Systems

GC20-1755-2
File No. S370-01

A Guide to the IBM
System/370 Model 168

This guide presents hardware, programming systems, and
other pertinent information about the IBM System/370
Model 168 that describes its significant new features and
advantages. Knowledge of the IBM System/370 Model 165
is assumed. Features common to Models 165 and 168 are
indicated but not discussed in detail. The contents of the
guide are intended to acquaint the reader with the Model
168 and to be of benefit in planning for its installation.

Associated with this guide are three optional supplements
that describe operating systems for the Model 168 that
support a virtual storage environment. Each supplement
has its own form number and must be ordered individually,
if required. Optional supplements are the following:

® 0S/Virtual Storage 1 Features Supplement
(GC20-1752)

® OS/Virtual Storage 2 Features Supplement
(GC20-1753)

® Virtual Machine Facility /370 Features Supplement
(GC20-1757)

LIBIML

Third Edition (June 1975)

This is a major revision obsoleting GC20-1755-1. Text has been added to include information about
rhe Model 3 system (3168-3 Processor Unit) and 3340 Direct Access Storage Facility. The 3330 disk
storage section, virtual machine concepts section, channel configuration text, and all summary tables
have been updated. Miscellaneous changes have been made throughout the publication. Changes to
the text and illustrations are indicated by a vertical line in the left margin.

This guide is intended for planning purposes only. It will be updated from time to time; however, the
reader should remember that the authoritative sources of system information are the system library
publications for the Model 168, its associated components and its programming support. These pub-
lications will first reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form has been provided at the back of this publication for readers’ comments. If this form has
been removed, address comments to: IBM Corporation, Technical Publications/Systems, Dept. 824,
1133 Westchester Avenue, White Plains, New York 10604. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1974, 1975

PREFACE

It is assumed that the reader of this publication is familiar with
System/370 Model 165 hardware features, channels, I/O devices, and
programming support as described in A Guide to the IBM System/370 Model
165, GC20-1730, and/or system library publications concerning Model 165
hardware and programming systems support. This guide discusses in
detail only the hardware features of the Model 168 that are different
from those of the Model 165 and the programming support provided for new
features of the Model 168.

There are two versions of the Model 168; the Model 1 and the Model 3.
The hardware differences between Model 1 of the Model 168 and the Model
165 are discussed in Sections 01 to 50. The differences between Models
3 and 1 of the Model 168 are discussed in Section 65.

The Model 168 is not compared with a Model 165 II, which is a
purchased Model 165 (storage model J, K, or KJ) with the optional
Dynamic Address Translation Facility installed. However, functional
descriptions of Model 168 features that are also part of the Dynamic
Address Translation Facility of the Model 165 II apply to the Model 165 II
as well, unless otherwise noted. This publication applies to systems
with 60-cycle power.

The total Model 168 guide consists of this base publication (Sections
01 to 70), which covers virtual storage and virtual machine concepts and
Model 168 hardware and I/0O devices, and from one to three optional
supplements (Sections 90 to 110). The optional supplements describe the
facilities of the IBM programming systems that support a virtual storage
environment using the dynamic address translation hardware of the Model
168. Each optional supplement has its own unique form number and each
supplement desired must be ordered separately and inserted in this base
publication, which is distributed without the automatic inclusion of any
optional supplements.

The following optional supplements can be inserted in this base
publication:

e 0S/Virtual Storage 1 Features Supplement (GC20-1752) - assumes
knowledge of 0S MFT

e (OS/Virtual Storage 2 Release 1 Features Supplement (GC20-1753) -
assumes knowledge of 0OS MVT

e Virtual Machine Facility/370 Features Supplement (GC20-1757) - does
not assume knowledge of CP-67/CMS

All optional supplements also assume knowledge of virtual storage,
dynamic address translation, and other new Model 168 features as
described in this base publication or appropriate system library
documents. However, no optional supplement requires knowledge of the
contents of any other optional supplement.

This base publication, as well as each optional supplement, begins
with page 1 and includes its own table of contents and index. The base
publication or supplement title is printed at the bottom of each page as
a means of identification.

A Guide to the IBM System/370 Model 168

The optional programming systems supplements contain System/370
model-independent information, unless otherwise noted, and are designed

to be included in the guides for System/370 Models 135, 145, 158, and
168 as shown below.
Supplements
0Ss/Vs2

DOS/VS 0s/vsi Release 1 VM/370

Features Features Features Features
Base Supplement Supplement Supplement Supplement
Publications (GC20~-1756) (GC20-1752) | (GC20-1753) | (GC20-1757)

A Guide to the IBM
System/370 Model 135
(GC20-1738-4 or
later editions)

A Guide to the IBM
System/370 Model 145
(GC20-1734-2 or
later editions)

A Guide to the IBM
System/370 Model 158
(GC20-1754)

A Guide to the IBM
System/370 Model 168
(GC20-1755)

X

A Guide to the IBM System/370 Model 168

CONTENTS

Base Publication Sections (Sections 01 to 70)

| Section

Section

Section

20:05
20:10

20:15

20:20
20:25
20:30

Section
30:05

| 30:10

30:15

Section
40:05
40:10

| Section

50:05
50:10

A Guide

01: System Highlights of Models 1 and 3 & v « o « o

10: Major Components and System Technology for
Models 1 and 3 . w ¢ o ¢ ¢ e e @ w o o« = © @« «

20: Architecture Design and System Components of the

Model 1 « o« o o o « o w «
Architecture Design . « «

® @ ® ©®© e o e e .
-« e e -

The Central Processing Unit . -
Extended Control Mode . . . + e e e e
Monitoring Feature. - -

New Instructions. . . . -

Clock Comparator and CPU Tlmer.

Reliability, Availability, and Serviceability

- e e e

- *® ® e @ =

- > ® ® @ @ e @

Storage e o o o m e = @
Processor (Maln) Storage. . .
High-Speed Buffer Storage . . .

ChannelsS. « « o « o o o « o @
System Console. . . « o e =
Standard and Optlonal System Features . A
Standard Features . « . o o« ¢ ¢ o o w « o « w =
Optional Features . . « o ¢ ¢ ¢ ¢ ¢ w o @ « @ «

- - - . -

30: Virtual Storage and Dynamic Address Translation .
Virtual Storage Concepts, Advantages, and Terminology
The Need for Larger AAAress Space . o « « « = o o

Features

i & a2 8 8 8 s

L[]
s & 2 8 & & B & s a2 8 & B e
[]

o« ® =

e o e

Virtual Storage and Dynamic Address Translation Concepts.

General Advantages Cffered by IBM Operating Systems
Support a Virtual Storage Environment . . « . « < .
Virtual Storage and Dynamic Address Translation
Terminology . . « « . - - . o« o
Dynamic Address Translatlon Hardware for Models 1 and
the Model 168 . . & o @ « o« o o o o o« @ o = = « o ® «
Virtual Storage Organization. .
Operation of Dynamic Address Translation Hardware
Features to Support Demand Paging « . . « . « « «
Channel Indirect Data Addressing. « « « w « « « =«
System Performance in a Virtual Storage Environment

- e e * @ ° ¢ e e

that

e & (W
o}
tHh

.
s
LI I I)

System Resources Required to Support a Virtual Storage

Environment o e e
New Factors that Affect System Performance. . . « .

* e e o o * e 8 ® .

Relationship Between Virtual Storage Size and System

PerformanCe « o o o = o o o o @ = o o o o o o © w o
Increasing System Performance in a Virtual Storage
Environment « ¢ o« ¢ 4 ¢ ¢ o o 4 o o @® o o @® 0 o @

40: Virtual MachineS. « « « o « e © © « © @ o s o « =
Definition and General Operation.
General Advantages of a Virtual Machine Environment .

o - ® @ @ e w e e -

50: I/O Devices for Models 1 and 3 .« o « o « o o « =
I/0 Device Support. . . .

3333 Disk Storage and Control Model 11 and 3330 DlSk Storage

Model 11. o ¢ 2 ¢ o o o o o o o o o a =« o @ o ® = 3 =
Attachment via Integrated Storage Controls. . . « .

to the IBM System/370 Model 168

e e @

e ® e

84
91
94
94

95

50:15 The 3340 Direct Access Storage Facility . . .

3340 Disk Storage Drives and the 3348 Data Module

Attachment via 3830 Storage Control Model 2 .
Attachment via Integrated Storage Controls. .

Intermixing 3340 and 3330-Series Strings on an

Attachment. « ¢« ¢ « o 4 o ¢ « o « ® s © « =
SUNMMAYY o o « o « = o s o o «

Section 65: Differences Between the Model
65:05 Performance EnhancementS. « . . .
65:10 The Service ProCcesSSOr . « « « « «

Functions and General Operation
Processor Unit. « v ¢ o @« « &
Trace Unit. . - « .
CoOUNterSe « « « o o
Internal Disk File.
CE Panel. . « + « &
Printer Control . . . -
Corporate Standard Interface. .
Modem .« « « o » o o @ o = « o o «
AdvantageS. « + « o w© o o « « o @

s & s
$ & 3 & s & s s 0 W

¢« 8§ & 8 @i T o
S & 8 ¢ 8 & & & &
i s 8 & 8 s & @

s o o o 8
" e o s 0
s & 3 . . .

« & @
L]

Section 70: Comparison Tables . . « . .« ¢« « « « «

70:05 Comparison Table of Hardware Features of the System/360

i & & & ¢ o B & s s & 2

and the Model

“« & & &
s s 2 o

LI R R S T S N
e & & a2 @ 8 & & 2 o

.
.
L]

¢ & & & & & & o 2 8 4 @9

Model 65 and System/370 Models 158 (Models 1 and 3), 165,

165 II, and 168 (Models 1 and 3)e « « « o o o o

70:10 OS and 0OS/VS Support of the Model 168 (Models 1 and 3 .

Index (Sections 01 tO 70)e v« &v o ¢ o o o o e o 2 5 e e o 2 o o o =

Optional Sections (See each supplement for detailed contents

Section 90:

OS/Virtual Storage 1 FEAatUreS o« o« o « = o o © o o o« @

Section 100: OS/Virtual Storage 2 Release 1 FeaturesS. « - « « . -

Section 110: Virtuwal Machine Facility/370 Peatures. . « « « « « «

Note:

This guide does not have a Section 80. DOS/Virtual Storage
features are discussed in the Section 80 supplement and the
168 is not supported by DOS/VS.

FIGURES (Sections 01 to 70)

10.1 System/370 Model 168 (design model) . . . & & « o o« .« &
10.2 SLT substrate . . c o e o @ s e @ a & ¢ e o
20.10.1 BC mode and EC mode PSW formats « e o o e 2 e @ e o o
20.10.2 Model 168 model-independent fixed storage locations for
BC and EC modes - « o w ® w o o
20.10.3 Model 168 (Model 1) model dependent flxed storage
JoCations « o« ¢« 4 ¢ ¢ ¢ @ 4 e 0 e o m e e o % e o e o «
20.10.4 Model 168 machine check COG€. +v « o« «w o o = o o s o o
20.15.1 Model 168 processor storage organization and
configuration panel .« « « o ¢ ¢ o 2 © o © o ¢« o @ 6 o o
20.15.2 8K and 16K buffer organization. . « « « « « « ¢ « « .+
20.15.3 Model 168 components and controls
30.05.1 Names and location of instructions and data in a v1rtual
storage environment e s o e o 8 o o = & @
30.05.2 Relationship of virtual storage, direct access stcrage,
and real StOXage. « « « s o o o o a o =« s a « a o o o @
30.05.3 Conceptual illustration of real storage utilizaticn in

a mixed batch and online virtual storage environment. .

A Guide to the IBM System/370 Model

929

114
117

. 120
120

125
125
128
128
130
131
132
132
132
133
134
134
135

. o . L)] L] L) LI

. 136

. 137
. 147

. 152

and index)

. 157
. 159
. 161
Model
. 5
. 6
. 13
. 14
. 15
. 21
. 25
. 27
- 29
. 4o
. 41
« 50
168

30.05. 4

30.10.1
30.10.2

30.10.3
30.10.4
30.10.5

30.15.1

30.15.2

30.15.3
30.15. 4
30.15.5
40.05.1
40.05.2
40.05.3
50.10.1
50.10.2
50.15.1

50.15.2
50.15.3

50.15.4
50.15.5
50.15.6
50.15.7
50.15.8
50.15.9
50.15.10
65.05.1
65.10.1

Layout of virtual storage, external page storage, and
real storage. o o m e e s e e a e
Virtual storage address f1elds for a 64K segment.
Segment table and page tables used for dynamic address
translation « « 'y ¢ ¢« ¢ e e e e e o 6 o 8 o o ® o o o o
Dynamic address translation procedure c o o o & o @ o ° @
TLB purging when control register 1 is changed.
Example of IDAL's required for a CCW list when page size
is 2K - - - L] . - - - - L] - - - - - - - - - - - - - - - -
Possible system performance when a virtual storage
operating system is used with a Model 168 with the

same I/0 configuration and real storage size as the
replaced Model 165. « o o o« ¢ o o o © o o o o = s @« » o
General effect on page faults of increasing the ratio of
virtual storage used to real storage present in the
SYSteMe o o ¢ ¢ ¢ ¢ o o o o o o o o o o o o @ o o o o o o
General effect on system performance of the paging factor
ONlYe o o o o o o o o o o o &« 5 o o o o w = s = = o o « o
General effect of the paging factor on system performance
with various active-to-passive page ratios. « . « « « « «
General system performance curve for a virtual storage
environment « o o s e« o o o @ ® o o @
Conceptual 1llustrat10n of the real and virtual machine
environment that is supported by VM/370 . . ¢« o o « « .« &
Conceptual illustration of the implementation of virtual
storage in a virtual machine environment.
Segment table and page tables built when a virtual
storage operating system executes in a virtual machine. .
Permissible 3330-series string configurations for the
Model 168 Integrated Storage Controls feature
Sample 3330-series string configuration with string
switching . . . « o o e o s o o = « w o ® o e =
A five-drive 33“0 strlng with 3340 Model A2 B2, and

Bl units. . « e 4 o o e s e e o 8 o o s e w e e o
The 3348 Data Module. .« . « o . . . « o e o
Location of physical and loglcal tracks and read/wrlte
heads on a data surface in a 3348 Data Module
Cylinder and reads/write head layout for a 3348 Model

35 Data Module. . . & ¢ ¢ ¢« ¢ ¢ ¢ o o o« . .« o
Cylinder and read/write head layout for a 3348 Model

70 Data Module. . . . e o o ® o 4 ® e o e e w e o o =
Cylinder and read/wrlte head layout for a 3348 Model

70F Data Module - o« . - . « o o o @
A Model 168 configuration w1th 3340 dlsk storage
attached via 3830 Storage Control Model 2 « o
String switching for the 3340 facilities attached to

a 3830 Model 2. . . - e o o @ ® . . . c e
Permissable 3340 strlng conflguratlons for the Model

168 Integrated Storage Controls feature . . . «
String switching for 3340 facilities attached to one

IsC e ® o o o o e o e e ® @ o s ® e e @ e o e e
ngh-speed buffer and processor storage organization

in the Model 3. . . ¢ ¢ ¢ ¢ ¢ o o« e o o a« = o« = s o o o o
Components of the service processor in a Model 3.

A Guide to the IBM Systemv370 Model 168

58
60
61
63

68

72

77
78
79
80
86
88
89
97
98

100
100

104
106
107
109
114
116
118
119

127
129

TABLES (Sections 01 to 70)

20.20.1
30.10.1
30.10.2
50.10.1

50.10.2
50.15.1

50.15.2
50.15.3

50.15.4

Permissible configurations and channel priorities for
highest speed System 370 I/0 devices. .« « v« ¢ « « & « « « 31
Number and size of segments and pages for a 16-million-

byte virtual StOXrage. « u o« « o o « o ¢« o s o s o » « « = 56
Virtual and real storage addresses used by and supplied

to programs in the Model 168. ¢« o o @ ¢« o ¢« ¢ ¢ ¢ o « » o 65
Capacity and timing characteristics for 3330-series

drives. . . . e e o o 5 4 o e s e o o e o o a s .+ e e o 95
3336 Model 1 and 11 Disk Pack characteristics 95
Physical and capacity characteristics of 3348 Data

Modules and the 2316 Disk PacCKe « « o o o o o o o « « « o 111
Timing characteristics of the 3340 direct access storage
facility and the 2314 facility. « .« « « « .« . e« » e e o 112
Summary of the hardware features of 3340 and 231u disk
storage facilities . . .« ¢ ¢ o o o o o @ o @ o o w o o o 122
Summary of the features of 3830 Storage Control Models

1 and 2 and Integrated Storage Controls . « .« « « .« « « « 123

A Guide to the IBM System/370 Model 168

SECTION 01: SYSTEM HIGHLIGHTS OF MODELS 1 AND 3

The System/370 Model 168 is an advanced function growth system for
System/360 Models 65, 67, and 75 and System/370 Models 155, 158, and
165. The Model 168 provides major new functions that are not basic to
System/360 architecture. The Model 168 has new features and new
programming systems support that are designed to facilitate application
development and maintenance. In addition, a Model 168 and its new
programming support can ease entry into, and expansion of, online data
processing operations.

The Model 168 makes new functions available to Model 65, 75, 155, and
165 users without requiring a major conversion effort, since the Model
168 is upward compatible with these models. Existing System/360
operating systems that support these models, namely 0S MFT and MVT,
support the Model 168. However, the Model 168 has standard features
that are designed to support a virtual storage environment, and new
versions of OS are provided that use these features.

Compatible growth from a System/ 360 operating system to a Model 168
virtual storage environment can be achieved using the new System/370
operating systems: 0S/Virtual Storage 1 (0S/VS1l) and OS/Virtual Storage
2 (0s/vs2), which are based on 0S MFT and 0OS MVT, respectively. These
operating systems will run only on System/370 models with extended
System/370 functions, namely on those with extended control mode of
system operation and dynamic address translation facilities. They
cannot operate on System/360 models. In addition to implementing
virtual storage, the System/370 operating systems offer many other new
capabilities and performance-oriented enhancements that are not provided
by 0S MFT or MVT.

A virtual machine environment is supported by Virtual Machine
Facilitys/370 (VM/370), the successor to CP-67/CMS for System/370. While
CP-67/CMS is available only to Model 67 System/360 users, VM/370
operates on System/370 Models 135, 145, 155 I1II, 158, 165 II, and 168.
Model 67 users who have CP-67/CMS installed can use VM/370 on a Model
168 with some conversion effort. The Virtual Machine Assist RPQ can be
installed on a Model 168 (or a Model 165 II) to improve the performance
of certain operating systems that execute in a virtual machine under
VM/370 control.

Transition with little or no reprogramming is also provided for Model
65, 67, and 165 users who are emaulating 7070-, 7080-, or 7090-series
systems under OS MFT or MVT and for users with these systems installed,
since the integrated emulators for 7000-series systems are also
supported by 0S/VS1l and 0S/VS2.

Two models of the Model 168 are provided. The Model 3 is an advanced
version of the Model 1. The Model 3 has hardware features that give it
faster internal performance and higher availability than the Model 1.
The new hardware features of the Model 3 consist of internal
implementation differences in the Model 168 CPU and a larger high-speed
buffer and do not require any programming support. Thus, programs that
execute correctly on the Model 1 will execute correctly on the Model 3
without any programming changes assuming they have no timing
dependencies and do not access model-dependent logout areas that differ
in the two models.

Highlights of the Model 168, Models 1 and 3, when compared with a

Model 165, are as follows (features apply to the Model 1 and the Model 3
unless otherwise noted):

A Guide to the IBM System/370 Model 168 1

e A basic control (BC) mode and an extended control (EC) mode of
system operation are standard. Only BC mode is provided in the
Model 165. EC mode of operation provides additional system control
and supports new functions that are not provided in Systen/ 360 or a
Model 165.

e Internal performance of a Model 168 operating in BC mode is faster
than that of a Model 165. The instruction execution rate of the
Model 168 Model 1 is generally in the range of 10 to 30 percent
faster than that of the Model 165 when identical system
configurations, identical programs, and the same operating system
are used. The increased internal performance of the Model 1 results
primarily from the significantly faster cycle times of processor
storage in the Model 168.

The internal performance of Model 3 of the Model 168 is generally in
the range of 5 to 13 percent faster than that of a Model 1 with a
16K high-speed buffer when identical system configurations,
identical programs, and the same operating system are used, and 2K
pages are not used. The increase in the internal performance of a
Model 3 is somewhat greater when its performance is compared with
that of a Model 1 having an 8K buffer. The increase in Model 3
internal performance is the result of a standard 32K high-speed
buffer and improved execution times for certain instructions and all
interruptions.

e Dynamic address translation (DAT) is a standard facility that can be
made operative only when the Model 168 is in EC mode. It provides
hardware translation of addresses duxing program execution. One
virtual storage of up to 16 million bytes or multiple virtual
storages of up to 16 million bytes each can be supported using DAT
hardware. (The amount of virtual storage that can be efficiently
supported by a Model 168 depends on the hardware configuration and
job stream characteristics.) The optional channel indirect data
addressing feature must be installed on 2860, 2870, and 2880
channels when dynamic address translation is used. Channel indirect
data addressing enables the channels to access an I/0 buffer that is
contained in noncontiguous processor storage areas.

» Program event recording (PER) is standard and can be made operative
when the Model 168 is in EC mode. It is designed to be used as a
problem determination aid. This feature includes hardware that
monitors the following during program execution: successful
branches, the alteration of general registers, and instruction
fetches from and alterations of specified areas of processor
storage.

e A monitoring feature is standard that can be used to trace user-
defined program events for the purpose of debugging or statistics
gathering.

e A CPU timer and clock comparator are standard. The CPU timer
provides an interval timing capability similar to that of the
interval timer at location 80 but it is updated every microsecond,
as is the time of day clock. The clock comparator can be used to
cause an interruption when the time of day clock passes a specified
value. These items provide higher resolution timing facilities than
the interval timer and enable more efficient timing services ‘
routines to be written.

e New instructions that support dynamic address translation, the new

timing hardware, and system control facilities are added to the
System/370 instructions available for the Model 165.

A Guide to the IBM System/370 Model 168

e Processor storage is implemented using monolithic technology instead
of discrete ferrite cores, and a Model 168 can have five million
more bytes than a Model 165. Processor storage sizes of 1024K,
2048K, 3072K, 4096K, 5120K, 6144K, 7168K, and 8192K are available
for the Model 168. Monolithic storage for the Model 168 is faster
and more compact than core storage for the Model 165. As in a Model
165, processor storage in a Model 168 is four-way doubleword
interleaved.

The physical size of a Model 168 CPU is not a function of the amount
of processor storage installed. A Model 168 is smaller than a Model
165 with 512K and, therefore, is significantly smaller than Model
165 CPU's with more than 512K installed.

e The optional Power Warning feature, when installed on a Model 168
with uninterrupted power supplies, provides a warning machine check
interruption when the utility supplied power is approximately 18
percent below the rated voltage. Program support of this
interruption, which is provided by 0S MVT (Releases 21.6, 21.7, and
21.8), 0S/VSsl (as of Release 3), and 0S/VS2 (Releases 1.6 and up),
is designed to permit an orderly system shutdown after a power line
disturbance occurs, when necessary, so that operations can be
restarted once the power supply is stabilized.

e A high-speed buffer of 32K bytes is standard in Model 3 of the Model
168. Model 1 of the Model 168, like the Model 165, has an 8K buffer
as standard and optionally a 16K buffer.

e The maximum aggregate channel data rate a Model 168 can support is
significantly increased over that supported by a Model 165 because
of the faster cycle time of processor storage and the new channel
dual I/0 bus that is used to transfer data from the channels to the
storage control unit. A Model 168 configuration can handle a
maximum aggregate data rate of 17 megabytes per second (MB/sec).
The maximum aggregate data rate possible on a Model 165 is 9.4
MB/sec.

e 3330-series disk storage (all models) and/or 3340 direct access
storage facilities can be attached to a 2880 channel on a Model 168
via the Integrated Storage Controls (ISC) feature as well as via
3830 Storage Control (Models 1 and 2). The optional ISC feature
provides dual direct access storage control functions equivalent to
two 3830 Storage Control Model 2 units, with the exception of four-
channel switching. Four strings of from two to eight drives each
can be attached to each of the two logical storage controls for a
total of eight 3330-series and/or 3340 strings (64 drives) attached
via the ISC feature. Optionally, the staging adapter feature can be
installed on the ISC to permit attachment of the 3850 Mass Storage
System via ISC instead of via 3830 Storage Control Model 3.

o The 3340 direct access storage facility can be attached to the Model
168 via 3830 Storage Control Model 2 and the Integrated Storage
Controls feature. The 3340 facility is intermediate capacity direct
access storage that, because of its unique design and advanced
technology, offers advantages over 2314 disk storage in addition to
those provided by 3330-series disk storage. Automatic error
correction features and multiple requesting are standard on the
3340. Rotational position sensing is optional.

The storage medium for 3340 disk storage is the removable
interchangeable 3348 Data Module which is a sealed cartridge that is
never opened by the operator. In addition to the disks on which
data is written, the 3348 Data Module contains a spindle, access
arms, and read/write heads. The 3340 Disk Storage Drive contains

A Guide to the IBM System/370 Model 168 3

the mechanical and electrical components required to operate the
3348 Data Module.

The 3340 facility has an 885 KB/sec data transfer rate, average seek
time of 25 ms, and full rotation time of 20.2 ms. A 3348 Data
Module has a maximum capacity of approximately 35 million bytes or
70 million bytes, depending on the model. One model of the 3348
offers fixed heads for zero seek time to approximately 502,000 bytes
maximum and movable heads for an average seek time of 25 ms to the
remaining bytes in the data module. A string of from two to eight
3340 drives can be configured. From one to four strings can be
attached to the 3830 Model 2 and to each of the logical controls in
ISC. Any model of the 3348 can be mounted on a 3340 drive.
Therefore, 3340 string capacity can vary from 70 million to 560
million bytes in 35 and/or 70 million byte increments.

The sealed cartridge design of the 3340 facility offers the
advantages of multiple capacities per 3340 drive, increased data
reliability, and simplified data module loading and unloading
procedures.

e A service processor unit is standard in the Model 3. This unit
provides status data that is designed to improve problem analysis by
the local customer engineer as well as facilities that improve the
remote problem analysis capability available for a Model 3. It is
also a replacement for the optional 2955 Remote Analysis Unit that
is available for the Model 165 and Model 1 of the Model 168.

The Model 168 is designed primarily to support a virtual storage
environment that allows programmers to write and execute programs that
are larger than the processcr storage available to them. When virtual
storage is supported, restraints normally imposed by the amount of
processor storage actually available in a system are eased. The removal
of certain restraints can enable applications to be installed more
easily, and can be valuable in the installation and operation of online
applications. While some of the new hardware features of the Model 168
and some of the new facilities supported by System/370 operating systems
are designed to improve performance, a virtual storage environment is
designed primarily to help improve the productivity of data processing
personnel and enhance the operational flexibility of the installation.

1! A Guide to the IBM System/370 Model 168

SECTION 10: MAJOR COMPONENTS AND SYSTEM TECHNOLOGY FOR MODELS 1 AND 3

The System/370 Model 168 is shown in Figure 10.1. The physical size
of a Model 168 CPU does not depend on the amount of processor storage
installed, and processor storage is contained within the CPU frames of a
Model 168. All Model 168 systems (Models 1 and 3), excluding the 1/0
configuration, are the same size, which is smaller than the size of a
512K Model 165. The physical size of a Model 168 is smaller than the
size of a Model 165 as a result of the implementation of monolithic,
instead of magnetic core, processor storage. Like a Model 165 CPU, a
Model 168 CPU is water-cooled.

A Model 168 configuration consists of (1) a Model 168 CPU (3168-1 or
3168-3) with integrated monolithic processor storage and, optionally,
the Integrated Storage Controls feature, (2) a standalone 3066 Model 2
System Console, (3) a standalone 3067 Model 2 or 3 Power and Coolant
Distribution Unit, (4) standalone 2860, 2870, and 2880 channels (up to
twelve channels maximum) , and (5) a motor generator set to supply power
to the Model 168 CPU. Field conversion of 3066 Model 1 and 3067 Model 1
units to Model 2 units is possible. The same motor generator set that
is used to supply power to a Model 165 can be used with a Model 168
configuration. A Model 165 CPU cannoct be converted to a Model 168.

Figure 10.1. System/370 Model 168 (design model)

Monolithic technology is used to implement nearly all logic and all
storage (processor, local, writable control, read-only control, and

A Guide to the IBM System/370 Model 168 5

buffer) in the Model 168. Use of monolithic technology for processor

storage, as well as for logic, represents a significant technological

advance in storage implementation. The monolithic storage implemented
in the Model 168 provides several advantages over the wired, discrete

ferrite core storage implemented in the Model 165.

Monolithic storage is similar in design to monolithic logic
circuitry, the latter representing a technological advance over the
solid logic technology (SLT) introduced with the announcement of
System/360. Since the technology associated with monolithic storage is
like that used to produce monolithic logic, monolithic storage can be
batch-fabricated.

Solid Logic Technology (SLT)

Monolithic technology is a breakaway from the hybrid circuit design
concept of SLT and can best be explained by comparison with SLT. As
shown in Figure 10.2, SLT circuits were implemented on half-inch ceramic
squares called substrates. Metallic lands on the substrate formed
interconnections onto which the components were soldered. These
components ccnsisted of transistors and diodes, which were integrated on
silicon chips about the size of a pinhead, and thin film resistors. BAn
SLT chip usually contained one type of component, and several chips and
resistors were needed to form a circuit. In general, an SLT substrate

contained a single circuit.
)
0 ’\
substrate

Ceramic

SLT chip with
one component
with interconnections

Figure 10.2. SLT substrate

Monolithic System Technology (MST)

Monolithic system technology also makes use of a half-inch-square
ceramic substrate with metal interconnections onto which chips are
placed. However, in monolithic logic circuitry, large numbers of
elementary components, such as transistors and resistors, are integrated
on a single chip. Unlike an SLT chip, an MST logic chip usually
contains several interconnected logic circuits instead of only one
component. MST logic modules, each consisting of one substrate, are
mounted on circuit cards, which are in turn mounted on circuit boards
(as in SLT logic).

MST logic offers the following advantages over SLT:

e MST logic circuitry is intrinsically more reliable because many
circuit connections are made on the chip, significantly reducing the
number of external connections.

* Faster circuit speeds can be obtained because the path between

circuits is considerably shorter.

6 A Guide to the IBM System/370 Model 168

e Space requirements for logic circuitry are reduced by the
significantly higher density of components per chip.

Monolithic Storage

Monolithic storage design incorporates the same concepts described
for monolithic logic. However, storage cells that are used to contain
storage bits instead of logic circuits are implemented on a metal oxide
semiconductor chip. 1In the Model 168, a monolithic storage arre«y chip
is approximately 1/8 by 3/16 of an inch in size and contains a large
number of interconnected circuits. These circuits form storage bits and
support circuitry (decoding, addressing, and sensing) on the chip.

Since power is required to maintain a one or zero state in a
monolithic storage bit, data is lost when power is turned off, and
monolithic storage is, therefore, said to be volatile. This is not true
of core storage, which retains a magnetized state when power is removed.

The following are the advantages of monolithic over core storage:

e Faster storage speeds are obtained, first, because of the shorter
paths between storage circuitry and second, because of the
nondestructive read-out capability of monolithic storage. Since
core storage read-out is destructive, a regeneration cycle is
required after a read and a read-out cycle is required before a
write. These types of regeneration cycles are not required for
monolithic storage.

e Storage serviceability is enhanced because storage is implemented in
accessible, easily replaceable cards. Diagnostic routines need only
identify the failing storage card, which can be replaced in a matter
of minutes.

e Space requirements for system storage are reduced. Dense bit
packaging per chip is achieved by the use of monolithic technology
and by the fact that the reqularity of a storage pattern lends
itself to such packaging.

A Guide to the IBM System/370 Model 168 7

SECTION 20: ARCHITECTURE DESIGN AND SYSTEM COMPONENTS OF THE MODEL 1

20: 05 ARCHITECTURE DESIGN

Extended System/370 architecture embodies two different modes of
system operation, basic control (BC) mode and extended control (EC)
mode, as determined by bit 12 of the current PSW. When a Model 168
operates in BC mode, the contents, layout, and function of permanently
assigned processor storage locations 0 to 127 are identical to these
Jocations in Systemv360 Models 22 and up (except 44 and 67) with the
exception of the use of PSW bit 12. BC mode essentially is the
System/360-compatible mode of System/370 operation.

When EC mcde is operative in the Model 168, the format of the PSW is
altered and the number of permanently assigned locations extends beyond -
processor storage address 127. Changes to the PSW consist of the
removal of certain fields to create space for additional mode and mask
bits that are required for new functions, such as dynamic address
translation and program event recording. The removed fields are
assigned to locations above 127 and to a control register.

EC mode is effective when PSW bit 12 is a one. BC mode is effective
when this bit is a zero. BC mode is established during initial program
reset. Therefore, a control program must turn on bit 12 of the PSW in
order to cause EC mode to become operative. As a result, control and
processing programs written for System/360 (Models 22 and up except 44
and 67) will run without modification in BC mode on a System/370 Model
168 (either a Model 1 or a Model 3) that has a comparable hardware
configuration, with the following exceptions:

1. Time-dependent programs. (They may or may not execute
correctly.)

2. Programs that use machine-dependent data such as that which is
logged in the machine-dependent logout area. (OS SER error-
logging routines for System/360 models will not execute
correctly.)

3. Programs that use the ASCII mode bit in the PSW (bit 12). ASCII
mode is not implemented, and this bit is used in System/ 370 to
specify BC or EC mode of operation.

4. Programs that depend on the nonusable lower processor storage
area being smaller than 1938 bytes. This area can be reduced to
512 bytes by moving the CPU extended logout area.

5. Programs deliberately written to cause certain program checks.

6. Programs that depend on devices or facilities not implemented in
the Model 168.

7. Programs that use model-dependent operations of the System/370
Model 168 that are not necessarily compatible with the same
operations on System/360 models.

8. Programs that depend on the validity of storage data after system
power has been turned off and then on.

Only BC mode is implemented in the Model 165. Hence, control and

processing programs that currently operate on a Model 165 will run
without modification in BC mode on a Model 168 (either a Model 1 or a

8 A Guide to the IBM System/370 Model 168

Model 3) that has a comparable hardware configuration, with the
following exceptions:

1. Time-dependent programs. (They may or may not execute correctly.)

2. Programs that depend on the nonusable lower processor storage
area being smaller than 1938 bytes. (The nonusable area in the
Model 165 is 1504 bytes.)

3. Programs that use machine-dependent data such as that which is
logged in the machine-dependent logout area.

4. Programs deliberately written to cause certain program checks.

5. Programs that depend on the validity of storage data after system
power has been turned off and then on.

0S control programs are designed to support either BC or EC mode of
system operation. OS PCP, MFT, and MVT control programs generated for a
Model 65, 67, or 75 support BC mode operations on a Model 168. OS
control and processing programs being used on a Model 65, 67, or 75 are
subject to the eight compatibility restrictions in the first list. If
an OS MFT or MVT control program that was generated for a Model 65, 67,
or 75 is used on a Model 168, the system should be set to check stop on
machine checks. (Section 60:30 in A Guide to the IBM System/370 Model
165, GC20-1730, discusses the reason.)

OS MFT and MVT support for the Model 168 (Model 1) in BC mode is
provided as of Release 21.6. O0S MFT and MVT control programs generated
for a Model 165 using 0OS Release 21.6 or later will also operate on a
Model 168 to support BC mode of system operation (the Model 168 should
be specified as an alternate CPU via the SECMODS macro at system
generation). Processing programs that are used on the Model 165 will
operate under OS MFT or MVT control on a Model 168 in BC mode subject to
the five compatibility restrictions in the second list.

Support of Model 168 (Model 1) systems operating in EC mode is
provided by 0S/VSl, 0S/VS2 Releases 1 and up, and VM/370, each of which
is designated as system control programming (SCP). All of these
programming systems support a virtual storage environment using dynamic
address translation, which operates only when the system is in EC mode.
0S/VS2 Release 2 supports multiple virtual storages and Model 168
tightly coupled and loosely coupled multiprocessing configurations.
VM/370 supports a virtual machine environment.

User-written processing programs that operate on a Model 165 or Model
168 Model 1 under OS MFT or MVT control can operate under OS/VS1l or
0S/VS2 Release 1, respectively, on a Model 168 (Mocdel 1) with little or
no modification, as discussed in the optional programming systens
supplements (Sections 90 and 100). Hence, compatible growth from a
System/360 or a BC mode nonvirtual storage environment to an EC mode
virtual storage environment is provided.

The following are standard features of the Model 168 (Model 1) that
are functionally identical to the same features of the Model 165:

e Instruction set that includes System/360 instructions and the
following Systemv370 instructions:

COMPARE LOGICAL CHARACTERS SET CLOCK, STORE CLOCK
UNDER MASK SHIFT AND ROUND CDECIMAL

COMPARE LOGICAL LONG START I/0 FAST RELEASE

INSERT CHARACTERS UNDER MASK STORE CHANNEL ID

LOAD CONT'ROL, STORE CONTROL STORE CHARACTERS UNDER MASK

MOVE LONG STORE CPU ID

A Guide to the IBM System/370 Model 168 9

are

Extended-precision floating point

Overlap of instruction fetching and preparation with instruction
execution (implementation of the instruction and execution units is
enhanced in the Model 168)*

Store and fetch protection

Multiple control registers (more registers are implemented in the
Model 168 than in the Model 165)#

Interval timer (3.3 millisecond resolution)

Time of day clock

Byte-oriented operands

Extended external interruption masking

Expanded machine check interruption class (additional facilities are
provided in the Model 168)*

Extended channel logout

Instruction retry, ECC on processor storage, and command retry
Writable monolithic control storage

High-speed buffer storage - 8K

Direct control

The following are optional features of the Model 168 (Model 1) that

functionally identical to the same features on the Model 165:

High Speed Multiply (increases speed of fixed- and floating-point
multiply operations by a factor of two to three)

Buffer Expansion for the addition of 8K of buffer storage (the 16K
buffer has a slightly different organization in the Model 168)#*
707077074 Compatibility

7080 Compatibility

709/7090/70941IT Compatibility

2870 Multiplexer Channels and attachment feature, 2860 Selector
Channels and attachment feature, and 2880 Block Multiplexer Channels
(one 2860, one 2880, or one 2870 with one selector subchannel is
required)

Extended Channels (for up to twelve channels)

Channel-to-Channel Adapter on 2860 selector channels

Extended Unit Control Words on 2880 Block Mutliplexer Channels

3066 Model 2 System Console (required) - a few new items are provided
2955 Remote Analysis Unit

The following are standard features of the Model 168 (Model 1) that

are not available for the Model 165:

10

New instructions#*

CLEAR I/0

COMPARE AND SWAP

COMPARE DOUBLE AND SWAT
INSERT PSW KEY

LOAD REAL ADDRESS
MONITOR CALL

PURGE TLB

RESET REFERENCE BIT

SET CLOCK COMPARATOR

SET CPU TIMER

SET PSW KEY FROM ADDRESS
STORE CLOCK COMPARATOR
STORE CPU TIMER

STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK

*Part of the Dynamic Address Translation Facility of a Model 165 II.
The functional descriptions of these items in this publication apply
to their implementation in both the Model 168 and the Model 165 II,
unless otherwise indicated.

A Guide to the IBM System/370 Model 168

EC mode of system operation¥*

Dynamic address translation#*

Reference and change recording#*

CPU timer and clock comparator#*

Program event recording#

Monitoring featurex*

Program interruption for SET SYSTEM MASK instruction#*
Store status function#*

Monolithic read-only control storage (instead of capacitor read-only)#*
Monolithic processor storage (instead of core storage)
Channel dual I/0 bus

*Part of the Dynamic Address Translation Facility of a Model 165 II. -
The functional descriptions of these items in this publication apply
to their implementation in both the Model 168 and the Model 165 II,
unless otherwise indicated.

The following are optional features of the Model 168 (Model 1) that
are not available for a Model 165:

¢ Channel Indirect Data Addressing for 2860, 2870, and 2880 channels
(required by the virtual storage operating systems and available for
the Model 165 II)

¢ Integrated Storage Controls for attachment of 3330-series and/oxr 3340

disk storage, or the 3850 Mass Storage System

Two-Channel Switch for Integrated Storage Controls

Staging adapter for Integrated Storage Controls

Power Warning

Multiprocessing (3068 Multisystem Unit)

¢ o O 9

All the new features of the Model 168 Model 1 except Integrated
Storage Controls and those related to implement ing virtual storage (such
as dynamic address translation and reference and change recording) are
discussed in the remainder of this section.

20:10 THE CENTRAL PROCESSING UNIT

Like the Model 165, the Model 168 has a CPU cycle time of 80
nanoseconds and an internal data path that is eight bytes wide. The
implementation of local storage (80 nanosecond cycle time), read-only
and writable control storage (80 nanosecond cycle times), expanded
external interruption masking, and parity checking is the same in the
two models. Control registers in addition to the four implemented in
the Model 165 are implemented in the Model 168 in order to support new
EC-mode-only functions. Additional control registers are implemented in
the Model 165 II as well.

Implementation of the instruction and execution units in Models 168
and 165 differs in several aspects in order to provide better overlap of
instruction preparation with instruction execution and to provide
functions required by new Model 168 hardware features, such as dynamic
address translation. (This new implementation is also provided in a
Model 165 II.) Significant differences are the following:

e In the Model 168, up to four instructions can be prepared and await
execution while one instruction is being executed. The Model 165
can prepare and hold up to three instructions.

o When an incorrect estimate of the success of a conditional Lkranch
has been made, the Model 168 can decode the correct instruction one
cycle sooner than can the Model 165, if the instruction is presently
in an instruction buffer.

A Guide to the IBM System/370 Model 168 11

e In the Model 168, a doubleword from a given instruction stream can
be placed in the instruction buffers every machine cycle. This can
be done every other cycle in a Model 165.

e In the Model 168, two registers are provided to hold data that is
awaiting placement in processor storage. Each can hold up to eight
bytes. The Model 165 has only one such register.

e The instruction unit in the Model 168 includes an instruction
pretest function (explained under "Instruction Nullification" in
Section 30:10).

® Imprecise interruptions do not occur in a Model 168. 1In a Model
165, an imprecise interruption occurs if an attempt is made to store
data at an invalid storage address or at a storage-protected
location. The Model 168 implementation of pretesting (for the
dynamic address translation function) also ensures that such
conditions do not cause imprecise interruptions in the Model 168.

EXTENDED CONTROL MODE

Extended control mode, unlike basic control mode, is exclusively a
System/370 mode and is not implemented in System/360. In a Model 168,
the optional Channel Indirect Data Addressing feature must be installed
on all standalone channels for the channels to operate with EC mode
enabled. Note that IBM-supplied operating systems do not support
System/370 models operating in EC mode without dynamic address
translation operative also. Facilities that depend on which mode is in
effect are discussed below. Any item not covered operates identically
in BC and EC modes. (The discussion of EC/BC mode differences applies
to the Model 165 II also.)

Change in PSW Format

When a System/370 operates in EC mode, the format of the PSW differs
from the BC mode format. Both PSW formats are shown in Figure 20.10.1.
In EC mode, the PSW does not contain individual channel mask bits, an
instruction length code, or the interruption code for a supervisor call,
external, or program interruption. The channel masks are contained in
control register 2, and the other fields are allocated permanently
assigned locations in fixed processor storage above address 127.

Removal of the fields indicated provides room in the EC mode PSW for
control of new features that are unique to EC mode (such as PER and DAT)
and for the addition of summary mask bits (such as channel and 1I/0
masks). Use of a single mask bit to control the operation of an entire
facility (such as program event recording) or an entire interruption
class (such as I/70 and external) simplifies the coding required to
enable and disable the system for these interruptions.

Change in Permanently Assigned Processor Storage Locations

When a System/370 operates in EC mode, the number of permanently
assigned locations in lower processor storage is increased to include
fields for storing instruction length codes, interruption codes (for
supervisor call, external, and program interruptions), program event
recording data, the I/O device address for an I/O interruption, and an
exception address for the DAT feature. The model-independent BC mode
and EC mode fixed storage areas for System/ 370 models are shown in
Figure 20.10.2. The balance of the fixed area for the Model 168, that
which has model-dependent fields, is shown in Figure 20.10.3. This
model-dependent area is not affected by whether EC or BC mode is in

12 , A Guide to the IBM System/370 Model 168

effect except for locations 185 to 187, which contain the I/0 address
after an I/0 interruption and an IPL only when EC mode is in effect.

