
Appl ication System/400TtYl

. AS/400 Machine Interface
Functional Reference

SC41-8226-02

--- ------ - ---- ---- - ---- - - ----------_.-
Application System/400n~

AS/400 Machine Interface
Functional Reference

SC41-8226-02

,

J

Third Edition (November 1993)

The functions described in this publication apply to the IBM AS/400 machine interface.

Order publications through your IBM representative or the IBM branch serving your locality. Publications are not
stocked at the address given below.

A Customer Satisfaction Feedback form for readers' comments is provided at the back of this publication. If the
form has been removed, you may address your comments to:

Attn Department 245
IBM Corporation
3605 Highway 52 N
Rochester, MN 55901-7899 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+ 1) + 507 + 253-5192

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you or restricting your use of it.

© Copyright International Business Machines Corporation 1991,1993. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with I BM Corp.

Special Notices
References in thfs publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to
state or imply that only IBM's program or other product may be used.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY
10577.

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corpo­
ration in the United States and/or other countries:

Application System/400 AS/400
400

IBM

This publication could contain technical inaccuracies or typographical errors.

The information herein is subject to change.

iii

Contents

Special Notices .

About This Manual
Who Should Use This Manual
What You Should Know
How This Manual Is Organized

Overview

. iii

v
v
v

............ v

Chapter 1. Introduction .. 1-1
Instruction Format Conventions Used In This Manual 1-2
Definition of the operand syntax .. 1-3

Basic Function Instructions

Chapter 2. Computation and Branching Instructions 2-1
Add Logical Character (ADDLC) 2-3
Add Numeric (ADDN) 2-6
And (AND) 2-10
Branch (B) .. 2-13
Clear Bit in String (CLRBTS) 2-15
Compare Bytes Left-Adjusted (CMPBLA) 2-17
Compare Bytes Left-Adjusted with Pad (CMPBLAP) 2-19
Compare Bytes Right-Adjusted (CMPBRA) 2-21
Compare Bytes Right-Adjusted with Pad (CMPBRAP) .. 2-23
Compare Numeric Value (CMPNV) 2-25
Compress Data (CPRDATA) 2-28
Compute Array Index (CAl) 2-30
Compute Math Function Using One Input Value (CMF1) .. 2-32
Compute Math Function Using Two Input Values (CMF2) 2-41
Concatenate (CAT) 2-46
Convert BSC to Character (CVTBC) 2-48
Convert Character to BSC (CVTCB) 2-52
Convert Character to Hex (CVTCH) , 2-55
Convert Character to MRJE (CVTCM) 2-57
Convert Character to Numeric (CVTCN) 2-62
Convert Character to SNA (CVTCS), 2-65
Convert Decimal Form to Floating-Point (CVTDFFP) 2-74
Convert External Form to Numeric Value (CVTEFN) 2-76
Convert Floating-Point to Decimal Form (CVTFPDF) 2-79
Convert Hex to Character (CVTHC) 2-82
Convert MRJE to Character (CVTMC) .. 2-84
Convert Numeric to Character (CVTNC) 2-88
Convert SNA to Character (CVTSC) 2-90
Copy Bits Arithmetic (CPYBTA) 2-100
Copy Bits Logical (CPYBTL) 2-102
Copy Bits with Left Logical Shift (CPYBTLLS) 2-104
Copy Bits with Right Arithmetic Shift (CPYBTRAS) 2-106
Copy Bits with Right Logical Shift (CPYBTRLS) 2-108
Copy Bytes Left-Adjusted (CPYBLA) 2-110

© Copyright I BM Corp. 1991, 1993 Iv

Copy Bytes Left-Adjusted with Pad (CPYBLAP)
Copy Bytes Overlap Left-Adjusted (CPYBOLA)
Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP)
Copy Bytes Repeatedly (CPYBREP)
Copy Bytes Right-Adjusted (CPYBRA)
Copy Bytes Right-Adjusted with Pad (CPYBRAP)
Copy Bytes to Bits Arithmetic (CPYBBTA)
Copy Bytes to Bits Logical (CPYBBTL)
Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)
Copy Hex Digit Numeric to Numeric (CPYHEXNN) .
Copy Hex Digit Numeric to Zone (CPYHEXNZ)
Copy Hex Digit Zone To Numeric (CPYHEXZN)
Copy Hex Digit Zone To Zone (CPYHEXZZ) ..
Copy Numeric Value (CPYNV)
Decompress Data (DCPDATA) .. .
Divide (DIV)
Divide with Remainder (DIVREM) .
Edit (EDIT)
Exchange Bytes (EXCHBY)
Exclusive Or (XOR)
Extended Character Scan (ECSCAN) .. .
Extract Exponent (EXTREXP)
Extract Magnitude (EXTRMAG)
Multiply (MULT)
Negate (NEG)
Not (NOT)
Or (OR)
Remainder (REM)
Scale (SCALE)
Scan (SCAN)
Scan with Control (SCANWC)
Search (SEARCH)
Set Bit in String (SETBTS)
Set Instruction Pointer (SETIP)
Store and Set Computational Attributes (SSCA)
Subtract Logical Character (SUBLC)
Subtract Numeric (SUBN)
Test and Replace Characters (TSTRPLC)
Test Bit in String (TSTBTS) ...
Test Bits Under Mask (TSTBUM)
Translate (XLA TE)
Translate with Table (XLATEWT)
Translate with Table and DBCS Skip (XLA TWTDS)
Trim Length (TRIML)
Verify (VERIFY)

Chapter 3. Datemmemmestamp Instructions
External Data Formats
Date, Time, and Timestamp Concepts ..
Compute Date Duration (COD)
Compute Time Duration (CTD)
Compute Timestamp Duration (CTSD) .
Convert Date (CVTD)
Convert Time (CVTT)
Convert Timestamp (CVTTS) .

2-112
2-114
2-116
2-118
2-120
2-122
2-124
2-126
2-128
2-132
2-134
2-136
2-138
2-140
2-143
2-146
2-150
2-154
2-162
2-164
2-167
2-171
2-174
2-177
2-181
2-184
2-187
2-190
2-194
2-198
2-201
2-209
2-212
2-214
2-216
2-220
2-223
2-227
2-229
2-231
2-233
2-235
2-237
2-240
2-242

3-1
3-3
3-3

3-13
3-16
3-19

~' 3-22
3-25
3-28

Contents V

Decrement Date (DECD)
Decrement Time (DECT)
Decrement Timestamp (DECTS)
Increment Date (INCD)
Increment Time (INCT)
Increment Timestamp (INCTS)

3-31
3-35
3-38
3-42
3-46
3-49

Chapter 4. Pointer/Name Resolution Addressing Instructions 4-1
Compare Pointer for Object Addressability (CMPPTRA) 4-3
Compare Pointer for Space Addressability (CMPPSPAD) 4-5
Compare Pointers for Equality (CMPPTRE) 4-7
Compare Pointer Type (CMPPTRT) , 4-9
Copy Bytes with Pointers (CPYBWP) 4-12
Resolve Data Pointer (RSLVDP) 4-14
Resolve System Pointer (RSLVSP) 4-17
Set Space Pointer from Pointer (SETSPPFP) 4-22
Set System Pointer from Pointer (SETSPFP) 4-24

Chapter 5. Space Addressing Instructions
Add Space Pointer (ADDSPP)

5-1
5-3
5-5
5-7
5-9

Compare Space Addressability (CMPSPAD)
Set Data Pointer (SETDP)
Set Data Pointer Addressability (SETDPADR)
Set Data Pointer Attributes (SETDPAT) 5-11

5-14
5-16
5-18
5-20
5-22
5-24

Set Space Pointer (SETSPP)
Set Space Pointer with Displacement (SETSPPD)
Set Space Pointer Offset (SETSPPO)
Store Space Pointer Offset (STSPPO)
Subtract Space Pointer Offset (SUBSPP)
Subtract Space Pointers For Offset (SUBSPPFO) .. .

Chapter 6. Space Management Instructions
Create Space (CRTS)
Materialize Space Attributes (MATS)
Modify Space Attributes (MODS)

Chapter 7. Heap Management Instructions
Allocate Heap Space Storage (ALCHSS)
Create Heap Space (CRTHS)
Destroy Heap Space (DESHS)
Free Heap Space Storage (FREHSS)
Free Heap Space Storage From Mark (FREHSSMK)
Materialize Heap Space Attributes (MATHSAn
Reallocate Heap Space Storage (REALCHSS)
Set Heap Space Storage Mark (SETHSSMK)

Chapter 8. Program Management Instructions
Materialize Bound Program (MATBPGM)
Materialize Program (MATPG)

Chapter 9. Program Execution Instructions
Activate Program (ACTPG)
Call External (CALLX)
Call Internal (CALLI)
Clear Invocation Exit (CLRIEXIT)

· 6-1
· 6-3
· 6-11
· 6-15

7-1
7-3
7-6

7-11
7-13
7-15
7-17
7-22
7-25

· : 8-1
· , 8-3

. 8-24

. 9-1
........ 9-3

9-5
9-9

. 9-11

Contents vi

Deactivate Program (DEACTPG)
End (END)
Materialize Activation Attributes (MATACTAT)
Materialize Activation Group Attributes (MATAGPAT)
Modify Automatic Storage Allocation (MODASAl
Return External (RTX)
Set Argument List Length (SETALLEN)
Set Invocation Exit (SETIEXIT)
Store Parameter List Length (STPLLEN)
Transfer Control (XCTL)

Chapter 10. Program Creation Control Instructions ..
No Operation (NOOP)
No Operation and Skip (NOOPS)
Override Program Attributes (OVRPGATR)

Chapter 11. Independent Index Instructions
Create Independent Index (CRTINX)
Destroy Independent Index (DESINX)
Find Independent Index Entry (FNDINXEN)
Insert Independent Index Entry (lNSINXEN)
Materialize Independent Index Attributes (MATINXAD
Modify Independent Index (MODINX)
Remove Independent Index Entry (RMVINXEN)

Chapter 12. Queue Management Instructions
Dequeue (DEQ)
Enqueue {ENQl
Materialize Queue Attributes (MATQAT)
Materialize Queue Messages (MATQMSGl

Chapter 13. Object Lock Management Instructions ..
Lock Object (LOCK)
Lock Space Location (LOCKSL)
Materialize Data Space Record Locks (MATDRECL)
Materialize Process Locks (MATPRLK)
Materialize Process Record Locks {MATPRECLl
Materialize Selected Locks (MATSELLK)
Transfer Object Lock (XFRLOCK)
Unlock Object (UNLOCK)
Unlock Space Location (UNLOCKSL).

Chapter 14. Exception Management Instructions
Materialize Exception Description (MATEXCPD)
Modify Exception Description (MODEXCPD)
Retrieve Exception Data (RETEXCPD)
Return From Exception (RTNEXCP)
Sense Exception Description (SNSEXCPD)
Signal Exception (SIGEXCP)
Test Exception (TESTEXCP)

Chapter 15. Queue Space Management Instructions
Materialize Process Message (MATPRMSG)

9-12
9-14
9-15
9-19
9-23
9-25
9-27
9-29
9-31
9-33

10-1
10-3
10-4
10-5

11-1
11-3

11-10
11-12
11-16
11-19
11-23
11-26

12-1
12-3
12-9

12-12
12-16

13-1
13-3
13-8

13-13
13-17
13-20
13-24
13-27
13-30
13-33

14-1
14-3
14-6
14-9

'14-12
14-15
14-19
14-24

15-1
15-3

Contents vii

.. .J

t

J

Extended Function Instructions

Chapter 16. Context Management Instructions
Materialize Context (MATCTX)

Chapter 17. Authorization Management Instructions
Materialize Authority (MAT AU)
Materialize Authority List (MATAL)
Materialize Authorized Objects (MATAU08J)
Materialize Authorized Users (MATAUU)
Materialize User Profile (MATUP)
Test Authority (TEST AU)
Test Extended Authorities (TESTEAU)

Chapter 18. Process Management Instructions
Materialize Process Activation Groups (MATPRAGP)
Materialize Process Attributes (MATPRATR)
Wait On Time (WAITTIME)

16-1
16-3

17-1
17-3
17-7

17-12
17-20
17-25
17-29
17-34

18-1
18-3
18-5

18-18

Chapter 19. Resource Management Instructions 19-1
Ensure Object (ENSOBJ) .. 19-3
Materialize Access Group Attributes (MATAGAn 19-5
Materialize Resource Management Data (MATRMD) 19-9
Set Access State (SETACSn- .. 19-31

Chapter 20. Dump Space Management Instructions
Materialize Dump Space (MATDMPS)

Chapter 21. Machine Observation Instructions .
Find Relative Invocation Number (FNDRINVN)
Materialize Instruction Attributes (MATI NAT)
Materialize Invocation (MATINV)
Materialize Invocation Attributes (MATINVAn
Materialize Invocation Entry (MATINVE)
Materialize Invocation Stack (MATINVS)
Materialize Pointer (MATPTR)
Materialize Pointer Locations (MATPTRL)
Materialize System Object (MATS08J)

Chapter 22. Machine Interface Support Functions Instructions
Materialize Machine Attributes (MATMATR)
Materialize Machine Data (MATMDATA)

Instruction support interfaces

Chapter 23. Exception Specifications
Machine Interface Exception Data
Exception List

Appendix A. Instruction Summary
Instruction Stream Syntax

Index

20-1
20-3

21-1
21-3
21-8

21-14
21-18
21-28
21-32
21-37
21-46
21-48

22-1
22-4

22-30

23-1
23-2
23-3

A-1
A-3

X-1

Contents viii

About This Manual

The information contained in ASI400 Machine Interface Functional Reference has not been submitted to
any formal IBM test and is distributed on an 'as is' basis without any warranty either expressed or
implied. This manual is written for release 3 of AS/400 Vertical Licensed Integrated Code (VUC) and
may not discuss all the functions available on your AS/400 system.

The ASI400 Machine Interface Functional Reference defines the AS/400 Machine Interface to
instructions and exceptions.

This manual may refer to products that are announced but are not yet available.

Who Should Use This Manual

This manual is intended for knowledgeable system programmers having substantial experience on
AS/400 computer systems.

What You Should Know

The reader should know one more high level languages. assembly languages of other computers. and
understand instruction set architectures. The reader would do well to study capability-based computer
architectures.

The reader should be familiar with AS/400 objects and their intended use.

How This Manual Is Organized
The ASI400 Machine Interface Functional Reference is organized into three parts:

1. Basic Function Instructions

These instructions provide a basic set of functions commonly needed by most programs executing
on the machine. Because of the basic nature of these instructions. they tend to experience less
change in their operation in different machine implementations than the extended function
instructions.

2. Extended Function Instructions

These instructions provide an extended set of functions which can be used to control and monitor
the operation of the machine. Because of the more complicated nature of these instructions, they
are more exposed to changes in their operation in different machine implementations than the
basic function instructions.

3. Instruction Support Interfaces

This part of the document defines those portions of the Machine Interface which provide support for
functions or data used pervasively on all instructions. It discusses the exceptions and program
objects which can be operated on by instructions.

© Copyright IBM Corp. 1991, 1993 ix

Overview

© COPYright I BM Corp. 1991, 1993

I ntrod uction

Chapter 1. Introduction

This chapter contains the following:

• Detailed descriptions of the AS/400 machine interface instruction fields and the formats of these
fields

• A description of the format used in describing each instruction

• A list of the terms in the syntax that define the characteristics of the operands

You should read this chapter in its entirety before attempting to write instructions.

Instruction Operands

Each instruction requires from zero to four operands. Each operand may consist of one or more fields
that contain either a null operand specification, an immediate data value, or a reference to an ODT
object. The size of the operand field depends on the version of the program template. If the version
number is 0, the size of the operand field is 2 bytes. If the version number is 1, the size of the operand
field is 3 bytes.

Null Operands: Certain instructions allow certain operands to be null. In general, a null operand
means that some optional function of the instruction is not to be performed or that a default action is to
be performed by the instruction.

Immediate Operands: The value of this type of operand is encoded in the instruction operand.
Immediate operands may have the following values:

• Signed binary - representing a binary value of negative 4096 to positive 4095.

• Unsigned binary- representing a binary value of 0 to 8191.

• Byte string - representing a single byte value from hex 00 to hex FF.

• Absolute instruction number- representing an instruction number in the range of 1 to 8191.

• Relative instruction number-representing a displacement of an instruction relative to the instruc­
tion in which the operand occurs. This operand value may identify an instruction displacement of
negative 4096 to positive 4095.

OOT Object References: This type of operand contains a reference (possibly qualified) to an
object in the OOT. Operands that are OOT object references may be simple operands or compound
operands.

Simple Operands: The value encoded in the operand refers to a specific object defined in the ODT.
Simple operands consist of a single 2-byte operand entry.

Compound Operands: A compound operand consists of a primary (2-byte) operand and a series of
one to three secondary (2-byte) operands. The primary operand is an OOT reference to a base object
while the secondary operands serve as qualifiers to the base object.

A compound operand may have the following uses:

• Subscript references

An individual element of a data object array, a pointer array, or an instruction definition list may be).
referenced with a subscript compound operand. The operand consists of a primary reference to
the array and a secondary operand to specify the index value to an element of the array.

© Copyright IBM Corp. 1991, 1993 1-1

L

Introduction

• Substring references

A portion of a character scalar data object may be referenced as an instruction operand through a
substring compound operand. The operand consists of a primary operand to reference the base
string object and secondary references to specify the value of an index (position) and a value for
the length of the substring.

The length secondary operand field can specify whether to allow or not allow for a null substring
reference (a length value of zero).

• Explicit base references

An instruction operand may specify an explicit override for the base pointer for a based data object
or a based addressing object. The operand consists of a primary operand reference to the based
object and a secondary operand reference to the pointer on which to base the object for this
operand. The override is in effect for the single operand. The displacement implicit in the ODr
definition of the primary operand and the addressability contained in the explicit pointer are com­
bined to provide an address for the operand.

The explicit base may be combined with either the subscript or the substring compound operands to
provide a based subscript compound operand or a based substring compound operand.

Instruction Format Conventions Used In This Manual

The user of this manual must be aware that not every instruction uses every field described in this
section. Only the information pertaining to the fields that are used by an instruction is provided for
each instruction.

In this manual. each instruction is formatted with the instruction name followed by its base mnemonic.
Following this is the operation code (op code) in hexadecimal and the number of operands with their
general meaning.

Example:

ADD NUMERIC (ADDN)

Op Code (Hex)
1043

Operand 1
Sum

Operand 2
Addend 1

Operand 3
Addend 2

This information is followed by the operands and their syntax. See "Definition of the Operand Syntax"
later in this chapter for a detailed discussion of the syntax of instruction operands.

Example:

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

ILEaccess ---,

A description of the parameters for Integrated Language Environment
access to the instruction is given. See the corresponding ILE
language reference manual for details as to how this information
should be interpreted for a given language.

Chapter 1. Introduction 1-2

Introduction

Description: A detailed description and a functional definition of the instruction is given.

The terms are defined or fields in a template are described, they are highlighted as follows: term defi- 1
nition. When a term is referenced or a value of a field is refered to, it is highlighted as follows: term ..""
reference.

Fields in a template are generally described in the same order as they are defined in the template.
However, some fields are more appropriately described with other related field, so they may not
appear in exact order.

Authorization Required: A list of the object authorization required for each of the operands in the
instruction or for any objects subsequently referenced by the instruction is given.

Lock Enforcement: Describes the specification of the lock states that are to be enforced during exe­
cution of the instruction.

The following states of enforcement can be specified for an instruction:

• Enforcement for materialization

Access to a system object is allowed if no other process is holding a locked exclusive no read
(LENR) lock on the object. In general, this rule applies to instructions that access an object for
materialization and retrieval.

• Enforcement for modification

Access to a system object is allowed if no other process is holding a locked exclusive no read
(LENR) or locked exclusive allow read (LEAR) lock. In general, this rule applies to instructions that
modify or alter the contents of a system object.

• Enforcement of object control

Access is prohibited if another process is holding any lock on the system object. In general, this
rule applies to instructions that destroy or rename a system object.

Limitations: These are the limits that apply to the Functions performed by the instruction.

Resultant Conditions: These are the conditions that can be set at the end of the standard operation in
order to perform a conditional branch or set a conditional indicator.

Exceptions: The "exceptions" sections contain a list of exceptions that can be caused by the
instruction. Exceptions related to specific operands are indicated for each exception by the exception
under the heading operand. An entry under the word, other, indicates that the exception applies to the
instruction but not to a particular operand.

A detailed description of exceptions is in Chapter 23, "Exception Specifications" on page 23-1.

Definition of the operand syntax

Syntax consists of the allowable choices for each instruction operand. The following are the common
terms used in the syntax and the meanings of those terms:

• Numeric: Numeric attribute of binary, packed decimal, zoned-decimal, or floating-point

• Character. character attribute

• Scalar.

Scalar data object that is not an array (see note 1)

Constant scalar object

Chapter 1. Introduction 1-3

L'

Immediate operand (signed or unsigned)

Element of an array of s.calars (see notes 1 and 2)

Substring of a character scalar or a character scalar constant data
object (see notes 1 and 3)

• Data Pointer Defined Scalar:

A scalar defined by a data pointer

Substring of a character scalar defined by a data pointer (see notes 1 and 3)

• Pointer.

Pointer data object that is not an array (see note 1)

Element of an array of pointers (see notes 1 and 2)

Space pointer machine object

• Array: An array of scalars or an array of pointers (see note 1)

Introduction

• Variable Scalar. Same as scalar except constant scalar objects and immediate operand values are
excluded.

• Data Pointer. A pointer data object that is to be used as a data pointer.

If the operand is a source operand, the pointer storage form must contain a data pointer when
the instruction is executed.

If the operand is a receiver operand, a data pointer is constructed by the instruction in the
specified area regardless of its current contents (see note 4).

• Space Pointer. A space pointer data object or a space pointer machine object.

• Space Pointer Data Object: A pointer data object that is to be used as a space pointer.

If the operand is a source operand, the pointer storage form must contain a space pointer
when the instruction is executed.

If the operand is a receiver operand, a space pointer is constructed by the instruction in the
specified area regardless of its current contents (see note 4).

• System Pointer. a pointer data object that is to be used as a system pointer.

If the operand is a source operand, the specified area must contain a system pointer when the
instruction is executed.

If the operand is a receiver operand, a system pointer is constructed by the instruction in the
specified area regardless of its current contents (see note 4).

• Relative Instruction Number. Signed immediate operand.

• Instruction Number. Unsigned immediate operand.

• Instruction Pointer. A pointer data object that is to be used as an instruction pointer.

If the operand is a source operand, the specified area must contain an instruction pointer when
the instruction is executed.

If the operand is a receiver operand, an instruction pointer is constructed by the instruction in
the specified area regardless of its current contents (see notes 4 and 5).

• Instruction Definition List Element: An entry in an instruction definition list that can be used as a
branch target. A compound subscript operand form must always be used (see note 5).

Chapter 1. Introduction 1-4

Introduction

Notes:

1. An instruction op~rand in which the primary operand is a scalar or a pointer may also have an '1
operand form in which an explicit base pointer is specified.,

See "ODT Object References" earlier in this chapter for more information on compound operands.

2. A compound subscript operand may be used to select a specific element from an array of scalars
or from an array of pointers.

See "ODT Object references" earlier in this chapter for more information on compound operands.

3. A compound substring operand may be used to define a substring of a character scalar, or a char­
acter constant scalar object.

A compound substring operand that disallows a null substring reference (a length value of zero)
may, unless precluded by the particular instruction, be specified for any operand syntactically
defined as allowing a character scalar. A compound substring operand that allows a null substring
reference may be specified for an operand syntactically defined as allowing a character scalar only
if the instruction specifies that it is allowed. Whether a compound substring operand does or does
not allow a null substring reference is controlled through the specification of the length secondary
operand field.

See "ODT Object References" earlier in this chapter for more information on compound operands.

4. A compound subscript operand form may be used to select an element from an array of pointers to
act as the operand for an instruction. See "ODT Object References" earlier in this chapter for
more information on compound operands.

5. Compound subscript forms are not allowed on branch target operands that are used for conditional
branching. Selection of elements of instruction pointer arrays and elements of instruction definition
lists may, however, be referenced for branch operands by the branch instruction.

Alternate choices of operand types and the allowable variations within each choice are indicated in the
syntax descriptions as shown in the following example.

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Instruction number, branch point or instruction pointer ..

Operand 1 must be variable scalar. Operands 1 and 2 must be numeric. Operand 3 can be an instruc­
tion number, branch point or instruction pointer.

When a length is specified in the syntax for the operand, character scalar operands must be at least
the size specified. Any excess beyond that required by the instruction is ignored.

Scalar operands that are operated on by instructions requiring 1-byte operands, such as pad values or
indicator operands, can be greater than 1 byte in length; however, only the first byte of the character
string is used. The remaining bytes are ignored by the instruction.

Chapter 1. Introduction 1-5

L

Basic Function Instructions

These instructions provide a basic set of functions commonly needed by most programs executing on
the machine. Because of the basic nature of these instructions. they tend to experience less change in
their operation in different machine implementations than the extended function instructions. There­
fore. it is recommended that. where possible. programs be limited to using just these basic function
instructions to minimize the impacts which can arise in moving to different machine implementations.

© COpYright IBM Corp. 1991. 1993

Computation and Branching Instructions

Chapter 2. Computation and Branching Instructions

This chapter describes all the instructions used for computation and branching. These instructions are
arranged in alphabetic order. For an alphabetic summary of all the instructions, see AppendixA:,
"Instruction Summary." /

Add Logical Character (ADDLC) .. 2-3
Add Numeric (ADDN) .. 2-6
And (AND) 2-10
Branch (B) 2-13
Clear Bit in String (CLRBTS) 2-15
Compare Bytes Left-Adjusted (CMPBLA) 2-17
Compare Bytes Left-Adjusted with Pad (CMPBLAP) 2-19
Compare Bytes Right-Adjusted (CMPBRA) 2-21
Compare Bytes Right-Adjusted with Pad (CMPBRAP) 2-23
Compare Numeric Value (CMPNV) 2-25
Compress Data (CPRDATA) .. 2-28
Compute Array Index (CAl) .. 2-30
Compute Math Function Using One Input Value (CMF1) , 2-32
Compute Math Function Using Two Input Values (CMF2) " 2-41
Concatenate (CAT) 2-46
Convert BSC to Character (CVTBC) 2-48 .~

Convert Character to BSC (CVTCB) 2-52 ~
Convert Character to Hex (CVTCH) 2-55
Convert Character to MRJE (CVTCM) , 2-57
Convert Character to Numeric (CVTCN). 2-62
Convert Character to SNA (CVTCS) .. 2-65
Convert Decimal Form to Floating-Point (CVTDFFP) .. 2-74
Convert External Form to Numeric Value (CVTEFN) 2-76
Convert Floating-Point to Decimal Form (CVTFPDF) 2-79
Convert Hex to Character (CVTHC) 2-82
Convert MRJE to Character (CVTMC) 2-84
Convert Numeric to Character (CVTNC) 2-88
Convert SNA to Character (CVTSC) 2-90
Copy Bits Arithmetic (CPYBTA) 2-100
Copy Bits Logical (CPYBTL) 2-102
Copy Bits with Left Logical Shift (CPYBTLLS) 2-104
Copy Bits with Right Arithmetic Shift (CPYBTRAS) 2-106
Copy Bits with Right Logical Shift (CPYBTRLS) 2-108
Copy Bytes Left-Adjusted (CPYBLA) 2-110
Copy Bytes Left-Adjusted with Pad (CPYBLAP) 2-112
Copy Bytes Overlap Left-Adjusted (CPYBOLA) 2-114
Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP) 2-116
Copy Bytes Repeatedly (CPYBREP) 2-118
Copy Bytes Right-Adjusted (CPYBRA) 2-120
Copy Bytes Right-Adjusted with Pad (CPYBRAP) 2-122
Copy Bytes to Bits Arithmetic (CPYBBTA) 2-124)
Copy Bytes to Bits Logical (CPYBBTL) 2-126
Copy Extended Characters Left-Adjusted With Pad (CPYECLAP) 2-128

© Copyright IBM Corp. 1991, 1993 2-1

Computation and Branching Instructions

Copy Hex Digit Numeric to Numeric (CPYHEXNN)
Copy Hex Digit Numeric to Zone (CPYHEXNZ)
Copy Hex Digit Zone To Numeric (CPYHEXZN)
Copy Hex Digit Zone To Zone (CPYHEXZZ)
Copy Numeric Value (CPYNV)
Decompress Data (DCPDATA)
Divide (DIV)
Divide with Remainder (DIVREM)
Edit (EDIT)
Exchange Bytes (EXCHBY)
Exclusive Or (XOR)
Extended Character Scan (ECSCAN)
Extract Exponent (EXTREXP) .. .
Extract Magnitude (EXTRMAG)
Multiply (MULn
Negate (NEG)
Not (NOn
Or (OR) .. .
Remainder (REM) .. .
Scale (SCALE) .. .
Scan (SCAN)
Scan with Control (SCANWC)
Search (SEARCH) .. .
Set Bit in String (SETBTS)
Set Instruction Pointer (SETIP)
Store and Set Computational Attributes (SSCA)
Subtract Logical Character (SUBLC)
Subtract Numeric (SUBN)
Test and Replace Characters (TSTRPLC)
Test Bit in String (TSTBTS)
Test Bits Under Mask (TSTBUM)
Translate (XLA TE) .. .
Translate with Table (XLATEWT)
Translate with Table and DBCS Skip (XLATWTDS)
Trim Length (TRIML)
Verify (VERIFY) .. .

2-132
2-134
2-136
2-138
2-140
2-143
2-146
2-150
2-154
2-162
2-164
2-167
2-171
2-174
2-177
2-181
2-184
2-187
2-190
2-194
2-198
2-201
2-209
2-212
2-214
2-216
2-220
2-223
2-227
2-229
2-231
2-233
2-235
2-237
2-240
2-242

Chapter 2. Computation and Branching Instructions 2-2

Add Logical Character (ADDLC)

Add LogicaJ Character (ADDLe)

op Code (Hex) Extender Operand 1 Operand 2 Operand 3
ADDLC Sum Addend 1

Operand [4-7] .J
Addend 2

1023

ADDLCI Indicator Sum Addend 1 Addend 2 Indicator targets
1823 options

ADDLCB Branch options Sum Addend 1 Addend 2 Branch targets
1C23

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Operand 4-7:

• Branch Form-Branch point. instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-6]
ADDLCS Sum/Addend 1 Addend 2
1123

ADDLCIS Indicator options Sum/Addend 1 Addend 2 Indicator targets
1923

ADDLCBS Branch options Sum/Addend 1 Addend 2 Branch targets
1023

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3-6:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The unsigned binary value of the addend 1 operand is added to the unsigned binary
value of the addend 2 operand and the result is placed in the sum operand.

Operands 1, 2, and 3 must be the same length; otherwise, the Create Program instruction signals an
invalid operand length (hex 2AOA) exception. The length can be a maximum of 256 bytes.

The addition operation is performed according to the rules of algebra. The result value is then placed
(left-adjusted) in the receiver operand with truncating or padding taking place on the right. The pad
value used in this instruction is a byte value of hex 00.

Chapter 2. Computation and Branching Instructions 2-3

~

Add Logical Character (ADDLC)

If operands overlap but do not share all of the same bytes. results of operations performed on these
operands are not predictable. If overlapped operands share all of the same bytes. the results are pre­
dictable when direct addressing is used. If indirect addressing is used (that is, based operands,
parameters, strings with variable lengths, and arrays with variable subscripts), the results are not
always predictable.

Resultant Conditions: The logical sum of the character scalar operands is:

• zero with no carry out of the leftmost bit position

• not-zero with no carry

• zero with carry

• not-zero with carry.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

lC Machi ne-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

Chapter 2. Computation and Branching Instructions 2-4

Add Logical Character (ADDLe)

Operands
Exception 1 2 3 Other

36 Space management

01 space extension/truncation x

Chapter 2. Computation and Branching Instructions 2-5

Add Numeric (ADDN)

Add Numeric (ADDN)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4-7]
ADDN Sum Addend Augend
1043

ADDNR Sum Addend Augend
1243

ADDNI Indicator Sum Addend Augend Indicator targets
1843 options

ADDNIR Indicator Sum Addend Augend Indicator targets
lA43 options

ADDNB Branch options Sum Addend Augend Branch targets
lC43

ADDNBR Branch options Sum Addend Augend Branch targets
1E43

Operand 1: Numeric variable scalar

Operand 2: Numeric scalar

Operand 3: Numeric scalar

\..... Operand 4-7:

L

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-6]
ADDNS Sum/Addend Augend
1143

ADDNSR Sum/Addend Augend
1343

ADDNIR Indicator options Sum/Addend Augend Indicator targets
1943

ADDNISR Indicator options Sum/Addend Augend Indicator targets
1 B43

ADDNBS Branch options Sum/Addend Augend Branch targets
1043

ADDNBSR Branch options Sum/Addend Augend Branch targets
1F43

Operand 1: Numeric variable scalar

Chapter 2. Computation and Branching Instructions 2-6

Add Numeric (ADDN)

Operand 2: Numeric scalar

Operand 3-6:

• 8ranch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number,

• Indicator Form-Numeric variable scalar or character variable scalar,

Caution: If operands overlap but do not share all of the same bytes, results of operations performed
on these operands are not predictable. If overlapped operands share all of the same bytes, the results
are predictable when direct addressing is used. If indirect addressing is used (that is, based operands,
parameters, strings with variable lengths, and arrays with variable subscripts), the results are not
always predictable.

Description: The Sum is the result of adding the Addend and Augend.

Operands can have floating-point, packed or zoned decimal, signed or unsigned binary type.

Source operands are the Addend and Augend. The receiver operand is the Sum.

If operands are not of the same type, addends are converted according to the following rules:

1. If anyone of the operands has floating point type, addends are converted to floating point type.

2. Otherwise, if anyone of the operands has zoned or packed decimal type, addends are converted to
packed decimal.

3. Otherwise, the binary operands are converted to a like type. Note: unsigned binary(2) scalars are
logically treated as signed binary(4) scalars.

Addend and Augend are added according to their type. Floating point operands are added using
floating point addition. Packed decimal addends are added using packed decimal addition. Unsigned
binary addition is used with unsigned addends. Signed binary addends are added using two's comple­
ment binary addition.

Better performance can be obtained if all operands have the same type. Signed and unsigned binary
additions execute faster than either packed decimal or floating point additions.

Decimal operands used in floating-point operations cannot contain more than 15 total digit positions.

For a decimal operation, alignment of the assumed decimal point takes place by padding with D's on
the right end of the addend with lesser precision.

Floating-point addition uses exponent comparison and significand addition. Alignment of the binary
point is performed, if necessary, by shifting the significand of the value with the smaller exponent to
the right. The exponent is increased by one for each binary digit shifted until the two exponents agree.

The operation uses the lengths and the precision of the source and receiver operands to calculate
accurate results. Operations performed in decimal are limited to 31 decimal digits in the intermediate
result.

The addition operation is performed according to the rules of algebra.

The result of the operation is copied into the sum operand. If this operand is not the same type as that
used in performing the operation, the resultant value is converted to its type. If necessary, the
resultant value is adjusted to the length of the sum, aligned at the assumed decimal point of the sum j
operand, or both before being copied. If nonzero digits are truncated on the left end of the resultant
value, a size (hex OeOA) exception is signaled.

Chapter 2. Computation and Branching Instructions 2-7

~

Add Numeric (ADDN)

When the target of the instruction is signed or unsigned binary size, exceptions can be suppressed.

For the optional round form of the instruction, specification of a floating-point receiver operand is
invalid.

For fixed-point operations, if nonzero digits are truncated off the left end of the resultant value, a size
(hex OeOA) exception is signaled.

For floating-point operations involving a fixed-point receiver field, if nonzero digits would be truncated
off the left end of the resultant value, an invalid floating-point conversion (hex oeoC) exception is sig­
naled.

For a floating-point sum, if the exponent of the resultant value is either too large or too small to be
represented in the sum field, the floating-point overflow (hex OeOS) and floating-paint underflow (hex
OeO?) exceptions are signaled, respectively.

If a decimal to binary conversion causes a size (hex OeOA) exception to be signaled, the binary value
contains the correct truncated result only if the decimal value contains 15 or fewer significant nonfrac­
tional digits.

Resultant Conditions

• Positive - The algebraic value of the numeric scalar sum operand is positive.

• Negative - The algebraic value of the numeric scalar sum operand is negative.

• Zero - The algebraic value of the numeric scalar sum operand is zero .

• Unordered - The value assigned a floating-point sum operand is NaN .

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X X

03 Decimal point alignment X X

06 Floating-point overflow X

07 Floating-point underflow X

09 Floating-point invalid operand X X X

OA Size X

OC Invalid floating-point conversion X

00 Floating-point inexact result X

10 Damage encountered

04 System object damage state X X X X

Chapter 2. Computation and Branching Instructions 2-8

Add Numeric (ADDN)

Operands
Exception 1 2 3 Other

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

J 36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-9

~

And (AND)

And (AND)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4-5J
AND Receiver Source 1 Source 2
1093

ANDI Indicator Receiver Source 1 Source 2 Indicator targets
1893 options

ANDB Branch options Receiver Source 1 Source 2 Branch targets
1C93

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Operand 4-5:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-4]
ANDS Receiver/Source 1 Source 2
1193

ANDIS Indicator options Receiver/Source 1 Source 2 Indicator targets
1993

ANDBS Branch options Receiver/Source 1 Source 2 Branch targets
1 D93

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3-4:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The Boolean AND operation is performed on the string values in the source operands.
The resulting string is placed in the receiver operand. The operands may be character or numeric
scalars. They are both interpreted as bit strings. Substringing is supported for both character and
numeric operands.

The length of the operation is equal to the length of the longer of the two source operands. The
shorter of the two operands is logically padded on the right with hex 00 values. This assigns hex 00
values to the results for those bytes that correspond to the excess bytes of the longer operand.

The bit values of the result are determined as follows:

Chapter 2. Computation and Branching Instructions 2-10

And (AND)

Source 1 Bit Source 2 Bit Result Bit
0 0 0

0 0

0 0

The result value is then placed (left-adjusted) in the receiver operand with truncating or padding taking
place on the right. The pad value used in this instruction is a byte value of hex 00.

If operands overlap but do not share all of the same bytes, results of operations performed on these
operands are not predictable. If overlapped operands share all of the same bytes, the results are pre­
dictable when direct addressing is used. If indirect addressing is used (that is, based operands,
parameters, strings with variable lengths, and arrays with variable subscripts), the results are not
always predictable.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1, 2, and 3. The effect of specifying a null substring reference for either or both
of the source operands is that the result is all zero and instruction's resultant condition is zero. When
a null substring reference is specified for the receiver, a result is not set and the instruction's resultant
condition is zero regardless of the values of the source operands.

When the receiver operand is a numeric variable scalar, it is possible that the result produced will not
be a valid value for the numeric type. This can occur due to padding with hex 00, due to truncation, or
due to the resultant bit string produced by the instruction. The instruction completes normally and
signals no exceptions for these conditions.

Resultant Conditions

• Zero - The bit value for the bits of the scalar receiver operand is either all zero or a null substring
reference is specified for the receiver.

• Not zero - The bit value for the bits of the scalar receiver operand is not all zero.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 ArgumenUparameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

Chapter 2. Computation and Branching Instructions 2-11

J

•
J

And (AND)

Operands
Exception 1 2 3 Other

~
02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-12

Branch (B)

Op Code (Hex)
1011

Operand 1
Branch target

Branch (B)

Operand 1: Instruction number, relative instruction number, branch point, instruction pointer, or
instruction definition list element.

Description: Control is unconditionally transferred to the instruction indicated in the branch target
operand. The instruction number indicated by the branch target operand must be within the instruction
stream containing the branch instruction.

The branch target may be an element of an array of instruction pointers or an element of an instruction
definition list. The specific element can be identified by using a compound subscript operand.

Exceptions

Operand
Exception 1 Other

06 Addressing

01 Spacing addressing violation X

02 Boundary alignment violation X

03 Range X

08 ArgumenUparameter

01 Parameter reference violation X

10 Damage encountered

04 System object damage state X X

44 Partial system object damage X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X

02 Object destroyed X

03 Object suspended X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X

02 Pointer type invalid X

2C Program execution

04 Invalid branch target X

2E Resource control limit

Chapter 2. Computation and Branching Instructions 2-13

Branch (B)

Operand
Exception 1 Other

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

L'

Chapter 2. Computation and Branching Instructions 2-14

Clear Bit in String (CLRBTS)

Clear Bit in String (CLRBTS)

Op Code (Hex)
102E

Operand 1
Receiver

Operand 2
Offset

Operand 1: Character variable scalar (fixed length) or numeric variable scalar.

Operand 2: Binary scalar.

Description: Clears the bit of the receiver operand as indicated by the bit offset operand.

The selected bit from the receiver operand is set to a value of binary O.

The receiver operand can be character or numeric. The leftmost bytes of the receiver operand are
used in the operation. The receiver operand is interpreted as a bit string with the bits numbered left to
right from 0 to the total number of bits in the string minus 1.

The receiver cannot be a variable substring.

The offset operand indicates which bit of the receiver operand is to be cleared, with a offset of zero
indicating the leftmost bit of the leftmost byte of the receiver operand.

If a offset value less than zero or beyond the length of the string is specified, a scalar value invalid (hex
3203) exception is signaled.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment violation X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

Chapter 2. Computation and Branching Instructions 2-15

J

..)

Clear Bit in String (CLRBTS)

Operands

Exception 1 2 Other

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

03 Scalar value invalid X

36 Space management

01 space extension/truncation X

\..,..

Chapter 2. Computation and Branching Instructions 2-16

Compare Bytes Left-Adjusted (CMPBLA)

Op Code (Hex) Extender Operand 1
CMPBLAB Branch options Compare
1CC2 operand 1

CMPBLAI Indicator options Compare
18C2 operand 1

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3 [4, 5]:

Compare Bytes Left-Adjusted (CMPBLA)

Operand 2
Compare
operand 2

Compare
operand 2

Operand 3 [4, 5J
Branch targets

Indicator targets

• Branch Form-Instruction number, relative instruction number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: This instruction compares the logical string values of two left-adjusted compare oper­
ands. The logical string value of the first compare operand is compared with the logical string value of
the second compare operand (no padding done). Based on the comparison, the resulting condition is
used with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the br.anch target operands
(branch form).

• Assign a value to each of the indicator operands (indicator form).

The compare operands can be either character or numeric. Any numeric operands are interpreted as
logical character strings.

The compare operands are compared byte by byte, from left to right with no numeric conversions per­
formed. The length of the operation is equal to the length of the shorter of the two compare operands.
The comparison begins with the leftmost byte of each of the compare operands and proceeds until all
bytes of the shorter compare operand have been compared or until the first unequal pair of bytes is
encountered.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for either or both
compare operands is that the instruction's resultant condition is equal.

Resultant Conditions: The scalar first compare operand's string value is one of the following as com­
pared to the second compare operand.

• higher

• lower

• equal

Exceptions

Exception

06 Addressi ng

01 Spacing addressing violation

02 Boundary alignment

Operands
1 2

x
X

X

X

3 [4, 5]

X

X

Other

Chapter 2. Computation and Branching Instructions 2-17

Compare Bytes Left-Adjusted (CMPBLA)

Operands
Exception 1 2 3 [4, 5J Other

~
03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

04 Branch target invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

L

Chapter 2. Computation and Branching Instructions 2-18

Compare Bytes Left-Adjusted with Pad (CMPBLAP)

Compare Bytes Left-Adjusted with Pad (CMPBLAP)

Op Code (Hex) Extender Operand 1
CMPBLAPB Branch options Compare
1CC3 operand 1

CMPBLAPI Indicator Compare
18C3 options operand 1

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3: Numeric scalar or character scalar.

Operand 4 [5. 6]:

Operand 2
Compare
operand 2

Compare
operand 2

Operand 3
Pad

Pad

Operand 4 [5. 6]
Branch targets

Indicator targets

• Branch Form-Instruction number, relative instruction number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: This instruction compares the logical string values of two left-adjusted compare operands
(padded if needed). The logical string value of the first compare operand is compared with the logical
string value of the second compare operand. Based on the comparison, the resulting condition is used
with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands (indicator form).

The compare operands can be either character or numeric. Any numeric operands are interpreted as
logical character strings.

The compare operands are compared byte by byte, from left to right with no numeric conversions
being performed.

The length of the operation is equal to the length of the longer of the two compare operands. The
shorter of the two compare operands is logically padded on the right with the 1-byte value indicated in
the pad operand. If the pad operand is more than 1 byte in length, only its leftmost byte is used. The
comparison begins with the leftmost byte of each of the compare operands and proceeds until all the
bytes of the longer of the two compare operands have been compared or until the first unequal pair of
bytes is encountered. All excess bytes in the longer of the two compare operands are compared to
the pad value.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for one of the
compare operands is that the other compare operand is compared with an equal length string of pad
character values. When a null substring reference is specified for both compare operands, the
resultant condition is equal.

Substring operand references that allow for a null substring reference (a length value of zero) may not
be specified for operand 3.

Chapter 2. Computation and Branching Instructions 2-19

Compare Bytes Left-Adjusted with Pad (CMPBLAP)

Resultant Conditions: The scalar first compare operand's string value is one of the following as com-
pared to the second compare operand.

~ · higher

• lower

· equal

Exceptions

Operands
Exception 1 2 3 4 [5, 6] Other

06 Addressing

01 Spacing addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/parameter

01 Parameter reference violation X X X X

10 Damage encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2C Program execution

04 Branch target invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

L

Chapter 2. Computation and Branching Instructions 2-20

Compare Bytes Right-Adjusted (CMPBRA)

Op Code (Hex)
CMPBRAB
lCCS

CMPBRAI
laCS

Extender
Branch options

Indicator options

Operand 1
Compare
operand 1

Compare
operand 1

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3 [4,5]:

Compare Bytes Right-Adjusted (CMPBRA)

Operand 2
Compare
operand 2

Compare
operand 2

Operand 3 [4, S]
Branch targets

Indicator targets

• Branch Form-Instruction number, relative instruction number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: This instruction compares the logical string values of two right-adjusted compare oper­
ands. The logical string value of the first compare operand is compared with the logical string value of
the second compare operand (no padding done). Based on the comparison, the resulting condition is
used with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands (indicator form).

The compare operands can be either string or numeric. Any numeric operands are interpreted as
logical character strings.

The compare operands are compared byte by byte, from left to right with no numeric conversions per­
formed. The length of the operation is equal to the length of the shorter of the two compare operands.
The comparison begins with the leftmost byte of each of the compare operands and proceeds until all
bytes of the shorter compare operand have been compared or until the first unequal pair of bytes is
encountered.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for either or both
compare operands is that the instruction's resultant condition is equal.

Resultant Conditions: The scalar first compare operand's string value is one of the following as com­
pared to the second compare operand.

• higher

• lower

• equal

Exceptions

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

Operands
1 2

x
X

X

X

3 [4,5]

X

X

Other

Chapter 2. Computation and Branching Instructions 2-21

Compare Bytes Right-Adjusted (CMPBRA)

Operands
Exception 1 2 3 [4, 5] Other

~
03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

L 01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

04 Branch target invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-22

Compare Bytes Right-Adjusted with Pad (CMPBRAP)

Compare Bytes Right-Adjusted with Pad (CMPBRAP)

op Code (Hex) Extender Operand 1
CMPBRAPB Branch options Compare
lCC7 operand 1

CMPBRAPI Indicator Compare
l8C7 options operand 1

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3: Numeric scalar or character scalar.

Operand 4 [5, 6]:

Operand 2
Compare
operand 2

Compare
operand 2

Operand 3
Pad

Pad

Operand 4 [5. 6J
Branch targets

Indicator targets

• Branch Form-Instruction number, relative instruction number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: This instruction compares the logical string values of the right-adjusted compare oper­
ands (padded if needed). The logical string value of the first compare operand is compared with the
logical string value of the second compare operand. Based on the comparison, the resulting condition
is used with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands (indicator form).

The compare operands can be either character or numeric. Any numeric operands are interpreted as
logical character strings.

The compare operands are compared byte by byte, from left to right with no numeric conversions per­
formed.

The length of the operation is equal to the length of the longer of the two compare operands. The
shorter of the two compare operands is logically padded on the left with the 1-byte value indicated in
the pad operand. If the pad operand is more than 1 byte in length, only its leftmost byte is used. The
comparison begins with the leftmost byte of the longer of the compare operands. Any excess bytes
(on the left) in the longer compare operand are compared with the pad value. All other bytes are
compared with the corresponding bytes in the other compare operand. The operation proceeds until
all bytes in the longer operand are compared or until the first unequal pair of bytes is encountered.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for one of the
compare operands is that the other compare operand is compared with an equal length string of pad
character values. When a null substring reference is specified for both compare operands. the
resultant condition is equal.

Substring operand references that allow for a null substring reference (a length value of zero) may not
be specified for operand 3.

Chapter 2. Computation and Branching Instructions 2-23

Compare Bytes Right-Adjusted with Pad (CMPBRAP)

Resultant Conditions: The scalar first compare operand's string value is one of the following as com-

pared to the second compare operand.

· higher

· lower

• equal

Exceptions

Operands
Exception 1 2 3 4 [5, Other

6]

06 Addressing

01 Spacing addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 ArgumenUparameter

01 Parameter reference violation X X X X

10 Damage encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

lC Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2C Program execution

04 Branch target invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

L 01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-24

Compare Numeric Value (CMPNV)

Op Code (Hex) Extender Operand 1
CMPNVB Branch options Compare
1C46 operand 1

CMPNVI Indicator options Compare
1846 operand 1

Operand 1: Numeric scalar.

Operand 2: Numeric scalar.

Operand 3 [4-6]:

Compare Numeric Value (CMPNV)

Operand 2
Compare
operand 2

Compare
operand 2

Operand 3 [4-6J
Branch targets

Indicator targets

• Branch Form-Instruction number, relative instruction number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The numeric value of the first compare operand is compared with the signed or unsigned
numeric value of the second compare operand. Based on the comparison, the resulting condition is
used with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands (indicator form).

For a decimal operation, alignment of the assumed decimal point takes place by padding with a's on
the right end of the compare operand with lesser precision. :.;

Decimal operands used in floating-point operations cannot contain more than 15 total digit positions.

When both operands are signed numeric or both are unsigned numeric, the length of the operation is
equal to the length of the longer of the two compare operands.

When one operand is signed numeric and the other operand unsigned numeric, the unsigned operand
is converted to a signed value with more precision than its current size. The length of the operation is
equal to the length of the longer of the two compare operands. A negative signed numeric value will
always be less than a positive unsigned value.

Floating-point comparisons use exponent comparison and significand comparison. For a denormalized
floating-point number, the comparison is performed as if the denormalized number had first been nor­
malized.

For floating-point, two values compare unordered when at least one comparand is NaN. Every NaN
compares unordered with everything including another NaN value.

Floating-point comparisons ignore the sign of zero. Positive zero always compares equal with nega­
tive zero.

A floating-point invalid operand (hex OC09) exception is signaled when two floating-point values
compare unordered and no branch or indicator option exists for any of the unordered, negation of
unordered equal, or negation of equal resultant conditions.

