

The key is situated between the power-on key
and the power-off key. It is spring-loaded, with the
spring restoring the key to the secure position.

In a multiprocessing system, the TOD clock is
secure only when the TOD clock on this CPU and
the keys on all CPUs configured to this CPU are in
the secure position. The TOD clock in each CPU of
a multiprocessing configuration is enabled for setting
when th,e TOD clock key on that CPU, or on any
CPU configured to it, is in the enable-set position.

Wait lndicator
The wait indicator is on when the CPU is in the wait
state.

Operation Note
The wait indicator, manual indicator, and system
indicator may be used by the operator to determine
the status of the system. The following table shows
the possible conditions when power is on and the
CPU is not in the load or check-stop states.

Remote Operator-Control Panel
In some models, a remote operator-control panel
(ROCP) is provided. The remote operator-control

M9nual Indicator 1 System I ndicator2 Wait Indicator

off off off

off off on

off on off

off on on

on off off

on off on

on on off

on on on

Explanation:

* Abnormal condition.

panel functions are effective concurrently with those
on the system console. The settings of the load-unit
address controls on the remote panel are selected if
the load key on the remote panel is activated.

Customer-Engineer Section
The customer-engineer section of the system control
panel contains controls intended only for customer
engineer use.

Operation Note
Improper use of the customer-engineer-section con
trols may, among other things, result in false
machine-check indications or cause actual machine
malfunctions to be ignored. It may also alter other
aspects of system operation, including instruction
execution and channel operation, to the extent that
the operation does not comply with that specified in
this manual. While the abnormal setting of such con
trols causes the test indicator to be turned on in this
CPU, in a multiprocessing system the operation of
another CPU may be affected even though its test
indicator is not turned on.

CPU State State of I/O System3

Operating, Wait Not working

Operating Undetermined

Operating, Wait Working

Stopped Not working

Stopped, Wait Not working

Stopped Working

Stopped, Wait Working

1 The manual indicator may be off in some models while display-and-enter
operations are being performed.

2 When the system indicator is turned on, it remains on for a minimum of
appro):imately one second.

3 The operation of the console device is included here as an I/O operation. In a
multiprocessing system, the system indicator may be on because of activity in
anothe'r CPU. When this is the case, the state of �t�h�l�~� I/O system in undetermined.

System Status Indications

248 System/370 Principles of Operation

Central Processing Unit
Every CPU incorporates the commercial instruction
set, which includes the standard instruction set and
the decimal instructions (listed in Appendix C), and
the associated basic computing functions, including:

• Byte-oriented operands

• General registers

• Control registers, with bit positions "for the
block-multiplexing control bit (if block multi
plexing is provided), for the interrupt-key and
interval-timer masks, for channel masks associ
ated with installed channels, for monitor
masks, for control of installed machine-check
handling facilities, and for the IOEL control (if
an installed channel has the I/O-extended
logout facility).

• Storage protection

• Interval timer

• Time-of -day clock

• Basic system console functions

Additionally, the following features are available:

Floating-Point Feature
Includes the floating-point instructions (listed in
Appendix C) and the floating-point registers.

Universal Instruction Set
Includes the instructions of the commercial instruc
tion set and the floating-point feature.

Extended-Precision Floating-Point Feature
Includes the extended-precision floating-point in
structions (listed in Appendix C).

External-Signal Feature
Includes the extension to external interruptions for
external signals, the control-register position for the
external-signal mask, and the means to accept exter-

, nal signals.

Direct-Control Feature
Includes the external-signal feature and the instruc
tions READ DIRECT and WRITE DIRECT.

CPU-Timer and Clock-Comparator Feature
Includes the clock comparator, the CPU timer, the
associated extensions to external interruption,
control-register positions for the clock-comparator
and CPU-timer masks, and these instructions: SET

Appendix A. System/370 Features

CLOCK COMPARATOR, STORE CLOCK COM
PARATOR, SET CPU TIMER, and STORE CPU
TIMER.

Translation Feature
Includes the following facilities:

• Dynamic Address Translation (DAT). The
DAT facility includes the translation mecha
nism, with the associated control-register posi
tions and program-interruption codes, and ref
erence and change recording.

• Program-Event Recording (PER). The PER
facility includes the associated control-register
positions and extensions to the program
interruption code.

• Extended-Control (EC) Mode.
• SSM Suppression. This facility includes the

control-register position for the SSM
suppression-control bit and the program
interruption code for special operation.

• Store Status and Program Reset.

As part of these facilities, the following instruc
tions are provided: LOAD REAL ADDRESS,
PURGE TLB, RESET REFERENCE BIT, STORE
THEN AND SYSTEM MASK, and STORE THEN
OR SYSTEM MASK.

Multiprocessing Feature
Includes the following facilities, which permit the
formation of a two-CPU multiprocessing system:

• Shared Main Storage.
• Prefixing.
• CPU Signaling and Response.
• TOD Clock Synchronization.

These facilities include four extensions to external
interruption (external call, emergency signal, TOD
clock sync check, and malfunction alert), control
register positions for the TOD-clock-sync control bit
and for the masks for the four external-interruption
conditions, and the instructions SET PREFIX, SIG
NAL PROCESSOR, STORE CPU ADDRESS, and
STORE PREFIX.

Conditional-Swapping Feature
Includes the instructions COMPARE AND SW AP
and COMPARE DOUBLE AND SWAP.

PSW-Key-Handling Feature
Includes the instructions SET PSW KEY FROM
ADDRESS and INSERT PSW KEY.

Appendix A. System/370 Features 249

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

1/01 Channels
Every system includes at least one byte-multiplexer,
block';'multiplexer, or selector channel, with these
possible additional features:

Command Retry

Fast Release

Limited Channel Logout (LCL)

I/O Extended Logout (JOEL)

Channel Indirect Data Addressing (CIDA)

Clear I/O

AvaUability of CPU Features on System/370 Models

System/370 Model

CPU Feature 115 125 135 145

Commercial instruction set (includes standard Std Std Std Std
instruc:tion set and decimal feature)

Floating-point feature Opt B Opt B Extended-precision floating-point feature Opt Opt

Direct·control feature Opt2 Opt2 Opt Opt

Translation feature Std Std Std Std

CPU-timer and clock-comparator feature Std Std Opt Opt

Conditional-swapping feature Std Std Opt Opt

PSW-kt3y-handl i ng featu re Opt

Multiprocessing feature

Explanation:

Std Standard
Opt = Optional

= Not available
BQxed features are offered as a single package.

1 Includes the MONITOR CALL instruction and associated control-register positions
only when the translation feature is installed.

2 Only the external-signal feature portion is offered.

3 These combined four features are available for field installation only on purchased models.

250 System/370 Principles of Operation

155

Std

Std

Opt

Opt

B

158 165 168

Std Std1 Std

Std Std Std

Opt Std Std

Opt Std Std

Std

B
Std

Std Std

Std Std

Std Std

Opt Opt

Appendix B. Functions That Differ from System/360

This appendix summarizes the areas where
System/370 differs from System/360. Not included
are System/370 functions, such as block mUltiplex
ing, which are suppressed on initialization, and new
System/370 functions, such as new instructions,
which are specified in such a manner that they cause
program exceptions on System/360.

Removal of USASCII-8 Mode
System/360 provides for USASCII-8 by a mode
under control of PSW bit 12. USASCII-8 was a pro
posed zoned-decimal code that has since been re
jected. When bit 12 of the System/360 PSW is one,
the codes preferred for the USASCII-8 are generat
ed for decimal results. When PSW bit 12 is zero, the
codes preferred for EBCDIC are generated.

In System/370, the USASCII-8 mode and the
associated meaning of PSW bit 12 are removed. In
System/370, all instructions whose execution in
System/360 depends on the setting of PSW bit 12
are executed generating the code preferred for
EBCDIC.

Bit 12 of the PSW is handled in System/370 as
follows:

• In models that do not have the extended-control
(EC) mode installed, a one in PSW bit position
12 causes a program interruption for specifica
tion exception.

• In models that have the EC mode installed, a
one in PSW bit position 12 causes the CPU to
operate in the EC mode.

Handling Invalid Decimal Sign
In System/360, an invalid decimal operand causes
the operation to be terminated. In System/370 the
operation is suppressed, instead of terminated, when
an invalid sign is detected. The action applies to all
instructions that check the validity of decimal ope
rands: ADD DECIMAL, SUBTRACT DECIMAL,
ZERO AND ADD, COMPARE DECIMAL, MUL
TIPL Y DECIMAL, DIVIDE DECIMAL, and
CONVERT TO BINARY. It includes also the
System/370 instruction SHIFT AND ROUND DEC
IMAL.

Recognizing Protection Exception in
Edit
In System/360, when a pattern character in an
EDIT or EDIT AND MARK operation is fetched

from a location protected against storing but remains
unchanged in the operation; it depends on the model
whether or not the protection exception is recognized.
In System/ 3 7 0, the protection exception in the above
case is recognized.

Operation Code for HALT DEVICE
In System/370, the first eight bits of the operation
code assigned to HALT DEVICE are the same as
those assigned to HALT I/O, the distinction be
tween the two instructions being specified by bit
position 15. In System/360, bit position 15 is ig
nored, and HALT I/O is performed in both cases.

Extent of Logout Area
In System/360, the logout area starts with location
128 and extends through as many locations as the
given model requires. Portions of this area are used
for machine-check logout, and other portions may
be used for channel logout. While no limit is set on
the size of the logout area, the extent of the area
used on most System/360 models is less than that
stored by a comparable System/370 model.

On System/370, the machine-check interruption
causes information to be stored at locations 216-
239, 248-255, and 352-51l. Additionally, the mod
el may store logout information in the fixed logout
area, locations 256-351, and the model may also
have a machine-check extended logout (MCEL),
which, on initialization, is specified to start at loca
tion 512. Channels may place logout information in
the limited channel logout area, locations 176-179,
and in the fixed logout area, locations 256-35l.

Command Retry
System/370 channels may provide command retry,
whereby the channel, in response to a signal from
the device, can retry the execution of a channel com
mand. Since I/O devices announced prior to
System/370 do not signal for command retry, no
problem of compatibility exists on these devices.
However, some new devices, which would otherwise
be compatible with former devices, do signal for
command retry.

The occurrence of command retry will usually
have no significant effect on the result produced by
a channel program; however, the following is a list
of some of the effects of command retry:

Appendix B. Functions That Differ from System/360 251

1. An immediate command specifying no chaining
may result in setting condition code ° rather
than c:ondition code 1.

2. Multiple PCI interruptions may be generated
for a single CCW with the PCI flag.

3. Since CCWs may be refetched, programs
which dynamically modify CCWs may be af
fected.

4. The residual count in the CSW reflects only the
last execution of the command and does not
necessarily reflect the maximum storage used
in previous executions.

252 System/370 Principles of Operation

Logout on Channel Data Check
In System/360, logout is not permitted on channel
data check. System/370 permits logout to occur
when the channel causes an I/O interruption with
the channel-data-check indication.

Channel Pref etching
In System/360, on an output operation as many as
16 bytes may be prefetched and buffered; similarly,
with data chaining specified, the channel may pre
fetch the new CCW when up to 16 bytes remain to
be transferred under control of the current CCW. In
System/370, the restriction of 16 bytes is removed.

The following four lists are of instructions arranged
by name, mnemonic, operation code, and feature.
Some models may offer instructions not appearing in
the lists, such as those provided for emulation or as
part of special or custom features ..

The operation code 00, with a two-byte instruc
tion format, and the set of sixteen 16-bit operation

The listings in the Characteristics and Code columns mean:

A Access exceptions
A1 Addressing exception only
A2 Addressing and translation-specification exceptions only
B PER branch event
C Condition code is set
CK CPU-timer and clock-comparator feature
D Data exception
DC Direct-control feature
DF Decimal-overflow exception
DK Decimal-divide exception

Appendix C. Lists of Instructions

codes B2EO to B2EF, with a four-byte instruction
format, are allocated for software uses where indica
tion of invalid operation is required. It is improbable
that these operation codes will ever be assigned to
an instruction implemented in the CPU.

DM Depending on the model, DIAGNOSE may generate various program exceptions
and may change the condition code

E Exponent-overflow exception
EX Execute exception
FK Floating-point-divide exception
FP Floating-point feature
IF Fixed-point-overflowexception
II Interruptible instruction
I K Fixed-point-divide exception
L New condition code loaded
LS Significance exception
M Privileged-operation exception
MO Monitor event
MP Multiprocessing feature
PD Decimal feature
PK PSW-key-handling feature
R PER general-register-alteration event
RR RR instruction format
RS RS instruction format
RX RX instruction format
S S instruction format
SI SI in.struction format
SO Special-operation exception
SP Specification exception
SS SS instruction format
ST PER storage-alteration event
SW Conditional-swapping feature
TR Translation feature
U Exponent-underflow exception
XP Extended-precision floating-point feature

Bits 8-14 of the operation code are ignored
+- Bits 8-15 of the operation code are ignored
$ Causes serialization
$1 Causes serialization when the R 1 and R 2 fields contain all ones and all zeros, respectively.

Appendix C. Lists of Instructions 253

lnstructlions Arranged by Name

Nam;..;..e _____ _ Mnemonic

ADD
ADD
ADD DECIMAL
ADD HALFWORD
ADD LOGICAL

ADD LOGICAL
ADD NORMALIZED (extended)
ADD NORMALIZED (long)
ADD NORMALIZED (long)
ADD NORMALIZED (short)

ADD NORMALIZED (short)
ADD UNNORMALIZED (long)
ADD UNNORMALIZED (long)
ADD UNNORMALIZED (short)
ADD UNNORMALIZED (short)

AND
AND
AND (charclcter)
AND (immodiate)
BRANCH .tl\ND LINK

BRANCH AND LINK
BRANCH ON CONDITION
BRANCH ON CONDITION
BRANCH ON COUNT
BRANCH ON COUNT

AR
A
AP
AH
ALR

AL
AXR
ADR
AD
AER

AE
AWR
AW
AUR
AU

RR C
F~X C

5S C PD
FtX C
RR C

F~X C
FlR C XP
FIR C FP
FIX C FP
RR C FP

RX C FP
FIR C FP
RX C FP
RR C FP
RX C FP

NR FIR C
N RX C
NC SS C
NI SI C
BALR RR

BAL RX
BCR RR
BC RX
BCTR RR
BCT RX

BRANCH ON INDEX HIGH BXH RS
BRANCH ON INDEX LOW OR EQUAL BXLE RS
CLEAR I/O CLRIO S C
COMPARE CR RR C
COMPARE C RX C

COMPARE (long)
COMPARE (long)
COMPARE (short)
COMPARE (short)
COMPARE AND SWAP

COMPARE DECIMAL
COMPARE POUBLE AND SWAP
COMPARE HALFWORD
COMPARE LOGICAL
COMPARE LOGICAL

COMPARE LOGICAL (character)
CO~PARE LOGICAL (immediate)
COMPARE LOGICAL CHARACTERS

UNDER MASK
COMPARE LOGICAL LONG
CONVERT TO BINARY

CONVERT TO DECIMAL
DIAGNOSE
DIVIDE
DIVIDE
DIVIDE (lolng)

254 System/370 Principles of Operation

CDR
CD
CER
CE
CS

CP
CDS
CH
C~R
CL

CLC
CLI
CLM

CLCL
CVB

CVD

DR
D
DDR

RR C FP
RX C FP
RR C FP
RX C FP
RS C SW

SS C PD
RS C SW
RX C
RR C
RX C

SS C
SI C
RS C

RR C
RX

RX

RR
RY
RR FP

M

A

A

A

A

Characteristics

IF
IF

D DF
IF

SP U E
SP U E

A SP U E
SP U E

A SP U E
SP E

A SP E
SP E

A SP E

A

A
A

A

SP
A SP

SP
A SP

LS
LS
LS
LS

LS
LS
LS
LS
LS

Code Page

R 1A 117
R 5A 117

ST FA 149
R 4A 117
R 1E 120

R 5E 120
36 160
2A 160
6A 160
3A 160

7A 160
2E 162
6E 162
3E 162
7E 162

R 14 120
R 54 120

ST D4 120
ST 94 120

B R 05 121

B R 45 121
$1 B 07 121

$

B
B R
B R

B R
B R

47 121
06 122
46 122

86 122
87 123
9D01 *198
19 123
59 123

29 163
69 163
39 163
79 163

A SP $ R ST BA 123

A D
A SP
A

A

A
A
A

A SP
A D

A
M DM

SP

IK

IK
A SP IK

SP U E FK

II

F9 149
R ST BB 124

R
R

R
R

49 125
15 125
55 125

D5 125
95 125
BD 126

OF 126
4F 127

ST 4E 128
83 103
1D 128
5D 128
2D 163

Instructions Arranged by Name

Name Mnemonic Characteristics

DIVIDE (long)
DIVIDE (short)
DIVIDE (shord
DIVIDE DECIMAL
EDIT

DO
DER
DE
DP
ED

RX FP A SP U E FK
RR FP SP U E FK
RX FP A SP U E FK
SS PD A SP 0 OK
SS C PD A D

EDIT AND MARK
EXCLUSIVE OR
EXCLUSIVE OR
EXCLUSIVE OR (character)
EXCLUSIVE OR (immediate)

EDMK SS C PD
XR RR C
X RX C
XC SS C
XI SI C

A

A
A
A

RX A SP
SCM
SCM

b

EXECUTE
HALT DEVICE
HALT I/O
HALVE (long)
HALVE (short)

EX
HDV
HIO
HDR
HER

RR FP SP U
RR FP SP U

INSERT CHARACTER IC RX A
INSERT CHARACTERS UNDER MASK ICM RS C A
INSERT PSW KEY IPK S PI< M
INSERT STORAGE KEY ISK RR M A1 SP
LOAD LR RR

LOAD
LOAD (long)
LOAD (long)
LOAD (short)
LOAD (shord

LOAD ADDRESS
LOAD AND TEST
LOAD AND TEST (long)
LOAD AND TEST (shord
LOAD COMPLEMENT

LOAD COMPLEMENT (long)
LOAD COMPLEMENT (short)
LOAD CONTAOL
LOAD HALFWORD
LOAD MULTIPLE

LOAD NEGATIVE
LOAD NEGATIVE (long)

LOAD NEGATIVE (shotd
LOAD POSITIVE
LOAD POSITIVE (long)

LOAD POSITIVE (short)
LOAD PSW
LOAD REAL ADDRESS
LOAD ROUNDED (exte~ded to long)
LOAD ROUNDED (long to shord

MONITOR CALL
MOVE (character)
MOVE (immediate)
MOVE LONG
MOVE NUMERICS

L
LOR
LD
LER
LE

RX
RR
RX
RR
RX

LA RX
LTR RR C

FP
FP
FP
FP

LTDR RR C FP
LTER RR C FP
LCR RR C

A
SP

A SP
SP

A SP

SP
SP

LCDR RR C FP SP
LCER RR C FP SP
LCTL RS M A SP
LH RX A
LM RS A

LNR RR C
LNDR RR C FP SP

SP LNER RR C FP
LPR RR C
LPDR RR C FP SP

LPER
LPSW
LRA
LRDR
LRER

MC

RR C
S L
RX C
RR
RR

SI
MVC SS
MVI SI
MVCL RR C
MVN SS

FP SP
M A SP

TR M A2
XP SP
XP SP

A
A

SP

A SP
A

IF

IF

E
E

EX
$
$

$

MO

ST
ST

R ST
R
R

R
R
R
R
R

R

R
R

R

R
R

R

R

R

ST
ST

ST
ST

II R ST
ST

Code ~

6D
3D
7D
FD
OE

OF
17
57
07
97

163
163
163
149
150

152
128
129
129
129

44 129
9EOl * 199
9EOO* 202
24 164
34 164

43 130
BF 130
B20B 104
09 105
18 130

58
28
68
38
78

41
12
22
32
13

23
33
B7
48
98

11
21
31
10
20

30
82
B1
25
35

AF
02
92
OE
D1

130
165
165
165
165

131
131
165
165
131

166
165
105
131
132

132
166
166
132
166

166
105
106
167
166

132
133
133
133
135

Appendix C. Lists of Instructions 255

Instructions Arranged by Name

Name Mnemonic

A
A

Characte ristics

MOVE WITH OFFSET
MOVE ZONES
MULTIPLY
MULTIPLY
MULTIPLY (extended)

MVO
MVZ
MR
M
MXR

5S
5S
f~R

RX
RR

SP R
A SP R

MULTIPLY (long)
MULTIPLY (long)
MULTI PL Y (long to extended)
MUL TIPL Y (long to extended)
MUL TIPL Y (short to long)

MUL TIPL V (short to long)
MUL TIPL V DECIMAL
MULTIPL V HALFWORD
OR
OR

OR (character)
OR (immediate)
PACK

I PURGE TL.B
READ DIRECT

RESET REFERENCE BIT
SET CLOCK
SET CLOCK COMPARATOR
SET CPU TIMER

I SET PREFIX

SET PROGRAM MASK
SET PSW KEY FROM ADDRESS
SET STORAGE KEY

I SET SYSTE:M MASK
SHIFT AND ROUND DECIMAL

SHI FT LEFT DOUBLE
SHI FT LEFT DOUBLE LOGICAL
SHIFT LEFT SINGLE
SHIFT LEFT SINGLE LOGICAL
SHI FT RIGHT DOUBLE

SHIFT RIGHT DOUBLE LOGICAL
SHIFT RIGHT SINGLE
SHIFT RIGHT SINGLE LOGICAL

I SIGNAL PFIOCESSOR
START I/O

I START I/O FAST RELEASE
STORE
STORE (long)
STORE (short)
STORE CHANNEL 10

XP SP U E

MDR AR FP
FP
XP
XP
FP

SP U E
MD RX A SP U E
MXDR AR SP U E
MXD AX A SP U E
MER RR SP U E

ME
MP
MH
OR
o

RX FP A SP U E
SS PO A SP 0
RX A
FIR C
RX C A

OC SS C A
01 SI C A
PACK SS A
PTLB S TR M
ROD SI DC M A

RRB S C TR M A1
SCK SCM A SP
SCKC S CK M A SP
SPT S CK M A SP
SPX S MP' M A SP

RH L
S PK M

RR M Al SP
SMA SP

SPM
SPKA
SSK
SSM
SRP SS C PO A 0 OF

SLDA RS C
SLDL RS
SLA RS C
SLL RS
SRDA RS C

SRDL RS
SRA RS C
SRL RS
SIGP RS C MP M
SIO SCM

SIOF
ST

S C
RX

M
A

SP
SP

SP

SP

STD RX FP A SP
STE RX FP A SP
STIDC SCM

IF

IF

STORE CHARACTER STC RX A
STORE CHARACTERS UNDER MASK STCM RS A
STORE CLOCK STCK S C A
STORE CLOCK COMPARATOR STCKC S CK M A SP
STORE CONTROL STCTL RS M A SP

256 System/370 Principles of Operation

$
$

$

$
$

$

$

$

SO

R
R
R

R
R
R
R
R

R
R
R
R

ST
ST

ST

ST
ST
ST

ST

ST

ST
ST
ST

ST
ST
ST
ST
ST

Code Page

F1
03
lC
5C
26

2C
6C
27
67
3C

7C
FC
4C
16
56

135
136
136
136
167

167
167
167
167
167

167
153
136
137
137

06 137
96 137
F2 137
B20D 107
85 107

B213 107
B204 108
B206 108
B208 109
B210 109

04 138
B20A 109
08 110
80 110
FO 153

8F
80
8B
89
8E

138
139
139
139
140

8C 140
8A 140
88 141
AE 110
9COO* 204

9COl * 204
50 141
60 169
70 168
B203 206

42 141
BE 141
B205 141
B207 111
B6 111

Instructions Arranged by Name

Name Mnemonic Characteristics Code Page

STORE CPU ADDRESS STAP S MP M A SP ST B212 112
STORE CPU to STIDP S M A SP ST B202 112
STORE CPU TIMER STPT S CK M A SP ST B209 113
STORE HALFWORD STH RX A ST 40 142
STORE MULTIPLE STM RS A ST 90 142

STORE PREFIX STPX S MP M A SP ST B211 113
STORE THEN AND SYSTEM MASK STNSM SI TR M A ST AC 113
STORE THEN OR SYSTEM MASK STOSM SI TR M A SP ST AD 114
SUBTRACT SR RR C IF R 1B 143
SUBTRACT S RX C A IF R 5B 143

SUBTRACT DECIMAL SP SS C PO A 0 OF ST FB 154
SUBTRACT HALFWORD SH RX C A IF R 4B 143
SUBTRACT LOGICAL SLR RR C R 1F 143
SUBTRACT LOGICAL SL RX C A R 5F 143
SUBTRACT NORMALIZED (extended) SXR RR C XP SP U E LS 37 169

SUBTRACT NORMALIZED (long) SDR RR C FP SP U E LS 2B 169
SUBTRACT NORMALIZED (long) SO RX C FP A SP U E LS 6B 169
SUBTRACT NORMALIZED (shortl SER RR C FP SP U E LS 3B 169
SUBTRACT NORMALIZED (short) SE RX C FP A SP U E LS 7B 169
SUBTRACT UN NORMALIZED (long) SWR RR C FP SP E LS 2F 170

SUBTRACT UN NORMALIZED (long) SW RX C FP A SP E LS 6F 170
SUBTRACT UNNORMALIZED (short! SUR RR C FP SP E LS 3F 169
SUBTRACT UNNORMALIZED (shortl SU RX C FP A SP E LS 7F 169
SUPERVISOR CALL SVC RR $ OA 144
TEST AND SET TS S C A $ ST 93 144

TEST CHANNEL TCH S C M $ 9FOOf 207
TEST 1/0 TIO S C M $ 9000* 208
TEST UNDER MASK TM SI C A 91 145
TRANSLATE TR SS A ST DC 145
TRANSLATE AND TEST TRT SS C A R DO 145

UNPACK UNPK SS A ST F3 146
WRITE DIRECT WRD SI DC M A $ 84 114
ZE~O AND ADD ZAP SS C PO A 0 OF ST F8 155

Appendix C. Lists of Instructions 257

Instructions A"anged by Mnemonic

Mnemonic

A
AD
ADR
AE
AER

AH
AL
ALR
AP
AR

AU
AUR
AW
AWR
AXR

BAL
BALR
Be
BCR
BCT

BCTR
BXH
BXLE
C
CD

CDR
CDS
CE
CER
CH

CL
CLC
CLCL
CLI
CLM

Name

ADD
ADD NORMALIZED (long)
ADD NORMALIZED (long)
ADD NORMALIZED (short)
ADD NORMALIZED (short)

ADD HALFWORD
ADD LOGICAL
ADD LOGICAL
ADD DECIMAL
ADD

ADD UNNORMALIZED (short)
ADD UNNORMALIZED (short)
ADD UNNORMALIZED (long)
ADD UNNORMALIZED (long)
ADD NORMALIZED (extended)

BRANCH AND LINK
BRANCH AND LINK
BRANCH ON CONDITION
BRANCH ON CONDITION
BRANCH ON COUNT

BRANCH ON COUNT

RX C
RX C FP
RR C FP
FIX C FP
I~R C FP

RX C
I~X C
RR C
SS C PD
RR C

RX C FP
RR C FP
RX C FP
f=!R C FP
RR C XP

RX
RR

RX
RR
RX

RR
BRANCH ON INDEX HIGH RS
BRANCH ON INDEX LOW OR EQUAL RS
COMPARE
COMPARE (long)

COMPARE (long)
COMPARE DOUBLE AND SWAP
COMPARE (short)
COMPARE (shard
COMPARE HALFWORD

COMPARE LOGICAL
COMPARE LOGICAL (character)
COMPARE LOGICAL LONG

F~X C
RX C FP

RR C FP
F~S C SW
RX C FP
RR C FP
RX C

RX C
SS C
RR C

COMPARE LOGICAL (immediate) SI C
COMPARE LOGICAL CHARACTERS RS C

UNDER MASK

CLR COMPARE LOGICAL FIR C
SCM CLRIO CLEAR I/O

Characteristics

A IF
A SP U E

SP U E
A SP U E

SP U E

A
A

A

IF

D DF
IF

A SP E

SP E
A SP E

SP E
SP U E

A
A SP

SP
A SP
A SP

SP
A

A
A
A SP
A
A

CP COMPARE DECIMAL SS C PD A D
CR COMPARE
CS

CVB
CVD
D

DD
DDR

DE
DER
DP
DR
ED

COMPARE AND SWAP

CONVERT TO BI NARY
CONVERT TO DECIMAL
DIVIDE
DI VIDE (long)
DIVIDE (long)

DIVIDE (short)
DIVIDE (short)
DIVIDE DECIMAL
DIVIDE
EDIT

258 System/370 Principles of Operation

FIR C
FlS C SW

FIX
FIX
FIX
RX
FIR

FP
FP

RX FP
RR FP
SS PD
RR

SS C PD

A SP

A
A

D IK

A SP IK
A SP U E FK

SP U E FK

A SP U E FK
SP U E FK

A SP D DK
SP IK

A D

LS
LS
LS
LS

LS
LS
LS
LS
LS

$

II

$

$

R

R

R
R

R

B R
B R
B

B R
B R
B R

Code

5A
6A
2A
7A
3A

4A
5E

1E
ST FA

1A

7E
3E
6E
2E

36

45
05
47
07
46

06
86
87
59
69

29

Page

117
160
160
160
160

117
120
120
149
117

162
162
162
162
160

121
121
121
121
122

122
122
123
123
163

R ST BB
163
124
163
163
125

R

79
39
49

55
D5
OF
95
BD

125
125
126
125
126

15 125
9D01 * 198
F9 149
19 123

R ST BA 123

R 4F

R

ST 4E
5D
6D
2D

7D
3D

ST FD
R 1D

ST DE

127
128
128
163
163

163
163
149
128
150

Instructions Arranged by Mnemonic

Mnemonic Name

EDMK EDIT AND MARK
EX EXECUTE
HDR
HDV
HER

HALVE (long)
HALT DEVICE
HALVE (short)

HALT 1/0

SS C
RX
RR
S C
RR

S C HIO
IC
ICM

INSERT CHARACTER RX
INSERT CHARACTERS UNDER RS C

MASK
IPK
ISK

INSERT PSW KEY S
INSERT STORAGE KEY RR

L
LA
LCDR
LCER
LCI~

LCTL
LD
LDR
LE
LER

LOAD
LOAD ADDRESS
LOAD COMPLEMENT (long)
LOAD COMPLEMENT (short)
LOAD COMPLEMENT

LOAD CONTROL
LOAD (long)
LOAD (long)
LOAD (short)
LOAD (short)

LH LOAD HALFWORD
LM LOAD MULTIPLE
LNDR LOAD NEGATIVE (long)
LNER LOAD NEGATIVE (short)
LNR LOAD NEGATIVE

LPDR
LPER
LPR
LPSW
LR

LOAD POSITIVE (long)
LOAD POSITIVE (short)
LOAD POSITIVE
LOAD PSW
LOAD

RX
RX
RR C
RR C
RR C

RS
RX
RR
RX
RR

RX
RS
RR C

RR C
RR C

RR C

RR C

RR C
S L
RR

LRA LOAD REAL ADDRESS RX C
LRDR LOAD ROUNDED (extended to RR

long)
LRER LOAD ROUNDED (long to short) RR
LTDR LOAD AND TEST (long) RR C
L TER LOAD AND TEST (short) RR C