The machine check interruption procedure and the format of the data
logged on a machine check are the same in EC and BC modes, except for
differences in the PSW format and the permanently assigned locations
previously discussed.

BC MODE PSW FORMAT EC MODE PSW FORMAT
Bit Content Bit Content
) Channel 0 mask 0 0
1 -Channel 1 mask 1 PER mask
2 Channel 2 mask 2 0 e Svst
3 | Channel 3 mask System [™4 0 y :m
4 Channel 4 mask mask 4 0 mas
5 | Channel 5 mask Translation mode (DAT feature mask)
[1/0 mask 6 1/0Q summary mask
7 External mask 7 External summary mask
8 Protect key 8 Protect key
9 9
10 10
11 11
12| EC/BC mode (0 is BC) 12 | EC/BC mode (1 is EC)
13 Machine check mask 13 Machine check mask
14 Wait/running state 14 Wait/running state
15 Problem/supervisor state 15 Problem/supervisor state
16 Interruption code 16 (1]
17 17 0
18 18 | Condition code
19 19
20 20 Program mask
21 21
22 22 l
23
24 . 24 0
L 4 T 4 l T
30 30
a1 | Y : 31

32 nstruction length code 32 0
33 33
34 | Condition code 34,
35 35
36 | Program mask 36
37 37
% l %
39 39 Y
40 | Instruction address 40 Instruction address.
a1 M
42 42

A L A ~ o ~

o o~ ~ N ~ ~
61 61
62 62
63 63 | y

Figure 20.10.1. BC mode and EC mode PSW formats

Expansion of Storage Protect Key Size

The size of the storage protect key associated with each 2K storage
block is expanded from five to seven bits in the Model 168. The two
additional bits (reference and change) are included for use with dynamic
address translation and are discussed in Section 30:10. The SET STORAGE
KEY instruction sets a seven-bit key regardless of the mode, BC or EC,
in effect. The INSERT STORAGE KEY loads a five-bit or a seven-bit key
into the register indicated depending on whether BC or EC mode,
respectively, is in effect.

A Guide to the IBM System/370 Model 168 13

BC MODE FIXED AREA 0-159

Decimal 0
locations IPL PSW
IPL CCW 1
16 IPL CCW 2 ® Model independent among
24 . System/360 and System/370
External old PSW models in BC mode except
32 Supervisor call old PSW for PSW bit 12
40 Program old PSW e Processed by the control program
48 Machine check old PSW
%6 1/0 old PSW
64 Channel status word — CSW
72 Channel address word — CAW 76 Unused
8 Interval timer 84 Unused
8 External new PSW
9 Supervisor call new PSW
104 Program new PSW
12 Machine check new PSW
120 1/0 new PSW
128 0 132 0
136 0 140 0
144 0 148 0 |NMonitor 0
152 0 156 0 Monitor code
EC MODE FIXED AREA 0-159
IPL PSW
IPL CCW 1
° " Yol e amons
External old PSW EC mode
32 Supervisor call old PSW e PSW format is different
40 Program old PSW :rg\;vn that of BC mode
a8 Machine check old PSW
56 e Processed by the control
1/0 old PSW program
64 Channel status word — CSW
72 Channel address word — CAW 76 Unused
80 Interval timer 84 Unused
88 External new PSW
96 Supervisor call new PSW
104 Program new PSW
12 Machine check new PSW
120 /O new PSW
128 0 132 0 Externalint. code,
136 ILC SVCint.code [140 O ILC |Program int. code
144 0 Translation excp. addr. | 148 0 glllgsr;itor PER code| 0
152 PER address " 156 0 Monitor code

Figure 20.10.2. Model 168 model-independent fixed storage locations
for BC and EC modes

14 A Guide to the IBM System/370 Model 168

160

Reserved
AREA
168 Channel ID 172 |/0 extended log pointer 1/0 COMMUTGIgPLT:gPS
176 Unused 180 0
184 *Stored for EC mode
0 | *1/0 address 188 0 operations only

192:: Unused ~
216 -

Contents of CPU timer FIXED LOGOUT AREA
224 Contents of clock comparator 216-511
232 Machine check code Layout varies by System/370
240 model

Reserved

® Always logged on a

248 Failing storage address 252 Reserved machine check interruption
256".,5’ Five doublewords of retry status ','7:’, ® Processed by RMS
352* Floating point register save area }
384* General register save area *
448#; Control register save area f:;
512

Figure 20.10.3.

CPU extended logout—1416 bytes

(Pointer in control register 15
setto 512 at IPL)

CPU EXTENDED LOGOUT AREA

® Model dependent

® Stored on all exigent machine
checks and first and seventh
instruction retry,if specified,
and logged by RMS

® Processed by Logout
Analysis Program

Model 168
locations

Channel Masking Changes

When a System/370 operates in EC mode,
channel
(bit 6)

(Model 1) model-dependent fixed storage

interruptions from each
are controlled by the summary I/O mask bit in the current PSW
and an individual channel mask bit in control register 2. 1In

the Model 168, bits 0 to 11 in control register 2 are assigned to

control channels 0 to 11, respectively.

Both the summary mask bit and

the appropriate individual channel mask bit must be on in order for an

interruption from a given channel to occur.

In BC mode, only

interruptions from channels 6 to 11 are controlled by individual channel
mask bits in control register 2 and the I/0 mask bit in the PSW.
Interruptions from channels 0 to 5 are controlled only by channel mask
bits in the current PSW (bits 0 to 5) in BC mode.

Changes to Certain System/370 Instruction Definitions

All Model 168 instructions are valid in BC and EC modes.

However,

because of differences between the PSW format and the permanently
assigned storage locations in EC and BC modes, the definition of certain

instructions is affected.

Instructions provided for both System/360 and

System/370 whose definition is altered for EC mode are:

A Guide to the IBM System/370 Model 168

BRANCH AND LINK (RR, RX)
INSERT STORAGE KEY

LOAD PSW

SET PROGRAM MASK

SET STORAGE KEY
SET SYSTEM MASK
SUPERVISOR CALL

15

Revised definitions of these instructions to include BC/EC mode
differences are contained in System/370 Principles of Operation (GA22-
7000-2, or later editions). Programs that operate in BC mode and that
use LOAD PSW and/or SET SYSTEM MASK (SSM) instructions must be modified
to operate correctly in EC mode. The eight-byte PSW to be loaded by
LPSW instructions and the eight-hit system mask to be set by SsM
instructions must be changed to EC mode format. (Programs that use SSM
instructions and that are executed in an 0S/VS1 or 0S/VS2 environment
need not be modified because the interruption for SSM instructions and
an SSM simulation routine, described next, are supported.)

Programs that use the other instructions listed do not have to be
changed to operate correctly in EC mode, unless they use other
facilities that are mode dependent. Programs that operate in BC mode
and that use the STORE THEN OR SYSTEM MASK and STORE THEN AND SYSTIM
MASK instructions (not provided in Systemn/360) must also be modified to
operate correctly in EC mode.

Program Interruption for Set System Mask Instruction

When a System/370 is operating in EC mode, execution of the SET
3YSTEM MASK instruction is under the control of the SSM mask in control
register 0. When the SSM mask bit is a one, an attempt to execute an
538M instruction causes a program interruption without execution of the’
3SM instruction. When the SSM mask bit is a zero, SSM instructions are
executed as usual.

This interruption is implemented to enable existing programs that
were written for Systenv360 models or for System/370 BC mode of
operation to execute correctly in EC mode without modification of the
system mask field addressed by existing SSM instructions. When an
interruption occurs for an SS5M instruction, the contents of the BC mode
format system mask indicated by the SSM instruction can be inspected,
and the appropriate EC mode mask bits can then be set by an SSM
simulation routine. '

Program Event Recording

Program event recording (PER), a standard feature of the Model 168,
is designed to assist in program debugging by enabling a program to be
alerted to any combination of the following events via a program
interruptions:

e Successful execution of any type of branch instruction

e Alteration of the contents of the general registers designated by
the user

e Fetching of an instruction from a processor storage area defined by
the user

e Alteration of the contents of a processor storage area defined by
the user

The PER feature can operate only when EC mode is in effect and the
PER mask, bit 1 of the curremt PSW, is on. Control register 9 (bits 0
tto 3) is used to specify which of the four PER event types are to be
monitored. A PER program interruption is taken after the occurrence of
an event only if both the PER mask bit and the respective event mask bit
in control register 9 are on. Control register 9 (bits 16 to 31) also
specifies which of the 16 general registers are to be monitored if
monitoring of this event is specified. Control registers 10 and 11
indicate the beginning address and the ending address, respectively, of

16 A Guide to the IBM System/370 Model 168

the contiguous processor storage area that is to be monitored for
instruction fetching and/or alteration.

When an event that is being monitored is detected, PER hardware
causes a program interruption, if the PER mask bit is on, and
identification of the type of event is stored in the fixed processor
storage area (location 150). The address of the instruction associated
with the event is also stored (locations 153 to 155). Program event
interruptions are lost if they occur when the PER mask bit or the
particular event mask bit is off.

If dynamic address translation mode is also specified when PER is
active, virtual storage addresses instead of real storage addresses
(discussed in Section 30) are placed in the control registers to monitor
references to a contiguous virtual storage area.

Note that when PER is enabled to monitor successful branches, general
register alterations, or processor storage alterations, significant CPU
performance degradation occurs.

MONITORING FEATURE

The monitoring feature is standard on the Model 168 (and on the Model
165 II). This feature provides the capability of monitoring the
occurrence of programmed events. For example, monitoring can be used to
perform measurement functions (how many times a routine was executed) or
tracing functions for the purpose of program debugging (which routines
were executed).

The MONITOR CALL instruction is provided with the monitoring feature.
Execution of this instruction indicates the occurrence of one of the
events being monitored. The operands of the MONITOR CALL instruction
permit specification of up to 16 classes of events, each class with up
to 16 million unique types of events. The 16 monitor classes are
individually maskable via mask bits in control register 8. A program
interruption occurs when a MONITOR CALL instruction is executed, if the
monitor class indicated is specified in control register 8, and the
event identification (class and type) is stored in the fixed storage
area.

Both the PER facility and the monitoring feature are provided for
debugging purposes. The two features differ from one another in (1) the
number of events that can be defined, (2) whether events are defined by
the hardware or the programmer, and (3) whether hardware or the
programmer checks for the events and causes the interruptions. When PER
is used, once the events to be monitored have been designated by the
user, CPU hardware checks for the occurrence of the events and causes
the interruption. When the monitoring feature is used, the user defines
the events to be monitored (up to 16 classes with up to 16 million
monitor codes each instead of only four events), determines when the
events occur, and causes program interruptions by issuing MONITOR CALL
instructions.

NEW INSTRUCTIONS

STORE THEN AND SYSTEM MASK and STORE THEN OR SYSTEM MASK are two new
privileged instructions that affect the system mask (bits 0 to 7 in the
current PSW). The STORE THEN AND SYSTEM MASK instruction provides, via
a single instruction, the capability of storing the current system mask
for later restoration, while selectively zeroing certain system mask
bits. The STORE THEN OR SYSTEM MASK provides system mask storing and
selective setting of system mask bits to ones. These two instructions

A Guide to the IBM System/370 Model 168 17

simplify the coding required to alter the system mask, particularly when
the existing settings must be saved.

COMPARE AND SWAP and COMPARE DOUBLE AND SWAP instructions provide the
capability of controlling access to a shared real storage area in a
multiprogramming or multiprocessing environment. Although the TEST AND
SET instruction can also be used for this purpose, these compare
instructions enable a program to leave a message when the shared area is
in use. This message can be inspected, via a COMPARE AND SWAP
instruction, by other programs that share the real storage area. The
virtual telecommunications access method (VITAM), 0OS/VS2 Releases 2 and
up, and VSAM Release 2 use these two instructions.

The INSERT PSW KEY privileged instruction enables a program to place
in general register 2 the four-bit storage protection key from the
current PSW. The SET PSW KEY FROM ADDRESS privileged instruction
enables a program to place a protect key contained in general register 2
or processor storage in the current PSW. When a control program is
requested to access a given processor storage location by a problem
program, these two instructions can be used by the control program
during its processing of the request to determine whether the problem
program is authorized to access the specified processor storage
location.

The CLEAR I/O privileged instruction can be used together with the
HALT DEVICE instruction to terminate all I/O activity on a given
channel. CLEAR I/O, INSERT PSW KEY, and SET PSW KEY FROM ADDRESS are
used by 0S/VS2 Releases 2 and up.

The new instructions discussed above are provided in the Model 165 II
also. Other new instructions provided for the Model 168 are related to
specific features (such as monitoring, dynamic address translation, the
clock comparator, and the CPU timer) and are discussed with these
features.

CLOCK COMPARATOR AND CPU TIMER

These timing facilities are standard on the Model 168. (They are
also provided in a Model 165 II.) The clock comparator provides a means
of causing an external interruption when the time of day clock has
passed a time specified by a program. This feature can be used to
initiate an action, terminate an operation, or inspect an activity, for
example, at specific clock times during system operation.

The clock comparator has the same format as the time of day clock and
is set to zero during initial program reset. The SET CLOCK COMPARATOR
privileged instruction is provided to place a value that represents a
time of day in the clock comparator. When clock comparator
interruptions are specified via the external interruption summary mask
bit in the current PSW and the clock comparator subclass mask bit in
control register 0, an external interruption occurs when the time of day
clock value is greater than the clock comparator value. Bits 0 to 51 of
the time of day clock and the clock comparator are compared. If clock
comparator interruptions are masked when this condition occurs, the
interruption remains pending only as long as the time of day clock value
remains higher than the value in the clock comparator. The STORE CLOCK
COMPARATOR privileged instruction can be used to obtain the current
value of the clock comparator.

The use of a clock comparator to cause an interruption when a
specified time is passed, instead of the interval timer at location 80,
offers two advantages. First, the time of day clock increments when the
system is in the stopped state while the interval timer does not.

Hence, if a system stop occurs during processing and the system is

18 A Guide to the IBM System/370 Model 168

restarted, the clock comparator can still cause an interruption at the
time requested. The interruption caused by the interval timer in such a
situation is late. Second, implementing the time of day clock and the
clock comparator in the same doubleword format eliminates having to
convert doubleword time of day clock units to single-word interval timer
units.

The CPU timer provides a means of causing an external interruption
when an interval of time specified by a program has elapsed. The CPU
timer is implemented as a binary counter with a format identical to that
of the time of day clock; however, bit 0 of the CPU timer is considered
to be a sign. The CPU timer has a maximum time period half as large as
that of the time of day clock and the same resolution of one
microsecond. When both the CPU timer and the time of day clock are
running, the stepping rates of the two are synchronized so that they are
stepped at exactly the same rate.

The CPU timer is set to zero at initial program reset and the SET CPU
TIMER privileged instruction is provided to place an interval of time in
the CPU timer. The STORE CPU TIMER privileged instruction can be used
to obtain the current CPU timer value. The CPU timer decrements every
microsecond. If the external interruption summary mask bit in the
current PSW and the CPU timer subclass mask bit in control register 0
are on, an external interruption occurs whenever the CPU timer value is
negative (not just when the timer goes from positive to negative),
indicating that the time interval has elapsed. The CPU timer decrements
when the CPU is executing instructions (including instruction retry
operations) and while the CPU is in the wait state. It is not
decremented when the system is in the stopped state.

While providing essentially the same function as the interval timer
at location 80, the CPU timer provides advantages over the interval
timer as follows: Task processing intervals of less than 3.3
milliseconds are accurately measured because of the one microsecond
resolution of the CPU timer. A pending CPU timer interruption is reset
when a SET CPU TIMER instruction is issued to set a positive value in
the CPU timer, eliminating the need to take an interruption in order to
reset the CPU timer, as is required for the interval timer.

In addition, the amount of timing facilities processing required
during a task switch can be reduced. This can result from the fact that
the format of the time of day clock and the CPU timer are the same.
Conversion of doubleword time of day clock values to single-word
interval timer values is eliminated, and timer queues can be structured
in such a way ‘that little of the processing currently required during a
task switch, when the interval timer is used, is necessary.

RELIABILITY, AVAILABILITY, AND SERVICEABILITY FEATURES

The following hardware RAS features implemented in the Model 168 are
functionally identical to those provided in the Model 165:

e Automatic retry of most failing CPU operations by hardware (a few
instructions are retried on a Model 165 that are not retried on a
Model 168)

e ECC checking on processor storage to correct all single-bit and
detect all double-bit errors. However, in a Model 168, machine
check interruptions after ECC corrections are disabled during a
system reset (that is, nonrecording mode is in effect). If machine
check interruptions are to occur after ECC corrections, the DIAGNOSE
instruction must be issued to enable full recording mode (and the
recovery mask bit must be turned on). In the Model 165 (and 165 II),
a system reset enables the CPU for machine check interruptions

A Guide to the IBM System/370 Model 168 19

after ECC corrections.

I/0 operation retry facilities, including the storing of channel
retry data during an I/0 interruption that results from an error,
and channel/control unit command retry procedures to correct certain
failing I/0 operations

Implementation of machine check interruption facilities is expanded

in the Model 168 to provide more definitive logout information when a
machine check interruption is taken, and new buffer row deletion and
translation lookaside buffer deletion functions are implemented.

Machine check interruption facilities are the same in Models 168 and 165
except for the following (which also apply to a Model 165 II except for
the warning interruption):

20

e The instruction processing damage subclass of machine check

interruption, not implemented in the Model 165, is implemented in
the Model 168. Instruction processing damage is indicated in the
machine check code (shown in Figure 20.10.4) when a CPU error occurs
that is not retryable or that was unsuccessfully retried, unless an
ILPSW instruction or an interruption was in process at the time of
the failure or the failure was a hang detect. In these cases,
system damage is indicated. In the Model 165, system damage is
indicated for all CPU and storage errors that cannot be retried or
that are unsuccessfully retried. Implementation of the instruction
processing damage subclass in the Model 168 is designed to identify
errors that can be associated with a specific task so that only that
task need be abnormally terminated. Code is included in the Model
165 MCH routine that attempts, when a system damage error is
indicated, to distinguish system damage from damage that can be
associated with a task. This code is not required for the Model
168.

Whenever a machine check interruption is taken to record information
about a correctable or an uncorrectable processor storage error, the
failing processor storage address is placed in locations 248-251.
The machine check code indicates the type of processor storage error
and whether the stored failing storage address is valid.

In the Model 168, each block in the high-speed buffer has a delete
bit associated with it in the address array for the buffer, as in
the Model 165. However, in the Model 168 each row within the buffer
also has a row delete trigger associated with it. (There are four
rows in the 8K buffer and eight rows in the 16K buffer, as shown
later in Figure 20.15.2.) Whenever certain buffer errors occur and
the Model 168 CPU is enabled for machine check interruptions,
hardware determines the buffer row in which the error occurred. The
row delete trigger is turned on for that row. This indicates that
the buffer row is disabled and that the CPU can no longer fetch data
from or store data in the deleted buffer row. The machine check
code stored during the interruption that occurs after a buffer row
is deleted indicates a degradation condition.

The mode bit implemented in the Model 165 that can be set by a
DIAGNOSE instruction to cause the entire buffer to be disabled when
a machine check occurs is not implemented in the Model 168. The
other buffer delete mode bit in the Model 165 that causes the entire
buffer to be deleted when a machine check occurs and the bit is on
is implemented in the Model 168. However, the Model 168 contains a
mode bit that can be set to cause the buffer row deletion mechanism
to be disabled. This selective buffer deletion facility allows only
one-quarter of an 8K buffer or one-eighth of a 16K buffer to be
automatically disabled by hardware at the time certain buffer errors
occur and avoids total buffer disabling after an error.

A Guide to the IBM System/370 Model 168

89T TOPOW 0LE/wo3sAs WAI dY3z O3 ¥PIno ¥

1C

Fixed Logout Area Locations 232—-239

0-8 16—18
- 20 — 31, 46, 47 48 — 63
Machine Check Stora il
acl _‘l‘r;ges Errorge Validity Bits CPU Extended Log Length
o
2 2 AE 2 ala 2
o .
alalalelo Wl h ale 7] Zero if no logout
12153312812 (8|=|5Ix|418|¥[5 =1 =] 2 or 1416 bytes
4 z =Zl0 = Zlz =z
o] o] D g 2 O|> >
Bt 0 1 2 3 4 5 6 7 8914 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132-4546 47 48 63
Bit Interrupt Type Bit Error Bit Valid Fixed Area Data
0 SD — System Damage 15 Delayed Interruption 20-23 Machine Check Old PSW (48-55)
1 PD - Instruct_ion 16 Storage 20 AMWP
Processing Damage Error 21 Masks and Protect Key
2 SR — System Recovery Uncorrected 22 Program Mask and Condition Code
4 CD — Timing Facilities 17 Storage 23 Instruction Address
Damage Error 24 Failing Storage Address
5 ED — External Damage Corrected 27 Floating Point Registers (352-383)
7 DG - Degrqdatnon 18 Protection 28 General Registers (384-447)
8 W | — Warning Key 29 Control Registers (448-511)
Error 30 CPU Extended Logout
31 Storage (Validity of storage being
processed by instructions when
interruption occurred.)
46 CPU Timer Value
47 Clock Comparator Value

Figure 20.10.4.

Model 168 machine check code

22

e A translation lookaside buffer (TLB) deletion function is

implemented and is discussed in Section 30:10.

The time of day clock damage interruption, maskable by the external
mask bit and PSW bit 13, is expanded to include clock comparator and
CPU timer errors. Its name is changed to "Timing Facilities
Damage™. When a STORE CLOCK COMPARATOR or a STORE CPU TIMER
instruction is issued and the addressed timing facility has an errxor
or when the CPU timer or the clock comparator develops an error, a
timing facilities damage interruption occurs if the timing /
facilities damage mask bit is a one.

Whenever a machine check interruption occurs in a Model 168, the
general and floating-point registers are validated, the current
value of the CPU timer is stored in locations 216 to 223, and the
current value of the clock comparator is stored in locations 224 to
231 during the interruption. Bits 46 and 47 of the machine check
code, shown in Figure 20.10.4, are used to indicate whether these
values were stored correctly. Whenever a machine check interruption
occurs as a result of a processor storage error, the address of the
error location is stored in locations 249 to 251. Bit 24 of the
machine check code is used to indicate whether the value was
correctly stored.

The size of the CPU extended logout area in the Model 168 is 1416
bytes instead of 992 bytes as in the Model 165 in order to log
additional status information when a machine check interruption
occurs.

Machine check code bits 22, 23, and 31 are set to zero only when an
instruction processing damage or system damage type of machine check
interruption occurs.

A warning machine check interruption is implemented in Model 168
systems with the optional Power Warning feature installed. This
field-installable feature can be used in Model 168 systems that have
O.E.M. uninterruptable power supplies (UPS). A UPS is designed to
protect a system from power line disturbance by providing auxiliary
power for a specified interval of time during a power reduction or
outage. A system can be fully or partially protected. Full
protection involves supplying a UPS for all system components. This
support provides continuous system cperation for a specified
interval of time during a power line disturbance. Partial
protection involves supplying a UPS for a critical subset of system
components, namely, the 3168 Processing Unit, 3066 Model 2 System
Console, 3067 Model 2 Power and Coolant Distribution Unit, all
standalone channels, and all the control units attached to one
standalone channel. The Power Warning feature can be used with
partially and fully protected Model 168 systems.

A UPS for a Model 168 must generate a power warning signal when an
undervoltage condition of 18% (+2%) is detected. A Model 168 CPU
with the Power Warning feature recognizes this signal. If bit 13 in
the current PSW and the warning submask (bit 7 in control register
14) are both on, a warning repressikble machine check interruption
occurs. Bit 8 in the stored machine check interruption code will be
on to indicate a warning condition. The machine check handler (MCH)
routine is given CPU control to process the interruption. If either
mask bit is off, the warning interruption remains pending.

The Power Warning feature is designed to enable a Model 168 system
to terminate operations in an orderly manner when a power 1line
disturbance or power shutdown occurs. When a warning interruption
occurs, a determination can be made as to whether the power line
disturbance is transient. Operation of a fully protected system

A Guide to the IBM System/370 Model 168

need not be terminated for a transient disturbance of a short enough
duration. If system termination is required, a complete processor
storage dump can be taken first. This enables processor storage to
be restored when a system restart is performed at a later time.

Model 168 recovery management routines (machine check and channel
check handlers) that operate in BC mode are included in 0S MFT and OS
MVT as of Release 21.6. They provide recovery functions similar to
those provided for the Model 165 and support of new Model 168 machine
check facilities, except for MFT, which does not support the Power
Warning feature. An instruction processing damage interruption is
recognized in the Model 168, and recovery management support (RMS)
attempts to identify the affected task and abnormally terminate it.
When a system damage error occurs, Model 168 operations are terminated
without an attempt to refresh damaged control program areas. Model 168
RMS also recognizes a degradation interruption that indicates buffer row
or TLB deletion by the hardware, and the operator is notified of this
hardware action.

These recovery routines are also included in 0S/VS1l and 0S/VS2 and
are modified to operate correctly when the Model 168 is operating in EC
and dynamic address translation modes. A discussion of how these
recovery routines differ from those provided for BC mode operations is
contained in each optional programming systems supplement.

The same remote error analysis facility is provided for the Model 168
(Model 1) as for the Model 165. That is, optionally the 2955 Remote
Analysis Unit can be attached to a channel in the Model 168
configuration. The 2955 can be connected to the RETAIN/370 network in
Raleigh, North Carolina via a communication line. Using an OLT that
runs under OLTEP and OLTSEP control, SYS1l.LOGREC data can be sent via
the 2955 to Raleigh for transmittal to the Large System Support Group in
Poughkeepsie for problem analysis.

20:15 STORAGE

PROCESSOR (MAIN) STORAGE

Like the Model 165, the Model 168 has a two-level storage system in
which large high-speed processor storage backs up small, higher-speed
buffer storage. A maximum of 8192K of processor storage can be
installed in a Model 168. The Model 165 can have a maximum of 3072K.
Processor storage is available for the Model 168 in 1024K increments as
follows:

Model Capacity
J 1024K
K 20U48K
KJ 3072K
L 4096K
LJ 5120K
LK 6144K

LKJ 7168K
M 8192K

Processor storage in a Model 168 is four-way doubleword interleaved,
as it is in a Model 165. The processor storage installed in a Model 168
is divided into four logical storages, each of which can operate
independently from the other three logical storages. Logical storages
can be selected at 80 nanosecond intervals. The data path to and from
processor storage is eight bytes wide. Consecutively addressed
doublewords are spread across logical storages, as shown in Figure

A Guide to the IBM System/370 Model 168 23

20.15.1, so that access to four doublewords can be overlapped. The
processor storage control function provides the interface to the logical
storages.

As in a Model 165, processor storage in a Model 168 can be accessed
concurrently by any combination of one or more channels and the CPU for
a total of four unique logical storage requests. When simultaneous
requests for the same logical storage are received, the storage control
unit schedules the requests according to a priority scheme. This
priority is the same in Models 168 and 165. That is, the channels have
priority over the CPU and the priority among channels is definable at
channel installation time.

Processor Storage Reconfiquration

As shown in Figure 20.15.1, the processor storage present in the
Model 168 is divided into from one to eight segments of 1024K bytes
each. Segment numbers 0 to 7 are used. If an uncorrectable processor
storage error occurs, the segment containing the malfunctioning
location(s) can be manually configured out of the system by the operator.

The configuration panel on the 3066 Model 2 System Console is used to
enable storage segments, assign a one-megabyte range of addresses to
each enabled segment, and establish four-way interleaving or serial
operations. The configuration panel is also shown in Figure 20.15.1.
The operator selects a configuration by inserting pins in the
appropriate hubs. The storage configuration indicated by the panel is
made effective during a system reset. 1f necessary, the storage
configuration that is actually enabled can be displayed on the indicator
viewer (configuration registers in Image CO).

The absence of a pin in the interleave mode hub selects four-way
interleaving. When a pin is inserted in this hub, serial
{noninterleaved) operations are selected. The presence of a pin in an
enable hub indicates the associated segment is to be included in the
active storage configuration. The three CPU address bit hubs for a
segment are used to indicate the range of processor storage addresses
that are to be assigned to the segment. Shown below are the pin
combinations that are required to select the various ranges of
addresses. A zexro in an address bit hub column indicates the absence of
a pin. A one indicates the presence of a pin.

Address Bit Hub

10

[y
=

Address Range

0-1024K

1024K-2048K
2048K-3072K
3072K-4096K
4096K-5120K
5120K-6144K
61U4K-T7168K
7168K-8192K

RRRERROOCOoO o
FrooORrRROoO
roRORORO

24 A Guide to the IBM Systemv/370 Model 168

Storage
segment
number

Logical
storage

Figure 20.15.1.

The storage configuration selected by the control panel shown in

8-Megabyte Processor Storage

DWO

DW1

DW2

DW3

DW4

DW5

DW6

DW7

Configuration Panel

CPU ADR BITS
9 10 1
o O O o}
1 O O (@)
2 O (@] o
3 O o O
2 O o O
5 O O 0]
s O (@) (@)
7 0 (0} O

INTERLEAVE MODE

O

O=aw
@ = SERIAL

ENABLE

O O O O ¢ @& O

Figure 20.15.1 is the following:

e Segments 0, 2, and 3 are enabled and all other segments are disabled.

¢ Segment 0 is assigned addresses 0 to 102u4K,
addresses 1024K to 2048K, and segment 3 is assigned addresses 2048K

to 3072K.

1024K

1024K

1024K

1024K

1024K

1024K

1024K

1024K

Model 168 processor storage organization and configuration
panel

A Guide to the IBM System/370 Model 168

segment 2 is assigned

s Four-way interleaving is enabled.

Storage ripple functions are provided in the Model 168 for read-only
control storage, writable control storage, local storage, and processor
storage, as for the Model 165. The inline ripple facility of the Model
165 is not implemented in the Model 168.

HIGH-SPEED BUFFER STORAGE

As in the Model 165, an 8K buffer is standard in the Model 168
(Model 1) and installation of the optional Buffer Expansion feature
permits inclusion of an additional 8K of buffer storage. Buffer storage
provides high-speed data access for CPU fetches. In a Model 168, as in
a Model 165, the CPU can obtain eight bytes from the buffer in 160
nanoseconds (two CPU cycles) and a request can be initiated every cycle.
This is the time between request acceptance and availability of the data
in a CPU register. If the buffer does not contain the data required,
the data must be obtained from processor storage.

Use of the high-speed buffer in Models 168 and 165 is almost
identical. (This description of the buffer in Model 1 of the Model 168
also applies to the Model 165 II.) When a data fetch request is made by
the CPU, a determination is made of whether the requested data is in the
high-speed buffer by the interrogation of the address array of the
buffer's contents. If the data requested is present in the buffer, it
is sent directly to the CPU without a processor storage reference. If
the requested data is not currently in the buffer, a processor storage
fetch is made and the data obtained is sent to the CPU. The data is
also assigned a buffer location and stored in the buffer. When data is
stored by the CPU, both the buffer and processor storage are updated if
the contents of the processor storage location being altered are
currently being maintained in the buffer.

The channels never access the buffer directly. They read into and
write from processor storage using a eight-byte-wide path between the
CPU and processor storage that bypasses the buffer. When a channel
stores data in processor storage, the address array is inspected. If
the data from the affected processor storage address is being maintained
in the buffer, appropriate bits are set in the address array to indicate
that this buffer data is no longer valid. In a Model 165, the buffer is
updated instead of invalidated when a channel stores data in a processor
storage location whose contents are currently in the buffer.

As in a Model 165, the entire buffer in a Model 168 can be disabled
manually by a system console switch. When the buffer is disabled, all
CPU fetches are made directly to processor storage and effective system
execution speed is reduced. Selective buffer disabling by row performed
by hardware, as described previously, is also provided for the buffer in
the Model 168.

The 8K and 16K buffers are shown in Figure 20.15.2 together with
their address arrays. The 8K buffer is organized in the same way in
Models 168 and 165. The 8K buffer contains 64 columns of 128 bytes
each. Every buffer column is subdivided into four blocks. A block is
32 bytes and can contain 32 consecutive bytes from processor storage
that are on a 32-byte boundary. The 8K huffer can contain a maximum of
256 different blocks of processor storage data (four blocks per column
times 64 columns). A valid trigger is associated with each buffer block
and is set to indicate whether the block contains wvalid data. All valid
triggers are set off during an initial program reset. There are four
rows in the 8K buffer. The first row consists of block 0 of each column
(64 blocks). The last row consists of block 3 of each column.

26 A Guide to the IBM Systenv 370 Model 168

Address Array — 8K Buffer Address Array — 16K Buffer

32 23
13-bit b 13-bit A
Block 0 Block 0
address 23 address e
DAR] A3
1 1
22 32
AR 14 9
2 2
by 22
AR ALY
3 3
3% 32
< 1C
Column 0 1 63 4
21
256 block address registers 5 e
2
¢
6
2
—¢
7
43
Column 0 1 63
512 block address registers
Buffer Storage — 8K Buffer Storage — 16K
2% : 22
L33 \ S
Block 0 | 32 bytes Block 0 | 32 bytes
I3 LY.
A 1{3
1 1
22 32
AR L5
2 2
22 LYY
- —{C
3 3
W 2
Column 0 1 63 4
256 blocks Y.
5
22
A3
6
b))
14y
7
2
Column 0 1 I 63
512 blocks

Processor Storage—2048K

Block 0 | 32 bytes Addresses 0 - 2047

1 j Addresses 2048 - 4095
I

2
J— e,
A —— T — rT—T
1021 (
1022
1023
Column 0 1 h 63

Figure 20.15.2. 8K and 16K buffer organization

A Guide to the IBM System/370 Model 168

The organization of the 16K buffer in Models 168 and 165 is slightly
different. In the Model 168, the 16K buffer still contains 64 columns
but each column has eight blocks instead of four. 1In a Model 165, the
16K buffer has 128 columns of four blocks each. The approach taken in
the Model 168 enables bits 21 to 31 of the storage address in an
instruction to be used to address the index array for the buffer whether
the storage address is virtual or real. This enables interrogation of
the index array to be performed simultaneously with interrogation of the
translation lookaside buffer, which is part of the Dynamic Address
Translation Facility. (See Section 30:10 for more details.) There are
eight rows in the 16K buffer. The first row consists of block 0 of each
column (64 blocks). The last row consists of block 7 of each column.

Processor storage is logically divided into the same number of
columns as buffer storage, which is always 64 in the Model 168. While
there are four or eight blocks in a buffer column, depending on buffer
size, the number of blocks in a processor storage column varies with the
size of processor storage. When buffer storage is assigned, bits 21-26
of the processor storage address determine which one of the 64 columns
in buffer storage is to be used. The organization of 2048K bytes of
processor storage is shown in Figure 20.15.2. Any of the 1024 blocks in
a given processor storage column can be placed in any one of the four
(8K buffer) or eight (16K buffer) blocks in a corresponding buffer
colunn.

Figure 20.15.2 also shows the organization of the address array for
the 8K and the 16K buffer. The address array contains the processor
storage addresses of the data that is currently in the buffer. A least-
recently-used algorithm, similar to that used in the Model 165, is
implemented in the Model 168 to determine which block within a buffer
column is to be assigned when data is placed in the buffer.

Buffer and processor storage components and controls in the Model 168
are shown in Figure 20.15.3.

28 A Guide to the IBM System/370 Model 168

Central Processing Unit

Processor Storage

Channel < Storage Arrays
L Logical Logical Logical Logical
av storage storage storage storage
0 1 2 3
Channel |€— x /
>
Shaglnel Storage control itgzgg‘:
ign ;
P conversion and ECC logic keys

Channel ﬁ A ; 7

149

_

e o Processor Storage Control

Function
Channel F—- ¢
L A

Channel | Buffer 4P| High-speed

buffers | inval- buffer
and idate address array
control gg‘ifss p|{ buffer control

Dynamic address

translation ;I’ralr(lsl?(t;on
hardware and bO(:‘faSI e
controls uffer

g r |

v I

Instruction unit Execution unit

Figure 20.15.3. Model 168 components and controls

A Guide to the IBM System/370 Model 168

20:20 CHANNELS

The number and types of channels that can be attached to Models 165
and 168 are the same. The capability of attaching up to saven
standalone channels to the Model ‘168 is standard. Any combination of
one or two 2870 Multiplexer, up to six 2860 Selector, and up to six 2880
Block Multiplexer Channels can be attached to a Model 168, up to the
limit of seven channels. Installation of the optional Extended Channels
feature permits attachment of a maximum of twelve channels. Any
combination of one (with address 0) or two (with an address from 1 to 6)
2870s, six 2860s (with addresses 1 through 6), and eleven 2880s (with
addresses 1 through 11), up to the limit of twelve, can be installed. A
maximum of seven channel frames (for a maximum of twelve channels) can
be attached to the Model 168.

As for a Model 165 channel configuration, the addresses and
priorities of the channels present in a Model 168 configuration are
established at channel installation time as indicated by the user,
within the restraints specified for the Model 168. The channel
buffering scheme implemented in the storage control unit is the same for
Models 168 and 165.

The 2870, 2860, and 2880 channels that attach to the Model 168 are
functionally and physically identical to those that attach to a Mocdel
165. The same attachment feature that mast be installed on a 2870 or a
2860 channel in order to attach the channel to a Model 165 must be
installed on 2870 and 2860 channels that are to be attached to a
Model 168.

The 2880 has one shared subchannel and 56 nonshared subchannels. The
shared subchannel always has 200 device addresses associated with it
plus one additional address for each nonshared subchannel not plugged
during installation. The Extended Unit Control Words feature can be
installed on a 2880 attached to a Model 168 to increase the number of
nonshared subchannels in the 2880 from 56 to 256. This feature is
mutually exclusive with the Two-Byte Interface feature for 2880
channels.

While the data rates of channels that attach to the Model 168 are the
same as for the Model 165, the maximum aggregate data rate that a Model
168 can sustain with minimal overrun exposure is significantly higher
than that of the Model 165. The Model 168 can also have more high-speed
I70 devices, such as the 2305, operating concurrently. The increased
data rate is made possible by the use of a channel dual 1I/0 bus to
transfer data between the channels and the storage control unit so that
the faster cycle time of Model 168 processor storage can be utilized to
advantage.

The channel dual I/0 bus in the Model 168 consists of bus A and bus
B. Each bus provides a path between from one to six channels and a
register in the storage control unit. A channel is connected to one bus
or the other (not to both). Data can be transferred simultaneously on
the two buses. This facility is used for input operations to transfer
similtaneously data from two different channels to registers in the
storage control unit.

A Model 168 without the Extended Channels feature can have three
channels attached to bus A and four channels attached to bus B. When
the Extended Channels feature is installed, a maximum of six channels
can be attached to each bus. The channel priority assigned to a channel
determines the bus to which it must be attached. A channel assigned
priority 1, 2, 3, 9, A(10), or B(11) must be attached to the A bus. A
channel assigned priority 4, 5, 6, 7, C(12), or D(13) must be attached
to the B bus. Channels within the same channel frame must be attached
to the same bus. Channels with the highest speed devices attached

30 A Guide to the IBM System/370 Model 168

should be positioned closest to the Model 168 processor on the bus to

which they are attached.

jumpers on matrix cards in the storage control unit.

Channel priority is established by plugging

A 2780 channel without a selector subchannel or with 1 or 2 selector
subschannels should be given as high a channel priority as possible. A
2780 channel with more than two selector subchannels should be assigned
priority position 1, 2, 3, or 4.

An aggregate data rate of 8.5 MB/sec can be sustained on each bus,
which provides a total maximum aggregate data rate of approximately 17

MB/sec for the system.

As a general rule,

rates should be attached to the highest priority channels.
20.20.1 indicates the channel priorities that the highest speed
System/370 I/0 devices require.

can be assigned only those priorities indicated in its column.

That is,

devices with the highest data

Table

each I/0 device in the table

Each

column also indicates the maximum number of channels to which the device
for the 2305 Model 2,

can be attached (four for the 2305 Model 1, six

etc). Permissible I/O device configurations are also shown by table

20.20.1, which in turn indicates the I/0 device configurations that can

operate concurrently.

In general, any other device type with similar

characteristics and the same or a slower data rate than the listed
device can also be assigned the indicated channel priority.
Oor no overrun exposure exists in a Model 168 system when the guidelines
indicated in Table 20.20.1 are followed.

Table 20.20.1.

highest speed System/370 I/O devices

Negligible

Permissible configurations and channel priorities for

Device Type

3330-series*

Channel |2305 Model 1* | 2305 Model 2% | 3420 Model 8 3340%* 3420 Model 6
Priority 3 MB/sec 1.5 MB/sec 1.25 MB/sec .8 MB/sec -8 MB/sec
1 X X X X X
2 X X X X X
3 X X X X
4 X X X X X
5 X X X X X
6 X X X X
7 X X X
9 X X X
A X* X X
B X X
C X
D X

*Attaches via 2880 channel only

The presence of the channel dual I/O bus in the Model 168 permits
greater flexibility in the physical layout of Model 168 components since
the channel frames are attached to two separate cable sets instead of

A Guide to the IBM System/370 Model 168

31

only ohe, as for a Model 165. Greater flexibility in the cable lengths
between channel frames attached to the same I/O bus is also provided by
the Model 168.

20:25 SYSTEM CONSOLE

The 3066 Model 2 System Console for the Model 168 has the same
features as the 3066 Model 1 System Console for the Model 165: a
cathode ray tube and keyboard, a microfiche indicator viewer, a
microfiche document viewer, a processor storage configuration panel, a
system activity monitor, and a device for loading microcode and
diagnostics. In addition, the store status function is implemented.
(The store status function is implemented in a Model 165 II as well.)

The operator can cause the contents of the following to be placed in
processor storage by pressing the new store status button on the control
panel:

CPU timer - locations 216-223

Clock comparator - locations 224-231
Current PSW ~ locations 256-263
Floating-point registers - locations 352-383
General registers - locations 38u4-447
Control registers - locations 448-511

In addition to the store status button, the control panel on the 3066

Model 2 has system clear and cooling reset alarm pushbuttons, and a
switch associated with the dynamic address translation feature.

20:30 STANDARD AND OPTIONAL SYSTEM FEATURES

STANDARD FEATURES
Standard features for the System/370 Model 168 (Model 1) are:

e BC and EC mode of operation

¢ Instruction set that includes binary, decimal, floating-point, and
extended precision floating-point arithmetic, and System/370
instructions. Standard System/370 instructions for the Model 168
are:

*CLEAR I/0

COMPARE AND SWAP

COMPARE DOUBLE AND SWAP
COMPARE LOGICAL CHARACTERS UNDER MASK
COMPARE LOGICAL LONG

INSERT CHARACTERS UNDER MASK
*INSERT PSW KEY

*LOAD CONTROL

*LLOAD REAL ADDRESS

MONITOR CALL

MOVE LONG

*PURGE TLB

*RESET REFERENCE BIT

*SET CLOCK

*SET CLOCK COMPARATOR

*SET CPU TIMER

#*SET PSW KEY FROM ADDRESS

#*Privileged instruction

32 A Guide to the IBM System/370 Model 168

SHIFT AND ROUND DECIMAL
*START 1/0 FAST RELEASE
*STORE CHANNEL ID

STORE CHARACTERS UNDER MASK

STORE CLOCK
*STORE CLOCK COMPARATOR
*STORE CONTROL
*STORE CPU ID
*STORE CPU TIMER
*#*STORE THEN AND SYSTEM MASK
*STORE THEN OR SYSTEM MASK

*Privileged instruction

Dynamic Address Translation

Reference and Change Recording
Instruction retry

Interval timer (3.3 ms resolution)

Time of day clock

Clock comparator and CPU timer
Monitoring feature

Program Event Recording

Program interruption for SSM instruction
Expanded machine check interruption class
ECC on processor storage

Byte-oriented operands

Store and fetch protection

High-speed buffer storage - 8K bytes
Attachment for up to seven channels
Channel dual I/0 bus

Channel retry data in extended channel logout area
Writable and read-only control storage
Store status function

Direct Control

OPTIONAIL FEATURES

| Optional features for the System/370 Model 168 (Model 1), which can be
field installed unless indicated otherwise, are:

3066 Model 2 System Console (required in all configurations)
High-Speed Multiply**

Buffer Expansion for inclusion of a 16K buffer

7070/7074 compatibility**

7080 Compatibility*#*

709/7090/7094 /709411 Compatibility*#

2870 Byte Multiplexer Channels, 2860 Selector Channels, and 2880
Block Multiplexer Channels

Channel Indirect Data Addressing for 2870, 2860, and 2880 channels
(required when 0S/VSl, 0S/VS2, or VM/370 is used)

e Extended Channels (for up to twelve channels)

Channel-to-Channel Adapter on 2860 Channels

Extended Unit Control Words on 2880 channels (mutually exclusive
with the Two-Byte Interface feature)

Integrated Storage Controls

Two—-Channel Switch for Integrated Storage Controls

Staging Adapter for Integrated Storage Controls

Power Warning

2955 Remote Analysis Unit

Multiprocessing (3068 Multisystem Unit)

**Not recommended for field installation

Note: Compatibility features are mutually exclusive

A Guide to the IBM System/370 Model 168 33

SECTION 30: VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION

The first subsection, 30:05, discusses the needs that virtual storage
and dynamic address translation in System/370 are designed to address.
No previous understanding of these facilities is assuwed. In this
discussion, an address space is defined as a consecutive set of
addresses that can be used in programs to reference data and
instructions. System operation in IBM-supplied virtual storage
environments is explained conceptually, without use of all the
terminology new to such an environment.