When a comparison is made between a floating-point compare operand and a fixed-point decimal ..",)
compare operand that contains fractional digit positions, a floating-point inexact result (hex OCOD)
exception may be signaled because of the implicit conversion from decimal to floating-point.

Chapter 2. Computation and Branching Instructions 2-25

Compare Numeric Value (CMPNV)

Resultant Conditions

• High-The first compare operand has a higher numeric value than the second compare operand.

· Low-The first compare operand has a lower numeric value than the second compare operand.

• Equal-The first compare operand has a equal numeric value than the second compare operand.

· Unordered-The first compare operand is unordered compared to the second compare operand.

Exceptions

Operands
Exception 1 2 3 [4-6] Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X X

03 Decimal point alignment X X

09 Floating-point invalid operand X X

\..r 00 Floating-point inexact result X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

L 04 Branch target invalid X

2E Resource control limit

Chapter 2. Computation and Branching Instructions 2-26

Exception
01 user profile storage limit exceeded

36 Space management

01 space extension/truncation

Compare Numeric Value (CMPNV)

Operands
1 2 3 [4-5J Other

X

X

Chapter 2. Computation and Branching Instructions 2-27

Compress Data (CPRDATA)

op Code (Hex)
1041

Operand 1
Compress Data
template

Operand 1: Space pointer.

Compress Data (CPRDATA)

ILEaccess ---,

CPRDATA (
compress_data_template space pointer

Description: The instruction compresses user data of a specified length. Operand 1 identifies a tem­
plate which identifies the data to be compressed. The template also identifies the result space to
receive the compressed data.

The Compress Data template must be aligned on a 16-byte boundary. The format is as follows:

• Source length

• Result area length

• Actual result length

• Compression algorithm

1 = Simple TERSE algorithm
2 = IBM LZ1 algorithm

• Reserved (binary 0)

• Source space pointer

• Result space pointer

8in(4)

8in(4)

8in(4)*

8in(2)

Char(18)

Space pOinter

Space pointer

Note: The input value associated with template entries annotated with an asterisk (*) are ignored by
the instruction; these fields are updated by the instruction to return information about instruction
execution.

The data at the location specified by the source space pointer for the length specified by the source
length is compressed and stored at the location specified by the result space pointer. The actual result
length is set to the number of bytes in the compressed result. The source data is not modified.

The value of both the source length field and result area length field must be greater than zero. If the
compressed result is longer than the result area (as specified by the result area length), the com­
pression is stopped and only result area length bytes are stored.

The compression algorithm field specifies the algorithm used to compress the data. The IBM LZ1 algo­
rithm tends to produce better compression on shorter input strings than the simple TERSE algorithm.
The algorithm choice is stored in the compressed output data so the Decompress Data instruction will
automatically select the correct decompression algorithm.

Only scalar (non-pointer) data is compressed, so any pointers in the data to be compressed are
destroyed in the output of the Decompress Data instruction.

Chapter 2. Computation and Branching Instructions 2-28

Compress Data (CPRDATA)

Authorization Required
. None

~
Lock Enforcement
. None

Exceptions

Operands
Exception 1 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/Parameter

01 Parameter reference violation X

10 Damage encountered

44 partial system object damage X X

1C Machi ne-dependent exception

03 machine storage limit exceeded X

20 Machine support ..,)
02 machine check X

03 function check X

22 Object access

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X X

38 Template specification

01 template value invalid X

44 Domain

01 object domain error X j

Chapter 2. Computation and Branching Instructions 2-29

Compute Array Index (CAl)

Compute Array Index (CAl)

op Code (Hex)
1044

Operand 1
Array index

Operand 1: Binary(2) variable scalar.

Operand 2: Binary(2) scalar.

Operand 3: Binary(2) scalar.

Operand 2
Subscript A

Operand 3
Subscript B

Operand 4: Binary(2) constant scalar object or immediate operand.

Operand 4
Dimension

Description: This instruction provides the ability to reduce multidimensional array subscript values
into a single index value which can then be used in referencing the single-dimensional arrays of the
system. This index value is computed by performing the following arithmetic operation on the indi­
cated operands.

Array Index = Subscript A + ((Subscript B-1) X Dimension)

The numeric value of the subscript B operand is decreased by 1 and multiplied by the numeric value of
the dimension operand. The result of this multiplication is added to the subscript A operand and the
sum is placed in the array index operand.

All the operands must be binary with any implicit conversions occurring according to the rules of arith­
metic operations. The usual rules of algebra are observed concerning the subtraction. addition. and
multiplication of operands.

This instruction provides for mapping multidimensional arrays to single-dimensional arrays. The ele­
ments of an array with the dimensions (d1, d2. d3, ...• dn) can be defined as a single-dimensional array
with d1 *d2*d3* ... "dn elements. To reference a specific element of the multidimensional array with sub­
scripts (s1,s2,s3, ... sn). it is necessary to convert the multiple subscripts to a single subscript for use in
the single-dimensional AS/400 array. This single subscript can be computed using the following:

s1+((s2-1)*d1)+(s3-1)*d1*d2)+ ..• +((sn-1)*d*d2*d3* ... *dm)

where m = n-1

The CAl instruction is used to form a single index value from two subscript values. To reduce N sub­
script values into a single index value, N-1 uses of this instruction are necessary.

Assume that S1, S2. and S3 are three subscript values and that 01 is the size of one dimension. 02 is
the size of the second dimension, and the 0102 is the product of 01 and 02. The following two uses of
this instruction reduce the three subscripts to a single subscript.

CAl INDEX, S1, S2, 01 Calculates s1+(s2-1)*d1
CAl INDEX, INDEX, S3, D1D2 Calculates s1+(s2-1)*d1+(s3-1)*d2*d1

Exceptions

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

Operands
1 2 3 4 Other

X X X X

X X X X

X X X X

X X X X

Chapter 2. Computation and Branching Instructions 2-30

Compute Array Index (CAl)

Operands
Exception 1 2 3 4 Other

08 Argument/parameter ~
01 Parameter reference violation X X X X

OC Computation

OA size X

10 Damage encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1C Machi ne-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X· X X

08 object compressed X

24 Pointer specification
~

~ 01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-31

~

Compute Math Function Using One Input Value (CMF1)

Compute Math Function Using One Input Value (CMF1)

Op Code (Hex) Extender Operand 1
CMF1 Receiver
100B

CMF1B Branch options Receiver
lCOB

CMF11 Indicator Receiver
1808 options

Operand 1: Numeric variable scalar.

Operand 2: Character(2) scalar (fixed length).

Operand 3: Numeric scalar.

Operand 4-5:

Operand 2
Controls

Controls

Controls

Operand 3
Source

Source

Source

Operand [4-5]

Branch targets

Indicator targets

• Branch Form-Branch point, instruction pOinter, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The mathematical function, indicated by the controls operand, is performed on the source
operand value and the result is placed in the receiver operand.

The calculation is always done in floating-point.

The result of the operation is copied into the receiver operand.

The controls operand must be a character scalar that specifies which mathematical function is to be
performed. It must be at least 2 bytes in length and has the following format:

• Controls operand

Hex 0001 = Sine
Hex 0002 = Arc sine
Hex 0003 = Cosine
Hex 0004 = Arc cosine
Hex 0005 = Tangent
Hex 0006 = Arc tangent
Hex 0007 = Cotangent
Hex 0010 = Exponential function
Hex 0011 = Logarithm based e (natural logarithm)
Hex 0012 = Sine hyperbolic
Hex 0013 = Cosine hyperbolic
Hex 0014 = Tangent hyperbolic
Hex 0015 = Arc tangent hyperbolic
Hex 0020 = Square root
All other values are reserved

The controls operand mathematical functions are as follows:

Char(2)

L · Hex 0001-Sine

The sine of the numeric value of the source operand, whose value is considered to be in radians,
is computed and placed in the receiver operand.

Chapter 2. Computation and BranChing Instructions 2-32

The result is in the range:

-1 ~ SIN(x) ~ 1

• Hex 0002-Arc sine

Compute Math Function Using One Input Value (CMF1)

The arc sine of the numeric value of the source operand is computed and the result (in radians) is
placed in the receiver operand.

The result is in the range:

-pi/2 ~ ASIN(x) ~ +pi/2

• Hex 0003-Cosine

The cosine of the numeric value of the source operand, whose value is considered to be in
radians, is computed and placed in the receiver operand.

The result is in the range:

-1 S COS (x) S 1

• Hex 0004-Arc cosine

The arc cosine of the numeric value of the source operand is computed and the result (in radians)
is placed in the receiver operand.

The result is in the range:

S ~ ACOS(x) S pi

• Hex OOOS-Tangent

The tangent of the source operand. whose value is considered to be in radians. is computed and
the result is placed in the receiver operand.

The result is in the range:

-infinity ~ TAN(x) ~ +infinity

• Hex OOOS-Arc tangent

The arc tangent of the source operand is computed and the result (in radians) is placed in the
receiver operand.

The result is in the range:

-pi/2 ~ ATAN(x) ~ pi/2

• Hex 0007-Cotangent

The cotangent of the source operand. whose value is considered to be in radians, is computed and
the result is placed in the receiver operand.

The result is in the range:

-infinity ~ COT (x) ~ +infinity

• Hex 0010-Exponential function

The computation e power (source operand) is performed and the result is placed in the receiver
operand.

The result is in the range:

S ~ EXP(x) ~ +infinity

• Hex 0011-Logarithm based e (natural logarithm)

The natural logarithm of the source operand is computed and the result is placed in the receiver ',\.
operand. .."",

The result is in the range:

-infinity S LN(x) S +infinity

Chapter 2. Computation and Branching Instructions 2-33

Compute Math Function Using One Input Value (CMF1)

• Hex 0012-Sine hyperbolic

The sine hyperbolic of the numeric value of the source operand is computed and the result (in
radians) is placed in the receiver operand.

The result is in the range:

-infinity ~ SINH(x) S +infinity

• Hex 0013-Cosine hyperbolic

The cosine hyperbolic of the numeric value of the source operand is computed and the result (in
radians) is placed in the receiver operand.

The result is in the range:

+1 S COSH(x) S +infinity

• Hex 0014-Tangent hyperbolic

The tangent hyperbolic of the numeric value of the source operand is computed and the result (in
radians) is placed in the receiver operand.

The result is in the range:

-1 S TANH(x) S +1

• Hex 0015-Arc tangent hyperbolic

The inverse of the tangent hyperbolic of the numeric value of the source operand is computed and
the result (in radians) is placed in the receiver operand.

The result is in the range:

-infinity S ATANH(x) S +infinity

• Hex 0020-Square root

The square root of the numeric value of the source operand is computed and placed in the receiver
operand.

The result is in the range:

e S SQRT(x) S +infinity

The following chart shows some special cases for certain arguments (X) of the different mathematical
functions.

Chapter 2. Computation and Branching Instructions 2-34

Compute Math Function Using One Input Value (CMF1)

X Masked· Unmasked Maximum Minimum
Function NaN NaN + infinity -infinity +0 ·0 Value Value

Sine 9 A(e) A(f) A(f) +0 -0 A(1,f) A(1,f)

Arc sine 9 A(e) A(f) A(f) +0 -0 A(6,f) A(6,f)

Cosine 9 A(e) A(f) A(f) +1 +1 A(1,f) A(1,f)

Arc cosine 9 A(e) A(f) A(f) +pi/2 +pi/2 A(6,f) A(6,f)

Tangent 9 A(e) A(f) A(f) +0 -0 A(1 ,f) A(1,f)

Arc tangent 9 A(e) +pil2 -pi/2 +0 -0 - -
Cotangent 9 A(e) A(f) A(f) +inf -inf A(1,f) A(1,f)

Exponent 9 A(e) +inf +0 +1 +1 C(4,a) D(5,b)

Logarithm 9 A(e) +inf A(f) -inf -inf - -
Sine g A(e) +inf -inf +0 -0 - -
hyperbolic

Cosine 9 A(e) +inf +inf +1 +1 - -
hyperbolic

Tangent 9 A(e) +1 -1 +0 -0 - -
hyperbolic

Arc tangent g A(e) A(f) A(f) +0 -0 A(6,f) A(6,f)
hyperbolic

Square root 9 A(e) +inf A(f) +0 -0 - -
Figure 2-1. Special cases for arguments of CMFI mathematical functions.

Capital letters in the chart indicate the exceptions, small letters indicate the returned results, and
Arabic numerals indicate the limits of the arguments (X) as defined in the following lists:

A = Floating-point invalid operand (hex OC09) exception (no result stored if unmasked; if masked,
occurrence bit is set)

Other

8(3)

-
8(3)

-
8(3)

-
8(3)

-
A(2,f)

-

-

-

-

A(2,f)

B = Floating-point inexact result (hex OCOD) exception (result is stored whether or not exception is
masked)

C = Floating-point overflow (hex OC06) exception (no result is stored if unmasked; if masked, occur­
rence bit is set)

D = Floating-point underflow (hex OC07) exception (no result is stored if unmasked; occurrence bit is
always set)

a = Result follows the rules that depend on round mode

b = Result is +0 or a denormalized value

c = Result is + infinity

d = Result is -infinity

e = Result is the masked form of the input NaN

f = Result is the system default masked NaN

g = Resun is the inp~NaN

inf = Result is infinity

Chapter 2. Computation and Branching Instructions 2-35

r
~
~

-;;

'-..

Compute Math Function Using One Input Value (CMF1)

1 = I pi· 2--50 I =Hex 432921FB54442D18

2 = Argument is in the range: -inf < x < -0

3= I pi ·2--26 I = Hex 41A921FB54442D18

4= 1 n(2--1023) Hex 40862E42FEFA39EF

5= 1 n(2---1021.4555) = Hex C086200000000000

6= Argument is in the range: -1 S x S +1

The following chart provides accuracy data for the mathematical functions that can be invoked by this
instruction.

Chapter 2. Computation and Branching Instructions 2-36

Compute Math Function Using One Input Value (CMF1)

Accuracy Data

Sample Selection Relative Error (e) Absolute Error (E) J
Function
Name A Range of x D MAX(e) SD(e) MAX(E) SD(E)

Arc cosine 9 0<= x < = 3.14 U 8.26 " 10"·-14 2.11 "10··-15

Arc sine 10 -1.57 <= x <= 1.57 U 1.02 " 10··-13 2.66 " 10·*-15

Arc tangent 1 -pi/2 < x < pi/2 1 3.33 • 10**-16 9.57" 10**-17

Arc tangent 14 -3 < = x < = 3 U 1.06 * 10""-14 1.79 * 10"*-15
hyperbolic

Cosine (See Sine below)

Cosine (See Sine Hyperbolic)
hyperbolic below)

Cotangent 11 -10 < = x < = 100 U 4.83 * 10*"-16 1.48·10**-16
.000001 < = x < = .001 U 4.36 * 10**-16 1.49 * 10**-16
4000 < = x < = 400000(U 5.72 * 10**-16 1.46 * 10**-16

Exponential 2 -100 < = x < = 300 U 5.70 * 10"*-14 1.13·10**-14

Natural 3 0.5 < = x < = 1.5 U 2.77 * 10**-16 8.01 * 10·*-17

logarithm 4 -100 < = x < = 700 E 2.17 * 10**-16 7.37 * 10**·17

Sine cosine -10 < = x < = 100 U 2.22 * 10**-16 1.31 * 10**-16

5 .000001 < = x < = .001 U 2.22 • 10·"-16 1.56 * 10""-16 ..J --4000 < = x < = 400000(U 2.22 " 10"*-16 1.28 * 10""-16

-10 < = x < = 100 U 3.33 * 10**-16 8.39 * 10**-17

6 .000001 < = x < = .001 U 14.33 * 10**-19 1.28 * 10**-19

4000 < = x < = 4000oo(U 3.33 " 10""-16 8.17 * 10""-17

Sine/cosine 12 -100 < = x < = 300 U 6.31 * 10"*-16 1.97 * 10·*-16
hyperbolic

Square root 7 -100 < = x < = 700 E 4.13 * 10**-16 1.27" 10·*-16

Tangent -10 < = x < = 100 U 4.59 * 10·*-16 1.54·10·"-16

8 .000001 < = x < = .001 U 4.42 " 10··-16 1.44 * 10**-16 3.25 * 10**-19 8.06 • 10**-20

~OO < = x < = 400000(U 4.77 * 10**-16 1.43 • 10*·-16

Tangent 13 -100 < = x < = 300 U 8.35 • 10**-16 3.87 * 10**·17 2.22 " 10"··16 3.17" 10·"-17
hyperbolic

Figure 2-2 (Part 1 of 2). Accuracy data for eMF1 mathematical functions.

Chapter 2. Computation and Branching Instructions 2-37

Compute Math Function Using One Input Value (CMF1)

Algorithm Notes:

1. f(x) = x. and g(x) = ATAN(TAN(x)).
2. f(x) = eUx, and g(x) = eU(1n(e··x)).
3. f(x) = 1n(x), and g(x) = 1n(e**(1n(x»)).
4. f(x) = x, and g(x) = 1 n(eUx).
5. Sum of squares algorithm. f(x) = 1, and g(x) = SIN(x)t*2 + (COS(x))**2.
6. Double angle algorithm. f(x) - SIN(2x), and g(x) = 2*(SIN(x)*COS(x».
7. f(x) = e(**x, and g(x) = (SQR(eUxW*2.
8. f(x) = TAN(x), and g(x) = SIN(x) / COS(x).
9. f(x) = x, and g(x) = ACOS(COS(x».

10. f(x) = x, and g(x) = ASIN(SIN(x)).
11. f(x) = COT(x), and g(x) = COS (x) / SIN(x).
12. f(x) = SINH(2x), and g(x) = 2*(SINH(x)*COSH(x)).
13. f(x) = TANH(x), and g(x) = SINH(x) / COSH(x).
14. f(x) = x, and g(x) = ATANH(TANH(x)).

Distribution Note: The sample input arguments were tangents of numbers, x, uniformly distributed
between -pi/2 and + pi!2.

Figure 2-2 (Part 2 of 2). Accuracy data for eMF1 mathematical functions.

The vertical columns in the accuracy data chart have the following meanings:

• Function Name: This column identifies the principal mathematical functions evaluated with entries
arranged in alphabetical order by function name.

• Sample Selection: This column identifies the selection of samples taken for a particular math func-
tion through the following subcolumns:

A: identifies the algorithm used against the argument, x, to gather the accuracy samples. The
numbers in this column refer to notes describing the functions, f(x) and g(x), which were calcu­
lated to test for the anticipated relation where f(x) should equal g(x). An accuracy sample then,
is an evaluation of the degree to which this relation held true. The algorithm used to sample
the arctangent function, for example, defines g(x) to first calculate the tangent of x to provide
an appropriate distribution of input arguments for the arctangent function. Since f(x) is defined
simply as the value of x, the relation to be evaluated is then x=ARCTAN(TAN(x)). This type of
algorithm, where a function and its inverse are used in tandem, is the usual type employed to
provide the appropriate comparison values for the evaluation.

"Range of x": gives the range of x used to obtain the accuracy samples. The test values for x
are uniformly distributed over this range. It should be noted that x is not always the direct
input argument to the function being tested; it is sometimes desirable to distribute the input
arguments in a nonuniform fashion to provide a more complete test of the function (see column
D below). For each function, accuracy data is given for one or more segments within the valid
range of x. In each case, the numbers given are the most meaningful to the function and range
under consideration.

0: identifies the distribution of arguments input to the particular function being sampled. The
letter E indicates an exponential distribution. The letter U indicates a uniform distribution. A
number refers to a note providing detailed information regarding the distribution.

• Accuracy Data: The maximum relative error and standard deviation of the relative error are gener­
ally useful and revealing statistics; however, they are useless for the range of a function where its
value becomes zero. This is because the slightest error in the argument can cause an unpredict­
able fluctuation in the magnitude of the answer. When a small argument error would have this
effect, the maximum absolute error and standard deviation of the absolute error are given for the
range.

Chapter 2. Computation and Branching Instructions 2-38

Compute Math Function Using One Input Value (CMF1)

Relative Error (e): The maximum relative error and standard deviation (root mean square) of
the relative error are defined:

MAX(e) = MAX(ABS(f(x) - g(x)) / f(xl))

SD(e) =

where: MAX selects the largest of its arguments and ABS takes the absolute
value of its argument.

SQR((1/N) SUMSQ«f{x) - g(x)) / f(x)))

where: SQR takes the square root of its argument and SUMSQ takes the summa­
tion of the squares of its arguments over all of the test cases.

Absolute Error (£): The maximum absolute error produced during the testing and the standard
deviation (root mean square) of the absolute error are:

MAX(E) = MAX{ ABS{ f(x) - g(x)))

where: the operators are those defined above.

SD(E) = SQR((1/N) SUMSQ{ f(x) - g(x)))

where: the operators are those defined above.

Limitations: The following are limits that apply to the functions performed by this instruction.

The source and receiver operands must both be specified as floating-point with the same length (4
bytes for short format or 8 bytes for long format).

Resultant Conditions

• Positive-The algebraic value of the receiver operand is positive.

• Negative-The algebraic value of the receiver operand is negative.

• Zero-The algebraic value of the receiver operand is zero.

• Unordered-The value assigned to the floating-point result is NaN.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressabiJity invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

06 Floating-point overflow X

07 Floating-point underflow X

09 Floating-point invalid operand X

00 Floating-point inexact result X

10 Damage encountered

04 System object damage state X

Chapter 2. Computation and Branching Instructions 2-39

J

Compute Math Function Using One Input Value (CMF1)

Operands

Exception 1 2 3 Other

44 Partial syst~m object damage X

1C Machi ne-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

02 Process storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

03 Scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-40

Compute Math Function Using Two Input Values (CMF2)

Compute Math Function Using Two Input Values (CMF2)

Op Code Extender Operand 1 Operand 2 Operand 3 Operand 4 Operand [5-8J
(Hex)
CMF2 Receiver Controls Source 1 Source 2
100C

CMF2B Branch Receiver Controls Source 1 Source 2 Branch
1COC options targets

CMF21 Indicator Receiver Controls Source 1 Source 2 Indicator
180C options targets

Operand 1: Numeric variable scalar.

Operand 2: Character(2) scalar (fixed length)

Operand 3: Numeric scalar.

Operand 4: Numeric scalar.

Operand 5-8:

• Branch Form-Branch point. instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

.)

Description: The mathematical function. indicated by the controls operand. is performed on the source ..,,)
operand values and the result is placed in the receiver operand.

The calculation is always done in floating-point.

The controls operand must be a character scalar that specifies which mathematical function is to be
performed. It must be at least 2 bytes in length and have the following format:

• Controls operand Char(2)

Hex 0001 = Power (x to the y)

All other values are reserved

The computation x power y, where x is the first source operand and y is the second source operand, is
performed and the result is placed in the receiver operand.

The following chart shows some special cases for certain arguments of the power function (x**y).
Within the chart. the capitalized letters X and Y refer to the absolute value of the arguments x and y;
that is. X = Ixl and Y = Iyl.

Chapter 2. Computation and Branching Instructions 2-41

Compute Math Function Using Two Input Values (CMF2)

y -Inf y<O y<O y<O -I -112 +0 + 112 +1 y>O y>O y>O +inf M- UnM-

y= y=2n real or y= y=2n real NaN NaN
x 2~ + 1 -0 2n+ 1

+Inf +0 +0 +0 +0 +0 +1 + Inf +inf +inf +Inf + Inf +inf b A(e)

+1 +1 +1 +1 +1
x> 1 +0 - - - - -- +1 SQRT(x) x x-y x-y x-y +inf b A(e)

x-V x-V x-V x SQRT(x)

x= +1 +1 +1 +1 +1 +1 + 1 +1 +1 +1 +1 +1 +1 +1 b A(e)

+1 +1 +1 +1 +1
O<x<1 +inf - - - - -- +1 SQRT(x) x x-y x-y x-y +0 b A(e)

X-V x-V x-V x SQRT(x)

x= +0 E(f) E(f) E(f) E(f) E(f) E(f) +1 +0 +0 +0 +0 +0 +0 b A(e)

x=-o E(f) E(g) E(f) E(f) E(g) E(g) +1 -0 -0 -0 +0 +0 +0 b A(e)

-1 +1 -1
O>x>-1 A(a) - - A(a) - A(a) +1 A(a) x -X-y X-y A(a) A(a) b A(e)

X-V X-V X

x=-1 A(a) -1 +1 A(a) -1 A(a) +1 A(a) -1 -1 +1 A(a) A(a) b A(e)

-1 +1 -1
x<-1 A(a) - - A(a) - A(a) +1 A(a) x -X-y X""Y A(a) A(a) b A(e)

X-V X-V X

x=-inf A(a) -0 +0 A(a) -0 A(a) +1 A(a) -inf -inf +inf A(a) A(a) b A(e)

Masked b b b b b b b b b b b b b d A(e)
NaN

Un-
masked A(e) A(e) A(e) A(e) A(e) A(e) A(e) A(e) A(c) A(e) A(e) A(e) A(e) A(e) A(e)
NaN

Figure 2-3_ Special cases of the power function (X".y)

Capital letters in the chart indicate the exceptions and small letters indicate the returned results as
defined in the following list:

A Floating-point invalid operand (hex OC09) exception

E Divide by zero (hex OCDE) exception

a Result is the system default masked NaN

b Result is the same NaN

c Result is the same NaN masked

d Result is the larger NaN

e Result is the larger NAN masked

f Result is + infinity

g Result is -infinity

The following chart provides accuracy data for the mathematical function that can be invoked by this
instruction_

Chapter 2. Computation and Branching Instructions 2-42

Compute Math Function Using Two Input Values (CMF2)

Sample Selection Accuracy Data

Function
Name x y MAX(e) SD(e)

Power 1/3 -345 < = y < = 330 4.99 * 10**-16 1.90 * 10**-16

.75 1320 < = y <= 1320 2.96 * 10**-16 2.39 * 10**-16

.9 3605 < = y < = 3605 1.23 • 10**-16 1.02 * 10**-16

10 -165 < = Y < = 165 7.10' 10**-16 3.18 * 10*"-16

712 -57 < = y < = 57 1.75 * 10**-15 7.24 * 10**-16

Figure 2-4. Accuracy data for CMF2 mathematical functions.

The vertical columns in the accuracy data chart have the following meanings:

• Function Name: This column identifies the mathematical function.

• Sample Selection: This column identifies the selection of samples taken for the power function.
The algorithm used against the arguments, x and y, to gather the accuracy samples was a test for
the anticipated relation where f(x) should equal g(x,y):

where:

f (x)= x

g(x,y)= (x**Y)**(l/Y)
An accuracy sample then, is an evaluation of the degree to which this relation held true.

The range of argument values for x and y were selected such that x was held constant at a partic­
ular value and y was uniformly varied throughout a range of values which avoided overflowing or
underflowing the result field. The particular values selected are indicated in the subcolumns enti­
tled x and y.

• Accuracy Data: The maximum relative error and standard deviation (root mean square) of the rela­
tive error are generally useful and revealing statistics. These statistics for the relative error, (e),
are provided in the following subcolumns:

MAX(e) = MAX(ASS((f(x) - g(x)) / f(x)))

SD(e) =

where: MAX selects the largest of its arguments and ASS takes the absolute value of
its argument.

SQR((1/N) SUMSQ«f(x) - g(x)) / f(x)))

where: SQR takes the square root of its argument and SUMSQ takes the summation
of the squares of its arguments over all of the test cases.

Limitations: The following are limits that apply to the functions performed by this instruction.

The source and receiver operands must both be specified as floating-point with the same length (4
bytes for short format or 8 bytes for long format).

Resultant Conditions

• Positive-The algebraic val ue of the receiver operand is positive.

• Negative-The algebraic value of the receiver operand is negative.

• Zero-The algebraic value of the receiver operand is zero.

• Unordered-The value assigned to the floating-point result is NaN.

Chapter 2. Computation and Branching Instructions 2-43

Compute Math Function Using Two Input Values (CMF2)

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X X

02 boundary alignment violation X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OC Computation

06 floating-point overflow X

07 floating-point underflow X

09 floating-point invalid operand X X

OC invalid floating-point conversion X

00 floating-point inexact result X

OE floating-point zero divide X

10 Damage encountered

04 System object damage state X

44 partial system object damage X

1C Machine-ciependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

~
02 process storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X X

Chapter 2. Computation and Branching Instructions 2-44

Compute Math Function Using Two Input Values (CMF2)

Operands
Exception 1 2 3 4 Other

03 scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-45

\...r

Concatenate (CAT)

Op Code (Hex)
10F3

Operand 1
Receiver

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Operand 2
Source 1

Operand 3
Source 2

Concatenate (CAT)

Description: The character string value of the second source operand is joined to the right end of the
character string value of the first source operand. The resulting string value is placed (left-adjusted) in
the receiver operand.

The length of the operation is equal to the length of the receiver operand with the resulting string trun­
cated or is logically padded on the right end accordingly. The pad value for this instruction is hex 40.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1. 2. and 3. The effect of specifying a null substring reference for one source
operand is that the other source operand is used as the result of the concatenation. The effect of
specifying a null substring reference for both source operands is that the bytes of the receiver are
each set with a value of hex 40. The effect of specifying a null substring reference for the receiver is
that a result is not set regardless of the value of the source operands.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 ArgumenUparameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

Chapter 2. Computation and Branching Instructions 2-46

Concatenate (CAT)

Operands
Exception 1 2 3 Other

08 object ~ compressed X .;
24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-47

~

Convert SSC to Character (CVTSC)

Convert esc to Character (CVTBC)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4-6]
CVTBC Receiver Controls Source
10AF

CVTBCB Branch options Receiver Controls Source Branch targets
1CAF

CVTBCI Indicator Receiver Controls Source Indicator targets
18AF options

Operand 1: Character variable scalar.

Operand 2: Character(3) variable scalar (fixed-length).

Operand 3: Character scalar.

Operand 4-6:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

ILEaccess ---,
CVTBC (

var receiver
receiver_length

var controls
var source

source_length
var return code

aggregate;
unsigned binary;
aggregate;
aggregate;
unsigned binary;
signed binary

The return code will be set as follows:

Return Code

-1

a
1

Meaning

Completed Record.

Source Exhausted.

Truncated Record.

Description: This instruction converts a string value from the SSC (binary synchronous communi­
cations) compressed format to a character string. The operation converts the source (operand 3) from
the SSC compressed format to character under control of the controls (operand 2) and places the
result into the receiver (operand 1).

The source and receiver operands must both be character strings.

The controls operand must be a character scalar that specifies additional information to be used to
control the conversion operation. It must be at least 3 bytes in length and have the following format:

• Controls operand

- Source offset

Char(3)

Bin(2)

Chapter 2. Computation and Branching Instructions 2-48

Convert BSC to Character (CVTBC)

- Record separator Char(1)

The source offset specifies the offset where bytes are to be accessed from the source operand. If the
source offset is equal to or greater than the length specified for the source operand (it identifies a byte
beyond the end of the source operand), a template value invalid (hex 3801) exception is signaled. As
output from the instruction, the source offset is set to specify the offset that indicates how much of the
source is processed when the instruction ends.

The record separator, if specified with a value other than hex 01, contains the value used to separate
converted records in the source operand. A value of hex 01 specifies that record separators do not
occur in the converted records in the source.

Only the first 3 bytes of the controls operand are used. Any excess bytes are ignored.

The operation begins by accessing the bytes of the source operand located at the offset specified in
the source offset. This is assumed to be the start of a record. The bytes of the record in the source
operand are converted into the receiver record according to the following algorithm.

The strings to be built in the receiver are contained in the source as blank compression entries and
strings of consecutive non blank characters.

The format of the blank compression entries occurring in the source are as follows:

• Blank compression entry

Interchange group separator

Count of compressed blanks

The interchange group separator has a fixed value of hex 1 D.

Char(2)

. Char(1)

Char(1)

The count of compressed blanks provides for describing up to 63 compressed blanks. The count of the
number of blanks (up to 63) to be decompressed is formed by subtracting hex 40 from the value of the
count field. The count field can vary from a value of hex 41 to hex 7F. If the count field contains a
value outside of this range, a conversion (hex OC01) exception is signaled.

Strings of blanks described by blank compression entries in the source are repeated in the receiver
the number of times specified by the blank compression count.

Nonblank strings in the source are copied into the receiver intact with no alteration.

If the receiver record is filled with converted data without encountering the end of the source operand,
the instruction ends with a resultant condition of completed record. This can occur in two ways. If a
record separator was not specified, the instruction ends when enough bytes have been converted from
the source to fill the receiver. If a record separator was specified, the instruction ends when a source
byte is encountered with that value prior to or just after filling the receiver record. The source offset
value locates the byte following the last source record (including the record separator) for which con­
version was completed. When the record separator value is encountered, any remaining bytes in the
receiver are padded with blanks.

If the end of the source operand is encountered (whether or not in conjunction with a record separator
or the filling of the receiver), the instruction ends with a resultant condition of source exhausted. The
source offset value locates the byte following the last byte of the source operand. The remaining bytes
in the receiver after the converted record are padded with blanks.

If the converted form of a record cannot be completely contained in the receiver, the instruction ends ..)
with a resultant condition of truncated record. The offset value for the source locates the byte fol-
lowing the last source byte for which conversion was performed, unless a blank compression entry

Chapter 2. Computation and Branching Instructions 2-49

\.r

Convert SSC to Character (CVTBC)

was being processed. In this case, the source offset is set to locate the byte after the blank com­
pression entry. If the source does not contain record separators. this condition can only occur for the
case in which a blank· compression entry was being converted when the receiver record became full.

Any form of overlap between the operands on this instruction yields unpredictable results in the
receiver operand.

Resultant Conditions

• Completed record-The receiver record has been completely filled with converted data from a
source record.

• Source exhausted-All of the bytes in the source operand have been converted into the receiver
operand.

• Truncated record-The receiver record cannot contain all of the converted data from the source
record.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment violation X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OC Computation

01 conversion X

10 Damage encountered

04 System object damage state X

44 partial system object damage X

lC Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

Chapter 2. Computation and Branching Instructions 2-50

Convert SSC to Character (CVTBC)

Operands
Exception 1 2 3 Other

2C Program execution J 04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

f

J

Chapter 2. Computation and Branching Instructions 2-51

~

Convert Character to SSC (CVTCS)

Convert Character to SSC (CVTCB)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4-5]
CVTCB Receiver Controls Source
108F

CVTCBB Branch options Receiver Controls Source Branch targets
1C8F

CVTCB Indicator Receiver Controls Source Indicator targets
188F options

Operand 1: Character variable scalar.

Operand 2: Character(3) variable scalar (fixed-length).

Operand 3: Character scalar.

Operand 4-5:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

ILEaccess ---,
CVTCB (

var receiver
receiver_length

var controls
var source

source_length
var return code

aggregate;
unstgned btnary;
aggregate;
aggregate;
unsigned btnary;
signed binary

The return code will be set as follows:

Return_Code

-1

o

Meaning

Receiver Overrun.

Source Exhausted.

Description: This instruction converts a string value from character to BSC (binary synchronous com­
munications) compressed format. The operation converts the source (operand 3) from character to the
BSC compressed format under control of the controls (operand 2) and places the result into the
receiver (operand 1).

The source and receiver operands must both be character strings.

The controls operand must be a character scalar that specifies additional information to be used to
control the conversion operation. It must be at least 3 bytes in length and have the following format:

• Controls operand

Receiver offset

Record separator

Char(3)

Bin(2)

Char(1)

Chapter 2. Computation and Branching Instructions 2-52

Convert Character to BSC (CVTCB)

The receiver offset specifies the offset where bytes are to be placed into the receiver operand. If the
receiver offset is equal to or greater than the length specified for the receiver operand (it identifies a
byte beyond the end of the receiver). a template value invalid (hex 3801) exception is signaled. As)
output from the instruction, the receiver offset is set to specify the offset that indicates how much of the ,..",
receiver has been filled when the instruction ends.

The record separator, if specified with a value other than hex 01, contains the value used to separate
converted records in the receiver operand. A value of hex 01 specifies that record separators are not
to be placed into the receiver to separate converted records.

Only the first 3 bytes of the controls operand are used. Any excess bytes are ignored.

The source operand is assumed to be one record. The bytes of the record in the source operand are
converted into the receiver operand at the location specified in the receiver offset according to the fol­
lowing algorithm.

The bytes of the source record are interrogated to identify the strings of consecutive blank (hex 40)
characters and the strings of consecutive nonblank characters which occur in the source record. Only
three or more blank characters are treated as a blank string for purposes of conversion into the
receiver.

As the blank and nonblank strings are encountered in the source, they are packaged into the receiver.

Blank strings are reflected in the receiver as one or more blank compression entries. The format of
the blank compression entries built into the receiver are as follows:

• Blank compression entry

Interchange group separator

Count of compressed blanks

The interchange group separator has a fixed value of hex 1D.

Char(2)

Char(1)

Char(1)

The count of compressed blanks provides for compressing up to 63 blanks. The value of the count field
is formed by adding hex 40 to the actual number of blanks (up to 63) to be compressed. The count
field can vary from a value of hex 43 to hex 7F.

Nonblank strings are copied into the receiver intact with no alteration or additional control information.

When the end of the source record is encountered, the record separator value if specified is placed into
the receiver and the instruction ends with a resultant condition of source exhausted. The receiver
offset value locates the byte following the converted record in the receiver. The value of the remaining
bytes in the receiver after the converted record is unpredictable.

If the converted form of a record cannot be completely contained in the receiver (including the record
separator if specified), the instruction ends with a reSUltant condition of receiver overrun. The receiver
offset remains unchanged. The remaining bytes in the receiver, starting with the byte located by the
receiver offset, are unpredictable.

Any form of overlap between the operands on this instruction yields unpredictable results in the
receiver operand.

Resultant Conditions

• Source exhausted-All of the bytes in the source operand have been converted into the receiver
operand.

• Receiver overrun-An overrun condition in the receiver operand was detected before all of the bytes
in the source operand were processed.

Chapter 2. Computation and Branching Instructions 2-53

Convert Character to SSC (CVTCS)

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment violation X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

L

Chapter 2. Computation and Branching Instructions 2-54

Convert Character to Hex (CVTCH)

Op Code (Hex)
1082

Operand 1
Receiver

Operand 1: Character variable scalar.

Operand 2: Character variable scalar.

Operand 2
Source

Convert Character to Hex (CVTCH)

Description: Each character (8-bit value) of the string value in the source operand is converted to a
hex digit (4-bit value) and placed in the receiver operand. The source operand characters must relate
to valid hex digits or a conversion (hex OC01) exception is signaled.

Characters

Hex Fa-hex F9

Hex C1-hex C6

Hex Digits

Hex O-hex 9

Hex A-hex F

The operation begins with the two operands left-adjusted and proceeds left to right until all the hex
digits of the receiver operand have been filled. If the source operand is too small, it is logically
padded on the right with zero characters (hex Fa). If the source operand is too large, a length con­
formance (hex OC08) or an invalid operand length (hex 2AOA) exception is signaled.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for the source is that
the bytes of the receiver are each set with a value of hex 00. The effect of specifying a null substring
reference for the receiver is that no result is set.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OC Computation

01 conversion X

08 length conformance X

10 Damage encountered

04 system object damage X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

Chapter 2. Computation and Branching Instructions 2-55

..J

J

Convert Character to Hex (CVTCH)

Operands
Exception 1 2 Other

L 03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-56

Convert Character to MRJE (CVTCM)

Convert Character to MRJE (CVTCM)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3
CVTCM Receiver Controls Source

Operand [4-5]

108B

CVTCMB Branch options Receiver Controls Source
lCSS

Branch targets

CVTCMI Indicator Receiver Controls Source
188B options

Indicator targets

Operand 1: Character variable scalar.

Operand 2: Character(13) variable scalar (fixed-length).

Operand 3: Character scalar.

Operand 4-5:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

ILEaccess --~
CVTCM (

var receiver
receiver_length

var controls
var source

source_length
var return code

aggregate;
unsigned binary;
aggregate;
aggregate;
unsigned binary;
signed binary

The return code will be set as follows:

Return_Code

-1

a

Meaning

Receiver Overrun.

Source Exhausted.

Description: This instruction converts a string of characters to MRJE (MULTI-LEAVING remote job
entry) compressed format. The operation converts the source (operand 3) from character to the MRJE
compressed format under control of the controls (operand 2) and places the results in the receiver
(operand 1).

The source and receiver operands must both be character strings. The source operand cannot be
specified as either a signed or unsigned immediate value.

The source operand can be described through the controls operand as being composed of one or more
fixed length data fields, which may be separated by fixed length gaps of characters to be ignored
during the conversion operation. Additionally, the controls operand specifies the amount of data to be '~
processed from the source to produce a converted record in the receiver. This may be a different -.I
value than the length of the data fields in the source. The following diagram shows this structure for
the source operand.

Chapter 2. Computation and Branching Instructions 2-57

Convert Character to MRJE (CVTCM)

Actual Source Operand Bytes

data field -[~~~]""'--d-a-ta-f1e-l-d-""'[~~] data field

Data Processed as Source Records

record ree ord record record ree

The controls operand must be a character scalar that specifies additional information to be used to
control the conversion operation. It must be at least 13 bytes in length and have the following format:

• Controls operand Char(13)

Receiver offset Bin(2)

Source offset Bin(2)

Algorithm modifier Char(1)

Source record length Char(1)

Data field length Bin(2)

Gap offset Bin(2)

Gap length Bin(2)

Record control block (RCB) value Char(1)

As input to the instruction, the source offset and iver offset fields specify the offsets where bytes of the
source and receiver operands are to be processed. If an offset is equal to or greater than the length
specified for the operand it corresponds to (Le. it identifies a byte beyond the end of the operand), a
template value invalid (hex 3801) exception is signaled. As output from the instruction, the source
offset and receiver offset fields specify offsets that indicate how much of the operation is complete
when the instruction ends.

The algorithm modifier has the following valid values:

• Hex 00 = Perform full compression.

• Hex 01 = Perform only truncation of trailing blanks.

The source record length value specifies the amount of data from the source to be processed. If a
source record length of 0 is specified, a template value invalid (hex 3801) exception is signaled.

The data field length value specifies the length of the data fields in the source. Data fields occurring in
the source may be separated by gaps of characters, which are to be ignored during the conversion
operation. Specification of a data field length of 0 indicates that the source operand is one data field.
In this case, the gap length and gap offset values have no meaning and are ignored.

The gap offset value specifies the offset to the next gap in the source. This value is both input to and
output from the instruction. This is relative to the current byte to be processed in the source as
located by the source offset field. No validation is done for this offset. It is assumed to be valid rela­
tive to the source operand. The gap offset value is ignored if the data field length is specified with a
value of O.

The gap length value specifies the amount of data occurring between data fields in the source operand
which is to be ignored during the conversion operation. The gap length value is ignored if the data
field length is specified with a value of O.

Chapter 2. Computation and Branching Instructions 2-58

Convert Character to MRJE (CVTCM)

The record control block (RCB) value field specifies the RCB value that is to precede the converted
form of each record in the receiver. It can have any value.

Only the first 13 bytes of the controls operand are used. Any excess bytes are ignored.

The operation begins by accessing the bytes of the source operand at the location specified by the
source offset. This is assumed to be the start of a source record. Only the bytes of the data fields in
the source are accessed for conversion purposes. Gaps between data fields are ignored. causing the
access of data field bytes to occur as if the data fields were contiguous with one another. Bytes
accessed from the source for the source record length are considered a source record for the conver­
sion operation. They are converted into the receiver operand at the location specified by the receiver
offset according to the following algorithm.

The RCB value is placed into the first byte of the receiver record.

An SRCB (sub record control byte) value of hex 80 is placed into the second byte of the receiver
record.

If the algorithm modifier specifies full compression (a value of hex 00) then:

The bytes of the source record are interrogated to locate the blank character strings (2 or more con­
secutive blanks), identical character strings (3 or more consecutive identical characters), and noniden­
tical character strings occurring in the source. A blank character string occurring at the end of the
record is treated as a special case (see following information on trailing blanks).

If the algorithm modifier specifies blank truncation (a value of hex 01) then:

The bytes of the source record are interrogated to determine if a blank character string exists at the
end of the source record. If one eXists, it is treated as a string of trailing blanks. All characters prior ..J
to it in the record are treated as one string of nonidentical characters.

The strings encountered (blank. identical. or nonidentical) are reflected in the receiver by building one
or more SCBs (string control bytes) in the receiver to describe them.

The format of the SCBs built into the receiver is:

• SCB format is 0 k 1 jjjjj

The bit meanings are:

Bit
o

k

jjjjj

Ijjjjj

Value
o
1

o

o

Meaning
End of record; the EOR SCB is hex 00.

All other SCBs.

The string is compressed.

The string is not compressed.

For k - 0:

Blanks (hex 4Os) have been deleted.

Nonblank characters have been deleted. The next character in the data stream is the
specimen character.

For k - 1:

This bit is part of the length field for length of uncompressed data.

Number of characters that have been deleted if k - O. The value can be 2-31.

Number of characters to the next SCB (no compression) if k - 1. The value can be
1-63. The uncompressed (nonidentical bytes) follow the SCB in the data stream.

Chapter 2. Computation and Branching Instructions 2-59

, .

~

Convert Character to MRJE (CVTCM)

When the end of a source record is encountered, an EOR (end of record) SCB (hex 00) is built into the
receiver. Trailing blanks in a record including a record of all blanks are represented in the receiver by
an EOR character. However, a record of all blanks is reflected in the compressed result by an RCB. an
SRCB, a compression entry describing an 'unlike string' of one blank character, and an EOR character.

Additionally, the receiver offset, the source offset. and the gap offset are updated in the controls
operand.

If the end of the source operand is not encountered, the operation then continues by reapplying the
above algorithm to the next record in the source operand.

If the end of the source operand is encountered (whether or not in conjunction with a record boundary),
the instruction ends with a resultant condition of source exhausted. The source offset locates the byte
following the last source record for which conversion was completed. The gap offset value indicates
the offset to the next gap relative to the source offset value set for this condition. The gap offset value
has no meaning and is not set when the data field length is O. The receiver offset locates the byte
following the last fully converted record in the receiver. The value of the remaining bytes in the
receiver after the last converted record is unpredictable.

If the converted form of a record cannot be completely contained in the receiver, the instruction ends
with a resultant condition of receiver overrun. The source offset locates the byte following the last
source record for which conversion was completed. The gap offset value indicates the offset to the
next gap relative to the source offset value set for this condition. The gap offset value has no meaning
and is not set when the data field length is O. The receiver offset locates the byte following the last
fully converted record in the receiver. The value of the remaining bytes in the receiver after the last
converted record is unpredictable.

Any form of overlap between the operands of this instruction yields unpredictable results in the
receiver operand.

Resultant Conditions

• Source exhausted-All complete records in the source operand have been converted into the
receiver operand.

• Receiver overrun-An overrun condition in the receiver operand was detected prior to processing all
of the bytes in the source operand.

If source exhausted and receiver overrun occur at the same time, the source exhausted condition is
recognized first. When source exhausted is the resultant condition, the receiver may also be full. In
this case, the receiver offset may contain a value equal to the length specified for the receiver, and this
condition will cause an exception on the next invocation of the instruction. The processing performed
for the source exhausted condition provides for this case when the instruction is invoked multiple times
with the same controls operand template. When the receiver overrun condition is the resultant condi­
tion, the source always contains data that can be converted.

Exceptions

exception

06 Addressing

01 space addressing violation

02 boundary alignment violation

03 range

06 optimized addressability invalid

Operands
1 2 3 Other

X X X

X X X

X X X

X X X

Chapter 2. Computation and Branching Instructions 2-60

Convert Character to MRJE (CVTCM)

Operands
Exception 1 2 3 Other
08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X
f

2C Program execution J
04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 2. Computation and Branching Instructions 2-61

Convert Character to Numeric (CVTCN)

Convert Character to Numeric (CVTCN)

Op Code (Hex)
1083

Operand 1
Receiver

Operand 2
Source

Operand 3
Attributes

Operand 1: Numeric variable scalar or data-painter-defined numeric scalar.

Operand 2: Character scalar or data-painter-defined character scalar.

Operand 3: Character(7) scalar or data-painter-defined character scalar.

Description: The character scalar specified by operand 2 is treated as though it were a numeric
scalar with the attributes specified by operand 3. The character string source operand is converted to
the numeric forms of the receiver operand and moved to the receiver operand. The value of operand
2, when viewed in this manner, is converted to the type, length, and precision of the numeric receiver,
operand 1, following the rules for the Copy Numeric Value instruction.

The length of operand 2 must be large enough to contain the numeric value described by operand 3. If
it is not large enough, a scalar value invalid (hex 3203) exception is signaled. If it is larger than
needed, its leftmost bytes are used as the value, and the rightmost bytes are ignored.

Normal rules of arithmetic conversion apply except for the following. If operand 2 is interpreted as a
zoned decimal value, a value of hex 40 in the rightmost byte referenced in the conversion is treated as
a positive sign and a zero digit.

If a decimal to binary conversion causes a size (hex OCOA) exception to be signaled, the binary value
contains the correct truncated result only if the decimal value contains 15 or fewer significant nonfrac­
tional digits.

The format of the attribute operand specified by operand 3 is as follows:

• Scalar attributes

Scalar type

Hex 00 = Signed binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex OA = Unsigned binary

Scalar length

If binary:

- Length (L) (where L = 2 or 4)

If floating-point:

- Length (L) (where L = 4 or 8)

If zoned decimal or packed decimal:

- Fractional digits (F)

- Total digits (T)
(where 1 S T S 31 and 0 S F S n

Reserved (binary 0)

Exceptions

Char(7)

Char(1)

Bin(2)

Bits 0-15

Bits 0-15

Bits 0-7

Bits 8-15

Bin(4)

Chapter 2. Computation and Branching Instructions 2-62

Convert Character to Numeric (CVTCN)

Operands
Exception 1 2 3 Other

06 Addressing ,J
01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

04 external data object not found X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OC Computation

02 decimal data X X

06 floating-point overflow X

07 floating-point underflow X

09 floating-point invalid operand X

OA size X

OC floating-point conversion X

00 floating-point inexact result X

10 Damage encountered -

04 system object damage state X X X X

44 partial system object damage X X X X

~ 1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 painter type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

02 scalar attribute invalid X

03 scalar value invalid X

Chapter 2. Computation and Branching Instructions 2-63

Convert Character to Numeric (CVTCN)

Operands
Exception 1 2 3 Other
36 Space management

01 space extension/truncation x

Chapter 2. Computation and Branching Instructions 2-64

Convert Character to SNA (CVTCS)

Convert Character to SNA (CVTCS)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3
CVTCS Receiver Controls Source

Operand [4-5]

10CB

CVTCSB Branch options Receiver
1CCB

Controls Source Branch targets

CVTCSI Indicator Receiver Controls Source Indicator targets
18CB options

Operand 1: Character variable scalar.

Operand 2: Character(15) variable scalar (fixed length).

Operand 3: Character scalar.

Operand 4-5:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

ILEaccess --~

CVTCS (
var receiver

receiver_length
var controls
var source

source_length
var return code

aggregate;
unsigned binary;
aggregate;
aggregate;
unsigned binary;
signed binary

The return code will be set as follows:

Return Code

-1

a

Meaning

Receiver Overrun.

Source Exhausted.

Description: This instruction converts the source (operand 3) from character to SNA (systems network
architecture) format under control of the controls (operand 2) and places the result into the receiver
(operand 1).

