Six-byte reference to a LABEL variable 

Licensed Material - Property of IBM Section 5: Data Area Layouts 593 



r-------T--------T----------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+--------+----------------------------------------------------------------------i 
I 0 I ZCDE I Operand code byte - refer to figure 5.31. I 
~-------+--------+----------------------------------------------------------------------i 
I 1 I ZCPL I Precision of original constant. I 
~-------+--------+----------------------------------------------------------------------i 
I 2-5 I ZCONS I Binary representation of constant, right aligned. I 
~-------~--------~----------------------------------------------------------------------i 
I Post-PA I 
I I 
I 1-3 I I True compile-time DED of constant as allocated in storage. I 
~-------+--------+----------------------------------------------------------------------i 
I 4-5 I ZREF I Contains offset in static, if required. J L _______ ~ ________ ~ _____________________________________________________________________ J 

Figure 5.44. Six-byte reference to a literal binary/decimal integer constant 

r-------T--------T----------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+--------+----------------------------------------------------------------------i 
I 0 I ZCDE I Operand code byte - refer to figure 5.31. I 
~-------t--------+----------------------------------------------------------------------i 
I 1 I ZCPL I Length of string. I 
~-------+--------+_---------------------------------------------------------------------i 
I 2-5 I ZCONS I Left-aligned string. I 
~-------~--------~----------------------------------------------------------------------i 
I Post-PA I 
I I 
I 1-3 I I True compile-time DED of constant as allocated in storage. I 
~-------+--------+----------------------------------------------------------------------i 
I 4-5 I ZREF I Contains offset in static, if required. I L _______ ~ ________ ~-____________________________________________________________________ -J 

Figure 5.45. Six-byte reference to a literal character/bit constant 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------t------~-----------------------------------------------~------------------------i 
I 0 I Operand code byte (X" 7E') • I 
~-------+-------------------------------------------------------------------------------i 
I 1 I Not used. I 
~-------+-----------------------------~-------------------------------------------------i 
I 2-5 I Literal value or values - refer to the relevant text table for exact usage. I 
L-------~ _____________________________________________ ---------_________________________ J 

Figure 5.46. Six-byte reference to a literal compiler-generated constant 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------t---------------------------~---------------------------------------------------f 
I 0 I Operand code byte (X'2F'). I 
~-------+-------------------------------------------------------------------------------i 
I 1 I Not used. I 
~-------+-------------------------------------------------------------------------------f I 2-3 I Entry-point number field. I 
~------+-------------------------------------------------------------------------------i 
I 4-5 I Offset field. I L _______ ~------___________________________________________ ---__________________________ J 

Figure 5.47. Six-byte reference to a library subroutine 

594 Licensed Material - Property of IBM 



r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------~ I a I operand code byte - refer to figure 5.31. I 
~-------+-------------------------------------------------------------------------------~ I 1 I Branch mask, if conditional GOTO or Be. I 
~-------+-------------------------------------------------------------------------------i 
I 2-3 I Not used. I 
~-------+-------------------------------------------------------------------------------~ I 4-5 I Label constant dictionary reference (general dictionary). I l _______ ~ _____________________________________________ --------__________________________ J 

Figure 5.48. Six-byte reference to a label constant 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------~ 
I a I operand code byte (X-lO'). I 
~-------+-------------------------------------------------------------------------------i 
I 1 I Not used. I 
~-------+-------------------------------------------------------------------------------i 
I 2-3 I Offset in the aggregate descriptor at which the result of the extent I 
I I expression is to be stored. I 

~-------+-------------------------------------------------------------------------------i I 4-5 I Aggregate table dictionary reference. (Refer to figure 5.11.> I l _______ ~ _______________________________________________________________________________ ~ 

Figure 5.49. Six-byte reference to an adjustable aggregate extent 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------t-------------------------------------------------------------------------------i 
I 0 I Operand code byte (X'lA G

). I 
~-------+-------------------------------------------------------------------------------~ 
I 1 I Not used. I 
~-------+-------------------------------------------------------------------------------i 
I 2-3 I Variables dictionary reference of the major structure. I 
~-------+-------------------------------------------------------------------------------1 I 4-5 I Temporary descriptor number, i.e., RESDES number. (Refer to figure 5.11.> I L _______ ~ ______________________________________________ - ________________________________ J 

Figure 5.50. Six-byte reference to a structure offset field in an aggregate descriptor 
(BASED/REFER structure member) 

r-------T-----------------------------------------------------------------------------~-, 
I Bytes I Meaning I 
~-------t-------------------------------------------------------------------------------~ 
I 0 I Operand code byte - refer to figure 5.36. I 
~-------t-------------------------------------------------------------------------------i I 1-3 I Data element descriptor - refer to figure 5.59. I 
~-------+-------------------------------------------------------------------------------~ I 4-5 I Temporary-number. I L _______ ~ _______________________________________________________________________________ 4 

Figure 5.51. Six-byte reference to a non-string temporary operand 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------i I a I operand code byte - refer to figure 5.31. I 
~-------+-------------------------------------------------------------------------------t 
I 1-3 I Data element descriptor. I 

~-------t-------------------------------------------------------------------------------i 
I 4-5 I Q-temp.number. I l _______ i _______________________________________________________________________________ J 

Figure 5.52. Six-byte reference to a non-string Q-temp.operand 

Licensed Material - Property of IBM Section 5: Data Area Layouts 595 



r-------T-------------------------------------------------------------------------------1 I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------i 
I 0 I Operand code byte (X'60·'. I 
~-------+-------------------------------------------------------------------------------f I 1 I Data byte indicating adjustable string data - refer to figure 5.59. I 
~-------t-------------------------------------------------------------------------------i I 2-3 I Reference of a FIXED BIN (15,0) temporary holding the string length. I 
~-------+-------------------------------------------------------------------------------f I 4-5 I Reference of a FIXED BIN (31,0) temporary holding the string's address. I L _______ ~ ______________________________________________ - ________________________________ J 

Figure 5.53. Six-byte reference to an adjustable string temporary operand 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------f 
I 0 I Operand code byte: X'60' if an address temporary is used to access the I 
I I string, OR X'61' if the string is accessed directly (see below). I 
~-------+----------------------------------------------------~--------------------------~ I 1 I Data byte indicating non-adjustable string data - refer to figure 5.59. I 
~-------+-------------------------------------------------------------------------------~ I 2-3 I Literal string-length. I 
~-------+-------------------------------------------------------------------------------f I 4-5 I Reference of a FIXED BIN (31,0) temporary holding the string's address, OR I 
I I reference of a fixed-length string temporary. I L _______ ~ ______________________________________________________________________________ J 

Figure 5.54. Six-byte reference to a non-adjustable string temporary operand 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------+------------------------------------------------------------------~------------f 
I 0 I Operand code byte (X·14·). I 

~-------+-------------------------------~-----------------------------------------------i 
I 1 I Data byte indicating string data. I 
r-------+-------------------------------------------------------------------------------f I 2-3 I Literal string-length., or undefined. I 
~-------+-------------------------------------------------------------------------------i I 4-5 I Q-temp.number. I L ______ ~~ _______________________________________________________________________________ • 

Figure 5.55. Six-byte reference to a string Q-temp.operand (for accessing part of a 
string) 

r-------T-------------------------------------------------------------------------------, I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------i I 0 I Operand code byte (X'02 8

), indicating literal binary data. I 
~-------+-------------------------------------------------------------------------------f 
I 1 I Data byte (X'OS'), indicating bit-string data. I 

~-------+-------------------------------------------------------------------------------1 
I 2-3 I Zero. I 

~-----+-------------------------------------------------------------------------------f 
I 4-5 I Length of string. I l _______ ~ _______________________________________________________________________________ ~ 

Figure 5.56. Six-byte reference to the maximum length of a non-adjustable string 

!596 Licensed Material - Property of IBM 



r-------T------------------------------------------~------------------------------------1 
I Bytes I Meaning I 
~-------+----------------------------------------~--------------------------------------i I 0 I Operand code byte of the string variable. I 
~-------+-------------------------------------------------------------------------------~ I 1-3 I Data element descriptor (FIXED BIN (15.0» - refer to figure 5.59. I 
~-------+-------------------------------------------------------------------------------i I 4-5 I Dictionary reference of the string variable. I l _______ ~ ______________________________________________ - ________________________________ J 

Figure 5.51. Six-byte reference to the current length of a VARYING string 

r-------T-------------------------------------------------------------------------------1 I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------i I 0 I Operand code byte (X· 40-11 

) • I 
~-------+-------------------------------------------------------------------------------i 
I 1 I Data byte of the string variable - refer to figure 5.59 I 
~-------+-------------------------------------------------------------------------------~ I 2 I Operand code byte of the string variable. I 
~-------+-------------------------------------------------------------------------------i 
I 3 I Not used. I 
~-------+-------------------------------------------------------------------------------~ I 4-5 I Dictionary reference of the string variable. I L _______ ~ _______________________________________________________________________________ J 

Figure 5.58. Six-byte reference to the maximum length of an adjustable string 

Licensed Material - Property of IBM Section 5: Data Area Layouts 597 



COMPILE-TIME DATA ELEMENT DESCRIPTORS (DEDS) 

r-------T-----------T-------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------~ 
I I I PROGRAM CONTROL DATA I 
I 0 I ZTYF (YDEDI I 
I I or YCDED I I 
I I in diet.) I I 
I I 0000 1101 I Label I 
I I 0000 1001 I Event. I 
I I 0000 1111 I File. I 
I I 0000 1011 I Task. I 
I I 0000 1.10 I Area (fixed'. I 
I I 0100 1.10 I Area (adjustable). I 
~-------+-----------+-------------------------------------------------------------------i 
I 1-2 I I Not used. I 
~-------+-----------+-------------------------------------------------------------------~ 
~-------+-----------+-------------------------------------------------------------------~ 
I I I PROBLEM-DATA LOCATOR I 
I 0 I ZTYP (YDEDI I 
lIar YCDED I I 
I I in diet.) I I 
I I 1.0. I Aligned. I 
I I 1,.1. •••• I Unaligned. I 
I I 11.0 1100 I Pointer. I 
I I 11.1 1100 I Offset. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 1-2 I I Not used. I 
~-------+-----------+-------------------------------------------------------------------i 
~-------+-----------+-------------------------------------------------------------------i I I PROBLEM-DATA ARITHMETIC I 

o I ZTYP (YDED I 
I or YCDED I 
I in diet.' I 
I 1.0. Aligned. I 
I 1.1. Unaligned. I 
I 1 •••• 0.. Decimal. I 
I 1... .1.. Binary. I 
1 1 ••••• 0. Fixed. I 
1 1 ••••• 1. Float. 1 
1 10.0 1 •• 0 Real arithmetic. I 
I 11.0 1 •• 1 Real part of a complex variable. I 
I 11.1 1 •• 1 Imaginary part of a complex variable. I 
I 10.0 00.0 Numeric picture. I 

~-------+-----------+-------------------------------------------------------------------~ 
I 1 I ZP I Precision. I 
~-------+-----------+-------------------------------------------------------------------i 
I 2 1 ZQ I Scale. I 
~-------+-----------+-------------------------------------------------------------------1 
~-------+-----------+-------------------------------------------------------------------1 

I PROBLEM-DATA STRING 
o ZTYP (YDEDI 

or YCDED I 
in diet.) I 
0.0 •••• 0 I Aligned. 
0.1 •••• 0 I Unaligned. 
00 •• 1.00 I Fixed. 
01 •• 1.00 1 Adjustable. 
0 •• 0 1.00 I Non-varying. 
0 •• 1 1.00 I Varying. 
0 ••• 1000 I Bit string. 
0 ••• 1100 I Character string. 
00.0 0100 1 Alphameric picture. 

~-------+-----------+-------------------------------------------------------------------~ I 1-2 I ZLTH I Length of string. I L _______ L ___________ ~ ______________________________________ - ____________________________ 1 

Figure 5.59. Contents of compile-time data element descriptors 

598 Licensed Material - Property of IBM 



TYPE-1 TEXT FORMATS 

This sub-section contains tables of the text code bytes used in Type-1 text, and format 
descriptions of the following data areas, in the figures listed: 

Main Text Stream, on output from Phase EA 

Figure 5.60. 
Figure 5.61. 

General format of statements in Type-1 text, output from Phases EA to GE 
Block chaining fields 

Main Text Stream, on Output from Phase EE 

Figure 5.62 .• 
Figure 5.63. 
Figure 5.64. 

PROC, ENTRY, BEGIN, and ONB statements, in deblocked position 
CALL statement, used to replace BEGIN statement in inline position 
Statement body format for ON statements 

Main Text Stream, on Output from Phase GM 

Figure 5.65. 
Figure 5.66. 
Figure 5.61. 
Figure 5.68. 
Figure 5.69. 
Figure 5.70. 

PROC, BEGIN, and ONB statements 
RETURN statements 
Array operands in Type-1 text 
Structure operands in Type-1 text 
Subroutine calls and funct~on references in Type-1 text 
Argument lists in Type-1 text 

Dictionary Text Stream, on Output from Phase EE 

Figure 5.71. 
Figure 5.72. 

Block headers 
Statements in the dictionary text stream 

Declaration Expressions Text Stream, on output from Phase GE 

Figure 5.13. 
Figure 5.74. 
Figure 5.75. 
Figure 5.76. 
Figure 5.17. 
Figure 5.78. 
Figure 5.79. 
time 
Figure 5.80. 
Figure 5.81. 
Figure 5.82. 
Figure 5.83. 

Page sub-headers 
Block headers 
Locator qualifier statements 
POSITION attribute statements 
'. Simple defined' items, with base known at compile-time 
'Simple defined~ items, with base known at prologue execution 
·Simple defined- items, with base not known until reference at execution 

iSUB-defined items 
INITIAL assignment expressions 
Adjustable-extent expressions 
Adjustable string-length expressions for non-aggregate strings 

Declaration Expressions Text Stream, on Output from Phase GM 

INITIAL assignment expressions 
MAP statements 
Adjustable-extent expressions 

Figure 5.84. 
Figure 5.85. 
Figure 5.86. 
Figure 5.87. Adjustable string-length expressions for non-aggregate strings 

Text Code Bytes in Type-1 Text 

Figure 5.88. Text code bytes in Type-l text (X'OO' to X'7F') 

Licensed Material - Property of IBM 

(X' 80' to X' FF' ) 
(X'0900' to X'D97F') 
(X'D980' to X'09FF') 

Section 5: Data Area Layouts 599 



Main Text stream, on Output from Phase EA 

The text is written in source program order, with a 17-byte block chaining field inserted 
before each block-heading (i.e., PROCEDURE BEGIN, or ON). Termination of a chain is 
indicated by X-FF- in the third byte of the text reference. For all on-units, the ON 
statement rather than the associated BEGIN statement (if present) is treated as the 
block-heading statement" at this stage. 

r-------T-----------~-------------------------------------------------------------------, I Bytes I Symbol I Meaning I 
~-------+-----------+--------------------------------------T----------------------------f I 0 I ZSLN I SL if labeled, SN if not. I Standard statement header. 
r-------+-----------+--------------------------------------i I 1 I ZSTMT 1 Text code byte indicating statement I (This is later referred to 
I I I type (refer to figure 5.88). I as the standard header.) 
~-------+-----------+--------------------------------------1 
I 2-3 1 ZSNO I Source statement number. 1 

~-------~-----------+--------------------------------------~ I 4 ZPOPT1 I Prefix options. 0 indicates I 
I I conditions enabled for the statement I 
I I or block. I 
1 x... I CHECK with/out list on/in block I 
I .X.. I ZERODIVIDE. I 
I · . X. I FIXEDOVERFLOW. 1 
I ... x I SIZE. 1 
1 X ••• I CONVERSION. I 
I .x •• 1 OVERFLOW. I 
I .. X. 1 UNDERFLOW. I 
I ... x I STRINGSIZE. I 
~-------+-----------+--------------------------------------i 

5 ZPOPT2 Prefix Options. 0 indicates 

X ••• 
• x •• 
. . x. 
... • x 

conditions enabled for the statement 
or block. 
STRl NGRANGE 
SUBSCRIPTRANGE 
CHECK(without list) enabled for stmt • 
No CHECK or NOCHECK prefix on block • 

Other features. 1 indicates feature 
exists. (Used by Phases 10 and KE.) 

•••• X... The block contains statements with 
prefix options differing from those 
applying to the rest of the block • 

• x.. Defined arrays in the statement • 
•• x. Subscripts in the statement • 
••. x I DO-loops in the statement. l _______ ~ ___________ ~ ______________________________________ ~ ___________________________ _ 

Figure 5.60. General format of statement header in Type-1 text. output fram Phase EA to 
GE 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------f I 0 I Block level (level of nesting). I 
~-------+-------------------------------------------------------------------------------1 I 1 I Block count (sequence of block in source program). I 
~-------+-------------------------------------------------------------------------------f 
1 2-6 1 Text reference of the END statement for this block. I 
r-------+-------------------------------------------------------------------------------1 I 1-11 I Text reference of the next block (i.e., the next chain field'. I 
~-------+-------------------------------------------------------------------------------f I 12-161 Text reference of the first ENTRY statement in this block, if any. 1 L _______ ~ _______________________________________________________________________________ J 

Figure 5.61. Block chaining fields 

600 Licensed Material - Property of IBM 



Main Text Stream, on output from Phase EE 

The text is written in deblocked order, with certain statements removed and written onto 
a separate text stream (the dictionary text stream). The general format of statements 
remains unchanged, with the following three exceptions: 

r-------T--------T----------------------------------------------------------------------1 
I Bytes I Symbol I Meaning I 

~-------+--------+----------------------------------------------------------------------1 I 0-5 I , Standard header (SL, PROC., ENTRY, BEGIN or ONB) -: refer to I 
I I I figure 5.60. I 

~-------+--------+----------------------------------------------------------------------1 I 6 I ZL I Block level. I 
~-------t--------t----------------------------------------------------------------------f I 7 I zc I Block count. I 
~-------t--------t----------------------------------------------------------------------1 I 8- I ZBODY I Label List (refer to figure 5.60', Semicolon. Each statement of I 
I I I this type exists also in ehe dictionary text stream, where it I 
I I I contains the statement body (if any). I L _______ ~ ________ ~ ______________________________________________________________________ J 

Figure 5.62. PROC, ENTRY, BEGIN, and ONB statements, in deblocked position 

r-------T--------T----------------------------------------------------------------------, I Bytes I Symbol I Meaning I 
~-------+--------+----------------------------------------------------------------------1 
I 0-5 I 1 Standard header (SN or SL, CALL) - refer to figure 5.60. I 

~-------t--------+----------------------------------------------------------------------f I 6- I ZBODYN I Label List, if SL statement. I 
I I I I 
I I I Statement Body, containing only one identifier, namely a I 
I I I generated statement label (GSL) labeling the associated BEGIN block I 
I I I heading statement (refer to figure 5.62). The GSL consists of X'FF' I 
I I I followed by a two-byte number equal to the block count. I 
I I I I 
I I I I 
I I I Semicolon. I L _______ ~ ________ ~ ______________________________________________________________________ J 

Figure 5.63. CALL statement, used to replace BEGIN statement in inline position 

r-------T-------------------------------------------------------------------------------, I Bytes I Meaning I 
~-------t-------------------------------------------------------------------------------f I 0-1 I Text code byte indicating type of ON condition. I 
~-------t-------------------------------------------------------------------------------1 I 2 I Text code byte (SNAP/NOSNAP). I 
~-------+-------------------------------------------------------------------------------f I 3 1 If an on-unit has been specified for this condition then this byte is zero. I 
I I Otherwise it contains text code byte SYSTEM or NULL, and the follcwing four I 
I , bytes are not used. I 
~-------+-------------------------------------------------------------------------------1 I 4 I Text code byte (ONB). I 
~-------+-------------------------------------------------------------------------------f I 5-1 I GSL labeling the associated BEGIN block heading statement (refer to I 
I I figure 5.63'. I 
~-------t-------------------------------------------------------------------------------f I 8 I Filename, CHECK list, or nothing_ I 
I" I I 
I I Semicolon. I L _______ ~ _______________________________________________________________________________ J 

Figure 5.64. Statement body format for ON statements 

Licensed Material - Property of IBM Section 5: Data Area Layouts 601 



Main Text Stream, on Output from Phase GM 

Phase GM processes the text stream sequentially, modifying each statement as follows: 

• In the label list, each 'length and name' (refer to figure 5.61.) is replaced by its 
general dictionary reference. This applies also to GSLs • 

• In the statement body, each operand is altered from 'length and name' to a six-byte 
reference preceded by text code byte DREF to identify it as such. In the cases of 
array operands (figure 5.67.), structure operands (figure 5.68.), and subroutine 
calls and function references (figure 5.69.), additional information is held in text, 
in order to economize on dictionary calls. 

Otherwise, the statement formats" with the exceptions of PROC, BEGIN, ONB, and RETURN 
statements (as shown in figures 5.65. and 5.66.), remain unchanged. 

The three-byte data element descriptors (DEDS) contained in some six-byte references 
and dictionary entries, contain a 'data byte' indicating the data element type, and 
additional information for certain types of data, as shown in figure 5.59. 

r------T--------T----------------------------------------------------------------------, 
'Bytes , Symbol I Meaning I 
r------+--------+----------------------------------------------------------------------~ I 0-5, I Standard header (SL, PRoe, BEGIN, or ONB) - refer to figure 5.61. I 
~------+--------+----------------------------------------------------------------------~ 
,6-7 I ZLC 1 Block level and count. I 

~------T--------+----------------------------------------------------------------------1 I 8-9 I XBH I Dictionary reference of block header (general dictionary). I 
~------+--------+----------------------------------------------------------------------~ 
I 10-111 ZPCL 1 GSL (compiler prologue label). I 
~------T--------+----------------------------------------------------------------------i I 12- I , statement body (if any). I 
, I I I 
I I 1 Semicolon. I L ______ ~ ________ ~ ______________________________________________________________________ J 

Figure 5.65. PROC,BEGIN, and ONB statements 

r-------T--------T----------------------------------------------------------------------1 
, Bytes I Symbol 1 Meaning , 

~-------+--------+----------------------------------------------------------------------1 I 0-5 I I Standard header (SN, RETURN) - refer to figure 5.61. I 
~-------+--------+----------------------------------------------------------------------~ I 6 I I Text code byte (DREF'. I 
~-------+--------+------------------------------------------------T---------------------1 ,7 I , Block level. , Six-byte reference I 
~-------+--------+------------------------------------------------~ to a returned value.' 
I 8-10 I I Data element descriptor (OED) for the returned I , 
I I I value - refer to figure 5.59. I I 
~-------t--------+------------------------------------------------i I 
1 11-121 I Dictionary reference of block header (general I I 
I 1 I dictionaryJ. I I 
~-------+--------+------------------------------------------------~---------------------~ I 13- I I Statement body. I 
I I I I 
I I I Semicolon. I L _______ ~ ________ ~ ______________________________________________________________________ J 

Figure 5.66. RETURN statements 

602 Licensed Material - Property of IBM 



The following tables show the formats of operators for which additional information is 
held in Type-1 text. 

r-------T-------------------------------------------------------------------------------1 
1 Bytes 1 Meaning 1 
~-------+-------------------------------------------------------------------------------~ 
1 0 1 Text code byte (DREF). 1 

~-------+-------------------------------------------------------------------------------i 
1 1-6 1 Six-byte reference to data variable (refer to figure 5.40). 1 
~-------+-------------------------------------------------------------------------------f 
1 7 1 Text code byte (ATRM), indicating that an ATR follows., 1 

~-------+-------------------------------------------------------------------------------~ 
1 8-9 1 Aggregate table reference (general dictionary). 1 l _______ ~ _______________________________________________________________________________ J 

Figure 5.67. Array operands in Type-1 text 

r-------T-------------------------------------------------------------------------------1 
1 Bytes 1 Meaning I 
~-------+-------------------------------------------------------------------------------i 
1 0 1 Text code byte (DREF). 1 

~-------+-------------------------------------------------------------------------------f 
I 1-6 I Six-byte reference to structure member (refer to figure 5.39). I 
~-------+-------------------------------------------------------------------------------f 
1 1 1 Text code byte (STDMK) to mark beginning of structure descriptor. 1 

~-------+-----------------------------------------T-------------------------------------~ 
1 8 1 Code byte indicating type of variable 1 This is repeated for each base I 
1 1 (refer to figures 5.29. and 5.38). 1 element, and the total constitutes 1 

~-------+-----------------------------------------i the structure descriptor., length N. I 
1 9 I Sequence number. 1 (N = 5*number of base elements.) 1 
~-------+-----------------------------------------~ 1 
1 10-1 2 1 DED for first base element (refer to I 1 
I I figure 5.59) • I I 
~-------+-----------------------------------------~-------------------------------------f 
1 N+8 1 Text code byte (ESTMK) to mark end of structure descriptor. 1 L _______ ~ _______________________________________________________________________________ J 

Figure 5.68. structure operands in Type-1 text 

r-------T-------------------------------------------------------------------------------, 
1 Bytes I Meaning 1 
~-------+-------------------------------------------------------------------------------i I 0-5 1 Standard header (SN or SL, CALL) - refer to figure 5.60. I 
~-------+-------------------------------------------------------------------------------i 
1 6 I Text code byte (DREF). 1 
~-------+-------------------------------------------------------------------------------i 
1 7-12 1 Six-byte reference to function or subroutine. I 
~-------+-------------------------------------------------------------------------------f 
1 13 1 Text code byte (ANO), indicating that the next two bytes contain the number I 
1 I of arguments or argument-expressions in the argument list. 1 

~-------+-------------------------------------------------------------------------------f I 14-151 Number of items in argument list (refer to figure 5.70). I L _______ ~ ___________________________________ --__________________________________________ J 

Figure 5.69. Subroutine calls and functions in Type-1 text 

Licensed Material - Property of IBM Section 5: Data Area Layouts 603 



The argument list is treated normally butw before each argument or argument 
expression w a reference to the corresponding parameter descriptor entry (general 
dictionary) is inserted w unless this statement calls an EXTERNAL procedure for which no 
ENTRY declaration has been made. Each parameter descriptor reference is preceded by the 
text code byte PARD to indicate its presence. 

r-----------------------------------------y---------------------------------------------1 I Argument list item I Comments I 
~-----------------------------------------+---------------------------------------------1 
I I I 
~-----------------------------------------+---------------------------------------------f I Text code byte (PARD). I Present before each argument or argument I 
I Text code byte (DREF). I expression if information is availatle. I 
I Six-byte reference to parameter I I 
I descriptor. I I 
I Additional information if aggregate I I 
I (refer to figures 5.61 and 5.68). I I 
~-----------------------------------------+---------------------------------------------f I Text code byte (PARD). I I 
I Six-byte reference to argument operand. I I 
I Additional information if aggregate I I 
I (refer to figures 5.61 and 5.68). I I 
~-----------------------------------------+---------------------------------------------f I Operator. I Repeated for each further operand in the I 
I Text code byte (DREF). I argument expression. I 
I Six-byte reference to argument operand. I I 
I Additional information if aggregate I I 
I (refer to figures 5.61 and 5.68). I I 
r-----------------------------------------+---------------------------------------------i I as above. I Repeated for each further argument cr I 
I I expression in the list. I 
~-----------------------------------------+---------------------------------------------1 
I ~; I I 
L _________________ ~-----------------------~------------_________________________________ J 

Figure 5.10. Argument lists in Type-1 text 

Dictionary Text Streamw On output From Phase EE 

r-------T-------------------------------------------------------------------------------1 I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------1 I 0 I Text code byte (PROC w BEGIN .• or ONB). I 
~-------+-------------------------------------------------------------------------------f I 1-2 I Block level and count. I 
~-------+-------------------------------------------------------------------------------1 I 3-1 I Text reference of next block header. I 
~-------+-------------------------------------------------------------------------------f I 8-12 I Text reference of last DTF statement in this block. I 
~-------+-------------------------------------------------------------------------------1 I 13-11 I Text reference of last item (PROC. BEGIN w or ONB' on the entry-point chain I 
I I for this block. I 
~------+-------------------------------------------------------------------------------1 I 18-22 I Text reference of last DCL statement in this block. I 
~-------+-------------------------------------------------------------------------------f I 23-21 I Text reference of last ALLOCATE statement in this block. I L _______ ~ _______________________________________________________________________________ J 

Figure 5.71. Block headers 

604 Licensed Material - Property of IBM 



r-------T-----------~-------------------------------------------------------------------1 
I Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------f 
I 0-5 I IStandard header - refer to figure 5.60. f 
~-------+-----------+-------------------------------------------------------------------1 
I 6-7 I ZLC IBlock level and count. I 
~-------+-----------+-------------------------------------------------------------------f 
I 8-12 I ZPBCHN IText reference of the next item on the entry pOint, DCL, DFT, or I 
I I IALLOC chain for this block. The chains are back-pointing. Each I 
I I lentry-point chain is headed by a PROC, BEGIN, or ONB statement. I 
I I IThe remaining items in entry chains are ENTRY statements. I 
~-------+-----------+---------------TT---------------TT---------------~T----------------f 

I I II II II 
I IPROC or ENTRY I I BEGIN or ONB IIDCL or DFT IIALLCCATE 
I I I I II II 

13- I ZPBLBL ILabel list I I Label list II I I Label list 
I I containing all II containing the II II 
I lentry names forlfGSL only (refer I I II 
I Ithis statement. I Ito figure 5.63)11 II 
I I II II II 
I IStatement body. I I I I Statement body. I I Statement body. 
I I II II II 
I I Semicolon. II Semicolon. II Semicolon. IISemicolcn. 

-------~-----------~---------------~~---------------~---------------~~----------------
Figure 5.12. Statements in the dictionary text stream 

Declaration Expressions Text Stream, on output from Phase GE 

This is a second Type-1 text stream., on separate text pages, containing the following 
declaration expression types: 

• Array bounds and adjustable string length expressions .• 

• INITIAL assignments. 

• Locator qualifier expressions. 

• DEFINED item expressions. 

r-------~--------T----------------------------------------------------------------------1 
I Bytes r Symbol I Meaning I 
~------+--------+----------------------------------------------------------------------i I 0 I DPHCDE I Text code byte (SN2). r 
~-------+--------+------------------------------------------------y---------------------f 
I 1-3 I DPHPREVI Track address of previous page. I Chain field. I 
~-----~-+--------+------------------------------------------------1 r r 4 -5 r DPHCHNI Offset in previous page. I I L-______ ~ ________ ~ ________________________________________________ ~ _____________________ J 

Figure 5.73. Page sub-headers 

r-------T--------T----------------------------------------------------------------------1 
I Bytes I Symbol I Meaning I 
~-------+--------t----------------------------------------------------------------------~ lor DBHCDE I Text code byte (SN2). r 
~-------+--------+----------------------------------------------------------------------f I 1 1 , Text code byte (PROC/BEGIN). I 
~-------+--------+----------------------------------------------------------------------1 
I 2-3 I DBHLe I Block level and count. I 
~-------+--------t----------------------------------------------------------------------f I 4 I I Semicolon. I L _______ ~ ________ ~ ___________________________ -----------________________________________ J 

Figure 5.14. Block headers 

Licensed Material - Property of IBM Section 5: Data Area Layouts 605 



r-------T--------T----------------------------------------------------------------------, 
I Bytes I Symbol 1 Meaning I 
~-------+--------+----------------------------------------------------------------------~ 
I 0 I DBASE I Text code byte (SN2). I 
~-------+--------+----------------------------------------------------------------------~ 
I 1 I t Text code byte (PTS/OFFA~. I 

~-------+--------+----------------------------------------------------------------------1 I 2-3 I DBASDR t Dictionary reference of base (PTS statement), or AREA to which the I 
I I I OFFSET attribute applies (OFFA statement). I 

~-------+--------t----------------------------------------------------------------------1 I 4- I t Qualifier expression. I 
I I I I 
I t I Semicolon. I L _______ ~ ________ ~ ______________________________________________________________________ ~ 

Figure 5.75. Locator qualifier statements 

r-------T--------T----------------------------------------------------------------------, I Bytes I Symbol I Meaning I 
~-------+--------+----------------------------------------------------------------------1 
I 0 I POSDESTI Text code byte (SN2) I 
~-------+--------+----------------------------------------------------------------------~ I 1 I I Text code byte (POSX~. I 
~-------+--------+----------------------------------------------------------------------1 I 2-3 I POSDR t Dictionary reference of the DEFINED item. I 
~-------+--------t----------------------------------------------------------------------~ I 4- I t POSITION expression. I 
1 I I I 
I I I Semicolon. I L _______ ~ ________ ~ ______________________________________________________________________ 1 

Figure 5.76. POSITION attribute statements 

r-------T--------T----------------------------------------------------------------------1 I Bytes I Sy~bol 1 Meaning I 
~-------+--------+----------------------------------------------------------------------1 
I 0 1 DMl 1 Text code byte (SN2). I 
~-------+--------+----------------------------------------------------------------------~ I 1 I DM2 I Text code byte (X'52'). I 
~-------+--------+----------------------------------------------------------------------1 I 2-3 I DMAPDR I Dictionary reference of DEFINED item. I 
~-------+--------+----------------------------------------------------------------------i I 4- I I Expression. 1 
I I t Semicolon. I L _______ ~ ________ ~ ________________________________ --____________________________________ J 

Figure 5.17. "Simple defined' items, with base known at compile time 

r-------T--------T----------------------------------------------------------------------, I Bytes I SymbOl I Meaning I 
~-------+--------+----------------------------------------------------------------------~ 
I 0 I DEDASN I Text code byte (SN2). I 
~-------+--------+----------------------------------------------------------------------1 
I 1 I 1 Text code byte (LDSAN). I 
~-------+--------+----------------------------------------------------------------------~ I 2-3 I DASNDR I Dictionary reference of the DEFINED item. I 
~-------+--------+----------------------------------------------------------------------1 I 4- I 1 Expression. I 
I I I I 
I I 1 Semicolon. I L _______ ~ ________ ~ ____________________________________ -----------_______________________ J 

Figure 5.78. ·Simple defined" items, with base known at prologue execution 

606 Licensed Material - Property of IBM 



r-------T--------T----------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+--------t----------------------------------------------------------------------~ 
I 0 I DEDPTS I Text code byte (SN2). / 

~-------t--------t----------------------------------------------------------------------1 
I 1 I I Text code byte (PTSD). I 
~-------+--------t----------------------------------------------------------------------~ I 2-3 / DPTSDR I Dictionary reference of the DEFINED item. / 
~-------+--------+----------------------------------------------------------------------1 
/ 4- I I Expression. J 
/ / / / 
/ / I Semicolon. I L _______ ~ ________ ~ ____________________________________ - _______ ~-------------------------~ 

Figure 5.79. GSimple defined- item, with base not known until reference at execution 
time 

r-------T--------T--------------------------------------------------------------------, 
/ Bytes / Symbol I Meaning I 
~-------+--------t--------------------------------------------------------------------~ 
I 0 I DEDSUBSI Text code byte (SN2). / 

~-------+--------+--------------------------------------------------------------------1 
I 1 / / Text code byte (DSUBS). I 
~-------+--------t--------------------------------------------------------------------~ I 2-3 1 DSUBSDRl Dictionary reference of the DEFINED item. / 

~-------+--------+--------------------------------------------------------------------1 I 4- I I Expression. I 
I I , , 
I I I Semicolon. I L _______ ~ ________ ~ ____________________________________________________________________ J 

Figure 5.80. iSUB-defined items 

r-------T--------T----------------------------------------------------------------------, 
/ Bytes '/ Symbol , Meaning I 
~-------+--------+----------------------------------------------------------------------~ I 0 I DINCD I Text code byte (SN2). I 
~-------+--------+----------------------------------------------------------------------i 
/ 1 / / Text code byte ( INASSN) • I 
~-------+--------t----------------------------------------------------------------------~ I 2-3 I DINVAR I Dictionary reference of the variable. I 
~-------+--------+----------------------------------------------------------------------1 I 4 I I Text code byte (ASSN/CALL). I 
.-------t--------t----------------------------------------------------------------------f I 5- I 1 Expression. I 
I / I Semicolon. / L _______ ~ ________ ~ ______________________________________________________________________ J 

Figure 5.81. INITIAL aSSignment expressions 

Licensed Material - Property of IBM Section 5: Data Area Layouts 607 



r-------~--------T----------------------------------------------------------------------, 
I Bytes I Symbol 1 Meaning I 
~-------+--------+----------------------------------------------------------------------f I 0 I DECDE I Text code byte (SN2). I 
~------+--------+----------------------------------------------------------------------~ I 1 I DETYPE I Text code byte (AGGASSN). I 
~-------+--------+----------------------------------------------------------------------f I 2 I I Text code byte (DREF). I 
~-------+--------+------------------------------------------------T---------------------~ 
I 3 I DEDV I Dictionary code byte (X·I0·) indicating that I Six-byte reference 
I I I this is a reference to an aggregate table I to an adjustable 
I I I offset. I extept. 
~-------+--------+------------------------------------------------~ 
I q I I I 
~-------t--------+------------------------------------------------~ 
I 5-6 I DEOFFS 1 Offset in object-time aggregate descriptor at I 
I I I which the result of the expression is to be I 
I I I stored. I 
~-------+--------+-------------------------------~----------------i I 7-8 1 DEAGRF I Dictionary reference of the aggregate table fori 
I I I this variable. I 
~-------+--------+------------------------------------------------~---------------------f I 9 I I Text code byte (ASSN) indicating that the result of the following I 
I I 1 expression is to be assigned to the field indicated by the above I 
I I I six-byte reference. I 
~-------+--------+----------------------------------------------------------------------1 I 10-11 I DECHN I Chain field, used for commoning purposes. I 
~-------+--------+----------------------------------------------------------------------f I 12-13 I DEXPNO I Expression number. I 
~-------+--------+----------------------------------------------------------------------1 I 1q-15 I DEXPL I Expression length. I 
~-------+--------+----------------------------------------------------------------------~ 
I 16- I I Expression. I 
I I I I 
I I I Semicolon. I L _______ ~ ________ ~ ______________________________________________________________________ J 

Figure 5.82. Adjustable extent expressions 

r-------T---------T---------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~------+---------+---------------------------------------------------------------------f I 0 I DESTRCD I Text code byte (SN2). I 
~-------+---------+---------------------------------------------------------------------1 I 1 I DESTRL I Text code byte (STRL). I 
~------+---------+---------------------------------------------------------------------f I 2-3 I DESTRVR I Dictionary reference of the variables dictionary entry. I 
~-------+---------+---------------------------------------------------------------------1 I q I DESTRASNI Text code byte (ASSN). I 
~-------+---------+---------------------------------------------------------------------i I 5- I I Expression. I 
I I I I 
I I I Semicolon. I L _______ ~ _________ ~ _____________________________________ ---------_______________________ J 

Figure 5.83. Adjustable string-length expressions for non-aggregate strings 

608 Licensed Material - Property of IBM 



r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------t-------------------------------------------------------------------------------i 
I 0 I Text code byte (SN2), indicating that this is a 'second file' statement. I 
~-------t----~-------------------------------------------------------------------------_i 
I 1 I Text code byte (INASSN). I 
~-------t-------------------------------------------------------------------------------~ 
I 2-6 I Five-byte chain field to be used by Phase IA. I 
~-------t-------------------------------------------------------------------------------i 
I 1 I Text code byte (DREF). I 
~-------t-------------------------------------------------------------------------------i 
I 8-13 I Six-byte reference to the variable. I 
~-------t--------------------------------------------------T---------------------------_i 
I 14 I Text code byte (ATRM). I Not used if the variable I 
~-------t--------------------------------------------------~ is not in an aggregate. I 
I 15-16 I Aggregate table reference. I I 
~-------+--------------------------------------------------~---------------------------_i 
I 11 I Text code byte (ASSN-CALL). I 
~-------t-------------------------------------------------------------------------------~ 
I 18- I Expression. I 
I I I 
I I Semicolon. I L _______ ~ ______________________________________________________ ~ ________________________ J 

Figure 5.84. INITIAL assignment expressions 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
r-------i-------------------------------------------------------------------------------f 
I 0 I Text code byte (SN2). I 
~-------t-------------------------------------------------------------------------------i 
I 1 I 'Iext cede byte (X" 52') • I 
.-------+-------------------------------------------------------------------------------i 
I 2-6 I Five-byte chain field to be used by Phase IA. I 
~-------t-------------------------------------------------------------------------------i 
I 7 I Text code byte (DREF). I 
~-------t--------------------------------------------------T----------------------------~ 
I 8 I Operand code byte (X"10'). I Six-byte reference. I 
~-------t--------------------------------------------------~ I 
I 9-10 I Dictionary reference of next item on this. I I 
I I alignment chain. I I 
~-------+--------------------------------------------------i I 
I 11 I Alignment of the aggregate. I I 
;-------t--------------------------------------------------~ I 
I 12-13 I Dictionary reference of the last aggregate I I 
I I mapped. I I 
~------i--------------------------------------------------~---------------------------f 
I 14 I semicolon. I L _______ ~ ___________________________________________________________ ~ ___________________ J 

Figure 5.85. MAP state~ents 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------t-------------------------------------------------------------------------------i 
I 0-9 I As described in figure 5.82. I 
~-------t----------------------------TT-------------------------------------------------i 
I 10- I Expression. II Six-byte reference to another aggregate extent I 
I I II to enable the extent referenced in bytes 3-8 to I 
I I Semicolon. II be inherited. I 
I I I I I 
I I II Expression. I 
I I II I 
I I I I Semicolon. I L _______ ~ ___________________________ ~ ________________________________________________ -J 

Figure 5.86. Adjustable extent expressions 

Licensed Material - property of IBM Section 5: Data Area Layouts 609 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~------t-------------------------------------------------------------------------------i 
I 0 I Text code byte (SN2). I 
~-------t-------------------------------------------------------------------------------i 
I 1 I Text code byte (STRL). I 
~------t-------------------------------------------------------------------------------i 
I 2 I Text code byte (DREF). I 
~-------t-------------------------------------------------------------------------------~ I 3-8 I Six-byte reference to the string variable. I 
~-------t-------------------------------------------------------------------------------i 
I 9 I Text code byte (ASSN). I 
r-------;-------------------------------------------------------------------------------~ 
I 10 I Expression. I 
I I I 
I I Semicolon,. I L--_____ ~ _______________________________________________________________ ~---------------J 

Figure 5.81. Adjustable string-length expressions for non-aggregate strings 

Text Code Bytes In Type-l Text 

r-----------------------------------------------------------------------------T---------, I First hex digit I second I 
.-----T----~----------T----------T----------T---------T-----------T----------~ hex I 
I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I digit I 
~-----t-----t----------t----------t----------t---------t-----------t----------tT--------i 
~-----t-----t----------t----------t----------t---------t-----------t----------il I 
I 0 I G I W I COMMA I I I CONCAT I ALLOC II 0 I 
~-----t-----t----------t----------t----------t---------t-----------t----------tt--------i 
I 1 I H t X I QUOTE I FMTCOL I I DIVIDE I FREE II 1 I 
~-----+-----t----------t----------t----------t---------t-----------t----------tt--------i 
I 2 I I I Y I POINT I FMTE I MAP I MULT I WAIT II 2 I 
~-----t-----t----------+_---------t----------t---------t-----------t----------tt--------i 
I 3 I J I Z I COLON I FMTF I DOEQ I PLUS I DELY II 3 I 
~-----t-----t----------t----------t----------t---------t-----------t----------tt--------i 
I 4 I K I Q) I SCOLON I FMTC I I MINUS I EXIT II 4 I 
r-----i-----i----------t----------t----------t---------t-----------t----------tt--------i 
I 5 I L I $ I PCENT I FMTA I I POWER I STOP 'II 5 I 
~-----t-----t----------t----------t----------t---------t-----------t----------tt--------i 
I 6 I M I ARK I SLPASN I FMTB I MASSN I NOT I DSPLY II 6 I 
r-----;-----i----------;----------i----------i---------;-----------;----------ii--------f 
I 7 I N I SPECIAL I RPAR I F~TF I ASSN I FPLUS I SIGNAL II 7 I 
~-----t-----t----------t----------t----------t---------t-----------t----------tt--------i 
I 8 I 0 I LOQ I SCOLON2 I FMTX I GE I PMINUS I REVERT II a I 
~-----t-----t----------t----------t----------t---------t-----------t----------tt--------i 
I 9 I P I ROQ I ATRM I FMTR I LT I LPAR I NULL II 9 I 
~-----t-----t----------t----------t----------t---------t-----------t----------tt--------i 
I A I Q I CAHl I STDMK I FMTPGE I EQ I TO I SASSN I I A I 
~-----i----_t----------t----------t----------t---------t-----------t----------tt--------i 
I B I R I CAH2 I ESTMK I FMTSKP I NE I BY I SBASSN II B I 
~-----t-----t----------t----------t----------t---------t-----------t----------tt--------i 
I CIS I RPAR2 I ANO I FMTLIN I LE I THEN I SOASSN I I C J 
r-----t-----t----------t----------t----------t---------t-----------t----------it-~------i 
I D I T I JUMP I PARD I SELECT I GT I WHILE * I RETURN II D I 
~-----t-----t----------t----------t----------t---------t-----------t----------tt--------i 
I E I U I I PCASSN I SWHEN I AND I OOWHYL I GOTO I I E I 
~-----i----_t----------t----------t----------t---------t-----------t----------tt--------i 
I F I V I SCLN3 I OFFA I FILE I OR I ELSE I GOOB II F I 
r-----~-----~----------~---------~----------~---------~-----------~----------~~--------i 
I * also WHYL I L _____________________________________________________ - ________________________________ -J 

Figure 5.88. (Part 1 of 4). Text code bytes in Type-l text (X'OO' to X'7FW) 