The general advantages of IBM-supplied virtual storage operating
systems are presented also. Included in this subsection are those that
apply to 0S/VS1 and 0S/VS2. Additional advantages of virtual storage
that are specific to a particular IBM-supplied operating system are
discussed in the optional supplerment for that operating system.

The last portion of subsection 30:05 defines the terminology
associated with virtual storage and dynamic address translation
hardware. The terminology included is that common to the four IBM-
supplied programming systems that support a virtual storage environment
for System/370. However, specific references to DOS/VS are not made
where a difference between DOS and OS exists, since DOS/VS does not
support the Model 168. Terms unique to a particular programming system
are defined in the optional supplement that describes that programming
system.

Subsection 30:10 describes in detail the implementation and operation
of dynamic address translation and channel indirect data addressing
hardware in the Model 168 (Models 1 and 3). Other hardware items
associated with dynamic address translation, such as reference and
change recording, are discussed as well.

The last subsection, 30:15, discusses the new factors that affect
system performance in a virtual storage environment. The information
presented is related to efficient installation and utilization of an
IBM-supplied virtual storage operating system.

The two optional programming systems supplements (Sections 90 and
100) for the virtual storage operating systems for the Model 168 (0S/VSl
and 0S/VS2 Release 1) assume knowledge of the entire contents of Section
30. The optional supplement for VM/370 (Section 110) assumes knowledge
of subsections 30:05 and 30:10 only, since performance in a virtual
machine environment is discussed in the VM/370 supplement. This entire
section applies to the Model 165 II as well as to the Model 168, except
where differences are noted.

30:05 VIRTUAL STORAGE CONCEPTS, ADVANTAGES, AND TERMINOLOGY

THE NEED FOR LARGER ADDRESS SPACE

The past and present rapid growth in the number and types of data
processing applications being installed has led to an increasing demand
for more freedom to design applications without being concerned about,
or functionally constrained by, the physical characteristics of a
particular computer system--system architecture, I/0 device types, and
processor storage size. As program design and implementation become
easier, they can enable more rapid installation of applications, so that
the benefits of data processing can be achieved sooner.

34 A Guide to the IBM System/370 Model 168

The design of Systemv/360 and OS MFT and MVT allowed programmers to be
less concerned than before about specific CPU architecture and I/0
device types when designing and implementing applications by (1)
providing a compatible set of CPU models ranging in size from small to
large scale, (2) providing a variety of high-level languages with
greatly expanded capabilities, including a new language (PL/I), (3)
providing comprehensive data management functions, including support of
I/0 device independence where data organization and the physical
characteristics of devices pernitted, and (4) supporting dynamic
allocation of system resources (channels, I/0 devices, direct access
space, and processor storage).

While System/360 and OS represented major steps toward giving
programmers a larger measure of system configuration independence,
constraints that resulted from the necessity to design applications to
fit within the amount of processor storage available still existed. 1In
addition, although System/360 models provided more and less costly
processor storage than was previously available, increasingly larger
amounts of processor storage began to be required as the use of high-
level languages increased, the usage and level of multiprogramming
increased, the functions supported by operating system control programs
expanded, and applications that require relatively larger amounts of
processor storage (such as teleprocessing and data base) were designed
and installed more frequently.

The requirement for more processor storage is still growing. The new
applications being developed and installed tend to have larger and
larger storage design points in order to provide the functions desired.
More processor storage is also required for I/0 buffer areas to achieve
maximum capacity and performance for sequential operations using new
System/370 direct access devices with significantly larger track
capacities. Larger blocking of tape records, which requires larger 1/0
buffers, also results in increased tape reel capacity and decreased tape
processing time. As a result, System/370 models provide significantly
more processor storage than their predecessor System/360 models and
offer it for a lower cost.

The availability of more processor storage, however, has not relieved
all the constraints associated with processor storage. Applications
still must be tailored to the amount of processor storage actually
available in a given system even though storage design points (partition
and region sizes) can be larger than they were previously.

Consider the following situations that can occur in installations:

1. An application is designed to operate in a 50K processor storage
area that is adequate to handle current processing needs and that
provides room for some expansion. Some time after the
application is installed, however, maintenance changes and the
addition of new functions cause one of the programs in the
application to require 51K and another to require 52K.
Installation of the next processor storage increment cannot be
justified on the basis of these two programs, so time must be
spent restructuring and retesting the programs to fit within 50K.

2. An existing application has programs with a planned overlay
structure. The volume of transactions processed by these
programs has doubled and better performance is now required.
Additional processor storage is installed. However, the overlay
programs cannot automatically use the additional storage.
Therefore, reworking of the overlay programs is required to take
them out of planned overlay structure and, thereby, achieve the
better performance desired.

A Guide to the IBM System/370 Model 168 35

36

30

A low-volume, terminal-oriented, simple inquiry program that will
operate for three hours a day is to be installed. If the program
is written without any type of overlay structure, it will require
60K of processor storage to handle all the various types of
inquiries. However, because of a low inquiry rate, only 8K to
12K of the total program will be active at any given time. 1In
order to justify its operational cost, considerable additional
program development time is spent designing the inquiry program
to operate with a dynamic overlay structure so that only 12K of
processor storage is required for its execution.

A multiprogramming installation has a daily workload consisting
primarily of long-running jobs. There are also certain jobs that
require a relatively small amount of time to execute. The times
at which these jobs must be executed is unpredictable; however,
when they are to be run, they have a high completion priority.
While it is desirable to be able to initiate these high-priority
jobs as soon as the request to execute them is received, this
cannot be done because long-running jobs are usually in
operation. Hence, a certain time of day is established for
initiating high-priority jobs and the turnaround time for these
jobs is considerably longer than is desired.

A series of new applications are to be installed that require
additional computing speed and twice the amount of processcr
storage available in the existing system. The new application
programs have been designed and are being tested on the currently
installed system until the new one is delivered. However,
because many of the new application programs have storage design
points that are much larger than those of existing applications,
testing has to be limited to those times when the required amount
of processcr storage can be made available. Although another
smaller-scale model is also installed that has time available for
program testing, it cannot be used because it does not have the
amount of processor storage required by the new application
programs. In addition, although the smaller-scale model now
provides backup for the currently installed larger-scale model,
the smaller-scale model cannoct be used to back up the new system
because of processor storage size limitations.

A large terminal-oriented application is to be operative during
one entire shift. During times of peak activity, four times more
processor storage is required than during low-activity periods.
Peak activity is experienced about 20 percent of the time and low
activity about 40 percent. The rest of the time, activity ranges
from low to peak. Allocation of the peak activity processor
storage recuirement for the entire shift cannot be justified and
a significantly smaller storage design point is chosen. As a
result, a dynamic program structure must be used, certain desired
functions are not included in the program, and response times
during peak and near-peak activity periods are increased above
that originally planned.

In this installation, most of the batched jobs are processed
during the second shift. However, there is also a need to
operate the large terminal-oriented application for a few hours
during second shift. This cannot be done because the system does
not have the amount of processor storage required for concurrent
operation of the batched jobs and the terminal program (which
must have its storage design point amount allocated even though
that amount of processor storage would not be required during
second shift operations). The large amount of additional
processor sitorage required to operate the terminal program for
only a portion of the second shift cannot be justified.

A Guide to the IBM System/ 370 Model 168

7. An application program with a very large storage design point is
executed only once a day as a batched job. A significant benefit
would result from putting the program online to a few terminals
during the morning hours. However, the program continues to be
run as a batched job because it is very large and would be made
larger by putting it online. The large amount of additional
processor storage required to operate the program concurrently
with the existing morning workload cannot be justified.

8. A terminal-based application has been installed on a full
production basis for several months. During this period, the
benefits accrued from the online application have encouraged the
gradual addition of several more terminals, and peak activity is
considerably higher than it was initially. Because growth has
been gradual, much additional programming time (significantly
more than is required to maintain batch-oriented applications)
has to be spent periodically restructuring the terminal-based
application program to handle the increasing volume of activity.

9. An online application is currently active during an entire shift
and operates concurrently with batched jobs. It would be
advantageous to install a second terminal-oriented application
that would operate concurrently with the existing workload during
the entire shift. However, the amount of processor storage that
would have to be dedicated to each online application for the
entire shift in order to handle its peak activity is very large,
and times of peak activity for the two applications do not
completely overlap. Because so much processor storage would be
unused during a large portion of the shift if both online
applications were always active, installation of the second
online application is difficult to justify.

In the situations described, processor storage is a constraining
factor in one way or another and the constraints highlighted can apply
in some degree to all systems regardless of their scale (small,
intermediate, large) or processor storage size. The fact that larger,
less expensive processor storage is now available on System/ 370 models
does not remove these constraints for two major reasons.

First, once a storage design point has been chosen for an
application, whether the design point is relatively large or small, the
application is dependent on that processor storage size for its
operation. The application cannot execute in less than its design point
storage amount, nor can it take advantage of additional available
processor storage without being modified (unless it has been
specifically structured to use additional storage as, for example, are
most IBM-supplied language translators).

Second, although processor storage has become less costly, it still
is a resource that should be used efficiently because of its importance
in the total system operation. Thus, when storage design points are
chosen, tradeoffs among processor storage cost, application function,
and system performance are often made. Making applications fit within
the storage design points selected becomes the responsibility of
application designers and programmers. This situation is made more
difficult by the fact that for many applications an optimum storage
design point cannot be determined until the application is written and
tested using expected transaction volumes.

The significance of processor storage restraints should be evaluated
in light of the following trends evidenced by new types of applications:
(1) the total amount of storage required to support their new facilities
continues to grow larger, (2) the storage they actually require for
operation during their execution is tending to become more variable, and
(3) it is becoming as desirable to install many of these new

A Guide to the IBM System370 Model 168 37

applications on smaller-scale systems with relatively small maximum
processor storage sizes and low volume requirements as it is to install
them on larger-scale systems. Reduction of the constraining factors
currently imposed by processor storage is, therefore, a necessary step
in making new applications easier and less costly to install and
available to a wider range of data processing installations.

Given the existing processor storage restraints on application design
and development and the storage requirements that are becoming
increasingly more characteristic of many of the new types of
applications, it becomes advantageous to allow programmers to design and
code applications for a larger address space than they currently have.
That is, programmers should be able to use as much address space as an
application requires so that special program structures and techniques
are not required to fit the application into a given storage size.
Programmers can then concentrate more on the application and less on the
techniques of programming. In addition, the size of the address space
provided should not be determined by processor storage size, as it is in
OS8 MFT and MWVT, so that the address space can be larger than the
processor storage available.

A larger address space should be provided, therefore, by a means
other than making processor storage as large as the address space
desired. This requirement can be satisfied by providing programmers
with an address space (called virtual storage) that is supported using
online direct access storage and dynamic address translation hardware.
This approach also offers the advantage of supporting a larger address
space for a lower cost than if larger processor storage is used, since
direct access storage continues to be significantly less expensive per
bit than processor storage. In addition, dynamic address translation
hardware offers functional capabilities that large processor storage
alone cannot provide.

VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION CONCEPTS

Virtual storage is an address space the maximum size of which is
determined by the addressing scheme of the computing system that
supports it rather than by the actual number of physical processoxr
storage locations present in the computing system. In System/370, for
example, which uses a 24-bit binary address, a virtual storage as large
as 16,777,216 bytes can be supported. When virtual storage is
implemented, the storage that can be directly accessed by the CPU,
normally called processor or main storage, is referred to as real

storage.

The concept of virtual storage is made possible by distinguishing
between the names of data and instructions and their physical location.
In a virtual storage environment, there is a distinction between address
space and real storage space. Address space (virtual storage) is a set
of identifiers or names (virtual storage addresses) that can be used in
a program to refer to data and instructions. Real storage space is a
set of physical storage locations in the computer system in which
instructions and data can be placed for processing by the CPU. The
number of addresses in the two spaces need not be the same, although
both spaces begin with address zero and have consecutive addresses. The
programmer refers to data and instructions by name (virtual storage
address) without knowing their physical (real storage) location.

When virtual storage is not implemented, there is, in effect, no
differentiation between address space and real storage space. The
address space that can be used in programs is identical in size to the
real storage space available and the address in an instruction
represents both the name and the location of the information it
references.

38 A Guide to the IBM System/370 Model 168

In a virtual storage environment, therefore, the address space
available to programmers is that provided by the virtual storage size
implemented by a given system—-not the address space provided by the
real storage available in the given system configuration. In 0S/VSl1l and
0S/VS2, virtual storage rather than real storage is divided into
consecutively addressed partitions or dynamically allocated regions for
allocation to problem programs. The fact that storage addresses in
executable programs are virtual rather than real does not affect the way
in which the programmer handles addressing. In System/370, for example,
an Assembler Language programmer assigns and loads base registers and
manipulates virtval storage addresses in a program just as if they were
real storage addresses.

Virtual storage is so named because it represents an "image of
storage" rather than physical processor storage. Since virtual storage
does not actually exist as a physical entity, the instructions and data
to which its virtual storage addresses refer, which are the contents of
virtual storage, must be contained in some physical location.

In 0S/VS1l and 0OS/VS2 environments, the contents of virtual storage
are divided into a portion that is always present in real storage,
namely, part of the control program, and another portion that is not
always present in real storage. The instructions and data that are not
always present in real storage must be placed in locations from which
they can be brought into real storage for processing by the CPU during
system operation. This requirement is met by using direct access
storage to contain this portion of the contents of virtual storage (see
Figure 30.05.1). The amount of direct access storage required to
support a given amount of virtual storage varies by operating system,
depending on how direct access storage is organized and allocated.

In addition, a mechanism is required for associating the virtual
storage addresses of instructions and data contained in direct access
storage with their actual locations in real storage when the
instructions and data are being processed by the CPU. This requirement
is met by using dynamic address translation (DAT) hardware in the CPU to
associate virtual storage addresses with appropriate real storage
addresses.

With this design, a system can support an address space that is
larger than the actual size of the real storage present in the system.
This is accomplished by bringing instructions and data from direct
access storage into real storage only when they are actually required by
an executing program, and by returning altered instructions and data to
direct access storage when the real storage they occupy is needed and
they are no longer being used. At any given time, real storage contains
only a portion of the total contents of virtual storage.

Such a design is made practical by the fact that the logical flow of
processing within the majority of programs is such that the entire
program need not be resident in real storage at all times during
execution of the program. For example, initialization and termination
routines are executed only once during the operation of a program. Any
exception-handling procedure, such as an error routine, is required only
if the exception condition occurs. A program that handles a variety of
transaction types (whether batch or online oriented) need have resident
at any given time only the transaction routine required to process the
current transaction type. It is this property of programs that has
enabled planned overlay and other dynamic program structures to be used
successfully in nonvirtual storage environments when the amount of
processor storage available was not large enough. As indicated
previously, this variable storage requirement characteristic of programs
tends to be even more pronounced in new types of applications and in
online environments in which processing is event-driven.

A Guide to the IBM System/370 Model 168 39

Virtual Storage Direct Access Storage

Address space
available to
programmers

Contents of a portion
> — mapped —3m=! Of virtual storage

Consecutive (instructions and data)
addresses
0to 16,777,215 <
rmaximum in

System/370

J N~

Location of data
and instructions

Address space allocated
to the control program
that is always present
in real storage

———— ——— 4

Names of instructions
and data

——— q————————

e

Contains
virtual storage
addresses

Executable program

Figure 30.05.1. Names and location of instructions and data in a
virtual storage environment

For the purpose of resource management in a virtual storage
environment, virtual storage and its contents, direct access storage
used to contain a portion of the contents of virtual storage, and real
storage are divided into contiguous fixed-length sections of equal size.
Once a program has been fetched from a program library and initiated,
instructions and data within a program are transferred between real
storage and direct access storage a section at a time, during program
execution. A section of an executing program is brought into a real
storage section only when it is required, that is, only when a virtual
storage address in the section is referenced by the executing program.

A program section that is present in real storage is written in a direct
access storage section only when the real storage assigned to it is
required by another program section and only if the section has been
changed.

A virtual storage operating system control program monitors the
activity of the sections of all executing programs and attempts to keep
the most active sections in real storage, leaving the least active
sections in direct access storage. Figure 30.05.2 illustrates the
relationship of virtual storage, direct access storage, and real storage

4o A Guide to the IBM System/370 Model 168

without regard to a specific virtual storage operating system
implementation.

The division of a program and its data into sections and the transfer
of these sections between direct access storage and real storage during
program execution is handled entirely by the virtual storage operating
system without any effort by the programmer. When a planned overlay or
dynamic overlay program structure is used, the programmer is responsible
for dividing the program and its data into phases, determining which
phases can be present at the same time in the amount of real storage
available (partition or region), and indicating when phases are to be
loaded into real storage during processing.

Virtual Storage Direct Access Storage
3
AN
AN
N
N
Tables or an . N
algorithm used Con.tents of a portion
Address space p of virtual storage N Real Storage
to map virtual A .
allocated to storage sections {instructions and
executing programs to direct a data for executing
c?ess programs)
storage sections Tabl
'a es map Active sections
virtual storage of executing
sections to l:eal programs
storage sections

______ S~

Control program Control program

Figure 30.05.2. Relationship of virtual storage, direct access
storage, and real storage

While a virtual storage up to 16 million bytes in size can be
addressed by any System/370 model with DAT hardware, the virtual storage
size that can be effectively implemented by a given system is affected
by (1) the amount of real storage present, (2) the amount of direct
access storage space made available to contain the contents of virtual
storage, (3) the speed of the direct access storage devices containing
virtual storage contents and contention for these devices or the
channels to which they are attached, (4) the speed of the CPU, and (5)
the characteristics of the programs operating concurrently. Hence, the
amount of real storage required to effectively implement a specific
amount of virtual storage can vary by system, depending on the
characteristics of the applications in the workload and the performance
desired, as is discussed in Section 30:15.

Once a program section has been loaded into real storage, its virtual
storage addresses can be translated when they are referenced. Dynamic
address translation hardware is the mechanism that translates the
virtual storage addresses contained in instructions into real storage
addresses during instruction execution. Address translation is
accomplished in System/370 using a hardware-implemented table locokup
procedure that accesses tables. contained in real storage. These tables,
which are maintained by control program routines, (1) define the amount
of virtual storage supported and allocated, (2) indicate whether any

A Guide to the IBM System/370 Model 168 41

given program section is currently present in real storage, and (3)
contain the addresses of real storage sections allocated to the program
sections that are currently present in real storage.

During the execution of each instruction, address translation is
performed on any virtual storage address in the instruction that refers
to data or to an instruction. Translation occurs after the 24-bit
effective virtual storage address has been computed by adding together
base, displacement, and, if any, index values as usual. The result of
the address translation is a 24-bit real storage address designating the
location containing the data or imnstruction referenced by the virtual
storage address in the instruction. The virtual storage addresses in
channel programs (CCW lists) are not translated by channel hardware
during channel program execution; therefore, programmed translation is
required prior to initiation of a channel operation.

In reality, DAT hardware provides dynamic relocation of the sections
of a program during its execution. This capability is not provided by
0S MFT and OS MVT, which support program relocation at link-edit and
program load time only. Once a program has been loaded into an area of
real storage by the program fetch routine, these operating systems
cannot relocate the program to another area of real storage during its
execution. Thus, an entire program or a portion of a program cannot be
written on direct access storage during execution and later reloaded
into different real storage locations to continue execution. Once
loaded, therefore, a program is bound during its execution to its
initially allocated real storage addresses. In a virtual storage
environment, a program is bound only to the virtual storage addresses it
was assigned during loading.

The dynamic relocation provided by DAT hardware eliminates, for most
programs, the need for allocating and dedicating a contiguous area of
real storage to an entire program for the duration of its execution, a
requirement for all programs in MFT and MVT. (As discussed later in
this subsection, some programs cannot operate in the manner being
described, that is, with sections transferred only as required between
direct access storage and real storage.) In a virtual storage
environment, real storage is no longer divided into contiguously
addressed partitions or dynamically allocated regions that can contain
one executing job step (program) at a time.

Further, when real storage is allocated to a section of an executing
program, the real storage is not dedicated to that program section for
the duration of program execution. Concurrently executing programs can
dynamically share the same real storage sections. That is, is general,
the real storage available for allocation to executing programs can be
allocated to any program section as needed. When a section of an
executing program must be loaded, any available section of real storage
can be assigned (subject to certain restrictions imposed by operating-
system-dependent real storage organizations). When the program section
is no longer required, it can be written in direct access storage, if it
has been altered, and the real storage assigned to it can be made
available for allocation to another section of the same program or to a
section of another program.

The assignment of real storage sections is handled entirely by the
operating system, which also keeps account of which sections of
concurrently operating programs are the most active. The operating
system does not attempt to allocate a given amount of real storage to
each executing program. It merely allocates real storage to those
sections it determines are the most active, without taking into account
the particular program to which the active section belongs.

DAT hardware, therefore, provides more than translation from address
space (virtual storage) to real storage space. It provides the

42 A Guide to the IBM Systemv370 Model 168

capability of implementing dynamic real storage management that requires
no effort on the part of the programmer and significantly less CPU time
than programmed address translation during program execution. (The
large amount of CPU time required to translate addresses during program
execution using programmed means has precluded implementation by IBM of
an operating system that supports such programmed dynamic address
translation.) Much of the real storage utilization preplanning required
for O0S MVT and MVT environments in order to use real storage effectively
can be eliminated in a virtual storage environment. Dynamic real
storage management capability is another advantage the technique of
using direct access storage and DAT hardware to support a larger address
space has over using larger real storage to provide a larger address space.

Another capability made available by the implementation of large
address space using direct access storage and dynamic address
translation is that of supporting more than one virtual storage with
only one system. Multiple virtual storages are supported by 0S/VS2
Release 2 and also can be used to support multiple virtual machines. A
discussion of the concepts and general advantages of virtual machines is
contained in Section 40. The features and operation of VM/370 are
presented in Virtual Machine Facility/370 Features Supplement.

The use of virtual storage and DAT hardware to enable programs to
operate in less real storage than the total storage requirement of the
programs can also offer better performance potential than the technique
of using a planned overlay program structure. When a planned overlay
program executes in MFT or MVT, considerable time can be spent executing
the overlay supervisor in order to perform programmed address
translation (relocation) when a program phase is loaded. In addition,
more efficient real storage utilization may be achieved in a virtual
storage environment, since the control program reacts to changing
processing needs and only portions of the program that are actually
required are loaded (all phases of an overlay program may not be the
same size and all code within a phase may not be used when the phase is
loaded). Once a planned overlay program has been structured to handle
the currently required set of program phases efficiently, it cannot
automatically adapt to a change in the set of program phases required or
to a change in the activity of the required set of phases.

In a virtual storage environment, the performance of the system can
be directly affected by the amount of time spent transferring program
sections between direct access storage and real storage. Satisfactory
system performance is achieved when each of the concurrently executing
programs has enough real storage dynamically allocated to it to keep the
need for transferring program sections into and out of real storage at
an acceptable level.

As previously mentioned, most programs can be structured so that
processing activity is localized in one area of the program or another
during time intervals rather than equally spread over the entire
program. In other words, at any given time period during execution of
the program, only a subset of the entire program need be referenced.

This is sometimes called the "locality of reference" characteristic of
programs. Therefore, a prograr achieves satisfactory performance when

its most active sections in any given time interval remain in real

storage and there is a limited amount of program section transfer activity.

Most programs require a certain minimum amount of real storage in
which to execute in order to achieve satisfactory performance. If such
programs operate with less than their minimum requirement dynamically
allocated, program section transfer activity increases and performance
degradation can occur. The minimum real storage requirement of a
program is related to the amount of real storage required by the most
active sections of the program. Because of the locality of reference
characteristic of most programs, the minimum real storage requirement of

A Guide to the IBM System/370 Model 168 43

a program for satisfactory operation frequently can ke less than its
total storage requirement. This fact enables an operating system to
efficiently support a virtual storage that is larger than the real
storage actually present in the computing system.

A virtual storage environment, therefore, enables most programs to be
independent of real storage size to a large degree. A program can
execute using varying amounts of dynamically available real storage
without being modified. The amount of real storage dynamically
available to a program during its execution primarily affects its
performance, to the extent that program section transfer activity is
affected, rather than its capability to be executed. For example, while
a given 200K language translator might be able to operate with an
average of 100K of real storage dynamically available to it during its
operation, the time required to compile a program under these conditions
might be unacceptable. Alternatively, the performance desired might be
achieved if an average of 130K is dynamically available to the language
translator while it operates. Without a virtual storage operating
system, the 200K language translator might not be used at all because of
its design point size.

In addition to the requirement for larger address space, there is
still a requirement for larger real storage sizes in order to meet the
functional and performance needs of the larger, more complex,
multiprogramming environments. The availability of large lower-cost
real storage for the Model 168 and the real storage independence that a
virtual storage environment offers provide new flexibility in tradeoffs
among real storage cost, function, and individual program or total
system performance.

GENERAL ADVANTAGES OFFERED BY IBM OPERATING SYSTEMS THAT SUPPORT A
VIRTUAL STORAGE ENVIRONMENT

Each of the IBM operating systems that supports a virtual storage
environment for System/370 models using dynamic address translation
offers the capability of using address space that is larger than that
provided by available real storage, and each supports dynamic real
storage management that is transparent to the user. As a result, these
operating systems offer certain general potential advantages that do not
depend on their unique features. The implementation of virtual storage
also provides benefits that are specific to each of these operating
systems because of their design and the particular functions they
support. The following discusses the potential advantages of virtual
storage and dynamic address translation that are common to 0S/VS1l and
0S/VS2 environments.

The general advantages of virtual storage operating systems are the
potential they offer for:

e Increased application development
¢ Expanded operational flexibility
e System performance improvement

A virtual storage operating system can facilitate more rapid
development of new applications because, by removing most existing real
storage restraints on application design, it can help improve the
productivity of programmers. Specifically, a virtual storage operating
system has characteristics that can be used to reduce the effort, time,
and cost associated with application design, coding, testing, and
maintenance. This makes the installation of new applications more
readily justifiable and encourages the addition of new functions to
existing applications. The potential advantage of improved operational

LT A Guide to the IBM System/370 Model 168

flexibility is made possible by the greater independence of applications
from real storage size. Enhanced system performance can result from
improved real storage utilization. While these latter two benefits have
their own individual value, they also, either indirectly or directly,
ease the installation of new applications.

Potential for Increased New Application Development

The following capabilities are characteristic of a virtual storage
operating system environment:

e Greater flexibility in the design of applications is possible.

Larger programs can be written without the necessity of using
planned overlay techniques or other dynamic program structures
designed to fit programs into the amount of real storage available.
The need for intermediate (or working) data sets is reduced or
eliminated because tables, relatively small data groups, etc., that
are placed on direct access storage because of real storage
limitations can become part of the program and will be brought into
real storage automatically as required. Program planning, coding,
and testing time can be reduced by elimination of the use of these
programming techniques and other real storage management facilities,
which also require additional programming knowledge and skill. Also
avoided is the restructuring of application programs after they have
been written because they are larger than the real storage available
for their execution. Hence, applications can become operational
more quickly.

Open-ended, straightforward application design is possible, and more
comprehensive programs can be written. An application can be
segmented into a series of programs according to its logical flow
instead of according to the functions that can be performed in the
specific amount of real storage available to each step in the
application. Programming and processing duplication inherent in the
approach of using two or more job steps to perform one logical
process is thereby avoided.

Additional programming facilities can become available that
otherwise could not be used because of real storage limitations.
specifically, full-function high-level language translators, which
of fer more capabilities than their subset versions (such as
additional debugging facilities and performance options) but which
also have larger storage design points, can be used because they can
operate in a virtual storage environment using less real storage
than their design point requirement.

e Preproduction testing of larger-than-average application programs
can be increased if enough virtual storage can be made available to
enable them to run during normal testing periods. Turnaround time
during testing can be reduced.

In a nonvirtual storage environment such programs are usually
grouped together and executed only at certain times when their
larger design point storage requirements can be made available.

e Fine tuning of application programs to achieve performance
improvements, when necessary, can be delayed until after the
application is in production. This capability enables an
application to become operative sooner.

- A Guide to the IBM System/370 Model 168 45

46

Startup costs for new applications may be reduced.

A new application can be developed and tested on the existing
system, assuming the required I/0 devices are present in the
confiquration, before the additional real storage the application
requires for performance on a production basis is actually
installed. When the application is ready for production, the
additional real storage regquired can be added to the system. In
some cases it may be possible to operate the application on a
production basis on the existing system without adding real storage
jnitially, because during the startup period, transaction volume is
very low. As the volume grows, real storage can be added to achieve
better performance.

Growth of existing applications and the maintenance of operational
programs is simplified.

Because of the removal of most real storage restraints, new
functions can be more easily and more rapidly added to most existing
applications. Program expansion because of added functions or
maintenance changes does not require the use of overlay techniques,
multiple job steps, etc., when the size of the extended program
exceeds the original storage design point size.

In general, alteration and debugging of nonoverlay programs are also
easier than alteration and debugging of programs with planned
overlay or dynamic structures.

Application programs whose real storage requirements, based on
transaction volume and complexity, vary widely during their
execution may be justified, designed, and installed more easily.

Design, coding, and testing time can be reduced because dynamic
storage management is automatically provided by the operating
system. Time and effort need not be spent structuring such programs
to use available real storage dynamically to support the functions
and/or response times required.

Design and installation of one-time, low-usage, or low-volume
programs of very large storage size are more easily justified.
Existing applications in these categories that currently operate in
a batch environment can also more easily be altered to operate
online, a growth step that might not be justifiable in a nonvirtual
storage environment.

Applications can be installed on a trial basis for the purpose of
observing and evaluating their functions and their operation.

Most IBM-~supplied application program products can be temporarily
installed on an existing system, assuming the required I/0 devices
are present. The additional hardware resources that may be required
to operate the application on a production basis can be added later,
when the application is permanently installed.

The benefits of the functions provided by many IBM-supplied
application program products with larger storage design points can
be realized using smaller amounts of available real storage.

It may be difficult to justify the real storage required to install
a relatively large storage design point application on a system to
handle a low volume of transactions, even though the functions
provided by the application are very desirable. In a virtual
storage environment, such an application can execute using that
amount of dynamically available real storage required to satisfy the
desired performance requirements for the low volume of activity.

A Guide to the IBM System/370 Model 168

Potential for Additional Operational Flexibility

The reduction of real storage restraints makes most applications more
independent of the real storage size of a system configuration and
permits most applications to be processed on systems with varying
amounts of available real storage without program modification. Dynamic
real storage management reduces the amount of job stream and operations
preplanning that is normally done to use real storage as efficiently as
possible in a multiprogramming environment. The following benefits can
be the result:

e A system can back up another system even though it has less real
storage than the system it backs up.

A smaller-scale system with the appropriate I/0 configuration can
provide backup for a larger-scale system if necessary. (Performance
experienced on the backup system may vary from that normally
achieved depending on the two system configurations involved.)

e A single design and one operating procedure can be used for an
application that is to operate on multiple systems with varying
amounts of real storage, as long as the virtual storage required is
supported by all the systems.

When data processing is decentralized among multiple installations
with systems that have different amounts of real storage, one
location can design, implement, and maintain an application that can
be used by other installations. Daplication of this type of effort
can be minimized or eliminated.

e Most applications can be tested on systems with less real storage
than the one on which they will run in a production environment, as
long as the required amount of virtual storage is supported.

e Growth to a larger real storage configuration can be easier.

Real storage can be added to an existing system to improve system
performance (by the reduction of program section transfer activity)
without the necessity of modifying existing application programs so
that they take advantage of additional real storage. Additional
real storage (up to a maximum of their design point size) is
automatically used by programs that operate in a virtual storage
environment.

e Operators need not perform certain procedures that are solely
related to efficiently managing real storage.

The operator is concerned with the division of virtual storage and
therefore need not change partition sizes at various times (in
0S/VsSl, for example) for the purpose of making storage available for
larger than average jobs. (An installation can define virtual
storage partitions that are larger than those currently defined in
the 0S MFT environment, and the partitions can be made big enough to
contain the largest existing or currently planned storage design
point programs.) Similarly, in an OS/VS2 environment, the operator
no longer need start long-running jobs at certain points in time to
ensure that available real storage is fragmented as little as
possible.

e Priority jobs whose need to be processed cannot be predicted can be
scheduled when required.

A nonvirtual storage environment does not provide the capability of

effectively handling the scheduling of high-priority jobs on a
random basis. Hence, this type of job is not permitted to exist in

A Guide to the IBM System/370 Model 168 47

an installation, or such jobs must be scheduled to operate only at
certain times. In a virtual storage environment, a high-priority
virtual partition can be defined in an 0OS/VSl1l environment and
reserved for the purpose of processing only high-priority jobs.
Except for that required for certain tables, real storage is not
required for this partition until a job is actually scheduled. 1In
an 05/VS2 environment, an initiator with a special class can be
started that will handle only high-priority jobs. This can be done
in MVT as well but because of the possibility of real storage
fragmentation, there is no assurance that the high-priority job can
be started.

Potential for Performance Improvement

The improved real storage utilization made possible by the use of
dynamic address translation hardware can have a positive effect on the
performance of a system that handles a job mix whose use of real storage
varies considerably while it is being processed. The extent of the
performance improvement depends on the types of applications involved
and the current utilization of system resources. Therefore, the amount
of performance gain, if any, that may be achieved is highly variable by
installation. Environments with the greatest potential for improved
performance are as follows:

e Batch-oriented multiprogramming environments with application
programs of widely varying real storage requirements.

Real storage may not be most efficiently used in such an environment
because (1) real storage can become fragmented when regions are
dynamically allocated and freed or (2) it is difficult to divide
real storage into a set of areas that is optimum for all programs
when real storage is partitioned. (Consider the inefficient use of
real storage in an 80K partition allocated for assemble, link-edit,
and test jobs in which a 80K language translator, a 44K linkage
editor, and problem programs no larger than 60K execute.) 1In
addition, real storage is not efficiently used when the real storage
requirement of a given program, based on transaction mix or volume,
varies widely, and the amount of real storage that is allocated is
designed to handle the peak requirement. (This is typically true of
graphics applications, for example.) Further, real storage assigned
to a program is not productively used during the time the program is
waiting for a human response, such as for the operator to locate
and/or mount a volume or to make a decision and enter a message on
the console, or during the time required to quiesce the system in
order to change partition definitions, start high-priority jobs, or
start a teleprocessing program in high real storage.

In a virtual storage environment, in which all concurrently
executing job steps share real storage dynamically and use real
storage only when it is actually required for program execution,
real storage is more efficiently used. Hence, if real storage
currently is the restraint, a given real storage size might be
capable of supporting a higher level of multiprogramming than can be
achieved without the use of dynamic storage management (assuming
other required resources such as CPU time, I/O devices, and
channels, are available). For example, installation of a large
storage design point, terminal-based application to handle only a
few terminals might be possible. Alternatively, a higher level of
multiprogramming might be supported by the addition of a smaller
real storage increment than would otherwise be required.

System performance may also be improved if more efficient use of

available real storage enables additional heavily used functions to
be made resident instead of transient or allows the incorporation of

48 A Guide to the IBM System/370 Model 168

performance-oriented options in the control program. This
improvement can apply to environments with batch and online
operations, as well as to batch-only maltiprogramming environments.

e Multiprogramming environments with a mixture of batch-oriented and
terminal-based applications.

While the real storage required for the communication control
portion of a teleprocessing application remains constant, terminal-
based processing programs are typically subject to wide variations
in the amount of real storage they require during their execution
because the transaction mix being handled concurrently varies, the
activity of each terminal online varies, or the number of terminals
operating concurrently changes. In order to provide the functions
desired, ensure the capability of handling peak activity periods and
maximum transaction type mixes, and guarantee a given response
during times of peak activity, a certain amount of real storage is
required. This peak requirement is generally significantly more
than is needed during periods of medium and low activity.

Allocation of the maximum storage requirement results in inefficient
use of real storage, since unused real storage dedicated to any
terminal program cannot be used by other concurrently operating
batched or terminal-oriented jobs in a nonvirtual storage
environment. In addition, it is usually difficult, and sometimes
impossible, to effectively preplan real storage usage for an online
application.

Dynamic real storage management in a virtual storage environment
automatically provides a much more efficient method of allocating
real storage in such an environment. Real storage is not divided
inte that which can be used only by the terminal-based program(s)
and that which can be used only by batched jobs. During times of
peak terminal activity, the active sections of terminal-oriented
processing programs with a higher priority are automatically
allocated real storage, making less real storage available to the
lower priority batched jobs in execution at that time. During
periods when terminal activity is relatively low, real storage not
used by any terminal program is available for assignment to the
active sections of executing batched jobs. Such an environment is
represented conceptually in Figure 30.05.3.

In existing mixed batch- and online-oriented installations, dynamic
real storage management allows programming technigques that can
improve the performance of the online application. This improvement
can be in the form of better response for existing terminals or the
ability to support more terminals. A given online application may
also be able to support a higher level of multiprogramming, as a
result of better real storage utilization, without any additional
programming effort (more TSO regions, for example). A virtual
storage environment also makes the concurrent operation of multiple
terminal-based applications more practical.

Figure 30.05.3 shows sample allocations of real storage to two
batched jobs and two terminal-oriented jobs in a multiprogramming
environment during low, medium, and peak activity points in time. Job
priority from high to low is TP2, TP1l, BJ2, BJl. For simplicity,
virtual and real storage are shown to be totally allocated at all times
and no particular virtual storage operating system (0S/VS1l or 0OS/VS2) is
assumed, since the concepts illustrated apply to both, regardless of
differences in the way virtual storage is allocated by these operating
systems. Real storage is shown to be contiguously allocated to each job
in high-to-low priority sequence. This is done only to illustrate the
relative amount of real storage the control program has dynamically
allocated to each program during the instant shown. In reality, the
total amount of real storage allocated to an executing program at any

A Guide to the IBM Systemnv370 Model 168 49

given time is usually not contiguous in a virtual storage environment.
In addition, during times of low terminal program activity, it may be
possible to support a higher level of batched job multiprogramming,
which is not shown in the figure.

Virtual Storage

Control Batched Batched Terminal program 1 Terminal program 2
program jobs jobs (Total storage requirement (Total storage requirement
(BJ1) (BJ2) without overlays) without overlays)
Lowest Next to lowest Next to highest Highest
execution execution execution execution
priority priority priority priority
Real Storage
;_ow :‘;t !vaty Control
T°P'2T and | o ogram BJ1 BJ2 TP1 |TP2

Real Storage

Peak activity
for TP2 and
low for TP1

Control BJ BJ
program 4 6

TP1 P2

Real Storage

Peak activity
for TP1 and
medium activity
for TP2

Control

program TP1 TP2

Figure 30.05.3.

Summary

AN
BJ7 8J6

Conceptual illustration of real storage utilization in
a mixed batch and online virtual storage environment

As the preceding discussion indicates, a virtual storage environment
is designed primarily to provide new functional capakilities for the
installation as a whole, although performance gains are possible for

50

A Guide to the IBM System/370 Model 168

installations with particular environmental characteristics. The
general functional aims of IBM-supplied virtual storage operating
systems are (1) to use new hardware features and additional control
program processing to support certain facilities that are not possible
in a nonvirtual storage environment because of real storage restraints,
and (2) to handle other functions that must be performed by installation
personnel (programmers, operators, and system designers) when virtual
storage and dynamic address translation are not used.

It is also important to note that while a virtual storage operating
system permits an installation to be independent of real storage
restraints to a large degree and enables real storage to be utilized
more efficiently, the performance of the system and the specific
advantages that can be achieved are still largely dependent on the
amount of real storage present in the system and on the computing speed
of the CPU, among other things. Hence, virtual storage and dynamic
address translation are not a substitute for real storage. Rather, they
provide an installation with greater flexibility in the tradeoff between
real storage size and function or performance.

The degree to which a particular installation experiences the
potential benefits of a virtual storage/dynamic address translation
environment is system-configuration dependent and highly application
dependent {(number, type, complexity of applications installed). 1In
addition, consideration must be given to the system resources that are
specifically required to support a virtual storage environment
(discussed in Section 30:15). Some of the potential advantages, such as
those associated with application maintenance and operational
flexibility and those that result from better management of real
storage, can be experienced as soon as a virtual storage operating
system is installed. Others may be achieved in the future when new
applications are installed, and the less restrictive program design
techniques available in a virtual storage environment are more fully
utilized. 1In any case, installation of a virtual storage operating
system can make System/370 easier to use and can be a major ster toward
more rapid installation of applications. Such an operating system can
be of greatest benefit to installations desiring to move to or to extend
online operations and thereby attain the advantages such an environment
offers.

VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION TERMINOLOGY

For the purpose of presenting the concepts of virtual storage and
dynamic address translation in the previous discussion, virtual storage,
programs and data, direct access storage, and real storage were
described as being divided into areas called sections. In reality, a
unique term is used to describe each one of the various sections,
namely, virtual storage page, page, slot, and page frame. In addition,
virtual storage has two levels of subdivision in System/370. The
following defines the new terminology actually used by the System/370
virtual storage operating systems.

Virtual storage in System/370 is divided into contiguous segments,
which contain virtual storage pages. A virtual storage segment, as
implemented in System/370, is a fixed-length, consecutive set of
addresses for either 64K or 1024K bytes which begins on a 64K or 1024K
boundary, respectively, in virtual storage. A virtual storage is
divided into segments all of one size or the other. In general, in
0S/vVsSl and 0S/VS2 environments, a segment is the unit of virtual storage
allocation. Each segment of virtual storage is divided into contiguous,
fixed-length, consecutive sets of addresses called virtual storage
pages. Each segment in the virtual storage contains the same number of
virtual storage pages, each of which is the same size. A virtual
storage page, as implemented in System/370, can be either 2K or UK bytes

A Guide to the IBM System/370 Model 168 51

and is located on a 2K or 4K virtual storage boundary, respectively,
within a segment.

The contents of virtual storage--instructions and data--are divided
(by the operating system) into fixed-length contiguous areas called
pages, corresponding in size to the virtual storage page size chosen,
either 2K or 4K bytes. The addresses associated with a virtual storage
page refer to the contents of a page.

The direct access storage used to contain the portion of the total
contents of virtual storage that is not always present in real storage
is called external page storage. Direct access space within external
page storage is divided into physical records called slots, which are of
page size, either 2K or 4K bytes. A slot, therefore, can contain one
page at a time. A virtual storage page that is allocated and that
actually has contents usually has a slot in external page storage
associated with it to contain these contents (depending on the nature of
the contents and how external page storage is managed by the operating
system).

Instructions and data are transferred between external page storage
and real storage as needed on a page basis. This transfer process is
called paging, and a direct access device that contains external page
storage is called a paging device. A slot in external page storage is
associated with a particular virtual storage page by means of an
algorithm or via tables that are maintained by the control program.

Real storage also is divided into fixed-length, consecutively
addressed areas called page frames, which are always the same size as
the virtual storage page being used, either 2K or 4K bytes. Page frames
are located on 2K or 4K real storage boundaries. A page frame is a
block of real storage that can contain one page. Hence, a page of data
ands/or instructions occupies a slot when it is in external page storage
and a page frame when it is in real storage. Whether or not a page is
present in real storage, a program addresses the contents of the page
using virtual storage addresses.