LTR
M
MC
MD
MDR

ME
MER"

MH
MP
MR

LOAD AND TEST
MULTIPLY
MONITOR CALL
MULTIPLY (long)
MULTIPLY (long)

MUL TIPL Y (short to Ibng)
MULTIPLY (short to long)
MULTIPLY HALFWORD
MULTIPLY DECIMAL
MULTIPLY

MVC MOVE (character)
MVCL MOVE LONG
MVI MOVE (immediate)
MVN MOVE NUMERICS
MVO MOVE WITH OFFSET

RR C
RX
SI
RX
RR

RX
RR
RX
SS
RR

SS
RR C
SI

SS
SS

PO

FP
M

FP

M

PK M

FP
FP

FP
FP
FP
FP

FP
FP

FP
FP

M

M

M

TR M
XP

XP
FP
FP

FP
FP

FP
FP

PO

Characteristics

A
A

A
A

A
A

A

A
A

A

A

A

A

A
A

A
A
A
A
A

SP
SP

SP

SP
SP

SP
SP
SP
SP
SP

SP
SP

SP
SP

SP

SP

SP
SP
SP

SP
SP
SP
SP

SP
SP

SP
SP

SP

o

U

U

U
U

U
U

o

IF

IF

E

E

E
E

E
E

EX

$

$

$

MO

II

R

R
R

R
R

R
R

R

R
R

R

R

R

R

R
R

R

R

R

ST OF
44

152
129

24 164
9EOl * 199
34 164

9EOO'" 202
43 130
BF 130

B20B 104
09 105

58
41
23
33
13

B7
68
28
78
38

48
98
21
31
11

20
30
10
82
18

Bl
25

35
22
32

12
5C
AF
6C
2C

7C
3C
4C

ST FC
lC

ST 02
ST OE
ST 92
ST 01
ST Fl

130
131
166
165
131

105
165
165
165
165

131
132
166
166
132

166
166
132
105
130

106
167

166
165
165

131
136
132
167
167

167
167
136
153
136

133
133
133
135
135

Appendix C. Lists of Instructions 259

Instructions Arranged by Mnemonic

Mnemonic

MVZ
MXD
MXDR
MXR
N

NC
NI
NR
o
OC

01
OR
PACK
PTLB
RDD

RRB
S

SCK
SCKC
SD

SDR
SE
SER
SH
SIGP

SIO
SIOF
SL
SLA
SLDA

SLDL
SLL
SLR
SP
SPKA

SPM
SPT
SPX
SR
SRA

SRDA
SRDL
SRL
SRP
SSK

SSM
ST
STAP
STC
STCK

Name

MOVE ZONES
MULTIPL Y (long to extended)
MUL TIPL Y (long to extended)
MULTIPLY (extended)
AND

AND (character)
AND (immediate)
AND
OR
OR (character)

OR (immediate)
OR
PACK
PURGE TLB
READ DIRECT

RESET REFERENCE BIT
SUBTRACT
SET CLOCK
SET CLOCK COMPARATOR
SUBTRACT NORMALIZED (long)

SUBTRACT NORMALIZED (long)
SUBTRACT NORMALIZED (short)
SUBTRACT NORMALIZED (short)
SUBTRACT HALFWORD
SIGNAL PROCESSOR

START 1/0
START I/O FAST RELEASE
SUBTRACT LOGICAL
SHIFT LEFT SINGLE
SHI FT LEFT DOUBLE

SHI FT LEFT DOUBLE LOGICAL
SHIFT LEFT SINGLE LOGICAL
SUBTRACT LOGICAL
SUBTRACT DECIMAL
SET PSW KEY FROM ADDRESS

SET PROGRAM MASK
SET CPU TIMER
SET PREFIX
SUBTRACT
SHIFT RIGHT SINGLE

SHIFT RIGHT DOUBLE
SHIFT RIGHT DOUBLE LOGICAL
SHIFT RIGHT SINGLE LOGICAL
SHIFT AND ROUND DECIMAL
SET STORAGE KEY

SET SYSTEM MASK
STORE
STORE CPU ADDRESS
STORE CHARACTER
STORE CLOCK

260 System/370 Principles of Operation

SS
RX XP
RR XP
RR XP
RX C

5S C

SI C
RR C
RX C
SS C

51 C
I~R C

TR M

Characteristics

A
A SP U E

SP U E

A

A
A

A
A

A

A

SP U E

5S
5
51 DC M A

S C TR M Al

$
$

R

R
R

R

BX C A IF R
5 C M A SP
S CK M A SP
RX C FP A SP U E LS

RR C FP SP U E LS
BX C FP A SP U E LS
BR C FP SP U E LS
BX C A
F~S C MP M

s C
S C
RX C
RS C

RS C

RS
RS
RR C

M
M

A

SS C PD A

S PK M

RR L

SP

SP

S CK M A SP
S
RR C

RS C

MP M A SP

RS C SP
RS SP
RS

IF

IF
IF

D DF

IF

S5 C PD A D DF
RR M A1 SP

SMA SP
RX A
S MP M A SP
RX A
SeA

$
$

$

$

SO

R
R

R
R
R

R
R
R

R
R

R
R
R

ST

ST
ST

ST

ST

ST

ST

ST

ST

ST
ST
ST
ST

Code

D3
67
27
26
54

D4
94
14
56
D6

96
16
F2

Page

136
167
167
167
120

120
120
120
137
137

137
137
137

B200 107
85 107

B213 107
5B 143
B204 108
B206 108
6B 169

2B 169
7B 169
3B 169
4B
AE

143
110

9COO* 204
9COl * 204
5F 143
8B 139
8F 138

8D
89

139
139

1 F 143
FB 154
B20A 109

04 138
B208 109
B210 109
lB
8A

8E
8C
88
FO
08

143
140

140
140
141
153
110

80 110
50 141
B212 112
42 141
B205 141

Instructions Arranged by Mnemonic

Mnemonic Name Characteristics Code Page

STCKC STORE CLOCK COMPARATOR S CK M A SP ST B207 111
STCM STORE CHARACTERS UNDER MASK RS A ST BE 141
STCTL STORE CONTROL RS M A SP ST B6 111
STD STORE (long) RX FP A SP ST 60 169
STE STORE (short) RX FP A SP ST 70 168

STH STORE HALFWORD RX A ST 40 142
STIDC STORE CHANNEL ID S C M $ B203 206
STIDP STORE CPU ID S M A SP ST B202 112
STM STORE MULTIPLE RS A ST 90 142
STNSM STORE THEN AND SYSTEM MASK SI TR M A ST AC 113

STOSM STORE THEN OR SYSTEM MASK SI TR M A SP ST AD 114
STPT STORE CPU TIMER S CK M A SP ST B209 113
STPX STORE PREFIX S MP M A SP ST B211 113
SU SUBTRACT UN NORMALIZED (short) RX C FP A SP E LS 7F 169
SUR SUBTRACT UNNORMALIZED (short) RR C FP SP E LS 3F 169

SVC SUPERVISOR CALL RR $ OA 144
SW SUBTRACT UNNORMALIZED (long) RX C FP A SP E LS 6F 170
SWR SUBTRACT UNNORMALIZED (long) RR C FP SP E LS 2F 170
SXR SUBTRACT NORMALIZED (extended) RR C XP SP U E LS 37 169
TCH TEST CHANNEL S C M $ 9FOOi 207

TIO TEST I/O S C M $ 9DOO* 208
TM TEST UNDER MASK SI C A 91 145
TR TRANSLATE SS A ST DC 145
TRT TRANSLATE AND TEST SS C A R DD 145
TS TEST AND SET S C A $ ST 93 144

UNPK UNPACK SS A ST F3 146
WRD WRITE DIRECT SI DC M A $ 84 114
X EXCLUSIVE OR RX C A R 57 129
XC EXCLUSIVE OR (character) SS C A ST D7 129
XI EXCLUSIVE OR (immediate) SI C A ST 97 129

XR EXCLUSIVE OR RR C R 17 128
ZAP ZERO AND ADD SS C PD A D DF ST F8 155

DIAGNOSE M DM 83 103

Appendix C. Lists of Instructions 261

Instructions Arranged by Operation Code

Code Name ~on ic Characteristics

04 SET PROGRAM MASK
05 BRANCH AND LINK
06 BRANCH ON COUNT
07 BRANCH ON CONDITION
08 SET STORAGE KEY

09 INSERT STORAGE KEY
OA SUPERVISOR CALL
OE MOVE LONG
OF COMPARE LOGICAL LONG
10 LOAD POSITIVE

11 LOAD NEGATIVE
12 LOAD AND TEST
13 LOAD COMPLEMENT
14 AND
15 COMPARE LOGICAL

16 OR
17 EXCLUSIVE OR
18 LOAD
19 COMPARE
1A ADD

1B SUBTRACT
1C MULTIPLY
1D DIVIDE
1 E ADD LOGICAL
1 F SUBTRACT LOGICAL

20 LOA,D POSITIVE (long)
21 LOA,D NEGATIVE (long)
22 LOA,D AND TEST (long)
23 LOAD COMPLEMENT (long)
24 HAL.VE (long)

25 LOAD ROUNDED (extended to long)
26 MUl.TIPL Y (extended)
27 MUl.TIPL Y (long to extended)
28 LOAD (long)
29 COMPARE (long)

2A ADD NORMALIZED (long)
2B SUBTRACT NORMALIZED (long)
2C MUL.TIPL Y (long)
2D DIVIDE (long)
2E ADD UNNORMALIZED (long)

SPM RR L
BAL.R RR
BCTR RR
BCR RR
SSK RR

ISK RR
SVC RR
MVGL RR C
CLCL RR C
LPR RR C

LNR
LTR
LCR
NR
CLR

OR
XR
LR
CR
AR

SR
MR
DR
ALR
SLR

RR C
RR C
RR C
RR C
RR C

RR C
RR C
RR
RR C
RR C

RR C
RR
RR
RR C
RR C

LPDR RR C FP
LNDR RR C FP
LTDR RR C FP
LCDR RR C FP
HDR RR FP

LRDR RR XP
MXR RR XP
MXDR RR XP
LDR RR FP
CDR RR C FP

ADR
SDR
MDR
DDR
AWR

RR C FP
RR C FP
RR FP
RR FP
RR C FP

2F SUBTRACT UN NORMALIZED (long) SWR RR C FP
30 LOAD POSITIVE (short) LPEB RR C FP
31 LOAD NEGATIVE {shord LNER RR C FP
32 LOAD AND TEST {shord L TER RR C FP
33 LOAD COMPLEMENT {shord LCER RR C FP

34 HALVE {short} HER RR FP
35 LOAD ROUNDED (long to shord LRER RR XP
36 ADD NORMALIZED (extended) AXR RR C XP
37 SUBTRACT NORMALIZED (extended) SXR RR C XP
38 LOAD (short) LER RR FP

262 System/370 Principles of Operation

A SP
A SP

SP
SP

SP
SP
SP
SP
SP U

IF

IF

IF

IF

SP E
SP U E
SP U E
SP
SP

IK

$

" "

SP U E LS
SP U E LS
SP U E
SP U E FK
SP E LS

SP E
SP
SP
SP
SP

SP U
SP E
SP U E
SP U E
SP

LS

LS
'LS

B R
B R

Page

138
121
122
121
110

R 105
144

R ST 133
R 126
R 132

R
R
R
R

R
R
R

R

R
R
R
R
R

132
131
131
120
125

137
128
130
123
117

143
136
128
120
143

166
166
165
166
164

167
167
167
165
163

160
169
167
163
162

170
166
166
165
165

164
166
160
169
165

Instructions Arranged by Operation Code

Code

39
3A
3B
3C
3D

3E
3F
40
41
42

43
44
45
46
47

48
49
4A
4B
4C

4E
4F
50
54
55

56
57
58
59
5A

5B
5C
50
5E
5F

60
67
68
69
6A

6B
6C
60
6E
6F

70
78
79
7A
7B

Name

COMPARE (short)
ADD NORMALIZED (short)
SUBTRACT NORMALIZED (short)
MUL TIPL Y (short to long)
01 VI DE (short)

ADD UNNORMALIZED (short)
SUBTRACT UNNORMALIZED (short)
STORE HALFWORD
LOAD ADDRESS
STORE CHARACTER

INSERT CHARACTER
EXECUTE
BRANCH AND LINK
BRANCH ON COUNT
BRANCH ON CONDITION

LOAD HALFWORD
COMPARE HALFWORD
ADD HALFWORD
SUBTRACT HALFWORD
MULTipLY HALFWORD

CONVERT TO DECIMAL
CONVERT TO BI NARY
STORE
AND
COMPARE LOGICAL

OR
EXCLUSIVE OR
LOAD
COMPARE
ADD

SUBTRACT
MULTIPLY
DIVIDE
ADD LOGICAL
SUBTRACT LOGICAL

STOR E (long)
MULTIPLY (long to extended)
LOAD (long)
COMPARE (long)
ADD NORMALIZED (long)

SUBTRACT NORMALIZED (long)
MULTIPLY (long)
DIVIDE (long)
ADD UNNORMALIZED (long)
SUBTRACT UNNORMALIZED (long)

STOR E (short)
LOAD (short)
COMPARE (short)
ADD NORMALIZED (short)
SUBTRACT NORMALIZED (short)

Mnemonic

CER
AER
SER
MER
DER

AUR
SUR
STH
LA
STC

IC
EX
BAL
BCT
BC

LH
CH
AH
SH
MH

CVD
CVB
ST
N
CL

o
X
L
C
A

S
M
o
AL
SL

STD
MXD
LD
CD
AD

SO
MD
DO
AW
SW

STE
LE
CE
AE
SE

Characteristics

RR C FP SP
RR C FP SP U E LS
RR C FP SP U E LS
RR FP SP U E
RR FP SP U E FK

RR C FP SP
RR C FP SP
RX A
RX
RX

RX
RX
RX
RX
RX

RX
RX C
RX C
RX C
RX

RX
RX
RX
RX C
RX C

RX C
RX C
RX
RX C
RX C

RX C
RX
RX
RX C
RX C

A

A
A SP

A
A
A
A
A

A
A
A
A
A

A
A
A
A
A

A
A SP
A SP
A
A

RX FP A SP

o

E
E

IF
IF

IF

IF

RX XP A SP U E
RX FP A SP
RX C FP A SP
RX C FP A SP U E

IK

IK

LS
LS

EX

LS

RX C FP A SP U E LS
RX FP A SP U E
RX FP A SP U E FK
RX C FP A SP E LS
RX C FP A SP E LS

RX FP A SP
RX FP A SP
RX C FP A SP
RX C FP A SP U E
RX C FP A SP U E

LS
LS

Page

163
160
169
167
163

162
169

ST 142
R 131

R

B R
B R
B

R

R
R
R

R

R

R
R
R

R

R
R
R
R
R

ST

ST

ST

ST

ST

141

130
129
121
122
121

131
125
117
143
136

128
127
141
120
125

137
129
130
123
117

143
136
128
120
143

169
167
165
163
160

169
167
163
162
170

168
165
163
160
169

Appendix C. Lists of Instructions 263

Instructions Arranged by Operation Code

Code Name Mnemonic ------------------------- ------
IVIUL TIPL Y (short to long)
DIVIDE (short)

Characteristics

RX FP A SP U E
RX FP A SP U E FK
RX C FP A SP E LS
RX C FP A SP E LS

7C
70
7E
7F
80

ADD UNNORMALIZED (short)
SU8TRACT UNNORMALIZED (short)
SET SYSTEM MASK

ME
DE
AU
SU
SSM SMA SP SO

Page

167
163
162
169
110

82
83
84
85
86

LOAD PSW
DIAGNOSE
WRITE DIRECT
READ DIRECT
8IRANCH ON INDEX HIGH

LPSW S L M A SP
M OM

WRD SI DC M A
ROD SI DC M A
8XH RS

87
88
89
8A
88

81=(ANCH ON INDEX LOW OR EQUAL 8XLE RS
SHIFT RIGHT SINGLE LOGICAL SRL RS
SHIFT LEFT SINGLE LOGICAL SLL RS
SHIFT RIGHT SINGLE SRA RS C
SHIFT LEFT SINGLE SLA RS C

8C
80
8E
8F
90

91
92
93
94
95

SHIFT RIGHT DOU8LE LOGICAL
SHIFT LEFT DOU8LE LOGICAL
SHI FT RIGHT DOU8LE
SHIFT LEFT DOU8LE
STORE MULTIPLE

TEST UNDER MASK
MOVE (immediate)
TEST AND SET
AND (immediate)
COMPARE LOGICAL (immediate)

96 OR (immediate)
97 EXCLUSIVE OR (immediate)
98 LOAD MULTI PLE
9COO* START I/O
9C01* START I/O FAST RELEASE

9000* TEST I/O
9001 * CLEAR I/O
9EOO* HALT I/O
9EOl * HALT DEVICE
9FOO4= TEST CHANNEL

AC

I AD
AE
AF
81

STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK
SIGNAL PROCESSOR
MONITOR CALL
LOAD REAL ADDRESS

SFlDL RS
SLDL RS
SRDA RS C
SLDA RS C
STM RS

TM
MVI
T8
NI
CLI

01
XI
LM
SIO
SIOF

SI C
SI
S C
SI C
SI C

SI C
SI C
RS
S C
S C

TIO S C
CLRIO S C
HIO S C
HDV S C
TCH S C

STNSM SI
STOSM SI
SIGP RS C
MC SI
LHA RX C

STIDP S

M
M

M
M
M
M
M

A

A
A
A
A
A

A
A
A

TR M A

SP
SP
SP
SP

TR M A SP
MP M

SP

M A SP 8202
8203
8204
8205
8206

STORE CPU ID
STORE CHANNEL 10
SET CLOCK

STIDC S C M
SCK S C M A SP

STORE CLOCK STCK S C A
SET CLOCK COMPARATOR SCKC S CK M A SP

8207 STORE CLOCK COMPARATOR STCKC S CK M A SP
8208 SET CPU TIMER SPT S CK M A SP
8209 STORE CPU TIMER STPT S CK M A SP
820A SET PSW KEY FROM ADDRESS SPKA S PK M
8208 INSERT PSW KEY IPK S PK M

264 SysH:m/370 Principles of Operation

IF

IF

$

$
$

$

$
$

$
$
$
$
$

$
MO

$

$

8 R

8 R
R

.R
R
R

105
103
114

ST 107
122

123
141
139
139
139

R 140
R 139
R 140
R 138

ST 142

145
ST 133
ST 144
ST 120

125

ST 137
ST 129

R 132
204
204

208
198
202
199
207

ST 113
ST 114

R 110
132

R 106

ST 112
206
108

ST 141
108

ST 111
109

ST 113
109

R 104

Instructions Arranged by Operation Code

Code Name Mnemonic Characteristics Page

B20D PURGE TLB PTLB S TR M 107
B210 SET PREFIX SPX S MP M A SP 109
B211 STORE PREFIX STPX S MP M A SP ST 113
B212 STORE CPU ADDRESS STAP S MP M A SP ST 112
8213 RESET REFERENCE BIT RRB S C TR M A1 107

B6 STORE CONTROL STCTL RS M A SP ST 111
B7 LOAD CONTROL LCTL RS M A SP 105

BA COMPARE AND SWAP C5 RS C SW A SP R ST 123

BB COMPARE DOUBLE AND SWAP CDS RS C SW A SP R ST 124

BD COMPARE LOGICAL CHAR- CLM RS C A 126
ACTERS UNDER MASK

BE STORE CHARACTERS UNDER STCM RS A ST 141
MASK

BF INSERT CHARACTERS UNDER ICM RS C A R 130
MASK

D1 MOVE NUMERICS MVN SS A ST 135
D2 MOVE (character) MVC SS A ST 133
D3 MOVE ZONES MVZ SS A ST 136

D4 AND (character) NC SS C A ST 120
D5 COMPARE LOGICAL (character) CLC SS C A 125
D6 OR (character) OC SS C A ST 137
D7 EXCLUSIVE OR (character) XC SS C A ST 129
DC TRANSLATE TR SS A ST 145

DD TRANSLATE AND TEST TRT SS C A R 145
DE EDIT ED SS C PD A D ST 150
DF EDIT AND MARK EDMK SS C PD A D R ST 152
FO SHIFT AND ROUND DECIMAL SRP S5 C PD A D DF ST 153
F1 MOVE WITH OFFSET MVO SS A ST 135

F2 PACK PACK SS A ST 137
F3 UNPACK UNPK SS A ST 146
Fa ZERO AND ADD ZAP SS C PD A D DF ST 155
F9 COMPARE DECIMAL CP SS C PD A D 149
FA ADD DECIMAL AP SS C PD A D DF ST 149

FB SUBTRACT DECIMAL SP SS C PD A D DF ST 154
FC MUL TIPLY DECIMAL MP SS PD A SP D ST 153
FD DIVIDE DECIMAL DP SS PD A SP D DK ST 149

Appendix C. Lists of Instructions 265

Instructions Arranged by Feature
Stand~rrd Instruction Set

Name Mnemonic Characteristics

ADD
ADD
ADD HAL.FWORD
ADD LOGICAL
ADD LOGICAL

AND
AND
AND (character)
AND (immediate)
BRANCH AND LINK.

BRANCH AND LINK
BRANCH ON CONDITION
BRANCH ON CONDITION
BRANCH ON COUNT
BRANCH ON COUNT

BRANCH ON INDEX HIGH
BRANCH ON INDEX LOW OR EQUAL
CLEAR I/O
COMPARE
COMPARE

COMPARE HALFWORD
COMPARE LOGICAL
COMPARE LOGICAL
COMPARE LOGICAL (character)
COMPARE LOGICAL (immediate)

COMPARE LOGICAL CHARACTERS
UNDER MASK

COMPARE LOGICAL LONG
CONVERT TO BINARY
CONVERT TO DECIMAL
DIAGNOSE:

DIVIDE
DIVIDE
EXCLUSIVE OR
EXCLUSIVE OR
EXCLUSIVE OR (character)

EXCLUSIVIE OR (immediate)
EXECUTE
HALT DEVICE
HALT I/O
INSERT CHARACTER

AR
A
AH
ALR
AL

RR C
RX C
RX C
RR C
RX C

NR RR C
N RX C
NC 5S C
NI 81 C
BALR RR

BAL RX
BCR RR
BC RX
BCTR RR
BCT I~X

BXH RS
BXLE RS
CLRIO SCM
CR HR C

A
A

A

A
A
A

C nx C A

CH
CLR
CL
CLC
CLI

CLM

RX C
RR C
RX C
SS C
SI C

RS C

A

A
A
A

A

CLCL RR C A SP
CVB RX A 0
CVD RX A

DR
o
XR
X
XC

XI
EX
HDV
HIO
IC

M OM

SP RR
RX
RR C
RX C
S8 C

A SP

A
A

SII C A
RX A SP
SCM
SCM
RX A

INSERT CHARACTERS UNDER MASK ICM RS C A
INSERT STORAGE KEY ISK RR M Al SP
LOAD LR RR
LOAD L RX A
LOAD ADDRESS

LOAD AND TEST
LOAD COMPLEMENT
LOAD CONTROL
LOAD HALFWORD
LOAD MULTIPLE

266 System/370 Principles of Operation

LA RX

LTR RR C
LCR RR C
LCTL RS M A SP
LH RX A
LM RS A

IF
IF
IF

IF

IK

IK
IK

R
R
R
R
R

R
R

B R

B R
$1 B

$

II

EX
$
$

B
B R
B R

B R
B R

R
R

R
R
R
R

R

R
R
R
R
R

R
R

R
R

ST
ST

ST

ST

ST

Code Page

1A
5A
4A
1E
5E

14
54
04
94
05

45
07
47
06
46

117
117
117
120
120

120
120
120
120
121

121
121
121
122
122

86 122
87 123
9001* 198
19 123
59 123

49
15
55
05
95

BD

OF
4F
4E
83

10
50
17
57
07

125
125
125
125
125

126

126
127
128
103

128
128
128
129
129

97 129
44 129
9E01* 199
9EOO* 164
43 130

BF
09
18
58
41

12
13
B7
48
98

130
105
130
130
131

131
131
105
131
132

Instructions Arranged by Feature
Standard Instruction Set (continued)

Name Mnemonic Characteristics

LNR RR C
LPR RR C IF

LOAD NEGATIVE
LOAD POSITIVE
LOAD psw
MONITOR CALL
MOVE (character)

LPSW S L M A SP $
MC SI SP MO

MOVE (immediate)
MOVE LONG
MOVE NUMERICS
MOVE WITH OFFSET
MOVE ZONES

MULTIPLY
MULTIPLY
MULTIPLY HALFWORD
OR
OR

on (character)
OB (immediate)
PACK
SET CLOCK
SET PROGRAM MASK

MVC SS A

MVI SI
MVCL RR C
MVN SS
MVO SS
MVZ SS

MR
M
MH
OR
o

RR
RX
RX
RR C
RX C

A
A SP
A
A
A

SP
A SP
A

A

OC SS C A
01 SI C A
PACK SS A
SCK SCM A SP
SPM RR L

SSK
SSM

RR
S

M A1 SP
M A SP

SET STORAGE KEY
SET SYSTEM MASK
SHIFT LEFT DOUBLE SLDA RS C SP IF
SHIFT LEFT DOUBLE LOGICAL
SHI FT LEFT SINGLE

SHIFT LEFT SINGLE LOGICAL
SHI FT RIGHT DOUBLE
SHI FT RIGHT DOUBLE LOGICAL
SHIFT RIGHT SINGLE
SHIFT RIGHT SINGLE LOGICAL

START I/O
START I/O FAST RELEASE
STORE
STORE CHANNEL 10
STORE CHARACTER

SLDL RS
SLA RS C

SLL RS
SRDA RS C
SRDL RS
SRA RS C
SRL RS

SIO SCM
SIOF SCM
ST RX A
STIDC SCM
STC RX A

STORE CHARACTERS UNDER MASK STCM RS A
STORE CLOCK STCK S C A

SP

SP
SP

STOR E CONTROL STCTL RS M A SP
STORE CPU ID STIDP SMA SP
STORE HALFWORD STH RX A

STORE MULTIPLE
SUBTRACT
SUBTRACT
SUBTRACT HALFWORD
SUBTRACT LOGICAL

SUBTRACT LOGICAL
SUPERVISOR CALL
TEST AND SET
TEST CHANNEL
TEST I/O

TEST UNDER MASK
TRANSLATE
TRANSLATE AND TEST
UNPACK

STM
SR
S
SH
SLR

RS
RR C
RX C
RX C
RR C

RX C
RR

A

A
A

A SL
SVC
TS
TCH
TIO

S C A
SCM
SCM

TM SI C
TR SS
TRT SS C
UNPK SS

A
A
A
A

IF

IF
IF
IF

$
$

$

$

SO

R
R

ST

ST
R ST

R
R
R
R
R

R
R
R

R
R
R
R
R

R
R
R
R

R

R

ST
ST
ST

ST
ST
ST

ST

ST

ST
ST
ST
ST
ST

ST

ST

ST

ST

Code Page

11
10
82
AF
02

92
OE
01
F1
03

1C
5C
4C
16
56

132
132
105
132
133

133
133
135
135
136

136
136
136
137
137

06 137
96 137
F2 137
B204 108
04 138

08
80
8F
80
8B

89
8E
8C
8A
88

110
110
138
139
139

139
140
140
140
141

9COO* 204
9C01 * 204
50 141
B203 206
42 141

BE 141
B205 141
B6 111
B202 112
40 142

90
1B
5B
4B
1F

SF

142
143
143
143
143

143
OA 144
93 144
9FOOf 207
9000* 208

91
DC
DO
F3

145
145
145
146

Appendix C. Lists of Instructions 267

Instructions Arranged by Feature

Decim,al .. Feature Instructions

Name Mnemonic Characteristics Code Page

ADD DECIMAL AP 55 C PO A 0 OF 5T FA 149
COMPABE DECIMAL CP 55 C PO A 0 F9 149
DIVIDE DECIMAL DP 55 PO A 5P 0 OK 5T FD 149
EDIT ED 55 C PO A 0 5T DE 150
EDIT A 1\1 0 MARK EDMK 55 C PO A 0 R 5T OF 152

MUL TIPIL Y DECIMAL MP 5S PO A 5P 0 ST FC 153
SHIFT AND ROUND DECIMAL 5RP SS C PO A 0 OF ST FO 153
SUBTRACT DECIMAL 5P 55 C PO A 0 OF ST FB 154
ZERO AND ADD ZAP SS C PO A 0 OF ST F8 155

268 Syst1em/370 Principles of Operation

Instructions Arranged by Feature

Floating-Point Feature Instructions

Name

ADD NORMALIZED (long)
ADD NORMALIZED (long)
ADD NORMALIZED (short)
ADD NORMALIZED (short)
ADD UNNORMALIZED (long)

ADD UNNORMALIZED (long)
ADD UN NORMALIZED (short)
ADD UNNORMALIZED (short)
COMPARE (long)
COMPARE (long)

COMPAR E (short)
COMPARE (short)
DIVIDE (long)
DIVIDE (long)
DIVIDE (short)

DI VI DE (short)
HALVE (long)
HALVE (short)
LOAD (long)
LOAD (long)

·LOAD (short)
LOAD (short)
LOAD AND TEST (long)
LOAD AND TEST (short)
LOAD COMPLEMENT (long)

LOAD COMPLEMENT (short)
LOAD NEGATIVE (long)
LOAD NEGATIVE (short)
LOAD POSITIVE (long)
LOAD POSITIVE (short)

MULTIPLY (long)
MULTIPLY (long)
MULTIPLY (short to long)
MULTIPLY (short to long)
STORE (long)

STORE (short)
SUBTRACT NORMALIZED (long)
SUBTRACT NORMALIZED (long)

SUBTRACT NORMALIZED (short)
SUBTRACT NORMALIZED (shord

SUBTRACT UNNORMALIZED (long)
SUBTRACT UNNORMALIZED (long)
SUBTRACT UNNORMALIZED (short)
SUBTRACT UN NORMALIZED (short)