610 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r------------------------------------------------------------------------------T--------~ 
I First hex digit I Second I 
~----------~---------T---------T---------T---------T---------T---------T-------i ~ex I 
J 8 I 9 I A I B I C I DIE I F I digit I 
~----------t---------t---~-----t---------t---------t---------t---------t-------tT-------i 
~----------t---------t---------+---------t---------t---------t---------t-------il I 
I CALL I PROC I CHCKC I NOCHK I SKIP I CV I AGGASSN J BCF II 0 I 
~----------t---------t---------t---------t---------+---------t---------t-------+t-------i 
I IF I ENTRY I FETCH I ATTR I LINE I SYST I INASSN I LDASN II 1 I 
~----------t---------t---------t---------t---------t---------t_--------t-------tt-------i 
I FORMAT I BEGIN I RLEASE I PGSI ZE I PAGEO I SNAP I STRL I POSX II 2 I 
~----------t---------t---------t---------t---------t---------t---------t-------tt-------i 
I READ I DO I I TITLE I COpy I NOSNAP I ENDL I SINT II 3 I 
~----------+---------+---------+---------+---------t---------+---------t-------++-------i 
I WRITE I ITDO I I LNSIZE I TASKO I ISUB I SDO I II 4 I 
~----------t---------t---------t---------+---------t---------t---------t-------tt-------i 
I UNLOCK I END I I INTO I EVENTO I ARRX I SEXP I ENDSEL I I 5 I 
~----------t---------+---------t---------+_--------t---------t---------t-------t+-------i 
I DELETE I ENDDO I I FROM I PRIOR I PSV I I SOTHERI J 6 I 
~----------t---------t---------t---------t---------t---------t---------t-------tt-------i 
I REWRITE I ENDIT I I SET I REPLY I FNCT I SSPLUS I II 7 , 
~----------+---------t---------t---------+---------t---------t---------t-------t+-------i 
I LOCATE I ENDPRG I UNTIL I KEYO I FMTLST I SBAR I SPMIN I II 8 I 

~----------t---------t---------t---------t---------+---------t---------t-------+t-------i 
I GET I ENDPGE I GARG I NOLOCK I IN I SLVL I SLPAR I PTSF II 9 , 
~----------t---------t---------t---------t---------t---------t---------t-------tt-------i 
I PUT I FLWUNT I CFORM I IGNORE I KEYFM I PTS I STO I II A I 
~----------t---------t---------t---------t---------t---------t---------t-------tt-------1 
I OPEN I ONB I I FILO I KEYTO I DSUBS I SBY I SN2 II B I 
~----------t---------t---------t---------t---------t---------t---------t-------t+-------i 
J CLOSE I I I LIST I SETA I I STHEN I SN II C I 
~----------t---------t---------t---------t---------t---------t---------t-------tt-------1 
IONS I I LEAVE I EDIT I BIFZ I I OOREPT J SL I I D I 
~----------t_--------t---------t---------t---------t---------t---------t-------tt-------i 
I DCL I ENTMP I I DATA I I DREF I EEMK I GSN I I E I 
~----------t---------t---------t---------t---------t---------t---------t-------t+-------1 
I SPOSX I DOTMP I I STRING I I ERRORM I SELSE I GSL I I F I L __________ ~ ________ 4 _________ 4------___ 4 _________ ~-__ ---__ ~ ________ 4 _______ 44 _______ J 

Figure 5.88. (Part 2 of 4). Text code bytes in Type-l text (X'80 ' to X'FF') 

Licensed Material - Property of IBM section 5: Data Area Layouts 611 



r-----------------------------------------------------------------------------T---------, 
J First hex digit I Second I 
~----------T-----T-----------T----------T---------T--------T----------T-------I hex I 
J 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 J digit I 
~----------+_----+_----------t----------t---------t--------t----------t-------tT--------i 
~----------t-----+-----------+----------+---------+--------+----------t-------il I 
I LIT I I DEC I IRRED I BASED I BUFF I MAIN I I I 0 I 
~----------+-----+-----------+----------+---------+--------+----------+-------+t--------1 
I FL DC 1M I I BIN I RED I REFER I UNBUFF I REENTRNT I II 1 I 
~----------t-----t-----------t----------t---------+--------t----------t-------tt--------i 
I FL DC RL I I FLOAT I RECUR I DRFISUB I EXCL I SECONDRY I II 2 I 
~----------t-----t-----------t----------t---------t--------t----------t-------tt--------~ 
I FL BN JM I I FIXED I VARBLE I INITVAR I HEYED I ORDER I II 3 I 
~----------t-----t-----------t----------t---------+--------t----------t-------+t--------i 
I FL BN RL I I REAL I CONDA I INIT I STREAM I REORDER I II 4 I 
~----------t-----+-----------t----------t---------+--------t----------t-------tt--------~ 
I FX DC 1M I I COMPLEX I I LIKE I RECORD I COBOL I I I 5 I 
~----------t-----t-----------t----------t---------t--------t----------t-------tt--------i 
I FX DC RL I I PREC(l) I I DEF I BACK I FORTRAN I II 6 I 
~----------t-----+-----------t----------t---------t--------t----------t-------+t--------~ 
I FX BN 1M I I PREC(2) I RETURNS I UNAL I SEQ I I II 7 I 
~----------+-----t-----------t----------t---------t--------t----------t-------tt-------~i 
I FX BN RL I I VARYING I ENTRY I AL I DIRECT I ALL I I I 8 , 
~----------t-----t-----------t----------t---------t--------t----------t-------tt--------~ 
I INTEG I I PICT NUM I GENERIC I PTR I PRINT I RANGE I I ,9 , 
~----------t-----t-----------t----------t---------+--------t----------t-------tt--------i 
I iSUB I I PICT CHAR I BUILT- IN I OFFSET I ENV I VALUE I II A I 
~-----~----t-----+_----------t----------t---------t--------t----------t-------tt--------~ 
I CHARC I I CHAR I EXT I AREA I INPUT I DESCRIP I II B I 
~----------t-----t-----------t----------t---------+--------+----------t-------tt--------i 
I BITC I I BI T lINT I TASR I OUTPUT I I CSPl I I C I 
~----------t-----t-----------t----------t--------_t--------t----------t-------tt--------i 
I I I DIMS I AUTO I EVENT I UPDATE I I CSP2 II 0 I 
~----------t-----+-----------t----------t---------t--------t----------t-------tt--------i 
I I I LABEL I STATIC I POS I I I CSP3 II E I 
~----------t-----+-----------+---------_t---------+--------t----------t-------tt--------1 
I I I OPTIONS I CTL I FILE I I I CSP4 II F I L __________ ~_---~ __________ ~ __________ ~-________ ~ _____ ---~ __________ ~ _______ ~~ ________ J 

Figure 5.88. (Part 3 of 4). Text code bytes in Type-l text (X'D900' to X'D97F') 

612 Licensed Material - Property of IBM 



r------------------------------------------------------------------------------T--------, 
I First hex digit I Second I 
~----------~--------T---------T--------T---------T--------T---------T---------i ~ex I 
I -8 I 9 I A I B I C I DIE I F I di gi t I 
~----------t---------t---------t--------t---------t--------t---------t---------tT-------i 
~----------t---------t---------t--------t---------t--------t---------t---------fl I 
I OFL I NAME I NOZDIV I I I I I I I 0 I 
~----------t_--------t---------t--------t---------t--------t---------t---------tt-------i 
I UFL I ENDFILE I NOFOFL I I I I I II 1 I 
~----------t---------t---------t--------t---------t--------t---------t---------tt-------f 
I ZDIV I RECORDC I NOSt)BRG I I I I I I J 2 I 
~----------t---------t---------t--------t---------t--------t---------t---------tt-------i 
I FOFL I KEYC I NOSTRG I I I I I II 3 I 
~----------t_--------t_--------t--------t---------t--------t---------t---------tt-------i 
I SUBRG I PAGEC I NOSI ZE I I I I I II 4 I 
~----------t---------t---------t--------t---------t--------t---------t---------tt-------i 
I STRG I CSP7 I NOCONV I I I I I II 5 I 
~----------+_--------t---------t--------t---------t--------t---------t---------tt-------f 
I SIZE I CSP8 I CSP15 I I I I I II 6 I 
~----------+_--------t---------t--------t---------t--------t---------t---------tt-------i 
I CONY I CSP9 I CSP16 I I I I I II 7 I 
~----------t_--------t---------t--------t---------t--------t---------t---------tt-------i 
I ERROR I CSP10 I CSP17 I I I I I II 8 I 
~----------t---------t---------t--------t---------t--------t---------t---------tt-------i 
I FINISH I CSPll I CSP18 I I I I I II 9 I 
~----------t_--------t---------t--------t---------t--------t---------t---------tt-------i 
I AREAC I CSP12 I NOCHCK I I I I I II A I 
~----------t---------t---------t--------t---------t--------t---------t---------tt-------i 
I C~P5 I CSP13 I I I I I I I I B I 
~----------t_--------t---------t--------t---------t--------t---------t_--------tt-------i 
I CSP6 I CSP14 I I I I I I II C I 
~----------t---------t---------t--------t---------t--------t---------t---------tt-------i 
I COND I CHECKC I I I I I I II D I 
~----------t_--------t_--------t--------t--------_t--------t_--------t---------tt-------i 
I TRANSMIT I NOOFL I I I I I I II E I 
~----------t_--------t---------t--------t---------t--------t---------t---------tt-------i 
I UNDEF I NOUFL I I I I I I II F I L-_________ 4_ ________ ~ _________ ~ _______ 4__ _______ ~ ________ 4_ ________ 4_ ________ ~ ______ _J 

Figure 5.88. (Part 4 of 4). Text code bytes in Type-l text (X'D980' TO X'D9FF') 

Licensed Material - Property of IBM Section 5: Data Area Layouts 613" 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

TYPE-2 TEXT FORMATS 

The Type-2 text stream is created by Phase II, which inserts overflow page index tables, 
and breaks down each Type-l text statement into a statement header table and a numher of 
general usage tables. These general usage tables are referred to as Type-2 text tables, 
the others in the Type-2 text stream being referred to by their specific names, e.g., 
overflow page index tables, etc. Tables may be inserted into and deleted from text 
throughout Type-2 text processing. The following general types of table may exist in 
Type-2 text: 

• Overflow page index tables - Occupy the first 32 bytes of the processable-data region 
in each page (see figure 5.2), throughout Type-2 
text processing. 

• Statement header tables - One table is generated by Phase II for each Type-l text 
statement found. See figure 5.90. 

• Type-2 text tables - Generated and deleted during Type-2 text processing (Phase II to 
SD). The format of Type-2 text tahles is shown in 
figure 5.92. The different types are shown in 
figure 5.96. 

• Flow-unit header tables - Inserted into text by Phase OE, for optimization purposes. 
See figure 5.98. 

• Hash tables - Inserted into text by Phase OE, for optimization purposes. See figure 
5.100. 

The following figures are included under the heading "Type-2 Text-: 

Figure 5.89. Operator code bytes (IOP1) in Type-2 text (X'OO' to X'7F) 
(X'80' to X'FF') 

Figure 5.90. 
Figure 5.91. 
Figure 5.92. 
Figure 5.93. 
Figure 5.94. 
Figure 5.95. 
Figure 5.96. 
Figure 5.97. 
Figure 5.98. 
Figure 5.99. 
Figure 5.100. 

Statement header tables 
Format of PROC/ENTRY tables in Type-2 text 
Format of Type-2 text tables 
Format and usage of the general area of Type-2 text tables 
Use of the IGEN2 byte 
Use of the IGEN27 byte 
Usage of operands in Type-2 text tables 
content of Operand 2 of a SUBSl table after PRase KE 
Format of flow-unit headers from Phase OE to Phase 01 
Format of flow-unit headers after Phase 01 
Format of hash tables in Type-2 text 

61q Licensed Material - Property of IBM 



r----------------------------------------------------------------------------T----------l 
I First hex digit I Second I 
~---------T--------T--------T---------T---------~---------T---------T--------~ hex I 
I a I 1 I 2 I 3 I 4 I 5 I 6 I 7 I digiti 
~---------t--------f--------f---------+---------f---------+---------f--------fT---------~ 
~---------f--------f--------+---------+---------f---------+---------+--------i I I 
I I I CGSR I I ASSNEX I 003 I CONCAT I ALLOC I I a I 

~---------t--------+--------+---------+---------+---------+---------+--------++---------~ 
I I I LLAD I RESDES I I PSV2 I DIVIDE I FREE II 1 I 

~---------+--------f--------+---------+---------f---------+---------f--------f+---------~ 
I I I VDA I I I MAP I MULT I WAIT I I 2 I 

~---------+--------t--------t---------+---------+---------+---------+--------++---------~ 
I I I SHIFT I I I I PLUS I DELAY I I 3 I 

~---------+--------+--------+---------+---------+---------+---------+--------++---------1 
I I I LADDR I I I 001 I MINUS I EXIT I I 4 I 

~---------t--------+--------t---------t---------+---------t---------+--------+t---------i 
I I I I I I D02 I POWER I STOP II 5 I 

~---------+--------+--------+---------+---------+---------+---------t--------++---------~ 
I I I 10FFS I I MASSN I NOT I DSPLAY II 6 I 

~---------t--------+--------t---------t---------+---------t---------t--------tt---------i 
I I I COMP I I I ASSN I PPLUS I SIGNAL I I 7 I 

~---------+--------+--------+---------+---------+---------+---------f--------+t---------~ 
I I I BGE I I I GE I PMINUS I REVERT II 8 I 

~---------t--------+--------t---------+---------+---------t---------t--------++---------i 
I I I BLT I I I LT I I NULL II 9 I 

~---------t--------+--------+---------+---------+---------+---------+--------f+---------~ 
I I I BEQ I GEN I I EQ I DINC I I I A I 

~---------+--------+--------t---------t---------+---------t---------t--------++---------i 
I I I BNEQ I I I NE I SCI I I I 9 I 

~---------+--------+--------+---------t---------+---------+---------+--------++---------~ 
I I I BLE I CONV I I LE I I I I C I 

~---------+--------+--------t---------t---------+---------t---------t--------++---------i 
I I I BGT I NDX I I GT I WHILE I RETURN II D I 

~---------+--------+--------+---------+---------+---------t---------+--------++---------f 
I DROSS I I BCB I I I AND I DOWHYL I GOTO II E I 

~---------+--------+--------t---------+---------+---------+---------+--------++---------~ 
I MGT I GHOST I BC I BADDR I lOR I I GOOE II F I l _________ ~ ________ ~ ________ ~ _________ ~ _________ ~ _________ ~ _________ ~ ________ ~~ _________ J 

Figure 5.89. (Part 1 of 2). Operator code bytes (IOP1) in Type-2 text (X'OO' to X'7F') 

Licensed Material - Property of IBM Section 5: Data Area Layouts 615 



r----------------------------------------------------------------------------T----------, 
I First hex digit I Second I 
r---------T--------T--------T---------T---------T---------T---------T--------~ hex I I 8 I 9 I A I B I C I DIE I F I digit I 
~---------T--------t--------t---------t---------t---------+---------+----~---+T---------~ 
~---------t--------+--------+---------t---------+---------+---------t--------~I I 
I CALL I PROC I CHECKC I NOCHK I I I I SUBS1 II 0 I 

r---------t--------t--------t---------t---------t---------t---------f--------ff---------f 
I IF I ENTRY I I I I I I SUBS II 1 I 

~---------+--------t--------+---------t---------t---------+---------+--------tt---------~ 
I I BEGIN I I I I I DEL I DEL I I 2 I 
r---------t--------f--------t---------t---------f---------t---------f--------ff---------f 
I READ I I CHANE I I I I I SINIT II 3 I 
~---------t--------t--------+---------t---------t---------+---------+--------ff---------~ 
I WRITE I ITDO I TRT I I I I I ALIST II 4 I 
r---------f--------t--------t---------f---------t---------f---------t--------ff---------f 
I UNLOCK I I ONCAD I I EVENTO I I I I I 5 I 
~---------t--------+--------t---------f---------f---------t---------t--------tt---------i 
I DELETE I I ALOBIF I I I PSV I I II 6 I 

~---------+--------t--------t---------+---------f---------+---------f--------++---------~ 
I REWRITE I ENDIT I ACCUM I I REPLY I FNCT I I BIF II 7 I 

r---------t--------t--------t---------t---------f---------+---------t--------tt---------~ 
I LOCATE I ENDPRG I I I FMTLST I I I KONST II 8 ,I 
r---------f--------t--------f---------t---------f---------t---------f--------ff---------f 
I GET I ENDPGE I I I I I I PTSAT II 9 I 
r---------t--------f--------t---------t---------t---------+---------+--------t+---------~ 
I PUT I FLWUNT I I I I PTS I I PINIT II A I 

r---------t--------f--------t---------t---------t---------t---------f--------ff---------f 
I OPEN1 I ONB I FITE I I I DSUBS I I GSL2 I I B I 

~---------t--------t--------t---------t---------t---------+---------+--------++---------1 
I CLOpE I STPG 1 FIT I I I ARG I I SN II C I 

~---------t--------+--------+---------+---------+---------+---------+--------++---------f 
IONS I HASH I AID I 1 1 DLIST I I SL II D I 
~---------+--------+--------+---------+---------+---------t---------t--------++---------~ 
I I MOVE I ENDAID I DATAE I FORME I DSUBS1 I I GSN II E I 
r---------t--------t--------t---------t---------f---------t---------f--------ff---------f 
I I PEND I IASSN I I EVO I DSUBSL I I GSL II F I l _________ ~ ________ ~ ________ ~ _________ ~ _________ ~ _________ ~ _________ ~ ________ ~~ _________ J 

Figure 5.89. (Part 2 of 2). Operator code bytes (lOP1) in Type-2 text (X'·80· tc 'FF') 

r-------T--------T----------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------t--------+----------------------------------------------------------------------f 
I 0 I ISLN I Text code byte (SN or SL). I 
~-------T--------+----------------------------------------------------------------------~ 
I 1 I ISTMT I Text code byte, indicating statement type (as for Type-1 text, I 
I I I see figure 5.89). I 
r-------t--------t----------------------------------------------------------------------1 
I 2-3 I IPOPT I Prefix options on the statement. (As for ZPOPT in Type-1 text. I 
I I I see figure 5.6C.). I 
r-------t--------t----------------------------------------------------------------------1 
I 4-5 I lLABL I General dictionary reference of the statement label. I 
r-------t--------t----------------------------------------------------------------------f 
I 6-10 I ITCHN I Text reference: first statement-type chain field. I 
r-------t--------t----------------------------------------------------------------------i 
1 11-15 I ITCHN2 I Text reference: second statement-type chain field. I 
r-------f--------t----------------------------------------------------------------------f 
I 16-17 I ILC 1 Block level and count. I L _______ ~ ________ ~ ______________________________________________________________________ J 

Figure 5.90. (Part 1 of 2). Statement header tables in Type-2 text 

616 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Hevised by TNL LN33-6175, October 1976 

r-------T--------T----------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------t--------t----------------------------------------------------------------------~ 
I 18-19 I IFUNO I Flow-unit number. I 
~-------t--------t----------------------------------------------------------------------i 
I 20-21 I ISNO I statement number. I 
~-------t--------t_---------------------------------------------------------------------~ 
I 22 I ISF I Flag byte: I 
I I I 1... Phase OE is to create a new flow unit. I 
I I I .1.. No epilogue is required for this END statement. I 
I I I .. 1. The GSL appears at the end of a do-loop. I 
I I I ... 1 The GSL represents an entry point. I 
I I I 1 ••• The GSL delimits a 'black box' EDIT I/O. I 
I I I .1 •• The GSL indicates an abnormal termination point, I 
I I I for example termination of stream I/O statements. I 
~-------t--------+----------------------------------------------------------------------~ 
I 23-27 I ITCHN3 I Text reference: DO statement chain field/SELECT level and count. I 
~-------t--------t----------------------------------------------------------------------i 
I 28-29 I I Not used. I 
~-------t--------+----------------------------------------------------------------------~ 
I 30-31 I IFCHN I Forward chain field, as for the Type-2 text table. I L _______ L-_______ ~ _____________________________________ ---------------_________________ J 

Figure 5.90. (Part 2 of 2). statement header tables in Type-2 text 

r-------T--------T----------------------------------------------------------------------1 
I Bytes I Symbol I Meaning I 
~-------t--------t----------------------------------------------------------------------~ 
I 0 I IOPl I Text code byte - PROC (X" 90" )/ENTRY (X' 91' ). I 
~-------+--------+----------------------------------------------------------------------i 
I 1 I IOP2 I second byte of operator (IOP2) - refer to PROC/ENTRY in figure 5.96. I 
~-------t--------+----------------------------------------------------------------------~ 
I 2-3 I IPLAB2 I Apparent entry label. I 
~-------+--------t----------------------------------------------------------------------i 
I 4-5 I IBH I Dictionary reference of block header entry. I 
~-------t--------+----------------------------------------------------------------------i 
I 6-7 I IEH I Dictionary reference of entry-point entry. I 
~------t--------t----------------------------------------------------------------------i I 8~11 I IDSASZ I size of variable part of dynamic storage area (DSA). I 
~-------+--------t_----------------~----------------------------------------------------~ 
I 12-13 I IPLAB1 I GSL (compiler prologue label) - real entry label. I 
~-------t--------+----------------------------------------------------------------------i 
I 14-15 I IPBSE I Procedure box number. I 
~-------+--------t----------------------------------------------------------------------~ 
I 16-17 I ILC I Block level and count. I 
~-------t--------t----------------------------------------------------------------------i 
I 18-19 I HSKSZ I size of Rousekeeping storage. I 
~-------t--------t_---------------------------------------------------------------------~ 
I 20-21 I I Not used. I 
~-------t--------t----------------------------------------------------------------------i 
I 22-23 I IONOFF I Offset of first ON cell. I 
~~------t--------+_---------------------------------------------------------------------~ 
I 24-25 I IST2 I see figure 5.93. I 
~------t--------t_--------------------------------------------------------------------~ 
I 26-27 I IONND I Number of cells. I 
~-------+--------t----------------------------------------------------------------------~ 
I 28-29 I IPAMS I Size of the parameter area. I 
~-------t--------t----------------------------------------------------------------------i 
I 30-31 I I Not used. I L _______ L-_______ ~ _____________________________________________________________________ -J 

Figure 5.91. Format of PROC/BEGIN/ONB/ENTRY tables in Type-2 text 

Licensed Material - Property of IBM Section 5: Data Area Layouts 617 



r-------T--------T----------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~-------+--------+-----------------------------------------------------------T----------i 
I 0 I IOPl I Text code byte indicating type of table. I Operator. I 
I I I See figure 5.89. I I 
~-------+--------+-----------------------------------------------------------i I 
I 1 I IOP2 I Second byte of operator, subdividing within type. See I I 
I I I the particular table (figure 5.96) for usage. IOP2 may I I 
I I I be overlaid by IGEN2 (see figure 5.94) during I I 
I I I optimization. I I 
~-------+--------+-----------T----------------------------------------~------~----------i 
I 2-1 I IOPNDl I Operand 1.1 Usage of these operand fields depends on the text table I 
~-------+--------t-----------i type, which is indicated by the operator. Details of I 
I 8-13 I IOPND2 I Operand 2.1 usage are shown in figure 5.96. I 
~-------+--------t-----------i I 
I 14-19 I IOPND3 I Operand 3·1 I 
~-------t--------+-----------~---------------------------------------------------------i 
I 20-21 I ISTNO I Statement number. I 
~-------+--------+----------------------------------------------------------------------i 
I 22-31 I I General area, usage of which depends on the stage of compilation I 
I 1 I (see figure 5.93). I L _______ ~ ________ ~ ______________________________________________________________________ J 

Figure 5.92. Format of Type-2 text tables 

r-------------------------T-----------------------T-------------------------------, 
1 Statement processing I Storage allocation 1 Register assignment I 
1 and optimization 1 I I 

r-----+----------T--------------+--------~-------------t------T----T-------------------i 
I Bytes I Symbol I Meaning I Symbol 1 Meaning I Symbol 1 Bits I Meaning I 
~-----t----------t--------------+--------t--------------t------t----t-------------------f 
I 22 I IHCHN I Hash chain I IBAl I Base IINDXA 10-3 I I 
I 1 1 field (used I 1 number for 1 14-1 IIndex register I 
I 1 I during opti- I I operand 1. I I 1 number for operand I 
I 1 I mization). I I I 1 11, if required. I 
~-----i I 1 1 ~------t----+-------------------i 
I 23 I 1 I I IINDXB 10-3 IIndex register I 
I 1 1 I I 1 1 I number for operand I 
I I I I I I I 12, if required. I 
I I I I 1 1 14-1 1 Index register I 
I 1 1 I I I 1 I number for operand I 
1 1 I 1 1 I I 13, if required. I 
~-----+----------+--------------~--------~-------------~------~---~------------------i 
I 24 I IST2 I Status flag byte, set during statement processing, and used in later I 
I I I stages for selecting work-register independent instructions from I 
I I I skeletons. IST2 is set according to the type of ~able and its usage I 
I I I of operands. See figure 5.96. I 
~-----t----------t_---------------------------------------------------------------------i 

25 I FLAG 1 The IFLAG fields relate to the corresponding operands, and are used 

1 ••• 
• 1 •• 
•• 1. 
• • • 1 

1 •.. 
. 1 •• 
· .1. 
••• 1 
· .. 1 
• •• 1 

to enable processing of operands by common routines, where possible. 
Their bits are used as follows: 

~ DED is required for this operand at execution time. 
~his operand does not reference the constants pool • 
Conversion is required for this operand • 
Symbol table required (ARG tables only) • 
Locator required. 
No conversion required for constant • 
No locator required. 
Float conversion required for arithmetic constant • 
Static ONCB required (ONS tatles only). 
FETCH control block required (ARG tables only). 

IFLAGl may be overlaid by IGEN21 (see figure 5.95) during register 
ass igmrent • _____ L __________ ~ _____________________________________________________________________ -J 

Figure 5.93. (Part 1 of 2). Format and usage of the general area of Type-2 text tables 

618 Licensed Material - Property of IBM 



r-------------------------T-----------------------T-------------------------------, , Statement processing , Storage allocation 1 Register assignment I 
1 and optimization , , , 

r-----t----------T--------------t--------~--------------t------T----~-------------------i 
,Bytesl Symbol I Meaning I Symbol I Meaning ISymbollBitslMeaning I 
~-----t----------+--------------t--------t--------------t------t----t-------------------~ 
,26 ,IFLAG2 I Flag byte fori IBA2 ,Base IIREGl 10-3 IWork register I 
I I I operand 2 I I number for I 1 I (operand 1). 1 
I 1 I (see IFLAG1). I , operand 2., 14-7 ,Base register , 
1 1 1 I 1 1 I I (operand 1). I 
~-----t----------+--------------~ I ~------+----+-------------------~ 
I 21 I IFLAG3 I Flag byte fori I IIREG2 10-3 IWork register 1 
1 II operand 3 I I I I I (operand 2). I 
'I I (see IFLAG1). I I I 14- 7 IBase register I 
I I I I I I I I (operand 2). I 
~-----t----------t--------------t--------+--------------+------+----t-------------------~ 
I 28 I IBCHN 1 Text table I IBA3 I Base IIREG3 10-3 IWork register I 
'I I back-chain I I number for I I I (operand 3). I 
I I I field. I , operand 3., 14- 7 I Base register , 
" I " 1 1 I (operand 3). I 
~-----i 1 I 1 ~------f----+-------------------~ 
I 29 I I 1 1 I IST1 10-7 ,Status flag byte I 
I I I I I "Iconcerning register, 
I I I I I I I I usage. I 
~-----t----------+--------------t--------t--------------t------t----t-------------------1 
I 30 I IFCHN 1 Text table I' I I 1 1 
I I I forward- I' 1 I I I 
'I , chain field. I I I 1 I I 
~-----~ , I I I I I I 
I 31 I 1 I 1 I I I 1 L _____ ~ __________ L ___ - __________ ~ ________ ~ ______________ ~ ______ ~ ____ ~ ___________________ J 

Figure 5.93. (Part 2 of 2:). Format and usage of the general area of Type-2 text tables 

r------T----------------------------------, r------T----------------------------------, 
I Bits I Meaning if on 1 I Bits I Meaning if on I 
~------f----------------------------------~ ~------t----------------------------------~ 
I 0 I The loop control variable is I I 0 I Execution-time OED required for I 
, I set. I I I operand 1. I 
~------+----------------------------------~ ~------t----------------------------------i 
I 1 I The loop has non-constant I I 1 I Execution-time OED required for I 
I I bounds. I I I operand 2. 1 
~------t----------------------------------~ ~------+----------------------------------i 
I 2 I The table is to be ignored. , I 2 1 Execution-time OED required for 1 
~------t----------------------------------i I I operand 3. I 
I 3-7 I Not affected. I ~------+----------------------------------1 ~ ______ ~ __________________________________ J 

,3-7 I Not affected. , 
Figure 5.94. Use of the IGEN2 byte 

L ______ ~ __________________________________ J 

Figure 5.95. Use of the IGEN21 byte 

Licensed Material - Property of IBM Section 5: Data Area Layouts 619 



Figure 5.96 shows the main features of the operands used in the various types of Type-2 
text tables, and indicates the uses of those text tables. An attempt has been made to 
indicate the phases that create and delete (or replace) the text tables. However, some 
types of text tables are created by a number of phases; in such cases, only the first 
phase that generates them may be shown. 

620 Licensed Material - Property of IBM 



r------------T--------------T-------------r--------------T------------------------T-----' 
I operator I Operand 1 I Operand 2 I Operand 3 I comments I Phase I 
~-------T----i I I I ~--T--f 
I IOP1 IIOP2 1 I I I IcrlD11 
~-------t----t--------------t-------------+--------------+------------------------+--+--1 
I ACCUM 100 IVariable. I I IAccumulator for size I!AIIQI 
I A 7 I I I I lof VDA. I I I 
I I .--------------+-------------t--------------t------------------------t--+--1 
I I Ivariable or I I Index temp. IAccumulator for variahlelOEIQEI 
I I ,temp_ , I ,incremented in a loop. I I I 
~-------+----+--------------+-------------+--------------+------------------------+--+--1 
lAID Iteration. Null. Array. IThe IASSN table init- lIIKEI 
lAD factor. lializes the next op- IPAI 
I lerand 2 elements of the I I 
I I array in operand 3 with I I 
I I the initial value in I I 
I loperand 1. If more than I I 
I lone level of iteration I I 
I I factor occurs in the I I 
I I source, then AID and I I 
I I ENDAID tables mark the I I 
I Ilimits of the iteraticn I I 
I I factors. I I 
~-------t----t--------------t-------------t--------------t------------------------+--+--1 
IALIST 100 INumber of IPost-PA: largument list IStart of an argument IIIISDI 
IF4 I larguments in IOffset of lidentifi- Ilist for a procedure or I I I 
I lithe list. larg. list in Ication number Ilibrary call. I I I 
I I I I static I I I I I 
I ~----i .-------------i ~------------------------+--1 I 
I 101 I I 1 IALIST for function call. I I I 
~-------+----t--------------+-------------+--------------t------------------------t--t--f 
IALLOC 100 lIN option ISET option IALLOCATE var- IALLOCATE (CONTROILED/ 1111 I 
170 I Ispecifi- Ispecifi- liable spec- IBASED variable). I I I 
I I I cation. Ication. Ification. I I I I 
~-------t----+--------------+-------------t--------------+------------------------+--+--1 
IALOBIF 100 I Controlled INull. I Fixed-binary IALLOCATION bif. IKKISDI 
IA6 I Ivariable. I I target. I I I I 
~-------+----+--------------t-------------t--------------t------------------------t--+--1 
lAND 100 I Fixed-length IFixed-length IResult IBit string ANDing II SC 
5E I Ibit string. Ibit string. 1«2049 bits)~ I operations: 

~----+--------------t-------------+--------------10p3 = Opl&Op2. 
103 1 Fixed-length IFixed length IResult IThese tables generate 
1 Ibit string. Ibit string. 1(>2048 bits). Ithe same code as MOVE 
.----+--------------t-------------t--------------1tables with correspond-
105 INUII. I Immediate ITarget. ling IOP2 (with NC in-
I I Ifield. I Istead of MVC instruct-
.----+--------------+-------------+--------------1ions). Operands 1. and 
lOA 1 adjustable IFixed-length IResult. 12 are converted to bit 
I land/or VARY- Ibit string I Istring form if 
1 lING bit 1«2049 bits).1 I necessary. 
1 I string. I I I 
.----+--------------+-------------t--------------1 
lOB IShort «2049 ILonger VARY- I I 
I Ibits) VARYING lING bit I I 
I Ibit string. Istring. I I 
~----+--------------+-------------+--------------i 
10C IAdjustable or IShort or I I 
I Ishort «2049 Ishorter VARY-I I 
I Ibits) VARYING lING bit I I 
I Ibit string. I string. I I 

-------~----~--------------~-------------~--------------~------------------------~--~--
Figure 5.96. (Part 1 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM Section 5: Data Area Layouts 621 



r------------T--------------T-------------T--------------T------------------------T-----' 
I operator I Operand 1 I Operand 2 I Operand 3 I comments IPhasel 
~-------T----i I I I ~--T--t 
IlOP1 IlOP21 I I I IcrlDll 
~-------+----+--------------+-------------+--------------+------------------------+--+--~ IARG 100 I Argument IPosition in 10ffset of IArgument table, deleted IIIISDI 
IDC I I largument listllist element. Iby PA if the argument 1 I I 
I I I I I I is STATIC. I I I 
1 ~----+--------------+-------------+--------------+------------------------+--~ I I 101 IArgument. IPosition in IArgument list IArgument table for a IRQI I 
I I I largument listlidentificationlnew temporary argument. I I I 
I I I I I number. I I I I 
I ~----+--------------+-------------+--------------+------------------------+--+--~ 
I 102 10perand. I I 10perand not referenced IPCIPAI 
I I I I I I in source, requiring a I I I 
I I I I I Ilocator for DATA- I 1 I 
I I I I I I directed I/O. I I I 
t ~----+--------------+-------------+--------------+------------------------+--+--~ I 103 I Controlled IPosition in largument list largument list used for I I I 
I I I argument. I argument. lidentificationluments to controlled I I I 
I I I Ilist. I number. luments to controlled I I I 
I 1 I I I I parameters. I I I 
~-------+----+--------------+-------------+--------------+------------------------+--+--1 
ASSN 100 Isource - I ITarget - IBinary assignment, with 1111 I 
51 I I binary I I binary Ipl=p3, ql=q3. I I I 

I I<Pl,q1). I l(p3,q3). I I I I 
~----+--------------+-------------+--------------+------------------------f--f--~ 
101 ISource - I ITarget - IBinary assignment, with I ISQ 
I Ibinary I I binary Iql<=q3. I I 
I I(pl,ql). I l(p3,q3). I I I 
I I I I IIST2 is used as I I 
I I I I I follows: I I 
I I I I I I I 
1 I I I I· ••••• 1. (pl-ql» I I 
I I I I I (p3-q3) • I I 
I I I I I • • •• • •• 1 S I Z E is on. I I 
~----+--------------+-------------+--------------+------------------------+--1 102 ISource - I Rounding ITarget - IBinary assignment, with I I 
I I binary I constant. I binary Iql>q3. I I 
I I (pl, ql' • I I (p 3, q 3' • I I I 
I I I I IIST2 is used as shown I I 
I I I I Ifor IOP2=X·01-. I I 
~----+--------------+-------------+--------------+------------------------f--f 
103 ISource - 1 ITarget - IFloat assignment, with 1 I 
1 Ifloat (p1~. I Ifloat (p3'. Ipl .... =p3. I I 
I 1 I I I I I 
I I I I I IST2: I I 
I 1 I I I I I 

I I I I I I • • •• • •• 1 p3>pl. I I I L _______ L ____ L ______________ L _____________ L ______________ L ________________________ ~ __ L __ J 

Figure 5.96. (Part 2 of 32'. Usage of operands in Type-2 text tables 

622 Licensed Material - Property of IBM 



r------------T--------------T-------------~--------------T------------------------T-----' 
I Operator I Operand 1 I Operand 2 I Operand 3 I comments I Phase I 
~-------T----i I I I f--T--i 
IIOP1 IIOP21 I I I ICrlDll 
~-------+----+--------------+-------------+----~---------+------------------------f--f--~ 
IASSN 104 ISource - I ITarget - IDecimal assignment with 1111 I 
57 I I decimal I I decimal I p1=p3 and q1=q3. I' I 

I l(p1,q1). I l(p3,q3). I , I I 
(contd) I I I I I I I I 

~----+--------------+-------------+--------------+------------------------i ~--~ 
105 ISource - I Invocation ITarget - ILabel assignment. I ISQ 
I I label I pointer. I label I I I 
I I constant. I I variable. I I I 
~----+--------------+-------------+--------------+------------------------i I 
106 ISource - I ITarget - IFloat assignment with I I 
I Jfloat (p1). I Ifloat (p3). Ip1=p3. I I 
~----+--------------+-------------+--------------+------------------------+--i 
108 ISource - I ITarget - IBinary assignment, with III 
I Ibinary (63). I Ibinary (31). Idoubleword opl. I 
I I I I I I 
I I I I I I ST2 : I 
I I I I I I 
I I I I I • • •• • •• 1 SIZE is on. I 
~----+--------------+-------------+--------------+------------------------i 
109 I Source - I I Target - I Label assignment. I 
I Ilabel I I label I I 
I Ivariable. I I variable. I I 
~----+--------------+-------------+--------------+------------------------i 
lOA ISource - I ITarget - IPointer assignment. I 
I I pointer, I I pointer. I I 
~----+--------------+-------------+--------------+------------------------f 
lOB ISource - I ITarget - IBinary assignment, with I 
I Ibinary. I I binary. Ino test for negative. I 
~----+--------------+-------------+--------------+------------------------i 
10C I Source. I I Target. I Target=Source-1. I 
~----+--------------+-------------+--------------+------------------------1 
100 ISource - I ITarget - IEntry aSSignment. I 
I ,entry , I entry I I 
I Ivariable. I Ivariable. I I 
r----f--------------f-------------t--------------i I 
10E ISource - I ITarget - I I 
I lexternal I I entry I I 
I lentry point. I Ivariable I I f 
~----f--------------+-------------t--------------1 I I 
,OF I Source- , ,Target - , , , 
I ,internal I ,entry I I I 
, ,entry pOint. I Ivariable. I , I 
r----+--------------+-------------f--------------+------------------------i r--i 
11B I Source. I I Target. ,produces an MVZ on I I I 
I I I , 11 byte. I I I 
r----+--------------+-------------f--------------f-------------------~----, I I 
11e r Source. riTa rget • I Produces an MVN on J I I 
I I , / /1 byte. / I , 
r----f--------------+-------------+--------------f------------------------i / I 
/10 f Source. I / Target. I Produces a ZAP I I I 
f r f I I(size not possible). I t I 

-------~----~--------------~-------------~--------------~------------------------~--~--j 
Figure 5.96. (Part 3 of 32). usage of operands in Type-2 text tables 

Licensed Material - Property of IBM Section 5: Data Area Layouts 623 



r------------T--------------T-------------T--------------T------------------------T-----l 
I Operator i Operand 1 I Operand 2 I Operand 3 I comments I Phase I 
~-------T----i I I I .--T--i 
IIOPl IIOP21 I I I ICrlDll 
~-------t----t--------------t-------------t--------------t------------------------t--t--i 
I ASSN IDecimal assignment 
51 IThe follo~ing notation 
(contd) lis used in the ten 

Itables described belo~: 
I 
In=q3-ql. 
IL1=length of opl. 
IL3=(n+1)/2. 
It=(n+l)/2. 
I 
IIST2 is used as 
follo~s: 

1... SIZE is on • 
• 1.. L3>L1+t • 
•• 1. p3 is even. 
Bit 3 Always off. 
Bits 4-7 Used to ind-

icate that 
certain tac­
les are to 
be treated 
as exten­
sions of 
ASSN. 

IOP2 depends on the 
values of n. Ll. r3, 
and t, as follows: 

10 n=O. 
11 n>O & even. L3>t. 
12 In>O & even. L3<=t. 
13 In>O & odd, L3>t. 
14 In>O & odd, L3<=t. 

II 15 In<O & even, Ll>·-t. 
I 16 In<O & even, Ll<=-t. 
I 17 In<O & odd, L1<-t. 
I 18 In<O & odd, Ll<=-t. 
I 19 IBoth operands refer to 
I Ithe same variable so 
I Ina code is generated. 
~-------t----t--------------+-------------t--------------t------------------------t--t--i 
IASSNEX 100 I Source. I ITarget. IProduces STC. I ISQI 
140 ~----t--------------t-------------+--------------t------------------------f I I 
I 108 I Source. I I Target. I Extended float I I I 
I I I I I I assignment. I I I 
I I I I I I (applies to OS version I I I 
I I I I I lof compiler only.) I I I l _______ ~ ___ ~ ______________ ~ _____________ ~ ______________ ~ ________________________ ~ __ ~ __ J 

Figure 5.96. (Part 4 of 32). Usage of operands in Type-2 text tables 

624 Licensed Material - Property of IBM 



r------------T--------------T-------------T--------------T------------------------T-----' 
I Operator I Operand 1 I Operand 2 I Operand 3 I Comments I Phase I 
~-------T----~ I I I ~--T--f 
I IOPl IIOP 2 1 I I I ,CrlCll 
~-------t----t--------------t-------------t--------------f------------------------t--t--1 

BADDRIOO 10ffset base , IStorage base IGenerates addressing IQII I 
3F I I number. I I number. I code. I I I 

~---t--------------t-------------f--------------+------------------------+--+--~ 
101 ,Pointer. I IUnique base Isets up a 'base' for a IPII I 
I I I I number. J pointer. I I I 
~----f--------------t-------------t--------------f------------------------1 .--1 
102 IOffset base IOffset of IUnique base ISets up a 'base' for I I I 
I Inumber. ladcon. I number. Itemporary storage. I I I 
~----t--------------f-------------t--------------f------------------------t--t--i 
103 I IVariable. I ILoads the base for an IQAI I 
I I I I louter procedure. I I I 
~----t--------------t-------------t--------------t------------------------t--t-~i 
104 10ffset of DSA I IOffset in IThis table is changed IQIIQAI 
I Iback chain. I It~mporary Ito ASSN in Phase QA. I I I 
I I J I storage of I , , I 
" , I ba se • I I I I 
~----f--------------t-------------t-~------------t------------------------+--+--1 
,05 ,Offset of ,Null. pill'll. I Sets pointer to the I PI I SA I 
I ,anchor. or I I Ilatest allocation of I I I 
I Ivar.DR if OS. I I Icontrolled variable. I I I 
~----+--------------t-------------t--------------t------------------------f ~--f 
106 IOffset in INull. INuII. ISets pointer to the I IQA 
I I parameter I I litem which is a I I 
J Ilist. I I I parameter. I I 
.----t--------------t-------------t--------------t------------------------1 I 
107 IOffset of I I I Sets up base of temp. I 1 
I Itemp storage I I lin an outer block. I I 
I lin outer DSA. I I IChanged to LA(02) table I I 
I I I I I by Phase QA. I I 
.----t--------------t-------------t--------------t------------------------1 I 
lOS IBase number. IOffset in IBase number. IChanged to MINUS table I I 
I I ,descriptor. I ,by Phase QA. , I 
.----t--------------+-------------t--------------t------------------------i I 
109 IBase number. 10ffset in IBase number. IChanged to PLUS table I I l 
" ,descriptor. I Iby Phase QA. , I , 
.----+--------------t-------------t--------------t------------------------1 .--1 
IDA IOffset in I I ILoads base for a cont- I SA 
I Iparameter list, I Irolled parameter or the I 
I lor I , IFCB of a file parameter/I 
I 1·47· ••• file DRI I Ifile variable. I 
I I I I ICApplies to OS version I 
I I I I lof compiler only.) , 
.----+--------------t-------------t--------------t------------------------1 
lOB IParameter DR. I I ILoads base for ccnt- I 
I' , , Irolled parameter anchor I 
" , I I slot. I 
I I , J ICApplies to OS version I 
I I I I lof compiler only.) I 
~----t--------------t-------------t--------------+------------------------+--~ 
10C I I I ILoads PRV base. ,QAI 
" I I ICApplies to OS version I I 
I I I I lof compiler only.) " 
.----+--------------+-------------t--------------t------------------------+--1 
100 1·4S· ••• file DR, I 'Loads base for file IPII 
I' I , I constant FCB. I I 
'I I I ICApplies to OS version I f 

I J' , I lof compiler only.) I I I L _______ L ____ L ______________ L _____________ L ______________ L ________________________ 4 __ L __ ~ 

Figure 5.96. (Part 5 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM Section 5: Data Area Layouts 625 



r------------T--------------T-------------T--------------T------------------------T-----' 
I operator I Operand 1 I Operand 2 I Operand 3 I Comrrents I Phase I 
~-------T----i I I I ~--T--~ 
I IOP1 IIOP2 1 I I I IcrlDll 
~-------+----+--------------~-------------~--------------~------------------------+--+--~ 

BC ILogical operations. comparison operations are represented by EQ, NE, 
2F IGE, GT, LE, and LT text tables generated by Phase II. If these 

Itables form part of an IF statement, they are replaced by BC/BCB 
Itables by Phase KAi otherwise, they are replaced by BC/BCB tatles by 
leither Phase KV or Phase OC. (These tables may in turn be replaced 
Iby BEQ, etc., tables by Phase SQ during code generation.) The basic 
Iform of BC/BCB tables is as follows: 
I I I I 
IX(pl,q1). IY(p2,q2). IBranch mask Icompares X and Y, and 
I I I (BEQ, BNE, Ibranches according to 
t I IBCE, BGT, BLE,lresulting condition 
I I IBLT) and lcode. 
I I I label. I 
I I I , 
IThe value of IOP2 for BC/BCB tables varies according to the operand 
Itypes as follows: 
I I I 

00 I I I 'Binary, with q1=q2. ISQI 
~----+--------------+-------------+--------------+------------------------f--~ 
101 I I I , Binary, with ql-,=q2. I' 
I I I I IRearrangement require- I I 
I I I I Iments and IST2 are as I I 
I I I I I for the PLUS X' 01 • I I 
I I 1 I 1 table. I I 
~----+--------------+-------------+--------------+------------------------+--i 
102 1 1 I IFloat, with p1=p2. I I 1 
~----+--------------+-------------+--------------+------------------------f--+--~ 
103 I I I I Decimal, with operands 1 I I 
I I I I larranged so that I I I 
1 1 I I Iq1<=q2, and IST2 bit 0 1 I I 
I I I 1 lindicating whether SIZE I I I 
1 1 1 1 I is on. I I I 
~----+--------------+-------------+--------------+------------------------+--+--i 
104 I I I IFloat, with p2-,=p2. I ISQI 
I I I I IRearrangement require- I I I 
I I I 1 Iments are as for the 1 I I 
I' I , IPLUS X'04' table. I I I 
~----+--------------+-------------+--------------f------------------------f--~ 1 
105 I I I IBinary - BC table only. I 1 I 
'I I I ,Ignored by statement "I 
I' I I I processing, and shift 1 I I 
I I I 1 lis suppressed even if I I 1 
I I I 1 1 ql-,=q2 • I 1 1 
~---+--------------t-------------t--------------+------------------------+--+--i 
106 I I I lAS above, for decimal I I I 
I 1 I I I operands. I I I 
~----+--------------+-------------+--------------+------------------------+--+--~ 
101 I I I ISpecial BC table. I ISDI 
I I I I IOperand 1 contains an I I I 
I I I I limmediate field, I I , 
1 1 I I loperand 2 is the I I I 
1 1 I I I 'returns byte' in the I I I 
I I I I IDSA. I I I 
~----+--------------+-------------+--------------+------------------------+--+--i 
108 I I I IExtended float. II ISQI 
I I I I I (Applies to OS version I I I 
I I I I lof compiler only.) I I I ------_~ ____ ~ ______________ ~ _____________ ~ ______________ ~ ________________________ ~ __ ~ __ J 

