
Systems

GC20-17S5-2
File No. S370-01

A Guide to the IBM
System/370 Model 168

This guide presents hardware, programming systems, and
other pertinent information about the IBM System/370
Model 168 that describes its significant new features and
advantages. Knowledge of the IBM System/370 Model 165
is assumed. Features common to Models 165 and 168 are
indicated but not discussed in detail. The contents of the
guide are intended to acquaint the reader with the Model
168 and to be of benefit in planning for its installation.

Associated with this guide are three optional supplements
that describe operating systems for the Model 168 that
support a virtual storage environment. Each supplement
has its own form number and must be ordered individually,
if required. Optional supplements are the following:

• as/Virtual Storage 1 Features Supplement
(GC20-1752)

• as/Virtual Storage 2 Features Supplement
(GC20-1753)

• Virtual Machine Facility /370 Features Supplement
(GC20-1757)

This is a major revision obsoleting GC20-1755-1. Text has been added to include information about
che Model 3 system (3168-3 Processor Unit) and 3340 Direct Access Storage Facility. The 3330 disk
storage section, virtual machine concepts section, channel configuration text, and all summary tables
have been updated. Miscellaneous chal)ges have been made throughout the publication. Changes to
the text and illustrations are indicated by a vertical line in the left margin.

This guide is intended for planning purposes only. It will be updated from time to time; however, the
reader should remember that the authoritative sources of system information are the system library
publications for the Model 168, its associated components and its programming support. These pub­
licationswill first reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form has been provided at the back of this publication for readers' comments. If this form has
been removed, address comments to: IBM Corporation, Technical Publications/Systems, Dept. 824,
1133 Westchester Avenue, White Plains, New York 10604. Comments become the property of IBM.

© Copydght International Business Machines Corporation 1972, 1974, 1975

PREFACE

It is assumed that the reader of this pUblication is familiar with
System/370 Model 165 hardware features, channels, I/O devices, and
programming support as described in ~ Guide to the IBM System/370 Model
165, GC20-1730, and/or system library publications concerning Model 165
hardware and programming systems support. This guide discusses in
detail only the hardware features of the Model 168 that are different
from those of the Model 165 and the programming support provided for new
features of the Model 168.

There are two versions of the Model 168; the Modell and the Model 3.
The hardware differences between Model 1 of the Model 168 and the Model
165 are discussed in sections 01 to 50. The differences between Models
3 and 1 of the Model 168 are discussed in section 65.

The Model 168 is not compared with a Model 165 II, which is a
purchased Model 165 (storage model J, K, or KJ) with the optional
Dynamic Address Translation Facility installed. However, functional
descriptions of Model 168 features that are also part of the Dynamic
Address Translation Facility of the Model 165 II apply to the Model 165 II
as well, unless otherwise noted. This publication applies to systems
with 60-cycle power.

The total Model 168 guide consists of this base publication (Sections
01 to 70), which covers virtual storage and virtual machine concepts and
Model 168 hardware and I/O devices, and from one to three optional
supplements (Sections 90 to 110). The optional supplements describe the
facilities of the IBM programming systems that support a virtual storage
environment using the dynamic address translation hardware of the Model
168. Each optional supplement has its own unique form number and each
supplement desired must be ordered separately and inserted in this base
publication, which is distributed without the automatic inclusion of any
optional supplements.

The following optional supplements can be inserted in this base
publication:

• as/Virtual Storage 1 Features Supplement (GC20-1752) - assumes
knowledge of as MFT

• OS/Virtual Storage 2 Release 1 Features Supplement (GC20-1753) -
assumes knowledge of as MVT

• Virtual Machine Facility/370 Features Supplement (GC20-1757) -does
not assume knowledge of CP-67/CMS

All optional supplements also assume knowledge of virtual storage,
dynamic address translation, and other new Model 168 features as
described in this base publication or appropriate system library
documents. However, no optional supplement requires knowledge of the
contents of any other optional supplement.

This base publication, as well as each optional supplement, begins
with page 1 and includes its own table of contents and index. The base
publication or supplement title is printed at the bottom of each page as
a means of identification.

A Guide to the IBM System/370 Model 168

The optional programming systems supplements contain SystE~m/370
model-independent information, unless otherwise noted, and are designed
to be included in the guides for system/370 Models 135, 145, 158, and
168 as shown below.

Base
Publication s

A Guide to
System/370
(GC20-1738-
later editi

·the IBM
Model 135
4 or
ons)

·the IBM A Guide to
System/370
(GC20-1734-
later editi

.Model 145
2 or
ons)

A Guide to
System/370
(GC20-1754)

·the IBM
.Model 158

the IBM A Guide to
System/370 M
(GC20-1755)

odel 168

supplements

OS/VS2
DOS/VS OS/VS1 Release 1
Features Features Features
supplement Supplement Supplement
(GC20-1756) (GC20-1752) (GC20-1753)

X X

X X X

X X X

X X

VM/: 370
tures
plement
20-1757)

Fea1
Sup
(GC:

X

X

X

X

A Guide t.o the IBM System/370 Model 168

CONTENTS

Base Publication Sections (Sections 01 to 70)

section 01: System Highlights of Models 1 and 3 • ,. ,. ,.

Section 10: Major Components and System Technology for
Models 1 and 3 ,. • • .• • • '. ,.

Section 20: Architecture Design and System Components of the
Modell. • • • • •

20:05 Architecture Design. ,.
20:10 The Central Processing Unit •

Extended Control Mode
Monitoring Feature. • • • •
New Instructions. • • • • •

., .

Clock Comparator and CPU Timer. '. •• '. '. ,.
Reliability, Availability, and Serviceability Features ••

20:15 Storage •••••••••••
Processor (Main) Storage. •
High-Speed Buffer Storage •

20:20 Channels •••••••••••
20:25 System Console ••••••• _
20:30 Standard and Optional System Features •

Standard Features
Optional Features • • • • • • • • • _

Section 30: Virtual storage and Dynamic Address Translation.
30:05 Virtual Storage Concepts, Advantages, and Terminology

The Need for Larger Address Space • '. • • • • • • ,.
Virtual Storage and Dynamic Address Translation Concepts.
General Advantages Offered by IBM Operating Systems that
Support a Virtual Storage Environment • ., ,. • ,.
Virtual Storage and Dynamic Address Translation
Termi.nol()g'Y • • • • ,e • • • • •• !. • \e • .e • 'e •

30:10 Dynamic Address Translation Hardware for Models 1 and 3 of
the Model 168 •• ,. • ,. • • • • • • • '. • .. • • '. ,.

Virtual Storage Organization •• ~ .. ~ • _ • ~ •
Operation of Dynamic Address Translation Hardware •
Features to Support Demand Paging ,.. • • • ,. • ...
Channel Indirect Data Addressing. ,. ,. • '. ,. • •. '. ..

30: 15 System Performance in a Virtual Storage Environment ,.
System Resources Required to Support a Virtual Storage
Environment • • • • ,. • ,. • • • • ,. • • ,. • • • ,. '. •
New Factors that Affect System Performance. , •• '. ,. •
Relationship Between Virtual Storage Size and Gystem
Pe rf ormance • • • • ,e • ,. • • '. ,e • .. • • • ,. :. ,e ,.

Increasing System Performance in a Virtual Storage
Envi ronment • • e • • • • '. ,.

Section 40: Virtual Machines ••••••
40: 05 Definition and General Operation,.
40: 10 General Advantages of a Virtual lvlachine Environment ,e

Section 50: I/O Devices for Models 1 and 3 · ,. · . 50:05 I/O Device Support. ' . ,. · . · ..
50:10 3333 Disk Storage and Control Model 11 and 3330 Disk Storage

Model 11. e . ., e · ' . · ,~ ..
Attachment via Integrated Storage Controls,. . ,e , . ,.

A Guide to the IBM System/370 Model 168

1

5

8
8

11
12
17
17
18
19
23
23
26
30
32
32
32
33

34
34
34
38

44

51

56
56
57
64
67
69

70
73

76

80

84
84
91

94
94

94
95

50:15 The 3340 Direct Access Storage ~'acility ... 'OO • ,oo '. '.

3340 Disk Storage Drives and the 3348 Data Module ,'.
Attachment via 3830 Storage Control Model 2
Attachment via Integrated Storage Controls.
Intermixing 3340 and 3330-Series Strings on an

Attachment. • • • • .. '. • ..
S'ummary • " • • • • • • ..

99
99

• • • 114
• 117

• 120
• • 120

Section 65: Differences Bet.ween the Model 3 and the Model 1 •
65:05 Performance Enhancements ••

• •• 125
• 125

65:10 The Service Processor • • '. • 128
Functions and General Operation
Processor Unit. •
Trace Unit. • .. ,. • •
Counters. • • .. • • •
Internal Disk File. ..
CE Panel. ~ • • •
Printer Control,. • ,.
Corporate Standard Interface ••
Modem • • .. •
Advantages. • '. ,. • '. • • .. • •

. ,. • • • 128
• •• 130
• • • 131
• •• 132

• 132
• 132

• • • 133
• 134
• 134

• •• 135

Section 70: Comparison Tables • • • • • • • 136
70:05 Comparison Table 01: Hardware Features of the System/360

Model 65 and Systeml370 Models 158 (Models 1 and 3), 165,
165 II, and 168 (Models 1 and 3'). ,.. • • 1.37

70:10 OS and OS/VS Support of the Model 168 (Models 1 and 3) •• 147

Index (Sections 01 to 70) •••• . '. . . • 1.52

Optiona~ Sections (See each supplement for detailed contents and index)

Section 90: OS/Virtual Storage 1 Features • • • • 1.57

Section 100: OS/Virtual Storage 2 Release 1 Features. • •• 159

Section 110: Virtual Machine Facility/370 Features ... • 161

Note: This guide does not have a Section 80,. DOS/virtual Storage
features are discussed in the Section 80 supplement and the' Model
168 is not supported by DOS/VS.

FIGURES (Sections 01 to 70)

10.1
10.2
20.10.1
20.10.2

20.10.3

20.10.4
20.15.1

20.15.2
20.15.3
30.05.1

30.05.2

30.05.3

System/370 Model 168 (design model) • • • • 5
SLT substrate • .. • • • • • • • • • .. 6
BC mode and EC mode PSW formats • • • • • 13
~lodel 168 model-independent fixed storage locations f01:,'
BC and EC modes .. • • .. '. • • • .. • • • ,. • ,. 14
foIlodel 168 (Modell) model-dependent fixed storage
loca tions • • • '. • • • • • • • .. • 'OO • • 15
t-Iodel 168 machine check code. • .'. ,oo • ,. 21
Model 168 processor storage organization and
Gonfiguration panel • • • • • • • • ,oo • • • • • '. ,oo 25
OK and 16K buffer organization. • • • • • • • • .. • 27
£IIlodel 168 components and controls • • .. • • 29
Names and location of instructions and data in a virtual
storage environment • • • • • • .. • ... • • • .. • .'. 40
Relationship of virtual storage, direct access storage,
and real storage. • • • • • • • • .. • .. • • • • • ~. 41
conceptual illus·tration of real storage utilization in
Cl mixed batch and online virtual storage environment •. ,. 50

A Guide t,o the IBM System/370 Model 168

30.05.4

30.10.1
30.10.2

30.10.3
30.10.4
30.10.5

30.15.1

30.15.2

30.15.3

30.15. 4

30.15.5

40.05.1

40.05.2

40.05.3

50.10.1

50.10.2

50.15.1

50.15.2
50.15.3

50.15.4

50.15.5

50.15.6

50.15.7

50.15.8

50.15.9

50.15.10

65.05.1

65.10.1

Layout of virtual storage, external page storage, and
real storage. • • • • • • • • • • • • • _ • ~ ~ • • • 53
Virtual storage address fields for a 64K segment. • • I.. 58
Segment table and page tables used for dynamic address
translation • .' ~ • • • • • • • '. • .• • • • • I. 60
Dynamic address translation procedure • • • • • • '. 61
TLB purging when control register 1 is changed,. • • 63
Example of IDAL's required for a CCW list when page size
is 2K • Ie • • 68
Possible system performance when a virtual storage
operating system is used with a Model 168 with the
same I/O configuration and real storage size as the
replaced Model 165. • • • • • • • • I. • . . • .
General effect on page faults of increasing the ratio of
virtual storage used to real storage present in the

72

system. • • • • • • • • • • • • • • •• ~.... 77
General effect on system performance of the paging factor
only. • • • • • • • • • • • • • • • • • _ • • • • • • •• 78
General effect of the paging factor on system performance
with various active-to-passive page ratios. • • •• • •• 79
General system performance curve for a virtual storage
environment • • • • '. • • • • • • • • • • • • • ,. • • •• 80
conceptual illustration of the real and virtual machine
environment that is supported by VM/370 • • • '. • • • •• 86
conceptual illustration of the implementation of virtual
storage in a virtual machine environment ••• '. • • • •• 88
Segment table and page tables built when a virtual
storage operating system executes in a virtual machine.. 89
Permissible 3330-series string configurations for the
Model 168 Integrated Storage Controls feature • • • • 97
Sample 3330-series string configuration with string
swi tching • • • • • • • • • • • • • • • '. Ie • Ie t. !. . 98
A five-drive 3340 string with 3340 Model A2, B2, and
Bl units. . . . • . • . • . . • • • •. • • • I.e • • • 100
The 3348 Data Module. • • • • • • • • • • •• ,. • '. • I •• 100
Location of physical and logical tracks and read/write
heads on a data surface in a 3348 Data Module ,. •• • •• 104
Cylinder and read/write head layout for a 3348 Model
35 Data Module. • • '. • • • • • • • • • '. • • • • • 106
Cylinder and read/write head layout for a 3348 Model
70 Data Module. • • '. • ,. • • •• • • • •• • . • • 107
Cylinder and read/write head layout for a 3348 Model
70F Data Module • • • • • • • • • • • • • • ,. • 109
A Model 168 configuration with 3340 disk storage
attached via 3830 Storage Control Model 2 • I.. . . . 114
String switching for the 3340 facilities attached to
a 3 83 0 Mod el 2 • • • • • • • • • • • • • • • I. • . • 116
Permissable 3340 string configurations for the Model
168 Integrated Storage Controls feature • • •• • • • • • 118
String switching for 3340 facilities attached to one
ISC • • • • • • •
High-speed buffer and processor storage organization
in the Model 3. • • • • • • • • • • • • • • • '. • •
Components of the service processor in a Model 3. • •

•• 119

127
129

A Guide to the IBM Systeml370 Model 168

TABLES (Sections 01 to 70)

20.20.1

30.10.1

50.10.1

50.10.2
50.15.1

50.15.2

50.15.3

50.15.4

Plermissible configurations and channel priorities for
highest speed Systeml370 I/O devices. • • • • • • '. • 31
Number and size of segments and pages for a 16-million-
byte virtual storage. • ,.. • .. • • • • • • ". .. oOoO 56
Virtual and real storage addresses used by and supplied
to programs in the Model 168.. • • .. ,.. • • • • • • • 65
capacity and timing characteristics for 3330-series
drives. ~ • • • • ~ • • • • • • • 95
3336 Model 1 and 11 Disk Pack characteristics 95
Physical and capacity characteristics of 3348 Data
Modules and the 2316 Disk Pack. • • • • • 111
Timing characteristics of the 3340 direct access storage
facility and the 2314 facility. • • • • • • .. • oO. • ,OO • 112
Summary of the hardware featul::'es of 3340 and 2314 disk
storage facilities • • • • • • • 'OO • 'oO '. • '. • • • 1.22
Summary of the features of 3830 Storage Control Models
1 and 2 and Integrated Storage Controls • • .. • • • • •• 123

A Guide to the IBM System/370 Model 168

SECTION 01: SYSTEM HIGHLIGHTS OF MODELS 1 AND 1

The System/370 Model 168 is an advanced fUnction growth system for
System/360 Models 65, 67, and 75 and System/370 Models 155, 158, and
165. The Model 168 provides major new functions that are not basic to
System/360 architecture. The Model 168 has new features and new
programming systems support that are designed to facilitate application
development and maintenance. In addition, a Model 168 and its new
programming support can ease entry into, and expansion of, online data
processing operations.

The Model 168 makes new functions available to Model 65, 75, 155, and
165 users without requiring a major conversion effort, since the Model
168 is upward compatible with these models. Existing System/360
operating systems that support these models, namely OS MFT and MVT,
support the Model 168. However, the Model 168 has standard features
that are designed to support a virtual storage environment, and new
versions of OS are provided that use these features.

Compatible growth from a Systeml360 operating system to a Model 168
virtual storage environment can be achieved using the new System/370
operating systems: as/Virtual Storage 1 (OS/VS1) and OS/Virtual Storage
2 (0s/VS2), which are based on as MFT and as MVT, respectively. These
operating systems will run only on System/370 models with extended
system/370 functions, namely on those with extended control mode of
system operation and dynamic address translation facilities. They
cannot operate on System/360 models. In addition to implementing
virtual storage, the System/370 operating systems offer many other new
capabilities and performance-oriented enhancements that are not provided
by as MFT or MVT.

A virtual machine environment is supported by Virtual Machine
Facility/370 (VM/370), the successor to CP-67/CMS for System/370. While
CP-67/CMS is available only to Model 67 System/360 users, VM/370
operates on System/370 Models 135, 145, 155 II, 158, 165 II, and 168.
Model 67 users who have CP-67/CMS installed can use VM/370 on a Model
168 with some conversion effort. The Virtual Machine Assist RPQ can be
installed on a Model 168 (or a Model 165 II) to improve the performance
of certain operating systems that execute in a virtual machine under
VM/370 control.

Transition with little or no reprogramming is also provided for Model
65, 67, and 165 users who are emulating 7070-, 7080-, or 7090-series
systems under as MFT or MVT and for users with these systems installed,
since the integrated emulators for 7000-series systems are also
supported by OS/VS1 and OS/VS2.

Two models of the Model 168 are provided. The Model 3 is an advanced
version of the Modell. The Model 3 has hardware features that give it
faster internal performance and higher availability than the Modell.
The new hardware features of the Model 3 consist of internal
implementation differences in the Model 168 CPU and a larger high-speed
buffer and do not require any programming support. Thus, programs that
execute correctly on the Model 1 will execute correctly on the Model 3
wi thout any programming changes assuming they have no timing
dependencies and do not access model-dependent logout areas that differ
in the two models.

Highlights of the Model 168, Models 1 and 3, when compared with a
Model 165, are as follows (features apply to the Model 1 and the Model 3
unless otherwise noted):

A Guide to the IBM System/370 Model 168 1

2

• A basic control <BC) mode and an extended control (EC) mode of
system operation are standard. Only BC mode is provided in thl:!
Model 165. EC mode of operation provides additional systE!m control
and supports new functions that are not provided in System/360 or a
Model 165.

• Internal performance of a Model 168 operating in BC mode is faster
than that of a Model 165. The instruction execution rate of the
Model 168 Model 1 is generally in the range of 10 to 30 pE!rCent
faster than that of the Model 165 when identical system
configurations, identical programs, and the same operatinq sys·tem
are used. The increased internal performance of the Model 1 results
primarily from the significantly faster cycle times of processor
storage in the Model 168.

The internal performance of Model 3 of the Model 168 is gl:merally in
the rang'e of 5 to 13 percent faster than that of a Model 1 with a
16K high-speed buffer when identical system configurationB,
identical programs, and the same operating system are used, and 2K
pages ar'e not used. The increase in the internal performance of a
Model 3 is somewhat greater when its performance is compared with
that of a Modell having an 8K buffer. The increase in Model 3
internal performance is the result of a standard 32K high-speed
buffer and improved execution times for certain instructions and all
in terrupti ons.

• Dynamic address translat~ion (DAT) is a standard facility -that can be
made operative only when the Model 168 is in EC mode. It provides
hardware translation of addresses during program execution. One
virt~ual storage of up to 16 million bytes or multiple virtual
storages of up to 16 million bytes each can be supported 1llsing DA'l'
hardware. (The amount of virtual storage that can be efficiently
supported by a Model 168 depends on the hardware configuration and
job stream characteristics.) The optional channel indire'c't data
addl:essing feature must be installed on 2860, 2870, and 2980
channels when dynamic address translation is used. Channel indirect
data addressing enables the channels to access an I/O buffer that is
contained in noncontiguous processor storage areas.

• Program event recording (PER) is standard and can be made operative
when the Model 168 is in EC mode. It is designed to be used as a
prohlem determination aid. This feature includes hardware that
monitors the following during program execution: successful
branches, the alteration of general registers, and instruction
fetches from and alterations of specified areas of processor
storage.

• A moni taring feature is standard tha't can be used to trace user­
defined program events for the Plrpose of debugging or statist,ics
gathering.

• A CPU timer and clock comparator are standard. The CPU timer
provides an interval timing capability similar to that of the
interval timer at location 80 but it is updated every microsecond.,
as is the time of day clock. The clock comparator can be used to
cause an interruption when the time of day clock passes a specified
value. These items provide higher resolution timing facil ities than
the intE~rval timer and enable more efficient timing services
routines to be written.

• New inst~ructions that support dynamic address 'translation, the new
ti~tng hardware, and system control facilities are added to the
System/370 instructions available for the Model 165.

A Guide to the IBM System/370 Model. 168

• Processor storage is implemented using monolithic technology instead
of discrete ferrite cores, and a Model 168 can have five million
more bytes than a Model 165. Processor storage sizes of 1024K,
2048K, 3072K, 4096K, 5120K, 6144K, 7168K, and 8192K are available
for the Model 168. Monolithic storage for the Model 168 is faster
and more compact than core storage for the Model 165. As in a Model
165, processor storage in a Model 168 is four-way doubleword
interleaved.

The physical size of a Model 168 CPU is not a function of the amount
of processor storage installed. A Model 168 is smaller than a Model
165 with 512K and, therefore, is significantly smaller than Model
165 CPU's with more than 512K installed.

• The optional Power Warning feature, when installed on a Model 168
with uninterrupted power supplies, provides a warning machine check
interruption when the utility supplied power is approximately 18
percent below the rated voltage. Program support of this
interruption, which is provided by OS MVT (Releases 21.6, 21.7, and
21.8), OS/VS1 (as of Release 3), and OS/vs2 (Releases 1.6 and up),
is designed to permit an orderly system shutdown after a power line
disturbance occurs, when necessary, so that operations can be
restarted once the power supply is stabilized.

• A high-speed buffer of 32K bytes is standard in Model 3 of the Model
168. Modell of the Model 168, like the Model 165, has an 8K buffer
as standard and optionally a 16K buffer.

• The maximum aggregate channel data rate a Model 168 can support is
significantly increased over that supported by a Model 165 because
of the faster cycle time of processor storage and the new channel
dual I/O bus that is used to transfer data from the channels to the
storage control unit. A Model 168 configuration can handle a
maximum aggregate data rate of 17 megabytes per second (ME/sec).
The maximum aggregate data rate possible on a Model 165 is 9.4
MB/sec.

• 3330-series disk storage (all models> and/or 3340 direct access
storage facilities can be attached to a 2880 channel on a Model 168
via the Integrated Storage Controls (ISC) feature as well as via
3830 Storage Control (Models 1 and 2). The optional ISC feature
provides dual direct access storage control functions equivalent to
two 3830 Storage Control Model 2 units, with the exception of four­
channel ~witching. Four strings of from two to eight drives each
can be attached to each of the two logical storage controls for a
total of eight 3330-series and/or 3340 strings (64 drives) attached
via the ISC feature. Optionally, the staging adapter feature can be
installed on the ISC to permit attachment of the 3850 Mass Storage
System via ISC instead of via 3830 Storage control Model 3.

• The 3340 direct access storage facility can be attached to the Model
168 via 3830 Storage Control Model 2 and the Integrated Storage
Controls feature. The 3340 facility is intermediate capacity direct
access storage that, because of its unique design and advanced
technology, offers advantages over 2314 disk storage in addition to
those provided by 3330-series disk storage,. Automatic error
correction features and multiple requesting are standard on the
3340. Rotational position sensing is optional.

The storage medium for 3340 disk storage is the removable
interchangeable 3348 Data Module which is a sealed cartridge that is
never opened by the operator. In addition to the disks on which
data is written, the 3348 Data Module contains a spindle, access
arms, and read/write heads. The 3340 Disk Storage Drive contains

A Guide to the IBM System/370 Model 168 3

the mechanical and electrical components required to operate the
3348 Data Module.

The 3340 facility has an 885 KB/sec data transfer rate, averag43 seek
time of 25 ms, and full rotation time of 20,.2 ms. A 3348 Data
Module has a maximum capacity of approximately 35 million bytes or
70 million bytes, depending on the model. One model of the 3348
offers fixed heads for zero seek time to approximately 502,000 bytes
maximum and movable heads for an avel:age seek time of 25 rns to the
remaining bytes in the data module. A string of from two to eight
3340 drives can be configured. From one to four strings Gan be
attached to the 3830 Model 2 and to each of the logical controls in
lSC. Any model of the 3348 can be mounted on a 3340 drivf~,.
Therefor,e, 3340 string capacity can vary from 70 million 1:0 560
million bytes in 35 and/or 70 million byte increments.

The sealed cartridge design of the 3340 facility offers the
advantages of multiple capacities per 3340 drive, increasf~d da"ta
reliability, and simplified data module loading and unloading
procedures.

• A service processor unit is standard in the Model 3. ThiB uni1t
provides status data that is designed to improve problem analysis by
the local customer engineer as well as facil ities that improve the
remote problem analysis capability available for a Model :3. l"t is
also a replacement for t.he optional 2955 Remote Analysis Unit "that
is available for the Model 165 and Model 1 of the Model 1158.

The Model 168 is designed primarily to support a virtual storage
environment that allows programmers to write and execute programs 'that.
are larger than the processor storage available to them. When virtual
storage is supported, restraints normally imposed by the amount of
processor storage actually available in a system are eased. ~r,he r,emoval
of certain restraints can enable applications to be installed more
easily, and can be valuable in the installation and operation of onl ine
applications. While some of the new hardware features of the Model 168
and some of the new facilities supported by System/370 operating systems
are designed to improve performance, a virtual storage environment is
designed primarily to help improve the productivity of data p:["oces:sing
personnel and enhance the operational flexibility of the installation.

4 A Guide to the IBM System/370 Model 168

SECTION 10: MAJOg COMPONENTS AND SYSTEM TECHNOLOGY FOR MODELS 1 AND 1

The System/370 Model 168 is shown in Figure 10.1. The physical size
of a Model 168 CPU does not depend on the amount of processor storage
installed, and processor storage is contained within the CPU frames of a
Model 168. All Model 168 systems (Models 1 and 3), excluding the I/O
configuration, are the same size, which is smaller than the size of a
512K Model 165. The physical size of a Model 168 is smaller than the
size of a Model 165 as a result of the implementation of monolithic,
instead of magnetic core, processor storage. Like a Model 165 CPU, a
Model 168 CPU is water-cooled.

A Model 168 configuration consists of (1) a Model 168 CPU (3168-1 or
3168-3) with integrated monolithic processor storage and, optionally,
the Integrated Storage Controls feature, (2) a standalone 3066 Model 2
System Console, (3) a standalone 3067 Model 2 or 3 Power and Coolant
Distribution Unit, (4) standalone 2860, 2870, and 2880 channels (up to
twelve channels maximum), and (5) a motor generator set to supply power
to the Model 168 CPU. Field conversion of 3066 Model 1 and 3067 Model 1
units to Model 2 units is possible. The same motor generator set that
is used to supply power to a Model 165 can be used with a Model 168
configuration. A Model 165 CPU cannot be converted to a Model 168.

Figure 10.1. System/370 Model 168 (design model)

Monolithic technology is used to implement nearly all logic and all
storage (processor, local, writable control, read-only control, and

A Guide to the IBM System/370 Model 168 5

buffer) in the Model 168,. Use of monolithic technology for processor
Btorage, as ""ell as for 10giG, represents a significant technological
advance in st.orage implementation. The monolithic storage implemented
in the Model 168 provides several advantages over the wired, discrete
ferrite core storage implemented in the Model 165.

Monolithic storage is similar in design to monolithic logic
circuitry, th.e latter representing a technological advance over the
solid logic t.echnology (SLT) introduced with the announcement of
8ystem/360. Since the technology associated with monolithic storage is
like that: used to produce monolithic logic, monolithic storage can be
ba tch-fabrica.ted.

!)olid Logic Technology (SLT)

Monolithic technology is a breakaway from the hybrid circuit design
concept of SLT and can best be explained by comparison with SL'T. As
shown in Figure 10.2, SLT circuits were implemented on half-inch ceramic
squares called substrates. Metallic lands on the substrate formed
interconnecti.ons onto which t:he components were soldered. These
components consisted of transistors and diodes, which were integrated on
Bilicon chips about the size of a pinhead" and thin film resistors. An
HLT chip usua.lly contained one type of component, and several chips and
resistors were needed to form a circuit. In general, an SLT substrate
contained a single circuit.

/
SL T chip with
one component Ceram ic substrate

with interconnections

Figure 10.2. SLT substrate

~10noli thic §.)rsteI!! Technology (MST)

Monolithic system technology also makes use of a half-inch-square
eeramic subst~rate with metal interconnections onto which chips are
placed. However, in monolithic logic circuitry., large numbers of
E!lementary components, such as transistors and resistors., are integ'rat~~d
on a single chip. Unlike an SLT chip, an MST logic chip usually
contains sev€~ral interconnected logic circuits i.nstead of only one
eomponent. ZVlST logic modules, each consisting of one substrate, are
mounted on circuit cards, which are in turn mounted on circuit boards
(as in SI..T logic).

6

MST logic offers the following advantages over SLT:

• MST logic circuitry is intrinSically more reliable because many
circuit connections are made on the chip, significantly reducing the
number of external connections •

• Fa. ster ci.rcui t speeds can be obtained because the path between
circuits is considerably shorter.

A Guide to the IBM System/370 Model 168

• Space requirements for logic circuitry are reduced by the
significantly higher density of components per chip.

Monolithic Storage

Monolithic storage design incorporates the same concepts described
for monolithic logic. However, storage cells that are used to contain
storage bits instead of logic circuits are implemented on a metal oxide
semiconductor chip. In the Model 168, a monolithic storage arr.-'.y chip
is approximately 1/8 by 3/16 of an inch in size and contains a large
number of interconnected circuits. These circuits form storage bits and
support circuitry (decoding, addressing, and sensing) on the chip.

Since power is required to maintain a one or zero state in a
monolithic storage bit, data is lost when power is turned off, and
monolithic storage is, therefore, said to be volatile. This is not true
of core storage, which retains a magnetized state when power is removed.

The following are the advantages of monolithic over core storage:

• Faster storage speeds are obtained, first, because of the shorter
paths between storage circuitry and second, because of the
nondestructive read-out capability of monolithic storage. Since
core storage read-out is destructive, a regeneration cycle is
required after a read and a read-out cycle is required before a
wri tee These types of regeneration cycles are not required for
monolithic storage.

• Storage serviceability is enhanced because storage is implemented in
accessible, easily replaceable cards. Diagnostic routines need only
identify the failing storage card, which can be replaced in a matter
of minutes.

• Space requirements for system storage are reduced. Dense bit
packaging per chip is achieved by the use of monolithic technology
and by the fact that the regularity of a storage pattern lends
itself to such packaging.

A Guide to the IBM System/370 Model 168 7

SECTION 20: ARCHITECTURE DESIGN AND SYSTEM COMPONENTS OF THE MODEL. !

~~0:05 ARCHITECTURE DESIGN

Extended System/370 archit:ecture embodies two different modes of
system operat.ion, basic control (BC) mode and extended control (EC)
mode, as determined by bit 12 of the current PSW. When a Model 168
operates in BC mode, the contents, layout, and function of permanently
assigned processor storage locations 0 to 127 are identical to these
locations in System/360 Models 22 and up (except 44 and 67) with the
€~xception of the use of PSW bit 12. BC mode essentially is the
System/360-compatible mode of System/370 operation.

When EC mode is operative in the Model 168, the format of the PSW is
altered and t;he number of permanently assigned locations extends beyond
processor storage address 127. Changes to the PSW consist of the
removal of certain fields to create space for additional mode and mask
hi ts thai: are required for nE~W functions, such as dynamic address
t:ranslation and program even1: recording. The removed fields are
assigned to locations above 127 and to a control register.

EC mode is effective when PSW bit 12 is a one. BC mode is effectivE!
~'hen this bit. is a zero. BC mode is established during initial program
reset. Therefore, a control program must turn on hit 12 of the PSW in
order to cause EC mode to become operative. As a result, control and
processing programs written for System/360 (Models 22 and up except 44
alnd 67) will run without modification in BC mode on a System/370 Model
1.68 (either a Modell or a Model 3) that has a comparable hardware
configuration, with the following exceptions:

1. Time-d.ependent programs.
correctly.)

(They mayor may not execute

2. Programs that use machine-dependent data such as that which is
logged in the machine--dependent logout area. (OS SER error­
loggin.g routines for System/360 models will not execute
correctly.)

3. Programs that use the ASCII mode bit in the PSW (bit 12). ASCII
mode is not implemented, and this bit is used in System/370to
specify BC or EC mode of operation.

4. Programs that depend on the nonusable lower processor storage
area being smaller ,than 1938 bytes. This area can be reduced to
512 bytes by moving the CPU extended logout area.

5. Programs deliberately written to cause certain program checks.

6. Programs that depend on devices or facilities not implemented in
the Model 168.

7. Programs that use modE~l-dependent operations of the Sys'tem/370
Model 168 that are noi: necessarily compatible with the :aame
opera t.ions on System/360 models.

8. Programs that depend on the validi-ty of storage data af·ter system
power has been turned off and then on..

Only BC mode is implementE~d in the Model 165. Hence, control and
processing programs that curI~ently operate on' a Model 165 will run
\<I,ithout modification in BC mode on a Model 168 (either a Model 1 or a

A Guide to the IBM System/370 Model 168

Model 3) that has a comparable hardware configuration, with the
following exceptions:

1. Time-dependent programs. (They mayor may not execute carr ec tl y •)

2. Programs that depend on the nonusable lower processor storage
area being smaller than 1938 bytes. (The nonusable area in the
Model 165 is 1504 bytes.)

3. Programs that use machine-dependent data such as that which is
logged in the machine-dependent logout area.

4. Programs deliberately written to cause certain program checks.

5. Programs that depend on the validity of storage data after system
power has been turned off and then on..

OS control programs are designed to support either BC or EC mode of
system operation. os PCP, MFT, and MVT control programs generated for a
Model 65, 67, or 75 support BC mode operations on a Model 168. OS
control and processing programs being used on a Model 65, 67, or 75 are
subject to the eight compatibility restrictions in the first list. If
an OS MFT or MVT control program that was generated for a Model 65, 67,
or 75 is used on a Model 168, the system should be set to check stop on
machine checks. (Section 60:30 in ~ Guide to the IBM System/370 Model
165, GC20-1730, discusses the reason.)

OS MFT and MVT support for the Model 168 (Modell) in BC mode is
provided as of Release 21.6. OS MFT and MVT control programs generated
for a Model 165 using OS Release 21.6 or later will also operate on a
Model 168 to support BC mode of system operation (the Model 168 should
be specified as an alternate CPU via the SECMODS macro at system
generation). Processing programs that are used on the Model 165 will
operate under os MFT or MVT control on a Model 168 in BC mode subject to
the five compatibility restrictions in the second list.

Support of Model 168 (Modell) systems operating in EC mode is
provided by OS/VSl, OS/VS2 Releases 1 and up, and VM/370, each of which
is designated as system control programming (SCP). All of these
programming systems support a virtual storage environment using dynamic
address translation, which operates only when the system is in EC mode.
OS/VS2 Release 2 supports multiple virtual storages and Model 168
tightly coupled and loosely coupled multiprocessing configurations.
VM/370 supports a virtual machine environment.

User-written processing programs that operate on a Model 165 or Model
168 Modell under OS MFT or MVT control can operate under OS/vS1 or
OS/VS2 Release 1, respectively, on a Model 168 (Modell) with little or
no modification, as discussed in the optional programming systems
supplements (Sections 90 and 100). Hence, compatible growth from a
System/360 or a BC mode nonvirtual storage environment to an EC mode
virtual storage environment is provided.

The following are standard features of the Model 168 (Modell) that
are functionally identical to the same features of the Model 165:

• Instruction set that includes System/360 instructions and the
following System/370 instructions:

COMPARE LOGICAL CHARACTERS
UNDER MASK

COMPARE LOGICAL LONG
INSERT CHARACTERS UNDER MASK
LOAD CONTROL, STORE CONTROL
MOVE LONG

A Guide to the IBM System/370 Model 168

SET CLOCK, STORE CLOCK
SHIFT AND ROUND DECIMAL
START I/O FAST RELEASE
STORE CHANNEL ID
STORE CHARACTERS UNDER MASK
STORE CPU ID

9

• Extended-precision float~ing point
• Overlap of instruction fetching and preparation with instruction

execution (implementation of the inst.ruction and execution units is
enhanced in the Model 16·8) *

• Store and fetch protection
• Mult.iple control registers (more registers are implemented in ·the

Model 168 than in the Model 165)*
• Interval timer (3.3 millisecond resolution)
• Time of day clock
• Byte-oriented operands
• Extended external interruption masking
• Expanded machine check interruption class (additional facil ities are

provided in the Model 168)*
• Extended channel logout
• Instruction retry, ECC on processor storage, and command :retry
• Writable monolithic control storage
• High-speed buffer storage - 8K
• Direct control

The following are optional features of the Model 168 (Modal 1) ·that
are functionally identical t.o the same fE~atures on the Model 165:

• High Speed Multiply (increases speed of fixed- and floating-point
multiply operations by at factor of t"'0 to three)

• Buffer Expansion for the addition of 8K of buffer storage (the 16K
buffer has a slightly different organization in the Model 168)*

• 7070/7074 Compatibility
• 7080 Compatibility
• 709/7090/709411 Compatibility
• 2870 Multiplexer Channels and attachment feature, 2860 Selector

Channels and attachment feature, and 2880 Block Multiplexc~r Channels
(one 2860, one 2880, or one 2870 with one selector subchannel is
required)

• Extended Channels (for up to twelve channels)
• Channel-to-Channel Adapt;er on 2860 selector channels
• Extended unit Control Words on 2880 Block Mutliplexer Channels
• 3066 Model 2 System Console (required) - a few new items are provided
• 2955 Remote Analysis Unit

The following are standard features of the Model 168 (Modell) -that
are not available for the Model 165:

10

• New instructions*
CLEAR I/O
COMPARE AND SWAP
COMPARE DOUBLE AND SWAP
INSERT PSW KEY
LOAD REAL ADDRESS
MONITOR CALL
PURGE T.LB
RESET REFERENCE BIT
SET CLOCK COMPARATOR
SET CPU TIMER
SET PSW KEY FROM ADDRESS
STORE CLOCK COMPARATOR
STORE CPU TIMER
STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK

*Part of the Dynamic Address Translation Facility of a Model 165 II.
The functional descriptions of these items in this publica.tion apply
to their implementation in both the Model 168 and the Mod(~l 165 II,
unless otherwise indicated.

A Guide to the IBM System/370 Modal 168

• EC mode of system operation*
• Dynamic address translation*
• Reference and change recording*
• CPU timer and clock comparator*
• Program event recording*
• Monitoring feature*
• Program interruption for SET SYSTEM MASK instruction*
• Store status function*
• Monolithic read~only control storage (instead of capacitor read-only)*
• Monolithic processor storage (instead of core storage)
• Channel dual I/O bus

*Part of the Dynamic Address Translation Facility of a Model 165 II.
The functional descriptions of these items in this publication apply
to their implementation in both the Model 168 and the Model 165 II,
unless otherwise indicated.

The following are optional features of the Model 168 (Modell) that
are not available for a Model 165:

• Channel Indirect Data Addressing for 2860, 2870, and 2880 channels
(required by the virtual storage operating systems and available for
the Model 165 II)

• Integrated Storage Controls for attachment of 3330-series and/or 3340
disk storage, or the 3850 Mass Storage System

• TWo-Channel Switch for Integrated Storage Controls
• Staging adapter for Integrated Storage controls
• Power Warning
• Multiprocessing (3068 Multisystem Unit)

All the new features of the Model 168 Model 1 except Integrated
Storage Controls and those related to implementing virtual storage (such
as dynamic address translation and reference and change recording) are
discussed in the remainder of this section.

20:10 THE CENTRAL PROCESSING UNIT

Like the Model 165, the Model 168 has a CPU cycle time of 80
nanoseconds and an internal data path that is eight bytes wide. The
implementation of local storage (80 nanosecond cycle time), read-only
and writable control storage (80 nanosecond cycle times), expanded
external interruption masking, and parity checking is the same in the
two models. Control registers in addition to the four implemented in
the Model 165 are implemented in the Model 168 in order to support new
EC-mode-only functions. Additional control registers are implemented in
the Model 165 II as well.

Implementation of the instruction and execution units in Models 168
and 165 differs in several aspects in order to provide better overlap of
instruction preparation with instruction execution and to provide
functions required by new Model 168 hardware features6 such as dynamic
address translation. (This new implementation is also provided in a
Model 165 II.) Significant differences are the following:

• In the Model 168., up to four instructions can be prepared and await
execution while one instruction is being executed. The Model 165
can prepare and hold up to three instructions.

• When an incorrect estimate of the success of a conditional branch
ha s been made, the Model 168 can decode the correct instruction one
cycle sooner than can the Model 1656 if the instruction is presently
in an instruction buffer.

A Guide to the IBM Systeml370 Model 168 11

• In the Model 168, a doubleword frorn a given instruction st.ream can
be placed in the instruction buffers every rnachine cycle. This can
be done .~very other cycle in a Model 165 .•

• In the Model 168, two registers are provided to hold data that is
awaiting placernent in processor storage. Each can hold up to ~~ight
bytes. ~rhe Model 165 has only one such register,.

• The instruction unit in the Model 168 includes an instruct:ion
pretest function (explained under "Instruct ion Nullification n :in
Section :30: 10).

• Irnprecise interruptions do not occur in a Model 168. In a Mod4~1
165, an irnprecise interruption occurs if an attempt is made to store
data at an invalid storage address or at a storage-protect:ed
loca tion,. The Model 168 implementation of pretesting (for the
dynamic address translation function) also ensures that snch
condi tions do not cause imprecise interruptions in the Model 168.

EXTENDED CONTROL MODE

Extended control mode, unlike basic control mode, is exclusively a
Systern/370 mode and is not irnplemented in Systern/360. In a Model 168,.
the optional Channel Indirect Data Addressing feature must be installed
on all standa.lone channels for the channels to operate with EC rnod.~
enabled. No~te that IBM-supplied operating systems do not support
Systern/370 models operating in EC rnode without dynamic address
translation operative also. Facilities t~hat depend on which mode is in
effect are discussed below. Any item not covered operates idHntically
in BC and EC rnodes. (The discussion of EC/BC rnode differences applies
to the Model 165 II also.)

Change i!'! PSW Format

When a SY:3tem/370 operates in EC rnode, the forrnat of the PSW differs
frorn the BC mode format. Both PSW formats are shown in FigurE! 20.10.1.
In EC mode, the PSW does not contain individual channel mask bits, an
instruction length code, or the interrupt.ion code for a supervisor call,
external, or prograrn interruption. The channel masks are cont:ainecl in
·control regi:3ter 2, and the other fields are allocated permanE~ntly
assigned locations in fixed processor storage above address 127.

Removal of the fields indicated provides roorn in the EC mode PSW for
<control of new features that are unique to EC mode (such as PHR and OAT)
and for the addition of summary mask bits (such as channel and I/O
masks) • Use of a single mask bit to control the operation of an entire
facility (such as program event recording) or an entire interruption
<class (such as I/O and external) simplifies the coding requirE~d to
enable and disable the system for these interruptions.

Change in Pe:rntanently Assigned Processor Storage Locations

When a System/370 operates in EC mode, the number of perrnanently
assigned loca.tions in lower processor storage is increased to include
fields for s·toring instruction length codes, interruption codE~s (for
supervisor ca.ll, external, and prograrn interruptions), program event
recording data, the I/O device address for an I/O interruption, and an
,exception address for the OAT feature. 'I'he rnodel-independent BC rnode
and EC rnode :fixed storage areas for System/370 rnodels are sho\m in
Figure 20.10.2. The balance of the fixec1 area for the Model 168, 1:hat
',""hich has rnodel-dependent fields, is shown in Figure 20.10.3. This
model-depend4~nt area is not affected by whether EC or BC rnode is in

12 A Guide to the IBM Systern/370 Model 168

effect except for locations 185 to 187, which contain the I/O address
after an I/O interruption and an IPL only when EC mode is in effect.

The machine check interruption procedure and the format of the data
logged on a machine check are the same in EC and BC modes, except for
differences in the PSW format and the permanently assigned locations
previously discussed.