Mnemonic

ADR
AD
AER
AE
AWR

AW
AUR
AU
CDR
CD

CER
CE
DDR
DD
DER

DE
HDR
HER
LDR
LD

RR C
RX C
RR C
RX C
RR C

RX C
RR C
RX C
RR C
RX C

RR C
RX C
RR
RX
RR

RX
RR
RR
RR
RX

LER RR
LE RX
LTDR RR C
LTER RR C
LCD.R RR C

LCER RR C
LNDR RR C
LNER RR C
LPDR RR C
LPER RR C

MDR
MD
MER
ME
STD

STE
SDR
SD
SER
SE

SWR
SW
SUR
SU

RR
RX
RR
RX
RX

RX
RR C
RX C
RR C
RX C

RR C
RX C
RR C
RX C

FP
FP A
FP
FP A
FP

FP A
FP
FP A
FP
FP A

FP
FP A
FP
FP A
FP

FP A
FP
FP
FP
FP A

FP
FP A
FP
FP
FP

FP
FP
FP
FP
FP

FP
FP A
FP
FP A
FP A

FP A
FP
FP A
FP
FP A

FP
FP A
FP
FP A

Characteristics

SP
SP
SP
SP
SP

SP

~P
SP
SP
SP

SP
SP
SP
SP
SP

SP
SP
SP
SP
SP

SP
SP
SP
SP
SP

SP
SP
SP
SP
SP

SP
SP
SP
SP
SP

SP
SP
SP
SP
SP

SP
SP
SP
SP

U
U
U
U

U
U
U

U
U
U

U
U
U
U

U
U
U
U

E
E
E
E
E

E

E
E

E
E
E

E

E

E
E
E

E
E

E
E

E
E
E
E

FK
FK
FK

FK

LS
LS
LS
LS
LS

LS
LS
LS

Code Page

2A 160
6A 160
3A 160
7A 160
2E 162

6E
3E
7E
29
69

162
162
162
163
163

39 163
79 163
2D 163
6D 163
3D 163

7D 163
24 164
34 164
28 165
68 165

38
78
22
32
23

33
21
31
20
30

2C
6C
3C

7C

ST 60

ST 70

165
165
165
165
166

165
166
166
166
166

167
167
167
167
169

LS 2B
168
169
169
169
169

LS 6B
LS 3B
LS 7B

LS
LS
LS
LS

2F
6F
3F
7F

170
170
169
169

Appendix C. Lists of Instructions 269

Instructions Arranged by Feature
CPU Tlmer and Clock Comparator Feature Instructions

Name Mnemonic Characteristics Code Page

SET CLOCK COMPARATOR SCKC S CK M A SP B206 108
SET CPU TIMER SPT S CK M A SP B208 109
STORE CLOCK COMPARATOR STCKC S CK M A SP ST B207 111
STORE CPU TIMER STPT S CK M A SP ST B209 113

Direct-C'::ontrol Feature Instructions
Name Mnemonic Characteristics Code Page

READ DIRECT ROD 51 DC M A $ ST 85 107
WRITE DII={ECT WRD SI DC M A $ 84 114

Extend~~d-Precision Floating-Point Feature Instructions
Name Mnemonic Characteristics Code Page

ADD NORMALIZED (extended) AXR FIR C XP SP U E LS 36 160
LOAD ROUNDED (extended to long) LRDR RR XP SP E 25 167
LOAD ROUNDED (long to short) LRER RR XP SP E 35 166
MUL TIPL Y (extended) MXR RR XP SP U E 26 167
MUL TIPL Y (long to extended) MXDR RR XP SP U E 27 167
MUL TIPL Y (long to extended) MXD RX XP A SP U E 67 167
SUBTRACT NORMALIZED (extended) SXR RR C XP SP U E LS 37 169

Translatlon-Feature Instructions
Name Mnemonic Characteristics Code Page

LOAD REAL ADDRESS LRA RX C TR M A2 R B1 106
PURGE TLl3 PTLB S TR M $ B20D 107
RESET REFERENCE BIT RRB S C TR M A1 B213 107
STORE THEN AND SYSTEM MASK STNSM SI TR M A ST AC 113
STORE THEN OR SYSTEM MASK STOSM SI TR M A SP ST AD 114

Multiprocessing-Feature Instructions

Name Mnemonic Characteristics Code Page

SET PREFIX SPX S MP M A SP B210 109

SIGNAL PROCESSOR SIGP RS C MP M R AE 110

STORE CPU ADDRESS STAP S MP M A SP ST B212 112

STORE PREFIX STPX S MP M A SP ST B211 113

Conditim'lal-Swapping Feature Instructions
Name Mnemonic Characteristics Code Page

COMPARE AND SWAP cs RS C SW A SP R ST BA 123
COMPARE DOUBLE AND SWAP CDS RS C SW A SP R ST BB 124

PSW Key-Handling Feature Instructions
Name Mnemonic Characteristics Code Page

INSERT PSW KEY IPK S PK M R B20B 105
SET PSW KEY FROM ADDRESS SPKA S PK M B20A 109

270 System/370 Principles of Operation

Program Status Word

o

Channel Masks
0-5

PSW Format in BC Mode

100000000

40

32 40

PSW Format in EC Mode

Appendix D. Formats

Interruption Code

16 31

I nstruction Address

63

000 0 0 0 0 0

24 31

I nstruction Address

63

Appendix D. Formats 271

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Assignment of Control Register Fields

Word Bits Name of field

0 0 Block-Multiplexing Control
0 1 SSM-Suppression Control
0 2 TOO Clock Sync Control
0 8-9 Page-Size Control
0 10 Unassigned, must be zeTO

0 11-12 Segment-Size Control
0 16 Malfunction-Alert Mask
0 17 Emergency-Signal Mask
0 18 External-Call Mask
0 19 TOD-Clock-Sync-Check Mask
0 20 Clock-Comparator Mask
0 21 CPU-Timer Mask
0 24 Interval-Timer Mask
0 25 Interrupt-Key Mask
0 26 External-Signal Mask

0-7 Segment-Table Length
8-25 Segment-Table Address

2 0-31 Channel Masks

8 16-31 Monitor Masks

9 0 Successful-Branching Eve!nt Mask
9 1 Instruction-Fetching-Event Mask
9 2 Storage-Alteration~Event Mask
9 3 GR-Alteration-Event Mask
9 16-31 PER1 General Register Masks

10 8-31 PER Starting Address

11 8-31 PER Ending Address

14 0 Check-Stop Control
14 Synchronous-MCEL 2 Control
14 2 I/O-Extended-Logout Control
14 4 Recovery-Report Mask
14 5 Degradation-Report Mask
14 6 External-Damage-Report Mask
14 7 Warning Mask
14 8 Asynchronous-MCEL Control
14 9 Asynchronous-fixed-Log Control

15 8-28 MCEL Address

Explanation:

The fields not listed are unassigned.

Associated With

Block-Multiplexing
SSM Suppression
Multiprocessing
Dynamic Addr. Translation
Dynamic Addr. Translation
Dynamic Addr. Translation
Multiprocessing
Multiprocessing
Multiprocessing
Multiprocessing
Clock Comparator
CPU Timer.
Interval Timer
Interrupt Key
External Signal

Dynamic Addr. Translation
Dynamic Addr. Translation

Channels

Monitoring

Program-Event Recording
Program-Event Recording
Program-Event Recording
Program-Event Recording
Program-Event Recording

Program-Event Recording

Program-Event Recording

Machine-Check Handling
Machine-Check Handling
1/0 Extended Logout
Machine-Check Handling
Machine-Check Handling
Machine-Check Handling
Machine-Check Handling
Machine-Check Handling
Machine-Check Handling

Machine-Check Handling

Except for bit 10 of control register 0, the initial value of unassigned register positions is unpredictable.

1 PER rneans program-event recording.

2 MCEl. means machine-check extended logout.

3 Bit 22~ is set to one, with all other bits set to zero, thus yielding a decimal byte address of 512.

272 System/370 Principles of Operation

Initial Value

0
0
0
0
0
0
0
0
0
0
0
0

0
0

0

0
0
0
0
0

0

0

1
1
0
0
0
1
0
0
0

5123

Hex

o
4

8

I C
10

14

18
1 1C

20

24

28

2C

30

34

38

3C

40

44

48

4C

50

Dec

o
4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

54 84

58 88

5C 92

60 96

64 100

68 104

6C 108

70 112

74 116

78 120

7C 124

80 128

84 132

88 136

8C 140

90 144

94 148

98 152

9C 156

AO 160

A4 164

A8 168

AC 172

BO 176

B4 180

88 184

Restart New PSW

>-. ,-~.---..... ", .' ~"'-. ~-.. ,~ ~"--.-
Restart Old PSW

External Old PSW

Supervisor Call Old PSW

Program Old PSW

Machine-Check Old PSW

I nput/Output Old PSW

Channel Status Word

Channel Address Word

Interval Timer

External New PSW

Supervisor Call New PSW

Program New PSW

Machine-Check New PSW

Input/Output New PSW

Processor Address External-I nterruption Code

OOOOOOOOOOOOOllLClo Superv.-Call-Irptn. Code

OOOOOOOOOOOOOllLClo Program-I nterruption Code

00000000 Translation-Exception Address

00000000 MonitorCI.# PERC.loooooooooooo

00000000 PER Address

00000000 Monitor Code

Channel 10

10EL Address

Limited Channel Logout

00000000 I/O Address

I

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

Assigned Locations in Real Main Storage

Hex Dec
BC 18 8

CO 19 2

C4 19 6

C8 20 0

CC 204

DO 20 8

04 21 2

08 21 6 Machine-Check CPU-Timer Save Area

DC 22 0

EO 22 4 Machine-Check Clock-Comparator Save Area

E4 22 8

E8 23 2 Machine-Check Interruption Code

EC 23 6

FO 24 0

F4 244

F8 24 8 00000000\ Failing-Storage Address

FC 25 2

100 25

104 26

108 26

10C 268

6

0

4

-L.. --
154 340

158 344

15C 348

160 352

164 356

168 360

16C 364

170 368

174 372

178 376

17C 380

180 384

184 388

188 392

18C 396
-r.....

1B4 436

1B8 440

1BC 444

1CO 448

1C4 452

1C8 456

1CC 460

1F4

~T 1F8

1FC 508

Region Code

Fixed Logout Area

---"""r-'

Machine-Check Floating-Point Register Save Area

Machine-Check General-Register Save Area

Machine-Cl:leck Control-Register Save Area

T
Appendix D. Formats 273

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Assigned Locations in Absolute Main Storage

Hex Dec

0 0 Initial Program Loading PSW

4 4
1----.----- .. '.--~

8 8 Initial Program Loading CCW1

C '12

10 '16 I nitial Program Loading CCW2

14 :20

18 :24

lC 28

20 :32

24 :36

28 40

2C 44

30 48

34 fi2

38 fi6

3C (;0

40 (;4

44 H8

48 72

4C 76

50 flO

54 84

58 88

5C 92

60 96

64 100

68 104

6C 108

70 112

74 116

78 120

7C 124

80 128

84 1~12

88 1~16

8C 140

90 144

94 14~8

98 152

9C Hi6

AO H,O

A4 H;4

A8 Hi8

AC 172

BO 176

B4 180

B8 184

BC 188

274 System/370 Principles of Operation

--

--

Hex

CO

C4

C8

CC

DO

04

08

DC

EO

E4

E8

EC

FO

F4

F8

FC

100

104

108

10C

110

158

15C

160

164

168

16C

170

174

178

17C

180

184

188

l8C

1B4

1B8

lBC

lCO

lC4

lC8

lCC

lF4

lF8

lFC

Dec

192

196

200

204

208

212

216 Store-Status CPU Timer Save Area

220

224 Store-Status Clock-Comparator Save Area

228

232

236

240

244

248

252

25() Store-Status PSW Save Area

260

264 Store-Status Prefix Save Area

268 Store-Status Model-Dependent Feature Area

272

~~ ~~

344

348

352 Store-Status Floating-Point Register Save Area

356

360

364

368

372

376

380

384 Store-Status General-Register Save Area

388

392

396

~~ ~~

436

440

444

448 Store-Status Control-Register Save Area

452

456

460

,I..J ~~

5001 ~
504

508~ __

Appendix E. Condition-Code Settings

Condition Code

Instruction 0 2 3

General Instructions

ADD (and ADD HALFWORD) zero <zero >zero overflow
ADD LOGICAL zero, no carry not zero, no carry zero, carry not zero, carry
AND zero not zero
COMPARE (and COMPARE HALFWORD) equal low high
COMPARE AND SWAP equal not equal
COMPARE DOUBLE AND SWAP equal not equal

COMPARE LOGICAL equal low high
COMPARE LOGICAL CHARACTERS UNDER equal low high

MASK
COMPARE LOGICAL LONG equal low high
EXCLUSIVE OR zero not zero
INSERT CHARACTERS UNDER MASK zero 1st bit one 1st bit zero
LOAD AND TEST zero <zero > zero

LOAD COMPLEMENT zero < zero > zero overflow
LOAD NEGATIVE zero <zero
LOAD POSITIVE zero > zero overflow
MOVE LONG count equal count low count high destr. overlap
OR zero not zero
SHI FT LEFT DOUBLE zero < zero > zero overflow

SHIFT LEFT SINGLE zero < zero > zero overflow
SHIFT RIGHT DOUBLE zero < zero > zero
SHIFT RIGHT SINGLE zero < zero > zero
STORE CLOCK set not set error not operational
SUBTRACT (and SUBTRACT HALFWORD) zero < zero > zero overflow
SUBTRACT LOGICAL not zero, no carry zero, carry not zero, carry

TEST AND SET zero one
TEST UNDER MASK zero mixed ones
TRANSLATE AND TEST zero incomplete complete

Decimal Instructions

ADD DECIMAL zero < zero > zero overflow
COMPARE DECIMAL equal low high
EDIT zero < zero > zero
EDIT AND MARK zero < zero > zero

SHIFT AND ROUND DECIMAL zero < zero > zero overflow
SUBTRACT DECIMAL zero < zero > zero overflow
ZERO AND ADD zero < zero > zero overflow

Floating-Point Instructions

ADD NORMALIZED zero < zero > zero
ADD UNNORMALIZED zero < zero > zero
COMPARE equal low high
LOAD AND TEST zero < zero > zero
LOAD COMPLEMENT zero < zero > zero

LOAD NEGATIVE zero < zero
LOAD POSITIVE zero > zero
SUBTRACT NORMALIZED zero < zero > zero
SUBTRACT UNNORMALIZED zero < zero > zero

Condition-Code Settings (Part 1 of 2)

Appendix E. Condition-Code Settings 275

Condition Code

Instruction 0 2 3

Input/Output Instructions

CLEAR I/O no operation CSW stored channel busy not operational
in progress

HALT DEVICE interruption CSW stored channel working not operational
pending, or busy

HALT I/O interruption CSW stored burst op. stopped not operational
pending

START I/O successful CSW stored busy not operational
START I/O FAST RELEASE successful CSW stored busy not operational
STORE CHANNEL ID ID stored CSW stored busy not operational
TEST CHANNEL available interruption burst mode not operational

pending
TEST I/O available CSW stored busy not operational

System Control Instructions

LOAD REAL ADDRESS translation ST entry invalid PT entry invalid length violation
available

RESET REFERENCE BIT R bit zero, R bit zero, R bit one, R bit one,
C bit zero C bit one C bit zero C bit one

SET CLOCK set secure not operational
SIGNAL PROCESSOR order code status stored busy not operational

accepted

Explanation:
>ze.:o-Result is greater than zero.
high First operand compares high.
< zero Result is less than zero.
low First operand compares low.

The condition code may also be changed by LOAD PSW, SET PROGRAM MASK, and DIAGNOSE, and by an interruption.

Condition-Code Settings (Part 2 of 2)

276 System/370 Principles of Operation

Appendix F. Table of Powers of 2

PLl/S MINUS
1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.0625
32 5 0.03125
64 6 0.01562 5

128 7 0.00781 25

256 8 0.00390 625
512 9 0.00195 3125

1,024 10 0.00097 65625
2,048 11 0.00048 82812

4,096 12 0.00024 41406 25
8,192 13 0.00012 20703 125

16,384 14 0.00006 10351 5625
32,768 15 0.00003 05175 78125

65,536 16 0.00001 52587 89062 5
131,072 17 0.00000 76293 94531 25
262,144 18 0.00000 38146 97265 625
524,288 19 0.00000 19073 48632 8125

1,048,576 20 0.00000 09536 74316 40625
2,097,152 21 0.00000 04768 37158 20312 5
4,194,304 22 0.00000 02384 18579 10156 25
8,388,608 23 0.00000 01192 09289 55078 125

16,777,216 24 0.00000 00596 04644 77539 0625
33,554,432 25 0.00000 00298 02322 38769 53125
67,108,864 26 0.00000 00149 01161 19384 76562 5

134,217,728 27 0.00000 00074 50580 59692 38281 25

268,435,456 28 0.00000 00037 25290 29846 19140 625
536,870,912 29 0.00000 00018 62645 14923 09570 3125

1,073,741,824 30 0.00000 00009 31322 57461 54785 15625
2,147,483,648 31 0.00000 00004 65661 28730 77392 57812

4,294,967,296 32 0.00000 00002 32830 64365 38696 28906 25
8,589,934,592 33 0.00000 00001 16415 32182 69348 14453 125

17,179,869,184 34 0.00000 00000 58207 66091 34674 07226 5625
34,359,738,368 35 0.00000 00000 29103 83045 67337 03613 28125

68,719,476,736 36 0.00000 00000 14551 91522 83668 51806 64062 5
137,438,953,472 37 0.00000 00000 07275 95761 41834 25903 32031 25
274,877,906,944 38 0.00000 00000 03637 97880 70917 12951 66015 625
549,755,813,888 39 0.00000 00000 01818 98940 35458 56475 83007 8125

1,099,511.627,776 40 o.ooono 00000 00909 49470 17729 28237 91503 90625
2,199,023,255,552 41 0.00000 00000 00454 74735 08864 6411 8 95751 95312 5
4,398,046,511,104 42 0.00000 00000 00227 37367 54432 32059 47875 97656 25
8,796,093,022.208 43 0.00000 00000 00113 68683 77216 16029 73937 98828 125

17.592.186,044,416 44 0.00000 00000 00056 84341 8B608 08014 86968 99414 0625
35,184,372,088,832 45 0.00000 00000 00028 42170 94304 04007 434B4 49707 03125
70,368.744,177,664 46 0.00000 00000 00014 21 08 5 47152 02003 71742 24853 51562 5

140,737,488,355,328 47 0.00000 00000 00007 10542 73576 01001 85871 12426 75781 25

281,474.976,710,656 48 0.00000 00000 00003 55271 36788 00500 92935 56213 37890 625
562,949,953,421,312 49 0.00000 00000 00001 77635 6B194 00250 46467 78106 68945 3125

1,125.899,906,842,624 50 0.00000 00000 00000 B8817 84197 00125 23233 89053 34472 65625
2,251,799,813,685,248 51 0.00000 00000 00000 44408 92098 50062 61616 94526 67236 32812

4,503,599,627,370,496 52 0.00000 00000 00000 22204 46049 25031 30B08 47263 33618 16406 25
9,007,199,254,740,992 53 0.00000 00000 00000 11102 23024 62515 65404 23631 66809 08203 125
18,O14,39~,509,481,984 54 0.00000 00000 00000 05551 11512 31257 82702 11 B15 83404 54101 5625
36,028,797,018,963,968 55 O.noooo 00000 00000 02775 55756 15628 91351 05907 91702 27050 78125

72,057,594,037,927,936 56 0.00000 00000 00000 01387 77878 07814 45675 52953 95851 13525 39062 5
144,115,188,075,855,872 57 0.00000 00000 onooo 00693 88939 03907 22837 76476 97925 56762 69531 25
288.230,376,151,711,744 58 0.00000 00000 0000(1 00346 94469 51953 61418 88238 48962 78381 34765 625
576,460,752,303,423,488 59 0.00000 00000 00000 00173 47234 75976 80709 44119 24481 39190 67382 8125

1,152,921,504,606,846,976 60 0.00000 00000 00000 00086 73617 379B8 40354 72059 62240 69595 33691 40625
2,305,843,009,213,693,952 61 0.00000 00000 00000 00043 3680B 6B994 20177 36029 81120 34797 66845 70312 5
4,611,686,018,427,387,904 62 0.00000 ooono 00000 00021 68404 34497 10088 68014 90560 17398 83422 85156 25
9,223,372.036,8S4,775,808 63 0.00000 00000 00000 00010 84202 17248 55044 34007 45280 08699 41711 42578 125

18,446,744,073.709,551,616 64 0.00000 00000 00000 00005 42101 08624 27522 17003 72640 04349 70855 71289 0625

Powers of 2 (Part 1 of 2)

Appendix F. Table of Powers of 2 277

18,446,744,013,709.551,616 6~

36,8CJ3,488,14~,419.10~.23~ liS
73,786,CJ7Ii,-::-94,839,2'.)I),404 f.1S

147,573,952,5BQ,676,412,92B 67

295,147,905,179,352,825,856 6B
590,295,81C,358,705,65',~~2 69

1,180,~91,620,717,411,303,42~ 70
2,361,183,241,434,822,606,848 71

4,722,366,482,809,645,213,696 72
9,444,732,965,739,2qO,427,392 73
18,889,465,q31,47B,580,85~,784 74
37,77B,931,862,957,101,709,568 75

75,557,863,725,91lJ.,323,1119,130 70
151,115,727,451,828,646,838,27' 77
302,231,454,903,657,293.676,5lJ.4 78
604,4S2,909,807,31~,587,153,08B 7CJ

l,208,925,B19,614,6'Q,17l1,706.176 80
2.417,B51.639,'29,258.1u9,41~,1~2 31
4,B35.703,278,lJ.5B,516,69B,82l1,704 B2
9,671,406,556,917,033.3Q7,6l19,lIOB 83

19,342,813,113,834,066,795,29B,916 84
38,685,626,227,668,133,590,597,632 85
17,371,252,455,336.267,1Bl,195,20ll 80

154,742,504,910,672,53l1,362,390,528 87

309,435,009,821,345,060,724,781,056 88
618,970,019,642,590,137,449,562,112 89

1.237.940,03Q,285,38n,274,B9CJ,12l1,224 90
2.475.880,078,570,71i0,549,798,248,448 91

4.951,760,157,141,521,099,596,496,896 92
9,903,520,J14,283,042,lg9,192,993,792 93

19.807,040.628,566,084,398,385,987,58l1 94
~9.61~,Oal,257.132,168,796,771,Cl75,168 Cl5

79.228,162,514,264,337,593,543,950,336 96
158,456,325,028,528,675,187,087,900,672 97
316,912,650,057,057,350,374,175,801,344 Q8
633.825,300,114,114,700,748,351,602,688 99

1.267.650,600,228,229,401,lI96,703,205,376 100
2,535,301,200,456,lI5R,802,993,406,410,752 101
5,070,602,400,912,917,605,986,812,821,504 102

10.141,204.801.825,835,211,973,625.643,008 103

20.282,409.603,651,670,lI23,947,251.286,015 lOU
~0.564,819,207,303,340,a47,894,502.572,032 105
81.129.638,414,606.681,695,789,OO~.ll14,064 106

162,259.276,829,213,363,391,578,010.288,128 107

32~.518,553.658,426,725,783,156,020.576,256 108
6~g.~37,107,316,853,453,566,312,041.15?,512 109

1.298,074,214.633,706,CJ07,132,624,082.305,024 110
2.596,148.429,267,413,814,265,248,164,610,048 111

5.192.296,858,534,827,628,530,496,329,220,096 112
10.384,59~.717,069,6S5,257,060.992,658,4l10.192 113
20.769,187,434,139,310,514,121,985.316,880,38l1 114
41,538.374,868,278,621,028,243,970,633,760,768 115

83.0':'6,749,736,557 ,242,056,lI87 ,9 4 1 ,267 ,521,536 116
166.153,499,473,114,484,112,975,882,535,0 4 3,072 117
332.3C6,998.946,228,969,225,Q51,765,070,086,144 118
664.613,9Y7.892,457,936.451,903,530,140,172,~88 119

1,329,227.995.784,915,872,903,807,060,280,344.576 120
2,658,455,991,569,831,745,807,614,120.560,689,152 121
5,316.911,983,139,663,491,515,228,241,121,378,304 122

10.633,823,966,279,326.9S3,23C,456,482,242.756,608 123

21,267.647,932,558.653,966,460,312,964,485,513,216 124
42.535,295,965,117.307,932,921,e25,928,971,026,432 125
85.070.S91,730,234.615,865,843,651,A57,942,OS?,Bf.4 126

170.141,183,460,469,231,731,687.303,715,88l1,105,728 127

340.282.366,920,938,463,463,374,607,431,768,211,456 128

Powers of 2 (Part 2 of 2)

278 System/370 Principles of Operation

The following tables aid in converting hexadecimal values
to decimal values, or the reverse.

Direct Conversion Table
This table provides direct conversion of decimal and
hexadecimal numbers in these ranges:

Hexadecimal
000 to FFF

Decimal
0000 to 4095

To convert numbers outside these ranges, and to con
vert fractions, use the hexadecimal and decimal conver
sion tables that follow the direct conversion table in this
Appendix.

0 1 2 3 4 5 6

00_ 0000 0001 0002 0003 0004 0005 0006
OL 0016 0017 0018 0019 0020 0021 0022
02_ 0032 0033 0034 0035 0036 0037 0038
03_ 0048 0049 0050 0051 0052 0053 0054
04_ 0064 0065 0066 0067 0068 0069 0070
05_ 0080 0081 0082 0083 0084 0085 0086
06_ 0096 0097 0098 0099 0100 0101 0102
07_ 0112 0113 0114 0115 0116 0117 0118
08_ 0128 0129 0130 0131 0132 0133 0134
09_ 0144 0145 0146 0147 0148 0149 0150
OA_ 0160 0161 0162 0163 0164 0165 0166
OB_ 0176 0177 0178 0179 0180 0181 0182
OC_ 0192 0193 0194 0195 0196 0197 0198
OD_ 0208 0209 0210 0211 0212 0213 0214
OE_ 0224 0225 0226 0227 0228 0229 0230
OF_ 0240 0241 0242 0243 0244 0245 0246

10_ 0256 0257 0258 0259 0260 0261 0262
11_ 0272 0273 0274 0275 0276 0277 0278
12_ 0288 0289 0290 0291 0292 0293 0294
13_ 0304 0305 0306 0307 0308 0309 0310
14_ 0320 0321 0322 0323 0324 0325 0326
15_ 0336 0337 0338 0339 0340 0341 0342
16_ 0352 0353 0354 0355 0356 0357 0358
17_ 0368 0369 0370 0371 0372 0373 0374
18_ 0384 0385 0386 0387 0388 0389 0390
19_ 0400 0401 0402 0403 0404 0405 0406
1A_ 0416 0417 0418 0419 0420 0421 0422
1B_ 0432 0433 0434 0435 0436 0437 0438
1C_ 0448 0449 0450 0'151 0452 0453 0454
1D_ 0464 0465 0466 0467 0468 0469 0470
1E_ 0480 0481 0482 0483 0484 0485 0486
1F_ 0496 0497 0498 0499 0500 0501 0502

Appendix G. Hexadecimal Tables

7 8 9 A B C D E F

0007 0008 0009 0010 0011 0012 0013 0014 0915
0023 0024 0025 0026 0027 0028 0029 0030 0031
0039 0040 0041 0042 0043 0044 0045 0046 0947
0055 0056 0057 0058 0059 0060 0061 0062 0063
0071 0072 0073 0074 0075 0076 0077 0078 0079
0087 0088 0089 0090 0091 0092 0093 0094 0095
0103 0104 0105 0106 0107 0108 0109 0110 0111
0119 0120 0121 0122 0123 0124 0125 0126 0127
0135 0136 0137 0138 0139 0140 0141 0142 0143
0151 0152 0153 0154 0155 0156 0157 0158 0159
0167 0168 0169 0170 0171 0172 0173 0174 0175
0183 0184 0185 0186 0187 0188 0189 0190 0191
0199 0200 0201 0202 0203 0204 0205 0206 0207
0215 0216 0217 0218 0219 0220 0221 0222 0223
0231 0232 0233 0234 0235 0236 0237 0238 0239
0247 0248 0249 0250 0251 0252 0253 0254 0255

0263 0264 0265 0266 0267 0268 0269 0270 0271
0279 0280 0281 0282 0283 0284 0285 0286 0287
0295 0296 0297 0298 0299 0300 0301 0302 0303
0311 0312 0313 0314 0315 0316 0317 0318 0319
0327 0328 0329 0330 0331 0332 0333 0334 0335
0343 0344 0345 0346 0347 0348 0349 0350 0351
0359 0360 0361 0362 0363 0364 0365 0366 0367
0375 0376 0377 0378 0379 0380 0381 0382 0383
0391 0392 0393 0394 0395 0396 0397 0398 0399
0407 0408 0409 0410 0411 0412 0413 0414 0415
0423 0424 0425 0426 0427 0428 0429 0430 0431
0439 0440 0441 0442 0443 0444 0445 0446 0447
0455 0456 0457 0458 0459 0460 0461 0462 0463
0471 0472 0473 0474 0475 0476 0477 0478 0479
0487 0488 0489 0490 0491 0492 0493 0494 0495
0503 0504 0505 0506 0507 0508 0509 0510 0511

Appendix G. Hexadecimal Tables 279

0 1 2 3 4 5 6 7 8 9 A B C D E F

20_ 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21_ 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22_ 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23_ 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24_ 0576 0577 0578 0579 0580 01581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25_ 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26_ 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 06~2 0623
27_ 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28_ 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29_ 0656 0657 0658 06.59 0660 0(361 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A_ 0672 0673 0674 0675 0676 0(377 0678 0679 0680 0681 0682 0683 06'84 0685 06~6 0687
2B_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C_ 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D_ 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E_ 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F_ 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31_ 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32_ 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33_ 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34_ 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35_ 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36_ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37_

r

0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38_ 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39_ 0912 0913 0914 0915 0916 0917 0918 0919 092Q 0921 0922 0923 0924 0925 0926 0927
3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 09.41 0942 0943
3B_ 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C_ 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E_ 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F_ 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

I 0 1 2 3 4 5 6 7 8 9 A B C D E F

40_ 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
4L 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42_ 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43_ 1072 1073 1074 1075 1076 10'77 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44_ 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 llOO 1101 1102 1103
45_ 1104 ll05 1106 1107 1108 1109 lll0 lll1 lll2 1113 1114 1115 ll16 1117 1118 1119
46_ 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 ll31 li32 1133 1134 ll35
47_ 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48_ 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49_ 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A_ 1184 118.5 1186 1187 1188 ll89 1190 1191 1192 1193 1194 1195 1196 ll97 ll98 ll99
4B_ 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D_ 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E_ 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F_ 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

50_ 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
5L 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52_ 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54_ 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55_ 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57_ 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58_ 1408 1409 1410 14ll 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59_ 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A_ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B_ 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C_ 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D_ 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E_ 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F_ 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

280 System/370 Principles of Operation

° 1 2 3 4 5 6 7 8 9 A B C D E F

60_ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61_ 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62_ 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63_ 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64_ 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65_ 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66_ 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67_ 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68_ 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69_ 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A_ 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B_ 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C_ 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D_ 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E_ 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F_ 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

70_ 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71_ 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72_ 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73_ 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
74_ 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75_ 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76_ 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77_ 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78_ 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79_ 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A_ 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B_ 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198.1 1982 1983
7C_ 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D_ 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F_ 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

0 1 2 3 4 5 6 7 8 9 A B C D E F

80_ 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
8L 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
84_ 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E - 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 228,5 2286 2287
8F - 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91 - 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92 - 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93_ 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94_ 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2'114 2415
97_ 2416 2417 241,8 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A_ 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B_ 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C_ 2496 2497 2498 2499 2.500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
90_ 2512 2513 ~514 2515 2516 2517 2518 25-19 2520 2521 2522 2523 2524 2525 2526 2527
9E_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F_ 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

Appendix G. Hexadecimal Tables 281

0 1 2 3 4 5 6 7 8 9 A B C D E F

AO __ 21560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AL 2)576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2_ 2)592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3_ 2608 2609 26lO 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4_ 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5_ 2640 2641 2642 2643 2644 264.5 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6_ 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7_ 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8_ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA_ 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB_ 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
AC_ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD - 2768 2769 2770 2771 2772 2773 2774 2775 .2776 2777 2778 2779 2780 2781 2782 2783
AE_ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF - 2:800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
BO_ 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
BL 2.832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2_ 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3_ 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B4_ 2880 2881 2882 2883 2884 288.5 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5_ 2.896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6_ ~~912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7_ ~!928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
138_ ~~944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
139_ 2960 2961 2962 2963 2964 296.5 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA_ :~976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB_ ;m92 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC_ ~3008 3009 30lO 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD - a024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE - :3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF_ :3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

0 1 2 3 4 5 6 7 8 9 A B C D E F

CO_ 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
CL 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3lO0 3101 3lO2 3103
C2_ 3104 3lO5 3lO6 3lO7 3lO8 3lO9 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3_ 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C4_ 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5_ 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6_ 3168 3169 3170 3171 3172 317.'3 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7_ 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C8_ 3200 3201 3202 3203 3204 320,5 3206 3207 3208 3209 32lO 3211 3212 3213 3214 3215
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA_ 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB_ 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC_ 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD - 3280 3281 3282 3283 3284 328.5 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE __ 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 33lO 3311
CF_ 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
DO - 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
DL 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2_ 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3 - 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D4 - 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5_ 3"408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6_ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7 - 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D8_ 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 D9_ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA - 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB - 3504 3505 3506 3507 3508 3509 35lO 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC -- 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD - 3.536 3537 3538 3539 3540 3541 3542 3543 3.544 3545 3546 3547 3548 3549 3550 3551
DE -- 3552 3553 3554 3555 3556 3.5.57 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF 3568 3569 3570 3571 3572 3.573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

282 System/370 Principles of Operation

0 1 2 3 4 5 6 7 8 9 A B C D E F

EO_ 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E1_ 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2_ 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4_ 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7_ 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8_ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA_ 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB_ 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED_ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF_ 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3.839

FO_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FL 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2_ 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3_ 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F4_ 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6_ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7_ 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8_ 3968 3969 3970 3971 39;72 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9_ 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4D13 4014 4015
FB_ 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC_ 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD_ 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE_ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF_ 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Appendix G. Hexadecimal Tables 283

Conve'rsion Table: Hexadecimal and Decimal Integers

HALFWORD

BYTE BYTE

BITS: 0123 4567 0123 4567

Hex Decimal Hex Decimal Hex Decimal Hex Decimal
e-f---

° Q- _9 ° ° ° ° ° 1 268 , 435 , 456 1 16,777,216 I 1,0482 76 1 65,536
2 53i>;870,912 2 33,554,432 2 2,097,152 2 131,072
3 i{05 ,306 , 368 3 50,331,648 3 3,145,728 3 196,608
4 1.073 741 .8~ 4 67,108,864 4 4.194,:104 4 262,144
5 1,3.42,177,280 5 83,886,080 5 5,242,880 5 327,680
6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216
7 1,879,048,192 7 117,440,512 7 7,340,032 7 458,752
8 2,1,47,483,648 8 134,217,728 8 8,388,608 8 524 288
9 2,4f5,919,104 9 150,994,944 9 9,437,184 9 589 824
A 2,684,354,560 A 167,772 160 A 10,485,760 A 655,360

~ ~~T,790 016 B 184 549 376 B 11 534 336 B 720.896
C 3 2:?h 225 472 C 201.326 592 C 12.582 912 C 786.432
0 3 4139,660£928 0 218 103 808 0 13 631 488 0 851 968
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504
F 14,026,5~1 ,s;ro F ! 251 ,658,240 F 15,728,640 F 983,040

f--
8 7 6 5

TO CON\'ERT HEXADECIMAL TO DECIMAL
EXAMPLE

1. Locat'~ the column of decimal numbe~ corresponding to Conve~ion of
the left-most digit or letter of the hexadecimal; select Hexadecimal Value
from this column and record the number that corresponds
ta the position of the hexadecimal digit or letter. 1. 0

2. Repeat step 1 for the next (second from the left)
2. 3 positi(m.

3. Repeat step I for the units (third from the left) 3. 4
pasition.

4. Add the numbe~ selected from the table to form the 4. Decimal

decimal number.