The act of transferring a page from external page storage into real
storage is called a page-in. This action may also be described as the
loading of a page. The reverse act, transferral of a page contained in
real storage to a slot in external page storage, is called a page-out.
Figure 30.05.4 jillustrates the relationship of wvirtual storage, external
page storage, and real storage that was conceptually shown in Figure
30.05.2. (Note that the terms swap-in, swap-out, and working set have a
specific meaning in an 0S/VS2 TSO environment and are defined in
OS/Virtual Storage 2 Release 1 Features Supplement. The definition of a
working set in a virtual machine environment is given in Virtual Machine
Facility/370 Features Supplement.)

As previously indicated, DAT hardware uses tables to perform address
translation. These tables are the segment table and page tables. One
segment table and a set of page tables are required to perform address
translation for one virtual storage. The segment takle defines the
virtual storage size, indicates allocated virtual storage, and points to
the real storage location of the page tables. The page tables indicate
which pages are currently in real storage and contain the real storage
addresses of these pages. As pages are paged in and out, the control
program makes changes to the page tables as required.

Basic to the implementation of virtual storage using direct access
storage and DAT hardware is the method of determining when pages are to
be brought into real storage and, therefore, when real storage is
allocated to pages. The method supported by IBM-supplied virtual
storage operating systems, that of bringing a page into real storage
only when it is needed by an executing program, is called a demand

52 A Guide to the IBM Systemv 370 Model 168

paging technique. Since programs execute on a priority basis in 0S/VS1l
and OS/VS2 environments, as they do in O0S (MFT and MVT) environments,
real storage is, in effect, still allocated on a priority basis.

A request for a page-in is generated by the occurrence of a page
exception or a page translation exception, a condition that is also
called a page fault. BAn interruption occurs during the execution of an
instruction when DAT hardware attempts to translate a virtual storage
address into a real storage address and the appropriate page table
indicates that the page is not currently present in real storage. A
page fault condition causes an interruption in order to alert the
control program to the fact that a page frame must be allocated.

Usually, a page-in is required also to bring in the referenced
instruction or data.

External
Page Storage
Virtual Storage /’_\
Segment N W \
(pages O to 15 or 31) Tables or an
algorithm \\
map pages
and slots \ \
\ Real Storage
A Virtual A .'J,,_' f’lOtst inin % Tables map J] I I
T storage [Paged area containing virtual storage
aged a pages of
. pages T R pages and
within instructions aqe frames
and data) pag Page frames
segments (containing active
& pages of executing
rograms)
Page-out prog
4—"’—'\\
Page-in —] ‘l I I
P ~ Contents of
pageable
virtual storage
Control |
Segment 1 Nonpaged area] program
(pages 0 to 15 or 31)
Segment 0
(pages 0 to 15 or 31)
< e ——————

Address space for
programmers use

Figure 30.05.4. TLayout of virtual storage, external page storage, and
real storage

While page-ins are usually initiated as a result of a page fault,
0S/VSl and OS/VS2 provide an Assembler Language macro that can be used
to cause one or more pages to be brought into real storage before they
are referenced. Such requests are sometimes referred to as page-ahead
requests. A page-ahead is required if, for reasons of proper system

A Guide to the IBM System/370 Model 168 53

operation, a routine must operate without incurring any page faults.
Use of this macro is restricted because unlimited use of this facility
can defeat the objective of demand paging.

When a page fault occurs and the control program determines that a
page frame is not currently available for allocation, a choice must be
made as to which allocated page frame will be taken away from the page
to which it is currently assigned. The rule governing this choice is
called the page replacement algorithm. If the page replacement
algorithm is designed to choose from among only those page frames
currently allocated to the program that caused the page fault, it is
said to operate locally. If a page frame can be chosen from among all
those available for allocation to all executing programs, the algorithm
is said to operate globally. 0S/VS1 and 0S/VS2 implement a global page
replacement algorithm. VM/370 supports a global page replacement
algorithm and supports a local page replacement algorithm as an option.
The algorithms used attempt to keep the most active pages of executing
programs present in real storage. Hardware is included in System/370
models with dynamic address translation that indicates whether a page
has been referenced or changed. Hence, when a page frame is required, a
page determined by the algorithm to be relatively inactive is chosen for
replacement.

Before locading a new page into the page frame chosen, the existing
contents of the page frame must be saved if they were modified during
processing. If modification occurred, a page-out operation is required;
otherwise, an exact copy of the page already exists in external page
storage. Code that is not modified during its execution, therefore, has
an additional advantage in a virtual storage environment in that it need
never be paged out once it has been written in external page storage. A
program requiring a page-in is placed in the wait state until the page
it requires has been loaded, during which time CPU control is given to
another ready task, if one is available.

For varicus reasons, it is necessary to prevent a page-out of certain
pages that are in real storage. One reason is for better operaticn of
the system. This reason applies to certain frequently used control
program routines, some routines that operate with the CPU in a disabled
state (masked for I/0 and external interruptions), most system tables,
and most system control blocks. Integrity of system operation is
another reason. Pages associated with certain types of operations must
not be paged out while the operation is in progress, so that the
operation can proceed correctly. For example, pages that contain I1/0
buffer areas must remain in real storage while the buffers are being
referenced during an I/0 operation, after which a page-out can take
place, if necessary. Another reason is the existence of time
dependency. A page should not be written out if the program to which
the page belongs must complete a logical operation that requires the
page in less time than it takes to perform a page-in. Programs that
handle 1I/0 device testing operations, such as online tests (OLT's), can
have such a time dependency.

A page that is identified as one that cannot be paged out (or that is
nonpageable) is called a fixed page in 0S/VSl1l and 0S/VS2 and a locked
page in VM/370. OS/VS1 and 0OS/VS2 support both long-term fixing and
short-term fixing. Pages that should never be paged out when they are
present in real storage are marked long-term fixed. The resident
portion of an operating system control program is never paged and,
therefore, its pages are marked long-term fixed. Pages that must be
fixed for only a portion of the time they are present in real storage
are marked short-term fixed. For example, a page containing an I/0
buffer is marked short-term fixed before the initiation of the I/0
operation that references the buffer. After the I/0 operation
completes, the page is unfixed and it becomes eligible for a page-out.
Pages should be marked fixed only when necessary, since page fixing

54 A Guide to the IBM System/370 Model 168

reduces the amount of real storage that can be shared by concurrently
executing paged programs (that which is available to be allocated to the
nonfixed pages) and can, therefore, affect system performance.

As indicated previously, in 0S/VS1l and 0S/VS2 environments, a portion
of the control program is resident in real storage. Its pages are
marked fixed. This portion of the controcl program is not placed in
external page storage (because it is not paged) even though it is
allocated space in virtual storage. Certain other portions of an 0S/VS1l
and an 0S/VS2 control program are pageable and are made resident in
virtual storage, which means they are contained in external page storage
during system operation. During system initialization, these pageable
control program routines are allocated virtual storage and loaded into
real storage from system libraries by the program fetch routine. These
routines will be written in external page storage as a result of normal
paging activity in 0S/vSl and as a result of specific page-out requests
in 0S/Vs2. Control program routines that are resident in virtual
storage are brought into real storage from external page storage,
instead of from a system library, when they are required during system
operation.

Just as control program routines can be fixed or pageable, problem
programs operate in one of two modes in 0S/VS1 and 0OS/VS2 environments:
paged mode or nonpaged mode. The latter is also sometimes called
virtual equals real (V=R) mode. When a problem program operates in
paged mode, it is resident in virtual storage and pageable. A pageable
program operates in a contiguous area of virtual storage (partition or
region) and is assigned available real storage on a demand paged basis.
Hence, virtual storage addresses must be translated into real storage
addresses. The real storage dynamically allocated to programs operating
in paged mode need not be contiguous and such programs normally can
operate with less real storage than their design point (virtual storage)
amount dynamically allocated to them. This is the mode of operation
described in Section 30:05.

Paged mode is the normal mode of operation of programs in a virtual
storage environment. However, certain programs cannot operate correctly
in this mode, and must run in nonpaged (V=R) mode. In general, a
program must operate in nonpaged mode if it:

e Contains a channel program that is modified while the channel
program is active (Section 30:10 discusses the reason)

e ITs highly time dependent (involves certain testing operations on I/0O
devices, for example)

e Must have all of its pages in real storage when it is executing (for
performance reasons, for example)

Other characteristics that require a program to be executed in
nonpaged mode and that are operating system dependent are listed in the
programming systems supplements, which also discuss steps that can be
taken to avoid running a program in nonpaged mode.

In 0OS/VS1 and OS/VS2 environments, a program that operates in
nonpaged mode is dynamically allocated a contiguous virtual storage area
and a contiguous real storage area of the same size with addresses
identical to those of the allocated virtual storage area. (That is,
virtual and real storage addresses of the allocated area are equal.)
Since programs operating in V=R mode are not paged, they do not occupy
external page storage. The entire program (except for dynamically
requested modules) is loaded into real storage when it is initiated, and
all its pages are fixed. The amount of real storage allocated to a
program that runs in nonpaged mode must be a multiple of the page size
used.

A Guide to the IBM Systemv370 Model 168 55

30:10 DYNAMIC ADDRESS TRANSLATION HARDWARE FOR MODELS 1 AND 3 OF THE

MODEL 168

Dynamic address translation is a standard facility of the Model 168.
It is made operative by turning on the translation mode bit in the

current PSW.

The system must also be operating in EC mode.

When DAT is

operative, storage addresses in programs referring to instructions and
data are translated into real storage addresses after instructions are

fetched during program execution.
counter is translated also.

The address in the instruction

When DAT is not in operation, storage

addresses in programs are used as real storage addresses.
addresses in CCW lists are not translated by channel hardware during
channel program operation.
feature, required on all installed channels for a Model 168 when a

virtual storage operating system is used, and programmed channel program
translation are discussed later in this subsection under "Channel

Indirect Data Addressing”.

The storage

The channel indirect data addressing

The following instructions are associated with dynamic address

translation:

LOAD REAL ADDRESS,

RESET REFERENCE BIT,

and PURGE TIB.

These instructions are valid in BC mode as well as in EC mode. They
operate identically regardless of which mode is in effect.
privileged instructions.

VIRTUAL STORAGE ORGANIZATION

All are

The Model 168 (as well as other Systems/370 models with DAT hardware)
supports a virtual storage segment size of either 64K or 1024K bytes, as

determined by bits 11 and 12 of control register 0.

With either segment

size, the page size can be 2K or 4K, as determined by bits 8 and 9 of

control register O.
possvs, 0s,/Vsl, 0Os/vs2, or VM/370.
storage organization provided in System/370.

Table 30.10.1.

A segment size of 1024K bytes is not supported by
Table 30.10.1 summarizes the wirtual

Number and size of segments and pages for a 16-million-
byte virtual storage

|crR 0 Bits

Number of

Segment Size | Segments in the Page Size Number of Pages
11,12 8,9 (bytes) Virtual Storage (bytes) in a Segment
10 01 1,048,576 16 2048 512
10 10 1,048,576 16 4096 256
00 01 65,536 256 20u8 32
00 10 65,536 256 4096 16

As already described, the addresses supplied in programs directly
address a location in the virtual storage that is supported by the

virtual storage operating system.

In this sense, program—-supplied

addresses can be viewed as virtual storage addresses that specify a byte

within a particular virtual storage page and segment.

The logic of the

translation process is described in this subsection in these terms. The
architectural definition of dynamic address translation found in
System/370 Principles of Operation (GA22-7000-2 and later editions)

assumes that the addresses in programs consist of three fields, two of
which are used to index tables during the translation process. Under

these conditions, the addresses supplied by a program are considered to
be logical addresses instead of virtual storage addresses.

56

A Guide to the IBM System/370 Model 168

For the purpose of translation, a virtual storage address is divided
into three fields: (1) a segment field, which identifies a segment
within the virtual storage, (2) a page field, which identifies a page
within the segment addressed, and (3) a byte displacement field, which
identifies a byte within the page addressed. The number of bits in each
field varies depending on the segment and page sizes used. Virtual
storage address fields for a segment size of 64K and a specific example
of how the fields are used to address a location in virtual storage are
shown in Figure 30.10.1.

OPERATION OF DYNAMIC ADDRESS TRANSLATION HARDWARE

Address Translation Tables

One segment table is required to describe one virtual storage. If
more than one virtual storage is supported by a single computing system,
there is a segment table for each virtual storage implemented. A
segment table contains one four-byte entry for each segment in the
virtual storage the table describes, up to a maximum of 256 entries for
the maximum size virtual storage of 16 million bytes (using 64K
segments). The real storage address of the segment table (or of the
currently active segment table if multiple virtual storages are
implemented) is contained in control register 1. The current length of
the segment table is also indicated in control register 1. The length
value is used by the hardware during translation to ensure that the
segment entry being referenced falls within the segment table.

The segment table entries point to the real storage locations of the
page tables. There is one page table for each segment in the virtual
storage -defined (or, in 0OS/VS2, currently allocated), up to a maximum of
256 page tables for a 16-million-byte virtual storage with 64K segments.
A segment table entry contains an indication of the length of the page
table, the high-order 21 bits of the real storage address of the page
table, and an indication of whether or not the entry itself is valid and
can be used for translation purposes (invalid bit). If the invalid bit
is on in a segment table entry, a segment translation exception occurs
during the translation process.

A page table has one entry for each page in the particular segment
the page table describes. For a 64K segment, there are 32 or 16 entries
in a page table depending on whether a 2K or a 4K page is used,
respectively. A page table entry is two bytes in size. It contains the
12 (for a UK page) or 13 (for a 2K page) high-order bits of the real
storage address of the page frame that is currently allocated to the
virtual storage page that the page table entry describes. Each page
table entry also contains an invalid bit to indicate whether the entry
can be used for translation. The invalid bit is on when a virtual
storage page does not have real storage currently allocated to it. A
page translation exception occurs during the translation procedure if
this invalid bit is on.

Segment and page table formats and entries used for address
translation are shown in Figure 30.10.2. 1In effect, the segment and
page tables define the relationship between virtual and real storage at
any given time. The segment table reflects the current size of virtual
storage and the location of required page tables. The segment table
also indicates, by means of its invalid bits, which segments of virtual
storage are currently allocated and have a page table available. The
page tables indicate, via their invalid bits, which virtual storage
pages currently have a page frame allocated and the location (real
storage address) of these page frames.

A Guide to the IBM System/370 Model 168 ' 57

FORMATS
Effective 24-bit virtual storage address

r - nY
8 16 21 31
64K segment Segment Page Byte displacement Supported by
2K page address address from beginning of page DOS/VS
bits bits and OS/VS1
-~ I\, ~ — i
0 to 255 0to 31 0 to 2047
Effective 24-bit virtual storage address
r A h)
8 16 20 31
64K seament Segment Page Byte displacement Supported by
4K pagz address address from beginning of page 0S/VS2 and
bits bits VM/370
- —_— I\ -~ I\ ~)
0 to 255 Oto 15 0 to 4095
EXAMPLE OF ADDRESSING A 4K PAGE
Virtual storage of
16, 777, 216 bytes
(16, 384K)
L Page 15
Segment 255
Page 0
16,320K | 29° 1
> Segments 2 to 254 :?
Hex address O 1 F 0 0 4
128K
Page 15 8 16 20 31
Segment 1 00000001| 1111 | 000000000100
- Segment Page Byte
sax |20 1 15 4
L Page 15
Segment 0
Virtual |
storage Page 0 I
address 0

64K segments, 4K pages

Figure 30.10.1. Virtual storage address fields for a 64K segment

58 A Guide to the IBM System/370 Model 168

In an 0S/VS1l environment, segment and page tables are established at
system initialization. Page tables are modified during system operation
by control program routines to reflect the current allocation of real
storage to virtual storage so that address translation can take place.
In an 0S/VS2 environment, in which virtual storage as well as real
storage is dynamically allocated and deallocated, the segment table
constructed during IPL is modified as required during system operation
to reflect the allocation of virtual storage, and page tables are
created and destroyed as necessary.

Address Translation Process

A translation request is either explicit or implicit. Explicit
translation is invoked via execution of the LOAD REAL ALDRESS
instruction. Implicit translation is invoked to translate all
instruction addresses and data addresses contained in other
instructions. Implicit address translation takes place during
instruction execution.

The logical flow and the details of the translation process are given
in FPigure 30.10.3. The procedure consists of a two-level, direct
address table lookup operation. Any type of translation exception
causes a program interruption and termination of the hardware
translation process. The CPU cannot be disabled for translation
exception interruptions. Segment and page translation exceptions that
occur during an explicit translation request (LOAD REAL ADDRESS
instruction) are indicated via the condition code setting instead of via
an interruption.

Translation Lookaside Buffer

, In the Model 168, a translation lookaside buffer (TLB) is implemented
to reduce the amount of time required to perform address translation.
The translation lookaside buffer is used to retain up to 128 previously
translated addresses. Addresses associated with up to six different
virtual storages can be contained in the TLB at any time. Every time a
virtual storage address is translated during instruction execution, the
virtual storage address, the resulting real storage address and its
associated storage protect key, and identification of the virtual
storage to which the virtual storage address belongs are placed in one
of the 128 TLB locations. A hashing algorithm is applied to the wvirtual
storage address in order to determine which of the 128 TLB locations is
to be used. '

After the effective virtual storage address has been computed and
before performing the translation using segment and page tables, the TLB
is interrogated to determine whether it contains the required translated
address. Interrogation of the TLB is done in parallel with reference to
the index array for the buffer. Therefore, no translation cycles are
required when the translated address is obtained from the TLB. If the
TLB does not contain the required translation or if the entry is
invalid, as indicated by a zero identification code, the complete table-
lookup translation procedure, as previously described, is performed. 1In
the Model 168, the number of CPU (80 nanosecond) cycles required for
address translation when the translation is not obtained from the TLB
varies from a minimum of 8 to a maximum of 26, assuming no I/O
interference, depending on the locations of the segment table and
the page table entries required for the translation. In the Model 165 II,
from 8 to 46 CPU cycles are required for the translation process when
the required translation is not contained in the TLB.

If an error occurs in the TLB, half of the TLB (64 locations) is

disabled and a machine check interruption occurs. The degradation bit
will be on in the stored machine check code.

A Guide to the IBM System/370 Model 168 59

256 entries
for

16 million
bytes

<

0t

Control register 1

Segment
table addr,

26 31

Figure 30.10.2.

60

255

Segment 0 entry

Segment 1 entry

4 bytes

Segment 255 entry

Segment Table
for one virtual
storage — 1024
bytes maximum
for 64K
segment size

Segment Table Entry

Page
L]0 |Table |O]!
address
0 4 8 29 31
Bits
0-3 Page table length
8—28 Page table origin
address
kil Invalid bit

64
bytes

translation

31

31

Page Tables
for 2K pages
Segment O Page Table

Page O entry

2 bytes

2
(g

Page 31 entry

Segment 255 Page Table

Page O entry

Page 31 entry

or

15

15

Page Tables
for 4K pages
Segment O Page Table

Page 0 entry

.
I~ 2 bytes]

Page 15 entry

Segment 255 Page Table

Page 0 entry

Page 15 entry

256 Page Tables

2K Page Table Entry
Page
address oy
0 1314 15
Bits
0-12 High-order 13
bits of real
storage address
of page
13 Invalid bit

15 User bit for
programming
systems use

maximum

4K Page Table Entry

Page
address H{oou
0 1213 15
Bits
0-11 High-order 12
bits of real
storage address
of page
12 Invalid bit

15 User bit for
programming
systems use

32
bytes

Segment table and page tables used for dynamic address

A Guide to the IBM System/370 Model 168

Effective 24-Bit Virtual Storage Address

64K 2K
[Segment] Page | Displacement 1
8 15 16 20 21 31
Control Register 1
Segment Table
@ Lengthl Address I J
0 8 | 26 31
X X =——e——— X 000000

/ 0—0XXXXXXXX0 0—-0XXXXX0

/
8 " % g/] 2! 4/ 30

Add

8 28
Segment Table \ \ Page Table
] X-=X000
!
Page Table P Ad
@ Lengthl ‘2\9 ,dress Add > age Address

___—'————
\{/_ Page Table

Page Table

®I Page Frame

Number l Dlsplacement]

1. Bits 8, 9, 11, and 12 in control register 0 are checked for
validity. A translation specification interruption occurs if an
invalid setting is present. Segment address bits from the
virtual storage address are checked using length bits in control
register 1. If the segment entry address is outside the segment
table, a segment translation exception is indicated.

2. Six low-order zeros are appended to the segment table address in
control register 1. Two low-order zeros are appended to the
segment bits from the virtual storage address. The two values
are added to obtain a segment table entry. If the invalid bit is
on in this entry, a segment translation exception is indicated.

3. Page address bits from the virtual storage address are checked
using page table length bits contained in the segment table
entry. A page translation exception is indicated if the entry
addressed is outside the page table.

4. Three low-order zeros are appended to the page table address
contained in the segment entry. One low-order zero is appended
to the page address from the virtual storage address. The two
values are added to obtain a page table entry. If the invalid
bit is on in this entry, a page translation exception is
indicated.

5. The 24-bit real storage address is formed using the 12 or 13
high-order bits from the page table entry and the 12 or 11 low-
order bits from the virtual storage address.

Figure 30.10.3. Dynamic address translation procedure

A Guide to the IBM System/370 Model 168 61

All the entries in the TLB are invalidated (identification codes set
to zero) when a reset occurs, the operator enters a storage
configuration via the configuration panel, or retry recovery is
attempted after a machine check occurs. When a SET STORAGE KEY is
issued and valid translated addresses are in the TLB, the TLB is
searched and each entry is invalidated that has the same real address as
the one for which the key is being set. The PURGE TLB instruction is
provided to enable a program to invalidate all 128 TLB entries. In
general, this instruction must be issued when an entry in a page table
is invalidated, since the real storage address being invalidated could
be contained in the TLB. The TLB will be purged by the virtual storage
operating systems as required.

A change in segment table origin address, segment size, or page size
can also affect the validity of current TLB entries. In order to reduce
the number of full TLB purges required by such changes, a segment table
origin address register stack (STO-stack) is implemented. The STO-stack
can contain the address of six different segment tables at a time. Each
segment table could define a different virtual storage. A STO-stack
entry also indicates the segment and page size in effect for the virtual
storage associated with the segment table address.

The six entries in the STO-stack have a unique identification number
associated with them. One of these numbers is denoted to be the
currently active identification number. Whenever a segment table
address is placed in control register 1, the segment table address is
also placed in the STO-stack, if it is not already there, and the
identification number the segment table address is assigned becomes the
new active identification number.

A STO-stack identification number is stored with each TLB entry to
identify the segment table, and thereby the virtual storage, with which
the TLB entry is associated. When the TLB is interrogated to see
whether it contains the required translation, the STO-stack
identification number of the TLB entry is compared with the active
identification number. If the identifications are equal, this indicates
the TLB location contains a translation from the virtual storage
associated with the active identification number. If the
identifications are not equal, the TLB location contains a translation
for a different virtual storage and, therefore, the TLB entry does not
contain the required translation even though it may contain a virtual
storage address equal to the one that is to be translated.

When DAT mode is entered or a LOAD CONTROL instruction is issued when
DAT mode is operative, the segment table address in control register 1
and page and segment size specifications from control register 0 are
compared with each of the STO-stack locations to determine whether a
change in these specifications is being made. If a change is indicated,
some TLB purging may be required.

An equal comparison between an STO-stack entry and the segment table
address, segment size, and page size in control registers 0 and 1
indicates that the virtual storage associated with the segment table
address now in control register 1 is currently one of the six virtual
storages whose translations are being maintained in the TLB and that
segment and page size have not been changed. The STO-stack
identification number of the segment table address now in control
register 1 is designated to be the active identification. No TLB
purging is required.

No equal comparison between an STO-stack entry and the segment table
address, segment size, and page size in control registers 0 and 1
indicates that translations for the segment table now indicated by
control register 1 are not currently being maintained in the TLB or that
segment or page size is being changed. The new segment table address is

62 A Guide to the IBM System/370 Model 168

placed in the STO-stack, and the STO-stack identification number
assigned becomes the active identification. A first-in first-out
algorithm is used to determine which STO-stack location to assign. If
the new address displaces another segment table address, the TLB entries
associated with the displaced segment table (and virtual storage) must
be purged. This is done by setting the identification number to zero
for each entry in the TLB that has the same STO-stack identification
number as the segment table address that was displaced. This
identification number is now assigned to the newly stored segment table
address. The other TLB entries need not be invalidated. See Figure
30.10.4 for an example of TLB purging when control register 1 is
changed.

Translation Lookaside Buffer

Virtual Real Storage
Control Active storage storage protect
ID STO-stack register 1 1D ID address address key
1 STO5 [2] 4 | vsat RSAT SPK1
2 STO3 3 VSA2 RSA2 SPK3
3 STO6 0 VSA3 RSA3 SPK1
4 STO7 |~¢—— next location 2 VSA4 RSA4 SPK2
5 sTO2 to be assigned 6 | VvsAS RSAS SPKO
6 STO8 4 VSA6 RSA6 SPKO
3 | VSA7 RSA7 SPK1
3 VSAS8 RSA8 SPK1
4 4 4 L

LT 1 1 7

Effect of Changing Control Register 1

Translation Lookaside Buffer

\iirtual Real Storage
Control Active storage storage protect
D STO-stack register 1 1D ID address address key
1 STO6 (=] 0 | vsai RSA1 SPK1
2 STO3 3 VSA2 © RSA2 SPK3
3 STO6 0 VSA3 RSA3 SPK1
4 STO4 2 VSA4 RSA4 SPK2
5 STO2 |-g—— next location 6 VSAS RSAS SPKO
6 STO8 to be assigned 0 VSAB RSA6 SPKO
3 VSA7 RSA7 SPK1
3 VSA8 RSA8 SPK1
~ ~o ~ ~ ~o

LT 1T T 7T

Figure 30.10.4. TLB purging when control register 1 is changed

Implementation of the STO-stack in the Model 168 enables a control
program that supports multiple virtual storages (such as VM/370) to
alter control registers 0 and 1 in order to change the virtual storage
for which address translation is effective, without automatically
causing purging of the entire TLB. The STO-stack facility will also be
of benefit in an 0S/VS2 environment, since 0OS/VS2 supports two segment

A Guide to the IBM System/370 Model 168 63

tables to provide fetch protection for all regions (see 0S/Virtual
Storage 2 Features Supplement).

Addresses Translated

All storage addresses that are explicitly designated by a program and
that are used by the CPU to refer to instructions or data in processor
storage are virtual storage addresses and are subject to address
translation. Thus, when DAT is operative, the starting and ending
storage addresses used with the program event recording feature are
virtual, as are the storage addresses stored in PSW's during
interruptions. Address translation is not applied to addresses that
explicitly designate protect key storage locations or to guantities that
are formed as storage addresses from the values designated in the base
and displacement fields of an instruction but that are not used to
address processor storage (shift instructions, for example). 1In
addition, address translation is not applied to the storage addresses in
CCW lists used for 1/0 operations.

Some of the storage addresses supplied to a program by the CPU are
virtual and some are real. Table 30.10.2 lists, for the Model 168,
those storage addresses designated by a program, either explicitly or
implicitly, that are virtual (and, therefore, are sukject to
translation) and those addresses that are real or not used to reference
processor storage and, thus, are not translated. The table also
indicates which storage addresses supplied to a program are virtual and
which are real.

FEATURES TO SUPPORT DEMAND PAGING

Reference and Change Recording Facility for Real Storage Blocks

A hardware recording facility is standard in the Model 168. This
facility provides continuous recording of the activity of all 2K real
storage blocks via reference and change bits. The settings of these
recording bits can be used by control program routines to support a
demand paging environment. This hardware facility is always active; it
does not depend on EC or translation mode being operative.

The seven-bit key associated with each 2K real storage block in the
Model 168 has four storage-protect bits, one fetch-protect bit, one
reference bit, and one change bit. During system operation, the
activity of each 2K real storage block is monitored by hardware.
Whenever a fetch is made either by a CPU or a channel to a real storage
address, the reference bit in the key associated with the 2K storage
block that contains that real storage address is turned on by the
hardware. A store into any real storage address causes the hardware to
turn on both the change bit and the reference bit for the affected 2K
block.

Storesdisplay operations initiated from the 3066 console also cause
appropriate changing of the reference and change bits. The RESET
REFERENCE BIT instruction is provided to allow the reference bit of any
2K real storage block to be reset by programming without altering the
contents of the other six bits in the protect key. A CPU fetch that is
satisfied with data contained in the buffer does not cause reference
recording in the Model 168. There are situations, however, in which
instruction or operand prefetching may cause the reference bit for a
page frame to be turned on even though the contents of that page are
never used.

64 A Guide to the IBM System/370 Model. 168

Table 30.10.2. Virtual and real storage addresses used by and
supplied to programs in the Model 168

Virtual Storage Addresses Explicitly Designated by the Program (translated)

Instruction address in the PSW

Branch addresses in instructions

Addresses of operands in instructions

Operand address in the LOAD REAL ALIDRESS instruction

PER starting address in control register 10 and PER ending address
in control register i1

Real Storage Addresses Explicitly Designated by the Program (not translated)

e Operand addresses in SET STORAGE KEY, INSERT STORAGE KEY,
and RESET REFERENCE BIT instructions

Machine check extended log pointer in control register 15
I/0 extended log pointer in location 172
Segment-table-origin address in control register 1
Page-table-origin address in a segment table entry

Page frame address in a page table entry

CCW address in the channel address word (CAW)

Address in a CCW specifying a data area or the location
of another CCW

e Data address in channel indirect data address lists

Addresses Not Used to Address Storage (not translated)

e Operand addresses specifying the amount of shift in fixed-point,
logical, or decimal shift instructions

e Operand address in LOAD ADDRESS and MONITOR CALL instructions

e I/0 addresses in I/0 instructions and in the Input/Output
Communication Area (IOCA)

Real Storage Addresses Used Implicitly (not translated)

e Addresses of PSW's used during an interruption and in
executing the programmed or manually initiated restart function

e Address used by the CPU to update the timer at location 80

e Address of the CAW, the CSW, and the I/0 address within the IOCA
used during an I/0 interruption or during execution of an 1I/0
instruction, including execution of STORE CHANNEL ID

e Addresses used for the store status function

Virtual Storage Addresses Provided to the Program

e Address stored in the instruction address field of the old PSW during an
interruption

e Address stored by a BRANCH AND LINK instruction

e Address stored in register 1 by TRANSLATE AND TEST and
EDIT AND MARK instructions

e Address stored in location 144 on a program interruption
for a page translation or segment translation exception

e Address stored in location 152 on a PER interruption

Real Storage Addresses Provided to the Program

e The translated address generated by the LOAD REAL ADDRESS
instruction

e Address of the segment table entry or page table entry provided
by the LOAD REAL ADDRESS instruction

e Failing storage address in location 248

® CCW address in the CSW

A Guide to the IBM System/370 Model 168 65

The hardware reference and change recording facility is used by the
page replacement algorithm of a virtual storage operating system. When
a page is loaded into a page frame, the reference and change bits for
that page frame are set to zero. (When a 4K page size is used, the
reference and change bits for both of the 2K storage blocks involved are
reset.) Thereafter, the reference bit is used to determine the activity
of a page. The change bit is inspected to determine whether a page must
be paged out when its page frame is reassigned. The SET STORAGE KEY
instruction must be used to reset the change bit.

Instruction Nullification

When a page fault occurs in a demand paging environment, execution of
the instruction that caused the page fault stops and the control program
gains control to initiate a page-in operation. When the contents of the
missing page have been loaded (and the appropriate page table entry has
been updated), the instruction that caused the page fault is reissued.
For the instruction to operate correctly the second time, execution of
the instruction must have been stopped so that reexecution gives the
same results as would have occurred if the instruction had been executed
only once. Therefore, the contents of real storage, the general and
floating-point registers, and the PSW must not be altered.

The execution of an instruction is said to be nullified when it is
stopped in such a way that no operation was performed, no fields were
changed, and the PSW indicates the address of the instruction that was
stopped. Interruptible instructions, such as MOVE LONG, are divided
into execution units. One or more execution units may have completed
before a page fault is detected. 1In this case, only the current
execution unit is nullified.

Various methods are used, depending on the type of instruction, to
determine the need for nullification. In some cases, execution is
attempted where hardware detection of page faults permits nullification.
In other cases, pretesting is required to determine whether the virtual
storage pages to be referenced have page frames allocated.
Nullification testing is required only for instructions whose translated
addresses reference storage. In the Model 168, testing is performed by
instruction unit hardware and/or additional microcode routines that are
executed before normal instruction execution. However, for some
instructions, prefetching of the data accomplishes pretesting, so that
no additional pretesting cycles are required. A LOAD instruction that
addresses a word on a fullword boundary is an example of such an
instruction.

Similarly, if a store fullword instruction addresses a four-byte
field that is not on a fullword boundary, a pretest is required to
determine whether all four bytes are contained in real storage. The
pretest microcode for this instruction issues a fetch to the highest
addressed byte in the four-byte data field (virtual storage address in
the instruction plus 3). The absence of a page translation exception
during translation of the virtual storage address indicates that (1) if
the data field spans two pages, at least the second of the two pages is
present in real storage or (2) the data field is totally contained in
one page, which is present in real storage. Hence the instruction is
allowed to proceed without nullification. If the data field actually
does span two pages and the first page is not present in real storage,
this fact will be indicated by a page fault during translation of the
address of the high-order byte of the field. Instruction nullification
will occur and the page fault will cause a page-in of the first page to
be initiated by the control program as usual.

If the pretest fetch operation does cause a translation exception,
the store fullword instruction is mullified and the control program

66 A Guide to the IBM System/370 Model 168

gains CPU control to load the missing page. Once again, the page-in
caused by the pretest may have brought in the second of two pages
spanned by the data field or the only page containing the data field.
After the page-in, the instruction is reexecuted.

CHANNEL INDIRECT DATA ADDRESSING

Since address translation is not performed by the channels for
programs that operate in paged mode, address translation must be
performed on CCW lists by programming before the initiation of START I/O
instructions. Such address translation need not be performed on the CCW
lists in programs that operate in nonpaged mode.

In addition, a contiguously addressed I/O area in virtual storage can
span a set of noncontiguous page frames. Hence, a method of handling a
noncontiguously addressed I/0 area in real storage during the operation
of a CCW 1list is required. The channel indirect data addressing feature
is used to provide this capability. As is shown in Figure 30.10.5, the
use of channel indirect data addressing allows the channel program logic
used in the CCW list with virtual storage addresses to be maintained in
the new CCW list that contains real storage addresses.

When channel indirect data addressing is present, bit 37 of a CCW is
designated as the indirect data address (IDA) flag. The IDA flag
applies to read, read backward, write, control, and sense commands and
is valid in both BC and EC modes. When the IDA flag in a CCW is zero,
bits 8 to 31 of the CCW specify the real storage address of the
beginning of the I/0 area as usual. When the I/O area referenced by a
CCW is completely contained in one page, an indirect data address list
(IDAL) is not required and the IDA flag is set to zero. When the IDA
flag is one, CCW bits 8 to 31 specify the real storage address of an
IDAL instead of an I/0 area. When the I/0 area referenced by a CCW
spans two or more pages, an IDAL is required and the IDA flag is set to
one.

An IDAL consists of two or more contiguous indirect data address
words (IDAW's) of four bytes each. There is one IDAW in an IDAL for
each 2K storage block spanned by the I/0 area. An IDAW, which must be
aligned on a fullword boundary, contains a real storage I/O area address
in bits 8 to 31. Bits 0 to 7 must be zero. The first IDAW in the list
points to the beginning of the 1I/0 area to be used by the CCW and is
obtained by translating the virtual storage address contained in the
original CCW. Any valid real storage address can be specified in the
first IDAW of a list. All IDAW's after the first must address the
beginning (or end for a read backward operation) of a 20u48-byte block
located on a 2048-byte boundary, or a program check occurs. That is,
bits 21-31 of the address in the IDAW must be zeros (or ones for a read
backward).

Figure 30.10.5 shows an example of the IDAL's required for a command-
chained CCW list when 2K pages are used. The IBM-supplied virtual
storage operating systems construct a new CCW list with translated
addresses that is used to control the I/0 operation. The new CCW list
points to any required IDAL's.

When a START I/0 instruction is executed, the channel fetches the
first CCW in the list, pointed to by the channel address word (CAW), and
inspects bit 37. If it is zero, the operation is started in the I/0
area specified by the real storage address in the CCW. If bit 37 is a
one, the first IDAW is fetched from the real storage address in the CCW.
The I/O operation is begun using the real storage address in the first
IDAW and, assuming that the I/0 operation is not a read backward,
ascending real storage addresses in the I/0 area are used by the channel
until a 2048-byte boundary is reached.

A Guide to the IBM System/370 Model 168 67

CCwW1
CCw2
CAW at location 72
ccwi
address — ¥ cow
ccw2

Figure 30.10.5.

CCW List Provided by the Program

. IDAW1

IDAW2

IDAL1

Real storage
address 1/O area

CCW1 1/O area in real
storage — 3625 bytes

576

/' bytes
Page frame X

Real storage
address 1/0 area

2048
bytes

IDAW3

Real storage

Page frame Y

address 1/O area

AN

8 31

1/0 area
address ! 3625
1/O area
address 0 3625
0 8 7 31 33 48 63
Virtual storage
address
CCW List and IDAL's Constructed for the 1/O Operation
New translated CCW list
used for Start 1/0
IDA
flag
IDAL1
1 3625
address !
IDAL2
1
address 0 3625
0 8 31 33 37 48 63

Real storage
address

IDAW2

IDAL2

IDAW1

Real storage
address 1/0 area

Real storage

/)'

Al 1001
bytes

Page frame Z

CCW2 1/0O area in real
storage — 3625 bytes

1800 bytes

Page frame A

address 1/O area

S

1825 bytes

8 31

Page frame B

Example of IDAL's required for a CCW list when page
size is 2K

The channel detects a 2K boundary by monitoring I/0 area address bits

21-31.

byte of the next 2K real storage block is indicated.

continues.

When these bits change from all ones to all zeros, the first

At this point, the
channel accesses the second IDAW in the list to obtain the next real
storage I/0 area address to be used, and the data transfer operation

The channel continues using the IDAL until the operation

indicated by the CCW completes (CCW count reaches zero, interrecord gap’

on tape reached, etc.).
chaining is indicated.

continues as

The next CCW is accessed if command or data
Bit 37 is inspected and the 1/0 operation
described until the CCW list is exhausted.

When a program operates in paged mode, the CCW list for an I/0

operation must be inspected and the appropriate IDAL's must be
At the completion

constructed prior to issuing a START I/0 instruction.
of the I/0 operation, some retranslation is also required.

In

the following steps must be taken for each CCW in a given list:

general,

1. Determine whether the I/0 area referred to in the CCW spans pages
If a single page is involved,

or is contained in only one.

68

A Guide to the IBM System/370 Model 168

translate the virtual storage address to real and store it in the
CCW. Ensure that a page frame is allocated to the page
containing the buffer and that the page frame is marked fixed.

2. If two or more pages are involved, set up the required number of
IDAW's, place a pointer to the IDAL in the CCW, and turn on CCW
bit 37.

3. While setting up IDAW's, determine whether all pages in the I/0
area have real storage allocated. If not, ensure that page
frames are allocated and fixed.

At the completion of the I/0 operation, the real storage address in
the channel status word must be translated to a virtual storage address,
and the pages that were short-term fixed prior to initiation of the I/0
operation must be unfixed. Channel program translation and page fixing
are performed by the I/0 control portion of the control program in IBM-
supplied virtual storage operating system support. A program that
contains a CCW list that is dynamically modified during its execution
cannot operate correctly in paged mode, since the modification is made
to the CCW list with virtual storage addresses rather than to the
translated CCW list that is actually controlling the I/0 operation on
the channel. .

30:15 SYSTEM PERFORMANCE IN A VIRTUAL STORAGE ENVIRONMENT

A virtual storage environment is designed to provide new data
processing capabilities. As is true about any other capability offered
by an operating system, support of a new function requires control
program use of a certain amount of the hardware resources of the system.
In this respect, virtual storage is no different from multiprogramming
and the many other new capabilities that have continuously been added to
0S since its initial release.

The characteristic that makes virtual storage different from most
other features is that virtual storage is not primarily designed to
improve system performance, as are many other control program
facilities. Virtual storage is first a functional tool and, in certain
cases, can also be a performance tool. The objectives of 0S virtual
storage operating systems are to (1) provide new functions, (2) maintain
upward compatibility with OS nonvirtual storage environments, and (3)
provide performance equal to or better than that achieved with a
nonvirtual storage operating system using the same system configuration.
Attainment of the last objective will not be possible for all existing
System/370 configurations.

In addition, some of the new functions a virtual storage environment
provides cannot be achieved in a nonvirtual storage environment or are
not practical, and in these cases, performance is not the primary
consideration when using the facility virtual storage offers. BAs the
cost of hardware resources continues to decline on a unit cost basis
(cost per processor storage bit, cost per direct access bit, etc.), it
becomes increasingly more economical to use system resources to perform
functions that otherwise are handled by installation personnel.

The other new characteristic of virtual storage is that it enables a
given system configuration to provide a wider range of performance, as
well as function, as a result of the new factors that affect operation
of a system with virtual storage support. Thus, a slightly different
approach must be taken in planning for and in evaluating system
performance in a virtual storage environment.

Many of the same factors that affect system performance in an 0S/Vsil
or 0S/VS2 environment are the same as those that apply to 0S MFT or OS

A Guide to the IBM System/370 Model 168 69

MVT, respectively. First, the system configuration must include the
hardware resources (CPU speed, channels, 1I/0 devices, real storage}
required for the control program and job mix. This subsection
identifies the system resources specifically required to support a
virtual storage environment. Second, the system should be designed to
balance resource usage to achieve optimum throughput, and to use
applicable performance and control program design options the particular
operating system offers, taking into account the characteristics of the
installation job stream.

The performance of a system in a virtual storage environment is also
affected by certain new factors that do not apply to systems without
virtual storage support. This subsection identifies these new factors,
explains how they generally affect system performance, and indicates
steps that can be taken to increase and maximize system performance when
a virtual storage operating system is used.

This discussion applies to 0S/vSl and 0S/VS2, and is restricted to
performance factors that are common to the virtual storage environments
they support. The virtual storage operating systems also offer new
performance-oriented enhancements that are not related to the
implementation of virtual storage. These unique performance features
are discussed in the optional programming systems supplements.

The performance information in this subsection is designed to present
concepts and considerations for a virtual storage environment. Figures
and graphs are used for illustrative purposes. They do not represent
any particular installation or measured results. Their purpose is to
illustrate the interrelated factors of multiprogramming performance in a
virtual storage environment. The performance information presented is
conceptual. It is based on the experience and judgment of IBM
individuals with performance knowledge and on performance measurements
made during development of 0S/VS1l and 0S/VS2. Therefore, it may not
apply to all installations.

SYSTEM RESOURCES REQUIRED TO SUPPORT A VIRTUAL STORAGE ENVIRONMENT

In order to support a demand-paged virtual storage environment using
5ystem/370, in which programs are operating in paged mode, additional
system resources are used by the IBM-supplied virtual storage operating
systems, as follows:

* Dynamic address translation hardware requires CPU time to perform
virtual-storage-to-real-storage address translation. The amount of
time required is determined by the System/370 model and the number
of times the full table-lookup translation procedure must be
performed. The Model 168, for example, has a translation lookaside
buffer that is designed to reduce use of the full table-loockup
translation procedure. The CPU time required is also affected by
program structure (which is discussed later). A small amount of
additional CPU time is also required to pretest certain instructions
that reference storage, as discussed under "Instruction
Nullification" in Section 30:10. Studies have shown that a
relatively small percentage of the total CPU time specifically
required to support a virtual storage environment is devoted to
address translation by DAT hardware.