The source and receiver operands must both be character strings. The source operand may not be
specified as an immediate operand.

The source operand can be described by the controls operand as being one or more fixed-length data
fields that may be separated by fixed-length gaps of characters to be ignored during the conversion
operation. Additiona"y, the controls operand specifies the amount of data to be processed from the
source to produce a converted record in the receiver. This may be a different value than the length of
the data fields in the source. The following diagram shows this structure for the source operand.

Chapter 2. Computation and Branching Instructions 2-65

Convert Character to SNA (CVTCS)

Actual Source Operand Bytes

data field [~~~ ~"'I-d-a-ta-fle-Id---'[~~] data field

Data Processed as Source Records

record ree ord record record ree

MC01O-O

The controls operand must be a character scalar that specifies additional information to be used to
control the conversion operation. The operand must be at least 15 bytes in length and has the fol~
lowing format:

• Controls operand Char(15)

Receiver offset Bin(2)

Source offset Bin(2)

Algorithm modifier Char(1)

Source record length Char(1)

Data field length Bin(2)

Gap offset Bin(2)

Gap length Bin(2)

Record separator character Char(1)

Prime compression character Char(1)

Unconverted source record bytes Char(1)

As input to the instruction, the source offset and receiver offset fields specify the offsets where the
bytes of the source and receiver operands are to be processed. If an offset is equal to or greater than
the length specified for the operand, the offset identifies a byte beyond the end of the operand and a
template value invalid (hex 3801) exception is signaled. When the source offset and the receiver offset
field are output from the instruction, they specify offsets that indicate how much of the operation is
complete when the instruction ends.

The algorithm modifier specifies the optional functions to be performed. Any combination of functions
can be specified as indicated by the bit meanings in the following chart. At least one of the functions
must be specified. If all of the algorithm modifier bits are zero, a template value invaJid (hex 3801)
exception is signaled. The algorithm modifier bit meanings are:

Bits Meaning
o 0 - Do not perform compression.

1 - Perform compression.

1-2 00 - Do not use record separators and no blank truncation. Do not perform data transparency
conversion.

01 - Reserved.
10 - Use record separators and perform blank truncation. Do not perform data transparency con­

version.
11 - Use record separators and perform blank truncation. Perform data transparency conversion.

3 o - Do not perform record spanning.
1 - Perform record spanning. (a"owed only when bit 1 - 1)

4-7 (Reserved)

Chapter 2. Computation and Branching Instructions 2~66

Convert Character to SNA (CVTCS)

The source record length value specifies the amount of data from the source to be processed to
produce a converted record in the receiver. Specification of a source record length of zero results in a
template value invalid (hex 3801) exception.

The data field length value specifies the length of the data fields in the source. Data fields occurring in
the source may be separated by gaps of characters that are to be ignored during the conversion oper­
ation. Specification of a data field length of zero indicates that the source operand is one data field. In
this case, the gap length and gap offset values have no meaning and are ignored.

The gap offset value specifies the offset to the next gap in the source. This value is both input to and
output from the instruction. This is relative to the current byte to be processed in the source as
located by the source offset value. No validation is done for this offset. It is assumed to be valid
relative to the source operand. The gap offset value is ignored if the data field length is specified with
a value of zero.

The gap length value specifies the amount of data that is to be ignored between data fields in the
source operand during the conversion operation. The gap length value is ignored if the data field
length is zero.

The record separator character value specifies the character that precedes the converted form of each
record in the receiver. It also serves as a delimiter when the previous record is truncating trailing
blanks. The Convert SNA to Character instruction recognizes any value that is less than hex 40. The
record separator value is ignored if record separators are not used as specified in the algorithm modi­
fier.

The prime compression character value specifies the character to be used as the prime compression
character when performing compression of the source data to SNA format. It may have any value.
The prime compression character value is ignored if the perform compression function is not specified f

,

in the algorithm modifier. ..."

The unconverted source record bytes value specifies the number of bytes remaining in the current
source record that are yet to be converted.

When the record spanning function is specified in the algorithm modifier, the unconverted source
record bytes field is both input to and output from the instruction. On input, a value of hex 00 means it
is the start of a new record and the initial conversion step is yet to be performed. That is, a record
separator character has not yet been placed in the receiver. On input, a nonzero value less than or
equal to the source record length specifies the number of bytes remaining in the current source record
that are yet to be converted into the receiver. This value is assumed to be the valid count of uncon­
verted source record bytes relative to the current byte to be processed in the source as located by the
source offset value. As such, it is used to determine the location of the next record boundary in the
source operand. This value must be less than or equal to the source record length value; otherwise, a
template value invalid (hex 3801) exception is signaled. On output this field is set with a value as
defined above that describes the number of bytes of the current source record that have not yet been
converted.

When the record spanning function is not specified in the algorithm modifier, the unconverted source
record bytes value is ignored. '

Only the first 15 bytes of the controls operand are used. Any excess bytes are ignored.

The description of the conversion process is presented as a series of separately performed steps that
may be selected in allowable combinations to accomplish the conversion function. It is presented this
way to allow for describing these functions separately. However, in the actual execution of the instruc­
tion, these functions may be performed in conjunction with one another or separately depending upon
which technique is determined to provide the best implementation.

Chapter 2. Computation and Branching Instructions 2-67

Convert Character to SNA (CVTCS)

The operation is performed either on a record-by-record basis (record processing) or on a nonrecord
basis (string processing). This is determined by the functions selected in the algorithm modifier. Spec­
ifying the use record separators' and perform blank truncation function indicates record processing is to
be performed. If this is not specified, in which case compression must be specified, it indicates that
string processing is to be performed.

The operation begins by accessing the bytes of the source operand at the location specified by the
source offset.

When record processing is specified, the source offset may locate the start of a full or partial record.

When the record spanning function has not been specified in the algorithm modifier, the source offset is
assumed to locate the start of a record.

When the record spanning function has been specified in the algorithm modifier, the source offset is
assumed to locate a point at which processing of a possible partially converted record is to be
resumed. In this case, the unconverted source record bytes value contains the length of the remaining
portion of the source record to be converted. The conversion process in this case is started by com­
pleting the conversion of the current source record before processing the next full source record.

When string processing is specified, the source offset locates the start of the source string to be con­
verted.

Only the bytes of the data fields in the source are accessed for conversion purposes. Gaps between
data fields are ignored causing the access of data field bytes to occur as if the data fields were contig­
uous. A string of bytes accessed from the source for a length equal to the source record length is
considered to be a record for the conversion operation.

When during the conversion process, the end of the source operation is encountered, the instruction
ends with a resultant condition of source exhausted.

When record processing is specified in the algorithm modifier, this check is performed at the start of
conversion for each record. If the source operand does not contain a full record, the source exhausted
condition is recognized. The instruction is terminated with status in the controls operand describing
the last completely converted record. For source exhausted, partial conversion of a source record is
not performed.

When string processing is specified in the algorithm modifier, then compression must be specified and
the compression function described below defines the detection of source exhausted.

If the converted form of the source cannot be completely contained in the receiver, the instruction ends
with a resultant condition of receiver overrun. See the description of this condition in the conversion
process described below to determine the status of the controls operand values and the converted
bytes in the receiver for each case.

When string processing is specified, the bytes accessed from the source are converted on a string
basis into the receiver operand at the location specified by the receiver offset. In this case, the com­
pression function must be specified and the conversion process proceeds with the compression func­
tion defined below.

When record processing is specified, the bytes accessed from the source are converted one record at
a time into the receiver operand at the location specified by the receiver offset performing the functions
specified in the algorithm modifier in the sequence defined by the following algorithm.

Chapter 2. Computation and Branching Instructions 2-68

Convert Character to SNA (CVTCS)

The first function performed is trailing blank truncation.: A truncated record is built by logically
appending the record data to the record separator value specified in the controls operand and
removing all blank characters after the last nonblank character in the record. If a record has no . \.
trailing blanks, then no actual truncation takes place. A null record, a record consisting entirely of ..."
blanks, will be converted as just the record separator character with no other data following it. The
truncated record then consists of the record separator character followed by the truncated record data,
the full record data, or no data from the record.

If either the data transparency conversion or the compression function is specified in the algorithm
modifier, the conversion process continues for this record with the next specified function.

If not, the conversion process for this record is completed by placing the truncated record into the
receiver. If the truncated record cannot be completely contained in the receiver, the instruction ends
with a resultant condition of receiver overrun. When the record spanning function is specified in the
algorithm modifier, as much of the truncated record as will fit is placed into the receiver and the con­
trols operand is updated to describe how much of the source record was successfully converted into
the receiver. When the record spanning function is not specified in the algorithm modifier, the controls
operand is updated to describe only the last fully converted record in the receiver and the value of the
remaining bytes in the receiver is unpredictable.

The second function performed is data transparency conversion.: Data transparency conversion is
performed if the function is specified in the algorithm modifier. This provides for making the data in a
record transparent to the Convert SNA to Character instruction in the area of its scanning for record
separator values. Transparent data is built by preceding the data with 2 bytes of transparency control
information. The first byte has a fixed value of hex 35 and is referred to as tne TRN (transparency)
control character. The second byte is a 1-byte hexadecimal count, a value ranging from 1 to 255
decimal, of the number of bytes of data that follow and is referred to as the TRN count. This contains
the length of the data and does not include the TRN control information length. .."",;

Transparency conversion can be specified only in conjunction with record processing and, as such, is
performed on the truncated form of the source record. The transparent record is built by preceding the
data that follows the record separator in the truncated record with the TRN control information. The
TRN count in this case contains the length of just the truncated data for the record and does not
include the record separator character. For the special case of a null record, no TRN control informa-
tion is placed after the record separator character because there is no record data to be made trans-
parent.

If the compression function is specified in the algorithm modifier, the conversion process continues for
this record with the compression function.

If not, the conversion process for this record is completed by placing the transparent record into the
receiver. If the transparent record cannot be completely contained in the receiver, the instruction ends
with a resultant condition of receiver overrun.

When the record spanning function is specified in the algorithm modifier, as much of the transparent
record as will fit is placed into the receiver and the controls operand is updated to describe how much
of the source record was successfully converted into the receiver. The TRN count is also adjusted to
describe the length of the data successfully converted into the receiver; thus, the transparent data for
the record is not spanned out of the receiver. The remaining bytes of the transparent record, if any,
will be processed as a partial source record on the next invocation of the instruction and will be pre­
ceded by the appropriate TRN control information. For the special case where only 1 to 3 bytes are
available at the end of the receiver, (not enough room for the record separator, the transparency
control, and a byte of data) then just the record separator is placed in the receiver for the record being
converted. This can cause up to 2 bytes of unused space at the end of the receiver. The value of
these unused bytes is unpredictable.

Chapter 2. Computation and Branching Instructions 2-69

Convert Character to SNA (CVTCS)

When the record spanning function is not specified in the algorithm modifier, the controls operand is
updated to describe only the last fully converted record in the receiver and the value of the remaining
bytes in the receNer is unpredictable.

The third function performed is compression.: Compression is performed if the function is specified in
the algorithm modifier. This provides for reducing the size of strings of duplicate characters in the
source data. The source data to be compressed may have assumed a partially converted form at this
point as a result of processing for functions specified in the algorithm modifier. Compressed data is
built by concatenating one or more compression strings together to describe the bytes that make up
the converted form of the source data prior to the compression step. The bytes of the converted
source data are interrogated to locate the prime compression character strings (two or more consec­
utive prime compression characters), duplicate character strings (three or more duplicate nonprime
characters) and nonduplicate character strings occurring in the source.

The character strings encountered (prime, duplicate and nonduplicate) are reflected in the compressed
data by building one or more compression strings to describe them. Compression strings are com­
prised of an SCB (string control byte) possibly followed by one or more bytes of data related to the
character string to be described.

The format of an SCB and the description of the data that may follow it are:

• SCB

Control

Char(1)

Bits 0-1

00 = n nonduplicate characters are between this SCB and the next one; where n is the value
of the count field (1-63). .

01 = Reserved
10 = This SCB represents n deleted prime compression characters; where n is the value of the

count field (2-63). The next byte is the next SCB.
11 = This SCB represents n deleted duplicate characters; where n is the value of the count

field (3-63). The next byte contains a specimen of the deleted characters. The byte fol­
lowing the specimen character contains the next SCB.

Count Bits 2-7

This contains the number of characters that have been deleted for a prime or duplicate string,
or the number of characters to the next SCB for a nonduplicate string. A count value of zero
cannot be produced.

When record processing is specified, the compression is performed as follows.

The compression function is performed on just the converted form of the current source record
including the record separator character. The converted form of the source record prior to the com­
pression step may be a truncated record or a transparent record as described above, depending upon
the functions selected in the algorithm modifier. The record separator and TRN control information is
always converted as a nonduplicate compression entry to provide for length adjustment of the TRN
count, if necessary.

The conversion process for this record is completed by placing the compressed record into the
receiver. If the compressed record cannot be completely contained in the receiver, the instruction
ends with a resultant condition of receiver overrun.

When the record spanning function is specified in the algorithm modifier, as much of the compressed
record as will fit is placed into the receiver and the controls operand is updated to describe how much
of the source record was successfully converted into the receiver. The last compression entry placed
into the receiver may be adjusted if necessary to a length that provides for filling out the receiver.
This length adjustment applies only to compression entries for nonduplicate strings. Compression
entries for duplicate strings are placed in the receiver only if they fit with no adjustment. For the

Chapter 2. Computation and Branching Instructions 2-70

Convert Character to SNA (CVTCS)

special case where data transparency conversion is specified, the transparent data being described is
not spanned out of the receiver. This is provided for by performing length adjustment on the TRN

count of a transparent record, which may be included in the compressed data so that it describes only
the source data that was successfully converted into the receiver. For the special case where only 2 to
5 bytes are available at the end of the receiver, not enough room for the compression entry for a non­
duplicate string containing the record separator and the TRN control, and up to a 2-byte compression
entry for some of the transparent data, the nonduplicate compression entry is adjusted to describe only
the record separator. By doing this, no more than 3 bytes of unused space will remain in the receiver.
The value of these unused bytes is unpredictable. Unconverted source record bytes, if any, will be
processed as a partial source record on the next invocation of the instruction and will be preceded by
the appropriate TRN control information when performing transparency conversion.

When the record spanning function is not specified in the algorithm modifier, the controls operand is
updated to describe only the last fully converted record in the receiver. The value of the remaining
bytes in the receiver is unpredictable.

When string processing is specified, the compression is performed as follows.

The compression function is performed on the data for the entire source operand on a compression
string basis. In this case, the fields in the controls operand related to record processing are ignored.

The conversion process for the source operand is completed by placing the compressed data into the
receiver.

When the compressed data cannot be completely contained in the receiver, 'the instruction ends with a
resultant condition of receiver overrun. As much of the compressed data as will fit is placed into the
receiver and the controls operand is updated to describe how much of the source data was success-
fully converted into the receiver. The last compression entry placed into the receiver may be adjusted 1
if necessary to a length that provides for filling out the receiver. This length adjustment applies only to ...",
compression entries for nonduplicate strings. Compression entries for duplicate strings are placed in
the receiver only if they fit with no adjustment. By doing this, no more than 1 byte of unused space will
remain in the receiver.

When the compressed data can be completely contained in the receiver, the instruction ends with a
resultant condition of source exhausted. The compressed data is placed into the receiver and the con­
trols operand is updated to indicate that all of the source data was successfully converted into the
receiver.

At this point, either conversion of a source record has been completed or conversion has been inter­
rupted due to detection of the source exhausted or receiver overrun conditions. For record processing,
if neither of the above conditions has been detected either during conversion of or at completion of
conversion for the current record, the conversion process continues on the next source record with the
blank truncation step described above.

At completion of the instruction, the receiver offset locates the byte following the last converted byte in
the receiver. The value of the remaining bytes in the receiver after the last converted byte are unpre­
dictable. The source offset locates the byte following the last source byte for which conversion was
completed. When the record spanning function is specified in the algorithm modifier, the unconverted
source record bytes field specifies the length of the remaining source record bytes yet to be converted.
When the record spanning function is not specified in the algorithm modifier, the unconverted source
record bytes field has no meaning and is not set. The gap offset value indicates the offset to the next
gap relative to the source offset value set for this condition. The gap offset value has no meaning and
is not set when the data field length is zero.

Chapter 2. Computation and Branching Instructions 2-71

Convert Character to SNA (CVTCS)

Limitations: The following are limits that apply to the functions performed by this instruction.

Any form of overlap between the operands on this instruction yields unpredictable results in the
receiver operand.

Substring operand references that allow for a null substring reference (a length value of zero) may not
be specified for this instruction.

Resultant Conditions

• Source exhausted - All bytes in the source operand have been converted into the receiver
operand.

• Receiver overrun - An overrun condition in the receiver operand was detected before all of the
bytes in the source operand were processed.

Programming Notes:

If the source operand does not end on a record boundary, in which case the last record is
spanned out of the source, this instruction performs conversion only up to the start of that
partial record. In this case, the user of the instruction must move this partial record to combine
it with the rest of the record in the source operand to provide for its being processed correctly
upon the next invocation of the instruction. If full records are provided, the instruction performs
its conversions out to the end of the source operand and no special processing is required.

For the special case of a tie between the source exhausted and receiver overrun conditions, the
source exhausted condition is recognized first. That is, when source exhausted is the resultant
condition, the receiver may also be full. In this case, the receive offset may contain a value
equal to the length specified for the receiver, which would cause an exception to be detected on
the next invocation of the instruction. The processing performed for the source exhausted con­
dition should provide for this case if the instruction is to be invoked multiple times with the
same controls operand template. When the receiver overrun condition is the resultant condition,
the source will always contain data that can be converted.

Exceptions

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

lC

04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

Operands
1 2

X X

X X

X X

X X

X X

3

X

X

X

X

X

Other

X

X

X

X

Chapter 2. Computation and Branching Instructions 2-72

Convert Character to SNA (CVTCS)

Operands
Exception 1 2 3 Other

03 Function check X

~
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

J 01 Template value invalid X

Chapter 2. Computation and Branching Instructions 2-73

L

Convert Decimal Form to Floating-Point (CVTDFFP)

Convert Decimal Form to Floating-Point (CVTDFFP)

Op Code (Hex)
107F

Operand 1
Receiver

Operand 1: Floating-point variable scalar.

Operand 2: Packed scalar or zoned scalar.

Operand 3: Packed scalar or zoned scalar.

Operand 2
Decimal exponent

Operand 3
Decimal
significand

Description: This instruction converts the decimal form of a floating-point value specified by a decimal
exponent and a decimal significand to binary floating-point format, and places the result in the receiver
operand. The decimal exponent (operand 2) and decimal significand (operand 3) are considered to
specify a decimal form of a floating-point number. The value of this number is considered to be as
follows:

Value = S * (10**E)

where:

S = The value of the decimal significand operand.
E = The value of the decimal exponent operand.

Denotes multiplication. *. Denotes exponentiation.

The decimal exponent must be specified as a decimal integer value; no fractional digit positions may
be specified in its definition. The decimal exponent is a signed integer value specifying a power of 10
which gives the floating-point value its magnitude. A decimal exponent value too large or too small to
be represented in the receiver will result in the signaling of the appropriate floating-point overflow (hex
OC06) or floating-point underflow (hex OCO?) exception.

The decimal significand must be specified as a decimal value with a single integer digit position and
optional fractional digit positions. The decimal significand is a signed decimal value specifying
decimal digits which give the floating-point value its precision. The significant digits of the decimal
significand are considered to start with the leftmost nonzero decimal digit and continue to the right to
the end of the decimal significand value. Significant digits beyond 7 for a short float receiver, and
beyond 15 for a long float receiver exceed the precision provided for in the binary floating-point
receiver. These excess digits do participate in the conversion to provide for uniqueness of the conver­
sion as well as for proper rounding.

The decimal form floating-point value specified by the decimal exponent and decimal significand oper­
ands is converted to a binary floating-point number and rounded to the precision of the result field as
follows:

Source values which, in magnitude M, are in the range where (10**31-1) * 10·*-31 < = M < =
(10**31-1) *10" + 31 are converted subject to the normal rounding error defined for the floating-point
rounding modes.

Source values which, in magnitude M, are in the range where (10**31-1) * 10**-31 > M > (10·*31-1)
*10**+31 are converted such that the rounding error incurred on the conversion may exceed that
defined above. For round to nearest, this error will not exceed by more than .47 units in the least
significant digit position of the result in relation to the error that would be incurred for normal
rounding. For the other floating-point rounding modes, this error will not exceed 1.47 units in the least
significant digit position of the result.

The converted and rounded value is then assigned to the floating-point receiver.

Chapter 2. Computation and BranChing Instructions 2-74

Convert Decimal Form to Floating-Point (CVTDFFP)

Exceptions

Operands ..;
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X X

06 Floating-point overflow X

07 Floating-point underflow X

00 Floating-point inexact result X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machi ne-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

02 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-75

Convert External Form to Numeric Value (CVTEFN)

Convert External Form to Numeric Value (CVTEFN)

op Code (Hex)
1087

Operand 1
Receiver

Operand 2
Source

Operand 3
Mask

Operand 1: Numeric variable scalar or data-painter-defined numeric scalar.

Operand 2: Character scalar or data-painter-defined character scalar.

Operand 3: Character(3) scalar, null, or data-pointer-defined character(3) scalar.

ILEaccess ---,

CVTEFN (
var receiver
var receiver attributes
var source
var source_length
var mask

any numeric type;
aggregate;
aggregate;
unstgned binary;
aggregate

Description: This instruction scans a character string for a valid decimal number in display format,
removes the display character, and places the results in the receiver operan.d. The operation begins
by scanning the character string value in the source operand to make sure it is a valid decimal number
in display format.

\... The character string defined by operand 2 consists of the following optional entries:

• Currency symbol - This value is optional and, if present, must precede any sign and digit values.
The valid symbol is determined by operand 3. The currency symbol may be preceded in the field
by blank (hex 40) characters.

• Sign symbol - This value is optional and, if present, may precede any digit values (a leading sign)
or may follow the digit values (a trailing sign). Valid signs are positive (hex 4E) and negative (hex
60). The sign symbol. if it is a leading sign, may be preceded by blank characters. If the sign
symbol is a trailing sign, it must be the rightmost character in the field. Only one sign symbol is
allowed.

• Decimal digits - Up to 31 decimal digits may be specified. Valid decimal digits are in the range of
hex FO through hex F9 (0-9). The first decimal digit may be preceded by blank characters (hex 40),
but hex 40 values located to the right of the leftmost decimal digit are invalid.

The decimal digits may be divided into two parts by the decimal point symbol: an integer part and a
fractional part. Digits to the left of the decimal point are interpreted as integer values. Digits to the
right are interpreted as a fractional values. If no decimal point symbol is included, the value is inter­
preted as an integer value. The valid decimal point symbol is determined by operand 3. If the decimal
point symbol precedes the leftmost decimal digit, the digit value is interpreted as a fractional value,
and the leftmost decimal digit must be adjacent to the decimal paint symbol. If the decimal point
follows the rightmost decimal digit, the digit value is interpreted as an integer value, and the rightmost
decimal digit must be adjacent to the decimal point.

Decimal digits in the integer portion may optionally have comma symbols separating groups of three
digits. The leftmost group may contain one, two, or three decimal digits, and each succeeding group
must be preceded by the comma symbol and contain three digits. The comma symbol must be adja­
cent to a decimal digit on either side. The valid comma symbol is determined by operand 3.

Chapter 2. Computation and Branching Instructions 2-76

Convert External Form to Numeric Value (CVTEFN)

Decimal digits in the fractional portion may not be separated by commas and must be adjacent to one
another.

Examples of external formats follow. The following symbols are used.

$ currency symbol
decimal point
comma

o digit (hex FO-F9)
blank (hex 40)

+ positive sign
negative sign

Format Comments

$ + 0000.00 Currency symbol, leading sign, no comma separators

00,000- Comma symbol, no fraction, trailing sign

-.000 No integer, leading sign

$000,000- No fraction, comma symbol, trailing sign

$ + 00.00 Embedded blanks before digits

Operand 3 must be a 3-byte character scalar. 8yte 1 of the string indicates the byte value that is to be
used for the currency symbol. 8yte 2 of the string indicates the byte value to be used for the comma
symbol. 8yte 3 of the string indicates the byte value to be used for the decimal point symbol. If
operand 3 is nUll, the currency symbol (hex 58), comma (hex 68), and decimal point (hex 48) are used.

If the syntax rules are violated, a conversion (hex OC01) exception is signaled. If not, a zoned decimal
value is formed from the digits of the display format character string. This number is placed in the
receiver operand following the rules of a normal arithmetic conversion.

If a decimal to bi'nary conversion causes a size (hex OCOA) exception to be signaled, the binary value
contains the correct truncated result only if the decimal value contains 15 or fewer significant nonfrac­
tional digits.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 ArgumenUparameter

01 Parameter reference violation X X X

OC Computation

01 Conversion X

OA Size X

10 Damage encountered

04 System object damage X X X X

44 Partial system object damage X X X X

Chapter 2. Computation and Branching Instructions 2-77

..,J

Convert External Form to Numeric Value (CVTEFN)

Operands
Exception 1 2 3 Other

'L
lC Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

02 Scalar attribute invalid X

36 Space management

01 space extension/truncation X

L

Chapter 2. Computation and Branching Instructions 2-78

Convert Floating-Point to Decimal Form (CVTFPDF)

Convert Floating-Point to Decimal Form (CVTFPDF)

Op Code (Hex) Operand 1 Operand 2
CVTFPDF Decimal exponent Decimal
10BF significand

CVTFPDFR Decimal exponent Decimal
12BF significand

Operand 1: Packed variable scalar or zoned variable scalar.

Operand 2: Packed variable scalar or zoned variable scalar.

Operand 3: Floating-point scalar.

Operand 3
Source

Source

Description: This instruction converts a binary floating-point value to a decimal form of a floating-point
value specified by a decimal exponent and a decimal significand, and places the result in the decimal
exponent and decimal significand operands.

The value of this number is considered to be as follows:

Value = S * (16**E)

where:

S = The value of the decimal significand operand.

E = The value of the decimal exponent operand.

Denotes multiplication.

Denotes exponentiation.

The decimal exponent must be specified as a decimal integer value. No fractional digit positions are
allowed. It must be specified with at least five digit positions. The decimal exponent provides for
containing a signed integer value specifying a power of 10 which gives the floating-point value its mag­
nitude.

The decimal significand must be specified as a decimal value with a single integer digit position and
optional fractional digit positions. The decimal significand provides for containing a signed decimal
value specifying decimal digit is which give the floating-point value its precision. The decimal
significand is formed as a normalized value, that is, the leftmost digit position is nonzero for a nonzero
source value.

When the source contains a representation of a normalized binary floating-point number with decimal
significand digits beyond the leftmost 7 digits for a short floating-point source or beyond the leftmost 15
digits for a long floating-point source, the precision allowed for the binary floating-point source is
exceeded.

When the source contains a representation of a denormalized binary floating-point number, it may
provide less precision than the precision of a normalized binary floating-point number, depending on
the particular source value. Decimal significand digits exceeding the precision of the source are set as
a result of the conversion to provide for uniqueness of conversion and are correct, except for rounding
errors. These digits are only as precise as the floating-point calculations that produced the source
value. The floating-point inexact result (hex OeOD) exception provides a means of detecting loss of
precision in floating-point calculations.

The binary floating-point source is converted to a decimal form floating-point value and rounded to the
precision of the decimal significand operand as follows:

Chapter 2. Computation and Branching Instructions 2-79

Convert Floating-Point to Decimal Form (CVTFPDF)

• The decimal significand is formed as a normalized value and the decimal exponent is set accord­
ingly.

• For the nonround 'form of the instruction, the value to be assigned to the decimal significand is
adjusted to the precision of the decimal significand, if necessary, according to the current float
rounding mode in effect for the process. For the optional round form of the instruction, the decimal
round algorithm is used for the precision adjustment of the decimal significand. The decimal round
algorithm overrides the current floating-point rounding mode that is in effect for the process.

• Source values which, in magnitude M, are in the range where (10··31-1) * 10"-31 < = M < =
(10"31-1) • 10" +31 are converted subject to the normal rounding error defined for the floating­
point rounding modes and the optional round form of the instruction.

• Source values which, in magnitude M, are in the range where (10"31-1) • 10"-31 > M > (10"31-1)
·10"+31 are converted such that the rounding error incurred on the conversion may exceed that
defined above. For round to nearest and the optional round form of the instruction, this error will
not exceed by more than .47 units in the least significant digit position of the result, the error that
would be incurred for a correctly rounded result. For the other floating-point rounding modes, this
error will not exceed 1.47 units in the least significant digit position of the result.

• If necessary, the decimal exponent value is adjusted to compensate for rounding .

• The converted and rounded value is then assigned to the decimal exponent and decimal
significand operands.

A size (hex OCOA) exception cannot occur on the assignment of the decimal exponent or the decimal
significand values.

Limitations: The following are limits that apply to the functions performed by this instruction.

The result of the operation is unpredictable for any type of overlap between the decimal exponent and
decimal significand operands.

Exceptions

Operands
Exception 1 2 3 other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

OC Invalid floating-point conversion X X

00 Floating-point inexact result X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

Chapter 2. Computation and Branching Instructions 2-80

Convert Floating-Point to Decimal Form (CVTFPDF)

Operands
Exception 1 2 3 Other

20 Machine support J 02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

04 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

,.J

Chapter 2. Computation and Branching Instructions 2-81

L

Convert Hex to Charader (CVTHC)

Op Code (Hex)
1086

Operand 1
Receiver

Operand 1: Character variable scalar.

Operand 2: Character variable scalar.

Operand 2
Source

Convert Hex to Character l\,.;v 1M\,,)

Description: Each hex digit (4-bit value) of the string value in the source operand is converted to a
character (8-bit value) and placed in the receiver operand.

Hex Digits

Hex 0-9 =

Hex A-F =

Characters

Hex FO-F9

Hex C1-C6

The operation begins with the two operands left-adjusted and proceeds left to right until all the charac­
ters of the receiver operand have been filled. If the source operand contains fewer hex digits than
needed to fill the receiver. the excess characters are assigned a value of hex FO. If the source
operand is too large. a length conformance (hex OC08) or an invaJid operand length (hex 2AOA) excep­
tion is signaled.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for the source is that
the bytes of the receiver are each set with a value of hex FO. The effect of specifying a null substring
reference for the receiver is that no result is set.

Exceptions

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

OC Computation

08 Length conformance

10 Damage encountered

04 System object damage state

44 Partial system object damage

1C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

02 Function check

Operands
1

X

X

X

X

X

X

X

2

X

X

X

X

X

X

x
X

Other

X

X

X

X

X

Chapter 2. Computation and Branching Instructions 2-82

Convert Hex to Character (CVTHC)

Operands
Exception 1 2 Other
22 Object access

01 Object not found X X ~
02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-83

L

Convert MRJE to Character (CVTMC)

Convert MRJE to Character (CVTMC)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [405]
CVTMC Receiver Controls Source
10AB

CVTMCB Branch options Receiver Controls Source Branch targets
1CAB

CVTMCI Indicator Receiver Controls Source Indicator targets
18AB options

Operand 1: Character variable scalar.

Operand 2: Character(6) variable scalar (fixed-length).

Operand 3: Character scalar.

Operand 4-5:
,~

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

ILEaccess ---,

CVTMC (
var receiver

receiver_length
var controls
var source

source_length
var return code

aggregate;
unsigned binary;
aggregate;
aggregate;
unsigned binary;
signed binary

The return code will be set as follows:

Return_Code

-1

a

Meaning

Receiver Overrun.

Source Exhausted.

Description: This instruction converts a character string from the MRJE (MULTI-LEAVING remote job
entry) compressed format to character format. The operation converts the source (operand 3) from the
MRJE compressed format to character format under control of the controls (operand 2) and places the
results in the receiver (operand 1).

The source and receiver operands must both be character strings. The source operand cannot be
specified as either a signed or unsigned immediate value.

The controls operand must be a character scalar that specifies additional information to be used to
control the conversion operation. It must be at least 6 bytes in length and have the following format:

• Controls operand

Receiver offset

Source offset

Char(6)

Bin(2)

Bin(2)

Chapter 2. Computation and BranChing Instructions 2-84

Algorithm modifier

Receiver record length

Convert MRJE to Character (CVTMC)

Char(1)

Char(1)

As input to the instruction, the source offset and receiver offset fields specify the offsets where bytes of
the source and receiver operands are to be processed. If an offset is equal to or greater than the
length specified for the operand it corresponds to (it identifies a byte beyond the end of the operand), a
template value invalid (hex 3801) exception is signaled. As output from the instruction, the source
offset and receiver offset fields specify offsets that indicate how much of the operation is complete
when the instruction ends.

The algorithm modifier has the following valid values:

• Hex 00 = Do not move SRCBs (sub record control bytes) from the source into the receiver.

• Hex 01 = Move SRCBs from the source into the receiver.

The receiver record length value specifies the record length to be used to convert source records into
the receiver operand. This length applies to only the string portion of the receiver record and does not
include the optional SRCB field. If a receiver record length of 0 is specified, a template value invalid
(hex 3801) exception is signaled.

Only the first 6 bytes of the controls operand are used. Any excess bytes are ignored.

The operation begins by accessing the bytes of the source operand at the location specified by the
source offset. This is assumed to be the start of a record. The bytes of the records in the source
operand are converted into the receiver operand at the location specified by the receiver offset
according to the following algorithm.

The first byte of the source record is considered to be an RCB (record control byte) that is to be
ignored during conversion.

The second byte of the source record is considered to be an SRCB. If an algorithm modifier of value
hex 00 was specified, the SRCB is ignored. If an algorithm modifier of value hex 01 was specified, the
SRCB is copied into the receiver.

The strings to be built in the receiver record are described in the source after the SRCB by one or
more SCBs (string control bytes).

The format of the SCBs in the source are as follows:

o k 1 jjjjj

The bit meanings are:

Bit
o

k

Value
o

o

o

Meaning
End of record;the EOR SCB is hex 00.

All other SCBs.

The string is compressed.

The string is not compressed.

For k - 0:

Blanks (hex 4Os) have been deleted.

Nonblank characters have been deleted. The next character
in the data stream is the specimen character.

For k - 1:

This bit is part of the length field for length of uncompressed
data.

Chapter 2. Computation and Branching Instructions 2-85

J

Bit
jjjjj

Ijjjjj

Value

Convert MRJE to Character (CVTMC)

Meaning
Number of characters that have been deleted if k = O. The
value can be 1-31.

Number of characters to the next SGB (no compression) if
k = 1. The value can be 1-63.

The uncompressed (nonidentical bytes) follow the SGB in the
data stream.

A length of a encountered in an sca results in the signaling of a conversion (hex OC01) exception.

Strings of blanks or nonblank identical characters described in the source record are repeated in the
receiver the number of times indicated by the sca count value.

Strings of nonidentical characters described in the source record are moved into the receiver for the
length indicated by the sca count value.

When an EOR (end of record) sca (hex 00) is encountered in the source, the receiver is padded with
blanks out to the end of the current record.

If the converted form of a source record is larger than the receiver record length, the instruction is
terminated by signaling a length conformance (hex OC08) exception.

If the end of the source operand is not encountered, the operation then continues by reapplying the
above algorithm to the next record in the source operand.

If the end of the source operand is encountered (whether or not in conjunction with a record boundary,
EOR sca in the source), the instruction ends with a resultant condition of source exhausted. The
receiver offset locates the byte following the last fully converted record in the receiver. The source
offset locates the byte following the last source record for which conversion is complete. The value of
the remaining bytes in the receiver after the last converted record are unpredictable.

If the converted form of a record cannot be completely contained in the receiver, the instruction ends
with a resultant condition of receiver overrun. The receiver offserl locates the byte following the last
fully converted record in the receiver. The source offset locates the byte following the last source
record for which conversion is complete. The value of the remaining bytes in the receiver after the last
converted record is unpredictable.

If the source exhausted and the receiver overrun conditions occur at the same time, the source
exhausted condition is recognized first. In this case, the receiver offset may contain a value equal to
the length specified for the receiver which causes an exception to be signaled on the next invocation of
the instruction. The processing performed for the source exhausted condition provides for this case if
the instruction is invoked multiple times with the same controls operand template. When the receiver
overrun condition is the resultant condition, the source always contains data that can be converted.

Limitations: The following are limits that apply to the functions performed by this instruction.

Any form of overlap between the operands on this instruction yields unpredictable results in the
receiver operand.

Resultant Conditions

• Source exhausted - All full records in the source operand have been converted into the receiver
operand.

• Receiver overrun - An overrun condition in the receiver operand was detected prior to processing
all of the bytes in the source operand.

Chapter 2. Computation and Branching Instructions 2-86

Convert MRJE to Character (CVTMC)

Exceptions

Operands J Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

01 Conversion X

08 Length conformance X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X l

03 Function check X ..;
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 Template value invalid X

Chapter 2. Computation and Branching Instructions 2-87

Convert Numeric to Character (CVTNC)

Convert Numeric to Character (CVTNC)

Op Code (Hex)
10A3

Operand 1
Receiver

Operand 2
Source

Operand 3
Attributes

Operand 1: Character variable scalar or data-pointer-defined character scalar.

Operand 2: Numeric scalar or data-pointer-defined numeric scalar.

Operand 3: Character(7) scalar or data-pointer-defined character(7) scalar.

Description: The source numeric value (operand 2) is converted and copied to the receiver character
string (operand 1). The receiver operand is treated as though it had the attributes supplied by operand
3. Operand 1, when viewed in this manner, receives the numeric value of operand 2 following the
rules of the Copy Numeric Value instruction.

The format of operand 3 is as follows:

• Scalar attributes

Scalar type

Hex 00 = Signed binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex OA = Unsigned binary

Scalar length

If binary:

- Length (L) (where L = 2 or 4)

If floating-point:

- Length (where L = 4 or 8)

If zoned decimal or packed decimal:

- Fractional digits (F)

- Total digits (n
(where 1 S T :S 31 and 0 :S F :S T)

Reserved (binary 0)

Char(7)

Char(1)

Bin(2)

Bits 0-15

Bits 0-15

Bits 0-7

Bits 8-15

Bin(4)

The byte length of operand 1 must be large enough to contain the numeric value described by operand
3. If it is not large enough, a scalar value invalid (hex 3203) exception is signaled. If it is larger than
needed, the numeric value is placed in the leftmost bytes and the unneeded rightmost bytes are
unchanged by the instruction.

If a decimal to binary conversion causes a size (hex OCOA) exception to be signaled, the binary value
contains the correct truncated result only if the decimal value contains 15 or fewer significant nonfrac­
tional digits.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

Chapter 2. Computation and Branching Instructions 2-88

Convert Numeric to Character (CVTNC)

Operands
Exception 1 2 3 Other

01 Spacing addressing violation X X X

J 02 Boundary alignment X X X

03 Range X X X

04 External data object not found X X X

06 Optimized addressability invalid X X X

08 ArgumenUparameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X

06 Floating-point overflow X

07 Floating-point underflow X

09 Floating-point invalid operand X

OA Size X

OC Invalid floating-point conversion X

00 Floating-point inexact result X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception t
03 Machine storage limit exceeded X J

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

02 Scalar attribute invalid

03 Scalar value invalid X

36 Space management .J
01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-89

L

Convert SNA to Character (CVTSC)

Convert SNA to Character (CVTSC)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4-6]
CVTSC Receiver Controls Source
1008

CVTSCa Branch options Receiver Controls Source Branch targets
1CD8

CVTSCI Indicator Receiver Controls Source Indicator targets
180B options

Operand 1: Character variable scalar.

Operand 2: Character(14) variable scalar (fixed length).

Operand 3: Character scalar.

Operand 4-6:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

ILEaccess ---,
CVTSC (

var receiver
receiver_length

var controls
var source

source_length
var return code

aggregate;
unsigned binary;
aggregate;
aggregate;
unsigned binary;
signed binary

The return code will be set as follows:

Return Code

-1

9

1

Mean;ng

Receiver Overrun.

Source Exhausted.

Escape Code Encountered

Description: This instruction converts a string value from SNA (systems network architecture) format
to character. The operation converts the source (operand 3) from SNA format to character under
control of the controls (operand 2) and places the result into the receiver (operand 1).

The source and receiver operands must both be character strings. The source operand may not be
specified as an immediate operand.

The controls operand must be a character scalar that specifies additional information to be used to
control the conversion operation. It must be at least 14 bytes in length and have the following format:

• Controls operand base template

- Receiver offset

Char(14)

Bin(2)

Chapter 2. Computation and BranChing Instructions 2-90

Convert SNA to Character (CVTSC)

Source offset Bin(2)

Algorithm modifier Char(1)

Receiver record length Char(1)

Record separator Char(1)

Prime compression Char(1)

Unconverted receiver record bytes Char(1)

Conversion status Char(2)

Unconverted transparency string bytes Char(1)

Offset into template to translate table Bin(2)

• Controls operand optional template extension Char(64)

- Record separator translate table Char(64)

Upon input to the instruction, the source offset and receiver offset fields specify the offsets where bytes
of the source and receiver operands are to be processed. If an offset is equal to or greater than the
length specified for the operand it corresponds to (it identifies a byte beyond the end of the operand), a
template value invalid (hex 3801) exception is signaled. As output from the instruction, the source
offset and receiver offset are set to specify offsets that indicate how much of the operation is complete
when the instruction ends.

.)

The algorithm modifier specifies the optional functions to be performed. Any, combination of functions
not precluded by the bit definitions below is valid except that at least one of the functions must be
specified. All algorithm modifier bits cannot be zero. Specification of an invalid algorithm modifier
value results in a template value invalid (hex 3801) exception. The meaning of the bits in the algorithm \
modifier is the fOliowing:J

Bits Meaning
o 0 - Do not perform decompression. Interpret a source character value of hex 00 as null.

1 - Perform decompression. Interpret a source character value of hex 00 as a record separator.

1-2 00 - No record separators in source, no blank padding. Do not perform data transparency conver-
sion.

01 - Reserved.
10 - Record separators in source, perform blank padding. Do not perform data transparency conver­

sion.
11 - Record separators in source, perform blank padding. Perform data transparency conversion.

3-4 00 - Do not put record separators into receiver.
01 - Move record separators from source to receiver (allowed only when bit 1 - 1)
10 - Translate record separators from source to receiver (allowed only when bit 1 - 1)
11 - Move record separator from controls to receiver.

5-7 Reserved

The receiver record length value specifies the record length to be used to convert source records into
the receiver operand. This length applies only to the data portion of the receiver record and does not
include the optional record separator. Specification of a receiver record length of zero results in a
template value invalid (hex 3801) exception. The receiver record length value is ignored if no record
separator processing is requested in the algorithm modifier.

The record separator value specifies the character that is to precede the converted form of each record
in the receiver. The record separator character specified in the controls operand is used only for the
case where the move record separator from controls to receiver function is specified in the algorithm
modifier or where a missing record separator in the source is detected.

Chapter 2. Computation and Branching Instructions 2-91

Convert SNA to Character (CVTSC)

The prime compression value specifies the character to be used as the prime compression character
when performing decompression of the SNA format source data to character. It may have any value.
The prime compressien value is ignored if the perform decompression function is not specified in the
algorithm modifier.

The unconverted receiver record bytes value specifies the number of bytes remaining in the current
receiver record that are yet to be set with converted bytes from the source.

When record separator processing is specified in the algorithm modifier, this value is both input to and
output from the instruction. On input, a value of hex 00 means it is the start of processing for a new
record, and the initial conversion step is yet to be performed. This indicates that for the case where a
function for putting record separators into the receiver is specified in the algorithm modifier. a record
separator character has yet to be placed in the receiver. On input. a nonzero value less than or equal
to the receiver record length specifies the number of bytes remaining in the current receiver record
that are yet to be set with converted bytes from the source. This value is assumed to be the valid
count of unconverted receiver record bytes relative to the current byte to be processed in the receiver
as located by the receiver offset field. As such. it is used to determine the location of the next record
boundary in the receiver operand. This value must be less than or equal to the receiver record length
value; otherwise. a template value invalid (hex 3801) exception is signaled. On output. this field is set
with a value as defined above which describes the number of bytes of the current receiver record not
yet containing converted data.

When record separator processing is not specified in the algorithm modifier. this value is ignored.

The conversion status field specifies status information for the operation to be performed. The
meaning of the bits in the conversion status is the following:

Bits Meaning
o 0 - No transparency string active.

1 - Transparency string active. Unconverted transparency string bytes value contains the
remaining string length.

1-15 Reserved

This field is both input to and output from the instruction. /t provides for checkpointing the conversion
status over successive executions of the instruction.

If the conversion status indicates transparency string active. but the algorithm modifier does not specify
perform data transparency conversion. a template value invalid (hex 3801) exception is signaled.

The unconverted transparency string bytes field specifies the number of bytes remaining to be con­
verted for a partially processed transparency string in the source.

When perform data transparency conversion is specified in the algorithm modifier. the unconverted
transparency string bytes field can be both input to and output from the instruction.

On input. when the no transparency string active status is specified in the conversion status. this value
is ignored.

On input. when transparency string active status is specified in the conversion status, this value con­
tains a count for the remaining bytes to be converted for a transparency string in the source. A value
of hex 00 means the count field for a transparency string is the first byte of data to be processed from
the source operand. A value of hex 01 through hex FF specifies the count of the remaining bytes to be
converted for a transparency string. This value is assumed to be the valid count of unconverted trans­
parency string bytes relative to the current byte to be processed in the source as located by the source
offset field.

Chapter 2. Computation and BranChing Instructions 2-92

Convert SNA to Character (CVTSC)

On output, this value is set if necessary along with the transparency string active status to describe a
partially converted transparency string. A value of hex 00 will be set if the count field is the next byte
to be processed for a"transparency string. A value of hex 01 through hex FF specifying the number of
remaining bytes to be converted for a transparency string, will be set if the count field has already
been processed.

When do not perform data transparency conversion is specified in the algorithm modifier, the uncon­
verted transparency string bytes value is ignored.

The offset into template to translate table value specifies the offset from the beginning of the template
to the record separator translate table. This value is ignored unless the translate record separators
from source to receiver function is specified in the algorithm modifier.

The record separator translate table value specifies the translate table to be used in translating record
separators specified in the source to the record separator value to be placed into the receiver. It is
assumed to be 64 bytes in length, providing for translation of record separator values of from hex 00 to
hex 3F. This translate table is used only when the translate record separators from source to receiver
function is specified in the algorithm modifier. See the record separator conversion function under the
conversion process described below for more detail on the usage of the translate table.

Only the first 14 bytes of the controls operand base template and the optional 64-byte extension area
specified for the record separator translate table are used. Any excess bytes are ignored.

The description of the conversion process is presented as a series of separately performed steps,
which may be selected in allowable combinations to accomplish the conversion function. It is pre­
sented this way to allow for describing these functions separately. However, in the actual execution of
the instruction, these functions may be performed in conjunction with one another or separately.
depending upon which technique is determined to provide the best implementation.

The operation is performed either on a record-by-record basis. record processing, or on a nonrecord
basis. string processing. This is determined by the functions selected in the algorithm modifier. Speci­
fying the record separators in source. perform blank padding or move record separator from controls to
receiver indicates record processing is to be performed. If neither of these functions is specified. in
which case decompression must be specified, it indicates that string processing is to be performed.

The operation begins by accessing the bytes of the source operand at the location specified by the
source offset.

When record processing is specified. the source offset may locate a point at which processing of a
partially converted record is to be resumed or processing for a full record is to be started. The uncon­
verted receiver record bytes field indicates whether conversion processing is to be started with a
partial or a full record. Additionally, the transparency string active indicator in the conversion status
field indicates whether conversion of a transparency string is active for the case of resumption of proc­
eSSing for a partially converted record. The conversion process is started by completing the conver­
sion of a partial source record if necessary before processing the first fuJi source record.

When string processing is specified. the source offset is assumed to locate the start of a compression
entry.

When during the conversion process the end of the receiver operand is encountered. the instruction
ends with a resultant condition or receiver overrun.

When record processing is specified in the algorithm modifier, this check is performed at the start of
conversion for each record. A source exhausted condition would be detected before a receiver overrun
condition if there is no source data to convert. If the receiver operand does not have room for a full
record. the receiver overrun condition is recognized. The instruction is terminated with status in the

Chapter 2. Computation and Branching Instructions 2-93

Convert SNA to Character (CVTSC)

controls operand describing the last completely converted record. For receiver overrun, partial conver­
sion of a source record is not performed.

When string processing is specified in the algorithm modifier, then decompression must be specified
and the decompression function described below defines the detection of receiver overrun.

When during the conversion process the end of the source operand is encountered, the instruction
ends with a resultant condition of source exhausted. See the description of this condition in the con­
version process described below to determine the status of the controls operand values and the con­
verted bytes in the receiver for each case.

When string processing is specified, the bytes accessed from the source are converted on a string
basis into the receiver operand at the location specified by the receiver offset. In this case, the decom­
pression function must be specified and the conversion process is accomplished with just the decom­
pression function defined below.

When record processing is specified, the bytes accessed from the source are converted one record at
a time into the receiver operand at the location specified by the receiver offset performing the functions
specified in the algorithm modifier in the sequence defined by the following algorithm.

Record separator conversion is performed as requested in the algorithm modifier during the initial
record separator processing performed as each record is being converted. This provides for control­
ling the setting of the record separator value in the receiver.

When the record separators in source option is specified, the following algorithm is used to locate
them. A record separator is recognized in the source when a character value less than hex 40 is
encountered. When do not perform decompression is specified, a source character value of hex 00 is
recognized as a null value rather than as a record separator. In this case, the processing of the
current record continues with the next source byte and the receiver is not updated. When perform data
transparency conversion is specified, a character value of hex 35 is recognized as the start of a trans­
parency string rather than as a record separator.

If the do not put record separators into the receiver function is specified, the record separator, if any,
from the source record being processed is removed from the converted form of the source record and
will not be placed in the receiver.

If the move record separators from the source to the receiver function is specified, the record separator
from the source record being processed is left as is in the converted form of the source record and will
be placed in the receiver.

If the translate record separators from the source to the receiver function is specified, the record sepa­
rator from the source record being processed is translated using the specified translate table, replaced
with its translated value in the converted form of the source record and, will be placed in the receiver.
The translation is performed as in the translate instruction with the record separator value serving as
the source byte to be translated. It is used as an index into the specified translate table to select the
byte in the translate table that contains the value to which the record separator is to be set. If the
selected translate table byte is equal to hex FF, it is recognized as an escape code. The instruction
ends with a resultant condition of escape code encountered, and the controls operand is set to
describe the conversion status as of the processing completed just prior to the conversion step for the
record separator. If the selected translate table byte is not equal to hex FF, the record separator in the
converted form of the record is set to its value.

If the move record separator from controls to receiver function is specified, the controls record sepa­
rator value is used in the converted form of the source record and will be placed into the receiver.

Chapter 2. Computation and Branching Instructions 2-94

Convert SNA to Character (CVTSC)

When the record separators in source do blank padding function is requested, an assumed record sep­
arator will be used if a record separator is missing in the source data. In this case, the controls record
separator character is used as the record separator to precede the converted record if record separa­
tors are to be placed in the receiver. The conversion process continues, bypassing the record sepa­
rator conversion step that would normally be performed. The condition of a missing record separator
is detected when during initial processing for a full record, the first byte of data is not a record sepa­
rator character.