Figure 5.960 (Part 6 of 32). Usage of operands in Type-2 text tables 

626 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r------------T--------------T-------------y--------------T------------------------T-----' 
I Operator 1 Operand 1 1 Operand 2 1 Operand 3 I Comments IPhasel 
~-------T----" 1 I 1 ~--T--i 
IIOP1 IIOP21 I I I IcrlOll 
~-------t----t--------------t-------------t--------------t------------------------t--t--i 
IBCB 100 I String. ILength to be I ITests a short «=256 I ISCI 
12E I I I tested. I Ibytes) fixed-length I I I 
I I I I I Ibit string for 'all-O'. I I I 
I ~----+--------------t-------------t--------------t------------------------t--i I 1 102 1 String. ITest mask. 1 IGenerates TM op1,op2. I , I 
I ~---t--------------t-------------t--------------t------------------------t--~ I 
I 103 IString. ILength to be I ITests a long (>1536 I I I 
I I 1 I tested. I Ibytes) fixed-length 'I I 
1 I I I I Ibit string for 'all-O'. I I , 
~-------t----+--------------t-------------t--------------t------------------------t--t--i 
1 BEGIN 1 I I I ,see PROC table. , I I 
192 I I I I I I I I 
~-------t----+--------------t-------------t-----~--------t------------------------t--t--i 
IBEQ I I I , ,See BC table. ISQISQI 
12A I I I I I I , I 
~-------+----+--------------t-------------t--------------t------------------------i I I 
IBGE I I I I Isee Be table. I I I 
128 I I I I I I I I 
~------t----t--------------t-------------t--------------t------------------------t--i I 
I BGT I I , I I See Be table. I I I 
12D I I , " , , I 
~-------t----t_-------------t-------------t--------------t------------------------t--t--i 
IBIF In I Built-in I Built-in 'Built-in IOperand 3 will contain 'IIIOX, 
I F7 I I funct ion I function I function I • Null' if more than 1 I , I 
1 'Iargument. I argument. I result. Itable is needed for the, I I 
I " I I Ibif. n identifies the , , , 

1 I I t I I Ibif. I I I 
, ~-------t----t--------------t-------------t--------------t------------------------t--t--~ 

IBLE 'I I I ISee BC table. ISQISQI 
12C I I I I I 1 I I 
~-------t----t--------------t-------------t--------------t------------------------~ I I 
IBLT I I I I ISee Be table. I I I 
1·29 I 1 1 'I I I I 
~-------t-.. --t--------------t-------------t--------------t------------------------f I I 
IBNEQ 1 I I 1 Isee BC table. , 1 , 
12B 'I 1 " , , I 
~-------t----t--------------t------------_t--------------t------------------------t--t--~ 
IBXLE 100 I I I Label. I Generates IQA,SAI 
I 6A 1 1 I I 1 BXLE op3. , , I 
1 ~---t--------------t-------------t--------------t------------------------f , I 
1 107 I I I Label. I Generates I I I 
1 I I I I I BXH op3 • 1 , I 
1 ~---t--------------t------------_t--------------t~-----------------------f I , 
I 108 I I I Label. 1 Generates 1 , I 
1 I I I , I BXH op3 • I I I 
~-------t----i--------------t-------------t--------------t------------------------t--t--~ 

Licensed Material - Property of IBM section 5: Data Area Layouts 627 



I CALL 100 IArgument list IEntry point. ICalls an entry point IIIISA 
80 I I number. I Ito a block. I I 

I ~--------------i I I I 
I IPost-PA: I I I I 
I IAddress of I I I I 
I largument list. I I I I I 
~----t--------------t-------------t--------------t------------------------t--~ 
101 IArgument list ILibrary entry I Icalls a library IKQI 
I I number. Ipoint number. I I subroutine. I I 
I ~--------------i I I I I 
I IPost-PA: I I I I I 
I I Address of I I I I I 
I largument list. I I I I I 
~---t--------------t-------------t--------------t------------------------i I 
102 I Parameter I.CGSR entry I Special reg- ICaiis a compiler- I I 
I Ilist. I point. listers for Igenerated sub- I I 
I I I Icall. I routine. I I 
~----t--------------t-------------t--------------t------------------------t--i 
103 I Source. ICGSR entry I Target. ICaiis a string CGSR lOCI 
I I Ipoint number. I I (preceded by KONST 02). IOXI 

-------~ ____ ~-----------___ ~-___________ ~ _____________ -~ ________________________ ~ __ ~_J 

Figure 5.96. (Part 7 of 32). Usage of operands in Type-2 text tables 

628 Licensed Material - Property of IBM 



r------------T--------------T-------------T--------------T------------------------T-----~ 
I Operator I Operand 1 I Operand 2 1 Operand 3 I comments I Phase I 
~-------T----1 I I I .--T--i 
IIOPl ,lOP2, I 'I ICr 1011 
~-------t----t--------------t-------------t--------------t------------------------t--t--f 

CALL 104 'Argument list IOffset from I ICal1 to a routine in thel SAl 
80 I I number. ,Reg.12 of a I ITCA. , , 

1 1 Islot in the I I I I 
" ITeA. I' , I 
I ~--------------i I I , I 
1 IPost-PA:, " I I 
, I Address of I I I I , 
I I argument list. I I I I I 

(contd) ~---t--------------t-------------t--------------t------------------------1 I 
105 IApparent I Prologue I ICal1 to common section I I 
I ,entry label. Ilabel. I lof prologue code. I I 
~---t--------------t-------------t--------------t------------------------t--i 1 
107 I IEntry pOint. 1 ILoad address of I I I 
I I I 1 lentry point. I J I 

~-------t----t--------------t-------------t--------------t------------------------t--t--i 
ICGSR 100 I ICGSR., IStart of a CGSR. IRQISAI 
120 I J I I I I I I 
I ~----t--------------t-------------t--------------t------------------------1 I J 
I I 01 I I CGSR • I I End of a CGSR. I I I 
~-------f----f--------------+-------------t--------------t------------------------f--f--f 
I CHANE 100 I I Number of IFirst dynam- IChai~s a dynamic ONCB IPII 
I A3 I I I dynamic I ic ONCB. f (got with the DSA'. I I 
, I I I ONCBs • I I I I 
I ~----t--------------+-------------t--------------t------------------------1 I 
I 101, INumber of I First dynam- ,Chains a dvnomic ONCB I I 
I I I I dynamic I ic ONCB. J (got with the VDA). t I 
I I I I ONCBs • I I I I 
~-------t----+--------------t-------------t--------------t-------------,-----------t--f 
I CHECRC 100 I IOffset of I Check para- I CHECK parame-ter on a I II I 
lAO I I lONCB. I meter. I statement. I I 
1 1-----+--------------t-------------t--------------f----- "'.~ "" ~ - - " - -----------f I 
I 101 1 ,Offset of ICheck para- ICHECK parameter en a I I 
I 'I rONCB. Imeter. Iblock. I I 1 
I I-----t--------------t-------------t--------------f------------------------f--f , 
1 102 I IOffset of IFile DR. , I!WI I. 
I I' I ONCB.' I I I I 
, I-----t--------------t-------------t--------------f------------------------f I I 
I 103 I IOffset of ICondition DR. I J I I 
I I I IONCB. I I I I I 
~-------f----t--------------t-------------+--------------t------------------------f--t--f 
I CLOSE fOO IFile. rEnvironment INuII. ICLOSE statement (last IIIIRLI 
18C I I loptions. I I file in statement). I' I 
1 I-----t--------------t-------------t--------------t------------------------f ,J I 
I 180 ,File I Environment INuII. ICLOSE statement (not I I I 
I J I I options. I Ilast file in state- I I I 
I I I I I I ment) • I , I 
~-------+----+--------------t~------------t--------------t------------------------t--t--i 
ICOMP 100 IString (non- ILength for IString (non- ICompares short «=256 lOX SCI 
127 I Ivarying). I comparison. Ivarying). Ibytes) strings. 'I 
, ~----+--------------t-------------t--------------+------------------------~ I 
I 101 Istring (non- JLength for I Comparison ICompares remainder of a , , 
I I Ivarying). ,comparison. Ibyte (byte ,string with blank or I I 
I I I , ! 5) • 1 zero. " 
~-------f----f--------------t-------------t--------------f------------------------f I 
I KONST 100 IMask to be IMask to be I !Compares two bit I I 
IF8 I lANDed with lANDed with I Istrings «=8 bytes) I I 
, 1 lopl. lop3. 1 ,after ANDing out any I I 
I ~----+-------~------+-------------t--------------1spare bits in the f , 
I CaMP 102 IBit string. I ,Bit string_ Ibyte. (COMP X'02' is I , 
127 I I I I 'always preceded by 1 I 
I " , , IKONST X·OO·). I I 
l _______ ~ __ .-~--------------~-------------~-----------___ ~ ________________________ ~ __ ~ __ J 

F.igure 5.96. (Part 8 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM Section 5: Data Area Layou~s 629 



r------------T--------------T-------------~--------------T------------------------T-----l 
I Operator I Operand 1 I Operand 2 I Operand 3 I Comments I Phase I 
~-------T----~ I I I .--T--i 
I IOP1 IIOP21 I I I ICrlDll 
~-------t----t--------------t-------------t--------------t------------------------t--t--~ 

COMP 103 IString (non- ILength for IString (non- ICompares long (>2~6 lOX SC 
27 I Ivarying) • I comparison. I varying) • I bytes) strings. I 
(contd) I I I I I I 

~----t--------------t-----T-------+--------------+------------------------i 
105 I Character I Bytes I content I Character ICompares op1 with I 
I I string, of I 0 I Code I stri,ng, lengthlop3, or compares I 
I I length I 1-2 IUnused 1<=256 bytes. lop1 or op3 with I 
I 1<=op3-1 (i,.e., I 3 IMask I Imask in op2. I 
I Ibytes 1 onward I 4-5 11 • op3-1 1 I I 
I lof op3). I "I I 
~----t--------------t-----t-------+--------------t------------------------~ 
106 I I Bytes I Content I Character lAS above, for a I 
I I I 0 ,Code I string, Icharacter string of I 
I I I 1-2 IUnused 1length I length >256 bytes. 1 
I I I 3 I Mask I >256 bytes. I 1 
I I I 4 - 5 11. op 3-11 I 1 

~-------+----+--------------f-----~-------+--------------+------------------------f--+--~ 
ICONCAT 100 I String, con- I String, con- I Result. 1 Concatenation IIIIKVI 
160 I Iverted if Iverted if I I operation. I lOCI 
I I I necessary. I necessary. I I I I J 

~-------t----+--------------+-------------+--------------t------------------------i I i 
ICONV 100 I Source. I ITarget. I Compiler-generated 1 1 I 
13C I I 1 I J.conversion. I I I 
~-------+----+--------------+-------------+--------------+------------------------+--t--~ 
I KONST 101 IReference to I 1Reference to Icontains the necessary IPCIQAI 
IFS lithe DED of thel Ithe OED of thelreferences for CCNV I I I 
I I I source. I I target. 1 X· 01' operands which I I I 
I I I I J Irequire object-time I I I 
I I I I I I DEOs. I I I 
I ~----t--------------+-------------+--------------+------------------------f--t--~ 
ICONV 101 I Source. I Library entry I Target. IConversion via the lit- IKX SO 
13C I 1 Ipoint number·1 Irary. This table is I 
I I I I I Ipreceded by a KCNST I 
I I I I I IX'01' table after Phase I 
I I I I I I pc. I 
~-------t~---+--------------+-------------+--------------+------------------------~ 
ICONV 102 I Source. Iworkspace. ITarget - IBinary to Float con- I 

3C I I binary. I I float. Iversion. IST2 is used I 
I I I I las follows: I 
I I I I I I 
I I I 1 I • • •• .1.. Zero flcat I 
I 1 I I I register I 
I 1 I I I Bits 6-7 Number I 
'I I I 1 of AER-AOR in- I 
I I I I I structions. 1 
t----t--------------+-------------+--------------f------------------------~ 
103 ISource - I Constant. ITarget - IFloat to binary con- I 
I Ifloat. I I binary. I version. IST2 is used I 
I I I 1 I as follows: I 
I I I I I I 
I I I I I . '. .. .1. • SI ZE is on. I 
I I I I IBits 6-7 Number of I 
I I I 1 I HER-HDR in- I 
I I I I 1 structions. I 

-------~---~--------------~-------------~--------------~------------------------~--~--
Figure 5.96. (Part 9 of 32). Usage of operands in Type-2 text tables 

630 Licensed Material - Property of IBM 



r------------T--------------T-------------T--------------T------------------------T-----' 
I operator I Operand 1 I Operand 2 I Operand 3 I Comments IPhasel 
~-------~----~ I I' ~--T--~ 
I IOP1 IIOP2 1 I I I JCrlDII 
~-------t----t--------------t-------------t--------------t------------------------t--t--i 
ICONV 104 ISource. IWorkspace. ITarget. IFixed decimal to float IRXISDI 
13c J I I , I conversion. IST2 is I J , 
I (contd) I I I I I used as follows: I I I 
, f I I , I . . .. ••.. short target I I I 

I I , J I • • •• • •• 1 long target I I I 
~----t--------------t-------------+--------------t------------------------~ I I 
105 I Source. IWorkspace. I Target. ILong/short float to I I I 
I I I , Jfixed decimal I I 
I I I , I conversion. I t 
~----t--------------+-------------t--------------t------------------------i 
106 ISource. I ,Target. IFixed binary to fixed I 
I I I , Idecimal conversion. I 
~----+--------------+-------------t--------------t------------------------i 
107 ISource. I ITarget. IFixed decimal to fixed I 
I' , , ,binary conversion. I 
~----t--------------+-------------+--------------+------------------------~ 
108 ISource. I ,Target. I Character (1) to decimal I 
'I , , I conversion. I 
~----f--------------f-------------t--------------t------------------------i 
109 ISource. I Constant. ITarget. I Character (1) to float I 
I I I I I conversion. I 
~----t--------------+-------------+--------------t------------------------i 
lOA ISource. I Constant. ITarget. I Character (1) to fixed I 
I I I I IDinary conversion. I 

~-------t----f--------------+-------------+-------------~+------------------------+--+--i 
I RONST 102 IPattern for I ILength of I I I' I 
IF8 I Itarget digits. I I pattern. I , I' I 
I ~----+--------------+-------------+--------------t------------------------+--+--~ 
ICONV 10C Isource. IQ.temp.(off- ITarget. IFixed decimal to char· IRXISDI 
I 3C I I I set in I I acter (n) where n is I' I 
I I I I target) • I I a compile-time integer. I I I 
I I I I I I (CONV(OC) is always pre-I I r 
I I I I I Iceded by KONST(02)'. I I I 
~-------+----+--------------+-------------+--------------t------------------------f--f--~ 
I RONST 102 I Pattern for I I Length of I , , I 
I F8 I I target digits. I ,pattern. I I , , 
, ~----+--------------+-------------+--------------+------------------------f--f--f 
ICONV 100 I Source. IQ.temp.(off- I Target. I(CONV(OD) is always pre-IKXfSD 
13C I I I set in I I ceded by KONST (02) ) • I 
I I I I target) • I I I 
~-------t----+--------------+-------------+--------------f------------------------1 
ICONV 10E ISource. I ,Target. IBit string to character I 
3C " I I Istring conversion. I 

~----t--------------+-------------+--------------+------------------------1 
,OF I Binary IWorkspace. ITarget. IFixed binary to bit I 
I ,workspace. I I I conversion. J 

~----+--------------+-------------+--------------t------------------------1 
110 I Source. I Constant. I WOrkspace. IFloat to binary , 
'I I , I conversion. I 
~----+--------------+-------------+--------------+------------------------i 
111 Isource. IWorkspace. I Binary IBit string to fixed I 
I I I I workspace. Jbinary conversion. I 
~----+--------------+-------------+--------------+------------------------1 
112 Isource. IQ.temp. IWOrkspace or IFixed decimal to fixed I 
114 I I I target. Ipicture conversion. I 
~----+--------------+-------------+--------------t------------------------i 
115 ISource. IQ.temp. ITarget. IFixed picture to fixed I 
I I I I Idecimal conversicn. I _______ ~ ____ L ______________ ~ _____________ ~ ______________ ~ ________________________ ~ __ ~ __ J 

Figure 5.96. (Part 10 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM Section 5: Data Area Layouts 631 



r------------T--------------T-------------T--------------T------------------~-----T-----~ 
I Operator I Operand 1 I Operand 2 I Operand 3 I comments I Phase I 
~-------T----i I I I .--T--~ 
I IOPI IIOP21 I I I ICrlDll 
~-------+----+--------------+-------------+--------------+------------------------+--+--~ 
!DATAE ,00 ,Null INul1 I Element. IData element (always IIIIKQI 
IBE I I I I Ifollowed by 5 NULL I I I 
I I I I I I tables) • I I I 
~-------t----+--------------+-------------+--------------+------------------------~ .--~ 
IDEL 100 IXMESG para- IXMESG para- IXMESG para- ITables containing errcr I IKAI 
IE2 1 I meter I meter I meter Imessage information (fori i I 
I I I I I lmessage generaticn by I I I 
I I J I I I Phase KA). I I I 
.-------+----+--------------+-------------t--------------t------------------------i .--~ 
I DELAY I INull. INull. IDelay ex- I I IKTI 
113 I I I I pression. I I I I 
.-------t----t--------------t-------------t--------------t------------------------i .--i 
IDELETE I I I I ISee the last part of I I I 
I 85 1 I I I I this figure I I I 
I I I I I I (Applies to os version I I I 
I I I I I lof compiler only.) I I I 
~-------+----+--------------+-------------+--------------t------------------------+--+--~ 
IDINe 100 ILoop control I Increment. ILoop control IIncrements DO-LOOP IKIIQAI 
16A , Ivariable. I Ivariable. Icontrol variables j I I 
I I I I I Iprior to branch-back. I I I 
~-------+----+--------------+-----------.--+--------------+------------------------+--+--~ 
IDIVIDE 100 IDivisor - IDividend - IQuotient - IIST2: III SQI 

61 I Ibinary I binary I binary I I I 
I I(pl,ql). I (p2,q2). l(p3,q3). I ••••••• 1 pl=15. I I 
~----+--------------+-------------+--------------+------------------------i I 
101 IDivisor - IDividend - IQuotient - IFloat division, with I I 
I Ifloat (pi). Ifloat (p2). Ifloat (p3). Ip1=p2. I I 
I I I I I I 
I I I I I IST2: I 
I I I I I I 
I I , , I···· ••• 1 p3>p1. I 
~----+--------------+-------------+--------------+------------------------~ 
102 IDivisor - 'Dividend - IQuotient - IFloat division, with I 
I Ifloat (pi). Ifloat (p2). Ifloat (p3). Ip1~=p2. • I 
I I , I I I 
I I I I I I S'12 : I 
1 I I I 1 I 
I I I I I . . .. . .. 1 p1<p2. I 
~----+--------------+-------------+--------------t------------------------1 .--1 
103 IDivisor - IDividend - IQUotient - IIST2 bits 5 and 7 are I I I 
I I decimal. Idecimal. Idecimal. lalways set, to trigger I I I 
I I I I Igeneration of a DP I. I I 
1 I 1 I I instruction. I I I 
~----t--------------+-------------t--------------+------------------------1 .--1 
104 IDivisor - IDividend - IRemainder - IIST2: I ISQI 
I I binary I binary I bi nary I I I I 
I l{p1,q1). 1{p2,q2). l(p3,q3). I ••••••• 1 q1=15. 1 J I 
~----+--------------+-------------+--------------+------------------------~ ~--f 
105 IDivisor - IDividend - IRemainder - IIST2 bits 5 and 7 are 1 I I 
I Idecimal. Idecimal. 1 decimal. lalways set, to trigger I I I 
I I I I Igeneration of a DP 1 I I 
I I I 1 I instruction. I I 1 
~----+-------------~+-------------+--------------+------------------------i I I 
106 IDivisor - IDividend - IQuotient - IGenerates a DP in- I I 1 
I Idecimal. I decimal. 1 decimal. Istruction only. 1 I 1 
~----+--------------+-------------+--------------+---------------~--------f--+--~ 
108 IDivisor - IDividend - IQuotient - IGenerates an interrupt IQIISQI 
I lext.float. lext.float. I ext. float. 1which is detected by I I I 
I I 1 I Ithe library, which then 1 I I 
I 1 I I Icalls the floating pOint I I I 
I I I 1 Idivide routine. 1 I I 
I I I I I {Applies to OS version I I I 
I I I I lof the compiler only.) I I I _______ L ____ L ______________ L _____________ L ____ ~-------__ L ________________________ L __ L __ J 

Figure 5.96. (Part 11 of 32). Usage of operands in Type-2 text tables 

632 Licensed Material - property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r------------T--------------T-------------T--------------T------------------------T-----l 
I Operator I Operand 1 I Operand 2 I Operand 3 I Comments I Phasel 
.------T---i I I I ~-T--~ 
I IOP2 I IOP2 I I I I ler 1011 
~-------+----+--------------t-------------t--------------t------------------------t--t--i 
IDLIST 100 IBase array. IDefined arraylNull. ITable indicating start IIIIKEI 
100 I I I I lof a DEFINED iSUB sub- I I I 
I I I I I I script list. I I I 
~-------+----t-------------+-------------+--------------t------------------------f ~-f 
IDOl 100 INul1 IGSL at end oflLoop control IFirst table for I I I 
ISq I I Ithe do-loop I variable. literative DO I I I 
I I I I I I statement. I I I 
~-------t----+_-------------t------------_+--------------t------------------------i f--i 
ID02 100 ITO IBY IGSL of first Isecond table for an I I I 
ISS I Ispecification·lspecifi- Istatement in literative DO state- I I I 
I I I I cation. Ithe do-loop. Iment. I I I 
~-------+----+--------------t-------------+--------------t------------------------~ ~--~ 
ID03 100 IGSL at end of I I lEnd DO-loop marker I I I 
150 I la DO-loop. I I I I I I 
~-------t----+--------------t------~-----t~-------------t------------------------f r--~ 
IDOWHYL 100 I WHILE IGSL of first I 100 WHILE case (no I I I 
16E I Ispecification Istatement in I ITO or BY expression) I I I 
I I I Ithe do-loop. I I I I I 
~------+----+--------------~-------------~--------------~------------------------t--t--i 
I DROSS 1 INot a true text table; used to force alignment of text tables ISAISKI 
10E I I during code generation. I I , 
~-------+----t-------------T-------------T--------------T------------------------t--t--i 
I DSPLAY I I Null. I Null. I Display I I II IKT I 
116 I I I I expression. I I I I 
I I I I I I I I I 
~-------+----t---------~---+-------------t--------------t------------------------~ ~--f 
I DSUBS 100 I I Subscripted I IIntermediate subscript I KE 
1 DB 1 I I array inform-I I in an iSUB DEFINED I 
I I I I ation. I I subscript list. I 
~-------+----t--------------t-------------t--------------t------------------------i 
10SUBSL 100 I I Subscripted I ILast subscript in an I 
IDF I I larray inform-I liSUB DEFINED subscript I 
I I I ,ation. I Ilist. I 
~-------t---t--------------t-------------+--------------t------------------------1 
IDSUBSl 100 I Subscript. I Subscripted IIndex temp- IFirst subscript in an I 
I DE I I I array inform-Iorary I iSUB DEFINED subscript , 
1 I I lation. I operand. Ilist. I 
1 1 I I I I I 
1 I ISee SUBSi for full details. I 
~-------+----+--------------T-------------T--------------T------------------------i f--i 
IENDAID I I Null. ,Null. I Array. Isee AID table. I IKEI 
I AE I I I I I , ,PA I 
~-------t----+--------------t-------------t--------------t------------------------~ f--i 
IENDIT 100 I I I Temporary lEnd of array expansion I I I 
191 I' I ,control I do-loop. I I I 
1 " I I variable. I , I I 
~-------t----t--------------t-------------t--------------t------------------------f ~--~ 
1 ENDPAGE I 00 I Null. I Null. I Null. I • End of page' marker. I I I 
199 I I , I I I I , 
~-------t----t--------------+-------------t--------------t------------------------t--t--1 
I ENTRY 100 I Dictionary IFlag for IApparent entryllndicates a real second-IKTISAI 
191 I I reference of I PL/I, COEO!., I point. I ary entry fOint in the I I I 
I I ,real entry ler FCRTRAN I Iprologue cede. I I I 
1 I I point • I " , I I 
~-------t---t--------------t-------------t--------------t------------------------t--t--1 
IENDPROGIOO I Null. INull. INull. l'End of program' table IIII I 
19 8 I I I I I I I ~ 
~-------t----t-------------+-------------+--------------t------------------------t--t--i 
IEQ I IX(pl,ql). IY(p2,q2). IResult of ISee BC table. I I I 
I SA I I I ,comparison of , , I I 
I I' I I X and Y. I I I I L _______ ~ ____ ~ ______________ ~ _____________ ~ ______________ ~ ________________________ ~ __ ~ __ J 

Figure 5.96. (Part 12 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM section 5: Data Area Layouts 633 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r----~-------~-------------T-------------T--------------T------------------------T-----' 
I Operator I Operand 1 I Operand 2 I Operand 3 I Comments I Phase I 
~-------T----i I I I ~--T--i 
I IOP1 IIOP21 I I I ICr IDII 
~-------t----t--------------t-------------t--------------t------------------------t--t--~ 
IEVO 100 ILength of I IEvent var- IFollows all RECORD I/O IIIIKMI 
I CF I ICOBOL struct- I liable. Itables except LOCATE. I IKTI 
I I Iture (if COBOL I I Isee last part of this -I I I 
I I Ifile). I I I figure. I I 1 
~-------t----t_-------------t------------_t--------------t------------------------~ ~--i 
I EXIT 1 I Null. I Null I Null. I I IRTI 
174 I I I I I I I I 
~-------t----t--------------t------------_t--------------t------------------------t--t--i 
I FIT 100 I Iteration I I IFormat iteration. IRQI I 
lAC 1 1 factor or I I I I I I 
I I I expression. I I I I I I 
~-------t----t--------------t-------------t--------------t------------------------i .--i 
IFITE 100 I I I IFormat iteration end. I I I 
lAB I I I I I I I I 
l-------i----i--------------t-------------t--------------t------------------------t--t--~ 
IFLWUNT 1 I I I IFlow-unit header; ICEIFAI 
19A I I I I Isee figures 5.98 and I I , 
I I I I I 15. 99. I I 1 
~-------t----t--------------t-------------t--------------t------------------------t--t--i 
I FMTLISTI 00 I I I IStart of format list. IIIIRCI 
Ica I I I I I 1 I I 
~-------t----t--------------t------------_+--------------t------------------------i ~--i 
IFNCT 100 IFunction name. I Argument listlResult. IFunction reference. I IRRI 
ID7 I I I I I I I 1 
~-------t----t--------------t-------------t--------------t------------------------i ~--~ 
I FORME ITypelW, P, or labelld, or nUll. IP, S, or IFormat element (exact I IRQI 
ICE I lor null. I I null. Icontents of operands I I I 
I I I I I Idepends on format I I I 
I I I I I litem). IOP2 shows type I I I 
I I I I I lof format item. I I I 
~-------+----t--------------t-------------t--------------t------------------------i .--i 
I FREE 100 I IN option I Pointer IVariable to 10perand 2 is null for I IIQI 
171 I I(or null). I qualifying Ibe freed. ICTL variables. I I I 
I I I I generation I I I I 1 
I I I I of BASED I I I I I 
I I I 1 variable I I I I I 
I I I I(or null). I I I I I 
~-------+----t--------------+-------------+--------------t------------------------i .--i 
I GE I I I I I See EQ table. I I I 
158 I I I I I I I I 
~-------t----t--------------t-------------t--------------t------------------------t--t--i 
IGEN 100 IL, string. I I IGenerates a literal IKQISAI 
13A I I I I Istring up to 29 bytes 10XI I 
I I I I I I long. First byte = I I I 
I I I I I I length • I I I 
I ~----t--------------+------------_+--------------+------------------------i I I 
I 101 IL, string. I I IGenerates a literal HEX I I I 
I I I I I I constant. I I I 
~-------+----+--------------t-------------t--------------t------------------------i I I 
I 102 I 1 I IGenerates a 4-byte adconl I I 
I I I I I Ifor library module. I I I 
~-------+----+_-------------+-------------+--------------+~-----------------------t--t--i 
I GET 100 IFILE (file- ISKIP I I IIIIRQI 
189 I Iname) or I specification I I I I 1 
1 I I STRING I I I I 1 I 
1 I I (stringname). I I I I I I L _______ L ____ L ______________ L _____________ L ___________ ---L-----------_____________ L __ L __ J 

Figure 5.96. (Part 13 of 32). Usage of operands in Type-2 text tables 

634 Licensed Material - Property of IBM 



r------------T--------------T-------------T--------------T------------------------~-----l 
1 Operator I Operand 1 I Operand 2 I Operand 3 I comments 1 Phasel 
~-------T----i I I I ~--T--i 
IIOPl I IOP21 I 1 I ICr IDII 
~-------t----t--------------t-------------t--------------t------------------------t--t--i 
I GHOST 100 IBase variable IBase variablelBase variable IPasses used set info. IRMIPAI 
11F I Ito which I to which I to which ITable ignored by all IRQ I I 
I I IQ·temp. in IQ·temp. in IQ·temp. in Iphases except OM. IOEI I 
I I I preceding I preceding I preceding I I I I 
I I Itable refers. Itable refers. I table refers. I I I I 
~-------t----t--------------t-------------t--------------+------------------------t--t-~ 
IGOOB 100 I I ILabel constantlGeneral case (via IIIISAI 
17F I I I I I iICA) • I I I 
1 ~----+------~-------t-------------t--------------t-------------------------1 I I 
1 101 I I I Label IAlways done via ,a I I I 
1 I I I I variable. ITCA. I I I 
1 ~---t--------------+-------------t--------------+------------------------i I l 
1 102 I I I Label ISpecial case (in- I I I 
I I I I I constant. Iline code). I I I 
~-------+----+_-------------t-------------t--------------t------------------------i ~--i 

GOTO 100 I I I Label I I I I 
7E I I I I constant. I I I I 

~----+--------------t-------------t--------------+------------------------+--+---1 
101 IGSL or null. IGSL or null. ILabel variablelIf op3 is a temporary, IRQI I 
I I I lor temporary Ithen opl and op2 con- I I I 
I I I Ilabel var- Itain its first and last I I I 
I I I liable. Ivalues. I J I 
~----+--------------+-------------t--------------t------------------------t---I I 
102 I I I Label IBXLE required. IQAI ~ 
I I I I constant • I I I I 
~----t--------------t-------------t--------------+------------------------t---I I 
103 I I IBranch mask IConditional branch IRQI I 
I I I land label Itable, to generate lOCI I 
I I I I number. IBC branch mask, label lOKI I 
~---+--------------+-------------t--------------t------------------------i ~--i 
105 I Variable, usedl IBranch mask IConditional branch liSA 
I Ito set the I I and label Itable, to generate I I 
I I condition I I number. ILTR OP1,OP1 I I 
I I code. I I IBC branchmask, label I I 
~---t--------------t-------------t--------------t------------------------t--i 
106 ITemporary I I Label IGenerates BCT instruct- IKII 
I I variable. I I constant. lion to reduce op1 by 1 I I 
I I I I land branch to label if I I 
I I i I lop1-.=0. I I 
~---+_-------------+-------------+--------------+------------------------t--i 
107 I Variable, used I Test-mask. IBranch mask IConditional branch IREI 
I I to set the I I and label Itable, to generate I I 
I I condition I I number. ITM testmask, opl I I 
I I code. I I IBC branchmask, label I I 
~---+_-------------+-------------+--------------t------------------------t---I 
108 I Variable, usedl IBranch mask IConditional branch IRAI 
I Ito set the I land label Itable, to generate I I 
I I condition I I number. I LTER OPl, OPl I I 

I. I I code. I I I BC branchmask, label. I I 
J ~---+--------------t-------------t--------------+------------------------i I 
I 109 ILink register I I Label I Generates I I 
I I Inumber (Rn). I I constant. IBAL,Rn,label. I I 
I r----t--------------t-------------t--------------t------------------------i I 
I I OA I.Link register I I Label I Generates I I 
I I Inumber (Rn). I I variable. IBAL, Rn,labvar. I I 
L _______ ~---~-------------~ ____________ _4 ______________ ~_----------------------~~--~-

Figure 5.96,. (Part 14 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM section 5: Data Area Layouts 635 



order No. LY33-6010-1, Page Revised by TNL LN33-617S, October 1976 

r------------T--------------T-------------T--------------T------------------------T-----' 
I Operator I Operand 1 I Operand 2 I Operand 3 I Comments I Phase I 
.-------T---~ I I I .--T-_I 
I IOP1 IIOP21 I I I IcrlDll 
~-------t----t--------------t-------------t--------------t-----------------------_t--+_~ 
IGSL 100 ILabel number. I I IGSL table. IKQI I 
IFF r----+-------------t-------------t--------------t_-----------------------i I I 
I 101 ILabel number. I IBase register IGSL table, specifying I I I 
I I I I Inumber (Rn). IRn as base register I I I 
I I I I I lafter branch. I I I 
I r----+--------------+-----------_t--------------t-----------------------f I I 
I 102 I I I IENTRY statement GSL. I I I 
I ~----t--------------+-------------t--------------t------------------------t--t-_I 
I 104 ILabel number. I I IPosition of label must IKAISAI 
I I I I I Ibe switched to follow I I I 
I I I I I Ithe 'next' SN table. I I I 
~-------t----+-------------+-------------t--------------t------------------------f I I 
I GSL2 100 I I I IProduces no code. Used I I I 
I FB I I I I las separator to avoid I I I 
I I I I I Icommoning of labels. I I I 
~-------+----t_-------------t-------------t--------------t------------------------t--t-_I 
I GSN 100 I I I I Generated statement I:U: I I 
I FE I I I I I header • I I I 
I I I I I Isee table 5.90. I I I 
~-------+----+--------------t------------_t--------------t------------------------f ~-f 
I GT I 00 I I I I See EQ table. I I I 
I SD I I I I I I I I 
~-------t---t--------------t------------_t--------------t------------------------t--t--f 
I HASH 100 I I I IFollows flow-unit IOBIKRI 
19D . I I I I Iheader or page I IPeI 
I I I I I Iheader (see fig.5.100). I , I 
~-------t----t--------------t-------------t--------------t------------------------t--t--I 
I lASSN 100 I Source I Iteration I Array target. I Array initial assign- I II: ,KE I 
I AF I I I factor I Iment. I IPAI 
I I I I result. I I I , I 
~-------t----t-------------t-------------t--------------t------------------------f ~-f 
IIF 100 IIF IGSL at end ofl IIf opl is true, then I I I 
181 I I expression. ITHEN clause. I Ibranch to op2. I I I 
.-------t----t-------------t-------------t--------------t--------------~------f ~-f 
IITDO 100 I I I Temporary IFirst table of an I ISAI 
I 94 I I I I control I array expansi on I I I 
I I I I I variable. I do-loop. I I I 
~-------t----t_-------------t-------------t-------------t_-----------------------t--t-_I 

RONST 100 I Constant. I Constant or I Constant or ITable for storing up 110'1 I 
F8 I I I null. Inull. Ito 3 constants. I I I 

r----t--------------t-------------t--------------t-------~------~--------t--t-_I 
101 IQ·temp. I I IUsed to flag temps or I PI: IQAI 
I I number. I I 10 .temp. s as 'dead'. I I I 
.----t--------------t-------------t--------------t------------------------t--t-_I 
I 02 I I I I Used to extend a 'I I I 
I I I I Ifollowing table. Its "I 
I I I I ,operands are checked I 1 I 
I I I I Ifor register residence, I I I 
I I I I land bases and flags I I I 
I I I I I are set • I I I 
~----+_------------+------------_+--------------t_-------------------~--t--t__i 
103 I Register I Register I Register IReserves up to three IKMIQAI 
I I number. I number or I number or I registers. I I I 
I I Inull. Inull. I I I I L _______ ~ ____ ~ _____________ ~---_________ ~--__________ ~ ___________ ----_______ ~ __ 4__J 

Figure 5.96. (Part 15 of 32). Osage of operands in Type-2 text tables 

636 Licensed Material - Property of IBM 



r------------T--------------T-------------T--------------T------------------------T-----' 
, operator I Operand 1 , Operand 2 , Operand 3 I Comments ,Phasel 
~-------T----~ I I I f--T--i 
IIOPl IIOP21 I I' lerlDII 
~-------t----t--------------t-------------+------~-------t------------------------t--t--f 
IKONST 104 ,Register I Register ,Register ,Frees up to three IKMIQAI 
IF8 I ,number. ,number or Inumber or Iregisters. I I I 
, I I I null. I null. I I J I 
I(contd)~----+--------------t-------------t--------------t------------------------i f--i 
I 105 I Register t I I Indicates that opl is I , I 
, ',number.' I Ito be used as the base I I I 
I I I I I Iregister, instead of I I I 
I I I I I I register 2. I I r 
I ~----+--------------t-------------t-----~--------t------------------------i I I 
, ,06 IRegister I I IIndicates that opl is I I I 
I I I number. I I Ito be dropped as the I I I 
I I I I J Ibase register (revert I I I 
, " I I Ito register 2). I I I 

~----+--------------+-------------+--------------t------------------------t--t--i 
107 I I I ,See CONV X'Ol' tatle. IPCIQAI 
~----t--------------t-------------+--------------t------------------------t--f I 
108 I Parameter INul1 INuII IOptimization only. IQI, 
I Ibase number. I I IAppears before end of I I 
I I I I Iwhich has had para- I I 
I I I I Imeter addressing code I I 
I I I I Imoved out by Phase Ql. I I 
I I I I IEnsures that the base isl I 
I I I I lin the same register at I I 
I I I I Ithe end of the leop as I I 
I I I I I at the head. I i 
~----+--------------+-------------+--------------t------------------------i I 
109 IRegister, I ,Indicates that a I I 
I Inumber. I I Iregister is reserved , I 
I I I I Ifor the next table. I I 
~----t--------------~-------------t--------------t------------------------t--t--f 
I OAI primary function. " I I I 
I IUncommoned IUncommoned IUncommoned IUp to three constant lOCI I 
, I constant, or I constant" or I constant, or loperands. I I I 

Inull. Inull. Inull. I I I I 
~--------------~-------------t--------------t------------------------+--+--i 
ISecondary function. I I I I I 
I I I IOptimization only. IQIIQAI 
I I I IThisis a marker table I J I 
I I I Ito inform Phase QA that I I I 
I I , ,a flow unit contains a I , I 
I I J Ibranch table follcwed I I I 
, , I Iby moved out code. I' I 
, I I IData cannot be carried I I I 
I I I Iforward in registers to I I I 
II I I any connection other '" 
I , I Ithan the first. I I I 

~----+--------------+-------------+--------------t------------------------+--+--i 
lOB INull. INull. I Register IClears a register (by I JSAI 
I I I I temporary ISR instruction) and I I I 
" , ,operand. Igives it the name I I I 
" I , I specified in op3. " I 
~----t--------------+-------------t--------------t------------------------+--+--1 
loe , ILoop number. 'Loop control IOptimization only. IQAIQEI 
'I I Ivariable. IThis is a dummy store , I I 
" , I lof the loop control I I I 
I I I , Ivariable at the head of, , I 
I I I , Ian optimized loop. It I I I 
r I I I lis changed to a store byl , I 
" I , 1Phase QE, if Phase QA I I I 
I I I I Idecides it is necessary. I I f 

-------~----~--------------~~------------~--------------~------------------------~--~--~ 
Figure 5.96. (Part 16 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM Section 5: Data Area Layouts 631 



r------------T--------------T-------------T--------------T------------------------T-----' 
I operator I Operand 1 I Operand 2 I Operand 3 I comments I Phase I 
~-------T----~ I I I .--T--~ 
I IOPl IIOP21 I 'I ICrlOll 
~-------f----f--------------+-------------+--------------f------------------------f--+--f 
,KONST I 00 I I , ,Phase QA gets t"ork " SA, 
F8 I I , , Iregisters for operand1 I I , 

'I , , land operand2. This 'I' 
(contdll I I , Itable precedes MAP(OO) I I I 

" , I land MAP(04) tables. I I I 
~----+--------------+-------------+--------------+-----------------~------+--+--~ 
10E I Accumulator I IX'7E91X'79' IMarks end of accum- IQIIQAI 
I I I I lulator. Used by Phase I I I 
I I I I ,QA to reset register I I , 
I I I , I status. ICoE3 is X'7E' I I I 
I I I I lif accumulator is an I 1 I 
I I I I larray element. I I I 
~----f--------------+-------------+--------------+------------------------f--f--~ 
10F , IMask. I IGenerates AND with I ,SAl 
I I I , loperand1 as source and I , I 
I' I I loperand2 as mask. I I I 
~----+--------------+-------------+--------------+------------------------+--+--i 
110 I Parameter IBit vector I storage loptimization only. IQI QE 
I 1base number. loffset~ loffset. IThis is a dummy store I 
I I I I lof a parameter base at I 
I I I I Ithe bead of a loo~ out I 
I I I I lof which Phase QI has I 
I I I I Imoved parameter add- I 
I I I I Iressing code. It is I 
I I I I I changed to a store by I 
I I I I IPhase QE if Phase QA , 
I I I I I finds it necessary, 1 
I I I I li.e. if a load of the I 
I I I I I base is required. I 
~----+--------------+-------------+--------------+------------------------~ 
111 I Storage IBit vector Parameter loptimization only. 
I offset. loffset. base number IThis is a dummy load of 
I la parameter bas~ inside 
I la loop out of which 
I IPhase QI has moved the 

,parameter addressing 
Icode. It is changed to 
, a load by Phase QA if 
Ithe parameter base has 
Ibeen lost from a 
Iregister, and the bit 
Icorresponding to the 
Ivalue in IREF2 is set 
lin a vector to indicate 
Ito Phase QE that the 
IKONST(10) table at the 
Ihead is to be changed 
Ito a store. 