BC MODE PSW FORMAT EC MODE PSW FORMAT

Bit Content Bit Content

0 Channel 0 mask 0 0 --
1 Channell mask 1 PER mask.

2 Channel 2 mask

:l Channel 3 mask

4 Channel 4 mask

2 0 --.-. --.----
3 0
4 0

System System
mask mask

--
5 Channel 5 mask fi Translation mode (OAT feature mask)

6 I/O mask 6 I/O summary mask --
7 External mask 7 External summary mask -- ---
8 Protect key 8 Protect key

9

l 10
11 --

9

l 10
11

12 EC/BC mode (0 is BC) 12 EC/BC mode (1 is EC) --
13 Machine check mask 13 Machine check mask

14 Wait/running state 14 Wait/running state --
15 Problem/supervisor state 15 Problem/supervisor state --
16 I nterruption code 16 0

17 17 0
18
19

18 +ondition code
19

20 20 Program mask

21
22
23

21 t 22
23

24 24 0

:~ ::~ =~ =~ ,~
....

"" 30 30
31 -- 31
32 I nstruction length code

33 ..
34 ~ondition code

35 --
36 Program mask

37

t 38
39

32 0
33

j
34
35
36
37
38
39

40 I nstruction address 40 I nstruction add ress·
41 41
42 42

-.. ,. .. "" "I" 'u ."

J I
Figure 20.10.1. BC mode and EC mode PSW formats

Expansion of Storage Protect Key Size

The size of the storage protect key associated with each 2K storage
block is expanded from five to seven bits in the Model 168.. The tlNO
additional bits (reference and change) are included for use with dynamic
address translation and are discussed in Section 30:10. The SET STORAGE
KEY instruction sets a seven-bit key regardless of the mode, BC or EC,
in effect. The INSERT STORAGE KEY loads a five-bit or a seven-bit key
into the register indicated depending on whether BC or EC mode,
respectively, is in effect.

A Guide to the IBM System/370 Model 168 13

Decimal
locations

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

144

152

o
8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

BC MODE FIXED AREAO-159

IPL PSW

IPL CCW 1

IPL CCW 2

External old PSW

Supervisor call old PSW
~--.------------------------------------

Program old PSW

Machine check old PSW

I/O old PSW

Channel status word - CSW
----,

Channel address word - CAWj_' 7_6 _____ U_n_u_se_d ______ -I

Interval timer 84 Unused
------,

External new PSW

Supervisor call new PSW

Program new PSW
----, ----------

Machine check new PSW

I/O new PSW

--~~~~~~~~====~--::-:-O-.-----.-:'-,-O--
o 156 0

----~---------------~

EC MODE FIXED AREA 0-159

IPL PSW

IPL CCW 1

IPL CCW 2

External old PSW
----- ------------,-----~

Supervisor call old PSW
-----------.------------,---~

Program old PSW
----- ----- -----------/

Machine check old PSW

I/O old PSW

Channel status word - CSW

Cha-n-ne-I-ad-d-r-es-s-~ - CAq_7_6 ________ u_n_use_d ______ ---I

Interval timer 84 Unused
----- -------

External new PSW

Supervisor call new PSW

Program new PSW

Machine check new PSW

I/O new PSW

o '132 0 External into code

o I LC SVC into code '140 0 I LC Program into code

144 t---O---+-T-r-a-n-sl.l-at-j-on-e-xc-p-.-a-d-d-r.--I '148 0 r;;10n'itorpER~~d~J-'O-
152 I---O--+---P-E-R-a-d-d-re-s-s-' --+-'1-5-6-0-4::..cI:.::a=ss'--Mo~;~~e -

~---~~------,-------
...L-___ , ____ _

• Model independent among
System/360 and System/370
models in BC mode except
for PSW bit 12

• Processed by the control program

• Model independent among
System/370 models in
EC mode

• PSW format is different
from that of BC mode
PSW

• Processed by the control
program

Figure 20.10.2. Model 168 model-independent fixed storage locations
for BC and EC modes

14 A Guide to the IBM System/370 Model 168

16

16

17

0

8

6

184

19

21

22

23

24

24

25

~~
6

4

2

0

8

6,1"

0

Reserved

Channel 10 172 I/O extended log pointer

Unused 180 0

I * I/O address 188 0

Unused ~~

Contents of CPU timer

Contents of clock comparator

Machine check code

Reserved

Failing storage address F52 Reserved

,1" Five doublewords of retry status r
352!J-----------------t

Floating point register save area

384! r General register save area r
448 t'~ fi Control register save area ,_

I/O COMMUNICATIONS AREA
160 - 191

*Stored for EC mode
operations only

FIXED LOGOUT AREA
216-511

Layout varies bySystem/370
model

• Always logged on a
machine check interruption

• Processed b y RMS

512~--~--------------~-------

CPU extended logout-1416 bytes

(Pointer in control register 15
set to 512 at IPL)

CPU EXTENDED LOGOUT AREA

• Model dependent

• Stored on all exigent machine
checks and first and seventh
instruction retry, if specified,
and Jogged by RMS

• Processed by Logout
Analysis Program

Figure 20.10.3. Model 168 (Model 1) model-dependent fixed storage
locations

Channel Masking Changes

When a System/370 operates in EC mode, interruptions from each
channel are controlled by the summary I/O mask bit in the current PSW
(bit 6) and an individual channel mask bit in control register 2. In
the Model 168, bits 0 to 11 in control register 2 are assigned to
control channels 0 to 11, respectively. Both the summary mask bit and
the appropriate individual channel mask bit must be on in order for an
interruption from a given channel to occur. In BC mode, only
interruptions from channels 6 to 11 are controlled by individual channel
mask bits in control register 2 and the I/O mask bit in the PSW.
Interruptions from channels 0 to 5 are controlled only by channel mask
bits in the current PSW (bits 0 to 5) in BC mode.

Changes to Certain System/370 Instruction Definitions

All Model 168 instructions are valid in BC and EC modes. However,
because of differences between the PSW format and the permanently
assigned storage locations in EC and Be modes, the definition of certain
instructions is affected,. Instructions provided for both System/360 and
System/370 whose definition is altered for EC mode are:

BRANCH AND LINK (RR, RX)
INSERT STORAGE KEY
LOAD PSW
SET PROGRAM MASK

A Guide to the IBM System/370 Model 168

SET STORAGE KEY
SET SYSTEM MASK
SUPERVISOR CALL

15

Revised d~~finitions of these instructions to include BC/EC mode
differences are contained in Systeml370 Principles of Operation (Gl~22-
7000-2, or later editions).. Programs that operate in BC mode and 1:hat
use LOAD PSW and/or SET SYSTEM MASK (SSM) instructions must be modified
to operate correctly in EC mode. The eight-byte PSW to be loaded by
:LPSW instruc1:ions and the eight-bit system mask to be set by SSM
instructions must be changed to EC mode format. (Programs that USE~ SSM
instructions and that are executed in an OS/VS1 or OS/VS2 environmE~ t
lCleed not be modified because the interruption for SSM instructions and
a.n SSM simulation routine, described next, are supported.)

Programs 1:hat use the other instructions listed do not have to be
c:::hanged to operate correctly in EC mode, unless they use other
:facilities that are mode dependent. Programs that operate in BC mode
and that use the STORE THEN OR SYSTEM MASK and STORE THEN AND SYSTHt1
J~SK ins·truc1:ions (not provided in Systeml360) must also be modifiE~ to
operate corrE~ctly in EC mode.

program Interruption for Set System Mask Instruction

When a System/370 is operating in EC mode, execution of the SET
SYSTEM MASK instruction is under the cont.rol of the SSM mask in control
:iregister o. When the SSM mask bit is a one, an attempt to execute an
SSM instruction causes a program interruption without execution of the'
SSM instruction. When the SSM mask bit is a zero, SSM instructions are
(~xecuted as usual.

This intel:ruption is impl,emented to enable existing programs that
'iere wri ·tten for Systeml360 :models or fOl:' System/370 BC mode of
operation to execute correctly in EC mode without modification of t~he
system mask 1:ield addressed by existing SSM instructions. When an
interruption occurs for an SSM instruction, the contents of the BC mode
format system mask indicated by the SSM instruction can be inspectE~d,
a.nd the appropriate EC mode mask bits can then be set by an SSM
Bimulation routine. '

program Event: Recording

Program e~lent recording (PER), a standard feature of the Model 168,
is designed t:o assist in program debugging by enabling a program to be
alerted to any combination of the following events via a program
interruption ::

• Successful execution of any type of branch instruction

• Alteration of the conten"ts of the general registers designated by
the user

• Fetching of an instruction from a processor storage area definE!d by
the user

• Alteration of the conten"ts of a processor storage area defined by
the user

The PER fE!ature can operat.e only when EC mode is in effect and t.he
PER mask" bit: 1 of the current PSW, is on. control register 9 (bits 0
1:0 3) is used to specify which of the four PER event types are to be
moni tored. A PER program interruption is taken after the occurrence of
a.n event only if both the PER mask bit and the respective event mask bit
in control rE!gister 9 are on.. Control register 9 (bits 16 to 31) also
specifies which of the 16 general registers are to be monitored if
monitoring of this event is specified. Control registers 10 and 11.
indicate the beginning address and the ending address, respectively, of

Jl6 A Guide to the IBM System/370 Model 168

the contiguous processor storage area that is to be monitored for
instruction fetching and/or alteration.

When an event that is being monitored is detected, PER hardware
causes a program interruption, if the PER mask bit is on, and
identification of the type of event is stored in the fixed processor
storage area (location 150). The address of the instruction associa ted
with the event is also stored (locations 153 to 155). Program event
interruptions are lost if they occur when the PER mask bit or the
particular event mask bit is off.

If dynamic address translation mode is also specified when PER is
active, virtual storage addresses instead of real storage addresses
(discussed in Section 30) are placed in the control registers to monitor
references to a contiguous virtual storage area.

Note that when PER is enabled to monitor successful branches, general
register alterations, or processor storage alterations, significant CPU
performance degradation occurs.

MON! TORI NG FEATURE

The monitoring feature is standard on the Model 168 (and on the Model
165 II). This feature provides the capability of monitoring the
occurrence of programmed events. For example, monitoring can be used to
perform measurement functions (how many times a routine was executed) or
tracing functions for the purpose of program debugging (which routines
were executed).

The MONITOR CALL instruction is provided with the monitoring feature.
Execution of this instruction indicates the occurrence of one of the
events being monitored. The operands of the MONITOR CALL instruction
permit specification of up to 16 classes of events, each class with up
to 16 million unique types of events. The 16 monitor classes are
individually maskable via mask bits in control register 8. A program
interruption occurs when a MONITOR CALL instruction is executed, if the
monitor class indicated is specified in control register 8, and the
event identification (class and type) is stored in the fixed storage
area.

Both the PER facility and the monitoring feature are provided for
debugging purposes. The two features differ from one another in (1) the
number of events that can be defined, (2) whether events are defined by
the hardware or the programmer, and (3) whether hardware or the
programmer checks for the events and causes the interruptions. When PER
is used, once the events to be monitored have been designated by the
user, CPU hardware checks for the occurrence of the events and causes
the interruption. When the monitoring feature is used, the user defines
the events to be monitored (up to 16 classes with up to 16 million
monitor codes each instead of only four events), determines when the
events occur, and causes program interruptions by issuing MONITOR CALL
instructions.

NEW INSTRUCTIONS

STORE THEN AND SYSTEM MASK and STORE THEN OR SYSTEM MASK are two new
privileged instructions that affect the system mask (bits 0 to 7 in the
current PSW). The STORE THEN AND SYSTEM MASK instruction provides, via
a single instruction, the capability of storing the current system mask
for later restoration, while selectively zeroing certain system mask
bits. The STORE THEN OR SYSTEM MASK provides system mask storing and
selective setting of system mask bits to ones. These two instructions

A Guide to the IBM System/370 Model 168 17

simplify the coding required to alter the system mask, particularly when
the existing settings must be saved.

COMPARE AND SWAP and COMPARE DOUBLE AND SWAP instructions provid.e the
capability of controlling access to a shared real storage area in a.
multiprogramming or multiprocessing environment. Although the TES~r AND
SET instruction can also be used for this purpose, these compare
instructions enable a program to leave a message when the shared area is
in use. This message can be inspected, via a COMPARE AND SWAP
instruction, by other programs that share the real storage area. ~rhe
'virtual teleGommunications access method (VTAM), OS/vS2 Releases 2 and
up, and VSAM Release 2 use these two instructions.

The INSER~r PSW KEY privileged instruct.ion enables a program to place
in general register 2 the four-bit storage protection key from the
current PSW. The SET PSW KEY FROM ADDRESS privileged instruction
enables a program to place a protect key contained in general register 2
or processor storage in the current PSW. When a control program is
requested to access a given processor storage location by a problem
program, these two instructions can be used by the control program
during its processing of the request to determine whether the problem
program is authorized to access the specified processor storage
location.

The CLEAR I/O privileged instruction can be used together with the
HALT DEVICE instruction to terminate all I/O activity on a given
channel. CLEAR I/O, INSERT PSW KEY, and SET PSW KEY FROM ADDRESS are
used by OS/VS2 Releases 2 and up.

The new instructions discussed above are provided in the Model 165 II
also. Other new instructions provided for the Model 168 are relabed to
specific features (such as monitoring, dynamic address translation, the
clock comparator, and the CPU timer) and are discussed with these
features.

CI,OCK COMPARATOR AND CPU TINER

The se timing facilities are standard on the Model 168. (They a:ce
also provided in a Model 165 II.) The clock comparator provides a means
of causing an external interruption when the time of day clock has
passed a time specified by a program. This feature can be used to
initiate an action, terminate an operation, or inspect an activity, for
example, at specific clock times during system operation.

The clock comparator has the same format as the time of day clock and
is set to zero during initial program reset. The SET CLOCK COMPARATOR
privileged instruction is provided to place a value that represents a
time of day in the clock comparator. When clock comparator
interruptions are specified via the external interruption summary :mask
bit in the current PSW and t~he clock comparator subclass mask bit in
control register 0, an external interruption occurs when the time of day
clock value is greater than the clock comparator value. Bits 0 to 51 of
the time of day clock and the clock comparator are compared. If clock
comparator interruptions are masked when this condition occurs, the
interruption remains pending only as long as the time of day clock value
remains higher than the value in the clock comparator. The STORE CLOCK
COMPARA1UR privileged instruction can be used to obtain the current
value of the clock comparator.

The use of a clock comparator to cause an interruption when a
specified time is passed, instead of the interval timer at location 80,
offers t.wo advantages. First, the time of day clock increments when t~he
system is in the stopped state while the interval timer does not.
Hence, if a system stop occurs during processing and the system is

18 A Guide -to the IBM System/370 Model lE>8

restarted, the clock comparator can still cause an interruption at the
time requested. The interruption caused by the interval timer in such a
situation is late. Second, implementing the time of day clock and the
clock comparator in the same doubleword format eliminates having to
convert doubleword time of day clock units to single-word interval timer
units.

The CPU timer provides a means of causing an external interruption
when an interval of time specified by a program has elapsed. The CPU
timer is implemented as a binary counter with a format identical to that
of the time of day clock; however, bit 0 of the CPU timer is considered
to be a sign. The CPU timer has a maximum time period half as large as
that of the time of day clock and the same resolution of one
microsecond. When both the CPU timer and the time of day clock are
running, the stepping rates of the two are synchronized so that they are
stepped at exactly the same rate.

The CPU timer is set to zero at initial program reset and the SET CPU
TIMER privileged instruction is provided to place an interval of time in
the CPU timer. The STORE CPU TIMER privileged instruction can be used
to obtain the current CPU timer value. The CPU timer decrements every
microsecond. If the external interruption summary mask bit in the
current PSW and the CPU timer subclass mask bit in control register 0
are on, an external interruption occurs whenever the CPU timer value is
negative (not just when the timer goes from positive to negative),
indicating that the time interval has elapsed. The CPU timer decrements
when the CPU is executing instructions (including instruction retry
operations) and while the CPU is in the wait state. It is not
decremented when the system is in the stopped state .•

While providing essentially the same function as the interval timer
at location 80, the CPU timer provides advantages over the interval
timer as follows: Task processing intervals of less than 3.3
milliseconds are accurately measured because of the one microsecond
resolution of the CPU timer. A pending CPU timer interruption is reset
when a SET CPU TIMER instruction is issued to set a positive value in
the CPU timer, eliminating the need to take an interruption in order to
reset the CPU timer, as is required for the interval timer.

In addition, the amount of timing facilities processing required
during a task switch can be reduced. This can result from the fact that
the format of the time of day clock and the CPU timer are the same.
Conversion of doubleword time of day clock values to single-word
interval timer values is eliminated, and timer queues can be structured
in such a way that little of the processing currently required during a
task switch, when the interval timer is used, is necessary.

RELIABILITY, AVAILABILITY, AND SERVICEABILITY FEATURES

The following hardware RAS features implemented in the Model 168 are
functionally identical to those provided in the Model 165:

• Automatic retry of most failing CPU operations by hardware (a few
instructions are retried on a Model 165 that are not retried on a
Model 168)

• ECC checking on processor storage to correct all single-bit and
detect all double-bit errors. However, in a Model 168, machine
check interruptions after ECC corrections are disabled during a
system reset (that is, nonrecording mode is in effect). If machine
check interruptions are to occur after ECC corrections, the DIAGNOSE
instruction must be issued to enable full recording mode (and the
recovery mask bit must be turned on). In the Model 165 (and 165 II),
a system reset enables the CPU for machine check interruptions

A Guide to the IBM Systernl370 Model 168 19

after EOC corrections.

• I/O operation retry facilities, including the storing of channlel
retry data during an I/O interruption that results from an error,
and channe l/control unit command retry procedures to correct certa in
failing I/O operations

Implementation of machine check interruption facilities is expanded
in the Model 168 to provide more definitive logout information when a
machine check interruption is taken, and new buffer row deletion and
translation lookaside buffer deletion functions are implemented.
Machine check interruption facilities are the same in Models 168 and 1.65
except for the following (which als 0 apply to a Model 165 II excep·t for
the warning interruption):

20

• The instruction processing damage subclass of machine check
interruption, not implemented in the Model 165, is implemented in
the Model 168. Instruction processing damag.e is indicated in -the
machine check code (shown in Figure 20.10.4) when a CPU error occurs
that is not retryable or that was unsuccessfully retried, unless an
LPSW instruction or an interruption was in process at the time of
the failure or the failure was a hang detect. In these cases,
system damage is indicated. In the Model 165, system damage i:8
indicated for all CPU and storage errors that cannot be retried or
that are unsuccessfully retried. Implementation of the instru.ction
processing damage subclass in the Model 168 is designed to ide:ntify
errors that can be associated with a specific task so that only that
task need be abnormally terminated. Code is included in the Model
165 MCH routine that attempts, when a system damage error is
indicated, to distinguish system damage from damage that can be
associated with a task. This code is not required for the Model
168.

• Whenever a machine check interruption is taken to record informati.on
about a correctable or an uncorrectable processor storage error, t~hE~
failing processor storage address is placed in locations 248-251.
The machine check code indicates the type of processor storage error
and whether the stored failing storage address is valid.

• In the Model 168, each block in the high-speed buffer has a delete
bit associated with it in the address array for the.buffer, as in
the Model 165. However, in the Model 168 each row within the buffer
also has a row delete trigger associated with it. (There are four
rows in the 8K buffer and eight rows in the 16K buffer, as shown
later in Figure 20.15.2.) Whenever certain buffer errors occur and
the Model 168 CPU is enabled for machine check interruptions,
hardware determines the buffer row in which the error occurred. 'Jlhe
row delete trigger is turned on for that row. This indicates ·that.
the buffer row is disabled and that the CPU can no longer fetch data
from or store data in the deleted buffer row. The machine check
code stored during the interruption that occurs after a buffer ro~r
is deleted indicates a degradation condition.

The mode bit implemented in the Model 165 that can be set by a
DIAGNOSE instruction to cause the entire buffer to be disabled when
a machine check occurs is not implemented in the Model 168. The
other buffer delete mode bit in the Model 165 that causes the entire
buffer to be deleted whEm a machine check occurs and the bit is on
is implemented in the Model 168. However, the Model 168 contains a
mode bit that can be set: to cause the buffer row deletion mechanism
to be disabled. This selective buffer deletion facility allows only
o:ne-quarter of an 8K buffer or one-eighth of a 16K buffer to be
automatically disabled by hardware at. the time certain buffer errors
occur and avoids total buffer disabling after an error.

A Guide to the IBM System/370 Model 168

0
en

Bit 0

Bit

o
1

2
4

5
7
8

0
Q..

Fixed Logout Area Locations 232-239

0-8 16 -18
20 - 31, 46, 47 48-63

Machine Check Storage
Validity Bits CPU Extended Log Length

Types Error

Q..

0 0 0
::>

0 0 0 0
w w w 0 w w w w Zero if no logout en 0 0 en (!) en w w w en en en en a: ::> ::> 3: ::> ~ u ::> ::> ::> ::> or 1416 bytes en U w 0 en en ~ Z Z Z U Z Z Z z
::> ::> ::>' « ::> ::> ::> ::>

a:l

2 3 4 5 6 7 8 9-14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 3132-454647 48 63

Interrupt Type Bit Error Bit Valid Fixed Area Data

SO - System Damage 15 Delayed Interruption 20-23 Machine Check Old PSW (48-55)
PO - Instruction 16 Storage 20AMWP

Processing Damage Error 21 Masks and Protect Key
SR - System Recovery Uncorrected 22 Program Mask. and Condition Code
CD - Timing Facilities 17 Storage 23 I nstruction Address

Damage Error 24 Failing Storage Address
ED - External Damage Corrected 27 Floating Point Registers (352-383)
DG - Degradation 18 Protection 28 General Registers (384-447)
WI - Warning Key 29 Control Registers (448-511)

Error 30 CPU Extended Logout
31 Storage (Validity of storage being

processed by instructions when
interruption occurred.)

46 CPU Timer Value
47 Clock Comparator Value

Figure 20.10.4. Model 168 machine check code

22

• A translation lookaside buffer (TLB) deletion function is
implemented and is discussed in Section 30: 10.

• The timE~ of day clock damage interruption, maskable by the ext.ernal
ma sk bit and PSW bit 13 ~ is expanded to include clock comparat.or and
CPU tiIllE!r errors. Its name is changed to "Timing Facilities
Damage". When a STORE CLOCK COMPARATOR or a STORE CPU TIMER
instruction is issued and the addressed timing facility has an error
or when the CPU timer or the clock comparator develops an error, a
timing 1:acilities damage interruption occurs if the timing I

facili ti.es damage mask bit is a one.

• Whenever a machine check interruption occurs in a Model 168, t,he
general and floating-point registers are validated, the current
value of the CPU timer is stored in locations 216 to 223, and the
current value of the clock comparator is stored in locations 224 to
231 during the interruption. Bits 46 and 47 of the machine check
code, shown in Figure 20.10.4, are used to indicate whether these
values ~1ere stored correctly. Whenever a machine check interruption
occurs as a result of a processor storage error, the address of the
error location is stored in locations 249 to 251. Bit 24 of t~he
machine check code is uBed to indicate whether the value was
correctly stored.

• The SiZE! of the CPU extended logout area in the Model 168 is 1416
bytes instead of 992 by·tes as in the Model 165 in order to log
addi ti ona I status information when a machine check interruption
occurs.

• Machine check code bits 22, 23, and 31 are set to zero only when an
instruct.ion processing damage or system damage type of machine check
interruption occurs.

• A warning machine check interruption. is implemented in Model 168
sys·tems wi th the optional Power Warning feature installed. This
field-installable feature can be used in Model 168 systems that have
o. E. M. 11ni nterruptable power supplies (UPS) '. A UPS is des ignE~ b)
protect a system from power line disturbance by providing auxiliary
power for a specified interval of time during a power reduction or
outage. A system can be fully or partially protected. Full
protection involves supplying a UPS for all system components.. This
support provides continuous system operation for a specified
interval of time during a power line disturbance. Partial
pro"tection involves supplying a UPS for a critical subset of sysbem
components, namely, the 3168 Processing Unit, 3066 Model 2 System
Console;, 3067 Model 2 Power and Coolant Distribution Unit, all
standalone channels, and all the control units attached to onE~
standalone channel. The Power Warni.ng feature can be used wit,h
partially and fully protected Model 168 systems .•

A UPS for a Model 168 must generate a power warning Signal when an
undervoltage condition of 18% (±2%) is detected. A Model 168 CPU
with the Power Warning feature recognizes this signal. If bi1: 13 in
the current PSW and the warning submask (bit 7 in control register
14) are both on, a warning repress ible machine check interruption
occurs. Bit 8 in the stored machine check interruption code will be
on ·to indicate a warning condition. The machine check handler (MCH)
rou·tine is given CPU control to process the interruption. If either
mask bit is off, the warning interruption remains pending.

The Power Warning feature is designed to enable a Model 168 system
to terminate operations in an orderly manner when a power line
dis·turbance or power shutdown occurs. When a warning interruption
occurs, a determination can be made as to whether the power line
dis·turbance is transient. Operation of a fully protected sys1:em

A Guide to the IDM System/370 Model 168

need not be terminated for a transient disturbance of a short enough
duration. If system termination is required, a complete processor
storage dump can be taken first. This enables processor storage to
be restored when a system restart is performed at a later time.

Model 168 recovery management routines (machine check and channel
check handlers) that operate in BC mode are included in OS MFT and OS
MVT as of Release 21.6. They provide recovery functions similar to
those provided for the Model 165 and support of new Model 168 machine
check facilities, except for MFT, which does not' support the Power
Warning feature. An instruction processing damage interruption is
recognized in the Model 168, and recovery management support (RMS)
attempts to identify the affected task and abnormally terminate it.
When a system damage error occurs, Model 168 operations are terminated
without an attempt to refresh damaged control program areas. Model 168
RMS also recognizes a degradation interruption that indicates buffer row
or TLB deletion by the hardware, and the operator is notified 0 f this
hardware action.

These recovery routines are also included in OS/VS1 and OS/VS2 and
are modified to operate correctly when the Model 168 is operating in EC
and dynamic address translation modes. A discussion of how these
recovery routines differ from those provided for BC mode operations is
contained in each optional programming systems supplement.

The same remote error analysis facility is provided for the Model 168
(Modell) as for the Model 165. That is, optionally the 2955 Remote
Analysis Unit can be attached to a channel in the Model 168
configuration. The 2955 can be connected to the REI'AIN/370 network in
Raleigh, North Carolina via a communication line. Using an OLT that
runs under OLTEP and OLTSEP control, SYS1.LOGREC data can be sent via
the 2955 to Raleigh for transmittal to the Large System Support Group in
Poughkeepsie for problem analysis.

20:15 STORAGE

PROCESSOR (MAIN) STORAGE

Like the Model 165, the Model 168 has a two-level storage system in
which large high-speed processor storage backs up small, higher-speed
buffer storage. A maximum of 8192K of processor storage can be
installed in a Model 168. The Model 165 can have a maximum of 3072K.
Processor storage is available for the Model 168 in 1024K increments as
follows:

Model caEacity

J 1024K
K 2048K

KJ 3072K
L 4096K

LJ 5120K
LK 6144K

LKJ 7168K
M 8192K

Processor storage in a Model 168 is four-way doubleword interleaved,
as it is in a Model 165. The processor storage installed in a Model 168
is divided into four logical storages, each of which can operate
independently from the other three logical storages. Logical storages
can be selected at 80 nanosecond intervals. The data path to and from
processor storage is eight bytes wide. Consecutively addressed
doublewords are spread across logical storages, as shown in Figure

A Guide to the IBM System/370 Model 168 23

20.15.1, so that access to four doublewords can be overlapped. The
processor st.orage control function provides the interface to the logical
storages.

As in a Nlodel 165, processor storage in a Model 168 can be accE~ssed
concurrently by any combination of one or more channels and the CPU for
a total of four unique logical storage requests. When simul taneous
requests folC the same logical storage are received, the storage c()ntrol
unit schedules the requests according to a priority scheme. This
priority is the same in Models 168 and 165. That is, the channels have
priority over the CPU and the priority a.mong channels is definablE~ at
channel installation time.

Processor St.orage Reconfiquration

As shown in Figure 20.15.1, the processor storage present in the
Model 168 is divided into from one to eight segments of 1024K byt~~s
each. Segment numbers 0 to 7 are used. If an uncorrectable proc«~ssor
storage error occurs, the segment containing the malfunctioning
location(s) can be manually configured out of the system by the operator.

The configuration panel on the 3066 Model 2 System Console is used to
enable stora.ge segments, assign a one-megabyte range of addresses to
each enabled segment, and establish four-way interleaving or seria.l
operations.. The configuration panel is also shown in Figure 20.15.1.
The ope:rator selects a configuration by inserting pins in the
appropriate hubs. The storage configuration indicated by the pan4~ is
made effective during a system reset. If necessary, the storage
configuration that is actually enabled can be displayed on the indica·tor
viewer (configuration registers in Image CO).

The absence of a pin in the interleave mode hub selects four-wClY
interleaving. When a pin is inserted in this hub, serial
(noninterleaved) operations are selected. The presence of a pin in an
enable hub indicates the associated segment is to be includ~d in the
acti ve storage configuration. The three CPU address bit hubs for a
segment are used to indicate the range of processor storage addresses
that are to be assigned to the segment. ShON'n below are the pin
combinations that are required to select the various ranges of
addresses. A zero in an address bit hub column indicates the absence of
a pin. A one indicates the presence of a pin.

Address Bit Hub

Address Range 9 10 11

0-1024K 0 0 0
1024K-2048K 0 0 1
2048K-3072 K 0 1 0
3072K-4096K 0 1 1
4096K-5120K 1 0 0
5120K-6144K 1 0 1
6144K-7168K 1 1 0
7168K-8192K 1 1 1

24 A Guide to the IBM System/370 Model 168

Storage
segment 0
number

Logical
storage

3

4

6

DWO

DW4

o

STG
SEG

8-Megabyte Processor Storage

DW1 DW2 DW3

DW5 DW6 DW7 1024K

1024K

1024K

1024K

1024K

1024K

1024K

1024K

2 3

Configuration Panel

CPU ADR BITS

'" ENABLE 9 10 11

0 0 0 0 •
1 0 0 0 0

2 0 0 • •
3 0 • 0 •
4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0
INTERLEAVE MODE

0
O"4W

• "SERIAL

Figure 20.15.1. Model 168 processor storage organization and configuration
panel

The storage configuration selected by the control panel shown in
Figure 20.15.1 is the following:

• Segments 0, 2, and 3 are enabled and all other segments are disabled.

• segment 0 is assigned addresses 0 to 1024K, segment 2 is assigned
addresses 1024K to 2048K, and segment 3 is assigned addresses 2048K
to 3072K.

A Guide to the IBM Systeml370 Model 168 25

• Four-way interleaving is enabled.

storage ripple functions are provided in the Model 168 for read-only
control storage, writable control storage, local storage, and processor
storage, as for the Model 165. The inline ripple facility of the Model
165 is not implemented in 'the Model 168.

HIGH-SPEED BUFFER STORAGE

As in the Model 165, an 8K buffer is Btandard in the Model 168
(Modell) and installation of the optional Buffer Expansion feature
permits inclusion of an additional 8K of buffer storage. Buffer storage
provides high-speed data access for CPU :Eetches. In a Model 168, as in
a Model 165, the CPU can obtain eight by·tes from the buffer in 160
nanoseconds (two CPU cycles> and a request can be initiated every cycle ..
This is the time between request acceptance and availability of the data
in a CPU register. If the buffer does not contain the data required,
the data must be obtained from processor storage.

Use of the high-speed buffer in Models 168 and 165 is almost
identical. (This description of the buffer in Model 1 of the Model 168
also applies to the Model 165 II.) When a data fetch request is made by
the CPU, a aletermination is made of whether the requested data is in t:he
high-speed buffer by the in1:errogation of the address array of the
buffer' s contents. If the data requested is present in the buffer, i1:
is sent directly to the CPU without a processor storage reference. If
the requested data is not currently in the buffer, a processor storage
fetch is mad.e and the data obtained is sent to the CPU. The data is
also assigned a buffer location and storied in the buffer. When data is
stored by the CPU, both the buffer and processor storage are updated if
the contents of the processor storage location being altered are
currently bedng maintained in the buffer.

The channels never acceSB the buffer directly. They read into and
write from processor storage using a eight-byte-wide path between the
CPU and processor storage that bypasses 'the hIffer. When a channe!l
stores data in processor storage, the address array is inspected. If
the data from the affected processor storage address is being maintained
in the buffer, appropriate bits are set in the address array to indica te
that this buffer data is no longer valid. In a Model 165, the buffer is
updated inst.ead of invalidated when a channel stores data in a processor
storage location whose contents are currently in the buffer.

As in a Model 165, the entire buffer in a Model 168 can be disabled
manually by a system console switch. When the buffer is disabled, all
CPU fetches are made directly to processor storage and effective systE~m
execution speed is reduced. Selective buffer disabling by row performed
by hard"iare,. as described previously, is also provided for the buffer in
the Model 168.

The 8K and 16K buffers are sh<1Nn in Figure 20.15.2 together wit:h
their address arrays. The 8K buffer is organized in the same way in
Models 168 and 165. The 8K buffer contains 64 columns of 128 bytes
each. Every buffer column is subdivided into four blocks. A block iB
32 bytes and can contain 32 consecutive bytes from processor storage
that are on a 32-byte bcnndary. The 8K mffer can contain a maximum of
256 different blocks of processor storage data (four blocks per column
times 6LJ columns). A valid trigger is associated with each buffer block
and is set t:o indicate' whether the block contains valid data. All valid
triggers ar€~ set off during an initial program reset. There are four
rows in the 8K buffer. '!he first row consists of block 0 of each column
(64 blocks). The last row consists of block 3 of each column.

26 A Guide to the IBM Systeml370 Model 168

Address Array - 8 K Buffer Address Array - 16K Buffer

" " ""
Block 0 13-bit

..
address

"

..
, Block 0

13-bit
....

address

""

"
,

""

2 2

"
,

""
3 3

... .. ,,,-..
Column 0 "

63 4 ,,-
256 block address registers

5
,,"

6

""
7

",
Column 0

....
63

512 block address registers

Buffer Storage - 8 K Buffer Storage - 16K

" " "
Block 0 32 bytes Block 0 32 bytes

" " ""
, ,

""
2 2 , ,

""
3 3

" " "" ..
Column 0

..
63

4

256 blocks "
5

"
6

""
7

"" Column 0
....

63

512 blocks

Processor Storage-2048K

Block 0 32 bytes Addresses 0 - 2047

Addresses 2048 - 4095

2

....-. I-- - --. ~""'--

1021

1022

1023

Column 0 63

Figure 20.15.2. 8K and 16K buffer organization

A Guide to the IBM System/370 Model 168 27

The organization of the 16K buffer in Models 168 and 165 is slightly
different. In the Model 168, the 16K buffer still contains 64 columns
but each column has eight blocks instead of four. In a Model 165, the
16K buffer has 128 columns of four blocks each,. The approach taken in
the Model 168 enables bits 21 to 31 of the storage address in an
instruct,ion to be used to address the index array for the buffer whether
the storage address is virtual or real. This enables interrogation of
the index array to be performed simultaneously with interrogation of t,he
translation lookaside buffel:, which is part of the Dynamic Address
Translation Facility. (See Section 30:10 for more details.) There are
eight rows in the 16K buffe:r::'. The first row consists of block 0 of each
column (64 blocks). The last row consists of block 7 of each column.·

Processor storage is logically divided into the same number of
columns as buffer storage, which is always 64 in the Model 168. While
there are four or eight blocks in a buffer column, depending on buffer
size, the number of blocks in a processor storage column varies with t.he
size of processor storage. When buffer storage is assigned, bits 21-26
of the processor storage address determine which one of the 64 columns
in buffer storage is to be used. The organization of 2048K bytes of
processor storage is shown in Figure 20.15.2,. Any of the 1024 blocks in
a given processor storage column can be placed in anyone of the four
(8K buffer) or eight (16K buffer) blocks in a corresponding buffer
column.

Figure 20.15.2 also shows the organization of the address array for
the 8K and the 16K buffer. The address array contains the processor
storage addresses of the dat:a that is currently in the buffer. A least­
recently-used algorithm, similar to that used in the Model 165, is
implemented in the Model 168 to determine which block within a buffer
column is to be assigned when data is placed in the buffer.

Buffer and processor storage components and controls in the Model 168
are shown in Figure 20,.15.3.

28 A Guide to the IBM System/370 Mode!l 168

Channel h
~I b

Channel I+--

Channel +--

Channel +--

Figure 20.15.3.

..... -.,.
... --..

Central Processing Unit

Processor Storage

Storage Arrays

Logical
storage

Logical
storage

Logical
storage

Logical
storage

o 2 3

~\I/-
Channel Storage control Storage
signal and ECC logic .. protect
conversion keys

~ .. n ...

,------... !'" Processor Storage Control
Function

"" .,
Channel
buffers
and
control

Buffer
inval­
idate
address ..
stack t-+-..... M

Dynamic address
translation
hardware and
controls

Instruction unit

High-speed
buffer
address array
buffer control

Translation
lookaside
buffer

...

.. , ..,
Execution unit

Model 168 components and controls

A Guide to the IBM System/370 Model 168 29

The numbe~r and types of channels that can be attached to Models 16S
and 168 are the same. The capability of attaching up to seven
standalone channels to the Model 168 is standard. Any combination of
one or two 2.870 Multiplexer I' up to six 2860 Selector, and up to six 2880
Block Multiplexer Channels can be attached to a Model 168, up to the
limi t of seven channels. Installation of the optional Extended Channels
feature permits attachment of a maxiIlUm of twelve channels. Any
combination of one (with address 0) or t·wo (with an address from 1 to 6)
2870s, six 2860s (with addresses 1 through 6), and eleven 2880s (with
addresses 1 through 11), up to the limit of twelve, can be installed. A
maximum of seven channel frames (for a maximum of twelve channels) can
be attached to the Model 168.

As for a Model 165 channel configuration, the addresses and
priorities of the channels present in a Model 168 configuration are
established at channel installation time as indicated by the user,
within the restraints specified for the Model 168. The channel
buffering scheme implemented in the storage control unit is the same for
Models 168 and 165.

The 2870" 2860, and 2880 channels that attach to the Model 168 are
functionally and physically identical to those that attach to a Model
165. The salme attachment feature that must be installed on a 2870 or a
2860 channel in order to attach the channel to a Model 165 must be!
installed on 2870 and 2860 channels that are to be attached to a
Model 168.

The 2880 has one shared subchannel and 56 nonshared subchannels. The
shared subchannel always has 200 device addresses associated with it
plus one additional address for each nonshared subchannel not plugged
during installation. The Extended Unit Control Words feature can be
installed on a 2880 attached to a Model 168 to increase the number of
nonshared subchannels in the 2880 from 56 to 256. This feature is
mutually exclusive with the Two-Byte Interface feature for 2880
channels.

While thE~ data rates of channels that attach to the Model 168 are the
same as for the Model 165, the maximum aggregate data rate that a Model
168 can sus1:ain with minimal overrun exposure is significantly higher
than that of the Model 165. The Model 168 can also have more high-spE~ed
I/O devices., such as the 2305, operating concurrently. The increased
data rate is made possible by the use of a channel dual I/O bus to
transfer dat.a between the channels and the storage control unit so that
the faster cycle time of Model 168 processor storage can be utilized to
advantage.

The channel dual I/O bus in the Model 168 consists of bus A and bus
B. Each bUB provides a path between from one to six channels and a
register in the storage con·trol unit. A channel is connected to one bus
or the other (not to both). Data can be transferred simultaneously on
the two busE~s. This facili·ty is used for input operations to transfer
simultaneously data from two different channels to' registers in tbe
storage control unit.

A Model 168 without the :E:xtended Channels feature can have three
channels at1:ached to bus A and four channels attached to bus B. When
the Extended Channels feature is installed, a maximum of six channels
can be attached to each bus. The channel priority assigned to a (:hannel
determines 1:he bus to which it must be attached. .A channel assigned
priority 1,2,3,9, A(10), or B(11) must be attached to the A bus. A
channel assigned priority 4, 5, 6, 7, C(12), or 0(13) must be attached
to the :a bus. Channels within the same channel frame must be attached
to the same bus. Channels with the highest speed devices attached

30 A Guide to the IBM System/370 ModE!l 1168

should be positioned closest to the Model 168 processor on the bus to
which they are attached. Channel priority is established by plugging
jumpers on matrix cards in the storage control unit.

A 2780 channel without a selector subchannel or with 1 or 2 selector
subschannels should be given as high a channel priority as possible. A
2780 channel with more than two selector subchannels should be assigned
priority position 1, 2, 3, or 4.

An aggregate data rate of 8.5 MB/sec can be sustained on each bus,
which provides a total maximum aggregate data rate of approximately 17
MB/sec for the system. As a general rule, devices with the highest data
rates should be attached to the highest priority channels. Table
20.20.1 indicates the channel priorities that the highest speed
System/370 I/O devices require. That is, each I/O device in the table
can be assigned only those priorities indicated in its column. Each
column also indicates the maximum number of channels to which the device
can be attached (four for the 2305 Modell, six for the 2305 Model 2,
etc). Permissible I/O device configurations are also shown by table
20.20.1, which in turn indicates the I/O device configurations that can
operate concurrently. In general, any other device type with similar
characteristics and the same or a slower data rate than the listed
device can also be assigned the indicated channel priority. Negligible
or no overrun exposure exists in a Model 168 system when the guidelines
indicated in Table 20.20.1 are followed.

Table 20.20.1. Permissible configurations and channel priorities for
highest speed System/370 I/O devices

Device Type

3330-series*
C~n~l 2305 Model 1* 2305 Model 2* 3420 Model 8 3340* 3420 Model 6
Priority 3 MB/sec 1.5 MB/sec 1.25 MB/sec .8 MB/sec .8 ~/~c

1 X X X X X

2 X X X X X

3 X X X X

4 X X X X X

5 X X X X X

6 X X X X

7 X X X

9 X X X

A X* X X

B X X

C X

D X

*Attaches via 2880 channel only

The presence of the channel dual I/O bus in the Model 168 permits
greater flexibility in the physical layout of Model 168 components since
the channel frames are attached to two separate cable sets instead of

A Guide to the IBM System/370 Model 168 31

only one, as for a Model 165. Greater flexibil ity in the cable lengths
between channel frames at'tached to the same I/O bus is also provided by
the Model 168.

20: 25 SYSTEM CONSOLE

The 3066 Model 2 System Console for the Model 168 has the same
features as the 3066 Model 1 System Console for the Model 165: a
cathode ray tube and keyboard, a microfiche indicator viewer, a
microfiche d.ocument viewer, a processor storage configuration panel, a
system activity monitor, and a device for loading microcode and
diagnostics. In addition, 1:.he store sta·tus function is implemented.
(The store status function is implemented in a Model 165 II as well.)

The operator can cause the contents of the following to be placed in
processor st.orage by pressing the new store status button on the control
panel:

CPU timer - locations 216-223
Clock comparator - locations 224-231
Current PSW - locations 256-263
Floating-point registers - locations 352-383
General registers - loca1:.ions 384-447
Control I:egisters - locations 448-511

In addi ti.on to the store status button, the control panel on the 3066
Model 2 has system clear and cooling reset alarm pushbuttons, and a
switch associated with the dynamic address translation feature.

20:30 ~TANDARD AND OPTIONAl:! SYSTEM FEATURES

STANDARD FEATURES

32

S1:.andard features for the System/370 Model 168 (Modell) are:

• BC and EC mode of operation
• Instruct:ion set that includes binary, decimal, floating-point, and

extended precision floa·ting-point arithmetic, and System/370
instruct.ions. Standard System/370 instructions for the Model 168
are::

*CLEAR I/O
C OMPAR1~ A ND SWAP
COMPAR]~ DOUBLE AND SWAP
COMPAR1~ LOGICAL CHARACTERS UNDER MASK
COMPAR1!; LOGICAL LONG
INSERT CHARACTERS UNDER MASK

*INSERT PSW KEY
*LOAD CONl'ROL
*LOAD R]!:AL ADDRESS

MONITOR CALL
MOVE LONG

*PURGE TLB
*RESET HEFERENCE BIT
*SET CL(X:K
*SET CLOCK COMPARATOR
*SET CPU TIMER
*SET PSW KEY FROM ADDRESS

*Pri vi IE~ged instruction

A Guide to the IBM System/370 Modf~l 168

SHIFT AND ROUND DECIMAL
*START I/O FAST RELEASE
*STORE CHANNEL ID

STORE CHARACTERS UNDER MASK
STORE CLOCK

*STORE CLOCK COMPARATOR
*STORE CONTROL
*STORE CPU ID
*STORECPU TIMER
*STORE THEN AND SYSTEM MASK
*STORE THEN OR SYSTEM MASK

*Privileged instruction

• Dynamic Address Translation
• Reference and Change Recording
• Instruction retry
• Interval timer (3.3 ms resolution>
• Time of day clock
• Clock comparator and CPU timer
• Monitoring feature
• Program Event Recording
• Program interruption for SSM instruction
• Expanded machine check interruption class
• ECC on processor storage
• Byte-oriented operands
• Store and fetch protection
• High-speed buffer storage - 8K bytes
• Attachment for up to seven channels
• Channel dual I/O bus
• Channel retry data in extended channel logout area
• Writable and read~only control storage
• Store status function
• Direct Control

OPTIONAL FEATURES

Optional features for the System/370 Model 168 (Modell), which can be
field installed unless indicated otherwise, are:

• 3066 Model 2 System Console (required in all configurations>
• High-Speed Multiply**
• Buffer Expansion for inclusion of a 16K buffer
• 7070/7074 Compatibility**
• 7080 Compatibility**
• 709/7090/7094/709411 Compatibility**
• 2870 Byte Multiplexer Channels, 2860 Selector Channels, and 2880

Block Multiplexer Channels
• Channel Indirect Data Addressing for 2870, 2860, and 2880 channels

(required when OS/VS1, OS/VS2, or VM/370 is used)
• Extended Channels (for up to twelve channels>
• Channel-to-Channel Adapter on 2860 Channels
• Extended Unit Control Words on 2880 channels (mutually exclusive

with the TWO-Byte Interface feature)
• Integrated Storage Controls
• Two-Channel Switch for Integrated Storage Controls
• Staging Adapter for Integrated Storage Controls
• Power Warning
• 2955 Remote Analysis unit
• Multiprocessing (3068 Multisystem Unit>

**Not recommended for field installation

Note: Compatibility features are mutually exclusive

A Guide to the IBM System/370 Model 168 33

SECTION 30: VIRTUAL STORAG~ AND DYNAMIC ADDRESS TRANSLATION

The firs1: subsection, 30 :05, discusses the needs that virtual stora.ge
and dynamic address transla·tion in System/370 are deSigned to address.
No previous understanding of these facilities is assumed. In this
discussion, an address spac~ is defined as a consecutive set of
addresses that can be used in programs to reference data and
instruc·tionB. System operation in IBM- supplied virtual storage
environments is explained conceptually, without use of all the
terminology new to such an environment.