TO CONVERT DECIMAL TO HEXADECIMAL
EXAMPLE

1. (a) Se~ect from the table the highest decimal number
Conve~ion of that is equal to or less than the number to be COOl-
Decimal Value verted.

(b) Record the hexodecimal of the column containing
I. 0

the se lected number.
(c) Subtract the selected decimal from the number to
be converted.

2. 3
2. Using the remainder from step I (c) repeat all of step I

to dev,~lop the second position of the hexadecimal
(and a remainder) . 3. 4

3. Using l:he remainder from step 2 repeat all of step 1 to 4. Hexadecimal
develop the units position of the hexodecimal.

4. Combine terms to form the hexodecimal number.

POWERS OF 16 TABLE

Example: 268,435,45610 = (2.68435456 x 108)10 = 1000 0000 16 = (107)16

16n

I 0
16 I

256 2
4 096 3

65 536 4
I 048 576 5

16 777 216 6
268 435 456 7

4 294 967 296 8
68 719 476 736 9

I 099 511 627 776 10 = A
17592 186044 416 II = B

281 474 976 710 656 12 = C
4 503 599 627 370 496 13 = 0

72 057 594 037 927 936 14 = E
~_1_52_92_1 _5o_4 ~6~8_46_97_6--"-1~5 /= F

Decimal Values

284 System/370 Principles of Operation

Hex

° 1
2
3
4
5
6
7
8
9
A
B
C
0
E
F

034

3328

48

4

3380

3380

-3328
--s2

~
4

-4

034

HALFWORD

BYTE BYTE

0123 4567 0123 4567

Decimal Hex Decimal Hex Decimal Hex Decimal

° ° ° ° ° ° ° 4,096 I 256 I 16 1 1
8,192 2 512 2 32 2 2
12,288 3 768 3 48 3 3
16384 4 1.024 4 64 4 4
20,480 5 1,280 5 80 5 5
24,576 6 1;530 6 96 6 6
28 672 7 1,792 7 112 7 7
32,768 8 2 048 8 128 8 8
36,864 9 2.~ 9 144 9 9
40,960 A 2,560 A 160 A 10
45,056 B 2 816 B 176 B 11
49 152 C 3072 C 192 C 12
53,248 0 3 328 0 208 0 13
57,344 E 3,584 E 224 E 14
61,440 F 3,840 F 240 F 15

4 3 2 1

To convert integer numbe~ greater than the capacity of
table, use the techniques below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left to right,
adding units position.

Example: 03416 = 338010

DECIMAL TO HEXADECIMAL

0= 13
..1S.J.§..
208

3 = + 3
2IT
x16

3376
4= +4

3380

Divide and collect the remainder in reverse order.

Example: 338010 = X16

16 13380 ~ remainder

16 ~--- 4 1
16 LIL----=: 3

o 338010= D34J'6

Conversion Table: Hexadecimal and Decimal Fractions

HALFWORD

1-_____ ,--...:.B:...:y...:.T.::.E_~ ____ _4------------___,r__.-....:B::..:Y:....;T..::E---.- __ ____ . _____ -I

BITS 0123 4567 0123 4567
1----,.----+---.-------f--~------.:...~---_____1I__.--_..--------.- ------ - -----.. -

I--_H_ex-+_D_ec_i_m_a_1 +-H_e_x-t-___ D_e_c_im_a_1 _-f_H_e_x---+ _____ D_e_c_im_a_I __ _____1I__.-H-e-x-f---.--.- ~eci~al ~'l~iv~~~ ___ ...

. 0 .0000 .00 .0000 0000 .000 .0000 0000 0000 .0000 .0000 0000 0000 0000
1----'-'. 1=--+--'-'. 0--='6725:"-+--'-'. 0--=.1--+-.--=.00-=-3;..:9=-----=0--=.6725=----1f---.:.-=-00=--=1'---1-------.:.-=-00::..::0=-=2---=-44.::..:1=-=4---=-06=--=2=-=-5-1---:":. 0=-=00~1 -- --])000 - -'·1525"--- 8789-- 0625---

.2 . 1250 .02 .0078 1250 .002 .0004 8828 1250 .0002 .0000 3051 7578 1250
1---'-::. 3.--f--.-;-1""87""5:--1--. M03.---i--'-;. 0""'"1 =17::.------;1-;;;87;..5=-+---'-. 00~3-+---.:...;. 00~07;---..,;3,;.247.2<-----:c18"""7;;;5-+-:.,;. 0';'00-=:;3~1---- c."';Ooo~-'::'-:O - 4517 --- 6367-1875----

.4 .2500 .04 .0156 2500 .004 .0009 7656 2500 .0004 .0000 - --61 03 5156 2500
I--=--':. 5rlf------=-.~31~2~5 -t--.:,;. 05~+-"':'. ~01:-;'9~5 ----;3~1.;.;25;-.j----=-:. 00~5-+-.-:.~00~1c-;.2----+-;:.;20<;;7~0 ----;:;3T.12~5+-:.;. 0:;'00~5~-'- :,. 0;;:~060 -- - 7629 --'3945- - -3ill-- -

.6 .3750 .06 .0234 3750 .006 .0014 6484 3750 .0006 .0000 -9155- .-- 2734 3750
1---'-::,7;--1----'.-"-:4;:;;37:;-;:5:--1--. 0;;-;7;;-t--,-;. 0~2-;;;73;;---"":::4~37;;5=-+---=-. 00~7-+-·:'-O. 00~17;-----:0:-;:C89;:-;8:----7.43~7;;;5-+-:.,;. 0:-=-00~7~1---- .0001 . 068-1 - "f5234375
1-':';:. 8.--t---=.~5~00;;-;;0:--~. 08~-+---:"';. 0~3T.12;'--"5~00;:';0~'--:"'. 00~.8-+--=--;. 00~19..----.;5~3~12~-'---i::50~00~1--:.;. 0:;'00~8.---1f--- :.';"0-06~1 - 22@----03f2 5000---'

1--'--':' 9--1---,-.:=.:56o-::2~5 -+-----,--,,' 09::.,-+---,-. 0"",3'-"'.5-:,-1 _--=5"="62,=,,5,-+---,-,, 00~9--+~.~00~2:..!,1-_9:,,:.7-=26=--..=.5-=-=62:=:5-+-~. 0~00:::..!9,----+ __ --...!.:' O~OO~-'l .- 3732 ----9101 5625-'--'- -
.A .6250 .OA .0390 6250 .00A .0024 4140 6250 .000A .0001--- 5258~- 6250

1__':':' B=--~.~6.;:87~5-~. O~B=-+-.:..::. 04~29=--_~6~87==-=5~-.-:.. OO~B:-+~. 00~26~-.~8~55~4'----_=68===7:-75-+-~. O:.::oo~B~-_l_-----"':':-~O-OO-=·_·~ 1 = __ 1!~_~===~Z~ =: :}875=-
.C .7500 .OC .0468 7500 .00C .0029 2968 7500 .OOOC .0001 8310 5468 7500
.D .8125 .00 .0507 8125 .OOD .0031 7382 8125 .OOOD - :0001 9836--- 4257 --~-
.E .8750 .OE .0546 8750 .OOE .0034 --:-17=9:=;.6·-~8c=7-=:50:-+-.-:..:.0~00:;:E=-I----~.-::0:00~2 -- --- -i362-- 3046- .. ~

1--=. F'---f---'.=9"-'37=-=5-1----'-. O=F'---4--'-'. 0:.::5....:.:85"--'------"9:.:..:37"-'5'---4----'-. oo=F-+-- .0036 6210 9375 .000F· - :0002 -:r88S--' - TS3S- - 9375--- -.
1__-....L---+-----'---------f----1.---------------1I----....L--.----~ --.-------------- .. _-
~ __ ~J ______ ~ ______ ~2~ ______ ~ ____________ ~3 __ ~ ________ ~. ______________ . ___ 4 _________________ ~

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find.A in position 1

Find .OB in position 2

.6250

.0429 6875

Find .OOC in position 3 .0029 2968 7500

. ABC Hex is equal to .6708 9843 7500

TO CONVERT .13 DECIMAL TO HEXADECIMAL

1. Find .1250 next lowest to .1300
subtract -.1250

2. Find .0039 0625 next lowest to .0050 0000
-.0039 0625

3. Find .0009 7656 2500 . 00109375 0000
-.0009 7656 2500

4. Find .0001 0681 1523 4375 .0001 1718 7500 0000

= .2Hex

= .01

= .004

-.0001 0681 1523 4375 = .0007

.0000 1037 5976 5625 = .2147Hex

5 .. 13 Decimal is approximately equal to -----------..:.1.

To convert fractions beyond the capacity of table, use techniques below:

HEXADECIMAL FRACTION TO DECIMAL

Convert the hexadecimal fraction to its decimal equivalent using the same
technique as for integer numbers. Divide the results by 16n (n is the
number of fraction positions) .
Example: .8A7 = .54077110

8A716 = 2215 10 .540771
163 = 4096 409612215 .000000

DECIMAL FRACTION TO HEXADECIMAL

Collect integer ports of product in the order of calculation .

Example: .540810 = .8A716

.5408

1
8 ...-

A"'-

7

x16
1].6528

x16
[QJ.4448

x16
111·1168

Appendix G. Hexadecimal Tables 285

Hexadecimal Addition and Subtraction Table

Example: 6 + 2 = 8, 8 - 2 = 6, and 8 - 6 == 2

I 1 2 3 4 5 6 7 8 9 A B C 0 E F

1 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF 10

2 03 04 05 06 07 08 09 OA OB OC 00 OE OF 10 Tl

3 04 05 06 07 08 09 OA OB OC 00 Of OF 10 11 12

4 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13

5 06 07 08 09 OA OB OC 00 Of OF 10 11 12 13 14

6 07 08 09 OA OB OC 00 OE OF 10 11 12 13 14 15

7 08 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16
-

8 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17
-

9 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17 18
--

A OB OC 00 OE OF 10 11 12 13 14 15 16 17 18 19

B OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA

C 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA lB

0 Of OF 10 11 12 13 14 15 16 17 18 19 lA lB lC

E OF 10 11 12 13 14 15 16 17 18 19 lA lB lC 10

F 10 11 12 13 14 15 16 17 18 19 IA lB lC 10 IE

Hexadecimal Multiplication Table
Example: 2 l(4 = 08, F x 2 = IE

1 2 3 4 5 6 7 8 9 A B C 0 E F

1 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF

2 02 04 06 08 OA OC OE 10 12 14 16 18 lA lC IE

3 03 06 09 OC OF 12 15 18 1 B IE 21 24 27 2A 20

4 0.4 08 OC 10 14 18 lC 20 24 28 2C 30 34 38 3C
- --
5 05 OA OF 14 19 IE 23 28 20 32 37 3C 41 46 4B
- ----
6 06 OC 12 18 IE 24 2A 30 36 3C 42 48 4E 54 5A

7 07 OE 15 lC 23 2A 31 38 3F 46 40 54 5B 62 69

8 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 09 12 lB 24 20 36 3F 48 51 5A 63 6C 75 7E 87

A OA 14 IE 28 32 3C 46 50 5A 64 6E 78 82 8C 96

B OB 16 21 2C 37 42 40 58 63 6E 79 84 8F 9A AS

C OC 18 24 30 3C 48 54 60 6C 78 84 90 9C AS B4

0 00 lA 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3

E OE lC 2A 38 46 54 62 70 7E 8C 9A AS B6 C4 02

F Of IE 20 3C 4B 5A 69 78 87 96 AS B4 C3 02 El

286 System/370 Principles of Operation

Appendix H. EBCDIC Chart

Extended Binary-Coded-Decimallnterchange Code
(EBCDIC)

The 256-position EBCDIC table, outlined by the heavy
black lines, shows the graphic characters and control char
acter representations for EBCDIC. The bit-position numbers,
bit patterns, hexadecimal representations and card hole
patterns for these and other possible EBCDIC characters are
also shown.

To find the card hole patterns for most characters, parti
tion the 256-position table into four blocks as follows:

1 3

2 4

Block 1: Zone punches at top of table;
digit punches at left

Block 2: Zone punches at bottom of table;
digit punches at left

Block 3: Zone punches at top of table;
digit punches at right

Block 4 : Zone punches at bottom of table;
digit punches at right

Fifteen positions in the table are exceptions to the above
arrangement. These positions are indicated by small num
bers in the upper right corners of their boxes in the table.
The card hole patterns for these positions are given at the
bottom of the table. Bit-position numbers, bit patterns, and
hexadecimal representations for these positions are fouri.d in
the usual manner.

Following are some examples of the use of the EBCDIC
chart:

Character Type

PF Control Character
% Special Graphic
R Upper Case
a Lower ase

Control Character,
function not yet
assigned

Bit Pattern

00000100
01 101100
1101 1001
10000001
00 11 0000

-..
Bit Positions
01 234567

Hex

04
6C
09
81
30

Hale Pattern

Zone Punches I Digit Punches

12-91-4
.~._ 01- 8 -.~ -

111- 9

12 -11 _1~ :~::L 1·-
I
1

Appendix H. EBCDIC Chart 287

I Bit Positions 0,1

r---r---,,------,-----+----,----·-.----~-----+----T-----._----._---+----._--,----.----1 I Bit Positions 2,3
----+-----+-----1----;-----; 'm

0
..,' ~ .,.,' 'u
"/:'] 8
:;:

~
;;;

0001

DC2 FS SYN

0011 TM C

RES BYP PN D M U

0101 NL LF RS N V

BS ETB UC 0 W

0111 I L ESC EOT G X

CAN Q Y

1001 EM Z

1010 CC SM

1011 CUI CU2 CU3

1100 IFS DC4 < % @ J

1101 IGS ENQ NAK

1110 IRS ACK > 'T

1111

9!rd Hole Pa!!erns

CD 12-0-9-13-1 CD No Punches CD 12-0 ® 0-1

CD 12-11-9--8-1 CD 12 @) 11-0 ® 11-0-9-1

~
11-0-9-0-1 (]) 11

~
0-8-2 ® 12-11

12-11-0,·9-8-1 0 12-11-0 12

~~<:!:,~cter Re~sentations Special Graphic Characters

ACK Ackn.mledge EOT End of Transmission PF Punch Off Cent Sign > Greater-than Sign

BEL Bell ESC Escape PN Punch On Period, Decimal Point Question Mark

BS Backspace ETB End of Transmission Block RES Restore < Less-than Sign Grave Accent

BYP Bypass ETX End of Text RLF Reverse Li ne Feed Left Parenthesis Colon

CAN Canc •• 1 FF Form Feed RS Reader Stop Plus Sign Number Sign

CC Cursor Control FS Field Separator SI Shift In I Logical OR rq, At Sign

CR Corrillge Return GE Graph i c Escape SM Set Mode & Ampersand Prime, Apostrophe

CUI Customer Use 1 HT Horizontal Tab SMM Start of Manual Message I Exclamation Point Equal Sign

CU2 Customer Use 2 IFS Interchange Fi Ie Separator SO Shift Out S Dollar Sign Quotation Mark

CU3 Customer Use 3 iGS I nterchange Group Separator SOH Start of Heading Asterisk Tilde

DCI Device Cantrall I L Idle 50S Start of Signi ficance Right Patenthesis { Opening Brace

DC2 Devic:e Control 2 IRS Interchange Record Separator SP Space Semicolon J' Hook

DC4 Device Control 4 IUS Interchange Unit Separator STX Start of Tex t "I Logical NOT 'I' Fork

DEL Delete LC Lower Case SUB Substitute Minus Sign, Hyphen } Closing Brace

OLE Data Link Escape LF Line Feed SYN Synchronous Idle / Slash \ Reverse Slant

OS Digit Select NAK Negative Acknowledge TM Tape Mork Vertical Line Chair

EM End of Medium NL New Line UC Upper Case Comma Long Vertical Mark

ENQ Enquiry NUL Null VT Vertical Tab % Percent

EO Eight Ones Unde.rscore

288 System/370 Principles of Operation

Appendix I. Number Representation and Instruction-Use Examples

Number Representation

FIXED-POINT WITH TWO'S COMPLEMENT

A fixed-point number is a signed value, recorded as a binary
integer. It is called fixed-point because the programmer de
termines the fixed positioning of the radix point.

Fixed-point operands may be recorded in halfword (16-
bit) or word (32-bit) lengths. In both len-gths, the first bit
position (0) holds the sign of the number, with the remaining
bit positions (1-15 for halfwords and 1-31 for fullwords)
used to designate the magnitude of the number.

Positive fixed-poirit numbers are rep~esented in true binary
form with a zero sign bit. Negative fixed-point numbers are
represented in two's-complement notation with a one bit in
the sign position. In aU cases, the bits between the sign bit
and the leftmost significant bit of the integer are the same
as the sign bit (that is, 311 zeros for positive numbers, ql1
ones for negative numbers).

Negative fixed-point numbers are formed in two's-comple
ment notation by inverting each bit of the positive binary
number and adding one. For example, the true binary form
of the decimal value (+26) is made negative (-26) in the
following manner:

+26
Invert
Add 1

-26

S Integer

o 000 0000 0001 1010
1 111 1111 1110 0101

1

111 1111 1110 0110 (Two's-complement
form)

This is equivalent to subtracting the number
0000 0000 0001 1010
from

1 0000 0000 0000 0000

The following addition examples illustrate two's-comple
ment arithmetic. Only eight bit positions are used. All
negative numbers are in two's-complement form.

1.

2.

3.

+57
+35

+92

+57
-35

+22

+35
-57

-22

0011 1001
0010 0011

0101 1100

0011 1001
1101 1101 No overflow.

0001 0110 Ignore carry-carry into high-order
position and carry out.

0010 001l
1100 0111

1110 1010 Sign change only; no carry

4. -57 1100 0111
-35 1101 1101 No overflow.

-92 1010 0100 Ignore carry-carry into high-order
position and carry out.

5. -57 = 1100 0111
-92 = 1010 0100

-149 = *0110 1011 *Overflow-no carry into high-order
position but carry out.

6. +57 0011 1001
+92 0101 1100

149 = *1001 0101 *Overflow-carry into high-order
position, no carry out.

The presence or absence of an overflow condition may be
recognized by the condition of the carries.

• There is no overflow:
a. If there is a carry into the high-order bit position and

also a carry out (examp~es 2 and 4).
b. If there is no carry into the high-order bit position

and no carry out (examples 1 and 3).

• There is an overflow:
a. If there is no carry into the high-order position but

there is a carry out (example 5).
b. If there is a carry into the high-order position but no

carry out (example 6).

The following are 16-bit fixed-point numbers. The first is
the largest 16-bit positive number and the last, the largest
16-bit negative number.

Number

215
- 1

2°
o

- 2°
_ 215

Decimal

32,767
1
o

-1
= -32,768

S Integer

o 111 1111 1111 1111
o 000 0000 0000 0001
o 000 0000 0000 0000
1 111 1111 1111 1111
1 000 0000 0000 0000

The following are 32-bit fixed-point numbers. The first is
the largest positive number that can be represented by 32
bits, and the last is the largest negative number that can be
represented by 32 bits.
Number

~

o

Decimal 5 Integer

2147483647 = 0 111 1111 1111 1111 1111 1111 1111 1111

65 536 = 0 000 0000 0000 0001 0000 0000 0000 0000

1 = 0 000 0000 0000 0000 0000 0000 0000 0001

o = 0 000 0000 0000 0000 0000 0000 0000 0000

-1 = 1 111 1111 1111 1111 1111 1111 1111 1111

_21 -2= 11111111111111111111111111111110

_216 -65536= 11111111111111110000000000000000

_23i +1 =-2147483647= 1000000000000000 0000 0000 0000 0001

= -2147483648 = 1 000 0000 0000 0000 0000 0000 0000 0000

Appendix I. Number Representation and Instruction-Use Examples 289

FLOATING POINT

Floating-point arithmetic simplifies the programming of
computations in which the range of values used varies widely.
It is called floating point because the radix-point placement,
or scaling, is automatically maintained by the machine.

The key to floating-point data representation is the sepa
ration of the significant digits of a number from the size
(scale) of the number. Thus, the number is expressed as a
fraction times a power of 16.

A floating-point number has two associated sets of values.
One set represents the significant digits of the number and
is called the fraction. The second set specifies the power
(exponent) to which 16 is raised and indicates the location
of the binary point of the number.

The two numbers (the fraction and exponent) are recorded
in a single word, a doubleword, or two doublewords.

Since each of these two numbers is signed, some method
must be employed to express two signs in an area that pro
vides for a single sign. This is accomplished by having the
fraction sign use the sign associated with the word (or
doubleword) and expressing the exponent in exccss-64
notation; that is, the exponent is added as a signed number
to 64. The resulting number is called the characteristic. The
characteristic can vary from ° to 127, permitting the expo
nent to vary from -64 through ° to +63. This provides a
scale multiplier in the range of 16 -64 to 16 + 63. A nonzero
fraction, if normalized, must be less than one and greater
than or equal to 1/16, so the range covered by the magni
tude (M) of a floating-point number is:

L6 -65 ~~ M < 1663

or more precisely:

In the short format:

16 -6 5 ~; M ~ (1 _ 16 -6) X 1663

In the long format:

16 -6 5 ~; M ~ (1 _ 16 -14) X 16 6 3

In the extended format:

16-65 :::;;; M ~ (1 - 16-28) X 1663

In decimal terms:

16-65 is approximately equal to 5.4 x 10-79

1663 is a.pproximately equal to 7.2 x 1075

Floating .. point data in System/370 may be recorded in
short, long, or extended formats. Each format uses a sign
bit in bit position 0, followed by a characteristic in bit
positions 1-7. Short floating-point operands contain the
fraction in bit positions 8-31; long operands have the frac
tion in bit positions 8-63; and extended operands have the
fraction in bit positions 8-63 and 72-127.

290 System/370 Principles of Operation

Short Floating-Point Number

I ~~s~I ___ C_h_ar_a_ct_e_ri_st_ic __ ~I ___ 6_-D __ i9~itr~
o 1 8 31

Long Floating-Point Number

I s I Characteristic

o 1 8

14-Di9it:~1-2 r_ac_t_i o_n ___J1

63

Extended Floating-Point Number

I s I Characteristic

o 1

I High-Order Half of 28-Digit Fraction

8 l 63

~ Low-Drder Half of ~8-Di9it Fraction

64 72 127

The sign of the fraction is indicated by a zero or one bit in
bit position ° to denote a positive or negative fraction,
respectively.

Within a given fraction length (6, 14, or 28 digits), a
floating-point operation provides the greatest precision if
the fraction is normalized. A fraction is normalized when
the high-order digit (bit positions 8, 9, 10, and 11) is non
zero. It is unnormalized if the high-order digit contains all
zeros.

If normalization of the operand is desired, the floating
point instructions that provide automatic normalization are
used. This automatic normalization is accomplished by
left-shifting the fraction (four bits per shift) until a nonzero
digit occupies the high-order digit position. The character
istic is reduced by one for each digit shifted.

CONVERSION EXAMPLE

Convert the decimal nllmber 149.25 to a short-precision
floating-point operand. (Appendix G provides tables for
the conversion of hexadecimal and decimal integers and
fractions.)
1. The number is decomposed into decimal integer and a

decimal fraction:

149.25 = 149 plus 0.25

2. The decimal integer is converted to its hexadecimal
representation.

149 10 = 95 16

3. The decimal fraction is converted to its hexadecimal
representation.

0.25 10 = 0.4 16

4. Combine the integral and fractional parts and express
as a fraction times a power of 16 (exponent).

95.4 16 =0.95416 X 16 2

5. The characteristic is developed from the exponent and
converted to binary.

base + expon~nt = characteristic
64 + 2 =66 = 1000010

6. The fraction is converted to binary and grouped hexa
decimally.

0.954 16 == .1001 0101 0100

7. The characteristic and the fraction are stored in the
short format. The sign position contains the sign of the
fraction.

SChar Fraction

o 1000010 1001 0101 0100 0000 0000 0000

The following are sample normalized short floating-point
numbers. The last two numbers represent the smallest and
the largest positive normalized numbers.

Number Powers of 76 .E ~ Fraction

1.0 = +1/16 x 161 = 0 100 0001 0001 0000 0000 0000 0000 0000

0.5 = +8/16 x 16° = 0 100 0000 1000 0000 0000 0000 0000 0000

1/64 = +4/16 x 16-1 = 0 011 1111 0100 0000 0000 0000 0000 0000

0.0 = +0 x 16-64 = 0 000 0000 0000 0000 0000 0000 0000 0000

-15.0 =-15/16x161 = 110000011111000000000000 0000 0000

5.4 x 10-79 ~+1/16x16-64 = 0 000 0000 000100000000 0000 0000 0000

7.2xl075 ';t (1-16-6)x1663 ~ 0 1111111111111111111111111111111

Instruction-Use Examples

The following examples illustrate the use of many System/370
instructions. Before studying one of these examples, the
reader should first consult the instruction description in this
manual for the particular instruction of interest to him.

Please note that this publication, and the instruction-use
examples, are written principally for assembly-language pro
grammers, to be used in conjunction with the appropriate
assembly-language manuals.

For clarity, and for ease in programming, each example in
this section presents the instruction both as it is written in
an assembly-language statement and as it appears when
assembled in storage (machine format).

Machine Format

As a rule, all machine format numerical operands are written
in hexadecimal notation unless otherwise specified. Hexa
decimal operands are shown converted into binary, decimal,
or both, if such conversion helps to clarify the example for
the reader. Storage addresses are also given in hexadecimal.

Assembly-Language Format

In assembly-language statements, registers, lengths, and
masks are all presented in decimal, but displacements may
be in hexadecimal or decimal. (A hexadecimal displacement
is indicated by X'n', where n can range from OOO-FFF.) Im
mediate operands are normally shown in hexadecimal. When-

ever the value in a register or storage location is referred to
as "not significant," this value is replaced during the execu
tion of the instruction.

When SS-format instructions are written in System/370
assembly language, lengths are given as the total number of
bytes in the field. This differs from the machine definition,
in which the length field specifies the number of bytes to
be added to the field address to obtain the address of the
last byte of the field. Thus, the machine length is one less
than the assembly-language length. The assembly program
automatically subtracts one from the length specified when
the instruction is assembled.

In some of the examples, symbolic addresses are used in
order to simplify the examples. In assembly-language state
ments, a symbolic address is represented as a mnemonic
term written in all capitals, such as FLAGS, which is used
to denote the address of a storage location used to contain
data or program-control information. When symbolic ad
dresses are used, the assembler supplies actual base and dis
placement values according to the USING and DROP
assembler instructions.

When symbolic addresses are used in the example, the
values for base and displacement are not shown in the
assembly-language format or in the machine-language format.
For assembly-language formats, the letter S in the labels
that designate instruction fields is used to indicate the com
bination of base and displacement fields for an operand
address. (For example, S 1 represents the combination of
Bl and Dl.) In the machine-language format, the base and
displacement address components are shown as asterisks (*).