~----+--------------+-------------+--------------+------------------------1 
112 IX'79'IX Cl 7E' I Temporary I Global IICoE! is X'7E' if I 
I I I register I temporary ,temporary register I 
I I I storage [register Istorage occurs at the I 
I I loffset. I storage lend of temporary I 
I' I ,offset. Istorage, X~79' I 

~--~ 
IQA 
I 
I 
I 
I 

, ~, , I I otherwise. I I L _______ L ____ L ______________ L _____________ L ______________ L ________________________ L __ L __ J 

Figure 5.96. (Part 17 of 32~. Usage of operands in Type-2 text tables 

638 Licensed Material - Property of IBM 



r------------T--------------T-------------T--------------T------------------------T-----' 
1 operator I Operand 1 I Operand 2 , Operand 3 1 Comments I Phase I 
~-------T----~ I I I ~--T--f 
I IOP1 IIOP2, , " ICrrOll 
~-------+----+--------------+-------------+--------------+------------------------+--+--1 
I KONST 113 IOperandl of INull. ,Operand3 of IPhase QI splits IQIlsA' 
IF8 J ICALL(O]), ,CALL(03) ICALL(03).opl.op2.op3 I I I 
I I (table. I ,table. I into I I I 
I (contd)J , I , I(KONST(13).op1.null.op3 I I I 
I I I , , ,(CALL(03).null.op2.null I I , 
I ~----+--------------+-------------+--------------+------------------------f ~--f 
I 114 11st register 12nd register ,3rd register ,Marks a register in use r IQAI 
1 I Inumber. ,number. I number. ,but does not clear its I I I 
, I I I , Icontents (currently I I I 
I I I I I lonly used for registerl I I I 
, Ii' , 1 in stream I/O). , , , 
, ~----+--------------+-------------t--------------t------------------------+--t--i 
, 120 IConstant. 1Reference of ITarget. IConvert non-decimal/ IRQIPAI 
, I I ,pseudo- I ,integer constants into I I , 
, I I I constants , Icorrect FED positions. , I I 
1 I I I pool entry I I I I I 
I I I Ifor a FED. I I I I I 
~-------f----f--------------+-------------+--------------f------------------------f--f--f 
LADDR 100 INull. IBump constantlRegister IAssigns constant op2 I ISAI 
24 1 I f«4096). I number. Ito op3. I I I 

~----+--------------+-------------+--------------f------------------------f--f I 
101 I Source. IBump constant 1 Target. IBumps op1 by op2 and I 1 1 
1 I 1«4096). I ,assigns it to op3. I I I 
~----f--------------+-------------+--------------+------------------------f--+--f 
102 I Source. I I Target. ,Loads the address of 1 ISD 
I I Ilia variable into a I I 
1 I I I Iregister or storage. I 1 
~----+--------------+-------------+--------------+------------------------+--1 
104 IVariable or INull. I ILoads bit address of IPII 
I I temporary. I I laligned bit string. I I 
~----+--------------+-------------+--------------+------------------------+--i 
105 IVariable or I 1 ILoads bit address of I I 
1 1 temporary 1 , lunaligned bit string. 1 1 
~----+--------------+-------------+--------------+------------------------+--1 
106 IVariable or INull. I ILoads bit address of I I 
1 1 temporary. I I lunaligned bit string I I 
1 1 1 I Iwhere offset is unkno~n I I 
I I I I lat compile-time. I 1 
~----+--------------+-------------+--------------+------------------------+--1 
101 Istring addresslNull. I ILoads bit address of I I 
I 1 temporary. I I laligned string address I I 
I I 1 I 1 temporary. I I 

~-------f----f--------------+-------------+--------------+------------------------f--f--~ 
ILE 100 1 1 I ISee EQ table. I I I 
15C I I I I I I I I 
~-------t----f--------------+-------------+--------------f------------------------f--+--f 
ILLAD 100 I I Library entry I ILoads address of a IKQISAI 
121 I I Ipoint. I ILibrary entry pOint I I I 
I I I I I I into register 15. I I I 
~-------+----+--------------+-------------+--------------+------------------------+--+--1 
I 119 I I I Isee last part of this IIIIKMI 
I 11A I I I I figure. I J I 
1 ~----+--------------+-------------+--------------+------------------------1 I I 
ILOCATE 100 I ABNORMAL I ISET parameter. I Second table in a I I I 
188 I ILOCATE return I I ILOCATE statement. I I I 
I I Ilabel. I I I (Always generated' I I I 
~-------+----+--------------+-------------+--------------+------------------------f--f--f 
ILT 100 I I I Isee EQ table. I I I 
159 I I I I I I I I L _______ ~ ____ ~ ______________ ~ _____________ ~ ______________ ~ ________________________ ~ _ _4 __ J 

Figure 5.96. (Part 18 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM Section 5: Data Area Layouts 639 



r------------T--------------T-------------T--------------T------------------------T-----l 
, operator , operand 1 , Operand 2 I operand 3, comments IPhasel 
~-------T----~ I I I ~--T--~ 
1 IOPl IIOP2 1 I I I IcrlDII 
~------+----+--------------+-------------+--------------+------------------------+--+--~ 
,MAP 100 IAggregate to IREFER flag ISize temporarylAutomatic adjustatle, IIA IQ 
152 I Ibe mapped. I (byte 2) I (FIXED BIN (controlled, or based I 
I I I 1= zero. Ifullword~. I aggregate-mapping I 
I I I I I Itable. 1 

I ~--------------+-------------+--------------+------------------------i 
I 1 Item to be 1 REFER 1 Size temp- r"ap table for BASFD-
I Imapped. I information: lorary, as REFER (map on refer-

1 1 1 above. ence) items. 
I I I I 
I I Bytes I Content I 
1 I 0 IX'lE' I 
I I 1 IFlag I 
I I I (X'80') I 
I 1 2-3 IATR f'Jrl 
I I I start I 
I I lof map-I 
I I Iping. I 
I I 4-5 IATR fori 
I I lend of I 
I I I mapping 1 
~--------------+-----~-------+--------------+------------------------i 
INull, indi- IREFER flag ISize temporarylMap table for allc- 1 
Icating that I (byte 2) ItFIXED BIN Ication of a controlled I 
Ithe size temp 1= zero. Ifullword). Inon-aggregate string. I 
Ihas already 1 I I I 
Ibeen set up. I I I 1 
~--------------+-------------+--------------+------------------------~ 
IString to be IREFER flag ISize temporarYIMap table for auto- I 
Imapped. I (byte 2) las above. Imatic adjustable non- I 
I 1= zero. I laggregate string. I 

~----+--------------+-------------+--------------+------------------------+--+--~ 
101 I Locator. I Descriptor. I Descriptor 1Initialize locator for IIQISCI 
I I I I descriptor. I a descriptor. I I I 
~----+--------------+-------------+--------------+------------------------i 1 I 
102 ILocator. t I IInitialize aggregC'te I I I 
I I I I I locator for adjustable I , 
'I I , lextents. 1 I 
~----+--------------+-------------+--------------+------------------------~ 1 
103 1 Locator. 1 Descriptor. INUII. IInitialize locator for I I 
I I I I 1controlled string. I I 
~----+--------------+-------------+--------------+------------------------~ i 
104 I Descriptor. I Element INUII. IMap "dynamic FORTRAN I I 
'I 1 length. I I array. 1 1 
~----+--------------+-------------+--------------+------------------------~ I 
I 05 I Temporary I Storage I Temporary to I Relocate automatic I I 
I Ipointing at I temporary lbe set to ladjustable structure. I I 
I Istorage for I containing Ipoint at I I I 
I I structure. Ihang and I structure. 1 1 1 
I I I length. I I I I 
~----+--------------+-------------+--------------+------------------------~ .--i 
106 I Temporary I I ITemporary operand 1 IKMI 
1 ,operand. I I Iholding length of allo-, , I 
I I , I I cated variable in 1 I 1 
I I I I ILOCATE statement. I 1 , 
r----f--------------f-------------f--------------f------------------------~ .--~ 
107 1 Temporary 1 Storage ITemporary to 1Relocate adjustable 1 ISCI 
, Ipointing at I temporary lbe set to 1 structure. 1 I 1 
1 IStorage for I containing lpoint at I I I I 
I I structure. I hang and I structure. I 1 1 I 
1 I 1 length. 1 1 I 1 1 _______ 4-___ ~ ______________ ~ _____________ ~ ______________ ~ ________________________ ~ __ ~ __ J 

Figure 5.96. (Part 19 of 32). Usage of operands in Type-2 text tables 

640 Licensed Material - Property of IBM 



r------------T--------------T-------------T--------------T------------------------T-----l 
I Operator I Operand 1 I Operand 2 I Operand 3 I Comroents I Phase I 
~-------T----f I I I ~--T--~ 
IlOP1 IlOP2 1 I I I ICrlDll 
~--~----t----t--------------+-------------+--------------+------------------------+--+--1 

MASSN 100 IReference to IReference to ICUrrent lengthlCompare op1 and 0~2 loe SC 
56 I Icurrent or Icurrent or lof a varying land assign the small- I 

I I maximum I maximum I string. ler value to op3. I 
I I string I string I I I 
I I length. I length. 1 I I 
~----+--------------+-------------t--------------+------------------------~ 
101 IReference to I IRegister temp IRounds value of op1 I 
I Ilength of a I 1 target. lup to the nearest I 
I I string. I I I multiple of eight. I 
r----t--------------t-------------+--------------+------------------------1 
102 IAdjustable I IRegister temp IConverts a byte length I 
I Istring length I Itarget. Ito a bit length. I 
I lor variable. I I I I 
~----+--------------+-------------+--------------+------------------------+--f 
103 IConstant or IString lengthlString. )sets argument registers IOXI 
I Ivariable.) I Ifor the HIGH and LOW I I 
I I I I I functions. 1 I 
~----+--------------+-------------+--------------+------------------------+--i 
104 IMask I I IGenerates an MVI for I I 
I I I I Ithe HIGH and LOW I I 
I I I I I functions. I I 
~----+--------------t-------------+--------------+------------------------+--~ 
106 IBit offset. ITEMPLOC+7. IIndex temp. IGenerates code to add IPI 
I I I I Ithe bit offset of RVO I 
I I I I Ito the index temp. I 
I I I I ISets up bit offset in 1 
I I I I ITEMPLOC+7. and converts I 
I I I I lindex to bytes. I 
~----+--------------+-------------t--------------+------------------------~ 
101 I Negative I INext avail- ISets up addressing code I 
I loffset. I lable base Ito address array with I 
I I I I number. IV.O. outside scope I 
I I I I lof the DSA or STATIC. I 
~----+--------------+-------------+--------------+------------------------~ 
108 IDescriptor or INull. I Register IClears operand3 and I 
I I locator I I temporary. lassigns 1st byte of I 
I I reference. I I loperand1 to operand3. I 
~----+--------------+-------------+--------------+------------------------+--
109 ,Variable to belMask. I Increment IRounds operand1 IIQI 
I I rounded. I I factor. laccording to mask in I I 
I I I I loperand2. I I 
~----+--------------+-------------+--------------+------------------------+--f 
lOA lFile variable. I Offset I Target. IAssigns a halfword fieldlKKI 
I I Iwithin FCB. I Ifrom the FCB of a file I I 
I I I I Ivariable or parameter I I 
I I I I Ito operand3. I I 

~-------t----~-------------~-------------~--------------~------------------------t--+--t 
I MGT INot a true text table, but a variable-length marker preceding text ISAI I 
10F Itables that have not been replaced by object code. I I I L _______ ~ _________________________________________________________________________ ~ __ ~ __ J 

Figure 5.96. (Part 20 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM section 5: Data Area Layouts 641 



r------------T--------------T-------------T--------------T------------------------T-----' 
I Operator I Operand 1 I operand 2 I Operand 3 I Comments I Phase I 
~-------T----~ I I I ~--T--~ 
IlOP1 IlOP 2 1 I I I ICrlDli 
~-------+----+--------------+-------------+--------------+------------------------+--+--i 
MINUS 100 IBinary I Binary IResult - IBinary subtracticn, III SQ 
64 ! l(p1,q1). l(p2,q2). I binary Iwith q1=q2. I 

I I I l(p3,q3'. I I 
~----+--------------+-------------+--------------+------------------------t 
101 I Binary I Binary IResult - IBinary subtracticn, I 
t l(pl,q1). I (p2,q2l. I binary Iwith one of the follo~- I 
I I I '(p3,q3). ling scale requirements: I 
I I I I I I 
I I I I I- IST2 bit 7 off - I 
I I I , 1 q1<q2 and pl+(q2-q1) I 
I I , I , <=15. I 
I I I I ,- IST2 bit 7 on - I 
I I I I I ql>q2 and p2- (q2-q1) , 
I I I I 1 >15. , 
~----+--------------+-------------+--------------+------------------------~ 
102 IBinary I Binary IResult - IBinary subtraction, I 
I l(pl,q1). l(p2,q2}. I binary Iwith one of the follo~- I 
I' , l(p3,q3). ling scale requirements: I 
I I I I I I 
1 I I I ,- IST2 bit 7 off - I 
I I I I I ql>q2 and p2- (q2-ql) I 
I I I I I <=15. , 
I I I I ,- IST2 bit 7 on - I 
I I I I I q1<q2 and p1+ (q2-q1) I 1 
I' I I I >15. I I 
~---+--------------+-------------+--------------+------------------------f I 
,03 IFloat {p1). IFloat (p2). IResult - Ipl=p2. IST2 bit 7 on I I 
I' 1 ,float (p3). lindicates p3>p1. I I 
~----+--------------+-------------+--------------+------------------------t ~--~ 

04 IDecimal IDecimal Result - 10perands 1 and 2 are I I 
l(p1,ql). 1(p2,q2). decimal larranged so that I I 
I (p3,q3). Iq1<=q2. IST2 is used I I 
I las follows: I I 
I I I I 
I 11... SIZE is on. I , 
I J I I 
I I·· •••• 1. SUBTRACT I I 
I I PACKED (SP) I I 
I I flag - I I 
I I always on. I I 
I I···· ••• 1 ql=q2=q3, I I 
I I and y=T. I I 
I I Operands ar~ I I 
I I reordered so I I 
I I that T=T=X. I I 

~----+--------------+-------------+--------------+------------------------f r--i 
105 IFloat (p1). IFloat (p2). I Result. Ipl<p2. I ISQI 
~----+--------------+-------------+--------------+------------------------1 I I 
106 IFloat (p1). IFloat (p2). IResult. Ipl>p2. I 1 I 
~----+--------------+-------------+--------------+------------------------+--f I 
108 I Extended I Extended I Extended IExtended float IQII I 
1 Ifloat. ,float. I float. I subtraction. I I , 
I I I , I (Applies to OS version I I I 
1 I I I lof compiler only). I I 1 

-------~----~--------------~-------------~--------------~-----------------~------~--~--~ 
Figure 5.96. (Part 21 of 32). Usage of operands in Type-2 text tables 

642 Licensed Material - Property of IBM 



r------------~--------------T--------------T-------------T------------------------T-----' 

I operator I Operand 1 I Operand 2 1 Operand 3 I Comments I Phase I 
~-------T----~ I I I ~--T--~ 
IIOPl IIOP2 1 I I I ICrlDll 
~-------+----+--------------t--------------+-------------t------------------------t--t--~ 
I MOVE 100 IFixed length ILength of movelFixed length I Short" fixed length loe SCI 
19E I Istring. I «257 bytes). Istring. Istring move. I I 
I ~----+--------------+--------------+_------------t------------------------i I 
I 101 IOffset of I IParameter. IArgument list to I I 
I I largument from I I Iparameter list string I I 
I I Istart of I I Imove. I I 
I I i ALI ST (R1). I I I I I 
I ~----+--------------t--------------+_------------t------------------------1 I 
I 102 I Immediate I IOffset of ISets the return flag I I 
I J Ifield I Ireturn. byte lin the DSA. I I 
l I I (byte 5). I I in DSA. I I , 
I ~----+--------------+--------------+-------------+------------------------~ I 
I 103 IFixed length ILength of movelFixed length ILong fixed length I I 
I I I string.. I (>1536 bytes) ·1 string move. I 1 , 
~-------+----+--------------+--------------+-------------+------------------------~ ! 
I KONST 100 lop4=target lop5=target lop6=1. IAdjustable and/or I J 
IF8 I I length. Ilength-3. I IVARYING source to I 
I ~----+--------------+--------------+_------------ishort fixed length I 
I MOVE 104 IAdjustable I IShort fixed Itarget. (MOVE X'04' I 
19E I land/or VAR I Ilength CHAR. lis always preceded by I 
I I ICHAR. I I IKCNST X·OO·). I 
~-------t----t--------------t----T---------t-------------t------------------------1 
MOVE 105 IQ-temp: start IBytelContent IQ-temp: startlPadding move for short I 
9E I lof padding+1. I 3 IPadding lof padding. 1«257) fixed length I 

" I I character 1 Istring target. , 
J - I I 4- 51 Length of I I I 
I I I I padding-ll I I 
I I I 1C<257). I I I 
~----+--------------+----+---------t-------------+------------------------~ 
106 I I Byte I Content IQ-temp: startlPadding move for long I 
I I I 3 IPadding lof padding. 1(>1536) fixed length I 
I I I I character I Istring target. I 
I I I 4-5lLength ofl I I 
'I I' padding-11 J I 
I I I I (>1536). I I I 
.----+--------------t----~---------+_------------+------------------------1 
101 IShort «257) I I Longer IVARYING (max1) CHAR to I 
I IVARYING CHAR. I IVARYING CHAR. I VARYING (max2) CHAR I 
I I I I ,with 257>maxl<max2. I 
~----+--------------+--------------t-------------t------------------------i 
108 IAdjustable IConstant (1). IShort IAdjustable to short I 
I ICHAR or short I IVARYING CHAR. I VARYING or short I 
I IVARYING CHAR. I I IVARYING to shorter , 
I I I I IVARYING. I 

~-------+----+--------------+--------------+-------------+------------------------~ 
I KONST 100 lop4=length of I I IString move from I 
IF8 I I shorter I I Isource to target, via I 
I t I string. I I Iworkspace if they I 
I ~----+--------------t--------------t-------------ioverlay; otherwisp. I 
I MOVE 109 IShort fixed- I Workspace. IShort fixed- Idirectly. (MOVE X'09' I 
19E I I length I I length lis always preceded by I 
I I Istring. I Istring. IKONST X·OO·). I L _______ ~ ____ ~ ______________ ~ ______________ ~ _____________ ~ ________________________ ~ __ ~ __ J 

Figure 5.96. (Part 22 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM Section 5: Data Area Layouts 643 



r------------T--------------T-------------T--------------~------------------------T-----l 
I Operator I Operand 1 I Operand 2 I Operand 3 I Comments I Phase I 
~-------T----1 I I I .--T--~ 
I IOP1 IIOP21 I I I ICRIDII 
~-------t----t--------------t-------------t--------------t------------------------t--t--i 
I KONST 100 IOp4=smallest IOp5=number oflop6=1. IAdjustable or IOC 
IF8 I Inumber of Ibytes req- I IVARYING source to short I 
I I Ilists with luired for I Ifixed length target. I 
I I Isame number Itarget-2 I I (MOVE X'OA' is always I 
I 1 lof bytes as I I Ipreceded by KONST I 
I I I target. I I I X • 00' ) • I 
I r----t--------------t-------------t--------------i I 
I MOVE lOA IAdjustable ITable of IShort fixed- I , 
19E I lor VARYING Imasks for NC Ilength BIT. I I 
I I I BIT. I instruction. I I I 
I (contd) I I I I I I 
~-------t----t--------------t-------------t--------------t------------------------1 

MOVE lOB IShort «2049) I I Longer IVARYING (max1) BIT to I 
9E I IVARYING BIT. I IVARYING BIT. IVARYING (max2) BIT I 

I I I I Iwith 2049>max1<max2. I 
~----+--------------+-------------+--------------+------------------------t 
10C IAdjustable BITIQ-temp: end IShort V~~YING IAdjustable to short I 
I lor short lof target. IBIT. IVARYING or short VARY- I 
I IVARYING BIT. I I lING to shorter VARYING. I 
.----t--------------t-------------+--------------+------------------------~ 
100 I Immediate I IQ-temp: end lANDS out spare bits at I 
I Ifield (byte I lof target. lend of target when not I 
I 15). I I Imultiple of 8 bits. I 
~----t--------------+-------------t--------------+------------------------~ 
10E I ILength of IQ-temps: startlBit string padding I 
I I Ipadding (>1 lof padding. Itable to generate an I 
I I land <9 bytes) I IXC instruction. I 
~----+--------------t-------------t-~------------t~-----------------------t--t--i 
110 IVARYING I I IClears top bits of a IOXISCI 
I I string.. I I I VARYING string. I I I 
~----t--------------+-------------+--------------+------------------------t--i I 
114 ITemporary. IShift I String IShort fixed-length bit IKVI I 
I I I constant I temporary. Istring concatenation. I I I 
~----+--------------t-------------+--------------+------------------------i t I 
111 IARG1. IARG2. I String IShort VARYING bit- I I I 
I I I I temporary. Istring concatenation. I I I 

~-------+----+--------------+-------------+--------------+------------------------+--+--1 
I MULT 100 IMultiplicand- IMultiplier - product - T2 is used as II SQI 
62 I binary binary binary follows: I 

I (p1,q1t. (p2,q2). (p3,q3). I 
I •••••• 1. opl=op2, so 
1 MR R3,R2 net 
I MR R3, R3+1 
I is gener-
I ated. 
I ••••••• 1 p1+p2+1<=15, 
I so result is 
I in odd reg-
I ister of a 
1 pair, and 
I SLDA is 
I omitted. 
~----t--------------t-------------+--------------t------------------------t--t 
101 IMultiplicand -IMultiplier - IProduct - I IQAI 
I I halfword I halfword I halfword I I I 
I I binary. Ibinary. I binary. I I I 

-------~----~--------------~-------------~--------------~------------------------~--~--
Figure 5.96. (Part 23 of 32). Usage of operands in Type-2 text tables 

644 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r------------T--------------T------------~--------------T------------------------T-----' 
I Operator I Operand 1 I Operand 2 I Operand 3 1 Comments IP~asel 

.-------T----~ I I I ~--T--~ 
I IOPl I IOP2 I I I I IcrlDll 
~-------t----t--------------t-------------t--------------t------------------------t--t--i 

MOLT 102 IMultiplicand -IMultiplier - IProduct - Ipl=p2. IIIISQI 
62 I I float (pl). I float (p2). I float (p3). I I I I 
(contd) I 1 I I I I I I 

~----t--------------t-------------t--------------t------------------------~ ~-~ 
03 I Multiplicand- . Multiplier - Product - I I ST2 is used as 

I decimal. decimal. decimal. follows: 
I 
I ..... 1 •• Always on -
I triggers MP 
I and ZAP code 
I generation. 
t ••••••• 1 No overflow 
I is specified 
I ZAP code 
I generation 
I is supp-
I res sed. 

~----t--------------t-------------t--------------t------------------------i .--i 
104 IMultiplicand -IMultiplier - IProduct - Ipl~=p2r with operands I ISQI 
I Ifloat (pl). Ifloat (p2). Ifloat (p3). larranged so that I I I 
I. I 1 I Ipl<p2. I I I 
~----t------------·--t------------t---------------t-----------------------~ ~-~ 
105 I Multiplicand I Multiplier. I IMultiplies in situ. I I I 
I land product. I I lextending the opl field I I I 
I I I I Iwith zero to accomm- I I I 
I I I I Iodate the product I I I 
I I I I I length • I I I 
~~---t-~------------t-------------+--------------t------------------------t--t--i 
108 I Extended I Extended I Extended IExtended float IQIISQI 
I Ifloat. I float. I float. I multiplication. I I I 
I I I I I (Applies to OS version I I I 
I I I I lof compiler only.) I I I 

< ~-------t----t--------------t-------------t--------------t------------------------t--t--i 
INoX 100 IIndex temp- I Indexed IQ-temp IUsed in evaluating sub- IIIIQAI 
13D I lorary (dead). Ivariable or I (alive). Iscripted array I I I 
I I I I Q-tenip if I I expression I I I 
I I I I BASED. 1 I I I I 
~------+----t--------------+-------------t--------------t------------------------t--t--i 
INE 100 I I I Isee EQ table I I I 
15B I I I I I I I I 
~------t----t--------------+------------_t--------------t------------------------t--t--i 
I NOCBR 100 I IOffset of I INOCHECKIII ISAI 
I BO I I 10NCB. I I parameter on I I I 
I I I I I la statement. I I I 
I r----t--------------+-------------+--------------+------------------------f I 1 

I I 101 I IOffset of I I NOCBECR I I I 
I :1 I I IONCB. I Iparameter on I I I 
I I I I I I la block. I I I 
~-------+----+--------------+------------_t--------------+------------------------i ~--i 
I NOT 100 IOPl IOP2 IOP3 (target). IOp3=-.opl. I ISCI 
I 66 I I I I I I J I 
I 103 I I I ITl\e operand types, and I I I 
I 105 I I I Ithe code skeletons and I I I 
I lOA I I I Ibit strips (except for I I I 
I I OB I I I IX' OA .) used in code I I I 
I 10C I I I I generation, are the I I I 
I I I I I Isame as for the corres- I I ·1 
I I I 1 .1 Iponding MOVE tables. I I I L ____ --_~ ____ ~ _____________ ~------------~ ____________ ~ _______________________ ~ __ £__J 

Figure 5.96. (Part 24 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM section 5: Data Area Layouts 645 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r------------T--------------T-------------T--------------T------------------------T-----, 
I Operator I Operand 1 I Operand 2 I Operand 3 I Comments I~asel 

~-------~----i I I I ~~-i 
IlOPl IlOP2 1 I I I IcrlDll 
~-------t----t--------------t-------------t--------------t------------------------t--t--i 
INULL 100 INull. INull. I Null. ITable containing no IlIISAI 
179 I I I I luseful information I I I 
1 I I I I le.g •• a deleted text' I I I 
I I I I I, I table. 1 I I 
~-------t----+--------------t-------------t--------------t------------------------t--t--i 
IOFFS 100 IOffset number IArray Io-temp repre- ITfteSe two tables are I KE 
36 I I I reference. Isenting array lused to reference I 

I I I I element. loffset (op1) of op2. 1 
~----+--------------t-------------t--------------ilf table is used when I 
101 IOffset number IArray IQ-temp repre- lassociated with I 
I I reference I Isenting array ISUBS/NDX tables then I 
I I I I element. IlOP2=X'00'. Otherwise 1 
I I I I I lOP 2=X' 01 • • I 
~---+--------------t-------------+--------------+------------------------i 
102 IOffset numberslArray IQ-temp repre- I I 
I I I reference. I senting array I I 
I I I I element. I I 
~---~t--------------t-------------t--------------t------------------------~ 
103 IOffset. I IQ-temps. IOffset table witft no I 
I I I I Idictionary reference - I 
I I I I Isupplied by preceding I 
I I I I I index table. I 
~----t--------------t----~--------t--------------t------------------------i 
104 IOffset. IOffsetted Io-temp. IAllows same index I 
I I litem. I Ito be associated with I 
I I I I Idifferent offsets. I 
~----t--------------t------------_+----~--------t------------------------i 
105 IOffset number IArray IQ-temp. repre-I I 
I I I reference. I senting array I I 
I I I I element. I I 
~----t--------------t-------------t--------------t------------------------i 
106 I I I Address temp.. I Tells phase OC no VDA I J 
I I I I Iwanted for S.A.T. I I 
I I I I I I I 
~---+--------------t-------------t--------------t------------------------f I 
107 ITemporary IOffsetted I Q-temp. IHas specific register I I 
I I operand. litem. I lin operand2 or a temp- I I 
I I I I I in operand2. Either I I 
I I I I I register or register I 1 
I I I I Icontaining temp. to be I I 
I I I I I used as a base at I I 
I I I I I Q-temp. 'print. 1 I 

~------t----t_-------------t-------------t--------------t------------------------t--t--i 
IONB 100 I I I ION BEGIN block header. IIlI I 
19B I I I I Isee PROC table. I I I 
~-------t----t--------------t-------'------t--------------t------------------------t-t--i 
IONeAD 100 IF1ag and INu11. I Address IONCBAR and ONCOUNT IKKISDI 
lAS I IOffset from I I temporary. Ibifs. I I I 
1 I I ONCA. I I I I I I 
I ~---t--------------t------------_+--------------t_-----------------------f I I 
I I 01 I Flag and I Length I Addr ess I DATAFlELD. ONFlLE. 1 I I 
I I loffset from Itenporary. I temporary. IONREY. and ONSOURCE 1 I I 
I I I ONCA. I I Ibifs, and ONSCURCE psv. I I I 
I .----t--------------t-------------t--------------t------------------------i I I 
I 102 IF1ag and INull. I Address IONCHAR psv. I I I 
I I loffset from I I temporary. I I I I 
I I I ONCA • I I I I I I L--_____ ~-___ ~ ______________ ~ _____________ ~ ___________ ---~ ________________________ £ __ £-_~ 

Figure 5.96. (Part 25 of 32). Usage of operands in 'l'ype-2 text tables 

646 Licensed Material - Property of IBM 



r------------T-------------T--------------~--------------T------------------------T-----' 
·1 Operator I Operand 1 I Operand 2 I Operand 3 I comments I P"'ase I 
.-------T----~ I I I ~-T--~ 
I IOPl I IOP2 I I I I IcrlDll 
~-------t----t-------------t--------------t--------------t------------------------t--t-~ 
IONS 100 IFile name if ICondition namelONB block ION statement. Body of IIIlsAt 
180 I I a file is I and descrip- I reference I statement follows ONB I I I 
I I I involved. Ition of ON- I (or 0). Itext table. I I I 
I I I I unit 1 I I I I 
~-------+----+-------------+--------------+--------------t------------------------~ .-~ 
IOPENl 100 IFile name. I Dictionary I TITLE IFirst text table for I IKLI 
18B I I Ireference of 1 expression 10PEN statement. I I I 
I I I loverflow entrylresult. I I I I 
I I I I (attributes I I I I I 
I I I Ion OPEN). I I I I I 
I ~----+-~-----------t--------------t--------------t------------------------f I I 
I 101 ILINESIZE IPAGESIZE I ISecond text table for I I I 
I I I expression I expression I 10PEN statement (for I I I 
I I Iresult. I result. 1 IPRINT dataset). I I I 
~------t----t-------------+--------------t--------------t------------------------i ~--i 

OR 100 10pl. IOp2. IOp3(target) IOp3=OplI 0 p2. I ISC 
SF I I I I I I I 

103 I I I IThe operand types and I I 
lOA I I I Ibit strips (except for , I 
I I I I Ion) used in code gen- I I 
lOB I I I leration are the same as I I 
I I I I Ifor the corresponding I I 
10C I I I IMOVE tables. I I 
r----t-------------t--------------t--------------t------------------------t--i 
105 I IXmmediate IOp3 (target). IGenerates I I 
I I Ifield, F I 101 Op3,F. I I 
I I I (byte 3). I I I I 

~------t----t_------------t-------------_t--------------t------------------------i-i--f 
IPEND 100 I Compiler I I IPrologue end label. IIIISAI 
19F I I label. I I I I I I 
I ~---t-------------t-------------_t--------------i------------------------f , , 
, 101 I I I I End of DSA code. I I , 
I ~----t-------------t-------------_t--------------t------------------------i I I 
I 102 I Compiler I I IStart of I , , 
I I Ilabel. I I linitialization code. I I I 
~-------+----t-------------t--------------+--------------t------------------------i I I 
IPINI~ 100 IVariable DR. I I IOutput comment for I I I 
IFA I I I I Ivariable initialization. I I I 
~-------t----t-------------t--------------t--------------t------------------------i .--i 

PLUS 01 Binary Binary Sum - IBinary addition, with SQ 
63 (pl,ql). (p2,q2). binary Iql ..... =q2. 

(p3,q3). I 
IIST2 bit 1 on indi­
,cates that ql<q2 and 
Ip1+(q1-q2»15, and 
Ithat therefore a 
Idouble register is 
I needed. Otherwise a 
ISingle register is 
Ineeded and qi<q2. 
IOperands are re­
larranged if required. 

~----+-------·------t--------------t-------------+------------------------i 
102 IFloat (pi). IFloat (p2). ,sum - lFloat addition, with I 
,. I I ,float (p3). 1 pl=p2 • , 
I I· 1 I 1 I 
I 1 I I IIST2 bit 1 is on if I 
I I I I Ip3>pi. I L-______ ~ ___ ~ ____________ ~ ____________ ~ _____________ ~ _______________________ ~A__J 

Figure 5.96. (Part 26 of 32). Usage of operands in 'lype-2 text,tables 

Licensed Material - Property of IBM Section 5: Data Area. Layouts 647 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r------------T--------------T-------------T--------------T------------------------T-----' 
1 Operator I Operand 1 I Operand 2 I Operand 3 I Comments IP~ase, 

~-------T----~ I I I ~--~-~ 
IIOPl IIOP21 I I I ler IDII 
~-------+----+--------------+-------------+--------------+_-----------------------t--t--i 
PLUS 03 Decimal Decimal Sum - IIf ql=q2=q3 and II 
63 (plwql). (p2 wq2). decimal lop3=op2 w then the op-

(p3 wq3) • I erands are rearranged 
(contd) Iso that the operation 

lis op3=op3+opl. Other­
Iwise the operands are 
larranged so that 
Iq1<=q2. 
I 
IIST2 is used as 
Ifollows: 
I 
11... SIZE is on. 
I ••••••• 1 ADD PACRED 
I (AP) flag -
I always on. 

~---+--------------t-------------+--------------t------------------------~ .--i 
104 IFloat (p1). IFloat (p2). ISum - IFloat additionw with 1 SQI 
I I I Ifloat (p3). Ipl~=p2. Operands are I I 
I I I I larranged so that I , 
I I I I Ipl<p2. 'I' 
~---t--------------+-------------t--------------t------------------------f , 
105 IFloat (p1). IFloat (p2). ISum - IUnnormalized float I , 
I I I 1 float (p3). ladditionw with p1=p2., , 
I I I I I I I 
I I I I IIST2 bit 1 is on if I J 
I I I I I p3>pl • I I 
~----+--------------+-------------+--------------t------------------------i I 
106 I Binary. I Binary. ISum - IBinary additionw with, I 
I I I I binary. Ino shifting. I I 
~----+-------~------+-------------+--------------+------------------------t--i I 
108 I Extended I Extended I Extended 1 Extended float addition I QI I I 
I Ifloat. I float. I float. I (applies to OS version I I I 
I I I I lof compiler only). I I I 

~-------t----t--------------+-------------+--------------t------------------------t--+--~ 
IPMINUS 100 I Source. I I Target. IPrefix minus table with IIII , 
168 I I I I IIOP2 as SROwn for the I I I 
I I I I I I ASSN ,table. I I I 
~-------+----+--------------+-------------+--------------t------------------------i f--i 
IPOWER 100 I I Exponent. I Result. IGenerates code to per- I I I 
165 I I I I Iform the operation I I I 
I I I I I lop3=op1**op2. I I , 
~-------t----t--------------t-------------t--------------t------------------------f ~--f 
,PPLUS 100 I Source. I I Target. IPrefix plus table w with liSA 
161 I I I I IIOP2 as shown for the I I 
I 1 I I I I ASSN table. I I 
~-------t----t--------------t-------------t--------------t------------------------i I 
I PROC IILC I I I IReal entry point to a I I 
190 I I I I Iprocedure. See I I 
I I I I I Ifigure 5.91. I I 
I BEGIN I I I I I I I 
192 I I I I I , I 
IONB I I I I I I I 
19B I I I I I I I L _______ 4 ____ ~ ______________ 4 ____________ ~ ______________ 4 ____ - ___________________ ~ __ L__ 

Figure 5.96. (Part 21 of 32). Usage of operands in Type-2 text tables 

648 Licensed Material - Pro~erty cf IB~ 



r------------~-------------T-------------_y--------------T-----------------------~-----, 
I Operator I Operand 1 I Operand 2 I Operand 3 I comments I Phasel 
~-------T----i I I I .--T--i 
I IOP1 IIOP21 I I I ICr IDII 
~-------t----t-------------t--------------t--------------t------------------------t--t--~ 

PSV 00 I Pseudo- ISecond pseudo- string addresslPseudovariable table Ir KV 
D6 I variable I variable temporary. lused for STRING pseudo-

argument. argument. The string variables only. 
address is 
null for 
SUBSTR with 3 
args since 
2 PSV tables 
exist, the 
second of 
which con­
tains the 
string add-

I ress temp. 
~-------t----t-------------t--------------t--------------t------------------------i ~--~ 
I PSV2 100 I Expression I Null. I Pseudo- IPseudovariable table I IOXI 
151 I I result to be I I variable lused for non-string I I I 
, I lassigned to I I argument. Ipseudovariables, e.g., I I I 
I lithe pseudo- I I ISTATUS. I I I 
I I Ivariable. I I I I I I 
~-------t----t-------------t--------------t--------------t------------------------i .--i 
IPTS 100 I Pointer. I Pointer. IPointer temp- IUsed when op2 is itself I IPII 
IDA I I I lorary (may la locator. Becomes I I I 
, I I' I I be qualified). I BAD DR in PI. I I ~ 

.-------t----t-------------t--------------t--------------t------------------------i I I 
IPTSAT 100 I Pointer. I Based IQ-temp. IPointer text table I I I 
1F9 I I I variable I (alive). IBecomes BADDR in PI. I I I 
.-------t----t-------------t--------------t--------------t------------------------f I I 
I PUT 100 IFile or I SKIP I LINE I I I I 
18A I I STRING. I (expression). I (expression). I I I I 
~-------t----t-------------t-------------_t--------------t------------------------i r--i 
IREru> 100 I I I ISee last part of this I IKMI 
183 I I I I I figure. I I I 
.-------t----t-------------t--------------t--------------t------------------------t--t--i 
I REPLY 100 INull. I NUll. I Reply I IKTIIII 
IC7 I I I I expression. I 1 I I 
~-------+----t-------------+-------------_t--------------t------------------------t--t--i 
IRESDES 100 IBased var- I I Descriptor IUsed to reserve space IIAI I 
131 I liable (REFER I I temporary Ifor a descriptor. 1101 I 
, I I structure) • I I I I I I 
~-------+----t-------------t--------------t--------------t------------------------t--t--i 
,RETURN 100 INo of blocks I Diet .• ref. of IRETURN IOperand 3 is null if IIII I 
17D I Ito be Ilast block to lexpression Inothing is returned. I I I 
I I lepilogued. Ibe epilogued. I result. I I I I 
I r----t-------------t--------------t--------------t-------------------·-----t--t--i 
I 101 INo of block IDict. ref. of IRETURN IReturn for interlanguagelIMlsAI 
I I Ito be Ilast block to lexpression lencompassing block. I I I 
I I I epilogued. I be epilogued I result. I I I I 
~-~-----t----t-------------t-------------_t--------------t------------------------t--i I 
IREVERT 100 IFile refer- I I Condition IREVERT statement. 1111 I 
178 lienee if file I Iname and I I I I 
I I I condi tion. I I description I I I ~ 
I I I I lof ON-unit. I I I I 
~-------t----t-~-----------t--------------t--------------t------------------------i .--i 
I REWRITE I 00 I I I ISee last part of this I IKMI 
187 I I I I I figure. I I I L _______ ~ ____ ~ _____________ ~--____________ ~ ______________ ~ ________________________ ~ __ ~ __ J 

Figure 5.96. (Part 28 of 32). Usage of operands in Type-2 text tables 

Licensed Material - property of IBM Section 5: Data Area Layouts 649 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r------------~-------------T-------------T--------------T------------------------T-----' 
I Operator I Operand 1 I Operand 2 I Operand 3 I comments I Phase I 
~-------T---.. I I I .-T-' 
I IOPl I IOP2 I I I I ICrlDll 
~-------t----t--------------t------------_t--------------t------------------------t--t--f 
ISCI 100 IComparand. I Increment. ILoop control IIncrements a comparand IIIISQI 
16B I I I I variable. lat the head of an I I I 
I I I I I literati ve do-loop. I I 1 
I I I I I IIOP2 00 for inner loops I I I 
I I I I I I 01 for outer loops I I I 
I I I I I I for loops with I I I 
I I I I I I multiple speci- I I I 
I I I I I I tications. I I I 
~-------t----t_-------------t----~------_t--------------+-----------------------i ~--i 
ISHIFT 100 IOperand to be 1~IMeanin9 I Target. INot used if SIZE is I ISAI 
123 I IsRifted. I 2 IType of I I possible. I I I 
I I I I I shift. I I I I I 
I I I I 5 I Amount. I I I I I 
~-------+----+--------------+----~-------_t--------------+------------------------i .-, 
ISIGNAL 100 INull. INull. ISignal type. I I I I 
177 I I I I I I I I 
~-------+----+_-------------+------------_+--------------+------------------------i J--i 
ISINIT 100 I Initializing I Istatic var- Istatic initial I IPAI 
I F3 I I constant. I I iable to be I assignment I I I 
I I I I I initialized. I I I I 
~-------t----t--------------t-------------+--------------+------------------------i ~--i 
ISL 100 I I I Isee figure 5.90. I ISAI 
1 FD 1 I I I I I I I 
~-------+----t--------------+----------_t--------------t------------------------f I I 
ISN 100 I I I Isee figure 5.90. I I I 
IFe I I I I I I I I 
~-------t----t-------------+-------------+--------------t_-----------------------f ~-f 
I STOP 100 INull. INull. 1 Null. I I IXT, 
175 I I I I I I I I 
~-------+----t_------------~------------.--------------+-------------~---------t--t_-f 
I STPG 100 I Non-standard format containing overflow I Overf low page index I I ~A I 
19C I I page reference. Itable. See figure 5.3. I I I 
~-------+----t_------------T------------_y--------------t_-----------------------t--t_-i 
SUBS 100 I subscript. IArray V-ref. IIndex IAny subscript other InlxEI 
Fl 1 I I I temporary. Ithan the first in a I I I 

I I I I Ilist. I I I 
I I I I I I I I 
I I I I IIST2 is as for the I I I 
I I I I IMOLT X'OO' table. I I I 
~---t_-------------t----------~-t--------------t------------------------t--t--i 
101 I subscript. ILiteral bin- IIndex IAny subscript other ImlQAI 
I I lary constant. I temporary. Ithan the first in a I I I 
I I I I llist. I I I 
I I I I IGEN2 may be used for I I I 
I I I I I the last subscript in I I I 
I I I I la list (see figure I I I 
I I I t 15 • 94) • I I I L _______ ~ ____ ~ _____________ ~ ____________ _4-____________ 4_ __ ------_______________ ~ __ L __ J 

Figure 5.96. (Part 29 of 32). Osage of operands in Type-2 text tables 

650 Licensed Material - Property of IBM 



r------------T--------------T--------O-----T--------------T------------------------T-----' 
I Operator I Operand 1 I Operand 2 I operand 3 I comments IPhase, 
~-------T----~ I 'I .--T--i 
I IOP1 IIOP21 I 'I ,errDll 
~-------+----+--------------+-------------+--------------+-----------------~------t--+--~ 
ISUBS1 100 I Subscript. IArray inform-Ilndex IFirst subscript in a JIIIQAI 
I FO I I ,ation: I temporary. Ilist. I , I 
I I I I I IThe content of operand I I I 
, I I IBytelMeaning I 12 after Phase KE is I I , 
I I I 10-1 " Ishown in figure 5.97. I I , 
I I I 12-3 IA.T. refl IIST2 is set by Phase KE I I : 
I I I 14-5 IV-ref. I I as for a MULT table and I I I 
I I I I I I Ithe table is changed to I I I 
I I 1 I I I I MULT by Phase QA. I I I 
~-------t----+--------------+----~--------+--------------+------------------------t--+--~ 
IKONST 100 I Translate I I ITRANSLATE bif. IOCISC 
I F8 I I table. I I I I I 
I ~----+--------------+-------------+--------------~(TRT X'OO' is always I I 
ITRT 100 ISource - I Length. ITarget - Ipreceded by KONST I I 
IA4 I I non-varying I I non-varying IX·OO'). I I 
I I I string I I string. I I I 
I I 1<=256 bytes. , I I ( I 
~-------+----t--------------+-------------+--------------t------------------------t--~ 
ITRT 101 ISource - ,Translate I Halfword IVERIFY bif. IOXI 
IA4 I Ivarying Itable. Ibinary target. I I I 
I I ( str ing I I I I I 
I I 1<=256 bytes. I I I I I 
I ~----t--------------t-------------+--------------+------------------------~ I 
I 102 I Source I Length 1256 byte IGenerates a translate I I 
I I Istring. I (source) if I string land test table for a I I 
I I I 1 adjustable, ( (table) • l TRANSLATE bif. I I 
I I I I otherwise I I I I 
I I I I length I I I I 
I I I I (source) -1 • t I I I 
~-------t----t--------------+-------------t--------------t------------------------t--~ 
IKONST 100 ITranslate I I ITRANSLATE bif. lOCI 
IF8 I Itable. I I I I I 
I ~----t--------------t-------------+--------------i(TRT X'03' is always I I 
ITRT 103 ISource - I Length. ITarget - Ipreceded by KONST- I J 
IA4 I I non-varying I I non-varying IX·OO'). I I 
I I I string I I string. I I I 
I I 1>256 bytes. I I I I I 
~-------t----t--------------t-------------t--------------t------------------------t ~--. 
IKONST 100 ILength (POS) I I IGenerates a translate I I I 
IF8 I lif adjustable I I land test table for a I I I 
I I I source I I ITRANSLATE bif. I I I 
I I ,string, I I I , , I 
I "otherwise I I ,(TRT X' OS' is always 'I' 
, "length(POSJ-1 , , 'preceded by KONST " I 
, ~----t--------------t-------------+--------------iX·OOf). I I 1 
,TRT 105 I String ,String 1256 byte I I I 
,A4 , ,variable ,variable I string, I I 
1 I 1 (POS) • I (replace) • 1 (table) • I I I 
~-------+----+--------------+-------------+--------------+------------------------+--i 
IKONST 100 ILength of I I IVERIFY bif. IOXI 
IF8 lithe source I I I I I 
I "string. I I I (TRT X·06' is always I I 
I ~----+--------------+-------------+--------------ipreceded by KONST " 
,TRT 106 ISource - I~ranslate I Halfword IX'OO'). I I 
IA4 I 1 non-varying Itable. Ibinary target.1 , , 
I I I string I I' I , 
, I 1<=256 bytes. I I' I I 
L _______ ~ ____ ~--------------~-------------~---~-------___ ~ ________________________ ~ __ ~ __ J 

Figure 5.96. (Part 30 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM Section 5: Data Area Layouts 651 



r------------T--------------T-------------T--------------T------------------------T-----l I Operator I Operand 1 I Operand 2 I Operand 3 I comments I Phase I 
~-------T----i I I I .--T--i 
I IOPl ,IOP2, , " ICrlDII 
~-------+----t--------------t-------------+--------------t------------------------t--+--i 
ITRT 101 ISource - I Translate ITarget - ITRANSLATE bif. IOC SC 
IA4 I Ivarying stringltable. Ivarying stringl I 
I t I <=256 bytes. t Ilonger than I I 
I (contd~ I I I I source. I I 
~-------t----t--------------t-------------t--------------+------------------------~ 
IKONST 100 I Translate , I ITRANSLATE bif. I 
IFa I Itable. I I I I 
I ~----t--------------t-------------+--------------~(TRT X'08' is always I 
ITRT 108 ISource - IConstant (1). I Target - Ipreceded by KONST I 
IA4 I ladjustable I Ivarying stringlX·OO'). I 
I I Istring<=256 I 1<=256 bytes orl 1 
I I Ibytes or I Ivarying stringl I 
I I Ivarying string I I shorter than I I 
I '1<=256 bytes. I I source. I I 
~-------t----+--------------t-------------t--------------+------------------------l 
IKONST 100 ILength of ITranslate I ITRANSLATE bif. I 
I F8 I I shorter I table. I I I 
I I Istring. I I I ('IRT X'09' is always I 
I ~----t--------------+-------------+--------------ipreceded by KONST I 
ITRT 109 ISource string. I Temporary ITarget string·IX·OO'). I 
I A4 I I I workspace, if I I I 
I I I Isource dnd I I I 
I I I Itarget over- 'I I 
I I I Ilap. I I I 
~-------+----+--------------+-------------t--------------t------------------------t--t 
I KONST 100 ITranslate I I IVERIFY bif. lOX 
IFa I Itable., I I I 
I ~----+--------------+-------------+--------------~(TRT X'OA' is always I 
ITRT lOA ISource - ILength of I Halfword Ipreceded by KONST I 
'A4 , 'non-varying J source I binaI:Y target. I X' 00') • I 
I t I string>256 1 string. I I I 
I I I bytes I I I I 
~-------t----t--------------+-------------+--------------t------------------------t 
TRT lOB ,source-fixed ,Source-fixed I Target. IGenerates code for I 
A4 I I length. Ilength<251. I I INDEX bif. I 

~----t--------------t-------------t--------------i I 
10C ISource - any ISource <256. I Target. I I 
I I length, adj- IMay be I I I 
I I ustable, vary-Ivarying. I I I 
I ling, or fixed. I I I I 
~----t--------------t-------------+--------------i I 
100 ISource - any ISource - I Target. I I 
I Ilength, vary- Ifixed <256. I I I 
I I ing. I I I I 
.----t--------------t-------------t--------------t------------------------t--1 
10E IString I I IGenerates code to lOCI 
I I temporary. I I Icreate a translate I I 
I I I I I table. I I 

r-------t----+--------------+-------------+--------------t------------------------t--t--i 
IVDA 100 ISize of IRounding con-ITarget for IGet VDA table. IIIISA 
122 I Istorage Istant for I address, if , I I 
I I Ineeded Idoubleword I needed. IIST2 is set, by O~ing I I 
I I I (absolute lalignment of I Iwith SETPNAB, if the I I 
I I Ivalue or IVDAs. I IVDA must be kept until I I 
I I Ivariable) • I I I termina tion of the I I 
I I I I I Iblock. I , 
I ~----t--------------t-------------t--------------+------------------------i I 
I 102 I I I IFree VDA table. Only I I 
I I I I I 1used if VDA to be freed I I 
I I I I I I before end of statement. I· I L _______ 4 ____ ~ ______________ ~ _____________ ~ ______________ ~ ________________________ ~ __ ~ __ 