The general advantages of IBM-supplied virtual storage operating
systems are presented also. Included in this subsection are those that
apply to OS/VS1 and OS/VS2. Additional advantages of virtual storage
that are spE~cific to a particular IBM-supplied operating system are
discussed in the optional supplement for that operating system.

The last portion of subsection 30:05 defines the terminology
associa·ted lii th virtual storage and dynamic address transl at ion
hardware. ~rhe terminology included is t.ha t common to the four I:m~­
supplied programming systems that support a virtual storage environment
for System/370. However, specific references to DOS/vS are not made
where a difference between DOS and OS exists, since DOS/VS does not
support the Model 168. Terms unique to a particular programming sysbem
are defined in the optional supplement t.hat des cribes that programming
system.

Subsection 30 :10 describes in detail the implementation and opE~ration
of dynamic address translation and channel indirect data addressing
hardware in the Model 168 (Models 1 and 3). Other hardware items
associated 'flith dynamic address translation, such as reference and
change recording, are discussed as well.

The last subsection, 30 :15, discusses the new factors that affect
system performance in a virtual storage environment. The information
presented is related to efficient installation and utilization of an
IBM-supplied virtual storage operating system.

The two optional programming systems supplements (Sections 90 and
100) for th4~ virtual storage operating systems for the Model 168 (OS/VSl
and OS/VS2 Release 1) assume knowledge of the entire contents of Section
30. The optional supplement for VM/370 (Section 110) assumes knowledge
of subsections 30:05 and 30:10 only, since performance in a virtual
machine environment is discussed in the VM/370 supplement. This entire
section applies to the Model 165 II as well as to the Model 168, except
where differences are noted.

30:05 VIRTUAL STORAGE CONCEPTS, ADVANTAGES, AND TERMINOLOGY

THE NEED FOR LARGER ADDRESS SPACE

The past and present rapid growth in the number and types of data
processing applications bei.ng installed has led to an increasing demand
for more freedom to design applications without being concerned about.,
or functionally constrained by, the physical characteristics of a
particular computer system-·-system architecture, 1)0 device types, and
processor storage size. As program design and implementation become
easier, they can enable more rapid installation of applications, so that
the benefits of data processing can be achieved sooner.

34 A Guide to the IBM System/370 Model 168

The design of Systeml360 and OS MFT and MVT allowed programmers to be
less concerned than before about specific CPU architecture and I/O
device types when designing and implementing applications by (1)
providing a compatible set of CPU models ranging in size from small to
large scale, (2) providing a variety of high-level languages with
greatly expanded capabilities, including a new language (PL/I), (3)
providing comprehensive data management functions, including support of
I/O device independence where data organization and the physical
characteristics of devices perroitted, and (4) supporting dynamic
allocation of system resources (channels, I/O devices, direct access
space, and processor storage).

While System/360 and OS represented major steps toward giving
programmers a larger measure of system configuration independence,
constraints that resulted from the necessity to design applications to
fit within the amount of processor storage available still existed. In
addition, although System/360 models provided more and less costly
processor storage than was previously available, increasingly larger
amounts of processor storage began to be required as the use of high­
level languages increased, the usage and level of multiprogramming
increased, the functions supported by operating system control programs
expanded, and applications that require relatively larger amounts of
processor storage (such as teleprocessing and data base) were designed
and installed more frequently.

The requirement for more processor storage is still growing. The new
applications being developed and installed tend to have larger and
larger storage design points in order to provide the functions desired .•
More processor storage is also required for I/O buffer areas to achieve
maximum capaci ty and performance for sequential operations using new
System/370 direct access devices with significantly larger track
capacities. Larger blocking of tape records, ~hich requires larger I/O
buffers, also results in increased tape reel capacity and decreased tape
processing time. As a result, System/370 models provide significantly
more processor storage than their predecessor System/360 models and
offer it for a lower cost.

The availability of more processor storage, however, has not relieved
all the constraints associated with processor storage. Applications
still must be tailored to the amount of processor storage actually
available in a given system even though storage design points (partition
and region sizes) can be larger than they were previously.

consider the following situations that can occur in installations:

1. An application is designed to operate in a SOK processor storage
area that is adequate to handle current processing needs and that
provides room for some expansion. Some time after the
application is installed, however, maintenance changes and the
addition of new functions cause one of the programs in the
application to require 51K and another to require S2K.
Installation of the next processor storage increment cannot be
justified on the basis of these two programs, so time must be
spent restructuring and retesting the programs to fit within SOK.

2. An existing application has programs with a planned overlay
structure. The volume of trans actions processed by these
programs bas doubled and .better performance is now required.
Additional processor storage is installed. However, the overlay
programs cannot automatically use the additional storage.
Therefore, reworking of the overlay programs is .required to take
them out of planned overlay structure and, thereby, achieve the
better performance desired.

A Guide to the IBM System/370 Model 168 35

36

3. A low-volume, terminal-oriented, simple inquiry program that will
opera.te for three hours a day is ·to be installed. If the program
is written without any type of overlay structure, it will require
60K of processor sto]~age to handle all the various types of
inquiries. However, because of a 10fli inquiry rate, only 81< to
12K of the total program will be active at any given time. In
order to justify its operational cost, considerable additional
program development 1:.ime is spent designing the inquiry program
to operate with a dynamic overlay structure so that only 12K of
processor storage is required for its execution.

4" A multiprogramming installation has a daily workload consisting
primarily of long-running jom. There are also certain jobs that
require a relatively small amount of time to execute. The tiJllE~s
at which these jobs must be executed is unpredictable; however.,
when they are to be run, they have a high completion priori.ty.
While! it is desirablE:! to be able ·to initiate these high-priori1::.y
jobs as soon as the request to execute them is received, this
cannot be done because long-running jobs are usually in
operation. Hence, a certain time of day is established for
initiating high-prio]~ity jobs and the turnaround time for t.hesE~
jobs is considerably longer than is desired.

5. A series of new applications are to be installed that require
addit.ional computing speed and twice the amount of processor
stora.ge available in the existing system. The new appl icat~ion
programs have been dC3signed and are being tested on the current.ly
installed system until the new one is delivered. However,
because many of the llew application programs have storage design
point:.s that are much larger than ·those of existing applicat:ions,
testing has to be limited to those times when the required amount
of processor storage can be made available. Al though another
smaller-sca.le model is also installed that has time available for
program testing, it cannot be used because it does not have the
amount of processor storage required by the new application
programs. In addition, although the smaller-scale model now
provides ba,ckup for the currently installed larger-scale modell,
the sma lleI'-scale model cannot be used to back up the new system
because of processor storage size limitations.

6. A large terminal-oriented application is to be operative during
one entire shift. During times of peak activity, four times more
processor ~:torage is required than during low-activity periods.
Peak activity is experienced about 20 percent of the time and low
activity about 40 percent. The rest of the time, activity ranges
from low to peak. Allocation of the peak activity processor
storage requirement for the enti.r:'e shift cannot be justifiE~d and
a significclntly smaller storage des ign point is chosen. As a
:result, a dynamic program structure must be used, certain desired
func1:ions are not included in the program, and response times
during pea}: and near-peak activit~y periods are increased above
that originally planned.

In this in8tallation, most of the batched jobs are processed
during the second shift. However, there is also a need to
operate thE! large terminal-oriented application for a few hours
during sec()nd shift. This cannot, be done because the SystE:m does
not have the amount of processor storage required for concurrent
operation ()f the batched jom and the terminal program (which
must have its storage design point amount allocated even though
that amoun1:. of processor storage would not be required during
second shift operations). The large amount of additional
processor Htorage required to operate the terminal program for
only a por1:.ion of the second shift cannot be justified,.

A Guide to the IBM System/370 Model 168

7. An application program with a very large storage design point is
executed only once a day as a batched job. A significant benefit
would result from putting the program online to a few terminals
during the morning hours. HOIrIever, the program continues to be
run as a batched job because it is very large and would be made
larger by putting it online. The large amount of additional
processor storage required to operate the program concurrently
with the existing morning workload cannot be justified.

8. A terminal-based application has been installed on a full
production basis for several months. During this period, the
benefits accrued from the online application have encouraged the
gradual addition of several more terminals, and peak activity is
considerably higher than it was initially. Because growth has
been gradual, much additional programming time (significantly
more than is required to maintain batch-oriented applications)
has to be spent periodically restructuring the terminal-based
application program to handle the increasing volume of activity.

9. An online application is currently active during an entire shift
and operates concurrently with batched jobs. It would be
advantageous to install a second terminal-oriented application
that would operate concurrently with the existing workload during
the entire shift. However, the amount of processor storage that
would have to be dedicated to each online application for the
entire shift in order to handle its peak activity is very large,
and times of peak activity for the two applications do not
completely overlap. Because so much processor storage would be
unused during a large portion of the shift if both online
applications were always active, installation of the second
online application is difficult to justify.

In the situations described, processor storage is a constraining
factor in one way or another and the constraints highlighted can apply
in some degree to all systems regardless of their scale (small,
intermediate, large) or processor storage size. The fact that larger,
less expensive processor storage is now available on Systeml370 models
does not remove these constraints for two major reasons.

First, once a storage design point has been chosen for an
application, whether the design point is relatively large or small, the
application is dependent on that processor storage size for its
operation. The application cannot execute in less than its design point
storage amount, nor can it take advantage of additional available
processor storage without being modified (unless it has been
specifically structured to use additional storage as, for example, are
most IBM-supplied language translators).

Second, although processor storage has become less costly, it still
is a resource that should be used efficiently because of its importance
in the total system operation. Thus, when storage design points are
chosen, tradeoffs among processor storage cost, application function,
and system performance are often made. Making applications fit within
the storage design points selected becomes the responsibility of
application designers and programmers. This situation is made more
difficult by the fact that for many applications an optimum storage
design point cannot be determined until the application is written and
tested using expected transaction volumes.

The significance of processor storage restraints should be evaluated
in light of the following trends evidenced by new types of applications:
(1) the total amount of storage required to support their new facilities
continues to grow larger, (2) the storage they actually require for
operation during their execution is tending to become more variable, and
(3) it is becoming as desirable to install many of these new

A Guide to the IBM Systeml370 Model 168 37

applications on smaller-scale systems with relatively small maximum
processor storage sizes and low volume requirements as it is to install
them on larger-scale systems. Reduction of the constraining factors
currently imposed by processor storage is, therefore, a necessary step
in making ne 1Wi applications easier and less costly to install and
available to a wider range of data processing installations.

Given the existing processor storage restraints on application design
and developm~nt and the storage requirements that are becoming
increasingly more characteristic of many of the new types of
applica tions, it becomes advantageous to allOW' programmers to desiqn and
code applications for a larger address space than they currently have.
'That is, proqrammers should be able to use as much address space as an
,application requires so that special program structures and techniques
are not :required to fit the application into a given storage size.
Programmers Gan then concentrate more on the application and less on the
techniques of programming. In addition, the size of the address space
provided should not be determined by processor storage size, as it is in
OS MFT and MVT, so that the address space can be larger than the
processor storage available.

A larger address space should be provided, therefore, by a mean8
other than making processor storage as large as the address space
desired. This requirement can be satisfied by providing programmers
'Nith an address space (called virtual storage) that is supported using
online direct access storage and dynamic address translation hardware.
This approach also offers the advantage of supporting a larger address
space for a lower cost than if larger processor storage is used, since
d.irect access storage continues to be significantly less expensive per
bit than processor storage. In addition, dynamic address translation
hardware offers functional capabilities that large processor storage
alone cannot provide.

VIRTUAL STORAGE AND DYNAMIC ,ADDRESS TRANSLATION CONCEPTS

Virtual s1torage is an address space the maximum size of which is
determined by the addressing scheme of the computing system that
supports it rather than by the actual number of physical processor
storage 10ca1:.ions present in the computing system. In System/370, for
I~xample, which uses a 24-bit binary address, a virtual storage as large
as 16,777,216 bytes can be supported. When virtual storage is
implemen"ted, the storage tha·t can be directly accessed by the CPU,
normally called processor or main storage, is referred to as real
;3torage. --

The concept of virtual storage is made possible by distinguishing
between the names of data and instructions and their physical locat:ion.
In a virtual storage environment, there is a distinction between address
:!Qace and real storage space. Address space (virtual storage) iS~l se"r­
of identifiers or names (virtual storage addresses) that can be uSE~d in
a. program to refer to data and instructions. Real storage space is a
set of physical storage loca"tions in the complter system in which
instructions and data can be placed for processing by ·the CPU. ThE~
number of addresses in the two spaces need not be the same, althou9h
both spaces begin with address zero and have consecutive addresses., The
programmer rE:!fers to data and instructions by name (virtual storagE!
a.ddress) without knowing their physical (real storage) location.

When virtual storage is not implemented, there is, in effect, no
differen"tiation between address space and real storage space. The
address SpaCE! that can be used in programs is identical in size to the
real storage space available and the address in an instruction
represents both the name and the location of the information it
Jreferences.

:18 A Guide to the IBM System/370 Model 168

In a virtual storage environment, therefore, the address space
available to programmers is that provided by the virtual storage size
implemented by a given system--not the address space provided by the
real storage available in the given system configuration. In OS/VSl and
OS/VS2, virtual storage rather than real storage is divided into
consecutively addressed partitions or dynamically allocated regions for
allocation to problem programs. The fact that storage addresses in
executable programs are virtual rather than real does not affect the way
in which the programmer handles addressing. In System/370, for example,
an Assembler Language programmer assigns and loads base registers and
manipulates virtual storage addresses in a program just as if they were
real storage addresses.

Virtual storage is so named because it represents an "image of
storage" rather than physical processor storage. Since virtual storage
does not actually exist as a physical entity, the instructions and data
to which its virtual storage addresses refer, which are the contents of
virtual storage, must be contained in some physical location.

In OS/VS1 and OS/VS2 environments, the contents of virtual storage
are divided into a portion that is always present in real storage,
namely, part of the control program, and another portion that is not
always present in real storage. The instructions and data that are not
always present in real storage must be placed in locations from which
they can be brought into real storage for processing by the CPU during
system operation. This requirement is met by using direct access
storage to contain this portion of the contents of virtual storage (see
Figure 30.05.1). The amount of direct access storage required to
support a given amount of virtual storage varies by operating system,
depending on how direct access storage is organized and allocated.

In addition, a mechanism is required for associating the virtual
storage addresses of instructions and data contained in direct access
storage with their actual locations in real storage when the
instructions and data are being processed by the cpu. This requirement
is met by using dynamic address translation (DAT) hardware in the cPU to
associate virtual storage addresses with appropriate real storage
addresses.

With this design, a system can support an address space that is
larger than the actual size of the real storage present in the system.
This is accomplished by bringing instructions and data from direct
access storage into real storage only when they are actually required by
an executing program, and by returning altered instructions and data to
direct access storage when the real storage they occupy is needed and
they are no longer being used. At any given time, real storage contains
only a portion of the total contents of virtual storage.

Such a design is made practical by the fact that the logical flow of
processing within the majority of programs is such that the entire
program need not be resident in real storage at all times during
execution of the program. For example, initialization and termination
routines are executed only once during the operation of a program. Any
exception-handling procedure, such as an error routine, is required only
if the exception condition occurs. A program that handles a variety of
transaction types (whether batch or online oriented) need have resident
at any given time only the transaction routine required to process the
current transaction type. It is this property of programs that has
enabled planned overlay and other dynamic program structures to be used
successfully in nonvirtual storage environments when the amount of
processor storage available was not large enough. As indicated
previously, this variable storage requirement characteristic of programs
tends to be even more pronounced in new types of applications and in
online environments in which processing is event-driven.

A Guide to the IBM System/370 Model 168 39

Consecutive
Glddresses
Oto 16,777,215
rnaximum in
System/370

Virtual Storage

r-------l
I
I

Address space
available to
programmers

I
I
I
I
I
I

--------------~
Address space allocated I
to the control program I
that is always present
in real storage I L _______ J

Names of instructions
and data

-mapped

Contains
virtual storage
addresses

Executable program

Direct Access Storage

Contents of a portion
of virtual storage
(instructions and data)

Location of data
and instructions

Pigure 30.05.1. Names and l()cation of instructions and data in a
virtual storage environment

For the purpose of resource management in a virtual storage
Emvirorunent, virtual storage and its contents, direct access storage
used to contain a portion of the contents of virtual storage, and real
storage are d.ivided into contiguous fixed-length sections of equal size.
Once a progra.m has been fetched from a program library and initiated,
instructions and data within a program are transferred between real
storage and direct access storage a section at a time, during program
E!xecution. A section of an E~xecuting program is brought into a real
storage secti.on only when it is required, that is, only when a virtual
storage address in the section is referenced by the executing program.
}~ program section that is prE~sent in real storage is written in a direct
access s1:orage section only \1rhen the real storage assigned to it is
l~equired by a.nother program section and only if the section has been
changed.

A virtual storage opera·ting system con·trol program moni tors the
olctivi ty of the sections of all executing programs and attempts to keep
t.he most acti.ve sections in real storage, leaving the least active
sections in direct access storage. Figure 30.05,.2 illustrates the
relationship of virtual storage, direct access storage, and real stOrage

4·0 A Guide to the IBM System/370 Model 168

without regard to a specific virtual storage operating system
implementation.

The division of a program and its data into sections and the transfer
of these sections between direct access storage and real storage during
program execution is handled entirely by the virtual storage operating
system without any effort by the programmer. When a planned overlay or
dynamic overlay program structure is used, the programmer is responsible
for dividing the program and its data into phases, determining which
phases can be present at the same time in the amount of real storage
available (partition or region), and indicating when phases are to be
loaded into real storage during processing.

Virtual Storage .----------.;,.---.- - - - - -

Address space
allocated to
executing programs

Tables or an
algorithm used
to map virtual
storage sections
to direct access
storage sections

Direct Access Storage

Contents of a portion
of virtual storage
(instructions and
data for executing
programs)

Tables map
virtual storage
sections to real
storage sections

"
Real Storage

Active sections
of executing
programs

Control program Control program

Figure 30.05.2. Relationship of virtual storage, direct access
storage, and real storage

While a virtual storage up to 16 million bytes in size can be
addressed by any System/370 model with DAT hardware, the virtual storage
size that can be effectively implemented by a given system is affected
by (1) the amount of real storage present, (2) the amount of direct
access storage space made available to contain the contents of virtual
storage, (3) the speed of the direct access storage devices containing
virtual storage contents and contention for these devices or the
channels to which they are attached, (4) the speed of the CPU, and (5)
the characteristics of the programs operating concurrently. Hence, the
amount of real storage required to effectively implement a specific
amount of virtual storage can vary by system, depending on the
characteristics of the applications in the workload and the performance
desired, as is discussed in Section 30:15.

Once a program section has been loaded into real storage, its virtual
storage addresses can be translated when they are referenced. Dynamic
address translation hardware is the mechanism that translates the
virtual storage addresses contained in instructions into real storage
addresses during instruction execution. Address translation is
accomplished in System/370 using a hardware-implemented table lookup
procedure that accesses tables contained in real storage. These tables,
which are maintained by control program routines, (1) define the amount
of virtual storage supported and allocated, (2) indicate whether any

A Guide to the IBM System/370 Model 168 41

given program section is currently present in real storage, and (3)
contain the addresses of real storage sections allocated to the program
sections tha't are currently present in real storage.

During thle execution of each instruction, address translation is
performed on any virtual storage address in the instruction that r4efers
to data or to an instruction. Translation occurs after the 24-bit
effective virtual storage address has been computed by adding together
base, displacement, and, if any, index values as usual. The result of
the address 'translation is a 24-bit real storage address designating the
location con'taining the data or instruction referenced by the virtual
storage addrless in the instruction. The virtual storage addresses in
channel prog,rams (CCW lists) are not translated by channel hardware
during channlel program execution; therefore, programmed translation is
required prior to initiation of a channel operation.

In reality, OAT hardware provides dynamic relocation of the sections
of a program during its execution. This capability is not provided by
as MFT and as MVT, which support program relocation at link-edit and
p:rogram load time only. Once a program has been loaded into an area of
real storage by the program fetch routinE~, these operating systems
cannot relocate the program to another area of real storage during its
execution. Irhus, an entire program or a portion of a program cannot be
written on direct access storage during execution and later reloaded
into different real storage locations to continue execution. Once
loaded, therefore, a program is bound during its execution to its
initially allocated real storage addresses. In a virtual storage
environment, a program is bound only to 1:he virtual storage addresses it
was assigned during loading.

The dynamic relocation provided by DAT hardware eliminates, for most
programs, the need for allocating and dedicating a contiguous area of
real storage to an entire program for the duration of its execution, a.
requirement for all programs in MFT and MVT. (As discussed later in
this subsection, some programs cannot operate in the manner being
described, that is, with sections transferred only as required between
direct access storage and real storage.) In a virtual storage
environment, real storage is no longer divided into contiguously
addressed partitions or dynamically allocated regions that can contain
one executing job step (prograrr) at a time.

Further, when real storage is allocated to a section of an executing
program, the real storage is not dedicated to that program section for
the duration of program execution. Concurrently executing programs can
dynamically share the same :real storage sections. That is, is general,
the real storage available for allocation to executing programs can be
alloca ted to any program section as needed. When a section of an
executing program must be loaded, any available section of real storage
can be assigned (subject to certain restrictions imposed by operating-'
system-dependent real storage organizations),. When the program section
is no longer' required, it can be written in direct access storage, if it
has been altered, and the real storage assigned to it can be made
available for allocation to another section of the same program or to a
section of another program.

The assig'nment of real storage sections is handled entirely by the
operating system, which also keeps account of which sections of
concurrently operating programs are the most active. The operating
system does not attempt to allocate a given amount of real storage to
each executing program. It merely allocates real storage to those
sections it determines are t:he most active, without taking into account
the particular program to which the active section belongs.

OAT hardware, therefore, provides more than translation from address
space (virtual storage) to real storage space. It provides the

42 A Guide to the IBM System/370 Model 168

capabili ty of implementing dynamic real storage management that requires
no effort on the part of the programmer and significantly less CPU time
than programmed address translation during program execution. (The
large amount of CPU time required to translate addresses during program
execution using programmed means has precluded implementation by IBM of
an operating system that supports such programmed dynamic address
translation.) Much of the real storage utilization preplanning required
for OS MVT and MVT environments in order to use real storage effectively
can be eliminated in a virtual storage environment. Dynamic real
storage management capability is another advantage the technique of
using direct access storage and DAT hardware to support a larger address
space has over using larger real storage to provide a larger address space.

Another capability made available by the implementation of large
address space using direct access storage and dynamiC address
translation is that of supporting more than one virtual storage with
only one system. Multiple virtual storages are supported by OS/vS2
Release 2 and also can be used to support multiple virtual machines. A
discussion of the concepts and general advantages of virtual machines is
contained in section 40. The features and operation of VM/370 are
presented in virtual Machine Facility/370 Features Supplement.

The use of virtual storage and DAT hardware to enable programs to
operate in less real storage than the total storage requirement of the
programs can also offer better performance potential than the technique
of using a planned overlay program structure. When a planned overlay
program executes in MFT or MVT, considerable time can be spent executing
the overlay supervisor in order to perform programmed address
translation (relocation) when a program phase is loaded. In addition,
more efficient real storage utilization may be achieved in a virtual
storage environment, since the control program reacts to changing
processing needs and only portions of the program that are actually
required are loaded (all phases of an overlay program may not be the
same size and all code within a phase may not be used when the phase is
loaded). Once a planned overlay program has been structured to handle
the currently required set of program phases efficiently, it cannot
automatically adapt to a change in the set of program phases required or
to a change in the activity of the required set of phases.

In a virtual storage environment, the performance of the system can
be directly affected by the amount of time spent transferring program
sections between direct access storage and real storage. Satisfactory
system performance is achieved when each of the concurrently executing
programs has enough real storage dynamically allocated to it to keep the
need for transferring program sections into and out of real storage at
an acceptable level.

As previously mentioned, most programs can be structured so that
processing activity is localized in one area of the program or another
during time intervals rather than equally spread over the entire
program. In other words, at any given time period during execution of
the program, only a subset of the entire program need be referenced.
This is sometimes called the "locality of reference" characteristic of
programs. Therefore, a program achieves satisfactory performance when
its most active sections in any given time interval remain in real
storage and there is a limited amount of program section transfer activity.

Most programs require a certain minimum amount of real storage in
which to execute in order to achieve satisfactory performance. If such
programs operate with less than their minimum requirement dynamically
allocated, program section transfer activity increases and performance
degradation can occur. The minimum real storage requirement of a
program is related to the amount of real storage required by the most
active sections of the program. Because of the locality of reference
characteristic of most programs, the minimum real storage requirement of

A Guide to the IBM Systern/370 Model 168 43

a program for satisfactory operation frequently can be less than its
total storage requirement. This fact enables an operating system to
efficiently support a virtual storage that is larger than the real
storage actually present in the computing system.

A virtual storage environment, therefore, enables most programs to be
independent of real storage size to a large degree. A program can
execute using varying amount~s of dynamically available real storage
without being modified. The amount of real storage dynamically
available to a program during its execution primarily affects its
performance, to the extent that program section transfer activity is
affected, rather than its capability to be executed. For example, while
a given 200K language transl.ator might be able to operate with an
average of lOOK of real stol~age dynamically available to it during its
operation, the time required to compile a program under these conditions
might be unacceptable. Al tE~rnatively, the performance desired might be
achieved if an average of l30K is dynamically available to the language
translator while it operates. Without a virtual storage operating
system, the 200K language translator might not be used at all because of
its design point size.

In addition to the requirement for larger address space, there is
still a requirement for larger real storage size s in order to meet thE!
functional and performance needs of the larger, more complex,
multiprogramming environments. The availability of large lower-cost
real storage for the Model 168 and the real storage independence that a
virtual storage environment offers provide new flexibility in tradeoffs
among real storage cost, function, and individual program or total
system performance.

GENERAL ADVA.NI'AGES OFFERED BY IBM OPERATING SYSTEMS THAT SUPPORT A
VIRTUAL STORAGE ENVIRONMENT

Each of the IBM operating systems that supports a virtual storage
environment for System/370 models using dynamic address translation
offers t:he capability of using address space that is larger than that
provided by available real storage, and each supports dynamic real
storage management that is transparent to the user~ As a result, these
operating systems offer cert:ain general potential advantages that do not
depend on their unique features. The implementation of virtual storage
also provide~s benefits that are specific to each of these operating
systems because of their design and the particular functions they
support. The following discusses the po·tential advantages of virtual
storage and dynamic address translation ·that are common to OS/VS1 and
OS/VS2 environments.

The general advantages of virtual storage operating systems are the
potential they offer for:

• Increase!d appl ication dE~velopment

• Expanded operational flexibility

• System performance improvement

A virtual storage operating system can facil itate more rapid
development of new applications because, by removing most existing real
storage rest.raints on appli<:::ation deSign, it can help improve the
productivity of programmers., Specifically, a virtual storage operating
system has characteristics t,hat can be used to reduce the effort, timE!,
and cost associated with application design, coding, testing, and
maintenance. This makes ·the installation of new applications more
readily just~ifiable and encourages the addition of new functions to
existing applications. The potential advantage of improved operational

44 A Guide to the IBM System/370 Model 168

flexibility is made possible by the greater independence of applications
from real storage size. Enhanced system performance can result from
improved real storage utilization. While these latter two benefits have
their own individual value, they also, either indirectly or directly,
ease the installation of new applications.

Potential for Increased New Application Development

The following capabilities are characteristic of a virtual storage
operating system environment:

• Greater flexibility in the design of applications is possible.

Larger programs can be written without the necessity of using
planned overlay techniques or other dynamic program structures
designed to fit programs into the amount of real storage available.
The need for intermediate (or working) data sets is reduced or
eliminated because tables, relatively small data groups, etc., that
are placed on direct access storage because of real storage
limi ta tions can become part of the program and will be brought into
real storage automatically as required. Program planning, coding,
and testing time can be reduced by elimination of the use of these
programming techniques and other real storage management facilities,
which also require additional programming knowledge and skill. Also
avoided is the restructuring of application programs after they have
been written because they are larger than the real storage available
for their execution. Hence, applications can become operational
more quickly.

Open-ended, straightforward application design is possible, and more
comprehensive programs can be written. An application can be
segmented into a series of programs according to its logical flow
instead of according to the functions that can be performed in the
specific amount of real storage available to each step in the
application. Programming and processing duplication inherent in the
approach of using two or more job steps to perform one logical
process is thereby avoided.

Additional programming facilities can become available that
otherwise could not be used because of real storage limitations.
Specifically, full-function high-level language translators, which
offer more capabilities than their subset versions (such as
additional debugging facilities and performance options) but which
also have larger storage design points, can be used because they can
operate in a virtual storage environment using less real storage
than their design point requirement •

• Preproduction testing of larger-than-average application programs
can be increased if enough virtual storage can be made available to
enable them to run during normal testing periods.. Turnaround time
during testing can be reduced.

In a nonvirtual storage environment such programs are usually
grouped together and executed only at certain times when their
larger design point storage requirements can be made available •

• Fine tuning of application programs to achieve performance
improvements, when necessary, can be delayed until after the
application is in production. This capability enables an
application to become operative sooner •

. A Guide to the IBM System/370 Model 168 45

46

• Startup costs for new applications ~iy be reduced.

A new application can be developed and tested on the existing
system, assuming the required I/O devices are present in the
configuration, before the additional real storage the application
requires for performance on a production basis is actually
installed. When the application is ready for production, the
additional real storage required can be added to the system. In
some cases it may be possible to operate the application on a
production basis on the existing system without adding real storage
initially, because during the startup period, transaction volume is
very low. As the volume grows, real storage can be added to achieve
better performance.

• Growth of existing applications and 1:he maintenance of operational
programs is simplified.

Because of the removal of most real storage restraints, new
functions can be more easily and mor4:! rapidly added to most existing
applications. Program expansion because of added functions or
maintenance changes does not require the use of overlay techniques,
multiple job steps, etc., when the size of the extended program
exceeds the original storage des ign point size.

In general, alteration and debugging of nonoverlay programs ar·e also
easier than alteration and debugging of programs with planned
overlay or dynamic structures.

• Application programs whose real storage requirements, based on
transaction volume and complexity, vary widely during their
execution may be justified, designed ... and installed more easily.

Design, coding, and testing time can be reduced because dynamic
storage management is automatically provided by the operating
system. Time and effort, need not be spent structuring such programs
to use available real storage dynamically to support the functions
and/or response times required .•

• Design and installation of one-time, low-usage, or low-volume
programs of very large storage size are more easily justified.
Existing applications in these categories that currently operate in
a batch environment can also more easily be altered to operate
online, a growth step that might not be justifiable in a nonvi:rtual
storage environment.

• Applications can be inst.alled on a trial basis for the purpose of
observing and evaluating their functions and their operation.

Most IBM-supplied application program products can be temporarily
installed on an existing system, assuming the required I/O devices
are present. The additional hardware resources that may be required
to operate the application on a production basis can be added later,
when the application is permanently installed.

• The benefits of the functions provided by 'many IBM-supplied
application program products with larger storage design points can
be realized using smaller amounts of available real storage.

It may be difficul t, to justify the real storage required to install
a rela ti ve ly large storage des ign point appl ication on a system to
handle a low volume of t,ransactions, even though the functions
provided by the application are very desirable. In a virtual
storage environment, such an applicat:ion can execute using tha-t
amount o:f dynamically available real storage required to satisfy the
desired performance requirements for the low volume of activity.

A Guide to the IBM System/370 Model 168

Potential for Additional Operational Flexibility

The reduction of real storage restraints makes most applications more
independent of the real storage size of a system configuration and
permits most applications to be processed on systems with varying
amounts of available real storage without program modification. Dynamic
real storage management reduces the amount of job stream and operations
preplanning that is normally done to use real storage as efficiently as
possible in a multiprogramming environment. The following benefits can
be the result:

• A system can back up another system even though it bas less real
storage than the system it backs up.

A smaller-scale system with the appropriate I/O configuration can
provide backup for a larger-scale system if necessary. (Performance
experienced on the backup system may vary from that normally
achieved depending on the two system configurations involved.)

• A single design and one operating procedure can be used for an
application that is to operate on multiple systems with varying
amounts of real storage, as long as the virtual storage required is
supported by all the systems.

When data processing is decentralized among multiple installations
with systems that have different amounts of real storage, one
location can design, implement, and maintain an application that can
be used by other installations. Duplication of this type of effort
can be minimized or eliminated.

• Most applications can be tested on systems with less real storage
than the one on which they will run in a production environment, as
long as the required amount of virtual storage is supported.

• Growth to a larger real storage configuration can be easier.

Real storage can be added to an existing system to improve system
performance (by the reduction of program section transfer activity)
without the necessity of modifying existing application programs so
that they take advantage of additional real storage. Additional
real storage (up to a maximum of their design point size) is
automatically used by programs that operate in a virtual storage
environment.

• Operators need not perform certain procedures that are solely
related to efficiently managing real storage.

The operator is concerned with the division of virtual storage and
therefore need not change partition sizes at various times (in
OS/VS1, for example) for the purpose of making storage available for
larger than average jobs. (An installation can define virtual
storage partitions that are larger than those currently defined in
the OS MFT environment, and the partitions can be made big enough to
contain the largest existing or currently planned storage design
point programs.) Similarly, in an OS/VS2 environment, the operator
no longer need start long-running jobs at certain points in time to
ensure that available real storage is fragmented as little as
possible.

• Priority jobs whose need to be processed cannot be predicted can be
scheduled when required.

A nonvirtual storage environment does not provide the capability of
effectively handling the scheduling of high-priority jobs on a
random basis. Hence, this type of job is not permitted to exist in

A Guide to the IBM System/370 Model 168 47

an installation, or such jobs nust be scheduled to operate only at
certain times. In a virtual storage environment, a high-priority
virtual partition can be defined in an OS/VSl environment and
reserved for the purpose of processing only high-priority jobs ..
Except for that required for certain tables, real storage is not
required for this partition until a job is actually scheduled. In
an OS/vS2 environment, an initiator with a special class can b~~
started that will handle only high-priority jobs. This can be done
in MVT as well but because of the possibility of real storage
fragmentation, there is no assurance that the high-prior ity job can
be s·tart~~d.

~?otential fOl£ Performance Improvement

The improved real storage utilization made possible by the use of
dynamic address translation hardware can have a positive effect on the
performance of a system that handles a job mix whose use of real s1:orage
varies considerably while it is being processed. The extent of thE~
performance improvement depends on the types of applications involved
a.nd the current utilization of system resources. Therefore, the amoun t
of performance gain, if any, that may be achieved is highly variable by
installation., Environments with the greatest potential for improvE~d
performance are as follows:

L~ 8

• Batch-oriented multiprogramming environments with application
programs of widely varying real storage requirements.

Real storage may not be most efficiently used in such an environment
because 1(1) real storage can become fragmented when regions are
dynmnically allocated and freed or (2) it is difficult to divide
real storage into a set of areas that is optimum for all programs
when real storage is partitioned. (Consider the inefficient use o:f
real storage in an 80K partition allocated for assemble, link-E!dit,
and ·test jobs in which a 80K language translator, a 44K linkagE~
editor, Clnd problem programs no larger than 60K execute.> . In
addition" real storage is not efficiently used when the real storatge
requirement of a given p:cogram, based on transaction mix or volume,
varies widely, and the amount of real storage that is allocated is
designed to handle the peak requirement. (This is typically tI~e of
graphics applications, for example.) Further, real storage assigned
to a proc.;rram is not productively used during the time the progI~am :is
wai ting for a human response, such as for the operator to locat:e
and/or mount a volume or to make a decision and enter a message on
the console, or during the time required to quiesce the system in
order to change partition definitions, start high-priority jobs, o:r
start a t:e leprocessing p:rogram in high real storage.

In a vir1:ual storage environment, in~hich all concurrently
executin9 job steps share real storage dynamically and use real
storage only when it is actually required for program execution,
real storage is more efficiently used. Hence, if real storage
currently is the restraint, a given real storage size might be
capable of supporting a higher level of multiprogramming than can be
achieved without the use of dynamic storage management (assuming
other required resources such as CPU time, I/O devices, and
channels,. are available).. For example, installation of a large
storage design point, te:rminal-based application to handle only a
few terminals might be possible. Alternatively, a higher level of
multiprogramming might be supported by the addition of a smaller
real storage increment than would otherwise be required.

System pE!rformance may also be improved if more efficient use of
available real storage enables additional heavily used functions to
be made resident instead of transient or allows the incorporation of

A Guide to the IBM System/370 Model 168

performance-oriented options in the control program. This
improvement can apply to environments with batch and online
operations, as well as to batch-only multiprogramming environments •

• Multiprogramming environments with a mixture of batch-oriented and
terminal-based applications.

While the real storage required for the communication control
portion of a teleprocessing application remains constant, terminal­
based processing programs are typically subject to wide variations
in the amount of real storage they require during their execution
because the transaction mix being handled concurrently varies, the
activity of each terminal online varies, or the number of terminals
operating concurrently changes. In order to provide the functions
desired, ensure the capability of handling peak activity periods and
maximum transaction type mixes, and guarantee a given response
during times of peak activity, a certain amount of real storage is
required. This peak requirement is generally Significantly more
than is needed during periods of medium and low activity.
Allocation of the maximum storage requirement results in inefficient
use of real storage, since unused real storage dedicated to any
terminal program cannot be used by other concurrently operating
hatched or terminal-oriented jobs in a nonvirtual storage
environment. In addition, it is usually difficult, and sometimes
impossible, to effectively preplan real storage usage for an online
application.

Dynamic real storage management in a virtual storage environment
automatically provides a much more efficient method of allocating
real storage in such an environment. Real storage is not divided
int0 that which can be used only by the terminal-based program(s)
and that which can be used only by batched jobs,. During times of
peak terminal activity, the active sections of terminal-oriented
processing programs with a higher priority are automatically
allocated real storage, making less real storage available to the
lower priority batched jobs in execution at that time. During
periods when terminal activity is relatively low, real storage not
used by any terminal program is available for assignment to the
active sections of executing batched jobs. SUch an environment is
represented conceptually in Figure 30.05.3.

In existing mixed batch- and online-oriented installations, dynamic
real storage management allows programming techniques that can
improve the performance of the online application. This improvement
can be in the form of better response for existing terminals or the
ability to support more terminals. A given online application may
also be able to support a higher level of multiprogramming, as a
result of better real storage utilization, without any additional
programming effort (more TSO regions, for example). A virtual
storage environment also makes the concurrent operation of multiple
terminal-based applications more practical..

Figure 30.05.3 shows sample allocations of real storage to two
batched jobs and two terminal-oriented jobs in a multiprogramming
environment during low, medium, and peak activity points in time. Job
priority from high to low is TP2, TP1, BJ2, BJ1. For simplicity,
virtual and real storage are shown to be totally allocated at all times
and no particular virtual storage operating system (OS/vS1 or OS/vS2) is
assumed, since the concepts illustrated apply to both, regardless of
differences in the way virtual storage is allocated by these operating
systems. Real storage is shown to be contiguously allocated to each job
in high-to-Iow priority sequence. This is done only to illustrate the
relative amount of real storage the control program has dynamically
allocated to each program during the instant shown. In reality, the
total amount of real storage allocated to an executing program at any

A Guide to the IBM Systeml370 Model 168 49

given time is usually not contiguous in a virtual storage environment.
In addit.ion, during times 0:1: low terminal program activity, it may be
possible to support a higheI: level of batched job multiprogramming,
which is not. shown in the figure.

Control
program

Batched
jobs
(8Jl)

Lowest
execution
priority

Batched
jobs
(BJ2)

Next to lowest
execution
priority

Virtual Storage

Terminal program 1
(Total storage requirement
without overlays)

Next to highest
execution
priority

Real Storage

Terminal program 2
(Total storage requ irement
without overlays)

Highest
execution
priority

~-------T--------~~-----.--~----~---~

Low activity
for TPl and
TP2

Peak activity
for TP2 and
low for TPl

Peak activity
for TPl and
medium activity
for TP2

Control
program

Control
program

Control
program

BJ7

BJl BJ2 TPl TP2

Real Storage

BJ BJ TPl TP2
4 6

Rea I Sto rage

TPl TP2

"-. BJ6

Figure 30.05.3. conceptual illustration of real storage utilization in
a mixed batch and online virtual storage environment

Summary

As the preceding discussion indicates" a virtual storage environment
is designed primarily to provide new functional capabilities for the
installation as a whole, although performance gains are possible for

50 A Guide to the IBM System/370 Model 168

installations with particular environmental characteristics. The
general functional aims of IBM-supplied virtual storage operating
systems are (1) to use new hardware features and additional control
program processing to support certain facilities that are not possible
in a nonvirtual storage environment because of real storage restraints,
and (2) to handle other functions that must be performed by installation
personnel (programmers, operators, and system designers) when virtual
storage and dynamic address translation are not used.

It is also important to note that while a virtual storage operating
system permits an installation to be independent of real storage
restraints to a large degree and enables real storage to be utilized
more efficiently, the performance of the system and the specific
advantages that can be achieved are still largely dependent on the
amount of real storage present in the system and on the computing speed
of the CPU, among other things. Hence, virtual storage and dynamic
address translation are not a substitute for real storage. Rather, they
provide an installation with greater flexibility in the tradeoff between
real storage size and function or performance.

The degree to which a particular installation experiences the
potential benefi ts of a virtual storage/dynamic address translation
environment is system-configuration dependent and highly application
dependent (number, type, complexity of applications installed). In
addition, consideration must be given to the system resources that are
specifically required to support a virtual storage environment
(discussed in Section 30:15)w Some of the potential advantages, such as
those associated with application maintenance and operational
flexibility and those that result from better management of real
storage, can be experienced as soon as a virtual storage operating
system is installed. Others may be achieved in the future when new
applications are installed, and the less restrictive program design
techniques available in a virtual storage environment are more fully
utilized. In any case, installation of a virtual storage operating
system can make System/370 easier to use and can be a major step toward
more rapid installation of applications. Such an operating system can
be of greatest benefit to installations desiring to move to or to extend
online operations and thereby attain the advantages such an environment
offers.

VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION TERMINOLOGY

For the purpose of presenting the concepts of virtual storage and
dynamic address translation in the previous discussion, virtual storage,
programs and data, direct access storage, and real storage were
described as being divided into areas called sections. In reality, a
unique term is used to describe each one of the various sections,
namely, virtual storage page, page, slot, and page frame. In addition,
virtual storage has two levels of subdivision in System/370. The
following defines the new terminology actually used by the System/370
virtual storage operating systems.

Virtual storage in System/370 is divided into contiguous segments,
which contain virtual storage pages. A virtual storage segment, as
implemented in System/370, is a fixed-length, consecutive set of
addresses for either 64K or 1024K bytes which begins on a 64K or 1024K
boundary, respectively, in virtual storage. A virtual storage is
divided into segments all of one size or the other. In general, in
OS/VS1 and OS/VS2 environments, a segment is the unit of virtual storage
allocation. Each segment of virtual storage is divided into contiguous,
fixed-length, consecutive sets of addresses called virtual storage
pages. Each segment in the virtual storage contains the same number of
virtual storage pages, each of which is the same size. A virtual
storage page, as implemented in System/370, can be either 2K or 4K bytes

A Guide to the IBM System/370 Model 168 51

and is locat,ed on a 2K or 41{ virtual storage boundary, respectively,
within Cl segment.