¢ CPU time is required to translate the virtual storage addresses in
channel programs (CCW lists) into real storage addresses, build
indirect data address lists (where necessary), and short-term fix
pages that will be referenced during I/0 initiation, execution, and
interruption handling. Channel program translation and page fixing
are performed prior to the initiation of each I/0 operation with a
channel program that contains virtual storage addresses. Channel

70 A Guide to the IBM System/370 Model 168

status word retranslation and page unfixing is performed at the
completion of these I/0 operations. The amount of CPU time this
function requires per data set is affected by the number of I/0
requests (EXCP macros) issued, the number of CCW's in the channel
programs started, the number of pages that must be fixed, and
whether or not indirect data address lists have to be constructed.
Studies have shown that a large portion of the total CPU time
specifically required to support a virtual storage environment is
used to perform channel program translation and page fixing.

e CPU time is required to process page faults and for the execution of
other control program code that is specifically required to support
a virtual storage environment. CPU time is required for such things
as servicing additional program interruptions, managing and
allocating real and external page storage, maintaining tables used
by DAT hardware, and testing for paged or nonpaged mode of program
operation.

e I/0 time is required for paging operations. The amount of paging
I70 time required is related to the number of page faults that occur
and the speed of the paging I/0 device(s) used. In 0S/VS2
environments, the total I/O time required for paging includes some
I/0 time that is also required in OS MVT environments to load
transient control program routines.

e Direct access storage is required for external page storage. The
amount required depends on the amount of virtual storage that is to
be supported and the way in which the particular operating system
organizes and manages external page storage. (See the optional
programming systems supplements for external page requirements by
device type.)

e The amount of real storage required by the resident (fixed) control
program is increased by the amount of real storage needed for
additional routines and code that are included specifically to
support a demand paged virtual storage environment.

The effect this additional use of hardware resources has on the
performance of a given system configuration depends on the resource
requirements of the job stream and the current utilization of system
resources. To the degree that the additional required CPU and I/0 time
can be overlapped with existing CPU and I/0 time that is currently not
overlapped, system throughput is not affected. System throughput will
be affected by the increase in CPU and I/0 time that cannot be
overlapped.

When a virtual storage operating system is used with an existing
system configuration, for example, and the same job stream is processed,
performance is affected by the use of any new performance enhancements
these operating systems provide as well as by an increase in resource
utilization that is required to support a virtual storage environment.
When a Model 168 replaces a Model 165, performance is also affected by
the fact that the Model 168 has a faster internal performance than the
Model 165.

Figure 30.15.1 conceptually illustrates possible system performance
when a virtual storage operating system is installed on a Model 168 with
the same amount of real storage and the same I/0 device configuration as
the replaced Model 165.

A Guide to the IBM System/370 Model 168 71

Panel 1

Sample existing CPU and I/O
wtilization and overlap for
a Model 165.

BXISTING SYSTEM THROUGHPUT
MAINTAINED

Panel 2

Some of the additional CPU and I/0
ime required is overlapped with pre-
viously unoverlapped I/0 and CPU time
(points A). Additional CPU and I/0
time that cannot be overlapped

(point B) is offset by a reduction

in the amount of CPU and I/O time
required to process the same job
stream. Results are achieved in the
same elasped time.

Panel 3

Additional CPU and I/0 time required
{dotted lines) is overlapped and off-
set by operating the system at a
higher level of multiprogramming to
achieve greater overlap. Results are
achieved in the same elapsed time.

EXISTING SYSTEM THROUGHPUT IMPROVED
Panel 4

Unoverlapped CPU and I/0 time required
is exceeded by reductions in previ-
ously used CPU and I/0 time. Better
overlap of previously used CPU and I/O
ttime is also achieved. Same results
are achieved in less elapsed time.

Panel 5

A higher level of multiprogramming

is used to perform more work and
achieve better overlap of CPU and I/O
time. More results are achieved in
the same elasped time.

crul @ |

1/0

cpP

1/0

cPuf--

1/0

CPU

1/0

cPU

o (b)

T

. —1

N
Elapsed time

ol @ Reduced cPU Time | ®

Better Overlap

Figure 30.15.1. Possible system performance when a virtual storage
operating system is used with a Model 168 with the same
I/0 configuration and real storage size as the

replaced Model 165

A sample throughput for a Model 165 is shown in panel 1. (It is not
meant to represent any specific Model 165 throughput.) Panels 2 and 3
illustrate the conditions under which existing performance can be
maintained and the last two illustrate the conditions under which

existing performance can be improved.

72 A Guide to the IBM System/370 Model 168

| | Reduced /O |
@ '®
| Reduced CPU Time |
™ ' L
I L (b) [
=7 o
(- J
TN
Better Overlap
LReduced CPU TimeJ
- {--
I__ 1 Reduced 1/0 Time |
I L
w Better Overlap\/)
Elapsed Time Reduced
e Increased CPU Time ol
= i
I" _ I“ Increased 1/O Time __l __
. ~ J

Existing throughput is maintained if both of the following occur:

1. A portion of the additional CPU and I/0 time required to support
a virtual storage environment is overlapped with CPU and I/O time
that previously was not overlapped, as shown ky points A in panel

2. The amount of additional CPU and I/0 time that cannot be
overlapped (shown by points B in panel 2) is offset by reductions
in previously used CPU and I/O time that occur as a result of the
faster internal performance of the Model 168 and use of new
performance features of the virtual storage operating system, as
shown in panel 2. The unoverlapped CPU and I/O time may also be
offset by a combination of the faster internal performance of the
Model 168 and the achievement of better overlap as a result of
operating the system at a higher level of multiprogramming to
process the same work (as shown in panel 3).

Existing system throughput can improve if (1) unoverlapped CPU and
I/0 time required to support a virtual storage environment is exceeded
by reductions in previously used CPU and I/0 time and/or if previously
used CPU and I/O time are better overlapped (as shown in panel 4) or (2)
a higher level of multiprogramming is used to perform more work and
provide better CPU and I/0 overlap in the same elapsed time (as shown in
panel 5).

NEW FACTORS THAT AFFECT SYSTEM PERFORMANCE

In addition to the factors that affect system performance in a
nonvirtual storage environment, the performance of a system in a wvirtual
storage environment is affected by the relationship of the following
factors: the speed and number of paging devices, the speed of the CPU,
the size of real storage, the structure of the programs in the job
stream, and the way in which real storage is organized and allocated by
the virtual storage operating system. The interrelationship of each of
these factors and their individual effect on performance, except for the
last factor listed, are as follows (page replacement algorithms are not
discussed):

Speed and Number of Paging Devices. A certain amount of I/0 time is
required to read in (or write out) a page using a given direct access
device type. This time is a function of device type characteristics--
seek time, rotation time, and data transfer rate. Assuming one page-in
performed at a time, no page-outs, and no contention for the paging
device or its channel, a maximum paging rate, in terms of the number of
page faults that can be serviced per time interval, could be calculated
for a given device type. This rate could be improved by certain
programming techniques, such as use of rotational position sensing when
it is present and initiation of multiple page-in and page-out requests
with a single channel program. (Various techniques are implemented in
0S/VSl and 0S/VS2.) The maximum paging capability of a given system can
be increased by various means, such as using more than one paging device
or using a faster paging device.

The paging characteristic of a virtual storage environment is the
feature that permits an operating system to support virtual storage that
is larger than real storage. The paging activity of a system begins to
adversely affect system performance, however, once the CPU is in the
position of frequently having to wait for paging I/O operations to
complete. When requests for paging operations are permitted to occur
faster than the paging rate the system can sustain, such that the system
can do little or no processing except that related to paging, the system
is in a paging-I/O-bound situation and is said to be thrashing. When a
thrashing condition exists, little or no productive work can be
accomplished unless paging activity is reduced.

A Guide to the IBM System/370 Model 168 73

In order to prevent thrashing, the System/370 virtual storage
operating systems monitor the activity of the system to determine when
paging activity becomes excessive. At this point, the 0S control
program performs task deactivation. This involves placing a task
(0S/VS2) or partition (0S/VS1l) in deactivated status and releasing the
page frames currently allocated to the task or partition. These page
frames are then available for allocation to other tasks to reduce paging
activity. Later, when paging activity becomes sufficiently low, the
deactivated task or partition is reactivated.

CPUJ Speed. An improperly balanced relationship between CPU speed and
paging device speed can also cause the system to become I/O-bound as a
result of paging. A Model 168 can execute a certain number of
instructions during the time required to service a page-in request using
a given direct access device type. A Model 168 can execute many more
instructions during a page-in from a 2305 Model 2, for example, than can
a Model 158. As long as there is useful work for the CPU to perform
while paging operations occur, the system is not kept waiting for paging
I/0. However, if the concurrently operating programs are constantly
executing instructions faster than the pages they require can be brought
into real storage, an excessively high paging rate can develop and task
deactivation will be the result. In general, therefore, the
larger-scale System/370 models require faster paging devices to handle a
particular page fault rate than do the smaller-scale models.

Real Storage Size. The amount of real storage present in a system
affects the number of page faults that occur when a given job stream is
processed. If the amount of real storage present in the system is equal
to the total amount of virtual storage being used by the concurrently
executing tasks, no page faults occur for programs that have been
fetched and initiated. When the amount of real storage present is less
than the amount of virtual storage being used, page faults occur. The
total number of page faults that occur for a given job stream is
affected by the ratio of virtual storage used to real storage available.

Assuming the amount of virtual storage used in a given system remains
the same, the virtual-to-real storage ratio can vary. This occurs while
a given system experiences variations in the amount of real storage
actually available for paging as the amount of fixed real storage
changes during job stream processing. The real storage available for
paging at any point in time is the difference between the amount of real
storage in the system and the total amount of long- and short-term fixed
real storage. For IBM-supplied virtual storage operating systems, the
total amount of fixed real storage at any given time is the sum of the:

e Resident (fixed) control program size, which does not vary after IPL

e Amount of long-term fixed real storage required for control blocks,
which can change as the level of multiprogramming changes in 0S/VS1
and 0OS/V32 environments

e Amount of short-term fixed real storage required for outstanding I/0
operations that have virtual channel programs, which flucuates with
the I/0 activity of the system)

e Amount of long-term fixed real storage required by the job steps
executing in nonpaged mode, if any

e Amount of long-term fixed real storage required by programs that
operate in paged mode but that have a portion of their partition or
region always fixed (TCAM in 0S/VSl and 0OS/VS2, for example)

As the virtual-to-real storage ratio of a job stream increases, so

usually does the page fault rate. In general, the page fault rate
increases slowly for a while. At some point, the increase in page

74 A Guide to the IBM Systemv/ 370 Model 168

faults begins rising rapidly as the virtual-to-real storage ratio
continues to increase. Figure 30.15.2, shown later, illustrates the
general relationship between the number of page faults and the virtual-
to-real storage ratio.

The amount of real storage available to process a given job stream
also varies when a given job stream is processed on systems with various
amounts of real storage, such as when a smaller-scale system is used to
back up a larger-scale system.

The degree to which reducing the real storage availakle for paging
affects the page fault rate depends on the paging activity pattern of
the programs in a job stream. Therefore, the virtual-to-real storage
ratio at the point at which a given number of page faults occurs will
usually vary by job stream. The point can also be different for systems
with similar paging activity patterns and the same amount of real
storage installed, but with different amounts of long-term fixed real
storage.

As the virtual-to-real storage ratio increases because of a reduction
in the real storage available (or an increase in the amount of virtual
storage used) and the page fault rate increases, more demand is placed
on the paging devices. If too small an amount of real storage is
present in a system, this situation can cause the page fault rate to
exceed the permissible rate and task deactivation will occur. 1In
general, therefore, in order to obtain a certain level of performance, a
configuration that supports a given job stream and virtual storage size
may require more real storage when a relatively slower paging device is
used than when a faster paging device is used.

Program Structure. The total amount of wvirtual storage a program
uses is not nearly so significant a factor in system performance as the
way in which virtual storage is used. That is, the pattern and
frequency of reference to pages in a program has more effect on the
number of page faults that occur than the total size of the program.

For example, assume a case in which a program has a 100K virtual storage
design point. If the program can be structured to execute as a series
of logical phases of four or five pages each and the pages of each
logical phase reference only each other, no more than four or five page
frames (8K to 10K or 16K to 20K of real storage, depending on page size)
need be dynamically available to the program at one time and paging
activity occurs only as the program progresses from one logical phase to
the next. However, assume the program is structured so that during its
execution each page of instructions constantly references a large number
of different pages of instructions and data for very short durations on
a random basis. An excessively high paging rate could occur if only
four or five page frames were dynamically available to such a program at
any time.

As indicated previously, most types of programs have a natural
locality of referemnce characteristic, so that they can be structured to
operate as a series of logical phases. In the simplest case, for
example, a program can logically consist of an initialization phase, a
main phase, one or more exception handling phases, and a termination
phase. The total amount of virtual storage referenced in each logical
phase usually varies but, generally, the amount is less than the total
size of the program. In addition, the pages that are part of
(referenced in) a given logical phase can usually be described as active
or passive.

For the purpose of the discussion in this subsection, an active page

:is defined as one with a high probability of being referenced multiple

times during execution of the logical phase, while a passive page has a
low probability of being referenced more than once during execution of
the phase. A logical phase experiences the least amount of paging

A Guide to the IBM System/370 Model 168 75

activity as it executes when its active pages remain in real storage
during its execution and its passive pages are paged in when required.
A program uses real storage most efficiently when the active
instructions and data in each logical phase are contained within the
fewest number of pages possible.

The locality of reference characteristic does not apply to certain
types of programs. For example, it does not apply to any program that
is designed to optimize its performance at execution time by using the
total amount of storage it has been allocated. This characteristic is
usually true of sort/merge programs that initialize themselves to use
all the storage made available to them in their partition or region
during the sorting passes. The reference pattern for such a sort/merge
is random and encompasses all the storage (and, therefore, all the
pages) the program is assigned.

RELATIONSHIP BETWEEN VIRTUAL STORAGE SIZE AND SYSTEM PERFORMANCE

Assuming other required system resources are available, a given
configuration can support a given virtual storage size and provide
satisfactory performance when paging activity is kept at an acceptable
level. Minimal paging activity occurs when enough real storage is
present in the system to contain most or all of those pages of
concurrently executing programs that are active at any given time.
Paging activity then is required primarily for passive pages. Active
pages are paged in (and later paged out as required) as the set of
active pages for each program changes from one logical phase to another.
The paging device(s) present must be capable of handling the demand for
pages that results from the range of paging activity of the system.

As the amount of virtual storage used in a given system increases,
the number of active and passive pages that the system must handle
increases also. The ratio of active to passive pages will vary for a
given increase in virtual storage, depending on how the additional
virtual storage is used. As long as enough real storage is present to
contain all or most of the increased nmumber of active pages, the
increase in paging activity required to support the additional virtual
storage will be needed primarily for passive pages and should be
relatively small. As soon as the use of more virtual storage causes the
number of concurrently active pages to constantly exceed the capacity of
real storage, the paging activity increase required to support the
additional virtual storage becomes relatively large. As more and more
active pages must be handled, paging activity could exceed the maximum
paging capability of the system if task deactivation did not occur.

Figure 30.15.2 illustrates the increase in page faults that generally
occurs as more virtual storage is used in a given system configuration.
The curve begins at the point at which the amount of virtual storage
used is equal to the amount of real storage present (virtual-to-real-
storage ratio is 1). Paging activity begins as soon as the amount of
virtual storage used exceeds the real storage present. As the virtual-
to-real-storage ratio increases, so does paging activity. The system
moves from passive paging activity (primarily paging of passive pages)
into active paging (paging active pages in and out more of the time) and
approaches the maximum paging capability of the system. As indicated
previously, Figure 30.15.2 also illustrates the increase in page faults
that generally occurs as less real storage is made available to support
a given virtual storage size. The increase in page faults also causes
the virtual-to-real storage ratio to increase.

76 A Guide to the IBM System/ 370 Model 168

Maximum

paging
capability\’-l
/
/
l Task /
Number of : deactivation /
page faults |
per second |
|

Active
paging

|«————— Passive paging

=1 ; Virtual-to-real storage ratio
\
(#>)

Figure 30.15.2. General effect on page faults of increasing the ratio
of virtual storage used to real storage present in
the system

<

Figure 30.15.3 illustrates how the paging factor only generally
affects system performance. Figure 30.15.5, shown later, illustrates
system performance taking into account all factors. The curve shows the
performance of the system when passive and active paging are occurring,
relative to the virtual-to-real storage ratio. The use of virtual
storage can be increased with little or no adverse effect on performance
as long as paging remains in the passive area. This is true because in
the passive paging area there is a relatively small amount of paging and
a high probability that all or most paging processing (CPU and I/0 time)
can be overlapped with other processing. BAs paging activity increases,
there is a higher probability that CPU processing will be held up
waiting for a paging operation to complete. As the CPU enters the wait
state more frequently to wait for paging I/0 and less paging I/0 is
overlapped, the paging factor causes performance to degrade more
rapidly.

The actual virtual-to-real storage ratio at the time active paging
begins in Figures 30.15.2 and 30.15.3 is a variable and depends on the
way in which virtual storage is used, that is, active-to-passive page
ratio of concurrently executing tasks.

Figure 30.15.4 illustrates the way in which the paging factor only
can affect system performance in a given configuration, based on the
active-to-passive page ratio. If the ratio of active to passive pages
for executing tasks is relatively high most of the time, as shown in
curve 1, the virtual-to-real storage ratio at the point at which active
paging begins will be relatively low. Performance drops very rapidly in
this case as more virtual storage is used. This happens because the
increased paging processing (I/0 and CPU time) cannot be overlapped with
other processing. This situation may apply to an installation initially
when a switch from a nonvirtual storage to a virtual storage environment
is made and more virtual storage is used, since existing programs were

A Guide to the IBM System/370 Model 168 77

structured for optimum performance in a given partition or a region size
rather than for optimum performance in a virtual storage environment.

If the active-to-passive page ratio for the system is low, as shown
in curve 3, the virtual-to-real storage ratio can be relatively high
when active paging begins. The performance curve stays flatter longer
as virtual storage is increased when the active-to-passive page ratio is
low. This situation can apply to an installation in which all executing
programs are structured to minimize real storage requirements and page
faults. An installation that continues executing all or most existing
programs as they are presently designed and that structures new
applications for optimaum performance (low active-to-passive ratio) may
be more common. Such installations may experience a virtual-to-real
storage ratio somewhere between the low and the high extremes possible
for a given job stream, as shown in curve 2.

Paging Overhead
]
:<—-——————— Passive paging Active !
— - . |

i paging ‘

} I

1 T |
System | |
performance | | Task

: L~ deactivation

! AN

! AN

| \

‘ N\

!

|

|

|

/ Virtual-to-real storage ratio

=1

<

)

Figure 30.15.3. General effect on system performance of the paging
factor only

The amount of virtual storage used in a system can be increased in
several ways. First, the size of existing application programs can be
increased by the addition of new functions. Second, the level of
multiprogramming or multitasking can be increased, assuming other
required resources, such as CPU time and I/O devices, are available.
Third, the size of existing application programs can be expanded by (1)
restructuring programs with a planned overlay or a dynamic structure to
take them out of these structures and (2) combining two or more job
steps within a job into one logical job step. The active-to-passive
ratio of the additional pages the system must handle will usually be
higher when the level of multiprogramming is increased than when
existing jobs are restructured.

78 A Guide to the IBM System/370 Model 168

Paging Overhead

Curve 3
(active-to-passive
page ratio low-
overlapped paging)

System

Curve 1
performance

(active-to-passive
page ratio high—-
nonoverlapped
paging)

]
/'I Virtual-to-real storage ratio
\
(7>

Figure 30.15.4. General effect of the paging factor on system performance
with various active-to-passive page ratios

DI
[
—

The way in which an installation should view the amount of virtual
storage used and system performance for a given configuration, taking
all performance factors into account, is illustrated in Figure 30.15.5.
The increased use of virtual storage is beneficial to system performance
up to a point. Thereafter, additional virtual storage can be used to
handle additional functions at a variable cost in system performance.

In reality, the virtual-to-real storage ratio and the page-fault rate
vary during system processing as the amount of virtual storage used (out
of the total amount supported) and the amount of real storage available
for paging vary. Best overall system performance is achieved when
paging activity falls most of the time in the area identified on the
curve as the operating range. More significant performance reduction
begins when active paging is experienced.

Occasional active paging on an exception basis should be acceptable.
More frequent active paging can be performed to achieve a desired
function that does not justify changing the system configuration.
However, when paging activity in a system is constantly at the point at
which task deactivation occurs, system configuration changes should be
made to improve system performance. Such changes might be the addition
of more real storage, the addition of more or faster paging devices, or
installation of a faster CPU. A history of the paging activity of the
system can be maintained by recording the paging statistics provided by
0S/VSsl and OS/VS2.

A Guide to the IBM Systenv370 Model 168 79

Performance-All Factors

+e—— Pagsive paging —————» Active

paging

Configuration
changes
necessary

)

]

'

1

1

[}

]

] l\\

] 1 N

' i \

! Task ' \
) deactivation N
:

'

L}

]

1

1

|

System
performance

Y. &

point

1 / Virtual-to-real storage ratio
\%
(+>9

Figure 30.15.5. General system performance curve for a virtual storage
environment

INCREASING SYSTEM PERFORMANCE IN A VIRTUAL STORAGE ENVIRONMENT

The IBM-supplied virtual storage operating systems are designed to
provide an acceptable level of performance when existing problem
programs are run without modification. However, given the additionmal
resource requirements of virtual storage support and the new factors
that affect system performance in a virtual storage environment, once a
virtual storage operating system is installed (either on an existing
configuration or a larger configuration) certain steps can be taken to
improve performance or to achieve optimum performance. The benefit to
be achiewved by taking any one of the steps outlined must be evaluated on
an installation basis, taking the specific configuration and operating
environment into account. Some steps, for example, are more practical
for large configurations than for small configurations. The following
can be done:

e Use larger I/0 buffers. This step is practical primarily for
sequential data sets and can be used most effectively when previous
real storage limitations prevented the use of larger buffer sizes in
general and, in particular, optimum buffer sizes for disk data sets.
In addition to reducing the total I/O time required to process a
data set, as would occur in a nonvirtual storage environment,
increasing buffer size reduces the number of I/O requests required
to process the data set and, thereby, reduces the CPU time required
for channel program translation and page fixing. This technique
should be used taking into account the amount of real storage
present in the system. If the buffer size of several data sets that
are being processed concurrently is increased considerably or made
large initially, the amount of real storage that must be short-term
fixed increases considerably also and potentially increases the
number of active pages. This may adversely affect system
performance if the system has a relatively limited amount of real
storage available for paging.

80 A Guide to the IBM System/ 370 Model 168

® Increase the page fault handling capability of the system when
paging activity constantly causes task deactivation. This can be
accomplished by (1) using a direct access device for paging that is
faster than the currently used paging device, (2) allocating more
direct access devices for paging to enable more overlap of paging
activity, or (3) reducing or eliminating contention for the existing
paging device(s). Contention for the paging device can be relieved
by using dedicated paging devices, or reducing the amount of other
I70 activity on the channel to which the paging device is attached,
or dedicating a channel to paging. Alternatively, the same paging
device configuration can be maintained while page fault occurrence
is decreased by the addition of real storage.

® Use code that does not modify itself. Use of this type of code can
reduce the amount of page-out activity required. Such code can be
produced using OS PL/I and the 0S Assembler Language.

e Execute programs in nonpaged mode only when actually required. Use
of nonpaged mode should be limited because the amount of real
storage available for paging operations during the operation of a
nonpaged program is reduced by the size of the program and can
affect system performance. If a nonpageable program is to be
present in a system for an extended period of time or at all times,
it should be considered part of the fixed real storage requirement
so that the amount of real storage actually available for paging can
be more accurately determined.

e Structure new application programs to operate efficiently in a
paging environment. This is done by structuring programs to achieve
a reasonable balance between page faults and real storage
requirements. The extent to which this is done can vary widely by
installation. The benefits that can be obtained should be evaluated
in light of the additional programmer effort required. 1In this
respect, deciding on the degree to which programs should be
structured for efficient operation in a paging environment is
similar to deciding how a high-level langnage should be used. The
emphasis can be on most efficient program execution, which can
require more programmer effort, or on most efficient use of
programmer time, which can result in less efficient programs.
Alternatively, there can be a tradeoff between programmer time and
efficient programs (only the most frequently used programs are
optimized, for example). ’

Many of the general program structure techniques discussed do not
require a large amount of additional effort or knowledge on the part
of programmers--only that they adopt a particular programming style.
All of the suggested techniques can be used by Assembler Language
programmers. Some can be used with certain high-level languages and
not with others. More of the suggested techniques can be used in
PL/I programs than in other high-level language programs.

Two major steps can be taken to structure programs to use real
storage most efficiently and to incur the smallest possible number
of page faults. The first is to adopt a certain programming style,
one aspect of which is similar to the style that has been encouraged
with System/360 and System/370, namely, that of modular programming.
The second is to package program code and data within page
boundaries. The objective of improving programming style is to
construct a program that consists of a series of logical processing
phases each of which contains a relatively small number of active
pages. The objective of packaging code within pages is to group
active code together to avoid crossing page boundaries in such a way
that more real storage than is really necessary is required to
contain the active pages of a logical phase.

A Guide to the IBM System/370 Model 168 81

82

In order to cause references to active instructions and data to be
localized, the following general rules should be applied to
programs:

1. A program should consist of a series of sequentially executed
logical phases or--in System/370 programming terminology--a
series of subroutines or subprograms. The mainline of the
program should contain the most frequently used subroutines in
the sequence of most probable use, so that processing proceeds
sequentially, with calls being made to the infrequently used
subroutines, such as exception and error routines. This
structure contrasts with one in which the mainline consists of a
series of calls to subroutines. Frequently used subroutines
should be located near each other. Infrequently used subroutines
that tend to be used at thé same time whenever they are executed
should be located near each other also.

2. The data most frequently used by a subroutine should be defined
together so that it is placed within the same page, or group of
pages, instead of scattered among several pages. If possible,
the data should be placed next to the subroutine so that part or
all of the data is contained within a page that contains active
subroutine instructions (unless the routine is to be written in
such a way that it is not modified during its execution). This
eliminates references to more pages than are actually required to
contain the data and tends to keep the pages with frequently
referenced data in real storage.

3. Data that is to be used by several subroutines of a program
(either in series or in parallel by concurrently executing
subtasks) should be defined together in an area that can be
referenced by each subroutine.

4. A data field should be initialized as close as possible to the
time it will be used to avoid a page-out and a page-in between
initialization and first use of the data field.

5. Structures of data, such as arrays, should be defined in virtual
storage in the sequence they will be referenced, or referenced by
the program in the sequence in which a high-level language stores
them (by row or by column for arrays, for example).

6. Subroutines should be packaged within pages when possible. For
example, avoid starting a 1500-byte subroutine in the middle of a
2K page so that it crosses a page boundary and requires two page
frames instead of one when it is active. Subroutines that are
smaller than page size should be packaged together to require the
fewest number of pages, with frequently used subroutines placed
in the same page when possible. This applies to large groups of
data as well. The linkage editor supplied with 0S/VS1 and 0S/VS2
has new control statements that can be used to cause CSECTs and
COMMON areas to be aligned on page boundaries, and to indicate
the oxder in which CSECTs are placed in the load module. This
linkage editor facility can be used with certain high-level
language programs that contain maltiple CSECTs (such as PL/X and
ANS COBOL) as well as with Assembler Language programs.

Use the OS PL/I Optimizing Compiler instead of 0S PL/I F. The code
produced by this language translator has characteristics that make
it more suited to a virtual storage environment than the code
produced by PL/I F. First, generated code is grouped into
functionally related segments, by PROCEDURE and DO group, for
example, which can help reduce paging. When PIL/I allocates buffers
and I/0 control blocks, they are packed together and can potentially
require fewer pages than if no attempt was made to define them

A Guide to the IBM System/370 Model 168

together. Reentrant code can be produced by the 0S PL/I Optimizing
Compiler, and its library routines are reentrant. This reduces
page-out requirements. User-written reentrant PL/I routines that
are required by concurrently executing problem programs can be made
resident in virtual storage and shared to reduce real storage and
paging requirements for active pages of these routines.

® Use the shared library feature of the 0S PL/I Optimizing Compiler
and the COBOL Library Management Facility of the OS ANS COBOL
language translator to make library modules resident in virtual
storage so they can be shared by concurrently executing problem
programs. Pages containing active libraray modules will tend to
remain in real storage and thereby reduce paging and real storage
requirements for these modules.

e Restructure existing application programs to incur as few page
faults as possible, use the least possible amount of real storage,
and take advantage of the program structure facilities that a
virtual storage environment offers. This can be accomplished by (1)
using the techniques described above, (2) taking planned overlay and
dynamic structure programs out of these structures, and (3)
combining into one logical step two or more steps of a job that
would have been one job step if the required real storage were
available. The last technique can eliminate redundant I/0 time that
is currently used to read the same sequential input file into two or
more job steps and to write intermediate results from one job step
in one or more sequential data sets for input to the next job step.

e Increase the level of multiprogramming in the system. This can be
accomplished by (1) performing more peripheral I/0 operations
concurrently (more readers and writers), (2) operating more regions
or partitions concurrently, or (3) increasing the use of
multitasking (structuring a TCAM message processing program to use
multitasking to enable several different types of transactions to be
processed concurrently, for example).

System throughput can be improved in a virtual storage environemnt
if a higher level of multiprogramming causes more CPU and I/0 time
to be overlapped, which results in more effective utilization of
available system resources. The larger the number of tasks in the
system under these conditions, the less chance there is for the CPU
to enter the wait state because no task is ready to execute. Better
utilization of real storage in a virtual storage environment can
enable more tasks to be present in the system.

In order to achieve performance gains by increasing the level of
multiprogramming, the potential for more overlap of CPU and I/O time
must exist in a system and/or the potential must exist for reduction
of I/0 time via increased overlapping of channel activity and
reductions in unoverlapped seek time (that can result from new
system performance enhancements). The required hardware resources,
such as CPU time, real storage, I/0 devices, and direct access
storage, must be available as well. The most critical resource in
this situation is available CPU time. As the percentage of CPU
utilization gets higher, there is less potential for increasing
throughput via increasing the level of multiprogramming.

The information presented in this subsection is designed to enable
the reader to more fully understand the way a system operates in a
virtual storage environment and the facts that influence system
performance. Understanding the environment and knowing the actions that
can be taken to increase system performance will enable each
installation to quantify the amount of effort that is to be devoted to
optimizing the performance of a virtual storage operating system.

A Guide to the IBM System/370 Model 168 83

SECTION 40: VIRTUAL MACHINES

This section discusses the basic concepts, general operation, and
advantages of virtual machines, as defined and implemented in Virtual
Machine Facility/370. No previous knowledge of virtual machines is
assumed. The virtual machine concept is a logical extension of the
virtual storage concept. Therefore, comprehension of dynamic address
translation hardware and virtual storage concepts, terminology, and
advantages, as discussed in Sections 30:05 and 30:10, is assumed.

VM/370 consists of the Ccntrol Program (CP) component, the
Conversational Monitor System (CMS) component, and the Remote Spooling
Communications Subsystem (RSCS) component. CP supports the concurrent
operation of multiple virtual machines. CMS, operating in a virtual
machine under CP control, provides conversational time sharing
facilities to a single user. RSCS, operating in a virtual machine under
CP control, provides for the transmission of data between remote users
and virtual machines via binary synchronous communication lines.

VM/370 is the successor to CP-67/CMS. Virtual machine support was
first provided by IBM in CP/67. 1In the CMS time sharing environment in
which CP-67/CMS was primarily used, the major advantage of the virtual
machine facility was that it enabled each CMS user to appear to have a
complete System/360 (Model 22 to 75) at his disposal and to be isolated
from all other CMS users. FEach CMS user had access only to his own
virtual machine and, therefore, could not inadvertantly interfere with
the operation of other CMS virtual machines. VM/370 also provides these
facilities and can be used in nondedicated time sharing environments to
provide other advantages as well.

The information presented in this section is prerequisite reading for
the optional Virtual Machine Facility/370 Features Supplement, which can
be inserted as Section 110 of this quide. The VM/370 supplement
discusses the features and operation of CP and CMS, as well as
performance considerations for a virtual machine environment and the
types of installations that can benefit most from the use of VM/370.

40:05 DEFINITION AND GENERAL OPERATION

A virtual machine is a functional simulation of a complete computer
system, including a virtual CPU, virtual storage, virtual channels,
virtual I/0 devices, and a virtual operator's console, that appears to
the user to be a real machine. In a VM/370 environment, a virtual
machine is the functional equivalent of a System/370 (Models 135 to 168)
and its associated I/0 devices.

The control program (CP) component of VM/370, executing in a real
machine (System/370 Models 135 through 168 with dynamic address
translation hardware), supports concurrent operation of multiple virtual
machines using multiprogramming techniques that enable real machine
resources to be shared by multiple virtual machines. Each virtual
machine is dedicated to a single user and isolated from other virtual
machines. None of the components of one virtual machine can be accessed
by a program that is executing in another virtual machine except via the
controlled sharing facilities that are provided by CP.

The operation of a virtual machine and scheduling of the work it
performs are handled by an operating system rather than by CP. That is,
each virtual machine has an operating system executing in it that
allocates machine resources and schedules the execution of problem

84 A Guide to the IBM System/370 Model 168

programs just as if the operating system were executing in a real
machine. In order to initiate operations in a virtual machine, the user
must log on the virtual machine and IPL an operating system in it. The
logon procedure establishes a connection with CP and the existence of a
specific virtual machine for this user. A logon is performed using a
console or terminal device of the type that CP supports as a virtual
operator's console.

The virtual operator's console is the means by which the user
controls the operation of his virtual machine and communicates with the
operating system executing in it. CP provides a set of commands that
(1) simulate the system control panel of the virtual machine, (2)
provide for alteration of a virtual machine configuration, (3) request
various services from CP for a virtual machine, and (4) control
operation of the real machine. When a CP command is entered via the
virtual operator's console, CP receives control and performs the
required functions. Communication between the user and the operating
system is accomplished using the operating system command language and
the virtual operator®'s console. CP performs any simulation required to
make the real I/O device the operator is using as a virtual operator's
console appear to be the primary console device type that is defined for
the operating system.

In a W/370 environment, a virtual operator's console is frequently
called a remote terminal because, in most cases, a terminal device type
is actually used as the virtual operator's console device. However, the
real I/O device that is used as the virtual operator's console may be a
System/370 console device as well as a local or a remote terminal.

VM/370 supports execution of any one of the following System/360 and
System/370 programming systems in a virtual machine:

e CMS component of VM/370

¢ RSCS component of VM/370

e DOS Version 3, DOS Version 4, or DOS/VS

e APL 360-DOS

e OS PCP, MFT, or MVT

e OS ASP Version 3

e 0OS/VS1

® 0S/VS2 Release 1

e 0S/VS2 Release 2 in uniprocessor mode only

e DSUY

e VM/370

Any number and combination of the above operating systems can execute
concurrently in a VMW/370 environment, subject to the availability of the
required real machine resources, including multiple copies of the same
operating system (0S/VS1l executing in more than one virtual machine, for
example). With a few exceptions, all the facilities that are supported
by these operating systems when they execute in a real machine can be
used when the operating system executes in a virtual machine in a VM/370

environment. Figure 40.05.1 conceptually illustrates the real and
virtual machine environment that is supported by VM/370.

A Guide to the IBM System/370 Model 168 85

Each virtual machine that is to be supported by CP must be user

defined and stored in the VM/370 directory.

The size of virtual

storage, the virtual I/0 devices to be used, the options to be used, and

a virtual console are usually specified.

Virtual machine configurations

can be different from each other and, within certain limitations,
different from that of the real machine in terms of these

specifications.
Virtual 1/0 units

T

Operating

O

Virtual
operator’s
console

User 1

Virtual machine 1

User 1

Virtual operator’s

———y| operator
Console
——
Card
punchles)
Printer(s) < _— cP
\\\/
]
Card
Reader(s}
— A 4
Direct Direct Direct
access access (23] access
Other 1/0 storage storage storage Other 1/0
device device
types types

Figure 40.05.1.

Simulated Virtual Machine Environment

Virtuat 1/O units Virtual 1/0 units Virtual 1/0 units

et

=0
D

Virtual machine 2

Virtual operator’s
consale console

Operating Operating QOperating
system system e system O
Virtual Virtual Virtual
operator's operator's operator’s
console consale console
User 2 User 3 User N

Virtual machine 3 Virtual machine N

Real Machine

User 2 User 3 User N

Virtual operator's
console

Real machine

.con Virtual operator's
console

conceptual illustration of the real and virtual machine

environment that is supported by VM/370

86

A Guide to the IBM System/370 Model 168

Virtual CPU Simulation

CP is resident in real storage during operation of the real machine.
It controls the operation of the real machine, schedules the execution
of virtual machines, and simulates virtual machine hardware components
using the hardware components of the real machine. 1In order to be able
to perform its functions and isolate virtual machines from each other,
CP must have exclusive control over the status and modes of operation of
the real machine, as does the control program of an operating system.
Hence, CP always executes with the real machine in supervisor state and
receives control after all real machine interruptions.

Virtual machines always operate with the real machine in problem
state. Therefore, any time any program that is executing in a virtual
machine issues a privileged instruction, an interruption occurs in the
real machine. CP receives real CPU control and takes the required
action. This may involve simulating execution of the privileged
instruction for the virtual machine or returning real CPU control to the
control program in the virtual machine for which the interruption
occurred so that the interruption can be processed by that control
program. In this manner, CP maintains control of the real machine. 1In
addition, CP simulates the existence of both a supervisor state and a
problem state in the virtual machine while, in reality, the virtual
machine operates only in problem state.

CP gives control of the real CPU to operating virtual machines on a
time-shared basis to simulate the existence of multiple CPU's. A
virtual machine can execute any System/370 instruction except READ
DIRECT and WRITE DIRECT, which are part of the Direct Control feature,
the multiprocessing instructions, and SET CLOCK, which is treated as a
NOP because CP controls the setting of the time of day clock. 1In
addition, the DIAGNOSE instruction is reserved for communication between
executing operating systems and CP.

The System/370 instructions and CPU features that are used by the
control and problem programs executing in a virtual machine must be
present in the CPU of the real machine in which CP executes. CP does
not simulate the existence of System/370 instructions and CPU hardware
features that are not present in the real machine. A virtual CPU can
appear to be executing either with BC mode or EC and DAT modes
specified, depending on the mode required by the operating system
executing in it. However, EC and DAT modes are always specified in the
real CPU when a virtual CPU is executing since address translation is
required to support the existence of virtual storage for the virtual
machine.

Vvirtual Storage Simulation

Bach virtual machine can have up to 16,777,216 bytes of virtual
storage, which is the maximum virtual storage size for System/370. The
existence of virtual storage for a virtual machine is simulated by CP
using DAT hardware and external page storage, as is done in a virtual
storage environment {(discussed in Section 30).

Operating system programs that are executing in a virtual machine
(both control and problem programs) are paged in and out of real storage
in the real machine on a demand paged basis as they execute. Real
storage allocation, external page storage allocation, and paging
operations are handled entirely by CP and are transparent to the control
and problem programs that are executing in the virtual machines. 1In
this manner, CP provides one virtual storage for each virtual machine,
and real storage in the real machine ‘is shared by concurrently operating
virtual machines. The implementation of virtual storage in a virtual
machine environment is conceptually illustrated in Figure 40.05.2.

A Guide to the IBM System/370 Model 168 87

Real Storage

cpP

Pages of

virtuat storage
for operating
virtual machines

Figure 40.05.2.

Demand
Paging

b))

(S

M

External
Page Storage

Y
A

Contents of
virtual storage o
for virtual

machines 1 to N

-
/
R

Virtual machine 1
virtual storage

Control
program

)]

RS

Problem
programs

b))

(49

Virtual machine 2
virtual storage

Control
program

—]

Program
programs

D)

L&Y

Virtual machine N
virtual storage

Control
program

by

W

Problem
programs

)

149

Conceptual illustration of the implementation of

virtual storage in a virtual machine environment

The virtual storage defined for a virtual machine always appears to
be real storage to the operating system that is executing in the wvirtual

machine.

In effect, an operating system that does not support virtual

storage, such as DOS Versicn 4 or OS MFT, has virtual storage support
provided by CP when such an operating system executes in a virtual

machine
storage

When
support
machine
virtual

and, therefore, offers the functional advantages of a virtual
operating system.

executing in a virtual machine, an operating system that does
virtual storage uses the virtual storage defined for the virtual
as real storage in order to similate the existence of the

storage it is designed to support. As shown in Figure 40.05.3,

the virtual storage operating system builds a segment table and page

88

A Gauide to the IBM System/370 Model 168

tables to translate addresses in the virtual storage it supports to
addresses in the virtual storage defined for the virtual machine, which
the operating system assumes is real storage. CP always builds and
maintains a segment table and page tables for each virtual machine.
These tables are used to translate addresses in the virtual storage of
the virtual machine to addresses in real storage in the real machine.

When a virtual storage operating system is executing in a virtual
machine, CP constructs and maintains a third set of tables using the
contents of the other two sets of tables. The third set of tables, a
shadow segment table and shadow page tables, are the tables that are
actually used for address translation when the virtual machine operates.
The shadow tables are used to translate addresses in the virtual storage

the operating system supports to addresses in real storage in the real

machine.

Real machine
real storage

cp

Segment

Pageable
real
storage

table

44—

Page
tables

Virtua! machine

virtual storage

Assumed to be
real storage by
the virtual

Built by
CP for each

system

2
143

storage operating

Segment
table

—

Page
tables

Virtual storage

Supported by
the virtual
storage

Built by
the virtual

operating system

).
«

by

W

storage operating
system

virtual machine

Built by
cP

Segment
table

Page
tables

Tables used for
address translation

Figure 40.05.3. Segment tables and page tables built when a virtual

storage operating system executes in a virtual machine

Virtual I/0 Component Simalation

The virtual channels, control units, and I/0 devices defined in each
virtual machine configuration are simulated by CP using real channels,
control units, and I/0 devices that are of the same type. While each
virtual I/0O device defined must have a real I/0 device counterpart in
the real machine configuration, there does not necessarily have to be a
one-to-one correspondence. In addition, the I/O device addresses
assigned to virtual I/0 devices need not be the same as the addresses of
their real I/0 device counterparts. CP also allows a virtual direct

A Guide to the IBM System/370 Model 168 89

access device to be simulated by only a portion of a real direct access
device volume. Such a virtual direct access device is called a
minidisk. Support of a minidisk facility enables one real direct access
device to simulate the existence of several virtual direct access
devices of the same type and thus provides more efficient use of
available direct access storage.

Virtual I/O devices are always simulated on a real I/0 device of the
same device type unless the spooling facility of CP is used. (CP also
allows 2311 disk storage to be simulated using 2314/2319 disk storage
and the minidisk facility.) The local spooling capakility of CP
provides data transcription between unit record devices and direct
access storage devices and is functionally similar to DOS POWER, OS
readers and writers, OS HASP, and 0OS/VS JES. 1In effect, the CP spooling
facility enables virtual unit record devices (card readers, card
punches, and printers) to be simulated using direct access storage. CP
also provides console spooling and a remote spooling facility.

The virtual I/O devices in a virtual machine configuration are
logically controlled by the operating system that is executing in the
virtual machine rather than by CP. That is, all the data management
routines of the operating system (physical record processing, logical
record processing, and error recovery routines) execute as usual.
Therefore, a virtual machine I/0 configuration can include any I/O
device types that are supported by the operating systems that will
execute in the virtual machine, as long as real I/0 device counterparts
exist in the real machine I/0 configuration as required.

CP controls only the scheduling and actual initiation of virtual
machine I/0 operations in the real machine. When a START I1/0
instruction is issued by an operating system control program that is
executing in a virtual machine, a privileged operation interruption
occurs and CP receives real CPU control. CP translates the virtual 1I/0
device address to its counterpart real I/O0 device address and, for
minidisks, converts virtual cylinder addresses to corresponding real
cylinder addresses, as required. CP also performs the necessary channel
program translation and page locking operations and queues the I/0
request if it cannot be started.

After the I/0 operation is started, CP returns the condition code to
the operating system control program that initiated the I/0 request so
that appropriate action can be taken. When the I/O operation completes
and causes an I/0 interruption, CP receives CPU control, gathers I/0
status information, and attempts to restart the available real 1I/0
components. CP presents the status data to the operating system control
program via a simulated I/0 interruption for the virtual machine in
which the operating system is executing.

CP completely controls operation of the real I/O devices that are
required for its own execution, such as paging and spooling devices.
This includes determining the need for I/0 operations, scheduling and
initiating I/0 requests, handling I/0 interruption processing, and
performing error recovery procedures.