Figure 5.96. (Part 31 of 32). Usage of operands in Type-2 text tables 

652 Licensed Material - Property of IBM 



r------------T--------------T-------------T--------------T------------------------T-----' 
I Operator I Operand 1 I Operand 2 I Operand 3 I Comments I Phase I 
~-------T----~ I I I ~--T--~ 
I IOP1 IIOP2 1 I I I lerlDII 
~-------+----+--------------+-------------+--------------+------------------------+--+--i 
I WAIT 100 INull. INull. I Event I IIIIKTI 
112 I I I I expression. I I I I 
~-------+----t--------------+-------------t--------------+------------------------i .--i 
IWHILE 100 IWHILE IGSL of end I IWHILE clause. I I I 
16D I I expression. lof do-loop. 1 I r I I 
~-------t----t--------------+-------------+--------------t------------------------i .--i 
IWRITE 100 I I I ISee last part of this I I I 
18q I I I I I figure I I I 
~---_---L----L--------------L-------------L--------------L------------------------+--+--i 
IRecord I/O text tables I 
IThe general format of record I/O tables (listed below> is as follows: I 
I File. Key (variable, Variable or I 
I constant, or IGNORE I 
I expression). expression. I 
IThe options permitted with each type of statement are shown against the I 
,corresponding values of IOP2. I 
IAII the text tables except LOCATE are followed by an EVO table. I 
I I 
IUNLOCK 100 tKEY I (Applies to OS version III 
185 I I I I lof compiler only.) I 
~-------+----+--------------t-------------+--------------+------------------------1 .--
READ 101 SET. 1 KMI 
83 102 KEYTO. SET. I 

103 KEY. SET. I 
10q INTO. I 
105 INTO. EVENT. I 
106 KEYTO. INTO. , 
107 KEYTO. INTO. EVENT. I 
108 KEY. INTO. I 
109 KEY. INTO. EVENT. J 
IDA KEY. INTO. UNLOCK) OS I 
lOB KEY. INTO. EVENT. UNLOCK) only. I 
10C IGNORE. , 
100 IGNORE. EVENT. I 

~-------t----t--------------t-------------+--------------+------------------------i I 
I WRITE 10E I I I FROM. I I I 
, 8q 10F I I I FROM., I I 
I 110 I I KEYFROM. I FROM. I I I 
1 111 I I KEYFROM. I FROM. I EVENT. I' 
~-------+----+--------------t-------------t--------------+------------------------i I 
IREWRITEI12 I I I FROM. I I I 
I 81 , 13 I I I FROM.. I EVENT., I I 
I 11q I IKEY. I FROM. I I I 
I 115 I I KEY. I FROM. I EVENT. I I 
~-------+----+--------------+-------------+--------------+------------------------i I 
IDELETE 116 I I I I EVENT. (Applies to OS I I 
185 117 I JKEY. I I version of I I 
I 118 I IKEY. I I EVENT. compiler only.) I I 
~-------+----+--------------+-------------+--------------+------------------------~ I 
ILOCATE 119 I I I SET. IAlways followed by a I I 
188 11A I IKEYFROM. ISET. ILOCATE 00 table. I I L _______ L ____ L ______________ L _____________ L ______________ L ________________________ ~ __ ~ __ J 

Figure 5.96. (Part 32 of 32). Usage of operands in Type-2 text tables 

Licensed Material - Property of IBM Section 5: Data Area Layouts 653 



r----------------T----------------------------------------------------------------------, 
1 Type of array I Contents of Operand 2 I 
~----------------+-----------------~--------------T------------------T------------------i 
1 1 Byte 0 1 Byte 1 1 Bytes 2-3 I Bytes 4-5 I 

~----------------+-----------------+--------------+------------------+------------------f 
1 Adjustable non-I Code byte (var- 1 Data byte. I Offset. I ATR. 1 
I based. . I iable'. I I I I 
~----------------+-----------------+--------------+------------------+------------------~ 1 Adjustable 1 Code temporary I Data byte. I Offset. I ~T number. I 
I based. I (Q-temp'. I I ! I 
~----------------+-----------------+--------------+------------------~------------------~ 
I Non-adjustable.! Code byte I Precision. 1 Literal binary constant. I 
I ! (constant).. 1 1 I L ________________ ~ _________________ ~ ______________ ~ _____________________________________ J 

Figure 5.91. Content of Operand 2 of a SUBSl table after Phase KE 

654 Licensed Material - Property of IBM 



r------T--------T-----------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~------+--------+-----------------------------------------------------------------------i 
I 0 I IFOM I Text code byte (FLWUNT). I 
~------+--------+-----------------------------------------------------------------------~ 
I 1 I IFOFL I First flag byte: I 
I I I I 
I I I 1... Drop through from this unit to the next in the stream. I 
I I I .1.. The first label (see below) exists. I 
I I I .. 1. The second label (see below) exists. I 
I I 1 ••• 1 The unit ends at a CALL statement. I 
1 I 1 1... The unit ends at a RETURN statement. I 
I I I .1 •• This is the last flow unit in the block. I 
I 1 1 •• 1. The flow unit starts an iterative do-loop. I 
~------+----~---+-----~-----------------------------------------------------------------i 
I 2 I IFOFL2 I Second flag byte: 1 
I I I I 
I I 11 ••••••• The unit starts at block entry statement (PROC,BEGIN,ENTRY' I 
~------+--------+-----------------------------------------------------------------------~ 
I 3 I I Not used. I L ______ 4 ________ ~_-_____________________________________________________________________ J 

r-------------------T------------------T-------------------T------------, 
I Label constant ILabel variable I Label variable I First 
, ,temporary I or pointer I latel 

r------T--------+-------------------+------------------+-------------------1 descriptor 
I 4 I I IFOCl - operand IIFOCl - operand I IFOCl - operand I 
I I I code byte. Icode byte. I code byte. I 
~------+--------+-------------------+------------------+-------------------i 
I 5-6 I I IFORF1 - label IIFORFl - label I IFORFl - dict- I 
1 1 I number. Inumber of first I ionary reference I 
I I I I compiler label. I of the variable. I 
r------t--------t-------------------t------------------t-------------------~ 
I 7 I I IFOLVl - block IIFOCLl - number oft IFOLFl - flag I 
I , I level. Icompiler labels. I byte (X'80' if I 
~------t--------t-------------------, I , 
I 8, I IFOCTl - block , 1 GOOB, X' 00' if , 
I I I count. , I GOTO). I L ______ ~ ________ L __ ----_____________ ~ __________________ ~ ___________________ ~ ____________ J 

r------T--------T-----------------------------------------------------------------------, 
I 9-13 I I Second label descriptor - as above, with symbolic names ending in 2. , 
~------t--------+-------------·----------------------------------------------------------1 I 14-181 IFOUNC , Flow unit chain field. I 
r------+--------t-----------------------------------------------------------------------~ 
1 19- 23 1 IFOBCH 1 Dlock chain field. 1 
~------+--------+-----------------------------------------------------------------------i 
I 24-261 1 Not used. 1 
~------+--------t-----------------------------------------------------------------------~ 
I 21-281 IFOPHl 1 Two-byte reference of last hash table in preceding flow-unit. 1 
~------T--------T------------------------------TT---------------------------------------i 
I 29 I IFOCDE I For first flow unit in block:llotherwise: operand code byte of label I 
I I I block count. lion this flow unit. I 
~------+--------+------------------------------+t---------------------------------------i 
1 30-311 IFOLAB 1 For first flow unit in block:llotherwise: dictionary reference of 1 
I I , the number of the first label I I label on this flow unit. I 
I I I used in a GOTO statement in II I 
I , I the block. fI 1 
~------+--------+---------------------------~--t+---------------------------------------i 
1 32 I 1 Not used. I I 1 L ______ ~ ________ ~ ______________________________ ~~ _______________________________________ J 

Figure 5.98. (~art 1 of 2). ~ormat of flow unit headers from Phase OE to Phase 01 

Licensed Material - Property of IBM Section 5: Data Area Layouts 655 



r--------T-------T----------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~--------+-------+----------------------------------------------------------------------~ 
1 33-35 I IFOLPUITrack address of the last page in the flow unit. I 
~--------+-------+----------------------------------------------------------------------i 
1 36-67 1 IFOVU IBit vector indicating which of the first 256 variables are used in I 
I I tthis flow unit. I 
~--------+-------+----------------------------------------------------------------------~ I 68-99 1 IFOVS lBit vector indicating which of the first 256 variables are set in I 
I I lthis flow unit. I 
~--------+-------+----------------------------------------------------------------------~ 
1 100-1311 IFOBENIBit vector indicating EITHER which of the first 256 variables are busyl 
Ilion entry to the flow unit, (Phase OE), OR which of the first 256 1 
1 1 Ivariables are set between the head and back dominator of the flow I 
I I lunit. I 
~--------+-------+----------------------------------------------------------------------~ 
I 132-1631 IFOBEX1Bit vector indicating EITHER which of the first 256 variables are busy I 
I I Ion exit from the flow unit, OR which of the first 256 variables are I 
I I Iset more than once in the flow unit (Phase OE). I l ________ ~ _______ ~ ______________________________________________________________________ J 

Figure 5.98. (Part 2 of 2). Format of flow unit headers from Phase OE to Phase 01 

656 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r-------T-----------T-------------------------------------------------------------------, I Bytes I Symbol I Meaning I 
~-------t-----------+-------------------------------------------------------------------~ I 0 I IFOM I Text code byte (FLWUNT). I 
~------t-----------t------------------------------------------------------------------_i I 1 I IFOFl I First flag byte: f 
I I I I 
I I 1... I The first connection (see below) exists. I 
I I .1.. I The second connection (see below) exists. I 
f I .. 1. I First connection is by 'drop through'. f 
I I . - -1 I The unit ends at a CALL statement. I 
I I 1 •.• I There are no more connections. (Depends on second connection I 
I I I existing_) I 
I I .1_. 1 I 
I I .. 1. I The unit can never be executed. I 
I I .... 1 I This flow unit has been optimized. I 
~-----t-----------t-------------------------------------------------------------------i I 2 I IFOF2 I Second flag byte: I 
I I 1 I 
I 1 1... 1 The flow unit is always executed in a loop. I 
I I .1.. I The flow unit is in a non-looping part of the program. I 
I I .. 1. I' The flow unit is the first in a loop (loop entry). I 
I 1 ••• 1 I The flow unit is the last in a loop. I 
I I 1 ... I All flow units on chain back to back dominator are in a loop. I 
I I .1.. I I 
I I .. 1. I The flow unit is a back target. I 
I I ... 1 I Re-ordering is permitted in this block. I 
~------i-----------t-----------------------------------------------·--------------------f 
I 3 I IFOF3 I Third flag byte: I 
I I 1.... I 'Ihe label in this flow unit can be gone to from an ON-unit 0:[ is I 
I I I a streaK I/O abnormal termination label. I 
I I .1.. I 'Ihe first flow unit in a tlock. I 
I I .. 1. I The first flow unit in a DO group. I 
I I ••• 1 1 'Ihe last flew unit in a DC group. I 
I I 1. .. I The flow unit header is to be retained. I 
I I .1 •• 1 The loop contains a hidden branch (e.g., as a result of I 
I I I ENDFILE) and the loop control variable must be stored. I 
~-------t-----------t-----------------------------------------------------~------------_i I q I IFOFUN I Flow uni t number. I 
~-------t-----------t-------------------------------------------------------------------~ I 5 I IFOBD I Back dominator number (if flow unit is in a loop). I 
~-------+-----------t------------------------------------------------------------------_i I 6 I IFOLC 1 Loop chain field. I 
~-------t-----------t------------~------------------------------------------------------~ I 7 1 IFOBTN 1 Back target number (if flow unit is not in a loop). I 
~-------t-----------t-------------------------~--------------------------~-------------_i I 8 I IFOCNl I First connection: flow unit to which cont.rol passes on exit. I 
~-------t-----------t-------------------------------------------------------------------i I 9 I IFOCN2 I Second connection: alternative to the first connection. I 
~------+-----------t-------------------------------------------------------------------i I 10-11 I Not used. I I 
L _______ ~----------4----------------------------------------__________________________ -J 

Figure 5.99 .• (Part 1 of 2). Format of flow unit headers after Phase 01 

Licensed Material - Property of IBM Section 5: Data Area Layouts 657' 



r-------T-----------T-------------------------~-----------------------------------------, I Bytes I symbol I Meaning I 
~-------t-----------t----------------------------~--------------------------------------i 
I 12-13 I IFOLDE I Dictionary reference to loop data entry. I 
~-------t-----------t-------------------------------------------------------------------~ I 14-18 I IFOLCR I Text reference of the next ,loop in the loop chain. I 
~-------t-----------+-------------------------------------------------------------------i I 19-23 I IFOBDR I Text reference of the back dominator. I 
~-------t-----------t-------------------------------------------------------------------i I 24-28 I IFOBTNR I Text reference of the back target. I 
~-------+-----------t-------------------------------------------------------------------i 
I 29 I I Not us ed. I 
~-------t-----------t-------------------------------------------------------------------~ 
I 30-31 I IFOPC I Number of back connectors. I 
~------i-----------i-------------------------------------------------------------------i I 32 I IFODN I Loop depth number. I 
~-------t-----------t-------------------------------------------------------------------i 
I 33-35 I IFOLPU I Track address of the last page in the flow unit. I L _______ ~ ___________ ~ _________________________________ -------___________________________ J 

Figure 5.99. (Part 2 of 2). Format of flow unit headers after Phase 01 

r-------T-----------T-------------------------------------------------------------------, I Bytes I symbol I Meaning I 
~------t-----------t-------------------------------------------------------------------i 
I 0 I IOP1 I Text" code byte (HASH). I 
.-------t-----------t-------------------------------------------------------------------~ 
I 1 I IOP2 I Second byte of operator. I 
~-------t-----------t-------------------------------------------------------------------i I 2-23 I lHASHC I Eleven two-byte hash-chain fields. I 
~-------t-----------t-------------------------------------------------------------------i 
I 24-26 I IBPCH I Chain field painting back to the previous page. I 
~-------t-----------t-------------------------------------------------------------------i 
I 21 I I Not used. I 
~-------t-----------t-------------------------------------------------------------------~ I 28-29 I IBCHN I Head of chain back through text tables in this flow unit or page. I 
~-------+-----------t---------------------------~---------------------------------------i 
I 30-31 I IFCHN I Head of chain forwards through text tables in this flow unit I 
I I I or page. I 
L _______ ~--_________ ~ __________________________________ ----------------------------_____ J 

Figure 5.100. Format of hash tables in Type 2 text 

658 Licensed Material - Property of IBM 



PSEUDO CONSTANTS POOL (PCP) 

A pseudo constants pool entry consists of a six-byte heading field, followed by a 
'constant' field from which the object-time constant will eventually be constructed 
(during storage allocation~. In some cases, e.g., literal source-program constants with 
no replication factor, the 'constant' part of the PCP entry is identical to the final 
object-time constants pool entry. 

The general format of PCP entries is as follows: 

r--~----T--------T----------------------------------------------------------------------, I Bytes I Symbol 1 Meaning I 
~-------+--------+----------------------------------------------------------------------~ I 0 I PCPFGL I PCP flag byte. I 
~-------+--------+----------------------------------------------------------------------~ I 1 I PCPCDE , PCP code byte, indicating type of entry. I 
~-------+--------+----------------------------------------------------------------------~ I 2-3 I PCPCPL I Length of constants pool entry (i.e., expanded length). I 
r-------+--------+----------------------------------------------------------------------t I 4-5 I PCPDRF I Dictionary reference of variables dictionary entry. I 
I I I OR I 
I I PCPREP I Replication factor if the PCP entry is for a literal constant. I 
~-------+--------+----------------------------------------------------------------------~ I 6- I PCPENT 1 Constant (not necessarily in its final form). I 'L _______ ~ ________ ~ ______________________________________________________________________ J 

Figure 5.101. General format of pseudo constants pool entries 

The PCP is constructed by Phases PC and PA. The types of entry made by each of these 
phases are described in Figures 5.103 to 5.123, as follows: 

Figure 5.103. 
Figure 5.104. 
Figure 5.105. 
Figure 5.106. 
Figure 5.101. 
Figure 5.108. 
FIGURE 5.109. 
Figure 5.110. 
Figure 5.111. 
Figure 5.112. 
Figure 5.113. 
Figure 5.114. 
Figure 5.115. 
Figure 5.116. 
Figure 5.111. 
Figure 5.118. 
Figure 5.119. 
Figure 5.120. 
Figure S.121. 
Figure 5.122. 
Figure 5.123. 

Format of object-time arithmetic DEDs 
Format of non-pictured arithmetic FEDs (E or F format) 
Format of pictured arithmetic FEDs 
Format of non-pictured string DEDs and FEDs 
Format of pictured string DEDs and FEDs 
Format of C-format FEDs 
Format of carriage-control FEDs 
Format of program control data DEDs 
Code bytes in object-time DEDs and FEDs 
Flag bytes in object-time DEDs and FEDs 
Format of symbol table list element entries 
Format of long symbol tables 
Format of short symbol tables 
Format of string locator/descriptors 
Format of string descriptors 
Format of aggregate locato~s 
Format of area locator/descriptors 
Format of array descriptors 
Format of structure descriptors 
Format of descriptor descriptors for structures 
Format of descriptor descriptors for base elements of aggregates 

Output to the PCP from Phase PC 

Object-time DEDs and FEDs which are required to be passed as arguments to library 
routines. The formats of these entries are shown in figures 5.103 to 5.110. The values 
of the OED code bytes are shown in figure 5.111, and the meanings of the flag bytes 
(DEDFLG' in figure 5.112. 

Symbol table lists: A symbol table list ('symbol table vector') is created for each 
block containing declarations of variables which are involved in DATA-directed I/O or 
CHECK condition statements. Blocks with a lower block count which do not contain any 
such declarations are nevertheless represented with dummy lists, for chaining purposes. 
A dummy list is similar to the last two elements of a normal list and contains a list 
delimiter (X'OOOOOOOO") and a pointer to the first element of the list of the containing 
block. The lists are built in block-count order. The format of a symbol table list 
element entry is shown in figure 5.113. 

Licensed Material - Property of IBM Section 5: Data Area Layouts 659 



Symbol tables are created for variables that are known within a block containing either a 
'GET/PUT DATA:' STATEMENT, OR A 'SIGNAL CHECK:' statement (for those variables for which 
the CHECK condition is enabled). Each symbol table is referenced (at compile-time by a 
two-byte offset: at object-time by a four-byte address) by its corresponding element in 
the symbol table list for the block in which the variable is declared. 

The formats of symbol tables are shown in figures 5.114 and 5.115. 

r---------------------------T-------------------------------~---------------------------, I All OED and FED entries. I All symbol table element bits., All symbol table entries. I L ___________________________ ~ _______________________________ ~ ___________________________ J 

o < 
OFFSDED OFFSTE OFFSST 

Figure 5.102. Contents of the PCP after Phase PC 

r-------T-----------T-------------------------------------------------------------------1 , Bytes 1 Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------i I 0 I DEDLKP IDEO code byte" indicating type of DED. See figure 5.111. I 
~-------+-----------+-------------------------------------------------------------------f 1 I DEDFLG Flag byte, indicating the attributes of the item: 

I 
1 •• 0. Fixed constant. 
I •• 1. Float constant. 
I ••• 0 Non-extended float. 
I ••• 1 Extended float. 
I 0... Fixed picture. 
I 1... Float picture. 
I .0.. Declared binary. 
I .1.. Declared decimal. 
I •• 0. Short precision. 
I •• 1. Long precision. 
I •.. 0 Real. I 
I ••• 1 Complex. I 

~-------+-----------+-------------------------------------------------------------------f 
, 2 I DEDPRS I Precision. I 
~-------+-----------+---~---------------------------------------------------------------i I 3 I DEDSCL I Scale. I 
~-------T-----------T---------------------------------------T---------------------------f I 4 1 PADPLN I Length of picture. I This part is present only I 
~-------+-----------+---------------------------------------i if the DED is pictured. 
I 5 1 PADDLN I Length of data. I 
~-------+-----------+---------------------------------------1 I 6 I PADMFL I Mantissa flag byte: I 
I I I I 
I I 01 ••••• 0 I Drifting s in subfield. I 
I I 0.1 •••• 0 , Drifting + in subfield. I 
I I 0 •• 1 ••• 0 I Drifting - in subfield. I 
I I 0 ••• 1 •• 0 I Drifting $ in subfield. I 
I I 0 •••• 1.0 I Total suppression in subfield. I 
I I 0 ••••• 10 I * in subfield. , 
~-------+-----------+---------------------------------------~ I 7 I PADEFL i Exponent flag byte - as for PADMFL. I 
~-------+-----------+---------------------------------------i I 8- I PADPIC I Picutre specification. I L _______ ~ ___________ ~ _________________________ ~ _____________ ~ __________________________ _ 

Figure 5.103. Format of object-time arithme~ic DEDs 

660 Licensed Material - Property of IBM 



r-------T----------T--------------------------------------------------------------------1 
I Bytes I Syrr,bol I Meaning I 

~-------+----------+--------------------------------------------------------------------i 
I 0 I DEDLKUP J DED code byte, indicating type of FED. See figure 5.111. I 
~-------+----------+--------------------------------------------------------------------i I 1 I DEDFLG I Flag byte, indicating the attributes of the field. See DEDFLG in I 
I I I figure 5.103. I 
~-------+----------+--------------------------------------------------------------------i I 2-3 I I Field width. I 
~-------+----------+--------------------------------------------------------------------~ 
I 4 I I Precision. I 
~-------+----------+--------------------------------------------------------------------i I 5 I I Scale. I L _______ ~ __________ ~ ____________________________________________________________________ ~ 

Figure 5.104. Format of non-pictured arithmetic FEDs CE- or F-format) 

r-------T----------T--------------------------------------------------------------------1 I Bytes I Symbol I Meaning I 
~-------+----------+--------------------------------------------------------------------~ 
I 0 I DEDLKUP I OED code byte, indicating type of FED. See figure 5.111. I 

~-------+----------+--------------------------------------------------------------------i 
I 1 I DEDFLG I Flag byte. See figure 5.112. I 

~-------t----------+--------------------------------------------------------------------i I 2-3 I PDFFL2 I Field width. I 
~-------T----------T-------------------------------------------T-------------------------i 
I 4 I PDFLK2 IDEO code byte. I This part of the FED is I 

~-------+----------+------------------------------------------~ identical to the corres-I 
I 5 I PDFFL2 I Flag byte. I ponding arithmetic OED. I 
~-------+----------+------------------------------------------i See figure 5.103. I 
I 6 I PDFPRS J Precision. I J 

~-------+----------t------------------------------------------1 I I 7 l PDFSCL I Scale I I 
~-------+----------+-------------------------------~----------~ I I 8 I PDFPLN I Length of picture. I I 
~-------+----------+-------------------------------------------i I I 9 f PDFDLN I Length of data. I I 
~-------+----------+------------------------------------------i I I 10 I PDFMFL I Mantissa flag. J I 
~-------+----------+------------------------------------------i I 
I 11 I PDFEFL I Exponent flag. I I 

~-------+----------+--------------.----------------------------i J 
I 12- I PDFPIC I Picture specification. r I L _______ ~_~ ________ ~ __________________________________________ ~ _________________________ J 

Figure 5.105. Format of pictured arithmetic FEDs 

r-------T----------T--------------------------------------------------------------------1 
r Bytes I Symbol I Meaning I 
~-------+----------+--------------------------------------------------------------------i I 0 I DEDLKUP IDEO code byte, indicating type of OED/FED. See figure 5.111. I 
~------~+----------+--------------------------------------------------------------------1 I 1 I DEDFLG I Flag byte. See figure 5.112. I 
~-------+----------+--------------------------------------------------------------------~ I 2-3 I DEDLNG I String length Cif OED), or field width Cif FEDJ. r L _______ ~ ___ - ______ ~ ____________________________________________________________ --______ J 

Figure 5.106. Format of non-pictured string DEDs and FEDs 

Licensed Material - Property of IBM Section 5: Data Area Layouts 661 



r-------T----------T--------------------------------------------------------------------1 I Bytes I Symbol I Meaning I 
~-------+----------t--------------------------------------------------------------------~ I 0 I DEDLKUP I DED code byte, indicating type of DED/FED. See figure 5.108. I 
t-------t----------t--------------------------------------------------------------------~ I 1 I DEDFLG t Flag byte. See figure 5.109. I 
~-------+----------+--------------------------------------------------------------------i I 2-3 I PSTPIL I Length, or field width, with insert characters. I 
~-------t----------+--------------------------------------------------------------------i I 4-5 I PSTPNL I Length, or field width~ without insert characters. I 
~-------t----------+--------------------------------------------------------------------~ , 6- I PSTPIC ,Picture specification. ! L _______ ~ __________ ~ ____________________________________________________________________ J 

Figure 5.101. Format of pictured string DEDs and FEDs 

r-------T----------T--------------------------------------------------------------------, I Bytes I Symbol I Meaning I 
~-------+----------+--------------------------------------------------------------------~ I 0 I DEDLKUP I DED code byte (X' 5Cit " indicating type of FED. I 
~-------+----------+-----------------.--------------------------------------------------~ 
I 1 I DEDFLG I Flag byte. See figure 5.112. 1 
~-------+----------+--------------------------------------------------------------------i I 2-3 I , Field width. , 

~-------+----------+--------------------------------------------------------------------i 1 4- I I FED for real part (bit 1 of the flag byte = 'l'B). I 
I 1 I I 
I I I FED for imaginary part (bit 1 of the flag byte = 'l"B). I L _______ ~ __________ ~ ____________________________________________________________________ J 

Figure 5.108. Format of C-format FEDs 

r-------T----------T--------------------------------------------------------------------, 
I Bytes I Symbol 1 Meaning I 
~------+----------+--------------------------------------------------------------------i , 0 I DEDLKUP IDEO code byte, indicating type of FED. See figure 5.111. I 

~-------+----------+--------------------------------------------------------------------i 
I 1 I OEDFLG 'Not used. I 
~-------+----------+--------------------------------------------------------------------~ 1 2-3 1 I This field is omitted for a PAGE FED, and used as follcws for other I 
I 1 I carriage-control FEDs: I 
I 1 I width of item X format item I 
I 1 I column number COL format item I 
I I 1 number of lines to be skipped SKIP format item I 
I I I line number LINE format item I L _______ ~ __________ ~ ______________________________________________________________ ~ _____ J 

Figure 5.109. Format of carriage-control FEDs 

r-------T----------T--------------------------------------------------------------------1 I Bytes I Symbol I Meaning I 
~-------+----------+--------------------------------------------------------------------i I 0 I DEDLKUP I DED code byte, indicating type of OED. See figure 5.111. I 
~-------+----------+--------------------------------------------------------------------i I 1 I DEDFLG I Flag byte. See figure 5.112. I L _______ ~ __________ ~-___________________________________________________________________ J 

Figure 5.110. Format of program control data DEDs 

662 Licensed Material - Property of IBM 



r----------T------------------------------, r----------T------------------------------, 
, Hex value, Data type (problem data DED) I 1 Hex value' Data type (FED and program I 

" I 
I , control data DED) , 

~----------+------------------------------i ~----------+------------------------------i 
I 00 I FIXED BINARY. I , 50 I F or E format. , 
~----------+------------------------------~ r----------+------------------------------~ I 04 I FIXED DECIMAL. , I 54 ,Arithmetic P format. I 
~----------+------------------------------~ ~----------+------------------------------i I 08 I FLOAT. , I 58 ,Character A, B, or P format. I 
~----------+------------------------------~ ~----------+------------------------------~ I OC I Free decimal (internal form)., I 5C 'C format. , 
~----------+------------------------------~ ~----------+------------------------------~ I 10 I FIXED PICTURE BINARY. , , 60 'X format. , 

~----------+------------------------------~ ~----------+------------------------------~ 
I 14 I FIXED PICTURE DECIMAL. I , 64 I COL format. I 
~----------t------------------------------~ ~----------+------------------------------~ 
I 18 I FLOAT PICTURE BINARY. I I 68 ,SKIP format. I 
~----------+------------------------------~ ~----------+------------------------------~ 
I 1C I FLOAT PICTURE DECIMAL. I r 6C I LINE format. I 
~----------t------------------------------~ r----------t----------------------~-------~ 
I 20 'Non-VARYING CHAR. I , 70 I PAGE format. , 
r----------t------------------------------i ~----------+------------------------------~ I 24 I Non-VARYING BIT. I I 80 ,LABEL. I 
~----------+------------------------------t ~----------+------------------------------i I 28 I VARYING CHAR. , I 84 I ENTRY. , 
~----------+------------------------------~ ~----------+------------------------------~ I 2C I VARYING BIT. , I 88 'AREA. , 
~----------+------------------------------t r----------+------------------------------~ I 30 I CHAR PICTURE. , , 8C ,TASK. , 

~----------+------------------------------~ r----------+------------------------------~ I 40 I BINARY constant. , I 90 'OFFSET. I 
~----------t------------------------------~ ~----------+------------------------------i 
I 44 ,DECIMAL constant. I , 94 I POINTER. I 
~----------+------------------------------~ ~----------+------------------------------~ I 48 I BIT constant. , I 98 I FILE. I l __________ ~ ______________________________ J 

~----------+------------------------------i 
I 9C 'EVENT. , l __________ ~ ______________________________ ~ 

Figure 5.111. Code bytes in object-time DEns and FEDs 

r------------T--------------------------------------------------------------------------, I Bit setting, Meaning , 

~------------+--------------------------------------------------------------------------~ ,00.. , A-format item. , 
I 01~. I B-format item. I 
,10.. , Character picture format item. , 

•• 0. , Fixed constant. , 
•• 1. , Float constant I 
••• 1 I Extended float. , 

0 ••• I F-format item/fixed picture. , 
1 ••• , E-format item/float picture. , 
.0.. , Declared binary. , 
.1 •• I Declared decimal. , 
11 •• , Character. , 
•• 0. f Short precision. I 
•• 1. , Long precis ion. , 
••• 0 , Real/length specified (A or B format'/unaligned bit string. , 
••• 1 I Complex/no length specified (A or B format/aligned bit string. I ----------__ ~ __________________________________________________________________________ J 

Figure 5.112. Flag bytes in object-time DEDs and FEDs 

Licensed Material - Property of IBM Section 5: Data Area Layouts 663 



r------T---------T----------------------------------------------------------------------1 
I Bytes I Symbol 1 Meaning I 
~------+---------+----------------------------------------------------------------------~ 
I 0 ISTEFLG IFlag byte: 1 
I I I I 
I 10000 OOOOINot the last entry for a block. 1 
I 11000 OOOOILast entry in the list for the first block. I 
I 11100 OOOOILast entry in the list for a block other than the first. I 
~------t---------+----------------------------------------------------------------------~ 
I ~ I INot used (zero). I 
~------+---------+----------------------------------------------------------------------~ 
I 2-3 ISTEOFF IPointer to a symbol table entry for an identifier, I 
I I lOR I 
I I Izero (to indicate end of list for block) if this is the last-tut-one I 
I I lOR I 
I I lpointer to the first entry for the preceding block, if this is the I 
I I Ilast entry for a block. I l ______ ~ _________ ~ ______________________________________________________________________ J 

Figure 5.113. Format of symbol table list element entries 

664 Licensed Material - Property of IBM 



r------~---------T----------------------------------------------------------------------, 
I Bytes I Symbol I Meaning I 
~------+---------+----------------------------------------------------------------------~ a ISYTFL1 IFlag byte 1: 

I I 
I 000. • ••• I I dentif ier is STATIC. 
1100 ••••• IIdentifier is AUTOMATIC. 
1010 ••••• IIdentifier is CONTROLLED (non-parameter). 
1001 ••••• IIdentifier is BASED. 
1011 ••••• IIdentifier is DEFINED. 
1101 ••••• IIdentifier is non-CONTROLLED parameter. 
1111 ••••• IIdentifier is CONTROLLED parameter. 
1 ••• 0 •••• IIdentifier is INTERNAL. 
1 ••• 1 •••• IIdentifier is EXTERNAL. 
I •••• 1 ••• I Identifier may appear in a CHECK list (this bit must be en if the 
I lidentifier is EXTERNAL). 
I ••••• 1 •• IField A (SYTFLA) refers to data. 
I ••••• 0.·IField A (SYTFLA) refers to locator (this bit is zero for CONT~OLLED 
I Iparameter). 
I •••••• 1·IIdentifier is a member of a structure. 
I ••..•.. 1I This is a long symbol table. 
I ••••••• 0IThis is a short symbol table. See figure 5.115. 

~------+---------+----------------------------------------------------------------------f 
1 ISYTFL2 IFlag byte 2: 

I 1 
1 ••••••• IField A (SYTFLA) addresses code. 
0 ••••••• IField A (SYTFLA) does not address code • 
• 1 •••••• IThe item is dynamically CHECKED currently (this bit can only te set if 

Ithe table is not in STATIC) • 
•• 1 ••••• IThe word preceding this table (at object-time) contains the value used 

Ito establish ON CHECK for this variable • 
•• 0 ••••• IThis word does not exist • 

• 1 •• IVariable is based; bits 0, 1, 2,5 of SYTFL1, bit a of SYTFL2, 
Ilevel #, and flags all refer to declared pointer • 

•• 1.1Variable is based and SYSTFLB contains descriptor's address in static 
I storage. 

I •• 0·IIf variable is based, SYTFLB contains descriptor offset in DSA. 
I ••• 0 OOOOIReserved bits. always set to zero. 

~------+---------+----------------------------------------------------------------------i 
J 2 ISYTDIM IDimensionability (zero if non-array'. I 

~------+---------+----------------------------------------------------------------------~ I 3 ISYTLVL IBlock level, if AUTOMATIC. I 
~------+---------+-----------------------------------------------~----------------------i 
I 4-1 ISYTADD IAddress of the associated DED. I 
~------t---------+---------------------------------------------------------------~------~ 
I 8-11ISYTFLA IField A - address of data or locator. I L ______ ~ _________ ~ ______________________________________________________________________ J 

Figure 5.114. (Part 1 of 2). Format of long symbol tables 

Licensed Material - Property of IBM Section 5: Data Area Layouts 665 



r-------T-----------T-------------------------------------------------------------------, 
I Bytes I Symbol 1 Meaning I 
~-------+-----------+-------------------------------------------------------------------~ 
I 12-151 SYTFLB I Field B - address needed for BASED. I 
~-------+-----------+-------------------------------------------------------------------~ 
1 16-171 SYTIDL 1 Length of identifier's name. 1 
~-------+--~--------+-------------------------------------------------------------------~ I 18- 1 SYTBCD I Fully qualified identifier name. I L _______ ~ ___________ ~ ___________________________________________________________________ J 

Figure 5.114. (Part 2 of 2). Format of long symbol tables 

r-------T-----------T-------------------------------------------------------------------, 
1 Bytes I Symbol I Meaning I 
~-------+-----------+-------------------------------------------------------------------~ I 0 I SYTFL1 1 Flag byte 1. See SYTFLG1 in figure 5.114. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 1 I SYTFL2 I Flag byte 2. See SYTFLG2 figure 5.114. I 
~-------+-----------+-------------------------------------------------------------------~ I 2-3 I SYTIDL I Length of identifier's name. I 
~-------+-----------+-------------------------------------------------------------------~ 
I 4- I SYTBCD I Fully qualified identifier name. I L _______ ~ ___________ ~ ___________________________________________________________________ J 

Figure 5.115. Format of short symbol tables 

Output to the PCP from Phase PA 

Entries for constants (source-program, compiler-generated, address, and label) and I/O 
control blocks (FCB, record descriptor, key descriptor, ENVB, and DTF) are constructed 
from the corresponding general dictionary entries. In these cases, the 'constant' part 
of the entry, PCPENT, (see figure 5.101) is the same as the 'constant' part of the 
dictionary entry. The formats of PCP entries for static locators, static descriptors, 
and descriptor descriptors are shown in figures 5.116 to 5.123. 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------~ I 0-3 I Byte address of the string. I 
~-------+--~----------------------------------------------------------------------------~ I 4-1 I String descriptor, as described below. I L _______ ~ _______________________________________________________________________________ J 

Figure 5.116. Format of string locator/descriptors 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------~ I 0-1 I Allocated length of the string. I 
~-------+-------------------------------------------------------------------------------i I 2 I Flag byte: I 
I I I 
I I X'OO' - fixed length string. I 
I I X'80' - VARYING string. I 
~-------+-------------------------------------------------------------------------------i I 3 I For UNALIGNED BIT string, the last three bits of this byte contain the bit I 
I I offset of the string from the byte address. I L _______ ~ _______________________________________________________________________________ ~ 

Figure 5.111. Format of string descriptors 

666 Licensed Material - Property of IBM 



r-------T-------------------------------------------------------------------------------1 
I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------~ I 0-3 I Bytes address of the aggregate. I 

~-------+-------------------------------------------------------------------------------~ 
I 4-1 I Address of the aggregate descriptor. (See figures 5.121 and 5.122.' I l _______ ~ ___________________________________________ ~ _______ ~ ___________________________ J 

Figure 5.118. Format of aggregate locators 

r-------T-------------------------------------------------------------------------------, 
I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------~ I 0-3 I Byte address of the AREA. I 
~-------+-------------------------------------------------------------------------------~ I 4-7 I Allocated length of the AREA. This is the area descriptor, and is concaten- , 
I I ated to the end of tne array rtescriptor for an array of AREAs. I l _______ ~ _______________________________________________________________________________ J 

Figure 5.119. Format of area locator/descriptors 

r-------T-------------------------------------------------------------------------------1 
I Bytes I Meaning I 
~-------+-------------------------------------------------------------------------------~ I 0-3 I Byte address of the start of the array, relative to its 'virtual origin'~ I 
~-------+-------------------------------------------------------------------------------i 
I 4-11 I Extent descriptor for the first dimension. See figure 5.11. I 
~-------+-------------------------------------------------------------------------------~ I 12- I Extent descriptors for all other dimensions of the array. I L _______ ~ _______________________________________________________________________________ J 

Figure 5.120. Format of array descriptors 

r-------T-------------------------------------------------------------------------------, I Bytes I Meaning I 
~-------T----------------------------------------------T--------------------------------f I 0-3 I Byte address of the element relative to the I This is repeated for each I 
I I start of the structure descriptor I base element of the structure, I 
~-------+----------------------------------------------~ in order of declaration. The I 
I 4-7 I Descriptor for the element. I whole makes up the structure I 
I I I descriptor. I l _______ ~ ______________________________________________ ~ ________________________________ ~ 

Figure 5.121. Format of structure descriptors 

r-------T------T------------------------------------------------------------------------1 I Bytes I Bits I Meaning I 
~-------T------T-------------------------------------------T----------------------------~ r 0-1 I 0-1 IZera, indicating that this a structure I This is repeated fer each 
I ~------t-------------------------------------------~ identifier declared in the 
I I 2-15 IOffset, from the start of the descriptor, I aggregate. 
I I lof this entry in the descriptor. The I 
I I loffset is in multiples of four bytes. I 
~-------+------+-------------------------------------------i 
I 2 I 0-7 ILogical level of the id~ntifier in the I 
I I I structure. I 
~-------+------+-------------------------------------------1 
I 3 I 0 I ' 1 • B indicates AREA. I 
I I 1 l'l'B indicates BIT string. I 
I I 2-7 IReal dimensionality of the identifier. r l _______ ~ ______ ~ ___________________________________________ ~ ____________________________ J 

Figure 5.122. Format of descriptor descriptors for structures 

Licensed Material - Property of IBM Section 5: Data Area Layouts 667 



r-------T------T------------------------------------------------------------------------, 
I Bytes I Hits I Meaning , 
~-------+------+-------------------------------------------T----------------------------~ 
I 0 I 0 l'l'B indicates that this is a base element, I This is repeated fer each 
I I 1 1'I~B indicates that this is the last I identifier declared in the 
I I lelement in the structure. I aggregate. 
I I 2-7 IAlignment stringency for the element, as I 
I I Ifollows: I 
I t I 0 bit I 
I I I 7 byte I 
I I I 15 halfword I 
I I I 31 word I 
I I I 63 doubleword I 
~-------+------+-------------------------------------------i I 1 I 0-7 ILength in bytes of the item. This is set , 
I I Ito zero for AREA or string identifiers. I 
~-------t------+-------------------------------------------i I 2-3 I lAs for bytes 2 and 3 in figures 5.122. I l _______ ~ ______ ~ ______________________________ --------_____ ~ ____________________________ J 

Figure 5.123. Format of descriptor descriptors for base elements of aggregates 

668 Licensed Material - Property of IBM 



EXTENDED CODE FORMATS 

During the code generation stage, the text stream contains a mixture of markers, Type-2 
text tables, generated code, and padding bytes. Unprocessed Type-2 text tatles are 
always preceded by special four-byte markers (inserted by Phase SA), and are 
word-aligned. All other items in the text steam are byte-aligned. 

r-------T-------------------------------------------------------------------------------, 
I Bytesl Meaning I 
~-------+-----------------------------T----------------------~--------------------------i 
I 0 I X' OF· • I Marker. I 
~-------+-----------------------------i I I 1 I X' 00' • I I 
~-------+-----------------------------1 I 
I 2 IX·OO Il

• I I 
~-------+-----------------------------i I 
I 3 IX·00 41

• I I 
t-------+-----------------------------~-------------------------------------------------~ 
I 4- IText table. J 

~-------~-------------------------------------------------------------------------------~ 
~-------T--------------------------------------------------------------T----------------i 
I 0 IX·OF-. IMarker. I 
~-------+---------------------------------------~----------------------~ I I 1 ITYP. Type of marker, indicating the contents of the I I 
I Iremainder of the marker. See figure 5.125 for details. 1 I 
~-------+--------------------------------------------------------------l I 
I 2 ,TXT. Length of marker + associated code. I I 
~-------+--------------------------------------------------------------i I 
I 3 ICOD. Length of generated code associated with this marker, I I 
I lor zero. I I 
~-------+--------------------------------------------------------------i I I 4- IRemainder of marker depends on value of TYP. I t 
t-------~--------------------------------------------------------------~----------------~ 
~-------T-----------------------------T-------------------------------------------------f 
,0 ,code byte. IGenerated code contains instructions whose I 
~-------+-----------------------------1length is indicated by the first two bits of the I 
I 1- IRemainder of instruction, loperation code. I 
I J 1, 3, or 5 bytes in length. I I 
~-------~-----------------------------~-------------------------------------------------i r-------T-------------------------------------------------------------------------------i 
, IX·OE-. Padding byte. I L _______ 4 _______________________________________________________________________________ J 

Figure 5.124. Components of extended code 

Licensed Material - Property of IBM Section 5: Data Area Layouts 669 



r----------------T---T---T---T--------------T------T--------T---------------------------, 
I Marker Type ITYPITXTICODI Bytes q & 5 IByte 61 Byte 7 , Other bytes I 
, , , , , ,(see I' , 
I , I , I I Notes " I 
, I I I I 12 & 4) I I I 
~----------------t---t---t---+--------------t------+--------t---------------------------~ 
I Label 11 18 10 I Dictionary ,label I' I 
, , , , ,reference, or ,flags." I 
I , I I , compiler- , l ' , 
, , I I I label , I I , 
, I , I 1 number. , I' , 
~----------------t---t---t---t--------------+------t--------t---------------------------~ 
,Branches - un- 12 114 ,4 JDictionary Ilabel I IBytes 8-15 are X'OE', byte I 
Iconditionalor 13 114 14 I reference, or Iflags.1 ,16 is the operation code, , 
,conditional. I I I I compiler- I I I byte 17 is the operation I 
I (See Note 3) t I 'Ilabel. I I Imask. I 
~----------------+---+---t---+--------------~------~--------~---------------------------~ 
lEnd of text 14 14 10 IUsed for intermediate processing within code production I 
,table marker. t I I I phases. I 
~----------------+---t---+---+--------------T------T--------T---------------------------~ 
I Prologue load ,5 114 14 1 Dictionary ,label I I I 
laddress. "I I reference, or ,flags., I I 
I I I I I compiler- I I I I 
I I I I Ilabe 1 1 I I I 
I , I I I number. I I I I 
~----------------+---+---t---t--------------+------t--------t---------------------------~ 
I Procedure. 17 ,8 10 I Dictionary ,label" I 
I , I I I reference of I flags. I I , 
I I I I 1 block. I I I I 
~----------------t---+---t---t--------------+------+--------+---------------------------~ 
IBegin. 18 18 10 IDictionary Ilabel I I I 
I I I I I reference I flags. I I I 
I I I I lof block. I I I I 
~----------------t---t---t---+--------------t------+--------+---------------------------~ 
I prologue. 19 18 10 ICompiler labelilabel I - I I 
I I I I 'number of ,flags. I I , 
I I I I Istart of I I I I 
I I I 1 I prologue. , " I 
~----------------+---+---+---+--------------t------+--------+---------------------------~ 
I Procedure. 1 A , 8 , 0 I Compi ler labelll abell' I 
I I I I Inumber of I flags. I I I 
I 1 , I ,procedure I I I I 
I 1 I I I bas 3. , I I I 
~----------------t---+---+---+--------------t------+--------+---------------------------~ 
I Statement IB 18 10 ,Statement I I' , 
'number. '" I number. I I I ! 
~----------------t---t---t---+--------------t------t--------t---------------------------i 
Ian block., C 18 10 I Dictionary Ilabel I I I 
, , , I ,reference of I flags. " I 
, , I I , block. I I I I 
~----------------f---+---+---t--------------t------t--------t---------------------------~ 
IBlock end. ID IA 10 I I I IBytes 8 and 9 contain a I 
I I I I I I I ,NOOP 0707. I 
r----------------t---t---t---t--------------t------t--------t---------------------------~ 
INo listing 110 18+NIN IValue N is I I IBytes 8 to 8+N-1 contain I 
linformation - , I I Irepeated in I I Ithe code. I 
I N=number of 1 I I I this half- I I I I 
Ibytes of code 1 I I Iword. I I I I 
I following. I I I I I I I I 
~----------------t---+---t---t--------------t------t--------t---------------------------~ 
I Internal text 111 18 10 I Internal label I I I I 
Itable label. I I I I number. I I I I L ________________ ~ ___ ~ ___ ~ ___ ~ ______________ L ______ ~ ________ ~ ___________________________ J 

Figure 5.125. (Part 1 of 3~. Markers inserted in extended code by code generation phases 

670 Licensed Material - Property of IBM 



Order No~ LY33-6010-1. Page Revised by TNL LN33-6079. October. 1973 

iii Ii i i i 
1 Byte 61 I ~arker TypelTYPITXTICODI Bytes 4 & 5 

I I I I 
1 I I I 
I I I I 
I I I I 
IInternal text I I I 
I table branches; I I f 
lunconditional orl12 18 I 
I conditional. I 13 I 8 I 
I 1 1 I 
I I I I 
IProgram end. 114 18 I 
1 I I I 

• I I I I Statement 115 18 I 
1 change.. I I 1 
~ I I I 
IBXLE and BXB 116 11A I 
1 branches. I I 1 
,See Note 3. 'i' 
1 I I 1 
I I 1 I 

• I 1 1 1 Call. I 17 1 8 I 
I I I 1 
I I I I 
l I I I 
1 Constant. 118 18+NI 
1 I I I 
I I 1 1 

• I 1 I IConstant re- 119 18+NI 
Iquiring reloc- I I I 
,atioD.. " I 

• I 1 I IReal entry 11A 18 I 
Ipoint. i' I 
1 I I I 
, I I I 

IIStart compiler- 11B 16 I 
Igenerated sub- I 1 I 
I routine.. 1 I I 
I I 1 I 
ILoop initial- 11C 18 I 
lization. 1 I I 

• I I I I'Code moved' 11D 19 I 
I marker I I I 
, I I I 
1 I 1 I 
I I I I 
I 'Code command' 11EI8 I 
I marker. I I I 
, 4 I I 
I 'Code reordered'llF 18 I 
I marker. I I I 
, 1 I I 
I 'Number region' 120 18 I 
I marker. I I I 
I I • , 

I (see I 
INotes I 
12 & 4) I 
I I 
I I 
I I 

4 IInternal labell I 
4 I number of I I 

Ibranch label. I I 
I I I 

o ISize of I I 
I program. I I 
I I I 

o I Statement I I 
I number. I I 
I 'I 

4 IDictionary 'label I 
Ireference or Iflags.1 
I compiler- I I 
tlabel I I 
Inumber. I I 
I I I 

o IDictionary Ilabel I 
Ireference of Iflags.1 
I entry label. I , 
I I I 

N IN repeated. Icon- I 
I Istant t 
I I flags. , 
I I I 

N IN repeated. Icon- t 
I Istant I 
, Iflags.' 
I I I 

o IDictionary 'label 1 
Ireference of Iflags., 
lentry. 1 I 
1 I t 

o I Number of in- I I 
Iline module. I I 
I I I 
I I I 

o I 1 I 
I I I 
I I I 

o I Statement I I 
Inumber from, , 
twhere code 1 I 
Icameio t I 
I I I 

o I I I 
I I 1 

I " o I I' 
I " I 1 1 

o IRegister for I I 
I program base. I I 
I " 

Byte 7 

Reloc­
ation 
CSECT .. 

i 
I Other bytes , 
I 
1 
I 
1 , 
IByte 8 is the operation 
tcode. 
IByte 9 is the branch mask. 
1 
I 
I 
I 

IBytes 8-15 are X·OB'. 
tbyte 16 is the operation 
Icode. byte 17 is the 
Ibranch mask. 
I 
1 

17, 8 - offset of statement 
,marker. 
1 
1 
I 

Figure 5.125. (Part 2 of 3). Markers inserted in extended code by code generation phases 

Licensed ~aterial - Property of IBM Section 5: Data Area Layouts 671 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, 

r 
I Marker Type 
I 
I 
I 

I: End compiler­
Igenerated sub­
Iroutine. 
I 
lEnd of program 
1 CSECT,. 