The conte~nts of virtual storage--instructions and data--are divided
(by the operating system) into fixed-length contiguous areas called
pages, corresponding in size to the virtual storage page size chosen,
either 2K or 4K bytes.. The addresses associated with a virtual storage
page refer t,o the contents of a page.

The direct access storage used to con'tain the portion of the total
contents of virtual storage that is not always present in real storage
is called external ~ storage. Direct access space within external
page storage~ is divided into physical records called slots, which are of
page size, either 2K or 4K bytes. A slo't, therefore, can contain one
page at a time. A virtual storage page ,that is allocated and that
actually has contents usually has a slot in external page storage
associated with it to contain these contents (depending on the nat,ure of
the contents and how external page storage is managed by the opera,ting
system) •

Instructi.ons and data arE~ transferred between external page storage
and real storage as needed on a page basis. This transfer process is
called pagin~, and a direct access device that contains external page
storage is called a paging ~levice. A slot in external page storage is
associated with a particular virtual storage page by means of an
algori thm or via tables that: are maintained by the control program.

Real storage also is divided into fix1ed-Iength, consecutively
addressed aI:'eas called ~ frames, which are always the same size~ as
the virtual storage page being used, either 2K or 4K bytes. Page frames
are located on 2K or 4K real storage boundaries. A page frame is a
block of real storage tha't c:::an contain one page. Hence, a page of dat:a
and/or instructions occupieB a slot when it is in external page storage
and a page frame when it is in real storage. Whether or not a pag'e is
present in real storage, a program addresses the contents of the page
using virtual storage addresses.

The act of transferring a page from external page storage into real
storage is called a page-in., This action may also be described as thE~
loading of ~~. The reverse act, transferral of a page contained in
real storage, to a slot in external page storage, is called a page-out ..
Figure 30.05.4 illustrates 1:he relationship of virtual storage, external
page storage~, and real storage that was conceptually shown in Figure
30.05.2. (Note that the terms swap-in, ;swap-out, and working set havE~ a
specific mea.ning in an OS/VS2 TSO environment and are defined in
OS/Virtual .§torage £ Release .1 Features .supplement. The definition oj: a
working set in a virtual machine environment is given in Virtual ~achin~
Facili ty/370, Features SupplE~ment.)

As previously indicated, DAT hardware uses tables to perform address
translation. These tables are the segment table and ~ tables. OnE!
segment table and a set of page tables are required to perform address
translation for one virtual storage. The segment table defines the
virtual stoz'age size, indicates allocated virtual storage, and points to
the real storage location of the page tables.. The page tables indicat:e
which pages are currently in real storage and contain the real storagE~
addresses of these pages. As pages are paged in and out, the control
program make!s changes to thE~ page tables as required.

Basic to the implementation of virtual storage using direct access
storage and DAT hardware :is the method of determining when pages are t:o
be brought into real storagE~ and, therefore, when real storage is
allocated to pages. The met:hod supported by IBM-supplied virtual
storage opez'ating systems, t:hat of bringing a page into real storage
only when it is needed by an executing program, is called a demand

52 A Guide to the IDM System/370 Model 168

paging technique. Since programs execute on a priority basis in OS/VS1
and OS/VS2 environments, as they do in OS (MFT and MVT) environments,
real storage is, in effect, still allocated on a priority basis.

A request for a page-in is generated by the occurrence of a ~
exception or a ~ translation exception, a condition that is also
called a ~ fault. An interruption occurs during the execution of an
instruction when DAT hardware attempts to translate a virtual storage
address into a real storage address and the appropriate page table
indicates that the page is not currently present in real storage. A
page fault condition causes an interruption in order to alert the
control program to the fact that a page frame must be allocated.
Usually, a page-in is required also to bring in the referenced
instruction or data.

External
Page Storage

Virtual Storage

"-Segment N
(pages 0 to 15 or 31) Tables or an "-

algorithm " map pages '" and slots

'" "
Real Storage

~~
Virtual

~~ storage
_pages
within
segments

Slots
Tables map

(containing
Paged area pages of

virtual storage

instructions
pages and

and data)
page frames Page frames

(containing active
pages of executing

Page-out
programs)

Page-in

H ~~
Contents of
pageable
virtual storage

Control
Segment 1 Nonpaged area program
(pagesOto 150r31)

Segment 0
(pages 0 to 15 or 31)

- - -- -- - - - ---- -- --'---------
Address space for
programmers use

Figure 30.05.4. Layout of virtual storage, external page storage, and
real storage

While page-ins are usually initiated as a result of a page fault,
OS/VS1 and OS/VS2 provide an Assembler Language macro that can be used
to cause one or more pages to be brought into real storage before they
are referenced. Such requests are sometimes referred to as page-ahead
requests. A page-ahead is required if, for reas9ns of proper system

A Guide to the IBM System/370 Model 168 53

operation, a routine must operate without incurring any page faults.
Use of this macro is restricted because unlimited use of this facility
can defeat t.he objective of derrand paging.

When a page fault occurs and the control program determines that a
page frame is not currently available for allocation, a choice must be
made as to which allocated page frame will be taken away from the pagE~
to which it is currently assigned. The rule governing this choice is
called the Eage replacement algorithm. If the page replacement
algorithm is designed to choose from among only those page frames
currently allocated to the program that caused the page fault, it is
said to operate locally. If a page frame can be chosen from among all
those available for allocation to all executing programs, the algorithm
is said to operate globallym OS/VS1 and OS/VS2 implement a global page
replacement algorithm.. VM/370 supports a global page replacement
algori thm and supports a local page replacement algorithm as an option,.
The algorithms used attempt to keep the most active pages of executing
programs present in real storage. Hardware is included in System/370
models with dynamic address translation ·that indicates whether a page
has been referenced or changed. Hence, when a page frame is required, a
page determi.ned by the algorithm to be r1elatively inactive is chosen for
replacement.

Before loading a new page into the page frame chosen, the existing
contents of the page frame must be saved if they were modified during
processing. If modification occurred, a page-out operation is requirE~d;
otherwise, a.n exact copy of the page already exists in external page
storage. Code that is not modified during its execution, therefore, has
an addi tional advantage in a virtual storage environment in that i.t need
never be paged out once it bas been writ·ten in external page storage. A
program requiring a page-in is placed in the wait state until the page
it requires has been loaded~ during which time CPU control is given to
another ready task, if one is available.

For various reasons, it is necessary to prevent a page-out of certain
pages that are in real storage. One reason is for better operation of
the system. This reason applies to certain frequently used control
program rout.ines, some routines that operate with ·the CPU in a disablE~d
state (masked for I/O and external interruptions), most system tables v
and most system control blocks. Integrity of system operation is
another reason. Pages associated with certain types of operations must
not be paged out while the operation is in progress, so that the
operation can proceed correctly. For example, pages that contain I/O
buffer areas must remain in real storage while the buffers are bei.ng
referenced during an I/O operation, after which a page-out can take
place, if necessary. Another reason is the existence of time
dependency. A page should not be written out if the program to which
the page belongs must complete a logical operat ion that requires t.he
page in less time than it takes to perform a page-in. Programs that
handle I/O d.evice testing operations, such as online tests (OLT's), can
have such a time dependency ..

A page that is identified as one that cannot be paged out (or t.ha t is
nonpageable) is called a fixed ~ in OS/VS1 and OS/VS2 and a locked
:e..age in VM/370. OS/VS1 and OS/VS2 support both long-term fixing and
short-term fixing. Pages that should never be paged out when they arE~
present in real storage are marked long-term fixed. The resident
portion of an operating system control program is never paged and,
therefore, its pages are marked long-term fixed. Pages that must be
fixed for only a portion of the time they are present in real storage
are marked short-term fixed.. For example, a page containing an I/O
buffer is marked short-term fixed before the initiation of the I/O
operation th.at references the buffer.. After the I/O operation
completes, t.he page is unfixed and it becomes eligible for a page-out ..
Pages should be marked fixed only when necessary, since page fixin.g

A Guide to the IBM System/370 Model 168

reduces the amount of real storage that can be shared by concurrently
executing paged programs (that which is available to be allocated to the
nonfixed pages) and can, therefore, affect system performance.

As indicated previously, in OS/VS1 and OS/VS2 environments, a portion
of the control program is resident in real storage. Its pages are
marked fixed. This portion of the control program is not placed in
external page storage (because it is not paged) even though it is
allocated space in virtual storage. Certain other portions of an OS/VS1
and an OS/VS2 control program are pageable and are made resident in
virtual storage, which means they are contained in external page storage
during system operation. During system initialization, these pageable
control program routines are allocated virtual storage and loaded into
real storage from system libraries by the program fetch routine. These
routines will be written in external page storage as a result of normal
paging acti vi ty in OS/VS1 and as a resu It of specific page-out requests
in OS/VS2. Control program routines that are resident in virtual
storage are brought into real storage from external page storage,
instead of from a system library, when they are required during system
operation.

Just as control program routines can be fixed or pageable, problem
programs operate in one of two modes in OS/VS1 and OS/vS2 environments:
paged mode or nonpaged mode. The latter is also sometimes called
virtual eguals real (V=R) mode. When a problem program operates in
paged mode, it is resident in virtual storage and pageable. A pageable
program operates in a contiguous area of virtual storage (partition or
region) and is assigned available real storage on a demand paged basis.
Hence, virtual storage addresses must be translated into real storage
addresses. The real storage dynamically allocated to programs operating
in paged mode need not be contiguous and such programs normally can
operate with less real storage than their design point (virtual storage)
amount dynamically allocated to them. This is the mode of operation
described in Section 30:05.

Paged mode is the normal mode of operation of programs in a virtual
storage environment. However, certain programs cannot operate correctly
in this mode, and must run in nonpaged (V=R) mode. In general, a
program must operate in nonpaged mode if it:

• Contains a channel program that is modified while the channel
program is active (Section 30:10 discusses the reason)

• Is highly time dependent (involves certain testing operations on I/O
devices, for example)

• Must have all of its pages in real storage when it is executing (for
performance reasons, for example)

Other characteristics that require a program to be executed in
nonpaged mode and that are operating system dependent are listed in the
programming systems supplements, which also discuss steps that can be
taken to avoid running a program in nonpaged mode.

In OS/vS1 and OS/VS2 environments, a program that operates in
nonpaged mode is dynamically allocated a contiguous virtual storage area
and a contiguous real storage area of the same size with addresses
identical to those of the allocated virtual storage area. (That is,
virtual and real storage addresses of the allocated area are equal.)
Since programs operating in V=R mode are not paged, they do not occupy
external page storage. The entire program (except for dynamically
requested modules) is loaded into real storage when it is initiated, and
all its pages are fixed. The amount of real storage allocated to a
program that runs in nonpaged mode must be a multiple of the page size
used.

A Guide to the IBM Systeml370 Model 168 55

30:10 DYNAMIC ADDRESS TRANSLATION HARDWARE FOR MODELS! AND 1 OF THE
:MODEjL 168 ._--- --

Dynamic address translation is a standard facility of the Model 168.
It is made operative by turning on the translation mode bit in th«:!
current PSW.. The system must also be operating in EC mode. When DAT is
operative, storage addresses in programs referring to instructions and
data are translated into real storage addresses after instructions are
fetched during program execution. The address in the instruction
counter is t:.ranslated also. When DAT is not in operation, storag4:!
addresses in programs are used as real storage addresses. The storage
addresses in CCW lists are not translated by channel hardware during
channel proqram operation.. The channel indirect data addressing
feature, required on all installed channels for a Model 168 when a.
virtual stOJrage operating system is used, and programmed channel program
translation are discussed later in this subsection under "Channel
Indirect Data Addressing".

The following instructions are associated with dynamic address
translation:: LOAD REAL ADDRESS, RESET REFERENCE BIT, and PURGE T]~B.
These instructions are valid in BC mode as well as in EC mode. They
operate identically regardless of which mode is in effect.. All are
privileged instructions.

VIRTUAL STORAGE ORGANIZATION

The Model 168 (as well as other System/370 models with DAT hardware)
supports a virtual storage segment size of either 64K or 1024K bytes, as
determined by bits 11 and 12 of control register o. With either segment
size, the page size can be 2K or 4K, as determined by bits 8 and ~. of
control register O. A segment size of 1024K bytes is not supportE:!d py
DOS/VS, OS/VS1, OS/VS2, or VM/370. Table 30.10.1 summarizes the ~Tirtual
storage organization provided in System/370.

Table 30.10 .. 1. Number and size of segments and pages for a 16-miJLlion-
byte virtual storage

~ 0 Bits

.---- ------~---

Number of
Segment Size Segments in the Page Size NumbE:!r of Pages

,11,12 ~ r---ipytes) Virtual Sto:J;~~~_ .. t!?:t:.:!:.es) in a~ent r-
10 01 1,048,576 16 2048 512

10 10 1,048,576 16 4096 256

00 01 65,536 256 2048 32

00 10 65,536 256 4096 16
-----,.-

As already described, the addresses supplied in programs directly
address a location in the virtual storage that is supported by thE~
virtual storage operating system. In this sens e, program- suppl ied
addresses ca.n be viewed as virtual storage addresses that specify a byte
within a particular virtual storage page and segment. The logic of the
translation process is described in this subsection in these terms.. The
architectural definition of dynamic address translation found in
System/370 principles of Qp,eration (GA22-7000- 2 and later editions)
assumes thai: the addresses in programs consist of three fields, two of
which are used ·to index tables during the translation process. Under
these conditions, the addresses supplied by a program are considered -to
be logical ~ddresses instead of virtual storage addresses ..

56 A Guide to the IBM System/370 Model 168

For the purpose of translation, a virtual storage address is divided
into three fields: (1) a segment field, which identifies a segment
within the virtual storage, (2) a page field, which identifies a page
within the segment addressed, and (3) a byte displacement field, which
identifies a" byte within the page addressed. The number of bits in each
field varies depending on the segment and page sizes used. Virtual
storage address fields for a segment size of 64K and a specific example
of how the fields are used to address a location in virtual storage are
shown in Figure 30.10.1.

OPERATION OF DYNAMIC ADDRESS TRANSLATION HARDWARE

Address Translation Tables

One segment table is required to describe one virtual storage. If
more than one virtual storage is supported by a single computing system,
there is a segment table for each virtual storage implemented. A
segment table contains one four-byte entry for each segment in the
virtual storage the table describes, up to a maximum of 256 entries for
the maximum size virtual storage of 16 million bytes (using 64K
segments). The real storage address of the segment table (or of the
currently active segment table if multiple virtual storages are
implemented) is contained in control register 1.. The current length of
the segment table is also indicated in control register 1. The length
value is used by the hardware during translation to ensure that the
segment entry being referenced falls within the segment tahle.

The segment table entries point to the real storage locations of the
page tables. There is one page table for each segment in the virtual
storage-defined (or, in OS/VS2, currently allocated), up to a maximum of
256 page tables for a 16-million-byte virtual storage with 64K segments.
A segment table entry contains an indication of the length of the page
table, the high-order 21 bits of the real storage address of the page
table, and an indication of whether or not the entry itself is valid and
can be used for translation purposes (invalid bit). If the invalid bit
is on in a segment table entry, a segment translation exception occurs
during the translation process.

A page table has one entry for each page in the particular segment
the page table describes. For a 64K segment, there are 32 or 16 entries
in a page table depending on whether a 2K or a 4K page is used,
respectively. A page table entry is two bytes in size. It contains the
12 (for a 4K page) or 13 (for a 2K page) high-order bits of the real
storage address of the page frame that is currently allocated to the
virtual storage page that the page table entry describes. Each page
table entry also contains an invalid bit-to indicate whether the entry
can be used for translation. The invalid bit is on when a virtual
storage page does not have real storage currently allocated to it. A
page translation exception occurs during the translation procedure if
this invalid bit is on.

Segment and page table formats and entries used for address
translation are shown in Figure 30.10.2. In effect, the segment and
page tables define the relationship between virtual and real storage at
any given time. The segment table reflects the current size of virtual
storage and the location of required page tables. The segment table
also indicates, by means of its invalid bits, which segments of virtual
storage are currently allocated and have a page table available. The
page tables indicate, via their invalid bits, which virtual storage
pages currently have a page frame allocated and the location (real
storage address> of these page frames.

A Guide to the IBM System/370 Model 168 57

64K segment
2K page

r
8

FORMATS
Effective 24-bit virtual storage address

--------------~----------------~,
16 21

address address
bits bits

Byte displacement
from beginning of page

31

[- segm:=Jnt Page

-------- --------~----------------------~
~--------v_-------J'~~~-----~

o to 255 o to 31 0 to 2047

Effective 24-bit virtual storage address

r---------------- ~----------------~,
8 16 20 31

64K segment ['-----S-eg-m--en-t

4K page address
bits

Page
address
bits

Byte displacement
from beginning of page

16,320K

128K

o to 255 o to 15 o to 4095

EXAMPLE OF ADDRESSING A 4K PAGE

Virtual storage of
16, 777,216 bytes
(16, 384K)

[page 15

Segment 255

---OJ Page!l

~~ Segments 2 to 254-

1-,

~~

Hex address 0 1 F

Supported by
DOSIVS
and OSIVSl

Supported by
OSIVS2 and
VM/370

0 0 4 l Page 15 8 16 20 31

Virtual
storage

64K

address 0

1-.

Segment 1

Page 0 I
[Page 15

Segment 0

Page 0 I
64K segments, 4K pages

00000001 1111 000000000100

Segment Page Byte
1 15 4

Figure 30.10.1. Virtual storage address fields for a 64K segment

58 A Guide to the IBM System/370 Model 168

In an OS/VS1 environment, segment and page tables are established at
system initialization. Page tables are modified during system operation
by control program routines to reflect the current allocation of real
storage to virtual storage so that address translation can take place.
In an OS/VS2 environment, in which virtual storage as well as real
storage is dynamically allocated and deallocated, the segment table
constructed during IPL is modified as required during system operation
to reflect the allocation of virtual storage, and page tables are
created and destroyed as necessary.

Address Translation Process

A translation request is either explicit or implicit. Explicit
translation is invoked via execution of the LOAD REAL ADDRESS
instruction. Implicit translation is invoked to translate all
instruction addresses and data addresses contained in other
instructions. Implicit address translation takes place during
instruction execution.

The logical flow and the details of the translation process are given
in Figure 30.10.3. The procedure consists of a two-level, direct
address table lookup operation. Any type of translation exception
causes a program interruption and termination of the hardware
translation process. The CPU cannot be disabled for translation
exception interruptions. Segment and page translation exceptions that
occur during an explicit translation request (LOAD REAL ADDRESS
instruction) are indicated via the condition code setting instead of via
an interruption.

Translation Lookaside Buffer

In the Model 168, a translation lookaside buffer (TLB) is implemented
to reduce the amount of time required to perform address translation.
The translation lookaside buffer is used to retain up to 128 previously
translated addresses. Addresses associated ~ith up to six different
virtual storages can be contained in the TLB at any time. Every time a
virtual storage address is translated during instruction execution, the
virtual storage address, the resulting real storage address and its
associated storage protect key, and identification of the virtual
storage to which the virtual storage address belongs are placed in one
of the 128 TLB locations. A hashing algorithm is applied to the virtual
storage address in order to determine which of the 128 TLB locations is
to be used.

After the effective virtual storage address has been computed and
before performing the translation using segment and page tables, the TLB
is interrogated to determine whether it contains the required translated
address. Interrogation of the TLB is done in parallel with reference to
the index array for the buffer. Therefore, no translation cycles are
required when the translated address is obtained from the TLB. If the
TLB does not contain the required translation or if the entry is
invalid, as indicated by a zero identification code, the complete table­
lookup translation procedure, as previously described, is performed. In
the Model 168, the number of CPU (80 nanosecond) cycles required for
address translation when the translation is not obtained from the TLB
varies from a minimum of 8 to a maximum of 26, assuming no I/O
interference, depending on the locations of the segment table and
the page table entries required for the translation. In the Model 165 II,
from 8 to 46 CPU cycles are required for the translation process when
the required translation is not contained in the TLB.

If an error occurs in the TLB, half of the TLB (64 locations) is
disabled and a machine check interruption occurs. The degradation bit
will be on in the stored machine check code.

A Guide to the IBM System/370 Model 168 59

Page Tables Page Tables
for 2K pages for 4K pages

Segment 0 Page Table Segment 0 Page Table

r--
.-------

---. "1 Page 0 entry q
or 32

o~:en"v
2 bytes 2 bytes

64 ,J j bytes

256 entries
for
16 million
bytes

~
1

255

r'

Segment 0 entry

Segment 'I entry

...
4 bytes

Segment 255 entry

Segment Table
for one virtual
storage - 1024
bytes maximum
for 64K
segment size

Segment Table Entry

Bits

0-3 Page table length
B-28 Page table origin

address
:11 Invalid bit

- bytes

J

::::

~

f-

31b~
Page 15 entry

o

•
•
•

Segment 255 Page Table

Page 0 entry

•
•
•

Segment 255 Page Table

P'ge 0 en"v =j
Page 15 en"v =:J

256 Page Tables
maximum

2K Pagl! Table Entry 4K Page Table Entry

pa~~ Page
I o~ address address

0 131415 0 1213 15

Bits Bits

0-12 High-order 13 0-11 High-order 12
bits of real bits of real
storage address storage address
of page of page

13 Invalid bit 12 Invalid bit
15 User bit for 15 User bit for

programming programming
systems use systems use

Figure 30.10.2. Segment table and page 'tables used for dynamic address
translation

60 A Guide to the IBM System/370 Mo<tel 168

Effective 24-Bit Virtual Storage Address

64K 2K

Segment Page Displacement

8 1516 2021

8 26 31

XX /000000 o-oxxxxxxxxo
! !

o-oxxxxxo
! !

8 29 8 30

r---- Add -.. ~t---------"

!~25
8 28 ,----------

\\
~--~------~ X-XOOo

Segment Table

Page Table

Page Table

x--x
8 20

31

x--x
21 31

1. Bits 8, 9, 11, and 12 in control register 0 are checked for
validity. A translation specification interruption occurs if an
invalid setting is present. Segment address bits from the
virtual storage address are checked using length bits in control
register 1. If the segment entry address is outside the segment
table, a segment translation exception is indicated.

2. Six low-order zeros are appended to the segment table address in
control register 1. Two low-order zeros are appended to the
segment bits from the virtual storage address. The two values
are added to obtain a segment table entry. If the invalid bit is
on in this entry, a segment translation exception is indicated.

3. Page address bits from the virtual storage address are checked
using page table length bits contained in the segment table
entry. A page translation exception is indicated if the entry
addressed is outside the page table.

4. Three low-order zeros are appended to the page table address
contained in the segment entry. One low-order zero is appended
to the page address from the virtual storage address. The two
values are added to obtain a page table entry. If the invalid
bit is on in this entry, a page translation exception is
indicated.

5. The 24-bit real storage address is fODned using the 12 or 13
high-order bits from the page table entry and the 12 or 11 low­
order bits from the virtual storage address.

Figure 30.10.3. Dynamic address translation procedure

A Guide to the IBM System/370 Model 168 61

All the E~ntries in the TLB are invalidated (identificatien cedE~s set
to' zerO') whf:!n a reset eccurs, the eperat.er enters a sterage
cenfiguration via the configuratien panel, er retry recovery is
attempted after a machine check eccurs. When a SEI' STORAGE KEY is
issued and valid translated addresses are in the TLB, the TLB is
searched and each entry is invalidated t.hat has the same real address as
the one fer which the key is being set. The PURGE TLB instructien is
provided to' enable a pregram to invalidate all 128 TLB entries. In
general, this instructien must be issued when an entry in a page t.able
is invalidat.ed, since the real sterage address being invalidated Geuld
be centained in the TLB. The TLB will be purged by the virtual st.erage
operating s~istems as required.

A change in segment table origin address, segment size, er pagE:! size
can also affect the validity of current TLB entries.. In erder to' reduce
the number of full TLB purges required by such changes, a segment table
origin addrE:!ss register stack (STO-stack) is implemented. The STO-stack
can contain the address ef six different: segment tables at a time '. Each
segment table ceuld define a different virtual sterage. A STO-stack
entry alsO' indicates the segment and page size in effect fer the virtual
storage associated with the segment ·table address.

The six entries in the STO-stack have a unique identification number
associated 'flith them. One of these numbers is deneted to' be the
currently active identification number. Whenever a segment table
address is placed in contrel register 1, the segment table address is
alsO' placed in the STO-stack, if it is not already there, and the
identification number the segment table address is assigned beceme:!s the
new active identification number.

A STO-stack identification number is stored with each TLB entr".l to
identify the:! segment table, and thereby the virtual sterage, with which
the TLB entry is associated. When the 'IILB is interregated to see
whether it contains the required translatien, the STO-stack
identification number of the TLB entry is compared with the active:!
identificatien number. If the identifications are equal, this indicates
the TLB lecation centains a translatien from the virtual sterage
associated 1flith the active identification number. If the
identifications are net equal, the TLB lecatien centains a translatien
fer a diffe:rent virtual storage and, therefere, the TLB entry dees not
centain the required translatien even though it may centain a vir1:ual
storage address equal to the ene that is to' be translated.

When DAT mode is entered or a LOAD CONTROL instruction is issue:!d when
DAT mede is eperative, the segment table address in centrol register 1
and page and segment size specificatiens from contrel register 0 are
compared wi ·th each ef the STO-stack lecations to' determine whether a
change in these specifications is being made. If a change is indicated,
seme TLB purging may be required.

An equal cemparisen between an STO-stack entry and the segment table
address, seqment size, and page size in control registers 0 and 1
indicates that the virtual sterage associated with the segment table
address now in contrel register 1 is currently one ef the six vir1:ual
storages whose translatiens are being maintained in the TLB and that
segment and page size have net been changed. The STO-stack
identificatien number ef the segment table address new in control
register 1 is designated to be the active identificatien. NO' TLB
purging is :required.

No equal comparison between an STO-stack entry and the segment table
address, segment size, and page size in contrel registers 0 and 1
indicates that translatiens for the segment table new indicated by
contrel register 1 are not currently being maintained in the TLB or that
segment or page size is being changed. The new segment table address is

62 A Guide to the IBM System/370 Model 168

placed in the STO-stack, and the STo-stack identification number
assigned becomes the active identification. A first-in first-out
algorithm is used to determine which STO-stack location to assign. If
the new address displaces another segment table address, the TLB entries
associated with the displaced segment table (and virtual storage) must
be purged. This is done by setting the identification number to zero
for each entry in the TLB that has the same STO-stack identification
number as the segment table address that was displaced. This
identification number is now assigned to the newly stored segment table
address. The other TLB entries need not be invalidated. See Figure
30.10.4 for an example of TLB purging when control register 1 is
changed.

10

2

3

4

5

6

10

1

2

3

4

5

6

STO-stack

ST05

ST03

ST06

ST07 r-------
ST02

ST08

STO-stack

ST05

ST03

ST06

ST04

ST02 ~

ST08

Control
register 1

ST03

next location
to be assigned

Active
10

o

Translation Lookaside Buffer

Virtual
storage

10 address

4 VSA1

3 VSA2

0 VSA3

2 VSA4

6 VSA5

4 VSA6

3 VSA7

3 VSA8

, '" ,."- ,1.1

Real
storage
address

RSA1

RSA2

RSA3

RSA4

RSA5

RSA6

RSA7

RSA8

,.1.1

Storage
protect
key

SPK1

SPK3

SPK1

SPK2

SPKO

SPKO

SPK1

SPK1

tV

f'V,---1 1-'------'--1_--<-1 -------JT

Effect of Changing Control Register 1

Control
register 1

ST04

next location
to be aSSigned

Active
10

~

Translation Lookaside Buffer

,.'"

Virtual
storage

10 address

0 VSA1

3 VSA2

0 VSA3

2 VSA4

6 VSA5

0 VSA6

3 VSA7

3 VSA8

,. ..

T J
,1."

T

Real
storage
address

RSA1

RSA2

RSA3

RSA4

RSA5

RSA6

RSA7

RSA8

I'Ll

1

Storage
protect
key

SPK1

SPK3

SPK1

SPK2

SPKO

SPKO

SPK1

SPK1

,oJ

T
Figure 30.10.4. TLB purging when control register 1 is changed

Implementation of the STO-stack in the Model 168 enables a control
program that supports multiple virtual storages (such as VM/370) to
alter control registers 0 and 1 in order to change the virtual storage
for which address translation is effective, without automatically
causing purging of the entire TLB. The STO-stack facility will also be
of benefit in an OS/VS2 environment, since OS/VS2 supports two segment

A Guide to the IBM System/370 Model 168 63

,tables to provide fetch protection for all regions (see OS/Virtua~
Storage £ Ft~atures Supplement).

Addresses Translated

All storage addresses that are explicitly designated by a program and
that are used by the CPU to refer to instructions or data in processor
storage are virtual storage addresses and are subject to address
translation. Thus, when OAT is operative, the starting and ending
storage addresses used with the program event recording feature are
virtual, as are the storage addresses st~ored in PSW' s during
interruptions. Address translation is not applied to addresses that
explicitly designate protect key storage locations or to quantities that
are formed as storage addresses from the values designated in the base
and displaciement fields of an instruction but that are not used to
address processor storage (shift instructions, for example). In
addition, address translation is not applied to the storage addresses in
CCW lists used for I/O operations.

Some of ·the storage addresses supplied to a program by the CPU are
virtual and some are real. Table 30.10.2 lists, for the Model 168,
those storage addresses designated by a program, either explici tl~{ or
implicitly, that are virtual (and, therefore, are sucject to
translation) and those addresses that are real or not used to reference
processor s·torage and, thus, are not trans lated. The tabl e al so
indicabes which storage addresses supplied to a program are virtua.l and
which are rt~al.

FEATURES TO SUPPORT DEMAND PAGING

Reference ~nd Change Recording Facility for Real Storage Blocks

A hardware recording facility is standard in the Model 168. This
facili ty provides continuous recording of the activity of all 2K real
storage blocks via reference and change bits. The settings of these
recording bits can be used by control program routines to support a
demand paging environment. This hardware facility is always active; it
does not depend on EC or translation mode being operative.

The seven-bit key associated with each 2K real storage block in the
Model 168 ha.s four storage-protect bits, one fetch-protect bit, Olle
reference b:it, and one change bit. During system operation, the
activity of each 2K real storage block is monitored by hardware.
Whenever a fetch is made either by a CPU or a channel to a real storage
address, the reference bit in the key associated with the 2K storage
block that contains that real storage address is turned on by the
hardware. A store into any real storage address causes the hardware to
turn on both the change bit and the reference bit for the affected 2K
block.

Store/display operations initiated from the 3066 console also cause
appropriate changing of the reference and change bits. The RESET
REFERENCE BIT instruction is provided to allow the reference bit of any
2K real storage block to be reset by programming without altering the
contents of the other six bits in the protect key. A CPU fetch that is
satisfi,ed with data contained in the buffer does not cause reference
recording in the Model 168. There are situations, however, in which
instruction or operand prefetching may cause the reference bit for a
page frame ·to be turned on even thoo.gh the contents of that page are
never used.

64 A Guide to the IDM System/370 Model· 168

Table 30.10.2. Virtual and real storage addresses used by and
supplied to programs in the Model 168

Virtual Storage Addresses Explicitly Designated .EY the Program (translated)

• Instruction address in the PSW
• Branch addresses in instructions
• Addresses of operands in instructions
• Operand address in the LOAD REAL ADDRESS instruction
• PER starting address in control register 10 and PER ending address

in control register 11

Real Storage Addresses Explicitly Designated Qy the Program (not translated)

• Operand addresses in SET STORAGE KEY, INSERT STORAGE KEY,
and RESET REFERENCE BIT instructions

• Machine check extended log pOinter in control register 15
• I/O extended log pointer in location 172
• Segment-table-origin address in control register 1
• Page-table-origin address in a segment table entry
• Page frame address it) a page table entry
• CCW address in the channel address word (CAW)
• Address in a CCW specifying a data area or the location

of another CCW
• Data address in channel indirect data address lists

Addresses Not Used to Address Storage (not translated)

• Operand addresses specifying the amount of shift in fixed-point,
logic~l, or decimal shift instructions

• Operand address in LOAD ADDRESS and MONITOR CALL instructions
• I/O addresses in I/O instructions and in the Input/Output

Communication Area <IOCA)

Real Storage Addresses Used Implicitly (not translated)

• Addresses of PSW's used during an interruption and in
executing the programmed or manually initiated restart function

• Address used by the CPU to update the timer at location 80
• Address of the CAW, the CSW, and the I/O address within the IOCA

used during an I/O interruption or during execution of an I/O
instruction, including execution of STORE CHANNEL ID

• Addresses used for the store status function

Virtual Storage Addresses Provided to the Program

• Address stored in the instruction address field of the old PSW during an
interruption

• Address stored by a BRANCH AND LINK instruction
• Address stored 1n register 1 by TRANSLATE AND TEST and

EDIT AND MARK instructions
• Address stored in location 144 on a program interruption

for a page translation or segment translation exception
• Address stored in location 152 on a PER interruption

Real Storage Addresses Provided to the Program

• The translated address generated by the LOAD REAL ADDRESS
instruction

• Address of the segment table entry or page table entry provided
by the LOAD REAL ADDRESS instruction

• Failing storage address in location 248
• CCW address in the CSW

A Guide to the IBM System/370 Model 168 65

The hard~l7are reference and change recording facility is used by the
page replacE~ment algorithm of a virtual storage operating system. When
a page is loaded into a page frame, the reference and change bits for
that page frame are set to zero. (When a 4K page size is used, the
reference and change bits for both of the 2K storage blocks involved are
reset.) ThE~reafter, the reference bit is used to determine the activity
of a page. The change bit is inspected to determine whether a page must
be paged out: when its page frame is reassigned,. The SET STORAGE KEY
instruc·tion must be used to reset the change bit,.

Instruction Nullification

When a page fault occurs in a demand paging environment, execution of
the instruct:ion that caused the page fault stops and the control program
gains control to initiate a page-in operation. When 'the contents of the
missing page have been loaded (and the appropriate page table entry has
been updated), the instruction that caused the page fault is reissued.
For the inst:.ruction to operate correctly the second time, executi()n o:f
the ins'truc1:ion must have been stopped so that reexecution gives t:he
same resul ts as would have occurred if the inst ruction had been executed
only once. Therefore, the contents of r'eal storage, the general Glnd
floating-point registers, and the PSW must not be altered.

The execution of an instruction is said to be nullified when it: is
stopped in such a way that no operation was performed, no fields were
changed, and the PSW indica·tes the address of the instruction that was
stopped,. Interruptible ins·tructions, such as MOVE LONG, are divided
into eXE~cution units. One or more execution units may have complE..:.ted
before a page fault is detected. In this case, only the current
execution unit is nullified.

various methods are used, depending on the type of instruction, to
determine the need for nullification. In some cases, execution is
attempted where hardware de·tection of page faults permits nullification.
In other cases, pretesting is required to determine whether the virtual
storage pagE~s to be referenced have page frames allocated.
Nullification testing is required only for instructions whose translated
addresses rE~ference storage. In the Model 168, testing is performed by
instruction unit hardware and/or additional microcode routines that are
executed before normal instruction execution. However, for some
instructions, prefetching of the data accomplishes pretesting, so that
no additional pretesting cycles are required. A LOAD instruction that
addresses a word on a full word boundary is an example of such an
instruction.

Similarly, if a store fullword instru.ction addresses a four-byt:e
field that is not on a fullword boundary, a pretest is required to
determine whether all four bytes are contained in real storage. ']~he
pretest micl::-ocode for this instruction issues a fetch to the highE~st
addressed byte in the four-byte data field (virtual storage address in
the ins·truc1:ion plus 3). The absence of a page translation except:ion
during translation of the virtual storage address indicates that (1) if
the data fiE!ld spans two pages, at least the second of the two pages is
present in real storage or (2) the data field is totally contained in
one page, which is present in real storage. Hence the instructioIll is
allowed to proceed without nullification. If the data field actually
does span t~170 pages and the first page is not present in real stol:age"
this fact ~_ll be indicated by a page fault during translation of the
address of t.he high-order byte of the field. Instruction nullification
will occur Clnd the page fault will cause a page-in of the first page to
be ini tiated by the control program as usual,.

If the pretest fetch operation does cause a translation exception ..
the store fullword instruction is nullified and the control program

66 A Guide to the mM System/370 Model 168

gains CPU control to load the missing page. Once again, the page-in
caused by the pretest may have brought in the second of two pages
spanned by the data field or the only page containing the data field.
After the page-in, the instruction is reexecuted.

CHANNEL INDIRECT DATA ADDRESSING

Since address translation is not performed by the channels for
programs that operate in paged mode, address transiation must be
performed on CCW lists by programming before the initiation of START I/O
instructions. Such address translation need not be performed on the CCW
lists in programs that operate in nonpaged mode.

In addition, a contiguously addressed I/O area in virtual storage can
span a set of noncontiguous page frames. Hence, a method of handling a
noncontiguously addressed I/O area in real storage during the operation
of a CCW list is required. The channel indirect data addressing feature
is used to provide this capability. As is shown in Figure 30 .• 10.5, the
use of channel indirect data addressing allows the channel program logic
used in the CCW list with virtual storage addresses to be maintained in
the new CCW list that contains real storage addresses.

When channel indirect data addressing is present, bit 37 of a CCW is
designated as the indirect data address (IDA) flag. The IDA flag
applies to read, read backward, write, control, and sense commands and
is valid in both BC and EC modes. When the IDA flag in a CCW is zero,
bits 8 to 31 of the CCW specify the real storage address of the
beginning of the I/O area as usual. When the I/O area referenced by a
CCW is completely contained in one page, an indirect data address list
(IDAL) is not required and the IDA flag is set to zero. When the IDA
flag is one, CCW bits 8 to 31 specify the real storage address of an
IDAL instead of an I/O area. When the I/O area referenced by a CCW
spans two or more pages, an IDAL is required and the IDA flag is set to
one.

An IDAL consists of two or more contiguous indirect data address
words (IDAW's) of four bytes each. There is one IDAW in an IDAL for
each 2K storage block spanned by the I/O area. An IDAW, which must be
aligned on a fullword boundary, contains a real storage I/O area address
in bits 8 to 31. Bits 0 to 7 must be zero. The first IDAW in the list
points to the beginning of the I/O area to be used by the CCW and is
obtained by translating the virtual storage address contained in the
original CCW. Any valid real storage address can be specified in the
first IDAW of a list. All IDAW's after the first must address the
beginning (or end for a read backward operation) of a 2048-byte block
located on a 2048-byte boundary, or a program check occurs. That is,
bits 21-31 of the address in the IDAW must be zeros (or ones for a read
backward) •

Figure 30.10.5 shows an example of the
chained CCW list when 2K pages are used.
storage operating systems construct a new
addresses that is used to control the I/O
points to any required IDAL's.

IDAL's required for a command­
The IBM-supplied virtual
COW list with translated
operation. The new CCW list

When a START I/O instruction is executed, the channel fetches the
first CCW in the list, pointed to by the channel address word (CAW), and
inspects bit 37.. If it is zero, the operation is started in the I/O
area specified by the real storage address in the CCW. If bit 37 is a
one, the first IDAW is fetched from the real storage address in the CCW.
The I/O operation is begun using the real storage address in the first
IDAW and, assuming that the 1/0 operation is not a read backward,
ascending real storage addresses in the I/O area are used by the channel
until a 2048-byte boundary is reached.

A Guide to the IBM System/370 Model 168 67

CCW1

CCW2

CCW List Provided by the Program

0

I/O area
address

I/O area
address

8 j 31

Virtual storage
address

1 362.

0 362.

33 48 6 3

CCW List and IDAL's Constructed for the I/O Operation

CAW at location 7:2

New translated CCW list
used for Start I/O

IDA
flag

I ccwT"L. IDAL1
addr~ CCW1 address

~~----------+~+-+-r-+----1

1 1 3625

CCW2

o 8

IDAL2
address

o

j 31 33

Real storage
address

3625

37

IDAW1 0

IDAW2 0

IDAW3 0

o

IDAW1 o

IDAW2 0

o

IDAL1

Rea I storage
address I/O area

Rea I storage
address I/O area

Real storage

CCIN1 I/O area in real
storage - 3625 bytes

V
1--"

F5761
~
Page frame X

2048
bytes

Page frame Y

address I/O area ~,
-.r1001

Lbytes
8 31

IDAL2

Real storage
address I/O area

Real storage
address I/O area

8 31

Page frame Z

CCW2 I/O area in real
storage -" 3625 bytes

~ObYtes I
Page frame A

~25bYtes I
Page frame B

Figure 30.10.5. Example of IDAL's required for a CCW list when page
size is 2K

The channel detects a 2K boundary by monitoring I/O area address bits
21-31. When these bits change from all ones to all zeros, the first
byte of the next 2K real storage block is indicated. At this point, the
channel accesses the second IDAW in the list to obtain the next rE~al
storage I/O area address to be used, and the data transfer operation
continues. The channel con"tinues using the IDAL until the operation
indicated by the CCW comple"tes (CCW count reaches zero, interrecoI.·d gap
on tape reached, etc.). The next CCW is accessed if command or data
chaining is indicated. Bit 37 is inspected and the I/O operation
continu«~s as described until the CCW list is exhausted.

When a program operates in paged mode, the CCW list for an I/O
operation must be inspected and the appropriate IDAL's must be
constructed prior to issuing a START I/O instruction. At the completion
of the I/O operation, some Jcetranslation is also required. In general,
the following steps must be taken for each CCW in a given list:

1. Determine whether the I/O area referred to in the CCW spans pages
or is contained in only one. If a single page is involved,

68 A Guide to the IBM System/370 Mc~el 168

translate the virtual storage address to real and store it in the
CCW. Ensure that a page frame is allocated to the page
containing the buffer and that the page frame is marked fixed.

2. If two or more pages are involved, set up the required number of
IDAW's, place a pointer to the IDAL in the CCW, and turn on CCW
bit 37.

3. While setting up IDAW's, determine whether all pages in the I/O
area have real storage allocated. If not, ensure that page
frames are allocated and fixed.

At the completion of the I/O operation, the real storage address in
the channel status word must be translated to a virtual storage address,
and the pages that were short-term fixed prior to initiation of the I/O
operation must be unfixed. Channel program translation and page fixing
are performed by the I/O control portion of the control program in IBM­
supplied virtual storage operating system support. A program that
contains a CCW list that is dynamically modified during its execution
cannot operate correctly in paged mode, since the modification is made
to the CCW list with virtual storage addresses rather than to the
translated CCW list that is actually controlling the I/O operation on
the channel.

30:15 SYSTEM PERFORMANCE IN ~ VI~ STORAGE ENVIRONMENT

A virtual storage environment is designed to provide new data
processing capabilities. As is true about any other capability offered
by an operating system, support of a new function requires control
program use of a certain amount of the hardware resources of the system.
In this respect, virtual storage is no different from multiprogramming
and the many other new capabilities that have continuously been added to
OS since its initial release.

The characteristic that makes virtual storage different from most
other features is that virtual storage is ndt primarily designed to
improve system performance, as are many other control program
facilities. Virtual storage is first a functional tool and, in certain
cases, can also be a performance tool. The objectives of OS virtual
storage operating systems are to (1) provide new functions, (2) maintain
upward compatibility with OS nonvirtual storage environments, and (3)
provide performance equal to or better than that achieved with a
nonvirtual storage operating system using the same system configuration.
Attainment of the last objective will not be possible for all existing
System/370 configurations.

In addition, some of the new functions a virtual storage environment
provides cannot be achieved in a nonvirtual storage environment or are
not practical, and in these cases, performance is not the primary
consideration when using the facility virtual storage offers. As the
cost of hardware resources continues to decline on a unit cost basis
(cost per processor storage bit, cost per direct access bit, etc.), it
becomes increasingly more economical to use system resources to perform
functions that otherwise are handled by installation personnel.

The other new characteristic of virtual storage is that it enables a
given system configuration to provide a wider range of performance, as
well as function, as a result of the new factors that affect operation
of a system with virtual storage support. Thus, a slightly different
approach must be taken in planning for and in evaluating system
performance in a virtual storage environment.

Many of the same factors that affect system performance in an OS/VS1
or OS/VS2 environment are the same as those that apply to OS MFT or OS

A Guide to the IBM System/370 Model 168 69

J'IlVT, respectively. First, the system configuration must include the
hardware resources (CPU speed, channels, I/O devices, real storage)
required for the control program and job mix,. This subsection
identifies the system resources specifically required to support a
"lTirtual stora.ge environment. Second, the system should be designed to
balance resource usage to achieve optimum throughput, and to use
applicable pE~rformance and control program design options the particular
operating system offers, taking into account the characteristics of the
instal,la"tion job stream.

The perfoJ:mance of a system in a virtual storage environment is also
affected by certain new factors that do not apply to systems without
"\Tirtual storage support. This subsection identifies these new factors,
-explains how they generally affect system performance, and indicates
steps that can be taken to increase and maximize system performance when
a virtual storage operating system is used.

This discussion applies to OS/VSl and OS/VS2, and is restricted to
performance factors that are common to the virtual sto,rage environments
they support.. The virtual s"torage operating systems also offer ne\l
performance-oriented enhancements that are not related to the
implementation of virtual storage. These unique performance features
are discussed in the optional programming systems supplements.