Decompression is performed if the function is specified in the algorithm modifier. This provides for
converting strings of duplicate characters in compressed format in the source back to their full size in
the receiver. Decompression of the source data is accomplished by concatenating together character
strings described by the compression strings occurring in the source. The source offset value is
assumed to locate the start of a compression string. Processing of a partial decompressed record is
performed if necessary.

The character strings to be built into the receiver are described in the source by one or more com­
pression strings. Compression strings are comprised of an SCB (string control byte) possibly followed
by one or more bytes of data related to the character string to be built into the receiver.

The format of an SCB and the description of the data that may follow it is as follows:

• SCB

Control

Char(1)

Bits 0-1

00 = n nonduplicate characters are between this SCB and the next one; where n is the value
of the count field (1-63).

01 = Reserved.
10 = This SCB represents n deleted prime compression characters; where n is the value of the '\ ..

count field (1-63). The next byte is the next SCB."
11 = This SCB represents n deleted duplicate characters; where n is the value of the count

field (1-63). The next byte contains a specimen of the deleted characters. The byte fol-
lowing the specimen character contains the next SCB.

Count Bits 2-7

This contains the number of characters that have been deleted for a prime or duplicate string,
or the number of characters to the next SCB for a nonduplicate string. A count value of zero is
invalid and results in the signaling of a conversion (hex OC01) exception.

Strings of prime compression characters or duplicate characters described in the source are repeated
in the decompressed character string the number of times indicated by the sca count value.

Strings of nonduplicate characters described in the source record are formed into a decompressed
character string for the length indicated by the sca count value.

If the end of the source is encountered prior to the end of a compression string, a conversion (hex
OC01) exception is signaled.

When record processing is specified, decompression is performed one record at a time. In this case, a
conversion (hex OC01) exception is signaled if a compression string describes a character string that
would span a record boundary in the receiver. If the source contains record separators, the case of a
missing record separator in the source is detected as defined under the initial description of the con­
version process. Record separator conversion, as requested in the algorithm modifier, is performed as
the initial step in the building of the decompressed record. A record separator to be placed into the
receiver is in addition to the data to be converted into receiver for the length specified in the receiver
record length field. The decompression of compression strings from the source continues until a
record separator character for the next record is recognized when the source contains record separa­
tors, or until the decompressed data required to fill the receiver record has been processed or the end

Chapter 2. Computation and Branching Instructions 2-95

Convert SNA to Character (CVTSC)

of the source is encountered whether record separators are in the source or not. Transparency strings
encountered in the decompressed character string are not scanned for a record separator value. If the
end of the source is encountered, the data decompressed to that point appended to the optional record
separator for this record forms a partial decompressed record. Otherwise, the decompressed char­
acter strings appended to the optional record separator for this record form the decompressed record.
The conversion process then continues for this record with the next specified function.

When string processing is specified, decompression is performed on a compression string basis with
no record oriented processing implied. The conversion process for each compression string from the
source is completed by placing the decompressed character string into the receiver. The conversion
process continues decompressing compression strings from the source until the end of the source or
the receiver is encountered. When the end of the source operand is encountered, the instruction ends
with a resultant condition of source exhausted. When a character string cannot be completely con­
tained in the receiver. the instruction ends with a resultant condition of receiver overrun. For either of
the above ending conditions. the controls operand is updated to describe the status of the conversion
operation as of the last completely converted compression entry. Partial conversion of a compression
entry is not performed.

Data transparency conversion is performed if perform data transparency conversion is specified in the
algorithm modifier. This provides for correctly identifying record separators in the source even if the
data for a record contains value that could be interpreted as record separator values. Processing of
active transparency strings is performed if necessary.

A nontransparent record is built by appending the nontransparent and transparent data converted from
the record to the record separator for the record. The nontransparent record may be produced from
either a partial record from the source or a full record from the source. This is accomplished by first
accessing the record separator for a full record. The case of a missing record separator in the source
is detected as defined under the initial description of the conversion process. Record separator con­
version as requested in the algorithm modifier is performed if it has not already been performed by a
prior step; the rest of the source record is scanned for values of less than hex 40.

A value greater than or equal to hex 40 is considered nontransparent data and is concatenated onto
the record being built as is.

A value equal to hex 35 identifies the start of a transparency string. A transparency string is com­
prised of 2 bytes of transparency control information followed by the data to be made transparent to
scanning for record separators. The first byte has a fixed value of hex 35 and is referred to as the TRN
(transparency) control character. The second byte is a 1-byte hexadecimal count, a value remaining
from 1 to 255 decimal, of the number of bytes of data that follow and is referred to as the TRN count. A
TRN count of zero is invalid and causes a conversion (hex OC01) exception. This contains the length of
the transparent data and does not include the TRN control information length. The transparent data is
concatenated to the nontransparent record being built and is not scanned for record separator charac­
ters.

A value equal to hex 00 is recognized as the record separator for the next record only when perform
decompression is specified in the algorithm modifier. In this case, the nontransparent record is com­
plete. When do not perform decompression is specified in the algorithm modifier, a value equal to hex
00 is ignored and is not included as part of the nontransparent data built for the current record. '

A value less than hex 40 but not equal to hex 35 is considered to be the record separator for the next
record, and the forming of the nontransparent record is complete.

The building of the nontransparent record is completed when the length of the data converted into the
receiver equals the receiver record length if the record separator for the next record is not encount­
ered prior to that point.

Chapter 2. Computation and Branching Instructions 2-96

Convert SNA to Character (CVTSC)

If the end of the source is encountered prior to completion of building the nontransparent record. the
nontransparent record built up to this point is placed in the receiver and the instruction ends with a
resultant condition of source exhausted. The controls operand is updated to describe the status for the
partially converted record. This includes describing a partially converted transparency string, if neces­
sary, by setting the active transparency string status and the unconverted transparency string bytes
field.

If the building of the nontransparent record is completed prior to encountering the end of the source,
the conversion process continues with the blank padding function described below.

k padding is performed if the function is specified in the algorithm modifier This provides for
expanding out to the size specified by the receiver record length the source records for which trailing
blanks have been truncated. The padded record may be produced from either a partial record from
the source or a full record from the source.

The record separator for this record is accessed. The case of a missing record separator in the
source is detected as defined under the initial description of the conversion process. Record separator
conversion as requested in the algorithm modifier, is performed if it has not already been performed by
a prior step.

The nontruncated data, if any, for the record is appended to the optional record separator for the
record. The nontruncated data is determined by scanning the source record for the record separator
for the next record. This scan is concluded after processing enough data to completely fill the receiver
record or upon encountering the record separator for the next record. The data processed prior to
concluding the scan is considered the nontruncated data for the record.

The blanks, if any, required to pad the record out to the nontruncated data for the record, concluding
the forming of the padded record.

If the end of the source is encountered during the forming of the padded record, the data processed up
to that point, appended to the optional record separator for the record, is placed into the receiver and
the instruction ends with a resultant condition of source exhausted. The controls operand is updated to
describe the status of the partially converted record.

If the forming of the padded record is concluded prior to encountering the end of the source, the con­
version of the record is completed by placing the converted form of the record into the receiver.

At this point, either conversion of a source record has been completed or conversion has been inter­
rupted due to detection of the source exhausted or receiver overrun condition. For record processing, if
neither of the above conditions has been detected either during conversion of or at completion of con­
version for the current record, the conversion process continues on the next source record with the
decompression function described above:

At completion of the instruction, the receiver offset locates the byte following the last converted byte in
the receiver. The value of the remaining bytes in the receiver after the last converted byte are unpre­
dictable. The source offset locates the byte following the last source byte for which conversion was
completed. When record processing is specified, the unconverted receiver record bytes field specifies
the length of the receiver record bytes not yet containing converted data. When perform data transpar­
ency conversion is specified in the algorithm modifier, the conversion status indicates whether conver­
sion of a transparency string was active and the unconverted transparency string bytes field specifies
the length of the remaining bytes to be processed for an active transparency string.

This instruction does not provide support for compression entries in the source describing data that
would span records in the receiver. SNA data from some systems may violate this restriction and as
such be incompatible with the instruction. A provision can be made to avoid this incompatibility by
performing the conversion of the SNA data through two invocations of this instruction. The first invoca-

Chapter 2. Computation and Branching Instructions 2-97

L

- ,~-- ----,-,--------

Convert SNA to Character (CVTSC)

tion would specify decompression with no record separator processing. The second invocation would
specify record separator processing with no decompression. This technique provides for separating the
decompression step from record separator processing; thus, the incompatibility is avoided.

This instruction can end with the escape code encountered condition. In this case, it is expected that
the user of the instruction will want to do some special processing for the record separator causing the
condition. In order to resume execution of the instruction, the user will have to set the appropriate
value for the record separator into the receiver and update the controls operand source offset and
receiver offset fields correctly to provide for restarting processing at the right points in the receiver and
source operands.

For the special case of a tie between the source exhausted and receiver overrun conditions. the source
exhausted condition is recognized first. That is, when source exhausted is the resultant condition, the
receiver may also be full. In this case, the receiver offset may contain a value equal to the length
specified for the receiver, which would cause an exception to be detected on the next invocation of the
instruction. The processing performed for the source exhausted condition should provide for this case
if the instruction is to be invoked multiple times with the same controls operand template. When the
receiver overrun condition is the resultant condition, the source will always contain data that can be
converted.

This instruction will, in certain cases, ignore what would normally have been interpreted as a record
separator value of hex 00. This applies (hex 00 is ignored) for the special case when do not perform
decompression and record separators in source are specified in the algorithm modifier. Note that this
does not apply when perform decompression is specified, or when do not perform decompression and
no record separators in source and move record separator from controls to r.eceiver are specified in the
algorithm modifier.

Limitations: The following are limits that apply to the functions performed by this instruction.

Any form of overlap between the operands on this instruction yields unpredictable results in the
receiver operand.

Resultant Conditions

• Source exhausted-The end of the source operand is encountered and no more bytes from the
source can be converted.

• Receiver overrun-An overrun condition in the receiver operand is detected before all of the bytes in
the source operand have been processed.

• Escape code encountered-A record separator character is encountered in the source operand that
is to be treated as an escape code.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

Chapter 2. Computation and Branching Instructions 2-98

Convert SNA to Character (CVTSC)

Operands
Exception 1 2 3 Other
OC Computation

J 01 Conversion X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification
-

01 Pointer does not exist X X X

02 Pointer type invalid X X X
l

2C Program execution ..J 04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 Template value invalid X

Chapter 2. Computation and Branching Instructions 2-99

Copy Bits Arithmetic (CPYBTA)

Copy Bits Arithmetic (CPVBTA)

Op Code (Hex)
102C

Operand 1
Receiver

Operand 2
Source

Operand 3
Offset

Operand 1: Character variable scalar (fixed length) or numeric variable scalar.

Operand 2: Character variable scalar (fixed length) or numeric variable scalar.

Operand 3: Signed or unsigned binary immediate.

Operand 4: Signed or unsigned binary immediate.

Operand 4
Length

Description: This instruction copies the signed bit string source operand starting at the speCified
offset for a specified length right adjusted to the receiver and pads on the left with the sign of the bit
string source.

The selected bits from the source operand are treated as an signed bit string and copied to the
receiver value.

The source operand can be character or numeric. The leftmost bytes of the source operand are used
in the operation. The source operand is interpreted as a bit string with the bits numbered left to right
from 0 to the total number of bits in the string minus 1.

The offset operand indicates which bit of the source operand is to be copied; with a offset of zero indi­
cating the leftmost bit of the leftmost byte of the source operand.

The length operand indicates the number of bits that are to be copied.

If the sum of the offset plus the length exceed the length of the source an invalid operand length (hex
2AOA) exception will be raised.

Limitations: The length of the receiver cannot exceed four bytes.

The offset must have a non-negative value.

The length operand must be an immediate value between 1 and 32.

Exceptions

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

08 Argument/parameter

10

01 Parameter reference violation

Damage encountered

04 System object damage state

44 Partial system object damage

Operands
1 2

X X

X X

X X

X X

X X

3 4 Other

X

X

Chapter 2. Computation and Branching Instructions 2-100

Copy Bits Arithmetic (CPYBTA)

Operands
Exception 1 2 3 4 Other
1C Machine-dependent exception

J 03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

,
J

Chapter 2. Computation and Branching Instructions 2-101

L

Copy Bits Logical (CPYBTL)

Copy Bits Logical (CPYBTL)

Op Code (Hex)
101e

Operand 1
Receiver

Operand 2
Source

Operand 3
Offset

Operand 1: Character variable scalar (fixed length) or numeric variable scalar.

Operand 2: Character variable scalar (fixed length) or numeric variable scalar.

Operand 3: Signed or unsigned binary immediate.

Operand 4: Signed or unsigned binary immediate.

Operand 4
Length

Description: Copies the unsigned bit string source operand starting at the specified offset for a speci­
fied length to the receiver.

If the receiver is shorter than the length, the left most bits are removed to make the source bit string
conform to the length of the receiver. No exceptions are generated when truncation occurs.

The selected bits from the source operand are treated as an unsigned bit string and copied right
adjusted to the receiver and padded on the left with binary zeros.

The source operand can be character or numeric. The leftmost bytes of the source operand are used
in the operation. The source operand is interpreted as a bit string with the bits numbered left to right
from 0 to the total number of bits in the string minus 1.

The offset operand indicates which bit of the source operand is to be copied, with a offset of zero indi­
cating the leftmost bit of the leftmost byte of the source operand.

The length operand indicates the number of bits that are to be copied.

If the sum of the offset plus the length exceed the length of the source an invalid operand length (hex
2AOA) exception will be signaled.

Limitations: The length of the receiver cannot exceed four bytes.

The offset must have a non-negative value.

The length operand must be an immediate value between 1 and 32.

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment violation X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X X X

10 Damage encountered

Chapter 2. Computation and Branching Instructions 2-102

Copy Bits Logical (CPYBTL)

Operands
Exception 1 2 3 4 Other

04 System object damage state X

44 Partial system object damage X

lC Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

J

Chapter 2. Computation and Branching Instructions 2-103

~

Copy Bits with Left Logical Shift (CPYBTLLS)

Copy Bits with Left Logical Shift (CPVBTLLS)

op Code (Hex)
102F

Operand 1
Receiver

Operand 2
Source

Operand 3
Shift control

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character(2) scalar (fixed length) or unsigned binary(2) scalar.

Description: This instruction copies the bit string value of the source operand to the bit string defined
by the receiver operand with a left logical shift of the source bit string value under control of the shift
control operand.

The operation results in copying the shifted bit string value of the source to the bit string of the
receiver while padding the receiver with bit values of 0 and truncating bit values of the source as is
appropriate for the specific operation.

No indication is given of truncation of bit values from the shifted source value. This is true whether the
values truncated are a or 1.

The operation is performed such that the bit string of the source is considered to be extended on the
left and right by an unlimited number of bit string positions of value O. Additionally. a receiver bit
string view (window) with the attributes of the receiver is considered to overlay this conceptual bit
string value of the source starting at the leftmost bit position of the original source value. A left logical
shift of the conceptual bit string value of the source is then performed relative to the receiver bit string
view according to the shift criteria specified in the shift control operand. After the shift. the bit string
value then contained within the receiver bit string view is copied to the receiver.

The source and the receiver can be either character or numeric. Any numeric operands are inter­
preted as logical character strings. Due to the operation being treated as a character string operation.
the source operand may not be specified as a signed immediate operand. Additionally. for a source
operand specified as an unsigned immediate value. only a 1-byte immediate value may be specified.

The shift control operand may be specified as an immediate operand. as a character(2) scalar. or as
an unsigned binary(2) scalar. It provides an unsigned binary value indicating the number of bit posi­
tions for which the left logical shift of the source bit string value is to be performed. A zero value
specifies no shift.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

Chapter 2. Computation and Branching Instructions 2-104

Copy Bits with Left Logical Shift (CPYBTLLS)

Operands
Exception 1 2 3 Other

04 System object damage state X J 44 Partial system object damage X

lC Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management ..."
01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-105

Copy Bits with Right Arithmetic Shift (CPYBTRAS)

Copy Bits with Right Arithmetic Shift (CPYBTRAS)

Op Code (Hex)
101 B

Operand 1
Receiver

Operand 2
Source

Operand 3
Shift Control

Operand 1: Character variable or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character(2) scalar (fixed length) or unsigned binary(2) scalar.

Description: The instruction copies the bit string value of the source operand to the bit string defined
by the receiver operand with a right arithmetic shift of the source bit string value under control of the
shift control operand.

The operation results in copying the shifted bit string value of the source to the bit string of the
receiver while padding the receiver with bit values of 0 or 1 depending on the high order bit value of
the source, and truncating bit values of the source as is appropriate for the specific operation.

No indication is given of truncation of bit values from the shifted source value. This is true whether the
values truncated are 0 or 1.

The operation is performed such that the bit string of the source is considered a signed numeric binary
value, with the value of the sign bit of the source conceptually extended on the left an unlimited
number of bit string positions. A right arithmetic shift of the conceptual bit string value of the source is
then performed according to the shift criteria speCified in the shift control operand. No indication is
given of truncation of bit values from the shifted conceptual source value. This is true whether the
values truncated are 0 or 1. After the shift, the conceptual bit string value is then copied to the
receiver, right aligned.

Viewing the bit string value of the source and the bit string value copied to the receiver as signed
numeric, the sign of the value copied to the receiver will be the same as the sign of the source.

A right shift of one bit position is equivalent to dividing the signed numeric bit string value of the
source by 2 with rounding downward, and assigning a signed numeric bit string equivalent to that
result to the receiver. For example, if the signed numeric view of the source bit string is + 9, shifting
one bit position right yields +4. However if the signed numeric view of the source bit string is -9,
shifting one bit position right yields -5.

If all the significant bits of the conceptual source bit string are shifted out of the field, the resulting
conceptual bit string value will be all zero bits for positive numbers, and all one bits for negative
numbers.

The source and the receiver can be either character or numeric. Any numeric operands are inter­
preted as logical character strings. Due to the operation being treated as a character string operation,
the source operand may not be specified as a signed immediate operand. Additionally, for a source
operand specified as an unsigned immediate value, only a 1-byte immediate value may be specified.

The shift control operand may be specified as an immediate operand, as a character(2) scalar, or as a
unsigned binary(2) scalar. It provides an unsigned binary value indicating the number of bit positions
for which the right logical shift of the source bit string value is to be performed. A zero value specifies
no shift.

Exceptions

Chapter 2. Computation and Branching Instructions 2-106

Copy Bits with Right Arithmetic Shift (CPVBTRAS)

Operands
Exception 1 2 3 Other

06 Addressing J
01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X X

03 Object suspended X X X •
08 object compressed X J

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-107

L

Copy Bits with Right Logical Shift (CPYBTRLS)

Copy Bits with Right Logical Shift (CPYBTRLS)

Op Code (Hex)
103F

Operand 1
Receiver

Operand 2
Source

Operand 3
Shift control

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character(2) scalar (fixed length) or unsigned binary(2) scalar.

Description: This instruction copies the bit string value of the source operand to the bit string defined
by the receiver operand with a right logical shift of the source bit string value under control of the shift
control operand.

The operation results in copying the shifted bit string value of the source to the bit string of the
receiver while padding the receiver with bit values of 0 and truncating bit values of the source as is
appropriate for the specific operation.

No indication is given of truncation of bit values from the shifted source value. This is true whether the
values truncated are 0 or 1.

The operation is performed such that the bit string of the source is considered to be extended on the
left and right by an unlimited number of bit string positions of value O. Additionally, a receiver bit
string view (window) with the attributes of the receiver is considered to overlay this conceptual bit
string value of the source starting at the leftmost bit position of the original source value. A right
logical shift of the conceptual bit string value of the source is then performed relative to the receiver
bit string view according to the shift criteria specified in the shift control operand. After the shift, the
bit string value then contained within the receiver bit string view is copied to the receiver.

The source and the receiver can be either character or numeric. Any numeric operands are inter­
preted as logical character strings. Due to the operation being treated as a character string operation,
the source operand may not be specified as a signed immediate operand. Additionally, for a source
operand specified as an unsigned immediate value, only a 1-byte immediate value may be specified.

The shift control operand may be specified as an immediate operand, as a character(2) scalar, or as a
unsigned binary(2) scalar. It provides an unsigned binary value indicating the number of bit positions
for which the right logical shift of the source bit string value is to be performed. A zero value specifies
no shift.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

Chapter 2. Computation and BranChing Instructions 2-108

Copy Bits with Right Logical Shift (CPYBTRLS)

Operands
Exception 1 2 3 Other

04 System object damage· state X J 44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management J
01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-109

Copy Bytes Left-Adjusted (CPYBLA)

Op Code (Hex)
1082

Operand 1
Receiver

Operand 2
Source

Copy Bytes Left-Adjusted (CPYBLA)

Operand 1: Character variable scalar, numeric variable scalar, data-pointer-defined character scalar,
or data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-pointer-defined character scalar, or data-pointer­
defined numeric scalar.

Description: The logical string value of the source operand is copied to the logical string value of the
receiver operand (no padding done). The operands can be either character or numeric. Any numeric
operands are interpreted as logical character strings.

The length of the operation is equal to the length of the shorter of the two operands. The copying
begins with the two operands left-adjusted and proceeds until the shorter operand has been copied.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for either operand is
that no result is set.

If either operand is a character variable scalar. it may have a length as great as 16776191 bytes.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

04 External data object not found X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

Chapter 2. Computation and Branching Instructions 2-110

Copy Bytes Left-Adjusted (CPYBLA)

Operands
Exception 1 2 Other

03 Object suspended X X J 08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-111

Copy Bytes Left-Adjusted with Pad (CPYBLAP)

Copy Bytes Left-Adjusted with Pad (CPVBLAP)

Op Code (Hex)
10B3

Operand 1
Receiver

Operand 2
Source

Operand 3
Pad

Operand 1: Character variable scalar or numeric variable scalar, data-painter-defined character
scalar, or data-painter-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-painter-defined character scalar, or data-pointer­
defined numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source operand is copied to the logical string value of the
receiver operand (padded if needed).

The operands can be either character or numeric. Any numeric operands are interpreted as logical
character strings.

The length of the operation is equal to the length of the receiver operand. If the source operand is
shorter than the receiver operand, the source operand is copied to the leftmost bytes of the receiver
operand, and each excess byte of the receiver operand is assigned the single byte value in the pad
operand. If the pad operand is more than 1 byte in length, only its leftmost byte is used. If the source
operand is longer than the receiver operand, the leftmost bytes of the source operand (equal in length
to the receiver operand) are copied to the receiver operand.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for the source is that
the bytes of the receiver are each set with the single byte value of the pad operand. The effect of
specifying a null substring reference for the receiver is that no result is set.

If either of the first two operands is a character variable scalar, it may have a length as great as
16776191.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

04 External data object not found X X

06 Optimized addressability invalid X X X

08 ArgumenUparameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

Chapter 2. Computation and Branching Instructions 2-112

Copy Bytes Left-Adjusted with Pad (CPYBLAP)

Operands
Exception 1 2 3 Other

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

J

Chapter 2. Computation and Branching Instructions 2-113

~

Copy Bytes Overlap Left-Adjusted (CPYBOLA)

Copy Bytes Overlap Left-Adjusted (CPVBOLA)

Op Code (Hex)
10BA

Operand 1
Receiver

Operand 2
Source

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character variable scalar or numeric variable scalar.

Description: The logical string value of the source operand is copied to the logical string value of the
receiver operand (no padding done). The operands can be either character or numeric. Any numeric
operands are interpreted as logical character strings.

The length of the operation is equal to the length of the shorter of the two operands. The copying
begins with the two operands left-adjusted and proceeds until the shorter operand has been copied.
The excess bytes in the longer operand are not included in the operation.

Predictable results occur even if two operands overlap because the source operand is, in effect, first
copied to an intermediate result.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for either operand is
that no resu It is set.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

Chapter 2. Computation and Branching Instructions 2-114

Copy Bytes Overlap Left-Adjusted (CPYBOLA)

Operands
Exception 1 2 Other

08 object compressed X ~
24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

t

J

Chapter 2. Computation and Branching Instructions 2-115

L

Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP)

Copy Bytes Overlap Left-Adjusted with Pad (CPVBOLAP)

Op Code (Hex)
10BB

Operand 1
Receiver

Operand 2
Source

Operand 3
Pad

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character variable scalar or numeric variable scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source operand is copied to the logical string value of the
receiver operand.

The operands can be either character or numeric. Any numeric operands are interpreted as logical
character strings.

The length of the operation is equal to the length of the receiver operand. If the source operand is
shorter than the receiver operand, the source operand is copied to the leftmost bytes of the receiver
operand and each excess byte of the receiver operand is assigned the single byte value in the pad
operand. If the pad operand is more than 1 byte in length, only its leftmost byte is used. If the source
operand is longer than the receiver operand, the leftmost bytes of the source operand (equal in length
to the receiver operand) are copied to the receiver operand.

Predictable results occur even if two operands overlap because the source operand is, in effect, first
copied to an intermediate result.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for the source is that
the bytes of the receiver are each set with the single byte value of the pad operand. The effect of
specifying a null substring reference for the receiver is that no result is set.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 ArgumenUparameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X X

20 Machine support

02 Machine check X

Chapter 2. Computation and Branching Instructions 2-116

Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP)

Operands
Exception 1 2 3 Other

03 Function check X

J 22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

(

J

Chapter 2. Computation and Branching Instructions 2-117

Copy Bytes Repeatedly (CPYBREP)

Op Code (Hex)
lOBE

Operand 1
Receiver

Operand 2
Source

Copy Bytes Repeatedly (CPYBREP)

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2: Numeric scalar or character scalar (fixed length).

Description: The logical string value of the source operand is repeatedly copied to the receiver
operand until the receiver is filled. The operands can be either character or numeric. Any numeric
operands are interpreted as logical character strings.

The operation begins with the two operands left-adjusted and continues until the receiver operand is
completely filled. If the source operand is shorter than the receiver, it is repeatedly copied from left to
right (all or in part) until the receiver operand is completely filled. If the source operand is longer than
the receive operand, the leftmost bytes of the source operand (equal in length to the receiver operand)
are copied to the receiver operand.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for either operand is
that no result is set.

If either operand is a character variable scalar, it may have a length as great as 16776191.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

Chapter 2. Computation and Branching Instructions 2-118

Exception
08 object compressed

24 Pointer specification

01 Pointer does not exist

02 Pointer type invalid

2E Resource control limit

01 user profile storage limit exceeded

36 Space management

01 space extension/truncation

Copy Bytes Repeatedly (CPYBREP)

Operands
1 2 Other

X

~
X X

X X

X

X

Chapter 2. Computation and Branching Instructions 2-119

Copy Bytes Right-Adjusted (CPYBRA)

Op Code (Hex)
10B6

Operand 1
Receiver

Operand 2
Source

Copy Bytes Right-Adjusted (CPYBRA)

Operand 1: Character variable scalar, numeric variable scalar, data-pointer-defined character scalar,
or data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-pointer-defined character scalar, or data-pointer­
defined numeric scalar.

Description: The logical string value of the source operand is copied to the logical string value of the
receiver operand (no padding done). The operands can be either character or numeric. Any numeric
operands are interpreted as logical character strings.

The length of the operation is equal to the length of the shorter of the two operands. The rightmost
bytes (equal to the length of the shorter of the two operands) of the source operand are copied to the
rightmost bytes of the receiver operand. The excess bytes in the longer operand are not included in
the operation.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for either operand is
that no result is set.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

04 External data object not found X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

Chapter 2. Computation and Branching Instructions 2-120

Copy Bytes Right-Adjusted (CPYBRA)

Operands
Exception 1 2 Other

03 Object suspended X X

J 08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-121

Copy Bytes Right-Adjusted with Pad (CPYBRAP)

Copy Bytes Right-Adjusted with Pad (CPVBRAP)

Op Code (Hex)
10B7

Operand 1
Receiver

Operand 2
Source

Operand 3
Pad

Operand 1: Character variable scalar, numeric variable scalar, data-painter-defined character scalar,
or data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-pointer-defined character scalar, or data-pointer­
defined numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source operand is copied to the logical string value of the
receiver operand (padded if needed). The operands can be either character or numeric. Any numeric
operands are interpreted as logical character strings.

The length of the operation is equal to the length of the receiver operand. If the source operand is
shorter than the receiver operand, the source operand is copied to the rightmost bytes of receiver
operand. and each excess byte is assigned the single byte value in the pad operand. If the pad
operand is more than 1 byte in length, only its leftmost byte is used. If the source operand is longer
than the receiver operand, the rightmost bytes of the source operand (equal in length to the receiver
operand) are copied to the receiver operand.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for the source is that
the bytes of the receiver are each set with the single byte value of the pad operand. The effect of
specifying a null substring reference for the receiver is that no result is set.

Exceptions

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

04 External data object not found

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

04 System object damage state

44 Partial system object damage

1 C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

Operands
1 2 3 Other

X X X

X X X

X X X

X X

X X X

X X X

X X X X

X X X X

X

X

X

Chapter 2. Computation and Branching Instructions 2-122

Copy Bytes Right-Adjusted with Pad (CPYBRAP)

Operands
Exception 1 2 3 Other

22 Object access J 01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-123

Copy Bytes to Bits Arithmetic (CPVBBTA)

Copy Bytes to Bits Arithmetic (CPYBBTA)

Op Code (Hex)
104C

Operand 1
Receiver

Operand 2
Offset

Operand 3
Length

Operand 1: Character variable scalar (fixed length) or numeric variable scalar.

Operand 2: Signed binary immediate or unsigned binary immediate.

Operand 3: Signed binary immediate or unsigned binary immediate.

Operand 4: Character variable scalar (fixed length) or numeric variable scalar.

Operand 4
Source

Description: This instruction copies a byte string from the source operand to a bit string in the
receiver operand.

The source operand is interpreted as a signed binary value and may be sign extended or truncated on
the left to fit into the bit string in the receiver operand. No indication is given when truncation occurs.

The location of the bit string in the receiver operand is specified by the offset operand. The value of
the offset operand specifies the bit offset from the start of the receiver operand to the start of the bit
string. Thus, an offset operand value of 0 specifies that the bit string starts at the leftmost bit position
of the receiver operand.

The length of the bit string in the receiver operand is specified by the length operand. The value of the
length operand specifies the length of the bit string in bits.

Limitations: The following are limits that apply to the functions performed by this instruction.

If the source operand and the bit string in the receiver operand overlap, the results are unpredictable.

A source operand longer than 4 bytes may not be specified.

If the offset operand is signed binary immediate, a negative value may not be specified.

A length operand with a value less than 1 or greater than 32 may not be specified.

The bit string specified by the offset operand and the length operand may not extend outside the
receiver operand.

Exceptions

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

Operands
1 2 3 4 Other

X X

X X

X X

X X

X X

Chapter 2. Computation and Branching Instructions 2·124

Copy Bytes to Bits Arithmetic (CPYBBTA)

Operands
Exception 1 2 3 4 Other

04 System object damage state X J 44 Partial system object damage X

1C Machi ne-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X ...,

Chapter 2. Computation and Branching Instructions 2-125

L

Copy Bytes to Bits Logical (CPYBBTL)

Copy Bytes to B.ts Logical (CPYBBTL)

Op Code (Hex)
103C

Operand 1
Receiver

Operand 2
Offset

Operand 3
Length

Operand 1: Character variable scalar (fixed length) or numeric variable scalar.

Operand 2: Signed binary immediate or unsigned binary immediate.

Operand 3: Signed binary immediate or unsigned binary immediate.

Operand 4: Character variable scalar (fixed length) or numeric variable scalar.

Operand 4
Source

Description: This instruction copies a byte string from the source operand to a bit string in the
receiver operand.

The source operand is interpreted as an unsigned binary value and may be padded on the left with O's
or truncated on the left to fit into the bit string in the receiver operand. No indication is given when
truncation occurs.

The location of the bit string in the receiver operand is specified by the offset operand. The value of
the offset operand specifies the bit offset from the start of the receiver operand to the start of the bit
string. Thus, an offset operand value of 0 specifies that the bit string starts at the leftmost bit position
of the receiver operand.

The length of the bit string in the receiver operand is specified by the length operand. The value of the
length operand specifies the length of the bit string in bits.

Limitations: The following are limits that apply to the functions performed by this instruction.

If the source operand and the bit string in the receiver operand overlap, the results are unpredictable.

A source operand longer than 4 bytes may not be specified.

If the offset operand is signed binary immediate, a negative value may not be specified.

A length operand with a value less than 1 or greater than 32 may not be specified.

The bit string specified by the offset operand and the length operand may not extend outside the
receiver operand.

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment violation X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

Chapter 2. Computation and Branching Instructions 2-126

Copy Bytes to Bits Logical (CPYBBTL)

Operands
Exception 1 2 3 4 Other

04 System obj0ct damage" state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X :.;

Chapter 2. Computation and Branching Instructions 2-127

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

op Code (Hex)
1053

Operand 1
Receiver

Operand 2
Source

Operand 1: Data-pointer-defined character scalar.

Operand 2: Data-pointer-defined character scalar.

Operand 3: Character(3) scalar or null.

Operand 3
Pad

Description: The extended character string value of the source operand is copied to the receiver
operand.

The operation is performed at the length of the receiver operand. If the source operand is shorter than
the receiver, the source operand is copied to the leftmost bytes of the receiver and the excess bytes of
the receiver are assigned the appropriate value from the pad operand.

The pad operand, operand 3, is three bytes in length and has the following format:

• Pad operand

Single byte pad value

Double byte pad value

Char(3)

Char(1)

Char(2)

If the pad operand is more than three bytes in length, only its leftmost three bytes are used. Specifying
a null pad operand results in default pad values of hex 40, for single byte, and hex 4040, for double
byte, being used. The single byte pad value and the first byte of the double byte pad value cannot be
either a shift out control character (SO = hex OE) value or a shift in control character (51 = hex OF)
value. Specification of such an invalid value results in the signaling of the scalar value invalid (hex
3203) exception.

Operands 1 and 2 must be specified as Data Pointers which define either a simple (single byte) char­
acter data field or one of the extended (double byte) character data fields.

Support for usage of a Data Pointer defining an extended character scalar value is limited to this
instruction. Usage of such a data pointer defined value on any other instruction is not supported and
results in the signaling of the scalar type invalid (hex 3201) exception.

For more information on support for extended character data fields, refer to the Set Data Pointer Attri­
butes, Materialize Pointer, and Create Cursor instructions.

Four data types are supported for data pointer definition of extended (double byte) character fields,
OPEN, EITHER, ONLYNS and ONLYS. Except for ONLYNS, the double byte character data must be sur­
rounded by a shift out control character (SO hex OE) and a shift in control character (51 = hex OF).

• The ONLYNS field only contains double byte data with no SO, 51 delimiters surrounding it.

• The ONLYS field can only contain double byte character data within a 50 .. 51 pair.

• The EITHER field can consist of double byte character or single byte character data but only one
type at a time. If double byte character data is present it must be surrounded by an SO .. 51 pair.

• The OPEN field can consist of a mixture of double byte character and single byte character data. If
double byte character data is present it must be surrounded by an SO .. 51 pair.

Specifying an extended character value which violates the above restrictions results in the signaling of
the invalid extended character data (hex OC12) exception.

Chapter 2. Computation and BranChing Instructions 2-128

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

The valid copy operations which can be specified on this instruction are the following:

o Onlyns

p Onlys

Open

2 Either

Op 1

Onlyns Onlys Open Either

yes yes yes yes

yes yes yes yes

no no yes no

no no yes yes

Figure 2-5. Valid copy operations for CPYECLAP

Specifying a copy operation other than the valid operations defined above results in the signaling of
the invalid extended character operation (hex OC13) exception.

When the copy operation is for a source of type ON L YNS (no SO/SI delimiters) being copied to a
receiver which is not ONL YNS, SO and SI delimiters are implicitly added around the source value as
part of the copy operation.

When the source value is longer than can be contained in the receiver, truncation is necessary and the
following truncation rules apply:

1. Truncation is on the right (like simple character copy operations).

2. When the string to be truncated is a single byte character string, or an extended character string
when the receiver is ONLYN5, bytes beyond those that fit into the receiver are truncated with no
further processing needed.

3. When the string to be truncated is an extended character string and the receiver is not ONLYN5,
the bytes that fall at the end of the receiver are truncated as follows:

a. When the last byte that would fit in the receiver is the first byte of an extended character, that
byte is truncated and replaced with an SI character.

b. When the last byte that would fit in the receiver is the second byte of an extended character,
both bytes of that extended character are truncated and replaced with a 51 character followed
by a single byte pad value. This type of truncation can only occur when converting to an OPEN
field.

When the source value is shorter than that which can be contained in the receiver, padding is neces­
sary. One of three types of padding is performed:

1. Double byte (DB) - the source value is padded on the right with double byte pad values out to the
length of the receiver.

2. Double byte concatenated with a SI value (OBI lSI) - the source double byte value is padded on the
right with double byte pad values out to the second to last byte of the receiver and an SI delimiter
is placed in the last byte of the receiver.

3. Single byte (SB) - the source value is padded on the right with single byte pad values out to the
length of the receiver.

The type of padding performed is determined by the type of operands involved in the operation:

1. If the receiver is ONLYNS. DB padding is performed.

2. If the receiver is ONLYS. OBI lSI padding will be performed.

3. If the receiver is EITHER and the source contained a double byte value, DBIISI padding is per­
formed.

4. If the receiver is EITHER and the source contained a single byte value. SB padding is performed.

Chapter 2. Computation and Branching Instructions 2-129

\

J

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

5. If the receiver is OPEN, S9 padding is performed.

The above padding rules cover all the operand combinations which are allowed on the instruction. A
complete understanding of the operand combinations allowed (prior diagram), and the values which
can be contained in the different operand types is necessary to appreciate that these rules do cover all
the valid combinations.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

04 External data object not found X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

12 Invalid extended character data X

13 Invalid extended character operation X

10 Damage encountered

\... 04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

01 Scalar value invalid X

Chapter 2. Computation and Branching Instructions 2-130

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

Operands
Exception 1 2 3 Other

36 Space management

01 space extension/truncation x

Chapter 2. Computation and Branching Instructions 2-131

~

L

Copy Hex Digit Numeric to Numeric (CPYHEXNN)

Copy Hex Digit Numeric to Numeric (CPYHEXNN)

Op Code (Hex)
1092

Operand 1
Receiver

Operand 2
Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4 bits) of the leftmost byte referred to by the
source operand is copied to the numeric hex digit value (rightmost 4 bits) of the leftmost byte referred
to by the receiver operand. The operands can be either character strings or numeric. Any numeric
operands are interpreted as logical character strings.

Exceptions

Operands
exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

Chapter 2. Computation and Branching Instructions 2-132

Exception
01 space extension/truncation

Copy Hex Digit Numeric to Numeric (CPYHEXNN)

Operands
1 2 Other

X

Chapter 2. Computation and Branching Instructions 2-133

Copy Hex Digit Numeric to Zone (CPYHEXNZ)

Copy Hex Digit Numeric to Zone (CPYHEXNZ)

op Code (Hex)
1096

Operand 1
Receiver

Operand 2
Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4 bits) of the leftmost byte referred to by the
source operand is copied to the numeric hex digit value (rightmost 4 bits) of the leftmost byte referred
to by the receiver operand. The operands can be either character strings or numeric. Any numeric
operands are interpreted as logical character strings.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

Chapter 2. Computation and Branching Instructions 2-134

Exception
01 space extension/truncation

Copy Hex Digit Numeric to Zone (CPYHEXNZ)

Operands
1 2 Other

X

Chapter 2. Computation and Branching Instructions 2-135

Copy Hex Digit Zone To Numeric (CPYHEXZN)

Copy Hex Digit Zone To Numeric (CPYHEXZN)

Op Code (Hex)
109A

Operand 1
Receiver

Operand 2
Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of the leftmost byte referred to by the source
operand is copied to the numeric hex digit value (rightmost 4 bits) of the leftmost byte referred to by
the receiver operand.

The operands can be either character strings or numeric. Any numeric operands are interpreted as
logical character strings.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machi ne-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

Chapter 2. Computation and Branching Instructions 2-136

Copy Hex Digit Zone To Numeric (CPYHEXZN)

Operands
Exception 1 2 Other
36 Space management

01 space extension/truncation x

Chapter 2. Computation and Branching Instructions 2-137

~

Copy Hex Digit Zone To Zone (CPYHEXZZ)

Copy Hex Digit Zone To Zone (CPYHEXZZ)

op Code (Hex)
109E

Operand 1
Receiver

Operand 2
Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of the leftmost byte referred to by the source
operand is copied to the zone hex digit value (leftmost 4 bits) of the leftmost byte referred to by the
receiver operand.

The operands can be either character strings or numeric. Any numeric operands are interpreted as
logical character strings.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machi ne-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

Chapter 2. Computation and Branching Instructions 2-138

Copy Hex Digit Zone To Zone (CPYHEXZZ)

Operands
Exception 1 2 Other
36 Space management

01 space extension/truncation x

J

Chapter 2. Computation and Branching Instructions 2-139

~

Copy Numeric Value (CPYNV)

Copy Numeric Value (CPYNV)

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-6]
CPYNV Receiver Source
1042

CPYNVR Receiver Source
1242

CPVNVB Branch options Receiver Source Branch targets
1C42

CPYNVBR Branch options Receiver Source Branch targets
1 E42

CPYNVI Indicator options Receiver Source Indicator targets
1842

CPYNVIR Indicator options Receiver Source Indicator targets
1A42

Operand 1: Numeric variable scalar or data-pointer-defined numeric scalar.

Operand 2: Numeric scalar or data pointer-defined-numeric scalar.

Operand 3-6:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

ILE access

LBCPYNV (
var receiver
var receiver attributes
var source
var source attributes

any numeric type;
aggregate;
any numeric type;
aggregate;

Description: The numeric value of the source operand is copied to the numeric receiver operand.

Both operands must be numeric. If necessary, the source operand is converted to the same type as
the receiver operand before being copied to the receiver operand. The source value is adjusted to the
length of the receiver operand, aligned at the assumed decimal point of the receiver operand, or both
before being copied to it. If significant digits are truncated on the left end of the source value, a size
(hex DCDA) exception is signaled. When the receiver is binary, this size (hex OCOA) exception may be
suppressed by using the suppress binary size exception program attribute on the Create Program
(CRTPG) instruction.

If a decimal to binary conversion causes a size (hex DCOA) exception to be signaled or if the size (hex
DCDA) exception is suppressed, the binary value contains the correct truncated result only if the
decimal value contains 15 or fewer significant nonfractional digits.

Chapter 2. Computation and Branching Instructions 2-140

Copy Numeric Value (CPYNV)

Conversions between fioating-point integers and integer formats (binary or decimal with no fractional
digits) is exact, except when an exception is signaled.

An invalid floating-point conversion (hex OCOC) exception is signaled when an attempt is made to
convert from fioating-point to binary or decimal and the result would represent infinity or NaN, or
nonzero digits would be truncated from the left end of the resultant value.

For the optional round form of the instruction, a floating-point receiver operand is invalid.

For a fixed-point operation, if significant digits are truncated from the left end of the source value, a
size (hex OCOA) exception is signaled. When the receiver is binary, this size (hex OCOA) exception may
be suppressed by using the suppress binary size exception program attribute on the Create Program
(CRTPG) instruction.

For a floating-point receiver, if the exponent of the resultant val ue is too large or too small to be
represented in the receiver field, the floating-point overflow (hex aC06) and floating-point underflow
(hex OCO?) exceptions are signaled, respectively.

Resultant Conditions

• Positive-The algebraic value of the numeric scalar receiver operand is positive.

• Negative-The algebraic value of the numeric scalar receiver operand is negative.

• Zero-The algebraic val ue of the numeric scalar receiver operand is zero.

• Unordered-The value assigned a floating-point receiver operand is NaN.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

04 External data object not found X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

OC Computation

02 Decimal data X

06 Floating-point overflow X

07 Floating-point underlow X

09 Floating-point invalid operand X X

OA Size X

OC Invalid floatin-point conversion X

OA Floating-point inexact result X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

Chapter 2. Computation and Branching Instructions 2-141

i
'.

J

.)

Copy Numeric Value (CPYNV)

Operands
Exception 1 2 Other

~
1C Machine-depen,dent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage -limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

Chapter 2_ Computation and Branching Instructions 2-142

Decompress Data (DCPDATA)

Op Code (Hex)
1051

Operand 1
Decompress Data
template

Operand 1: Space pointer.

Decompress Data (DCPDATA)

ILEaccess ---,

DCPDATA (
decompress_data_template space pOinter

Description: The instruction decompresses user data. Operand 1 identifies a template which identi­
fies the data to be decompressed. The template also identifies the result space to receive the decom­
pressed data.

The Decompress Data template must be aligned on a 16-byte boundary. The format is as follows:

• Reserved (binary 0)

• Result area length

• Actual result length

• Reserved (binary 0)

• Source space pointer

• Result space pointer

Char(4)

Bin(4)

Bin(4)*

Char(20)

Space pointer

Space pointer

Note: The input value associated with template entries annotated with an asterisk (*) are ignored by
the instruction; these fields are updated by the instruction to return information about instruction
execution.

The data at the location specified by the source space pointer is decompressed and stored at the
location specified by the result space pointer. The actual result length is set to the number of bytes in
the decompressed result. The Source data is not modified.

The result area length field value must be greater than zero. The length of the source data is not
supplied in the template because this length is contained within the compressed data.

If the decompressed result data will not fit in the result area (as specified by the result area length). the
decompression is stopped and only as many decompressed bytes as will fit in the result area are
stored. The actual result length is always set to the full length of the result, which may be larger than
the result area length.

The compressed data (previously compressed with CPRDATA) contains a signature which is checked
by DCPDATA. The signature indicates which compression algorithm was used to compress the data.
If the signature is invalid, an invalid compressed data (hex OC14) exception is signaled. It is possible
that the signature appears valid even though the compressed data has been corrupted. In almost all
cases, the DCPDATA instruction will signal the invalid compressed data (hex OC14) exception. Data
corruption will not be detected only in the case when the decompression algorithm applied to the cor­
rupted data produces the correct number of decompressed bytes.

It is not possible to corrupt the compressed data in such a way that the DCPDATA instruction would fail
(that is, function check) or fail to terminate (that is, loop).

Chapter 2. Computation and Branching Instructions 2-143

Decompress Data (DCPDATA)

Authorization Required

•

L
None

Lock Enforcement

• None

Exceptions

Operands
Exception 1 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/Parameter

01 Parameter reference violation X

OC Computation

14 invalid compressed data X

10 Damage encountered

44 partial system object damage X X

1C M achine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X X

38 Template specification

01 template value invalid X

Chapter 2. Computation and Branching Instructions 2-144

Decompress Data (DCPDATA)

Exception
Operands
1 Other

44 Domain

01 object domain error x

Chapter 2. Computation and Branching Instructions 2-145

~

\....

Divide (DIV)

Divide (DIV)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4-7J
DIV Quotient Dividend Divisor
104F

DIVR Quotient Dividend Divisor
124F

DIVI Indicator Quotient Dividend Divisor Indicator targets
184F options

DIVIR Indicator Quotient Dividend Divisor Indicator targets
lA4F options

DiVa Branch options Quotient Dividend Divisor Branch targets
1C4F

DIVaR Branch options Quotient Dividend Divisor Branch targets
1E4F

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Operand 4-7:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-6J
DIVS Quotient/Dividend Divisor
114F

DIVSR Quotient/Dividend Divisor
134F

DIVIS Indicator options Quotient/Dividend Divisor Indicator targets
194F

DIVISR Indicator options Quotient/Dividend Divisor Indicator targets
lB4F

Divas Branch options Quotient/Dividend Divisor Branch targets
lD4F

DIVaSR Branch options Quotient/Dividend Divisor Branch targets
lF4F

Operand 1: Numeric variable scalar.

Chapter 2. Computation and Branching Instructions 2-146

Divide (DIV)

Operand 2: Numeric scalar.

Operand 3-6:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number .

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The Quotient is the result of dividing the Dividend by the Divisor.

Operands can have floating-point, packed or zoned decimal, signed or unsigned binary type.

Source operands are the Dividend and Divisor. The receiver operand is the Quotient.

If operands are not of the same type, source operands are converted according to the following rules:

1. If anyone of the operands has floating point type, source operands are converted to floating point
type.

2. Otherwise, if anyone of the operands has zoned or packed decimal type, source operands are
converted to packed decimal.

3. Otherwise, the binary operands are converted to a like type. Note: unsigned binary(2) scalars are
logically treated as signed binary(4) scalars.

Source operands are divided according to their type. Floating point operands are divided using
floating point division. Packed decimal operands are divided using packed decimal division. Unsigned
binary division is used with unsigned source operands. Signed binary operands are divided using
two's complement binary division.

Setter performance can be obtained if all operands have the same type. Signed and unsigned binary J
division execute faster than either packed decimal or floating point division.

Decimal operands used in floating-point operations cannot contain more than 15 total digit positions.

If the divisor has a numeric value of zero, a zero divide (hex aeOS) or floating-point zero divide (hex
OeOE) exception is signaled respectively for fixed-point versus floating-point operations. If the dividend
has a value of zero, the result of the division is a zero quotient value.

If the divisor has a numeric value of 0, a zero divide (hex OeOS) exception is signaled. If the dividend
has a value of 0, the result of the division is a zero value quotient.

For a decimal operation, the precision of the result of the divide operation is determined by the
number of fractional digit positions specified for the quotient. In other words, the divide operation will
be performed so as to calculate a resultant quotient of the same precision as that specified for the
quotient operand. If necessary, internal alignment of the assumed decimal point for the dividend and
divisor operands is performed to ensure the correct precision for the resultant quotient value. These
internal alignments are not subject to detection of the decimal point alignment exception. An internal
quotient value will be calculated for any combination of decimal attributes which may be specified for
the instruction's operands. However, the assignment of the result to the quotient operand is subject to
detection of the size (hex OeOA) exception thereby limiting the assignment to, at most, the rightmost 31
digits of the calculated result.

Floating-point division uses exponent subtraction and significand division.

If the dividend operand is shorter than the divisor operand, it is logically adjusted to the length of the
divisor operand.

Chapter 2. Computation and Branching Instructions 2-147

Divide (DIV)

For fixed-point computations and for the significand division of a floating-point computation, the division
operation is performed according to the rules of algebra. Unsigned binary is treated as a positive
number for the algebr-a.

For a floating-point computation, the operation is performed as if to infinite precision.

The result of the operation is copied into the quotient operand. If this operand is not the same type as
that used in performing the operation, the resultant value is converted to its type. If necessary, the
resultant value is adjusted to the length of the quotient operand, aligned at the assumed decimal point
of the quotient operand, or both before being copied to it. If significant digits are truncated on the left
end of the resultant value, a size (hex OeOA) exception is signaled.

If a decimal to binary conversion causes a size (hex OeOA) exception to be signaled, the binary value
contains the correct truncated result only if the decimal value contains 15 or fewer significant nonfrac­
tiona I digits.

For the optional round form of the instruction, specification of a floating-point receiver operand is
invalid.

For fixed-point operations in programs that request to be notified of size (hex OeOA) exceptions, if
nonzero digits are truncated from the left end of the resultant value, a size (hex OeOA) exception is
signaled.