• ILoad adcon. 
1 

• I I Code revert I 
I marker. 
I 

• 1 • Common ended I 
I marker. 

• IPseudo register 
I relocation. , 
1 , 

, Iii 

ITYPITXTICODI Bytes 4 & 5 IByte 7 
I (see I I 

1 I 
I I 
1 I 
121 ,4 
I 1 
, 1 
1 I 
122 18 
I I 
I I 
123 IC 
1 1 
1 I 
t 24 19 
I I 
I , 
I I 
125 18 
I , 
1 I 
126 18 
I 1 
1 I 
1 I 
1 , 

1 Notes 
& 4) 12 

I 
o ,Number of 

I routine. 
I 

sub-I 
I , 

I o , 
I 
1 

o ILibrary entry 
Iname • 
I 

o IStatement 
Inumber re­
Iverted to. 
1 

o I 
1 
I 

o IDictionary 
1 reference of 
I controlled 
1 variable. , 

I 

October, 1973 

I Other bytes , , 
I 
I 

17,8 - offset of statement 
, marker. 
I 
I 

Figure 5.125. (Part 3 of 3). Markers inserted in extended code by code generation phases 

1. Byte 0 is omitted because it is always XIOFI,. The values of Type Code, TXT, and COD 
bytes are shown in hexadecimal. 

2. The label flags are set as follows: 

o Programmer-supplied label. 
1 Compiler-generated label. 
2 programmer-supplied subscripted label. 

3. If an RR instruction is involved, the values shown for TXT and COD are halved~ 

4. The constant flags are set as follows: 

o Character constant. 
1 F type constant. 
2 H type constant. 
3 X type constant. 
4 A type constant. 
7 static-initial constant. 

672 Licensed Material - Property of IBM 



PREPROCESSOR DICTIONARY ENTRIES 

During the first preprocessor scan of text, entries are made in the general dictionary 
for all identifiers involved in compile-time statements. The format is shown below in 
figure 5.126. 

During the replacement activity of the second scan, Iva (identifier value block) 
entries holding character string val~es for variables and intermediate text are made in 
the variables dictionary. The format of these entries is shown in figure 5.127. 

r------T----------T---------------------------------------------------------------------, 
IBytes I Symbol I Meaning I 
~------t---------_+---------------------------------------------------------------------~ 
10 1 ILength of the identifier's name. This is zero if the identifier is I 
I I I a constant. I 
~------+----------+---------------------------------------------------------------------~ 11 I ICompile-time procedure number of the procedure in which the I 
I I lidentifier is declared. Non-procedural text is procedure number 1. I 

~------+----------+---------------------------------------------------------------------~ 
12-3 I IHash chain field, containing the dictionary reference of the next I 
I I lentry in the chain. The end of a chain is indicated by zero in tnis I 
I I I field. I 
~------+----------+---------------------------------------------------------------------~ 14 I IFlag byte indicating various attributes of the identifier: I 
I I I I 
I 11 .. · I Fixed decimal. I 
I 1·1.. I Character. I 
I 1··1. IBit. j 
I , ... 1 I Entry. I 
I I···· 1 ••• I Label. I 
I I···· .1 •• IINCLUDE identifier. I 
I I • • •• •• 1. I Iterative 00. I 
1 I • • •• • •• 1 I Constant. I 
~------+----------+---------------------------------------------------------------------i 
5-9 VALUE IField containing either a literal value, or a pointer to an IVB 

I entry. 
I 

NNN.. IFive-digit (three-byte) packed decimal number in the leftmost 
Ithree bytes, if the identifier is FIXED. 
I 

.00.. ITWo-byte dictionary reference to an IVB entry in the variables 
I dictionary, if the identifier is CHAR or BIT. 
I 

TTTTT IFive-byte text reference to the text containing the procedure or 
Ilabel, if the identifier is PROCEDURE or LABEL. 
I 

TTTTT IFive-byte text reference to the start of the included text, if this 
lis an INCLUDE entry. 
I 

.00.. ITWo-byte dictionary reference to another entry for the variable, 
Iderived from its declaration in the non-procedural text. This is 
lused in the case of an entry made for a variable which is used but 
Inot declared in compile-time procedure, and the entry's type is 
lindicated by an 'indirect reference bit' in byte 17. 

~-----t----------t----------------------------------~----------------------------------i 
110-11 ICOUNT IFor a PROCEDURE entry, this field contains the number of parameters j 
I I I for the procedure. I 
1 I IFor an INCLUDE entry. it contains the initial line number aSSigned tol 
I. I Ithe included text after it has been included. I 
I' I IFor a parameter to a procedure. it contains the position of the 1 
1 I I parameter. I L-_____ ~ __________ ~ ___________ ~ _______________________ -------__________________________ -J 

Figure 5.126. (Part 1 of 2). Preprocessor general dictionary entries 

Licensed Material - Property of IBM Section 5: Data Area Layouts 673 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

r------T---------~---------------------------------------------------------------------, 
,Bytes I symbol I Meaning , 
~------+----------+--------------------------------------------------------------------_i 
12-15 During the first scan, this field is used to join labels and simple 

variables by forward and backward chains, using dictionary refer­
ences as pOinters. This enables a final check to be made for 
undeclared items. The information is not required by the second 
scan, which uses this field as follows: 

For a LABEL, the field contains two dictionary references; that for 
the containing iterative DO statement, and that for the containing 
INCLUDE statement. 

For an INCLUDE entry, the dictionary references of the containing 
INCLUDE statement is in bytes 14 and 15. 

~-.-----+----------+---------------------------------------------------------------------~ 
11-6 I I Flag byte: , 
1 I I 1 
I 11... ISpecial entry. , 
, 1.1.. IDECLARE encountered in the first scan. , 
, 1 •• 1. IProcedure body encountered in first scan. I 
1 1···1 I Parameter. , 
I I···· 1 ... IProcedure called during second scan of a compile-time text. , 
I I···· .. 1. IIdentifier used on left-hand side of an argument. , 
I I···· ••• 1 IActivated variable. I 
~------+--------.--+------------------------------------------------·--------------------i 
117 I IFlag byte: I 
I I I 1 
1 11 ... IProced.ure 'in use' bit, for recursive checking. , 
I 1. 1 • • I Indir.ect reference bit (see bytes 5-9). I 
1 , •• 1. I Undefined or multiply-defined variable. J 

I I···· 1 ... IBuilt-in function bit. (Also used for 'explicitly set' bit.) I 
I I···· .. 1. IActivated with NORESCAN. , 
~------+----------+---------------------------------------------------------------------f 
118 - I I Name item, in EBCDIC. I L ______ ~ __________ ~ ___________________________________ -----------------------___________ J 

Figure 5.126. (Part 2 of 2). Preprocessor general dictionary entries 

r-----'----------T---------------------------------------------------------------------, 
,Eytes I Symbol I Meaning I 
~------+----------+---------------------------------------------------------------------i 
10 I IEack-u~ character i.e., last character in the IVE ~receding t~is one 1 
I I lin the chain, it such an IVB exists. I 
~------+----------+---------------------------------------------------------------------i 
11-35 1 I~ain data part of the IVB. 1 
~------+----------+---------------------------------------------------------------------i 
136 I ILength of the IVB data (maximum 35) in bits 2-7. Bit 0 = '1- if the I 
" IIVB is the last in the chain. , 
~------+----------+---------------------------------------------------------------------~ 
137 I INot used. I 
~------+----------t-----------------------------------------------------------~--------_i 
138-39 I IChain field, containing the dictionary reference of tne next IVB , 
'I lentry in the chain. If bit 0 of byte 36 = -1', then this field is I 
I I I not used. , 
~-----~---------~-----------------------------------------------------_--------_____ -J 
Figure 5.127. Identifier value block (IVE) entries in the preprocesscr variables 

dictionary 

674 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Section 6: Diagnostic Aids 
INTRODUCTION 

This section contains information that is intended to assist in the recognition, 
identificiation, and location of errors in the compiler program. In particular it 
describes how various aids can be made available. 

(Aids for diagnosing errors in source programs and object programs are described in 
the publications: DOS PL/I Optimizing Compiler: Programmer's Guide and, DOS PL/I 
Optimizing Compiler, Execution Logic. 

USE OF THE COMPILER DUMP OPTION 

The compiler dump phase (Phase AI) can be used to provide a printe(i dump of the conter.:tE; 
of various data. areas used during a compilation. In general, the p:rinted dump shollis t:~e 
hexadecimal values cf the data area ccntents. In order to obtain a dum~, the DO~F cption 
must be specified in the *PROCESS statenent~ 

A dump can be obtained after the execution of one or ffLore ~rocessing ~hases, lIihen it 
is referred to as an interphase dump, or in the case of a program-check interrupt causing 
abnormal termination of the execution of a phase, when it is referred to as an abort_dump 
(In the case of an abort dump, the number of the statement being processed at the time of 
the abnormal termination can be found by examination of the XSTAT field (offset X ·670·) 
of the communication area (see figure 5.1., part 10).) 

The contents of the following data areas can be dumped: 

Registers (not applicable to interphase dumps) 

Communications area (XCOMM) 

Phase working storage (XSTG) 

Text pages 

Dictionary pages 

In addition to these data areas, a dump can also contain the following additional 
information: 

• Page header information - the page headers of all pages in main storage at the tirre 
of the dump, plus the first 16-bytes of the page data. 

• Page monitoring variables - information about the number of various page-handling 
operations performed during the ccm~ilation up to the time of the dump. 

• Special areas of phase working storage - if a compiler abort dunp is provided during 
execution of Phase QA, a formatted listing of the contents of the current register 
usage table is provided (in addition to this data being dumped in unformatted forro as 
part of the contents of XSTG). 

The compiler dump phase can be invoked by inclusion of the keyword, DUMP, or its 
abbreviation, DU, in the *PROCESS statement. The option can be specified with or wit~ut 
a value list. The formats, and the facilities provided, are described in the following 
paragraphs. 

Note: If the facilities provided by the compiler dump phase are required during 
compilation of one or more external procedures that are members of a batched job or 
job-step, the DUMP option must be specified i~ the *PROCESS statement of the first member 
of the batch as well as in the *PROCESS statement(s) of the batch member(s) for which the 
facilities are required. This is because the dump phase remains in main storage 
throughout compilation and allowance for it must be made during initialization of the 
compiler partition. The dump phase requires approximately 16K bytes of main storage. 

676 Licensed Material - property of IB~ 



USE OF THE DUMP OPTION WITHOUT A VALUE LIST (COMPILER ABORT DUMP) 

The format of the *PROCESS statement when the DUMP option is used without a value list is 
as follows: 

*[ JPROCESS (options,J DUMPIDU (options] 

Commas between options can be omitted, pxovided that the options are separated by at 
least one blank. 

If the DPMP option is specified without a value list, a dump will only be provided in 
the case of abnormal termination. Such a dump will have the header: 

PL/I OPTIMIZER - DUMP ROUTINE 

and the sub-header: 

DUMP ON COMPILER ABORT DURING PHASE xx •• 

The dump will include the data described below. 

1. Page header information. This section contains information about each of the data 
pages resident in main storage at the time of the dump. This information consists 
of: 

a. a three-byte field showing the address of the page. 

b. four 4-byte fields showing the contents of the page header (see part 1 of figure 
5.2). 

c. four 4-byte fields showing the contents of the first 16 bytes of processable 
data in the page. 

2. Registers. The contents of the general registers are printed. 

3. Communications area. The contents of XCOMM are printed. 

4. Page monitoring variables, Information about the number of various page-handling 
operations performed up to the time of the dump is listed as follows: 

No. of new text page requests. 
No. of DISCARDED text pages. 
No. of new dictionary page requests. 
No. of existing text page requests. 
No. of existing dictionary page requests. 
NO. of existing text pages requiring I/O operations. 
No. of dictionary pages requiring I/O operations. 
No. of I/O operations satisfied by SPILLABLE pages. 
No. of I/O operations satisfied by USABLE pages. 
No. of I/O operations satisfied by DISCARDED pages. 

*No. of READ/WRITE pages not written on. 
*No. of READ ONLY pages not written on. 
Total No. of I/O operations. 

Note: The values given for items marked * have no Significance in the published 
version of the compiler owing to the fact that more I/O operations are required to 
obtain them. Modification and reassembly of Phase AA is required to obtain 
significant values. 

5. Phase working storage - XSTG. A subheading is printed to show the start and end 
addresses of XSTG for the phase. The contents of XSTG are listed as lines of eight 
4-byte fields, each line preceded by a three-byte address indicating the offset from 
the origin of XSTG of the first item in the line. 

6. Dictionary sections. When the DUMP option is specified without a value list, a 
formatted dump of the dictionary sections is provided only if the terminated phase 
uses the dictionary. The heading, "DUMP OF DICTIONARY", is followed by sub-headings 

Licensed Material - Property of IBM Section 6: Diagnostic Aids 611 



for each section of the dictionary, in the order: general dictionary, names 
dictionary, variables dictionary, and storage dictionary. 

Following each section heading, the contents of the whole of that dictionary section 
are listed. The left-hand columns show the reference of each entry. Other columns 
show the contents of each entry, starting with the code byte which identifies the 
type of the entry. The fields within the entry are separated by blanks, and each 
column representing a field has a heading indicating the symbolic Hame of the field. 
Where a dictionary section contains a number of different types of entry, a new line 
of headings is printed each time a new type of entry is encountered. Where a type 
of entry has no fixed format, the heading idnciates the type of entry, e.g., 
Overflow entry. Each names dictionary entry shows the EBCDIC representation of the 
name itself. 

If it is impossible for Phase AI to provide a formatted dump, or to ccmplete the 
printing of a formatted dump, a message: 

"*ERROR IN SCAN. UNFORMATTED DUMP FOLLOWS". 

is printed. The start and end addresses of the unformatted dump are then ~rinted. 
Each line of an unformatted dump starts at an address that is a multiple of X'20' 
and, in the case of an interrupted formatted dump, will start at the appro~riate 
address preceding the page currently being dumped. Thus an unformatted dump may 
contain data already printed in formatted image, the page header, and a few bytes of 
data contained in main storage preceding the start of the current page. When 
dumping of a particular dictionary is completed, Phase AI will attempt to resume 
formatted dumping of any remaining dictionary sections. 

7. Dump of text. When the DUMP option is specified without a value list, a formatted 
dump of text areas is printed. The text areas that are dumped vary according to the 
phase in which the interrupt occurs. 

If the interrupt occurs in a phase that processes sequential text, the contents of 
the current input text page are dumped. If such a phase reads more than one text 
stream, the current input page that is dumped depends upon the page number set in 
the XSIPT field of the communications area at the time of the interrupt. 

The output pages that are dumped also vary from phase to phase. For any phase, the 
contents of each page in the main text stream are printed, in formatted image where 
possible. For phases that output more than one stream of text pages, the contents 
of the chain of text pages anchored in the X2STRM field of XCOMM are also printed. 
If the format of text contained in this second output stream is similar to that used 
in the main text stream, these pages are also dumped in formatted image; otherwise, 
they are dumped unformatted. The contents of a page used as a ~ork page, cr as a 
phase-to-phase information page, are also dumped if the track address of the page is 
stored in the XSCRCH field of XCOMM. At the end of the dumps of output text pages, 
the contents of the current error message page are printed. The dump of the 
contents of the main text stream is preceded by the header: "OUTPUT TEXT STREAM". 
Other output text streams are preceded by identifying headers. 

The dump of each text page is preceded by a sub-header showing the start address of 
the page. Note that a location address may be identical to that for other pagp.s, as 
pages that are not in main storage are read into page spaces to maintain the 
sequence of the text stream dump. 

The formatting of text page dumps varies from phase to phase. If the text output 
from a phase is sequential, the text page number is printed at the head of the page 
contents, and the offset from the origin of the page is printed at the beginning of 
each line of text. If the text output from the phase is non-sequential, i.e., Type 
2 text output where the logical sequence is maintained by chains to and frcm text 
tables in overflow pages, an overflow page index table is printed at the head of 
each main stream text page, and the full text reference, i.e., page number and 
offset, is printed at the beginning of each line of text. 

In a dump of Type·l text, a new print line is started for each statement, identified 
by a statement header beginning with X'FC' or X·FD'. Print lines are not cf 
fixed-length. Within each statement, ope~ands, op~rators, etc., are separated by 
blanks. Six-byte references to operands are identified by a preceding X'DE'. 

678 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

In a dump of Type-2 text output, each print line contains one 32-byte text table. 
The EBCDIC representation of the IOPl field is printed to identify the type of each 
text table. Within each text table, the various fields are separated by blanks. At 
the top of each column, the various fields are identified by descriptive headings. 
Where the text is non-sequential, values in the FWD chain field indicate the 
overflow page numbers referred to in the overflow page index table printed at t~e 
head of each page. 

If Phase AI is unable to print a formatted dump of the contents of text pages, or to 
continue a partly printed formatted dump, an unformatted dump is printed. In suc~ a 
case, the page number of each page is printed, and also the start and end address of 
processable data within that page. The text is printed in lines of 32 bytes, each 
line being divided into four-byte groups. Each line is preceded by the start 
address of the line. For non-sequential text, the dump does not show the contents 
of overflow pages. If a for.matted dump changes to an unformatted dump, no later 
reversion is made to the formatted image, as in the case of a dump of dictionary 
sections. 

USE OF THE DUMP OPTION WITH A VALUE LIST (INTERPHASE DUMP OR UNFORMATTED COMPILER ABORT 
DUMP) 

When the DUMP option is used with a value list, the format of tfte *PROCESS statement is 
as follows: 

*( ]PROCESS [options,]DUMPIDU(value-list) [,options] 

A variety of arguments can be specified in the value list, the format being: 

(value list) = ([C](E][S][H][F][U][2] 

[ 'T[FJI~~~ !J 
(x[,y]) 

[.D[Fl{::~[.T21[.T31[.T4.Ratcd[.111)~ 
. ,(Pl[,P2J~ •••• [,P3 - P4]» 

The value list format is free form in that the groups of arguments may be entered in any 
order, and the commas are optional. 

The key characters that can be specified in the first argument indicate: 

C Communication area (XCOMM). 

E Current diagnostiC message page. 

S Phase working storage (XSTG). 

H Page header information. 

U Register usage table (Phase QA interphase dump only). 

F Label trace table or execution trace bit string (not available without 
reassembly of the compiler phases. See ·Use of the XEUG Macro·). 

2 Second t ext stream. 

Each of these key characters is optional. If specified, they may· be written in any 
order. 

~he next argument, ~, specifies that a dump of text data is required. It can be 
qualified by'F i , which indicates that a formatted dump of the specified text areas is 
required. If T or ~F is specified, it must be followed by one of the three 
qualifications which indicate the area of text to be dumped: 

Licensed Material - Property of IBM Section 5: Data Area !.ayouts 679 



(W) = 

(e) = 

(x) = 
(x,y)= 

whole of text output from the phase, i.e., main output text stream, second 
output text stream (if applicable), and scratch text page (if applicable). 

dump of current output text page. 

dump of the output text representing source statement number x. 

dump of the output text representing source statements in the range of source 
statement numbers x to y inclusive. 

The next argument, D, specifies that a dump of dictionary data is required. It can te 
qualified by "F', which indicates that a formatted dump of the specified dictionary areas 
is required. If D or DF is specified, it must be followed by one of the two 
qualifications which indicate the dicticnary area to be dumped: 

(W) = 

(Tx) = 

(~x,Rabcd)= 

the whole of the dictionary existing at the time, i.e., names, general, 
variables, and stcrage dictionaries. 

type of dictionary section, i.e., N, G, V, or S. If mcre than one 
dictionary section is specified, the qualification can be written in any 
order. 

one dictionary entry, reference abcd (hexadecimal), in the dictionary 
section Tx is to be du~ped. Thus DF(V,R0004) indicates that a formatted 
dump of the fifth entry in the variables dictionary is required. 

If a particular entry in either the names or general dictionary is specified, the 
entry reference must be followed by the length (decimal bytes) of that entry if an 
unformaUted dump is specified. Thus D(N,0003,14) specifies that an unformatted dump of 
the fourteen-byte entry at reference 003 in the names dictionary is required. 

The next argument, (Pn), specifies the name of the phase after which an interphase 
dump is required. ihe name is in the form of the last two characters of the phase naae, 
e.g., GA, KX, PI, etc. One or more phases can be specified, and a dump of the data areas 
specified in preceding arguments will be printed on completion of execution of the phase 
or phases. If a dump is required after each of a successive sequence of phases, the 
first and last phases in the sequence can be specified with an intervening '_I character. 
Thus, (GA-GM) specifies that a dump is required after execution of the phases GA, GI, GE, 
and-GM. Note that the range (xx-yy) specifies only phases whose names lie alphabetically 
between xx and yy, not phases which lie logically between then. If a seguence of phases 
is specified, no additional phases can ce added to the end of the list. Thus, 
(EA,GA-GM,II) will result in dumps being printed after phases EA, GA, GI, GE, and GM, but 
not after Phase II. However, as the list of phases need not be written in any particular 
sequence, this situation can be overcome by placing the sequential range of phases last 
in the range list, i.e., (EA,II,GA-GM). 

Regardless of the phases for which interphase dumps are specified, a compiler abort 
dump will be printed in case of abnormal termination caused by a program-check interrupt 
during any phase. 

Note: If an unformatted dump of text and/or dictionary data is required in the case of 
abnormal termination of execution of the compiler, th~ DUMP option must be specified with 
a value list in which the arguments T and/or D are written without the qualification F. 
In this case, the syntax of the option must be completed by inclusion of a phase list. 
If an interphase dump is not required, the item in the phase list shculd be the name of 
the last compiler phase or a fictitious phase name (e.g., ZZ). 

680 Licensed Material - Property of IBM 



USE OF REGISTERS IN THE COMPILER PROGRAM 

The symbolic names applied to general registers used by the compiler, and the ccnventions 
applied to register usage by phases and macros, are shown below: 

r--------T--------T---------------------------------------------------------------------, 
I Register ISymbolic I Use Within the Compiler I 
I Number I Name I I 
~--------+--------+---------------------------------------------------------------------i 
I I I I 
I 0 IRO or ROI General work register. I 
I I I I 
I 1 IR1 or RII Input text regiRter (base register specified in a USING statement I 
I I I for DSECTs which described general input text formats). I 
I r r I 
I 2 R2 r Transfer vector, index register and general work register. I 
I I I 

J 
I 
I 
I 
J 
I 
I 
I 
J 
I 

3 

4 

5 

6 

1 

8 

9 

10 

11 

12 

13 

14 

R3 

R4 

R5 

R6 

R7 

R8 

R9 

RA 

RB 

RC 

RD 

RE 

r output text register and general work register (register used as I 
I current output pointer by output macro and specified as the base r 
I register in a USING statement for a DSECT which describes the r 
r output forma ts ') • r 
r J 
r 
r 
r 
I 

First dictionary pointer and general work register (register used 
as absolute dictionary entry pointer. Specified as the base 
register in a USING statement for a DSECT which describes all 
dictionary entry formats). 

Second dictionary painter and general work register (register used 
as absolute dictionary entry pointer. Specified as the base 
register in a USING statement for a DSECT which describes 
duplicates of all dictionary entry formats, so that dictionary 
entries may be compared and accessed simultaneously). 

General work register or module base register. 

General work register or base register. 

General work register or base register. 

General work register or base register. 

storage DSECT base register. 

Parameter register or general work register. 

Parameter register or general work register. 

Communications area and control phase base register (specified as 
the base register in a USING statement for a DSECT which describes 
the communications region). 

Return register used by control phase and all macros. Must be 
preserved on entry to all subroutines in user allocated storage. 

r 15 RF Branch register. Contains an identification code on entry to the 
I control phase which specifies the required fUnction. General work 
I r register. L ________ ~ ________ ~ _____________________________________ - _________________ --------------J 

Licensed Material - Property of IBM Section 6: Diagnostic Aids 681 



USE OF COMPILER DEBUGGING MACROS 

A number of macros can be used to provide facilities for testing and debugging compiler 
phases. The~e facilities are not immediately available, but require modificaticn and 
reassembly of the particular phase or module to be tested. They are provided primarily 
for use by development and maintenance programmers. The following paragraphs describe 
the facilities that can be made avaialble by the macros listed below. 

XBUG Used to specify label trace or execution trace requirements, and to enable 
the debugging facilities of other macros to be made available. 

XLAB Used to indicate a trace checkpoint if the label trace facility is 
specified. 

XTRSW Used to limit the area of a module in which label trace or execution trace 
code is generated. 

XLABTAB Used to generate a table which relates checkpoints in the compiler program 
to bit positions in the execution trace bi~ string. 

XDYDP Used to obtain a printed dump of the contents of various data areas during 
execution of a phase. 

URE OF THE XBUG MACRO 

The XBUG macro is used to set the debugging level for a compiler module, and thus to 
control the generation of debugging code at module assembly time. Each module cf the 
compiler contains one or more XBUG macro statements. One XBUG macro statement precedes 
all other compiler-macro statements in a module. XBUG macro statements can alsc appear 
at other positions in the module. The format of the XBUG macro statement is: 

r-------T------T----------------------------, 
I I I I 
I blank I XBUG I [BGL = OILIEJ[,TRACE = nJ I L _______ ~ ______ ~ ____________________________ J 

BGL = 0 (Suppression of Debugging code) 

In the published version of the compiler, each XBUG macro statement will a~pear 
operand BGL=O, or without operands, in which case BGL=O is applied by default. 
cases, the generation of debugging code at module assembly time is suppressed. 
code can only be generated as a result of chaining the value to BGL=L or BGL=E, 
reassembling the module. 

with the 
In these 
Debugging 
and 

~: Alternatively, the debugging code may be suppressed in some phases by entering the 
XBUG macro statement as a comment, i.e., with an * in column 1. Thus any value of BGL 
and/or TRACE may be inserted. To enable the statement, the * should be deleted. 

CAUTION 

Use of the XBUG macro with a specified debugging level other than zero can cause the 
generation, at module assembly time, of debugging code within the containing module. The 
generation of such code can cause an increase of approximately 30% in the storage 
requirement for the module. If the debugging macro facilities are used, attention should 
be given to storage management considerations. Use of the debugging macros should be 
controlled so that debugging code is generated only in areas of the program where the 
facilities are specifically required. 

BGL=L (The Label Trace Facility) 

If BGL=L is specified in an XBUG macro statement, a label trace table can be specified in 
any invocation of the compiler dump phase, either by use of the DUMP option or cy 
invocation of the XDYDP macro. The label trace table will contain the labels on all 
labeled XLAB macro statements and most labeled compiler-macro statements, listed in the 
order in which the statements are executed. (Use of the XLAB macro is explained in a 
later paragraph.) 

682 Licensed Material - Property of IBM 



The number of labeled statements for which a trace is maintained and printed can be 
specified in the TRACE operand of the XBUG macro statement. The format of the cperand is 
TRACE=n, where n is the number of labeled statements for which a trace is to be 
maintained. If the TRACE operand is not specified when BGL has a non-zero value, the 
operand is applied by default with a value of 50. The value of n defines the number of 
label checkpoints that are maintained in the trace, and that are printed in the dump at 
the time of interrupt or at the end of execution of the phase. 

The label trace table can only be printed if the DUMP option is specified. The table 
is automatically included in a formatted compiler abort dump if BGL=L is specified in 
each invocation of the XBUG macro. If the table is required in an interphase dump, the 
value list of the DUMP option must include the argument 'F'. If the table is required in 
a dynamic dump produced by invocation of thp. XDYDP macro (described in later paragraphs), 
the invoking macro statement must contain the operand IF'. 

CheckFoints for Label Trace: Most of the compiler macros contain code that enatles a 
labeled macro statement to be used as a checkpoint for the label trace facility. If it 
is necessary to provide additional checkpoints, uniquely labeled XLAB macro statements 
should be inserted at appropriate places in the compiler program. When the trace 
facility is enabled, each statement that is used is followed by a comment: 

**CIlECKPOINT FOR LABEL TRACE** 

CAUTION 

Use of the label trace facility causes generation of additional code requiring 20 bytes 
of storage (12 bytes if the NS option to the XLAB macro is used) for each checkpoint 
used. When storage requirements are critical, use of the label trace facility should be 
confined to specific areas of code by use of the XTRSW macro. 

BGL=E (Execution Trace Facility) 

If BGL=E is specified in an XBUG macro statement, an execution trace can be specified in 
any invocation of the compiler dump phase, either by use of the DUMP option or by 
invocation of the XDYDP macro. The execution trace consists of a bit vector in which 
bits are set to indicate monitored compiler statements that have been executed. The 
execution trace can be used to determine the areas of compiler code that are executed. 

The monitored statements, for which bits are allocated in the bit vector, include 
labeled compiler macro statements, and conditional macro statements (even though they may 
not be labeled). In the case of c0nditional m~cros, a bit position is allocated for the 
fall-through path; any branching p~th is usually labeled. In the phase listing, each 
moni tored statement is followed by a r,ommen::' w.'1ich indicates the relevant bit in the 
label trace, e.g., 

**EXECUTICN TRACE, POSITION 83,BYTE 10,BIT 2** 

For ease of reference to the execu~io, trac~ p~inted by the compiler dump phase, a 
consolidated list of the comments can be produced at the end of the phase listing by use 
of the XLABTAB macro statement at the end of all code using execution trace. The format 
of the statement is: 

XLABTAB 

The consolidated list shows any applicable labels. 

The XBUG macro argument, TRACE=n, does not apply to the execution trace facility. 
However, the areas of code in which statements are monitored, and hence the amount of 
tracing code that is generated, can be controlled by use of XTRSW macro statements. 

Control of Tracing Code Generation. (The XTRSW Macro) 

In order to control the amount of tracing code that is generated when using the label 
trace or execution trace facilities, XTRSW macro statements can be used to limit the 
trace facility to particular areas of a compiler module. The macro is invoked by a 
statement with a Single non-optional operand, ON or OFF. Use of such statements is 
illustrated below: 

Licensed Material - Property of IBM Section 6: Diagnostic Aids 683 



Compiler Instructions 

Itrace on. 

XTRSW OFF 

trace suppressed. 

XTRSW ON 

\trace on. 

USE OF THE XDYDP MACRO (DYNAMIC DUMPING FACILITY) 

The XDYDP macro can be used to complement the dumping facilities provided by the DUMP 
option. Each invocation of the XDYDP macro causes the generation of code to prcduce a 
printed dump of the contents of various data areas at the time of invocation. Thus, a 
dump can be obtained at any time during the execution of a phase without terminating 
compilation. 

Note: Code is only generated if the XBUG macro is invoked with BGL~=O. If trace 
facilities are not required, BGL may be in the range 1 to 9. The DUMP option must be 
specified in the *PROCESS statement. The compiler dumping phase (Phase AI) cannot be 
loaded into the phase area as it would overwrite the phase being executed. Therefore at 
least 16K bytes of storage are required for residence of Phase AI throughout corrpilation. 

A statement to invoke the XDYDP macro can be inserted at any suitable place in the 
phase code. If more than one invocation is required in a phase, it is recommended that 
the XDYDP macro statement be included in a subroutine that can be called as required. 
This method reduces the amount of code that is generated. 

The format of the XDYDP macro statement is: 

r------------------~--------------T--------------l I [label) I XDYDP I value-list I 
L __________________ L ____________ --L------------__ ~ 

value-list = I[F) '(S) [C) [Rl '(U] (H) (El 

r, D= ( FlU, {W L 'Tl[,T2)[,T3](,T4,R,r(,1]] 

[
.T=IFI u.l~ ) ], 

Xl [,X2] 

[, RGE= (S,E)) [, STMT= (a [,bl) 1 

Each of the arguments in the value list is optional but there is no default value; if 
no arguments are specified, no dump will be printed. 

The key characters that can be specified in the first argument indicate: 

F = label trace table or execution trace bi't string 
S phase working storage (XSTG) 
C = communications area (XCOMM) 
R = contents of registers at time of macro invocation 
U = current register usage table (Phase QA only) 
H = page header information 
E = current diagnostic message page 

684 Licensed Material - Property of IBM 



If specified, these characters can be written in any order. 

In the next argument, the key character D specifies that a dump of dictionary data is 
required. The values that can be assigned to the key character indicate: 

F = formatted dump 

U unformatted dump 

w the whole of the dictionary existing at the time 

Tx type of dictionary section, i.e., N,G,V, or S. If more than one dictionary 
section is specified, the qualifications can be written in any order. 

R specifies that a single dictionary entry is to be dumped. The type of the 
dictionary section is specified in the Tx entry immediately preceding the R. 

r the reference of a particular dictionary entry. It must be defined as a DC or 
DS of the type X, C, or H, or a self-defining term consisting of four 
hexadecimal digits. 

I = the length of the entry, if it is in ~he names or general dictionary. It must 
be defined as a DC or DS of the type X, C, or H, or a self-defining term. 

In the next argument, the key character T specifies that a dump of text data is 
required. The values that can be assigned to the key character indicate: 

F = 

U = 
w 

C 

I = 

formatted dump 

unformatted dump 

whole of current output text. This includes the main output text stream, the 
second output text stream (if applicable), and the scratch page (if 
aFplicable). 

latest output text page. 

current input text page. 

xl(,x21 specifies that statement xl, or the range of statements xl to x2 is to be 
dumped. xl and x2 must be specified by DC instructions of type X, C, or H, 
register-names, or self-defining terms. 

The key characters RGE specify that the contents of a particular area of main storage 
are to be dumped. The qualifications indicate: 

S = the start address of the area. If it is a register name, or a DC or tS 
instruction of type 'F' or 'A', the address is assumed to be contained in the 
field indicated. ot.'le::::-wise the symbol is assumed to be a label indicating the 
start of the area. 

E the end address of the area. It may be specified in any of the forms allowed 
for the S qualification. 

The STMT argument is used to suppress dynamic dumps where the number of the statement 
being processed at the time of macro invocation is outside the range of statements 
specified in the qualifications. The range can be specified as a single statement number 
(a) or as start and end statement numbers (a,b'. The number of the statement currently 
being processed is assumed to be in the XSTAT field of the communications area. A 
facility similar to that provided by the use of the STMT argument is provided by use of 
the DYSTMT option, described below. 

Use of the DYSTMT option 

The DYSTMT option can be used in a *PROCESS statement to complement use of the XDYDP 
macro. The function of the DYSTMT option is to suppress printing of a dynamic dump where 
the number of the statement being processed at the time of invocation of the XDYDP macro 
is outside the range of statements specified in the DYSTMT option. 

Licensed Material - Property of IBM Section 6: Diagnostic Aids 685 



The format of the option is: 

DYSTMT (x[,yl) 

The option can be used to specify a single statement number, x, or a range of statements 
where x = the first statement number and y = the last statement number in the range. 

686 Licensed Material - Property of IBM 



F"ACILITY FOR -rESTING MODIFIED PHASES 

The compiler provides a facility for testing one or more modified processing phases 
without deleting the existing version of the phase(s) from the core image lihrary. 

The modified phase (or phases) must be appropriately named (as described below) and 
added to the core in-age library by suitable linkage editing. The phase testing facility 
is invoking by specification of a special option in the *PROCESS statement. The format 
of this option is: 

Tn (pp [ , pp 1 ) , 

where n = any single numeric or alphabetic character. 

pp = the last two characters of the symbolic name(s) of the phase(s) to be replaced. 

Specification of this option causes Phase PLIOpp to be replaced by a phase naRed 
PLIOppn during the compilation affected by the containing *PROCESS statement. An example 
of use of the option is shown below. 

The statement: 

• PROCESS '1'1 (GA,GI,GE), '1'2 (KA,KV),TX(IE,KT) 

will result in phases 

PLIOGA 
PLIOGI 
PLIOGE 
PLIOKA being replaced by 
PLIOKV 
PLIOIE 
PLIOKT 

PLIOGA1 
PLIOGl1 
PLIOGEl 
PLIOKA2 
PLIOKV2 
PLI 01 EX 
PLIOKTX 

The option is processed by Phase AE (Compiler Initialization Phase) when it reads the 
*PROCESS statement at the start of a compilation. In response to the option, Phase AE 
modifies the phase list in the XPBSL field of the communications area, by replacing the 
existing phase name in the list with the name of the modified phase. When the XPST macro 
in a processing phase specifies the original phase name as that of the next phase to be 
loaded, the phase loading routine examines XPHSL, matches the specified phase name with 
the modified phase name, and has the modified phase loaded. ' 

If, after testing a modified phase, it is desired to permanently replace an existing 
phase with the modified phase in the core image library, the can be done by using the DOS 
Librarian Service Program, MAINT. The instructions required to do this are: 

//JOB jobname 
//EXEC MAINT 
b DELETC oldmaster (,oldmasterl 
b RENAMe testname, newmaster (,testname, newmasterl 
/* 
/(, 

Licensed Material - Property of lEN Section 6: Diagnostic Aids 687 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

COMPILER DIAGNOSTIC MESSAGES 

The diagnostic messages output by Phase UA all have the message number IELOxxxI. Eac~ 
message can, in general, be identified with the compiler phase during the execution of 
which the appropriate error condition occurred by means of this number, as illustrated in 
figure 6.1. However, some messages are produced by phases prior to the one shown in t~is 
figure. The wording of the messages, and explanations of their meanings, are contained 
in the publication: DOS PL/I Optimizing Compiler: Messages. 

688 Licensed Material - property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

Message Number 
IELOxxxI 

001 

002-040 
041-049 
050-229 
230 

231 
232-400 
401 
402-430 
431-440 
441-495 

496-510 
511-523 
524 
525-526 
527 

528-531 
540-559 
560-579 
580-600 
601-617 
618-640 
641-658 

659 
611 
672-690 
691 
692-695 
701-740 
141-142 
161-769 
776 
777 
778 
119 

Phase (s) 

Preprocessor error 
message 
AE 
AA 
CA (Preprocessor) 
Compiler-error 
messages. See 
Appendix B. 
BA 
EA, EE, & EI 
GA, GE, GI, & GM 
GA 
GA &GM 
GE 

GI 
GM 
GA & GM 
GM 
All phases using 
the XBREAK macro. 

GM 
GA 
GI 
GE 
IA 
ID 
IE 

Various phases. 
II & ID 
II 
II & KA 
II 
IM 
IQ 
KA 
KE 
KE & PA 
KE 
KE & PA 

Message Number 
IELOxxxI 

181 
798-810 

811-812 
813 
814-817 

818 
819-820 
821-826 
821-828 
829-833 
834-835 

836 
837 
838-841 
848-865 
866-872 
873-874 
819 

880 
886-891 
892 

903-905 
906 
907 
908 
909 
910-913 
914 
915 
916 
917-920 

921-924 
925 
926-927 
931-932 
933-934 
940 
960 
961 
965-967 
969 
910 

911 
972-981 

Phase(s) 

KI 
KT 

KM 
KL 
KM 

KM &11 
KM 
KL 
KL & KM 
KL 
KL & KM 

KL 
KL & KM 
KL 
KQ 
KK 
KQ 
All phases using 
KNSRT macro 
KV 
OC 
OC & PA 

OX 
KX 
KA 
KX 
OE 
OA 
KQ, OE & KK 
OA 
01 
OE 

PC 
01 
PA 
PE 
PC 
OE 
SI 
SK 
SI 
KQ 
Compiler-error 
messages. See 
Appendix B. 
KL & KM 
KL 

Figure 6.1. Compiler d1agnostic messages - phase identification 

Licensed Material - Property of IBM Section 6: Diagnostic Aids 689 



The lists in this appendix show the names of macro instructions and books used in the 
compiler program, together with a brief description of the funciton of each macro. 
Macros are grouped under the following headings: 

Phase and Module Construction Macros. 

Input/Output Macros. 

Text Accessing Macros. 

Dictionary Accessing Macros. 

General Purpose Macros. 

Special Purpose Macros. 

Dubugging Macros. 

Books Invoked by the COPY Statement. 

Within each group, the macros are listed in alphabetic sequence. 

XENDSTG 

XINIT 

XROUT 

XSTG 

XBUF 

XLOADI 

XLOADF 

Delimits module storage. 

Module initialization. 

conditionally invokes subroutine macros to generate subroutines required 
by macros invoked in the module. The subroutines that can be invoked by 
XROUT are: 

XBAKTXR 
XBREAKR 
XBRICM 
XDISCR 
XDIRECI 
XDSTATI 
XLINKR 
XMESGR 
XNSRTR 
XNXROUTA 
XNXROUTB 
XPRNTR 

XREADR 
XRFABI 
XRFSEQI 
XSEQRT 
XSKEXPR 
XSRCHR 
XTCHR 
XTRCER 
XTUNLR 
XTXENR 
XTXPGR 
XROUTEQ(unconditional) 

Allocates and initializes phase working storage. In a phase root module, 
XSTG defines a CSECT. In a non-root module, XSTG defines a DSECT at a 
specified offset. 

Builds a record in a print buffer. 

Initializes the IJSYSLN output data set. 

Copies a record to the IJSYSLN output data set. 

690 Licensed Material - Property of IBM 



XPRNTI Initializes the IJSYSLS print data set. 

XPRNT Copies a 121 byte record to the IJSYSLS print data set. 

XPRNTN Sets the print data set to new page. 

XPUNCHI Initializes the IJSYSPH output data set. 

XPUNCH Copies a record to the IJSYSPH output data set. 

XREADI Initializes the IJSYSIN input data set. 

XREAD Reads an SO-byte record from the IJSYSIN input data set. 

TEXT ACCESSING MACROS 

The macros used for text acceSSing operations are grouped according to whether they are 
used for general text-handling operation, or for accessing text data with a particular 
format. 

General Text Accessing Macros 

XBAKTX 

XCHECK 

XDISC 

XFREE 

XTARF 

XTXPG 

XTXRF 

XTXST 

Backspaces the output text stream pointer, either maintaining the current 
output pOinter or discarding text to backspace reference. 

Checks for completion of page input/output operation. 

Discards a list of text pages. 

Places UNMOVABLE text and/or dictionary and directory pages in the MOVABLE 
page chains. 

Converts an absolute address to a five-byte text reference. 

Gets new or existing text pages. 

converts a five-byte text reference to an absolute address. 

Changes the status of a text page. 

Sequential-Text AcceSSing Macros (Type-l Text or Extended Code) 

XBREAK 

XBREAK2 

XBRIC 

XBRICI 

XOUT 

XOUTI 

XOUT2 

XOUTI2 

Moves text into a main text stre.~m output page, identifying a page-start 
break point. 

Moves text into a second text strea~ page, identifying a page-start break 
pOint. 

Increments the input-pointer register, and chains input pages. 

Initializes the scan of input text pages. 

Moves text into a main text stream output page, acquiring a new page if 
necessary. 

Initializes the main output text stream. 

Moves text into a second text stream output page, acquiring a new page if 
necessa:y. 

Initializes a second stream of output text pages. 

Licensed Material - property of IBM Appendix A: Functions of the Compiler Macros 691 



Type-2 Text-Accessing Macros 

XITCH 

XLINI< 

XNEXT 

XNEXTL 

XNSRT 

XTCH 

XTLOI< 

XTUNL 

Initializes the text-chaining macro. XTCH. 

Chains two Type-2 text tables in sequence. 

Follows a chain of Type-2 text tables. 

A combination of the XNEXT. XTUNL, and XTLOI< macros. 

Inserts a Type-2 text table into a chain of Type-2 text tables. 

Follows a statement-type chain of Type-2 text tables. having pages read 
into main stroage if necessary. 

Controls the locking into main storage of a text page. 

Unlocks a text page that was locked by the XTLOI< macro. 