The performance information in this subsection is designed to present
concepts and considerations for a virtual storage environment. Fi9ures
a.nd graphs are used for illustrative purposes. They do not represEmt
any particula.r installation or measured results. Their purpose is to
illustrate the interrelated factors of multiprogramming performance in a
virtual storage environment. The performance information presented is
Q~onceptual. It is based on "the experience and judgment of IBM
individuals ~l1ith performance knowledge and on performance measuremEmts
made during development of OS/VS1 and OS/VS2,. Therefore, it may not
apply to all installations.

SYSTEM RESOURCES REQUIRED TO SUPPORT A VIRTUAL STORAGE ENVIRONMENT

I n order 1:0 support a demand-paged v irtual storage environment us ing
System/370, in which programs are operating in paged mode, additional
system resources are used by the IBM-supplied virtual storage operating
systems, a s follows:

70

• Dynamic address translation hardware requires CPU time to perform
virtual-Btorage-to-real-storage address translation. The amoWllt of
time required is determined by the System/370 model and the number
of times the full table-lookup translation procedure must be
performed. The Model 168, for example, has a translation lookaside
buffer that is designed "to reduce use of the full table-lookup
translation procedure. The CPU time required is also affected by
program structure (which is discussed later). A small amount of
additional CPU time is also required to pretest certain instructions
that reference storage, as discussed under "Instruction
Nullification" in Section 30:10. Studies have shown that a
relatively small percentage of the total CPU time specifically
required to support a vi:rtual storage environment is devoted to
address t:ranslation by OAT hardware •

• CPU time is required to "translate the virtual storage addresses in
channel programs (CCW lists) into real storage addresses, build
indirect data address lists (where necessary), and short-term fix
pages that will be referenced during I/O initiation, execution, and
interrup1:.ion handling. Channel program translation and page fixing
are performed prior to the initiation of each I/O operation with a
channel program that con"tains virtual storage addresses. Channel

A Guide to the IBM System/370 Model 168

status word retranslation and page unfixing is performed at the
completion of these I/O operations. The amount of CPU time this
function requires per data set is affected by the number of I/O
requests (EXCP macros) issued, the number of CCW's in the channel
programs started, the number of pages that must be fixed, and
whether or not indirect data address lists have to be constructed.
Studies have shown that a large portion of the total CPU time
specifically required to support a virtual storage environment is
used to perform channel program translation and page fixing.

• CPU time is required to process page faults and for the execution of
other control program code that is specifically required to support
a virtual storage environment. CPU time is required for such things
as servicing additional program interruptions, managing and
allocating real and external page storage, maintaining tables used
by DAT hardware, and testing for paged or nonpaged mode of program
operation.

• I/O time is required for paging operations.. The amount of paging
I/O time required is related to the number of page faults that occur
and the speed of the paging I/O device(s) used,. In OS/vS2
environments, the total I/O time required for paging includes some
I/O time that is also required in OS MVT environments to load
transient control program routines.

• Direct access storage is required for external page storage. The
amount required depends on the amount of virtual storage that is to
be supported and the way in which the particular operating system
organizes and manages external page storage. (See the optional
programming systems supplements for external page requirements by
device type.)

• The amount of real storage required by the resident (fixed) control
program is increased by the amwnt of real storage needed for
additional routines and code that are included specifically to
support a demand paged virtual storage env ironment.

The effect this additional use of hardware resources has on the
performance of a given system configuration depends on the resource
requirements of the job stream and the current utilization of system
resources. To the degree that the additional required CPU and I/O time
can be overlapped with existing CPU and I/O time that is currently not
overlapped, system throughput is not affected,. System throughput will
be affected by the increase in CPU and I/O time that cannot be
overlapped.

When a virtual storage operating system is used with an existing
system configuration, for example, and the same job stream is processed,
performance is affected by the use of any new performance enhancements
these operating systems provide as well as by an increase in resource
utilization that is required to support a virtual storage environment.
When a Model 168 replaces a Model 165, performance is also affected by
the fact that the Model 168 has a faster internal performance than the
Model 165.

Figure 30.15.1 conceptually illustrates possible system performance
when a virtual storage operating system is installed on a Model 168 with
the same amount of real storage and the same I/O device configuration as
the replaced Model 165.

A Guide to the IBM System/310 Model 168 11

}?anel 1

Sample existing CPU and I/O
1l1tiliza tioD Clnd overlap for
.3. Model 165.

)~XISTING SYS'l?EM THROUGHPUT
14AINTAINED

)?anel 2

Some 0 f the addi ti ona 1 CPU and I/O
1:ime required is overlapped with pre­
'Iiously unovE!rlapped I/O and CPU time
(points A). Additional CPU and I/O

1:ime that cannot be overlapped
(point B) is offset by a reduction
in the amount: of CPU and I/O time
required to process the same job
stream. Results are achieved in the
Harne elasped time.

Panel 3

l~dditional CPU and I/O time required
r(dotted lines) is overlapped and off­
Bet by operat:ing the system at a
higher level of multiprogramming to
achieve great:er overlap. Results are
achieved in the same elapsed time.

EXISTI NG S YS'1~EM THROUGHPUT IMPROVED

Panel 4

Unoverlapped CPU and I/O time required
is exceeded by reductions in previ­
ously used CPU and I/O time. Better
overlap of previously used CPU and I/O
1:ime is also achieved. Same results
eire achieved in less elapsed time.

PanelS

II higher lev€!l of multiprogramming

(a)

~------------------~ J

Elapsed time

® I Reduced CPU Time I ® 1
CPU -- --

I/O 1 __ I_ Reduced I/O

®

CPU __ I_ Reduced CPU Time -1--1
I I (b)

I/O --....... ----- ~·I--
\. ___ """' ___ 1

Better Overlap

I
Reduced CPU Time I 1

CPU --.- •. -

I/O 1 __ 1_ Reduced I/O Time ---.,--
'----....,--J

\ Better Overlap
........... ---- J

Elapsed Time Reduced

CPU - ... 1 ____ ---I-n-cr-e-as-ed--C-P-U-T-i-m-e --...... 1--1
is used to p€!rform more work and
achieve bettE!r overlap of CPU and I/O
t:ime. More results are achiE~ved in
the same elasped time.

I/O 1--1- Increased I/O Time
-~·I-

\~--------~--------~
Better Overlap

Figure 30.15.1. Possible system performance when a virtual storage
operating system is used with a Model 168 with the same
I/O configuration and real storage size as the
replaced Model 165

A sample throughput for a Model 165 is shCMn in panel 1. (It is not
meant to represent any specific Model 165 throughput,.) Panels 2 and 3
illustrate the conditions under which existing performance can be
maintained and the last two illustrate the conditions under which
€!xisting performance can be improved.

1'2 A Guide to the IBM System/370 Model 168

Existing throughput is maintained if both of the following occur:

1. A portion of the additional CPU and I/O time required to support
a virtual storage environment is overlapped with CPU and I/O time
that previously was not overlapped, as shown by points A in panel 2.

2. The amount of additional CPU and I/O time that cannot be
overlapped (shown by points B in panel 2) is offset by reductions
in previously used CPU and I/O time that occur as a result of the
faster internal performance of the Model 168 and use of new
performance features of the virtual storage operating system, as
shown in panel 2. The unoverlapped CPO and I/O time may also be
offset by a combination of the faster internal performance of the
Model 168 and the achievement of better overlap as a result of
operating the system at a higher level of multiprogramming to
process the same work (as shown in panel 3).

Existing system throughput can improve if (1) unoverlapped CPU and
I/O time required to support a virtual storage environment is exceeded
by reductions in previously used CPU and I/O time and/or if previously
used CPU and I/O time are better overlapped (as shown in panel 4) or (2)
a higher level of multiprogramming is used to perform more work and
provide better CPU and I/O overlap in the same elapsed time (as shown in
panel 5).

NEW FACTORS THAT AFFECT SYSTEM PERFORMANCE

In addition to the factors that affect system performance in a
nonvirtual storage environment, the performance of a system in a virtual
storage environment is affected by the relationship of the following
factors: the speed and number of paging devices, the speed of the CPU,
the size of real storage, the structure of the programs in the job
stream, and the way in which real storage is organized and allocated by
the virtual storage operating system. The interrelationship of each of
these factors and their individual effect on performance, except for the
last factor listed, are as follows (page replacement algorithms are not
discussed):

Speed and Number of Paging Devices. A certain amount of I/O time is
required to read in (or write out) a page using a given direct access
device type. This time is a function of device type characteristics-­
seek time, rotation time, and data transfer rate. Assuming one page-in
performed at a time, no page-outs, and no contention for the paging
device or its channel, a maximum paging rate, in terms of the number of
page faults that can be serviced per time interval, could be calculated
for a given device type. This rate could be improved by certain
programming techniques, such as use of rotational position sensing when
it is present and initiation of multiple page-in and page-out requests
with a single channel program. (Various techniques are implanented in
OS/VSl and OS/VS2.) The maximum paging capability of a given system can
be increased by various means, such as using more than one paging device
or using a faster paging device.

The paging characteristic of a virtual storage environment is the
feature that permits an operating system to support virtual storage that
is larger than real storage. The paging activity of a system begins to
adversely affect system performance, however, once the CPU is in the
position of frequently having to wait for paging I/O operations to
complete. When requests for paging operations are permitted to occur
faster than the paging rate the system can sustain, such that the system
can do little or no processing except that related to paging, the system
is in a paging-I/O-bound situation and is said to be thrashing. When a
thrashing condition exists, little or no productive work can be
accomplished unless paging activity is reduced .•

A Guide to the IBM System/370 Model 168 73

In order to prevent thrashing, the System/370 virtual storage
operating systems monitor the activity of the system to determine when
paging activity becomes excessive. At this point, the as control
program performs task deacti.vation. This involves placing a task
(OS/VS2) or partition (OS/VS1) in deactivated status and releasing the
page frames currently allocated to the task or partition. These page
frames are then available for allocation to other tasks to reduce paging
activity. Later, when paging activity becomes sufficiently low, the
deactivated task or partition is reactivated.

CPU .§peed. An improperly balanced relationship between CPU speed a.nd
paging device speed can also cause the system to become I/O-bound as a
result of paging. A Model 1.68 can execute a certain number of
instructions during the time required to service a page- in request using
a given direct access device type. A Model 168 can execute many more
instructions during a page-in from a 2305 Model 2, for example, than can
a Model 158. As long as there is useful work for the CPU to perform
while paging operations occur, the system is not kept waiting for paging
I/O. However, if the concurrently opera1:ing programs are constantly
executing instructions faster than the pages they require can be brought~
into real storage, an excessively high paging rate can develop and task
deactivation will be the result. In general, therefore, the
larger-scale System/370 models require faster paging devices to handle a
particular p.age fault rate t.han do the smaller-scale models.

Real Storage Size. The a.mount of real storage present in a sys1tem
affects the number of page faults that occur when a given job stream is
processed. If the amount of real storagE~ present in the system is equal
to the total amount of virtual storage bE~ing used by the concurren-Uy
executing tasks, no page faults occur for programs that have been
fetched and initiated. When the amount of real storage present is less
than the amount of virtual storage being used, page faults occur.. The
total number of page faults that occur for a given job stream is
affected by the ratio of virtual storage used to real storage available,.

Assuming -the amount of virtual storagE! used in a given system remains
the same, the virtual-to-real storage rat.io can vary,. This occurs while
a given sysbem experiences variations in the amount of real storage
actually ava:ilable for paging as the amaJlnt of fixed real storage
changes during job stream processing. The real storage available :for
paging at any point in time is the difference between the amount of real
storage in the system and the total amount of long- and short-term fixed
real storage. For IBM-supplied virtual storage operating systems, the
total amount of fixed real storage at any given time is the sum of the:

• Re sident (fixed) control program size, which does not vary afb~ IPL

• Amount of long-term fixed real storage required for control blocks,
which can change as the level of multiprogramming changes in OS/VS1
and OS/V:32 environments

• Amount 0:1: short-term fixed real storage required for outstanding I/O
operations that have virtual channel programs, which flucuates with
the I/O activity of the system

• Amount of long-term fixed real storage requ ired ty the job steps
executing in nonpaged mode, if any

• Amount of long-term fixed real storage required by programs that
operate :in paged mode but that have a portion of their partition o:r
region always fixed (TCAM in OS/VS1 and OS/VS2, for example)

As the virtual-to-real storage ratio of a job stream increases, so
usually does the page fault rate. In general, the page fault rate
increases slowly for a while. At some point, the increase in page

74 A Guide to the IBM System/370 Model 168

faults begins r1s1ng rapidly as the virtual-to-real storage ratio
continues to increase. Figure 30.15.2, shown later, illustrates the
general relationship between the number of page faults and the virtual­
to-real storage ratio.

The amount of real storage available to process a given job stream
also varies when a given job stream is processed on systems with various
amounts of real storage, such as when a smaller-scale system is used to
back up a larger-scale system.

The degree to which reducing the real storage available for paging
affects the page fault rate depends on the paging activity pattern of
the programs in a job stream. Therefore, the virtual-to-real storage
ratio at the point at which a given number of page faults occurs will
usually vary by job stream. The point can also be different for systems
with similar paging activity patterns and the same amount of real
storage installed, but with different amounts of long-term fixed real
storage.

As the virtual-to-real storage ratio increases because of a reduction
in the real storage available (or an increase in the amount of virtual
storage used) and the page fault rate increases, more demand is placed
on the paging devices. If too small an amount of real storage is
present in a system, this situation can cause the page fault rate to
exceed the permissible rate and task deactivation will occur. In
general, therefore, in order to obtain a certain level of performance., a
configuration that supports a given job stream and virtual storage size
may require more real storage when a relatively slower paging device is
used than when a faster paging device is used.

Program Structure. The total amount of virtual storage a program
uses is not nearly so significant a factor in system performance as the
way in which virtual storage is used. That is, the pattern and
frequency of reference to pages in a program has more effect on the
number of page faults that occur than the total size of the program.
For example, assume a case in which a program has a lOOK virtual storage
design point. If the program can be structured to execute as a series
of logical phases of four or five pages each and the pages of each
logical phase reference only each other, no more than four or five page
frames (8K to 10K or 16K to 20K of real storage, depending on page size)
need be dynamically available to the program at one time and paging
activity occurs only as the program progresses from one logical phase to
the next. However, assume the program is structured so that during its
execution each page of instructions constantly references a large number
of different pages of instructions and data for very short durations on
a random basis. An excessively high paging rate could occur if only
four or five page frames were dynamically available to such a program at
any time.

As indicated previously, most types of programs have a natural
locali ty of reference characteristic, so that they can be structured to
operate as a series of logical phases.. In the simplest case, for
example, a program can logically consist of an initialization phase, a
main phase, one or more exception handling phases, and a termination
phase. The total amount of virtual storage referenced in each logical
phase usually varies but, generally, the amount is less than the total
size of the program.. In addition, the pages that are part of
(referenced in) a given logical phase can usually be described as active
or passive.

For the purpose of the discussion in this subsection, an active ~
is defined as one with a high probability of being referenced multiple
times during execution of the logical phase, while a passive ~ has a
low probability of being referenced more than once during execution of
the phase. A logical phase experiences the least amount of paging

A Guide to the IBM Systeml370Modei 168 75

activity as it executes when its active pages remain in real storage
during its execution and its passive pages are paged in when required.
A program uses real storage most efficiently when the active
instructions and data in each logical phas e are contained within the
fewest number of pages possible.

The locality of referenCE! characteristic does not apply to certain
types of programs. For example, it does not apply to any program that~
is designed to optimize its performance at execution time by using the
total amount of storage it has been allocated. This characteristic is
usually true of sort/merge programs that initial iz e themselves to use
all the storage made available to them in their partition or region
~uring the sorting passes. The reference pattern for such a sort/merge
is random and encompasses all the storage (and, therefore, all the
page s) the program is assigned.

RELATIONSHIP BETWEEN VIRTUAl, STORAGE SIZE AND SYSTEM PERFORMANCE

Assuming other required system resources are available, a given
configuration can support a given virtual storage size and provide
satisfactory performance when paging activity is kept at an acceptable
level. Minimal paging activity occurs when enough real storage is
present in the system to contain most or all of those pages of
concurrently executing programs that are active at any given time.
Paging activity then is required primarily for passive pages. Active
pages are paged in (and later paged out as required) as the set of
active pages for each program changes from one logical phase to another.
The paging device(s) present must be capable of handling the demand for
pages that results from the range of paging activity of the system.

As the amount of virtual storage used in a given system increases,
the number of active and passive pages that the system must handle
increases also. The ratio of active to passive pages will vary for a
given increase in virtual storage, depending on how the additional
virtual storage is used. As long as enough real storage is presen·t to
contain all or most of the i.ncreased number of active pages, the
increase in paging activity required to Bupport the additional virtual
storage will be needed primarily for passive pages and should be
relatively small. As soon as the use of more virtual storage causes t.he
number of concurrently active pages to constantly exceed the capacity of
real storage, the paging act.ivity increase required to support the
additional virtual storage becomes relatively large. As more and more
active pages must be handled, paging activity could exceed the maximum
paging capability of the system if task deactivation did not occur.

Figure 30.15,.2 illustrates the increase in page faults that generally
occurs as more virtual storage is used in a given system configuration.
The curve begins at the point at which the amount of virtual stora'ge
used is equal to the amount of real storage present (virtual-to-re:ll­
storage ratio is 1). Paging activity begins as soon as the amount of
virtual storage used exceeds the real storage present. As the virtual­
to-real-storage ratio increases, so does paging activity. The system
moves from passive paging activity (primarily paging of passive pa'ges)
into active paging (paging active pages in and out more of the timle) and
approaches the maximum paging capability of the system. As indicated
previously, Figure 30.15,.2 also illustrates the increase in page faults
that generally occurs as less real storage is made available to support
a given virtual storage size. The increase in page faults also causes
the virtual-to-real storage ratio to increase.

76 A Guide to the IBM System/370 Model 168

Number of
page faults
per second

~=1
R

.---- Passive paging -----1

Virtual-to-real storage ratio

Maximum
paging ____

capabi I ity ------I

Task I
deactivation I

Active
-paging

I
I

Figure 30.15.2. General effect on page faults of increasing the ratio
of virtual storage used to real storage present in
the system

Figure 30.15.3 illustrates how the paging factor only generally
affects system performance. Figure 30.15.5, shown later, illustrates
system performance taking into account all factors. The curve shows the
performance of the system when passive and active paging are occurring,
rela ti ve to the virtual-to-real storage ratio. The use of virtual
storage can be increased with little or no adverse effect on performance
as long as paging remains in the passive area. This is true because in
the passive paging area there is a relatively small amount of paging and
a high probability that all or most paging processing (CPU and I/O time)
can be overlapped with other processing. As paging activity increases,
there is a higher probability that CPU processing will be held up
waiting for a paging operation to complete. As the CPU enters the wait
state more frequently to wait for paging I/O and less paging I/O is
overlapped, the paging factor causes performance to degrade more
rapidly.

The actual virtual-to-real storage ratio at the time active paging
begins in Figures 30.15.2 and 30.15.3 is a variable and depends on the
way in which virtual storage is used, that is, active-to-passive page
ratio of concurrently executing tasks.

Figure 30.15.4 illustrates the way in which the paging factor only
can affect system performance in a given configuration, based on the
active-to-passive page ratio. If the ratio of active to passive pages
for executing tasks is relatively high most of the time, as shown in
curve 1, the virtual-to-real storage ratio at the point at which active
paging begins will be relatively low. Performance drops very rapidly in
this case as more virtual storage is used. This happens because the
increased paging processing (I/O and CPU time) cannot be overlapped with
other processing. This situation may apply to an installation initially
when a switch from a nonvirtual storage to a virtual storage environment
is made and more virtual storage is used, since existing programs were

A Guide to the IBM System/310 Model 168 11

structured for optimum performance in a given partition or a region size
rather than for optimum performance in a virtual storage environment.

If the active-to-passive page ratio for the system is low, as shown
in curve 3, the virtual-to-l:eal storage ratio can be relatively high
when active paging begins.. The performance cu rve stays fl atter longer
as virtual storage is increased when the active-to-passive page ratio is
low. This si tuation can apply to an installation :in which all executing
programs are structured to minimize real storage requirements and page
faults. An installation that continues exeruting all or most existing
programs as they are present~ly designed and that structures new
applications for optimum pel:formance (1<M active-to-passive ratio) may
be more common.. Such installations may experience a virtual-to-real
storage ratio somewhere between the low and the high extremes possible
for a given job stream, as shown in curve 2.

)
System
performance

I •

Paging Overhead

Passive paging ---
Active I

- paging ---tooI
t

:

I

------- ! Task ~ deactivation , , , ,

V irtual-to-real storage ratio

!i'igure 30.15 .. 3. General effect on system performance of the paginq
factor only

The amoun1t of virtual storage used in a system can be increased in
several 'ways.. First, the size of existing application programs can be
increased by the addition of new functions. Second, the level of
:multiprogramming or multitasking can be i.ncreased, assuming other
:cequired resources, such as CPU time and I/O devices, are available.
'rhird, the size of existing application programs can be expanded by (1)
.t'estructurinq programs with a planned ove~rlay or a dynamic structure to
1take them out: of these structures and (2) combining two or more job
steps wi·thin a job into one logical job step.. The active-to-passive
t'atio of the additional pages the system must handle will usually be
:h.igher when 1:he level of mul"tiprogramming is increased than when
I~xisting jobs are rest.ructured.

78 A Guide to the IBM System/370 Model 168

1
System
performance

~=1
R

Curve 1
(active-to-passive
page ratio high­
nonoverlapped
paging)

Paging Overhead

Virtual-to-real storage ratio

Curve 3
(active-to-passive
page ratio low­
overlapped paging)

~

Figure 30.15.4. General effect of the paging factor on system performance
with various active-to-passive page ratios

The way in which an installation should view the amount of virtual
storage used and system perforrr.ance for a given configuration, taking
all performance factors into account, is illustrated in Figure 30.15.5.
The increased use of virtual storage is beneficial to system performance
up to a point. Thereafter, additional virtual storage can be used to
handle additional functions at a variable cost in system performance.
In reality, the virtual-to-real storage ratio and the page-fault rate
vary during system processing as the amount of virtual storage used (out
of the total amount supported) and the amount of real storage available
for paging vary. Best overall system performance is achieved when
paging activity falls most of the time in the area identified on the
curve as the operating range. More Significant performance reduction
begins when active paging is experienced.

Occasional active paging on an exception basis should be acceptable.
More frequent active paging can be performed to achieve a desired
function that does not justify changing the system configuration.
However, when paging activity in a system is constantly at the point at
which task deactivation occurs, system configuration changes should be
made to improve system performance. Such changes might be the addition
of more real storage, the addition of more or faster paging devices, or
installation of a faster cpu. A history of the paging activity of the
system can be maintained by recording the paging statistics provided by
OS/VS1 and OS/VS2.

A Guide to the IBM Systernl370 Model 168 79

1

Performance-All Factors

.... :--- Passive paging ---..
I
I

1~ Configuration
chan~,es

System
performance

Operating range

/ '
" I , , ,

Task I , . . I' deactivation '.
point

Virtual-to-real storage ratio

J~igure 30.15 .. 5. General sys·tem performance curve for a virtual storag1e
environment

INCREASING SYSTEM PERFORMANC:E IN A VIRTUAL STORAGE ENVIRONMENT

The IBM-supplied virtual storage operating systems are· designed to
provide an ac:ceptable level of performance when existing proble~
programs are run without modification. However, given the additional
J:esource requirements of vir·tual storage support and the new factors
i:hat affect system performance in a virtual storage environment, once a
virtual storage operating system is installed (either on an existing
Gonfiguration or a larger configuration) certain steps can be taken to
improve performance or to achieve optimum performance. The benefit: to
be achieved by taking anyone of the steps outlined must be evaluat.ed on
an installation basis, taking the specific configuration and operat.ing
E~nvironment into account. Some steps, for example, are more practical
for large configurations than for small configurations. The following
Gan be done:

80

• Use larger I/O buffers. This step is practical primarily for
sequential data sets and can be used most effectively when previous
real storage limitations prevented the use of larger buffer sizes in
general and, in particular, optimum buffer sizes for disk data sets.
In addition to reducing the total I/O time required to process a
data set, as would occur in a nonvirtual storage environment,
increasing buffer size reduces the number of I/O requests required
to process the data set and, thereby, reduces the CPU time requ.ired
for channel program translation and page fixing. This technique
should be~ used taking into account the amount of real storage
present in the system. If the bIffer size of several data sets that
are being processed concurrently is increased considerably or made
large ini tially, the amount of real storage that must be short-term
fixed increases considerably also and potentially increases the
number of active pages. This may adversely affect system
performan.ce if the system has a relatively limited amount of real
storage available for paging.

A Guide to the IBM System/310 Model 1.68

• Increase the page fault handling capability of the system when
paging activity constantly causes task deactivation. This can be
accomplished by (1) using a direct access device for paging that is
faster than the currently used paging device, (2) allocating more
direct access devices for paging to enable more overlap of paging
activity, or (3) reducing or eliminating contention for the existing
paging device(s). Contention for the paging device can be relieved
by using dedicated paging devices, or reducing the amount of other
I/O activity on the channel to which the paging device is attached,
or dedicating a channel to paging. Alternatively, the same paging
device configuration can be maintained while page fault occurrence
is decreased by the addition of real storage.

• Use code that does not modify itself. Use of this type of code can
reduce the amount of page-out activity required. Such code can be
produced using OS PL/I and the as Assembler Language.

• Execute programs in nonpaged mode only when actually required. Use
of nonpaged mode should be limited because the amount of real
storage available for paging operations during the operation of a
nonpaged program is reduced by the size of the program and can
affect system performance. If a nonpageable program is to be
present in a system for an extended period of time or at all times,
it should be considered part of the fixed real storage requirement
so that the amount of real storage actually available for paging can
be more accurately determined.

• Structure new application programs to operate efficiently in a
paging environment. This is done by structuring programs to achieve
a reasonable balance between page faults and real storage
requirements. The extent to which this is done can vary widely by
installation. The benefits that can be obtained should be evaluated
in light of the additional programmer effort required. In this
respect, deciding on the degree to which programs should be
structured for efficient operation in a paging environment is
similar to deciding how a high-level language should be used,. The
emphasis can be on most efficient program execution, which can
require more programmer effort, or on most efficient use of
programmer time, which can result in less efficient programs.
Alternatively, there can be a tradeoff between programmer time and
efficient programs (only the most frequently used programs are
optimized, for example).

Many of the general program structure techniques discussed do not
require a large amount of additional effort or knowledge on the part
of programmers--only that they adopt a particular programming style.
All of the suggested techniques can be used by Assembler Language
programmers. Some can be used with certain high-level languages and
not with others. More of the suggested techniques can be used in
PL/I programs than in other high-level language programs,.

TWo major steps can be taken to structure programs to use real
storage most efficiently and to incur the smallest possible number
of page faults. The first is to adopt a certain programming style,
one aspect of which is similar to the style that has been encouraged
wi th System/360 and System/370, namely, that of modular programming .•
The second is to package program code and data within page
boundaries. The objective of improving programming style is to
construct a program that consists of a series of logical processing
phases each of which contains a relatively small number of active
pages. The objective of packaging code within pages is to group
active code together to avoid crossing page boundaries in such a way
that more real storage than is really necessary is required to
contain the active pages of a logical phase.

A Guide to the IBM System/370 Model 168 81

82

In order to cause references to active instructions and data to be
localized, the following general rules should be applied to
programs:

1. A program should consist of a series of sequentially execut4~d
logical phases or--in System/370 programming terminology--a
series of subroutines or subprograms,. The mainline of the
program should contain the most frequently used subroutines in
the sE:!quence of most probable use, so that processing proce4~ds
sequentially, with calls being made to the infrequently used
subroutines, such as exception and error routines. This
structure contrasts with one in which the mainline consists of a
serieB of calls to subroutines. Frequently used subroutineB
should be located near each other. Infrequently used subroutines
that tend to be used at the same time whenever they are exe(~ted
should. be located near each other also.

2. 'l'he data most frequently used by a subroutine should be defined
together so that it is placed within the same page, or group of
pages" instead of scattered among several pages. If possible,
the data should be placed next to the subroutin e so t hat part or
all of the data is contained within a page that contains active
subroutine instructions (unless the routine is to be written in
such ii way that it is not modifiec1 during its execution). ~rhis
eliminates references to more pages than are actually required to
contain the data and tends to keep the pages with frequently
r,eferenced data in real storage.

3. Data that is to be used by several subroutines of a program
(ei thc~r in series or in parallel by concurrently executing
subta sks) should be defined together in an area that can be
referenced by each subroutine.

4. A data field should be initialized as close as possible to 1:he
time :it will be used to avoid a page-out and a page-in betw4:!en
ini tialization and first use of the data field.

5. Structures of data, such as arrays, should be defined in virtual
s'torage in the sequence they will be referenced, or referenced by
the program in the sequence in whi.ch a high-level language stores
them (by row or by column for arrays, for example).

6. Subroutines should be packaged wit~hin pages when possible. For
example, avoid starting a 1500-byte subroutine in the middl4~ of a
2K page so that it crosses a page boundary and requires two page
frame s instead of one when it is active.. Subroutines that are
smaller than page size should be packaged together to requil:e the
fewest number of pages, with frequently used subroutines placed
in thc~ same page when possible. '.Phis applies to large groups of
data as well. The linkage editor supplied with OS/VSl and OS/VS2
has n4~W control statements that can be used to cause CSECTs and
COMMON areas to be aligned on page boundaries, and to indicate
the order in which CSECTs are placed in the load module. This
linkage editor facility can be used with certain high-level
language programs that contain mult iple CSECTs (such as PL/I and
ANS COBOL) as well as with Assembler Language programs •

• Use ·the OS PL/I Optimizing Compiler i.nstead of OS PL/I F. The code
produced by this language translator has characteristics that make
it more Buited to a virtual storage environment than the code
produced by PL/I F. First, generated code is grouped into
functionally related segments, by PROCEDURE and DO group, for
example, which can help reduce paging. When PL/I allocates buffers
and I/O control blocks, 'they are packed together and can potentially
require fewer pages than if no attempt was made to define them

A Guide to the IBM System/370 Model 168

together. Reentrant code can be produced by the OS PL/I Optimizing
Compiler, and its library routines are reentrant.. This reduces
page-out requirements. User-written reentrant PL/I routines that
are required by concurrently executing problem programs can be made
resident in virtual storage and shared to reduce real storage and
paging requirements for active pages of these routines.

• Use the shared library feature of the OS PL/I optimizing Compiler
and the COBOL Library Management Facility of the OS ANS COBOL
language translator to make library modules resident in virtual
storage so they can be shared by concurrently executing problem
programs. Pages containing active libraray modules will tend to
remain in real storage and thereby reduce paging and real storage
requirements for these modules.

• Restructure existing application programs to incur as few page
faults as possible, use the least possible amount of real storage,
and take advantage of the program structure facilities that a
virtual storage environment offers. This can be accomplished by (1)
using the techniques described above, (2) taking planned overlay and
dynamic structure programs out of these structures, and (3)
combining into one logical step two or more steps of a job that
would have been one job step if the required real storage were
available. The last technique can eliminate redundant I/O time that
is currently used to read the same sequential input file into two or
more job steps and to write intermediate results from one job step
in one or more sequential data sets for input to the next job step.

• Increase the level of multiprogramming in the system. This can be
accomplished by (1) performing more peripheral I/O operations
concurrently (more readers and writers), (2) operating more regions
or partitions concurrently, or (3) increasing the use of
multitasking (structuring a TCAM message processing program to use
multitasking to enable several different types of transactions to be
processed concurrently, for example).

System throughput can be improved in a virtual storage environemnt
if a higher level of multiprogramming causes more CPU and I/O time
to be overlapped, which results in more effective utilization of
available system resources. The larger the number of tasks in the
system under these conditions, the less chance there is for the CPU
to enter the wait state because no task is ready to execut,e. Better
utilization of real storage in a virtual storage environment can
enable more tasks to be present in the system.

In order to achieve performance gains by increasing the level of
multiprogramming, the potential for more overlap of CPU and I/O time
must exist in a system and/or the potential must exist for reduction
of I/O time via increased overlapping of channel activity and
reductions in unoverlapped seek time (that can result from new
system performance enhancements). The required hardware resources,
such as CPU time, real storage, I/O devices, and direct access
storage, must be available as well. The most critical resource in
this situation is available CPU time. As the percentage of CPU
utilization gets higher, there is less potential for increasing
throughput via increasing the level of multiprogramming.

The information presented in this subsection is designed to enable
the reader to more fully understand the way a system operates in a
virtual storage environment and the facts that influence system
performance. Understanding the environment and knowing the actions that
can be taken to increase system performance will enable each
installation to quantify the amount of effort that is to be devoted to
optimizing the performance of a virtual storage operating system .•

A Guide to the IBM System/370 Model 168 83

SECTION 40: VIRTUAL MACHINES

This section discusses the basic concepts, general operation, and
advantages of virtual machines, as defined and implemented in Virtual
Machine Faci Ii ty/310. No p:revious knowledge of virtual machines is
assumed. The virtual machine concept is a logical extension 0 f the
virtual storage concept. Therefore, comprehension of dynamic address
translation hardware and virtual storage concepts, terminology, and
advantages, as discussed in Sections 30:05 and 30:10, is assumed.

VM/310 consists of the Control Program (CP) component, the
Conversational Monitor System (CMS) comp()nent, and the Remote Spooling
Communications Subsystem (RSCS) component. CP supports the concur:rent
operation of multiple virtua.l machines. CMS,· operating in a virtual
machine unde:r CP control, provides convel:sational time sharing
facilities to a single user. RSCS, operating in a virtual machine under
CP control, provides for the transmission of data between remote users
and virtual machines via binary synchronous communication lines.

VW310 is the successor t.O CP-61/CMS. Virtual machine support was
first provided by IBM in CP/61. In the eMS time sharing environment in
which CP-61/CMS was primarily used, the major advantage of the virtual
machine facility was that it. enabled each CMS user to appear to have a.
complete System/360 (Model 22 to 15) at his disposal and to be isolated
from all oth,er CMS users. Each CMS user had access only to his own
virtual machine and, therefore, could nm: inadvertantly interfere with
the operation of other CMS virtual machines. VM/310 also provides these
facilities and can be used in nondedicated time sharing environments t.O
provide other advantages as well.

The information presented in this section is prerequisite ·reading for
the optional Virtual Machin~ Facility/31Q Features Supplement, which can
be inserted as Section 110 of this guide,.. The VM/310 supplement
discusses the features and operation of CP and CMS, as well as
performance considerations for a virtual machine environment and the
types of installations that can benefit most from the use of VM/310.

40: 05 QEFINITION AND GENERAL OPERATION

A virtual machine is a functional simulation of a complete computer
system, including a virtual CPU, virtual storage, virtual channels,
virtual I/O devices, and a virtual operator's console, that appears to
the user to be a real machine. In a VM/310 environment, a virtual
machine is the functional equivalent of a System/310 (Models 135 to 168)
and its associated I/O devices.

The control program (CP) component of VM/310, executing in a real
machine (System/310 Models 135 through 168 with dynamic address
translation hardware), supports concurrent operation of multiple virtual
machines using multiprogramnling techniques that enable real machine
resources to be shared by mmltiple virtual machines. Each virtual
machine is dedicated to a single user and isolated from other virtual
machines. None of the components of one virtual machine can be accessed
by a program that is executing in another virtual machine except via the
controlled sharing facilities that are provided h¥ CP.

The operation of a virtual machine and scheduling of the work it
performs are handled by an operating system rather than by CP. That is.,
each virtual machine has an operating system executing in it that
allocates machine resources and schedules the execution of' problem

84 A Guide to the IBM System/310 Model 168

programs just as if the operating system were executing in a real
machine. In order to initiate operations in a virtual machine, the user
must log on the virtual machine and IPL an operating system in it. The
logon procedure establishes a connection with CP and the existence of a
specific virtual machine for this user. A logon is performed using a
console or terminal device of the type that CP supports as a virtual
operator's console.

The virtual operator's console is the means by which the user
controle the operation of his virtual machine and communicates with the
operating system executing in it. CP provides a set of commands that
(1) simulate the system control panel of the virtual machine, (2)
provide for alteration of a virtual machine configuration, (3) request
various services from CP for a virtual machine, and (4) control
operation of the real machine. When a CP command is entered via the
virtual operator's console, CP receives control and performs the
required functions. Communication between the user and the operating
system is accomplished using the operating system command language and
the virtual operator's console. CP performs any simulation required to
make the real I/O device the operator is using as a virtual operator's
console appear to be the primary console device type that is defined for
the operating system.

In a VM/370 environment, a virtual operator's console is frequently
called a remote terminal because, in most cases, a terminal device type
is actually used as the virtual operator's console device. However, the
real I/O device that is used as the virtual operator's console may be a
System/370 console device as well as a local or a remote terminal.

VM/370 supports execution of anyone of the following System/360 and
System/370 programming systems in a virtual machine:

• OMS component of VM/370

• RSCS component of VM/370

• DOS Version 3, DOS Version 4, or DOS/VS

• APL 360-DOS

• as PCP, MFT, or MVT

• OS ASP Version 3

• OS/VS1

• OS/VS2 Release 1

• OS/vS2 Release 2 in uniprocessor mode only

• PS44

• VM/370

Any number and combination of the above operating systems can execute
concurrently in a VMl370 environment, subject to the availability of the
required real machine resources, including multiple copies of the same
operating system (OS/VSl executing in more than one virtual machine, for
example). With a few exceptions, all the facilities that are supported
by these operating systems when they execute in a real machine can be
used when the operating system executes in a virtual machine in a VM/370
environment. Figure 40.05.1 conceptually illustrates the real and
virtual machine environment that is supported by VM/370.

A Guide to the IBM System/370 Model 168 85

Each virt~ual machine that is to be supported by CP must be user
defined and stored in the VM/310 directory. The size of virtual
storage" the virtual I/O devices to be used, the options to be used, and
a virtual console are usually specified. Virtual machine configurations
can be diffE!rent from each other and, within certain limitations,
different from that of the real machine in terms of these
specifications.

Virtual I/O units

Virtual machine 1

User 1

r::
L-=~

Simulated Virtual Machine Environment

Virtual 1/0 units

Operating
system

C Virtual
operator's
console

User 2

Virtual machine 2

Virtual I/O units

Operating
system

User 3

Virtual machine 3

Reat Machine
User 2 User 3

Real machine

Virtual I/O units

Virtual machine N

User N

~--------~)
r::
L::::-'-

[-=::-device
type!;

Figure 4 O. O~) .1.

86

Direct
access
storage

Direct
access
storage

Direct
access
storage Other 1/0

device
types

conceptual illustration of the real and virtual machine
environment that is supported by VM/310

1\ Guide to the IBM System/370 Model 168

Virtual CPU Simulation

CP is resident in real storage during operation of the real machine,.
It controls the operation of the real machine, schedules the execution
of virtual machines, and simulates virtual machine hardware components
using the hardware components of the real machine. In order to be able
to perform its functions and isolate virtual machines from each other,
CP must have exclusive control over the status and modes of operation of
the real machine, as does the control program of an operating system.
Hence, CP always executes with the real machine in supervisor state and
receives control after all real machine interruptions.

Virtual machines always operate with the real machine in problem
state. Therefore, any time any program that is executing in a virtual
machine issues a privileged instruction, an interruption occurs in the
real machine. CP receives real CPU control and takes the required
action. This may involve simulating execution of the privileged
instruction for the virtual machine or returning real CPU control to the
control program in the virtual machine for which the interruption
occurred so that the interruption can be processed by that control
program. In this manner, CP maintains control of the real machine. In
addition, CP simulates the existence of both a supervisor state and a
problem state in the virtual machine while, in reality, the virtual
machine operates only in problem state.

CP gives control of the real CPU to operating virtual machines on a
time-shared basis to simulate the existence of multiple CPU·s. A
virtual machine can execute any System/310 instruction except READ
DIRECT and WRITE DIRECT, which are part of the Direct Control feature,
the multiprocessing instructions, and SET CLOCK, which is treated as a
NOP because CP controls the setting of the time of day clock. In
addition, the DIAGNOSE instruction is reserved for communication between
executing operating systems and CP.

The System/310 instructions and CPU features that are used by the
control and problem programs executing in a virtual machine must be
present in the CPU of the real machine in which CP executes. CP does
not simulate the existence of System/310 instructions and CPU hardware
features that are not present in the real machine. A virtual CPU can
appear to be executing either with BC mode or EC and DAT modes
specified, depending on the mode required by the operating system
executing in it. However, EC and DAT modes are always specified in the
real CPU when a virtual CPU is executing since address translation is
required to support the existence of virtual storage for the virtual
machine.

Virtual Storage Simulation

Each virtual machine can have up to 16,111,216 bytes of virtual
storage, which is the maximum virtual storage size for System/310. The
existence of virtual storage for a virtual machine is simulated by CP
using DAT hardware and external page storage, as is done in a virtual
storage environment (discussed in Section 30).

Operating system programs that are executing in a virtual machine
(both control and problem programs) are paged in and out of real storage
in the real machine on a demand paged basis as they execute. Real
storage allocation, external page storage allocation, and paging
operations are handled entirely by CP and are transparent to the control
and problem programs that are executing in the virtual machines. In
this manner, CP provides one virtual storage for each virtual machine,
and real storage in the real machine 'is shared by concurrently operating
virtual machines.. The implementation of virtual storage in a virtual
machine environment is conceptually illustrated in Figure 40.05.2.

A Guide to the IBM System/310 Model 168 81

Real Storage

CP

Pages of
virtual storage
for operati ng
virtual machines

Demand
Paging

External
Page Storage

Contents of
virtual storage
for virtual
machines 1 to N

Virtual machine 1
virtual storage

Control
program

Problem
programs

Virtual machine 2
vi rtual storage

Control
program

Program
programs

Virtual machine N
virtual storage

Control
program

Problem
programs

Figure 40.05.2. Conceptual illustration of the implementation of
virtual storage in a virtual machine environment

The virtual storage defined for a virtual machine always appears to
be real storage to the operating system that is executing in the virt.ual
machine. In effect, an operating system that does not support virtual
storage, such as DOS version 4 or as MF~r, has virtual storage support.
provided by CP when such an operating system executes in a virtual
machine and, therefore, offers the funct:.ional advantages of a virtual
storage operating system ..

When executing in a virtual machine, an operating system that does
support virtual storage uses the virtual storage defined for the 'virtual
machine as real storage in order to simulate the existence of the
virtual storage it is designed to support. As shown in Figure 40.05.,3,
the virtual storage operating system builds a segment table and page

88 A Guide to the mM System/370 Model 168

tables to translate addresses in the virtual storage it supports to
addresses in the virtual storage defined for the virtual machine, which
the operating system assumes is real storage,. CP always builds and
maintains a segment table and page tables for each virtual machine.
These tables are used to translate addresses in the virtual storage of
the vir'tual machine to addresses in real storage in the real machine,.

When a virtual storage operating system is executing in a virtual
machine, CP constructs and maintains a third set of tables using the
contents of the other two sets of tables. The third set of tables, a
shadow segment table and shadow page tables, are the tables that are
actually used for address translation when the virtual machine operates.
The shadow tables are used to translate addresses in the virtual storage
the operating system supports to addresses in real storage in the real
machine.

Real machine
real storage

CP

Pageable
real
storage

Seginent
table

Page
tables

Built by
CP for each
virtual machine

1

Virtual machine
virtual storage

Assumed to be
rea I storage by
the virtual
storage operating
system

Built by
CP

Segment
table

Page
tables

Tables used for
address translation

J

Segment
table

Page
tables

Built by
the virtual
storage operating
system

Virtual storage

Supported by
the virtual
storage
operating system

Figure 40.05.3. Segment tables and page tables built when a virtual
storage operating system executes in a virtual machine

Virtual I/O Component Simulation

The virtual channels, control units, and I/O devices defined in each
virtual machine configuration are simulated by CP using real channels,
control units, and I/O devices that are of the same type. While each
virtual I/O device defined must have a real I/O device counterpart in
the real machine configuration, there does not necessarily have to be a
one-to-one correspondence. In addition, the I/O device addresses
assigned to virtual I/O devices need not be the same as the addresses of
their real I/O device counterparts. CP also allows a virtual direct

A Guide to the IBM System/310 Model 168 89

acce S5 device to be simulated by only a portion of a real direct access
device volume. Such a virtual direct access device is called a
minidisk. Support of a minidisk facility enables one real direct access
device to simulate the existence of several virtual direct access
devices of the same type and thus provides more efficient use of
available direct access storage.

virtual 1.10 devices are always simulated on a real I/O device o.f the
same device type unless the spooling facility of CP is used. (CP also
allows 2311 disk storage to be simulated using 2314/2319 disk storage
and the minidisk facility.) The local spooling capability of CP
provides data transcription between unit record devices and direct
access storage devices and is functionally similar to DOS POWER, OS
readers and 'writers, OS HASP, and OS/VS JES. In effect, the CP spooling
facility enables virtual unit record devices (card readers, card
punche s, and printers) to be simulated uBing direct access storage. CP
also provides console spooling and a remote spooling facility.