For floating-point operations that involve a fixed-point receiver field, if nonzero digits would be trun­
cated from the left end of the resultant value, an invaJid floating-point conversion (hex OCOC) exception
is signaled. .

For a floating-point quotient operand, if the exponent of the resultant value is either too large or too
small to be represented in the quotient field, the floating-point overflow (hex OeOS) and floating-point
underflow (hex OeO?) exceptions are signaled, respectively.

Resultant Conditions

• Positive-The algebraic value of the numeric scalar quotient is positive.

• Negative-The algebraic value of the numeric scalar quotient is negative.

• Zero-The algebraic value of the numeric scalar quotient is or zero.

• Unordered-The value assigned a floating-point quotient operand is NaN.

Exceptions

Operands
Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

OC Computation

02 Decimal data

06 Floating-point overflow

1 2

X X

X X

X X

X X

X X

X

X

3 Other

X

X

X

X

X

X

Chapter 2. Computation and Branching Instructions 2-148

Divide (DIV)

Operands
Exception 1 2 3 Other

07 Floating-poi.nt underlow X

09 Floating-point invalid operand X X X

OA Size X

08 Zero divide X

OC Invalid floatin-point conversion X

00 Floating-point inexact result X

OE Floating-point divide by zero X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X- X X

02 Object destroyed X X X

03 Object suspended X X X \

08 object compressed X J
24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching instructions 2-149

~

Divide with Remainder (DIVREM)

Divide with Remainder (DIVREM)

Op Code Extender Operand 1 Operand 2 Operand 3 Operand 4 Operand [5-7]
(Hex)
DIVREM Quotient Dividend Divisor Remainder
1074

DIVREMR Quotient Dividend Divisor Remainder
1274

DIVREMI Indicator Quotient Dividend Divisor Remainder Indicator
1874 options targets

DIVREMIR Indicator Quotient Dividend Divisor Remainder Indicator
1A74 options targets

DIVREMB Branch Quotient Dividend Divisor Remainder Branch
1C74 options targets

DIVREMBR Branch Quotient Dividend Divisor Remainder Branch
1E74 options targets

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Operand 4: Numeric variable scalar.

Operand 5-7:

• Branch Form-Branch point. instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Op Code (Hex) Extender Operand 1 Operand 2
DIVREMS QuotienUDividend Divisor
1174

DIVREMSR QuotienUDividend Divisor
1374

DIVREMIS Indicator QuotienUDividend Divisor
1974 options

DIVREMISR Indicator QuotienUDividend Divisor
1 B74 options

DIVREMBS Branch options Quotient/Dividend Divisor
1D74

DIVREMBSR Branch options Quotient/Dividend Divisor
1F74

Operand 1: Numeric variable scalar.

Operand 3
Remainder

Remainder

Remainder

Remainder

Remainder

Remainder

Operand [4-6]

Indicator targets

Indicator targets

Branch targets

Branch targets

Chapter 2. Computation and Branching Instructions 2-150

Divide with Remainder (DIVREM)

Operand 2: Numeric scalar.

Operand 3: Numeric variable scalar.

Operand 4-6:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number .

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The Quotient is the result of dividing the Dividend by the Divisor. The Remainder is the
Dividend minus the product of the Divisor and Quotient.

Operands can have packed or zoned decimal, signed or unsigned binary type.

Source operands are the Dividend and Divisor. The receiver operands are the Quotient and
Remainder.

If operands are not of the same type, source operands are converted according to the following rules:

1. If anyone of the operands has zoned or packed decimal type, source operands are converted to
packed decimal.

2. Otherwise, the binary operands are converted to a like type. Note: unsigned binary(2) scalars are
logically treated as signed binary(4) scalars.

Source operands are divided according to their type. Packed decimal operands are divided using
packed decimal division. Unsigned binary division is used with unsigned source operands. Signed
binary operands are divided using two's complement binary division.

Better performance can be obtained if all operands have the same type. Signed and unsigned binary
division execute faster than packed decimal division.

Floating-point is not supported for this instruction.

If the divisor operand has a numeric value of 0, a zero divide (hex OCOB) exception is signaled. If the
dividend operand has a value of 0, the result of the division is a zero value quotient and remainder.

For a decimal operation, the precision of the result of the divide operation is determined by the
number of fractional digit positions specified for the quotient. In other words, the divide operation will
be performed so as to calculate a resultant quotient of the same precision as that specified for the
quotient operand. If necessary, internal alignment of the assumed decimal point for the dividend and
divisor operands is performed to ensure the correct precision for the resultant quotient value. These
internal alignments are not subject to detection of the decimal point alignment exception. An internal
quotient value will be calculated for any combination of decimal attributes which may be specified for
the instruction's operands. However, the assignment of the result to the quotient operand is subject to
detection of the size exception thereby limiting the assign ment to, at most, the rightmost 31 digits of
the calculated result.

If the dividend operand is shorter than the divisor operand, it is logically adjusted to the length of the
divisor operand.

The division operation is performed according to the rules of algebra. Unsigned binary is treated as a
positive number for the algebra. The quotient result of the operation is copied into the quotient
operand. If this operand is not the same type as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant value is adjusted to the length of the quotient
operand, aligned at the assumed decimal point of the quotient operand, or both before being copied to

Chapter 2. Computation and Branching Instructions 2-151

Divide with Remainder (DIVREM)

it. If significant digits are truncated on the left end of the resultant value, a size (hex OeOA) exception
is signaled.

After the quotient numeric value has been determined, the numeric value of the remainder operand is
calculated as follows:

Remainder = Dividend - (Quotient*Div;sor)

If the optional round form of this instruction is being used, the rounding applies to the quotient but not
the remainder. The quotient value used to calculate the remainder is the resultant value of the divi­
sion. The resultant value of the calculation is copied into the remainder operand. The sign of the
remainder is the same as that of the dividend operand unless the remainder has a value of 0, in which
case its sign is positive. If the remainder operand is not the same type as that used in performing the
operation, the resultant value is converted to its type. If necessary, the resultant value is adjusted to
the length of the remainder operand, aligned at the assumed decimal point of the remainder operand,
or both before being copied to it. If significant digits are truncated off the left end of the resultant
value, a size (hex OeOA) exception is signaled.

If a decimal to binary conversion causes a size (hex OeOA) exception to be signaled (in programs that
request size exceptions to be signaled), the binary value contains the correct truncated result only if
the decimal value contains 15 or fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric scalar quotient is

• positive

• negative

• zero

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Spacing addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/parameter

01 Parameter reference violation X X X X

OC Computation

02 Decimal data X X

OA Size X X

OB Zero divide X

10 Damage encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

Chapter 2. Computation and Branching Instructions 2-152

Divide with Remainder (DIVREM)

Operands
Exception 1 2 3 4 Other

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

\

:.J

Chapter 2. Computation and Branching Instructions 2-153

Edit (EDIT)

Op Code (Hex)
10E3

Operand 1
Receiver

Operand 2
Source

Operand 3
Edit Mask

Operand 1: Character variable scalar or data-painter-defined character scalar.

Operand 2: Numeric scalar or data-painter-defined numeric scalar.

Operand 3: Character variable scalar or data-painter-defined character scalar.

Edit (EDIT)

ILEaccess --~
LBEDIT (

OR

var receiver
var receiver_length
var source

var source attributes
var mask
var mask_length

ED IT PO
var receiver

receiver_length
var source

source_length
var mask

mask_length

aggregate;
unsigned binary;
signed binary; OR
unsigned binary; OR
packed decimal;
aggregate;
aggregate;
unsigned binary

aggregate;
unsigned binary;
packed decimal;
unsigned binary;
aggregate;
unsigned binary

Description: The value of a numeric scalar is transformed from its internal form to character form
suitable for display at a source/sink device. The following general editing functions can be performed
during transforming of the source operand to the receiver operand:

• Unconditional insertion of a source value digit with a zone as a function of the source value's alge­
braic sign

• Unconditional insertion of a mask operand character string

• Conditional insertion of one of two possible mask operand character strings as a function of the
source value's algebraic sign

• Conditional insertion of a source value digit or a mask operand replacement character as a func­
tion of source value leading zero suppression

• Conditional insertion of either a mask operand character string or a series of replacement charac­
ters as a function of source value leading zero suppression

• Conditional floating insertion of one of two possible mask operand character strings as a function
of both the algebraic sign of the source value and leading zero suppression

The operation is performed by transforming the source (operand 2) under control of the edit mask
(operand 3) and placing the result in the receiver (operand 1).

Chapter 2. Computation and Branching Instructions 2-154

Edit (EDIT)

The mask operand (operand 3) is limited to no more than 256 bytes.

Mask Syntax: The source field is converted to packed decimal format. The edit mask contains both ~

control character and data character strings. 80th the edit mask and the source fields are processed .",
left to right, and the edited result is placed in the result field from left to right. If the number of digits in
the source field is even, the four high-order bits of the source field are ignored and not checked for
validity. All other source digits as well as the sign are checked for validity, and a decimal data (hex
OC02) exception is signaled when one is invalid. Overlapping of any of these fields gives unpredictable
results.

Nine fixed value control characters can be in the edit mask, hex AA through hex AD and hex AF
through hex 83. Four of these control characters specify strings of characters to be inserted into the
result field under certain conditions; and the other five indicate that a digit from the source field should
be checked and the appropriate action taken.

One variable value control character can be in the edit mask. This control character indicates the end
of a string of characters. The value of the end-of-string character can vary with each execution of the
instruction and is determined by the value of the first character in the edit mask. If the first character
of the edit mask is a value less than hex 40, then that value is used as the end-of-string character. If
the first character of the edit mask is a value equal to or greater than hex 40, then hex AE is used as
the end-of-string character.

A significance indicator is set to the off state at the start of the execution of this instruction. It remains
in this state until a nonzero source digit is encountered in the source field or until one of the four
unconditional digits (hex AA through hex AD) or an unconditional string (hex 83) is encountered in the
edit mask.

When significance is detected, the selected floating string is overlaid into the result field immediately
before (to the left of) the first significant result character.

When the significance indicator is set to the on state, the first significant result character has been
reached. The state of the significance indicator determines whether the fill character or a digit from
the source field is to be inserted into the result field for conditional digits and characters in conditional
strings specified in the edit mask field. The fill character is a hex 40 until it is replaced by the first
character following the floating string specification control character (hex 81).

When the significance indicator is in the off state:

• A conditional digit control character in the edit mask causes the fill character to be moved to the
result field.

• A character in a conditional string in the edit mask causes the fill character to be moved to the
result field.

When the significance indicator is in the on state:

• A conditional digit control character in the edit mask causes a source digit to be moved to the
result field.

• A character in a conditional string in the edit mask is moved to the result field.

The following control characters are found in the edit mask field.

End-of-String Character: One of these control characters (a value less than hex 40 or hex AE) indi­
cates the end of a character string and must be present even if the string is null.

Static Field Character:

Chapter 2. Computation and Branching Instructions 2-155

\

J

Edit (EDIT)

Hex AF This control character indicates the start of a static field. A static field is used to indicate that
one of two mask character strings immediately following this character is to be inserted into
the result field, depending upon the algebraic sign of the source field. If the sign is positive,
the first string is to be inserted into the result field; if the sign is negative, the second string is
to be inserted.

Static field format:

< Hex AF > < positive string> ... < less than hex 40> < negative string> ... < hex AE>

OR

< Hex AF> < positive string> ... < hex AE> < negative string> ... < hex AE>

Floating String Specification Field Character:

Hex 81 This control character indicates the start of a floating string specification field. The first char­
acter of the field is used as the fill character; following the fill character are two strings delim­
ited by the end-of-string control character. If the algebraic sign of the source field is positive,
the first string is to be overlaid into the result field; if the sign is negative, the second string is
to be overlaid.

The string selected to be overlaid into the result field, called a floating string, appears imme­
diately to the left of the first significant result character. If significance is never set, neither
string is placed in the result field.

Conditional source digit positions (hex 82 control characters) must be provided in the edit
mask immediately following the hex 81 field to accommodate the longer of the two floating
strings; otherwise, a length conformance exception is signaled. For each of these 82 strings,
the fill character is inserted into the result field, and source digits are not consumed. This
ensures that the floating string never overlays bytes preceding the receiver operand.

Floating string specification field format:

< Hex 81> < fill character> < positive string>. .. < end-of-string character> < negative
string> ... < end-of-string character>

followed by

<Hex 82> ...

Conditional String Character:

Hex 80 This control character indicates the start of a conditional string, which consists of any charac­
ters delimited by the end-of-string control character. Depending on the state of the signif­
icance indicator, this string or fill characters replacing it is inserted into the result field. If the
significance indicator is off, a fill character for every character in the conditional string is
placed in the result field. If the indicator is on, the characters in the conditional string are
placed in the result field.

Conditional string format:

< Hex 80> < conditional string> ... < end-of-string character>

Unconditional String Character:

Hex 83 This control character turns on the significance indicator and indicates the start of an uncondi­
tional string that consists of any characters delimited by the end-of-string control character.
This string is unconditionally inserted into the result field regardless of the state of the signif­
icance indicator. If the indicator is off when a 83 control character is encountered, the appro­
priate floating string is overlaid into the result field before (to the left of) the 83 unconditional
string (or to the left of where the unconditional string would have been if it were not nUll).

Unconditional string format:

Chapter 2. Computation and Branching Instructions 2-156

Edit (EDIT)

< Hex B3> < unconditional string> ... < end-of-string character>

Control Characters That Correspond to Digits in the Source Field:

Hex B2 This control character specifies that either the corresponding source field digit or the floating
string (hex B1) fill character is inserted into the result field, depending on the state of the
significance indicator. If the significance indicator is off, the fill character is placed in the
result field; if the indicator is on, the source digit is placed. When a source digit is moved to
the result field, the zone supplied is hex F. When significance (that is, a nonzero source digit)
is detected, the floating string is overlaid to the left of the first significant character.

Control characters hex AA, hex AB, hex AC, and hex AD turn on the significance indicator. If the indi­
cator is off when one of these control characters is encountered, the appropriate floating string is over­
laid into the result field before (to the left of) the result digit.

Hex AA This control character specifies that the corresponding source field digit is unconditionally
placed in the 4 low-order bits of the result field with the zone set to a hex F.

Hex AB This control character specifies that the corresponding source field digit is unconditionally
placed in the result field. If the sign of the source field is positive, the zoned portion of the
digit is set to hex F (the preferred positive sign); if the sign is negative, the zone portion is set
to hex 0 (the preferred negative sign).

Hex AC This control character specifies that the corresponding source field digit is unconditionally
placed in the result field. If the algebraic sign of the source field is positive, the zone portion
of the result is set to hex F (the preferred positive sign); otherwise, the source sign field is
moved to the result zone field.

Hex AD This control character specifies that the corresponding source field digit is unconditionally
placed in the result field. If the algebraic sign of the source field is negative, the zone is set
to hex D (the preferred negative sign); otherwise, the source field sign is moved to the zone
position of the result byte.

The following table provides an overview of the results obtained with the valid edit conditions and
sequences.

Table 2-1 (Page

Mask
Character

AF

AA

AB

1 of 3). Valid Edit Conditions and Results
Previous Resulting
Significance Source Source Result Significance
Indicator Digit Sign Character(s) Indicator

Off/On Any Positive Positive string No Change
inserted

Off/On Any Negative Negative string No Change
inserted

Off 0-9 Positive Positive floating On
string overlaid; hex
F, source digit

Off 0-9 Negative Negative floating On
string overlaid; hex
F, source digit

On 0-9 Any Hex F, source digit On

Off 0-9 Positive Positive floating On
string overlaid; hex
F, source digit

Off 0-9 Negative Negative floating On
string overlaid; hex
0, source digit

Chapter 2. Computation and Branching Instructions 2-157

.J

Edit (EDIT)

Table 2-1 (Page 2 of 3). Valid Edit Conditions and Results
Previous Resulting

Mask Significance Source Source Result Significance
Character Indicator Digit Sign Character(s) Indicator

On 0-9 Positive Hex F, source digit On

On 0-9 Negative Hex D, source digit On

AC Off 0-9 Positive Positive floating
string overlaid; hex
F, source digit

Off 0-9 Negative Negative floating On
string overlaid;
source sign and digit

On 0-9 Positive Hex F, source digit On

On 0-9 Negative Source sign and digit On

AD Off 0-9 Positive Positive floating On
string overlaid;
source sign and digit

Off 0-9 Negative Negative floating On
string overlaid; hex
D. source digit

On 0-9 Positive Source sign and digit On

On 0-9 Negative Hex D, source digit On

80 Off Any Any Insert fill character Off
for each 80 string
character

On Any Any Insert 80 character On
string

81 (including Off Any Any Insert the fill char- No Change
necessary 82s) acter for each 82

character that corre-
sponds to a char-
acter in the longer of
the two floating
strings

82 (not for a 81 Off 0 Any Insert fill character Off
field)

Off 1-9 Positive Overlay positive On
floating string and
insert hex F, source
digit

Off 1-9 Negative Overlay negative On
floating string and
insert hex F, source
digit

On 0-9 Any Hex F, source digit

83 Off Any Positive Overlay positive On
floating string and
insert 83 character
string

Chapter 2. Computation and Branching Instructions 2-158

Table 2-1 (Page 3 of 3). Valid Edit Conditions and Results
Previous

Mask Significance Source Source
Character Indicator Digit Sign

Off Any Negative

On Any Any

Note:

Result
Character(s)

Overlay negative
floating string and
insert 83 character
string

Insert 83 character
string

1. Any character is a valid fill character, including the end-at-string character.

Edit (EDIT)

Resulting
Significance
Indicator

On

On

2. Hex AF, hex 81, hex 80, and hex B3 strings must be terminated by the end-of-string character even if they are
null strings.

3. If a hex B1 field has not been encountered (specified) when the significance indicator is turned on, the floating
string is considered to be a null string and is therefore not used to overlay into the result field.

4. If the positive and negative strings of a static field are of unequal length, additional static fields are necessary
to ensure that the sum at the lengths of the positive strings equal the sum of the lengths of the negative
strings; otherwise, a length conformance (OC08) exception is signaled because the receiver length does not
correspond to the length implied by the edit mask and source field sign.

The following figure indicates the valid ordering of control characters in an edit mask field.

AA. AB. AC. AD

Control
Characte rX

Explanation:

AF

80

81

82

83

Condition Definition

0

0

1

1

1

0

Control Character Y

AF BO B1 82 B3

0 2 2 2 0

0 0 0 0 0

0 0 2 0 1

0 1 3 1 1

0 0 2 0 1

0 2 2 2 0

o 80th X and Y can appear in the edit mask field in either order.
1 Y cannot precede X.
2 X cannot precede Y.
3 80th control characters (two 81's) cannot appear in an edit mask field.

Violation of any of the above rules will result in an edit mask syntax (hex OCOS) exception.

Figure 2-6. Edit Mask Field Control Characters

Chapter 2. Computation and Branching Instructions 2-159

The following steps are performed when the editing is done:

• Convert Source Value to Packed Decimal

Edit (EDIT)

The numeric value in the source operand is converted to a packed decimal intermediate value
before the editing is done. If the source operand is binary, then the attributes of the interme­
diate packed field before the edit are calculated as follows:

• Edit

Binary(2) = packed (5,0) or
Binary(4) = packed (10,0)

- The editing of the source digits and mask insertion characters into the receiver operand is
done from left to right.

• Insert Floating String into Receiver Field

- If a floating string is to be inserted into the receiver field, this is done after the other editing.

Edit Digit Count Exception: An edit digit count (hex OC04) exception is signaled when:

• The end of the source field is reached and there are more control characters that correspond to
digits in the edit mask field.

• The end of the edit mask field is reached and there are more digit positions in the source field.

Edit Mask Syntax Exception: An edit mask syntax (hex OCOS) exception is signaled when an invalid
edit mask control character is encountered or when a sequence rule is violated.

Length Conformance Exception: A length conformance (hex OC08) exception is signaled when:

• The end of the edit mask field is reached and there are more character positions in the result field.

• The end of the result field is reached and more positions remain in the edit mask field.

• The number of B2s following a 81 field cannot accommodate the longer of the two floating strings.

Limitations: The following are limits that apply to the functions performed by this instruction.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

04 External data object not found X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X

04 Edit digit count X

05 Edit mask syntax X

08 Length conformance X

Chapter 2. Computation and Branching Instructions 2-160

Edit (EDIT)

Operands
Exception 1 2 3 Other
10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X t ,
--32 Scalar specification J

01 Scalar type invalid X X X

02 Scalar attributes invalid X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-161

Exchange Bytes (EXCHBY)

Op Code (Hex)
10CE

Operand 1
Source 1

Operand 2
Source 2

Exchange Bytes (EXCHBY)

Operand 1: Character variable scalar (fixed-length) or numeric variable scalar.

Operand 2: Character variable scalar (fixed-length) or numeric variable scalar.

Description: The logical character string values of the two source operands are exchanged. The
value of the second source operand is placed in the first source operand and the value of the first
source operand is placed in the second operand.

The operands can be either character or numeric. Any numeric operands are interpreted as logical
character strings. Both operands must have the same length.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

Chapter 2. Computation and Branching Instructions 2-162

Exchange Bytes (EXCHBY)

Operands
Exception 1 2 Other
36 Space management

01 space extension/truncation x

Chapter 2. Computation and Branching Instructions 2-163

Exclusive Or (XOR)

Exclusive Or (XOR)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4.5J
XOR Receiver Source 1 Source 2
109B

XORI Indicator Receiver Source 1 Source 2 Indicator targets
189B options

XORB Branch options Receiver Source 1 Source 2 Branch targets
le9B

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Operand 4-5:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-4J
XORS Receiver/Source 1 Source 2
119B

XORIS Indicator options Receiver/Source 1 Source 2 Indicator targets
199B

XORBS Branch options Receiver/Source 1 Source 2 Branch targets
109B

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3-4:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The Boolean EXCLUSIVE OR operation is performed on the string values in the source
operands. The resulting string is placed in the receiver operand. '

The operands may be character or numeric scalars. They are both interpreted as bit strings. Sub­
stringing is supported for both character and numeric operands.

The length of the operation is equal to the length of the longer of the two source operands. The
shorter of the two operands is padded on the right. The operation begins with the two source oper­
ands left-adjusted and continues bit by bit until they are completed.

Chapter 2. Computation and Branching Instructions 2-164

Exclusive Or (XOR)

The bit values of the result are determined as follows:

Source 1 Bit
o
o

Source 2 Bit
o

o

Result Bit
o

o

The result value is then placed (left-adjusted) in the receiver operand with truncating or padding taking
place on the right.

The pad value used in this instruction is a hex 00.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1, 2, and 3. The effect of specifying a null substring reference for one source
operand is that the other source operand is EXCLUSIVE ORed with an equal length string of all hex
ODs. When a null substring reference is specified for both source operands, the result is all zero and
the instruction's resultant condition is zero. When a null substring reference is specified for the
receiver, a result is not set and the instruction's resultant condition is zero regardless of the values of
the source operands.

If operands overlap but do not share all of the same bytes, results of operations performed on these
operands are not predictable. If overlapped operands share all of the same bytes, the results are pre­
dictable when direct addressing is used. If indirect addressing is used (that js, based operands,
parameters, strings with variable lengths, and arrays with variable subscripts), the results are not
always predictable.

When the receiver operand is a numeric variable scalar, it is possible that the result produced will not
be a valid value for the numeric type. This can occur due to padding with hex DO, due to truncation, or
due to the resultant bit string produced by the instruction. The instruction completes normally and
signals no exceptions for these conditions.

Resultant Conditions

• Zero-The bit value for the bits of the scalar receiver operand is either all zero or a null substring
reference is specified for the receiver.

• Not zero-The bit value for the bits of the scalar receiver operand is not all zero.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

Chapter 2. Computation and Branching InstrlJctions 2-165

.)

Exclusive Or (XOR)

Operands
Exception 1 2 3 Other

44 partial syst~m object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

~ 36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-166

Extended Character Scan (ECSCAN)

Extended Character Scan (ECSCAN)

Op Code Extender Operand 1 Operand 2
(Hex)
ECSCAN Receiver Base
1004

ECSCANB Branch Receiver Base
1C04 options

ECSCANI Indicator Receiver Base
1804 options

Operand 1: Binary variable scalar or binary array.

Operand 2: Character variable scalar.

Operand 3: Character scalar.

Operand 4: Character(1) scalar.

Operand 5-7:

Operand 3

Compare
operand

Compare
operand

Compare
operand

Operand 4

Mode
operand

Mode
operand

Mode
operand

Operand [5-7]

Branch
targets

Indicator
targets

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: This instruction scans the string value of the base operand for occurrences of the string
value of the compare operand and indicates the relative locations of these occurrences in the receiver
operand. The character string value of the base operand is scanned for occurrences of the character
string value of the compare operand under control of the mode operand and mode control characters
embedded in the base string.

The base and compare operands must both be character strings. The length of the compare operand
must not be greater than that of the base string. The base and compare operand are interpreted as
containing a mixture of 1-byte (simple) and 2-byte (extended) character codes. The mode, simple or
extended, with which the string is to be interpreted, is controlled initially by the mode operand and
thereafter by mode control characters embedded in the strings. The mode control characters are as
follows:

• Hex OE = Shift out of simple character mode to extended mode.

• Hex OF = Shift into simple character mode from extended mode. This is recognized only if it occurs
in the first byte position of an extended character code.

The format of the mode operand is as follows:

• Mode operand

Operand 2 initial mode indicator

o = Operand starts in simple character mode.
1 = Operand starts in extended character mode.

Operand 3 initial mode indicator

o = Operand starts in simple character mode.
1 = Operand starts in extended character mode.

Reserved (binary 0)

Char(1)

Bit 0

Bit 1

Bits 2-7

Chapter 2. Computation and Branching Instructions 2-167

Extended Character Scan (ECSCAN)

The operation begins at the left end of the base string and continues character by character, left to
right. When the base string is interpreted in simple character mode, the operation moves through the
base string 1 byte at a time. When the base string is interpreted in extended character mode. the
operation moves through the base string 2 bytes at a time.

The compare operand value is the entire byte string specified for the compare operand. The mode
operand determines the initial mode of the compare operand. The first character of the compare
operand value is assumed to be a valid character for the initial mode of the compare operand and not
a mode control character. Mode control characters in the compare operand value participate in com­
parisons performed during the scan function except that a mode control character as the first character
of the compare operand causes unpredictable results.

The base string is scanned until the mode of the characters being processed is the same as the initial
mode of the compare operand value. The operation continues comparing the characters of the base
string with those of the compare operand value. The starting character of the characters being com­
pared in the base string is always a valid character for the initial mode of the compare operand value.
A mode control character encountered in the base string that changed the base string mode to match
the initial mode of the compare operand value does not participate in the comparison. The length of
the comparison is equal to the length of the compare operand value and the comparison is performed
the same as performed by the Compare Bytes Left Adjusted instruction.

If a set of bytes that matches the compare operand value is found, the binary value for the relative
location of the leftmost base string character of the set of bytes is placed in the receiver operand.

If the receiver operand is a scalar, only the first occurrence of the compare operand is noted. If the
receiver operand is an array, as many occurrences as there are elements in the array are noted.

If a mode change is encountered in the base string, the base string is again scanned until the mode of
the characters being processed is the same as the initial mode of the compare operand value, and
then the comparisons are resumed.

The operation continues until no more occurrences of the compare operand value can be noted in the
receiver operand or until the number of bytes remaining to be scanned in the base string is less than
the length of the compare operand value. When the second condition occurs, the receiver value is set
to zero. If the receiver operand is an array, all its remaining elements are also set to zero.

If the escape code encountered result condition is speCified (through a branch or indicator option), ver­
ifications are performed on the base string as it is scanned. Each byte of the base string is checked
for a value less than hex 40. When a value less than hex 40 is encountered, it is then determined if it
is a valid mode control character.

If a byte value of less than hex 40 is not a valid mode control character, it is considered to be an
escape code. The binary value for the relative location of the character (simple or extended) being
interrogated is placed in the receiver operand, and the appropriate action (indicator or branch) is per­
formed according to the specification of the escape code encountered result condition. If the receiver
operand is an array, the next array element after any elements set with locations or prior occurrences
of the compare operand, is set with the location of the character containing the escape code and all
the remaining array elements are set to zero.

If the escape encountered result condition is not specified, verifications of the character codes in the
base string are not performed.

Chapter 2. Computation and Branching Instructions 2-168

Extended Character Scan (ECSCAN)

Resultant Conditions

• Positive-The numeric value(s) of the receiver operand is positive.

· Zero-The numeric value(s) of the receiver operand is zero. In the case where the receiver operand
is an array, the resultant condition is zero if all elements are zero.

· Escape code encountered-An escape character code value was encountered during the scanning of
the base string.

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X X

02 boundary alignment violation X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 ArgumenUparameter

01 parameter reference violation X X X X

OC Computation

08 length conformance X X X

10 Damage encountered
i

04 System object damage state X :.J 44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

Chapter 2. Computation and Branching Instructions 2-169

Exception
01 scalar type invalid

03 scalar value invalid

36 Space management

01 space extension/truncation

Extended Character Scan (ECSCAN)

Operands
1 2
X X

3
X

4
X

X

Other

X

Chapter 2. Computation and Branching Instructions 2-170

Extract Exponent (EXTREXP)

Extract Exponent (EXTREXP)

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3.6]
EXTREXP Receiver Source
1072

EXTREXPB Branch options Receiver Source Branch targets
1C72

EXTREXPI Indicator options Receiver Source Indicator targets
1872

Operand 1: Binary variable scalar.

Operand 2: Floating-point scalar.

Operand 3-6:

• Branch Form-Branch point, instruction pointer. relative instruction number. or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: This instruction extracts the exponent portion of a floating-point scalar source operand
and places it into the receiver operand as a binary variable scalar.

The operands must be the numeric types indicated because no conversions are performed.

The source floating-point field is interrogated to determine the binary floating-point value represented
and either a signed exponent. for number values. or a special identifier. for infinity and NaN values. is
placed in the binary variable scalar receiver operand.

The value to be assigned to the receiver. is dependent upon the floating-point value represented in the
source operand as described below. It is a signed binary integer value and a numeric assignment of
the value is made to the receiver.

When the source represents a normalized number. the biased exponent contained in the exponent field
of the source is converted to the corresponding signed exponent by subtracting the bias of 127 for
short or 1023 for long to determine the value to be returned. The resulting value ranges from -126 to
+ 127 for short format. -1022 to + 1023 for long format. When the receiver is unsigned binary. a nega­
tive exponent will result in a size (hex OCOA) exception unless size exceptions are suppressed by using
the suppress binary size exception program attribute on the Create Program (CRTPG) instruction.

When the source represents a denormalized number. the value to be returned is determined by
adjusting the signed exponent of the denormalized number. The signed exponent of a denormalized
number is a fixed value of -126 for the short format and -1022 for the long format. It is adjusted to the
value the signed exponent would be if the source value was adjusted to a normalized number. The
resulting value ranges from -127 to -149 for short format. -1023 to -1074 for long format.

When the source represents a value of zero. the value returned is zero.

When the source represents infinity, the value returned is +32767.

When the source represents a not-a-number, the value returned is -32768 for a signed binary receiver. .'\-
For an unsigned binary(2) a value of 32768 is returned, and for a unsigned binary(4) a value of
4294934528 is returned.

Chapter 2. Computation and Branching Instructions 2-171

Extract Exponent (EXTREXP)

Resultant Conditions

• Normalized-The source ope~and value represents a normalized binary floating-point number. The
signed exponent is stored in the receiver.

• Denormalized-The source operand value represents a denormalized binary floating-point number.
An adjusted signed exponent is stored in the receiver.

• Infinity-The source operand value represents infinity. The receiver is set with a value of +32767.

• NaN-The source operand value represents a not-a-number. The receiver is set with a value of
-32768 when signed binary, with a value of 32768 when unsigned binary(2). and with a value of
4294934528 when unsigned binary(4).

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment violation X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

Chapter 2. Computation and Branching Instructions 2-172

Extract Exponent (EXTREXP)

Operands
Exception 1 2 Other

01 scalar type i.nvalid X X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-173

Extract Magnitude (EXTRMAG)

Extract Magnitude (EXTRMAG)

Op Code (Hex)
EXTRMAG
1052

EXTRMAGI
1852

EXTRMAGB
1C52

Extender

Indicator options

Branch options

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3-6:

Operand 1
Receiver

Receiver

Receiver

Operand 2
Source

Source

Source

Operand [3-6]

Indicator targets

Branch targets

• Branch Form-Branch point. instruction pointer. relative instruction number. or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand [2-5]
EXTRMAGS Receiver/Source
1152

EXTRMAGIS Indicator options Receiver/Source Indicator targets
1952

EXTRMAGBS Branch options Receiver/Source Branch targets
1052

Operand 1: Numeric variable scalar.

Operand 2-5:

• Branch Form-Branch point. instruction pointer. relative instruction number. or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The numeric value of the source operand is converted to its absolute value and placed in
the numeric variable scalar receiver operand.

The absolute value is formed from the source operand as follows:

• Signed binary

- Extract the numeric value and form twos complement if the source operand is negative.

• Unsigned signed binary

- Extract the numeric value.

• Packed/Zoned

- Extract the numeric value and force the source operand's sign to positive.

Chapter 2. Computation and Branching Instructions 2-174

Extract Magnitude (EXTRMAG)

• Floating-point

- Extract the numeric value and force the significand sign to positive.

The result of the operation is copied into the receiver operand according to the rules of the Copy
Numeric Value instruction. If this operand is not the same type as that used in performing the opera­
tion, the resultant value is converted to its type. If necessary, the resultant value is adjusted to the
length of the receiver operand, or aligned at the assumed decimal point of the receiver operand, or
both before being copied to it. If significant digits are truncated on the left end of the resultant value, a
size (hex OCOA) exception is signaled. An attempt to extract the magnitude of a maximum negative
binary value to a binary scalar of the same size also results in a size (hex OCOA) exception.

When the source floating-point operand represents not-a-number, the sign field of the source is not
forced to positive and this value is not altered in the receiver.

If a decimal to binary conversion causes a size (hex OCOA) exception to be signaled, the binary value
contains the correct truncated result only if the decimal value contains 15 or fewer significant nonfrac­
tiona I digits.

For a fixed-point operation, if significant digits are truncated from the left end of the resultant value, a
size (hex OCOA) exception is signaled. An attempt to extract the absolute value of a maximum negative
binary value into a binary scalar of the same size also results in a size (hex OCOA) exception.

For floating-point operations that involve a fixed-point receiver field, if nonzero digits would be trun­
cated from the left end of the resultant value, an invalid floating-point conversion (OCOC) exception is
signaled.

For a floating-point receiver operand, if the exponent of the resultant value is either too large or too
small to be represented in the receiver field, the floating-point overflow (hex OC06) or the floating-point \~
underflow (hex OC07) exception is signaled. ..",

Resultant Conditions

• Positive-The algebraic value of the receiver operand is positive.

• Zero-The algebraic value of the receiver operand is zero.

• Unordered-The value assigned a floating-point receiver operand is NaN.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OC Computation

02 decimal data X

06 floating-point overflow X

07 floating-point underflow X

Chapter 2. Computation and Branching Instructions 2-175

Extract Magnitude (EXTRMAG)

Operands
Exception 1 2 Other

09 floating-point invalid operand X

OA size X

OC invalid floating point conversion X

00 floating-point inexact result X

10 Damage encountered

04 system object damage X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-176

Multiply (MULT)

Multiply (MUL T)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4-7]
MULT Product Multiplicand Multiplier
1048

MULTR Product Multiplicand Multiplier
1248

MULTI Indicator Product Multiplicand Multiplier Indicator targets
1848 options

MULTIR Indicator Product Multiplicand Multiplier Indicator targets
1A4B options

MULTB Branch options Product Multiplicand Multiplier Branch targets
1C48

MULTBR Branch options Product Multiplicand Multiplier 8ranch targets
1E4B

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Operand 4-7:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-6]
MULTS Product/Multiplicand Multiplier
1048

MULTSR Product/Multiplicand Multiplier
1348

MULTIS Indicator options Product/Multiplicand Multiplier Indicator targets
1948

MULTISR Indicator options Product/Multiplicand Multiplier Indicator targets
1B4B

MULTBS Branch options Product/Multiplicand Multiplier Branch targets
104B

MULTBSR 8ranch options Product/Multiplicand Multiplier Branch targets
1F4B

Operand 1: Numeric variable scalar.

Chapter 2. Computation and Branching Instructions 2-177

Multiply (MULT)

Operand 2: Numeric scalar.

Operand 3-6:

• Branch Form-Branch point. instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The Product is the result of multiplying the Multiplicand and the Multiplier.

Operands can have floating-point, packed or zoned decimal, signed or unsigned binary type.

Source operands are the Multiplicand and Multiplier. The receiver operand is the Product.

If operands are not of the same type, source operands are converted according to the fol/owing rules:

1. If anyone of the operands has floating point type, source operands are converted to floating point
type.

2. Otherwise, if anyone of the operands has zoned or packed decimal type, source operands are
converted to packed decimal.

3. Otherwise, the binary operands are converted to a like type. Note: unsigned binary(2) scalars are
logically treated as signed binary(4) scalars.

Source operands are multiplied according to their type. Floating point operands are multiplied using
floating point multiplication. Packed decimal operands are multiplied using packed decimal multipli­
cation. Unsigned binary multiplication is used with unsigned source operands. Signed binary oper­
ands are multiplied using two's complement binary multiplication.

Better performance can be obtained if al/ operands have the same type. Signed and unsigned binary
multiplication execute faster than either packed decimal or floating point multiplication.

Decimal operands used in floating-point operations cannot contain more than 15 total digit positions.

If the multiplicand operand or the multiplier operand has a value of 0, the result of the multiplication is
a zero product.

For a decimal operation, no alignment of the assumed decimal point is performed for the multiplier and
multiplicand operands.

The operation occurs using the specified lengths of the multiplicand and multiplier operands with no
logical zero padding on the left necessary.

Floating-point multiplication uses exponent addition and significand multiplication.

For nonfloating-point computations and for significand multiplication for floating-point operations, the
multiplication operation is performed according to the rules of algebra. Unsigned binary operands are
treated as positive numbers for the algebra.

The result of the operation is copied into the product operand. If this operand is not the same type as
that used in performing the operation, the resultant value is converted to its type. If necessary, the
resultant value is adjusted to the length of the product operand, aligned at the assumed decimal point
of the product operand, or both before being copied to it.

For the optional round form of the instruction, specification of a floating-point receiver operand is
invalid.

Chapter 2. Computation and Branching Instructions 2-178

Multiply (MULT)

For fixed-point operations in programs that request to be notified of size exceptions, if nonzero digits
are truncated from the left end of the resultant value, a size (hex GCGA) exception is signaled.

For floating-point operations involving a fixed-point receiver field (if nonzero digits would be truncated
from the left end of the resultant value), an invalid floating-point conversion (hex GCOC) exception is
signaled.

For a floating-point product operand, if the exponent of the resultant value is either too large or too
small to be represented in the product field, the floating-paint overflow (hex GC06) or the floating-point
underflow (hex OC07) exception is signaled.

If operands overlap but do not share all of the same bytes, results of operations performed on these
operands are not predictable. If overlapped operands share all of the same bytes, the results are pre­
dictable when direct addressing is used. If indirect addressing is used (that is, based operands,
parameters, strings with variable lengths, and arrays with variable subscripts), the results are not
always predictable.

If a decimal to binary conversion causes a size (hex OeOA) exception to be signaled, the binary value
contains the correct truncated result only if the decimal value contains 15 or fewer significant nonfrac­
tional digits.

Resultant Conditions

• Positive-The algebraic value of the numeric scalar product is positive.

• Negative-The algebraic value of the numeric scalar product is negative.

• Zero-The algebraic value of the numeric scalar product is zero.

• Unordered-The value assigned a floating-point product operand is NaN.

Exceptions

Operands
Exception 1 2 3 [4,5] Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OC Computation

02 decimal data X X

06 floating-point overflow X

07 floating-point underflow X

09 floating-point invalid operand X X X

OA size X

OC invalid floating-point conversion X

00 floating-point inexact result X

10 Damage encountered

04 system object damage state X X X X

Chapter 2. Computation and BranChing Instructions 2-179

~

Multiply (MULT)

Operands
Exception 1 2 3 [4. 5] Other

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 painter does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-180

Negate (NEG)

Op Code (Hex) Extender
NEG
1056

NEGI Indicator options
1856

NEGB Branch options
1e56

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3-6:

Operand 1
Receiver

Receiver

Receiver

Operand 2
Source

Source

Source

Negate (NEG)

Operand [3-6J

Indicator targets

Branch targets

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand [2-5]
NEGS Receiver/Source
1156

NEGIS Indicator options Receiver/Source Indicator targets
1956

NEGBS Branch options Receiver/Source Branch targets
1056

Operand 1: Numeric variable scalar.

Operand 2-5:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The numeric value in the source operand is changed as if it had been multiplied by a
negative one (-1). The result is placed in the receiver operand.

The sign changing of the source operand value (positive to negative and negative to positive) is per­
formed as follows:

• Binary

- Extract the numeric value and form the twos complement of it.

• Packed/Zoned

- Extract the numeric value and force its sign to positive if it is negative or to negative if it is
positive.

• Floating-point

Chapter 2. Computation and Branching Instructions 2-181

(

J

Negate (NEG)

- Extract the numeric value and force the significand sign to positive if it is negative or to nega-
tive if it is positive.

The result of the operation is copied into the receiver operand. If this operand is not the same type as
that used in performing the operation, the resultant value is converted to its type. If necessary, the
resultant value is adjusted to the length of the receiver operand, aligned at the assumed decimal point
of the receiver operand, or both before being copied to it. If significant digits are truncated on the left
end of the resultant value, a size (hex OCOA) exception is signaled. An attempt to negate a maximum
negative signed binary value to a signed binary scalar of the same size also results in a size (hex
OCOA) exception. When the receiver is binary the size exception may be suppressed by using the sup­
press binary size exception attribute on the Create Program (CRTPG) instruction. If a packed or zoned
o is negated, the result is always positive O.

When the source floating-point operand represents not-a-number, the sign field of the source is not
forced to positive and this value is not altered in the receiver.

For a fixed-point operation, if significant digits are truncated from the left end of the resultant value, a
size (hex OCOA) exception is signaled. An attempt to negate a maximum negative binary value into a
binary scalar of the same size also results in a size (hex OCOA) exception.

For floating-point operations that involve a fixed-point receiver field, if nonzero digits would be trun­
cated from the left end of the resultant value, an invaJid floating-point conversion (hex oeoC) exception
is signaled.

For a floating-point receiver operand, if the exponent of the resultant value is either too large or too
small to be represented in the receiver field, the floating-point overflow (hex'OCOS) and the floating­
point underflow (hex OCO?) exceptions are signaled.

If a decimal to binary conversion causes a size (hex OCOA) exception to be signaled or if the size
exception was suppressed, the binary value contains the correct truncated result only if the decimal
value contains 15 or fewer significant nonfractional digits.

Resultant Conditions

• Positive-The algebraic value of the receiver operand is positive.

• Negative-The algebraic value of the receiver operand is negative.

• Zero-The algebraic value of the receiver operand is zero.

• Unordered-The value assigned a floating-point receiver operand is NaN.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OC Computation

02 decimal data

Operands
1 2 Other

X X

X X

X X

X X

X X

x

Chapter 2. Computation and Branching Instructions 2-182

Negate (NEG)

Operands
Exception 1 2 Other

06 floating-point overflow X

07 floating-point underflow X

09 floating-point invalid operand X X

OA size X

OC invalid floating-point conversion X

00 floating-point inexact result X

10 Damage encountered

04 system object damage X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X ~ 24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-183

Not (NOT)

Not (NOT)

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-4J
NOT Receiver Source
108A

NOn I ndicator options Receiver Source Indicator targets
188A

NOTB Branch options Receiver Source Branch targets
1C8A

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character variable scalar or numeric variable

Operand 3-4:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand [2-3]
NOTS Receiver/Source
118A

Nons Indicator options Receiver/Source Indicator targets
198A

NOTBS Branch options Receiver/Source Branch targets
1D8A

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2-3:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The Boolean NOT operation is performed on the string value in the source operand. The
resulting string is placed in the receiver operand.

The operands may be character or numeric scalars. They are both interpreted as bit strings. Sub­
stringing is supported for both character and numeric operands.

The length of the operation is equal to the length of the source operand.

The bit values of the result are determined as follows:

Source Bit Result Bit

a
a

Chapter 2. Computation and Branching Instructions 2-184

Not (NOT)

The result value is then placed (left-adjusted) in the receiver operand with truncating or padding taking
place on the right. The pad value used in this instruction is a hex 00 byte.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying a null substring reference for the source
operand is that the result is all zero and the instruction's resultant condition is zero. When a null
substring reference is specified for the receiver, a result is not set and the instruction's resultant condi­
tion is zero regardless of the value of the source operand.

When the receiver operand is a numeric variable scalar, it is possible that the result produced will not
be a valid value for the numeric type. This can occur due to padding with hex 00, due to truncation, or
due to the resultant bit string produced by the instruction. The instruction completes normally and
signals no exceptions for these conditions.

Resultant Conditions

• Zero-The bit value for the bits of the scalar receiver operand is either all zero or a null substring
reference is specified for the receiver.

• Not zero-The bit value for the bits of the scalar receiver operand is not all zero.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

Chapter 2. Computation and Branching Instructions 2-185

{

~

.j

Not (NOT)

Operands
Exception 1 2 Other

2C Program execution

04 invalid branch target x

2E Resource control limit

01 user profile storage limit exceeded x
36 Space management

01 space extension/truncation x

Chapter 2. Computation and Branching Instructions 2-186

Or (OR)

Or (OR)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4.5J
OR Receiver Source 1 Source 2
1097

ORI Indicator Receiver Source 1 Source 2 Indicator targets
1897 options

ORB Branch options Receiver Source 1 Source 2 Branch targets
1C97

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Operand 4-5:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-4]
ORS Receiver/Source 1 Source 2
1197

ORIS Indicator options Receiver/Source 1 Source 2 Indicator targets
1997

ORBS Branch options Receiver/Source 1 Source 2 Branch targets
1097

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3-4:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The Boolean OR operation is performed on the string values in the source operands.
The resulting string is placed in the receiver operand.

The operands may be character or numeric scalars. They are both interpreted as bit strings. Sub­
stringing is supported for both character and numeric operands.

i

'.J

The length of the operation is equal to the length of the longer of the two source operands. The .,
shorter of the two operands is logically padded on the right with hex 00. The excess bytes in the ~
longer operand are assigned to the results.

Chapter 2. Computation and Branching Instructions 2-187

The bit values of the result are determined as follows:

Source 1 Bit
o
o

Source 2 Bit
o

o

Result Bit
o

Or (OR)

The result value is then placed (left-adjusted) in the receiver operand with truncating or padding taking
place on the right. The pad value used in this instruction is a hex 00.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 1. 2, and 3. The effect of specifying a null substring reference for one source
operand is that the other source operand is ORed with an equal length string of all hex oos. This
causes the value of the other operand to be assigned to the result. When a null substring reference is
specified for both source operands, the result is all zero and the instruction's resultant condition is
zero. When a null substring reference is specified for the receiver, a result is not set and the
instruction's resultant condition is zero regardless of the values of the source operands.

If operands overlap but do not share all of the same bytes, results of operations performed on these
operands are not predictable. If overlapped operands share all of the same bytes. the results are pre­
dictable when direct addressing is used. If indirect addressing is used (that is. based operands,
parameters, strings with variable lengths. and arrays with variable subscripts). the results are not
always predictable.

When the receiver operand is a numeric variable scalar, it is possible that the result produced will not
be a valid value for the numeric type. This can occur due to padding with hex 00. due to truncation. or
due to the resultant bit string produced by the instruction. The instruction completes normally and
signals no exceptions for these conditions.

Resultant Conditions

• Zero-The bit value for the bits of the scalar receiver operand is either all zero or a null substring
reference is specified for the receiver.

• Not zero-The bit value for the bits of the scalar receiver operand is not all zero.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

Chapter 2. Computation and Branching Instructions 2-188

Or (OR)

Operands
Exception 1 2 3 Other

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X \

.J

Chapter 2. Computation and Branching Instructions 2-189

c."

Remainder (REM)

Remainder (REM)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4.6J
REM Remainder Dividend Divisor
1073

REMI Indicator Remainder Dividend Divisor Indicator targets
1873 options

REMB Branch options Remainder Dividend Divisor Branch targets
1C73

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Operand 4-6:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3.5]
REMS Remainder/Dividend Divisor
1173

REMIS Indicator options Remainder/Dividend Divisor Indicator targets
1973

REMBS Branch options Remainder/Dividend Divisor Branch targets
1073

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3-5:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The Remainder is the result of dividing the Dividend by the Divisor and placing the
remainder in operand 1.

Operands can have packed or zoned decimal, signed or unsigned binary type.

Source operands are the Dividend and Divisor. The receiver operand is the Remainder.

If operands are not of the same type, source operands are converted according to the following rules:

Chapter 2. Computation and Branching Instructions 2-190

Remainder (REM)

1. If anyone of the operands has zoned or packed decimal type. source operands are converted to
packed decimal.

2. Otherwise, the binary operands are converted to a like type. Note: unsigned binary(2) scalars are
logically treated as signed binary(4) scalars.

Source operands are divided according to their type. Packed decimal operands are divided using
packed decimal division. Unsigned binary division is used with unsigned source operands. Signed
binary operands are divided using two's complement binary division.

Better performance can be obtained if all operands have the same type. Signed and unsigned binary
division execute faster than packed decimal division.

Floating-point is not supported for this instruction.

If the divisor has a numeric value of 0, a zero divide (hex aCaB) exception is signaled. If the dividend
has a value of 0, the result of the division is a zero value remainder.

For a decimal operation, the internal quotient value produced by the divide operation is always calcu­
lated with a precision of zero fractional digit positions. If necessary, internal alignment of the assumed
decimal point for the dividend and divisor operands is performed to insure the correct precision for the
resultant quotient value. These internal alignments are not subject to detection of the decimal point
alignment exception. An internal quotient and the corresponding remainder value will be calculated
for any combination of decimal attributes which may be specified for the instruction's operands.
However, as described below, the assignment of the remainder value is limited to that portion of the
remainder value which fits in' the remainder operand. .

If the dividend is shorter than the divisor, it is logically adjusted to the length of the divisor.