DICTIONARY ACCESSING MACROS 

XDSTAT 

XLOI< 

XRFAB 

XRFSEQ 

XSEQ 

XSEQI 

XUNLOI< 

Changes the status of a dictionary page from 'read-only' to Bread/write'. 

Controls the locking into main storage of a dictionary page. 

Converts a two-byte dictionary reference to an absolute address. and has 
the relevant page read into main storage if necessary. 

Adds a new sequential dictionary entry. 

Scans the names dictionary for an existing entry. 

Initializes the dictionary scan by XSEQ. 

Unlocks a dictionary page that was locked by the XLOI< macro. 

GENERAL PURPOSE MACROS 

XADD 

XALM 

XALPH 

XAND 

XASN 

XASNA 

~SNV 

XASNX 

XBKSTK 

XBPII< 

Adds two operands and assigns the result. 

Tests whether an item is an alphameric character. and branches if so. 

Test whether a character is a blank, an alphabetic letter, a numeric 
digit. an underscore. or some other character. 

Performs a logical AND operation. 

ASSigns the second operand to the first operand. 

Performs a Load Address operation. 

ASSigns the contents of the second operand to the first operand. 
irrespective of implied lengths. 

Performs aSSignment to and from registers. to and from character items 
with lengths of one to four bytes. or between both types of operands. 
(Invoked only by other macros.) 

Scans backwards through entries in a stack. 

Tests. sets on, or sets off. a particular bit in a string. or produces a 
mask and offset to enable some other operation to be performed. 

692 Licensed Material ~ Property of IBM 



XBSET 

XBTST 

XBUMP 

XBUST 

XCALL 

XCOMP 

XCOMPARE 

XCPIK 

XCSEQ 

XDEC 

XENTRY 

XEX 

XFSTK 

XGOTO 

XIF 

XIFB 

XIND 

XLBIT 

XLDq 

XLET 

XLMVE 

XLMVR 

XLZERO 

XMESG 

XMOVE 

XMULT 

XMVq 

Sets a bit in a bit vector. 

Tests a bit in a bit vector. 

Increments a counter by a specified amount. 

Sets off a bit in a bit vector. 

Branches and Links to a specified subroutine. 

Generates a comparison operation for all types of operand. 

Generates a CLC and a conditional-branch instruction, allowing the 
programmer to specify a length. 

Scans a bit vector for the next bit set on. 

Generates a sequence of CLI instructions, with branches on specified 
conditions. 

Decrements a counter by a specified amount. Can also specify a 
conditional branch. 

Saves the contents of specified registers at secondary entry points to 
subroutines (used in conjunction with XSAVE, XRTN, and XRST). 

Performs a logical EXCLUSIVE-OR operation. 

Adds a fixed length entry to a stack, and increments the stack pOinter. 

Branches to a specified address if a specified condition is satisfied. 

Compares two operands, and transfers control according to the result of 
the comparison. 

Compares two bits, and transfers control according to the result of the 
comparison. 

Sets a pointer to a particular index in a table of fixed length entries. 

Given a library subroutine name, sets the appropriate bit in the XLIBSTR 
bit vector. 

Loads four bits from a byte into a register. 

Tests whether a character is an alphabetic letter, and branches if not. 

(Long Move). Moves a string of bytes, the length of which may exceed 256 
bytes, from a source field to a target field. 

(Long Move, Registers.' Moves a string of bytes, the length of ~hich may 
exceed 256 bytes, when the address of the source field, the length of the 
source field. and the address of the target are all contained in 
registers. 

Pads oQt a character field to any specified length with zeros (or any 
other character). The field may be of any length. 

Makes entries in the diagnostic message page stream. 

Moves a string of bytes, the length of which is less than 256 bytes, from 
a source field to a target field. 

Multiplies two operands and assigns the result to the first operand. 

Moves four bits from a source field to a target field. 

Licensed Material - Property of IBM Appendix A: Functions of the Compiler Macros 693 



XNXVL 

XOR 

XRRTN,XRRST 

XRSAVE 

XRTN,XRST 

XSAVE 

XSHIFT 

XSPIK 

XSTACK 

XSTKSET 

XSUB 

XTM 

XTRT 

XTSEQ 

XTYPE . 

XUNIV 

XUNSTK 

XZERO 

Increments a value and stores the result in a specified field. 

Performs a logical OR operation. 

Subroutine exits for recursive procedures. Restore registers saved by 
XRSAVE. 

Subroutine entry for recursive procedures. Saves register contents in 
storage allocated by XSTG. 

Subroutine exits. Restore registers saved by XSAVE. 

Subroutine entry. Saves register contents in a field allocated by XSTG. 

Performs single register shift operations. Operations may be left or 
right, arithmetic or logical. 

Tests, sets on, or sets off, a particular bit in a string, given a mask 
and offset to use. Designed to be used after XBPIK. 

Makes an entry in a stack, and updates the stack pointer. Fields that are 
stacked need not be fixed length. (The stack and pointer must be 
initialized by XSTKSET.) 

Used to initialize storage and pOinters for stacks, if 
variable-length-entry stacking macros are used (XSTACK, XUNSTK, XBKSTK.) 

subtracts the third operand from the second operand, and assigns the 
result to the first operand. 

Generates a single Test Under Mask instruction, followed by one, two, or 
three conditional branches. 

Generates the code and tables for scanning character strings ana 
transferring control for particular characters found in the string. The 
translate tables are produced automatically by the XSTG macro if the XTRT 
macro is used. 

Used to generate a sequence of Test Under Mask instructions. For each 
instruction in the sequence, the field to be tested, the mask, the 
condition to be satisfied, and the label to be branched to if the 
condition is not satisfied, must be specified. 

Analyzes the data types of up to three operands, and places the results in 
a set of global variables. 

Generates object code for instructions that can have RR, RX or SS 
instruction formats, e.g., AND, OR, comparisons etc.. (Invoked only by 
other macros.) 

Removes the top entry from a stack by moving the stack pointer back one 
entry. (The stack and pOinter must be initialized by XSTKSET.) 

Pads out a character field to a specified length with zeros (or any other 
characterJ. The field length must not exceed 256 bytes. 

SPECIAL PURPOSE MACROS 

XATFLD 

XATROUT 

This macro is used in Phase GA. It generates a name for a field to be 
associated with an attribute;, in the attribute list, ATLST. 

This macro is used in Phase GA. It generates a list of address constants. 
The address constants are used for addressing routines associated with an 
attribute. 

69q Licensed Material - Property of IBM 



XBFSK 

XBT,XBTEND 

XBTO 

XCAOO 

XCOO 

XCHIP 

XCOOE 

XCOPT 

XCVO 

XCVi 

XOIAG 

XFUNC 

XGOD 

XINF 

XITOC 

XKILL 

XLBTB 

XMOE 

This macro is used in Phase KK. It creates a nine-byte 'driver' table, 
defining the contents required in various fields of a phase-output text 
table. 

These macros are used in the Code Generation Phases, SA, SQ, SD, and SC. 
The XBT macro is invoked for each invocation of XSK. XBT is used to build 
an array of bit strings, the length of each strip varying between 1 and 16 
bits. When the array is complete, XBTEND is invoked to transpose each bit 
strip so that the array in main storage is the transposed version of the 
array as printed in the program listing. 

This macro i~ used in the Code Generation Phases, SA, SQ, SO, and SC, to 
produce a label preceding the bit strip arrays or special case code. 

This macro is used in Phases IQ and KM. The macro accesses an aggregate 
table entry in the general dictionary to construct an aggregate descriptor 
for a major or minor structure. It is used in conjunction with the book 
invoked by a COPY ADDSECT statement. 

This macro is used by the Code Generation Phases, SA, SQ, SD, and SC, to 
produce a label preceding the bit strip arrays or special case code. 

Bumps the input pointer and tests for endpage. (Used by Phase II.) 

This macro is used in the Code Generation Phases, SQ, SQ, SO, and SC. It 
initializes a number of global C macro variables that are used by 
invocations of the XSK macro. 

This macro is used in many phases. It tests for the specification of any 
particular compiler option, with the exception of those specifying 
listings - type output. 

This macro is used in the Object Code Listings Phase, SM. It converts the 
contents of a register from binary format to binary-coded decimal format. 
The result is returned in XALIGN (in XSTG). 

This macro is used in a number of phases for conversion operations. It 
evalus ons. It evaluates the expression CEIL (source precision*3.32). 

Tests the various conditions affecting the loading of the diagnostic and 
error message editing phases (CE and UA), and generates an XPST macro 
instruction to indicate the next required phase 

This macro is used in Phases 10 and IE. It tests an operand code byte, 
defined in the book ZTEXT and named ZCDE, to determine whether it 
indicates a built-in function or a programmer-defined function. 

This macro is used in Phase II. It is used for branching between CSECTS 
that have been based on the same registers. 

This macro is used in the Code Generation Phases, SA, SQ, SO, and se. For 
a given text table operator, it generates a directory to the relevant code 
skeleton, bit-string array, and speCial-case code. 

This macro is used in the Object Code Listings Phase, SM. It translates 
an identifier name from internal to external character form, and normally 
moves the result to a print output buffer. 

This macro is used by a number of phases, particularly those in the 
Statement ProceSSing Stage. It tests an operand code byte to see if the 
operand is an active temporary operand and, if so, deactivates it. It can 
also be used to activate inactive temporary operands. 

This macro is used in Phase SI. It is used to index the Label Table built 
in Phase SK. 

This macro is used in the error-message editing phases, CE and UA. It is 
used to contstruct five tables: a keyword table (KEYTAB), a 

Licensed Material - Property of IBM Appendix A: Functions of the Compiler Macros 695 



xrop 

XPST 

XPUSH 

XSCPE 

XSETCD 

XSK 

XSKO 

XSKEXP 

XSRCH 

XTCDE 

XTDAT 

XTEMP 

XTND 

XTOPT 

XTREE 

XTXEN 

keyword-reference table (REYREF), a message table (MESTAB), a 
message-reference table (MESREF), and a table of attributes, built-in 
functions, and environment options (ATTAB). 

Decrements the stack pOinter and tests for underflow. (Used by Phase II.) 

This macro is used at the end of processing in each phase. It is used to 
specify the next phase to be loaded. 

Increments the stack pointer and tests for stack overflow. (Used by Phase 
II.) 

This macro is used in the Dictionary Build Stage, Phases GA, GI, GE, and 
GM. It updates a list (KNOLST) of currently known blocks. 

This macro is used in most of the phases that make entires in the 
dictionary, or insert dictionary references in the text. It sets bits in 
the dictionary code byte. 

This macro is used in the Code Generation Phases, SA. SQ, SO, and SC. It 
builds skeleton machine instructions. 

This macro is used in the Code Generation Phases, SA, SQ, SO, and SC, to 
define the DSECTs containing the code skeleton arrays. 

This macro is used by phases in the Dictionary Build Stage. It is used to 
skip expressions during scans of sequential text. 

This macro is used by phases in the Dictionary Build stage. It searches 
the dictionary (via hash chains) for an entry identified by a name. The 
name can be qualified or subscripted. The code generated by the macro 
calls the XSRCH subroutine generated by the XSRCHR macro in XROUT. 

This macro is used by a number of phases. It tests the code byte of a 
variables dictionary reference. 

This macro is used by many phases. It tests the data type byte in 
compile-time DEDs. 

Tests code byte of an operand in text to determine whether it is a 
temporary operand or a particular type of temporary operand. 

This macro is used by Phase GA. It extends the names dictionary hash 
chain by adding an entry for a name. 

This macro is used in many phases. It tests for the specification of 
those compiler options requiring listings - type output. 

This macro is used in Phases GA and GI. It generates a branch of the 
attribute tree, used to apply attributes to an identifier when building 
dictionary entries. 

This macro is used by ph.ases that process sequential Type-2 text. It 
finds the text table preceding a specified text table. 

XXTOC This macro is used by the Object Code Listing Phase, SM. It translates 
the contents of a specified field from binary format to external 
hexadecimal format. 

696 Licensed Material - Property of IBM 



DEBUGGING MACROS 

XBUG 

XDYDP 

XE'I'RC 

XLAB 

XLABTAB 

XSTOP 

XTRCE 

XTRSW 

This macro is used in each module of the compiler. It sets the debugging 
level of the module and enables the debugging facilities of other macros 
to be made available. 

This macro can be used in most modules of the compiler. It causes a dump 
of the contents of various data areas at the time of the macro invocation 
to be printed. 

This macro generates execution-trace code if BGL=E is specified in the 
XBUG macro. The macro is included in the code generated by many other 
macros. 

Used as a checkpoint for the label trace facility. 

Generates a consolidated list at the end of a module in which the 
execution trace facility has been enabled. The list relates bit positions 
in the label trace to labelled statements in the module. 

This macro is invoked when a terminal error occurs in execution of the 
compiler program. It causes the compilation to be terminated and a 
compiler error message to be printed. 

This macro is included in the code generated by a number of macros. Its 
function is to generate a statement trace, which is not available in the 
published version of the compiler. 

This macro can be used to suppress the generation of traCing code in 
certain areas of a module when BGL=L or BGL=E is specified in the XBUG 
macro. 

BOOKS INVOKED BY A COpy STATEMENT 

COpy XADDSECT Generates a DESCT, based on Register 5, defining aggregate descriptor 
descriptor elements. 

COpy XCGSDCS Defines character-string constants for compiler-generated subroutine names 
used in object listings. 

COpy XCGSEQU Generates EQU values for compiler-generated subroutine names used in 
compiler phases. 

COpy XCOMM 

COpy XEQU 

COpy XLIBDC 

COpy XLIBEQU 

COpy XMESGP 

COpy XTXEQU 

COpy YDICTl 

COpy YDICT2 

Generates a DSECT that defines the compiler communication area. (Invoked 
in each module.) 

Generates EQU statements to define symbolic register names, branch-code 
mnemonics, and the one-byte switch settings ON and OFF. 

Defines character-string constants for library-module entry paints, for 
use in object listings. 

Generates EQU values for library-module entry points. 

Generates a DSECT which describes entries in the current diagnostic 
message page stream. 

Generates EQU statements to define all text code bytes. 

Generates a DSECT, based on Register 4, which contains description of 
entries in the names, general, and variable dictionaries. 

Generates a DSECT, based on Register 5, which contains a second version of 
the dictionary entries in YDICT1. The names of the fields in this DSECT 

Licensed Material - Property of IBM Appendix A: Functions of the Compiler Macros 691 



COpy YSDICT 

COpy ZDATAL 

COpy ZEQUB 

COpy ZEQUL 

COPY ZTEXT 

COPY ZTEXTL 

COpy ZTEX2A 

COpy ZTEX2B 

COpy ZTEX2C 

are the same as those for YDICT1, concatenated with the digit '2'. This 
DSECT enables two entries to be referred to simultaneously. 

Generates a DSECT, based on any specified register, which describes the 
format of entries in the storage dictionary. This DSECT does not contain 
a register USING statement. 

Generates halfword data definitions, giving instruction sizes at object 
module assembly time. Used by Phases SI and SM. 

Generates EQU values for print-buffer offsets, used by the listing phases. 

Generates EQU values for markers and branch-load instructions. Used by 
Phases SI and SM. 

Generates a DSECT, based on Register 1, which contains descriptions of 
Type 1 text formats. 

Genrates a DSECT, based on Register 1, which contains descriptions of 
extended code text formats. Used by Phases SA, SQ, SD, SC, SI, and SM. 

Generates a DSECT, based on Register 1, which contains descriptions of 
Type 2 text tables. The initial letter of each field name is 'I'. 

Generates a DSECT, based on Register 3, which is similar to ZTEX2A but in 
which the initial letter of each field name is '0'. ZTEX2A and ZTEX2B 
enable two text tables to be referred to simultaneously. 

Generates EQU values for Type 2 text tables. 

698 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

APPENDIX B: COMPILER-ERROR ~ESSAGES 

The compile-time messages from the DOS PL/I Optimizing Compiler can include compiler 
control messages, preprocessor messages, and compiler-error messages. Those messages 
forming this last group are listed in this appendix. 

When a program-check interrupt occurs during execution of a compiler phase, an XSTOP 
macro statement is invoked. Execution of the statement causes a compiler-error message 
to be generated and written into the current message page. Control is then passed to the 
interrupt-handling routine in Phase AA, and this routine has Phase UA loaded to edit and 
print the message. (In the case ot a preprocessor error, Phase CE is loaded.> The 
message is printed before any diagnostic messages that may have been generated prior to 
the interrupt, and immediately following the compiler dump, if one has been specified. 

All compiler-error messages are of the "unrecoverable" type, and all have one of the 
following two message numbers, IEL0230I, or IEL09701 if severe errors are detected. 

The format of a compiler-error message is: 

$ COMPILER ERROR NUMBER n DURING PHASE pp. 

where "$" represents the statement number in which the error occurred, "n" identities the 
particular compiler-error message (the message list in this appendix is in numerical 
order), and "pp" identifies the phase in which the interrupt occurred. In some instances 
the phase may be one of several in which the interrupt could occur; these cases are 
represented by II X I • 

The preprocessor-error message has the message number IEL00011 and the format 

$ PREPROCESSOR ERROR NUMBER n DURING PHASE pp. 

In the following list, the information given for each compiler-error message contains, 
where applicable, the compiler-error number, the phase in which the error occurred, an 
explanation of the probable cause of the error, and possible programmer response to an 
occurrence of the error. The standard action for a member of IBM programming support 
personnel is to refer the problem to the appropriate program maintenance group within IBM 
for analysis and correction. This involves tne submission of an APAR (Authorized Program 
Analysis Report), which must be accompanied by material to enable the program maintenance 
personnel to analyze tAe problem. In addition to submitting an APAR, in some cases it 
may be possible for the programmer to carry out a form of bypass action to alleviate the 
problem until the APAR has been processed and actioned. This bypass action is contained 
in the programmer-response information given in the following pages. 

$ COMPILER ERROR NUMBER 0 DURING PHASE (any). 

Explanation: A program check interrupt has occurred. 

Programmer Response: Try correcting source errors, or running with larger SIZE 
parameter if possible. 

$ COMPILER ERROR NUMBER 2 DURING PHASE AA. 

Explanation: All pages in main storage are UNMOVABLE. An attempt has been made, in 
response to a request from the stated phase, to find a page which may be spilled in 
order to make room for either a new or an existing page. However, since all the pages 
are marked UNMOVABLE, no such spill candidate could be found. 

Programmer Response: If possible, re-run the program with a larger SIZE 
specification. This will increase the size of the page area, and thus the number of 
pages in main storage. 

Licensed Material - Property of IBM Appendix B: Compiler-error Messages 699 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

$ COMPILER ERROR NUMBER 3 DURING PHASE (any). 

Explanation: A call from the stated phase has been made to the control phase which 
necessitates either (a) writing a page to the spill file, or (b) reading a page into 
main storage from the spill file. Prior to the I/O operation (a) or (b), the track 
address of the page concerned has been found to be invalid. In case (a), the track 
address held in the header of the page in main storage has been overwritten, and in 
case (b) the track address of the requested page is invalid. 

Programmer Response: Attempt simplification of the statement referred to in the error 
message. 

$ COMPILER ERROR NUMBER 4 DURING PHASE AA. 

Explanation: An attempt has been made by the stated phase to read into main storage 
an existing page (specified by its track address) from the spill file. This page, 
however, has not been spilled, the record at the given track address on the spill file 
being a dummy record at this stage. When this record is read into main storage, its 
track address field in the page header, not having been initialized, does not match 
that of the record. 

Programmer Response: Attempt simplification of the statement referred to in the error 
message. 

$ COMPILER ERROR NUMBER 5 DURING PHASE AI/UA/UE DUE TO PREVIOUS ERROR NUMBER n IN PHASE 
p. 

Explanation: A compiler error has occured which makes it impossible for the error 
editor or the dump phase to continue. 

Programmer Response: As for previous compiler error (NUMBER n). 

$ COMPILER ERROR NUMBER 81 DURING PHASE EA. 

Explanation: The compiler has attempted to correct a series of source errors, and 
this has had a cumulative effect leading to an ·unrecoverable· error. 

Programmer Response: Correct the source errors diagnosed before the above error and 
rerun the program. 

$ COMPILER ERROR NUMBER 100 DURING PHASE (any). 

Explanation: Invalid dictionary reference passed to decoding routine XRFAB. 

$ COMPILER ERROR NUMBER 101 DURING PHASE (any). 

Explanation: Dictionary full. 

Programmer Response: If the compile-time preprocessor was used, check the logic 
of JGOTO and 100 statements for a permanent loop. 

If a permanent loop is not found, or if the error, occurred at a later stage in 
compilation, then increasing the storage available to the compiler may remove t~e 
error. If the error continues to occur, the program may have to be divided into 
smaller sections .• 

$ COMPILER ERROR NUMBER 103 DURING PHASE (any). 

Explanation: An attempt has been made to create a dictionary'entry larger than a 
page. 

700 Licensed Material - Property of IBM 



$ COMPILER ERROR NUMBER 105 DURING PHASE (any). 

Explanation: Phase has requested a page that is said to be in the page area, but is 
not. 

$ COMPILER ERROR NUMBER 151 DORING PHASE GA. 

Explanation: Invalid or incorrect specifications have been included in the VALUR 
option of a DEFAUL1 statenent. 

Programmer Response: Avoid the use ot, or correct, the relevant VALUE option 
specification(s) in the statement referred to in the error message. 

$ COMPILER ERROR NUMBER 152 DURING PHASE GA. 

Explanation: Too deep a parenthesis level has been used in an ENVIRONMENT attribute 
option-list. 

Programmer Response: Avoid nested parentheses in ENVIRONMENT attribute option-list 
arguments. 

$ COMPILER ERROR NUMBER 154 DURING PHASE GA. 

Explanation: Error during the processing of the attributes in a DECLARE statement. 

$ COMPILER ERROR NUMBER 201 DURING PHASE GM. 

Explanation: An error has been made in statement-label handling. 

Programmer Response: Check the syntax of the label prefix of the statement referred 
to in the error message. 

$ COMPILER ERROR NUMBER 220 DURING PHASE (GAIGEIGIIGM). 

Explanation: During the scan of an expression, the semicolon has been found in an 
apparently incorrect position in the statement. 

Programmer Response: Check the syntax of the statement. If this is correct, the 
statement should be simplified. 

$ COMPILER ERROR NUMBER 221 DURING PHASE IA. 

Explanation: An illegal statement type has been found in the secondary input text 
stream. 

$ COMPILER ERROR NUMBER 222 DURING PHASE IA. 

Explanation: Underflow of implicit locator chain stack. 

$ COMPILER ERROR NUMBER 223 DURING PHASE IE. 

Explanation: Unqualified REFER item found. 

Programmer Response: Avoid using the REFER option in this statement. 

$ COMPILER ERROR NUMBER 224 DURING PHASE IA. 

Explanation: An illegal statement type has been found in the secondary input text 
stream. 

Licensed Material - Property of IBM Appendix B: Compiler-error Messages 701 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

$ COMPILER ERROR NUMBER 261 DURING PHASE IE. 

Explanation: Structure element descriptor cannot be found. 

Programmer Response: Avoid using structures in this statement. 

$ COMPILER ERROR NUMBER 262 DURING PHASE IE. 

Explanation: Dimension entry cannot be found in dimension stack. 

Programmer Response: Avoid using arrays in this statement. 

$ COMPILER ERROR NUMBER 263 DURING PHASE IE. 

Explanation: End of structure stack found where not expected. 

Programmer Response: Avoid use of structures in this statement. 

$ COMPILER ERROR NUMBER 264 DURING PHASE IE. 

Explanation: End of dimension stack found when processing array of structures. 

Programmer Response: Avoid using arrays of structures in this statement. 

$ COMPILER ERROR NUMBER 265 DURING PHASE IE. 

Explanation: End of text page found where not expected. 

Programmer Response: Avoid array assignments in this staterr.ent. 

$ COMPILER ERROR NUMBER 266 DURING PHASE IE. 

Explanation: Aggregate aSSignment marker not followed by dictionaryreference. 

Programmer Response: Avoid using functions ~ith aggregate arguments in this 
statement. 

$ COMPILER ERROR NUMBER 281 DURING PHASE II. 

Explanation: Main stack underflow. 

$ COMPILER ERROR NUMBER 282 DURING PHASE II. 

Explanation: Main stack overflow. 

Programmer Response: Simplify the statement involved. 

I $ COMPILER ERROR NUMBER 301 DURING PHASE (any). 

Explanation: More than 32 qualified temporaries are currently active. 

Programmer Response: Simplify any expressions in the statement involved, particularly 
any that refer to based or subscripted varia~les. 

I $ COMPILER ERROR NUMBER 302 DURING PHASE (any). 

Explanation: The phase has encountered a reference to a qualified temporary wit~ut 
having encountered code for its creation. (Qualified temporaries are used for based 
and subscripted variables.) 

702 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

Programmer Respon§~: Simplify any expressions in the statement involved. 

$ COMPILER ERROR NUMBER 303 DURING PHASE KA. 

ExElanatiQB: The phase has found a reference to a string temporary but has not found 
code for the creation of such a string temporary. 

Progr~~~r Respons~: Simplify any string expressions in the statement involved. 

$ COMPILER ERROR NUMBER 304 DURING PHASE KA. 

~anatigg: The phase has found a request for the creation of a string temporary in 
an operation that should not require one. 

PrQg~~~~~: Simplify the use of string expressions in the statement 
involved. 

$ COMPILER ERROR NUMBER 305 DURING PHASE KA. 

Expl~~atiQB: Too many string temporaries (more than 25) are active. 

PrQg~~r Rg§ponse: Simplify any string expressions in the statement involved. 

$ COMPILER ERROR NUMBER 306 DURING PHASE KA. 

~~planatiQn: An error in the compiler labels generated for the program has been 
discovered. 

grog£~~E~§EQn§~: Rearrange the branching in an IF •.• THEN GOTO ••• statement. 

$ COMPILER ERROR NUMBER 321 DURING PHASE IK. 

E~l~tiQ~~ An incorrect entry has been found in the sort pages. 

frog~m~£~spo~: Do not specify either or both of the ATTRIBUTE and XREF compiler 
options for this program. 

$ COMPILER ERROR NUMBER 322 DURING PHASE IK. 

ExplanatiQn: An incorrect entry has been found in the ENVIRONMENT attribute 
option-list for a file. 

Prog£~~~RespQn§~: Do not specify the ATTRIBUTE compiler option for this program. 

$ COMPILER ERROR NUMBER 341 DURING PHASE IM. 

Expl~nati2n: The "end of program" marker has been found in error. The marker has 
been encountered during a text scan before the "end of program" text table has been 
found. 

$ COMPILER ERROR NUMBER 361 DURING PHASE IQ. 

Explanation: For computing the size of a target of a concatenate operation the phase 
uses a stack whose maximum depth is 30. The maximum has been exceeded. 

Prog~~~£_Eg§pons~: Avoid using more than 30 operands in a concatenate operation. 

$ COMPILER ERROR NUMBER 362 DURING PHASE IQ. 

Licensed Material - Property of IBM Appendix B: Compiler-error Messages 703 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

EXElsnat1Qn: Erroneous coding in the phase. 

Programmer Response: Avoid built-in functions as operands in concatenate expressions. 

$ COMPILER ERROR NUMBER 402 DURING PHASE KI. 

~ZE!anatiQg: owing to bad input from a previous phase (probably in the syntax 
checking stage) Phase KI is unable to find the text table corresponding to the end of 
a user-written DO-loop. 

$ COMPILER ERROR NUMBER 421 DURING PHASE KT. 

~xplan~!iQn: Invalid condition seen as argument to a SIGNAL statement. 

$ COMPILER ERROR NUMBER 461 DURING PHASE KM. 

]z£1anation: Text table stack is full - logic error in Phase KM. 

$ COMPILER ERROR NUMBER 481 DURING PHASE KQ. 

ExE1~!1Qn: Text input to Phase KQ does not start with an SL text table. 

Prog~~~~_]~E2n§~: Simplify the first statement in the compilation. 

$ COMPILER ERROR NUMBER 483 DURING PHASE KQ. 

~xplan~!iQn: A FORME text table of unknown type has been encountered by the phase. 
This is probably due to bad output from Phase II or a logic error in the processing of 
FORME text tables by Phase KQ. 

Proq~g~~~_ResEQn§~: Simplify the appropriate stream 1/0 statement. 

$ COMPILER ERROR NUMBER 485 DURING PHASE KQ. 

ExElanatiQn: A Q-temp. encountered in a stream 1/0 text table has not been seen 
previously in the text. 

Programmer Response: Simplify the appropriate stream 1/0 statement. 

$ COMPILER ERROR NUMBER 488 DURING PHASE KQ. 

Explanation: Error in input text - a null operand has been found in a DATAE text 
table. 

P~Qg~mm~Respons~: simplify the stream 1/0 statement referred to in the error 
message. 

$ COMPILER ERROR NUMBER 489 DURING PHASE KQ. 

Explanation: Text input to Phase KQ contains no text tables for a format list. 

R£Qg~~_Re§EQn§~: If possible, rewrite the GETIPUT EDIT statement with fewer pairs 
of data and format lists. 

$ COMPILER ERROR NUMBER 492 DURING PHASE KQ. 

704 Licensed Material ~ Property of IBM 



Explanation: Input text error. The format list input text to Phase KQ in an edit I/O 
statement starts with a FITE text table. 

Programmer Response: Simplify the format list in the edit I/O statement indicated by 
the error message. 

$ COMPILER ERROR NUMBER 501 DURING PHASE KV .• 

Explanation: The phase has encountered an UNSPEC of a picture that should have been 
replaced by a reference to a character string. 

Programmer Response: Avoid UNSPEC, particularly of pictures. 

$ COMPILER ERROR NUMBER 522 DURING PHASE OA. 

Explanation: The table containing information about temporary operands has been 
searched for a temporary which could not be found. 

$ COMPILER ERROR NUMBER 524 DURING PHASE OA. 

Explanation: The table containing information about Q-temps. has been searched for a 
Q-temp. which could not be found. 

$ COMPILER ERROR NUMBER 529 DURING PHASE OA. 

Explanation: The stack of active temporary operands maintained by Phase OA was not 
empty when a fresh statement was due to be processed. 

$ COMPILER ERROR NUMBER 543 DURING PHASE OE. 

Explanation: The table containing information about temporary operands has been 
searched for a temporary which cou1d not be found. 

$ COMPILER ERROR NUMBER 544 DURING PHASE OE. 

Explanation: The table containing information about temporary operands is full; 
further entries can not be made. This fact should have been detected and acted upon 
by Phase OA. The occurrence, therefore, of the above error message also indicates 
that Phase OA did not fully handle the situation. 

$ COMPILER ERROR NUMBER 545 DURING PHASE OE. 

Explanation: The table containing information about Q-temps. has been searched for a 
Q-temp. which could not be found. 

$ COMPILER ERROR NUMBER 548 DURING PHASE OE. 

Explanation: The stack of active temporary operands maintained by Phase OE was not 
empty when a fresh statement was due to be processed. 

$ COMPILER ERROR NUMBER 602 DURING PHASE KK. 

Explanation: Text table stack is full - logic error in Phase KK. 

$ COMPILER ERROR NUMBER 641 DURING PHASE ox. 

Licensed Material - Property of IBM Appendix B: Conpiler-error Messages 705 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

Explanation: A Q-temp. has been referenced which has not been set. 

Programmer Response: If possible, rewrite the statement indicated by the error 
message. 

$ COMPILER ERROR NUMBER 642 DURING PHASE OX. 

Explanation: The qualified temporary stack is full. This happens when previous 
phases of the corrpiler have not flagged qualified temporaries correctly on their last 
use. 

Programmer Response: Look for 30 previous statements in the program which are similar 
to the one involved. Remove statements until there are less than 30. 

$ COMPILER ERROR NUMBER 643 DURING PHASE OX. 

Explanation: Input text error. A SELECT, WHEN, or OTHERWISE statement has been 
encountered with an incorrect value in slot ITSELCT. 

Programmer Response: If the program contains nested SELECT groups, simplify the 
nesting. 

$ COMPILER ERROR NUMBER 644 DURING PHASE ox. 

Explanation: SELECT stack is full. Logic error in phase OX. 

$ COMPILER ERROR NUMBER 645 DURING PHASE OX. 

Explanation: SELECT stack contains a bad entry. Logic error in phase ox. 

$ COMPILER ERROR NUMBER 661 DURING PHASE KX. 

Explanation: An invalid conversion, generated by one of the phases II through OX, has 
.been encountered. 

Programmer Response: Simplify the statement referred to by the error message. 

$ COMPILER ERROR NUMBER 681 DURING PHASE PC. 

Explanation: Phase PC has been asked to construct a symbol table for an invalid 
identifier. Variables only can occur in data-directed I/O; varia~les, label 
constants, or entry-point constants are allowed in CHECR-condition lists. Any invalid 
or ·unsual w identifiers may not have been detected in earlier compiler phases. 

Programmer Response: Check the use cf data-directed I/O statements or the CHECR 
condition. Replace any that may cause trouble. 

$ COMPILER ERROR NUMBER 683 DURING PHASE PC. 

Explanation: A pictured operand or PICTURE format item requiring a OED or FED cannot 
be associated with its correct PICTURE specification as its dictionary reference has 
been lost. 

Programmer Response: Check the use of PICTURE format items and the paSSing of 
pictured variables to library subroutines. 

$ CO~PILER ERROR NUMBER 721 DURING PHASE PEe 

Explanation: An invalid entry has been found during a scan of the variables 
dictionary. 

706 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

, COMPILER ERROR NUMBER 722 DURING PHASE PEa 

Explanation: An invalid entry has been found during a scan of the storage dictionary. 

$ COMPILER ERROR NUMBER 723 DURING PHASE PEa 

Explanation: The compiler has failed to assign correct alignment to a STATIC variable 
which has been initialized. 

Programmer Response: Avoid the use of the INITIAL attribute for STATIC variables. 

$ COMPILER ERROR NUMBER 741 DURING PHASE PI. 

Explanation: On input to PI I, a qualified te~porary has been referred to without being 
previously defined. 

Programmer Response: 1. Try to simplify the statement involved. 

2. Avoid indirect reference to variables; that is BASED, subscripted 
POSITION (expression) and SUBSTR. 

$ COMPILER ERROR NUMBER 742 DURING PHASE PI. 

Explanation: Input to PI indicates need for data element descriptor for a data type 
which does not require one. 

Programmer Response: If a ccnversion is invloved, attempt to avoid conversion. 

$ COMPILER ERROR NUMBER 744 DURING PHASE PI. 

Explanation: The input to PI tries to take the address of an operand that does not 
have an address. 

Programmer Response: Simplify the statement involved. 

$ COMPILER ERROR NUMBER 745 DURING PHASE PI. 

Explanation: No storage base has been provided for a variable in the input to PI. 

$ COMPILER ERROR NUMBER 746 DURING PHASE PI. 

Explanation: Too many temporaries alive at the same time. 

Programmer Response: Try to simplify the statememt involved. 

$ COMPILER ERROR NUMBER 762 DURING PHASE QI. 

Explanation: A text table that should have been deleted by an earlier phase has been 
f~und in the input text stream. 

$ COMPILER ERROR NUMBER 763 DURING PHASE QI. 

Explanation: Invalid input - addressing vector contains incorrect information. 

Licensed Material - Property of IBM Appendix B: Compiler-error Messages_706.1 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

$ COMPILER ERROR NUMBER 781 DURING PHASE QA. 

Explanation: Invalid input to the phase. 

Programmer Response: Modify the statement referred to, if possible. 

$ COMPILER ERROR NUMBER 782 DURING PHASEQA. 

Explanation: More registers are required than are available. Caused either by bad 
input or by logic error in the phase. 

Programmer Response: Simplify the statement referred to; for example, perform 
subscript calculation before the statement. 

$ COMPILER ERROR NUMBER 783 DURING PHASE QA. 

Explanation: Q-temp. table full, or missing Q-temp. 

Programmer Response: Simplify the statement referred to. 

$ COMPILER ERROR NUMBER 784 DURING PHASE QA. 

Explanation: All storage for register temporaries has been used, or missing register 
temporary. 

Programmer Response: Simplify the statement. If a multiple assignment, ensure that 
there are not more than 32 targets. 

$ COMPILER ERROR NUMBER 185 DURING PHASE QA. 

Explanation: Register allocation has found a reference to a base number that s~ould 
already have been set up, but either it has not been set up or it has been lost. 

$ COMPILER ERROR NUMBER 801 DURING PHASE QE. 

Explanation: An unrecognizable text table has been found in the input text stream. 

$ COMPILER ERROR NUMBER 901 DURING PHASE SK. 

Explanation: Raised by missing, invalid, or duplicate label. 

$ COMPILER ERROR NUMBER 902 DURING PHASE SK. 

Explanation: General register 0 has been used as a base register. 

$ COMPILER ERROR NUMBER 903 DURING PHASE SK. 

Explanation: An error has been made in the allocation of region numbers. 

Programmer Response: Attempt to break up large EDIT or FORMAT statements. 

$ COMPILER ERROR NUMBER 904 DURING PHASE SK. 

Explanation: Untranslated text table - a text table has not been converted to object 
code by any of the code qeneration phases. 

106.2 Licensed Material - Property of IBM 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

$ COMPILER ERROR NUMBER 905 DURING PHASE SK. 

Explanation: Too many labels (both user-supplied and compiler-generated) in the 
program, resulting in overflow of the label table. 

Programmer Response: Attempt to simplify the program by reducing the number of labels 
used. 

$ COMPILER ERROR NUMBER 906 DURING PHASE SR. 

Explanation: An invalid operation code has been produced by one, of the code 
generation phases. 

$ COMPILER ERROR NUMBER 901 DURING PHASE SK. 

Explanation: Too many blocks (BEGIN, PROC, and ON) in the program. 

Programmer Response: Rerun with larger SIZE parameter. 

$ COMPILER ERROR NUMBER 921 DURING PHASE SI. 

Explanation: Instructions selected from a code skeleton include a local branch 
without a corresponding local label. 

Programmer Response: Rewrite the statement referred to in the error message. 

$ COMPILER ERROR NUMBER 922 DURING PHASE SI. 

Explanation: ~he number of AtCONS requested by phase SK e~eeds the number allocated 
ty storage allocation. (The value in XSAADCS exceeds the value in xadcs.) 

$ COMPILER ERROR NUMBER 941 DURING PHASE SM. 

Explanation: An invalid entry has been found in the pseudo constants pool. 

$ COMPILER ERROR NUMBER 942 DURING PHASE SM. 

Explanation: An inline constant has been found with an invalid type flag. 

Programmer Response: Rewrite the statement referred to in the error message. 

$ COMPILER ERROR NUMBER 943 DURING PHASE SM. 

Explanation: A marker in the text has an invalid type byte. 

Programmer Response: Rewrite the statement referred to in the error message. 

$ COMPILER ERROR NUMBER 944 DURING PHASE SM. 

Explanation: An invalid dictionary reference has been found in the input text stream. 

Programmer Response: Rewrite the statement referred to in the error message. 

Licensed Material - Property of IBM Appendix B: Compiler-error Messages 706.3 



Order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

$ COMPILER ERROR NUMBER 945 DURING PHASE SM. 

Explanation: An invalid dictionary reference has been found in one of the input text 
streams. 

$ COMPILER ERROR NUMBER 946 DURING PHASE SM. 

Explanaton: An invalid dictionary reference has been found, derived indirectly from 
text or dictionary. 

706.4 Licensed Material - Property of IBM 



APPENDIX C: SEQUENCE OF PHASE I,OADING 

This Chart is designed to enable it to be readily removed and for convenience is bound at 
the rear of the manual. 

Licensed Material - Property of IBM Appendix C: Sequence of Phase Loading 707 



APPENDIX D: CREATION AND USAGE OF DATA AREAS 

The chart contained in this appendix indicates the creation and usage of the main data 
areas used during compilation. 

The processing phases are shown in the basic phase loading order: optionally-loaded 
phases are indicated. Beside each phase are shown the main data areas that can exist in 
main storage during execution of the phase. Because only one phase plus the resident 
control phase. (Phase AA~. can reside in main storage at anyone time. each horizontal 
section of the chart can be considered as a symbolic representation of the compiler 
partition of main storage. Where access to a data area for either reading or writing 
purposes is not shown. some or all of the pages containing that data may remain either lli 
main storage or on the spill data set throughout execution of the relevant phase. 

The key indicates other information that is included in the chart. 

This Chart is designed to enable it to be readily removed and for convenience is bound at 
the rear of the manual. 

708 Licensed Material - Property of IBM 



Glossary 

This section provides definitions for many of the terms used in this publication. 

aggregate: see data aggregate. 

array expression: an expression whose evaluation yields an array of values. 

back dominator (of a flow unit, F): the flow unit nearest to F through which control 
~ flow before F receives control for the first time. 

back target (of a loop): the flow unit nearest to the loop entry unit through which 
control must pass before the loop is entered. A loop back target is the back dominator 
of the loop entry unit. 

backward connector (of a flow unit, F): a flow unit which can pass control directly to 
F. 

batch processing: a systems approach to processing where a number of similar input items 
are grouped for processing during the same machine run. 

block-header statement: the PROCEDURE or BEGIN statement that heads a block of 
statements. 

book: an invariant sequence of code and/or data definitions that can be introduced into 
the assembly of a compiler module by use of a COPY statement. 

built-in function: a function that is supplied by the language. 

chameleon temporary operand: a form of temporary operand generated when an expression is 
used as an argument and no corresponding parameter descriptor is available, or when an 
expression is used in a PUT LIST statement. This form of temporary operand is changed 
during later processing. 

communication area (XCOMM): a control section, contained within the resident control 
phase (Phase AA), that defines an area of storage used for communication between phases. 

compile-time statements: special statements appearing in the source program that specify 
how the source program text is to be altered; they are identified by a leading percent 
sign (" and are executed as they are encountered by the compile-time preprocessor (they 
appear without the percent sign in preprocessor procedures). 

connected storage: an area of storage associated with a reference, such as an expression­
that specifies adjacent elements of an array, which contains data items not associated 
with the reference. 

contextual declaration: the association of attributes with an identifier according to 
the context in which the identifier appears. 

controlled parameter: a parameter for which the CONTROLLED attribute is specified in a 
DECLARE statement; it can be associated only with arguments that have the CONTROLLED 
attribute. 

controlled storage: storage whose allocation and release is controlled by the 
programmer, with immediate access to the latest allocation only. 

controlled variable: a variable whose allocation and release are controlled by special 
purpose statements (ALLOCATE and FREE), with access to the current generation only. 

core page (core copy): the main storage copy of the text page currently being processed. 

data: representation of information or of value. 

Licensed Material - Property of IBM Glossary 709 



data aggregate: a logical collection of two or more data items that can be referred to 
by a single name (possibly subscripted and/or qualified), as well as by individual names: 
an array or structure. 

data element: see data item. 

data element descriptor (OED): a control block generated for an edit-directed I/O 
statement to provide a description of the characteristics of data passed to the PL/I 
library for conversion or stream I/O. An object-time DEO is therefore the equivalent of 
the data list of an edit-directed I/O statement. Compile-time DEOs have a different 
format to those that are used during execution and never appear in the executable 
program. See also descriptor and format element descriptor. 

data item: a single unit of data. 

data set: a collection of data external to the program that can be accessed by the 
program by reference to a single file name. 

~: see data element descriptor. 

descriptor: a control block which provides additional information to that given in a 
data element descriptor. It is generated when adjustable extents are involved, or when 
an item is to be passed as an argument and the associated parameter is the type that can 
be declared with an asterisk among its attributes. See also data element descriptor. 

dictionary: the term dictionary is used to refer to a particular collection of data, 
used extensively during compilation. 

dimensionality: the number of bounds specifications associated with an array 
declaration. 

element: a single data item as opposed to a collection of data items, such as a 
structure or an array" (sometimes called a scalar item~. 

element expression: an expression whose evaluation yields an element value. 

element variable: a variable that can represent only a single value at an~ one point in 
time. 

entry expression: the representation of an entry value, that is, an entry constant or an 
entry variable. 

entry unit: a flow unit that begins with a block-entry statement (PROCEDURE, BEGIN, 
ON-BEGIN, or ENTRY) Qr which has a label that can be branched-to from an on-unit. 

extended code: the mixture of Type-1 and Type-2 text formats and special markers which 
exists from the start of code generation until the end of compilation. This mixture is 
due to the fact that more than one phase is involved in the generation of machine code, 
and because each of them only processes certain types of text tables. Thus, a time 
exists when the text stream contains machine code that has replaced text tables, and text 
tables that have yet to be replaced. In addition, special markers are inserted in the 
text to indicate processing required by later phases. 

external procedure: a procedure that is not contained in any other procedure. 

factoring: the applicaiton of one or more attributes or of a level number to a list of 
parenthesized names. 

FED: see format element descriptor. 

flow unit: a sequence of text defining a sequence of code that has no intermediate 
branching points, and therefore can only be logically entered at the beginning and left 
at the end. 

format element descriptor (FED): a control block generated for an edit-directed I/O 
statement or FORMAT statement to provide a description of the data characteristics of the 
I/O buffer used. A FED is therefore equivalent to the format list of an edit-directed 
I/O statement. See also data element descriptor. 

110 Licensed Material - property of IBM 



forward connector (of a flow unit, F): a flow unit to which F can pass control directly. 

forward target (of a loop): the flow unit to which control passes when the execution of 
a loop is complete. 

general dictionary: built initially in the Dictionary Build Stage (Phases GA, GI, GE, 
and GM), the general dictionary is used throughout compilation to store a wide variety of 
information, such as: 

• details of the block structure of the program. 

• the format and dimensions of data aggregates. 

• descriptions of constant values too great to be conveniently held in text. 

• standard default attributes to be applied to implicit declarations. 

• collections of information required for optimization. 

• descriptions of control blocks, etc., to be generated in the object module. 

Entries in the general dictionary are of variable length but have a fixed alignment. 

global optimization: optimization performed by a particular section of the compiler, 
which is only executed in response to programmer specification of the OPTIMIZE compiler 
option. This option enables the programmer to specify that the program is to be modified 
in such a way that less time is required for execution of the object program. This 
optimization may also have a secondary effect of reducing the amount of storage required 
for the object module. 

global temporary operand: a temporary operand that may be used in several statements. 
either within a flow unit, or within a block. 

infix operator: an operator that defines an operation between two operands. 

iteration factor: an expression that specifies: 

1. the number of consecutive elements of an array that are to be initialized with a 
given constant. 