Add Halfword (AH)

The ADD HALFWORD instruction algebraically adds the
halfword contents of a storage location to the contents of a
register. The halfword storage operand is expanded to 32
bits after it is fetched and before it is used in the add oper
ation. The expansion consists in propagating the leftmost
(sign) bit 16 positions to the left. For example, assume that
the contents of storage locations 2000-2001 are to be added
to register 5. Initially:

Register 5 contains 00 00 00 19 = 2510

Storage locations 2000-2001 contain FF FE == -2 1 0

Register 12 contains 00 00 18 00.

Register 13 contains 00 00 01 50.

The format of the required instruction is:

Machine Format

Op Code R1 X2 82 02

4A I 5 I ° I C 689

Assembler Format

Op Code R1, 02 (X2, 82)

AH 5, X'680'(13,12)

Appendix I. Number Representation and Instruction-Use Examples 291

After the instruction is executed, register 5 contains
00 00 00 17 = 23 1 0 •

AND (N, rJR, NI, NC)

When the lBoolean operator AND is applied to two bits, the
result is one when both bits are one; otherwise, the result
is zero. When two bytes are ANDed in System/370, each
pair of bits is handled separately; there is no connection
from one bit position to another.

AND(NI)

A frequent use of the AND instruction is to set a particular
bit to zero. For example, assume that storage location 4891
contains 0100 0011 2 , To set the rightmost bit of this byte
to zero without affectirig the other bits, the following
instruction can be used (assume that register 8 contains
00 00 48 90):

Machine Format

Op Code B1 °1
94 FE 8 001

Assembler Format

Op Code 0, (B1), 12

NI 1 (8). X'FE'

When this instruction is executed, the byte in storage is
ANDed with the immediate byte:
Location 4891 0100 00112
Immediate byte 1111 11102

Result: 0100 00102

The resulting byte, with bit 7 set to zero, is stored in
location 4891. Condition code 2 is set.

Branch and link (BAL, BALR)

The BRANCH AND LINK instructions are commonly used
to branch to a subroutine with the option of later returning
to the main instruction sequence. For example, assume that
you wish to branch to a subroutine at storage address 1160.

Also assume:

The contents of register 2 are not significant.
Register 5 <:ontains 00 00 11 50.
Address 00 00 C6 contains a aAL instruction. (pSW bits 40-63
will contain 00 00 CA after e~ecution of BAL)

The format of the BAL iristruction is:

Machine Format

Op Code R1 X2 B2

~121015
Assembler Format

Op Code R1, 02 (X2, B2)

BAL 2,X'10'(O,5)

292 System/370 Principles of Operation

After the instruction is executed:
Register 2 (bits 8-31) contains 00 00 CA
PSW bits 40-63 contain 00 11 60

The programmer can return to the main instruction se
quence at any time with a BRANCH ON CONDITION (BCR)
instruction that specifies register 2 and a mask of 15 1 0 , pro
vided that register 2 has not meanwhile been disturbed.

The BALR instruction with the R2 field equal to zero may
be used to load a register for use as a base register. For
example, in the assembly language the sequence of statements:

BALR 15,0
USING *,15

tells the assembly program that register 15 is to be used as
the base register in assembling this program and that when
the program is executed, the address of the next sequential
instruction following the BALR will be placed in the regis
ter. (The USING statement is an assembler instruction and
is thus not a part of the object program.)

At any time, the condition code may be preserved for
future inspection with BALR 1,0. Bits 2 and 3 of the regis
ter (Rl) contain the condition code.

Branch on Condition (BC, BCR)

The BRANCH ON CONDITION instructions test the condi
tion code to see whether a branch should or should not be
taken. The branch is taken only if the condition code is as
specified by a mask.

Mask Condition
Value Code

8 0
4 1
2 2
1 3

For example, assume that an ADD (A, AR) operation has
been performed and you wish to branch to address 6050 if
the sum is zero or less (condition code = 0 or 1). Also
assume:

Register 10 contains 00 00 50 00
Register 11 contains 00 00 10 00

The RX form of the instruction performs the required
test (and branch, if necessary) when written as:

Machine Format

Op Code M1 X2 B2 02

I L-_4_7 -..1.-1 C~I,---B---II_A---,--_05~
Assembler Format

Op Code M1, 02 (X2, B2)

BC 12,X'50'(11,1 0)

A mask of 15 indicates a branch on any condition (an
unconditional branCh). A mask of zero indicates that no
branch is to occur (a no-operation).

Branch on Count (BCT, BCTR)

The BRANCH ON COUNT instructions are often used to
execute a program loop for a specified number of times.
For example, assume that the following represents some lines
of coding in an assembly-language program:

LUPE AR8,!

BACK BCT 6,LUPE

where register 6 contains 00 00 00 03 and the address of
LUPE is 6826. Assume that, in order to address this loca
tion, register lOis used as a base register and contains
00 00 68 00.

The format of the BCT instruction is:

Machine Format

46 I 6 I 0 I A 026

Assembler Format

Op Code R1, D2 (X2, B2)

BCT 6,X'26'(O,10)

The effect of the coding is to execute three times the loop
defined by locations LUPE through BACK.

Branch on Index High (BXH)

The BRANCH ON INDEX HIGH instruction is an index
incrementing and loop-controlling instruction that causes a
branch whenever the sum of an index value and an increment
value is greater than some comparand. For example, assume
that:

Register 4 contains 00 00 00 8A = 13810 = the index
Register 6 contains 00 00 00 02 = 2 10 = the increment
Register 7 contains 00 00 00 AA = 17010 = the comparand
Register 10 contains 00 00 71 30 = the branch address

The format of the instruction is:

Machine Format

86 I 4 I 6 I A 000

Assembler Format

Op Code R1, R3, D2 (B2)

BXH 4,6,0(10)

When the instruction is executed: first, the contents of
register 6 are added to register 4; second, the sum is com
pared with the contents of register 7; and third, the deci
sion to branch is made. After execution:

Register 4 contains 00 00 00 8C=140 10
Registers 6 and 7 are unchanged

Since the new value in register 4 is not greater than the
value in register 7, the branch to address 7130 is not taken.

When the register used to contain the increment is odd,
that register also becomes the comparand register. The fol
lowing assembly-language routine illustrates how this fea
me may be used to search a table:

Table

Two Bytes Two Bytes

ARG1 FUNCT1

ARG2 FUNCT2

ARG3 FUNCT3

ARG4 FUNCT4

ARG5 FUNCT5

ARG6 FUNCT6

Assume that:
Register 0 contains the search argument
Register 1 contains the width of the table in bytes (00 00 00 04)
Register 2 contains the length of the table in bytes (00 00 00 18)
Register 3 contains the starting address of the table
Register 14 contains the return address to the main program

As the following subroutine is executed, the argument in
register 0 is successively compared with the arguments in
the table, starting with argument 6 and working backwards
to argument 1. If an equality is found, the corresponding
function replaces the argument in register O. If an equality
is not found, FF 16 replaces the argument in register O.

The first instruction (LNR) causes the value in register 1
to be made negative. After execution of this instruction,
register 1 contains FFFFFFFC = -4 10 , Considering the
case when no equality is found, the BXH instruction will
be executed seven times. Each time the BXH is executed,
a value of -- 4 is added to register 2, thus reducing the
value in register 2 by 4. The new value in register 2 is com
pared with the -4 value in register l. Thus the branch is
taken each time until the value in register 2 is -4.

SEARCH LNR 1, 1
NOTEQUAL BXH 2,1, LOOP
NOTFOUND LA 0, X'FF'

BCR 15, 14
LOOP CH 0,0(2,3)

BC 7, NOTEQUAL
LH 0,2 (2,3)
BCR 15,14

Branch on I ndex low or Equal (BXlE)

This instruction is similar to BRANCH ON INDEX HIGH
except that the branch is successful when the sum is low
or equal compared to the comparand.

Appendix I. Number Representation and Instruction-Use Examples 293

Compare Halfword (CH)

The COMPARE HALFWORD instruction compares a half
word in storage with the contents of a register. For example,
assume that:
Register 44 contains FF FF 80 00 = -32,768 10
Register 13 contains 00 01 60 50
Storage lQ(;ations 16080-16081 contain 8000 = - 32,76810

When the instruction
Machine Format

030

Assembler Format

Op Code R1, O2 (X2, 82)

CH 4, X'30'(O, 13)

is executed, the contents oflocations 16080-16081 are
fetched, expanded to 32 bits (the sign bit is propagated to
the left), and compared with the contents of register 4. Be
cause the two numbers are equal, condition code 0 is set.

Compare logical (Cl, ClR, CLI, ClC)

The COMPARE LOGICAL instructions differ from the
algebraic instructions (C, CR) in that all quantities are
handled as if unsigned.

Compare Logical (CL R)

Assume that:
Register 1 contains 00 00 00 01
Register 2 contains FF FF FF FF

Execution of the instruction

Machine Format

Op Code R1 R2

~EEJ
Assembler Format

Op Code R1, R2

CLR 1,2

sets condition code 1. A condition code 1 indicates that the
first operand is lower than the second. However, if an
algebraic compare instruction had been executed, condition
code 2 would have been set, indicating that the first oper
and is higher. During algebraic comparison, the contents of
register 1 are interpreted as + 1 and the contents of register
2 as - 1. During logical comparison, the leftmost byte of
register 2 is compared with the leftmost byte of register 1;
each byte is interpreted as a binary number. In this case:

Leftmost byte of register 1: 0000 00002 010
Leftmost byte of register 2: 1111 11112 =:: 25510

294 System/370 Principles of Operation

If the leftmost bytes are equal, the next two bytes are
compared, etc., until either an inequality is discovered or
the contents of the registers are exhausted.

Compare Logical Immediate (CLI)

The CLI instruction logically compares a byte from the
instruction stream with a byte from storage. For example,
assume that:
Register 10 contains 00 00 17 00
Storage location 1703 contains 7E

Execution of the instruction

Machine Format

Op Code 0 1

95 AF I A I 003

Assembler Format

o p Code 0 1 (8 1), 12

CLI 3(10),X'AF'

sets condition code 1, indicating that the first operand (the
quantity in main storage) is lower than the second (imme
diate) operand.

Compare Logical Characters (CLC)

The COMPARE LOGICAL CHARACTERS instruction can
be used to perform the logical comparison of storage fields
up to 256 bytes in length. For example, assume that the
following two fields of data are in storage:

Field 1

1886 1891

I 01 1 06 1 C81 05 1 E2/ 06 1 05 1 68 I C1 1 48 I C2148 I

Field 2

1900 1908

I 01 I 06 I C81 05 1 E2 I 06 1 05 1 68 I C 1 1 48 I C31 48 I
Also assume:

Register 6 contains 00 00 18 80
Register 7 con tains 00 00 19 00

Execution of the instruction

Machine Format

Op Code L

05 08 006

Assembler Format

Op Code 0 1 (L, 8 1), O2 (82)

CLC 6(12,6),0(7)

000

sets condition code 2, indicating that the contents of field
1 are higher in value than the contents of field 2.

Because CLC compares bytes on an unsigned binary basis,
the instruction can be used to collate fields composed of

characters from the EBCDIC code. For example, in EBCDIC
the above two data fields are:

Field 1 JOHNSON ,A.B.
Field 2 JOHNSON,A.C.

Condition code 1 tells us that A. B. JOHNSON precedes
A. C. JOHNSON, thus placing the names in the correct
alphabetic order.

Compare logical Characters Under Mask (ClM)

The CLM instruction provides a means of comparing selected
bytes of a word contained in a general register to a contig
uous field of bytes in main storage. The M3 field of the CLM
instruction is a four-bit mask that selects zero through four
bytes from a general register, each mask bit corresponding
left to right with a selected register byte. In the compari
son, the selected register bytes are treated as a contiguous
field, and the operands are considered as binary unsigned
quantities, with all codes valid. The operation proceeds
left to right. For example, assume that:
Three bytes starting at storage location 10200 contain FO BC 7B
Register 12 contains 10 000
Register 6 contains FO BC 5C 7B

Execution of the instruction

Machine Format

200

Assembler Format

Op Code R1, M3, D2 (82)

ClM 6,8'1101',X'200'(12)

produces the following result:

Register 6: FO
Mask (D)

FO

Three bytes starting at location
10200

8C

8C

5C
o

78
1

78

Result: Condition code 0 is set (selected bytes are equal,
or mask is zero). Register 6 and bytes in main
storage are unchanged.

Other condition codes would indicate:
Condition Code,'

1 Selected field of first operand (register contents)
is less than second operand (storage locations)

2 Selected field of first operand is greater than
second operand

3

Compare logical long (ClCL)

The CLCL instruction is used to logically compare two
operands in main storage. Each operand can be up to
16,777,215 bytes in length. Two pairs of even-odd general
registers are used to locate the operands and to control the
execution of the CLCL instruction, which can be inter
rupted in progress. The first register of each pair must be
an even register, and it is used to contain the storage location
of the byte currently being compared in each operand. The
odd register of each pair contains the length of the operand
it covers, and the high-order byte of the second-operand
odd register contains a padding character which is used to
logically extend a shorter operand to the same length as a
longer operand. The following illustrates the assignment of
registers for CLCL:

R1 (Even) ~ First-Operand Address I
0 8 31

R1+1 (Odd) ~ First-Operand length I
0 8 31

R2 (Even) ~ Second-Operand Address

0 8 31

R2+1 (Odd) Pad Char. Second-Operand length

o 8 31

The following instructions set up two register pairs to
control a text-string comparison. For example, assume:

Operand 1

Address: 20800 (hex)
Length: 100 (dec)

Operand 2

Address: 20AOO (hex)
Length: 132 (dec)

Pad Character

AddIess: 20003 (hex)
Length: 1
Value: 40 (hex)

Register 12 contains 00 02 00 00

The setup instructions are:

LA 4,X'800' (12) Point register 4 to the start of the first
operand

LA 5,100 Set register 5 to the length of first operand
LA 8,X'AOO'(12) Point register 8 to the start of second

operand
LA 9,132 Set register 9 to the length of second

operand
ICM 9,B'1000',3(12) Insert padding character (blank) into byte

o of register 9.

The register pair 4-5 is now covering the first operand.
Bits 8-31 of register 4 contain the storage location of the
start of an EBCDIC text string, and bits 8-31 of register 5
contain the length of the string, in this case 100 bytes.

Appendix I. Number Representation and Instruction-Use Examples 295

The register pair 8-9 covers the second operand with bits
8-31 of register 8 containing the length of the second oper
and, in this case 132 bytes. Bits 0-7 of register 9 contain
an EBCDIC blank character (X'40') to logically pad the
shorter operand. In this example, the blank padding char
acter is used in the first operand, after the 100th character,
to compare with the remaining characters in the second
operand.

With the 4-5 and 8-9 register pairs thus set up, the format
of the CLCL instruction is:

Machine Format

Op Code R1 R2

OF I~
Assembler Format

Op Code 1=l1' R2

CLCL 4,8

When thiis instruction is executed, the comparison starts
at the high-order end of both operands and proceeds to the
right. The operation ends as soon as an inequality is de
tected or the end of the longest operand is reached.

If this ClLCL instruction is interrupted after 60 bytes are
successfully compared, the operand lengths in registers 5
and 9 are decremented to X'28' and X'48', respectively,
and the operand locations in registers 4 and 8 are incre
mented to X'2083C' and X'20A3C'. When the CLCL
instruction is reexecuted, the comparison begins at the
point of interruption.

If the instruction is interrupted after 110 bytes are suc
cessfully compared, the operand lengths in registers 5 and
9 are decremented to 0 and X'16', respectively, and the
operand locations in registers 4 and 8 are incremented to
X'2086E' and X'20A6E'. .

When the comparison ends, the condition code indicates
the result. The condition code settings are as follows:

Condition Code:
o Operands are equal, or both field lengths are

zero

2

3

First operand is low

First operand is high

When the operands are unequal, the address fields of regis
ters 4 and 8 can be used to locate the bytes that caused the
mismatch. The byte count fields in registers 5 and 9 can be
used to determine how far the comparison progressed suc
cessfully.

Convert to Binary (CVB)

The CONVERT TO BINARY instruction converts an eight
byte, signed, packed-decimal number into a siglied binary
number and loads the result into a general register. After

296 System/370 Principles of Operation

the conversion operation is completed, the number is in the
proper form for use as an operand in fixed-point arithmetic.
For example, assume:

Storage locations 7608-760F contain a positive packed-decimal
number, 00 00 00 00 00 25 59 4C
The contents of register 7 are not significant
Register 13 contains 00 00 76 00

The format of the conversion instruction is:

Machine Format

Op Code R1 X2 82

008

Assembler Format

Op Code R1, 02 (X2, 82)

CV8 7,8(0,13)

After the instruction is executed, register 7 contains
00 00 63 FA = + 25,59410 .

Convert to Decimal (CVD)

The CONVERT TO DECIMAL instruction performs func
tions exactly opposite to those of the CONVERT TO
BINARY instruction. CVD converts a binary number in a
register to packed decimal and stores the result in a double
word. For example, assume:
Register 1 contains 00 00 OF OF = 385510
Register 13 contains 00 00 76 00
PSW bit 12 = 0 (EBCDIC mode)

The format of the instruction is:

Machine Format

Op Code R1 X2 82 02

4E 11 1 0 I ° 008

Assembler Format

Op Code R1, 02 (X2, 82)

CVO 1,8(0,13)

After the instruction is executed, locations 7608-760F
contain 00 00 00 00 00 03 85 5C.

The plus sign generated is the standard EBCDIC plus sign,
11002 •

Divide (0, DR)

The DIVIDE instruction divides a dividend in an even/odd
register pair by the divisor in a register or in storage. Since
the dividend is assumed to be 64 bits long, it is important
that the proper sign be first affixed. For example, assume
that:

Storage locations 3550-3553 contain 00 00 08 D7 = 227010 = the
dividend
Storage locations 3554-3557 contain 00 00 00 32 = 5010 = the
divisor

Register 6 does not contain all zeros
The initial contents of register 7 are not significant
Register 8 contains 00 00 35 50

The following assembly language statements load the reg
isters properly and perform the divide operation:

Statement Comments

L 6,0(0,8) Places 00 00 08 07 into register 6

SROA 6,32(0) Shifts 00 00 08 07 into register 7

Register 6 is filled with zeros (sign bits)

° 6,4(0,8) Performs the division

The machine format of the preceding DIVIDE instruction
is:

Machine Format

004

After the foregoing instructions are executed:

Register 6 contains 00 00 00 14 = 20 1 0 = the remainder
Register 7 contains 00 00 00 2D = 4510 == the quotient

Note that if the dividend had not been first placed in regis
ter 6 and shifted into register 7, register 6 would not have
been filled with the proper sign bits (zeros in this example),
and the DIVIDE instruction would not have given the
expected results.

Exclusive OR (X, XR, XI, XC)

When the Boolean operation EXCLUSIVE OR is applied to
two bits, the result is one when one, and only one, of the
two bits is one; otherwise, the result is zero. When two
bytes are EXCLUSIVE ORed in System/370, each pair of
bits is handled separately; there is no connection from one
bit position to another.

Exclusive OR (XI)

A frequent use of the EXCLUSIVE OR (XI) instruction is
to invert a bit (change a zero bit to a one or a one bit to a
zero). For example, assume that storage location 8082
contains 0110 1001 2 , To set the leftmost bit to one and
the rightmost bit to zero without affecting any of the other
bits, the following instruction can be used (assume that
register 9 contains 00 00 80 80):

Machine Format

Op Code 12 B1

97 81 9 002

Assembler Format

Op Code 01 (81)' 12

XI 2(9),X'81'

When the instruction is executed, the byte in storage is
EXCLUSIVE ORed with the immediate byte:
Location 8082: 0110 1001 2
Immediate byte: 1000 00012

Result: 1110 10002

The resulting byte with the leftmost and rightmost bits
inverted is stored in location 8082. Condition code 1 is
set.

Exclusive OR (XC)

The EXCLUSIVE OR (XC) instruction can be used to
change the contents of two areas in storage without the use
of an intermediate storage area. For example, assume that
two words are in storage:

Word 1 Word 2

358 35B 360 363

I 00 I 00 1 17 1 90 I 1 00 1 00 1141 01 I
Execution of the instruction (assume that register 7 con

tains 00 00 03 58):

Machine Format

Op Code L

07 03 000 008

Assembler Format

Op Code 01 (L, B1), 02 (B2)

XC 0(4,7) ,8(7)

EXCLUSIVE ORs word 1 with word 2 as follows:
Word 1: 0000 0000 0000 0000 0001 0111 1001 00002

= 00 00 17 90
Word 2: 0000 0000 0000 0000 0001 0100 0000 00012

= 00 00 14 01

ResuU: 0000 0000 0000 0000 0000 0011 1001 00012
= 00 00 03 91

The result replaces the former contents of word 1.
Now, execution of the instruction

Machine Format

Op Code L B1 °1 B2 °2

07 03 I 7 008 I 7 I 000

Assembler Format

Op Code 01 (L,B1),02(B2)

XC 8(4,7) ,0(7)

produces the following result:

Word 1: 0000 0000 0000 0000 0000 0011 1001 00012
= 00 00 03 91

Word 2: 0000 0000 0000 0000 0001 0100 0000 0001 2
= 00 00 14 01

Result: 0000 0000 0000 0000 0001 0111 1001 00002
= 00 00 17 90

Appendix I. Number Representation and Instruction-Use Examples 297

The result of this operation replaces the former contents of
word 2. Word 2 now contains the original value of word 1.

Lastly, execution of the instruction

Machine Format

Op Code L Bl Dl B2 02

~'---03--~-7-'----0-00----~1--7-r1----0~

Assembler Format

OpCode 01 (L,B1),02(B2)

XC 0(4,7),8(7)

produces the following result:
Word 1: 0000 0000 0000 0000 0000 0011 1001 00012

:=00 00 03 91
Word 2: 0000 0000 0000 0000 0001 0111 1001 00002

:= 00 00 17 90

Result: 0000 0000 0000 0000 0001 0100 0000 00012
:= 00 00 14 01

The result of this operation replaces the former contents of
word 1. Word 1 now contains the original value of word 2.

Notes:
1. With the XC instruction, fields up to 256 bytes in length

can be exchanged.
2. With the XR i~struction, the contents of two registers

can be exchanged.
3. Because the X instruction operates storage-to-register

only, an exchange cannot be made solely by the use of
x.

4. A field EXCLUSIVE ORed with itself is cleared to zeros.

Execute (EX)

The EXECUTE instruction causes one instruction in main
storage to be executed out of sequence without actually
branching to the object instruction. EXECUTE may be
used to supply the length field for an SS instruction without
modifying the SS instruction in storage. For example, as
sume that a MOVE (MVC) instruction is located at address
3820, with a fonnat as follows:

Machine Format

Op Code L Bl Dl B2 02

~D-2~·~0-0~I-c~I~-0-0-3--~I-D~I---0~·

Assembler Format

OpCode Dl (L,B1),D2(B2)

MVC 3(1,12),0(13)

where register 12 contains 00 00 89 13 and register 13
contains 00 00 90 AO.

Further assume that at storage address 5000, the following
EXECUTE instruction is located:

298 System/370 Principles of Operation

Machine Format

44 11 1 0 I A 000

A sse mbler Format

Op Code R1, D2 (X2, B2)

EX 1,0(0,10)

where register 10 contains 00 00 38 20 and register 1 con
tains 00 OF FO 03.

When the instruction at 5000 is executed, bits 24-31 of
register 1 are ORed with bits 8-15 of the instruction at
3820:

Bits 8-15: 0000 00002 = 00
Bits 24-31: 0000 00112 = 03

Result: 0000 0011 2 = 03

causing the instruction at 3820 to be executed as if it orig
inally were:

Machine Format

Op Code L

D2 03 I C I
Assembler Format

Op Code Dl (L, B1), D2 (B2)

MVC 3(4,12),0(13)

However, after execution:
Register 1 is unchanged

003

[he instruction at 3820 is l.lflchanged

D 000

The contents of the four bytes starting atlocation 90AOhave been
moved to the four bytes starting at location 8916
The CPU next executes the instruction at address 5004 (PSW bits
40-63 contain 00 50 04)

Load (L, LR)

The LOAD instructions place, unchanged, the contents of
a word in storage or of a register into another register. For
example, assume that the four bytes starting with location
21004 (a fullword boundary) are to be loaded into register
10. Initially:

Register 5 contains 00 02 00 00
Register 6 contains 00 00 10 04
The contents of register 10 are not significant
Storage locations 21004-21007 contain 00 00 AB CD

To load register 10, the RX form of the instruction can
be used:

Machine Format

Op Code Rl X2 B2

000

Assembler Format

Op Code R1, D2 (X2, B2)

L 10,0(5,6)

After the instruction is executed, register 10 contains
00 00 AB CD.

Load Address (LA)

The LOAD ADDRESS instruction provides a convenient
way to place a nonnegative number ~ 4095 1 0 in a register
without first defining the number as a constant and then
using it as an operand. For example, assume that the num
ber 2048 10 is to be placed in register 1. One instruction
that will do this is:

Machine Format

41 11 1 0 1 0 800

Assembler Format

Op Code R1• 02 (X2• 82)

LA 1,2048(0,0)

As indicated in the programming note in the instruction
description, the LOAD ADDRESS instruction can also be
used to increment a register by an amount ~ 4095 1 0 speci
fied in the D2 field. For example, assume that register 5
contains 00 12 34 56.

The instruction:

Machine Format

Op Code R1 X2 82 .

OOA

Assembler Format

Op Code R1, 02 (X2, 82)

LA 5,10(0,5)

adds 10 (decimal) to the contents of register 5 as follows:

Register 5 (old):
D2 field:

Register 5 (new):

00 12 34 56
00 00 00 OA

00 12 34 60

Load Halfword (LH)

The LOAD HALFWORD instruction places unchanged the
contents of a halfword in storage into the right half of a
register. The left half of the register is replaced by zeros or
ones to reflect the sign (leftmost bit) of the halfword.

For example, assume that the two bytes in storage loca
tions 1802-1803 are to be loaded into register 6. Also
assume:
Register 6 contains 7F 12 34 56
Register 14 contains 00 00 18 02
Locations 1802-1803 contain 00 20

The instruction required to load the register is:

Machine Format

Op Code R1 X2 82

48 I 6 I 0 I E I 000

Assembler Format

Op Code R1, 02 (X2, 82)

LH 6,0(0,14)

After the instruction is executed, register 6 contains
00 00 00 20. If 1802-1803 contained a negative number,
for example, A 7 B6, the sign bit would again be propagated
to the left, giving FF FF A 7 B6 as the final result in regis
ter 6.

Move (MVI)

The MOVE (immediate) instruction can place one byte of
information from the instruction stream into any designated
location. For example, if the instruction

Machine Format

Op Code 12

92 FA o 055

Assembler Format

Op Code ° 1 (8 1), 12

MVI 85(O),X'FA'

is executed, bits 8-15 of the instruction (1111 10102) are
copied in storage location 85 10 .

Move (MVC)

The MVC instruction can be used to move a data field from
one location to another. For example, assume that the fol
lowing two fields are in storage:

Field 1

2048 2052

1 C1 I C2 I C3 I C4 I C5 I C61 C71 C81 C9 I CA I C8 I
Field 2

3840 3848

I F1 I F21 F31 F41 F51 F61 F71 F81 F91

Also assume:
Register 1 contains 00 00 20 48
Register 2 contains 00 00 38 40

With the following instruction, the first eight bytes of
field 2 replace the first eight bytes of field 1:

Machine Format

Op Code L 8 1

02 07 I I 000 000

Appendix I. Number Representation and Instruction-Use Examples 299

Assembler Format

OpCode 01 (L,B1),02(B2)

MVC 0(8,1) ,0(2)

After the instruction is executed, field 1 becomes:

Field 1

2048 2052

~ F31 F4 I F51 F61 F71 F81 C9 I CA I (~
Field 2 is unchanged.

As indicated in the programming note in the MOVE
instruction descriptiort, MVC can be used to propagate one
character through a field by starting the first-operand field
one byte to the right of the second-operand field. For ex
ample, suppose that an area in storage starting with address
358 contains the following data:

358 360

I 00 I F1 I F21 F31 F4 I Fsl F61 F71 F81

With the following MVC instruction, the zeros in location
358 can be propagated throughout the entire field (assume
that register 11 contains 00 00 03 58):

Machine Format

Op Code L B1 01 B2 D2

~-0-2--"I~--07--~I-B~----0-01----~B~I----o~

Assembler Format

OpCode 01 (L,a1),02(B2)

MVC 1 (8,11),0(11)

Because MVC handles one byte at a time, the above
instruction essentially takes the byte at address 358 and
stores it at 359 (359 now contains 00), takes the byte at
359 and stores it at 35A, and so on, until the entire field
is filled with zeros. Note that an MVI instruction could
have been used originally to place the byte of zeros in loca
tion 358.
Notes:
1. Although the field occupying locations 358-360 contains

nine bytes, the length coded in the assembler format is
equa11to the number of moves (one less than the field
length).

2. The order of operands is important even though only
one field is involved.

Move Numerics (MVN)

To illustrate the operation of the MOVE NUMERICS
instruction, assume that the following two fields are in
storage:
Field 1

moo m~

I C1 I C2 I C3 I C4 I C5 I C61 C71 C81

300 Systemj370 Principles of Operation

Field 2

7041 7049

I FO I F1 I F21 F31 F41 F51 F61 F71 F81

Also assume:
Register 14 contains 00 00 70 90
Register 15 contains 00 00 70 40

After the instruction

Machine Format

Op Code L B1

D1 I 03 I F 001

Assembler Format

OpCode 01 (L,B1),02(B2)

MVN 1 (4,15),0(14)

is executed, field 2 becomes:

7041 7049

I F1 , F21 F3' F41 F4' F5' F6' F7' F81

000

The numeric portions of locations 7090-7093 have been
stored in the numeric portions oflocations 7041-7044. The
contents of locations 7090-7097 and 7045-7049 are un
changed.

Move with Offset (MVO)

Assume that the unsigned three-byte field in storage loca
tions 4500-4502 is to be moved to locations 5600-5603
and given the sign of the one-byte field located at 5603.
Also assume.:

Register 12 contains 00 00 56 00
Register 15 contains 00 00 45 00
Storage locations 5600-5603 contain 77 88 99 OC
Storage locations 45004502 contain 12 34 56

After the instruction

Machine Format

Op Code L1 L2 B1

I F1 I 3 I 2 I C 000

Assembler Format

Op Code 01 IL1, B1), 02 (L2, B2)

MVO 0(4,12),0(3,15)

000

is executed, storage locations 5600-5603 contain 01 23 45
6C. Note that the second operand was extended with one
high-order zero to fill out the first-operand field.