Virtual Machine Assist Feature

The virtual Machine Assist (VMA) feature is available as an RPQ for
the Model 168. This feature is designed to improve total system
performance in a VM/370 environment and can also improve the performance
achieved by certain operating systems that operate under CP control in a
virtual machine. The VMA feature performs the same functions as some of
the most frequently used virtual machine simulation routines of CP.

When the VMA feature is used, virtual machine performance improvement
results when CP processing is eliminated that otherwise would cause an

90 A Guide to the IBM System/370 Model 168

operating system to experience throughput degradation when it executes
in a virtual machine instead of a real machine. Total system
pexrformance improvement is achieved if a higher level of
multiprogramming can be maintained as a result of the elimination of
certain CP processing.

The VMA feature is controlled by mask bits in control register 6.
When the VMA feature is enabled, certain types of real machine
interruptions that occur when a virtual machine has real CPU control
cause the VMA hardware feature to gain control to simulate the required
virtual machine function. The VMA feature is entered when one of the
following occurs: '

e A privileged instruction program interruption occurs that is caused
when a virtual machine issues an INSERT PSW KEY, INSERT STORAGE KEY,
LOAD PSW, LOAD REAL ADDRESS, RESET REFERENCE BIT, SET PSW KEY FROM
ADDRESS, SET STORAGE KEY, SET SYSTEM MASK, STORE CONTROL, STORE THEN
AND SYSTEM MASK, or STORE THEN OR SYSTEM MASK instruction. The VMA
feature simulates execution of the privileged instruction, and
operation of the virtual machine continues with execution of the
instruction after the privileged instruction.

e An SVC instruction except SVC 76 is issued by a virtual machine.
PSW switching for the virtual machine is simulated by the VMA
feature.

e A page translation program interruption occurs in a virtual machine
in which a virtual storage operating system is executing. The VMA
feature updates the appropriate shadow page table if possible.

The VMA hardware feature performs the same functions as the
counterpart simulation routines in CP, with a few exceptions. The VMA
feature does not handle certain special situations for a few of the
privileged instructions supported. The unsupported special situations
are those that occur infrequently and that would require the inclusion
of a considerable amount of additional hardware. When these special
situations occur, the appropriate simulation routine of CP is entered to
perform the required functions.

The amount of throughput improvement that occurs for an operating
system when the VMA feature is used depends on the extent to which the
operating system utilizes the functions the VMA feature supports. If
the increase in run time an operating system experiences when it
executes in a virtual machine is caused to a large extent by the CP
processing that is required to simulate VMA supported functions, a
relatively significant performance gain can be expected. The VMA
feature can be of the most benefit, for example, to operating systems
that support virtual storage (DOS/VS, 0OS/VSl, and 0S/VS2).

The VMA feature is supported by VM/370 as of Release 2. Additional
details regarding the operation of the VMA feature and the support
provided by VM/370 are discussed in Virtual Machine Facility/370
Features Supplement, GC20-1757-1, and later editions.

40:10 GENERAL ADVANTAGES OF A VIRTUAL MACHINE ENVIRONMENT

The advantages of VM/370 complement those of virtual storage
operating systems. Like a virtual storage environment, a virtual
machine environment is designed primarily to support new functions
rather than increase system performance. Essentially, CP is a
simalator. Traditionally, simulators have been used to provide a
desired function at the expense of performance. The new functions
provided by virtual machines (1) can increase the rate of new

A Guide to the IBM System/370 Model 168 21

application development and (2) expand cperational capabilities over
those provided by wvirtual storage. The CMS component of VM/370
supplements these two major advantage areas of a virtual machine
environment by supporting time sharing facilities such as online program
development, conversational program execution and problem solving, and
interactive text processing.

The following indicates the way in which the virtual machine
environment that is supported by the CP component of VM/370 aids the
installation of new applications and identifies the new operational
features such an environment supports. The functions and specific
advantages of CMS are discussed in the VM/370 supplement.

Increasing New Application Development

Since virtual machine support includes support of a virtual storage
environment for each virtual machine, all the capabilities wvirtual
storage provides that aid new application development are present in a
virtual machine environment as well. (These capabilities are discussed
at the end of Section 30:05.) By enabling multiple operating systems to
execute concurrently in one real machine, the virtual machine
environment supported by CP also provides the following new
capabilities:

e Testing of new programs can be more extensive and completed sooner
by the elimination of dedicated testing periods. While a virtual
storage environment can eliminate most program testing restrictions
that result from real storage size limitations, the isolation that
is provided by executing a program in a virtual machine eliminates
the need to test programs that can cause total system termination in
a dedicated environment. For example, system-oriented routines
written by system programmers and teleprocessing programs, which
usually are tested only during scheduled dedicated testing periods,
can be tested while production work is in progress. This can
eliminate the need to establish testing periods during second or
third shift and, by reducing individual test turnaround time,
enables more of this type of testing to be accomplished in a given
time period.

¢ Testing of new programs can be completed sooner through the use of
console debugging, when necessary. Using the CP commands that
simulate system control panel functions, the programmer can use any
console debugging facility that is available on a real machine, such
as setting address stops, examining and altering general registers,
displaying and altering virtual storage, etc., without interfering
with production work. CP also provides other debugging services,
such as an extensive set of traces, that can be invoked by CP
commands. Console debugging, which can enable difficult-to-locate
program errors to be detected more quickly than with desk debugging,
is usually not permitted in a nonvirtual machine environment, except
as a last resort, or is scheduled for nonproduction periods.
Program testing turnaround time can be significantly reduced through
the use of console debugging.

e Transition from one release of an operating system to another
release or from one operating system to another can be accomplished
more quickly because of the capability of executing multiple
operating systems concurrently. A new release of an operating
system can be generated and tested in one virtual machine while
production work continues in another virtual machine using the
existing release. Existing application programs and system-oriented
programs that must be modified or newly written (to use a new
facility or new language translator, for example) can be tested
during production processing as well. The multiple virtual machine

92 A Guide to the IBM System/ 370 Model

168

facility also enables an installation to execute programs that are
dependent on a back release (because the release is user modified,
for example) concurrently with each new release of that operating
system or with an entirely new operating system (such as a back
release of a DOS version operating concurrently with 0S).

e CMS can be used to perform online program development concurrently
with the processing of production work using either 0OS or DOS.
Significant gains in programmer output can be realized through
writing, compiling, and testing programs using an online terminal in
a conversational manner. This enables new applications to become
operational sooner. When CMS is used, each programmer has his own
virtual machine with CMS executing in it. Therefore, the occurrence
of a programming or operational error in one virtual machine can
cause termination of that wvirtual machine only. Other programmers
and production work are not affected.

Expanded Operational Capabilities

In addition to the new operational facilities a virtual storage
environment provides (discussed in Section 30:05), a multiple virtual
machine environment of fers the following capabilities:

e Operating system maintenance can be performed concurrently with
production work. PTF's can be applied and tested using one virtual
machine without the possibility of causing the abnormal termination
of another virtual machine that is processing production work.

® Operator training can be done using a virtual machine, which
eliminates the need to dedicate the entire real machine to this
function. Multiple operators can be trained while production work
is in process without the possibility of terminating real system
operations through an operator error.

e A system can be backed up by another system that not only has less
real storage but that also has real 1I/0 devices with different
addresses, fewer direct access devices, and fewer channels, as long
as sufficient I/0 devices of the required type are available.

e New channel and direct access device configurations can be simulated
using a virtual machine for the purpose of evaluating the load on
the new I/O configuration before it is installed on the real
machine. Similarly, ASP configurations consisting of two or more
machines can be simulated in a virtual machine environment using
only one real machine. This enables an installation without ASP
installed to determine the activity of such a configuration and gain
experience in its operation before the second system is installed or
before making the decision to install ASP. The ASP user can also
experiment with different ASP configurations.

As the above indicates, a virtual machine environment, as supported
by VM/370, offers several unique capabilities that can be of benefit to
small, intermediate, and large System/370 users. In most cases, VM/370
can be used to best advantage as complementary programming system
support in Model 168 installations in which a version of 0OS is used as
the primary programming system. VM/370 can be used in the same system
as the O0S or 0S/VS operating system or in a separate support system. A
discussion of the types of installation environments in which VM/370
will be most frequently used is contained in Virtual Machine
Facility/370 Features Supplement.

A Guide to the IBM Systemnv370 Model 168 93

SECTION 50: I/0 DEVICES FOR MODELS 1 AND 3

50: 05 I/0 DEVICE SUPPORT

All I/0 devices, consoles, and telecommunications terminals that can
be attached to the Model 165 can be attached to Models 1 and 3 of the
Model 168. However, all I/0 devices supported by 0OS MFT and MVT are not
also supported by 0S/VS1l and 0S/VS2 Release 1. (See the optional
programming systems supplements for I/0 device support.) Model 65
devices that are not part of the standard Model 165 I/0 configuration
are not part of the standard Model 168 1/0 configuration. The
integrated storage controls feature and several I/C devices can be
attached to the Model 168 but not to the Model 165 (see the table in
Section 70:05).

Note that all I/O devices supported by OS MFT and OS MVT are not
supported by 0S/VSl and 0S/VS2, respectively. (See the programming
systems supplements for I/0O device support.)

The I/0 devices discusseéd in this section attach to a Model 168
(Models 1 and 3) but not to a Model 165.

50:10 3333 DISK STORAGE AND CONTROL MODEL 11 AND 3330 DISK STORAGE
MODEL 11

A 3330-series string that is attached to a Model 168 can contain 3333
Model 11 Disk Storage and Control and 3330 Model 11 Disk Storage
modules, which do not attach to the Model 165. The drives in these
modules offer twice the capacity of the drives in Model 1 and 2 modules.
Model 11 of the 3333 consists of two independent drives, device-oriented
control functions, and power for itself and the drives that can be
attached to it, as does Model 1 of the 3333. Model 11 of the 3330
consists of two independent drives without the device-oriented control
functions that are part of a 3333, as does a 3330 Model 1.

In a Model 168 configuration, the 3333 Model 11 attaches to 3830
Storage Control Model 2 and Integrated Storage Controls. It must be the
first module in each 3330-series string that is attached to these
control units. The 3330 Model 11 attaches only to 3333 modules, Models
1 and 11. Up to three 3330 modules, in any combination of Models 1, 2,
and 11, can be attached to a 3333 Model 1 or 11 module.

With one exception, Model 11 3330-series drives are functionally like
Model 1 and 2 drives. The drives in 3330 and 3333 Model 11 modules have
a standard write format release feature that is not provided for 3330
Model 1 and 2 and 3333 Model 1 drives. This feature enables a Model 11
drive to disconnect from a 3333/3330 Model 11, 3830 Model 2, or the ISC
while the drive is erasing to the end of the track after a record has
been written with a formatting write command. This facility frees the
control unit and channel for the initiation of another I/0 operation.

The removable 3336 Model 11 disk pack is used with 3333 and 3330
Model 11 drives. Like a 3336 Model 1, a 3336 Model 11 has 19 recording
surfaces. However, the Model 11 disk pack has 808 data cylinders,
instead of 404, for a maximum capacity of 200 million bytes. The Model
11 disk pack also has seven alternate cylinders, like a Model 1. Hence,
the maximum capacity of a 3330-series string of all Model 11 drives is
1600 million bytes.

94 A Guide to the IBM System/370 Model 168

Model 11 3336 Disk Packs are interchangeable across all 3330 Model 11
and 3333 Model 11 drives but cannot be used with Model 1 and 2 3330~
series drives. The 3336 Model 11 Disk Pack has a physical interlock so
that it cannot be mounted on a 3330 Model 1 or 2 drive or a 3333 Model 1
drive. The 3336 Model 1 Disk Pack has a physical interlock so that it
cannot be mounted on a Model 11 drive. The 3336 Model 1 Disk Pack can
be converted to a Model 11.

Table 50.10.1 compares Model 1, 2, and 11 drive characteristics.
Table 50.10.2 compares 3336 Model 1 and 11 Disk Pack characteristics.

Table 50.10.1. Capacity and timing characteristics of 3330-series drives

3330-series 3330-series
Characteristic Model 1 or 2 drive | Model 11 drive
Capacity in thousands of bytes 100,018 200,036
(full-track records)
Seek time (ms)
Maximum 55 55
Average 30 30
Average cylinder-to-cylinder 10 10
Time channel busy searching when
SET SECTOR is used (ms)
Minimum .120 .120
Maximum .380 .380
Rotation time (ms) 16.7 16.7
Rotation speed (rpm) 3600 3600

Data transfer rate (KB/sec) 806 806

Table 50.10.2 3336 Model 1 and 11 Disk Pack characteristics

3336 3336
Characteristic Model 1 Model 11
Number of disks per pack 12 12
Number of recording disks 10 10
Number of recording surfaces 19 19
Disk thickness in inches .075 .075
Disk diameter in inches 14 14
Disk pack weight in pounds 20 20
Disk pack maximum capacity in 200 200
millions of bytes
Full track capacity in bytes 13,030 13,030
Cylinders per pack 404 plus 7 808 plus 7
alternates alternates
Tracks per cylinder 19 19
Tracks per pack 7,676 15, 352

ATTACHMENT VIA INTEGRATED STORAGE CONTROLS

Optionally, one Integrated Storage Controls (ISC) feature can be
installed on a Model 168 to attach 3330-series and/or 3340 disk storage
to one or two 2880 Block Multiplexer Channels. Attachment of 3330~
series and 3340 disk storage via 3830 Storage Control is possible as
well. The following discusses attachment to the ISC of 3330-series
strings only.

The Integrated Storage Controls feature includes dual direct access
storage controls, each of which operates independently of the other and

A Guide to the IBM System/370 Model 168 95

is functionally like 3830 Storage Control Model 2 except for the
following:

e The Integrated Storage Controls feature is contained in the main
frame of the Model 168 and is powered by it.

e The Two-Channel Switch, Additional feature (that provides four-
channel switching) cannct be attached to the storage controls in the
ISC feature.

Both logical storage controls in the ISC feature can be attached to
the same 2880 channel or they can be attached to two different 2880
channels connected to the Model 168. Each logical storage control can
have attached a maximum of four 3330-series strings of up to eight
drives each. The 32 Drive Expansion and Control Store Extension
optional features (field installable) must be installed in the ISC in
order to attach more than two strings to each logical control.
Therefore, up to 64 drives (eight strings) can be attached to the Model
168 via the ISC feature. The first module in each 3330-series string
must be a 3333 Disk Storage and Control Model 1 or 11 unit.

The 3330-series drives attached to ISC operate just as if they were
attached via 3830 Storage Control Model 2. That is, when multiple
requesting is used, each logical storage control within the ISC can
handle up to 32 channel programs concurrently, one on each of its
drives, and only one of the 32 drives can be transferring data at a
time. When a malfunction occurs, diagnostics can be run on one logical
storage control and its drives, while normal operations take place on
the other logical storage control in the ISC.

The ISC feature provides lower-cost attachment of 3330-series disk
storage than 3830 Storage Control Model 2 when two storage control units
are required, and floor space is saved since the ISC is in the Model 168
CPU. See Table 50.15.3 for a summary of the capabilities of the 3830
Models 1 and 2 and ISC. '

The Two-Channel Switch optional feature is also available for the IscC
feature. When installed, this feature provides a two-channel switching
capability for both of the logical storage controls. The Two-Channel
Switch feature permits each integrated storage control unit to be
attached to two channels in the same Model 168 or to one channel in the
Model 168 and one channel in another System/370. Figure 50.10.1
summarizes the 3330-series string configurations that are possible for
the Model 168 ISC. Intermixing 3330-series and 3340 strings on an
attachment is discussed in Section 50:15.

The 3333 String Switch optional feature can be installed on a 3333
Model 1 or 11 that is attached to the 3830 Model 2 or ISC. This field-
installable feature enables the 3333 and all its attached 3330s (a 3330-
series string) to be connected to two control unit type attachments
instead of only one. The attachments can be any combination of two of
the following:

e 3830 Storage Control Model 2

e Integrated Storage Controls for Models 158 and 168 (or the two
logical controls in one ISC)

e Integrated Storage Control for the Model 145
e 3345 Storage and Control Frame Models 3, 4, and 5 for the Model 145

e 3330/3340 series IFA for the Model 135

96 A Guide to the IBM System/370 Model 168

The two attachments to which a 3333 with the 3333 String Switch
feature is connected can be attached to the same or different channels
in the same CPU, or to channels in two different CPU's. 1In addition,
channel switching features can be installed on one or both of these
attachments.

Channel Channel
Integrated e Two-Channel Switch
Storage . . e 32 Drive Expansion
Controls Logical Logical ® Control Store Extension
control 1 control 2
3333 3333 3333 3333 3333 3333 3333 3333 Model 1 or 11
\
3330 3330 3330 3330 3330 3330 3330 3330
| l I | | | | I -
3330 3330 3330 3330 3330 3330 3330 3330 et
T T T T T T T ["™
3330 3330 3330 3330 3330 3330 3330 3330 J

® One to four strings of from two to eight drives each connected
to each logical control. Each logical control connected to one
or two channels in the same or different CPU’s,

® 3333 String Switch can be added to any or all 3333's to connect
a 3333 to a second attachment in the same ISC, the same CPU, or
another CPU

Figure 50.10.1. Permissible 3330-series string configurations for the
Model 168 Integrated Storage Controls feature

The 3333 String Switch is functionally similar in its operation to
the Two-Channel Switch. A switch can be set to allow the 3330-series
string to be accessed via both attachments, one at a time. In effect,
this setting provides two control unit paths to the string. String
switching is accomplished dynamically under program control.
Alternatively, the switch can be set to dedicate the string to one
attachment or the other so that the string can be accessed only via that
attachment.

Figure 50.10.2 illustrates 3333 string switching for four 3330-series
strings. In the configuration shown, all strings can be accessed via
two channels and two control units. Channel switching, string
switching, and 32 Drive Expansion features can be used to enhance the
availability of 3330-series disk storage and to extend backup
capabilities when two Systemw370 systems (the same or different models)
are present in an installation.

A Guide to the IBM System/370 Model 168 97

Channel Channel

ISC with . .
Logical Logical
Two-Channel controf 1 control 2
Switch
Each 3333 has
the 3333 String 3333 3333 3333 3333 Model 1 or 11
Switch installed | I I
| N
3330 3330 3330 3330
. Any combination of
3330 3330 3330 3330 Models 1, 2, and 11
3330 3330 3330 3330
J
Figure 50.10.2. Sample 3330-series string configuration with string
switching

Optionally, the staging adapter feature can be installed on the ISC
to permit attachment of the 3850 Mass Storage System to the ISC. The
ISC provides the same functions for the 3850 as 3830 Storage Contxol
Model 3. The staging adapter permits the addressing capability of each
of the four ISC paths to be expanded to a maximum of 64 unique
addresses. When the staging adapter is installed, the control store
extension feature must also be installed and 3340 disk storage cannot be
attached to the ISC.

98 A Guide to the IBM System/370 Model 168

50:15 THE 3340 DIRECT ACCESS STORAGE FACILITY

3340 DISK STORAGE DRIVES AND THE 3348 DATA MODULE

The 3340 direct access storage facility is an intermediate capacity,
modular, high performance direct access storage subsystem that consists
of 3340 Disk Storage and Control Model A2 and 3340 Disk Storage Models
Bl and B2. A 3340 string can consist of from one to four units and is
connected to a 2880 Block Multiplexer Channel in a Model 168
configuration via 3830 Storage Control Model 2 or integrated storage
controls in the Model 168 CPU.

A 3340 string for the Model 168 can consist of from two to eight
drives. A 3340 Disk Storage and Control Model A2 must be the first unit
in a 3340 string. The 3340 Model A2 consists of two drives, drive-
oriented control functions, and power for itself and the 3340 drives
attached to it. In a Model 168 configuration, the 3340 Model A2
attaches to 3830 Storage Control Model 2 and a logical control in the
ISC. Up to three units, any combination of 3340 Disk Storage Models Bl
and B2, can be attached to a 3340 Model A2. The 3340 Model B2 consists
of two drives and does not contain the power and device-oriented control
functions that are part of the 3340 Model A2. The 3340 Model Bl
contains one drive and no control functions. Functionally, all 3340
drives are alike regardless of whether they are part of a Model A2, B2,
or Bl unit.

Figure 50.15.1 shows a 3340 string of five drives that includes one
3340 Model A2, one 3340 Model B2, and one 3340 Model Bl. An operator
control panel is located on the top of each 3340 drive. This panel
contains the three-digit hexadecimal address of the drive, the switches
required to operate the drive, and status indicator lights. The address
of a 3340 drive is wired on a logic board in the 3340 unit.

The removable 3348 Data Module is used for data storage. Unlike the
removable 2316 and 3336 disk packs that are the storage medium for 2314
and 3330-series disk storage, respectively, the 3348 Data Module is a
sealed cartridge that contains a spindle, access mechanism, and
read/write heads in addition to disks on which data is written and read.
The cover of the data module, which is shock-absorbing and non-
flammable, is never removed from the cartridge. The 3340 disk storage
drive contains only the mechanical and electrical components that are
required to house, load, air-filter, and drive the 3348 Data Module.

The 3348 Data Module is shown in Figure 50.15.2. The access
mechanism in a 3348 Data Module is an L-shaped carriage which moves back
and forth on a cylindrical shaft mounted within the data module. When
the data module is not loaded, the access mechanism is latched in the
home position so that it cannot move. In this position, the access
mechanism is located such that the read/write heads rest on nondata
areas on the disk surfaces.

Three models of the 3348 Data Module, all of which are the same
physical size, are available. The 3348 Model 35 has a maximum capacity
(assuming full track records) of approximately 35 million bytes that are
accessed by movable read/write heads. The 3348 Model 70 has a maximum
capacity of approximately 70 million bytes that are accessed by movable
read/write heads. The 3348 Model 70F also has a maximum capacity of 70
million bytes of which approximately 502,000 bytes maximum (60 logical
tracks) are accessed by fixed read/write heads and the balance by
movable read/write heads.

A Guide to the IBM System/370 Model 168 29

Operator panel

Model BT
{One-drive)

Figure 50.15.1. A five-drive 3340 string with 3340 Model A2, B2,
and Bl units

Figure 50.15.2. The 3348 Data Module

100 A Guide to the IBM System/370 Model 168

A purchased 3348 Model 35 can be upgraded to a Model 70 at the plant
of manufacture. The upgrading of a 3348 Model 35 or 70 to a Model 70F
and the alteration of a Model 70 to a Model 35 are not available as data
module conversions.

The 3348 Model 70F can operate only on a 3340 drive (Model A2, B2, or
Bl) that has the optional field-installable Fixed Head feature
installed. When installed on a 3340 A2 or B2 unit, the Fixed Head
feature is installed on both drives. The presence or absence of this
feature in a 3340 drive can be determined by programming at any time by
issuing a SENSE command and inspecting the Fixed Head feature bit in the
sense bytes read. The Fixed Head feature and the the Two-Channel Switch
Additional feature (for four-channel switching) are mutually exclusive
for the same 3340 string.

A Model 70F Data Module can be mounted on a 3340 drive that does not
have the Fixed Head feature installed and made ready without any
notification of the error by the hardware. However, the first 1/0
operation issued to the 3340 drive causes an intervention-required unit
check condition and the drive is taken ocut of ready status. When this
situation occurs in an 0OS/VS environment, a message is given to the
operator and the affected job must be canceled in order to recover. To
avoid such situations it is recommended that 3340 units with and without
the Fixed Head feature not be mixed within a string. If one 3340 unit
has the feature, all should have the feature.

Models 35 and 70 of the 3348 Data Module can be used with any 3340
drive (Model A2, B2, or Bl) whether or not it has the Fixed Head feature
installed. No indication is given if a Model 35 or 70 is placed in a
3340 drive with the Fixed Head feature. In such cases, the fixed head
capability of the drive is not utilized.

The 3340 direct access storage facility is unlike other System/370
direct access storage in that the capacity of an individual 3340 drive
is determined by the model of 3348 Data Module mounted on the drive
rather than by the model of the drive itself. The capacity of the 3348
Data Module that is mounted on a 3340 drive can be determined by
programming at any time by issuing a SENSE command and inspecting the
data module size bits in the sense bytes read.

The capability of having two capacity options per drive means the
capacity of a 3340 string can be increased by using larger capacity data
modules on existing drives as well as by adding drives to the string. A
3340 string can vary in capacity from 70 million bytes (two Model 35
Data Modules) to a maximum capacity of 560 million bytes (eight Model 70
or 70F Data Modules) in 35~ ands/or 70-million-byte increments (assuming
full track records).

Reliability and the Sealed Cartridge Design

The sealed cartridge design of the 3348 Data Module, the advanced
design used for the read/write heads in the data module, and
improvements in the physical design of the 3340 drive make the 3340
direct access storage facility more reliable than previously announced
direct access storage devices for System/370, as explained below. No
preventive maintenance is scheduled for a 3340 facility because of its
reliability features.

Reliability is improved by the removal of head-to-disk alignment
problems. Each read/write head within a 3348 Data Module is dedicated
to certain tracks on one data surface. Therefore, each head reads only
the data it wrote previously, regardless of the 3340 drive that is used.
Since common head alignment across all 3340 drives is not required, the
critical alignment tolerances that are normally necessary to achieve

A Guide to the IBM Systenv370 Model 168 101

data interchangeability among drives are not needed for 3348 Data
Modules. It is the less critical alignment tolerances for the
read/write heads in a 3348 Data Module that minimize the chance of
errors caused by incorrect alignment of a head to its dedicated tracks.

There is also less chance of damaging read/write heads. If a data
module is dropped, the only read/write heads that can be affected are
those in that data module. If a disk pack is damaged, it can cause
damage to the read/write heads in more than one drive if it is moved
from drive to drive in an attempt to find a drive that can read the
pack. The outside covers of a 3348 Data Module are made of a highly
durable material that is designed to enable a data module to withstand
more severe blows without damage than can a disk pack.

Reliability is improved because the exposure of the disk surfaces in
a 3348 Data Module to outside contamination is greatly reduced when
compared to the contamination exposure of a disk pack. A 3348 Data
Module is opened only when it is mounted on a 3340 drive and only when
the drive cover is closed. Contamination on disk surfaces can be a
major cause of head and disk damage.

In addition, the possibility of head crashes is minimized by the
improved flying characteristics of the read/write heads in a data
module. The low mass of the read/write heads and the low loading force
unsed enable the heads to fly over the rotating disks at a very low
height. This near contact (or proximity) recording capability of the
readswrite heads in the 3348 permits smaller bits to be written, which
increases the recording density that can be achieved.

The recording density in bits per inch of a track in a 3348 Data
Module is approximately 2.5 times greater than the recording density of
a track in a 2316 pack (10 percent greater than 3330-series Model 11
density and more than two times greater than 3330-series Model 1 and 2
density). The advanced head design used for the 3348 Data Module
enables greater density to be achieved together with improved
reliability.

Reliability of the 3340 direct access storage facility is also
improved because many critical mechanical parts have been eliminated,
such as a complex head load/unload mechanism. In other cases,
electronic functions have replaced mechanical functions. While the 3340
drive contains more electronics than the 2314, higher density logic
cards are used in the 3340, which results in significantly fewer logic
cards. (A 3340 drive also contains approximately one-third the number
of logic cards as a 3330-series drive.)

The sealed cartridge design implemented in the 3348 Data Module
provides several advantages in addition to improved reliability, such as
simplified data module loading and unloading. Operations that are
required for disk pack loading and unloading (tightening the pack on the
spindle, cover removal, cover replacement, untightening the pack for
removal) are not required for a 3348 Data Module. In addition, the
possibility of hub wear or hub damage as a result of loading and
unloading operations is eliminated for a 3348 Data Module.

After the top cover of the 3340 drive to be used is raised, the
operator places the data module in the exposed drive shroud recess.
After closing the cover, the operator initiates automatic loading of the
module by putting the start/stop switch on the operator panel of the
drive in the start position. This causes the cover of the drive to be
locked, which is indicated by a light on the operator panel, and the
data module to be loaded.

The following occurs during data module loading. The shroud
containing the seated data module moves to the back of the 3340 drive

102 A Guide to the IBM System/370 Model 168

where the voice coil motor is located. While the data module is in
motion, the data module door in the rear of the 3348 is rolled down.
Electrical, mechanical, and filtered air connections between the 3348
Data Module and the 3340 drive are then made through the open data
module door. The access mechanism is then unlatched and the disks are
brought up to rotational speed. The access mechanism is moved to
physical track 0. This entire loading process requires approximately 20
seconds. When the loading process is completed, the ready light on the
operator panel is turned on to indicate the 3348 Data Module is ready
for processing.

To unload a data module, the operator places the start/stop switch in
the stop position. The unloading procedure consists of a reversal of
the operations performed during loading. The access mechanism moves to
the home position in the data module where it is latched, disk rotation
is stopped, the data module is disconnected from the drive, the data
module door is closed, and the data module moves to the front of the
drive. The cover-locked indicator light is turned off as soon as the
unloading procedure is completed. Unloading requires approximately 20
seconds. The cover of the 3340 drive can be raised as soon as the
cover-locked indicator light is turned off and the 3348 Data Module can
then be removed.

The possibility of contaminating the disk surfaces of a data module
during loading and unloading operations is minimized because the data
surfaces are exposed to the air within the closed 3340 drive through the
open data module door for only slightly more than one second. Further,
as soon as a seal between the 3340 drive and the 3348 Data Module has
been made, the filtered air system displaces the air within the data
module several times to remove any contaminants that may have entered
via the open data module door.

The sealed cartridge also offers two other unique features. First, a
read only function (not available for the 2314) is provided on a data
module basis rather than a drive basis (as implemented for 3330-series
disk storage). The read only function is enabled for a 3348 Data Module
by turning an inset in the handle of the 3348 (see Figure 50.15.2) to
the read only position before placing the data module in the 3340 drive.
This inset causes the read only switch that is part of each 3340 drive
and the read only indicator on the operator panel to be turned on when
the 3348 is loaded in a 3340 drive.

When the read only function is enabled for a 3348 Data Module and an
attempt is made to write on the data module, an interruption occurs and
IBM-supplied programming support terminates the program that issued the
write. The advantage of this approach is that once the read only inset
in a 3348 Data Module is set to inhibit writing, the data module can be
used with any 3340 drive at any time and the operator need not remember
to turn on a read only switch on the drive.

Second, external label handling is improved. BAn external label can
be placed on a 3348 Data Module after it is removed from the 3340 drive.
Placing an external label on the top surface of a disk pack instead of
on the cover, to avoid mislabeling a disk pack by placing the wrong
cover on it, can be done only when the disk pack is mounted on a drive.
In addition, since the outside cover is never removed from a data
module, the volume identification label on the cover is legible through
the front window of the cover of the 3340 drive even when the data
module is loaded and being accessed.

Layout of Tracks, Cylinders, and Read/Write Heads in 3348 Data Modules

The layout of physical and logical tracks on a data surface of any
model 3348 Data Module and the relative position of the read/write heads

A Guide to the IBM System/370 Model 168 103

for a data surface are shown in Figure 50.15.3. A data surface contains
700 physical tracks with a small space between the first 350 physical
tracks and the second 350 physical tracks. There is also unused space
after the second group of 350 physical tracks. Two logical tracks, one
even numbered and one odd numbered, are written on each physical track.
A logical track has a maximum capacity of 8,368 data bytes (for full
track records).

\

Disk
rotation

~ Odd index
point

Even index
point

y
350 physical

tracks R2

350 physical R2
tracks

Access mechanism
with two heads
per data surface
has 350 possible Even-numbered logical track on
access positions one half of the physical track,
odd-numbered logical track on
other half of the physical track

Figure 50.15.3. Location of physical and logical tracks and read/write
heads on a data surface in a 3348 Data Module

There are two read/write heads associated with each data surface.
They are positioned a little more than 350 physical tracks apart, as
shown in Figure 50.15.3. While starting and stopping the data module,
the read/write heads are positioned over the unused portions of the data
surface.

The access mechanism can be placed at any one of 350 access positions
on the data surface. Therefore, an cutermost head on the access
mechanism can access physical tracks 0 to 349 on its associated data
surface while an innermost head can access physical tracks 350 to 699.
At any of the 350 possible access mechanism positions, two physical
tracks (4 logical tracks) can be accessed on a data surface. However,
only one read/write head in a data module can be active at a time.

104 A Guide to the IBM System/370 Model 168

The bottommost surface in all 3348 Data Modules is used as the servo
surface. This surface contains information for the servo system that is
used to control seek operations, positioning of the heads over tracks,
data clocking (the synchronization of data with rotational speed during
writing operations), index generation, and signal generation required by
the RPS feature. Functionally, the 3340 servo system is like that used
in 3330-series drives. However, design improvements, such as
elimination of the electromechanical tachometer, have been made.

The required servo information is prerecorded on the servo surface of
each 3348 Data Module at the plant of manufacture and is read by a servo
read head at the bottom of the access mechanism. The servo information
on this surface cannot be read or written using 3340 commands. The
servo surface on a 3348 Model 70F Data Module also contains the 60
logical tracks that are read by the fixed heads.

The access mechanism in a 3348 is driven by a voice-coil motor. This
motor and the servo system provide fast, precise access mechanism
positioning, which minimizes head settling time.

Figure 50.15.4 shows the layout of cylinders and read/write heads for
the 3348 Model 35 Data Module. A Model 35 contains two recording disks.
Three of the data surfaces on the two recording disks are used for data
recording in a Model 35 Data Module. The three data surfaces are
accessed by six read/write heads (0 to 5). The six physical tracks that
can be accessed at any given position of the access mechanism constitute
a logical cylinder and contain twelve logical tracks. Head 0 accesses
logical tracks 0 and 1, head 1 accesses logical tracks 2 and 3, etc.

A four-byte field (CCHH) is used to address the logical tracks in a
3348 Data Module. The two-byte CC (cylinder address) field specifies
the logical cylinder address, which can be 0 to 348 for the primary and
alternate logical tracks of a Model 35 Data Module. The two~-byte HH
field, which normally specifies the actual head address (for 2314 and
3330-series drives, for example), specifies the number of the logical
track within the logical cylinder, a value from 0 to 11, instead of a
head address of 0 to 5. The drive selects the appropriate head using
the logical track number.

In Figure 50.15.4, the access mechanism is shown positioned at
logical cylinder 0 where physical tracks 0 and 350 on each of the three
data surfaces can be accessed. There are 350 logical cylinders in the
Model 35 Data Module. The first 348 are used for data, logical cylinder
348 is the alternate cylinder, and logical cylinder 349 is the CE
cylinder. The CE cylinder is designed to be used only by the CE for
testing the reads/write capability of a 3340 drive. It contains a
prewritten area for read testing and an area in which write tests can be
performed.

Figure 50.15.5 shows the layout of cylinders and read/write heads for
the 3348 Model 70. A Model 70 contains four recording disks. Six data
surfaces on the four recording disks, each of which is accessible by two
read/write heads, are used for data recording in the Model 70. BAs for
the Model 35, the six physical tracks that can be accessed by the lower
six read/write heads (0 to 5) at a given position of the access
mechanism constitute a logical cylinder of twelve logical tracks. In a
Model 70, however, the logical cylinders addressed by read/write heads 0
to 5 are all even numbered (0, 2, 4, ..., 698). The six physical tracks
that can be accessed by the upper six read/write heads (6 to 11) at a
given position of the access mechanism also constitute a logical
cylinder of twelve logical tracks. The logical cylinders addressed by
read/write heads 6 to 11 are all odd numbered (1, 3, 5, «.e, 699).

Thus, on a Model 70 two logical cylinders (24 logical tracks) can be
accessed at each of the 350 possible access mechanism positions.

A Guide to the IBM System/370 Model 168 105

Model 35 Data Module

Maximum capacity 34.9 million bytes

Access mechanism
5 4 with six read/write

heads, six physical
3 2 A
tracks per logical
1 0 cylinder
Servo arm
Servo ; t— | —
S«

f;
surtace Physical —9 699 ... 350349...10 1
track
t T Logical cylinder O
(logical tracks 0 to 11)
Logical cylinder 1
(logical tracks 12 to 23)
t Logical cylinder 349
I (logical tracks 4188 to 4199)

Number of recording disks
Number of data surfaces
Number of read/write heads
Number of physical tracks
per physical cylinder
Number of physical tracks per
logical cylinder
Number of logical tracks per 12
logical cylinder
Number of logical cylinders per 350
data module
Number of logical tracks per 4200 (4176 data)
data module (12 alternate)
(12 CcE)

=) AAOWN

Number of access mechanism 350
positions

Number of logical cylinders 1
accessed per access
mechanism position

Figure 50.15.4. cCylinder and read/write head layout for a 3348 Model 35
Data Module

106 A Guide to the IBM System/370 Model 168

Model 70 Data Module

Maximum capacity 69.8 million bytes

699 350 349 .

=
e

Logical cylinder 699
{logical tracks 8388 to 8399)

L ogical cylinder 3
(logical tracks 36 to 47)

Logical cylinder 1
(logical tracks 12 to 23)

Six physical tracks
accessed by read/write
heads 6 to 11 constitute
an odd-numbered logical
cylinder (1,3,5, . .., 699).

Six physical tracks
accessed by read/write
heads 0 to 5 constitute
an even-numbered logical

1 0 cylinder (0,2,4, ..., 698)
Servo
surface
Physical —p» 699 350349 ...10 -
track Servo arm
T T Logical cylinder O
{logical tracks 0 to 11)
T T Logical cylinder 2
(logical tracks 24 to 35)
t T Logical cylinder 698
(logical tracks 8376 to 8387)
Number of recording disks 4
Number of data surfaces 6
Number of read/write heads 12
Number of physical tracks 12
per physical cylinder
Number of physical tracks per 6
logical cylinder
Number of logical tracks per 12
logical cylinder
Number of logical cylinders per 700
data module
Number of logical tracks per 8400 (8352 data)
data module (24 alternate)
(24 CE)
Number of access mechanism positions 350
Number of logical cylinders accessed 2

per access mechanism position

Figure 50.15.5. Cylinder and reads/write

Data Module

A Guide to the IBM Systemv/370 Model 168

head layout for a 3348 Model 70

There are 700 logical cylinders in the Model 70 Data Module. The
first 696 (0-695) are used for data. Logical cylinders 696 and 697 are
used as alternate logical cylinders while logical cylinders 698 and 699
are CE cylinders. The method of addressing a logical track in a Model
70 Data Module is the same as described for a Model 35. The CC value
can vary from 0 to 697 for data and alternate logical cylinders while
the HH value can vary from 0 to 11.

Figure 50.15.6 shows the layout of cylinders and read/write heads for
the 3348 Model 70F. This model is identical to the Model 70 except for
the following. Seven surfaces, six data surfaces and the servo surface,
on the four recording disks are used for data recording. Logical
cylinders 1 to 5 are recorded on the servo surface. They are written on
30 physical tracks that are accessed by 30 fixed read/write elements,
which are mounted on a plate under the servo surface, as shown in Figure
50.15.6. The first six physical tracks contain logical cylinder 1, the
second six physical tracks contain logical cylinder 2, etc. Logical
cylinders 0 and 6 to 699 are recorded on the six data surfaces just as
in a Model 70 Data Module.

Addressing a logical track in a Model 70F Data Module using a CCHH
field is the same as described for the Model 70. When a command is
received that addresses a logical track in logical cylinders 1 to 5 of a
Model 70F, the 3340 drive automatically selects the fixed read/write
element associated with the specified logical track instead of the
movable head. Therefore, a Model 70F and a Model 70 data module can be
accessed using the same 3340 channel programs. This means no special
programming support is required to use a Model 70F instead of a Model 70.

The physical tracks that contain logical cylinders 1 to 5 in a Model
70 are not used in a Model 70F and cannot be accessed by the user or a
customer engineer because of the way in which head selection is
performed. Hence, the data capacity of Models 70F and 70 is the same.
Seek time for logical cylinders 1 to 5 in a Model 70F is zero. Seek
times for logical cylinders 0 and 6 to 695 in a Model 70F are the same
as Model 70 seek times.

A data set or file can be contained both in logical cylinders 1 to 5
of a Model 70F Data Module and logical cylinders that are accessed by
movable heads. A 3340 drive, however, can perform only one operation at
a time. Therefore, a seek, search, or data transfer operation involving
a fixed head in a Model 70F Data Module cannot be performed at the same
time a movable head is involved in a seek, search, or data transfer
operation.

The best performance gains can be achieved when Model 70F Data
Modules are used by assigning the fixed head logical tracks to small
active system data sets (such as the page data set, system catalog, TCAM
message queue), small active user data sets, large active data sets that
can be segmented (0S/VSl1l page data set, partitioned data sets, ISAM
index levels, for example), and data sets with major activity
concentrated at the beginning of the data set (such as the 0S/VS job
queue) .

The assignment of such data sets to the fixed head logical tracks in
a Model 70F Data Module is a user responsibility. O0S/VS DD statements
for these data sets must specifically request by actual address
locations within the fixed head logical cylinders. Note also that the
device type code in the device table that is generated in the control
program during a system generation (OS/VS UCB table) does not
differentiate between 3340 drives with and without the Fixed Head
feature. Therefore, if generic device type assignment by device type
(3340) is used in a configuration that contains 3340 drives with and
without the Fixed Head feature, either type drive can be selected by the
operating system.

108 A Guide to the IBM System/370 Model 168

Model 70F Data Module

Maximum capacity 69.8 million bytes

699 350 10 1
11 10 Six physical tracks accessed
by read/write heads 6 to
9 8 11 constitute an odd-numb-
ered logical cylinder
7 6 (7,9,11,...,699).
5 4 Six physical tracks accessed
by read/write heads 0 to 5
3 2 constitute an even-numbered
logical cylinder (0,8,
1 0 8,...,698)
Servo Logical cylinders 1to 5
surface contained on 30 physical
. tracks
30 fixed Servo arm
read/write
elements
Number of recording disks 4
Number of data surfaces 6 plus servo surface
Number of read/write heads 12 movable
30 fixed
Number of physical tracks 12
per physical cylinder
Number of physical tracks per 6
logical cylinder .
Number of logical tracks per 12
logical cylinder
Number of logical cylinders per 700
data module
Number of logical tracks per 8400 (8352 data - 60 fixed head
data module and 8292 movable head)
(24 alternate)
(24 CE)
Number of movable head access 350
mechanism positions
Number of logical cylinders 2 except for first 3 positions

accessed per access
mechanism position

Figure

50.15.6. Cylinder

and read/write head layout for a 3348

Model 70F Data Module

A Guide to the IBM System/370 Model 168

109

The assignment of a 3340 drive with the Fixed Head feature can be
assured in an 0OS/VS environment by specifying a user-defined device
class name for such 3340 drives at system generation and using this name
(instead of UNIT=3340) in the appropriate DD statements.

Alternate tracks that are accessed by fixed heads are not provided
for logical cylinders 1 to 5 in a Model 70F Data Module. ILogical
cylinders 696 and 697, which provide alternate tracks for the logical
tracks accessed by the movable heads, also provide alternate tracks for
the logical tracks in logical cylinders 1 to 5. This approach is taken
because the probability a fixed head track in logical cylinders 1 to 5
will develop a defect is lower than that for movable head tracks and the
possibility of a defect occurring in a movable head track is very low
(for the reasons discussed later).

The low probability of defects occurring in fixed head logical
cylinders 1 to 5 of a Model 70F Data Module results in part from the
fact that these cylinders are recorded on the servo surface, which is a
specially manufactured surface because of its primary function. In
addition, the fixed head tracks are recorded on the outer edge of the
servo surface, which results in a lower bit density for these tracks.
The width of a fixed head physical track is six times greater than that
of a movable head track on a data surface.

If an uncorrectable error does occur on a fixed head logical track in
a Model 70F Data Module, the logical track should be flagged and an
alternate track should be assigned. This can be done using the
IEHATLAS, IEHDASDR, or IBCDASDI utility of 0S/VS. IEHDASDR or IBCDASDI
should then be used to test the flagged fixed head track to determine
whether the track is really defective. If the track is found not to be
defective, the flag is removed and the assigned alternate track is
released. If the track is defective, the data module can be returned to
the plant of manufacture for repair if the loss of performance resulting
from using an alternate movable head track instead of the fixed head
track is not acceptable.

The physical and capacity characteristics of 3348 Data Modules and
the 2316 disk pack are given in Table 50.15.1. Table 50.15.2 gives the
timing characteristics of the 3340 direct access storage facility and
the 2314 facility.