2. the number of times a given format item or list of format items is to be used in 
succession in a format list. 

iterative group: a do-group whose DO statement specifies a control variable and/or a 
WHILE option. 

level number (of a flow unit, F): a number that is one greater than the smallest number 
of flow units through which control must pass to get from an entry unit to F. Entry 
units have a level number of one. 

library: a collection of related files or modules. 

library routine: a proven routine that is maintained in a program library. 

local optimization: optimization performed when particular language featUres or 
situations are recognized by various sections of the compiler during any compilation. 

local temporary operand: a temporary operand whose use is confined to within one 
statement. 

loop entry unit: a flow unit that starts with the entry point of a loop. A flow unit is 
a loop entry unit either if it has itself as a backward connector or if it has one or 
more backward connectors for which it is the back dominator. 

macro instruction: an instruction in a source language that is equivalent to a specified 
sequence of machine instructions. 

Licensed Material - Property of IBM Glossary 711 



names dictionary~ built entirely in the Dictionary Build Stage (Phases GA, GI, GE, and 
GM)" the names dictionary is used to hold the names of all the variable identifiers and 
some of the constants that appear in the text. Each entry contains pointers to 
associated entries in other dictionary sections. 

no-storage temoorary operand: a temporary operand generated in circumstances where the 
argument or operand can be considered to be defined or overlaid on an existing data 
aggregate, and therefore no storage allocation is required for it. 

optimization: the generation, by the compiler, of machine code that can be executed more 
efficiently than code produced by direct translation of the PL/I source program. Two 
main forms of optimization are performed, local optimization and global optimization. 

overflow pages: additional text pages acquired by Phase KA at the rate of one overflow 
page for every four existing text pages. These pages are used to hold any additional 
text tables that are created in the Statement Processing Stage (and subsequent stages). 

overlay: the technique of repeatedly using the same blocks of internal storage during 
stages of a program. When one routine is no longer needed in storage~ another routine 
can replace all or part of it. 

~: a record containing data-management information and processable data, and used 
internally in the compiler. 

page address: the start address of a page in main storage. 

page area: the area of main storage available for the storage of data. 

page header: the first 16 bytes of a page, containing data management information. Only 
part of the page header is copied onto the spill data set during page spilling 
operations. 

page number: each section of the dictionary (names, variable, general, and storage) is 
built on a separate page or sequence of pages. Within each section, the pages are 
numbered sequentially, starting at zero. This page number is contained in a field in the 
page header. 

page size: the m1n1mum page size is 1300 bytes, of which 20 bytes are used to hold 
data-handling information, and 1280 bytes are available for processable data. If storage 
is available for fourteen or more pages of this size, the page size is increased to 2580 
bytes, of which 2560 bytes can be used for processable data. The page size is calculated 
by a routine contained in the initialization phase, Phase AE. 

page status: a page in main storage is always given a specific status. The status, 
which can be one of six grades, indicates the relationship between the core copy and the 
spill copy, and the accessibility of the core page. The six status grades are: 

• UNMOVABLE READ/WRITE 

• UNMOVABLE READ-ONLY 

• SPILLABLE (MOVABLE READ/WRITE) 

• USABLE (MOVABLE READ-ONLY) 

• DISCARDED 

• UNUSED 

phase: a series of executable instructions and definitions contained in a load module 
which can be individually loaded and executed to perform one or more functions required 
in the process of compilation. 

phase area: that area of main storage into which each phase of the compiler (with the 
exception of the resident control phase, Phase AA) is loaded in turn. 

postfix Polish notation: a method of forming mathematical expressions in which each 
operator is preceded by its operands. 

712 Licensed Material - Property of IBM 



preprocessed text: the output from the compile-time statement preprocessor. This output 
is a sequence of characters that is altered source program text and which serves as input 
to those stages of the compiler in which the actual compilation is performed. 

preprocessor s~a~emen~s: see compile-time statements. 

Q-temp: see qualified temporary operand. 

qualified temporary operand (Q-temp.): a temporary operand generated to replace 
qualified items such as array-elements or based variables. A Q-temp. contains a 
description of the data type of the item referred to, and provides a lJeans of identifying 
the qualifying information. 

register usage table (RUT): created and maintained in the phase working area, this table 
indicates the current content of registers and the items within a flow unit that are 
already held in registers. It is updated as registers are allocated. 

resident and transient libraries: these libraries consist of sets of standard 
subroutines that are used for the majority of interfaces with the system and for those 
jobS that can be most efficiently done by the use of interpretive subroutines. Resident 
library modules are called by and link-edited with the executable program phase. 
Transient library modules are called from resident library modules, and are loaded into 
dynamically-allocated storage when they are required: when they are no longer needed, the 
storage is freed and may be overwritten. 

repetition factor: a parenthesized unsigned decimal integer constant preceding a string 
configuration as a shorthand representation of a string constant. The repetition factor 
specifies the number of occurrences that make up the actual constant. In picture 
specifications, the repetition factor specifies repetition of a single picture character. 

root module: the segment of an overlay program that remains in main storage at all times 
during the execution of the overlay program. 

RY!: see register usage table. 

scalar item: a Single item of data; an element. 

scalar variable: a variable that can represent only a single data item: an element 
variable. 

scratch page: a page used as temporary workspace by one or more phases. 

source module: a series of statements in the symbolic language of an assembler or 
compiler, which constitutes the en~ire input to a single execution of the assembly or 
compiler. 

source program: the program that serves as input to the compiler. The source ~rogram 
may contain compile-time statements. 

spill candidate: the first suitable page found in the search of the page chains for 
either a new page or an existing page. 

spill data set: a data set used to hold internal data (text, dictionary, etc.,) that is 
not currently being accessed or processed, and which cannot be retained in main storage. 

spill page (spill copy): the spill data set copy of the text page currently being 
processed. 

stage: the compilation process performed by this compiler consists of a number of major 
operations, which are performed in sequence by the execution of some or all of the 52 
phases that make up the compiler. In relation to these major operations, the phases can 
be collected logically into ten groups which, for descriptive purposes, are referred to 
as stages. 

storage dictionary: used to hold information about the amount and location of storage 
required for every identifier in the object module. It is built by the storage 
allocation phase (Phase PEl when most of the information about the object code to be 

Licensed Material - Property of IBM Glossary 113 



generated has been determined. and can be considered as an extension of the variables 
dictionary. 

strength reduction: reduction of the complexity of operations performed within a loop_ 
It may also involve some common expression elimination and backward movement of text. 

symbol table: a control block generated during compilation to hold the name of the 
variable during execution and associate it with the address of the variable. Used only 
when data-directed I/O or the CHECK condition is specified. 

temporary operands: because PL/I statements can contain an unlimited number of operands, 
it is frequently necessary to set up fields containing intermediate results. These 
fields are known as temporary operands. 

text: the main stream of internal data. consisting of the internal representation of 
statements and other items of information, originally corresponding to the PL/I source 
program and progressively transformed by phases of the compiler into the format required 
at output. 

transient library: see resident and transient libraries. 

Type-l text format: the sequential text stream in which all statements in a block appear 
before the first statement in a block at the next level of nesting. Within each block 
statements are retained in source-program order, and within each statement, statement 
elements are also retained in source order. The text retains the basic characteristics 
of Type-l text format from its generation in the Syntax Analysis Stage until it is 
processed by Phase II in the Text Formatting Stage. 

Type-2 text format: Phase II in the Text Formatting Stage translates the text from a 
stream of statements (see .Type-l text format) into a series if fixed-length text tables. 
each 32 bytes long. Text in this format is referred to as Type-2 text. 

variables dictionary: built initially in the Dictionary Build Stage, the variables 
dictionary contains an entry for each variable in the text. Each entry contains code 
indicating the attributes of the variable, and a reference to the corresponding entry in 
the names dictionary. 

XCOMM: see communication area. 

114 Licensed Material - Property of IBM 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

Index 

Note: This index does not contain entries for language features. It is intended to be 
used in conjunction with the directory in section 4 (pages 494-549), which indicates the 
phases that process particular language features. 

% statement (see compile-time statement) 

abort dump (see dumps) 
addressing of storage 277,284 
aggregate assignment optimization 

in Phase IE 125 
in Phase KE 171 

aggregate locator 667 
aggregate mapping 165 
aggregate table 

construction of 101 
dictionary entries 571-573 

aggregate temporary operand 119-122 
aggregate expansion 125 
algorithm 

F 258 
independent 258 
optimizer 257 

alias information 235 
argument matching 

aggregate-argument matching 119 
element-argument matching 143 

array and structure mapping 165 
array descriptor 667 
attribute collection list 91 
attribute processsing 93 
attribute tree 91 
attributes listing 150 

back dominator 247 
definition 709 

back target 234 
definition 709 

backward connector 231 
definition 709 

backward connector table (BeT) 248 
backward movement 255 
base numbers 275 
BCD preprocessor 49 
bit-strip array (in code generation) 300 
block chaining 76 
block denesting 81 

For language features see directory (pages 494-549) 715 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-E115 

block header 
entry in general dictionary 569 
in declaration-expressions file 605 
in dictionary-text stream 605 
in Type-2 text 616 

block-optimization entry 581 
book 18,709 
books used in the compiler 697 
built-in function 709 

declarations 109 
processing phase 213 

busy-on entry 253 
busy-on-exit 253 

charact.er code dependence 12 
CHARSET(48) option 19 
CHAHSE'I' (BCD) option 19 
COBOL (see interlanguage communication) 
code bytes 

operand code bytes 585-591 
operator code bytes 615-616 
text code bytes in Type-l text 610-613 

code generation 295 
code-skeleton array 300 
common-expression elimination 255 

F algorithm 258 
independent algorithm 258 
optimizer algorithm 257 

communication area (XCOMM) 
description 8,551-563 
definition 709 

initialization of 36 
con;pi Ie-time statement 19 

definition 709 
compile-time statement preprocessor 52 
compiler 

general organization 8 
input and output 6 

compiler-error messages 699 
compiler-options processing 37 
compi ler-generated subroutines 

for stream I/O processing 205 
for string-handling operations 223 

constants analysis 267 
contextual declarations 96 
COUNT option 

implementation of 306 
cross-reference listing 150 

data 709 
data aggregates (see aggregates) 

definition 710 
data areas 

creation and usage 708 
dumping of 676 
layouts 551-674 

data set 
definition 710 
opening 3b 
used by the compiler 7 

data-element 710 

716 Licensed Material - Property of IBM 



data-element descriptor (OED) 
at compile-time 598 
at execution time 660-663 
definition 710 

debugging aids 676 
debugging macros 682,697 

Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

declaration expressions 102,112 
declaration-expressions file 102,605-610 
OED (see data-element descriptor) 
default directory 90 
defa ult opti ons 37 
descriptors 666-668 

definition 710 
diagnostic aids 676 
diagnostic messages 

phase identification 689 
Phase CE 61 
Phase UA 319 

dictionary 22,566 
definition 710 

dictionary-build stage 86 
dictionary reference 30 
dicationary-text stream 80,605 
directory 

functions listed by language feature 495 
functions listed by phase 521 

discard table 24 
dumps 

abort dump 677,679 
compiler dump phase 327 
dynamic dump 679 
interphase dump 679 
use of the DUMP option 676 

entry unit 231 
definition 710 

error messages 699 
error-message editor 

Phase CE 61 
Phase UA 319 

ESD option 
proce ss i ng 316 

ESD records 297,311 
execution-trace facility 683 
explicit declarations 89 
expression analysis 141 
expression-result length 171 
extended code 

definition 710 
description 21,669 
gen~ration of 301 
markers 301,670-672 

external-symbol dictionary (ESD) 8,307 

F algorithm 258 
factor-level stack 91 
FCB (see file control block) 
FED (see format element descriptor) 
file control block 575-576 

For language features see directory (pages 494-549) 717 



Page of LY33-6010-1, Revised June 1974 by TNL LN33-6115 

final assembly stage 295 
FLOW option 

implementation of 306 
flow unit 231 

definition 710 
flow unit information table (FUIT) 248 
FORTRAN (see interlanguage communication) 
format element descriptor (FED) 661-663 

definition 710 
forward connector 231 

definition 711 
forward connector table (FCT) 248 
forward target 233 

definition 711 
function index (see directory) 
functions of compiler stages 17 

general dictionary 
definition 711 
format of entries 

general organization 
global optimization 

defintion 711 

22 

569-583 
of the compiler 
5,231 

global temporary operand 711 

hash chains 
in global optimization 258 
in names dictionary 86 

hash table 
in dictionary-build operations 86 
in global optimization 242,658 

hash-chain table 242,658 
hashing 

in dicationary-build operations 86 
in global optimization 258 

implicit declarations 106 
in-core page directory 24 
independent algorithm 258 
input 

to c ompi ler 6 

8 

to phases (see individual phase descriptions) 
input record flowpaths 20 
interlanguage communication 160 
internal text formats 21 
interphase dump 679 
interrupt-handling routine 46 

KEY descriptor 578,579 

label resolution 303 
label-trace facility 682 
level number (of flow unit) 231 

definition 711 
LIKE directory 90 

718 Licensed Material - Property of IBM 



LIKE attribute processing 93 
local optimization 5 

definition 111 
locator chains 114 
locator-qualifier statements 606 
loop entry unit 233 

definition 711 
loop data entry 254 

macro instructions 
debugging macros 682-686,697 
definition 711 
dictionary-accessing macros 692 
general purpose macros 692 
input/output macros 690 
module-construction macros 690 
special-purpose macros 694 
text-accessing macros 691 
use of macros in the compiler 18,345 

macro preprocessor (see Phase CAl 
mapping of arrays 165 
mapping of structures 165 
matching of arguments and parameters 

aggregate arguments 119 
element arguments 143 

name resolution 106 
names dictionary 22 

defintion 112 
format of entries 556-567 

object listings 315 
object-code generation 295 
object-module assembly 307 
operands 

code bytes 315,585-591 
six-byte references to 592-597 
usage in text tables 621-653 

operators 
code bytes in Type-1 text 610-613 
code bytes in Type-2 text 615-616 

optimizer algorithm 251 
output records 307 
overflow entries (in general dictionary) 84,583 
overflow pages 147,149 

definition 712 
overflow-page index table 147,564 

page 23,564 
definition 712 

page area 23 
definition 712 

For language features see directory (pages 494-549) 719 



order No. LY33-6010-1, Page Revised by TNL LN33-6175, October 1976 

page-handling 
dictionary-page handling 30 
text-page handling 27 

page-handling routine 45 
page-handling scheme 23 
page header 564 

definition 712 
page header table 

format of 565 
page space 23,564 
page-spilling algorithm 26,45 
page size 23,40 

definition 712 
page space 23,584 
page status 24.2 

definition 712 
page-status chains 25 
phase, definition of 712 

Phase AA 
description 41 
flowchart 349 
organization 348 

Phase AE 
description 35 
flowchart 352 
organization 351 

Phase AI 
description 327 
flowchart 492 
organization 490 

Phase BA 
description 49 
flowchart 354 
functions 521 
organization 353 

Phase CA 
descripticn 52 
flowchart 361 
fUnctions 521 
organization 355 

Phase CE 
description 61 
flowchart 366 
or9aniza-tion 364 

Phase EA/EC 
description 69 
flowchart 370 
functions 521 
organization 368 

Phase EE 
description 79 
flowchart 373 
functions 522 
organization 371 

720 Licensed Material - Property of IBM 



Phase EI 
description 84 
flowchart 375 
functions 52q 
organization 374 

Phase GA 
description 89 
flowchart 379 
fUnctions 525 
organization 376 

Phase GE 
description 99 
flowchart 383 
functions 527 
organization 382 

Phase GI 
description 96 
flowchart 381 
functions 527 
organization 370 

Phase GM 
description 106 
flowchart 386 
functions 528 
organization 384 

Phase IA 
description 112 
flowchart 389 
functions 528 
organization 387 

Phase ID 
description 119 
flowchart 393 
functions 529 
organization 391 

Phase IE 
description 125 
flowchart 396 
functions 530 
organization 39q 

Phase II 
description 13q 
flowcharts 399 
functions 531 
organization 397 

Phase IK 
description 150 
flowchart 403 
functions 534 
organization q01 

Phase 1M 
description 159 
flowchart 409 
functions 534 
organization Q07 

Order No, LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

For language features see directory (pages 494-SQ9) 721 



Order No, LY33-6010-1, Page Revised by TNL LN33-6079, 

Phase IQ 
description 165 
flowchart 411 
functions 535 
organization 410 

Phase KA 
description 153 
flowchart 406 
functions 536 
organization 404 

Phase KE 
description 170 
flowchart 414 
functions 537 
organization 412 

Phase KI 
description 175 
flowchart 417 
functions 537 
organization 416 

Phase KK 
description 213 
flowchart 443 
functions 538 
organization 441 

Phase KL 
description 187 
flowchart 423 
function$ 538 
organization 421 

Phase KM 
description 190 
flowchart 427 
functions 539 
organization 424 

Phase KQ 
description 199 
flowchart 430 
functions 539 
organization 428 

Phase KT 
description 180 
flowchart 420 
functions 540 
organization 418 

Phase KV 
description 207 
flowchart 432 
functions 540 
organization 431 

Phase KX 
description 227 
flowchart 453 
functions 541 
organization 450 

722 Licensed Material - Property of IBM 

October, 1973 



Phase OA 
description 235 
flowchart 434 
functions 541 
organization 433 

Phase OC 
description 218 
flowchart 446 
functions 541 
organization 444 

Phase OE 
description 242 
flowchart 436 
functions 542 
organization 435 

Phase OI 
description 248 
flowchart 438 
functions 542 
organization 437 

Phase OM 
description 255 
flowchart 440 
functions 543 
organization 439 

Phase OX 
description 223 
flowchart 449 
functions 543 
organization 447 

Phase PA 
description 267 
flowchart 460 
functions 544 
organization 458 

Phase PC 
description 263 
flowchart 457 
functions 544 
organization 455 

Phase PE 
description 273 
flowchart 464 
functions 546 
organization 461 

Phase PI 
description 277 
flowchart 467 
functions 546 
organization 465 

Phase QA 
description 290 
flowchart 472 
functions 547 
organization 471 

Order No, LY33-6010-1, Page Revised by TNL LN33-6079, October, 1973 

For language features see directory (pages 494-549) 723 



Order No, LY33-6010-1, Page Revised by TNL LN33-6079, 

Phase QE 
description 293 
flowchart 475 
functions 547 
organization 473 

Phase QI 
description 283 
flowchart 470 
functions 547 
organization 468 

Phases SA, SC, SD, and SQ 
description 295 
flowchart 479 
functions 548,549 
organization 476 

Phase SI 
description 307 
flowchart 484 
functions 548 
organization 483 

Phase SK 
description 303 
flowchart 482 
functions 549 
organization 480 

Phase SM 
description 315 
flowchart 485 
functions 549 
organization 484 

Phase UA 
description 319 
flowchart 489 
organization 487 

phase-loading routine 43 
phase loading sequence 333,707 
phase structure 344 
PLIOAS module 37 
prefix processing 72 
preprocessor dictionaries 

building and usage of 54 
entries in 673-674 

preprocessor phases (see Phases CA and BA) 
prologue code 180 
pseudo constants pool 263,659 

qualified temporary operand (Q-temp., 142 
definition 713 

Record descriptor 578,579 
record I/O statement processing 190 
register allocation 292 
registers 

naming convention 18 
use in the compiler 681 
allocation for execution-time 180 

relocation dictionary (RLD) 7,307 

724 Licensed Material - Property of IBM 

October, 1973 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, 

resident control phase (see Phase 1A) 
RLD records 307,312 

six-byte references to operands 
spill candidate 26 

definition 7131 
spill-supervising routine 45 
stage, definition of 713 
stages of the compiler 17 
start routine (in Phase AA) 41 
statement processing stage 146 
statement-type chains 154 
storage and register allocation 
storage dictionary 22,274 

definition 713 
format of entries 584 

storage for temporary operands 
stream I/O statement processing 
strength reduction 

in Phase KV 210 
in Phase OM 255 

string descriptor 666 
structure mapping 165 
structure table 90 
subscript processing 

in Phase KE 172 
in Phase OM 260 

symbol table 263,665-666 
definition 714 

syntax analysis 74 

temporary storage 283 
text code bytes (see code bytes) 
text formats 21,600-658 
text table 134 
text-page handling 27 
text translation 134 
trace facilites 682 

592-597 

stage 263 

283 
199,130 

transient control phase (see Phase AE) 
TXT records 307,312 
text reference (format of) 565.1 
Type-1 text 21,600-613 

definition 714 
Type-1 to Type-2 text translation 135 
Type-2 text 21,135,614-658 

definition 714 

variables dictionary 22 
definition 714 

format of entries 567-568 

XBELCH (statement-type chain) 154,558 
XCOMM (see communication area) 
XDOCH (statement-type chain) 154,558 
XDYDP 684 

October, 1973 

For language features see directory (pages 494-549) 725 



Order No. LY33-6010-1, Page Revised by TNL LN33-6079, 

XREF option 150 
XRIOCH (statment-type chain) 
XROUT 345 
XSIOCH (statement-type chain) 
XSTG 346 
XSUBCH (statement-type chain) 
XSYSCH (statement-type chain) 

154,158 
154,158 

48-character preprocessor (see phase BA) 

726 Licensed Material - Property of IBM 

October, 1973 



APPENDIX C SEQUENCE OF PHASE LOADING 

PHASE AA·Resident Control Phase. 
Contains service routines including 

---------l 
- I CONTROL STAGE I I 

phase load routin •. I 
I 
I 

compilation .--_____ J 

start routine .... -----------------....... 
Load default options 
module (PLIOAS) 

compilation 
end routine 

compilation 
end routine 

compilation 
end routine 

compilation 
end routine 

rl 
I I 
I I 
I I 

I 
I 
I 
I 

DUMP 
,... ___ -- option 

I • specified 
Allocate storage 
and load dump 
phase (All 

MACRO option 
IPIIcified 

CHARSET(48) and/or 
CHARSET(BCD) option. 

I 
I 
I 
I 
I 
I 

~-- ________ 1 ___ --:;.cg::": -- ------
,------- - --- ----- -------:1 
I PREPROCESSOR I 

I 
I 
I 

..J 

I ~ ~E I 
I I 

j PreprocellOr diagnostics 
not generated 

NOSYN option specified 
but not SOURCE 

SOURCE specified or SYN or 

I 
I 
I 
I 
I 
I 
I 

I 

~ __ -.. ___ NOSYN (qual.) with qual. 

NOSYN or not elCc:eeded 
~ ___ --1-_ NOSYN (qual.) with 

L ___ qual.~eeded~ _________________ J 

r-­
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L 
r---­
I 
I 
I 

I 
I 
I 
I 

Syntax check 
not requ ired 

I Compiler diagnostics not generated 
....... --- and NOCOMPILE specified or NOCOMPILE (quail 

I ;ith qual. exceeded 

I 
I 
I Compiler diagnostics generated 

r---I---- and NOCOMPILE or 
L _ -1 NOCOMPILE (qual) specified 

....... ~ I 
L_ 

,---­
I 
I 
I 
I 
I 
I 
I 

NOCOMPILE (qual) specified 
with qual. not exceeded 

----- - ---1 
~~ I I SYNTAX ANALYSISSTAGEII 

Source program 
contains stream 
1/0 statements 

I 
I 
I 
I 
I 
I 
I 
I 
I __________ -..1 

- - - - - - - -- --, 
I DICTIONARY BUILD STAGE I I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

___ J 

------------l 
EXPRESSION ANALYSIS AND I 
TEXT FORMATTING STAGE I 

I 
I 
I 

o 
t1 
QJ 
CD 
t1 

Z 
o . 

o 
n 
n­
O 
tr' 
m 
11 



compilation 
end routine 

compilation 
end routine 

compilation 
end routine 

compilation 
end routine 

SOURCE specified or SYN or 
~--____ NOSYN (quaI.l with qual. 

NOSYN or 
~ _____ .L..- NOSYN (qual.) with 

L ___ q~.~~.:.- __ _ 
not exceeded I 

I 
_ ____ J 

r-­
I 

---- - - - --, 
I 

~~ I I SYNTAX ANALYSIS STAGE \ I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Syntax check 
not required 

Source program 
contains stream 
I/O statements 

I 
I 
I 
I 
I 
I 
I 
I 
I 

L __________ ..J 

r--­
I 

- - - - - - - -- --, 
I DICTIONARY BUILD STAGE I 

I 
I 

I 
I 
I 
I 
I Compiler diagnostics not generated 

......... ~--and NOCOMPILE specified or NOCOMPILE (quail 

I 
I 
I 

with qual. exceeded 

I Compiler diagnostics generated 
r------- and NOCOMPILE or L _ -1 NOCOMPI LE (quail specified 

......... I 

L 
NOCOMPILE (quail specified 
with qual. not exceeded 

--- - ___________ J 

r-------------- ------- --- --l 

I 
I 

EXPRESSION ANAL YSIS AND I 
TEXT FORMATTING STAGE I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I L ______________ _ _______ J 
,-------------- ----------l 

I STATEMENT PROCESSING STAGE I I 
I XREF and/or ATR 

options specified 

Any combination of, or anyone of, Phases IM-KI 
can be loaded, depending on source program content 

Any combination of, or anyone of, Phases 
K L-KQ can be loaded, depending on source 
program content. Phase KM cannot be 
loaded from Phase KT 

I OPTIMIZE option specified 
L _____________________ , 
r - - -- - ------- - --- - -- -l 
I I GLOBAL OPTIMIZATION STAGE II : 
I I I 
I I 

I I I 
L _ _ _ _ _ _ _ _ _ _ _ _ _ _--.J_ I 

r~------------------ ~ 

I 

I 

Phases OC or OX 
can be loaded 
depending on source 
program content 

L ________ _ 



I 

;==~~====~~-~-~~~~===~ll 
I I GLOBAL OPTIMIZATION STAGE II : 

OPTIMIZE option specified 

I I 
I I 

I I I 
L __ _ 

------ .J 
r-------------------=-~ 
I 

I 
L ____ _ 

Phases OC or OX 
can be loaded 
depending on source 
program content 

,---------------------------, 
I STORAGE & REGISTERS I 
I ALLOCATION STAGE 

I 
I 
I 

I 
I 

t--___ -OPTIM IZE 
options specified 

L _______________________ _ 

I 
I 
I 
I 
I 

_ ---1 

,---------------------------, 
I FINAL ASSEMBLY STAGE I 

----..-~ ·Phase loaded 

L _____________ _ 

depending on source 
program content 

One of more listing 
option specified 

Compiler diagnostics generated I _________ ----.I 

compilation 14 ___________________ .-. 

end routine 

interrupt 
handling 
routine 

1--- -- - - -- - - - - - - -- -- ----l 
I IDIAGNOSTICS STAG~ I 

: I 
I I 

DUMP option specified I 

compilation ~------_---_>------------------' 

I 
I 
I end routine 

_______________ .J 



03 • 
APPENDIX D CREATION AND USAGE OF DATA AREAS 

RESIDENT TRANSIENT HANDLED ON TEXT PAGES HANDLED ON 
DICTIONARY PAGES 

A 

CON- COMM. PROCESSING MAIN SECONDARY TEXT DIAG. 
TROL AREA PHASE TEXT STREAM OR AND 
PHASE STRM. MISCELLANEOUS TABLES ERROR 

MSGS. 

PREPROCESSOR STAGE 

AA R W PHASE BA • R W (W) 
48 CHAR/BCD SF 1 
PREPROCESSOR 

AA R W PHA~ECA • R W R W (W) R W R W 8 
COMPILE-TIME SF 2 1 3 4 
PREPROCESSOR 

AA R W PHASE CE • R W R W R R 
PREPROC.DIAGN· 21 5 1 4 
MSG. EDITOR 

SYNTAX ANALYSIS STAGE 

AA R W PHASE EA R W R W (W) 
SYNTAX ANAL YSIS T1 6 
- PASS 1 

c AA R W PHASE EE R W R W (W) 
SYNTAX ANALYSIS T1 7 
- PASS 2 & 

AA R W PHASE EI •• R W (W) 

SYNTAX ANALYSIS T1 7 
- PASS 3 & 

DICTIONARY BUILD STAGE 
",' .. :: ::::.::;.:;., .. )::~::;:;:.:::.:: . .;:.::':":: .: .... 

:i 
. :':': . 

/.:\,.- . 
::::::;.: 

.. ', , . . .... '.:.;.: :':::': 
.,.:.:::,:" .... ", . '.:~::\~::: ::: ;}::::'::: ;:,::::::::'::::': 

D AA R W PHASE GA R R R W (W) W W W 
EXPLICIT T1 7 8 
DECLARATIONS & @ 

AA R W PHASE GI R R R W (W) R W R W R W 
CONTEXTUAL T1 7 8 
DECLARATIONS & @ 

AA R W PHASE GE R W R W (W) R W R W R W 
DECLARATION 7 9 8 
EXPRESSIONS & @ 

AA R W PHASE GM R W R R (W) R W R W R W 
IMPLICIT T1 9 8 

E 
DECLARATIONS & @ 

EXPRESSION ANALYSIS AND TEXT FORMATTING STAGE 

W AA R W PHASE IA R W (WI R R 
MERGE DECLA- T1 
RATION EXPS. 

AA R W PHASE 10 R W \W) R W R W 
MATCHING OF T1 
DATA-AGG. ARGS. 

AA R W PHASE IE R W (W) R R R 
AGGREGATE T1 

F EXPANSION 
AA R W PHA~E II R W (W) R W R 

EXP. ANALYSIS & T2 
TEXT FORMATTING 

STATEMENT PROCESSING STAGE - PART 1 

AA R W PHASE IK • R R W (WI R W R R 
ATTRIBUTES & T2 10 
X-REF. LISTING 

AA R W PHASEKA •• R W (WI R W R 
IF STATEMENT T2 

G PROCESSING • 
AA R W PHASE 1M •• R W (WI R W R W 

LANGUAGE T2 
COMMUN ICA nON 

AA R W PHASE IQ •• R W (WI R W R W 
ARRAY & STRUC- T2 
TU_RE MA~ING 

AA R W PHASE KE •• R W (WI R R 
SUBSCRIPT T2 
PROCESSING 

AA R W PHA~~ lSI •• R W (W, 
H DO STATEMENT T2 

PROCESSING 
AA R W PHA~E KI R W (WI R R R 

SYST. INTERFACE T2 
STMT. PROCESSING 

AA R W et:l6S~ ISL •• R W (WI R W R R W 
OPEN, CLOSE, & T2 
FIL.E nJ:(,,1 ,..c: 

AA R W eH6:i~ IS.M •• R w (WI R R R W 
RECORD 1/0 STMT T2 

A PROCESSING 

AA R W PHA~E Kg •• R W (W) R R W 
STREAM 1/0 STMT T2 
PROCESSING 

AA R W PHASE KV R w (W) R R 
SPECIAL CASE T2 

[I'" l, 

QbOBAL QPTIMIZATIQN ~TAG~ 
-'.,. 

AA IR W IPHASE OA '1 R I 11 n IR 
w 

EXTRN. OF_ ~~IAS T2 



E I (IMPLICIT I Tl I LLJ I ts I I I I I DECLARATIONS @ 

EXPRESSION ANALYSIS AND TEXT FORMATTING STAGE 

W AA R W PHASE IA R W (W) R R 
MERGE DECLA- T1 
RATION EXPS. 

AA R W PHASE 10 R W (W) R w R W 
MATCHING OF Tl 
DATA-AGG. ARGS. 

AA R W PHASE IE R W (W) R R R 
AGGREGATE T1 

F EXPANSION 

AA R W PHA~E II R W (W) R W R 
EXP. ANALYSIS Be T2 
TEXT FORMATTING 

STATEMENT PROCESSING STAGE - PART 1 

AA R W PHASE IK • R R W (WI R W R R 
A TTR I BUTES Be T2 10 
X·REF. LISTING 

AA R W PHASEKA •• R W (WI R W R 
IF STATEMENT T2 

G I PROCESSING • 
AA R W PHASE 1M .* R W (WI R W R W 

LANGUAGE T2 
COMMUNICATION 

AA R W PHASE IQ •• R W (WI R W R W 
ARRAY Be STRUC· T2 
TURE MAPPING 

AA R W PHASE KE •• R w (WI R R 
SUBSCRIPT T2 
PROCESSING 

AA R W PHA~E ~I 
.. R W (W 

H 00 STATEMENT T2 
PROCESSING 

AA R W PHA~E IS! R w (WI R R R 
SYST. INTERFACE T2 
STMT. P ROCESSI NG 

AA R W et:t6~E ~L •• R W (W) R W R R W 
OPEN, CLOSE, Be T2 
FIl.E nFr.1 N~ 

AA R W eHA5E IS.M .. R W (W) R R R W 
RECORD 1/0 STMT T2 
PROCESSING N 

A 

AA R W PHA~E Kg •• R W (W) R R W 
STREAM 1/0 STMT T2 
PROCESSING 

AA R W PHASE KV R W (W) R R 
SPECIAL CASE T2 
PROCESSI NG_ 

QLOBAL OPTIMIZATION STAGE 

AA R W PHA5E Q~ • R (W) R W R W 
EXTRN. OF ALIAS T2 

8 Be CAl.l -- Col 

AA R W PHA5~ QE • R w (W) R R W 
EXTRN. OF VBLS- T2 
USAGE Be FLO INF 

AA R W PHASE 01 • R W (W) R R W 
LOOP T2 
ANALYSIS 

AA R W PHASE OM • R W R W (W) R R 
TEXT T2 11 
OPTIMIZATION 

e STATEMENT PROCESSING STAGE - PART 2 

AA R W PHASE KK R W (W) D R W 
BIF AND PSV T2 
PROCESSING 

AA R W PHASE OC •• R W (W) R W 
STRING HANDLING T2 
OPTNS. - PART 1 

AA R W PHASE OX •• R W (W) R R R W 
STRING HANDLING T2 
OPTNS. - PART 2 

AA R W PHASE KX R W (W) R W 
D DATA T2 CIt 

CONVFHSIIJNS 

STORAGE AND REGISTERS ALLOCATION STAGE 

AA R W PHASE PC A W W W (W) R R W R W 
SYMBOL TABLE T2 13 1 :2~ 
RE~OLUTION @ ~it 

AA R W PHA~E PA R W R W R W W (WI R W: .. 
., ...... 

R W 
CONSTANTS T2 13 14 1~1 

ANALYSIS @ ~it 

AA R W PHASE PE R W W (W) R W R W 
E STORAGE 13 15 1"1 .I.. 

ALLOCATION @ Be 
AA R W PHASE PI R W R W R (WI R R 

ADDRESSING OF T2 13 16 15 1"1 .I.. 

STORAGE @ Be 

AA R W PHASE 01 A W R (WI R 
OPTIMIZED T2 16 12 ...... - l'll 

AA R W PHASE QA R W R W (W) 
REGISTER T2 17 12 
ALLOCATION 

F AA R W PHASE OE • R W 
ELiMTION OF UN· T2 12 
NEC. STGE. OPS. 

FINAL ASSEMBLY STAGE 

AA R W PHASE SA R W A R W 
OBJECT CODE EC R1 GENRTN. - PASS 1 

AA R W PHASE SO R W R R 
OBJECT CODE EC 12 
- - - -- - ~ -- -



- -

D AA R W PHASE OM . R W rn R 
TEXT T2 11 
OPTIMIZATION 

c STATEMENT PROCESSING STAGE - PART 2 

AA R W PHASE KK R W (W) D R W 
BIF AND PSV T2 
PROCESSING 

AA R W PHASE OC •• R W (W) R W 
STRING HANDLING T2 
OPTNS. - PART 1 

AA R W PHASE OX •• R W (W) R R R W 
STRING HANDLING T2 
OPTNS. - PART 2 

AA R W PHASE KX R W (W) R W 
D DATA T2 

lCO"'~KS INS 

STORAGE AND REGISTERS ALLOCATION STAGE 

AA R W PHASE PC R W W W (W) R R W R W 
SYMBOL TABLE T2 13 12 
RESOLUTION @ at 

AA R W PHA~E PA R W R W R W W (W) R W, ::':::::::"::'" R W 
CONSTANTS T2 13 14 12 
ANALYSIS @ & ::::: 

AA R W IPHASE PE R W W (W) R W R W 
E STORAGE 13 15 12 

ALLOCATION @ & 
AA R W PHA~E PI R W R W R (W) R R 

ADDRESSING OF T2 13 16 15 12 
STORAGE @ & 

AA R W PHASE 01 R W R (W) R 
OPTIMIZED T2 16 12 
4 NU 

AA R W PHASE QA R W R W (W) 
REGISTER T2 17 12 
ALLOCATION 

F AA R W PHASE OE • R W ... 
ELIMTION OF UN- T2 12 
NEC. STGE. OPS. 

FINAL ASSEMBLY STAGE 

AA R W D~AC~ SA R W R R W 
OBJECT CODE EC 12 
GENRTN. - PASS 1 

AA R W PHASE SO R W R R 
OBJECT CODE EC 12 
GEN RTN - PASS 2 

AA R W DL.tASE SO •• R W R R 
nR 1~r,T CODE EC 12 
l:.it:NH IN. - PASS 4 

AA R W PHASE SC •• R W R 
OBJECT CODE EC 12 
GENRTN. - PASS 5 

AA R W PHASE SK R W W R (W) R W R W 
LABEL EC 18 12 

H RESOLUTION @ 

AA R W PHASE ~I R W W W R IR (W) R R W R W 
OBJECT MODU LE EC 19 20 18 12 
ASSEMBLY & @ 

AA R W PHASE SM • R W R R R (W) R R R R 
OBJECT MODULE EC 19 20 12 
LISTINGS & 

DIAGNOSTICS STAGE 

A AA R PHA~~ !J8 R w R 
N 

DIAGNOSTIC- 21 
&U:(,'(,'A,f::C EDITOR 

~ 

-.....-~ ----.... -m 
• = Optional phase, depending on compiler options . 
•• = Optional phase, depending on source program content. 

B R = Read w 
W = Write 
& = Second text stream, chained from X2STRM in XCOMM. 
@ = Scratch pages, reference in XSCRCH in XCOMM. 
1 = Preprocessor Diagnostic and Error Message Stream. 
2 = Preprocessor Internal Format Text. 

• 3 = Preprocessor IVB Dictionary. 
4 = Preprocessor General Dictionary. 
5 = Preprocessor Sorted Message Stream. 
6 = Read-in Area. 
7 = Dictionary Text File. 
8 = Hash Table and Default Directory. 

c 9 = Declarations Expressions File. 
10 = Cross Reference Tables. 
11 = Subscript-list Sort Page. 
12 = Pseudo Constants Pool. 
13 = Constants Relocation and Base Numbers I nformation Page. 
14 = Constant Descriptor Tables. 

• 15 = Block Structure Information Page. 
16 = Addressing and Temporary Storage Information. 
17 = Register Usage Table. 
18 = Label Table. 
19 = I nternal Representation of Object Module. 
20 = Static CSECT (Adcons) Information. 

D 21 = Diagnostic Message Sort Page. ell 

Text Formats in Maih Text Stream (Output from Phose) 

SF = Source Format. 

• T1 = Type 1 Text. 
T2 = Type 2 Text. 
EC = Extended Code. 



ITrn~ / Technical Newsletter 

DOS 
PLjI Optimizing Compiler: 
Program Logic 

© IBM Corp. 1971, 1972, 1973,1974,1976 

This Newsletter No. 

Date 

Base Publication No. 

File No. 

Previous Newsletters 

LN33-6175 

October, 1976 

LY33-60 1 0-1 

8360/8370-29 

LN33-6079 

LN33-6115 

This Technical Newsletter, a part of Version 1, Release 5, Modification 0 of the IBM 
DOS PLjI Optimizing Compiler, provides replacement pages for the subject publication. 
These replacement pages remain in effect for subsequent versions, releases, and 
modifications of the compiler unless specifically altered. Pages to be inserted and/or 
removed are: 

Front cover/Edition notice 
Contents (sheets 1 to 5) 
Figures (sheet 1) 
7-13 
17-20 
37,38 
38.1 (added) 
47-52 
55-60 
67-70 
70.1 (added) 
103, 104 
104.1 (added) 
107-110 
110.1 (added) 
119, 120 
120.1 (added) 
123, 124 
124.1 (added) 
153, 154 
159-162 

162.1 (added) 
173-178 
178.1 (added) 
179-184 
187-196 
196.1 (added) 
197,198 
203,204 
207,208 
211,212 
225,226 
273-276 
303-306 
306.1 (added) 
307-314 
335-338 
361,362 
367-370 
397,398 
463,464 
499,500 

505,506 
521,522 
537,538 
561,562 
573,574 
589-594 
609-614 
617,618 
627,628 
633-636 
645-650 
657,658 
673,674 
676 
679,680 
687,688 
699-702 
705-706.4 
719, 720 
Appendix C (Foldout) 
Reader's comment form 

A change to the text is indicated by a verticallihe to the left of the change. 

Summary of Amendments 

Changes for Release 5 of the optimizing compiler and general updating of the manual. 

Note.: Please file this cover letter at the back of the manual to provide a record of changes. 

IBM United Kingdom Laboratories Ltd, Publications Dept, Hursley Park, Winchester, Hants, England. 

e IBM Corp. 1976 



llrn~ / Technical Newsletter 

DOS PL/I Optimizing Compiler: 
Program Logic 

© IBM Corp. 1971, 1972 

This Newsletter No. LN33-611S 

Date June, 1974 

Base Publication No. 

File No. 

Previous Newsletters 

LY33-6010-1 
S360/S370-29 

LN33-6079 

This Technical Newsletter, a part of Version 1, Release 4, Modification 1 of the 
DOS PL/I Optimizing Compiler, provides replacement pages for the subject 
publication. These replacement pages remain in effect for subsequent modifications 
and releases unless specifically altered. Pages to be inserted/removed are: 

Cover, Edition Notice 
Contents (3rd sheet) 
187,188 
231,232 
247-250 

253-258 
258.1, 258.2 (added) 
583,584 
589-592 
715-720 

A change to the text or to an illustration is indicated by a vertical line to the left 
of the change. 

Summary of Amendments 

The changes document modifications and improvements to the DOS PL/I 
Optimizing Compiler for Release 4.1. 

Note: Please file this cover letter at the back of the manual to provide a record 
of changes. 

IBM United Kingdom Laboratories Ltd, Publications Dept, Hursley Park, Winchester, Hants, England. 

© IBM Corp. 1974 Printed in U.S.A. 



~rn~ / Technical Newsletter 

DOS PLjI Optimizing Compiler: 
Program Logic 

© IBM Corp. 1971,1972 

This Newsletter No. 

Date 

Base Publication No. 

System 

Previous Newsletters 

LN33-6079 
October, 1973 

LY33-6010-1 

S360/S370-29 

None 

This Technical Newsletter, a part of Version 1, Release 4, Modification 0 of 
the DOS PLjI Optimizing Compiler, provides replacement pages for the subject 
publication. These replacement pages remain in effect for subsequent 
modifications and releases unless specifically altered. Pages to be inserted/ 
removed are: 

Cover, Edition notice 
3,4 
Contents 
Figures 
Charts (added) 
5-14 
17-20 
23,24 
24.1 ,24.2 (added) 
35-40 
47,48 
67-70 
133,134 
159,160 
187,188 
231-234 
249,250 
261,262 
299,300 

303-306 
311,312 
315-320 
325,326 
335-338 
401,402 
441,442 
487,488 
521,522 
563-566 
565.1 (added) 
573,574 
671,672 
676 
687-690 
699-706 
706.1-706.4 (added) 
715-726 (Index) 

A change to the text or to an illustration is indicated by a vertical line to the 
left of the change; some pages do not have any technical changes but are 
issued because of text rearrangement. 

IBM United Kingdom Laboratories Ltd, Publications Dept, Hursley Park, Winchester, Hants, England. 

© IBM Corp. 1973 Printed in U.S.A. 



m])~ / Technical Newsletter This Newsletter No. LN33-6079 

Date October, 1973 

Base Publication No. LY33-6010-1 

System S360/S370-29 

Previous Newsletters None 

continued/ 

Summary of Amendments 

The changes document modifications and improvements made to the DOS 
PLjI Optimizing Compiler for Release 4.0. The most significant of these are 
the statement frequency count option, and support for the IBM 3340 direct 
access storage device. 

Note: Please file this cover letter at the back of the manual to provide a 
record of changes. 

IBM United Kingdom Laboratories Ltd, Publications Dept, Hursley Park, Winchester, Hants, England. 

© IBM Corp. 1973 Printed in U.S.A. 



DOS PL/I Optimizing Compiler: 
Program Logic 

Order No. LY33-6010-1 

Your comments about this publication will help us to improve it for you. 
Comment in the space below, giving specific page and paragraph references 
whenever possible. All comments become the property of IBM. 

Please do not use this form to ask technical questions about IBM systems and 
programs or to request copies of publications. Rather, direct su~h questions or 
requests to your local IBM representative. 

If you would like a reply, please provide your name and address 
(including ZIP code). 

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 

Reader's 
Comment 
Form 



L Y33-6010-1 

Fold and Staple 

Business Reply Mail 
No postage necessary if mailed in the U.S.A. 

Postage will be paid by: 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

First Class Permit 
Number 6090 
San Jose, California 

.................................................................................................................................... 
Fold and Staple 

I nternational Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.s.A. only) 

IBM World Trade Corporation 
832 United Nations Plaza, New York, New York 10017 
(I n.-national) 

o 
o 
en 
"'C 
r 
~ 

"'C 
a 
~ 
3 
r 
o 

CQ 
C). 

" (j) 

z 
? 
en w 

~ 
w 
...... 
o 
I\) 
co 
"'C ., 
S· ... 
~ 
S· 
c 
en 
~ 
r 
-< w 
w m o 
-' 

9 
-' 



L Y33-6010-1 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
[U.S,A, only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

o 
o 
en 
"'tJ 
r 
~ 

o 
'S 
3' 
N' 
S' 
co 
C"') 
o 
3 
'E, 
CD 
~ 
"'tJ ., 
o 
~ 
3 
r 
o co 
(i' 

r 
-< w w 
~ 
o 
-' 

C? 


	001
	002
	003
	004.00
	004.01
	004.02
	004.03
	004.04
	004.05
	004.06
	004.07
	004.08
	004.09
	004.10
	004.11
	004.12
	004.13
	004.14
	004.15
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024.0
	024.1
	024.2
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038.0
	038.1
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070.0
	070.1
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104.1
	104
	105
	106
	107
	108
	109
	110.1
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120.0
	120.1
	121
	122
	123
	124.0
	124.1
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162.0
	162.1
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178.0
	178.1
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196.0
	196.1
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258.1
	258.2
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306.0
	306.1
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565.0
	565.1
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706.0
	706.1
	706.2
	706.3
	706.4
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727a
	727b
	727c
	728a
	728b
	728c
	_01
	_02
	_03
	_04
	replyA
	replyB
	xBack