Move Zones (MVZ)

The MOVE ZONES instruction, similarly to MVC and MVN,
can operate on overlapping or noiloverlapping fields. (See
the examples for MVC and MVN.) When operating on non
overlapping fields, MVZ works similarly to the MVN instruc
tion, except that MVZ moves the high-order four bits of

each byte. To illustrate the use of MVZ with overlapping
fiel~s, assume that the following data field is in storage:

800 805

I F1 I C2 I F31 C41 F5 I C61

Also assume that register 15 contains 00 00 08 00. The
instruction:

Machine Format

Op Code L B, 0,

03 04 001 F 000

Assembler Format

Op Code 01 (L, B1), 02 (B2)

MVZ 1(5,15),0(15)

propagates the zone from the byte at address 800 through
data field, so that the field becomes:

800 805

I F1 I F21 F31 F41 F51 F6 I
Multiply (M, MR)

Assume that a number in register 5 is to be multiplied by
the contents of a word at address 3750. Initially:

The contents of register 4 are not significant
Register 5 contains 00 00 00 9 A = 154 10 = the multiplicand
Register 11 contains 00 00 30 00
Register 12 contains 00 00 06 00
Storage locations 3750-3753 contain 00 00 00 83 = 131 10
= the multiplier

The instruction required for performing the multiplica
tion is:

Machine Format

Op Code R1 X2 B2

150

Assembler Format

Op Code R1, 02 (X2' B2)

M 4, X'150' (11,12)

After the instruction is executed, registers 4 and 5 con
tain the product:

Register 4 contains 00 00 00 00
Register 5 contains 00 00 4E CE = 20,174 10

Storage locations 3750-3753 are unchanged.
The RR format of the instruction can be used to square

the number in a register. Assume that register 7 contains
00 00 00 10 = 161 o. The instruction

Machine Format

Op Code R1 R2

1C 16 I 7

Assembler Format

Op Code Rl , R2

MR 6,7
\<

multiplies the number in register 7 by itself:
The product, 00 00 00 00 00 00 01 00 = 256 10 ,

appears in registers 6 and 7.

Multiply Halfword (MH)

The MULTIPLY HALFWORD instruction is used to multi
ply the contents of a register by a halfword in storage. For
example, assume that:
Register 11 contains 00 00 00 15 = 21 10 = the multiplicand
Register 14 contains 000001 00
Register 15 contains 00002000
Storage locations 2102-2103 contain FF 09 = -39 = the multiplier

The instruction

Machine Format

002

Assembler Format

Op Code R1, 02 (X2, B2)

MH 11,2(14,15)

multiplies the two numbers. The product, FF FF FC CD =

-819 1 0, replaces the original con tents of registe r 11.
Only the low-order 32 bits of a product are stored in a

register; any high-order bits are lost. No program interrup
tion occurs on overflow.

OR (0, OR, 01, OC)

When the Boolean operator OR is applied to two bits, the
result is one when either bit is one; otherwise, the result is
zero. When two bytes are ORed in System/370, each pair of
bits is handled separately; there is no connection from one
bit position to another.

OR (01)

A frequent use of the OR instruction is to set a particular
bit to one. For example, assume that storage location 4891
contains 0100 00102 • To set the rightmost bit of this byte
to one without affecting the other bits, the following
instruction can be used (assume that register 8 contains
00 00 48 90):

Machine Format

Op Code 12

96 01

Assembler Format

Op Code 01 (B1), 12

01 1 (8),X'01'

001

Appendix I. Number Representation and Instruction-Use Examples 301

When this instruction is executed, the byte in storage is
ORed with the immediate byte:

Location 4891: 0100 00102
Immediate byte: 0000 0001 2
Result: 0100 00112

The resulting byte with bit 7 set to one is stored in location
4891. Condition code 1 is set.

Pack (PACK)

Assume that storage locations 1000-1004 contain the fol
lowing zoned-decimal field that is to be converted to a
packed-decimal field and left in the same location:

1000 1004

Zoned Field I F1 I F21 F3 I F41 C5 I
Also assume that register 12 contains 00 001000. After

the instruction

Machine Format

~F_2~1._4~1_4~I_C~I ___ 00_0 __ ~C~I ___ 0(~
Assembler Format

PACK 10(5,12) ,0(5,12)

is executed!, the field in locations 1000-1004 is in the
packed-decimal format:

1000 1004

Packed Field 100 100 112 1 34 15C 1

Notes:
1. This example illustrates the operation of PACK when the

first- and second-operand fields overlap completely.
2. During the operation, the second operand was extended

with high-order zeros.

Shift Left Double (SLDA)

The SHIFT LEFT DOUBLE instruction is similar to SHIFT
LEFT SINGLE except that SLDA shifts the 63 bits (not
including the sign) of an even/odd register pair. The R 1 field
of this instruction must be even. For example, if the con
tents of registers 2 and 3 are:

00 7F OA 72 FE DC BA 98 =
0000 0000 0111 1111 0000 1010 0111 0010
1111 1110 1101 1100 1011 1010 1001 10002

the instruc tion

Machine Format

01F

302 System/370 Principles of Operation

Assembler Format

Op Code R1, 02 (82)

SLOA 2,31(0)

results in registers 2 and 3 both being left-shifted 31 bit po
sitions, so that their new contents are:
7 F 6E 5 D 4C 00 00 00 00 =

0111 1111 0110 1110 0101 1101 0100 1100
0000 0000 0000 0000 0000 0000 0000 00002

In this case, a significant bit is shifted out of position 1, and
a fixed-point overflow interruption occurs (unless PSW bit
36 equals zero).

Shift Left Single (SLA)

Because the sign bit remains unchanged during an SLA op
eration, this instruction performs an algebraic shift. For
example, if the contents of register 2 are:

00 7F OA 72 = 0000 0000 0111 1111 0000 1010 0111 00102

then the instruction

Machine Format

008

Assembler Format

Op Code R1, 02 (82)

SLA 2,8(0)

results in register 2 being shifted left eight bit positions so
that its new contents are:

7F OA 72 00 = 0111 1111 0000 1010 0111 0010 0000 00002

If a left shift of nine places had been specified, a significant
bit would have been shifted out of position 1, and a fixed
point overflow interruption might have occurred (unless
PSW bit 36 equaled zero).

Note that register 0 does not participate in the operation
and that the contents of the R3 field are ignored.

Store Multiple (STM)

Assume that the contents of general registers 14, 15, 0, and
1 are to be stored in consecutive words starting with loca
tion 4050 and that:

Register 14 contains 00 00 25 63
Register 15 contains 00 01 27 36
Register 0 contains 12 43 00 62
Register 1 contains 73 26 12 57
Register 6 contains 00 00 40 00
The initial contents of locations 4050405 F are not significant

The STORE MULTIPLE instruction allows the use of just
one instruction to store the contents of the four registers
when it is written as:

Machine Format

90 I E I 1 I 6 050

Assembler Format

Op Code R1, R3, 02 (B2)

STM 14,1,X'50'(6)

After the instruction is executed:

Locations 40504053 contain 00 00 25 63
Locations 40544057 contain 00 01 27 36
Locations 4058405B contain 12 43 00 62
Locations 405C405F contain 73 26 12 57

Test Under Mask (TM)

The TEST UNDER MASK instruction examines specific bits
within a byte and sets the condition code according to what
it finds. For example, assume that:

Storage location 9999 contains FB
Register 9 contains 000099 90

Execution of the instruction

Machine Format

Op Code '2

91 C3

Assembler Format

Op Code 01 (B1), '2

TM 9(9) ,X'C3'

009

produces the following result:
FB 1111 1011 2

Mask (C3) 1100 00112
Result llxx XX112

Condition code 3 is set: all selected bits are ones.

I[location 9999 had contained B9, the result would have
been:

B9
Mask (C3)

Result

1011 10012
1100 00112
10xx xx012

Condition code 1 is set: the selected bits are both zeros and
ones.

If location 9999 had contained 3C, the result would have
been:

3C
Mask (C3)

Result

0011 11002
1100 00112
OOxx XX002

Condition code 0 is set; all selected bits are zeros.

Note: Storage location 9999 remains unchanged.

Translate (TR)

With the TRANSLATE instruction, System/370 can trans
late data from any code to any other desired code, provided
that each coded character consists of eight bits or fewer. In
the following example EBCDIC is translated to ASCII. The
first step is to create a 256-byte table in storage locations
1000-10FF. This table contains the characters of the code
into which you are translating (the function bytes). The
table must be in order, not by the binary values of the char
acters it contains, but by the binary sequence of the charac
ters of the original code (the argument bytes). For example,
note in the following table that the characters are in the
normal EBCDIC collating sequence.

Translate Table:

100F

1000
---~ -~f---.-

1010

1020
-.~,-- - - --- -- -'-

1030
-~- -- -- - - f-----~ -- -

1040 b +
---1---

I-- ... -- - --

1050 & $ *
~ - -- -".- -- -- - -- -- .-

1060 / % - ~ I--~ - ,-
1070 # @

- - ---- -~ f-~ -f.--

1080 ! b .£ d e !! h - - - .:-::~ - 1--- - - - ---

1090 j k m n 0 .r: ~ - -- - f--.--- --f-- --

10AO u v w x y z
.- --~ .--

10BO
--.----_.-

~-
- - -- ~- ---,--lOCO A B C D E F G H ,

- - - -
--~ ---

(= 1000 J K L M N 0 P Q R
-

10EO S T U V W X Y Z
-~

- --

10FO 0 1 2 3 4 5 6 7 8 9 -1--
-

10FF

Notes:
1. The underscores are used to indicate the ASCII representations

of the EBCDIC characters shown.
2. I f the character codes in the statement being translated occupy

a range smaller than 00 through FF 16. a table of fewer than 256
bytes can be used.

Now, assume that starting at storage location 2100 there
is a sequence of 20 1 0 EBCDIC characters to be translated to
ASCII:

Locations 2100-2113: JOHNbJONESb257bW.b95

Also assume:

Register 12 contains 00 00 21 00
Register 15 contains 00 00 10 00

Appendix I. Number Representation and Instruction-Use Examples 303

As the instruction

Machine Format

Op Code L

~_0_C __ ~._1_3 __ ~I_C __ ~ __ oo_0 ____ ~I __ F~ ____ 00~
Assembler Format

OpCode 0 1 (L,B1),02(B2)

TR 0(20,12) ,O(15)

is executed, the binary value of each argument byte is added
to the starting address of the table, and the resulting address
is used to fetch a function byte:

Table starting address: 1000
First argument byte (J): Dl

Address of function byte: lODI

Because the table is arranged so that every EBCDIC char
acter is replaced by the corresponding ASCII character, the
result is:

Locations 2100-2113: JOHNbJONESb257bW.b95

Note: To verify that this example is correct, find in appen
dix H the hexadecimal values for the remaining EBCDIC
characters and add them to the starting address of the table
(1000). The sums should be the addresses within the table
of the corresponding ASCII characters.

Translate and Test (TRT)

The TRANSLATE AND TEST instruction is used to scan a
data field {the argument bytes) for characters with a special
meaning. To indicate which characters have special meaning,
first set up a table similar to the one used for the TRANS-

Translate-and-Test Table:

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

20AO

20BO

20CO

2000

20EO

20FO

00

00

00

00

00

90

80

00

00

00
I--
00

00

00

00

00
-
00

00

00

00

00

00

00

8~· ..)
00

00

00
r-
00

00

00

00

00
-- --

00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00
,_.- .. --
00 00

00 00

00 00

00 00

00 00

00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00
f-- -

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00
_. -

00 00 00 00
c---- ---

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 30

00 00 00 50

00 00 00 60

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00
-

00 00 00 00
r---_
00 00 00 00

304 System/370 Principles of Operation

200F

00 00 00 00

00 00 00 00

00 00 00 00
--

00 00 00 00

10 20 25 00
--

35 40 45 00
--

55 00 00 00
.-- ._-

65 70 75 00

00 00 00 00

00 00 00 00 ._-
00 00 00 00

00 00 00 00

00 00 00 00
r- - ._-

00 00 00 00
--

00 00 00 00
--

00 00 00 00
20FF

LATE instruction. (See the preceding example.) Once again
the table must be in order by the binary sequence of the
code of the argument bytes. This time, however, put zeros
in the table to indicate characters without any special
meaning and nonzero values to indicate characters with
special meaning.

This example deals with EBCDIC characters; the charac
ters with special meaning in the argument field are a selected
set of punctuation marks. The Translate-and-Test Table was
set up accordingly.

Note: If the character codes in the statement being trans
lated occupy a range smaller than 00 through FF 16, a table
of fewer than 256 bytes can be used.

Now, assume that starting at storage location 3000 you
have the following sequence of 301 0 EBCDIC characters:

Locations 3000-301D: bbbbbUNPKbbbbbPROUT(9),WORD(5)

Also assume:

Register 1 contains 00 00 2F FF
Register 2 contains 00 00 00 00
Register 15 contains 00 00 20 00

As the instruction

Machine Format

Op Code L B1 0 1

00 10 I 001

Assembler Format

Op Code 0 1 (L, B1), O2 (B2)

TRT 1 (30,1),0(15)

000

is executed, the value of the first argument byte, a blank, is
added to the starting address of the table to produce the ad
dress of the function byte to be examined:

Table starting address
First argument byte (blank)

Address of function byte

2000
40

2040

Because zeros were originally placed in storage location
2040, no special action occurs, and the operation continues
with the second argument byte. The operation will thus
continue until it reaches the symbol ((left parenthesis) in
location 3013. When this symbol is reached, its value is
added to the starting address of the table, as usual:

Table starting address
Argument byte (left parenthesis)

Address of function byte

2000
4D

204D

Because location 204D contains a nonzero value, the fol
lowing actions occur:
1. The address of the argument byte, 003013, is placed in

the low-order 24 bits of register 1.
2. The function byte, 20, is placed in the low-order eight

bits of register 2.
3. Condition code 1 is set (scan not completed).

In general, TRANSLATE AND TEST is executed by the
use of an EXECUTE instruction, which supplies the length
specification from a general regi~ter. In this way, a complete
statement scan can be performed with a singleTRANSLA TE
AND TEST instruction repeated over and over by means of
EXECUTE. In the example, after the first execution of
TRT, register 1 contains the address of the last argument
byte translated. It is then a simple matter to subtract this
address from the address of the last argument byte (301D)
to produce a length specification. This length minus one is
placed in the register that is referenced as the RI field of
the EXECUTE instruction. (Because the length code in the
machine format is one less than the total number of bytes in
the field, one must be subtracted from the computed length.)
The second-operand address of the EXECUTE instruction
points to the TRANSLATE AND TEST instruction, which
must now appear in the following format:

Machine Format

Op Code L B1 °1
00 00 I 001 000

Assembler Format

Op Code 01 (L, B1), 02 (B2)

TRT 1(0,1),0(15)

Now the entire argument field can be scanned, stopping to
examine those characters of special interest, without having
to modify any of the instructions already written. After a
stop is made to examine a character, only a new length need
be computed before continuing the scan.

Unpack (UNPK)

Assume that storage locations 2501-2503 contain a signed,
packed-decimal field that is to be unpacked and placed in
storage locations 1000-1004. Also assume:

Register 12 contains 00 00 10 00
Register 13 contains 00 00 25 00
Storage locations 2501-2503 contain 12 34 5D
The initial contents of storage locations 1000-1004 are not

significant

After the instruction

Machine Format

F3 I 4 I 2 I c 000 001

Assembler Format

Op Code 01 (L1, B,), 02 (L2, B2)

UNPK 0(5,12),1(3,13)

is executed, storage locations 1000-1004 contain F 1 F2 F3
F4 D5.

DECIMAL INSTRUCTIONS

Add Decimal (AP)

Assume that the signed, packed-decimal field at storage loca
tions 500-503 is to be added to the signed, packed-decimal
field at locations 2000-2002. Also assume:

Register 12 contains 00 00 20 00
Register 13 contains 00 00 04 FD
Storage locations 2000-2002 contain 38 46 OD (a negative

number)
Storage locations 500-503 contain 01 12 34 5C (a positive

number)

After the instruction

Machine Format

Op Code L1 L2 B, 01 B2 02

1--1 -F-A~' -2 -r-,-3-"',-C-'--' 000-"---, 0~'--0-03----'

Assembler Format

Op Code 01 (L1, B1), 02 (L2, B2)

AP 0(3,12),3(4,'3)

is executed, storage locations 2000-2002 contain 73 88 5C;
condition code 2 is set to indicate that the sum is positive.
Note that:
1. Although the second-operand field is larger than the first

operand field, no overflow interruption occurs because
the result can be entirely contained within the first
operand field.

2. Because the two numbers had different signs, they were
if!. effect subtracted.

Compare Decimal (CP)

Assume that the signed, packed-decimal contents of storage
locations 700-703 are to be algebraically compared with the
signed, packed-decimal contents oflocation 500-503. Also
assume:

Register 12 contains 00 00 06 00
Register 13 contains 00 00 04 00
Storage locations 700-703 contain 17 25 35 6D
Storage locations 500-503 contain 06 72 14 2D

After the instruction

Machine Format

Op Code L, L2 B1

100

Assembler Format

Op Code 01 (L1, B1), 02 (L2, B2)

CP X'100'(4,12),X'100'(4,13)

100

is executed, condition code 1 is set, indicating that the first
operand (the contents of locations 700-703) is lower than
the second.

Appendix I. Number Representation and Instruction-Use Examples 305

Divide Dec:imal (DP)

Assume that the signed, packed-decimal field at storage lo
cations 2000-2004 (the dividend) is to be divided by the
signed, packed-decimal field at locations 3000-3001 (the
divisor). Also assume:

Instruction address: 005000
Location 5000 contains: FD 41 C 000 D 000

DP 0(5,12),0(2,13)
Register 12 contains 00 00 20 00
Register 13 contains 00 00 30 00
Storage locations 2000-2004 contain 01 23 45 67 8C
Storage locations 3000-3001 contain 32 1D

After the instruction at location 5000 is executed, the
dividend field is entirely replaced by the signed quotient
and remainder fields, as follows:

2000 2004

Locations 2'000-2004 \ 38 \46 \ 00 \ 01 lac I
Quotient I Remainder

I
Notes:
1. Because the signs of the dividend and divisor are differ

ent, the quotient receives a negative sign.
2. The remainder receives the sign of the dividend and the

length of the divisor.
3. If an attempt is made to divide the dividend by the one

byte field at location 3001, the quotient will be too long
to fit within the four bytes allotted to it. A decimal
divide exception exists, causing a program interruption.

Edit (ED)

Because the decimal-feature instructions operate only on
packed-decimal data, it is necessary to convert the data to
the zoned format before a legible report can be printed.
Moreover, if the report is to be useful to a great many peo
ple, certain punctuation marks, such as commas and decimal
points, should be inserted in appropriate places. The highly
flexible EDIT instruction performs these two functions in a
single instruction execution.

This example shows step-by-step one way in which the
EDIT instruction can be used. The field to be edited (the
source) is four byt~s long; it is edited against a pattern 13
bytes long. The follOWing symbols are used:

Svmbol

b (Hexadecimal 40)

((Hexadeci mal 21)

d (Hexadecimal 20)

Meaning

Blank character

Significance starter

Digit selector

Assume that the source and pattern fields are:

Source

1200 1203

I021571~_+

306 System/370 Principles of Operation

Pattern
1000 100C

\40 120 120 16B 120 120 121 14B 120 120 \40 I C31 09 1

b d d d d (d db C R

Execution of the instruction (assume that register 12 con
tains 00 00 10 00)

Machine Format

Op Code

DE OC 1 C 1 000

Assembler Format

Op Code D1 (L, B1), O2 (B 2)

ED 0(13,12),X'200'(12)

alters the pattern field as follows:

Significance
Indicator

Pattern Digit Before/After Rule

b off/off leave(1)
d 0 off/off fill
d 2 off/on(2) digit

on/on leave
d 5 on/on digit
d 7 on/on digit
(4 on/on digit

on/on leave
d 2 on/on digit
d 6+ on/off(3) digit
b off/off fill
C off/off fill
R off/off fill

Notes:

200

Location
1000-100C

bdd,dd(.ddbCR
bbd,dd(.ddbCR
bb2,dd(.ddbCR
same
bb2,5d(.ddbCR
bb2,57(.ddbCR
bb2,574.ddbCR
same
bb2,574.2dbCR
bb2,574.26bCR
same
bb2,574.26bbR
bb2,574.26bbb

(1) This character becomes the fill character.
(2) First nonzero decimal source digit turns on significance

indicator.
(3) Plus sign in the four low-order bits of the byte turns

off significance indicator.

Thus, after the instruction is executed, the source is un
changed, and the pattern is as follows:

Pattern

1000 100C

140 140 1 F216B I F51 F71 F414B 1 F21 F6140 140 140 ,

b b 2 5 7 4 2 6 b b b

Condition code = 2: result is greater than zero.

When printed, this new pattern field appears as:

2,574.26

If the number in the source field is changed to 000002 6D,
a negative number, and the original pattern is used, the edited
result this time is:
Pattern

1000 100C

140 140 140 140 140 140 140 14B 1 F2 I F6140 I ciEJ
b b b b b b b 2 6 b C R

Condition code = 1: result is less than zero.

The significance starter forces the significance indicator to
the on state and hence causes the decimal point to be pre
served. Because the minus-sign code has no effect on the
significance indicator, the CR symbol is also preserved.

Edit and Mark (EDMK)

After an EDIT AND MARK operation, a symbol (such as a
dollar sign) can be inserted at the appropriate position in the
edited result. Usually a currency symbol is inserted to the
immediate left of the first significant digit in the amount;
however, if a decimal point appears in an amount less than
one, the currency symbol must be inserted to the immediate
left of the decimal point. A typical operation would leave no
blank between the currency symbol and the amount, thus
protecting against one form of alteration when the result is
printed on a check.

If significance is not forced by the significance starter, the
EDIT AND MARK operation inserts into general register 1
an address one more than the address at which a currency
symbol would normally be inserted. After one is subtracted
from the value in general register 1 (for example, by using a
BRANCH ON COUNT instruction with R 1 set to one and
R2 set to zero), a MOVE instruction (MV!) may be used to
position the symbol in main storage.

Machine Format

Op Code

92 5B I 000

Assembler Format

Op Code 01 (B1), 12

MVI O(1),C'$'

If significance is forced, general register 1 remains un
changed. Therefore, the address of the character following
the Significance starter should be placed in the register be
fore the EDIT AND MARK instruction is performed.

Multiply Decimal (MP)

Assume that the signed, packed-decimal field in storage lo
cations 1202-1204 (the multiplicand) is to be multiplied by
the signed, packed-decimal field in locations 500-501 (the
multiplier).

1202 1204

Multiplicand 138 146 I 00 I

500 501

Multiplier ~

Because there is a total of eight significant digits in the
multiplier and multiplicand, a field at least five bytes in
length must be reserved for the signed result. As indicated in
the programming note for MULTIPLY DECIMAL, a ZERO
AND ADD into a larger field can provide the required space.
If it is assumed

Register 4 contains 00 00 12 00
Register 6 contains 00 00 05 00

then execution of the assembler instruction

ZAP X'100'(5,4),2(3,4)

sets up a new multiplicand in storage locations 1300-1304
as follows.

1300 1304

Multiplicand (new) I 00 I 00 I 38 1 46 1 00 I

Now, after the instruction

Machine Format

Op Code L1 L2 B1

FC I 4 11 I 4 100 6 000

Assembler Format

Op Code 01 (L1, B1), 02 (L2' B2)

MP X'1 00'(5,4) ,0(2,6)

is executed, storage locations 1300-1304 contain the prod
uct 01 2345 66 OC.

Shift and Round Decimal (SRP)

The SRP instruction can be used for shifting decimal fields
in main storage. When the field is shifted right, rounding can
also be done.

Decimal Left Shift

In this example, the contents of storage location FIELD 1
are shifted three places to the left, effectively multiplying
the contents of FIELD 1 by 1000. FIELD! is six bytes long,
and its contents are shown in "FIELDI (before)" below.
The following SRP instruction performs the above operation:

Machine Format

Op Code L1 13 S1 B2 °2

FO 5 I 0 **** 0 003

Assembler Format

Op Code S1 (~1), S2' 13

SRP FIELOH6),3,0

Appendix I. Number Representation and Instruction-Use Examples 307

FIELD1 (before): 00 01 23 45 67 8C
FIELD1 (after): 12 34 56 78 00 OC

The second-operand address in this instruction specifies the
shift amount (three places) completely in the D2 field. The
rounding factor, 13, is not used in left shift, but it must be a
valid decimal digit.

Decimal Right Shift

In this example, the contents of storage location lFIELD2
are shifted one place to the right, effectively dividing the
contents of FIELD2 by 10 and discarding the remainder.
FIELD2 is five bytes in length. The following SRP instruc
tion performs this operation:

Machine Format

Ll 13 Sl 8 2 02

r---F-O "---":"-4 ""-:;1 o--Y---~I-=-'-o 1-2 Op Code

Assembler Format

SRP FIELD2(5),64 -1,0

FIELD2 (before): 01 23 45 67 8C
FIELD2 (after): 00 12 34 56 7C

0011 1111

L~
6-bit two's
complement
for -1

The second-operand address specifies the shift amount
(one place)l completely in the D2 field. In the SRI' instruc
tion, shifts to the right are specified by negative shift values,
which are represented as a six-bit value in two's-complement
form.

The six-bit two's complement of a number, n, can be rep
resented as 64 - n. In this example, a right shift of one is
represented as 64 --I.

Decimal Right Shift and Round

In this example, the contents of storage location FIELD3
are shifted three places to the right and rounded, effectively
dividing by 1,000 and rounding to the nearest whole num
ber. FIELD3 is four bytes in length.

Machine Format

OpCode Ll 13 Sl 8 2 02

r----F-O """--3 --r-", -----T-5 -*-***--,---, O~, -"o~

I ClOG 1101

308 System/370 Principles of Operation

Lr
6-bit two's
complement
for -:3

Assembler Format

Op Code 51 (L1), S2' 13

SRP FIEL03(4),64 -3,5

FIELD3 (before): 12 39 60 OC
FIELD3 (after): 00 01 24 OC

The shift amount (three places) is specified in the D2 field.
The 13 field specifies the rounding fa~tor of 5. the rounding
factor is added to the last digit shifted out (which is a 6) and
the carry, if any, is propagated to the left. Since 5 + 6 in
decimal totals one, plus a carry, a carry is propagated in the
above example, and, as a result, 1239.6 becomes 1240.

Multiplying by a Variable Power of 10

Since the shift value designated by the SRP instruction speci
fies both the direction and amount of the shift, the operation
is equivalent to multiplying the decimal first-operand field
by 10 raised to the power specified by the shift value.

In this example, the SRP instruction is used to adjust a
decimal field by a variable scale factor contained in a general
register. Main storage location FIELD4 contains a decimal
integer (the decimal point is implied to be on the right).
FIELD4 is five bytes in length. Register 3 contains a fixed
point binary value that is the scale factor of FIELD4 (the
power of 10 by which FIELD4 is multiplied). The following
SRP instruction adjusts FIELD4 so that the implied decimal
point retains the two nearest decimal places (requiring the
implied decimal point to shift two places to the left, under
control of the D2 field)and multiplies FIELD4 by the vari
able power of 10 contained in register 3:

Machine Format

Op Code

FO 4 I 5 **** 002

Assembler Format

Op Code Sl (Li), 02 (82), 13

SRP FI EL04(5),2(3),5

FIELD4 (before): 00 00 00 12 7C

Case 1: Register 3 contains 00 00 00 00

If the scale factor is zero, FIELD4 represents
1 27 x 1 0° = 127
FIELD4 (after): 00 00 12 70 OC

The implied decimal point is now shifted two places
to the left.

Case 2: Register 3 contains 00 00 00 03
If the scale factor is 3, FIELD4 represents
127 x 103 = 127 000
FIELD4 (after): 01 27 00 00 OC

The implied decimal point is now shifted two places
to the left.

Case 3: Register 3 contains FF FF FF FD
If the scale factor is -3, FIELD4 represents
127 x 10..,3 = 0.127

FIELD4 (after): 00 00 00 01 3C

The implied decimal point is now shifted two places
to the left; because the shift was to the righi.
FIELD4 is rounded to the nearest two deciinal
places.

In the preceding cases, the implied decimal is shifted two
places to the left, under control of the D2 field in the SRP
instruction. The shifting is controlled by the address that is
resolved when the contents of the base register (GR 3) are
added to the displacement D2, effecting the multiplication
of FIELD4 by a variable power of 10.

Zero and Add (ZAP)

Assume that the signed, packed-decimal field at storage lo
cations 45004502 is to be moved to locations 4000-4004
with four leading zeros in the result field. Also assume:

Register 9 contains 00 00 40 00
Storage locations 4000-4004 contaIn 12 34 56 78 90
Storage locations 4500-4502 contain 38 46 OD

After the instruction

Machine Format

F8 I 4 I 2 I 9 000 500

Assembler Format

Op Code 01 (L1, 8,)' 02 (L2' 82)

ZAP 0(5,9),X'500'(3,9)

is executed, the storage locations 4000-4004 contain 0000
3846 OD; condition code 1 is set to indicate a negative re
sult. Note that because the first operand is not checked for
valid sign and digit codes, it may contain any combination
of hexadecimal digits.

FLOATING-POINT INSTRUCTIONS

In this section, the abbreviations FPRO, FPR2, FPR4, and
FPR6 stand for floating-point registers 0, 2,4, and 6,
respectively.

Add Normalized (AE, AER, AD, ADR)

The ADD NORMALIZED instructio.ns perform the addition
of two floating-point numbers and place the normalized re
sult in a floating-point register. Neither of the two numbers

to be added must necessarily be normalized before addition
occurs. For example, assume that:

FPR6 contains 43 08 21 00 00 00 00 00 = 82.1 16
== approximately 130.06 10

Storage locations 2000-2007 contain 41 12 34 56 00 00 00 00
= 1.23456 16 == approximately 1.13 10 (normalized)

Register 13 contains 00 00 20 00

The instruction

Machine Format

000

Assembler Format

Op Code R1, 02 (X2, 82)

AE 6,0(0,13)

can be used to perform the short-precision addition of the
two operands. In this example, the instruction operates as
follows:

The characteristics of the two numbers are compared.
Since the number in storage has a characteristic that is smaller
by 2, it is right-shifted after fetching until the characters
agree. The two numbers are then added:

FPR6: 43 08 21 00

Guard
Digit

Shifted number from storage: 43 00 12 34 5

Intermediate sum: 43 08 33 34 5

Because the intermediate sum is unnorinaiized, it is left
shifted to form the normalized floating-point number 42 83
33 45 (= 83.3345 16 = 131.210), This number replaces the
high-order portion of FPR6. The low-order portion of FPR6
and the contents of storage locations 2000-2007 are
unchanged.

If the long-precision instruction AD is used, the result in
FPR6 will be 42 83 33 45 600000 dO. Note that, in this
case, the use of the long-precision instruction provides one
additional hexadecimal digit of precision.

Add Unnormalized (AU, AUR, AW, AWR)

The ADD UNNORMALIZED instructions operate identi
cally to the ADD NORMALIZED instructions, except that
the final result is not normaHzed when ADD UNNORMAL
IZED is used. For example, using the same operands as in
the example for ADD NORMALIZED, when the short
precision instruction

Machine Format

7E I 6 I 0 I ° I 000

Appendix I. Number Representation and Instruction-Use Examples 309

Assembler Format

Op Code Rl , D2 (X2, 8 2)

AU 6,0(0,13)

is executed, the two numbers are added as follows:

FPR6: 43 08 21 00

Guard
Digit

Shifted number from storage: 43 00 12 34 5

Sum: 43 08 33 34 5

The guard digit participates in the addition but is dis
carded. The unnormalized sum replaces the high-order por
tion of FPR6.