The division operation is performed according to the rules of algebra. Unsigned binary is treated as a
positive number for the algebra. Before the remainder is calculated, an intermediate quotient is calcu­
lated. The attributes of this quotient are derived from the attributes of the dividend and divisor oper­
ands as follows:

Dividend Divisor
IM,SIM or SBIN(2) IM,SIM or SBIN(2)

IM,SIM or SBIN(2) SBIN(4)

IM,SIM,SBIN(2) or UBIN(2) DECIMAL(P2,02)

IM,SIM,SBIN(2) or SBIN(4) UBIN(2) or UBIN(4)

UBIN(2) or UBIN(4) IM,SIM,SBIN(2) or
SBIN(4)

UBIN(2) or UBIN(4) UBIN(2) or UBIN(4)

SBIN(4) IM,SIM or SBIN(2)

SBIN(4) or UBIN(4) DECIMAL(P2,02)

DECIMAL(P1,Ol) IM,SIM,SBIN(2) or
UBIN(2)

DECIMAL(P1,01) SBIN(4) or UBIN(4)

DECIMAL(P1 ,01)

1M = IMMEDIATE
SIM = SIGNED IMMEDIATE
SBIN = SIGNED BINARY

DECIMAL(P2,02)

Intermediate
Quotient
SBIN(2)

SBIN(4)

DECIMAL(5+02,0)

UBIN(4)

UBIN(4)

UBIN(4)

SBIN(4)

DECI MAL(l 0+02,0)

DECIMAL(P1,0)

DECIMAL(P1,0)

DECIMAL(P1-01 +0,0)

Where 0 - Larger of 01 or 02

Chapter 2. Computation and Branching Instructions 2-191

Remainder (REM)

UBIN = UNSIGNED BINARY
DECIMAL = PACKED OR ZONED

After the intermediate quotient numeric value has been determined, the numeric value of the
remainder operand is calculated as follows:

Remainder = Dividend - (Quotient"Divisor)

When signed arithmetic is used, the sign of the remainder is the same as that of the dividend unless
the remainder has a value of O. When the remainder has a value of 0, the sign of the remainder is
positive.

The resultant value of the calculation is copied into the remainder operand. If this operand is not the
same type as that used in performing the operation, the resultant value is converted to its type. If
necessary, the resultant value is adjusted to the length of the remainder operand, aligned at the
assumed decimal point of the remainder operand, or both before being copied to it.

If significant digits are truncated on the left end of the resultant value, a size (hex OCOA) exception is
signaled for those programs that request to be notified of size exceptions.

If a decimal to binary conversion causes a size (hex OCOA) exception to be signaled in programs that
request to be notified of size exceptions, the binary value contains the correct truncated result only if
the decimal value contains 15 or fewer significant nonfractional digits.

Resultant Conditions

• Positive-The algebraic value of the numeric scaler remainder is positive.

• Negative-The algebraic value of the numeric scaler remainder is negative.

• Zero-The algebraic value of the numeric scaler remainder is zero.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OC Computation

02 decimal data X X

OA size X

OB zero divide X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

Chapter 2. Computation and Branching Instructions 2-192

Remainder (REM)

Operands
Exception 1 2 3 Other

03 machine storage limit exceeded X

~
20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X ~

:J

Chapter 2. Computation and Branching Instructions 2-193

Scale (SCALE)

Op Code (Hex) Extender Operand 1
SCALE Receiver
1063

SCALEI Indicator Receiver
1863 options

SCALES Branch options Receiver
1C63

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Binary(2) scalar.

Operand 4-7:

Operand 2
Source

Source

Source

Operand 3
Scale factor

Scale factor

Scale factor

Scale (SCALE)

Operand [4-7]

Indicator targets

Branch targets

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-6]
SCALES Receiver/Source Scale factor
1163

SCALEIS Indicator options Receiver/Source Scale factor Indicator targets
1963

SCALESS Branch options Receiver/Source Scale factor Branch targets
1063

Operand 1: Numeric variable scalar.

Operand 2: Binary(2) scalar.

Operand 3-6:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The scale instruction performs numeric scaling of the source operand based on the scale
factor and places the results in the receiver operand. The numeric operation is as follows:

Operand 1 = Operand 2 *(B**N)

where:

N is the binary integer value of the scale operand. It can be positive, negative, or O. If N is 0, then
the operation simply copies the source operand value into the receiver operand.

B is the arithmetic base for the type of numeric value in the source operand.

Chapter 2. Computation and Branching Instructions 2-194

Base Type

Binary

Packed/Zoned

Floati ng-poi nt

B

2

10

2

Scale (SCALE)

The scale operation is a shift of N binary, packed, or zoned digits. The shift is to the left if N is posi­
tive, to the right if N is negative. For a floating-point source operand, the scale operation is performed
as if the source operand is multiplied by a floating-point value of 2**N.

If the source and receiver operands have different attributes, the scaling operation is done in an inter­
mediate field with the same attributes as the source operand. If a fixed-point scaling operation causes
nonzero digits to be truncated on the left end of the intermediate field, a size (hex OeOA) exception is
signaled. For a floating-point scaling operation, the floating-point overflow (hex Oe06) and the floating­
point underflow (hex oe07) exceptions can be signaled during the calculation of the intermediate result.

The resu Itant value of the calculation is copied into the receiver operand. If this operand is not the
same type as that used in performing the operation, the resultant value is converted to its type. If
necessary, the resultant value is adjusted to the length of the receiver operand, aligned at the
assumed decimal point of the receiver operand, or both before being copied to it. For fixed-point oper­
ations, if nonzero digits are truncated off the left end of the resultant value, a size (hex OeOA) exception
is signaled.

For floating-point operations involving fixed-point receiver fields, if nonzero digits would be truncated
from the left end of the resultant value, an invalid floating-point conversion (hex oeoC) exception is
signaled.

For floating-point receiver fields, if the exponent of the resultant value is either too large or too small to . .l
be represented in the receiver field, the floating-point overflow (hex Oe06) or floating-point underflow
(hex OeO?) exception is signaled.

A scalar value invalid (hex 3203) exception is signaled if the value of N is beyond the range of the
particular type of the source operand as specified in the following table.

Source Operand Type
Signed Binary(2)

Unsigned Binary(2)

Signed Binary(4)

Unsigned Binary(4)

Decimal(P,Q)

Maximum Value of N
-lS:SN:S1S

-16:S N :S 16

-31 :S N :S 31

-32 S N :S 32

-31:SN:S31

For a scale operation in floating-point, no limitations are placed on the values allowed for N other than
the implicit limits imposed due to the floating-point overflow and underflow exceptions.

Limitations: The following are limits that apply to the functions performed by this instruction.

If a decimal to binary conversion causes a size (hex OeOA) exception to be signaled, the binary value
contains the correct truncated result only if the decimal value contains 15 or fewer significant nonfrac­
tional digits.

Resultant Condition

• Positive-The algebraic value of the receiver operand is positive.

• Negative-The algebraic value of the receiver operand is negative.

• Zero-The algebraic value of the receiver operand is zero.

Chapter 2. Computation and Branching Instructions 2-195

Scale (SCALE)

• Unordered-The value assigned a floating-point receiver operand is NaN .

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OC Computation

02 decimal data X

06 floating-point overflow X

07 floating-point underflow X

09 floating-point invalid operand X X

OA size X

OC invalid floating-point conversion X.

00 floating-point inexact result X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machi ne-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

Chapter 2. Computation and Branching Instructions 2-196

Scale (SCALE)

Operands
Exception 1 2 3 Other
32 Scalar sp~cification

03 scalar value invalid x
36 Space management

01 space extension/truncation x

Chapter 2. Computation and Branching Instructions 2-197

Scan (SCAN)

Op Code (Hex)
SCAN
1003

SCANS
1C03

SCANI
1803

Extender

Branch options

Indicator
options

Operand 1
Receiver

Receiver

Receiver

Operand 1: Binary variable scalar or binary array.

Operand 2: Character variable scalar.

Operand 3: Character scalar.

Operand 4-5:

Operand 2
Base

Base

Base

Operand 3
Compare
operand

Compare
operand

Compare
operand

Scan (SCAN)

Operand [4-5J

Branch targets

Indicator targets

• Branch Form-Branch pOint. instruction pointer. relative instruction number. or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The character string value of the base operand is scanned for 'occurrences of the char­
acter string value of the compare operand.

The base and compare operands must both be character strings. The length of the compare operand
must not be greater than that of the base string.

The operation begins at the left end of the base string and continues character by character. from left
to right. comparing the characters of the base string with those of the compare operand. The length of
the comparisons are equal to the length of the compare operand value and function as if they were
being compared in the Compare Bytes Left-Adjusted instruction.

If a set of bytes that match the compare operand is found. the binary value for the ordinal position of
its leftmost base string character is placed in the receiver operand.

If the receiver operand is a scalar. only the first occurrence of the compare operand is noted. If it is an
array. as many occurrences as there are elements in the array are noted.

The operation continues until no more occurrences of the compare operand can be noted in the
receiver operand or until the number of characters (bytes) remaining to be scanned in the base string
is less than the length of the compare operand.

When the second condition occurs. the receiver value is set to O. If the receiver operand is an array.
all its remaining elements are also set to O.

The base operand and the compare operand can be variable length substring compound operands.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 2 and 3. The effect of specifying a null substring reference for the compare
operand or both operands is that the receiver is set to zero (no match found) and the instruction's
resultant condition is null compare operand. Specifying a null substring reference for just the base
operand is not allowed due to the requirement that the length of the compare operand must not be
greater than that of the base string.

Chapter 2. Computation and Branching Instructions 2-198

Scan (SCAN)

Resultant Conditions

• Zero-The numeric value(s) of the receiver operand is zero. When the receiver operand is an array,
the resultant condition is zero if all elements are zero. One of these two conditions will result
when the compare operand is not a null substring reference.

• Positive-The numeric value(s) of the receiver operand is positive.

• Null compare operand-The compare operand is a null substring reference; therefore, the receiver
has been set to zero which indicates that no occurrences were found.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OC Computation

08 length conformance X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

Chapter 2. Computation and Branching Instructions 2-199

I
"-

..J

Exception
01 space extension/truncation

Operands
1 2 3

Scan (SCAN)

Other
X

Chapter 2. Computation and Branching Instructions 2-200

Scan with Control (SCANWC)

Op Code Extender Operand 1 Operand 2
(Hex)
SCANWC Base Controls
10E4 locator

SCANWCB Branch Base Controls
1CE4 options locator

SCANWCI Indicator Base Controls
18E4 options locator

Operand 1: Space pointer.

Operand 2: Character(8) variable scalar (fixed length)

Operand 3: Character(4) constant scalar (fixed length)

Operand 3

Options

Options

Options

Scan with Control (SCANWC)

Operand 4

Escape
target or
null

Escape
target or
null

Escape
target or
null

Operand [5-SJ

Branch
targets

Indicator
targets

Operand 4: Instruction number, relative instruction number, branch point, instruction pointer, instruc­
tion definition list element, or null.

Operand 5-8:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction.""

number. ""'"

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The base string to be scanned is specified by the base locator and controls operands.
The base locator addresses first character of the base string. The controls specifies the length of the
base string in the base length field.

The scan operation begins at the left end of the base string and continues character by character, left­
to-right. The scan operation can be performed on a base string which contains all simple (1-byte) or
all extended (2-byte) character codes or a mixture of the two. When the base string is being inter­
preted in simple character mode, the operation moves through the base string one byte at a time.
When the base string is being interpreted in extended character mode, the operation moves through
the base string 2 bytes at a time. The character string value of the base operand is scanned for occur­
rences of a character value satisfying the criteria specified in the control and options operands.

The scan is completed by updating the base locator and controls operands with scan status when a
character value being scanned for is found, the end of the base string is encountered, or an escape
code is encountered when the escape target operand is specified. The base locator is set with
addressability to the character (simple or extended) which caused the instruction to complete exe­
cution. The controls operand is set with information which identifies the mode (simple or extended) of
the base string character addressed by the base locator and which provides for resumption of the scan
operation with minimal overhead.

The controls and options operands specify the modes to be used in interpreting characters during the
scan operation. Characters can be interpreted in one of two character modes: simple (1-byte) and
extended (2-byte). Additionally, the base string can be scanned in one of two scan modes, mixed ~
(base string may contain a mixture of both character modes) and nonmixed (base string contains one
mode of characters).

Chapter 2. Computation and Branching Instructions 2-201

Scan with Control (SCANWC)

When the mixed scan mode is specified in the options operand, the base string is interpreted as con­
taining a mixture of simple and extended character codes. The mode, simple or extended, with which
the string is to be interpreted, is controlled initially by the base mode indicator in the controls operand
and thereafter by mode control characters imbedded in the base string. The mode control characters
are as follows:

• Hex OE = Shift out (SO) of simple character mode to extended mode.

• Hex OF = Shift in (SI) to simple character mode from extended mode. This is only recognized if it
occurs in the first byte position of an extended character code.

When the nonmixed scan mode is specified in the options operand, the base string is interpreted using
only the character mode specified by the base mode indicator in the controls operand. Character
mode shifting can not occur because no mode control characters are recognized when scanning in
non mixed mode.

The base locator operand is a space pointer which is both input to and output from the instruction. On
input. it locates the first character of the base string to be processed. On output, it locates the char­
acter of the base string which caused the instruction to complete.

The controls operand must be a character scalar which specifies additional information to be used to
control the scan operation. It must be at least 8 bytes long and have the following format:

• Controls operand Char(8)

Control indicators Char(1)

Reserved . Char(1)

Comparison characters Char(2)

Reserved Char(1)

Base end Char(3)

- Instruction work area Char(1)

- Base length Char(2)

Only the first 8 bytes of the controls operand are used. Any excess bytes are ignored. Reserved fields
must contain binary zeros. The control indicators field has the following format:

• Control indicators

Base mode

o = Simple
1 = Extended

Comparison character mode

o = Simple
1 = Extended

Reserved (must be 0)

Scan state

o = Resume scan
1 = Start scan

Char(1)

Bit 0

Bit 1

Bit 2-6

Bit 7

The base mode is both input to and output from the instruction. In either case, it speCifies the mode of
the character in the base string currently addressed by the base locator.

The comparison character mode is not changed by the instruction. It specifies the mode of the com­
parison character contained in the controls operand.

Chapter 2. Computation and Branching Instructions 2-202

Scan with Control (SCANWC)

The scan state is both input to and output from the instruction. As input, it indicates whether the scan
operation for the base string is being started or resumed. If it is being started, the instruction assumes
that the base length value in the base end field of the controls operand specifies the length of the base
string, and the instruction work area value is ignored. If it is being resumed, the instruction assumes
the base end field has been set by a prior start scan execution of the instruction with an internal
machine value identifying the end of the base string.

For a start scan execution of the instruction, the scan state field is reset to indicate resume scan to
provide for subsequent resumption of the scan operation. Additionally, for a start scan execution of the
instruction, the base end field is set with an internally optimized value which identifies the end of the
base string being scanned. This value then overlays the values which were in the instruction work
area and base length fields on input to the instruction. Predictable operation of the instruction on a
resume scan execution depends upon this base end field being left intact with the value set by the start
scan execution.

For a resume scan execution of the instruction, the scan state and base end fields are unchanged.

The comparison character is input to the instruction. It specifies a character code to be used in the
comparisons performed during the scanning of the base string. The comparison character mode in the
control indicators specifies the mode (simple or extended) of the comparison character. If it is a
simple character, the first byte of the comparison character field is ignored and the comparison char­
acter is assumed to be specified in the second byte. If it is an extended character, the comparison
character is specified as a 2-byte value in the comparison character field.

The base end field is both input to and output from the instruction. It contains' data which identifies the
end of the base string. Initially, for a start scan execution of the instruction, it contains the length of
the base string in the base length field. Additionally, the base end field is used to retain information .
over multiple' instruction executions which provides for minimizing the overhead required to resume ":J
the scan operation for a particular base string. This information is set on the initial start scan exe-
cution of the instruction and is used during subsequent resume scan executions of the instruction to
determine the end of the base string to be scanned. If the end of the base string being scanned must
be altered during iterative usage of this instruction, a start scan execution of the instruction must be
performed to provide for correctly resetting the internally optimized value to be stored in the base end
from the values specified in the base locator operand and base length field.

For the special case of a start scan execution where a length value of zero (no characters to scan) is
specified in the base length field, the instruction results in a not found resultant condition. In this case,
the base locator is not verified and the scan state indicator, the base end field, and the base locator
are not changed.

The options operand must be a character scalar which specifies the options to be used to control the
scan operation. It must be at least 4 bytes in length and has the following format:

• Options operand

Options indicators

Reserved

The options operand must be specified as a constant character scalar.

Char(4)

Char(1)

Char(3)

Only the first 4 bytes of the options operand are used. Any excess bytes are ignored. Reserved fields
must contain binary zeros. The option indicators field has the following format:

• Option indicators

Reserved

Scan mode

Char(1)

Bit 0

Bit 1

Chapter 2. Computation and Branching Instructions 2-203

o = Mixed
1 = Nonmixed

Reserved

Comparison relation

- Equal,(=) relation

- Less than, «) relation

- Greater than, (» relation

o = No match on relation
1 = Match on relation

Reserved

Scan with Control (SCANWC)

Bits 2-3

Bits 4-6

Bit 4

Bit 5

Bit 6

Bit 7

The scan mode specifies whether the base string contains a mixture of character modes, or contains
all one mode of characters; that is, whether or not mode control characters should be recognized in
the base string. Mixed specifies that there is a mixture of character modes and, therefore, mode
control characters should be recognized. Nonmixed specifies that there is not a mixture of character
modes and, therefore, mode control characters should not be recognized. Note that the base mode
indicator in the controls operand specifies the character mode of the base string character addressed
by the base locator.

The comparison relation specifies the relation or relations of the comparison character to characters of
the base string which will satisfy the scan operation and cause completion of the instruction with one
of the high, low, or equal resultant conditions. Multiple relations may be specified in conjunction with
one another. Specifying all relations insures a match against any character in the base string which is
of the same mode as the comparison character. Specifying no relation insures a not found resultant
condition, in the absence of an escape due to verification, regardless of the values of the characters in
the base string which match the mode of the comparison character.

An example of comparison scanning is a scan of simple mode characters for a value less than hex 40.
This could be done by specifying a comparison character of hex 40 and a comparison relation of
greater than in conjunction with a branch option for the resultant condition of high. This could also be
done by specifying a comparison character of hex 3F and comparison relations of equal and greater
than in conjunction with branch options for equal and high. The target of the branch options in either
case would be the instructions to process the character less than hex 40 in value.

The escape target operand controls the verification of bytes of the base string for values less than hex
40. Verification, if requested. is always performed in conjunction with whatever comparison processing
has been requested. That is, verification is performed even if no comparison relation is specified. This
operand is discussed in more detail in the following material.

During the scan operation, the characters of the base string which are not of the same mode as the
comparison character are skipped over until the mode of the characters being processed is the same
as the mode of the comparison character. The operation then proceeds by comparing the comparison
character with each of the characters of the base string. These comparisons behave as if the charac­
ters were being compared in the Compare Bytes Left Adjusted instruction.

If a base string character satisfying the criteria specified in the controls and options operands is found.
the base locator is set to address the first byte of it. the base mode indicator is set to indicate the
mode of the base string as of that character, and the instruction is completed with the appropriate
resultant condition based on the comparison relation (high, low, or equal) of the comparison character
to the base string character.

Chapter 2. Computation and Branching Instructions 2-204

Scan with Control (SCANWC)

If a matching base string character is not found prior to encountering a mode change, the characters of
the base string are again skipped over until the mode of the characters being processed is the same
as the mode of the comparison character before comparisons are resumed.

If a matching base string character is not found prior to encountering the end of the base string, the
base location is set to address the first byte of the character encountered at the end of the base string,
the base mode indicator is set to indicate the mode of the base string as of that character, and the
instruction is completed with the not found resultant condition. A mode control string results in the
changing of the base string mode, but the base locator is left addressing the mode control character.

If the escape target operand is specified (operand 4 is not nUll). verifications are performed on the
characters of the base string prior to their being skipped or compared with the comparison character.
Each byte of the base string is checked for a value less than hex 40. Additionally, for a mixed scan
mode, when such a value is encountered, it is then determined if it is a valid mode control character.

• Hex OE (SO) when the base string is being interpreted in simple character mode.

• Hex OF (51) in the left byte of the character code when the base string is being interpreted in
extended character mode.

If a byte value of less than hex 40 is not a valid mode control character, it is considered to be an
escape code. The base locator is set to address the first byte of the base string character (simple or
extended) which contains the escape code, the base mode indicator is set to indicate the mode of the
base string as of that character, and a branch is taken to the target specified by the escape target
operand. When the escape target branch is performed, the value of any optional indicator operands is
meaningless.

If the escape target operand is not specified (operand 4 is null), verifications of the character codes in
the base string are not performed. However, for a mixed scan mode, mode control values are always
processed as described previously under the discussion of the mixed scan mode.

If possible, use a Space Pointer Machine Object for the base locator, operand 1. Appreciably less
overhead is incurred in accessing and storing the value of the base locator if this is done.

If possible. specify through its OoT definition. the controls operand on an B-byte multiple (doubleword)
boundary relative to the start of the space containing it. Appreciably less overhead is incurred in
accessing and storing the value of the controls if this is done.

For the case where a base string is to be just scanned for byte values less than hex 40, two techniques
can be used.

• A direct simple mode scan for a value less than hex 40 without usage of the escape target verifica­
tion feature.

• A scan for any character with usage of the escape target verification feature.

The direct scan approach, the former, is the more efficient.

The following diagram defines the various conditions which can be encountered at the end of the base
string and what the base locator addressability is in each case. The solid vertical line represents the
end of the base string. The dashes represent the bytes before and after the base string end. TheN is
positioned over the byte addressed by the base locator in each case. These are the conditions which
can be encountered when the base locator input to the instruction addresses a byte prior to the base
string end. When the base length field specifies a value of zero for a start scan execution of the
instruction, or the input base locator addresses a point beyond the end of the instruction, no proc­
essing is performed and the instruction is immediately completed with the not found resultant condi­
tion.

Chapter 2. Computation and Branching Instructions 2-205

'-

Addressabillty

V

v

v

Ending Condition

'(One byte code at string end)

• Simple character

• ShIft In/out encountered

• Escape code in sImple
character

(Extended character split
across string end)

• Extended character

• Escape code In extended
character

(Extended character at
string end)

• Extended character

• Escape code In extended
character

Scan with Control (SCANWC)

Instruction Response

• ApproprIate resultant
condItIon IndIcating
found or not found

• Mode shIft performed.
and not found resultant
conditIon

• Branch taken

• Not found resultant
condItion

• Branch taken

• Appropriate resultant
condItion Indicating
found or not found

• Branch taken

An analysis of the diagram shows that normally, after appropriate processing for the particular found,
not found, or escape condition. the scan can be restarted at the byte of data which would follow the
base string end in the data stream being scanned. Any mode shift required by an ending mode control
character will have been performed.

However, one ending condition may require subsequent resumption of the scan at the character
encountered at the end of the base string. This is the case where the instruction completes with the
not found resultant condition and the base string ends with an extended character split across string
end. That is, the base mode indicator specifies extended mode, the base locator addresses the last
byte of the base string, and that byte value is not a shift out, hex OE character. In this case, complete
verification of the extended character and relation comparison could not be performed. If this
extended character is to be processed, it must be done through another execution of the Scan instruc­
tion where both bytes of the character can be input to the instruction within the confines of the base
string.

Resultant Conditions

• Equal: A character value was found in the base string which satisfies the criteria specified in the
controls and options operands in that the comparison character is of equal string value to the base
string character.

• High: A character value was found in the base string which satisfies the criteria specified in the
controls and options operands in that the comparison character is of higher string value to the
base string character.

Chapter 2. Computation and Branching Instructions 2-206

Scan with Control (SCANWC)

. Low: A character value was found in the base string which satisfies the criteria specified in the
controls and options operands in that the comparison character is of lower string value to the base
string character. ..J • Not found: A character value was not found in the base string which satisfied the criteria specified
in the controls and options operands.

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X X

02 boundary alignment X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OC Computation

08 length conformance X X

10 Damage encountered _

04 System object damage state X

44 partial system object damage X l
1C Machine-dependent exception :J

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

~ 01 scalar type invalid X X X X

03 scalar value invalid X X

Chapter 2. Computation and Branching Instructions 2-207

Scan with Control (SCANWC)

Operands
Exception 1 2 3 4 Other
36 Space management

01 space extension/truncation x

Chapter 2. Computation and Branching Instructions 2-208

Search (SEARCH)

Search (SEARCH)

Op Code Extender Operand 1 Operand 2 Operand 3 Operand 4 Operand [5-6J
(Hex)
SEARCH Receiver Array Find Location
1084

SEARCHB Branch Receiver Array Find Location Branch
1C84 options targets

SEARCHI Indicator Receiver Array Find Location Indicator
1884 options targets

Operand 1: Binary variable scalar or binary variable array.

Operand 2: Character array or numeric array.

Operand 3: Character variable scalar or numeric variable scalar.

Operand 4: Binary scalar.

Operand 5-6:

• Branch Form-Branch point. instruction pointer. relative instruction number. or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The portions of the array operand indicated by the location operand are searched for
occurrences of the value indicated in the find operand.

The operation begins with the first element of the array operand and continues element by element.
comparing those characters of each element (beginning with the character indicated in the location
operand) with the characters of the find operand. The location operand contains an integer value
representing the relative location of the first character in each element to be used to begin the
compare.

The integer value of the location operand must range from 1 to L. where L is the length of the array
operand elements; otherwise. a scalar value invalid (hex 3203) exception is signaled. A value of 1 indi­
cates the leftmost character of each element.

The array and find operands can be either character or numeric. Any numeric operands are inter­
preted as logical character strings. The compares between these operands are performed at the
length of the find operand and function as if they were being compared in the Compare Bytes Left­
Adjusted instruction.

The length of the find operand must not be so large that it exceeds the length of the array operand
elements when used with the location operand value. The array element length used is the length of
the array scalar elements and not the length of the entire array element. which can be larger in non­
contiguous arrays.

As each occurrence of the find value is encountered. the integer value of the index for this array
element is placed in the receiver operand. If the receiver operand is a scalar. only the first element
containing the find value is noted. If the receiver operand is an array. as many occurrences as there
are elements within the receiver array are noted.

Chapter 2. Computation and Branching Instructions 2-209

j

(.

Search (SEARCH)

If the value of the index for an array element containing an occurrence of the find value is too large to
be contained in the receiver, a size (hex OCOA) exception is signaled.

The operation continues until no more occurrences of elements containing the find value can be noted
in the receiver operand or until the array operand has been completely searched. When the second
condition occurs, the receiver value is set to LB-1, where LB is the value of the lower bound index of
the array. If LB is the most negative 32-bit integer, then LB-1 is the most positive 32-bit integer; other­
wise, LB-1 is 1 less than LB. If the receiver operand is an array, all its remaining elements are also
set to LB-1. The find operand can be a variable length substring compound operand.

Resultant Conditions:: The numeric value(s) of the receiver operand is either LB-1 or in the range LB
through UB, where UB is the value of the upper bound index of the array. When the receiver is LB-1,
the resultant condition is zero. When the receiver is in the range LB through UB, the resultant condi­
tion is positive. When the receiver is an array, the resultant condition is zero if all elements are LB-1;
otherwise. it is positive. The resultant condition is unpredictable when the no binary size exception
program template option is used.

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X X

02 boundary alignment X X. X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OC Computation

08 length conformance X X

OA size X

10 Damage encountered

04 system object damage state X X X X X

44 partial system object damage X X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X X

Chapter 2. Computation and Branching Instructions 2-210

- ------------------------------

Search (SEARCH)

Operands
Exception 1 2 3 4 Other

02 pointer type invalid X X X X

..J
2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-211

Set Bit in String (SETBTS)

Set Bit in String (SETBTS)

Op Code (Hex)
101E

Operand 1
Source

Operand 2
Offset

Operand 1: Character variable scalar (fixed length) or numeric variable scalar.

Operand 2: Binary scalar.

Description: Sets the bit of the receiver operand as indicated by the bit offset operand.

The selected bit from the receiver operand is set to a value of binary 1.

The receiver operand can be a character or numeric variable. The leftmost bytes of the receiver
operand are used in the operation. The receiver operand is interpreted as a bit string with the bits
numbered left to right from 0 to the total number of bits in the string minus 1.

The offset operand indicates which bit of the receiver operand is to be set, with a offset of zero indi­
cating the leftmost bit of the leftmost byte of the receiver operand. This value may be specified as a
constant or any valid binary scalar variable.

If a offset value less than zero or beyond the length of the receiver is specified a scalar value invalid
(hex 3203) exception is signaled.

Exceptions

Operands
exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment violation X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

Chapter 2. Computation and Branching Instructions 2-212

Set Bit in String (SETBTS)

Operands
Exception 1 2 Other
24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

03 Scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-213

C.

Set Instruction Pointer (SETIP)

Op Code (Hex)
1022

Operand 1
Receiver

Operand 1: Instruction pointer.

Operand 2
Branch target

Set Instruction Pointer (SETIP)

Operand 2: Instruction number, relative instruction number, or branch point.

Description: The value of the branch target (operand 2) is used to set the value of the instruction
pointer specified by operand 1. The instruction number indicated by the branch target must provide
the address of an instruction within the program containing the Set Instruction Pointer instruction.

exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 ArgumenUparameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2C Program execution

04 branch target invalid X

2E Resource control limit

01 user profile storage limit exceeded X

Chapter 2. Computation and Branching Instructions 2-214

Set Instruction Pointer (SETIP)

Operands
Exception 1 2 Other
36 Space management

01 space extension/truncation x

Chapter 2. Computation and Branching Instructions 2-215

Store and Set Computational Attributes (SSCA)

Store and Set Computationai Attributes (SSCA)

op Code (Hex)
1078

Operand 1
Receiver

Operand 2
Source

Operand 1: Character(5) variable scalar (fixed length).

Operand 2: Character(5) scalar (fixed length) or null.

Operand 3: Character(S) scalar (fixed length) or null.

Operand 3
Controls

Description: This instruction stores and optionally sets the attributes for controlling computational
operations for the process this instruction is executed in.

The receiver is assigned the values that each of the computational attributes had at the start of exe­
cution of the instruction. It has the same format and bit assignment as the source.

The source specifies new values for the computational attributes for the process. The particular com­
putational attributes that are selected for modification are determined by the controls operand. The
source operand has the following format:

• Floating-point exception masks

o = Disabled (exception is masked)
1 = Enabled (exception is unmasked)

Reserved (binary 0)

Floating-point overflow

Floating-point underflow

Floating-point zero divide

Floating-point inexact result

Floating-point invalid operand

Reserved (binary 0)

• Floating-point exception occurrence flags

o = Exception has not occurred
1 = Exception has occurred

Reserved (binary 0)

Floating-point overflow

Floating-point underflow

Floating-point zero divide

Floating-point inexact result

Floating-point invalid operand

Reserved (binary 0)

• Modes

Reserved

Floating-point rounding mode

00 = Rou nd toward positive infinity
01 = Round toward negative infinity

Char(2)

Bits 0-9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 1S

Char(2)

Bits 0-9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

Char(1)

Bit 0

Bits 1-2

Chapter 2. Computation and Branching Instructions 2-216

Store and Set Computational Attributes (SSCA)

10= Round toward zero
11 = Round to nearest (default)

Reserved Bits 3-7

The controls operand is used to select those attributes that are to be set from the bit values of the
source operand. The format of the controls is the same as that for the source. A value of one for a bit
in controls indicates that the corresponding computational attribute for the process is to be set from
the value of that bit of the source. A value of zero for a bit in controls indicates that the corresponding
computational attribute for the process is not to be changed, and will retain the value it had prior to
this instruction. For an attribute controlled by a multiple-bit field, such as the rounding modes, all of
the bits in the field must be ones or all must be zeros. A mixture of ones and zeros in such a field
results in a scalar value invalid (hex 3801) exception.

If the source and controls operands are both nUll, the instruction will just return the current computa­
tional attributes. If the source is specified, the computational attributes of the process are modified
under control of the controls operand. If the source operand is specified and the controls operand is
nUll, the instruction will change all of the computational attributes to the values specified in the source.
If the source operand is null and the controls operand is specified, an invalid operand type (hex 2A06)
exception is Signaled on the Create Program instruction.

With the floating-point exception masks field, it is possible to unmask/mask the exception processing
and handling for each of the five floating-point exceptions. If an exception that is unmasked occurs,
then the corresponding floating point exception occurrence bit is set, and the exception is signaled. If
an exception that is masked occurs, the exception is not Signaled, but the floating pointer exception
occurrence flag is still set to indicate the occurrence of the exception. .

The floating-point exception occurrence flag for each exception may be set or cleared by this instruc­
tion from the source operand under control of the controls operand.

Unless specified otherwise by a particular instruction, or precluded due to implicit conversions, all
floating-point operations are performed as if correct to infinite precision, and then rounded to fit in a
destinations format while potentially signaling an exception that the result is inexact. To allow control
of the floating-point rounding operations performed within a process, four floating-point rounding
modes are supported. Assume y is the infinitely precise number that is to be rounded, bracketed most
closely by x and z, where x is the largest representable value less than y and z is the smallest repre­
sentable value greater than y. Note that x or z may be infinity. The following diagram shows this
relationship of x, y, and z on a scale of numerically progressing values where the vertical bars denote
values representable in a floating-point format.

x y z

Smaller < _.L..-_...I..-_-I..._--I.._---I __ L- > Larger

MCO'IS-O

Given the above, if y is not exactly representable in the receiving field format, the rounding modes
change y as follows:

Round to nearest with round to even in case of a tie is the default rounding mode in effect upon the
initiation of a process. For this rounding mode, y is rounded to the closer of x or z. If they are equally
close, the even one (the one whose least significant bit is a zero) is chosen. For the purposes of this
mode of rounding, infinity is treated as if it was even. Except for the case of y being rounded to a
value of infinity, the rounded result will differ from the infinitely precise result by at most half of the - ~
least significant digit position of the chosen value. This rounding mode differs slightly from the decimal ~
round algorithm performed for the optional round form of an instruction. This rounding mode would
round a value of 0.5 to 0, where the decimal round algorithm would round that value to 1.

Chapter 2. Computation and Branching Instructions 2-217

Store and Set Computational Attributes (SSCA)

Round toward positive infinity indicates directed rounding upward is to occur. For this mode, y is
rounded to z.

'" Round toward negative infinity indicates directed rounding downward is to occur. For this mode, y is
rounded to x.

(..,

Round toward zero indicates truncation is to occur. For this mode, y is rounded to the smaller (in
magnitude) of x or z.

Arithmetic operations upon infinity are exact. Negative infinity is less than every finite value, which is
less than positive infinity.

The computational attributes are set with a default value upon process initiation. The default attributes
are as follows:

• The floating-point inexact result exception is masked. The other floating-point exceptions are
unmasked.

• All floating point occurrence bits have a zero value.

• Round to the nearest rounding mode.

These attributes can be modified by a program executing this instruction. The new attributes are then
in effect for the program executing this instruction and for programs invoked subsequent to it unless
changed through another execution of this instruction. External exception handlers and invocation exit
routines are invoked with the same attributes as were last in effect for the program invocation they are
related to. Event handlers do not really relate to another invocation in the process. As such, they are
invoked with the attributes that were in effect at the point the process was interrupted to handle the
event.

Upon return to the invocation of a program from subsequent program invocations, the computational
attributes, other than floating point exception occurrence attributes, are restored to those that were in
effect when the program gave up control. The floating point exception occurrence attributes are left
intact reflecting the occurrence of any floating-point exceptions during the execution of subsequent
invocations.

Internal exception handlers execute under the invocation of the program containing them. As such, the
above discussion of how computational attributes are restored upon returning from an external excep­
tion handler does not apply. The execution of an internal exception handler occurs in a manner similar
to the execution of an internal subroutine invoked through the Call Internal instruction. If the internal
exception handler modifies the attributes, the modification remains in effect for that invocation when
the exception handler completes the exception.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 ArgumenUparameter

01 parameter reference violation X X X

Chapter 2. Computation and Branching Instructions 2-218

Store and Set Computational Attributes (SSCA)

Operands
Exception 1 2 3 Other
10 Damage encountered

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification \.
01 scalar type invalid X X X ~ 03 scalar value invalid X X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-219

C.

Subtract Logical Character (SUBLC)

Subtract Logical Character (SUBLC)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4-6]
SUBLC Difference Minuend Subtrahend
1027

SUBLCI Indicator Difference Minuend Subtrahend Indicator targets
1827 options

SUBLCB Branch options Difference Minuend Subtrahend Branch targets
1C27

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Operand 4-6:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex) Extender Operand 1 Operand 2 Operand [3-5]
SUBLCS DifferenCe/Minuend Subtrahend
1127

SUBLCIS Indicator options Difference/Minuend Subtrahend Indicator targets
1927

SUBLCBS Branch options Difference/Minuend Subtrahend Branch targets
1D27

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3-5:

• Branch Form-Branch pOint, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The unsigned binary value of the subtrahend operand is subtracted from the unsigned
binary value of the minuend operand, and the result is placed in the difference operand.

Operands 1, 2, and 3 must be the same length; otherwise, the Create Program instruction signals an
invalid length (hex 2AOA) exception.

The subtraction operation is performed as though the ones complement of the second operand and a
low-order 1-bit were added to the first operand.

Chapter 2. Computation and Branching Instructions 2-220

Subtract Logical Character (SUBLC)

The result value is then placed (left-adjusted) into the receiver operand with truncating or padding
taking place on the right. The pad value used in this instruction is a byte value of hex 00.

If operands overlap but do not share all of the same bytes, results of operations performed on these ..J
operands are not predictable. If overlapped operands share all of the same bytes, the results are pre-
dictable when direct addressing is used. If indirect addressing is used (that is, based operands,
parameters, strings with variable lengths, and arrays with variable subscripts), the results are not
always predictable.

Resultant Conditions: The logical difference of the character scalar operands is:

• Zero with carry out of the high-order bit position

• Not-zero with carry

• Not-zero with no carry.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X);< X

06 Optimized addressability invalid X X X

08 Argument/Parameter \ .,..
01 Parameter reference violation X X X ..)

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program Execution

~ 04 Invalid branch target X

2E Resource Control Umit

Chapter 2. Computation and Branching Instructions 2-221

Subtract Logical Character (SUBLC)

Operands
Exception 1 2 3 Other

c... 01 User Profile storage limit exceeded X

32 Scalar Specification

01 Scalar type invalid X X X

02 Scalar attributes invalid X X X

36 Space Management

01 Space ExtensionlTruncation X

Chapter 2. Computation and Branching Instructions 2-222

Subtract Numeric (SUBN)

Subtract Numeric (SUBN)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4-7]
SUBN Difference Minuend Subtrahend
1047

SUBNR Difference Minuend Subtrahend
1247

SUBNB Branch options Difference Minuend Subtrahend Branch targets
1C47

SUBNBR Branch options Difference Minuend Subtrahend Branch targets
1E47

SUBNI Indicator Difference Minuend Subtrahend Indicator targets
1847 options

SUBNIR Indicator Difference Minuend Subtrahend Indicator targets
1A47 options

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Operand 4-7:

• Branch Form-Branch point. instruction pointer. relative instruction number. or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Short forms

Op Code (Hex)
SUBNS
1147

SUBNSR
1347

SUBNBS
1047

SUBNBSR
1F47

SUBNIS
1947

SUBNISR
1B47

Extender

Branch options

Branch options

Indicator options

Indicator options

Operand 1: Numeric variable scalar.

Operand 1
Difference/Minuend

Operand 2
Subtrahend

Difference/Minuend Subtrahend

Difference/Minuend Subtrahend

Difference/Minuend Subtrahend

Difference/Minuend Subtrahend

Difference/Minuend Subtrahend

Operand [3.6]

Branch targets

Branch targets

Indicator targets

Indicator targets

Chapter 2. Computation and Branching Instructions 2-223

Subtract Numeric (SUBN)

Operand 2: Numeric scalar.

Operand 3-6:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number .

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The Difference is the result of subtracting the Subtrahend from the Minuend.

Operands can have floating-point, packed or zoned decimal, signed or unsigned binary type.

Source operands are the Minuend and Subtrahend. The receiver operand is the Difference.

If operands have different types, source operands, Minuend and Subtrahend, are converted according
to the following rules:

1. If anyone of the operands has floating point type, source operands are converted to floating point
type.

2. Otherwise, if anyone of the operands has zoned or packed decimal type, source operands are
converted to packed decimal.

3. Otherwise, the binary operands are converted to a like type. Note: unsigned binary(2) scalars are
logically treated as signed binary(4) scalars.

Minuend and Subtrahend are. subtracted according to their type. Floating point operands are sub­
tracted using floating point subtraction. Packed decimal operands are subtracted using packed
decimal subtraction. Unsigned binary subtraction is used with unsigned binary operands. Signed
binary operands are subtracted using two's complement binary subtraction.

Better performance can be obtained if all operands have the same type. Signed and unsigned binary
subtractions execute faster than either packed decimal or floating point subtractions.

Decimal operands used in floating-point operations cannot contain more than 15 total digit positions.

For a decimal operation, alignment of the assumed decimal point takes place by padding with a's on
the right end of the source operand with lesser precision.

Floating-point subtraction uses exponent comparison and significand subtraction. Alignment of the
binary point is performed, if necessary, by shifting the significand of the value with the smaller expo­
nent to the right. The exponent is increased by one for each binary digit shifted until the two expo­
nents agree.

The operation uses the length and the precision of the source and receiver operands to calculate accu­
rate results. Operations performed in decimal are limited to 31 decimal digits in the intermediate
result.

The subtract operation is performed according to the rules of algebra.

The result of the operation is copied into the difference operand. If this operand is not the same type
as that used in performing the operation, the resultant value is converted to its type. If necessary, the
resultant value is adjusted to the length of the difference operand, aligned at the assumed decimal
pOint of the difference operand, or both before being copied to it. For fixed-point operation, if signif­
icant digits are truncated on the left end of the resultant value, a size (hex OCOA) exception is signaled.

For the optional round form of the instruction, specification of a floating-point receiver operand is
invalid.

Chapter 2. Computation and Branching Instructions 2-224

... _._- --
Subtract Numeric (S·UBN)

For floating-point operations involving a fixed-point receiver field, if nonzero digits would be truncated
off the left end of the resultant value, an invalid floating-point conversion (hex oeoC) exception is sig­
naled.

For a floating-point difference operand, if the exponent of the resultant value is either too large or too
small to be represented in the difference field, the floating-point overflow (hex OeOS) or the floating­
point underflow (hex Oe07) exception is signaled.

If a decimal to binary conversion causes a size (hex OeOA) exception to be signaled, the binary value
contains the correct truncated result only if the decimal value contains 15 or fewer significant nonfrac­
tional digits.

Size exceptions can be inhibited.

Limitations: The following are limits that apply to the functions performed by this instruction.

If operands overlap but do not share all of the same bytes, results of operations performed on these
operands are not predictable. If overlapped operands share all of the same bytes, the results are pre­
dictable when direct addressing is used. If indirect addressing is used (that is, based operands,
parameters, strings with variable lengths, and arrays with variable subscripts), the results are not
always predictable.

Resultant Conditions

• Positive-The algebraic value of the numeric scalar difference is positive.

• Negative-The algebraic value of the numeric scalar difference is negative.

• Zero-The algebraic value of the numeric scalar difference is zero.

• Unordered-The value assigned a floating-point difference operand is NaN.

Exceptions

Operands
exception 1 2 3 [4, 5] Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 ArgumenUParameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X X

03 Decimal point alignment X X

06 Floating-point overflow X

07 Floating-point underflow X

09 Floating-point invalid operand X X X

OA Size X

OC Invalid floating-point conversion X

00 Floating-point inexact result X

Chapter 2. Computation and Branching Instructions 2-225

Subtract Numeric (SUBN)

Operands
Exception 1 2 3 [4, 5] Other
10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2C Program Execution

04 Invalid branch target X

2E Resource Control Umit

01 User Profile storage limit exceeded X

36 Space Management

01 Space ExtensionlTruncation X

Chapter 2. Computation and Branching Instructions 2-226

Test and Replace Characters (TSTRPLC)

Test and Replace Characters (TSTRPLC)

Op Code (Hex)
10A2

Operand 1
Receiver

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 2
Replacement

Description: The character string value represented by operand 1 is tested byte by byte from left to
right. Any byte to the left of the leftmost byte which has a value in the range of hex F1 to hex F9 is
assigned a byte value equal to the leftmost byte of operand 2. Both operands must be character
strings. Only the first character of the replacement string is used in the operation.

The operation stops when the first nonzero zoned decimal digit is found or when all characters of the
receiver operand have been replaced.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 ArgumenUParameter

01 Parameter reference violation X X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource Control Umit

Chapter 2. Computation and Branching Instructions 2-227

Exception
01 User Profile storage limit exceeded

36 Space Management

01 Space Extension/Truncation

Test and Replace Characters (TSTRPLC)

Operands
1 2 Other

X

X

Chapter 2. Computation and Branching Instructions 2-228

Test Bit in String (T5T8T5)

Op Code (Hex)
TSTBTSB
lCOE

TSTBTSI
l80E

Extender
Branch options

Indicator options

Operand 1
Source

Source

Operand 1: Character scalar (fixed length) or numeric scalar.

Operand 2: Binary scalar.

Operand 3:

Operand 2
Offset

Offset

Test Bit in String (TSTBTS)

Operand 3 [4J
Branch targets

Indicator targets

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: Tests the bit of the source operand as indicated by the offset operand to determine if the
bit is set or not set.

Based on the test, the resulting condition is used with the extender field to either

• Transfer control conditionally to the instruction indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands (indicator form). t

The source operand can be character or numeric. The leftmost bytes of the source operand are used .J
in the operation. The source operand is interpreted as a bit string with the bits numbered left to right
from 0 to the total number of bits in the string minus one.

The offset operand indicates which bit of the source operand is to be tested. with a offset of zero indi­
cating the leftmost bit of the leftmost byte of the source operand.

If an offset value less than zero or beyond the length of the string is specified a scalar value invalid
(hex 3203) exception is signaled.

Resultant Conditions

• Zero: The selected bit of the bit string source operand is zero.

• One: The selected bit of the bit string source operand is one.

Exceptions

Exception

06 Addressi ng

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

08 Argument/parameter

Operands
1 2 3 [4] Other

X X X

X X X

X X X

X X X

Chapter 2. Computation and Branching Instructions 2-229

~

Test Bit in String (TSTBTS)

Operands
Exception 1 2 3 [4J Other

01 Parameter ceference violation X X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

03 Scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-230

Test Bits Under Mask (TSTBUM)

Test Bits Under Mask (TSTBUM)

Op Code (Hex)
TSTBUMB
1C2A

TSTBUMI
182A

Extender
Branch options

Indicator options

Operand 1
Source

Source

Operand 2
Mask

Mask

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3 [4, 5]

Operand 3 [4, 5]
Branch targets

Indicator targets

• Branch Form-Instruction number, relative instruction number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: Selected bits from the leftmost byte of the source operand are tested to determine their
bit values.

Based on the test, the resulting condition is used with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch target operands
(branch form). .

• Assign a value to each of the indicator operands (indicator form).

The source and the mask operands can be character or numeric. The leftmost byte of each of the
operands is used in the operands. The operands are interpreted as bit strings. The testing is per­
formed bit by bit with only those bits indicated by the mask operand being tested. A 1-bit in the mask
operand specifies that the corresponding bit in the source value is to be tested. A O-bit in the mask
operand specifies that the corresponding bit in the source value is to be ignored.

Resultant Conditions: The selected bits of the bit string source operand are all zeros, all ones, or
mixed ones and zeros. A mask operand of all zeros causes a zero resultant condition.

Exceptions

Operands
Exception 1 2 3 [4,5] Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machi ne-dependent exception

Chapter 2. Computation and Branching Instructions 2-231

~

Test Bits Under Mask (TSTBUM)

Operands
Exception 1 2 3 [4,5] Other

03 machine storage limit exceeded X

(., 20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 branch target invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-232

Translate (XLATE)

Op Code (Hex)
1094

Operand 1
Receiver

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar or null.

Operand 4: Character scalar.

Operand 2
Source

Operand 3
Position

Translate (XLATE)

Operand 4
Repl acement

Description: Selected characters in the string value of the source operand are translated into a dif­
ferent encoding and placed in the receiver operand. The characters selected for translation and the
character values they are translated to are indicated by entries in the position and replacement
strings. All the operands must be character strings. The source and receiver values must be of the
same length. The position and replacement operands can differ in length. If operand 3 is null, a
256-character string is used, ranging in value from hex 00 to hex FF (EBCDIC collating sequence).

The operation begins with all the operands left-adjusted and proceeds character by character, from left
to right until the character string value of the receiver operand is completed.

Each character of the source operand value is compared with the individual ~haracters in the position
operand. If a character of equal value does not exist in the position string, the source character is
placed unchanged in the receiver operand. If a character of equal value is found in the position string,
the corresponding character in the same relative location within the replacement string is placed in the
receiver operand as the so.urce character translated value. If the replacement string is shorter than
the position string and a match of a source to position string character occurs for which there is no
corresponding replacement character, the source character is placed unchanged in the receiver
operand. If the replacement string is longer than the position string, the rightmost excess characters
of the replacement string are not used in the translation operation because they have no corre­
sponding position string characters. If a character in the position string is duplicated, the first occur­
rence (leftmost) is used.

If operands overlap but do not share all of the same bytes, results of operations performed on these
operands are not predictable. If overlapped operands share all of the same bytes, the results are pre­
dictable when direct addressing is used. If indirect addressing is used (that is, based operands,
parameters, strings with variable lengths, and arrays with variable subscripts), the results are not
always predictable.

The receiver, source, position, and replacement operands can be variable length substring compound
operands.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for all of the operands on this instruction. The effect of specifying a null substring reference
for either the position or replacement operands is that the source operand is copied to the receiver
with no change in value. The effect of specifying a null substring reference for both the receiver and
the source operands (they must have the same length) is that no result is set.

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

Chapter 2. Computation and Branching Instructions 2-233

Translate (XLATE)

Operands
Exception 1 2 3 4 Other

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/Parameter

01 Parameter reference violation X X X X

OC Computation

08 Length conformance X X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

08 object compressed X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2E Resource Control Limit

01 User Profile storage limit exceeded X

36 Space Management

01 Space ExtensionlTruncation X

Chapter 2. Computation and Branching Instructions 2-234

Translate with Table (XLATEWT)

Op Code (Hex)
109F

Operand 1
Receiver

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Operand 2
Source

Translate with Table (XLATEWT)

Operand 3
Table

Description: The source characters are translated under control of the translate table and placed in
the receiver. The operation begins with the leftmost character of operand 2 and proceeds character­
by-character, left-to-right.

Characters are translated as follows:

• The source character is used as an offset and added to the location of operand 3.

• The character contained in the offset location is the translated character. This character is copied
to the receiver in the same relative position as the original character in the source string.

If operand 3 is less than 256 bytes long, the character in the source may specify an offset beyond the
end of operand 3. If operand 2 is longer than operand 1, then only the leftmost portion of operand 2,
equal to the length of operand 1, is translated. If operand 2 is shorter than operand 1, then only the
leftmost portion of operand 1, equal to the length of operand 2, is changed. The remaining portion of
operand 1 is unchanged.

If operand 1 overlaps with operand 2 and/or 3, the overlapped operands are updated for every char­
acter translated. The operation proceeds from left to right, one character at a time. The following
example shows the results of an overlapped operands translate operation. Operands 1, 2, and 3 have
the same coincident character string with a value of hex 050403020103.

Hex 050403020103-lnitial value

Hex 030403020103-After the 1st character is translated

Hex 030103020103-After the 2nd character is translated

Hex 030102020103-After the 3rd character is translated

Hex 030102020103-After the 4th character is translated

Hex 030102020103-After the 5th character is translated

Hex 030102020102-After the 6th character, the final result

Note that the instruction does not use the length specified for the table operand to constrain access of
the bytes addressed by the table operand.