The virtual I/O devices in a virtual machine configuration are
logically controlled by the operating system that is executing in the
virtual machine rather than by CP. That is, all the data management
routines of the operating system (physical record processing, logi1cal
record processing, and error recovery routines) execute as usuaL.
Therefore, a virtual machinE! I/O configuration can include any I/O
device types that are supported by the operating systems that will
execute in the virtual machine, as long as real I/O device counterpart.s
exist in the real machine I/O configuration as required.

CP controls only the scheduling and actual initiation of virtual
machine I/O operations in the real machine. When a START I/O
instruction is issued by an operating system control program that is
executing in a virtual machine, a privileged operation interruption
occurs and CP receives real CPU control. CP translates the virtual I/O
device address to its counterpart real I/O device address and, for
minidisks, converts virtual cylinder addresses to corresponding real
cylinder addresses, as required. CP also performs the necessary channel
program translation and page locking operations and queues the I/O
request if it cannot be staI:ted.

After the I/O operation is started, CP returns the condition code t.o
the operating system control program that initiated the I/O reques·t so
that appropriate action can be taken. When the I/O operation completes
and causes an I/O interruption, CP receives CPU control, gathers I/O
status information, and attempts to restart the available real I/O
components.. CP presents the status data to the operating system control
program via a simulated I/O interruption for the virtual machine in
which the operating system is executing.

CP completely controls operation of the real I/O devices that are
required for its own execution, such as paging and spooling devices.
This includes determining the need for I/O operations, scheduling and
initia ting I/O requests, handling I/O interruption processing, and
performing error recovery procedures .•

Virtual Machine Assist Feature

The virtual Machine Assist (VMA) feature is available as an RPQ for
the Model 168. This featurE! is designed to improve total system
performance in a vW310 environment and can also improve the performance
achieved by certain operating systems that operate under CP control in a
virtual machine.. The VMA feature performs the same functions as some of
the most frequently used virtual machine simulation routines of CP.
When the VMA feature is used, virtual machine performance improvement
results when CP processing is eliminated that otherwise would cause an

90 A Guide to the IBM System/370 Model 168

operating system to experience throughput degradation when it executes
in a virtual machine instead of a real machine. Total system
performance improvement is achieved if a'higher level of
multiprogramming can be maintained as a result of the elimination of
certain CP processing.

The VMA feature is controlled by mask bits in control register 6.
When the VMA feature is enabled, certain types of real machine
interruptions that occur when a virtual machine h~s real CPU control
cause the VMA hardware feature to gain control to simulate the required
virtual machine function. The VMA feature is entered when one of the
following occurs:

• A privileged instruction program interruption occurs that is caused
when a virtual machine issues an INSERT PSW KEY, INSERT STORAGE KEY,
LOAD PSW, LOAD REAL ADDRESS, RESET REFERENCE BIT, SET PSW KEY FROM
ADDRESS, SET STORAGE KEY, SET SYSTEM MASK, STORE CONTROL, STORE THEN
AND SYSTEM MASK, or STORE THEN OR SYSTEM MASK instruction. The VMA
feature simulates execution of the privileged instruction, and
operation of the virtual machine continues with execution of the
instruction after the privileged instruction.

• An SVC instruction except SVC 76 is issued by a virtual machine.
PSW switching for the virtual machine is simulated by the VMA
feature.

• A page translation program interruption occurs in a virtual machine
in which a virtual storage operating system is executing. The VMA
feature updates the appropriate shadow page table if possible.

The VMA hardware feature performs the same functions as the
counterpart simulation routines in CP, with a few exceptions. The VMA
feature does not handle certain special situations for a few of the
privileged instructions supported. The unsupported special situations
are those that occur infrequently and that would require the inclusion
of a considerable amount of additional hardware,. When these special
situations occur, the appropriate simulation routine of CP is entered to
perform the required functions.

The amount of throughput improvement that occurs for an operating
system when the VMA feature is used depends on the extent to which the
operating system utilizes the functions the VMA feature supports. If
the increase in run time an operating system experiences when it
executes in a virtual machine is caused to a large extent by the CP
processing that is required to simulate VMA supported functions, a
relatively significant performance gain can be expected. The VMA
feature can be of the most benefit, for example, to operating systems
that support virtual storage (DOS/VS, OS/VS1, and OS/VS2).

The VMA feature is supported by VM/370 as of Release 2. Additional
details regarding the operation of the VMA feature and the support
provided by VM/370 are discussed in Virtual Machine Facility/370
Features Supplement, GC20-1757-1, and later editions.

40:10 GENERAL ADVANTAGES OF ~ VIRTUAL MACHINE ENVIRONMENT

The advantages of VM/370 complement those of virtual storage
operating systems. Like a virtual storage env ironment, a virtual
machine environment is designed primarily to support new functions
rather than increase system performance. Essentially, CP is a
simulator. Traditionally, simulators have been used to provide a
desired function at the expense of performance,. The new functions
provided by virtual machines (1) can increase the rate of new

A Guide to the IBM Systeml370 Model 168 91

application development and (2) expand operational capabilities over
those provided by virtual s'torage. The CMS component of VW310
supplements these two major advantage areas of a virtual machine
environment by supporting time sharing facilities such as online prog:cam
development" conversational program execution and problem solving., and
interac'tive text processing.

The :following indicates ,the way in which the virtual machine
environment that is support,ed by the CP component of VM/310 aids i:he
installation of new applica'tions and identifies the new operational
features such an environment supports. The functions and specific
advantages of CMS are discussed in the VM/310 supplement.

Increasing !lew Application jDevelopment

Since virtual machine support includes support of a virtual st()rage
environment for each virtual machine, all the capabilities virtual
storage provides that aid new application development are present in a
virtual machine environment as well. (These capabilities are discussed
at the end of Section 30: 05.) By enabling multiple operating sys·t:ems to
execute concurrently in one real machine, the virtual machine
environment supported by CP also provides the following new
capabili ties:

92

• Tes·ting of new programs can be more extensive and completed s()oner
by 'the elimination of dedicated testing periods,. While a viri:ual
storage environment can eliminate most program testing restrictions
that reBult from real s'torage size limitations, the isolation tha't
is provided by executing a program in a virtual machine eliminates
the need to test programs that can cause total system terminai:ion in
a dedicated environment. For example, system-oriented routines
written by system programmers and teleprocessing programs, which
usually are tested only during scheduled dedicated testing periods,
can be 1:.ested while production work is in progress,. This can
elimina1:e the need to establish testing periods during second or
third shift and, by reducing individual test turnaround time,
enables more of this type of testing to be accomplished in a 9iven
time period.

• Testing of new programs can be completed sooner through the use of
console debugging, when necessary. Using the CP commands thai:
simulatE~ system control panel functions, the programmer can use any
console debugging facility that is available on a real machinE~, such
as setting address stop:s, examining and altering general registers,
displaying and altering virtual storage, etc., without interfE~ing
with pr()duction work. CP also provides other debugging services,
such as an extensive se't of traces, that can be invoked by CP
commands. Console debugging, which can enable difficult-to-Iocate
program er:r;ors to be de'tected more quickly than with desk debugging,
is usually not permitted in a nonvi:r:tual machine environment, except
as a last resort, or is scheduled for nonproduction periods.
Program testing turnaround time can be significantly reduced through
the use of console debugging.

• Transition from one rel,ease of an operating system to another
release or from one ope:cating system to another can be accomplished
more quickly because of the capability of executing multiple
operating systems concurrently. A new release of an operating
syst.em can be generated and tested in one virtual machine while
production work continues in another virtual machine using the
existin9 release. Exis·ting application programs and system-ol~iented
programs that must be modified or newly written (to use a new
facili ty or new language trans lator, for example) can be testE!d
during production processing as well. The multiple virtual machine

A Guide to the IBM System/310 Model 168

facility also enables an installation to execute programs that are
dependent on a back release (because the release is user modified,
for example) concurrently with each new release of that operating
system or with an entirely new operating system (such as a back
release of a DOS version operating concurrently with aS).

• CMS can be used to perform online program development concurrently
with the processing of production work using either as or DOS.
Significant gains in programmer output can be realized through
writing, compiling, and testing programs using an online terminal in
a conversational manner. This enables new applications to become
operational sooner. When CMS is used, each programmer has his own
virtual machine with CMS executing in it.. Therefore, the occurrence
of a programming or operational error in one virtual machine can
cause termination of that virtual machine only. Other programmers
and production work are not affected.

Expanded operational capabilities

In addition to the new operational facilities a virtual storage
environment provides (discussed in Section 30:05), a multiple virtual
machine environment offers the following capabilities:

• Operating system maintenance can be performed concurrently with
production work. PTF's can be applied and tested using one virtual
machine without the possibility of causing the abnormal termination
of another virtual machine that is process ing production work .•

• operator training can be done using a virtual machine, which
eliminates the need to dedicate the entire real machine to this
function. Multiple operators can be trained while production work
is in process without the possibility of terminating real system
operations through an operator error.

• A system can be backed up by another system that not only has less
real storage but that also has real I/O devices with different
addresses, fewer direct access devices, and fewer channels, as long
as sufficient I/O devices of the required type are available.

• New channel and direct access device configurations can be simulated
using a virtual machine for the plrpose of evaluating the load on
the new I/O configuration before it is installed on the real
machine. Similarly, ASP configurations consisting of two or more
machines can be simulated in a virtual machine environment using
only one real machine. This enables an installation without ASP
installed to determine the activity of such a configuration and gain
experience in its operation before the second system is installed or
before making the decision to install ASP. The ASP user can also
experiment with different ASP configurations,.

As the above indicates, a virtual machine environment, as supported
by VM/370, offers several unique capabilities that can be of benefit to
small, intermediate, and large System/370 users.. In most cases, VW370
can be used to best advantage as complementary programming system
support in Model 168 installations in which a version of as is used as
the primary programming system. VM/370 can be used in the same system
as the OS or OS/VS operating system or in a separate support system. A
discussion of the types of installation environments in which VM/370
will be most frequently used is contained in Virtual Machine
Facility/370 Features Supplement.

A Guide to the IBM Systeml370 Model 168 93

SECTION 50: I/O DEVICES FOB MODELS! A~U2 1

50: 05 I/O PEVICE SUPPORT

All I/O devices, consoles, and telecommunications terminals that can
be attached to the Model 165 can be attached to Models 1 and 3 of the
Model 168. However, all I/O devices supported by OS MFT and MVT are not
also suppor1ted by OS/VSl and OS/VS2 Release 1. (See the optional
programming systems supplements for I/O device support.) Model 6!5
devices that are not part of the standaI:d Model 165 I/O configurat.ion
are not par1t of the standard Model 168 I/O configuration. The
i.ntegrated storage controls feature and several I/O devices can b.~
attached to the Model 168 but not to the Model 165 (see the table in
section 10:(5).

Note that all I/O devices supported by OS MFT and OS MVT are n()t
supported by OS/VS1 and OS/VS2, respectively,. (See the programming
systems supplements for I/O device support.)

The I/O devices discussed in this section attach to a Model 1613
(Models 1 and 3) but not to a Model 165.

50:10 3333 DISK STORAGE AND CONTROL ~EL 11 AND 3330 DISK STORAGE
'MODELU- ------

A 3330-series string that is attached to a Model 168 can contain 3333
Model 11 Disk Storage and Control and 3330 Model 11 Disk Storage
modules, which do not attach to the Model 165. The drives in these
modules offer twice the capacity of the drives in Modell and 2 m()dules.
Model 11 of the 3333 consists of two independent drives, device-oriented
control functions, and power for itself and the drives that can be
attached to it, as does Model 1 of the 3333. Model 11 of the 3330
consists of two independent drives without the device-oriented control
functions that are part of a 3333, as does a 3330 Modell.

In a Modtal 168 configuration, the 3333 Model 11 attaches to 3830
Storage Control Model 2 and Integrated storage Controls. It must be ·the
first modulta in each 3330-series string that is attached to these
control units. The 3330 Model 11 attaches only to 3333 modules, Models
1 and 11. Up to three 3330 modules, in any combination of Models 1, 2,
and 11, can be attached to a 3333 Modell or 11 module.

With one exception, Model 11 3330'-series drives are functionally like
Modell and 2 drives. The drives in 3330 and 3333 Model 11 modulf~s have
a standard 1'"rite format release feature that is not provided for 3330
Modell and 2 and 3333 Modell drives. This feature enables a M()del 11
drive to disconnect from a 3333/3330 Model 11, 3830 Model 2, or the ISC
while the drive is erasing to the end of the track after a record has
been written with a formatting write command. This facility freeB the
control unit. and channel for the initiation of another I/O operation.

The removable 3336 Model 11 disk pack is used with 3333 and 3330
Model 11 drives. Like a 3336 Modell, a 3336 Model 11 has 19 recording
surfaces. However, the Model 11 disk pack has 808 data cylinders.,
instead of 1~04, for a maximum capacity of 200 million bytes. The Model
11 disk pack also has seven alternate cylinders, like a Modell. Hence,
the maximum capaci ty of a 3330-series string of all Model 11 drivE~s is
1600 million bytes ..

94 A Guide to the IBM System/310 Model 168

Model 11 3336 Disk Packs are interchangeable across all 3330 Model 11
and 3333 Model 11 drives but cannot be used with Model 1 and 2 3330-
series drives. The 3336 Model 11 Disk Pack has a physical interlock so
that it cannot be mounted on a 3330 Modell or 2 drive or a 3333 Model 1
drive. The 3336 Model 1 Disk Pack has a physical interlock so that it
cannot be mounted on a Model 11 drive. The 3336 Model 1 Disk Pack can
be converted to a Model 11.

Table 50.10.1 compares Modell, 2, and 11 drive characteristics.
Table 50.10.2 compares 3336 Modell and 11 Disk Pack characteristics.

Table 50.10.1. Capacity and timing characteristics of 3330-series drives

Charac teri stic
3330-series

Model 1 or 2 drive

Capacity in thousands of bytes
(full-track records)

Seek time (ms)
Maximum
Average
Average cylinder-to-cylinder

Time channel busy searching when
SET SECTOR is used (ms)
Minimum
Maximum

Rotation time (ms)
Rotation speed (rpm)
Data transfer rate (KB/sec)

100,018

55
30
10

.120

.380
16.7
3600
806

3330-series
Model 11 drive

200,036

55
30
10

.120

.380
16.7
3600
806

Table 50.10.2 3336 Modell and 11 Disk Pack characteristics

Characteristic

Number of disks per pack
Number of recording disks
Number of recording surfaces
Disk thickness in inches
Disk diameter in inches
Disk pack weight in pounds
Disk pack maximum capacity in

millions of bytes
Full track capacity in bytes
Cylinders per pack

Tracks per cylinder
Tracks per pack

3336
Model 1

12
10
19
.075
14
20
200

13,030
404 plus 7
alternates
19
7,676

ATTACHMENT VIA INTEGRATED STORAGE CONTROLS

3336
Model 11

12
10
19
.075
14
20
200

13,030
808 plus 7
alternates
19
15,352

Optionally, one Integrated Storage Controls (ISC) feature can be
installed on a Model 168 to attach 3330-series and/or 3340 disk storage
to one or two 2880 Block Multiplexer Channels. Attachment of 3330-
series and 3340 disk storage via 3830 Storage Control is possible as
well. The following discusses attachment to the ISC of 3330-series
strings only.

The Integrated Storage Controls feature includes dual direct access
storage controls, each of which operates independently of the other and

A Guide to the IBM System/370 Model 168 95

is functionally like 3830 St.orage Control Model 2 except for the
following:

• The Integrated Storage Controls feature is contained in the main
frame of the Model 168 and is powered by it.

• The Two-Channel Switch, Additional feature (that provides four·­
channel switching) cannot be attached to the storage controls in the
ISC feature.

Both logical storage controls in the ISC feature can be attached to
the same 2880 channel or they can be attached to two different 2880
channels connected to the Model 168. Each logical storage control can
have attached a maximum of four 3330-series strings of up to eight
drives each. The 32 Drive Expansion and Control Store Extension
optional features (field installable) must be installed in the ISC in
order to attach more than two strings to each logical control.
Therefore, up to 64 drives (eight strings) can be attached to the Model
168 via the ISC feature. The first module .in each 3330-series string
must be a 3333 Disk Storage and Control Model 1 or 11 unit .•

The 3330-series drives attached to ISC operate just as if they were
attached via 3830 storage Control Model 2. That is, when multiple
requesting is used, each logical storage control within the ISC can
handle up to 32 channel programs concurrently, one on each of its
drives, and only one of the 32 drives can be transferring data at a
time. When a malfunction occurs, diagnoc.3tics can be run on one logica.l
storage control and its drives, while normal operations take place on
the other logical storage control in the ISC..

The ISC feature provides lower-cost at:tachment of 333O-series disk
storage than 3830 Storage Control Model 2 when two storage control units
are required, and floor space is saved since the ISC is in the Model 168
cpu. See Table 50.15.3 for a summary of the capabilities of the 3830
Models 1 and 2 and ISC.

The Two-Channel Switch optional feature- is also available for the ISC
feature. When installed, this feature provides a two-channel switching
capability for both of the logical storage controls. The Two-Channel
Switch feature permits each integrated storage control unit to be
attached to two channels in the same Model 168 or to one channel in the
Model 168 and one channel in another System/370. Figure 50.10.1
summarizes the 3330-series string configurations that are possible for
the Model 168 ISC. Intermixing 3330-series and 3340 strings on an
attachment is discussed in Section 50:15.

The 3333 String Switch optional feature can be installed on a 3333
Modell or 11 that is attached to the 3830 Model 2 or ISC. This fielO1-
installable feature enables the 3333 and all its attached 3330s (a 3330-
series string) to be connect:ed to two control unit type attaci'Inents
instead of only one. The ai:tachments can be any combination of two of
the following:

96

• 3830 Storage control Model 2

• Integrated storage controls for Models 158 and 168 (or the two
logical controls in one ISC>

• Integrated Storage Control for the Model 145

• 3345 Storage and Control Frame Models 3, 4, and 5 for the Model 145

• 3330/3340 series IFA for the Model 135

A Guide to the IBM System/370 Model 168

The two attachments to which a 3333 with the 3333 String Switch
feature is connected can be attached to the same or different channels
in the same CPU, or to channels in two different CPU's. In addition,
channel switching features can be installed on one or both of these
a ttachrilents.

Integrated
Storage
Controls Logical

control 1
Logical
control 2

• Two-Channel Switch
• 32 Drive Expansion
• Control Store Extension

• One to four strings of from two to eight drives each connected
to each logical control. Each logical control connected to one
or two channels in the same or different CPU's.

• 3333 String Switch can be added to any or all 3333's to connect
a 3333 to a second attachment in the same ISC, the same CPU, or
another CPU

Model 1 or 11

Any
combination
of Models 1,
2, and 11

Figure 50.10.1. Permissible 3330-series string configurations for the
Model 168 Integrated Storage Controls feature

The 3333 String SWitch is functionally similar in its operation to
the Two-Channel Switch. A switch can be set to allow the 3330-series
string to be accessed via both attachments, one at a time. In effect,
this setting provides two control unit paths to the string. String
switching is accomplished dynamically under program control.
Alternatively, the switch can be set to dedicate the string to one
attachment or the other so that the string can be accessed only via that
attachment.

Figure 50.10.2 illustrates 3333 string switching for four 3330-series
strings. In the configuration shown, all strings can be accessed via
two channels and two control units. Channel switching, string
switching, and 32 Drive Expansion features can be used to enhance the
availability of 3330-series disk storage and to extend backup
capabili ties when two System/370 systems (the same or different models)
are present in an installation.

A Guide to the IBM System/370 Model 168 97

Each 3333 has
the 3333 String
Switch installed

Figure 50.10.2.

Model 1 or 11

Any combination of
Models 1, 2, and 11

Sample 3330-series string configuration with st.ring
switching

optionally, the staging adapter feature can be installed on the ISC
to permit a1ttachment of the 3850 Mass Storage System to the ISC. The
ISC provides the same functions for the 3850 as 3830 Storage Control
Model 3. The staging adapter permits the addreSSing capabil ity of each
of the four ISC paths to be expanded to a maximum of 64 unique
addresses. When the staging adapter is installed, the control store
extension f.~ature must also be installed and 3340 disk storage cannot be
a ttached to the ISC.

98 A Guide to the IBM System/370 Model 168

50:15 THE 3340 DIRECT ACCESS STORAGE FACILITY

3340 DISK STORAGE DRIVES AND THE 3348 DATA MODULE

The 3340 direct access storage facility is an intermediate capacity,
modular, high performance direct access storage subsystem that consists
of 3340 Disk Storage and Control Model A2 and 3340 Disk Storage Models
Bl and B2. A 3340 string can consist of from one to four units and is
connected to a 2880 Block Multiplexer Channel in a Model 168
configuration via 3830 Storage Control Model 2 or integrated storage
controls in the Model 168 CPU.

A 3340 string for the Model 168 can consist of from two to eight
drives. A 3340 Disk Storage and Control Model A2 must be the first unit
in a 3340 string. The 3340 Model A2 consists of two drives, drive­
oriented control functions, and power for itself and the 3340 drives
attached to it. In a Model 168 configuration, the 3340 Model A2
attaches to 3830 Storage Control Model 2 and a logical control in the
ISC. Up to three units, any combination of 3340 Disk Storage Models Bl
and B2, can be attached to a 3340 Model A2. The 3340 Model B2 consists
of two drives and does not contain the power and device-oriented control
functions that are part of the 3340 Model A2.. The 3340 Model Bl
contains one drive and no control functions. Functionally, all 3340
drives are alike regardless of whether they are part of a Model A2, B2,
or B1 unit.

Figure 50.15.1 shows a 3340 string of five drives that includes one
3340 Model A2, one 3340 Model B2, and one 3340 Model Bl. An operator
control panel is located on the top of each 3340 drive. This panel
contains the three-digit hexadecimal address of the drive, the switches
required to operate the drive, and status indicator lights. The address
of a 3340 drive is wired on a logic board in the 3340 unit.

The removable 3348 Data Module is used for data storage. Unlike the
removable 2316 and 3336 disk packs that are the storage medium for 2314
and 3330-series disk storage, respectively, the 3348 Data Module is a
sealed cartridge that contains a spindle, access mechanism, and
read/write heads in addition to disks on which data is written and read.
The cover of the data module, which is shock-absorbing and non­
flammable, is never removed from the cartridge. The 3340 disk storage
drive contains only the mechanical and electrical components that are
required to house, load, air-filter, and drive the 3348 Data Module.

The 3348 Data Module is shown in Figure 50.15.2. The access
mechanism in a 3348 Data Module is an L-shaped carriage which moves back
and forth on a cylindrical shaft mounted within the data module. When
the data module is not loaded, the access mechanism is latched in the
home position so that it cannot move. In this position, the access
mechanism is located such that the read/write heads rest on nondata
areas on the disk surfaces.

Three models of the 3348 Data Module, all of which are the same
physical size, are available. The 3348 Model 35 has a maximum capacity
(assuming full track records) of approximately 35 million bytes that are
accessed by movable read/write heads,. The 3348 Model 70 has a maximum
capacity of approximately 70 million bytes that are accessed by movable
read/wri te heads,. The 3348 Model 70F also has a maximum capacity of 70
million bytes of which approximately 502,000 bytes maximum (60 logical
tracks> are accessed by fixed read/write heads and the balance by
movable read/write heads.

A Guide to the IBM System/310 Model 168 99

Figure 50.15.1. A five-drive 3340 strin9 with 3340 Model A2, B2,
and B1 units

Figure 50.15.2. The 3348 Data Module

100 A Guide to the IBM System/370 Model 160

A purchased 3348 Model 35 can be upgraded to a Model 70 at the plant
of manufacture. The upgrading of a 3348 Model 35 or 70 to a Model 70F
and the alteration of a Model 70 to a Model 35 are not available as data
module conversions.

The 3348 Model 70F can operate only on a 3340 drive (Model A2, B2, or
B1) that has the optional field-installable Fixed Head feature
installed. When installed on a 3340 A2 or B2 unit, the Fixed Head
feature is installed on both drives. The presence or absence of this
feature in a 3340 drive can be determined by programming at any time by
issuing a SENSE command and inspecting the Fixed Head feature bit in the
sense bytes read. The Fixed Head feature and the the Two-channel SWitch
Additional feature (for four-channel switching) are mutually exclusive
for the same 3340 string.

A Model 70F Data Module can be mounted on a 3340 drive that does not
have the Fixed Head feature installed and made ready without any
notification of the error by the hardware. However, the first I/O
operation issued to the 3340 drive causes an intervention-required unit
check condition and the drive is taken rut of ready status,. When this
situation occurs in an OS/VS environment, a message is given to the
operator and the affected job must be canceled in order to recover. To
avoid such situations it is recommended that 3340 units with and without
the Fixed Head feature not be mixed within a string. If one 3340 unit
has the feature, all should have the feature.

Models 35 and 70 of the 3348 Data Module can be used with any 3340
drive (Model A2, B2, or Bl) whether or not it has the Fixed Head feature
installed. No indication is given if a Model 35 or 70 is placed in a
3340 drive with the Fixed Head feature. In such cases, the fixed head
capability of the drive is not utilized.

The 3340 direct access storage facility is unlike other System/370
direct access storage in that the capacity of an individual 3340 drive
is determined by the model of 3348 Data Module mounted on the drive
rather than by the model of the drive itself. The capacity of the 3348
Data Module that is mounted on a 3340 drive can be determined by
programming at any time by issuing a SENSE command and inspecting the
data module size bits in the sense bytes read.

The capability of having two capacity options per drive means the
capacity of a 3340 string can be increased by using larger capacity data
modules on existing drives as well as by adding drives to the string. A
3340 string can vary in capacity from 70 million bytes (two Model 35
Data Modules) to a maximum capacity of 560 million bytes (eight Model 70
or 70F Data Modules) in 35- and/or 70-million-byte increments (assuming
full track records).

Reliability and the Sealed Cartridge Design

The sealed cartridge design of the 3348 Data Module, the advanced
design used for the read/write heads in the data module, and
improvements in the physical design of the 3340 drive make the 3340
direct access storage facility more reliable than previously announced
direct access storage devices for System/370, as explained below,. No
preventive maintenance is scheduled for a 3340 facility because of its
reliability features.

Reliability is improved by the removal of head-to-disk alignment
problems. Each read/write head within a 3348 Data Module is dedicated
to certain tracks on one data surface. Therefore, each head reads only
the data it wrote previously, regardless of the 3340 drive that is used.
Since common head alignment across all 3340 drives is not required, the
critical alignment tolerances that are normally necessary to achieve

A Guide to the IBM System/370 Model 168 101

data interchangeability among drives are not needed for 3348 Data
Modules. It is the less critical alignment tolerances for the
read/write heads in a 3348 Data Module that minimize the chance of
errors caused by incorrect alignment of a head to its dedicated tracks.

There is also less chance of damaging read/write heads. If a data
module is dropped, the only read/write heads that can be affected are
those in that data module. If a disk pack is damaged, it can cause
d.amage to thE~ read/write heads in more than one drive if it is mov«~
from drive to drive in an attempt to find a drive that can read the
pack. The outside covers of a 3348 Data Module are made of a highly
d.urable material that is designed to enable a data module to withstand
more severe blows without damage than can a disk pack.

Reliabili 1:.y is improved because the exposure of the disk surfacE:!s in
d. 3348 Data l>1odule to outside contamination is greatly reduced when
compared to 1:.he contamination exposure of a disk pack. A 3348 Data
l~odule is opened only when it is mounted on a 3340 drive and only when
the drive cover is closed. contamination on d'isk surfaces can be a
major cause of head and disk damage.

In addition, the possibility of head crashes is minimized by thE~
improved flying characteristics of the read/write heads in a data
module. The low mass of the read/write heads and the low loading force
used enable 1:.he heads to fly over the rot.ating disks at a very low
height. This near contact (or proximity) recording capabil ity of 1:he
read/write hE~ads in the 3348 permits smaller bits to be written, wbich
increa se s thE~ recording density that can be achieved.

The recording density in bits per inch of a track in a 3348 Data
l>1odule is approximately 2.5 ·times greater than the recording density of
a. track in a 2316 pack (10 percent greater than 3330-series Model t1
density and more than two times greater than 3330-series Model 1 and 2
density). The advanced head design used for the 3348 Data Module
(:!nables grea1:er density to he achieved together with improved
reliabili ty.

Reliabilit.y of the 3340 direct access storage facility is also
improved because many critical mechanical parts have been eliminated,
Buch as a complex head load/unload mechanism,. In other cases,
f~lectronic functions have replaced mechanical functions. While thE~ 3340
drive contains more electronics than the 2314, higher density logic
Gards are uSE~d in the 3340, which results in significantly fewer logic
Gards. (A 3340 drive also contains approximately one-third the number
of logic cards as a 3330-series drive.)

The sealed cartridge design implemented in the 3348 Data Module
provides several advantages in addition to improved reliability, such a.s
simplified data module loading and unloading.. Operations that are
required for disk pack loading and unloading (tightening the pack on the
spindle, COVE~r removal, cove:[" replacement, untightening the pack for
xemoval) are not required for a 3348 Data Module. In addition, the
possibility of hub wear or hub damage as a result of loading and
unloading opE!rations is eliminated for a 3348 Data Module.

After the top cover of the 3340 drive to be used is raised, the
operator places the data module in the exposed drive shroud recess.
l\f,ter closin9 the cover, the operator ini·tiates automatic loading of the
module by put:ting the start/stop switch on the operator panel of the
drive in the start position. This causes the cover of the drive to be
locked, which is indicated by a light on the operator panel, and the
data module t:o be loaded..

The follo~'ing occurs during data module loading. The shroud
containing the seated data module moves to the back of the 3340 drive

102 A Guide to the IBM System/370 Model 168

where the voice coil motor is located. While the data module is in
motion, the data module door in the rear of the 3348 is rolled down.
Electrical, mechanical, and filtered air connections between the 3348
Data Module and the 3340 drive are then made through the open data
module door. The access mechanism is then unlatched and the disks are
brought up to rotational speed. The access mechanism is moved to
physical track O. This entire loading process requires approximately 20
seconds. When the loading process is completed, the ready light on the
operator panel is turned on to indicate the 3348 Data Module is ready
for processing.

To unload a data module, the operator places the start/stop switch in
the stop position. The unloading procedure consists of a reversal of
the operations performed during loading. The access mechanism moves to
the home position in the data module where it is latched, disk rotation
is stopped, the data module is disconnected from the drive, the data
module door is closed, and the data module moves to the front of the
drive. The cover-locked indicator light is turned off as soon as the
unloading procedure is completed. Unloading requires approximately 20
seconds. The cover of the 3340 drive can be raised as soon as the
cover-locked indicator light is turned off and the 3348 Data Module can
then be removed.

The possibility of contaminating the disk surfaces of a data module
during loading and unloading operations is minimized because the data
surfaces are exposed to the air within the closed 3340 drive through the
open data module door for only s lightly more than one second,. Further,
as soon as a seal between the 3340 drive and the 3348 Data Module has
been made, the filtered air system displaces the air within the data
module several times to remove any contaminants that may have entered
via the open data module door.

The sealed cartridge also offers two other unique features. First, a
read only function (not available for the 2314) is provided on a data
module basis rather than a drive basis (as implemented for 3330-series
disk storage). The read only function is enabled for a 3348 Data Module
by turning an inset in the handle of the 3348 (see Figure 50,.15.2) to
the read only position before placing the data module in the 3340 drive.
This inset causes the read only switch that is part of each 3340 drive
and the read only indicator on the operator panel to be turned on when
the 3348 is loaded in a 3340 drive.

When the read only function is enabled for a 3348 Data Module and an
attempt is made to write on the data module, an interruption occurs and
IBM-supplied programming support terminates the program that issued the
write,. The advantage of this approach is that once the read only inset
in a 3348 Data Module is set to inhibit writing, the data module can be
used with any 3340 drive at any time and the operator need not remember
to turn on a read only switch on the drive.

Second, external label handling is improved. An external label can
be placed on a 3348 Data Module after it is removed from the 3340 drive,.
Placing an external label on the top surface of a disk pack instead of
on the cover, to avoid mislabeling a disk pack by placing the wrong
cover on it, can be done only when the disk pack is mounted on a drive.
In addition, since the outside cover is never removed from a data
module, the volume identification label on the cover is legible through
the front window of the cover of the 3340 drive even when the data
module is loaded and being accessed.

Layout of Tracks, Cylinders, and Read/Write Heads in 3348 Data Modules

The layout of physical and logical tracks on a data surface of any
model 3348 Data Module and the relative position of the read/write heads

A Guide to the IBM Systeml370 Model 168 103

for a data surface are shown in Figure SO.lS,.3,. A data surface contains
700 physical tracks with a small space between the first 3S0 physical
tracks and the second 3S0 physical tracks. There is also unused SpaCE!
after the second group of 3!>0 physical t:racks. Two logical tracks, one
even numbered and one odd numbered, are 1t1ritten on each physical track.
A logical track has a maximum capacity of 8,368 data bytes (for full
track record s) •

Even index
point

Access mechanism
with two heads
per data surface
has 350 possible
access positions

Even-numbered logical track on
one half of the physical track,
odd-numbered logical track on
other half of the physical track

\
Disk
rotation

- Odd index
point

Figure SO.lS.3. Location of physical and logical tracks and read/writ.e
heads on a data surface in a 3348 Data Module

There are two read/write heads associated with each data sur facie.
They are positioned a little more than 350 physical tracks apart, as
shown in Figure SO.lS.3. While starting and stopping the data module,
the read/write heads are positioned over the unuSed portions of the data
surface.

The access mechanism can be placed at anyone of 3S0 access positions
on the data surface. Therefore, an outermost head on the access
mechanism can access physical tracks 0 to 349 on its associated data
surface whille an innermost head can access phys ical tracks 3S0 to 1599.
At any of the 3S0 possible access mechanism positions, two physical
tracks (4 logical tracks) can be accessed on a data surface. However,
only one read/write head in a data modulE~ can be active at a time.

104 A Guide to the IBM System/370 Model 168

The bottommost surface in all 3348 Data Modules is used as the servo
surface. This surface contains information for the servo system that is
used to control seek operations, positioning of the heads over tracks,
data clocking (the synchronization of data with rotational speed during
writing operations), index generation, and signal generation required by
the RPS feature. Functionally, the 3340 servo system is like that used
in 3330-series drives. However, design improvements, such as
elimination of the electromechanical tachometer, have been made.

The required servo information is prerecorded on the servo surface of
each 3348 Data Module at the plant of manufacture and is read by a servo
read head at the bottom of the access mechanism. The servo information
on this surface cannot be read or written using 3340 commands. The
servo surface on a 3348 Model 70F Data Module also contains the 60
logical tracks that are read by the fixed heads.

The access mechanism in a 3348 is driven by a voice-coil motor. This
motor and the servo system provide fast, precise access mechanism
positioning, which minimizes head settling time.

Figure 50.15.4 shows the layout of cylinders and read/write heads for
the 3348 Model 35 Data Module. A Model 35 contains two recording disks.
Three of the data surfaces on the two recording disks are used for data
recording in a Model 35 Data Module. The three data surfaces are
accessed by six read/write heads (0 to 5). The six physical tracks that
can be accessed at any given position of the access mechanism constitute
a logical cylinder and contain twelve logical tracks,. Head 0 accesses
logical tracks 0 and 1, head 1 accesses logical tracks 2 and 3, etc.

A four-byte field (CCHH) is used to address the logical tracks in a
3348 Data Module. The two-byte CC (cylinder address) field specifies
the logical cylinder address, which can be 0 to 348 for the primary and
alternate logical tracks of a Model 35 Data Module. The two-byte HH
field, which normally specifies the actual head address (for 2314 and
3330-series drives, for example), specifies the number of the logical
track within the logical cylinder, a value from 0 to 11, instead of a
head address of 0 to 5. The drive selects the appropriate head using
the logical track 'number.

In Figure 50.15.4, the access mechanism is shown positioned at
logical cylinder 0 where physical tracks 0 and 350 on each of the three
data surfaces can be accessed. There are 350 logical cylinders in the
Model 35 Data Module. The first 348 are used for data, logical cylinder
348 is the alternate cylinder, and logical cylinder 349 is the CE
cylinder. The CE cylinder is designed to be used only by the CE for
testing the read/write capability of a 3340 drive. It contains a
prewritten area for read testing and an area in which write tests can be
performed.

Figure 50.15.5 shows the layout of cylinders and read/write heads for
the 3348 Model 70. A Model 70 contains four recording disks. Six data
surfaces on the four recording disks, each of which is accessible by two
read/write heads, are used for data recording in the Model 70. As for
the Model 35, the six physical tracks that can be accessed by the lower
six read/write heads (0 to 5) at a given position of the access
mechanism constitute a logical cylinder of twelve logical tracks. In a
Model 70, however, the logical cylinders addressed by read/write heads 0
to 5 are all even numbered (0, 2, 4, ••• , 698). The six physical tracks
that can be accessed by the upper six read/write heads (6 to 11) at a
given position of the access mechanism also constitute a logical
cylinder of twelve logical tracks. The logical cylinders addressed by
read/write heads 6 to 11 are all odd numbered (1, 3, 5, •• ,., 699).
Thus, on a Model 70 two logical cylinders (24 logical tracks) can be
accessed at each of the 350 possible access mechanism positions.

A Guide to the IBM System/370 Model 168 105

Model 35 Data Modu Ie
Maximum callacity 34.9 million bytes

Servo j
surface

Physical ---+- 699
track

350349 ... 1 0

Access mechanism
with six read/write
heads, six physical
tracks per logical
cylinder

Servo arm

t • Logical cylinder 0
I.-____ J (logical tracks 0 to 11)

t t Logical cylinder 1
'-___ --' (logical tracks 12 to 23)

t .. Logical cylinder 349
___ ---'I (logical tracks 4188 to 4199)

Number of recording disks
Number of da.ta surfaces
Nunber of re~ad/write heads
Number of physical tracks
per physical cylinder

Number of physical tracks per
logical cylinder

Number of logical tracks per
logical cylinder

Number of logical cylinders per
data module

Number of logical tracks per
data module

Number of acce ss mechanism
posi tions

Number of logical cylinders
accessed per access
mechanism position

2
3
6
6

6

12

350

4200 (4176 data)
(12° alternate)
(12 CE)

350

1

Figure 50.15.4. Cylinder and read/write head layout for a 3348 Model 35
Data Module

106 A Guide to the IBM System/370 Model 168

Model 70 Data Module
Maximum capacity 69.8 miIHon 'bytes

Servo
surface

r-L----~ 699

Physical --.699 ...
track

I Logical cylinder 699
• (logical tracks 8388 to 8399~

~ Logical cylinder 3
(logical tracks 36 to 47)

~ Logkal cylinder 1
(logical tracks 12 to 23)

350349 ... 1 0

}

Six physical tracks
accessed by read/write
heads 6 to 11 constitute
an odd-nu mbered logical
cylinder (1,3,5, ...• 699).

}

Six physical tracks
accessed by read/write
heads 0 to 5 constitute
an even-nu mbered logical
cylinder (0,2.4, ... ,698)

t t Logical cylinder 0
L-___ ---' (logical tracks 0 to 11)

t t Logical cylinder 2
1-____ --" (logical tracks 24 to 35)

t t Logical cylinder 698
L...-___ ---I (logical tracks 8376 to 8387)

Number of recording disks
Number of data surfaces
Number of read/write heads
Number of physical tracks

per physical cylinder
Number of physical tracks per

logical cylinder
Number of logical tracks per

logical cylinder
Number of logical cylinders per

data module
Number of logical tracks per

data module

Number of access mechanism positions
Number of logical cylinders accessed

per access mechanism position

4
6

12
12

6

12

700

8400 (8352 data)

350
2

(24 alternate)
(24 CE)

Figure 50.15.5. Cylinder and read/write head layout for a 3348 Model 70
Data Module

A Guide to the IBM Systeml370 Model 168 107

There are 700 logical cylinders in the Model 70 Data Module. The
first 696 (0-695) are used for data.. Logical cylinders 696 and 69'1 are
used as alternate logical cylinders while logical cylinders 698 and 699
are CE cylinders. The method of addressing a logical track in a Model
70 Data Module is the same a,s described for a Model 35. The CC value
can vary from 0 to 697 for data and alternate logical cylinders while
the HH value can vary from 0 to 11.

Figure 50.15.6 shows the layout of cylinders and read/write heads for
the 3348 Model 70F. This model is identical to the Model 70 except for
the following. Seven surfaces, six data surfaces and the servo surface,
on the four recording disks are used for data recording. Logical
cylinders 1to 5 are recorded on the servo surface. They are written on
30 physical ·tracks that are accessed by 30 fixed read/write elemen·ts,
which are mounted on a plate under the servo surface, as shown in :Figure
50.15.6. The first six physical tracks contain logical cylinder 1, the
second six physical tracks contain logical cylinder 2, etc.. Logical
cylinders 0 ,and 6 to 699 are recorded on the six data surfaces jus·t as
in a Model 70 Data Module.

Addressing a logical track in a Model 70F Data Module using a CCHH
field is the same as described for the Model 70. When a command is
received tha·t addresses a logical track in logical cylinders 1 to 5 of a
Model 70F, the 3340 drive automatically selects the fixed read/write
element associated with the specified logical track instead of the
movable head. Therefore, a Model 70F and a Model 70 data module can be
accessed using the same 3340 channel programs. This means no special
programming support is required to use a Model 70F instead of a Model 70.

The physical tracks that contain logical cylinders 1 to 5 in a Model
70 are not used in a Model 70F and cannot: be accessed by the user or a
customer engineer because of the way in which head selection is
performed. Hence, the data capacity of Models 70F and 70 is the same.
Seek time for logical cylinders 1 to 5 in a Model 70F is zero. Seek
times for l09ical cylinders 0 and 6 to 695 in a Model 70F are the same
as Model 70 seek times.

A data se·t or file can be contained both in logical cylinders 1 to 5
of a Model 70F Data Module and logical cylinders that are accessed by
movable heads. A 3340 drive, however, can perform only one operation at
a time. The.refore, a seek, search, or data transfer operation involving
a fixed head in a Model 70F Data Module cannot be performed at the same
time a movable head is involved in a seek, search, or data transfer
operation.

The best performance gains can be achieved when Model 70F Data
Module s are used by assigning the fixed head logical tracks to small
active system data sets (such as the page data set, system catalog, TeAM
message queufe), small active user data sets, large active data sets that
can be segmented (OS/VSl pag'e data set, partitioned data sets, ISAM
index levels, for example), and data sets with major activity
concentrated at the beginning of the data set (such as the OS/VS job
queue).

The assignment of such data sets to the fixed head logical tracks in
a Model 70F Data Module is a user responsibility. OS/VS DD statements
for these da·ta sets must specifically request by actual address
loca tions wi thin the fixed head logical cylinders. Note also that the
device type code in the device table that: is generated in the conbrol
program during a system generation (OS/VS UCB table) does not
differentiabe between 3340 drives with and without the Fixed Head
feature. Therefore, if generic device type assignment by device type
(3340) is used in a configuration that contains 3340 drives with and
without the :Fixed Head feature, either type drive can be selected by the
operating system.

108 A Guide to the IBM System/370 Model 168

Model70F Data Module
Maximum capacity 69.S million bytes

~--~"- 699 . .. 350

11

Servo
surface

Number of recording disks
Number of data surfaces
Number of read/write heads

Number of physical tracks
per physical cylinder

Number of physical tracks per
logical cylinder

Number of logical tracks per
logical cylinder

Number of logical cylinders per
data module

Number of logical tracks per
data module

Number of movable head access
mechanism positions

9

7

5

3

o

read/write
elements

4

}

Six physical tracks accessed
by read/write heads 6 to
11 constitute an odd-numb­
ered logical cylinder
(7,9,11, ... ,699).

Six physical tracks accessed
by read/write heads 0 to 5
constitute an even-numbered
logical cylinder (0,6,
8, ... ,698)

Logical cyl inders 1 to 5
contained on 30 physical
tracks

6 plus servo surface
12 movable
30 fixed
12

6

12

700

8400 (8352 data - 60 fixed head
and 8292 movable head)

(24 alternate)
(24 CE)

350

Number of logical cylinders
accessed per access
mechanism position

2 except for first 3 positions

Figure 50.15.6. Cylinder and read/write head layout for a 3348
Model 70F Data Module

A Guide to the IBM System/370 Model 168 109

The assignment of a 3340 drive with the Fixed Head feature can be
assured in an OS/VS environment by specifying a user-defined device
class name for such 3340 drives at system generation and using this name
(instead of UNIT=3340) in the appropriate DD statements.

Alternate tracks that are accessed by fixed heads are not provided
for logical (:ylinders 1 to 5 in a Model 70F Data Module. Logical
cylinders 696 and 697, which provide alternate tracks for the logical
tracks accessed by the movable heads, also provide alternate tracks for
the logical ·tracks in logical cylinders 1 to 5. This approach is itaken
because the probability a fixed head track in logical cylinders 1 tD 5
'will develop a defect is lower than that for movable head tracks and the
possibility of a defect occurring in a movable head track is very low
(for the reasons discussed later).