If the result in FPR6 is converted to a normalized number
(42 83 33 40 00 00 00 00) and is compared to the result in
FPR6 when ADD NORMALIZED was used (4283 3345 00
0000(0), it is apparent in this case that the use of ADD
NORMALIZED (with the retention of the guard digit) has
preserved some additional significance in the result.

COmparE! (CE, CER, CD, CDR)

Assume that FPR4 contains 43 00000000000000 (= 0),
and FPR6 contains 34 12 34 56 78 9A BC DE (a positive
number). The contents of the two registers are to be com
pared with the following long-precision instruction:

Machine Format

Op Code Rl R2

~[4JiJ
Assembler Format

Op Code Rl , R2

CDR 4,6

When this instruction is executed, the number with the
smaller characteristic is taken from the register and right
shifted until the two characteristics agree. The shifted con
tents of FPR6 are 43 00000000000000, with a guard
digit of zero. Therefore, when the two numbers are com
pared, condition code 0 is set, indicating an equality.

As the above example implies, when floating-point num
bers are compared, more than two numbers may compare
equally if one of the numbers is unnormalized. For example,
the unnormalized floating-point number 41 00 1234 56 78
9A BC compares equally with all numbers of the form 3F
12 34 56 78 9A BC OX (X represents any hexadecimal num
ber). When the COMPARE instruction is executed, the two
low-order digits are shifted right two places, the 0 becomes
the guard digit, and the X does not participate in the
comparison.

Note, however, that when two normalized floating-point
numbers are compared, the relationship between numbers
that compare equally is unique: each digit in one number
must be identical to the corresponding digit in the other
number.

310 System/370 Principles of Opera tion

MULTIPROCESSING EXAMPLES

Compare and Swap (CS, CDS)

The COMPARE AND SWAP and COMPARE DOUBLE AND
SWAP instructions can be used in multiprogramming or
multiprocessing environments to serialize access to counters,
control words, and other common storage areas.

Setting a Single Bit

In a multiprocessing system, two central processors have
access to the same main storage, and both can fetch, modify,
and store data in the same locations (such as in a system con
trol block). In this configuration, if the OR (immediate) in
struction is used to modify storage, such as when setting a
flag bit, program logic errors may occur.

Example of a Program Failure Using OR Immediate

Assume that two independently processing programs wish to
set different bits to one in a common byte in storage. The
following example shows how the use of the instruction OR
immediate (01) can fail to accomplish this, if the programs
are executed nearly simultaneously on two different CPUs.
One of the possible error situations is depicted.

Execution of Instruction
01 FLAGS,X'01' on
CPU A

Fetch FLAGS X'OO'

OR X'Ol' into X'OO'

Store X'Ol' into FLAGS

Execution of Instruction
01 FLAGS,X'80' on

FLAGS CPU B

X'OO'

X'OO'

X'OO'

X'OO'

X'80'

X'Ol'

Fetch FLAGS X'OO'

OR X'80' into X'OO'

Store X'80' into FLAGS

FLAGS should have value of X'8l' following both updates.

The problem shown here is that the value stored by the 01
instruction executed on CPU A overlays the value that was
stored by CPU B. The X'80' flag bit was erroneously turned
off, and the program executing on CPU B now has invalid
data.

The COMPARE AND SWAP (CS) instruction is included
in System/370 to overcome this and similar problems. The
CS instruction first checks the value of a storage location
and then modifies it only if it is the same as the program
expects; normally, this would be a previously fetched value.
If the location is not what the program expects, then the lo
cation is not modified, but rather the current value of the
location is loaded into a general register, in preparation for
the program to loop back and try again. During the CS
execution, no other CPU can access the subject storage
location.

The following instruction sequence shows how the CS in
struction can be used to update a single bit in storage.
Assume that FLAGS is the first byte of a word in storage
called "WORD."

LA 6,X'80' Put bit to be ORed into register 6
SLL 6,24 Shift left 24 places to align the byte

to be ORed with the location of
FLAGS within WORD

L S,WORD Get original flag bit values
RETRY LR 4,5 Put flags to modify into register 4

OR 4,6 Turn on bit in new copy of flags
CS S,4,WORD Store new flags unless original flags

were changed
BNE RETRY If new flags not stored, try again

The format of the CS instruction is:

Machine Format

Op Code S1

BA ****

Assembler Format

Op Code R1, R3 , S1

CS 5,4,WORD

The CS instruction compares the first operand (register 5
containing the original flag values) to the second operand
(word) while storage access to the subject location is not
permitted to any CPU other than the one executing the CS
instruction.

If the compare is successful, indicating that FLAGS still
has the same value that it originally had, the modified copy
in register 4 is stored into FLAGS. If FLAGS has changed
since it was loaded, the compare will not be successful, and
the current value of FLAGS is loaded into register S.

The CS instruction sets condition code 0 to indicate a
successful compare and swap, and condition code 1 to indi
cate an unsuccessful compare and swap.

The program executing the example instructions tests the
condition code following the CS instruction and reexecutes
the flag-modifying instructions if the CS instruction indi
cated an unsuccessful comparison. When the CS instruction
is successful, the program continues execution outside the
loop and FLAGS contains valid data.

Updating Counters

In this example, a 32-bit counter is updated by a program
using the CS instruction to ensure that the counter will be
correctly updated. The original value of the counter is ob
tained by loading the word containing the counter into a
register. The original counter is then moved into another
register to provide a modifiable copy, and a register (con
taining an increment to the counter) is added to the modi
fiable copy to provide the updated tounter value. The CS
instruction is then used to ensure a (-'".lid store of the
counter. The following instruction sequence performs this
procedure:

LA
L

LOOP LR
AR

6,1
S,CNTR
4,5
4,6

Put increment (1) in register
Get original counter value
Set up copy to modify
Update counter in register

CS 5,4,CNTR
BNE LOOP

Page of GA22-7000-4
Revised September 1,1975
By TNL: GN22-0498

Update counter in storage
If original value changed, update new
value

CNTR (before): 00 00 00 10

CNTR (after): 00 00 00 11

The program updating the counter byte then checks the
result by examining the condition code. Condition code 0
indicates a successful update, and the program can proceed.
If the counter byte had been changed between the time that
the program loaded its original value and the time that it
executed the CS instruction, the CS instruction would have
loaded the new control byte value into register 5 and set
the condition code to 1, indicating an unsuccessful update.
The program would then have to update the new counter
value in register 5 and retry the CS instruction, retesting the
condition code, and retrying, until a successful update is
completed.

The following shows two CPUs, A and B, executing the
above program simultaneously. That is, both CPUs desire
to add one to CNTR.

CPUA

Reg4 Reg5

16 16

16 16

17 16
17 16

CPUB Comments

CNTR Reg4 Reg5

16
16

16

16
16
17

17

18

16

17

17

18

18

16

16

CPU A loads RegS and Reg4
from CNTR
CPU B loads Reg5 and Reg4
from CNTR
CPU B adds 1 to Reg4
CPU A adds 1 to Reg4
CPU A executes CS; successful
match store

17 CPU B executes CS; no match,
Reg5 changed

17 CPU B loads RegS into Reg4
and adds 1 to Reg4

17 CPU B executes CS; successful
match store

EXAMPLES OF THE USE OF COMPARE AND SWAP

The following examples of the use of the COMPARE AND
SWAP instruction illustrate the applications for which the
instruction is intended. It is important to note that these
are examples of functions that can be performed by pro
grams running enabled or by programs that are running on
a shared-main-storage multiprocessor.

I

Interlocked Sing1e-Word, or Smaller, Serially Reusable
Resource (SR R)

The following routine allows a program to modify the con
tents of a storage location while running enabled, even
though the possibility exists that another CPU may simul
taneously update the same location and even though the
routine may be interrupted by another program that updates
the location.

Appendix I. Number Representation and Instruction-Use Examples 311

Page ofGA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

SRR UPDATE Routine

Initial conditions:
General register (GR) 2 contains the address of the word

to be updated.
L 3,0(2) FETCH THE WORD

TRY AGN LR 4,3 MOVE IT TO GR4
[ANY INSTRUCTION] MODIFY GR4 (e.g., add a constant,

set a bit, etc.)
CS

BNE

3,4,0(2) STORE THE NEW VALUE IF THE
WORD HAS NOT CHANGED

TRYAGN

The branch to TRY AGN is different from "bit-spinning"
in that the branch will be taken only if some other program
modifies the update location. If a number of CPUs simul
taneously attempt to modify one location, one CPU will
fall through the loop, another will loop once, and so on until
all CPUs have succeeded.

Bypassing POST

The following routine allows the SVC "POST" as used in
OS/VS to be bypassed whenever the corresponding WAIT
has not yet been issued, provided that the supervisor WAIT
and POST routines use COMPARE AND SWAP to manipu
late event control blocks (ECBs).

BYPASS POST Routine

Initial conditions:
GRl contains the address of the ECB.
GRO contains the POST code.

HSPOST L 3,0(1) GR3 = CONTENTS OF ECB
LTR 3,3 ECB MARKED 'WAITING'
BM PSVC YES, ISSUE AN SVC
CS 3,0,0(1) NO, STORE POST CODE
BE EXIT CONTINUE

PSVC SVC POST ECB ADDRESS IS IN GRl,
POST CODE IN GRO

EXIT [ANY INSTRUCTION]

A corresponding bypass WAIT function, using TM, is in
use at present.

The following routine may be used in place of the previous
HSPOST routine if the ECB is assumed to contain zeros
when it is not m~rked "WAITING."

HSPOST SR 0,0
CS 0,2,0(1)
BE EXIT
SVC POST

EXIT [ANY INSTRUCTION]

Lock/Unlock

When SRRs larger than a doubleword are to be updated, it
is usually necessary to provide special interlocks to ensure

312 System/370 Principles of Operation

that a single program at a time updates the SRR. In general,
updating a list, or even scanning a list, cannot be safely
accomplished without first "freezing" the list. However,
the COMPARE AND SWAP instructions can be used in
certain restricted situations to perform queuing and list
manipulation. Of prime importance is the capability to per
form the lock/unlock functions and to provide sufficient
queuing to resolve contentions, either in a LIFO or FIFO
manner. The lock/unlock functions can then be used as the
interlock mechanism for updating an SRR of any complexity.

The lock/unlock functions are based on the use of a header
associated with the SRR. The header is the common starting
point for determining the states of the SRR, either free or
in use, and is also used for queuing requests when con
tentions occur. Contentions are resolved using WAIT and
POST. Although the examples do not show it, it is expected
that the BYPASS WAIT and BYPASS POST would be used.
The general programming technique requires that the pro
gram that encounters a locked SRR must "leave a mark on
the wall" indicating the address of an ECB on which it will
WAIT. The program "unlocking" sees the mark and posts
the ECB, thus permitting the waiting program to continue.
In the two examples given, all programs using a particular
SRR must use either the LIFO queuing scheme or the FIFO
scheme; the two cannot be mixed. When more complex
queuing is required, it is suggested that the queue for the
SRR be locked using one of the two methods shown.

Lock/Unlock with LIFO Queuing for Contentions

The header consists of a word, which can contain zero, a
positive value, or a negative value.

• A zero value indicates that the SRR is free.

• A negative value indicates that the SRR is in use but no
additional programs are waiting for the SRR.

• A positive value indicates that the SRR is in use and that
one or more additional programs are waiting for the SRR.
Each waiting program is identified by an element in a
chained list. The positive value in the header is the address
of the element most recently added to the list. .

Each element consists of two words. The first word is used
as an ECB; the second word is used as a pointer to the next
element in the list. A negative value in a pointer indicates
that the element is the last element in the list. The element
is required only if the program finds the SRR locked and
desires to be placed in the list.

The following char f
. scribes the action taken for LIFO

LOCK and LIFO UNLOCK routines.

Action

Function
Header Header Header

Contains Contains Contains

Zero Positive Negative
Value Value

LIFO LOCK
(The incoming
element is at
location AI

SRR is free. SRR is in use. Store the contents
Set the header to of the header into location A +4.
a negative value. Store the address A into the header.
Use the SRR. WAIT; the ECB is at location A.

LI FO UNLOCK Error Someone is The list is empty.
waiting for the Store zeros into
SRR. Move the the header. The
pointer from the SRR is free.
"last in" element
into the header.
POST; the ECB
is in the "Iast
in" element.

The following routines allow enabled code to perform the
actions described in the previous chart.

LIFO LOCK Routine:

Initial conditions:
GRI contains the address of the incoming element.
GR2 contains the address of the header.

LLOCK SR 3,3 GR3 ::;: 0
ST 3,0(1) INITIALIZE THE ECB
LNR 0,1 GRO = A NEGATIVE VALUE

TRYAGN CS 3,0,0(2) SET tHE HEADER TO A NEGATIVE
V ALUE IF THE HEADER CON
TAINS ZEROS

BE USE DID THE HEADER CONTAIN
ZEROS?

ST 3,4(1) NO, STORE THE VALUE OF THE
HEADER INTO THE POINTER IN
THE INCOMING ELEMENT

CS 3,1,0(2) STORE THE ADDRESS OF THE
INCOMING ELEMENT INTO THE
HEADER

LA 3,0(0) GR3 = 0
BNE TRYAGNDID THE HEADER GET UPDATED?
WAIT (1) YES, WAIT FOR THE RESOURCE;

THE ECB IS IN THE INCOMING
ELEMENT

USE [ANY INSTRUCTION]

LIFO UNLOCK Routine:

Initial conditions:
GR2 contains the address of the header.

LUNLK L 1,0(2) GRI ::;: THE CONTENTS OF THE

A

B

EXIT

LTR 1,1
BM B
L 0,4(1)
CS 1,0,0(2)

HEADER
DOES THE HEADER CONTAIN A
NEGATIVE VALUE?
NO, LOAD THE POINTER FROM THE
"LAST IN" ELEMENT AND STORE IT
IN THE HEADER

BNE A DID THE HEADER GET UPDATED?
POST (1) YES, POST THE "LAST IN" ELEMENT
B EXIT CONTINUE
SR 0,0 THE HEADER CONTAINS A NEGATIVE
CS 1,0,0(2) VALUE; FREE THE HEADER AND
BNE A CONTINUE
[ANY INSTRUCTION]

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Note that the L 1,0(2) instruction at location LUNLK
would have to be CS 1,1,0(2) if it were not for the rule
that a full word fetch starting on a word boundary must
fetch the word such that if another CPU changes the word
being fetched, either the entire new or the entire old value
of the word, and not a combination of the two, is obtained.

LOCK/UNLOCK with FIFO Queuing for Contentions

Both a header and a free element are associated with the
SRR. Each program using the SRR must provide an element
regardless of whether contention occurs. The element pro
vided by the program becomes the new free element, and
the old free element becomes the program's new current
element. The free element is initialized to contain a posted
ECB. In the example, the element need be only a single
word. In some cases, the element could be made larger to
include a reverse pointer to the previous element.

The following chart describes the action taken for FIFO
LOCK and FIFO UNLOCK routines.

Function

FIFO LOCK
(The incoming
element is at
location A)

FIFO UNLOCK

Action

Store the address A into the header.
WAIT; the ECB is at the location
addressed by the old contents of the
header.

POST; the ECB is at the location that
you specified as an element when you
locked.

The following routines allow enabled code to perform the
actions described in the previous chart.

FIFO LOCK Routine:

Initial conditions:
PNTRS is a doubleword containing two pointers. The first
word is a pointer to the current element owned by this
program. The second word is a pointer to the previous
element owned by this program.
GR3 contains the address of the header.

FLOCK L 2,PNTRS GR2 = ADDRESS OF THE

SR
ST
L

1,1
1,0(2)
1,0(3)

CURRENT ELEMENT
GRI = ZERO
INITIALIZE THE ECB
GRI = CONTENTS OF THE
HEADE~ADDRESSOFTHE

OLD ELEMENT
TRY AGN CS 1,2,0(3) STORE THE ADDRESS OF THE

USE

BNE TRY AGN CURRENT ELEMENT INTO THE
HEADER, CURRENT ELEMENT

~ BECOMES NEW FREE ELEMENT
STM 1,2PNTRS SAVE THE ADDRESSES IN GRI

WAIT (1)

, AND GR2 FOR FUTURE USE,
CURRENT ELEMENT BECOMES
PREVIOUS ELEMENT, OLD
FREE ELEMENT BECOMES
CURRENT ELEMENT
GRI CONTAINS THE ADDRESS
OF THE ECB

[ANY INSTRUCTION]
I:(' < , k

Appendix I. Number Representation and Instruction-Use Examples 313

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

J?IFO UNLOCK Routine:

Initial conditions:
PNTRS is the same location used in the FIFO LOCK
routine.
FUNLK L 1,PNTRS+4 GRI CONTAINS THE ADDRESS

POST (1) OF THE PREVIOUS ELEMENT,
THAT IS, THE ELEMENT THAT
WAS ADDED IN THE FLOCK
ROUTINE.

CONTINUE [ANY INSTRUCTION]

Free-Pool-List Manipulation

It is anticipated that a program will need to add and delete
items from a free list without using the lock/unlock routines.
This is especially likely since the lock/unlock routines re
quire s.torage elements for queuing and may require working
storage. The lock/unlock routines discussed previously allow
simultaneous "lockers" but permit only one "'unlocker" at
a time. In such a situation, multiple additions and a single
deletion to the list may all occur simultaneously, but multi
ple deletions cannot occur at the same time. In the case of
a chain of pointers containing free storage buffers, multiple
deletions along with additions can occur simultaneously. In
this case, the removal cannot be done using the CS instruc
tion without a certain degree of exposure.

Consider a chained list of the type used in the LIFO lock/
unlock example. Assume that the first two elements are at
locations A and B, respectively. If one program attempted
to remove the first element and was interrupted between
the fourth and fifth instructions of the LUNLK routine,
the list could be changed so that elements A and C are the
first two elements when the interrupted program resumes
execution. The CS instruction would then succeed in storing
the value B into the header, thereby destroying the list.

The probability of the occurrence of such list destruction
can be reduced to near zero by appending to the header a
counter that indicates the number of times elements have
been added to the list. The use of a 32-bit counter guaran
tees that the list will not be destroyed unless the following
events occur, in this exact sequence:
1. An unlocker is interrupted between the fetch of the

pointer from the first element and the update of the
header.

2. The list is manipulated, including the deletion of the ele
ment referenced in step 1, and exactly 232

- 1 additions
to the list are performed. Note that this takes on the
order of days to perform in any practical situation.

3. The element referenced in step 1 is added to the list.
4. The unlocker interrupted in step 1 resumes execution.

The routines ADD TO FREE LIST and DELETE FROM
FREE LIST use such a counter in order to allow multiple,
simultaneous additions and removals at the head of a chain
of pointers.

The list consists of a doubleword header and a chain of
elements. The first word of the header contains a pointer

314 System/370 Principles of Operation

to the first element in the list. The second word of the
header contains a 32-bit counter indicating the number of
additions that have been made to the list. Each elemen t
contains a pointer to the next element in the list. A zero
value indicates the end of the list.

The following chart describes the free-pool-list manipu
lation.

Function

ADD TO LIST
(The incoming
element is at
location AI

DELETE FROM
LIST

Action

Hellder=O, Count Header=A, Count,

Store the first word of the header into location A.
Store the address A into the first word of the header.
Decrement the second word of the header by one.

The list is empty. Set the first word of the
header to the value of the
contents of location A.
Use element A.

The following routines allow enabled code to perform the
free-pool-list manipulation described in the chart.

ADD TO FREE LIST Routine:

Initial conditions:
GR2 contains the address of the element to be added.
GR4 contains the address of the header.

ADDQ LM 0,1,0(4) GRO,GRI = CONTENTS OF THE

TRYAGN ST

LR
BCTR
CDS
BNE

0,0(2)

3,1
3,0
0,2,0(4)
TRYAGN

HEADER
POINT THE NEW ELEMENT TO
THE TOP OF THE LIST
MOVE THE COUNT TO GR3
DECREMENT THE COUNT
UPDA TE THE HEADER

DELETE FROM FREE LIST Routine:

Initial conditions:
GR4 contains the address of the header.

DELETQ LM 2,3,0(4) GR2,GR3 = CONTENTS OF THE
HEADER

TR Y AGN L TR 2,2 IS THE LIST EMPTY?
BZ EMPTY YES, GET HELP

L 0,0(2) NO, GRO= THE POINTER FROM
THE FIRST ELEMENT

LR 1,3 MOVE THE COUNT TO GRI
CDS 2,0,0(4) UPDATE THE HEADER
BNE TRYAGN

USE [ANY INSTRUCTION] THE ADDRESS OF THE REMOVED

ELEMENT IS IN GR2

Note that the LM instructions at locations ADDQ and
DELETQ would have to be CDS instructions if it were not
for the rule that a doubleword fetch starting on a double
word boundary must fetch the doubleword such that if
another CPU changes the doubleword being fetched, either I

the entire new or the entire old value of the doubleword,
and not a combination of the two, is obtained.

Where more than one page-reference is given, major references
appear first.

absolute address 95, 14
absolute main storage 92
access control bits (in key in storage) 38
access exception 80

handling of (table) 81
priority of 83
recognition of 80
recognition of (table) 83

access to main storage, right of 38
accesses (references), sequence of main storage 23
active, state of address translation table entry 65
adapter, channel-to-channel 186
ADD (A, AR) instruction 117
ADD DECIMAL (AP) instruction 149

example 305
ADD HALFWORD (AH) instruction 117

example 291
ADD LOGICAL (AL, ALR) instruction 120
ADD NORMALIZED (ADR, AD, AER, AE) instruction 160

example 309
ADD NORMALIZED (AXR) instruction 160
ADD UNNORMALIZED (AWR, AW, AUR, AU) instruction 162

example 309
address

absolute 95, 14
base 21
branch 22
channel/device 192
failing-storage (see failing-storage address)
invalid 77
logical 14,58
of channel command word, in CSW 229

-real 95, 14, 57
translation (see dynamic address translation)
virtual 57

address arithmetic (generation) 21
address-compare controls 244
address generation 21
address identification, CPU 101
addresses

handling of 63
translated (see dynamic address translation)
types of 62

addressing
capability 14
information in a register 20
limitations of 14
main storage 14
wraparound 14

addressing exception 76,15
during address translation 61,62,81
summary table 77

. addressing, I/O
channel 191
device 191
nonexistent or protected areas 213

Page ofGA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

alert condition (machine-check interruption) 175
degradation 179
warning 179

alteration mask for program-event recording 40
alteration of an instruction by EXECUTE 129
AND (NR, N, NI, NC) instruction 120

example 292

Index

arithmetic (see decimal instructions; floating-point-instructions;
general instructions)

assembly language, symbolic operand designations for System/370
(see individual instruction descriptions)

assigned main storage locations 90
absolute 91
real 90

asynchronous fixed logout (see machine-check fixed logout)
asynchronous fixed logout control bit (in control register 14) 182
asynchronous machine-check logout (see machine-check extended

logout and machine-check fixed logout)
asynchronous MCEL control bit (in controlregister 14) 182
attached, state of address translation table entry 65
attachment of I/O devices 186
attention (I/O unit status condition) 229,239
availability, System/ 370 facilities for achieving 11
available (I/O system state) 193

B field of an instruction 20,21
backed-up bit (machine-check interruption code) 179
base address (in operand designation) 21
basic-control mode 31

PSW format 33
(see also extended-control mode)

BC mode (see basic-control mode)
binary notation, excess-64 159
bit, check 14
bits in a byte 14
block-concurrent references to storage 27
block of data, I/O

definition 210
self-describing 214

block-multiplexer channel 188
block-multiplexing-control bit 189
block-multiplexing mode bit (in control register 0) 189
blocking of data (I/O operations) 210
boundaries in main storage, integral 15
branch address 22
BRANCH AND LINK (BAL, BALR) instruction 121

example 292
BRANCH ON CONDITION (BC, BCR) instruction 121

example 292
BRANCH ON COUNT (BCT, BCTR) instruction 122

example 293
BRANCH ON INDEX HIGH (BXH) instruction 122

example 293
BRANCH ON INDEX LOW OR EQUAL (BXLE) instruction 123

example 293
branch, successful (program event) 42
branching, general description of 22
burst mode 187
bus out check (sense data) 220

Index 315

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

busy (I/O unit status condition) 230, 238
byte (definition) 14
byte index field 58
byte-interleave mode 187
byte-multiplexer channel 188
byte-oriented-operand feature 15

cache 13
CAl (channel available interruption) 227
CAW (channel address word) 210,190
CBC (checking block code) 171
CBC, invalid

handling of
in keys in storage 173
in registers 173
in storage 172

CCW (channel command word) 189,211
address in CAW 210
address in CSW 229
command code 212
definition 211

CCWI (lPL) in absolute main storage 91
CCW2 (lPL) in absolute main storage 91
central processing unit (see CPU)
chain command (CC) flag (in CCW) 211
chain data (CD) flag (in CCW) 211
chaining check (channel status condition) 235,237
chaining, command 215,279
chaining data 213,191
change bit 57,67
channel 187

address 192
burst mode 187
byte-interleave mode 187
commands 217
compatibility of operation 191
control check (status condition) 235,237
data check (status condition) 235,237
description of 17
equipment error 196
identification (lD) 240,206
indirect data addressing (CIDA) 216
mask, BC mode (see extended control mode) 33
masks (in control register 2) 88
modes of operation 187
not operational (state of I/O system) 194
program, termination of (or conclusion of) 222
sub channel 188
types 188
working (state of I/O system) 194

channel address validity flag 241
channel address word (CAW) 190,210
channel available interruption (CAl) 227
channel command word (see CCW)
channel end (I/O unit status condition) 231, 238
channcllD 240,92,206
channel logout 240
channel status conditions 233

chaining check 235
channel control check 235
channel data check 235
incorrect length 233
interface control check 235
program check 234
program-controlled interruption 233
protection check 234

316 System/370 Principles of Operation

channel status word (CSW) 228
channel-to-channel adapter 186
characteristic in floating-point operand 158
check (or checking) bit 171, 14
check-stop indication 245

control bit (in control register 14) 181
status bit 99

check-stop state 31
checking block 171

code (see CBC)
class number, monitor 39
classes of interruptions (see interruption classes)
CLEAR I/O (CLRIO) instruction 198
clock

interval timer as a real-time 49
time-of-day (TOD) 46

clock comparator 47
interruption 48, 87
interruption submask 88
mask bit (in control register 0) 87
priority of interruption 86
valid bit in machine-check interruption code 180
save area (machine-check extended interruption information,

timing facilities) (see timing facilities) 177
code

command 217
condition (see condition code in PSW)
instruction length 71, 34, 72
interruption, in BC mode PSW 34, 72
monitor 39
operation 19
PER (program-event recording) 40

codes, decimal sign, and zone 148
command

control 219
I/O 210,217
read 218
read backward 218
retry 221
sense 219
transfer in channel 221
write 218

command address, I/O 236
in CAW 210
in CSW 229,235

command address/key validity flag 241
command chaining 215,191
command code (in CCW) 211
command, immediate (see immediate operation) 222
command reject (sense data) 220
command retry 221
communications area, I/O 239
COMPARE (C, CR) instruction 123
COMPARE (CDR, CD, CER, CE) instruction 163

example 310
COMPARE AND SWAP (CS) instruction 123

example 310
COMPARE DECIMAL (CP) instruction 149

example 305
COMPARE DOUBLE AND SWAP (CDS) instruction 124
COMPARE HALFWORD (CH) instruction 125

example 294
COMPARE LOGICAL CHARACTERS UNDER MASK (CLM)

instruction 126
example 295

COMPARE LOGICAL (CLR, CL, CLI, CLC) instruction 125
example 294

COMPARE LOGICAL LONG (CLCL) instruction 126
example 295

compatibility and compatibility limitations in
System/370 2

compatibility of I/O operations 191
completion (method of ending instruction execu tion) 74
conceptual sequence (order) in instruction execution 23
concluding (termination of) I/O

at operation initiation 222
by HALT I/O or HALT DEVICE 224
due to equipment malfunction 226
of data transfer 223
of I/O operations 222

concurrent within a block, storage references 25
condition code (CC)

deferred (DCC), in CSW 229
setting for I/O instructions 195
setting, summary of (see Appendix E)

condition code in PSW 22
BC mode 34
EC mode 34
program mask and condition code validity bit 180

conditions
determining response to orders 98
external interruption 84
I/O interruption 226, 88
precluding interpretation of an order code 98
program interruption 75

configuration controls 245
console device (of the system console) 243
console, system 243,18
control

check-stop 181
logout 181
panel, system 243
store status 54
system 29

control command, I/O 219
control panel, system 243
control register 36, 16

field and bit assignments 37
machine check controls 181,183
save area (machine-check extended interruption

information) 177
valid bit (machine-check interruption code) 181

control unit 187
address in device address 192
attachment in system 187
description of 18
functions 187
selection 192

control unit end (I/O unit status condition) 230
CONVERT TO BINARY (CVB) instruction 127

example 296
CONVERT TO DECIMAL (CVD) instruction 128

example 296
count 236

in CCW 211
in CSW 238

counter, instruction (see instruction address in PSW)
coupled general registers 16

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

CPU (central processing unit)
address iden tifica tion 101
general description 15
initialization reset 51
power-on reset 53
reset 50
reset order 98
retry 172
signaling and response 97

CPU states 30
problem/supervisor 30
stopped/ operating 30
wait/running 30

CPU timer 48
interruption 48, 88
interruption submask 88
mask bit (in control register 0) 88
priority of interruption 86.
save area (machine-check extended interruption

information timing facilities) (see timing facilities) 177
valid bit in ·machine-check interruption code 180

CSW (channel status word) 228
current PSW 16, 22
customer-engineer-control section (of the system control

panel) 248

D field of an instruction 20
damage condition 175
DAT (see dynamic address translation)
data

address (in CCW) 211
block, I/O (definition) 210
chaining (in I/O operations) 213,191
check (sense data) 220
exception 78
format

decimal instruction 147
fixed-point numbers 116
floating-point instruction 157
general instruction 116

formats 14
prefetching and buffering of in channel 212
transfer (I/O)

concluding of 223
modes of 187

decimal
data format 147
divide exception 78
number representation 148
operands 147
overflow exception 78
packed 147
sign codes 147,148
zoned 147

decision making by BRANCH ON CONDITION instruction 22
deferred condition code (DCC) 229
degradation

machine-check interruption condition 179, 175
report mask bit 182

delayed bit, machine-check interruption code 180
deletion, unit 172
destructive overlap (in MOVE LONG) 133
detect field (in limited channel logout) 240

Index 317

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

device
addressing, I/O 192

validity flag 241
description 18
end (I/O unit status condition) 232
error, I/O 197
general information 186
not operational (I/O system state) 193
working % system state) 193
(sa also I/O devices and control units)