If operand 3 is less than 256 characters long, and a source character specifies an offset beyond the
end of operand 3, the result characters are obtained from byte locations in the space following operand
3. If that portion of the space is not currently allocated, a space addressing exception is signaled. If
operand 3 is a constant with a length less than 256, source characters specifying offsets greater than
or equal to the length of the constant are translated into unpredictable characters.

All of the operands support variable length substring compound scalars.

Chapter 2. Computation and Branching Instructions 2-235

~

Translate with Table (XLATEWT)

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for all of the operands on this instruction. Specifying a null substring reference for the table
operand does not affect the operation of the instruction. In this case, the bytes addressed by the table
operand are still accessed as described above. This is due to the definition of the function of this
instruction which does not use the length specified for the table operand to constrain access of the
bytes addressed by the table operand. The effect of specifying a null substring reference for either or
both of the receiver and the source operands is that no result is set.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/Parameter

01 Parameter reference violation X X X

10 Damage Encountered

44 Partial system object damage X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource Control Umit

01 User Profile storage limit exceeded X

32 Scalar Specification

01 Scalar type invalid X X X

36 Space Management

01 Space ExtensionlTruncation X

Chapter 2. Computation and Branching Instructions 2-236

Translate with Table and OBCS Skip (XLATWTDS)

Translate with Table and OSCS Skip (XLATWTOS)

Op Code (Hex)
1077

Operand 1
Target

Operand 2
Length

Operand 1: Character variable scalar (fixed length).

Operand 2: Binary(4) scalar.

Operand 3: Character scalar (fixed length).

Operand 3
Table

ILEaccess --~

XLATWTDS (
var target
var length
var table

aggregate;
unstgned binary;
aggregate

Description: The simple (single byte) characters in the Target are translated under control of the
translate table, for the length defined by Operand 2. The extended (double byte) character portions of
the target are bypassed and not translated. The operation begins with the leftmost character of
operand 1 and proceeds character-by-character, left-to-right, skipping over anY Double byte character
(DBCS) data portions.

The target, Operand 1, should have double byte character data surrounded by a shift out control char- \
acter (SO = hex OE) and a shift in control character (SI = hex OF). Once a SO character is encount- . ..J
ered, the translating of single byte characters halts. The operation will then proceed double byte
character-by-double byte character until a SI character is encountered. This shift in character is then
used to restart the translating of single byte characters.

The length operand, Operand 2, is the number of bytes and must contain a value between 1 and 32767.
For length values outside this range a scalar value invalid (hex 3203) exception is signaled.

Single byte characters are translated as follows:

• The target character is used as an offset and added to the location of Operand 3.

• The character contained at the offset location of Operand 3 is the translated character. This char­
acter replaces the original character in the target.

The following example shows the step-by-step results of this translate operation. The translate table
for this example has the following hex value: C3D406C5D504C1C2C4C5C6C7C8C9C1C6

Hex 05040ED2D2E1E10F03 - Initial target value

Hex 04040ED2D2E1E10F03 - After the 1st character is translated

Hex 04D50ED2D2E1E10F03 - After the 2nd character is translated

Hex 04D50ED2D2E1E10F03 - SO character encountered, skip the DBC5 portion

Hex 04D50ED2D2E1E10F03 - Resume translating after SI control character

Hex 04D50ED2D2E1E10FC5 - Translate 9th character

Chapter 2. Computation and Branching Instructions 2-237

'-.,

(..,

Translate with Table and OBCS Skip (XLATWTOS)

Hex 04D50ED2D2E1E10FCS - Final target value

The translate table, Operand 3, is assumed to be 256 bytes long. If the table is less than 256 charac­
ters long, and a target character specifies an offset beyond the end of the table, the resultant charac­
ters are obtained from byte locations in the space following translate table. If that portion of the space
is not currently allocated, a space addressing (hex 0601) exception is signaled.

This operation only translates the target string and does not validate the Double byte portions of the
target. For example, if a DBCS portion of the target string is preceded by the Shift Out control char­
acter, but missing the closing Shift In character, then an invalid extended character data (hex OC12)
exception will NOT be signaled. However, the Copy Extended Characters Left-Adjusted With Pad
(CPYECLAP) instruction can be used to validate extended character data, if necessary.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

03 Scalar value invalid X

36 Space management

Chapter 2. Computation and Branching Instructions 2-238

,~------~~~~~~~~~~~~~------------------------------------

Exception
01 space extension/truncation

Translate with Table and OBCS Skip (XLATWTOS)

Operands
1 2 3 Other

X

Chapter 2. Computation and Branching Instructions 2-239

Trim Length (TRIML)

Op Code (Hex)
10A7

Operand 1
Receiver length

Operand 1: Numeric variable scalar.

Operand 2: Character scalar.

Operand 3: Character(1) scalar.

Operand 2
Source string

Operand 3
Trim character

Trim Length (TRIML)

Description: The operation determines the resultant length of operand 2 after the character specified
by operand 3 has been trimmed from the end of operand 2. The resulting length is stored in operand
1. Operand 2 is trimmed from the end as follows: if the rightmost (last) character of operand 2 is
equal to the character specified by operand 3, the length of the trimmed operand 2 string is reduced by
1. This operation continues until the rightmost character is no longer equal to operand 3 or the
trimmed length is zero. If operand 3 is longer than one character, only the first (leftmost) character is
used as the trim character.

Operands 2 and 3 are not changed by this instruction.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/Parameter

01 Parameter reference violation X X X

OC Computation

OA Size X

10 Damage Encountered

44 Partial system object damage X

lC Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

08 object compressed X

Chapter 2. Computation and Branching Instructions 2-240

Trim Length (TRIML)

Operands
Exception 1 2 3 Other
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource Control Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

01 Scalar type invalid X X X

36 Space Management

01 Space ExtensionlTruncation X

Chapter 2. Computation and Branching Instructions 2-241

Verify (VERIFY)

Op Code (Hex) Extender Operand 1
VERIFY Receiver
10D7

VERIFYB Branch options Receiver
lCD7

VERIFYI Indicator Receiver
18D7 options

Operand 1: Binary variable scalar or binary array.

Operand 2: Character scalar.

Operand 3: Character scalar.

Operand 4-5:

Operand 2
Source

Source

Source

Operand 3
Class

Class

Class

Verify (VERI FY)

Operand [4-5J

Branch targets

Indicator targets

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: Each character of the source operand character string value is checked to verify that it is
among the valid characters indicated in the class operand.

The operation begins at the left end of the source string and continues character by character, from left
to right. Each character of the source value is compared with the characters of the class operand. If a
match for the source character exists in the class string, the next source character is verified. If a
match for the source character does not exist in the class string, the binary value for the relative
location of the character within the source string is placed in the receiver operand.

If the receiver operand is a scalar, only the first occurrence of an invalid character is noted. If the
receiver operand is an array, as many occurrences as there are elements in the array are noted.

The operation continues until no more occurrences of invalid characters can be noted or until the end
of the source string is encountered. When the second condition occurs, the current receiver value is
set to O. If the receiver operand is an array, all its remaining entries are set to a's.

The source and class operands can be variable length substring compound operands.

Substring operand references that allow for a null substring reference (a length value of zero) may be
specified for operands 2 and 3. The effect of specifying a null substring reference for the class
operand when a nonnull string reference is specified for the source is that all of the characters of the
source are considered invalid. In this case, the receiver is accordingly set with the offset(s) to the
bytes of the source, and the instruction's resultant condition is positive. The effect of specifying a null
substring reference for the source operand (no characters to verify) is that the receiver is set to zero
and the instruction's resultant condition is zero regardless of what is specified for the class operand.

Resultant Conditions: The numeric value(s) of the receiver is either a or positive. When the receiver
operand is an array, the resultant condition is a if all elements are O.

Exceptions

Chapter 2. Computation and BranChing Instructions 2-242

Verify (VERIFY)

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 branch target invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Computation and Branching Instructions 2-243

Date/Time/Timestamp Instructions

Chapter 3. Date/Time/Timestamp Instructions

This chapter describes all instructions used for date, time, and timestamp use. These instructions are
in alphabetic order. For an alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary"

External Data Formats .. 3-3
Date, Time, and Timestamp Concepts 3-3
Compute Date Duration (COD) ... 3-13
Compute Time Duration (CTD) .. 3-16
Compute Timestamp Duration (CTSD) 3-19
Convert Date (CVTD) .. 3-22
Convert Time (CVTT) .. 3-25
Convert Timestamp (CVTTS) ... 3-28
Decrement Date (DECO) .. 3-31
Decrement Time (DECn .. 3-35
Decrement Timestamp (DECTS) .. 3-38
Increment Date (INCD) ... 3-42
Increment Time (lNCn .. 3-46
Increment Timestamp (INCTS) ... 3-49

© Copyright IBM Corp. 1991, 1993 3-1

~ate/Time/Timestamp Instructions

Chapter 3. Date/Time/Timestamp Instructions 3-2

Date/Time/Timestamp Instructions

External Data Formats

For support of date, time, and timestamp, the external data format that is used is a character string.
Associated with this character string will be a data definitional attribute list (DDAT) that describes all
the attributes of the string.

The attributes that are associated with the character string are as follows:

• Calendar table.

• Era table.

• Format code.

• Date separator type.

• Time separator type.

• Time zone.

• Month definition.

• Year definition.

• Century.

Date, Time, and Timestamp Concepts

Data Definitions

C. DATE. Date data type. The internal format is a 4 byte binary value. The DDAT number must reference
a DDAT with an internal DATE format code or be set to zero which implies internal format. The
internal format is fixed length, trailing blanks are NOT allowed.

TIME. Time data type. The internal format is six numbers packed into a three byte value. There is no
sign nibble. The DDAT number must reference a DDAT with an internal TIME format code or be set to
zero which implies internal format. The internal format is fixed length, trailing blanks are NOT allowed.

TIMESTAMP. Timestamp data type. The internal format of a Timestamp is a ten byte composite value.
The composite is two numbers one for date and time respectfully. The date and time numbers have the
same encoding as the date and time data types, with an exception to the time number. The time
number has an additional 3 bytes for a six packed digit microsecond value. The DDAT number must
reference a DDAT with an internal Timestamp format code or be set to zero which implies internal
format. The internal format is fixed length, trailing blanks are NOT allowed.

PseudoDATE. Character data type with a DDAT referenced. The DDAT number must reference a DDAT
with a valid date format code. The character string format must match one of the supported formats,
trailing blanks are allowed. The length is the number of bytes of the character string which can
include trailing blanks.

PseudoTIME. Character data type with a DDAT referenced. The DDAT number must reference a DDAT
with a valid time format code. The character string format must match one of the supported formats,
trailing blanks are allowed. The length is the number of bytes of the character string which can
include trailing blanks.

PseudoTIMESTAMP. Character data type with a DDAT referenced. The DDAT number must reference
a DDAT with a valid timestamp format code. The character string format must match one of the sup-

Chapter 3. Date/Time/Timestamp Instructions 3-3

Date/Time/Timestamp Instructions

ported formats, trailing blanks are allowed. The length is the number of bytes of the character string
which can include trailing blanks.

DATE DURATION. Packed decimal data type with a DDAT referenced. The length must be 8,0. The
DDAT number is set to reference a DDAT with a valid date duration format code.

TIME DURATION. Packed decimal data type with a DDAT referenced. The length must be 6,0. The
DDAT number must reference a DDAT with a valid time duration format code.

TIMESTAMP DURATION. Packed decimal data type with a DDAT referenced. The length must be 20,6.
The DDAT number must reference a DDAT with a valid timestamp duration format code.

DATE LABEL DURATIONS. Packed decimal data type with a DDAT referenced. The length must be
15,0. The DDAT number must reference a DDAT with a valid date label duration format code.

TIME LABEL DURATIONS. Packed decimal data type with a DDAT referenced. The length must be
15,0. The DDAT number must reference a DDAT with a valid time label duration format code.

TIMESTAMP LABEL DURATIONS. Packed decimal data type with a DDAT referenced. The length must
be 15,0. The DDAT number must reference a DDAT with a valid timestamp label duration format code.

Data Conversion

The following table describes the possible conversions for date/time data.

Source Operand

DATE

TIME

TIMESTAMP

Pseudo DATE

PseudoTIME

PseudoTIMESTAMP

Arithmetic

Result Operand

DATE or Pseudo DATE

TIME or PseudoTIME

TIMESTAMP or PseudoTIMESTAMP

DATE or PseudoDATE

TIME or PseudoTIME

TIMESTAMP or PseudoTIMESTAMP

For all Date/Time arithmetic, Increment, Decrement, and Compute, there must be at least one non-zero
DDAT number specified between operand 1, operand 2, and the result.

DDATs are equivalent when both DDAT numbers are a or both DDAT numbers are non-zero and the
DDATs they reference are byte for byte identical.

End of month adjustment can only be specified in conjunction with Date and Timestamp arithmetic that
involves the incrementing and decrementing of Dates or Timestamps.

When end of month adjustment is specified, there must be at least one non-internal format specified for
operand 1, operand 2, or the result. When end of month adjustment is not specified all durations must
reference a DDAT that specifies a year and month definition other than zero.

Chapter 3. Date/Time/Timestamp Instructions 3-4

Date/Time/Timestamp Instructions

Data Definitional Attribute Template

L The following describes the Data Definitional Attribute Template (DDAT).

• Data definitional attribute template (optional) Char{112-n)
(repeated for each operandlfield that requires a template, one template can be used by multiple
operands/fields that have the same attributes)

DDAT length (ignored) UBin(2)

Format code UBin(2)

Separator definition Char(2)

- Date separator type Char(1)

- Time separator type Char(1)

Time zone definition Char(4)

- Hour zone UBin(2)

- Minute zone UBin(2)

Duration definitions Char(4)

- Month definition UBin(2)

- Year definition UBin(2)

Century definition Char(8)

- Current century UBin(4)

- Century division UBin(4)

Calendar table offset UBin(4)

Reserved (binary 0) Char(6)

Era table template Char(50-n)

Calendar table template Char(18-n)

The following table describes the operand type and DDAT field associations.

Chapter 3. Date/Time/Timestamp Instructions 3-5

Date/Time/Timestamp Instructions

Operand Format. Date TIme TIme Month Year Century Era Calendar
Type Code Sepa. Sepa. Zone Defi· Defi· Table Table

rator rator nitlon nition

Date REO REO INV INV INV INV REO REO REO

TIme REO INV REO REO INV INV INV INV INV

TImestamp REO REO REO REO INV INV REO REO REO

Pseudo REO REO INV INV INV INV REO REO REO
Date

Pseudo REO INV REO REO INV INV INV INV INV
TIme

Pseudo REO REO REO REO INV INV REO REO REO
TImestamp

Date Dura· REO INV INV INV EMA EMA INV INV INV
tion

TIme Dura· REO INV INV INV INV INV INV INV INV
tion

TImestamp REO INV INV INV EMA EMA INV INV INV
Duration

Year Label REO INV INV INV EMA EMA INV INV INV
Duration

Month REO INV INV INV EMA EMA INV INV INV
Label Dura-
tion

Day Label REO INV INV INV EMA EMA INV INV INV

~ Duration

Hour Label REO INV INV INV INV INV INV INV INV
Duration

Minute REO INV INV INV INV INV INV INV INV
Label Dura-
tion

Second REO INV INV INV INV INV INV INV INV
Label Dura-
tion

Micro- REO INV INV INV INV INV INV INV INV
second
Label Dura-
tion

Notes:

REQ The DDAT field is required and the value must be non-zero.

INV The DDAT field is invalid and the value must be zero.

EMA The DDAT field is required to have a zero value for end of month adjustment arithmetic. Other-
wise the field value is required to be non-zero.

The DDAT length the length of the DDAT in bytes. This field is ignored by the instruction.

The following describes the format code The formats are use to define the representation or interpreta-
tion of data across the MI. They also imply the length of the data.

Chapter 3. Date/Time/Timestamp Instructions 3-6

Date/Time/Timestamp Instructions

Format Type Format Minimum Maximum Minimum Maximum
Code Input Input Output Output

Length Length Length Length

USA date Hex 0001 8 n 10 n

USA time Hex 0002 7 n 8 n

ISO date Hex 0003 8 n 10 n

ISO time Hex 0004 4 n 8 n

EUR date Hex 0005 8 n 10 n

EUR time Hex 0006 4 n 8 n

JIS date Hex 0007 8 n 10 n

JIS time Hex 0008 4 n 8 n

SAA timestamp Hex 0009 16 n 26 n

System internal date Hex OOOA 4 4/n # 4 4/n #

System internal time Hex 0008 3 3/n # 3 3/n #

System internal timestamp Hex oooe 10 10/n # 10 10/n #
Labeled duration YEAR Hex 0000 15,0 15,0 15,0 15,0

Labeled duration MONTH Hex OOOE 15,0 15,0 15,0 15,0

Labeled duration DAY Hex OOOF 15,0 15,0 15,0 15,0

Labeled duration HOUR Hex 0010 15,0 15,0 15,0 15,0

Labeled duration MINUTE Hex 0011 15,0 15,0 15,0 15,0

Labeled duration SECOND Hex 0012 15,0 15,0 15,0 15,0

Labeled duration MICROSECOND Hex 0013 15,0 15,0 15,0 15,0

Date duration Hex 0014 8,0 8,0 8,0 8,0

TIme duration Hex 0015 6,0 6,0 6,0 6,0

TImestamp duration Hex 0016 20,6 20,6 20,6 20,6

·MMDDYV Hex 0017 6 n 6 n

·DDMMYV Hex 0018 6 n 6 n

·YVMMDD Hex 0019 6 n 6 n

·YVDDD Hex 001A 5 n 5 n

·HHMMSS Hex 0018 6 n 6 n

IMPI clock Hex 001C 8 8 8 8

·YYYYDDD Hex 0010 7 n 7 n

·YYYYMMDDhhmmss Hex 001E 14 n 14 n

·Unknown date Hex 001F 4 n F n

·Unknown time Hex 0020 3 n F n

·Unknown timestamp Hex 0021 10 n F n

Chapter 3. Date/Time/Timestamp InstructIOns 3-7

Date/Time/Timestamp Instructions

Format Type Format Preferred Search Character Packed
Code Format List data type decimal

data type

USA date Hex 0001 Y Y Y N

USA time Hex 0002 Y Y Y N

ISO date Hex 0003 Y Y Y N

ISO time Hex 0004 Y Y Y N

EUR date Hex 0005 Y Y Y N

EUR time Hex 0006 Y Y Y N

JIS date Hex 0007 Y Y Y N

JIS time Hex 0008 Y Y Y N

SAA timestamp Hex 0009 Y Y Y N

System internal date Hex OOOA Y N Y N

System internal time Hex 0008 Y N Y N

System internal timestamp Hex OOOC Y N Y N

Labeled duration YEAR Hex 0000 N Y

Labeled duration MONTH Hex oooe N Y

Labeled duration DAY Hex OOOF N Y

Labeled duration HOU R Hex 0010 N Y

Labeled duration MINUTe Hex 0011 N Y

Labeled duration SeCOND Hex 0012 N Y

Labeled duration MICROSeCOND Hex 0013 N Y
t

':.J
Date duration Hex 0014 N Y

TIme duration Hex 0015 N Y

TImestamp duration Hex 0016 N Y

'MMDDYV Hex 0017 Y N Y N

'DDMMYV Hex 0018 Y N Y N

'YVMMDD Hex 0019 Y N Y N

*YVDDD Hex 001A Y N Y N

*HHMMSS Hex 0018 Y N Y N

IMPI clock Hex 001C Y N Y N

'YYYYDDD Hex 0010 Y Y Y N

-YYYYMMDDhhmmss Hex 001 e Y Y Y N

'Unknown date Hex 001 F Y N

'Unknown time Hex 0020 Y N

*Unknown timestamp Hex 0021 Y N

Notes:

'n' - Any number which is greater than minimum length.

'Y' - Allowed.

'N' - Not allowed. -j
, ,

- Not applicable.

Chapter 3. Date/Time/Timestamp Instructions 3-8

Date/Time/Timestamp Instructions

'F' - Reference the formats for this value.

'#' - Date, time, and timestamp data types the length is fixed 4, 3, and 10 respectfully. For the character
data type the length is variable.

For further information on the SAA formats reference the SAA CPI Database Reference. The following
are the descriptions of the formats, 0 represents days, M represents months, Y represents years, h
represents hours, m represents minutes, s represents seconds and u represents microseconds.

• USA

• ISO

Date - MM/DD/YYYY, character string.

Time - hh:mm AM or PM, character string. 00:00 AM or 12:00 AM is midnight. 12:00 PM is noon.
Between 'hh:mm' and 'AM' or 'PM' only one one blank is allowed.

Date - YYYY-MM-DD, character string.

Time - hh.mm.ss, character string.

• EUR

• JIS

Date - DD.MM.YYYY, character string.

Time - hh.mm.ss, character string.

Date - YYYY-MM-DD, character string.

Time - hh:mm:ss, charracter string.

• SAA timestamp

Timestamp - YYYY-MM-DO-hh.mm.ss.uuuuuu, character string. Leading zeros maybe omitted
from the month, day, and hour part of the timestamp, and microseconds may be truncated or
entirely omitted, (.10 = .100000).

• System internal format

Date - 4 byte binary Scaliger number

Time - 3 byte value with each byte containing two packed decimal digits having the encoding of
hhmmss.

Timestamp - 10 byte composite number, the first part being a 4 byte internal date and the
second part being a 3 byte internal time, plus microseconds, a 3 byte value with each byte
containing two packed decimal digits having the encoding of uuuuuu.

• Labeled durations

They are a 15,0 packed decimal data value. The keywords; YEARS, MONTHS, DAYS, HOURS,
MINUTES, SECONDS, and MICROSECONDS, or the singular form of the keywords; YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND, and MICROSECOND, are not part of the data.

• Date duration

- Packed decimal (8,0) number having the encoding of YYYYMMDD, where YYYY has the range a
- 9999, MM has the range 0- 99, and DD has the range a - 99.

• Time duration

- Packed decimal (6,0) number having the encoding of hhmmss, where hh has the range 0 - 99,
mm has the range a - 99, and ss has the range 0 - 99.

• Timestamp duration

Chapter 3. Date/Time/Timestamp Instructions 3-9

Date/Time/Timestamp Instructions

- Packed decimal (20,6) number having the encoding of YYYYMMDDhhmmssuuuuuu, where in
addition to date and time, uuuuuu has the range 0 - 999999.

• '"MMDDYY

- Date - MMDDYY, character string

• '"DDMMYY

- Date - DDMMYY, character string

• *YYMMDD

- Date - YYMMDD, character string

• "YYDDD

- Date - YVDDD, character string

• "HHMMSS

- Time - hhmmss. character string

• IMPI clock

- It is an 8 byte bit clock. which is used as a timestamp.

• "YVYYDDD

- Date - YYYYDDD. seven character string. Used on the DATE scalar function.

• "YYYYMMDDhhmmss

- Timestamp - YYYYMMDDhhmmss fourteen character string.

• "Unknown

Used to reference unique SAA formats. This format is used only when the format is NOT
known. This format tries to find a matching format. The formats that will be scanned for are;
USA. ISO. EUR. JIS. dates and times. "YYYYDDD (date). SM timestamp. and
"YYYYMMDDhhmmss timestamp. When a valid match is not found either a data. format or
value. exception will be signalled.

The following describes the separator definitions for date and time. The separator type is a one char­
acter field that contains the separator value. for example. : •.• I. or -. When the format has an implied
separator. the implied separator is used. For example. an ISO date. the implied separator is '-', When
the format does not have an implied separator. the implied separator is null. For example. the format
*YYMMDD has an implied separator of nUll. A null separator means the units of time. year. month. day.
etc are concatenated together. A implied separator is specified by USing the value of hex '00'. A
null separator is specified by using the value of hex 'FF'. A null separator is invalid for the SAA
formats. USA. ISO. etc... Any other separator value overrides the implied value for the format code.

The following describes the time zone definition. The hour zone value is 0 to 24. GMT zone is O. The
zone to the east of zone a is zone 1. The zone to the east of zone 1 is zone 2. and so on. The value 24
specifies that the time is to be stored as local time and that the concept of time zones should be
ignored. The value of 24 is required for storage purposes. For example. when inserting a time field
into a database data space the hour zone value must be 24. A value other than 24 can be used for
retrieval purposes.

The minute zone value is a to 60. GMT zone is O. The zone to the west of zone a is zone 1. The zone to
the west of zone 1 is zone 2. and so on. The value 60 specifies that the time is to be stored as local
time and that the concept of time zones should be ignored. The value of 60 is required for storage
purposes. For example, when inserting a time field into a database data space the minute zone value
must be 60. A value other than 60 can be used for retrieval purposes.

Chapter 3. Date/Time/Timestamp Instructions 3-10

Date/Time/Timestamp Instructions

The month definition is an integer number of days. For example 30, would specify that each month use
in a duration would have a constant value of 30 days. The a value of zero specifies that the calendar
definition of the mantA should be used.

The year definition is an integer number of days. For example 365, would specify that each year use in
a duration would have a constant value of 365 days. The a value of zero specifies that the calendar
definition of the year should be used.

When end of month adjustment arithmetic is being performed, the month definition and year definition
must have zero values. When no end of month adjustment arithmetic is being performed, the month
definition and year definition must have non-zero values. Otherwise a template value invalid (hex 3801)
exception will be signaled.

The century field is used to define the century when a two digit year is specified for a date. The defi­
nition is two numbers, one for current century and the other is for the century division year. The
current century is a century number. The century division is a year number. The valid values for the
current century are 0 - 99. The valid values for the century division are 0 - 99. The century division is
included in the current century. For example, a current century of 19 and a century division of 50
would result in two digit years 00 - 49, having the values 2000 - 2049 and 50 - 99 having values 1950 -
1999.

The calendar table offset is the number of bytes from the start of the DDAT to the start of the calendar
table (described below).

Era Table

The era table immediately follows the fixed portion of the DDAT.

The following describes the era table data.

• Number of table elements

• Era element (repeatable)

Origin date

Era name

Reserved (binary 0)

UBin(2)

Char(48)

UBin(4)

Char(32)

Char(12)

The era table is a list of elements that state what era should be used across the time line. The start of
usage of a particular era is speCified by the origin date. The end of usage of a particular era is termi­
nated by the next table element. The last table element era is used until the end of the time line. The
origin date is specified in the internal format. The era name is a character field. The maximum
number of table entries allowed is 256.

The SAA era table has one entry. The SAA origin date is January 1. 0001. Gregorian for the start of the
time line. The internal format would be 1721424. The SAA name is AD. anno Domini.

The SAA era table can have only one element and that element must have an effective date that falls
in the time line specified in the SAA calendar table.

Chapter 3. Date/Time/Timestamp Instructions 3-11

Calendar Table

The following describes the calendar table data.

• Number of table elements

• Calendar change element (repeatable)

Effective date

Calendar type

Reserved (binary 0)

Date/Time/Timestamp Instructions

UBin(2)

Char(16)

UBin(4)

UBin(2)

Char(10)

The calendar table is a list of elements that state what calendar type/algorithm should be used across
the time line. The start of usage of a particular calendar is specified by the effective date. The effective
date is specified using the internal format. This first table element represent the beginning of the time
line. The end of usage of a particular calendar is terminated by the next table element. The last table
element calendar must be null this indicates the end of the time line. The maximum number of table
entries allowed is 256.

The SAA calendar table has 2 entries. The first entry has a calendar type of Gregorian. The effective
date is January 1. 0001. Gregorian for the start of the time line. The internal format would be 1721424.
The second entry has a calendar type of null. The effective date is January 1. 10000. Gregorian for the
end of the time line. The internal format would be 5373485.

Multiple calendar table entries are only valid with DDATs specifying the inte~nal date format code. The
rest of format codes can only have two entries in the calendar table. The second entry must have a
NULL calendar type.

The following describes the encoding of the calendar types.

Calendar type Calendar type value

Null Hex 0000

Gregorian Hex 0001

Julian Hex 0002

Muslim Hex 0003

Hebrew Hex 0004

Chapter 3. Date/Time/Timestamp Instructions 3-12

Compute Date Duration (COD)

Op Code (Hex)
0424

Operand 1
Date duration

Operand 2
Date 1

Operand 1: Packed decimal variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Operand 4: Space pointer.

Compute Date Duration (COD)

Operand 3
Date 2

Operand 4
Instruction template

ILEaccess --~
CDD (
var date duration
var date!
var date2

instruction_template

packed decimal;
aggregate;
aggregate;
space pOinter

Description: The date specified by operand 3 is subtracted from the date specified by operand 2 and
the value of the results a duration is place in operand 1. Operand 4 defines the data definitional attri­
butes for operands 1 through 3.

A negative value will be returned when the first operand is less than the second operand.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Operand 3 data definitional attribute template number

Reserved (binary 0)

Operand 2 length

Operand 3 length

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

- Number of DDATs

- Reserved (binary 0)

- DDAT offset (repeated)

- Data definitional attribute template (repeated)

Charr)

UBin(4)

UBin(2)

UBin(2)

UBin(2)

Char(2)

UBin(2)

UBin(2)

Char(26)

Char(*)

UBin(4)

UBin(2)

Char(10)

UBin(4)

Char(*)

A data definitional attribute template (DDAD number is a number that corresponds to the relative posi­
tion of a template in the data definitional attribute template list. For example the number 1 references
the first template. The valid values for this field are 1, 2, and 3.

Chapter 3. Date/Time/Timestamp Instructions 3-13

Compute Date Duration (COD)

The DDAT for operand 1 must be valid for a date duration. The DDATs for operands 2 and 3 must be
valid for a date and identical. Otherwise, a template value invalid (hex 3801) exception will be sig-
naled. ..J
Operand 2 length and operand 3 length are specified in number of bytes.

The size of the OOAT list is specified in bytes.

The number of OOATs is the count of DDATs specified for this instruction template. The maximum
number of DDATs that can be specified is 3.

The OOAT offset is the number of bytes from the start of the DDAT list to the start of the specific DDAT.
There should be as many DDAT offsets as there are DDATs specified.

A data definitional attribute template defines the presentation of the data. Each template describes the
definitional attributes of the operands. The length of the character operands will be defined by the tem­
plate. For a further description of the data definitional attribute template, see "Data Definitional Attri­
bute Template" on page 3-5

Authorization Required

• None .

Lock Enforcement

• None .

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 ArgumenUParameter

01 Parameter reference violation X X X X

OC Computation

15 Data boundary overflow X X

16 Data format X X

17 Data value X X

18 Date boundary underflow X X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

20 Machine Support

02 Machine check X

03 Function check X

Chapter 3. Date/Time/Timestamp Instructions 3-14

~

Compute Date Duration (COD)

Operands
Exception 1 2 3 4 Other

c.,. 22 Object Access.

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2E Resource Control Umit

01 User Profile storage limit exceeded X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-15

Compute Time Duration (CTD)

Op Code (Hex)
0454

Operand 1
Time duration

Operand 2
TIme 1

Operand 1: Packed decimal variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Operand 4: Space pointer.

Compute Time Duration (CTD)

Operand 3
TIme 2

Operand 4
Instruction template

ILEaccess --,

cro (
var time duration
var time!
var time2

instruction_template

: packed decimal;
aggregate;
aggregate;
space pOinter

Description: The time specified by operand 3 is subtracted from the time sp.ecified by operand 2 and
the value of the results a duration is place in operand 1. Operand 4 defines the data definitional attri­
butes for operands 1 through 3.

A negative value will be returned when the first operand is less than the second operand.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Operand 3 data definitional attribute template number

Reserved (binary 0)

Operand 2 length

Operand 3 length

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

- Number of DDATs

- Reserved (binary 0)

- DDAT offset (repeated)

- Data definitional attribute template (repeated)

Char(")

UBin(4)

UBin(2)

UBin(2)

UBin(2)

Char(2)

UBin(2)

UBin(2)

Char(26)

Char(")

UBin(4)

UBin(2)

Char(10)

UBin(4)

Char(")

A data definitional attribute template (DDAn number is a number that corresponds to the relative posi­
tion of a template in the data definitional attribute template list. For example the number 1 references
the first template. The valid values for this field are 1, 2, and 3.

Chapter 3. Date/Time/Timestamp Instructions 3-16

Compute Time Duration (CTD)

The DDAT for operand 1 must be valid for a time duration. The DDATs for operands 2 and 3 must be
valid for a time and identical. Otherwise, a template value invalid (hex 3801) exception will be sig­
naled.

Operand 2 length and operand 3 length are specified in number of bytes.

The size of the DDAT list is specified in bytes.

The number of DDATs is the count of DDATs specified for this instruction template. The maximum
number of DDATs that can be specified is 3.

The DDAT offset is the number of bytes from the start of the DDAT list to the start of the specific DDAT.
There should be as many DDAT offsets as there are DDATs specified.

A data definitional attribute template defines the presentation of the data. Each template describes the
definitional attributes of the operands. The length of the character operands will be defined by the tem­
plate. For a further description of the data definitional attribute template, see "Data Definitional Attri­
bute Template" on page 3-5

Authorization Required

• None .

Lock Enforcement

• None .

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/Parameter

01 Parameter reference violation X X X X

OC Computation

16 Data format X X

17 Data value X X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

Chapter 3. Date/Time/Timestamp Instructions 3-17

Compute Time Duration (CrD)

Operands
Exception 1 2 3 4 Other

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2E Resource Control Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionfTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-18

Compute Timestamp Duration (eTSD)

Op Code (Hex)
043C

Operand 1
Timestamp dura­
tion

Operand 2
TImestamp 1

Operand 1: Packed decimal variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Operand 4: Space pointer.

Compute Timestamp Duration (CTSD)

Operand 3
TImestamp 2

Operand 4
Instruction template

ILEaccess --,
CTSD (
var timestamp_duration
var timestampl
var timestamp2

instruction_template

: packed dectmal;
aggregate;
aggregate;
space potnter

Description: The timestamp specified by operand 3 is subtracted from the timestamp specified by
operand 2 and the value of the results a duration is place in operand 1. Operand 4 defines the data
definitional attributes for operands 1 through 3.

A negative value will be returned when the first operand is less than the second operand.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Operand 3 data definitional attribute template number

Reserved (binary 0)

Operand 2 length

Operand 3 length

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

- Number of DDATs

- Reserved (binary 0)

- DDAT offset (repeated)

- Data definitional attribute template (repeated)

Char(*)

Bin(4)

UBin(2)

UBin(2)

UBin(2)

Char(2)

UBin(2)

UBin(2)

Char(26)

Char(*)

UBin(4)

UBin(2)

Char(10)

UBin(4)

Char(*)

Chapter 3. Date/Time/Timestamp Instructions 3-19

Compute Timestamp Duration (CTSD)

A data definitional attribute template (DDATI number is a number that corresponds to the relative posi­
tion of a template in the data definitional attribute template list. For example the number 1 references
the first template. The valid values for this field are 1, 2, and 3. ..J
The OOAT for operand 1 must be valid for a timestamp duration. The OOATs for operands 2 and 3
must be valid for a timestamp and identical. Otherwise, a emplate value invalid (hex 3801) exception
will be signaled.

Operand 2 length and operand 3 length are specified in number of bytes.

The size of the DDAT list is specified in bytes.

The number of DDATs is the count of OOATs specified for this instruction template. The maximum
number of DOATs that can be specified is 3.

The DDAT offset is the number of bytes from the start of the DOAT list to the start of the specific DOAT.
There should be as many DDAT offsets as there are DDATs specified.

A data definitional attribute template defines the presentation of the data. Each template describes the
definitional attributes of the operands. The length of the character operands will be defined by the tem­
plate. For a further description of the data definitional attribute template, see :hdref= DOAT.

Authorization Required

• None .

Lock Enforcement

• None .

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/Parameter

01 Parameter reference violation X X X X

OC Computation

15 Data boundary overflow X X

16 Data format X X

17 Data value X X

18 Date boundary underflow X X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

20 Machine Support

Chapter 3. Date/Time/Timestamp Instructions 3-20

Compute Timestamp Duration (CTSD)

Operands
Exception 1 2 3 4 Other

02 Machine ch~ck X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2E Resource Control Umit

01 User Profile storage limit exceeded X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-21

Convert Date (CVTD)

Op Code (Hex)
040F

Operand 1
Result date

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Space pointer.

Operand 2
Source date

Operand 3
Instruction tem­
plate

Convert Date (CVrO)

ILEaccess --~

CVTD (
var result date
var source date

instruction_template

aggregate;
aggregate;
space pOinter

Description: The date specified in operand 2 is converted to another calendar external or internal
presentation and placed in operand 1. Operand 3 defines the data definitional attributes for operands 1
and 2.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Reserved (binary 0)

Operand 1 length

Operand 2 length

Reserved (binary 0)

Preferred/Found date format

Preferred/Found date separator

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

- Number of DDATs

- Reserved (binary 0)

- DDAT offset (repeated)

- Data definitional attribute template (repeated)

Char(*)

Bin(4)

UBin(2)

UBin(2)

Char(2)

UBin(2)

UBin(2)

Char(2)

UBin(2)

Char(1)

Char(23)

Char(*)

UBin(4)

UBin(2)

Char(10)

UBin(4)

Char(*)

A data definitional attribute template number is a number that corresponds to the relative position of a
template in the data definitional attribute template list. For example the number 1 references the first
template. The valid values for this field are 1 and 2.

Chapter 3. Date/Time/Timestamp Instructions 3-22

~

Convert Date (CVrD)

The DDATs for operands 1 and 2 must be valid for a date. Otherwise, a template value invalid (hex
3801) exception will be signaled.

Operand 1 length and operand 2 length are specified in number of bytes.

If the data definitional attribute template numbers for operands 1 and 2 are the same, only data vali­
dation is performed. The validation will check for format and data value correctness.

A format of unknown date, time, or timestamp will indicate that operand 2 will be scanned for a valid
format. For a list of formats that can be scanned, see "Data Definitional Attribute Template" on
page 3-5. With an unknown format, the preferredlfound format and preferred/found separator can be
speCified to select an additional non-scannable format. This preferred format and preferred separator
will be used first to find a matching format before scanning operand 2. When the preferred format and
preferred separator have a hex value of zero, only the scan occurs.

When a format of unknown date, time, or timestamp is specified, the preferred/found format and
preferred/found separator fields will be set to the format and separator found.

The size of the DDAT list is specified in bytes.

The number of DDATs is the count of DDATs specified for this instruction template. The maximum
number of DDATs that can be specified is 2.

The DDAT offset is the number of bytes from the start of the DDAT list to the start of the specific DDAT.
There should be as many DDAT offsets as there are DDATs speCified.

A data definitional attribute template defines the presentation of the data. Each template describes the
definitional attributes of the operands. The length of the character operands will be defined by the tem­
plates. For a further description of the data definitional attribute template. see "Data Definitional Attri­
bute Template" on page 3-5.

Authorization Required

• None.

Lock Enforcement

• None.

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/Parameter

01 Parameter reference violation

OC Computation

15 Data boundary overflow

16 Data format

Operands
1

X

X

X

X

X

2

X

X

X

X

X

X

X

3 Other

X

X

X

X

X

X

Chapter 3. Date/Time/Timestamp Instructions 3-23

Convert Date (CVrD)

Operands
Exception 1 2 3 Other

17 Data value X

18 Date boundary underflow X X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource Control Umit

01 User Profile storage limit exceeded X

32 Scalar Specification t~
02 Scalar attributes invalid X X

03 Scalar value invalid X X

38 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-24

Convert Ti me (CVTT)

Op Code (Hex)
041 F

Operand 1
Result time

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Space pointer.

Operand 2
Source time

Operand 3
Instruction tem­
plate

Convert Time (CVTT)

ILEaccess --~
CVTT (
var result time
var source time

instruction_template

aggregate
aggregate
space potnter

Description: The time specified in operand 2 is converted to another external or internal presentation
and placed in operand 1. Operand 3 defines the data definitional attributes for operands 1 and 2.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Reserved (binary 0)

Operand 1 length

Operand 2 length

Reserved (binary 0)

Preferred/Found time format

Reserved (binary 0)

Preferred/Found time separator

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

- Number of DDATs

- Reserved (binary 0)

- DDA T offset (repeated)

- Data definitional attribute template (repeated)

Charr)

Bin(4)

UBin(2)

UBin(2)

Char(2)

UBin(2)

UBin(2)

Char(2)

UBin(2)

Char(1)

Char(1)

Char(22)

Char(")

UBin(4)

UBin(2)

Char(10)

UBin(4)

Char(")

A data definitional attribute template number is a number that corresponds to the relative position of a
template in the data definitional attribute template list. For example the number 1 references the first
template. The valid values for this field are 1 and 2.

Chapter 3. Date/Time/Timestamp InstructIOns 3-25

Convert Time (CVTT)

The DDATs for operands 1 and 2 must be valid for a time. Otherwise, a template value invalid (hex
3801) exception will be signaled.

Operand 1 length and operand 2 length are specified in number of bytes.

If the data definitional attribute template numbers for operands 1 and 2 are the same, only data vali­
dation is performed. The validation will check for format and data value correctness.

A format of unknown date, time, or timestamp will indicate that operand 2 will be scanned for a valid
format. For a list of formats that can be scanned, see "Data Definitional Attribute Template" on
page 3-5. With an unknown format, the preferred/found format and preferredlfound separator can be
specified to select an additional non-scannable format. This preferred format and preferred separator
will be used first to find a matching format before scanning operand 2. When the preferred format and
preferred separator have a hex value of zero, only the scan occurs.

When a format of unknown date, time, or timestamp is specified, the preferredlfound format and
preferredlfound separator fields will be set to the format and separator found.

The size of the DDAT list is specified in bytes.

The number of DDATs is the count of DDATs specified for this instruction template. The maximum
number of DDATs that can be specified is 2.

The DDAT offset is the number of bytes from the start of the DDAT list to the start of the specific DDAT.
There should be as many DDAT offsets as there are DDATs specified.

A data definitional attribute template defines the presentation of the data. Each template describes the
definitional attributes of the operands. The length of the character operands will be defined by the tem­
plates. For a further description of the data definitional attribute template, see "Data Definitional Attri­
bute Template" on page 3-5.

Authorization Required

• None.

Lock Enforcement

• None.

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 ArgumenUParameter

01 Parameter reference violation

OC Computation

16 Data format

17 Data value

Operands
1

X

X

X

X

X

2

X

X

X

X

X

X

X

3 Other

X

X

X

X

X

Chapter 3. Date/Time/Timestamp Instructions 3-26

Convert Time (CVTT)

Operands
Exception 1 2 3 Other
10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2E Resource Control Umit

01 User Profile storage limit exceeded X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-27

Convert Timestamp (CVTTS)

Op Code (Hex)
043F

Operand 1
Converted
timestamp

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Space pointer.

Operand 2
Input timestamp

Convert Timestamp (CVTTS)

Operand 3
Instruction tem­
plate

ILEaccess ... ~

CVTTS (
var result_timestamp
var source_timestamp

instruction_template

aggregate
aggregate
space potnter

Description: The timestamp specified in operand 2 is converted to another external or internal presen­
tation and placed in operand 1. Operand 3 defines the data definitional attributes for operands 1 and 2.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Reserved (binary 0)

Operand 1 length

Operand 2 length

Reserved (binary 0)

Preferred/Found timestamp format

Preferred/Found date separator

Preferred/Found time separator

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

- Number of DDATs

- Reserved (binary 0)

- DDAT offset (repeated)

- Data definitional attribute template (repeated)

Char(*)

Bin(4)

UBin(2)

UBin(2)

Char(2)

UBin(2)

UBin(2)

Char(2)

UBin(2)

Char(1)

Char(1)

Char(22)

Char(*)

UBin(4)

UBin(2)

Char(10)

UBin(4)

Char(*)

A data definitional attribute template number is a number that corresponds to the relative position of a
template in the data definitional attribute template list. For example the number 1 references the first
template. The valid values for this field are 1 and 2.

Chapter 3. Date/Time/Timestamp Instructions 3-28

~

Convert Timestamp (CVTTS)

The DDATs for operands 1 and 2 must be valid for a timestamp. Otherwise. a template value invalid
(hex 3801) exception will be issued.

C. Operand 1 length and operand 2 length are specified in number of bytes.

If the data definitional attribute template numbers for operands 1 and 2 are the same, only data vali­
dation is performed. The validation will check for format and data value correctness.

A format of unknown date, time, or timestamp will indicate that

A format of unknown date, time, or timestamp will indicate that operand 2 will be scanned for a valid
format. For a list of formats that can be scanned, see "Data Definitional Attribute Template" on
page 3-5. With an unknown format, the preferredlfound format and preferredlfound separator can be
specified to select an additional non-scannable format. This preferred format and preferred separator
will be used first to find a matching format before scanning operand 2. When the preferred format and
preferred separator have a hex value of zero, only the scan occurs.

When a format of unknown date, time, or timestamp is specified, the preferredlfound format and
preferred/found separator fields will be set to the format and separator found.

The size of the OOAT list is specified in bytes.

The number of OOATs is the count of DDATs specified for this instruction template. The maximum
number of DDATs that can be specified is 2.

The OOAT offset is the number of bytes from the start of the DOAT list to the· start of the specific DDAT.
There should be as many DDAT offsets as there are DDATs specified.

A data definitional attribute template defines the presentation of the data. Each template describes the
definitional attributes of the operands. The length of the character operands will be defined by the tem­
plates. For a further description of the data definitional attribute template, see" Data Definitional Attri­
bute Template" on page 3-5.

Authorization Required

• None.

Lock Enforcement

• None.

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/Parameter

01 Parameter reference violation

OC Computation

Operands
1 2 3 Other

X X X

X X X

X X X

X X X

X X X

Chapter 3. Date/Time/Timestamp Instructions 3-29

Convert Timestamp (CVTTS)

Operands
Exception 1 2 3 Other

15 Data boundary overflow X

16 Data format X

17 Data value X

18 Date boundary underflow X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X' X X

2E Resource Control Umit

01 User Profile storage limit exceeded X !)
32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space Extension/Truncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-30

Decrement Date (DECO)

Op Code (Hex)
0414

Operand 1
Result date

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Packed decimal scalar.

Operand 4: Space pointer.

Operand 2
Source date

Operand 3
Duration

Decrement Date (DECO)

Operand 4
Instruction template

ILEaccess --~

DECO (
vlIr result date
vlIr source date
vlIr duration

instruction_template

: aggregate;
: aggregate;

packed dectmal;
: space potnter

Description: The date specified by operand 2 is decremented by the date duration specified by
operand 3. The resulting date from the operation is placed in operand 1. Operand 4 defines the data
definitional attributes for operands 1 through 3.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Operand 3 data definitional attribute template number

Operand 1 length

Operand 2 length

Operand 3 length

- Fractional number of digits

- Total number of digits

Input indicators

- End of month adjustment

o = No adjustment

1 = Adjustment

- Tolerate data decimal errors

o = No toleration

1 = Tolerate

- Reserved (binary 0)

Output indicators

Char(-)

Bin(4)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

Char(1)

Char(1)

Char(2)

Bit 0

Bit 1

Bit 2-15

Char(2)

Chapter 3. Date/Time/Timestamp Instructions 3-31

Decrement Date (DECO)

- End of month adjustment Bit 0

o = No adjustment

1 = Adjustment

- Reserved (binary 0) Bit 1-15

Reserved (binary 0) Char(22)

Data definitional attribute template list Char(*)

- Size of the DDAT list UBin(4)

- Number of DDATs UBin(2)

- Reserved (binary 0) Char(10)

- DDAT offset (repeated) UBin(4)

- Data definitional attribute template (repeated) Char(*)

A data definitional attribute template (DDAD number is a number that corresponds to the relative posi­
tion of a template in the data definitional attribute template list. For example the number 1 references
the first template. The valid values for this field are 1, 2, and 3.

The DDATs for operands 1 and 2 must be valid for a date and identical. The DDAT for operand 3 must
be valid for a date duration. Otherwise, a template value invalid (hex 3801) exception will be issued.

Operand 1 length and operand 2 length are specified in number of bytes.

The input indicator, end of month adlustment, is used to allow or disallow the occurrence of an end of
month adjustment.

The input indicator, tolerate decimal data errors, is used to determine whether errors found in the
packed data for the duration will generate exceptions or will be ignored. When the errors are to be
tolerated, the following rules will apply:

1. An invalid sign nibble found in the packed data value will be changed to a hex F.

2. Any invalid decimal digits found in the packed data value will be forced to zero.

3. If all digits of a packed data value become zero, and no decimal overflow condition exists, the sign
will be set to hex F. If all digits are zero and a decimal overflow condition exists, then the sign will
not be changed, but its representation will be changed to the preferred sign code.

The output indicator, end of month adjustment, is used to indicate an end of month adjustment, when
end of month adjustments are allowed.

End of month adjustment is the following concept. For SAA, the result of subtracting a 1 month dura­
tion from the Gregorian date 03/31/1989 is 0212811989. The days portion is adjusted to fit the month, 31
is changed to 28. When this happens, the end of month adjustment output indicator is set to on.

When end of month adjustments are not allowed, the month and year definitions in the data definition
attribute template must have values greater than zero, otherwise a template value invalid (hex 3801)
exception will be signalled. The result of subtracting a 1 month duration from the Gregorian date
03/31/1989 is 03/01/1989, when the definition of a month is 30 days.

The size of the DOAT list is specified in bytes.

~

The number of DOATs is the count of DDATs specified for this instruction template. The maximum ...;)
number of DDATs that can be specified is 3.

Chapter 3. Date/Time/Timestamp Instructions 3-32

Decrement Date (DECO)

The DDAT offset is the number of bytes from the start of the DDAT list to the start of the specific DDAT.
There should be as many DDAT offsets as there are DDATs specified.

A data definitional attribute template defines the presentation of the data. Each template describes
definitional attributes of the operands. The length of the date and date duration character operands will
be defined by the template. For a further description of the data definitional attribute template. see
"Data Definitional Attribute Template" on page 3-5.

Authorization Required

• None .

Lock Enforcement

• None .

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/Parameter

01 Parameter reference violation X X X X

OC Computation

02 Decimal data X

15 Date boundary overflow X X

16 Data format X

17 Data value X

18 Date boundary underflow X X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

Chapter 3. Date/Time/Timestamp Instructions 3-33

Decrement Date (DECO)

Operands
Exception 1 2 3 4 Other
2E Resource Contr.ol Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-34

Decrement Time (DECT)

Op Code (Hex)
0444

Operand 1
Result time

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Packed decimal scalar.

Operand 4: Space pointer.

Operand 2
Source time

Operand 3
Duration

Decrement Time (DECT)

Operand 4
Instruction template

ILEaccess --~

DEer (
var result time
var source time
var duration

instruction_template

: aggregate;
: aggregate;
: packed decimal;
: space pOinter

Description: The time specified by operand 2 is decremented by the time duration specified by
operand 3. The resulting time from the operation is placed in operand 1. Operand 4 defines the data
definitional attributes for operands 1 through 3.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Operand 3 data definitional attribute template number

Operand 1 length

Operand 2 length

Operand 3 length

- Fractional number of digits

- Total number of digits

Input indicators

- Reserved (binary 0)

- Tolerate data decimal errors

o = No toleration

1 = Tolerate

- Reserved (binary 0)

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

Char(*)

Bin(4)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

Char(1)

Char(1)

Char(2)

Bit 0

Bit 1

Bit 2-15

Char(24)

Char(*)

UBin(4)

Chapter 3. Date/Time/Timestamp Instructions 3-35

Decrement Time (DEeT)

- Number of DDATs

- Reserved (binary 0)

- DDAT offset (repeated)

- Data definitional attribute template (repeated)

UBin(2)

Char(10)

UBin(4)

Char(*)

A data definitional attribute template (DDAD number is a number that corresponds to the relative posi­
tion of a template in the data definitional attribute template list. For example the number 1 references
the first template. The valid values for this field are 1, 2, and 3.