The low p:robability of defects occurring in fixed head logical
cylinder s 1 ·to 5 of a Model 70 F Data Module results in part from the
fact that these cyl.inders are recorded on the servo surface, which is a
specially manufactured surface because of its primary function. In
addition, the fixed head tracks are recorded on the outer edge of the
servo surfacc~, which results in a lower bit density for these tracks.
The width of a fixed head physical track is six times greater than that
of a movable head track on a data surfacE~.

If an uncorrectable error does occur on a fixed head logical track in
,a Model 70F Data Module, the logical track should be flagged and an
alternate tra.ck should be assigned. This can be done using the
IEHATLAS, IEHDASDR, or IBCDASDI utility of OS/VS. IEHD1-\SDR or IBC1DASDI
should then be used to test the flagged fixed head track to determine
whether the ·track is really defective. If the track is found not to be
defective, the flag is removed and the assigned alternate track is
released. If the track is defective, the data module can be returned to
the plant of manufacture for repair if the loss of performance resulting
from using an alternate movable head track instead of the fixed head
track is not acceptable.

The physical and capacity characteristics of 3348 Data Modules and
the 2316 disk pack are given in Table 50.15.1. Table 50.15.2 gives the
-timing characteristics of the 3340 direct. access storage facility and
the 2314 facility.

Self-formatting records consisting of count, key, and data or count
and da ta areas are written o"n the logical tracks of a 3348 Data Module
just as on the tracks of a 2316 pack. However, each home address,
count, and kj~y area written on a 3348 track has a six-byte detection
Gode field appended to it for data validi.ty checking by the 3830 Model 2
or integrated. storage control. The detection code used can detect all
single-error bursts of eleven bits span or less.

A six-byte correction code field is appended to each data area
'written on a 3348 track. The correction code used has the same
detection capability as the detection code and the capability of
correcting single-error bursts of three bits span or less. The actual
'error correction procedure must be performed by programming (error
"recovery rouitines) using corrective bits that are supplied by the
control unit as discussed later.

:L10 1-\ Guide to the IBM System/370 Model 168

Table 50.15.1. Physical and capacity characteristics of 3348 Data
Modules and the 2316 Disk Pack

Characteristic

Number of data
disks per data
module/pack

Disk diameter
in inches

Number of
surfaces used
per data module/pack

Number of read/write
heads per recording
surface

Number of cylinders
per data module/pack

Number of logical
tracks per cylinder

Number of data
tracks recorded per
data module/pack

Full track capacity
in bytes

Cylinder capacity
in bytes

3348
Model 35

2

14

3 data
1 servo

2

348 plus
1 alter­
nate and
1 CE

12

4,176

8,368

100,416

3348
Model 70

4

14

6 data
1 servo

2

696 plus
2 alter­
nates and
2 CE

12

8,352

8,368

100,416

3348
Model 70F

4

14

6 data
1 servo
and data

2 plus
30 read/
write
elements
for the
servo
surface

696 plus
2 alter­
nates and
2 CE

12

8,352

8,368

100,416

2316

11

14

20 data

1

200 plus
3 alter­
nates

20

4,000

7,294

145,880

Maximum capacity
in bytes per data
module /pac k

34,947,768 69,889,536 69,889,536 29,176,000
(502,080 in

Data module/pack
weight in pounds

17 19.5

logical
cylinders
1 to 5,
69,387,456 in
logical
cylinders 0
and 6 to 695)

20 15

~ ____________________ ~ __________________________ ~ ____ ~ _________ c ____ ~~c ____

A Guide to the IBM System/370 Model 168 111

Table 50.15,.2. Timing characteristics of the 3340 direct access
storage facility and the 2314 facility

Characteris1:ic Models 35
and 70

Model 70F 2314
Cylinders Cylinders
1-5 0, 6-699

Seek time (ms)
Maximum 50 0 50 130

Average

Cylinder t:o
cylinder

(350
noo

25
(350
(700

Model 35 10

cyl'-Model
cyl-Model

cyl'-Model
cyl·-Model

Models 70, 70F Even to next
odd - 0

Even to next
even - 10

Odd to next
even or
odd - 10

35)
70)

35)
70)

(700 cylinders)

0 25 60
(700 cyl inders)

25

0 0

0 10

0 10

Rotation time
(ms)

20.2 20 .• 2 20.2 25

Rota tion spE!ed
(rpm)

Da ta transfE!r
rate (KB/sec)

2964

885

Sectors per track 64

Sector time 316
(microseconds)

Load time (sec s)
(time to ready
status af·t:er
mounting)

20

Unload time (secs) 20

2964 2964 2400

885 885 312

64 64

316 316

20 20 60

20 20 15

The bome address and count areas written on a logical track in a 3348
contain two new fields in addition to the same fields as are written :in
home address and count areas on 2316 tracks. The home address and each
count area on a 3348 logical track contain a two-byte skip defect field
and a two-byte physical add:cess field in front of the flag byte. The
automatic surface defect skipping capability of the 3340 allows valid
da ta to be ~lri tten bef ore and after a surface defect on a logical track.
The skip de1:ect bytes are used to indicate the location of the center of
the surface defect relative to the index point of the logical track.
Bits in the flag byte field indicate whether the surface defect is
loca ted in the next count, key, or dat a area .•

surface defect skipping is implemented by including in each logical
track of a 3348 Data Module a reserved area called a surface defect gap
in which no data is written.. If a logical track has no surface defects,
the surface defect gap is located at the end of the logical track. If

112 A Guide to the IBM System/370 Model. 168

there is a surface defect, the surface defect gap is placed over the
defective portion of the logical track at the time of manufacture. One
or more surface defects that together occupy an area of up to 16 bytes
in length per logical track can be handled by the defect skipping
technique while the stated full logical track capacity of 8,368 bytes is
maintained.

The error detection and correction code capabilities of the 3340
facility permit successful recovery from an error within the data
portion of a physical record even when it contains a surface defect gap.

Partial initialization of all 3348 Data Modules is performed at the
plant of manufacture. A home address record and track descriptor (RO)
record are written on each logical track in the data module. If a
single skippable defect is found during the analysis of the surface of a
logical track, the appropriate SD bytes and flag byte are written in the
home address to indicate this fact. If no surface defect is found, the
SD bytes are written as zeros.

The SD bytes and flag byte are supplied in the count area field in
virtual storage only for a WRITE HOME A1:DRESS command. When RO is
written during data module initialization and thereafter whenever a
formatting write is performed, the SD and flag bytes for the count area
to be written on disk are supplied by the control unit, which reads them
from the record immediately preceding the record to be written.

When a record is written with a formatting write command on the
portion of a logical track that contains an identified surface defect,
the defect gap area is maintained in the defective portion of the
logical track and data is written before and after the defect gap as
appropriate. Whenever a nonformatting write or a read is issued for
this record, the surface defect gap is automatically skipped over by the
hardware without programming assistance or any error notification, just
as if no surface defect existed.

The OS/VS IBCDASDI, IEHDASDR, or IEHATLAS utilities can be used to
assign an alternate track if a physical track becomes defective during
its use in an installation. If data cannot be read from a 3348 Data
Module and recovery of this data is critical, the data module can be
returned to the plant of manufacture where recovery will be attempted.

The two physical address bytes in home address and count areas on a
3348 logical track contain the physical cylinder and track address of
the logical track on which they are written. When a seek command is
issued, the control unit converts the logical cylinder and track address
specified by the seek command to a physical cylinder and track address
that is actually used by the drive in the seek operation. This physical
address is saved in the control unit for later use in seek verification.

The physical address bytes are automatically written and read by the
control unit and are not processed by programming. That is, when a home
address or count area is written, the physical address bytes are
automatically supplied by the control unit and are not contained in the
home address or count area field in virtual storage that is indicated by
the write command. Similarly, when a home address or count area is
read, the control unit reads the physical address bytes but they are not
placed in the home address or count field area in virtual storage.

The physical address bytes are used by the control unit for seek
verification during normal operations and by the 3340 microdiagnostic
routines. When a home address or count area is processed during a read,
search, or clock operation, the physical address bytes read are compared
with the most recent seek address (physical cylinder and track address)
that was saved in the control unit when the last seek command was
issued. If the two physical addresses are not equal, the command is

A Guide to the IBM System/370 Model 168 113

terminated and a unit check condition results. Seek check is indicated
in the sense bytes.

ATTACHMENT VIA 3830 STORAGE CONTROL MODEI~ 2

The 3830 Storage Control Model 2 unit contains the control func·tion.s
required to operate one or t.wo 3340 strings of from two to eight drives
each. If the 32 Drive Expansion and Control Store Extension optional
features are installed on a 3830 Model 26 up to four 3340 strings of
from two to eight drives each can be attached to it. These two features
are field-installable.

Cabling between the 3830 Model 2 and the 3340 Model A2 can be a
maximum of 150 feet in length. The 3830 Model 2 attaches to a 2880
Block Multiplexer Channel in. the Model 168 configuration via cabling up
to 150 feet in length. Figu.re 50.15,.7 shows a Model 168 configuration.
with 3340 strings attached via 3830 Storage Control Model 2.
Intermixing 3340 and 3330-series strings on an attachment is discussed.
later in this subsection.

-
3340 string

2880
B1 or B2
or 2 drives

29.5"

r-~ Cab

3340 A2 3340 3340
Devic:e-oriented B1 or B2 B1 or B2

les control functions 1 or 2 drives 1 or 2 drives 1
Block and 2 drives ::j
Multiplexer

3340~

1es ~~;r~e t=

f..1~
Channel

[Model 168 C~

Figure 50.15.7.

Ca

Control
Model 2

\
:3340 A2

Device-oriented
control functions
and 2 drives

3340 string

3340 3340
B1 or B2 B1 or B2

1 or 2 drives 1 or 2 drives 1

3340~ B1 or B2
or 2 drives

A Model 168 configurat:ion ~ith 3340 disk storage
attached via 3830 Storage Control Model 2

Standard features of the 3830 Model 2 when used with 3340 disk
storage are record overflow, multiple requesting, and rotational
position sensing. The command retry facility of the 3830 Model 2 -that
is implemented for 3330-series drives is not implemented for 3340
drives. When multiple requesting is used, the 3830 Model 2 can control
concurrent operation of up to 32 channel programs (when 32 Drive
Expansion is installed), one on each of its drives. Only one a f the t.WO
to 32 drives attached to a 3830 Model 2 can be transferring data a-t a
time.

Rotational position sensing is an optional field-installable feature
for 3340 units. It must be installed on each unit (roth drives in an A2
or B2 3340 unit) that is to use the standard rotational position sensing
capabili·ty of the 3830 Model 2. For performance reasons (see Section
60:10 in ~ ~uide to the IBM System/370 Model 165, GC20-1730), it is
recommended ·that the RPS feature be installed on all of the 3340 units
in a given string or on none of the units in the string. The presence
or absence of the RPS feature in a 3340 drive can be determined by
programming at any time-by issuing a SENSE command and inspecting the
RPS feature bit in the sense bytes read.

If a SET SECTOR command is issued to a 3340 drive that does not have
the RPS feature installed, no operation is performed, track orienta.tion
is lost, and channel end and device end status are presented. If a READ
SECTOR command is issued to a 3340 drive without RPS installed, a sector

114 A Guide to the IBM System/370 Model 168

value of zero is returned together with channel end and device end
status. Thus, channel programs containing sector commands can operate
on 3340 drives that do not have RPS installed.

The 3830 Model 2 supports all the 2314 commands (except the file scan
commands) in addition to new commands not available for the 2314, such
as RPS and diagnostic commands. The command set for the 3340 is the
same as that for 3330-series disk storage.

The TWo-Channel Switch feature, identical in function to the' same
feature for the 2314 facility, can be installed on a 3830 Model 2 to
allow it to be attached to two channels. The Two-Channel Switch
Additional feature can be added to this configuration to permit the 3830
Model 2 to be attached to four channels. A maximum of two of the four
channels can be present in the same system. The channels to which a
3830 Model 2 with one or both of these features is connected each must
have one control unit position and,. if block multiplexing is to be used,
eight nonshared subchannels available. An enable/disable switch on the
3830 Model 2 can be set to dedicate the 3830 to any subset of the two to
four channels.

The optional String switch feature can be installed on 3340 Model A2
drives. This field-installable feature enables the 3340 Model 1\2 and
its attached Model B2 and B1 units to be connected to two control unit
type a ttachments instead of only one. The attachments can be any two of
the following:

• 3830 Storage Control Model 2

• Integrated storage Control for the Model 145

• 3345 Storage and Control Frame Models 3, 4, and 5 for the Model 145

• Integrated Storage Controls for Models 158 and 168 (or the two
logical controls in one ISC)

• 3330/3340 Series IFA for the Model 135

The two attachments to which a 3340 Model A2 with the String Switch
feature is attached can be connected to the same or different channels
in the same CPU, or the channels in two different CPUs. In addition,
channel switching features can be installed on one or both of these
attachments.

The String Switch feature for 3340 disk storage is functionally
similar in its operation to the Two-Channel Switch. A switch on the
3340 Model A2 can be set to allow the 3340 string to be accessed via
both attachments, one at a time. In effect, this setting provides two
control unit paths to the string. SWitching is accomplished dynamically
under program control. Alternatively, the switch can be set to dedicate
the string to one attachment or the other so that the string can be
accessed only via that attachment.

Figure 50.15.8 illustrates string switching for two 3340 strings
attached to a 3830 Model 2 unit. In the configuration shown, both
strings can be accessed via two channels and two control units. Channel
switching, string switching, and 32 Drive Expansion features can be used
to enhance the availability of 3340 direct access storage facilities and
to extend backup capabilities when two System/370 systems (the same or
different models) are present in an installation.

A Guide to the IBM System/370 Model 168 115

---]
Channel in MOde~

Attachment 1
3830 Model 2

Figure 50.15,.8.

Channel j,n same
Model 168 or another CPU

Attachment 2

3340

[3340

[3340

• 3830 Model 2
• ISC - Model 158 or 168
• ISC - Model 145
• 3345 Model 3, 4, or

5 for Model 145
• 3330/3340 Sj:lries I FA - Model 135

String switching for 3340 facilities attached to a
3830 Model 2

The 3830 Model 2 control unit is microprogram-controlled. Read/write
monolithic storage contained in the control unit is used for
microprogram residence. The 3830 Model 2 also contains a device t~hat
reads interchangeable disk eartridges. This device is used for
microprogram backup storage and for storage of nonresident diagnostics
for the 3340 string. Durin~J a 3830 Model 2 power-on sequence, the
functional microprogram is loaded from the device into control storagE:!
within the 3830 Model 2 con1:rol unit. Therefore, microcode engin€!ering
changes can he installed merely by replacing the current disk cartridqe
wi th another that contains 1:he new microprogram .•

The 3830 Model 2 incorporates error d,etection, correction, and
logging fea t.ures that are dE~signed to improve its availability and.
serviceability. For the 3:}LJO, the 3830 Model 2 provides the following
facilities t.hat are not implemented in System/360 direct access devices:

• I/O error routine correction of recoverable data errors on rea.d
operations with data supplied by the control unit in sense byt.es.
When the 3830 Model 2 detects a corr,ectable data error during the
reading of the data pon:ion of a physical record, it generates the
informat.ion necess ary to correct the erroneous bytes. The sense
bytes pJ:'esented by the 3830 Model 2 contain a pattern of corrective
hi ts and a displacement value to indicate which of the bytes
transferred to processor storage contain the errors. The disk. error
recovery program need only EXCLUSIVE OR (logical operation) the
corrective bit pattern with the error bytes in the input area in
processor storage to COl:-rect the errors.

116 A Guide to the IBM System/370 Model 1613

• Statistical usage recording by the 3830 Model 2,. Statistical usage
counters for each drive in a 3340 string are continuously maintained
by the 3830 Model 2. These counters indicate the number of bytes
read/searched, number of seeks issued, and number of command and
data overruns for each device. When a counter reaches its threshold
or a data module is removed from a drive, the 3830 Model 2 indicates
the condition via a unit check when the next I/O operation is
initiated to the drive or a data module is made ready on the drive.
Counter data can be obtained and counters can be reset by issuing a
READ AND RESET BUFFERED LOG command.

• Inline diagnostic testing of a malfunctioning drive. (Inline
diagnostics are provided only for 2314 facilities.) A 3830 Model 2
control unit can execute diagnostic tests on a malfunctioning drive
while normal operations take place on the remaining drives in the
string. Diagnostic tests can be loaded into a transient area of the
control storage of the 3830 Model 2 and executed on the
malfunctioning drive. This can be done in an online environment
using OLTEP or the CE panel on the 3830 Model 2. OLTSEP can be used
in a standalone environment. This inline testing allows CE
diagnosis and repair of most 3340 drive failures without the
necessity of taking the entire 3340 string out of the system configuration.

A 3340 drive can be placed in CE mode (offline to the system) by
means of a swi tch that is located inside the rear door of the drive so
that maintenance functions can be performed. To take the 3340 drive out
of CE mode and return it to online status, the attention pushbutton must
be pressed. This also causes the access mechanism to move to physical
track O.

ATTACHMENT VIA INTEGRATED STORAGE CONTROLS

Optionally, one Integrated Storage Controls feature can be installed
on a Model 168 to attach 3340 and/or 3340-series disk storage to one or
two block multiplexer channels. Attachment of 3340 and 3330-series disk
storage via 3830 Storage Control is possible as well,. The following
discusses attachment of 3340-series strings only.

The Integrated Storage Controls feature includes dual direct access
storage controls, each of which operates independently of the other and
is functionally like 3830 Storage Control Model 2 except for the following:

• The Integrated Storage Controls feature is contained in the main
frame of the Model 168 and is powered by the Model 168 CPU.

• The Two-Channel Switch, Additional feature (that provides four­
channel switching) cannot be attached to the logical storage
controls in the ISC feature.

Both logical storage controls in the ISC feature can be attached to
the same channel, two different channels in the Model 168 configuration,
or a channel in the Model 168 configuration and a channel in another
System/370. Each logical storage control can have attached a maximum of
four 3340 strings of up to eight drives each. The 32 ~rive Expansion
and Control Store Extension optional features (field installable) must
be installed in the ISC in order to attach more than two str ings to each
logical control. Therefore, up to 64 drives (eight strings) can be
attached to the Model 168 via the ISC. The first unit in each 3340
string must be a 3340 Model A2.

The 3340 drives attached to the ISC operate just as if they were
attached via 3830 Storage control Model 2. That is, when multiple
requesting is used, each logical storage control within the ISC can
handle up to 32 channel programs concurrently, one on each of its
drives, and only one of the 32 drives can be transferring data at a

A Guide to the IBM System/370 Model 168 117

time. When a malfunct.ion occurs, diagnostics can be run on one logical
storage con-trol and its drives while normal operations take place on the
other logical storage control in the ISC.

Intermix.ing 3340 and 3330-ser ies strings on the ISC is discussed
below. Figure 50.15.9 summarizes the 3340 string: configurations -that.
are possibl,e for a Model 168 ISC.

The ISC feature provides lower-cost. attachment of 3340 disk storage
·than 3830 S·torage Control Model 2 when two storage control units are
.required, and physical space is saved since the ISC is in the Modlel 1.68 cpu.

The Two-Channel SWitch optional feature is also available for the
ISC. When installed, this feature provides a t.wo-channel switching
capability for both of the logical storage controls. The Two-Channel
Switch permits each logical storage control to be attached to two
channels in the same Model 168 configuration or to one channel in the
Model 168 configuration and one channel in another System/370. Two
switches are provided that can be. set to dedic.ate· a logical storage
control to one channel or the other, or to enable the storage con·trol to
be accessed by both channels.

~ntegrated

Storage
Controls logical

controll
Logical
control Z

• Two-Channel Switch
• 32 Drive Expansion
• Control Store Extension

• One to four strings of from two to< eight drives each connected
to each logical control. Each logical control connected to one
or two channels in the same or different CPU's.

• String Switch can be added to any or all 3340 Model A2 units
to connect a 3340 A2 to a second attachment in the same ISC,
the same CPU, or another CPU

Any
combination
of Models
81 and 82

Figure 50.15.9. Permissible 3340 st.ring configurations for the Model
168 Integrated storage Controls feature

The String Switcl:l optional feature can be installed. on a 3340 Model
A2 that is ,attached to the ISC. This field-installable f.eature enables
the 3340 Model A2 and all its attached 3340s (a 3340 string) to be
connected to two control unit type attachments instead of only one. The
attachments can be any combination of two of the following:

118 A Guide t:o the IBM System/370 Model 168

• 3830 Storage Control Model 2

• Integrated Storage Controls for Models 158 and 168 (or the two
logical controls in one ISC>

• Integrated storage Control for the Model 145

• 3345 Storage and Control Frame Models 3, 4, and 5 for the Model 145

• 3330/3340 Series IFA for the Model 135

The two attachments to which a 3340 Model A2 with the String Switch
feature is connected can be attached to the same or different channels
in the same CPU, or to channels in two different CPU's. In addition,
channel-switching features can be installed on one or both of these
attachments.

The String Switch is functionally similar in its operation to the
Two-Channel Switch. A switch can be set to allow the 3340 string to be
accessed via both attachments, one at a time. In effect, the setting
privides two control unit paths to the string. String switching is
accomplished dynamically under program control.. Alternatively, the
switch can be set to dedicate the string to one attachment or the other
so tha t the string can be accessed only via that attachment.

Figure 50.15.10 illustrates string switching for four 3340 strings
that are attached to the same ISC. In the configuration shown, all
strings can be accessed via two channels and two control units. Channel
switching, string switching, and 32 Drive Expansion features can be used
to enhance the availability of 3340 disk storage and to extend backup
capabili ties when two System/370 syst,ems (the same or different models)
are present in an installation.

Each 3340 A2
has the
String Switch
installed

Figure 50.15.10.

Any combination of
Models B1 and B2

String switching for 3340 facilities attached to one ISC

A Guide to the IBM Systeml370 Model 168 119

INTERMIXING 3340 AND 3330-SERIES STRINGS ON AN ATTACHMENT

Optionally, the 3333/3340 Intermix feature can be installed on 3830
Storage Con1:rol Model 2 and integrated storage controls in the Model 168
cpu. When present, this field-installable feature permits both 3340 and
3330-series strings to be a'ttached to a 3830 Model 2 or ISC. Each
string must contain all 3340 drives or a.ll 3330-series drives as usual.

The intel:-mix feature requires ins'tallation of the Control StorE:!
Extension fE~ature on the 3830 Model 2 01: ISC and can coexist with other
optional features for these units and their strings (channel switehing,
32 Drive Expansion, string switching, and fixed head features).

SUMMARY

The hardll1are features of the 3340 and 2314 direct access storage
facili ties are summarized in Table 50.15.3. Table 50.15.4 compares the
capabilities of the 3830 Modell, 3830 Model 2, and Model 168 intE~gra"ted
storage con1:rols for both 3340 and 3330-series disk storage.

When compared with the 2314 facility, the 3340 facility offers the
following major advantages:

• Faster access to data
Data transfer rate almost three times that of the 2314
Seek times approxima"tely 40% of those of the 2314 for

movable head accesses
Zero seek time provided by the fixed heads in a 3348

Model 10F Data Module
Rota1:ional delay interval approximately 20% shorter

than for the 2314

• Larger capacity per drive
11% for the Model 35 Data Module
115% for Model 10 and 70F Data Modules

• Two capacity options per drive for expanded growth flexibil ity

• MultiplE~ requesting and rotational position sensing capabilities
for use with block multiplexer channels

• Operational improvements
Cover tightening/untightening and removable/replacement

operations are eliminated, which speeds up data module loading
and unloading

Load time to ready sitatus for a mounted data module is thrE~e
times faster

Wri tE~ protection is provided on a data module basis
External labeling procedures are more flexible and leave lE~ss

chance of erroneous data modu Ie label ing

• Significantly increased reliability
Sealed cartridge design eliminates head-to-disk alignment

problems, minimizes the possibility of disk surface
contamination, and eliminates hub wear and damage

Advanced head design makes head crashes a remote possibilit.y
and permits increaBed recording density without any loss
of reliability

• Improved error handling capabilities

120

Error correction data is provided by the hardware for use
by programmed error recovery procedures

Surface defect skipping reduces the need to use the error
correction capability

A Guide to the IBM System/310 Model 168

• Improved availability and serviceability
No preventive maintenance is scheduled, because of the reliability

features of the 3340 and 3348
Faster error isolation and correction is possible because the

3340 contains fewer circuit cards
Expanded microdiagnostics can test more than 95% of the

circuits in a 3340

A Guide to the IBM System/370 Model 168 1ll

Table 50.15.3. Summary of 1:he hardware features of 3340 and 2314 disk
storage facilities

Feature

Number of drives
per string or
facility

Number of st.rings or
facili ties per
control unit;

Data medium used

Read only feature
on dri ve or da ta
medium

Removable address
plugs on drive

Attachment of a
string or facility
to two contl~ol uni tf
in the same or a
different CPU

Two-Channel Switch

Attachment of the
control uni1: to
four channels

Record Overflow

File Scan,

Multiple track
operations

Multiple requesting

Rotational Position
Sensing

; Error correction
da ta pre sented

I by cont,rol 11ni t

Surface defE~ct
i skipping

122

3340 attached to
3830 Model 2 or
ISC

Two t:o eight in one
dri VE~ increments

One 1:0 four
(maximuro of eight strings
for ISC)

Removable interchangeabl'e
data module (sealed
cartridge)

Yes on data module

No

Yes via opt ional
string switch feature .•
Only one data transfer
operation permitted
per string.

Optional

Yes using the optional
Two-Channel Switch
and Two-Channel Switch
Addi,tional features
(3830 Model 2 only)

Standard

Not .available

Standard

Standard

Optional (on 3340
drives)

Yes

Yes

2314 (A-Series)

One to eight in one­
drive increments.
(A ninth can be
included as a spare
only.)

One maximum

Removable
interchangeable disk
pack

No

Yes

Yes via 2844
Auxiliary Stora.ge
control.. Two con­
current data
transfer operat:ions
per facility permitted.

Optional

Yes using the optional
Two-Channel SWitch
and 2844 Auxiliary
Storage Control.

Standard

Standard

Standard

Not avail abl e

Not available

No

No

A Guide to the IBM System/370 Model 168

Table 50.15.3 (continued)

Feature

Writable storage
in control unit
loaded from a disk
cartridge

Statistics logging
by the control unit
in its storage

Inline diagnostics
executed under OLTEP
or via the CE panel

3340 attached to
3830 Model 2 or
ISC

Yes

Yes

Yes

2314 (A-Series)

No

No

Yes

Table 50.15.4. Summary of the features of 3830 Storage Control Models 1
and 2 and Integrated Storage Controls

Characteristic

Type of unit

Power source

Attaches to

Devices attaching
to it

Number of drive s
in a string

standard number of
strings attachable

32 Drive Expansion
feature for
attachment of two
additional strings

3830 Model 1

Standalone

contains own
for itself and
all the drives
that can be
attached to it

Block multi­
plexer channel

3330 Models 1
and 2

1 to 8

One maximum

Not available

A Guide to the IBM System/370 Model 168

3830 Model 2

Standalone

Contains own
for itself
only

Block multi­
plexer channel

3333 Models 1
and 11 (optionally
with 3330 Model
1, 2, and 11
units attached)
3340 Model A2
(optionally with
3340 Model B1 and
B2 units attached)

2 to 8 for a
3330-series or
3340 string

Two maximum

Optional for a
maxinum of
four strings

ISC

Contained in
Model 168 CPU

Power con trol
shared with
Model 168 CPU

Block multi­
plexer channel

Same as 3830
Model 2

Same as 3830
Model 2

Two maximlI1l
per logical
control

Optional for a
maximum of four
strings per
logical con trol

123

'Table 15.15 .• i.J (continued>

Characteristic

3333/3340 In"termix
feature for
attachment o:E
3330-series and
3340 strings

'Two-Channel Switch

;Two-Channel Switch
Addi tional (for
four channel
switching>

String switching
capability

J~ultiple
requesting

Rotational
position sen:aing

Multiple traf::k
operations

Record overflow

Commandre try

Surface defect
:skipping

Inline diagnostic
tests

E:rror loggin':J
by control unit

3830 Model 1

Not available

Optional

Optional

Not available

Standard

Standard

Standard

Standard

Standard

Not implemented

Standard

Standard

3830 Model 2

Optional

Optional

Optional

Yes for 3330-
s~ries strings
vi.a optional
3333 String Switch
feature.
YE!S for 3340
strings via
optional String
SWitch Feature.

Standard

standard on
cont rol un it
(standard on 3330-
series drives,
optional on 3340
drives>

Standard

St.andard

St andard fo r
3330-series
st.rings.. Not
available for
3340 strings,.

Implemented
for 3340 strings.
Not implemented
for 3330-series
strings,.

St.andard

St~andard

ISC

Optional

Optional

Not available

Same as
3830 Model 2

Standard

Same as 3830
Model 2

Standard

Standard

Same as 3830
Model 2

Same as 3830
Model 2

Standard

Standard

l24 A Guide to the IBM System/370 Model 168

SECTION 65: DIFFERENCES BETWEEN THE MODEL 1 AND THE MODEL 1

Model 3 of the Model 168 differs from the Model 1 primarily in its
faster internal performance and the improved serviceability and
availability made possible by the service processor unit, which is
standard in the Model 3.

A tightly coupled Model 168 multiprocessing configuration can include
any combination of Model 3 and Model 1 systems. The same optional
features are available for the Model 3 (uniprocessor and multiprocessor
models) as for the Model 1 except for the 16K Buffer Expansion feature,
which is not available for the Model 3.

A Model 1 CPU (3168-1 Processor unit) can be field converted to a
Model 3 CPU (3168-3 Processor Unit). The standalone 3066 Model 2 System
Console for the Model 1 is also used with the Model 3. It must have the
field-installable 3168-3 attachment feature in order to be used with a
Model 3. The 3067 Model 3 Power and Coolant Distribution Unit must be
used in a Model 3 system configuration. A 3067 Model 2 can be field
converted to a 3067 .Model 3. A motor generator set is required for the
Model 3 as for the Model 1. The same motor generator can be used for
both model s.

The same standalone channels (2860, 2870, and 2880) and I/O devices
attach to the Model 3 as to the Model 1. The 3165/3168 attachment is
required on the standalone channels attached to a Model 3.

The model-dependent fixed storage locations are the same in the Model
3 as in the Model 1 (see Figure 20.10.3) except for minor differences in
a few fields in the CPU extended logout area,. For example, the buffer
size installed bits for 8K and 16K are no longer used.

Both models are supported by the same IBM-supplied programming
systems. The EREP program in OS/VS1 as of Release 4, in OS/VS2 Releases
2 and up, and in VM/370 Release 2 will be modified to process the model­
dependent logout area data for the Model 3 that differs slightly from
that of the Model 1.

A program can determine whether it is operating on a Model 1 or a
Model 3 by issuing the STORE CPU ID instruction. The version field byte
(bits 0 to 7 in the doubleword stored) indicate the model of the 3168
processor being used.

65:05 PERFORMANCE ENHANCEMENTS

The internal performance of the Model 3 Model 168 CPU is generally in
the range of 5 to 13 percent faster than that of the Model 1 CPU (using
a 16K buffer) when the same hardware configurations, programs, and
programming systems that do not use 2K pages are used. The increase in
Model 3 internal performance will be less for users of VS1 since it
supports a 2K page size. The faster internal performance of the Model 3
is the result of the following differences bet~een the Model 3 and the
Model 1:

• 32K of high-speed monolithic buffer storage is standard for the
Model 3. The 32K capacity is not utilized when a page size of 2K is
being used. The buffer operates at a capacity of 16K in this
situation (see buffer discussion below). Buffer fetch times, the
way in which the buffer is used, and the buffer assignment algorithm
are the same in both models. The 32K buffer and processor storage

A Guide to the IBM systeml370 Model 168 125

contain 128 columns, as shown in Figure 65.05.1, instead of 64
columns as in the Model:1. A column in the Model 3 buffer contains
eight 32-·byte blocks, as does a column in the buffer in the Modell.

• '!he execution time of each of the following instructions is
improved: SUPERVISOR CALI, (SVC), MONITOR CALL (MC) 11 STORE THEN OR
SYSTEM MASK (STOSM), STORE THEN AND SYSTEM MASK (STNSM), INSERT
STORAGE KEY (ISK), INSERlr PSW KEY (IPK), SET PSW KEY FROM ACDRESS
(SPKA), I~OAD PSW (LPSW), SET SYSTEM MASK (SSM), STORE CLOCK (S'rCK),
and SET PROGRAM MASK (SPM). In addition, under certain conditions
execution of the following instructions is faster in the Model 3: OR
CHARACTERS (OC), AND CHARACTERS (NC), EXCLUSIVE OR CHARACTERS (XC) I'
TEST AND SET (TS), COMPARE LOGICAL CHARACTERS UNDER MASK (CLM),
INSERT ClrnRACTERS UNDER MASK (ICM), STORE CHARACTERS UNDER MASK
(STCM), COMPARE AND SWAP (CS), and COMPARE DOUBLE AND SWAP (CDS).
'!hese instructions are more heavily used by the virtual storage
programming systems.

• Improved execution time for all levels of interruption

Improvements in the execution time of the instructions listed atove
and all intel:ruptions are made possible by the increase in the size of
~«itable cont.rol storage in the Model 3. The Model 3 has 1024K instead
of 512K words of writable control storage. A denser technology is used
for the implE~mentation of writable control storage in the Model 3 so
ithat less space is required :for 1024K words in the Model 3 than for 512K
\'lords in the Model 1.

The 32K high-speed buffer in the Model 3 is also implemented in a
denser technology than is used for the high-speed buffers in the Model 1
and it requires less space than a 16K buffer.. The 32K buffer operates
at its 32K capacity when the Model 3 CPU is operating with dynamic
address translation mode disabled or with dynamic address translation
mode and a 41C page size enabled. When dynamic address translation and a
~~K page size are enabled, the 32K buffer operates at a 16K capacity just
like the 16K buffer in the Model 1.

The reason for using a 16K capacity when a 2K page size is enabled is
t.he followin9. Bits 20 to 26 of the referenced processor (real) st.orage
address are required to determine the column address (0 to 127) in the
buffer address array for a 32K buffer size.. For a 16K buffer size,
processor storage address bi-ts 21 to 26 are required to determine t.he
Golumn address (0 to 63).

When a 4K page size is used, bits 20 to 31 of the referenced virtual
Btorage address are the same as bits 20 to 31 of the corresponding real
storage address and do not need to be translated. However, when a 2K
page size is used, bit 20 must be translated as only bits 21 to 31 in
the virtual and corresponding real storage addresses are equal.

Therefore, if the 32K capacity were to be used for a 2K page size,
bi t 20 would not be availablle for buffer address array addressing until
after address translation had been performed. By using a 16K capacity
:Eor a 2K page size, bits 21 -to 26 are available for accessing the buffer
address array before address translation is performed.

Whenever 1:he buffer in thle Model 3 is reset, it is set to operat.e at
its 32K capacity. The buffer is reset when one of the following occurs:

• IPL, proqram reset, power on reset, or system clear

• CP U rese1: caused by any cond it ion except pushing the computer reset
pushbutton

• All console loads except load microdiagnostics

126 A Guide to the IBM System/370 Model 168

Block Address
Register Contents

• Block address
(processor storage
address bits 8 to 20)

• Block valid bit
• Block delete bit

Block 0

2

3

4

5

6

7

Column

Block 0

2

3

4

5

6

7

Column

Block 0

n

Column

Figure 65.05.1.

ADDRESS ARRAY
-) ~

13-bit
, \

address -) ~ , ,

-) I , ,

)) ,

-> I
\

I I ,

) I , \

-'l l-

I I

o \ .

BUFFER STORAGE - 32K
-> , ,

32 bytes
-> ~ ,

I) ,

-> 'l
\ ,

\ , , ,
\ , , ,
I I
\

) 1 , .
I I

o

PROCESSOR STORAGE , , , ,
-'l l-,

} I-. ,

\ I
\ \

o 1 ,

127

127

127

1,024 block address
registers

4K

1,024 blocks

4K

4K

4K

High-speed buffer and processor storage organization
in the Model 3

A Guide to the IBM System/310 Model 168 121

• Enter reconfiguration pushbutton is pressed

• SIGNAL PROCESSOR (multiprocessing) instruction is issued that
specifies one of the orders that is defined to cause a buffer reset
(IPL, program reset, IMPL, initial CPU reset, or CPU reset)

• Load control instruction is issued to change the page size in
effect. When page size is changed from 4K to 2K, buffer capacity is
reduced to 16K. When page size is changed from 2K to 4K, buffer
capacity is increased to 32K.

65:10 THE SERVICE PROCESSOR:

FUNCTIONS AND GENERAL OPERA'I'ION

The service processor is standard in t:he Model 168 Model 3. It is a
hardware unit that is contained in the Model 168 CPU (3168-3 Processor
Unit), but that is functionally separate fran the CPU. Its function is
to provide greater maintenance capabilities for the Model 3 than are
provided by the optional 2955 Remote Analysis Unit for the Model 1
(which is not available for the Model 3)0 The service processor
supports an interface to RE'I'AIN/370 that offers the same functions as
the 2955 inberface to RETAIN/370 in the Model 1 as well as enhancement.s
that improve the remote problem analysis capability for the Model 3.

The servi.c::e processor provides the capability of continuously
monitoring selected logic points in the Model 168 CPU, capturing and
storing status data when an intermittent or solid hardware error occurs
(or at other specified times) for later us e by a customer engineer,
producing a printout of the stored data for use by a local customer
engineer, and transmitting the stored data over a communication line for
remote analysis by a customer engineer special ist in the Large Sysitem
Support Group in poughkeepsie.

The capabilities of the service processor are designed to make more
timely information available for both onsite and remote customer
engineer analysis so that fault location, particularly for intermittent
errors which are frequently difficult to duplicate, can be accomplished
more quickly.

The components of the service processor are the processor unit, trace
unit, two battery-powered counters, internal disk file, CE panel,
printer control for an optional 3213 Printer, corporate standard
interface, and modem, as shown in Figure 65.10.1.

The service processor operates under the control of the stored­
program-controlled processor unit. The service processor normally
operates simultaneously with the operation of the Model 168 CPU to
capture status data and record it on the internal disk file component,
usually when a hardware failure occurs. The customer engineer controls
the status data collected by setting swi-t:ches on the CE panel component.
When operating in this manner (recording mode), the service processor
never steals any machine cycles from the Model 168 CPU.

Using the CE panel on the: service processor, the customer engineer
can also operate the service processor independ.ently from the Model 168
cPU. In this mode, the customer engineer can print the status dabl
stored on the internal disk file on the 3213 printer or transmit the
status data to a remote location for analysis. The entire service
processor except for the trace unit is powered independently from the
Model 168 cpu. Therefore, the service processor can perform functions,
other than status data collection, under control of the CE panel in the
service processor even when the Model 16B CPU is not operating or :is
powered down (for a maintenance operation, for example).

128 A Guide to the IBM System/370 Model 168

rS;;nd. ..,
I alone
I channel
I in

I ~
I

cy~e~.J

... ..

8 movable probe
and 191 fixed line
locations in CPU

"
Trace
Unit

SERVICE PROCESSOR

CE
Panel

To
disk file

To
Modem

Corporate or disk

Standard file
Interface

3213
Printer
Control

" r - - --
3213
Printer

"" ., ---

CE
Special ists

Processor

Modem

A~

- -'(-r ,
'Data :
IAccess I
IArrangement,
L _ _ J

To disk
CR Counter

.... file .. Power-off ... r'

Counter

To CSI, printer
control, or modem

Internal
Disk
File

Communication
line to
Raleigh

RETAIN/370

Communication lines
to Poughkeepsie

Large System
Support Group

Figure 65.10.1. components of the service processor in a Model 3

A Guide to the IBM system/370 Model 168 129

The way :in which the service processor is powered on and off is
determined by the setting of a switch on the CE panel of the serv:ice
processor. If the switch is set to remote, the service processor is
automatically powered on or off when the Model 168 CPU is powered on or
off, respectively. When the switch is set to local, the power on and
power off pushbuttons on the CE panel are used to power the service
processor on and off.

When power is turned on in the service processor, an IMPL of
diagnostic routines is automatically initiated.. Pressing the SVP IMPL
pushbutton on the CE panel also causes these diagnostics to be loa.ded.
Once loaded, the IMPL diagnostics exercise the service processor to
determine whether it is functioning corl:ectly. If so, the service
processor automatically goes into the rE~cording mode of operation. In
this mode, ·the trace unit of the service processor collects data :from
certain locations in the Model 168 CPU during its operation.

Operation of the service processor in the Model 168 is always
controlled by the local customer engineer. If a customer engineer in
the Large System Support Group in Poughkeepsie wishes additional history
data or wishes to have a function performed on the Model 168, he
communicates the request to the local customer engineer via telephone
and the local customer performs the fun<..tion..

One communication 1 ine is used for both the transmi ssion of Qa1:.a to
Poughkeepsie via RETAIN/370 (using data mode) and voice communica 1tion
between the local customer engineer and a specialist in Poughkeepsie
(using voice mode). When either customer engineer wishes voice
communication with the other, he sounds an alarm and then goes from data
to voice mod.e.

If an error occurs in the service processor during its operation, a
switch on the CE panel is inspected by the processor unit to determine
the action ·to be taken. If the error switch is set to the stop
position, operation of the service processor terminates. If the switch
is not set 1tO the stop position, an IMPL is initiated. The diagnostic
routines then determine whether the service processor can continuE~
operating ba.sed on the type of error condition that exists.

PROCESSOR UNIT

The procE~ssor unit contains an arithmetic/logic unit, read-only
control stoJrage, data registers, and a main storage. It operates under
the control of a program whose instructi.ons are similar in format and
mnemonics to Systeml370 instructions.

The basic functions of the processor unit are to (1) take data from
the trace Wlit buffers and write it to t.he internal disk file and (2)
read da·ta from the internal disk file and transfer it to the pr int.er
control, corporate standard interface (CSI), or modem component of the
service processor. The processor unit can also transfer data from the
corporate sitandard interface to the modem and transfer data to the
internal di~3k file from the corporate st.andard interface. The processor
unit can peJrform only one of its functions at a time.

The contJrol program routines for the processor unit are contained on
the internal disk file in the service processor. Some of these routines
are always Jresident in main storage of the processor unit during its
operation. The resident routines -are loaded into the processor unit
after a sucGessful execution of the IMP!. diagnostics. Other control
program rou1:.ines are brought into the processor unit only when thE~y are
required to service a request.

130 A Guide to the IBM System/370 Model 168

The 'basic control routine is a polling loop.. This routine constantly
interrogates each of the other components of the service processor
(trace unit, corporate standard interface, etc.) on a rotating basis to
determine whether the component has an outstanding request. When a
request is recognized, polling stops and the appropriate control routine
is loaded into the processor unit to service the request. Polling
continues as soon as the request has been processed.

TRACE UNIT

The trace unit receives certain status data from the Model 168 CPU
while the latter is operating, stores the data in trace buffers, and
when a predetermined event occurs presents the trace buffer data to the
processor unit for storing on the internal disk file .•

The trace unit obtains the following data:

• Information from 191 fixed lines to points in the Model 168 cPU.
Every machine cycle (80ns), the data from these 191 fixed points is
placed in a trace buffer. The buffer has a maximum capacity of 32
machine cycles of data. A wraparound technique is used to store
data in the trace buffer so that the buffer always contains
information regarding the last 32 machine cycles.

• Information from eight movable probe points in the Model 168 cPU
that the customer engineer can establish. Every ten nanoseconds,
information from these probe points is placed in a second trace
buffer. The capacity of this buffer is 256 ten nanosecond cycles.
A wraparound technique is also used to store data in this buffer.

• Up to 224 doublewords of logout data from the Model 168 CPU. This
is the data logged in the logout area in lowest addressed processor
storage when a cPU logout occurs.

Information from the 191 fixed points and eight probe points
continues to be stored in the trace buffers in wraparound fashion until
a predetermined event occurs. When the event is recognized, recording
stops temporarily and the fixed point and probe data in the trace
buffers is sent to the processor unit. The appropriate control program
routine then formats the data, time stamps it, and writes it to the
internal disk file. Trace unit recording resumes as soon as the trace
data has been transferred to the processor.

The event that is to cause existing trace data to be written is
indicated via the CE panel and can be one of the following: a machine
check interruption (for any enabled soft or hard machine check
condition), main storage address compare, instruction oounter address
compare, control storage address compare, hang detect, SIGNAL PROCESSOR
instruction from the other CPU in a tightly coupled multiprocessing
configuration, or a logic line input that can be wired to any point in
the CPU or a fix card.

When the predetermined event occurs, an interval of approximately 655
microseconds is established. If a CPU logout occurs before the interval
expires, it is assumed to be associated with the event that caused this
recording to take place. The CPU logout data in the trace buffer is
formatted, time-stamped, and recorded on the internal disk file along
with the fixed point and probe data. If a CPU logout does not occur
within the interval, logout data is not written to the internal disk
file.