DIAGNOSE instruction 103
digit, decimal 147
digit selector in editing 150
direct-control facility 46
disabling, enabling interruptions 70
displacement (in operand designation) 20
display-and-enter controls 245
DIVIDE (DDR, DD, DER, DE) instruction 163
DIVIDE (DR, D) instruction 128

example 296
DIVIDE DECIMAL (DP) instruction 149

example 306
doubleword (definition) 14
doubleword-concurrent fetch 27
dynamic address translation 57

addresses translated 62
addressing exception during 61,68
control 58
control register 0 58
control register 1 59
exceptions 68, 81

page-translation exception 79, 62
segment-translation exception 79,61
translation-specification exception 79,62

formats, summary 68
page invalid bit 60
page size 59
page table

address 60
entry 60
entry fetch sequence 24
length 60
lookup '61

process 60
segment invalid bit 60
segment size 59
segment table

address 59
entry 59
entry fetch sequence 24
length 59
lookup 61

states of translation-table entries 65
table entries

active 66
attached 65
valid 65

tables 59
modification of 66

translation lookaside buffer 65

EBClDIC chart (see Appendix H)
EDIT AND MARK (EDMK) instruction 152

example 307

318 System/370 Principles of Operation

EDIT (ED) instruction 150
example 306

emergency-pull switch 245
emergency signal

external interruption 87
order 97

enable-system-clear key 245
enabling and disabUng interruptions 70
ending of instruction execution, methods of 74
equipment check (sense data) 220

status bit 99
error

program, handling of 75
state of time-of-day clock 46
storage

corrected bit 180
key in storage 180
uncorrected bit 180

error checking and correction (ECC), redundancy correction 172
event mask for program event recording 40
events, interruption causing 80
exception conditions

during decimal operations 149
during EXECUTE operations 129
during fixed-point operations 116
during floating-point operations 161

exceptions associated withPSW 35
excess-64 binary notation 157
EXCLUSIVE OR (XR, X, XI,XC) instruction 128

example 297
EXECUTE (EX) instruction 129

example 298
exceptions during execution 129

execute exceptioJ;l 76
execution, program 19
exigent machine-check interruption conditions

definition of 175
handling of (interruption action) 175, 177

explicit (address) translation 60
exponent

in a floating-point number 157
overflow exception 78
underflow exception 79

extended control mode (EC) 32
PSW format 34

extended-floating-point number 158
extended logout (see machine-check extended logout)
extended logout pointer, I/O 240
external-call

external interruption 87
order 97
pending, status bit 99

external damage, machine-check interruption condition 179, 175
report mask 182

external interruption 84
clock comparator 87
CPU timer 88
emergency signal 87
external call 88
external signal 86
identification in main storage 90
interrupt key 86
interval timer 86
malfunction alert 86

external interruption (continued)

mask (BC mode) 34
mask (EC mode) 34
time-of-day clock sync check 88

external signal, interruption 87
mask bit (in control register 0) 87

failing-storage address
in machine-check extended interruption information 177
in machine-check interruption code validity bits 180

features, System/370 (see Appendix A)
fetch protection bit (see also storage protection) 38
fetch reference, storage operand 25
field (see instruction format)
field validity flags (in limited channel logout) 241
fill character 151
fixed-length operands 14
fixed logout (see machine-check fixed logout)
fixed-point

divide exception 78
exceptions 78
number representation 116
overflow exception 78

flag in CCW
as defined for each type of command 217
chain command 211
chain data 211
program-controlled interruption (PCI) 211
skip 211
suppress-length indication (SLI) 211

floa ting-poin t
divide exception 161, 79
instructions 157, 290

data format 157
examples 309
exceptions 159, 79

number representation 159
register 16
register valid bit (in machine-check interruption code) 180
register save area (machine-check extended interruption

information) 178
format

data 14
dynamic address translation 68
information 14
instruction 20
1/ 0 instruction 197
summary (see Appendix D)
word 14

formation of the real address 62
forming the operand address 21
fraction in floating-point operands 157
functions that differ from System/360 (see Appendix B)

general instructions 116
data formats 116
representation of fixed-point numbers 116

general-purpose design of System/370 9
general register 16

coupled 16
save area (machine-check extended interruption

information) 178
valid bit (machine-check interruption code) 180

general-register-alteration program event 43
guard digit, floating-point 158

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

halfword (definition) 14
HALT DEVICE (HDV) instruction 199
HALT I/O (HIO) instruction 202
HALVE (HDR, HER) instruction 164
handling of access exceptions, 81
handling of (storage) addresses 63
hardware checkpoint (in CPU retry) 172
hardware instruction retry (see CPU retry)
hexadecimal tables (see Appendix G)

I field in an instruction 19
IDAW (indirect data address word) 216
identification of source of interruption 70
identity of storage control unit (SCU), in limited channel

logout 240
immediate operand 20,19
immediate operation (I/O) 222
IMPL (initial microprogram load) controls 245
implicit (address) translation 60
implied field length of operands 14
inadvertent resetting of sense data (see unit check programming

note) 233
incorrect length, channel status condition 233
index (in operand designation) 20
indirect data address (IDA) 190,216

flag (in CCW) 211
word (lDAW) 216

information
formats 14
positioning 15

initial-CPU-reset order 98
initial-micro program-load (lMPL)

controls 245
order 98

initial program load (lPL) 54
initial-program-reset order 97
input/ output

address, in limited channel logout 242
commands 217
communications area (IOCA) 239
device 186

addressing 192
attachment of 186
error 197

devices and control units 186
error alert, in limited channel logout 241
extended logout control bit (in control register 14) 182
extended logout pointer 240
general description 17
instructions 197
interface 17
interruption 226, 73

channel available (CAl) 227
channel mask 88
conditions 226
priority of 227
program-controlled (PCI) 233

mask
Be mode (see extended control mode) 33
EC mode 34

operations 185
blocking of data 210
chaining 213
conclusion (termination) due to equipment

malfunction 226

Index 319

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

input/output (continued)
operations (continued)

conclusion of 222
initiation 210
termination by HALT I/O, HALT DEVICE 224

selective reset 195
system operation 189
syst(~m reset 194, 51

input/output status condition 229, 239
input/output system states 192
INSERT CHARACTER (lC) instruction 130
INSERT CHARACTERS UNDER MASK (ICM) instruction 130
INSERT PSW KEY (IPK) instruction 104
INSERT STORAGE KEY (lSK) instruction 105
instruction

address in PSW
BC mode 34
EC mode 35
validity bit 180

address, updated 22
address validity bit (machine-check interruption code) 180
B fidd 20
counter (instruction address portion of current PSW) 35
D field 20
decimal 147
exception handling, I/O 210
execution 22, 74

conceptual sequence (order) of 22
fetching 23
fetching program event 42
field, zero value in X or B 22
fixed-point (see general instructions)
floating-point 157
format 20

basic 20
I/O 197

general US
I field 19
input/output 197
length code (ILC) in PSW

in BC mode PSW 34
meaning 71

logical (see general instructions)
ope:rand 19
ope:ration 20
privileged 30
R field 19
sets and features 9
system controi i03
use examples 291
X field 20

instruction processing damage (machine-check interruption
condition) 178,175

instructions (see Appendix C for listings)
instructions

interruptible 73
offered by some models, but not listed in this manual 76

integral! boundaries in main storage 15
interface

address validity flag 241
control check, channel status condition 235
I/O 17

interlocked update storage reference 26
interlocks between logical and real storage references 63
interlocks between storage references 64
interpretation of order code, conditions precluding 98

320 :System/370 Principles of Operation

interrupt key 245, 86
interruption 86
mask bit (in control register 0) 86
priority of interruption 86

interruptible instructions 75
interruption (to program execution) 70

classes 70
clock comparator 47
code, BC mode PSW 34
CPU timer 48
enabling and disabling 70
external 84
general description 22
instruction length code use 71
I/O (input/output) 88
machine-check 75
new PSW 90,23
old PSW 90, 23
point of (machine check) 176
point of (occurrence of) 74
priorities 89
program 75
program-controlled 215
purpose 70
restart 88
source identification 70
supervisor-call 84

interruption action 70
machine check 175
table 72

interruption classes
external 84
input/output 88
machine check 75
program 75
supervisor-call 84

interruption, machine check 175
conditions 175
extended information 177
interruption code 178

interruption pending (I/O system state) 192
in channel 194
in device 193
in subchannel 194

interruptions, multiple PCI (see programming notes) 221
interval timer 49

external interruption 49,86
mask bit (in control register 0) 86
priority of interruption 86
updating 49

intervention required (sense data) 220
invalid address 76
invalid CBC

definition 172
handling of

in keys in storage 173
in registers 173
in storage 172

invalid (I/O programming) 234
invalid order status bit 100
I/O (see input/output)
I/O interface 17
IOCA (input/output communications area) 240
10EL (input/output extended logout)

address in main storage 91

IOEL (input/output extended logout) (continued)
control register bit 182
pointer 240

IPL (initial program load) 54
IPL CCW1 , CCW2, in absolute main storage :91
IPL PSW in absolute main storage 91

key in storage error uncorrected bit (machine-check interruption
code) 180

key, protection, in CSW 228,236
key, storage 38

accesses 24

length of operand 19
immediate operands 20
register operands 20
storage operands 20

limited channel logout 240
detect field 240
field validity flags 241
in main storage 91
I/O address 242
I/O error alert 241
sequence code 241
source field 240
storage control unit (SCU) identity 240
type of termination 241

load
indicator 245
key 245
state 31
unit-address controls 246

LOAD (LDR, LD, LER, LE) instruction 165
LOAD (LR, L) instruction 1.30

example 298
LOAD ADDRESS (LA) instruction 131

example 299
LOAD AND TEST (LTDR, LTER) instruction 165
LOAD AND TEST (LTR) instruction 131
LOAD COMPLEMENT (LCDR, LCER) instruction 165
LOAD COMPLEMENT (LCR) instruction 131
LOAD CONTROL (LCTL), instruction 105
LOAD HALFWORD (LH) instruction 131

example 299
LOAD MULTIPLE (LM) instruction 132
LOAD NEGATIVE (LNDR, LNER) instruction 166
LOAD NEGATIVE (LNR) instruction 132
LOAD POSITIVE (LPDR, LPER) instruction 166
LOAD POSITIVE (LPR) instruction 132
LOAD PSW (LPSW) instruction 105
LOAD REAL ADDRESS (LRA) instruction 106
LOAD ROUNDED (LRDR, LRER) instruction 166
loading of initial program information 54
logical storage

address 14,58
address translation 58
addressing 58

logout
asynchronous/synchronous 177
extended/fixed 177
main storage, permanently· assigned locations 92
pending (LOP), in CSW 228
(see also machine-check extended logout and machine-check

fixed logout)
logout control 181

Page of GA22-7000-4
Revised September 1. 1975
By TNL: GN22-0498

long block (in I/O) 233
long floating-point number 158

machine-check
code 75, 178
detection 171
handling 172

machine-check control register
bits (chart) 183
subclass masks 182
subclass masks summary 183

machine-check extended interruption information 177
register save area 178

machine-check extended logout (MCEL)
address in control register 181
asynchronous, control of 182
asynchronous, definition 177
control, summary chart 183
length in machine-check interruption code 181
maximum length, in CPU ID 112
synchronous, control of 181
synchronous, definition 177
valid bit (machine-check interruption code) 180

machine-check fixed logout
area 177
asynchronous, control of 182
asynchronous, definition 177
control, summary chart 183
synchronous, definition 177

machine-check interruption 75
action 175
code 178
code in main storage 91
code validity bits 180
mask, BC mode 34
mask, EC mode 35
point of 176

machine-check logout, synchronous/asynchronous 177
control (chart) 183
extended (see machine-check extended logout)
fixed (see machine-check fixed logout)

machine-check mask
BC mode 34
EC mode 35
subclass masks 183
summary chart 183

machine-check save areas (machine-check extended interruption
information) 177

machine errors, handling of 172
main storage

accesses, sequence of 23
actual operation 23
conceptual operation 23

address wraparound 14
addressing 14
assigned locations 90

absolute 91
real 90

controlled sharing of by TEST and SET 144
controlled sharing of by COMPARE AND SWAP 123
general description 14
integral boundaries 15
power-on reset effect 53
reference and change recording 67
volatile 14

Index 321

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

malfunction-alert external interruption 86,175
malfunction (selective) reset in I/O system 195
manua~ indicator 246
manual operation of system (see system console)
mask (in BC mode PSW)

channel 33
extl~mal 33
I/O 33
maGhine-check 34
program 34

masks (in EC mode PSW)
external 34
inplllt/output 34
maGhine check 35
program 35
program-event recording 34

mask bit in control of interruptions 71
mask position values used in BRANCH ON CONDITION 121
masks, monitor 39
MCEL (see machine-check extended logout)
microprogram controls, initial 245
mode

BC (basic control) 32
control bit in PSW 34
EC (extended control) 32 \
of channel operation (data transfer) 188

modifier bits in CCW command code 212
MONITOR CALL (MC) instruction 132
monitoring 39

class number 39,91
code 39,91
inte:rruption identification (see monitor class number;

monitor code) 91
masks (in control register 8) 39

MOVE (MVC, MVI) instruction 133
example 299

MOVE LONG (MVCL) instruction 133
MOVE NUMERICS (MVN) instruction 135

example 300
MOVE WITH OFFSET (MVO) instruction 135

example 300
MOVE ZONES (MVZ) instruction 136

example 300
multiple PCI interruptions (see programming notes) 221
multiple simultaneous interruption requests (see priority of

interruptions) 89
multipllexer channel (see byte-multiplexer channel and
block-multiplexer channel)

MULTllPLY (MDR, MD, MER, ME) instruction 167
MULTllPL Y (MR, M) instruction 136

example 301
MULT1[PL Y (MXD, MXDR) instruction 167
MULTIPLY (MXR) instruction 167
MULTIPLY DECIMAL (MP) instruction 153

example 307
MULTIPLY HALFWORD (MH) instruction 136

example 301
multiprocessing 95, 9

exam pIes 310

near valid CBC 171
no-ope:ration control command 219
non shared subchannel 189
nonvolatile main storage 14
normal sequential instruction execution 22
normalization in floating-point arithmetic 159

322 System/370 Principles of Operation

not operational (state of I/O system) 192
not ready status bit 100
nullification (method of ending instruction execution) 74
number representation

decimal 148
fixed-point 116

with two's complement 289
floating-point 159

numbering
bits of a byte 14
byte locations in main storage 14

numerics 147

one's complement, use of in fiJted-point operations 117
op code (operation code) 20
operand field length 14
operands

address specification of 19
immediate 20
in main storage 20
in registers 20
storage 25

fetch reference 25
relation between references 27
store reference 25
update reference 26

operating state 30
operation code (of an instruction) 20
operation exception 76
operation, I/O 186, 17
operation, unit of 74
operational (I/O state) 192
operator-intervening status bit 99
operator section (of system control panel) 243
OR (OR, 0, 01, OC) instruction 137

example 301
order

conditions determining response to 98
I/O (definition) 189
signaling and response 97

order-code interpretation, conditions precluding 98
organization, system 13
overflow

decimal 147
exponent 158
fixed-point (see ADD (AR» 117

overlap, destructive (in MOVE LONG) 133
overlapped fields, decimal 147
overrun (sense data) 220

PACK (PACK) instruction 137
example 302

packed decimal number 147
page 58

address 60
index field 58
invalid bit 60
size bits (in control register 0) 58
table 60

address 60
entries 60
entry format 60
length 60
lookup 61

page-translation exception 79
parity bit 171

pattern character 150
PCI (see program-controlled interruption)
PER (see program-event recording)
PER events

with concurrent exceptions 45
with dynamic address translation 42
with interruptible instruction 42
with LOAD PSW 41
with SUPERVISOR CALL 40

point of interruption (interruptions) 74
point of interruption (machine-check interruption) 176
postnormalization 159
power check indication, thermal/CB 247
power-off key 246
power-on key 246
power-on reset

CPU 53
main storage, effect of on 53
TOD (time-of-day) clock 53

powers of two, table (see Appendix F)
prefixing 95, 14
prenormalization 159
priority

of access exceptions 84
of clock comparator interruptions 86
of CPU timer interruptions 86
of exigent machine-check interruptions 89
of external interruptions 86
of interrupt key interruptions 86
of interval timer interruptions 86
of I/O interruptions 227, 89
of program exceptions 85
table of program exceptions 85

privileged
instruction 30
operation exception 76

problem state 30 ~.

processor address (stored by external interruption) Jl/;'O
program

check (channel status condition) 234
execution 19
interruption 75

identification in main storage 90
program-controlled interruption (PCI) 215

channel status condition 233
flag (in CCW) 211

program-event recording (PER) 39,80
address in main storage 41
code 41
control register allocation 40
event masks 40
general-register-alteration m:asks 40
indication of events concurrently with other interruption

conditions 43
interruption identification in main storage 90
mask, EC mode 34
operation 40
starting/ending address 40
storage area designation 42

program events 42
general register alteration 43
indication of 45
instruction fetching 42
storage (main) alteration 42
successful branching 42

program execution 19

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

program-interruption conditions
access exception, recognition of 80
addressing exception 76
data exception 78
decimal-divide exception 78
decimal-overflow exception 78
execute exception 76
exponent-overflow exception 78
exponent-underflow exception 79
fixed-point divide exception 78
fixed-point overflow exception 78
floating-point divide exception 79
monitor event 80
operation 75
page-translation 79
priority of 85
privileged operation 76
program event 80
segment-translation 79
significance 79
special operation 80
specification 77
table of priorities of 85
translation specification 79

program mask and condition code validity bit (in machine-check
interruption code) 180

program mask in PSW
BC mode 34
EC mode 35

program-reset
initial 52
order 97

program state (see CPU state)
program status word (see PSW)
protection check (channel status condition) 234
protection exception 76

summary table 77
protection key

in CAW 210
in CSW 228,236

protection key in PSW
BC mode 33
EC mode 34

protection, storage (see storage protection)
PSW (program status word) 32, 22
PSW, BC mode format 33

channel mask 33
condition code 34
current 16
extended-control (EC) mode 34
external mask 33
ILC (instruction-length code) 34
instruction address 34
interruption code 34
I/O mask 33
machine-check mask 34
problem state bit 34
program mask 34
protection key 34
wait state bit 34

PSW, EC mode format 33
condition code 35
EC mode bit 34
external mask 34
instruction address 35
I/O mask 34

Index 323

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

PSW, EC mode format (continued)
machine-check mask 35
problem state bit 35
program-event recording (PER) mask 34
program mask 35
protection key 34
translation mode biv 34
wait state bit 35

PSW EMWP validity bit (in machine-check interruption code) 180
PSW (IPL) in absolute main storage 91
PSW mask and key validity bit (in machine-check interruption

code) 180
PSW translation control, bit 5 58
PURGE TLB (PTLB) instruction 107

R field of an instruction 20, 19
rate control 246
read backward command, I/O 218
READ DIRECT (RDD) instruction 107
real address (of a main-storage location) 57,96, 14

formation of 62
real-time clock, interval timer as a 49
receiver-check status bit 100
recognition of access exceptions 80

table 82
recovery

condition (machine-check interruption condition) 175
mechanisms 172
report mask (in control register 14) 182
system (machine-check interruption condition) 178,175

redundancy correction '172
reference and change recording (in main storage) 67

change bit 67, 38
reference bit 67, 38

references to storage
block concurrent 27
single access 26

region code
in machine-check extended interruption information 178
in machine-check interruption code validity bits 180

register
control 36
floating-point 16
general 16
opt~rand 20
save area (machine-check extended interruption
information) 178

validity bits (in machine-check interruption code) 180
remote operator control pan~l (ROCP) 248
repressible machine-check interruption condition

definition of 175
handling of (interruption action) 175

reset,][/0 system 194,51
effect on working device 195
upon malfunction 195

RESET REFERENCE BIT (RRB) instruction 107
resets 50

CPU reset 51
initial CPU reset 51
initial program reset 52
manual initiation of 50
power-on reset 53
program reset 51
store status facility, effect on 54
system clear reset 53

324 System/370 Principles of Operation

restart
interruption 88
key 246
new PSW in main storage 91
old PSW in main storage 91
order 97

result
character in editing 151
condition in editing 151

retry, CPU 172
right of access to main storage 38
ROCP (remote operator control panel) 248
rounding (LRDR, LRER) instructions 166
RR instruction format 20
RS instruction format 20
running state 30
RX instruction format 20

S instruction format 20
save area (machine-check extended interruption information)
segment

index field 59
invalid bit 60
size bits (in control register 0) 59
table 59
table address (in control register 1) 59
table entry 59
table format 5?
table length (in control register 1) 59
table lookup 61
translation exception 79

selective reset, I/O 195
selector channel 188
sense

command, I/O 219
data (in I/O) 219
order 97

sequence of main storage accesses (references) 23
sequence code 241

validity flag 241
sequential execution of instructions

change in by interruption 70
normal 22

serialization 28
SET CLOCK (SCK) instruction 108
SET CLOCK COMPARATOR (SCKC) instruction 108
SET CPU TIMER (SPT) instruction 109
SET PREFIX (SPX) instruction 109
SET PROGRAM MASK (SPM) instruction 138
SET PSW KEY FROM ADDRESS (SPKA) instruction 109
SET STORAGE KEY (SSK) instruction 110
SET SYSTEM MASK (SSM) instruction 110
set system mask suppression 32
shared main storage 95
shared sub channel 189
SHIFT AND ROUND DECIMAL (SRP) instruction 153

example 307
SHIFT LEFT DOUBLE (SLDA) instruction 138

example 302
SHIFT LEFT DOUBLE LOGICAL (SLDL) instruction 139
SHIFT LEFT SINGLE (SLA) instruction 139

example 302
SHIFT LEFT SINGLE LOGICAL (SLL) instruction 139
SHIFT RIGHT DOUBLE (SRDA) instruction 140
SHIFT RIGHT DOUBLE LOGICAL (SRDL) instruction 140

178

SHIFT RIGHT SINGLE (SRA) instruction 140
SHIFT RIGHT SINGLE LOGICAL (SRL) instruction 141
short block (in I/O) 233
short floating-point number 158
SI instruction format 20
sign and zone codes in decimal operands 147, 148
sign change in fixed-point operations 116
SIGNAL PROCESSOR (SIGP) instruction 110
signaling and response, CPU 97

orders 97
status bits 99

significance
exception 79
indicator in editing 151

simultaneous interruption requests, multiple (see priority of
interruptions) 89

skip (SKIP) flag (in CCW) 211
skipping (in I/O) 215
SLI (suppress-length-indication) flag in CCW 211
source digit in editing 150
source field (in limited channel logout) 240
source identification of interruptions 70
special operation exception 80
specification exception 77
SS instruction format 20
SSM suppression bit (in control register 0) 32
START I/O (SIO) instruction 204
START I/O FAST RELEASE (SIOF) instruction 204
start key 247
start order 97
states

check-stop 31
CPU 30
load 31
of I/O system 192
of time-of-day clock 46
operating 30
problem 30
program (see CPU states)
running 30
stopped 30
supervisor 30
wait 30

status
bits (signal processor) 99
conditions, I/O 229,237
in CSW 229, 237
modifier (I/O unit status condition) 229
of system (from wait, manual, and system indicators) 248
word, program (PSW) 32

stop-and-store-status order 98
stop key 247
stop order 97
stopped

state 30
status bit 99

storage
address wraparound 14
addressing, logical 58
alteration program event 42
control unit (SCU) identity (in limited channel logout) 240
key 38
logical validity (machine-check interruption code) 181
main (see main storage)
operand 20

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

storage (con tinued)
operand reference (access) 25
validation 173

storage error
corrected bit (machine-check interruption code)
uncorrected bit (machine-check interruption code)

storage protection 38
accesses protected 39
action 38
fetch 38
key in storage 38
violation (see protection exception)

STORE CPU ADDRESS (STAP) instruction 112
STORE PREFIX (STPX) instruction 113
store-status

facility 54
key 247
save area in absolute main storage 91

STORE (ST) instruction 141
STORE (STD, STE) instruction 168
STORE CHANNEL ID (STIDC) instruction 206
STORE CHARACTER (STC) instruction 141

180
180

STORE CHARACTERS UNDER MASK (STCM) instruction 141
STORE CLOCK (STCK) instruction 141
STORE CLOCK COMPARATOR (STCKC) instruction 111
STORE CONTROL (STCTL) instruction 111
STORE CPU ID (STIDP) instruction 112
STORE CPU TIMER (STPT) instruction 113
STORE HALFWORD (STH) instruction 142
STORE MULTIPLE (STM) instruction 142

example 302
store protection (see storage protection) 38
store reference, storage operand 25
store status 54
STORE THEN AND SYSTEM MASK (STNSM) instruction 113
STORE THEN OR SYSTEM MASK (STOSM) instruction 114
sub channel 188

non shared 189
not operational (I/O system state) 194
shared 189
working (I/O system state) 194

submask, external interruption 86
SUBTRACT (SR, S) instruction 143
SUBTRACT DECIMAL (SP) instruction 154
SUBTRACT HALFWORD (SH) instruction 143
SUBTRACT LOGICAL (SLR, SL) instruction 143
SUBTRACT NORMALIZED (SER, SE, SDR, SO) instruction 169
SUBTRACT NORMALIZED (SXR) instruction 169
SUBTRACT UNNORMALIZED (SWR, SW, SUR, SU)

instruction 169
successful branching program event 42
supervisor-call interruption 84
supervisor-call interruption identification in main storage 90
SUPERVISOR CALL (SVC) instruction 144
supervisor program (see system program) 10
supervisor state 30
suppress-length-indication (SLI) flag in CCW 211
suppression, method of ending instruction execution 74
synchronization of TOD clock 101,47
synchronous machine check logout (see machine-check extended

logout and machine-check fixed logout)
synchronous MCEL control bit (in control register 14) 181
system

clear reset 53
console 243, 18
control 29

Index 325

system (continued)
control instructions 103
damage (machine-check interruption condition) 178
indicator 247
operation, I/O 189
organization 13
program 10
recovery (machine-check interruption condition) 178, 175
reset, I/O 194,51

system control panel (of the system console)
customer-engineer-control section 248
operator-control section 243

system indication 247
system-reset key 247
system status (from wait, manual, and system indicators) 248

table
manipulation 64
page 60
segment 59
translation 60

termination
method of ending instruction execution 74
of channel program 222
of I/O operations (see conclusion of I/O operations)

TEST AND SET (TS) instruction 144
TEST CHANNEL (TCH) instruction 207
test indicator 247
TEST I/O (TIO) instruction 208
TEST UNDER MASK (TM) instruction 145

example 303
thermal/CB power check indication 247
TIC (transfer in channel) I/O command 221
time-of-day (TOD) clock 46

key 247
power-on reset 53
states of 46
sync-check external interruption 87
sync control bit 47
synchronization of 101,47

timeout, channel 188
timer, CPU 48
timer damage (machine-check interruption condition) 179,175
timer, interval 49

external interruption 86
updating 49

timing facilities (see CPU timer, clock comparator, interval timer,
and time-of-day clock)

timing facility damage (machine-check interruption
condition) 179,175

TLB (translation lookaside buffer) 64
TOD dock (see time-of-day clock)
TOD dock key 247
transfer in channel (TIC) I/O command 221
TRANSLATE (TR) instruction 145

example 303
TRANSLATE AND TEST (TR T) instruction 145

example 304
translation 60

exception address in main storage 79
lookaside buffer (TLB) 64
mode bit in PSW 33
process 61

326 System/370 Principles of Operation

translation (continued)
specification exception 79
table entries, states of 65
table modification 66
tables 59
(see also dynamic address translation)

two's complement, use of in fixed-point operations 116, 289
type of termination (in limited channel logout) 241
types of channels 188
types of (storage) addresses 62

unit
check (I/O unit status condition) 232
deletion (machine-check handling) 172
exception (I/O unit status condition) 233
of information (the byte), basic 14
of operation 74

unit status, I/O
conditions 229,237
validity flag 241

unnormalized floating-point operation 159
UNPACK (UNPK) instruction 146

example 305
update (type of storage operand reference) 25
use of translation lookaside buffer 65

valid CBC 172
validation

of keys in storage 173
of registers 173
of storage 173

validity bits (in machine-check interruption code) 180
variable field length of operands 14
virtual

address 57
storage 57

volatile main storage 14

wait indicator 248
wait/running CPU state 30

bit in PSW, BC mode 34
bit in PSW, EC mode 35

warning
machine-check interruption condition 179, 175
mask bit 182

word (definition) 14
word-concurrent fetch 27
working (state of I/O system) 192
working device, effect of reset on 195
wraparound of main storage addressing 14
wraparound of register addresses in LOAD MULTIPLE 132
write command, I/O 2i8
WRITE DIRECT (WRD) instruction 114

X field of an instruction 20

ZERO AND ADD (ZAP) instruction 155
example 309

zone and sign codes in decimal operands 147, 148

m:ID~ / Technical Newsletter This Newsletter No. GN22-0498

Date September 1, 1975

Base Publication No. GA22-7000-4

File No. S/370-01

Previous Newsletters None

IBM System/370 Principles of Operation

©IBM Corp. 1970, 1972, 1973, 1974

This Technical Newsletter provides replacement pages for the subject publication.

Pages to be inserted and/or removed are:

Title Page, Back of Title Page
Preface, Back of Preface
v through viii
15, 16
47,48
59 (text rearrangement only), 60
63 through 66 (text rearrangement only)
67 (text rearrangement only), 68
69, 70
81, 82 (text rearrangment only, both pages)
83 (text rearrangement only), 84
87, 88 (text rearrangement only)
89, 90 (text rearrangement only)
91 (text rearrangement only), 92
93, blank

95,96
119 through 122
125, 126 (text rearrangement only)
129,130
133,134
145, 146
163,164
175 (text rearrangement only), 176
183, blank
205,206
227,228
241, 242 (text rearrangement only)
249, 250 (text rearrangement only)
271 through 274
311 through 326

All pages to which a change has been made carry a revision notice in the upper margin.
A change to the text or to an illustration is indicated by a vertical line to the left of the
change.

Summary of Amendments

This newsletter corrects technical errors appearing in text and in figures, clarifies certain
ambiguous presentations, improves figure placement, and eliminates a number of typo
graphical errors.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Product Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

Printed in U.S.A.

IBM System/370
Principles of Operation

Order No. GA22-70004

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication.
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any a'nd all purposes, without obligation of any kind to the submitter. Your interest
is appreciated.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM
system, to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation? ______________________________ _

"Number of latest Newsletter associated with this publication: ________________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold Fold

" o
0:
~
o
::J
(IJ

r
3'
CD

- - - - - - - - _. ---i

Fold

Business Reply Mail
No postage stamp necessary if mailed in U.S.A.

Postage will be paid by:

International Business Machin~s Corporation
Department 898
P.O. Qox 390
Poughkeepsie, New York 12602

Internalilonal Business Machines Corporation
Data Processing Dlvlslo"
1133 Westchester Avenue, White Plain., New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 IJnited Nations pfaza, New York, New York 10017
(Internatiional)

Fold

FIRST CLASS
PE RMIT NO. 419

POUGHKEEPSIE, N.Y.

---------1