Track Formatting and Data Module Initjialization

Self-formatting records consisting of count, key, and data or count
and data areas are written on the logical tracks of a 3348 Data Module
just as on the tracks of a 2316 pack. However, each home address,
count, and key area written on a 3348 track has a six-byte detection
code field appended to it for data validity checking by the 3830 Model 2
or integrated storage control. The detection code used can detect all
s3ingle-error bursts of eleven bits span or less.

A six-byte correction code field is appended to each data area
written on a 3348 track. The correction code used has the same
detection capability as the detection code and the capability of
correcting single-error bursts of three bits span or less. The actual
error correction procedure must be performed by programming (error
recovery routines) using corrective bits that are supplied by the
control unit as discussed later.

110 A Guide to the IBM System/370 Model 168

Table 50.15.1. Physical and capacity characteristics of 3348 Data
Modules and the 2316 Disk Pack

Characteristic 3348 3348 3348 2316
Model 35 Model 70 Model 70F
Number of data 2 4 4 11
disks per data
module/pack
Disk diameter 14 14 14 14
in inches
Number of 3 data 6 data 6 data 20 data
surfaces used 1 servo 1 servo 1 servo
per data module/pack and data
Number of read/write 2 2 2 plus 1
heads per recoxrding 30 read/
surface write
elements
for the
servo
surface
Number of cylinders 348 plus 696 plus 696 plus 200 plus
per data module/pack 1 alter- 2 alter- 2 alter- 3 alter-
nate and nates and nates and nates
1 CE 2 CE 2 CE
Number of logical 12 12 12 20
tracks per cylinder
Number of data 4,176 8,352 8, 352 4,000
tracks recorded per
data module/pack
Full track capacity 8,368 8,368 8, 368 7,294
in bytes
Cylinder capacity 100,416 100, 416 100, 416 145,880
in bytes
Maximum capacity 34,947,768 69,889,536 69,889,536 29,176,000
in bytes per data (502,080 in
module /pack logical
cylinders
1 to 5,
69,387,456 in
logical
cylinders 0
and 6 to 695)
Data module/pack 17 19.5 20 15

weight in pounds

A Guide to the IBM System/370 Model 168

111

Table 50.15.2.

Timing characteristics of the 3340 direct access
storage facility and the 2314 facility

Characteristic Models 35 Model 70F 2314
and 70 Cylinders Cylinders
1-5 0, 6-699
Seek time (ms)
Maximum 50 0 50 130
(350 cyl-Model 35) (700 cylinders)
(700 cyl-Model 70)
Average 25 0 25 60
(350 cyl~-Model 35) (700 cylinders)
(700 cyl-Model 70)
Cylinder to
cylinder
Model 35 10 25
Models 70, 70F |Even to next
odd - 0 0 0
Even to next
even - 10 0 10
0odd to next
even or
odd - 10 0 10
Rotation time 20,2 20.2 20.2 25
(ms)
Rotation speed 2964 2964 2964 2u00
(rpm)
Data transfer 885 885 885 312
rate (KB/sec)
Sectors per track |64 64 64 -
Sector time 316 316 316 -
(microseconds)
Load time (secs) 20 20 20 60
(time to ready
status after
mounting)
Unload time (secs) |20 20 20 15

The home address and count areas written on a logical track in a 3348
contain two new fields in addition to the same fields as are written in

home address and count areas

on 2316 tracks.

The home address and each

count area on a 3348 logical track contain a two-byte skip defect field
and a two-byte physical address field in front of the flag byte. The
automatic surface defect skipping capability of the 3340 allows valid
data to be written before and after a surface defect on a logical track.
The skip defect bytes are used to indicate the location of the center of
the surface defect relative to the index point of the logical track.
Bits in the flag byte field indicate whether the surface defect is
located in the next count, key, or data area.

Surface defect skipping is implemented by including in each logical
track of a 3348 Data Module a reserved area called a surface defect gap

in which no data is written.

If a logical track has no surface defects,

the surface defect gap is located at the end of the logical track. If

112

A Guide to the IBM System/370 Model 1638

there is a surface defect, the surface defect gap is placed over the
defective portion of the logical track at the time of manufacture. One
or more surface defects that together occupy an area of up to 16 bytes
in length per logical track can be handled by the defect skipping
technique while the stated full logical track capacity of 8,368 bytes is
maintained.

The error detection and correction code capabilities of the 3340
facility permit successful recovery from an error within the data
portion of a physical record even when it contains a surface defect gap.

Partial initialization of all 3348 Data Modules is performed at the
plant of manufacture. A home address record and track descriptor (RO)
record are written on each logical track in the data module. 1If a
single skippable defect is found during the analysis of the surface of a
logical track, the appropriate SD bytes and flag byte are written in the
home address to indicate this fact. If no surface defect is found, the
SD bytes are written as zeros.

The SD bytes and flag byte are supplied in the count area field in
virtual storage only for a WRITE HOME ALDRESS command. When RO is
written during data module initialization and thereafter whenever a
formatting write is performed, the SD and flag bytes for the count area
to be written on disk are supplied by the control unit, which reads them
from the record immediately preceding the record to be written.

When a record is written with a formatting write command on the
portion of a logical track that contains an identified surface defect,
the defect gap area is maintained in the defective portion of the
logical track and data is written before and after the defect gap as
appropriate. Whenever a nonformatting write or a read is issued for
this record, the surface defect gap is automatically skipped over by the
hardware without programming assistance or any error notification, just
as if no surface defect existed.

The 0S/VS IBCDASDI, IEHDASDR, or IEHATLAS utilities can be used to
assign an alternate track if a physical track becomes defective during
its use in an installation. If data cannot be read from a 3348 Data
Module and recovery of this data is critical, the data module can be
returned to the plant of manufacture where recovery will be attempted.

The two physical address bytes in home address and count areas on a
3348 logical track contain the physical cylinder and track address of
the logical track on which they are written. When a seek command is
issued, the control unit converts the logical cylinder and track address
specified by the seek command to a physical cylinder and track address
that is actually used by the drive in the seek operation. This physical
address is saved in the control unit for later use in seek verification.

The physical address bytes are automatically written and read by the
control unit and are not processed by programming. That is, when a home
address or count area is written, the physical address bytes are
automatically supplied by the control unit and are not contained in the
home address or count area field in virtual storage that is indicated by
the write command. Similarly, when a home address or count area is
read, the control unit reads the physical address bytes but they are not
placed in the home address or count field area in virtual storage.

The physical address bytes are used by the control unit for seek
verification during normal operations and by the 3340 microdiagnostic
routines. When a home address or count area is processed during a read,
search, or clock operation, the physical address bytes read are compared
with the most recent seek address (physical cylinder and track address)
that was saved in the control unit when the last seek command was
issued. If the two physical addresses are not equal, the command is

A Guide to the IBM System/370 Model 168 113

terminated and a unit check condition results. Seek check is indicated
in the sense bytes.

ATTACHMENT VIA 3830 STORAGE CONTROL MODEL 2

The 3830 Storage Control Model 2 unit contains the control functions
required to operate one or two 3340 strings of from two to eight drives
each. If the 32 Drive Expansion and Control Store Extension optional
features are installed on a 3830 Model 2, up to four 3340 strings of
from two to eight drives each can be attached to it. These two features
are field-installable.

Cabling between the 3830 Model 2 and the 3340 Model A2 can be a
maximum of 150 feet in length. The 3830 Model 2 attaches to a 2880
Block Multiplexer Channel in the Model 168 configuration via cabling up
to 150 feet in length. Figure 50.15.7 shows a Model 168 configuration
with 3340 strings attached via 3830 Storage Control Model 2.
Intermixing 3340 and 3330-series strings on an attachment is discussed
later in this subsection.

[__ 3340 string
29.5" 3340 A2 3340 3340 3340
N Device-oriented B1or B2 B1or B2 B1or B2
2880 / Cables | control functions | 1 or 2 drives 1 or 2 drives 1 or 2 drives
Block and 2 drives
Multiplexer :2 C j :
Channel Cables 3830
] Storage Cabl
Control anles)
Model 2 3340 string
3340 A2 3340 3340 3340
Device-oriented B1or B2 81 or B2 B1 or B2
control functions 1 or 2 drives 1 or 2 drives 1 or 2 drives
and 2 drives
Model 168 CPU
Figure 50.15.7. A Model 168 configuration with 3340 disk storage

attached via 3830 Storage Control Model 2

Standard features of the 3830 Model 2 when used with 3340 disk
storage are record overflow, multiple requesting, and rotational
position sensing. The command retry facility of the 3830 Model 2 that
is implemented for 3330-series drives is not implemented for 3340
drives. When multiple requesting is used, the 3830 Model 2 can control
concurrent operation of up to 32 channel programs (when 32 Drive
Expansion is installed), one on each of its drives. Only one of the two
to 32 drives attached to a 3830 Model 2 can be transferring data at a
time.

Rotational position sensing is an optional field-installable feature
for 3340 units. It must be installed on each unit (koth drives in an A2
or B2 3340 unit) that is to use the standard rotational position sensing
capability of the 3830 Model 2. For performance reasons (see Section
60:10 in A Guide to the IBM System/370 Model 165, GC20-1730), it is
recommended that the RPS feature be installed on all of the 3340 units
in a given string or on none of the units in the string. The presence
or absence of the RPS feature in a 3340 drive can be determined by
programming at any time by issuing a SENSE command and inspecting the
RPS feature bit in the sense bytes read.

If a SET SECTOR command is issued to a 3340 drive that does not have
the RPS feature installed, no operation is performed, track orientation
is lost, and channel end and device end status are presented. If a READ
SECTOR command is issued to a 3340 drive without RPS installed, a sector

114 A Guide to the IBM System/370 Model 168

value of zero is returned together with channel end and device end
status. Thus, channel programs containing sector commands can operate
on 3340 drives that do not have RPS installed.

The 3830 Model 2 supports all the 2314 commands (except the file scan
commands) in addition to new commands not available for the 2314, such
as RPS and diagnostic commands. The command set for the 3340 is the
same as that for 3330-series disk storage.

The Two-Channel Switch feature, identical in function to the same
feature for the 2314 facility, can be installed on a 3830 Model 2 to
allow it to be attached to two channels. The Two-Channel Switch
Additional feature can be added to this configuration to permit the 3830
Model 2 to be attached to four channels. A maximum of two of the four
channels can be present in the same system. The channels to which a
3830 Model 2 with one or both of these features is connected each must
have one control unit position and, if block multiplexing is to be used,
eight nonshared subchannels available. An enable/disable switch on the
3830 Model 2 can be set to dedicate the 3830 to any subset of the two to
four channels.

The optional String Switch feature can be installed on 3340 Model A2
drives. This field-installable feature enables the 3340 Model A2 and
its attached Model B2 and Bl units to be connected to two control unit
type attachments instead of only one. The attachments can be any two of
the following:

e 3830 Storage Control Model 2
e Integrated Storage Control for the Model 145
e 3345 Storage and Control Frame Models 3, 4, and 5 for the Model 145

* Integrated Storage Controls for Models 158 and 168 (or the two
logical controls in one ISC)

e 3330/3340 Series IFA for the Model 135

The two attachments to which a 3340 Model A2 with the String Switch
feature is attached can be connected to the same or different channels
in the same CPU, or the channels in two different CPUs. In addition,
channel switching features can be installed on one or both of these
attachments.

The String Switch feature for 3340 disk storage is functionally
similar in its operation to the Two-Channel Switch. A switch on the
3340 Model A2 can be set to allow the 3340 string to be accessed via
both attachments, one at a time. In effect, this setting provides two
control unit paths to the string. Switching is accomplished dynamically
under program control. Alternatively, the switch can be set to dedicate
the string to one attachment or the other so that the string can be
accessed only via that attachment.

Figure 50.15.8 illustrates string switching for two 3340 strxings
attached to a 3830 Model 2 unit. In the configuration shown, both
strings can be accessed via two channels and two control units. Channel
switching, string switching, and 32 Drive Expansion features can be used
to enhance the availability of 3340 direct access storage facilities and
to extend backup capabilities when two Systemnv 370 systems (the same or
different models) are present in an installation.

A Guide to the IBM System/370 Model 168 115

Channel in same

Channel in Mode! 168 Model 168 or another CPU

|

® 3830 Model 2
® ISC — Model 158 or 168
Attachment 1 ® |SC — Model 145
3830 Model 2 Attachment 2 ® 3345 Model 3, 4, or
5 for Model 145
e 3330/3340 Series tFA — Model 135
\ o]
3340 A2 3340 A2
with with
String String
Switch Switch
3340 3340
3340 3340
3340 3340
Figure 50.15.8. String switching for 3340 facilities attached to a

3830 Model 2

The 3830 Model 2 control unit is microprogram-controlled. Read/write
monolithic storage contained in the control unit is used for
microprogram residence. The 3830 Model 2 also contains a device that
reads interchangeable disk cartridges. 'This device is used for
microprogram backup storage and for storage of nonresident diagnostics
for the 3340 string. During a 3830 Model 2 power-on sequence, the
functional microprogram is loaded from the device into control storage
within the 3830 Model 2 control unit. Therefore, microcode engineer ing
changes can be installed merely by replacing the current disk cartridge
with another that contains the new microprogram.

The 3830 Model 2 incorporates error detection, correction, and
logging features that are designed to improve its availability and
serviceability. For the 3340, the 3830 Model 2 provides the following
facilities that are not implemented in System/360 direct access devices:

e I/0 errcr routine correction of recoverable data errors on read
operations with data supplied by the control unit in sense bytes.
When the 3830 Model 2 detects a correctable data error during the
reading of the data portion of a physical record, it generates the
information necessary to correct the erroneous bytes. The sense
bytes presented by the 3830 Model 2 contain a pattern of corrective
bits and a displacement value to indicate which of the bytes
transferred to processor storage contain the errors. The disk error
recovery program need only EXCLUSIVE OR (logical operation) the
corrective bit pattern with the error bytes in the input area in
processor storage to correct the errors.

116 A Guide to the IBM Systems/370 Model 168

e Statistical usage recording by the 3830 Model 2. Statistical usage
counters for each drive in a 3340 string are continuously maintained
by the 3830 Model 2. These counters indicate the number of bytes
read/searched, number of seeks issued, and number of command and
data overruns for each device. When a counter reaches its threshold
or a data module is removed from a drive, the 3830 Model 2 indicates
the condition via a unit check when the next I/0 operation is
initiated to the drive or a data module is made ready on the drive.
Counter data can be obtained and counters can be reset by issuing a
READ AND RESET BUFFERED LOG command.

e Inline diagnostic testing of a malfunctioning drive. (Inline
diagnostics are provided only for 2314 facilities.) A 3830 Model 2
control unit can execute diagnostic tests on a malfunctioning drive
while normal operations take place on the remaining drives in the
string. Diagnostic tests can be loaded into a transient area of the
control storage of the 3830 Model 2 and executed on the
malfunctioning drive. This can be done in an online environment
using OLTEP or the CE panel on the 3830 Model 2. OLTSEP can be used
in a standalone environment. This inline testing allows CE
diagnosis and repair of most 3340 drive failures without the
necessity of taking the entire 3340 string out of the system configuration.

A 3340 drive can be placed in CE mode (offline to the system) by
means of a switch that is located inside the rear door of the drive so
that maintenance functions can be performed. To take the 3340 drive out
of CE mode and return it to online status, the attention pushbutton must
be pressed. This also causes the access mechanism to move to physical
track 0.

ATTACHMENT VIA INTEGRATED STORAGE CONTROLS

Optionally, one Integrated Storage Controls feature can be installed
on a Model 168 to attach 3340 and/or 3340-series disk storage to one or
two block multiplexer channels. Attachment of 3340 and 3330-series disk
storage via 3830 Storage Control is possible as well. The following
discusses attachment of 3340-series strings only.

The Integrated Storage Controls feature includes dual direct access
storage controls, each of which operates independently of the other and
is functionally like 3830 Storage Control Model 2 except for the following:

¢ The Integrated Storage Controls feature is contained in the main
frame of the Model 168 and is powered by the Model 168 CPU.

e The Two-Channel Switch, Additional feature (that provides four-
channel switching) cannot be attached to the logical storage
controls in the ISC feature.

Both logical storage controls in the ISC feature can be attached to
the same channel, two different channels in the Model 168 configuration,
or a channel in the Model 168 configuration and a channel in another
Systems/370. Each logical storage control can have attached a maximum of
four 3340 strings of up to eight drives each. The 32 Crive Expansion
and Control Store Extension optional features (field installable) must
be installed in the ISC in order to attach more than two strings to each
logical control. Therefore, up to 64 drives (eight strings) can be
attached to the Model 168 via the ISC. The first unit in each 3340
string must be a 3340 Model AZ2.

The 3340 drives attached to the ISC operate just as if they were
attached via 3830 Storage Control Model 2. That is, when multiple
requesting is used, each logical storage control within the ISC can
handle up to 32 channel programs concurrently, one on each of its
drives, and only one of the 32 drives can be transferring data at a

A Guide to the IBM Systemv/370 Model 168 117

time. When a malfunction occurs, diagnostics can be run on one logical
storage control and its drives while normal operations take place on the
other logical storage control in the ISC.

Intermixing 3340 and 3330-series strings on the ISC is discussed
below. Figure 50.15.9 summarizes the 3340 string configurations that
are possible for a Model 168 ISC.

The ISC feature provides lower-cost attachment of 3340 disk storage
than 3830 Storage Control Model 2 when two storage control units are
required, and physical space is saved since the ISC is in the Model 168 CPU.

The Two-Channel Switch optional feature is also available for the
ISC. When installed, this feature provides a two-channel switching
capability for both of the logical storage controls. The Two-Channel
Switch permits each logical storage control to be attached to two
channels in the same Model 168 configuration or to one channel in the
Model 168 configuration and one channel in another System/370. Two
switches are provided that can be set to dedicate a logical storage
control to one channel or the other, or to enable the storage control to
be accessed by both channels.

Channel Channel
Integrated & Two-Channel Switch
Storage cal e 32 Drive Expansion
Controls Logjeal Logical e Control Store Extension
contral ¥ control 2

_— 7 N\

3340 | 3340 | 3340 3340 ' 3340 | 3340 3340 3340

A2 A2 A2 A2 A2 A2 | A2 A2
1 4 y i F L™\
3340 i 3340 3340 3340 3340 3340 | s 3340 3340
1T~ T T T I TI1_ T |.
3340 | 3340 3340 3340 3340 3340 3340 3sa0 | comkination
! i ! | of Models
| | l [[1 l I R
3340 | 3340 | 3340 3340 | 3340 3340 . 3340 3340 J
& One to four strings of from two ta: eight drives each connected
to each logical contral, Each logical control connected to one
or two channels in the sarne or different CPU's,
@ String Switch can be added to any or all 3340 Model A2 units
to connect a 3340 A2 to a second attachment in the same ISC,
the same CPU, or another CPU
Figure 50.15.9. Permissible 3340 string configurations for the Model

168 Integrated Storage Controls feature

The String Switch optional feature can be installed on a 3340 Model
A2 that is attached to the ISC. This field-installakle feature enables
the 3340 Model A2 and all its attached 3340s (a 3340 string) to be
connected to two control unit type attachments instead of only one. The
attachments can be any combination of two of the following:

118 A Guide to the IBM System/370 Model 168

e 3830 Storage Control Model 2

e Integrated Storage Controls for Models 158 and 168 (or the two
logical controls in one 1SC)

e Integrated Storage Control for the Model 145
e 3345 Storage and Control Frame Models 3, 4, and 5 for the Model 145
e 3330/3340 Series IFA for the Model 135

The two attachments to which a 3340 Model A2 with the String Switch
feature is connected can be attached to the same or different channels
in the same CPU, or to channels in two different CPU's. In addition,
channel-switching features can be installed on one or both of these
attachments.

The String Switch is functionally similar in its operation to the
Two—-Channel Switch. A switch can be set to allow the 3340 string to be
accessed via both attachments, one at a time. 1In effect, the setting
privides two control unit paths to the string. String switching is
acconmplished dynamically under program control. Alternatively, the
switch can be set to dedicate the string to one attachment or the other
so that the string can be accessed only via that attachment.

Figure 50.15.10 illustrates string switching for four 3340 strings
that are attached to the same ISC. In the configuration shown, all
strings can be accessed via two channels and two control units. Channel
switching, string switching, and 32 Drive Expansion features can be used
to enhance the availability of 3340 disk storage and to extend backup
capabilities when two System/370 systems (the same or different models)
are present in an installation.

Channel Channel
ISC with .
Logicat Logical
vao-Channel control 1 control 2
Switch
Each 3340 A2
has the 3340 3340 3340 3340
String Switch A2 A2 A2 A2
installed l I I I
~
3340 3340 3340 3340
Any combination of
3340 3340 3340 3340 Models B1 and B2
3340 3340 3340 3340
J

Figure 50.15.10. String switching for 3340 facilities attached to one ISC

A Guide to the IBM System/370 Model 168 119

INTERMIXING 3340 AND 3330-SERIES STRINGS ON AN ATTACHMENT

Optionally, the 3333/3340 Intermix feature can be installed on 3830
Storage Control Model 2 and integrated storage controls in the Model 168
CPU. When present, this field-installable feature permits both 3340 and
3330-series strings to be attached to a 3830 Model 2 or ISC. Each
string must contain all 3340 drives or all 3330-series drives as usual.

The intermix feature requires installation of the Control Store
Extension feature on the 3830 Model 2 or ISC and can coexist with other
optional features for these units and their strings (channel switching,
32 Drive Expansion, string switching, and fixed head features).

SUMMARY

The hardware features of the 3340 and 2314 direct access storage
facilities are summarized in Table 50.15.3. Table 50.15.4 compares the
capabilities of the 3830 Model 1, 3830 Model 2, and Model 168 integrated
storage controls for both 3340 and 3330-series disk storage.

When compared with the 2314 facility, the 3340 facility offers the
following major advantages:

e Faster access to data

Data transfer rate almost three times that of the 2314

Seek times approximately 40% of those of the 2314 for
movable head accesses

Zero seek time provided by the fixed heads in a 3348
Model 70F Data Module

Rotational delay interval approximately 20% shorter
than for the 2314

e Larger capacity per drive
17% for the Model 35 Data Module
175% for Model 70 and 70F Data Modules

s Two capacity options per drive for expanded growth flexibility

e Multiple requesting and rotational position sensing capabilities
for use with block maltiplexer channels

e Operational improvements

Cover tightening/untightening and removable/replacement
operations are eliminated, which speeds up data module loading
and unloading

Load time to ready status for a mounted data module is three
times faster

Write protection is provided on a data module basis

External labeling procedures are more flexible and leave less
chance of erroneous data module labeling

e Significantly increased reliability
Sealed cartridge design eliminates head-to-disk alignment
problems, minimizes the possibility of disk surface
contamination, and eliminates hub wear and damage
Advanced head design makes head crashes a remote possibility
and permits increased recording density without any loss
of reliability

e Improved error handling capabilities
Error correction data is provided by the hardware for use
by programmed error recovery procedures
Surface defect skipping reduces the need to use the error
correction capability

120 A Guide to the IBM System/370 Model 168

¢ Improved availability and serviceability
No preventive maintenance is scheduled, because of the reliability
features of the 3340 and 3348
Faster error isolation and correction is possible because the
3340 contains fewer circuit cards
Expanded microdiagnostics can test more than 95% of the
circuits in a 3340

A Guide to the IBM System/370 Model 168 121

Table 50.15.3.

storage facilities

Summary of the hardware features of 3340 and 2314 disk

Feature

3340 attached to
3830 Model 2 or
ISC

2314 (A-Series)

Mamber of drives
per string or
facility

Number of strings or
facilities per
control unit

Data medium used

Read only feature
on drive or data
medium

Removable address
plugs on drive

Attachment of a
string or facility
to two control units
in the same or a
different CPU
Two-Channel Switch
Attachment of the

control unit to
four channels

Record Overflow
File Scan-

Multiple track
operations

Multiple requesting

Rotational Position
Sensing

 Error correction
data presented
by control unit

Surface defect
skipping

122

Two to eight in one
drive increments

One {0 four

(maximun of eight strings
for IscC)

Removable interchangeable
data module (sealed
cartridge)

Yes on data moduile

No

Yes via optional
string switch feature.
Only one data transfer
operation permitted
per string.

Optional

Yes ‘using the optional
Two-Channel Switch

and Two-Channel Switch
Additional features
(3830 Model 2 only)
Standard

Not available

Standard

Standard

Optional (on 3340
drives)

Yes

Yes

One to eight in one-
drive increments.

(A ninth can be
included as a spare
only.)

One maximum

Removable
interchangeable disk
pack

No

Yes

Yes via 2844
Auxiliary Storage
control. Two con-
current data

transfer operations
per facility permitted.
Optional

Yes using the optional
Two-Channel Switch

and 2844 Auxiliary
Storage Control
Standard

Standard

Standard

Not available

Not available

No

A Guide to the IBM System/370 Model 168

Table 50.15.3

(continued)

Feature

3340 attached to
3830 Model 2 or

2314 (A-Series)

IsC

Writable storage
in control unit
loaded from a disk
cartridge

Statistics logging
by the control unit
in its storage

Inline diagnostics
executed under OLTEP
or via the CE panel

Yes

Yes

Yes

No

Yes

Table 50.15.4. Summary of the features of 3830 Storage Control Models 1
and 2 and Integrated Storage Controls

Characteristic

3830 Model 1

3830 Model 2

IsC

Type of unit

Power source

Attaches to

Devices attaching
to it

Number of drives
in a string

Standard number of
strings attachable

32 Drive Expansion
feature for

attachment of two
additional strings

Standalone

Contains own
for itself and
all the drives
that can be
attached to it

Block multi-
plexer channel

3330 Models 1
and 2

1 to 8

One maximam

Not available

Standalone

contains own
for itself
only

Block multi-
rlexer channel

3333 Models 1

and 11 (optionally

with 3330 Model
i, 2, and 11
units attached)
3340 Model A2
(optionally with

3340 Model B1 and
B2 units attached)

2 to 8 for a
3330-series or
3340 string

Two max imum

Optional for a
maximam of
four strings

A Guide to the IBM System/370 Model 168

Contained in
Model 168 CPU

Power control
shared with
Model 168 CPU

Block multi-
plexer channel

Same as 3830
Model 2

Same as 3830
Model 2

Two maximum
per logical
control

Optional for a
maximum of four
strings per

logical control

123

Table 15.15.4 (continued)

Characteristic 3830 Model 1 3830 Model 2 1sc

3333/3340 Intermix Not available Optional Optional
feature for

attachment of

3330-series and

3340 strings

Two-Channel Switch Optional Optional Optional
Two-Channel Switch Optional Optional Not available

Additional (for
four channel
switching)

String switching
capability

Multiple
requesting

Rotational
position sensing

Multiple track
operations

Record overflow

Command retry

surface defect
skipping

Inline diagnostic
tests

Error logging
by control unit

Not available

Standard

Standard

Standard

Standard

Standard

Not implemented

Standard

Standard

Yes for 3330-
series strings

via optional

3333 string Switch
feature.

Yes for 3340
strings via
optional String
Switch Feature.

Standard

Standard on
control unit
(standard on 3330-
series drives,
optional on 3340
drives)

Standard

Standard

Standard for
3330-series

strings. Not
available for
3340 strings.

Implemented

for 3340 strings.
Not implemented
for 3330-series
strings.

Standard

Standard

Same as
3830 Model 2

Standard

Same as 3830
Model 2

Standard

Standard

Same as 3830
Model 2

Same as 3830
Model 2

Standard

Standard

124

A Guide to the IBM System/370 Model 168

SECTION 65: DIFFERENCES BETWEEN THE MODEL 3 AND THE MODEL 1

Model 3 of the Model 168 differs from the Model 1 primarily in its
faster internal performance and the improved serviceability and
availability made possible by the service processor unit, which is
standard in the Model 3.

A tightly coupled Model 168 multiprocessing configuration can include
any combination of Model 3 and Model 1 systems. The same optional
features are available for the Model 3 (uniprocessor and multiprocessor
models) as for the Model 1 except for the 16K Buffer Expansion feature,
which is not available for the Model 3.

A Model 1 CPU (3168-1 Processor unit) can be field converted to a
Model 3 CPU (3168-3 Processor Unit). The standalone 3066 Model 2 System
Console for the Model 1 is also used with the Model 3. It must have the
field-installable 3168-3 attachment feature in order to be used with a
Model 3. The 3067 Model 3 Power and Coolant Distribution Unit must be
used in a Model 3 system configuration. A 3067 Model 2 can be field
converted to a 3067 Model 3. A motor generator set is required for the
Model 3 as for the Model 1. The same motor generator can be used for
both models.

The same standalone channels (2860, 2870, and 2880) and I/0 devices
attach to the Model 3 as to the Model 1. The 316573168 attachment is
required on the standalone channels attached to a Model 3.

The model-dependent fixed storage locations are the same in the Model
3 as in the Model 1 (see Figure 20.10.3) except for minor differences in
a few fields in the CPU extended logout area. For example, the buffer
size installed bits for 8K and 16K are no longer used.

Both models are supported by the same IBM-supplied programming
systems. The EREP program in 0S/VS1l as of Release U4, in 0S/VS2 Releases
2 and up, and in VM/370 Release 2 will be modified to process the model-
dependent logout area data for the Model 3 that differs slightly from
that of the Model 1.

A program can determine whether it is operating on a Model 1 or a
Model 3 by issuing the STORE CPU ID instruction. The version field byte
(bits 0 to 7 in the doubleword stored) indicate the model of the 3168
processor being used.

65:05 PERFORMANCE ENHANCEMENTS

The internal performance of the Model 3 Model 168 CPU is generally in
the range of 5 to 13 percent faster than that of the Model 1 CPU (using
a 16K buffer) when the same hardware configurations, programs, and
programming systems that do not use 2K pages are used. The increase in
Model 3 internal performance will be less for users of VSl since it
supports a 2K page size. The faster internal performance of the Model 3
is the result of the following differences between the Model 3 and the
Model 1:

e 32K of high-speed monolithic buffer storage is standard for the
Model 3. The 32K capacity is not utilized when a page size of 2K is
being used. The buffer operates at a capacity of 16K in this
situation (see buffer discussion below). Buffer fetch times, the
way in which the buffer is used, and the buffer assignment algorithm
are the same in both models. The 32K buffer and processor storage

A Guide to the IBM Systemv/370 Model 168 125

contain 128 columns, as shown in Figure 65.05.1, instead of 64
columns as in the Model 1. A column in the Model 3 buffer contains
eight 32-byte blocks, as does a column in the buffer in the Model 1.

e The execution time of each of the following instructions is
improved: SUPERVISOR CALL (SVC), MONITOR CALL (MC), STORE THEN OR
SYSTEM MASK (STOSM), STORE THEN AND SYSTEM MASK (STNSM), INSERT
STORAGE KEY (ISK), INSERT PSW KEY (IPK), SET PSW KEY FROM ALDRESS
(SPKA) , LOAD PSW (LPSW), SET SYSTEM MASK (SSM), STORE CLOCK (STCK),
and SET PROGRAM MASK (SPM). In addition, under certain conditions
execution of the following instructions is faster in the Model 3: OR
CHARACTERS (0OC), AND CHARACTERS (NC), EXCLUSIVE OR CHARACTERS (XC),
TEST AND SET (TS), COMPARE LOGICAL CHARACTERS UNDER MASK (CLM),
INSERT CHARACTERS UNDER MASK (ICM), STORE CHARACTERS UNDER MASK
(STCM) , COMPARE AND SWAP (CS), and COMPARE DOUBLE AND SWAP (CDS).
These instructions are more heavily used by the virtual storage
programming systems.

e Improved execution time for all levels of interruption

Improvements in the execution time of the instructions listed above
and all interruptions are made possible by the increase in the size of
writable control storage in the Model 3. The Model 3 has 1024K instead
of 512K words of writable control storage. A denser technology is used
for the implementation of writable control storage in the Model 3 so
that less space is required for 1024K words in the Model 3 than for 512K
words in the Model 1.

The 32K high-speed buffer in the Model 3 is also implemented in a
denser technology than is used for the high-speed buffers in the Model 1
and it requires less space than a 16K buffer. The 32K buffer operates
at its 32K capacity when the Model 3 CPU is operating with dynamic
address translation mode disabled or with dynamic address translation
mode and a 4K page size enabled. When dynamic address translation and a
2K page size are enabled, the 32K buffer operates at a 16K capacity just
like the 16K buffer in the Model 1.

The reason for using a 16K capacity when a 2K page size is enabled is
the following. Bits 20 to 26 of the referenced processor (real) storage
address are required to determine the column address (0 to 127) in the
buffer address array for a 32K buffer size. For a 16K buffer size,
processor storage address bits 21 to 26 are required to determine the
column address (0 to 63).

When a 4K page size is used, bits 20 to 31 of the referenced virtual
storage address are the same as bits 20 to 31 of the corresponding real
storage address and do not need to be translated. However, when a 2K
page size is used, bit 20 must be translated as only bits 21 to 31 in
the virtual and corresponding real storage addresses are egual.

Therefore, if the 32K capacity were to be used for a 2K page size,
bit 20 would not be available for buffer address array addressing until
after address translation had been performed. By using a 16K capacity
for a 2K page size, bits 21 to 26 are available for accessing the buffer
address array before address translation is performed.

Whenever the buffer in the Model 3 is reset, it is set to operate at
its 32K capacity. The buffer is reset when one of the following occurs:

e IPL, program reset, power on reset, or system clear

e CPU reset caused by any condition except pushing the computer reset
pushbutton

e All console loads except load microdiagnostics

126 A Guide to the IBM System/370 Model 168

Block 0
1
Block Address 2
Register Contents
® Block address 3
(processor storage
address bits 8 to 20) 4
® Block valid bit

® Block delete bit 5
6
7

Column
Block 0
1
2
3
4
5
6
7

Column
Block 0
1
n

Column

Figure 65.05.1.

A Guide to the IBM

ADDRESS ARRAY

)

13-bit b

address)

)
ASRY

L
<

-~

>

~

T

J. nL A A 4L A ~
T

0 1

BUFFER STORAGE — 32K

127

)
AR

32 bytes

— I
1 ¢

))
ASRY

L
T

T

4
T

~
T

By
-

P
T

PROCESSOR STORAGE

S N T

127

1 (

—).

i

) e
f(

4
T

L
T

127

1,024 block address
registers

4K

1,024 blocks

4K

4K

4K

High-speed buffer and processor storage organization

in the Model 3

System/370 Model 168

127

e Enter reconfiguration pushbutton is pressed

e SIGNAL PROCESSOR (multiprocessing) instruction is issued that
specifies one of the orders that is defined to cause a buffer reset
(IPL, program reset, IMPL, initial CPU reset, or CPU reset)

e Load control instruction is issued to change the page size in
effect. When page size is changed from 4K to 2K, buffer capacity is
reduced to 16K. When page size is changed from 2K to UK, buffer
capacity is increased to 32K.

65:10 THE SERVICE PROCESSOR

FUNCTIONS AND GENERAL OPERATION

The service processor is standard in the Model 168 Model 3. It is a
hardware unit that is contained in the Model 168 CPU (3168-3 Processor
Unit), but that is functionally separate from the CPU. Its function is
to provide greater maintenance capabilities for the Model 3 than are
provided by the optional 2955 Remote Analysis Unit for the Model 1
(which is not available for the Model 3). The service processor
supports an interface to RETAIN/370 that offers the same functions as
the 2955 interface to RETAIN/370 in the Model 1 as well as enhancements
that improve the remote problem analysis capability for the Model 3.

The service processor provides the capability of continuously
monitoring selected logic points in the Model 168 CPU, capturing and
storing status data when an intermittent or solid hardware error occurs
(or at other specified times) for later use by a customer engineer,
producing a printout of the stored data for use by a local customer
engineer, and transmitting the stored data over a communication 1line for
remote analysis by a customer engineer specialist in the Large System
Support Group in Poughkeepsie.

The capabilities of the service processor are designed to make more
timely information available for both onsite and remote customer
engineer analysis so that fault location, particularly for intermittent
errors which are frequently difficult to duplicate, can be accomplished
more guickly.

The components of the service processor are the processor unit, trace
unit, two battery-powered counters, internal disk file, CE panel,
printer control for an optional 3213 Printer, corporate standard
interface, and modem, as shown in Figure 65.10.1.

The service processor operates under the control of the stored-
program-controlled processor unit. The service processor normally
operates simultaneously with the operation of the Model 168 CPU to
capture status data and reccrd it on the internal disk file component,
usually when a hardware failure occurs. The customer engineer controls
the status data collected by setting switches on the CE panel component.
When operating in this manner (recording mode), the service processor
never steals any machine cycles from the Model 168 CPU.

Using the CE panel on the service processor, the customer engineer
can also operate the service processor independently from the Model 168
CPU. In this mode, the customer engineer can print the status data
stored on the internal disk file on the 3213 printer or transmit the
status data to a remote location for analysis. The entire service
processor except for the trace unit is powered independently from the
Model 168 CPU. Therefore, the service processor can perform functions,
other than status data collection, under control of the CE panel in the
service processor even when the Model 168 CPU is not operating or is
powered down (for a maintenance operation, for example).

128 A Guide to the IBM System/ 370 Model 168

8 movable probe
and 191 fixed line
locations in CPU

SERVICE PROCESSOR

Trace CE
Unit Panel
To
disk file
—_—— To
Mstana- | Modem)
| alone | Corporate ?‘i disk 'fl"o disk CR Counter
| channel {g—1—p Standard =—p Processor QL-# Power-off
| in Interface Counter
Lwsys‘zem |
- To CSI, printer
control, or modem
3213 Internal
Printer Modem Disk
Control File
l'_"!—_'l r—-t"':
| 3213 ! IData |
| Printer I lAccess I
| —— |Arrangement|
\-_,/’ L _J
Communication
line to
Raleigh
RETAIN/370
Communication lines
to Poughkeepsie
CE 3270 PPN 3270 Large System
Specialists display display Support Group

Figure 65.10.1. components of the sexrvice processor in a Model 3

A Guide to the IBM System/370 Model 168 129

The way in which the service processor is powered on and off is
determined by the setting of a switch on the CE panel of the service
processor. If the switch is set to remote, the service processor is
automatically powered on or off when the Model 168 CPU is powered on or
off, respectively. When the switch is set to local, the power on and
power off pushbuttons on the CE panel are used to power the service
processor on and off.

When power is turned on in the service processor, an IMPL of
diagnostic routines is automatically initiated. Pressing the SVP IMPL
pushbutton on the CE panel also causes these diagnostics to be loaded.
Once loaded, the IMPL diagnostics exercise the service processor to
determine whether it is functioning correctly. If so, the service
processor automatically goes into the recording mode of operation. In
this mode, the trace unit of the service processor collects data from
certain locations in the Model 168 CPU during its operation.

Operation of the service processor in the Model 168 is always
controlled by the local customer engineer. If a customer engineer in
the Large System Support Group in Poughkeepsie wishes additional history
data or wishes to have a function performed on the Model 168, he
communicates the request to the local customer engineer via telephone
and the local customer performs the function.

One communication line is used for both the transmission of data to
Poughkeepsie via RETAIN/370 (using data mode) and voice communication
between the local customer engineer and a specialist in Poughkeepsie
(using voice mode). When either customer engineer wishes voice
communication with the other, he sounds an alarm and then goes from data
to voice mode.

If an error occurs in the service processor during its operation, a
switch on the CE panel is inspected by the processor unit to determine
the action to be taken. If the error switch is set to the stop
position, operation of the service processor terminates. If the switch
is not set to the stop position, an IMPL is initiated. The diagnostic
routines then determine whether the service processor can continue
operating based on the type of error condition that exists.

PROCESSOR UNIT

The processor unit contains an arithmetic/logic unit, read-only
control storage, data registers, and a main storage. It operates under
the control of a program whose instructions are similar in format and
mnemonics to System/370 instructions.

The basic functions of the processor unit are to (1) take data from
the trace unit buffers and write it to the internal disk file and (2)
read data from the internal disk file and transfer it to the printer
control, corporate standard interface (CSI), or modem component of the
service processor. The processor unit can also transfer data from the
corporate standard interface to the modem and transfer data to the
internal disk file from the corporate standard interface. The processor
unit can perform only one of its functions at a time.

The control program routines for the processor unit are contained on
the internal disk file in the service processor. Some of these routines
are always resident in main storage of the processor unit during its
operation. The resident routines -are loaded into the processor unit
after a successful execution of the IMPIL diagnostics. Other control
program routines are brought into the processor unit only when they are
required to service a request.

130 A Guide to the IBM System/370 Model 168

The 'basic control routine is a polling loop. This routine constantly
interrogates each of the other components of the service processor
(trace unit, corporate standard interface, etc.) on a rotating basis to
determine whether the component has an outstanding request. When a
request is recognized, polling stops and the appropriate control routine
is loaded into the processor unit to sexrvice the request. Polling
continues as soon as the request has been processed.

TRACE UNIT

The trace unit receives certain status data from the Model 168 CPU
while the latter is operating, stores the data in trace buffers, and
when a predetermined event occurs presents the trace buffer data to the
processor unit for storing on the internal disk file.

The trace unit obtains the following data:

e Information from 191 fixed lines to points in the Model 168 CPU.
Every machine cycle (80ns), the data from these 191 fixed points is
placed in a trace buffer. The buffer has a maximum capacity of 32
machine cycles of data. A wraparound technique is used to store
data in the trace buffer so that the buffer always contains
information regarding the last 32 machine cycles.

e Information from eight movable probe points in the Model 168 CPU
that the customer engineer can establish. Every ten nanoseconds,
information from these probe points is placed in a second trace
buffer. The capacity of this buffer is 256 ten nanosecond cycles.
A wraparound technique is also used to store data in this buffer.

e Up to 224 doublewords of logout data from the Model 168 CPU. This
is the data logged in the logout area in lowest addressed processor
storage when a CPU logout occurs.

Information from the 191 fixed points and eight probe points
continues to be stored in the trace buffers in wraparound fashion until
a predetermined event occurs. When the event is recognized, recording
stops temporarily and the fixed point and probe data in the trace
buffers is sent to the processor unit. The appropriate control program
routine then formats the data, time stamps it, and writes it to the
internal disk file. Trace unit recording resumes as soon as the trace
data has been transferred to the processor.

The event that is to cause existing trace data to be written is
indicated via the CE panel and can be one of the following: a machine
check interruption (for any enabled soft or hard machine check
condition), main storage address compare, instruction counter address
compare, control storage address compare, hang detect, SIGNAL PROCESSOR
instruction from the other CPU in a tightly coupled multiprocessing
configuration, or a logic line input that can be wired to any point in
the CPU or a fix card.

When the predetermined event occurs, an interval of approximately 655
microseconds is established. If a CPU logout occurs before the interval
expires, it is assumed to be associated with the event that caused this
recording to take place. The CPU logout data in the trace buffer is
formatted, time-stamped, and recorded on the internal disk file along
with the fixed point and probe data. If a CPU logout does not occur
within the interval, logout data is not written to the internal disk
file.

The CPU logout data is divided into three areas for the purpose of

recording: status area (corresponding to the fixed logout area from
processor storage locations 0 to 184), local store area (corresponding

A Guide to the IBM System/370 Model 168 131

to the fixed logout area between locations 216 and 511), and the CPU
area f(corresponding to the model-dependent CPU extended logout area
beginning at the location indicated in control register 15). The CPU
area is further subdivided into subareas. This is done so that the
printing of CPU logout data can be done on a selective basis by area and
by subareas within the CPU area recordings.

COUNTERS

The CR (continuously running) counter is a battery-powered counter
that is always running to maintain the time of day. When power is om in
the Model 168 CPU, the CR counter runs from this power. When CPU power
is off, the CR counter runs from the power supplied by its battery. The
time in the CR counter is synchronized with the time in the time of day
clock in the Model 168 CPU whenever a SET CLOCK instruction is issued
that sets the time of day clock. The CR counter is used to time stamp
trace data records that are written to the internal disk file.

The power-off counter is also a battery-powered counter. It runs
only when power is off in the Model 168 CPU. This counter starts to run
when CPU power is turned off and stops running when CPU power is turned
on. It can be used to keep account of how long CPU power is turned off.

INTERNAL DISK FILE

The internal disk file used in the service processor is the same file
that is used to load microprograms in Models 158 and 168. The disk file
is used to hold the control programs required by the processor unit and
for storage of trace data records.