The CPU logout data is divided into three areas for the purpose of
recording: status area (corresponding to the fixed logout area from
processor storage locations 0 to 184), local store area (corresponding

A Guide to the IBM System/370 Model 168 131

to the fixed logout area between locations 216 and 511), and the CPU
area (corresponding to the model-dependent CPU extended logout area
beginning at the location indicated in control register 15). The CPU
area is further subdivided into subareas. This is done so that the
printing of CPU logout data can be done on a selective basis by area and
by subareas within the CPU area recordings.

COUNTERS

The CR (continuous ly running) counte:r is a battery-powered counter
that is always running to maintain the time of day. When power is on in
the Model 168 CPU, the CR counter runs from this power. When CPU power
is off, the CR counter runs from the power supplied by its battery. The
time in the CR counter is synchronized with the time in the time of day
clock in the Model 168 CPU whenever a SET CLOCK instruction is issued
that sets the time of day clock. The CR counter is used to time stamp
trace data records that are written to the internal disk file.

The power-off counter is also a battery-powered counter. It runs
only when power is off in t.he Model 168 CPU. This counter starts to run
when CPU power is turned off and stops running when CPU power is ·turned
on. It can be used to keep account of how long CPU power is turned off.

INTERNAL DISK FILE

The internal disk file used in the service processor is the same file
that is used to load microprograms in Models 158 and 168. The disk file
is used to hold the control programs required by the processor unit and
for storage of trace data z:ecords.

The disk file can contain a maximum of 16 trace data records. When
·this maximum is reached, the action taken depends on the mode set via.
the CE panel. If wrap mode is in effect, each successive trace record
replaces the oldest existing trace record so that the file contai:ns only
the last 16 trace records. If wrap mode is not in effect, the existing
trace records are not overwritten and tl::acing operations terminate.

The local customer engineer can clear the internal disk file using a
toggle swi tch on the CE panel of the service processor. All existing or
selected ev·ent class records can be cleared. Clearing consists of
zeroing the header records that are associated with the existing data.

! records. The data records themselves are not zeroed.

CE PANEL

The CE panel in the service processor enables the customer engineer
to (1) establish operating conditions for the trace unit, as discussed
previously, (2) transfer data records from the internal disk file to the
modem or 3213 printer control component of the service processor, (3)
clear the internal disk file, and (4) execute microdiagnostics to test
the service processor for correct operat:ion. When the trace unit
presents data to the processor component:, the data is always wr it·ten to
the internal disk file. The data cannot: be transferred directly to the
modem or printer control component ..

The customer engineer controls the transfer of status records :from
the internal disk file using a set of disk data control toggle switches
or an OLT (online test) routine. The customer engineer controls the
service processor diagnostic routine to be executed using a set o:f
diagnostic selection switches. When the customer engineer wishes to
transfer status records or execute a specific diagnostic .routine, he
turns on th(~ appropriate toggle switch and pushes the execute but1:on on

132 A Guide to the IBM System/370 Model 168

the CE panel. The function indicated by the toggle switch is then
performed.

Separate destination toggle switches are provided for trace records.
Trace.records can be directed to the printer control component for
printing on the 3213 Printer or to the modem com:ponent for transmission
to RETAIN/370 in Raleigh.

A set of printer control toggle switches is also used when trace data
records are to be transferred to the printer control component. These
toggle switches are used to select the types of trace data records that
are to be printed: fixed line status data, movable probe status data,
header, or CPU logout records. Status area and local store area and/or
CPU area records can be selected for printing when the CPU logout toggle
switch is turned on. When CPU area records are selected, two microfiche
selection switches are also used to indicate the subarea of the CPU area
whose records are to be printed.

In order to transfer trace records from the internal disk file to the
modem component, the modem must be enabled. Activation of the modem can
be accomplished only by inserting the CE key (same CE key as is used for
the Model 168 CPU) in the activate TP slot in the CE panel in the
service processor. Once the modem is activated, the TP active/key reset
pushbutton lights up and the CE key can be removed. The modem is
deactived by pressing the TP active/key reset pushbutton.

The local customer engineer can perform one of the following
operations involving the service processor at the same time normal
system operations are taking place in the Model 168 system:

• Print trace data f rom the internal disk file on the 3213 Pr in ter .•
This' is controlled via the CE panel.

• send trace data from the internal disk file to RETAIN/370 in
Raleigh. This is controlled via the CE panel.

• Print trace data from the internal disk file on a printer attached
to the channel to which the corporate standard interface component
of the service processor is connected. This is accomplished by
executing an OLT under OLTEP control.

PRINTER CONTROL

The printer control component is provided to enable a 3213 Printer to
be attached directly to the service processor. Attachment of this
printer is optional. Using the CE panel, the customer engineer can
cause all or selected trace data records from the internal disk file to
be printed on the 3213. Operation of the 3213 printer is controlled
entirely by the CE panel and is independent from operation of the Model
168 cPU.

CORPORATE STANDARD INTERFACE

The corporate standard interface (CSI> is provided to connect the
processor unit of the service processor to anyone System/370 or
System/360 channel. Normally it would be connected to a 2870
multiplexer channel in the Model 168 configuration. A switch on the CE
panel is used to enable or disable the connection between the CSI and
the processor unit.

This interface can be used by the customer engineer, for example, to
print trace data records on a local system printer that is faster than
the 3213, such as a 3211 or 1403. The processor unit in the service

A Guide to the IBM System/370 Model 168 133

processor can also receive input from the CSI. Using this capability, a
program running in the Model 168 CPU (such as an OLT) can send data 1:'0
the modem component for transmission to a remote location or read data
from the internal disk fiIE~.

An OLT t~ha t runs under OLTEP or OLTSEP is provided that reads trace
records (st.atus and CPU logout) from the internal disk file via the CSI,
formats the data, and writes it to an output device (usually a printer).
Another OLT' is provided that reads only the CPU logout trace records
from the internal disk filE:! (via the CSI). This OLT then invokes the
Logout Analysis Program to operate on the CPU logout data and print the
results on a local printer via the CSI.

MODEM

The modem component provides the means of connecting the service
processor to RETAIN/370 in Raleigh via a data access arrangement and
communication line for the purpose of remote problem analysis. The
modem has two modes of operation, the remote program mode and the
teleprocessing link mode.

The remote program mode enables the s erv ice pro cessor to per form 1:he
same functions for the ModE~l 3 as can be performed for the Model 1 using
the 2955 remote analysis unit. The same OLTs that are used with the
2955 can be~ used with the modem in remote program mode. That is, an OLT
running under OLTEP concurrent with normal system operations (or under
OLTSEP in a standalone environment) can send SYS1.LOGREC data to the
RETAIN/370 system in Ralei9h, after which the modem connection can bE!
disabled.

When the modem is operating in telep:rocess ing 1 ink mode, the local
customer engineer can transmit trace records contained on the internal
disk file to the RETAIN/370 system using the CE panel on the service
processor, as discussed previously. This data is then transmitted to a
specialist in the Large System Support Group in Poughkeepsie or another
technical support group connected to RErrAIN/370. The special ist
interfaces with RETAIN/370 using a 3270 display station.

I:f the specialist requires any additional information or history data
from the Model 168, he requests it from the local customer engineer via
telephone. Similarly, once the specialist has analyzed the problem he
communicates the information to the local customer engineer via
telephone.

The Model 3 offers the following improvements in the remote analysis
capability when compared with that provided for a Modell:

• Additional and more timely status data is made available to the
specialist, as provided by the trace unit of the service processor.

• The specialist in Poughkeepsie uses a 3270 display unit to
communicate with the RETAIN/370 system in Raleigh. This enables ·the
specialist to see much more history data displayed concurrently than
does the display device used in a Model 1 environment.

• The analysis and data reduction capabilities of the programs that
operate on the history data sent to RETAIN/370 have been enhanced.
and enable the speciali.st to be more selective in his requests for
data.

The features listed above are designed to enable a customer engineer
specialist in the Large System Support center to diagnose failures in a
Model 168 more frequently without the need to go to the installation

134 A Guide to the IBM System/370 Model 168

itself. In addition, status data about intermittent errors can be
analyzed by the specialist concurrently with normal system operations.

As in a Model 1 environment, a 2955 OLT operating under OLTSEP can
control the operation of the HDM Diagnostic Program in the Model 168
Model 3 cpu. A service processor maintenance program is also provided
that operates under the control of the HDM Diagnostic Program. This
program runs diagnostics that test the operation of the lines between
the Model 168 cpu and the service processor.

ADVANTAGES

The advantages of the service processor in the Model 3 Model 168 are
the following:

• More detai'led information about intermittent and recoverable errors
is provided than for the Model 1 and on a real time basis. The
customer engineer can obtain this information and perform problem
analysis concurrently with normal system operations.

• The need to try to recreate intermittent failures for analysis by
the customer engineer is reduced.

• More detailed information about solid errors is provided than for
the Modell. This data can be analyzed bv the local customer
engineer or sent via a communication line to the Large Systems
Support Group for analysis by customer engineers with more
expertise.

• Custo~er engineer operation of the service processor is controlled
by a separate CE panel in the unit instead of by the operator
console so that problem analysis operations can be performed
concurrently with normal system operations,.

• The service processor is physically independent of the Model 168 cpu
so that no processing time is taken from the Model 168 cpu and an
error in the service processor does not impact the Model 168 cpu.
Similarly, the service processor can operate when the Model 168 cpu
is down for maintenance.

The detailed, timely status information provided about errors, remote
analysis capability, and concurrent problem analysis capabilities
provided by the service processor should result in a reduction in the
number of times normal system operation is interrupted for intermittent
error analysis and the amount of time the system is not operational for
the purpose of locating the cause of solid failures. Since more data
about failures is provided by the service processor, faster error
analysis should occur even if the remote analysis capability is :"ot
utilized.

A Guide to the IBM Systeml370 Model 168 135

SECTION 70: COMPARISON TABLES

These tables have been included for quick reference. The first
compares hardware features of the Systenv360 Model 65 and Systenl/:370
Models 158, (Models 1 and 3), 165, 165 II, and 168 (Models 1 and 3) .•
The second compares OS MFT, MVT, VS1, and VS2 Release 1 support of the
Model 168 O>1odels 1 and 3).

136 A Guide to the IBM Systenl/370 Model 168

70:05: COMPARISON TABLE OF HARDWARE FEATURES OF THE SYSTEW360 MODEL 65 AND SYSTEM/370 MODELS 158 (MODELS! AND 1),
165, 165 II, AND 168 (MODELS 1 AND 3)

System/370 System/370
System/360 Model 158 System/370 System/370 Model 168

Hardware Feature Model 65 (Models 1 and 3) Model 165 Model 165 II (Models 1 and

Ie CPU

A. Be mode of system comparable to BC Standard Standard Standard Standard
operation mode

B. EC mode of system Not implemented Standard Not implemented Standard Standard
operation

C. Instruction set
1. Standard set Standard Standard Standard Standard Standard

(binary arithmetic)

2. Decimal arithmetic Standard Standard Standard Standard Standard

3. Floating-point Standard Standard Standard Standard Standard
arithmetic

4. Extended precision Not available Optional Standard Standard Standard
floating-point (no-charge)

5. New instructions Not available Standard Standard Standard Standard
a. COMPARE LOGICAL (except for

CHARACTERS MONITOR CALL)
UNDER MASK

COMPARE LOOICAL
LONG

HALT DEVICE
INSERT CHARACTER~

UNDER MASK
LOAD CONTROL
MONITOR CALL
MOVE LONG
SET CLOCK
SHIFT AND ROUND

DECIMAL
START I/O FAST

RELEASE
STORE CHANNEL ID
STORE CHARACTERS

UNDER MASK
STORE CLOCK
STORE CONTROL
STORE CPU ID

b. CLFAR I/O Not available Standard Not available Standard Standard
COMPARE AND SWAP
COMPARE DOUBLE

AND SWAP
INSERT PSW KEY
LOAD REAL ADDRESS
PURGE TLB
RESET REFERENCE BIT
SET CLOCK COMPARATOR
SET CPU TIMER

3)

Hardware Feature

STORE CLOCK
COMPARATOR

STORE CPU TIMER
SET PSW KEY

FROM ADDRESS
STORE THEN AND

SYSTE:W1 VlASK
STORE THEN OR

S,YSTEM MASK

D. Overlap of instruction
fetching and
preparation with
instruction execution

E. High-speed multiply

F. CPU cycle time

G. Dynamic address
translation

H. Interval timer

I. Time of day clock

J. CPU timer and clock
comparator

K. MOnitoring feature

L. Program event recording

M. Direct control

N. Interruption for SSM
instruction

Systeml360
Model 65

Instruction unit
normally prepares
one instruction at
a time. Imprecise
interruptions occur
only for storage
violations.

Not avai lable

200 nanos econds,
8-byte data path

Not available

Standard (16.6 ms
resolut ion)

Not available

Not available

Not available

Not available

Optional

Not implemented

system/370
Model 158
(Models 1 and 3)

Instruction
prefetchin g is
performed. One
pre fetched
instruction is
decoded, no
operand
prefetching
is performed.
Imprecise
interruptions
cannot occur. A
64-word buffer is
provided in the
Modell. A
128-word buffer
is provided in
the Model 3.

Not available

115 nanseconds,
4-byte parallel
data path

Standard

Standard (3.33 ms
resolution)

Standard

Standard

Standard

Standard

9ptional

Standard

System/370
Model 165

Instruction unit
can process
several
instructions while
execution uni t
executes one
instruction.
Imprecise
interruptions
can occur.

optional

80 nanoseconds,
8-byte data path

Not available

Standard (3.33 ms
resolution)

Standard

Not available

Not available

Not available

standard

Not implemented

SystenV370
Model 165 II

Same as Model 168

Optional

Same as Model 165

Standard

Standard (3.33 IDS

resolution)

Standard

Standard

Standard

Standard

Standard

Standard

System/370
Model 168
(Models 1 and 3)

Same as Model 165
except that
instruction and
execution unit
implementation
is enhanced and
imprecise
interruptions
ca nnot occur.

Optional

Same as Model 165

Standard

Standard (3.33 ms
resolution>

Standard

Standard

Standard

Standard

Standard

Standard

Hardware Feature

O. Compatibility features
(all are optional and
mutually exclusive except
where noted otherwise)

P. Control logic

Q. Instruction retry by
hardware

R. Machine check
interruption

S. Fixed storage area size
in lower storage
(including logout area
for machine and channel
errors)

T. Multiprocessor systems

Systeml360
Model 65

1. 7070/7074
2. 7080 (for both

705 and 7080)
3. 709/7040/7044/

7090/7094/709411

Microprogram in
ROS

No

One level of
machine check
provided for all
machine errors
and one machine
check mask.

328 bytes including
CPU and cha nnel
log outs

1. Multisystem
optional feature
permits inter­
connection of
two Model 65s.
Main storage is
shared (512K or
more). Direct
control is
required.

2. The support or
main processor
in an AS P con­
figuration can
be a Model 65.
Two or three
systems are con­
nected via a
Channel-to­
Channel Adapter.

System/370
Model 158
(Models 1 and 3)

1. 1401/40/60,
1410/7010

2. OS/DOS
3. 7070/7074

(features are
no-charge and
not mutually
exclusive)

Microprogram in
reloadable control
storage

Yes

Occurs after
corr ected an d
uncorrected errors.
There are seven
types of machine
check and many
are individually
maskable.

1184 bytes reduc­
ible to 512 if
extended logout
area of 672 bytes
is moved

Same as Model 168

system/370
Model 165

1. 7070/7074
2. 7080 (for both

705 and 7080)
3. 709/7090/7094

709411 (does not
include 704,
7040, 7044)

Microprogram in
capacitor ROS and
monoli thic WCS.

Yes

Occurs after
corrected and
uncorrected errors.
There are four
types of machine
check and many
are individually
maskable.

1504 bytes reduc­
ible to 512 if the
extended logout
area of 992 bytes
is moved

1. A multisystem
feature is not
available.

2. A Model 165 can
be a support
or a main pro­
cessor in an
ASP configuration

System/370
Model 165 II

Same as Model 165

Same as Model 168

Yes

Sames as Model 168

Same as Model 168

Same as Model 165

Syst:em/370
Model 168
(Models 1 and 3)

Same as Model 165

Microprogram in
monoH thic ROS
and monolithic wcs

Yes

Same as Model 165.
except five types
of machine check
are implemented
and more data is
logged by a Model
168.

1928 bytes reduc­
ible to 512 if the
extended logout
area of 1416 bytes
is moved

1. The 3068 Multi­
systerr Coromuni­
cation Unit is
used to connect
two Medel 168
sys terns (any
combination of
Models 1 and 3)
together for a
tightly- coupl ed
roul ti processing
configuration.

2. JES3 (Job Entry
Subsystem 3) of
OS/VS2 Release
3 supports the
Model 168 in a
loose ly-coupled
mul tiprocess ing
configurati on
of from two to
four systems.

3. A Model 168 can
be a rrain or
support

Hardware Feature

U. Power warning

V. Virtual machine assist

W. Remote analysis unit

X. Integrated Storage
Controls

II. STORAGE

A. Processor (main)
storage sizes

B. Type of processor
storage

C. Processor storage
interleaving

D. High-speed buffer
storage

SystenV360
Model 65

Not available

Not available

Not available

Not available

256K
512K
768K
1024K

System/3?O
Model 158
(Models 1 and 3)

Optional

Optional

Yes - service
processor is
standard

Optional for
attachment of
333O-series and
3340 disk storage,
or the 3850 Mass
Storage System

512K

1024K
15361<
2048K
3072K
4096K

Ferrite cores Monolithic
technology

Two-way inter- None
leaving of sequen-
tial accesses other
than by the
channels is
provided.

No 8K is standard
in the Model 1.
16K is standard
in the Model 3.

System/370
Model 165

Not available

Not available

Yes - 2955
Remote Analysis
Unit is optional

Not ava~lable

512K

1024K
15361<
2048K
3072K

Ferri te cores

Storage is 4-way
doubleword inter­
leaved for CPU
and channel
requests.

. 8K is standard,
8K more can be
added. 80 nano­
second cycle.

SystenV370
Model 165 II

Not available

RPQ feature

Same as a Nodel
165

Not avai lable

1024K

2048K
3072K

Ferri te cores

Same as Model 165

Same as Model 165

Syste!:!.'3?O
Model 168
(Models 1 and 3)

processor
in an ASP
configuration.

Optional

Yes - 2955
Remote Analysis
Unit is optional
in the Model 1,
service processor
is standard in
the Model 3

Same as
Model 158

l024K

2048K
3072K
4096K
5120K
6144K
7168K
8192K

Monolithic
technology

Storage is 4-way
doubleword inter­
leaved.

Model 1 is same as
Model 165. 32K
is standard in
the Model 3.
Buffer row
deleticn is
implemented

Hardware Feature

E. Processor storage
validity checking

F. Byte-oriented operands

G. Store and fetch
protection

d. Shared processor
storage

I. 2361 Core Storage

III. CHANNELS

A. Total number per
system

System/360
Model 65

Par ity checking
by byte. No hard­
ware error
correct ion is
provided.

No

Standard

optional (Model
65 system shares
2361 Core Storage
with a Model 50,
65, or 75)

Optional.
Up to 8 million
bytes can be
attached.

Up to 7

System/370
Model 158
(~dels 1 and 3)

ECC checking on a
doubleword. Single-
bit errors are
corrected by
hardware.

Standard

Standard

Not availabl e

System/370
Model 165

Same as Model 158

Standard

Standard

Not available

System/370
Model 165 II

Same as Model 158

Standard

Standard

Not avai lable

Cannot be attached Cannot be attached Cannot be attached

By±e multiplexer
channel 0 and
block multiplexer
channels 1 and 2
are standard.
Block multiplexer
channels 3 to 5
are optional.
Channel 4 can be
a second byte
multiplexer
channel instead
of a block
mul tipl exer in
systems with 768K
or more and
channel 3 installed.
Selector mode
standard for all
block multiplexers.
Channel rate is 1.5
MB/sec.

1. Up to 7
standard

2. Up to 12
Extended
optional

with
Channels
feature

Same as Model 165

System/370
Model 168
(Model s 1 and 3)

in both lI'odels

Same as Model 158

Standard

Standard

Not available

cannot be attached

Same as Model 165

Hardware ~

B. 2870 Multiplexer
Channel

C. 2860 Selector
Channel (1.3 MBlsec.)

D. 2880 Block Multiplexer
Channel (1.5 MB/sec).
Two-Byte Interface
feature permits a
3.0 MB/sec. data rate

1. Maximum number
of subchannels

System/360
Model 65

One or two can
be attached
(192 subchannels>

A maximum of 6
can be attached

Cannot be attached

System/370
Model 158
(Models 1 and 3)

Does not attach
(Byte mUlti­
plexer channel 0
or 4 on a Model 1
can have 256 non­
shared subchannels
or eight shared
subchannels and
120 nonshared
subchannels.
Byte multi-
plexer channel
o or 4 on a Model
3 can have 256
nonshared with­
out subchann el
sharing installed
or 256 nonshared
less 16 or 32 for
each control unit
position wired
for 16 or 32
shared sub­
channels.

Does not attach

Does not attach

For all Modell
block mul ti­
plexer channels,
16 shared and 480
nonshared. For
all Model 3 block
mul tipl exer
channels when the
second byte multi­
is not installed:
a) 736 nonshared

with no sub­
channel sharing
installed

b) With subchannel
sharing in­
stalled, 40
shared and 736
nonshared less 1
for each shared
subchannel

System/370
MOdel 165

same as Model 65

Same as Model 65

A maximum of 6
can be attached
without the
Extended Channels
feature, a maximum
of 11 with this
feature.
1 shared
56 nonshared

System/370
Model 165 II

Same as Model 65

Same as Model 65

s~e as Model 165

Same as Model 165

System/310
Model 168
(Models 1 and 3)

Same as Model 65

Same as Model 65

Same as Model 165

1 shared and 56
nonshared with­
out extended
uni t control
words feature,
1 shared and up
to 256 nonshared
wi th feature

Hardware Feature

E. Channel dual I/O bus

F. Maximum aggregate data
rate for channels

G. Channel retry data
provided after channel
error

H. Channel-to-Channel
adapter

I. Extended Unit Control
Words on the 2880

J. Channel indirect data
addressing

Systeml360
Model 65

No

In excess of
4 MB/sec for
2870 and six

Yes

one
2860s

Optional on 2860

Not available

System/370
Model 158 System/370
(Models 1 and 3) Model 165

For the Model 3
wi th the second
byte multi­
plexer installed:
a) 480 nonshared

with no sub­
channel sharing
installed

b) With subchannel
sharing in­
stalled, 32
shared and 480
nonshared less
1 for each shared
subchannel

No

6.75 MB/sec for
five block
mul tipl exer
channels

Yes

Optional

Standard

No

In excess of
9 MB/sec with
twelve channels

Yes

Optional on 2860

Optional

Not available

System/370
Model 165 II

No

Same as Model 165

Yes

Optional on 2860

Optional

Optional (required
by the virtual
storage programming
systems)

System/370
Model 168
(Models 1 and 3)

Yes

17MB/sec

:les

Optional on 2860

Optional

Optional (required
by the virtual
storage prograrrming
systems)

)II

G'l s::
0..
CD

rt o
rt
~
H

~
en
'<
ell
rt
CD
8
.....
W
..J
o

Hardware r'eature

IV. OPERATOR CONSOLE DEVICES

V. I/O DEVICES

A. 3505 Card Reader
3525 Card Punch

B. 3211 Printer

C. 3803/3420 Magnetic
Tape Subsystem
(Models 3,5,7 and
4,6,8)

System/360
Model 65

1. 1052 Printer­
keyboard
(optional)

2. Second 1052
Printer-Key­
board is
optional

3. A 2250 Display
Unit and a
remote 2150
Console are
optional

4. Other devices
can be used as
primary and
secondary
consoles.

No

Yes

System/370
Model 158
(Models 1 and 3)

1. Display console
with keyboard
and light pen
is standard.
Hardcopy can
be provided
optionally via
a 3213 Printer
for display
mode. Display
console can
al so oper a te
in printer
keyboard mode
instead of
displ ay mode.

2. 2150 Console
with 1052-7
Printer-Key­
board

3. Additional
consoles, such
as display
units, are
optional

(store status
function is
provided)
4. 3056 Remote

System Con­
sole in
addition to

Yes

Yes

the standard
display console
is optional.

Yes, except Model 8 Yes

System/370
Model 165

System/370
Model 165 II

1. Standalone 3066
MOdel 1 system
Console is
required. It
includes:

1. Standalone 3066
Model 1 Systerr.
Console is
required. The
store status
function is
supported.

a= A CRT-key­
board
combination
for operator/
system
communication

b. An indicator
viewer

c. A microfiche
document viewer

d. A proce ssor
storage config­
uration plug­
board

e. A system
activity meter

f. A device for
loading WCS and
microdiagnostics

The store status
function is not
provided.

2. Optionally, other
devices can be
used as secondary
consoles as listed
for the Model 65.

Yes Yes

Yes Yes

Yes Yes

System/370
Model 168
(Model s 1 and 3)

1. Standalone 3066
Model 2 System
Console provides
same features
as 3066 Modell
and store status
function. Other
consoles can .be
attached as for
Model 165.

Yes

Yes

Yes

Hardware Feature

D. Direct access devices
(2311,2314,2303,2301,
and 2321>

E. 3330-series disk storage

1. 3830 Storage Control
Model 1

2. 3830 storage Control
Model 2

3. Integrated Storage
Controls feature

F. 2305 facility Models 1
and 2

G. 3340 Direct Access
Storage Facility

H. 3410/3411 Magnetic Tape
SUbsystem

I. 3540 Diskette I/O Unit

J. 3600 Finance
Communication System

K. 3650 Retail Store System

L. 3660 Supermarket System

M. 3704 and 3705 Communi­
cations Controllers

N. 3740 Data Entry System

O. 3767 Data Communication
Terminal

P. 3770 Data Communication
System

Q. 3790 Communication
System

R. 3800 Printing Subsystem

System/360
Model 65

All attach

No

No

No

NO

No

NO

No

No

Yes, emulation
mode only

Yes

Yes

Yes

NO

No

System/370
Model 158
(Models 1 and 3)

All except 2301
drum

Yes (all models)

Yes

Yes

Yes

2305 Model 2
only

Yes (attacanent
via 3830 Model
2 and integrated
storage controls)

Yes

Yes

Yes

Yes

Yes

Yes, emulation
mode and network
control program
modes.

Yes

Yes

Yes

Yes

Yes

System/370
Model 165

Same as Model 65

Yes (Models 1
and 2 only)
Yes

Yes

No

Yes on 2880

No

No

NO

No

NO

No

Same as Model 158

Yes

No

No

No

No

System/370
Model 165 II

Same as Model 65

Yes (all models)

Yes

Yes

No

Yes on 2880

Yes (attachment
via 3830 Model 2)

No

No

Yes

Yes

Yes

Same as Model 158

Yes

yes

Yes

yes

Yes

System/370
Model 168
(Models 1 and 3)

Same as Model 65

yes (all models>

Yes

Yes

Yes

Yes on 2880

yes (attachment
via 3830 Model
2 and integrated
storage
controls)

No

No

Yes

yes

Yes

Same as Model 158

Yes

Yes

Yes

Yes

Yes

~ System/370 System/370
,f: System/360 Model 158 System/370 System/370 Model 168
0'1 Hardware Feature Model 65 (Models 1 and 3) Model 165 Model 165 II (Models 1 and 3)

S. 3850 Mass Storage System No Yes via 3830 No Yes via 3830 Yes via 3830
Model 3 and Model 3 Model 3 and
Integrated Integrated
Storage Controls Storage

Controls

T. 3881 Optical Mark Reader No Yes No No No

u. 3886 Optical Character No Yes No Yes Yes
Reader

v. 3890 Document Processor No Yes No Yes Yes

1.2..!.U1. OS AND OS/VS SUPPORT OF THE MODEL 168 (MODELS 1 AND 3)

Hardware Feature

1. CPU

A. Mode of system operation

B. Instruction set

1. Standard set
(binary arithmetic)

2. Decimal arithmetic

3. Floating-point arithmetic

q. Extended precision
floating-point

5. New instructions
a. COMPARE LOGICAL

CHARACTERS UNDER
MASK

COMPARE LOGICAL
LONG

INSERT CHARACTERS
UNDER MASK

LOAD CONTROL
MONITOR CALL
MOVE LONG
SET CLOCK
SHIFT AND ROUND

DECIMAL
START I/O FAST

RELEASE
STORE CHANNEL ID
STORE CHARACTERS UNDER

MASK
STORE CLOCK
STORE CONTROL
STORE CPU ID

OS MFT and MVT

BC mode only. Up to 15
problem program partitions
or regions.

All languages

All languages except
FORTRAN

All languages except
RPG

Assemblers F and H, PL/I
Optimizing Compiler, PL/I
Checkout Compiler,
FORTRAN H, FORTRAN
H-Extended

EC and ~AT modes only.
One virtual storage of
up to 16 million bytes
is supported. Up to
52 partitions of
which 15 can be
problem program.

All languages

All languages except
FORTRAl~

All languages except
RPG

Same as MFT and MVT

Mnemonics in Assembl ers Same as OS MFT
F and H. Option to generate and MVT
certain instructions in ANS
Full COBOL Version 3 (CLCL,
MVCL, ICM, SRP)

OS/VS2 - Release 1

EC and DAT modes only. One
virtual storage of 16 million
bytes is supported. Up to 63
problem program regions of ~ich
up to 42 can be TSO foreground
regions.

All languages

All languages except
FORTRAN

All languages except
RPG

Same as MFT and MVT

Same as OS MFT
and MVT

~
en
rt"

~
" (,.oJ

-...I o·

Hardware Feature

b. LOAD REAL ADDRESS
PURGE TLB
RESET REFERENCE BIT
SET CLOCK

COMPARATOR
SET CPU TIMER
STORE CLOCK

COMPARATOR
ST'ORE CPU TIMER
STORE THEN AND

SYSTEM MASK
STORE THEN OR

SYSTEM MASK
c. CLEAR I/O

COMPARE AND SWAP
COMPARE DOUBLE AND SWAP
INSERT PSW KEY
SET PSW KEY FROM ADDRESS

C. Interval timer

D. Time of day clock

E. Clock comparator and CPU timer

F. Expanded machine check
interruptions

G. Monitoring feature

H. Program event recording

I. Interruption for SSM
instruction

J. Compatibility features

K. Power warning

OS MFT and MVT

Supported by Assembler F,
as of OS Release 21.6.
Not supported by Assembler H

Not supported

Supported for timing
facilities, except for
time of day

Supported for time of day

Not supported

supported by MCH

supported by GTF and an
Assembler mnemonic

Not supported

Not supported

All are supported

Supported by MVT as of
Release 21.6

All are supported
by the System Assembler

Supported

Sq>ported for all
timing facilities
(except time of day;
unless the extended
timer option is
incl uded in VS1
control program

Same as MFT and MVT

Supported for job step
and interval timing
when extended timer
option is included
in the VS1 control
program

Same as MFT and MVT

Same as MFT and MVT

SUpported by Dynamic
SUpport System

Supported

All are supported

Supported as of
Release 3

OS/VS2 - Release 1

Same as OS/VS1

Supported

Not supported

Same as MFT and MVT

Supported for ti~ing facilities
except for time of day

Same as MFT and MVT

Same as MFT and f.'VT

Supported by Dynamic Support
System

Supported

All are supported

Supported as of Release 1.6

:3: o
PI
C1)
I-'

Hardware Feature

II. STORAGE

A. Real storage sizes
(1024K to 8196K)

OS MFI' and MVT

All are supported

B. Byte-oriented operands Programmers can use the
byte alignment hardware
facility in Assembler
programs

C. Store and fetch protection Store protect only
is supported

III. CHANNELS

A. Byte multiplexer channels One or tlliO are supported

B. Block multiplexer and selector Supported
channels

C. Channel retry performed Yes

D. Channel indirect data Not supported
addressing

0\ IV. CONSOLES
(X)

A. 3066 Console

B. Alternate and additional
consoles supported

V. I/O DEVICES

A. 3505 Card Reader and 3525
Card Punch

B. 3211 Printer

C. 3803/3420 Magnetic
Tape Subsystem
(Models 3, 5, 7 and 4, 6, 8)

Supported. MCS and DIDOCS
required

Yes

Supported

Supported

Supported

All are supported

Same as MFT am MVT

Store and fetch
protection are
supported

One or two are
supported

Supported

Yes

Supported

Same as MFT am MVT

Yes

Supported

Supported

Supported

OS/VS2 - Release 1

All are supported

Same as MFT and MVT

Store and fetch protection
are supported for all regions

One or two are supported

supported

Yes

Supported

Same as MFT and MVT

Yes

Supported

Supported

Supported

H

i

Hardware Feature

D. 2314/2319 facilities

E. 3330-series with RPS and
multiple requesting attached
via 3830 Storage Control Model
1, 3830 Storage Control Model
2, or Integrated Storage
Controls

F. 3340 Direct Access Storage
Facility

G. 2305 Facility Models 1 and 2
with RPS and multiple
requesting

H. 3600 Finance Communication
system

I. 3650 Retail Store System

J. 3660 Supermarket System

Supported for system
residence, data sets,
SYSIN devices, and SYSIN
and SYSOUT data sets.
Record Overflow and
channel switching features
are' supported.

supported as V.D.
above. RPS, multiple
requesting, sixteen-
drive addressing, 32 Drive
Expansion, Two-
Channel Switch, Two­
Channel Switch Additional,
3333 string SWitch, and
Record Overflow are
supported. Only Models
1 and 2 are supported.

Not supported

Supported for system
residence. data sets, and
SYSIN/SYSOUT data sets.
RPS and multiple requesting
are supported.

Not supported

Not supported

Not supported

Supported for system
residence, data sets,
paging devices, JES
spooling devices, and
SYSIN devices. Record
Overflow and channel
switching features are
supported.

Same as V.D.
above. RPS, multiple
requesting sixteen­
drive addressing, 32
Drive Expansion,
Two-Channel Swltch,
Two-Channel SWitch
Additional, 3333
String SWitch, and
Record Overflow are
supported. All
models are supported.

Support same as for
3330-series

Same as V.D. above
except for SYSIN
devices. RPS and
multiple requesting
are supported.

Supported attached to
a 3704/3705 in NCP/VS
mode by VTAM and TCAM
through VTAM

Supported attached to
a 3704/3705 in
emulation mode by BTAM
supported attached to a
3704/3705 in NCP/VS
mode by VTAM and
TCAM through VTAM

Supported attached to
a 3704/3705 in
emulation mode by BTAM
Supported attached to
a 3704/3705 in NCP/VS
mode by VTAM

OS/VS2 - Release 1

supported for system
residence, data sets,
paging devices, SYSIN and
SYSOUT data sets, and SYSIN
devices. Record Overflow
and channel switching features
are supported.

Same as V.D. above. RPS,
multiple requesting,
sixteen-drive addressing,
32 Drive Expansion, Two-
Channel Switch, Two-Channel Switch
Additional, 3333 String
Switch, and Record Overflow
are supported. All models
are supported.

Not supported

Same as V.D. above except
for SYSIN devices. RPS and
multiple requesting are
supported.

Not supported

Not supported

Not supported

Hardware Feature

K. 3704 and 3705 communications
Cent roll ers

L. 3740 Data Entry system

M. 3767 Data Communication
Terminal

N. 3170 Data Communication
System

o. 3790 Communication System

P. 3800 Printing Subsystem

Q. 3850 Mass Storage System

R. 3886 Optical Character Reader

S. 3890 Document Processor

OS MFT and MVT

Supported in emulation
mode.
Supported in NCP mode
by TCAM

Supported (BTAM, TCAM)

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

OSlVS1 OS/vS2 - Release 1

SUpported in emulation Supported in emulation mode
mode supported in NCP mode by
SUpported in NCP mode TCAM
by TeAM supported in NCP/VS mode
Supported in NCP/VS TCAM
mode by TCAM and VTAM

Supported (BTAM, TeAM) supported (BTAM, TeAM)

Supported attached to Not supported
a 3704/3705 in NCP/VS
mode by VTAM and TCAM
through VTAM

Supported for synchron- Not supported
ous data link control
(SDLC) operations
attached to a 3704/3705
in NCP/VS mode by VTAM
and TeAM through VTAM.
SUpported for binary
synchronous communica-
tion (BSC) operations
attached to a 2701 or
3704/3705 by 2770
support in BTAM, TeAM,
and VTAM.

Supported attached to Not supported
a 3704/3705 in NCP/vS
mode by V'l'AM

supported

Supported

Supported

Supported

Not supported

Not supported

Not supported

Supported

by

~[NDEX (Sections 01 to 10)

address spaCE~, definition 34
architecture design 8
l\sCII/EBCDIC mode 8

basic control mode
compatibility with system/360 8
programmin<J systems supporit 141-151

buffer row dE!letion 20
buffer stora<Je

Model 1 26
Model 3 12~i-126

<:hange bit 6 ~~
<:hannel dual I/O bus 30
c:hannel indil:ect data addressing 61
Ghannel maski.ng changes for EC mode 12
<:hannel program translation 68
<:hannel retry 20
<:hanne Is 30
CLEAR I/O instruction 18
c:lock comparator 18,22
Gommand retry 20
COMPARE AND SWAP instruction 18
COMPARE DOUBlE AND SWAP instruction 18
<:omparison table, Models 65, 158, 165, 165 II, and 168 hardware features 131-146
Gomparison ta.ble, OS MFT, MVT, VS1, and VS2 support of the Model 168 1L~1-151
c.:ompatibility

BC mode wit,h System/360 8
Model 165 with Model 168 8
Model 3 with Model 1 of thE~ Model 168 125

control registers 11
control stora,ge

read-only 11
writable

Model 1 11
Model 3 126

CPU
cooling 5
cycle time 11
extended logout area 22

cycle time
control storage 11
CPU 11
local storage 11
processor storage 23

CPU timer 18,22

DAT hardware (see dynamic address transla1:ion)
d.ynamic address translation

addresses translated 64,65
functions 41-43
instruction nullification 66
segment table origin address saving 62
,time to perform 59
translation lookaside buffer 59
transla.tion process 59,61
translation tables 51

execution uni"t. 11

152 A Guide to the IBM System/310 Mod~~l 168

extended control mode
description 12-17
programming systems support 9

external page storage 52
extended unit control words feature 30

features of the Model 1
optional 33
standard 32

features of the Model 3 125
fixed processor storage locations

model-dependent 15
model-independent 14

imprecise interruptions 12
indirect data address list 67
indirect data address word 67
INSERT PSW KEY instruction 18
instruction nullification 66
Instruction Processing Damage interruption 20
instruction unit 11
instructions

buffering 11
changes to for EC mode 15
list of standard 32
with improved execution speed 126

Integrated storage Controls feature
for 3330-series strings 95
for 3340 strings 117
Staging Adapter feature 98
summary of features 123

interleaving 23
internal performance

Model 1 2
Model 3 2

interruptions
machine check 20-22
page translation exception 53,61
segment translation exception 61
SSM instruction 16

interval timer 10
I/O devices for the Model 168 94

LOAD REAL ADDRESS instruction 59
local storage 11
logical storage 23
long-term fixing 54

machine check code 21
machine check interruptions 20,22
main storage (see processor storage)
Model 165 II 1,10,11,12,17,18,19,20,26,32,34,59,137-146
Model 168 Model 1 and 3 differences 125-135
monitoring feature, description 17
monolithic technology for processor storage 6
motor generator set

Model 1 5
Model 3 125

nonpaged mode of program operation 55

optional features
Model 1 33
Model 3 125

A Guide to the IBM System/370 Model 168 153

OS MFT and MVT 1,9,23
OS/VS1 and OS/VS2 1,9,23

page 52,56
page fault 53
page :frame 52
page-in 52
page-out 52
page replacement algorithm 54
page table 52
page translation exception 53
paged mode of program operat:ion 55
paging 52
paging device 52
performance in a virtual storage environment 69-83

factors affecting 73
increasing 80
relationship to virtual storage size 76

power warning feature 22
processor storage

reconfiguration 24
sizes 23
technology 7

program event recording
comparison with monitoring feature 17
description 16

programming systems support of the Model 168
OS MFT and MVT 147-151
OS/vS1 and OS/VS2 147-151

PSW
BC mode format 13
change for EC mode 12
EC mode format 13

PURGE TLB instruction 62

RAS features 19-23
read-only storage 11
real storage 38
reconfiguration, processor storage 24,
reference bit 64
RESET REFERENCE BIT instruction 64

segment 52,56
segment tabl,e 52,57,60
segment tabl'e origin address saving 62
segment translation exception 57
serv1ce processor in the Model 3

advantages 135
CE panel 132
components 129
corporate standard interfa.ce 133
cOWlters 132
functions 128
general operation 128
internal disk file 132
modem 134
printer control 133
processor unit 130
RETAIN/370 interface 134
trace unit 131
2955 mode 134

SET CLOCK COMPARATOR instruction 18
SET CPU TIMER instruction 19
SET PSW KEY FROM ADDRESS instruction 18
SET SYSTEM MASK instruction interruption 16

154 A Guide to the IBM System/370 Model 168

short-term fixing 54
slot 52
standard features

Model 1 32
Model 3 125

storage
buffer 26
control 11
external page 52
interleaving 23
local 11
processor (main) 23
protect key expansion 13
real 38
reconfiguration 24
ripples 26
virtual (See virtual storage)

storage protect key 13
STORE CLOCK COMPARATOR instruction 18
STORE CPU TIMER instruction 19
store status function 32
STORE THEN AND SYSTEM MASK instruction 17
STORE THEN OR SYSTEM MASK instruction 17
STO-stack 62
system console 5,32,64
system highlights 1-4
system space requirements 5
system technology 6-7

thrashing condition 73
translation lookaside buffer 59

virtual equals real mode 55
virtual machine assist RPQ 90
Virtual Machine Facility/370 1,9,43,52,84-93
virtual machines

advantages 91-93
definition 84
general operation 84-90

virtual storage
advantages 44- 50
definition 38
organization 56
need for 34
relationship between size and performance 76
resources required to support 70

virtual storage address fields 58
virtual storage page 51

writable control storage 11

2955 Remote Analysis Unit 10,23,128,135

3066 Model 2 System Console 5,32

3067 Power and Coolant Distribution Unit
Model 2 5
Model 3 125

3330-series disk storage
attachment via ISC 95
Model 11 drives 94

A Guide to the IBM System/370 Model 168 155

3340 direct access storage facility
advantages summary 120
alternate tracks 105,108,110
attachment via integrated storage controls 117
attachment via the 3830 Model 2 114
capacity 9~~,101
channel switching features 115
defect skipping 112
description of 3340 drives 99
error dete<:tion and correc·tion 110
error logging 116
features table 122
fixed head feature 101,108
interm:ixin~J 3340 and 3330-series drives on an attachment 120
multiple requesting 114
physical address bytes 113
programmin~J support 150
read only feature 103
rotational position sensing 114
sectors 112
seek verificat.ion 113
servo systE~m 105
string conj:igurations 99
string swit:ching 115
timing characteristics 112

3348 Data Module, for the 3340 direct access storage facility
advantages 101
capacity

Model 35 99,106
Model 70 99,107
Model 701i' 99,109

cylinder and read/write head layout
Model 35 106
Model 70 107
Model 70~' 109

general description 99
initializa1:.ion 113
loading and unloading 102
track formatting 110
track layout on the recording surface 104

3830 S,torage Control Model 2
features for 3340 facili"ties 114
summaryo:t: features 123

jL56 A Guide to the IBM System/370 Model 168

SECTION 90: OS/VIRTUAL STORAGE! FEATURES

If required, the OS/Virtual Storage! Features SUpplement, GC20-1752,
should be inserted here.

A Guide to the IBM Systemf 370 Mode'l 168 157

This page intentionally left blank

:158 A Guide to the IBM System/370 Mod'el 168

SECTION 100: OS/VIRTUAL STORAGE £ RELEASE! FEATURES

If required, the OS/Virtual Storage £ Release 1 Features Supplement,
GC20-1753, should be inserted here.

A Guide to the IBM Systeml370 Model 168 159

This page intentionally left blank

1.60 A Guide to the IBM System/370 Model 168

SECTION 110: VIRTUAL MACHINE FACILITY/310 FEATURES

If required, the Virtual Machine Facility/310 Features supplement,
GC20-1151, should be inserted here.

A Guide to the IBM Systeml310 Model 168 161

This page intentionally left blank

162 A Guide to the IBM System/310 Model 168

" . .

A Guide to the IBM System/370

Model 168

READER'S COMMENT FORM

GC20-1755-2

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GC20~ 1755·2

Your' comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
progrnmmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully re'~iewed by the persons responsible for writing and publishing
this material. All commlmts and suggestions become the property of IBM.

fl'old FOld

,

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
1133 Westchester Avenue
White Plains, New York 10604

Att: Technical \Publications/Systems - Dept. 824

Fold

l1rn~
<!l

International Business Machines Corporation
Data Processing Division
'1133 Westchester Avenul!, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations PlazEI, New York, New York 10017
(International)

I
I
I
I
I •
I

I
I
I
I
I

Fold

»
C)
c
c.:
(I)

S
r+
:r
(I)

Ol
00

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	replyA
	replyB