The disk file can contain a maximum of 16 trace data records. When
this maximum is reached, the action taken depends on the mode set via
the CE panel. If wrap mode is in effect, each successive trace record
replaces the oldest existing trace record so that the file contains only
the last 16 trace records. If wrap mode is not in effect, the existing
trace records are not overwritten and tracing operations terminate.

The local customer engineer can clear the internal disk file using a
toggle switch on the CE panel of the sexvice processor. BAll existing or
selected event class records can be cleared. Clearing consists of
zeroing the header records that are associated with the existing data
records. The data records themselves arxe not zeroed.

CE PANEL

The CE panel in the service processor enables the customer engineer
to (1) establish operating conditions for the trace unit, as discussed
previously, (2) transfer data records from the internal disk file to the
modem or 3213 printer control component of the service processor, (3)
clear the internal disk file, and (4) execute microdiagnostics to test
the service processor for correct operation. When the trace unit
presents data to the processor component.,, the data is always written to
the internal disk file. The data cannot be transferred directly to the
modenm or printer control component.

The customer engineer controls the transfer of status records from
the internal disk file using a set of disk data control toggle switches
or an OLT (online test) routine. The customer engineer controls the
service processor diagnostic routine to be executed using a set of
diagnostic selection switches. When the customer engineer wishes to
transfer status records or execute a specific diagnostic routine, he
turns on the appropriate toggle switch and pushes the execute button on

132 A Guide to the IBM System/370 Model 168

the CE panel. The function indicated by the toggle switch is then
performed.

Separate destination toggle switches are provided for trace records.
Trace .records can be directed to the printer control component for
printing on the 3213 Printer or to the modem component for transmission
to RETAIN/370 in Raleigh.

A set of printer control toggle switches is also used when trace data
records are to be transferred to the printer control component. These
toggle switches are used to select the types of trace data records that
are to be printed: fixed line status data, movable probe status data,
header, or CPU logout records. Status area and local store area and/or
CPU area records can be selected for printing when the CPU logout toggle
switch is turned on. When CPU area records are selected, two microfiche
selection switches are also used to indicate the subarea of the CPU area
whose records are to be printed.

In order to transfer trace records from the internal disk file to the
modem component, the modem must be enabled. Activation of the modem can
be accomplished only by inserting the CE key (same CE key as is used for
the Model 168 CPU) in the activate TP slot in the CE panel in the
service processor. Once the modem is activated, the TP activeskey reset
pushbutton lights up and the CE key can be removed. The modem is
deactived by pressing the TP activeskey reset pushbutton.

The local customer engineer can perform one of the following
operations involving the service processor at the same time normal
system operations are taking place in the Model 168 system:

s Print trace data from the internal disk file on the 3213 Printer.
This is controlled via the CE panel.

e Send trace data from the internal disk file to RETAIN/370 in
Raleigh. This is controlled via the CE panel.

e Print trace data from the internal disk file on a printer attached
to the channel to which the corporate standard inter face component
of the service processor is connected. This is accomplished by
executing an OLT under OLTEP control.

PRINTER CONTROL

The printer control component is provided to enable a 3213 Printer to
be attached directly to the service processor. Attachment of this
printer is optional. Using the CE panel, the customer engineer can
cause all or selected trace data records from the internal disk file to
be printed on the 3213. Operation of the 3213 printer is controlled
entirely by the CE panel and is independent from operation of the Model
168 CPU.

CORPORATE STANDARD INTERFACE

The corporate standard interface (CSI) is provided to connect the
processor unit of the service processor to any one System/370 orx
System/360 channel. Normally it would be comnected to a 2870
multiplexer channel in the Model 168 configuration. A switch on the CE
panel is used to enable or disable the connection between the CSI and
the processor unit.

This interface can be used by the customer engineer, for example, to

print trace data records on a local system printer that is faster than
the 3213, such as a 3211 or 1403. The processor unit in the service

A Guide to the IBM Systems/370 Model 168 133

processor can also receive input from the CSI. Using this capability, a
program running in the Model 168 CPU (such as an OLT) can send data to
the modem component for transmission to a remote location or read data
from the internal disk file.

An OLT that runs under OLTEP or OLTSEP is provided that reads trace
records (status and CPU logout) from the internal disk file via the CSI,
formats the data, and writes it to an output device (usually a printer).
Another OLT is provided that reads only the CPU logout trace records
from the internal disk file (via the CSI). This OLT then invokes the
Logout Analysis Program to operate on the CPU logout data and print the
results on a local printer via the CSI.

MODEM

The modem component prowvides the means of connecting the service
processor to RETAIN/370 in Raleigh via a data access arrangement and
communication line for the purpose of remote problem analysis. The
modem has two modes of operation, the remote program mode and the
teleprocessing link mode.

The remote program mode enables the service processor to perform the
same functions for the Model 3 as can be performed for the Model 1 using
the 2955 remote analysis unit. The same OLTs that are used with the
2955 can be used with the modem in remote program mode. That is, an OLT
running under OLTEP concurrent with normal system operations (or under
OLTSEP in a standalone environment) can send SYS1.LOGREC data to the
RETAIN/370 system in Raleigh, after which the modem connection can be
disabled.

When the modem is operating in teleprocessing link mode, the local
customer engineer can transmit trace records contained on the internal
disk file to the RETAIN/370 system using the CE panel on the service
processor, as discussed previously. This data is then transmitted to a
specialist in the Large System Support Group in Poughkeepsie or another
technical support group connected to RETAIN/370. The specialist
interfaces with RETAIN/370 using a 3270 display station.

If the specialist requires any additional information or history data
from the Model 168, he requests it from the local customer engineer via
telephone. Similarly, once the specialist has analyzed the problem he
communicates the information to the local customer engineer via
telephone.

The Model 3 offers the following improvements in the remote analysis
capability when compared with that provided for a Model 1:

e Additional and more timely status data is made available to the
specialist, as provided by the trace unit of the service processor.

e The specialist in Poughkeepsie uses a 3270 display unit to
communicate with the RETAIN/370 system in Raleigh. This enables the
specialist to see much more history data displayed concurrently than
does the display device used in a Model 1 environment.

e The analysis and data reduction capabilities of the programs that
operate on the history data sent to RETAIN/370 have been enhanced
and enable the specialist to be more selective in his requests for
data.

The features listed above are designed to enable a customer engineer

specialist in the Large System Support Center to diagnose failures in a
Model 168 more frequently without the need to go to the installation

134 A Guide to the IBM System/ 370 Model 168

itself. In addition, status data about intermittent errors can be
analyzed by the specialist concurrently with normal system operatiomns.

As in a Model 1 environment, a 2955 OLT operating under OLTSEP can
control the operation of the HDM Diagnostic Program in the Model 168
Model 3 CPU. A service processor maintenance program is also provided
that operates under the control of the HDM Diagnostic Program. This
program runs diagnostics that test the operation of the lines between
the Model 168 CPU and the service processor.

ADVANTAGES

The advantages of the service processor in the Model 3 Model 168 are
the following:

e More detailed information about intermittent and recoverable errors
is provided than for the Model 1 and on a real time basis. The
customer engineer can obtain this information and perform problem
analysis concurrently with normal system operations.

e The need to try to recreate intermittent failures for analysis by
the customer engineer is reduced.

e More detailed information about solid errors is provided than for
the Model 1. This data can be analyzed by the local customer
engineer or sent via a communication line to the Large Systems
Support Group for analysis by customer engineers with more
expertise.

e Customer engineer operation of the service processor is controlled
by a separate CE panel in the unit instead of by the operator
console so that problem analysis operations can be performed
concurrently with normal system operations.

e The service processor is physically independent of the Model 168 CPU
so that no processing time is taken from the Model 168 CPU and an
error in the service processor does not impact the Model 168 CPU.
Similarly, the service processor can operate when the Model 168 CPU
is down for maintenance.

The detailed, timely status information provided about errors, remote
analysis capability, and concurrent problem analysis capabilities
provided by the service processor should result in a reduction in the
number of times normal system operation is interrupted for intermittent
error analysis and the amount of time the system is not operational for
the purpose of locating the cause of solid failures. Since more data
about failures is provided by the service processor, faster error
analysis should occur even if the remote analysis capability is —ot
utilized.

A Guide to the IBM Systemv370 Model 168 135

SECTION 70: COMPARISON TABLES

These tables have been included for quick reference. The first
compares hardware features of the Systems/360 Model 65 and System/370
Models 158, (Models 1 and 3), 165, 165 II, and 168 (Models 1 and 3).
The second compares OS MFT, MVT, VSl1l, and VS2 Release 1 support of the
Model 168 (Models 1 and 3).

136 A Guide to the IBM System/370 Model 168

89T TOPOW 0LE MSISAS WHT 943 03 °9pIno ¥

LET

70:05: COMPARISON TABLE OF HARDWARE FEATURES OF THE SYSTEM/360 MODEL 65 AND SYSTEM/370 MODELS 158 (MODELS 1 AND 3),

165, 165 II, AND 168 (MODELS 1_AND 3)

Systemv/360

Hardware Feature Model 65

I. CPU

A. BC mode of system Comparable to BC
operation mode

B. EC mode of system Not implemented

operation

C. Instruction set

1. Standard set Standard
(binary arithmetic)

2. Decimal arithmetic Standard

3. Floating-point Standard

arithmetic
4. Extended precision Not available
floating-point
5. New instructions Not available
a. COMPARE LOGICAL
CHARACTERS
UNDER MASK
COMPARE LOGICAL
LONG
HALT DEVICE
INSERT CHARACTERS
UNDER MASK
LOAD CONTROL
MONITOR CALL
MOVE LONG
SET CLOCK
SHIFT AND ROUND
DECIMAL
START I/0 FAST
RELEASE
STORE CHANNEL ID
STORE CHARACTERS
UNDER MASK
STORE CLOCK
STORE CONTROL
STORE CPU 1D
b. CLEAR I/0
COMPARE AND SWAP
COMPARE DOUBLE
AND SWAP
INSERT PSW KEY
LOAD REAL ADDRESS
PURGE TLB
RESET REFERENCE BIT
SET CLOCK COMPARATOR
SET CPU TIMER

Not available

System/370
Model 158
(Models 1 and 3)

Standard-

Standard

Standard

Standard
Standard
Optional
{no-charge)

Standard

Standard

Systenv 370
Model 165

Standard

Not implemented

Standard

Standard

Standard
Standard

Standard
(except for
MONITCR CALL)

Not available

System/370
Model 165 II

Standard

Standard

Standard

Standard

Standard
Standard

Standard

Standard

System/370
Model 168
(Models 1 and 3)

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

8¢T

89T TOPOW (OLE/wa3sAs WEI oYz 03 8pIno ¥

Hardware Feature

D.

STORE CLOCK
COMPARATOR
STORE CPU TIMER
SET PSW KEY
FROM ADDRESS
STORE THEN AND
SYSTEM MASK
STORE THEN OR
SYSTEM MASK

Overlap of instruction
fetching and

preparation with
instruction execution

High-speed multiply

CPU cycle time

Dynamic address
translation

Interval timer

Time of day clock

CPU timer and clock
comparator

Monitoring feature
Program event recording
Direct control

Interruption for SSM
instruction

System/ 370
Systemnv 360 Model 158
Model 65 (Models 1 and 3)

Systen/370
Model 165

Instruction unit Instruction
normally prepares prefetching is
one instruction at performed. One
a time. Imprecise prefetched
interruptions occur instruction is
only for storage decoded, no
violations. operand
prefetching
is performed.
Imprecise
interruptions
cannot occur. A
64-word buffer is
provided in the
Model 1. A
128-word buffer
is provided in
the Model 3.
Not available Not available
115 nanseoconds,
4-byte parallel
data path

200 nanoseconds,
8-byte data path

Not available Standard

Standard (16.6 ms Standard (3.33 ms

resolution) resolution)
Not available Standard
Not available Standard
Not available Standard
Not available Standard
Optional Optional
Not implemented Standard

Instruction unit
can process
several
instructions while
execution unit
executes one
instruction.
Imprecise
interruptions

can OCCuUr.

Ooptional

80 nanoseconds,
8~-byte data path
Not available
Standard (3.33 ms
resolution)
Standard

Not available

Not available
Not available
Standard

Not implemented

Systen/ 370
Model 165 II

Same as Model 168

Optional

Same as Model 165

Standard

Standard (3.33 ms
resolution)
Standard

Standard

Standard
Standard
Standard

Standard

System/370
Model 168
(Models 1 and 3)

Same as Model 165
except that
instruction and
execution unit
implementation

is enhanced and
imprecise
interruptions
cannot occur.

Optional

Same as Model 165

Standard

Standard (3.33 ms
resolution)
Standard

Standard

Standard
standard
Standard

Standard

89T TOPOW 0LE, w93sAs WHI dU3 03 |pTnod ¥

6ET

Hardware Feature

O. Compatibility features
(all are optional and
mutually exclusive except
where noted otherwise)

P. Control logic

Q. Instruction retry by
hardware

R. Machine check
interruption

S. Fixed storage area size
in lower storage
(including logout area
for machine and channel
errors)

T. Multiprocessor systems

Systenv 360
Model 65

1. 7070/7074

2. 7080 (for both
705 and 7080)

3. 709/7040/7044/

7090/7094/709411

Microprogram in
ROS

No

One level of
machine check
provided for all
machine errors
and one machine
check mask.

328 bytes including
CPU and channel
logouts

1. Multisystem

System/370
Model 158
(Models 1 and 3)

System/370
Model 165

1. 1401/40/60,
1410/7010

2. 0S/DOS

3. 7070/7074
(features are
no-charge and
not mutually
exclusive)

Microprogram in
reloadable control
storage

Yes

Occurs after
corrected and
uncorrected errors.
There are seven
types of machine
check and many

are individually
maskable.

1184 bytes reduc-
ible to 512 if
extended iogout
area of 672 bytes
is moved

Same as Model 168

optional feature

permits inter-
connection of
two Model 65s.
Main storage is
shared (512K or
more). Direct
control is
required.

2. The support or
main processor
in an ASP con-
figuration can
be a Model 65.
Two or three
systems are con-
nected via a
Channel-to-
Channel Adapter.

1. 7070/7074

2. 7080 (for both
705 and 7080)

3. 709/7090/7094
709411 (does not
include 704,
7040, 7044)

Microprogram in
capacitor ROS and
monolithic WCS.

Yes

Occurs after
corrected and
uncorrected errors.
There are four
types of machine
check and many

are individually
maskable.

1504 bytes reduc-
ible to 512 if the
extended logout
area of 992 bytes
is moved

1. A multisystem
feature is not
available.

2. A Model 165 can
be a support
or a main pro-
cessor in an

ASP configuration

System/370
Model 165 II

Same as Model 165

Same as Model 168

Yes

Sames as Model 168

Same as Model 168

Same as Model 165

System/370
Model 168
(Models 1_and 3)

Same as Model 165

Microprogram in
monolithic ROS
and monolithic WCS

Yes

Same as Model 165,
except five types
of machine check
are implemented
and more data is
logged by a Model
168.

1928 bytes reduc-
ible tc 512 if the
extended logout
area of 1416 bytes
is moved

1. The 3068 Multi-
systenr Communi-
cation Unit is
used to connect
two Mcdel 168
systems (any
combination of
Models 1 and 3)
together for a
tightly-coupled
multiprocessing
configuration.

2. JES3 (Job Entry
Subsystem 3) of
0S/VS2 Release
3 supports the
Model 168 in a
loosely-coupled
multiprocessing
configuration
of from two to
four systems.

3. A Model 168 can
be a main or
supgort

ont

89T ToPOW 0LE/wo3sAs WAII SYaz 03 2pTIno ¥

Hardware Feature

II.

A.

Power warning

Virtual machine assist

Remote analysis unit

Integrated Storage
Controls

STORAGE

Processor (main)
storage sizes

Type of processor
storage

Processor storage
interleaving

High-speed buffer
storage

Systenv 360
Model 65

Not available
Not available

Not available

Not available

256K
512K
768K
1024K

Ferrite cores

Two¥way inter-
leaving of sequen-

tial accesses other

than by the
channels is
provided.

No

System/370
Model 158
(Models 1 and 3)

System/370
Model 165

Optional
Optional

Yes - service
processor is
standard

Optional for
attachment of
3330-series and
3340 disk storage,
or the 3850 Mass
Storage System

512K

1024K
1536K
2048K
3072K
4096K

Monolithic
technology

None

8K is standard
in the Model 1.
16K is standard
in the Model 3.

Not available
Not available

Yes - 2955
Remote Analysis
Unit is optional

Not available

512K

1024K

536K
204 8K
3072

Ferrite cores

Storage is u4-way
doubleword inter-
leaved for CPU
and channel
requests.

. 8K is standard,

8K more can be
added. 80 nano-
second cycle.

System/370
Model 165 II

Not available
RPQ feature

Same as a Model
165

Not available

1024K

2048K
3072K

Ferrite cores

Same as Model 165

Same as Model 165

System/370
Model 168
(Models 1 and 3)

processor
in an ASP
configuration.

Optional
RPQ feature

Yes -~ 2955

Remote Analysis
Unit is optional
in the Model 1,
service processor
is standard in
the Model 3

Same as
Model 158

1024K

2048K
3072K
4096K
5120K
6144K
7168K
8192K

Monolithic
technology

Storage is 4-way
doubleword inter-
leaved.

Model 1 is same as
Model 165. 32K

is standard in

the Model 3.
Buffer row
deleticn is
implemented

89T TSPOW 0LE MO3SAS WAI Y3 O3 9pIno ¥

T

Hardware Feature

III.

Processor storage
validity checking

Byte-oriented operands

Store and fetch
protection

Shared processor
storage

2361 Core Storage

CHANNELS

A. Total number per

system

System/360
Model 65

Parity checking
by byte. No hard-
ware error
correction is
provided.

No

Standard

Optional (Model
65 system shares
2361 Core Storage
with a Model 50,
65, or 75)

Optional.

Up to 8 million
bytes can be
attached.

Up to 7

System/370
Model 158
(Models 1 and 3)

System/ 370
Model 165

ECC checking on a

doubleword. Single-

bit errors are
corrected by
hardware.

Standard

Standard

Not available

Cannot be attached

Byte multiplexer
channel 0 and
block multiplexer
channels 1 and 2
are standard.
Block multiplexer
channels 3 to 5
are optional.
Channel 4 can be
a second byte
multiplexer
channel instead
of a block
multiplexer in
systems with 768K
or more and

channel 3 installed.

Selector mode
standard for all

block multiplexers.
Channel rate is 1.5

MB/sec.

Same as Model 158

Standard

Standard

Not available

Cannot be attached

1. Up to 7
standard
2. Up to 12 with

System/370
Model 165 II

Same as Model 158

Standard

Standard

Not available

Cannot be attached

Same as Model 165

Extended Channels

optional feature

System/370
Model 168
(Models 1 and 3)

in both rodels

Same as Model 158

Standard
Standard

Not available

Cannot be attached

Same as Model 165

Zht

89T TOPOW 0LE,/we3isks WAI 8y3 03 2pTno ¢

System/360

Hardware Feature Model 65

B. 2870 Multiplexer
Channel

One or two can
be attached
192 subchannels)

C. 2860 Selector
Channel (1.3 MB/sec.)

A maximum of 6
can be attached

D. 2880 Block Multiplexer
Channel (1.5 MB/sec).
Two-Byte Interface
feature permits a
3.0 MB/sec. data rate

Cannot be attached

1. Maximum number
of subchannels

System/370

Model 158 System/370 System/370
(Models 1 and 3) Model 165 Model 165 II

Does not attach
(Byte multi-
plexer channel ¢
or 4 on a Model 1
can have 256 non-
shared subchannels
or eight shared
subchannels and
120 nonshared
subchannels.

Byte multi-
plexer channel

0 or 4 on a Model
3 can have 256
nonshared with-
out subchannel
sharing installed
or 256 nonshared
less 16 or 32 for
each control unit
position wired
for 16 or 32
shared sub-
channels.

Same as Model 65 Same as Model 65

Does not attach Same as Model 65 Same as Model 65

Does not attach Same as Model 165

A maximum of 6

can be attached
without the
Extended Channels
feature, a maximum
of 11 with this
feature.

1 shared

56 nonshared

For all Model 1
block multi-
plexer channels,
16 shared and 480
nonshared. For
all Model 3 block
multipl exer
channels when the
second byte multi-
is not installed:
a) 736 nonshared
with no sub-
channel sharing
installed
b) With subchannel
sharing in-
stalled, 40
shared and 736
nonshared less 1
for each shared
subchannel

Same as Model 165

System/370
Model 168
(Models 1 and 3)

Same as Model 65

Same as Model 65

Same as Model 165

1 shared and 56
nonshared with-
out extended
unit control
words feature,

1 shared and up
to 256 nonshared
with feature

89T T9POW 0LE£ m23sAgs WATI 3Y3z o3 SpTnd VY

€ENT

Hardware Feature

E.

F.

Channel dual 1/0 bus

Maximum aggregate data
rate for channels

Channel retry data
provided after channel
error

Channel-to-Channel
adapter

Extended Unit Control
Words on the 2880

Channel indirect data
addressing

Systenv 360
Model 65

No

In excess of
4 MB/sec for one
2870 and six 2860s

Yes

Optional on 2860

Not available

System/ 370
Model 158
(Models 1 and 3)

Systemn/ 370
Model 165

Por the Model 3

with the second

byte multi-

plexer installed:

a) 480 nonshared
with no sub-
channel sharing
installed

b) With subchannel
sharing in-
stalled, 32
shared and 480
nonshared less
1 for each shared
subchannel

No No

6.75 MB/sec for In excess of

five block 9 MB/sec with
multipl exer twelve channels
channels

Yes Yes

Optional Optional on 2860
- Optional
Standard Not available

System/370
Model 165 II

No

Same as Model 165

Yes

Optional on 2860

Optional

Optional (required
by the virtual
storage programming
systems)

System/370
Model 168
(Models 1 and 3)

Yes

17MB/sec

Yes

Optional on 2860

Optional

Optional (required
by the virtual
storage programrming
systens)

hhl

System/ 370 System/370
System/360 Model 158 Systenv 370 System/370 Model 168
dardware Feature Mcdel 65 (Models 1 and 3) Model 165 Model 165 II (Models 1 and 3)

89T YO9POW (OLE/wa3lsis WAI 3yl O3 IpTno v

IV. OPERATOR CONSOLE DEVICES 1. 1052 Printer- 1. Display console 1. Standalone 3066 1. Standalone 3066 1. Standalone 3066
keyboard with keyboard Model 1 system Model 1 System Model 2 System
(optional) and light pen console is Console is Console provides
2. Second 1052 is standard. required. It required. The same features
Printer-Key- Hardcopy can includes: store status as 3066 Model 1
hoard 3= be provided a. A CRT-key- function is and store status
optional optionally via board supported. function. Other
3. A 2250 Display a 3213 Printer combination consoles can be
Unit and a for display for operator/ attached as for
remote 2150 mode. Display system Model 165.
Console are console can communication
opt ional also operate b. An indicator
4. Cther devices in printer viewer
can be used as keyboard mode c. A microfiche
primary and instead of document viewer
secondary display mode. d. A processor
consoles. 2. 2150 Conscle storage config-
with 1052-7 uration plug-
Printer-Key- board
board e. A system
3. Additional activity meter
consoles, such f. A device for
as display loading WCS and
units, are microdiagnostics
optional The store status
(Store status function is not
function is provided.
provided) 2. Optionally, other
4. 3056 Remote devices can be
System Con- used as secondary
sole in consoles as listed
addition to for the Model 65.
the standard
display console
is optional.
V. 1I/0 DEVICES
A. 3505 Ccard Reader No Yes Yes Yes Yes
3525 Card Punch
B. 3211 Printer Yes Yes Yes Yes Yes
C. 3803/3420 Magnetic Yes, except Model 8 Yes Yes Yes Yes

Tape Subsystem
{Models 3,5,7 and
4,6,8)

89T TOPOW OLE MO3sSAS WAT oYz 03 9PTno ¥

Shl

Hardware Feature
D. Direct access devices
(2311,2314,2303,2301,
and 2321)
E. 3330-series disk storage
1. 3830 Storage Control
Model 1
2. 3830 Storage Control
Model 2
3. Integrated Storage
controls feature

F. 2305 facility Models 1
and 2

G. 3340 Direct Access
Storage Facility

d. 3410/3411 Magnetic Tape
Subsystem

I. 3540 Diskette I/0 Unit

J. 3600 Finance
Communication System

K. 3650 Retail Store System
L. 3660 Supermarket System

M. 3704 and 3705 Communi-
cations Controllers

N. 3740 Data Entry System

O. 3767 Data Communication
Terminal

P. 3770 Data Communication
System

Q. 3790 Communication
System

R. 3800 Printing Subsystem

System/360
Model 65

All attach

No

No

No

No

No
No

Yes, emulation
mode only

Yes

Yes

Yes

No

No

System/370
Model 158
(Models 1_and_3)
All except 2301
drum

Yes (all models)
Yes

Yes

Yes

2305 Model 2
only

Yes (attachment
via 3830 Model

2 and integrated
storage controls)

Yes

Yes

Yes

Yes

Yes

Yes, emulation
mode and network
control program
modes.

Yes

Yes

Yes

Yes

Yes

Systenv 370
Model 165

Same as Model 65

Yes (Models 1
and 2 only)
Yes

Yes

No

Yes on 2880

No

No

No

No
No

Same as Model 158

Yes

No

No

No

System/370
Model 165 II

Same as Model 65

Yes (all models)
Yes
Yes

No

Yes on 2880

Yes (attachment

via 3830 Model 2)

No

No

Yes

Yes
Yes

Same as Model 158

Yes

Yes

Yes

Yes

Yes

Systen/370
Model 168
(Models 1 and 3)

Same as Model 65

Yes (all models)
Yes
Yes

Yes

Yes on 2880

Yes (attachment
via 3830 Model

2 and integrated
storage
controls)

No

No

Yes

Yes
Yes

Same as Model 158

Yes

Yes

Yes

Yes

Yes

INT

891 TOPOW (Lf, wo3sis WHI 3yl 03 IpIno Y

Hardware Feature

S. 3850 Mass Storage System

T.

U.

v.

3881 Optical Mark Reader

3886 Optical Character
Reader

3890 Document Processor

System/360
Model 65

No

No

No

No

8ystens/ 370
Model 158
(Models 1 and 3)

Yes via 3830
Model 3 and
Integrated
Storage Controls
Yes

Yes

Yes

System/370
Model 165

No

No

No

No

System/370
Model 165 II

Yes via 3830
Model 3

No

Yes

Yes

Systems370
Model 168
(Models 1 and 3)

Yes via 3830
Model 3 and
Integrated
Storage
Controls

No

Yes

Yes

89T ToPOW 0LE Wo31sAS WEI oUa 03 °pIno ¥

Lht

70:10:

Hardware Feature

I. CPU

A. Mode of system operation

B. Instruction set

1.

2.

Standard set
(binary arithmetic)

Decimal arithmetic

Floating~-point arithmetic

Extended precision
floating-point

New instructions
a. COMPARE LOGICAL

CHARACTERS UNDER
MASK

COMPARE LOGICAL
LONG

INSERT CHARACTERS
UNDER MASK

LOAD CONTROL
MONITOR CALL

MOVE LONG

SET CLOCK

SHIFT AND ROUND
DECIMAL

START I/0 FAST
RELEASE

STORE CHANNEL ID

STORE CHARACTERS UNDER
MASK

STORE CLOCK

STORE CONTROL

STORE CPU ID

OS AND OS/VS SUPPORT OF THE MODEL 168 (MODELS 1 AND 3)

OS_MFT and MVT

BC mode only. Up to 15
problem program partitions
or regions.

All languages

All languages except
FORTRAN

All languages except
RPG

Assemblers F and H, PL/I
Optimizing Compiler, PL/I
Checkout Compiler,
FORTRAN H, FORTRAN
H-Extended

Mnemonics in Assemblers

F and H. Option to generate
certain instructions in ANS
Full COBOL Version 3 (CLCL,

MVCL, ICM, SRP)

0s/vsi

EC and CAT modes only.
One virtual storage of
up to 16 million bytes
is supported. Up to
52 partitions of

which 15 can be
problem program.

All languages
All languages except
FORTRAN

All languages except
RPG

Same as MFT and MVT

Same as OS MFT
and MVT

0S/VS2 - Release 1

EC and DAT modes only. One

virtual storage of 16 millicn
Up to 63
problem program regions of which
up to 42 can be TSO foreground

bytes is supported.

regions.

All languages
All languages except
FORTRAN

All languages except
RPG

Same as MFT and MVT

Same as OS MFT
and MVT

8ht

89T TOPOW 0LE/we3sAs WAI 2yl 03 SpInd ¥

Hardware Feature

D.

b. LOAD REAL ADDRESS
PURGE TLB

RESET REFERENCE BIT

SET CLOCK
COMPARATOR

SET CPU TIMER
STORE CLOCK
COMPARATOR
STORE CPU TIMER

STORE THEN AND
SYSTEM MASK

STORE THEN OR
SYSTEM MASK

c. CLEAR I/O
COMPARE AND SWAP

COMPARE DOUBLE AND SWAP

INSERT PSW KEY

SET PSW KEY FROM ADDRESS

Interval timer

Time of day clock

Clock comparator and CPU timer

Expanded machine check
interruptions

Moni toring feature

Program event recording

Interruption for SSM
instruction

Compatibility features

Power warning

OS _MFT and MVT

Supported by Assembler F,
as of 0S Release 21.6.

Not supported by Assembler H

Not supported

Supported for timing
facilities, except for
time of day

Supported for time of day

Not supported

Supported by MCH

Supported by GTF and an
Assembler mnemonic

Not supported
Not supported
All are supported

Supported by MVT as of
Release 21.6

0os/vsl

All are supported

by the System Assembler

Suppor ted

Supported for all
timing facilities
(except time of day)
unless the extended
timer option is
included in Vsl
control program

Same as MFT and MVT
Supported for job step
and interval timing
when extended timer
option is included

in the Vsl control
program

Same as MFT and MVT

Same as MFT and MVT

Supported by Dynamic
Support System

Supported

All are supported

Supported as of
Release 3

OS/VS2 - Release 1

Same as 0S/VSl

Supported

Not supported

Same as MFT and MVT

Supported for timing facilities
except for time of day

Same as MFT and MVT

Same as MFT and MVT
Supported by Dynamic Support
System

Supported

All are supported

Supported as of Release 1.6

89T TOPOW OLE MW23SAS WAI oYyl 03 dpINo V¥

6ntl

Hardware Feature
II. STORAGE

A. Real storage sizes
(1024K to 8196K)

B. Byte-oriented operands

C. store and fetch protection

III. CHANNELS
A. Byte multiplexer channels
B. Block multiplexer and selector
channels
C. Channel retry performed
D. Chanrnel indirect data
addressing
IV. CONSOLES
A. 3066 Console
B. Alternate and additional
consoles supported
V. 1/0 DEVICES

A. 3505 card Reader and 3525
Card Punch

B. 3211 Printer
C. 3803/3420 Magnetic

Tape Subsystem
(Models 3, 5, 7 and 4, 6, 8)

OS MFT and MVT

All are supported

Programmers can use the
byte alignment hardware
facility in Assembler
programs

Store protect only
is supported

One or two are supported

Supported

Yes

Not supported

Supported. MCS and DIDOCS
required

Yes

Supported

Supported

Supported

0S/Vsl

All are supported

Same as MFT and MVT

Store and fetch

protection are
supported

One or two are
supported
Suppor ted

Yes

Suppor ted

Same as MFT and MVT

Yes

Suppor ted

Supported
Supported

0S/VS2 - Release 1

All are supported

Same as MFT and MVT

Store and fetch protection
are supported for all regions

One or two are supported

Supported

Yes

Supported

Same as MFT and MVT

Yes

Supported

Suppor ted

Supported

0aT

89T TOPOW (LE,/wa3sis WAI 943 03 apIno ¥

Hardware Feature

D.

231472319 facilities

3330-series with RPS and
multiple requesting attached
via 3830 Storage Control Model
1, 3830 Storage Control Model
2, or Integrated Storage
Controls

3340 Direct Access Storage
Facility

2305 Facility Models 1 and 2
with RPS and multiple
requesting

3600 Finance Communication
System

3650 Retail Store System

3660 Supermarket System

Supported for system
residence, data sets,
SYSIN devices, and SYSIN
and SYSOUT data sets.
Record Overflow and
channel switching features
are supported.

Supported as V.D.

above. RPS, multiple
requesting, sixteen-

drive addressing, 32 Drive
Expansion, Two-

Channel Switch, Two-
Channel Switch Additional,
3333 String Switch, and
Record Overflow are
supported. Only Models

1 and 2 are supported.

Not supported

Supported for system
residence, data sets, and
SYSIN/SYSOUT data sets.

RPS and multiple requesting
are supported.

Not supported

Not supported

Not supported

0s/vVsl

Supported for system
residence, data sets,
paging devices, JES
spooling devices, and
SYSIN devices. Record
overflow and channel
switching features are
supported.

Same as V.D.

above. RPS, multiple
requesting sixteen-
drive addressing, 32
Drive Expansion,
Two-Channel Switch,
Two-Channel Switch
Additional, 3333
String Switch, and
Record Overflow are
supported. Aall
models are supported.

Support same as for
3330-series

Same as V.D. above
except for SYSIN
devices. RPS and
multiple requesting
are supported.

Supported attached to
a 3704/3705 in NCP/VS
mode by VTAM and TCAM
through VTAM

Supported attached to
a 3704/3705 in
emulation mode by BTAM
Supported attached to a
3704/3705 in NCP/VS
mode by VTAM and

TCAM through VTAM

Supported attached to
a 3704/3705 in
emulation mode by BTAM
Supported attached to
a 3704/3705 in NCP/VS
mode by VTAM

0S/VS2 - Release 1

Supported for system
residence, data sets,

paging devices, SYSIN and
SYSOUT data sets, and SYSIN
devices. Record Overflow

and channel switching features
are supported.

Same as V.D. above.
multiple requesting,
sixteen-drive addressing,

32 Drive Expansion, Two-

Channel Switch, Two-Channel Switch
Additional, 3333 String

Switch, and Record Overflow

are supported. All models

are supported.

RPS,

Not supported

Same as V.D. above except
for SYSIN devices. RPS and
multiple requesting are
suppor ted.

Not supported

Not supported

Not supported

89T TOPOW 0LE MB3SAS WET ©U3 03 OpIno ¥

16T

Hardware Feature

—_—_——— e ST e

K.

L.

M.

3704 and 3705 communications
Controllers

3740 Data Entry System

3767 Data Communication
Terminal

3770 Data Communication
System

3790 Communication System

3800 Printing Subsystem
3850 Mass Storage System
3886 Optical Character Reader

3890 Document Processor

0S MFT and MVT
Supported in emulation
mode.

Supported in NCP mode
by TCAM

Supported (BTAM, TCAM)

Not supported

Not supported

Not supported

Not supported
Not supported
Not supported

Not supported

osrvsi

Supported in emulation
mode

Supported in NCP mode
by TCAM

Supported in NCP/VS
mode by TCAM and VTAM

Supported (BTAM, TCAM)

Supported attached to
a 3704/3705 in NCP/VS
mode by VTAM and TCAM
through VTAM

Supported for synchron-
ous data link control
(SDLC) operations
attached to a 3704/3705
in NCP/VS mode by VTAM
and TCAM through VTAM.
Supported for binary
synchronous communica-
tion (BSC) operations
attached to a 2701 or
370473705 by 2770
support in BTAM, TCAM,

‘and VTAM.

Supported attached to
a 3704/3705 in NCP/VS
mode by VTAM
Supported

Supported

Supported

Supported

0S/VS2 - Release 1

Supported in emulation mode
Supported in NCP mode by
TCAM

Supported in NCP/VS mode by
TCAM

Supported (BTAM, TCAM)

Not supported

Not supported

Not supported

Not Supported
Not supported
Not supported

Supported

{INDEX (Sections 01 to 70)

address space, definition 34
architecture design 8
ASCII/EBCDIC mode 8

basic control mode

compatibility with System/360 8

programming systems support 147-151
buffer row deletion 20
buffer storage

Model 1 26

Model 3 125-126
change bit 64
channel dual I/0 bus 30
channel indirect data addressing 67
channel masking changes for EC mode 12
channel program translation 68
channel retry 20
channels 30
CLEAR I/O instruction 18
c¢lock comparator 18,22
command retry 20
COMPARE AND SWAP instruction 18
COMPARE DOUBLE AND SWAP instruction 18
comparison table, Models 65, 158, 165, 165 II, and 168 hardware features 137-146
comparison table, 0S MFT, MVT, VSl, and V52 support of the Model 168 147-151
compatibility

BC mode with System/360 8

Model 165 with Model 168 8

Model 3 with Model 1 of the Model 168 125
control registers 11
control storage

read-only 11

writable

Model 1 11
Model 3 126

CPU

cooling 5

cycle time 11

extended logout area 22
cycle time

control storage 11

CPU 11

local storage 11

processor storage 23
CPU timer 18,22

CAT hardware (see dynamic address translation)
dynamic address translation

addresses translated 64,65

functions 41-43

instruction nullification 66

segment table origin address saving 62

time to perform 59

translation lookaside buffer 59

translation process 59,61

translation tables 57

execution unit 11

152 A Guide to the IBM System/370 Model 168

extended control mode

description 12-17

programming systems support 9
external page storage 52
extended unit control words feature 30

features of the Model 1
optional 33
standard 32

features of the Model 3 125

fixed processor storage locations
model-dependent 15
model-independent 14

imprecise interruptions 12
indirect data address list 67
indirect data address woxrd 67
INSERT PSW KEY instruction 18
instruction nullification 66
Instruction Processing Damage interruption 20
instruction unit 11
instructions
buffering 11
changes to for EC mode 15
list of standard 32
with improved execution speed 126
Integrated Storage Controls feature
for 3330-series strings 95
for 3340 strings 117
Staging Adapter feature 98
summary of features 123
interleaving 23
internal performance
Model 1 2
Model 3 2
interruptions
machine check 20-22
page translation exception 53,61
segment translation exception 61
SSM instruction 16
interval timer 10
I/0 devices for the Model 168 94

LOAD REAL ADDRESS instruction 59
local storage 11

logical storage 23

long-term fixing 54

machine check code 21
machine check interruptions 20,22
main storage (see processor storage)
Model 165 I1I 1,10,11,12,17,18,19,20,26,32,34,59,137-146
Model 168 Model 1 and 3 differences 125-135
monitoring feature, description 17
monolithic technology for processor storage 6
motor generator set
Model 1 5
Model 3 125

nonpaged mode of program operation 55
optional features

Model 1 33
Model 3 125

A Guide to the IBM System/370 Model 168 153

0S8 MFT and MVT 1,9,23
0os/vsl and OS/vs2 1,9,23

page 52,56
page fault 53
page frame 52
page-in 52
page-out 52
page replacement algorithm 54
page table 52
page translation exception 53
paged mode of program operation 55
paging 52
paging device 52
performance in a virtual storage environment 69-83
factors affecting 73
increasing 80
relationship to virtual storage size 76
power warning feature 22
processor storage
reconfiguration 24
sizes 23
technology 7
program event recording
comparison with monitoring feature 17
description 16
programming systems support of the Model 168
0S MFT and MVT 147-151
0s/vsl and 0S/Vs2 147-151
PSW
BC mode format 13
change for EC mode 12
EC mode format 13
PURGE TLB instruction 62

RAS features 19-23

read-only storage 11

real storage 38

reconfiguration, processor storage 24
reference bit 64

RESET REFERENCE BIT instruction 64

segment 52,56
segment table 52,57,60
segment table origin address saving 62
segment translation exception 57
service processor in the Model 3
advantages 135
CE panel 132
components 129
corporate standard interface 133
counters 132
functions 128
general operation 128
internal disk file 132
modem 134
printer control 133
processor unit 130
RETAIN/370 interface 134
trace unit 131
2955 mode 134
SET CLOCK COMPARATCR instruction 18
SET CPU TIMER instruction 19
SET PSW KEY FROM ADDRESS instruction 18
SET SYSTEM MASK instruction interruption 16

154 A Guide to the IBM System/370 Model 168

short-term fixing 54

slot 52

standard features
Model 1 32
Model 3 125

storage
buffer 26

control 11

external page 52

interleaving 23

local 11

processor (main) 23

protect key expansion 13

real 38

reconfiguration 24

ripples 26

virtual (See virtual storage)
storage protect key 13
STORE CLOCK COMPARATOR instruction 18
STORE CPU TIMER instruction 19
store status function 32
STORE THEN AND SYSTEM MASK instruction 17
STORE THEN OR SYSTEM MASK instruction 17
STO-stack 62
system console 5,32,64
system highlights 1-4
system space requirements 5
system technology 6-7

thrashing condition 73
translation lookaside buffer 59

virtual equals real mode 55
virtual machine assist RPQ 90
Virtual Machine Facilityr/370 1,9,43,52,84-93
virtual machines
advantages 91-93
definition 84
general operation 84-90
virtual storage
advantages 44-50
definition 38
organization 56
need for 34
relationship between size and performance 76
resources required to support 70
virtual storage address fields 58
virtual storage page 51

writable control storage 11
2955 Remote Analysis Unit 10,23,128,135
3066 Model 2 System Console 5,32
3067 Power and Coolant Distribution Unit
Model 2 5
Model 3 125
3330-series disk storage

attachment via ISC 95
Model 11 drives 94

A Guide to the IBM System/370 Model 168

155

3340 direct access storage facility
advantages summary 120
alternate tracks 105,108,110
attachment via integrated storage controls 117
attachment via the 3830 Model 2 114
capacity 99,101
channel switching features 115
defect skipping 112
description of 3340 drives 99
error detection and correction 110
error logging 116
features table 122
fixed head feature 101,108
intermixing 3340 and 3330-series drives on an attachment 120
maltiple requesting 114
physical address bytes 113
programming support 150
read only feature 103
rotational position sensing 114
sectors 112
seek verification 113
servo system 105
string configurations 99
string switching 115
timing characteristics 112

3348 Data Module, for the 3340 direct access storage facility
advantages 101
capacity
Model 35 99,106
Model 70 99,107
Model 70F 99,109
cylinder and read/write head layout
Model 35 106
Model 70 107
Model 70F 109
general desicription 99
initialization 113
loading and unloading 102
track formatting 110
track layout on the recording surface 104

3830 Storage Control Model 2

features for 3340 facilities 114
summaryof features 123

156 A Guide to the IBM System/370 Model 168

SECTION 90: OS/VIRTUAL STORAGE 1 FEATURES

If required, the 0S/Virtual Storage 1 Features Supplement, GC20-1752,
should be inserted here.

A Guide to the IBM System/370 Model 168 157

This page intentionally left blank

158 A Guide to the IBM System/370 Model 168

SECTION 100: OS/VIRTUAL STORAGE 2 RELEASE 1 FEATURES

If required, the 0S/Virtual Storage 2 Release 1 Features Supplement,
GC20-1753, should be inserted here.

A Guide to the IBM Systemv370 Model 168 159

This page intentionally left blank

160 A Guide to the IBM System/370 Model 168

SECTION 110: VIRTUAL MACHINE FACILITY/ 370 FEATURES

If required, the Vvirtual Machine Facility/370 Features Supplement,
GC20-1757, should be inserted here.

A Guide to the IBM System/370 Model 168 161

This page intentionally left blank

162 A Guide to the IBM System/370 Model 168

esscscscvssesese

READER’'S COMMENT FORM
A Guide to the 1BM System/370 ' GC20-1755-2
Mode! 168

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of M. If you wish a reply, be sure to include your name and address.

cesssssnse

cesescocasn

evecsssssesesesessessrssnsssecscsnse

ssecsecsssessscae

essescscssassesssssonss

esssscese

emocssecccessce

COMMENTS

fold fold

fold fold

o Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GC20-1755-2

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

..

First Class
Permit 40
Armonk
New York
]
I
Business Reply Mail e —
No postage stamp necessary if mailed in the U.S.A. l__
I
Postage will be paid by: —
International Business Machines Corporation l—"
1133 Westchester Avenue I
White Plains, New York 10604 [T
Att: Technical Publications/Systems — Dept. 824
Fold Fold

TIBIM

@®
International Business Machines Corporation
Data Frocessing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Z-GG/1-0Z0D VSN Ul Palulld 891 1SPOW OLE/WRISAS WE| 8Y1 01 3pIND VY

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	replyA
	replyB