The DDATs for operands 1 and 2 must be valid for a time and identical. The DDAT for operand 3 must
be valid for a time duration. Otherwise, a template value invalid (hex 3801) exception will be issued.

Operand 1 length and operand 2 length are specified in number of bytes.

The input Indicator, tolerate decimal data errors, is used to determine whether errors found in the
packed data for the duration will generate exceptions or will be ignored. When the errors are to be
tolerated, the following rules will apply:

1. An invalid sign nibble found in the packed data value will be changed to a hex F.

2. Any invalid decimal digits found in the packed data value will be forced to zero.

3. If all digits of a packed data value become zero, and no decimal overflow condition exists, the sign
will be set to hex F. If all digits are zero and a decimal overflow condition exists, then the sign will
not be changed, but its representation will be changed to the preferred sign code.

The size of the DOAT list is specified in bytes.

The number of DDATs is the count of DDATs specified for this instruction template. The maximum
number of DDATs that can be specified is 3.

The DDAT offset is the number of bytes from the start of the DDAT list to the start of the specific DDAT.
There should be as many DDAT offsets as there are DDATs specified.

A data definitional attribute template defines the presentation of the data. Each template describes the
definitional attributes of the operands. The length of the time and time duration character operands will
be defined by the templates. For a further description of the data definitional attribute template. see
"Data Definitional Attribute Template" on page 3-5.

Authorization Required

• None.

Lock Enforcement

• None.

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

Operands
1 2 3 4 Other

X X X X

X X X X

X X X X

Chapter 3. Date/Time/Timestamp Instructions 3-36

Decrement Time (DEeT)

Operands
Exception 1 2 3 4 Other

06 Optimized addressability invalid X X X X

08 Argument/P arameter

01 Parameter reference violation X X X X

OC Computation

02 Decimal data X

16 Data format X

17 Data value X

10 Damage Encountered

04 System abject damage state X X X X X

44 Partial system abject damage X X X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

~ 01 Painter does not exist X X X X

02 Pointer type invalid X X X X

2E Resource Control Umit

01 User Profile storage limit exceeded X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-37

Decrement Timestamp (DEeTS)

Op Code (Hex)
042C

Operand 1
Result timestamp

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Packed decimal scalar.

Operand 4: Space pointer.

Operand 2
Source timestamp

Decrement Timestamp (DEeTS)

Operand 3
Duration

Operand 4
Instruction template

ILEaccess --,

DEeTS (
var result_timestamp
var source_timestamp
var duration

instruction_template

: aggregate;
: aggregate;
: packed decimal;
: space pOinter

Description: The timestamp specified by operand 2 is decremented by the date, time, or timestamp
duration specified by operand 3. The resulting timestamp from the operation is placed in operand 1.
Operand 4 defines the data definitional attributes for operands 1 through 3.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Operand 3 data definitional attribute template number

Operand 1 length

Operand 2 length

Operand 3 length

- Fractional number of digits

- Total number of digits

Input indicators

- End of month adjustment

o = No adjustment

1 = Adjustment

- Tolerate data decimal errors

o = No toleration

1 = Tolerate

- Reserved (binary 0)

Output indicators

Char(*)

Bin(4)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

Char(1)

Char(1)

Char(2)

Bit 0

Bit 1

Bit 2-15

Char(2)

Chapter 3. Date/Time/Timestamp Instructions 3-38

- End of month adjustment

o = No adjustment

1 = Adjustment

- Reserved (binary 0)

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

- Number of DDATs

- Reserved (binary 0)

- DDAT offset (repeated)

- Data definitional attribute template (repeated)

Decrement Timestamp (DECTS)

Bit 0

Bit 1-15

Char(22)

Char(")

UBin(4)

UBin(2)

Char(10)

UBin(4)

Char(")

A data definitional attribute template (DDAD number is a number that corresponds to the relative posi­
tion of a template in the data definitional attribute template list. For example the number 1 references
the first template. The valid values for this field are 1. 2. and 3.

The DDATs for operands 1 and 2 must be valid for a timestamp and identical. The DDAT for operand 3
must be valid for a timestamp duration. Otherwise. a template value invalid (hex 3801) exception will
be issued.

Operand 1 length and operand 2 length are specified in number of bytes.

The Input indicator, end of month adlustment, is used to allow or disallow the occurrence of an end of
month adjustment.

The input indicator. tolerate decimal data errors. is used to determine whether errors found in the
packed data for the duration will generate exceptions or will be ignored. When the errors are to be
tolerated. the following rules will apply:

1. An invalid sign nibble found in the packed data value will be changed to a hex F.

2. Any invalid decimal digits found in the packed data value will be forced to zero.

3. If all digits of a packed data value become zero. and no decimal overflow condition exists. the sign
will be set to hex F. If all digits are zero and a decimal overflow condition exists. then the sign will
not be changed. but its representation will be changed to the preferred sign code.

The output indicator, end of month adlustment, is used to indicate an end of month adjustment. when
end of month adjustments are allowed.

End of month adjustment is the following concept. For SAA. the result of subtracting a 1 month dura­
tion from the date 03/31/1989 is 02/28/1989. The days portion is adjusted to fit the month. 31 is changed
to 28. When this happens. the end of month adjustment output indicator is set to on.

When end of month adjustments are not aI/owed. the month and year definitions in the data definition
attribute template must have values greater than zero. otherwise a template value invalid (hex 3801)
exception will be signaled. The result of subtracting a 1 month duration from the Gregorian date
03/31/1989 is 03/01/1989. when the definition of a month is 30 days.

The size of the DDAT list is speCified in bytes.

The number of DDATs is the count of DDATs specified for this instruction template. The maximum
number of DDATs that can be specified is 3.

Chapter 3. Date/Time/Timestamp Instructions 3-39

Decrement Timestamp (DEeTS)

The DDAT offset
is the number of bytes from the start of the DDAT list to the start of the specific DDAT. There should .. ' \

be as many DDAT offsets as the're are DDATs specified. """'"

A data definitional attribute template defines the presentation of the data. Each template describes the
definitional attributes of the operands. The length of the timestamp and duration character operands
will be defined by the template. For a further description of the data definitional attribute template, see
"Data Definitional Attribute Template" on page 3-5.

Authorization Required

• None .

Lock Enforcement

• None .

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignmen! X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/Parameter

01 Parameter reference violation X X X X

OC Computation

02 Decimal data X

15 Date boundary overflow X X

16 Data format X

17 Data value X

18 Date boundary underflow X X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

Chapter 3. Date/Time/Timestamp Instructions 3-40

:.J

~

Decrement Timestamp (DEeTS)

Operands
Exception 1 2 3 4 Other

~
02 Pointer type invalid X X X X

2E Resource Control Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-41

Increment Date (INCD)

Op Code (Hex)
0404

Operand 1
Result date

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Packed decimal scalar.

Operand 4: Space pointer.

Operand 2
Source date

Operand 3
Duration

Increment Date (INCD)

Operand 4
Instruction template

ILEaccess --~

INCD (
var result date
var source date
var duration

instruction_template

: aggregate;
: aggregate;
: packed decimal;
: space pointer

Description: The date specified by operand 2 is incremented by the date duration specified by
operand 3. The resulting date from the operation is placed in operand 1. Operand 4 defines the data
definitional attributes for operands 1 through 3.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Operand 3 data definitional attribute template number

Operand 1 length

Operand 2 length

Operand 3 length

- Fractional number of digits

- Total number of digits

Input indicators

- End of month adjustment

o = No adjustment

1 = Adjustment

- Tolerate data decimal errors

o = No toleration

1 = Tolerate

- Reserved (binary 0)

Output indicators

Char(-)

Bin(4)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

Char(1)

Char(1)

Char(2)

Bit 0

Bit 1

Bit 2-15

Char(2)

Chapter 3. Date/Time/Timestamp Instructions 3-42

~

- End of month adjustment

o = No adjustment

1 = Adjustment

- Reserved (binary 0)

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

- Number of DDATs

- Reserved (binary 0)

- DDAT offset (repeated)

- Data definitional attribute template (repeated)

Increment Date (INCD)

Bit 0

Bit 1-15

Char(22)

Char(*)

UBin(4)

UBin(2)

Char(10)

UBin(4)

Char(*)

A data definitional attribute template (DDAD number is a number that corresponds to the relative posi­
tion of a template in the data definitional attribute template list. For example the number 1 references
the first template. The valid values for this field are 1, 2, and 3.

The DDATs for operands 1 and 2 must be valid for a date and identical. The DDAT for operand 3 must
be valid for a date duration. Otherwise, a template value invalid (hex 3801) exception will be issued.

Operand 1 length and operand 2 length are specified in number of bytes.

The input Indicator, end of month adlustment, is used to allow or disallow the occurrence of an end of
month adjustment.

The input indicator, tolerate decimal data errors, is used to determine whether errors found in the
packed data for the duration will generate exceptions or will be ignored. When the errors are to be
tolerated, the following rules will apply:

1. An invalid sign nibble found in the packed data value will be changed to a hex F.

2. Any invalid decimal digits found in the packed data value will be forced to zero.

3. If all digits of a packed data value become zero, and no decimal overflow condition exists, the sign
will be set to hex F. If all digits are zero and a decimal overflow condition exists, then the sign will
not be changed, but its representation will be changed to the preferred sign code.

The output Indicator, end of month adjustment, is used to indicate an end of month adjustment, when
end of month adjustments are allowed.

End of month adjustment is the following concept. For SAA, the result of adding a 1 month duration to
the date 01/31/1989 is 0212811989. The days portion is adjusted to fit the month, 31 is changed to 28.
When this happens,the end of month adjustment output indicator is set to on.

When end of month adjustments are not allowed, the month and year definitions in the data definition
attribute template must have values greater than zero, otherwise a template value invalid (hex 38(11)
exception will be signaled. The result of adding a 1 month duration to the Gregorian date 01/31/1989 is
03/0211989, when the definition of a month is 30 days.

The size of the DDAT list is specified in bytes.

The number of DDATs is the count of DDATs specified for this instruction template. The maximum
number of DDATs that can be specified is 3.

Chapter 3. Date/Time/Timestamp Instructions 3-43

Increment Date (INCD)

The OOAT offset is the number of bytes from the start of the DDAT list to the start of the specific DDAT.
There should be as many DDAT offsets as there are DDATs specified.

A data definitional attribute template defines the presentation of the data. Each template describes
definitional attributes of the operands. The length of the date and date duration character operands will
be defined by the template. For a further description of the data definitional attribute template. see
"Data Definitional Attribute Template" on page 3-5.

Authorization Required

• None .

Lock Enforcement

• None .

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X. X X

06 Optimized addressability invalid X X X X

08 Argument/Parameter

01 Parameter reference violation X X X X

OC Computation

02 Decimal data X

15 Date boundary overflow X X

16 Data format X

17 Data value X

18 Date boundary underflow X X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

Chapter 3. Date/Time/Timestamp Instructions 3-44

~

. ..J

Increment Date (INCD)

Operands
Exception 1 2 3 4 Other
2E Resource Control Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-45

Increment Time (lNCT)

Op Code (Hex)
0434

Operand 1
Result time

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Packed decimal scalar.

Operand 4: Space pointer.

Operand 2
Source time

Operand 3
Duration

Increment Time (INCT)

Operand 4
Instruction template

ILEaccess --~

INCT (
var result time
var source time
var duration

instruction_template

: aggregate;
: aggregate;
: packed decimal;
: space pOinter

Description: The time specified by operand 2 is incremented by the time duration specified by
operand 3. The resulting time from the operation is placed in operand 1. Operand 4 defines the data
definitional attributes for operands 1 through 3.

The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Operand 3 data definitional attribute template number

Operand 1 length

Operand 2 length

Operand 3 length

- Fractional number of digits

- Total number of digits

Input indicators

- Reserved (binary 0)

- Tolerate data decimal errors

o = No toleration

1 = Tolerate

- Reserved (binary 0)

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

Char(*)

Bin(4)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

Char(1)

Char(1)

Char(2)

Bit 0

Bit 1

Bit 2-15

Char(24)

Char(*)

UBin(4)

Chapter 3. Date/Time/Timestamp Instructions 3-46

Increment Time (INCT)

- Number of DDATs

- Reserved (binary 0)

- DDAT offset (repeated)

- Data definitional attribute template (repeated)

UBin(2)

Char(10)

UBin(4)

Char(*)

A data definitional attribute template number (OOAD is a number that corresponds to the relative posi­
tion of a template in the data definitional attribute template list. For example the number 1 references
the first template. The valid values for this field are 1, 2, and 3.

The DDATs for operands 1 and 2 must be valid for a time and identical. The DDAT for operand 3 must
be valid for a time duration. Otherwise, a template value invalid (hex 3801) exception will be issued.

Operand 1 length and operand 2 length are specified in number of bytes.

The input indicator, tolerate decimal data errors, is used to determine whether errors found in the
packed data for the duration will generate exceptions or will be ignored. When the errors are to be
tolerated, the following rules will apply:

1. An invalid sign nibble found in the packed data value will be changed to a hex F.

2. Any invalid decimal digits found in the packed data value will be forced to zero.

3. If all digits of a packed data value become zero, and no decimal overflow condition exists, the sign
will be set to hex F. If all digits are zero and a decimal overflow condition exists, then the sign will
not be changed, but its representation will be changed to the preferred sign code.

The size of the DOAT list is specified in bytes.

The number of OOATs is the count of DDATs specified for this instruction template. The maximum
number of DDATs that can be specified is 3.

The DOAT offset is the number of bytes from the start of the DDAT list to the start of the specific DDAT.
There should be as many DDAT offsets as there are DDATs specified.

A data definitional attribute template defines the presentation of the data. Each template describes the
definitional attributes of the operands. The length of the time and time duration character operands will
be defined by the templates. For a further description of the data definitional attribute template, see
"Data Definitional Attribute Template" on page 3-5.

Authorization Required

• None.

Lock Enforcement

• None.

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

Operands
1 2 3

x
X

X

X

X

X

X

X

X

4

X

X

X

Other

Chapter 3. Date/Time/Timestamp Instructions 3-47

Increment Time (INeT)

Operands
Exception 1 2 3 4 Other

06 Optimized addressability invalid X X X X

08 Argument/Parameter

01 Parameter reference violation X X X X

OC Computation

02 Decimal data X

16 Data format X

17 Data value X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

:J 01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2E Resource Control Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-48

Increment Timestamp (INCTS)

Op Code (Hex)
040C

Operand 1
Result timestamp

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Packed decimal scalar.

Operand 4: Space pointer.

Operand 2
Source timestamp

Increment Timestamp (INeTS)

Operand 3
Duration

Operand 4
Instruction template

ILEaccess --~

INCTS (
var result_timestamp
var source_timestamp
var duration

instruction_template

: aggregate;
: aggregate;
: packed decimal;
: space potnter

Description: The timestamp specified by operand 2 is incremented by the date, time, or timestamp
duration specified by operand 3. The resulting timestamp from the operation is placed in operand 1.
Operand 4 defines the data definitional attributes for operands 1 through 3.

'" The following describes the instruction template.

• Instruction template

Instruction template size

Operand 1 data definitional attribute template number

Operand 2 data definitional attribute template number

Operand 3 data definitional attribute template number

Operand 1 length

Operand 2 length

Operand 3 length

- Fractional number of digits

- Total number of digits

Input indicators

- End of month adjustment

o = No adjustment

1 = Adjustment

- Tolerate data decimal errors

o = No toleration

1 = Tolerate

- Reserved (binary 0)

Output indicators

Char(*)

Bin(4)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

Char(1)

Char(1)

Char(2)

Bit 0

Bit 1

Bit 2-15

Char(2)

Chapter 3. Date/Time/Timestamp Instructions 3-49

- End of month adjustment

o = No adjustment

1 = Adjustment

- Reserved (binary 0)

Reserved (binary 0)

Data definitional attribute template list

- Size of the DDAT list

- Number of DDATs

- Reserved (binary 0)

- DDAT offset (repeated)

- Data definitional attribute template (repeated)

Increment Timestamp (INCTS)

Bit 0

Bit 1-15

Char(22)

Char(*)

UBin(4)

UBin(2)

Char(10)

UBin(4)

Char(*)

A data definitional attribute template (DDAD number is a number that corresponds to the relative posi­
tion of a template in the data definitional attribute template list. For example the number 1 references
the first template. The valid values for this field are 1, 2, and 3.

The DDATs for operands 1 and 2 must be valid for a timestamp and identical. The DDAT for operand 3
must be valid for a timestamp duration. Otherwise, a template value invalid (hex 3801) exception will
be issued.

Operand 1 length and operand 2 length are specified in number of bytes.

The input indicator, end of month adiustment, is used to allow or disallow the occurrence of an end of
month adjustment.

The input indicator, tolerate decimal data errors, is used to determine whether errors found in the
packed data for the duration will generate exceptions or will be ignored. When the errors are to be
tolerated, the following rules will apply:

1. An invalid sign nibble found in the packed data value will be changed to a hex F.

2. Any invalid decimal digits found in the packed data value will be forced to zero.

3. If all digits of a packed data value become zero, and no decimal overflow condition exists, the sign
will be set to hex F. If all digits are zero and a decimal overflow condition exists, then the sign will
not be changed, but its representation will be changed to the preferred sign code.

The output Indicator, end of month adlustment, is used to indicate an end of month adjustment, when
end of month adjustments are allowed. .

End of month adjustment is the following concept. For SAA, the result of adding a 1 month duration to
the date 01/31/1989 is 02/28/1989. The days portion is adjusted to fit the month, 31 is changed to 28.
When this happens, the end of month adjustment output indicator is set to on.

When end of month adjustments are not allowed. the month and year definitions in the data definition
attribute template must have values greater than zero, otherwise a template value invalid (hex 3801)
exception will be signaled. The result of adding a 1 month duration to the Gregorian date 01/31/1989 is
03/0211989, when the definition of a month is 30 days.

The size of the OOAT list is specified in bytes.

The number of OOATs is the count of DDATs specified for this instruction template. The maximum
number of DDATs that can be specified is 3.

Chapter 3. Date/Time/Timestamp Instructions 3-50

"

(,

Increment Timestamp (INeTS)

The DDAT offset is the number of bytes from the start of the DDAT list to the start of the specific DDAT.
There should be as many DDAT offsets as there are DDATs specified.

A data definitional attribute template defines the presentation of the data. Each template describes the
definitional attributes of the operands. The length of the timestamp and duration character operands
will be defined by the template. For a further description of the data definitional attribute template, see
"Data Definitional Attribute Template" on page 3-5.

Authorization Required

• None .

Lock Enforcement

• None .

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X- X X

06 Optimized addressability invalid X X X X

08 Argument/Parameter

01 Parameter reference violation X X X X

OC Computation

02 Decimal data X

15 Date boundary overflow X X

16 Data format X

17 Data value X

18 Date boundary underflow X X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

Chapter 3. Date/Time/Timestamp Instructions 3-51

Increment Timestamp (INeTS)

Operands
Exception 1 2 3 4 Other

,j 2E Resource Contml Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

Chapter 3. Date/Time/Timestamp Instructions 3-52

Pointer/Name Resolution Addressing Instructions

Chapter 4. Pointer/Name Resolution Addressing Instructions

This chapter describes the instructions used for pointer and name resolution functions. These
instructions are in alphabetic order. See Appendix A, "Instruction Summary," for an alphabetic
summary of all the instructions.

Compare Pointer for Object Addressability (CMPPTRA) 4·3
Compare Pointer for Space Addressability (CMPPSPAD)
Compare Pointers for Equality (CMPPTRE)
Compare Pointer Type (CMPPTRn
Copy Bytes with Pointers (CPYBWP)
Resolve Data Pointer (RSLVDP)
Resolve System Pointer (RSLVSP)
Set Space Pointer from Pointer (SETSPPFP)
Set System Pointer from Pointer (SETSPFP)

© COPYright IBM Corp. 1991, 1993

4-5
4·7
4-9

4-12
4·14
4-17
4-22
4-24

4-1

Pointer/Name Resolution Addressing Instructions

Chapter 4. PolnterlName Resolution Addressing Instructions 4-2

Compare Pointer for Object Addressability (CMPPTRA)

Compare Pointer for Object Addressability (CMPPTRA)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 [4J
CMPPTRAB Branch options Compare Compare Branch targets
1CD2 operand 1 operand 2

CMPPTRAI Indicator options Compare Compare Indicator targets
18D2 operand 1 operand 2

Operand 1: Data pointer, space pointer, system pointer, or instruction pointer.

Operand 2: Data pointer, space pointer, system pointer, or instruction pointer.

Operand 3 [4]:

• Branch Form -Instruction number, relative instruction number, branch point, or instruction pOinter.

• Indicator Form - Numeric variable scalar or character variable scalar.

Description: The object addressed by operand 1 is compared with the object addressed by operand 2
to determine if both operands are addressing the same object. Based on the comparison, the resulting
condition is used with the extender to transfer control (branch form) or to assign a value to each of the
indicator operands (indicator form).

If operand 1 is a data pointer, a space pointer, or a system pointer, operand.2 may be any pOinter type
except for instruction pointer in any combination. An equal condition occurs if the pointers are
addressing the same object. For space pointers and data pointers, only the space they are addressing
is considered in the comparison. That is, the space offset portion of the pointer is ignored.

For system pointer compare operands, an equal condition occurs if the system pointer is compared
with a space pointer or data pointer that addresses the space that is associated with the object that is
addressed by the system pointer. For example, a space pointer that addresses a byte in a space asso­
ciated with a system object compares equal with a system pointer that addresses the system object.

For instruction pointer comparisons, both operands must be instruction pointers; otherwise, an invaJid
pointer type (hex 2402) exception is signaled. An equal condition occurs when both instruction pointers
are addressing the same instruction in the same program. A not equal condition occurs if the instruc­
tion pointers are not addressing the same instruction in the same program.

A pointer does not exist (hex 2401) exception is signaled if a pointer does not exist in either of the
operands.

Resultant Conditions

• Equal

• Not equal

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Chapter 4. Pointer/Name Resolution Addressing Instructions 4-3

Compare Pointer for Object Addressability (CMPPTRA)

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/parameter

01 Parameter reference violation X X X X

OA Authorization

01 Unauthorized for operation X X

10 Damage encountered

04 System object damage state X X X X X

05 authority verification terminated due to damaged object X

44 Partial system object damage X X X X X

1A Lock state

01 Invalid lock state X X'

1C Machine-dependent exception
t

03 Machine storage limit exceeded X ..J
20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

~~

Chapter 4. PointerlName Resolution Addressing Instructions 4-4

Compare Pointer for Space Addressability (CMPPSPAD)

Compare Pointer- for Space Addressability (CMPPSPAD)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 [4-6J
CMPPSPADB Branch options Compare Compare Branch targets
1CE6 Operand 1 Operand 2

CMPPSPADI Indicator options Compare Compare Indicator targets
18E6 Operand 1 Operand 2

Operand 1: Space pointer or data pointer.

Operand 2: Numeric variable scalar. character variable scalar. numeric variable array. character vari­
able array. space pointer. or data pointer.

Operand 3 [4-6]:

• Branch Form-Instruction number. relative instruction number. branch point. or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The space addressability contained in the pointer specified by operand 1 is compared
with the space addressability defined by operand 2.

The value of the operand 1 pointer is compared based on the following:

• If operand 2 is a scalar data object (element or array). the space addressability of that data object
is compared with the space addressability contained in the operand 1 pointer.

• If operand 2 is a pointer. it must be a space pointer or data pointer. and the space addressability
contained in the pointer is compared with the space addressability contained in the operand 1
pointer.

Based on the results of the comparison, the resulting condition is used with the extender to transfer
control (branch form) or to assign a value to each of the indicator operands (indicator form). If the
operands are not in the same space. the resultant condition is unequal. If the operands are in the
same space and the offset into the space of operand 1 is larger or smaller than the offset of operand 2.
the resultant condition is high or low, respectively. An equal condition occurs only if the operands are
in the same space at the same offset. Therefore. the resultant conditions (high, low, equal. and
unequal) are mutually exclusive. Consequently. if you specify that an action be taken upon the nonex­
istence of a condition. this results in the action being taken upon the occurrence of any of the other
three possible conditions. For example, a branch not high would result in the branch being taken on a
low, equal, or unequal condition.

The object destroyed (hex 2202) exception, optimized addressability invalid (hex 0606) exception.
parameter reference violation (hex 0801) exception, and pointer does not exist (hex 2401) exception are
not signaled when operand 1 or operand 2 is a space pointer machine object or when operand 2 is a
scalar based on a space pointer machine object. This occurs when the space pointer machine object
contains an internal machine value that indicates one of these error conditions exists. If the corre­
sponding exception is not signaled, the resulting condition of the comparison operation is not defined
other than that it will be one of the four valid resultant conditions for this instruction.

When the Override Program Attributes (OVRPGATR) instruction is used to override this instruction. the
pointer does not exist. (hex 2401) exception is not signaled when operand 1 or operand 2 is a space
painter (i.e. either a space pointer data object or a space pointer machine object). Furthermore, some
comparisons involving space pointers are defined even when one or both of the compare operands is
a pointer subject to the pOinter does not exist condition. Specifically, if both compare operands are
subject to the pointer does not exist condition. the resultant condition is equal. When one space
painter is set and one is subject to the pointer does not exist condition, the resultant condition is

Chapter 4. Pointer/Name Resolution Addressing Instructions 4-5

Compare Pointer for Space Addressability (CMPPSPAD)

unequal, but undefined with respect to comparisons which include specification of the high or low con­
ditions,

Resultant Conditions

• High

• Low

• Equal

• Unequal

Exceptions

Operands
Exception 1 2 3 [4-6] Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X

03 range X X

04 external data object not found X X

06 optimized addressability invalid X X

08 ArgumenUparameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pOinter does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 4, Pointer/Name Resolution Addressing Instructions 4-6

Compare Pointers for Equality (CMPPTRE)

Compare Pointers for Equality (CMPPTRE)

Op Code (Hex)
CMPPTREB
1C12

CMPPTREI
1812

Extender
Branch options

Indicator options

Operand 1
Compare
operand 1

Compare
operand 1

Operand 2
Compare
operand 2

Compare
operand 2

Operand 3 [4]
Branch targets

Indicator targets

Operand 1: Data pointer, space pointer, system pointer, instruction pointer, invocation pointer, proce­
dure pointer, label pointer, or suspend pointer

Operand 2: Data pointer, space pointer, system pointer, instruction pointer, invocation pointer, proce­
dure pointer, label pointer, or suspend pointer

Operand 3 [4]:

• Branch Form -Instruction number, relative instruction number, branch point, or instruction pointer.

• Indicator Form - Numeric variable scalar or character variable scalar.

Description: The pointer specified by operand 1 is compared with the pointer specified by operand 2
to determine if both operands are of the same type and contain equal values. Based on the compar­
ison, the resulting condition is used with the extender to transfer control (branch form) or to assign a
value to each of the indicator operands (indicator form).

Pointers may be specified for operands 1 and 2 in any combination. An equal condition occurs if the
pointers are of the same type and contain the same value, or if neither pointer has been set. If one

(.. pointer is set and the other is not, a not equal condition occurs.

System pointers and data pointers are not resolved by this instruction. The comparison result is unde­
fined when an unresolved pointer is supplied for one or both operands.

Note that any authorities stored in a resolved system pointer are part of the pointer. Thus system
pointers pointing to the same object, but with different levels of authority, will compare as not equal.

Since any pointer type may be specified for this instruction, the invalid pointer type (hex 2402) excep­
tion is not signaled except for painters used as a base for the operands. Similarly, since the instruc­
tion accepts unset pointers, the pointer does not exist (hex 2401) exception is not signaled except for
pointers used as a base for the operands.

Resultant Conditions

• Equal

• Not equal

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized address ability invalid

Operands
1 2 3 4 Other

X X X X

X X X X

X X X X

X X X X

Chapter 4. POinter/Name Resolution AddreSSing Instructions 4-7

Compare Pointers for Equality (CMPPTRE)

Operands
Exception 1 2 3 4 Other
08 Argument/par ameter

01 Parameter reference violation X X X X

OA Authori zation

01 Unauthorized for operation X X

10 Damage encountered

04 System object damage state X X X X X

05 authority verification terminated due to damaged object X

44 Partial system object damage X X X X X

1A Lock state

01 Invalid lock state X X

1C Machine-ciependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

~ 03 Object suspended X X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 4. PointerlName Resolution Addressing Instructions 4-8

Compare Pointer Type (CMPPTRT)

Compare Pointer Type (CMPPTRT)

Op Code (Hex)
CMPPTRTB
lCE2

CMPPTRTI
18E2

Extender
Branch options

Indicator options

Operand 1
Compare
operand 1

Compare
operand 1

Operand 2
Compare
operand 2

Compare
operand 2

Operand 3 [4]
Branch targets

Indicator targets

Operand 1: Data pointer, space pointer, system pointer, instruction pointer, invocation pointer, proce­
dure pOinter, label pointer, or suspend pointer

Operand 2: Character(1) scalar or null.

Operand 3 [4]:

• Branch Form -Instruction number, relative instruction number, branch point, or instruction pointer.

• Indicator Form - Numeric variable scalar or character variable scalar.

Extender

Description: The instruction compares the pointer type currently in operand 1 with the character
scalar identified by operand 2. Based on the comparison, the resulting condition is used with the
extender to transfer control (branch form) or to assign a value to each of the' indicator operands (indi­
cator form).

Operand 1 can specify a space pointer machine object only when operand 2 is null.

If operand 2 is null or if operand 2 specifies a comparison value of hex 00, an equal condition occurs if
a pointer does not exist in the storage area identified by operand 1.

Following are the allowable values for operand 2:

Hex 00 - A pointer does not exist at this location
Hex 01 - System pointer
Hex 02 - Space pointer
Hex 03 - Data pointer
Hex 04 - Instruction pointer
Hex 05 - Invocation pointer
Hex 06 - Procedure pointer
Hex 07 - Label pointer
Hex 08 - Suspend pointer

Resultant Conditions

• Equal

• Not equal

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Chapter 4. POinterlName Resolution Addressing Instructions 4-9

Compare Pointer Type (CMPPTRT)

Lock Enforcement
. Materialize ..J - Contexts referenced for address resolution

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/parameter

01 Parameter reference violation X X X X

OA Authorization

01 Unauthorized for operation X

10 Damage encountered

04 System object damage state X X' X X X

05 authority verification terminated due to damaged object X

44 Partial system object damage X X X X X • j
1A Lock state

01 Invalid lock state X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 Scalar value invalid X

Chapter 4. POinterlName Resolution Addressing Instructions 4-10

Compare Pointer Type (CMPPTRT)

Operands
Exception 1 2 3 4 Other

36 Space management

01 space extension/truncation x

Chapter 4. POinterlName Resolution Addressing Instructions 4-11

Copy Bytes with Pointers (CPYBWP)

op Code (Hex)
0132

Operand 1
Receiver

Operand 2
Source

Copy Bytes with Pointers (CPYBWP)

Operand 1: Character variable scalar, space pointer, data pointer, system pointer, instruction pointer,
invocation pointer, procedure pointer, label pointer, or suspend pointer

Operand 2: Character variable scalar, space pointer, data pointer, system pointer, instruction pointer,
invocation pointer, procedure pointer, label pointer, suspend pointer, or null

Description: This instruction copies either the pointer value or the byte string specified for the source
operand into the receiver operand depending upon whether or not a space pointer machine object is
specified as one of the operands.

If either operand is a character variable scalar, it can have a length as great as 16776191 bytes.

Operations involving space pointer machine objects perform a pointer value copy operation for only
space pointer values or the pointer does not exist state. Due to this, a space pointer machine object
may only be specified as an operand in conjunction with another pointer or a null second operand.
The pointer does not exist state is copied from the source to the receiver pointer without signaling the
pointer does not exist (hex 2401) exception. Source pointer data objects must either be not set or
contain a space pointer value when being copied into a receiver space pointer machine object.
Receiver pointer data objects will be set with either the system default pointer does not exist value or
the space pointer value from a source space pOinter machine object.

Normal pointer alignment checking is performed on a pointer data object specified as an operand in f ,.
conjunction with a space pointer machine object. .."

Operations not involving space pointer machine objects, those involving just data objects as operands,
perform a byte string copy of the data for the specified operands.

The value of the byte string specified by operand 2 is copied to the byte string specified by operand 1
(no padding done).

The byte string identified by operand 2 can contain the storage forms of both scalars and pointers.
Normal pointer alignment checking is not done.

\hen the Override Program Attributes (OVRPGATR) instruction is not used to override CPYBWP, the
only alignment requirement is that the space addressability alignment of the two operands must be to
the same position relative to a 16-byte multiple boundary. A boundary alignment (hex 0602) exception
is signaled if the alignment is incorrect. The pointer attributes of any complete pointers in the source
are preserved if they can be completely copied into the receiver. Partial pointer storage forms are
copied into the receiver as scalar data. Scalars in the source are copied to the receiver as scalars.

When the OVRPGATR instruction is used to override this instruction, the alignment requirement is
removed. If the space addressability alignment of the two operands is the same relative to 16-byte mul­
tiple boundary, then this instruction will work the same as stated above. If the space addressability
alignment is different, then this instruction will work like a Copy Bytes Left Adjusted (CPYBLA) and the
pointer attributes of any complete pointers in the source are not preserved in the receiver.

If a pointer data object operand contains a data pointer value upon execution of the instruction, the
pointer storage form is copied rather than the scalar described by the data pointer value. The char­
acter variable scalar reference allowed on either operand cannot be described through a data pointer
value.

Chapter 4. PointerlName Resolution Addressing Instructions 4-12

Copy Bytes with Pointers (CPYBWP)

The length of the operation is equal to the length of the shorter of the two operands. The copying
begins with the two operands left-adjusted and proceeds until completion of the shorter operand.

Operand 1 can specify a space pointer machine object only when operand 2 is a space pointer or null.

If operand 2 is null. operand 1 must define a pointer reference; otherwise, an invalid operand type (hex
2A06) exception is signaled by the Create Program instruction. When operand 2 is null, the pointer
identified by operand 1 is set to the system default pointer does not exist value.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 ArgumenUparameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 4. POinter/Name Resolution Addressing Instructions 4-13

Resolve Data Pointer (RSLVDP)

Op Code (Hex)
0163

Operand 1
Pointer for
addressability to
data object

Operand 1: Data pointer.

Operand 2
Data object iden­
tification

Operand 2: Character(32) scalar (fixed-length) or null.

Operand 3: System pointer or null.

Resolve Data Pointer (RSLVDP)

Operand 3
Program

Description: A data pointer with addressability to and the attributes of an external scalar data element
is returned in the storage area identified by operand 1. The following describes the instruction's func­
tion when operand 2 is null:

• If operand 1 does not contain a data pointer, an exception is signaled.

• If the data pointer specified by operand 1 is not resolved and has an initial value declaration, the
instruction resolves the data pointer to the external scalar that the initial value describes. The
initial value defines the external scalar to be located and, optionally, defines the program in which
it is to be located. If the program name is specified in the initial value, only that program's acti­
vation entry is searched for the external scalar. If no program is specified, programs associated
with the activation entries in the current activation group in which the program is executing, are
searched in reverse order of the activation entries, and operand 3 is ignored. The current acti­
vation group for non-bound programs is the default activation group whose state is the same as
the state of the process at the time the instruction is run.

• If the data pointer is currently resolved and defines an existing scalar, the instruction causes no
operation, and no exception is signaled.

The following describes the instruction's function when operand 2 is not null:

• A data pointer that is resolved to the external scalar identified by operand 2 is returned in operand
1. Operand 2 is a 32-byte value that provides the name of the external scalar to be located.

• Operand 3 specifies a system pointer that identifies the program whose activation is to be
searched for the external scalar definition. If operand 3 is nUll, the instruction searches all acti­
vations in the activaction group from which the instruction is executed, starting with the most
recent activation and continuing to the oldest. The activation under which the instruction is issued
also participates in the search. If operand 3 is not nUll, the instruction searches the activation of
the program addressed by the system pointer.

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Chapter 4. Pointer/Name Resolution Addressing Instructions 4-14

Resolve Data Pointer (RSLVDP)

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

04 External data object not found X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OA Authorization

01 Unauthorized for operation X X

10 Damage encountered

04 System object damage state X X X X

05 authority verification terminated due to damaged object X

44 Partial system object damage X X X X

1A Lock state

01 Invalid lock state X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

04 Pointer not resolved X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

02 Scalar attributes invalid X

03 Scalar value invalid X

36 Space management

Chapter 4. POlnterlName Resolution AddreSSing Instructions 4-15

Exception
01 space extension/truncation

Resolve Data Pointer (RSLVDP)

Operands
1 2 3 Other

X

Chapter 4. Pointer/Name Resolution Addressing Instructions 4-16

Resolve System Pointer (RSLVSP)

Resolve System Pointer (RSLVSP)

Op Code (Hex)
0164

Operand 1
Pointer for
addressability to
object

Operand 1: System pointer.

Operand 2
Object identifica­
tion and required
authorization

Operand 2: Character(34) scalar (fixed-length) or null.

Operand 3: System pointer or nUll.

Operand 4: Character(2) scalar (fixed-length) or null.

Operand 3
Context through
which objects is to
be located

Operand 4
. Authority to be sell

ILEaccess ---,

RSLVSP (
var ptr_to_object
var objid_and_authreq

var context

system potnter;
aggregate; OR
null operand;
system pOinter; OR
null operand;
aggregate OR
null operand

Description: This instruction locates an object identified by a symbolic address and stores the object's
addressability and authorityl in a system pointer. A resolved system pointer is returned in operand 1
with addressability to a system object and the requested authority currently available to the process
for the object.

Note: The ownership flag is never set in the system pointer.

Operand 2 specifies the symbolic identification of the object to be located. Operand 3 identifies the
context to be searched in order to locate the object. Operand 4 identifies the authority states to be set
in the pointer. First, the instruction locates an object based on operands 2 and 3. Then, the instruction
sets the appropriate authority states in the system pointer.

The following describes the instruction's function when operand 2 is null:

• If operand 1 does not contain a system pointer, an exception is signaled.

• If the system pointer specified by operand 1 is not resolved but has an initial value declaration, the
instruction resolves the system pointer to the object that the initial value describes. The initial
value defines the following:

Object to be located (by type code, subtype code, and object name)

Context to be searched to locate the object (optional)

Minimum required authorization required for the object

If a context is specified, only that context is referenced to locate the object, and operand 3 is
ignored. If no context is specified, the context(s) located by the process name resolution list is

1 Programs executing in user-domain may not assign authority in the resulting system pointer. The value in operand 4 is
ignored and no exception IS raised.

Chapter 4. POinter/Name Resolution AddreSSing Instructions 4-17

Resolve System Pointer (RSLVSP)

used to locate the object, and operand 3 is ignored. If the object is of a type that can only be
addressed through the machine context, then only the machine context is searched, and the
context (if any) identified in the initial value or identified in operand 3 is ignored.

If the minimum required authorization in the initial value is not set (binary 0), the instruction
resolves the operand 1 system pointer to the first object encountered with the designated type
code, subtype code, and object name without regard to the authorization available to the process
for the object. If one or more authorization (or ownership) states are required (signified by binary
1's), the context(s) is searched until an object is encountered with the designated type, subtype,
and name and for which the process currently has all required authorization states.

• If the system pointer specified by operand 1 is currently resolved to address an existing object, the
instruction does not modify the addressability contained in the pointer and causes only the
authority attribute in the pointer to be modified based on operand 4.

If operand 2 is not null, the operand 1 system pointer is resolved to the object identified by operand 2
in thecontext(s) specified by operand 3. The format of operand 2 is as follows:

• Object specification

Type code

Subtype code

Object name

• Required authorization (1 = required)

Object control

Object management

Authorized pointer

Space authority

Retrieve

Insert

Delete

Update

Ownership

Excluded

Authority List Management

Reserved (binary 0)

The allowed type codes are as follows:

Hex 01 = Access group
Hex 02 = Program
Hex 03 = Module
Hex 04 = Context
Hex 06 = Byte string space
Hex 07 = Journal space
Hex 08 = User profile
Hex 09 = Journal port
Hex OA = Queue
Hex OB = Data space
Hex DC = Data space index
Hex 00 = Cursor
Hex OE = Index

Char(32)

Char(1)

Char(1)

Char(30)

Char(2)

. Bit a
Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11-15

Chapter 4. POinterlName Resolution Addressing Instructions 4-18

:.J

Hex OF = Commit block
Hex 10 = Logical unit description
Hex 11 = Network description
Hex 12 = Controller description
Hex 13 = Dump space
Hex 14 = Class of Service Description
Hex 15 = Mode description
Hex 16 = Network interface description
Hex 17 = Connection list
Hex 18 = Queue space
Hex 19 = Space
Hex 1A = Process control space
Hex 1 B = Authorization list
Hex 1C = Dictionary

Resolve System Pointer (RSLVSP)

All other codes are reserved. If other codes are specified, they cause a scalar value invalid (hex 3203)
exception to be signaled.

Operand 3 identifies the context in which to locate the object identified by operand 2. If operand 3 is
null, then the contexts identified in the process name resolution list are searched in the order in which
they appear in the list. If operand 3 is not nUll, the system pointer specified must address a context,
and only this context is used to locate the object. If the object is of a type that can only be addressed
through the machine context, then only the machine context is searched, and operand 3 and the
process name resolution list are ignored.

If the required authorization field in operand 2 is not set (all values set to 0), the instruction resolves
the operand 1 system pointer to the first object encountered with the designated type code, subtype
code, and object name without regard to the authorization currently available to the process. If one or
more authorization (or ownership) states are required (signified by binary 1's), the context is searched
until an object is encountered with the designated type code, subtype code, object name, and the user
profiles governing the instruction's execution that have all the required authorization states.

Once addressability has been set in the pointer, operand 4 is used to determine which, if any, of the
object authority states is to be set into the pointer. Only the object authority states correlating with
bits a through 7, that is, object control through update, can be set into the pointer. This restriction
applies whether the authority mask controlling which authorities to set in the pointer comes from
operand 4, operand 2, or the initial value for the system pointer.

If operand 4 is nUll, the object authority states required to locate the object are set in the pointer. This
required object authority is as specified in operand 2 or in the initial value for operand 1 if operand 2 is
null. If the process does not currently have authorized pointer authority for the object, no authority is
stored in the system pointer, and no exception is signaled.

If operands 2 and 4 are null and operand 1 is a resolved system pointer, the authority states in the
pointer are not modified.

If operand 4 is not nul" it specifies the object authority states to be set in the resolved system pointer.
The format of operand 4 is as follows:

• Requested authorization (1 = set authority)

Object control

Object management

Authorized pointer

Space authority

Char(2)

Bit a
Bit 1

Bit 2

Bit 2

Chapter 4. POinter/Name Resolution Addressing Instructions 4-19

Retrieve

Insert

Delete

Update

Reserved (binary 0)

Resolve System Pointer (RSLVSP)

Bit 4

Bit 5

Bit 6

Bit 7

Bits 8-15

The authority states set in the resolved system pointer are based on the following:

• The authority already stored in the pointer can be increased only when the process has authorized
pointer authority to the referenced object. If this authority is not available and the pointer was
resolved by this instruction, the authority in the operand 1 system pointer is set to the not set state,
and no exception is signaled. If operand 2 is null, if operand 1 is a resolved system pointer con­
taining authority, and if authorized pointer authority is not available to the process, additional
authorities cannot be stored in the pointer.

• If the process does not currently have all the authority states requested in operand 4, only the
requested and available states are set in the pointer, and no exception is signaled.

• Note that the authority stored in the operand 1 system pointer is a source of authority applies to
this instruction when operand 2 is null and operand 1 is a resolved system pointer with authority
stored in it.

Authorization Required

• Retrieve

- Contexts referenced for address resolution (including operand 3)

Lock Enforcement

• Materialization

- Contexts referenced for address resolution (including operand 3)

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 ArgumenUparameter

01 Parameter reference violation X X X X

OA Authorization

01 Unauthorized for operation X X

10 Damage encountered

02 Machine context damage state X

04 System object damage state X X X X X

05 authority verification terminated due to damaged object X

44 Partial system object damage X X X X X

Chapter 4. Pointer/Name Resolution Addressing Instructions 4-20

Resolve System Pointer (RSLVSP)

Operands
Exception 1 2 3 4 Other

1A Lock state

01 Invalid lock state X X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

04 Pointer not resolved X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

C. 02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space management

01 space extension/truncation X

Chapter 4. POinterlName Resolution AddreSSing Instructions 4-21

Set Space Pointer from Pointer (SETSPPFP)

Set Space Pointer from Pointer (SETSPPFP)

Op Code (Hex)
0022

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Source Pointer

Operand 2: Data pointer, system pointer, or space pointer.

Description: A space pointer is returned in operand 1 with the addressability to a space object from
the pointer specified by operand 2.

The meaning of the pointers allowed for operand 2 is as follows:

Pointer
Data pointer or
space pointer

System pointer

Meaning
The space pointer returned in operand 1 is set to address of the leftmost byte of the byte
string addressed by the source pointer for operand 2.

The space pointer returned in operand 1 is set to address the first byte of the space con­
tained in the system object addressed by the system pointer for operand 2. The space
object addressed is either the created system space or an associated space for the system
object addressed by the system pointer. If the operand 2 system pointer addresses a
system object with no associated space, the invalid space reference (hex 0605) exception
is signaled.

The object destroyed (hex 2202) exception, optimized addressabi/ity invalid (hex 0606) exception,
parameter reference violation (hex 0801) exception, and pointer does not exist (hex 2401) exception are
not signaled when operand 1 and operand 2 are space pointer machine objects. This occurs when
operand 2 contains an internal machine value that indicates one of these error conditions exists. If the
corresponding exception is not signaled, operand 1 is set with an internal machine value that pre­
serves the exception condition that existed for operand 2. The appropriate exception condition will be
signaled for either pointer when a subsequent attempt is made to reference the space data that the
pointer addresses.

Authorization Required

• Space authority

- Operand 2 (if a system pointer)

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

Operands
1 2

x
X

X

X

X

X

Other

Chapter 4. PointerlName Resolution Addressing Instructions 4-22

Set Space Pointer from Pointer (SETSPPFP)

Operands
Exception 1 2 Other

~
04 external data object not found X

OS invalid space reference X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 4. POlnterlName Resolution AddreSSing Instructions 4-23

Set System Pointer from Pointer (SETSPFP)

Set System Pointer from Pointer (SETSPFP)

op Code (Hex)
0032

Operand 1
Receiver

Operand 1: System pointer.

Operand 2
Source pointer

Operand 2: System pointer, space pointer, data pointer, or instruction pointer.

Description: This instruction returns a system pointer to the system object address by the supplied
pointer.

If operand 2 is a system pointer, then a system pointer addressing the same object is returned in
operand 1 containing the same authority as the input pointer.

If operand 2 is a space pointer or a data pointer, then a system pointer addressing the system object
that contains the associated space addressed by operand 2 is returned in operand 1.

If operand 2 is an instruction pointer, then a system pointer addressing the program system object that
contains the instruction addressed by operand 2 is returned in operand 1.

If operand 2 is an unresolved system pointer or data pointer, the pointer is resolved first.

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialization

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

04 external data object not found

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

02 machine context damage

04 system object damage state

Operands
1 2

X X

X X

X X

X X

X X

X

x x

Other

X

X

X

Chapter 4. Pointer/Name Resolution Addressing Instructions 4-24

Set System Pointer from Pointer (SETSPFP)

Operands
Exception 1 2 Other

05 authority verification terminated due to damaged object X

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

Chapter 4. POinter/Name Resolution Addressing Instructions 4-25

Space Addressing Instructions

Chapter 5. Space Addressing Instructions

This chapter describes the instructions used for space addressing. These instructions are in alpha­
betic order. For an alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary"

Add Space Pointer (ADDSPP) 5-3
Compare Space Addressability (CMPSPAD) 5-5
Set Data Pointer (SETDP),. 5-7
Set Data Pointer Addressability (SETDPADR) 5-9
Set Data Pointer Attributes (SETDPAD 5-11
Set Space Pointer (SETSPP) 5-14
Set Space Pointer with Displacement (SETSPPD) 5-16
Set Space Pointer Offset (SETSPPO) 5-18
Store Space Pointer Offset (STSPPO) 5-20
Subtract Space Pointer Offset (SUBSPP) 5-22
Subtract Space Pointers For Offset (SUBSPPFO) 5-24

~ Copyright I BM Corp. 1991, 1993 5-1

Space Addressing Instructions

Chapter 5. Space Addressing Instructions 5-2

Add Space Pointer (ADDSPP)

op Code (Hex)
0083

Operand 1
Receiver Pointer

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Operand 2
Source Poi nter

Add Space Pointer (ADDSPP)

Operand 3
Increment

Description: This instruction adds a signed or unsigned binary value to the offset of a space pointer.
The value of the binary scalar represented by operand 3 is added to the space address contained in
the space pointer specified by operand 2, and the result is stored in the space pointer identified by
operand 1. I.e.

Operand 1 : Operand 2 + Operand 3

Operand 3 can have a positive or negative value. The space object that the pointer is addressing is
not changed by the instruction.

Operand 2 must contain a space pointer when the execution of the instruction is initiated; otherwise,
an invalid pOinter type (hex 2402) exception is signaled. When the addressability in a space pointer is
modified, the instruction signals a space addressing (hex 0601) exception only when the space address
to be stored in the pointer has a negative offset value or when the offset addresses beyond the largest
space allocatable in the object. This maximum offset value is dependent on the size and packaging of t ""

the object containing the space and is independent of the actual size of the space allocated. If the ..."
exception is signaled by this instruction for this reason, the pointer is not modified by the instruction.
Attempts to use a pointer whose offset value lies between the currently allocated extent of the space
and the maximum allocatable extent of the space cause the space addressing (hex 0601) exception to
be signaled.

The object destroyed (hex 2202) exception, optimized addressability invalid (hex 0606) exception,
parameter reference violation (hex 0801) exception, and pointer does not exist (hex 2401) exception are
not signaled when operand 1 and operand 2 are space pointer machine objects. This occurs when
operand 2 contains an internal machine value that indicates one of these error conditions exists. If the
corresponding exception is not signaled, operand 1 is set with an internal machine value that pre­
serves the exception condition that existed for operand 2. The appropriate exception condition will be
signaled for either pointer when a subsequent attempt is made to reference the space data that the
pointer addresses.

Exceptions

Operands
Exception 1 2 3[4-6] Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

Chapter 5. Space AddreSSing Instructions 5-3

Add Space Pointer (ADDSPP)

Operands
Exception 1 2 3[4-6] Other

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter S. Space Addressing Instructions 5-4

Compare Space Addressability (CMPSPAD)

Compare Space Addressability (CMPSPAD)

op Code (Hex)
CMPSPADB
1CF2

CMPSPADI
18F2

Extender
Branch options

Indicator options

Operand 1
Compare
operand 1

Compare
operand 1

Operand 2
Compare
operand 2

Compare
operand 2

Operand 3 [4-6]
Branch targets

Indicator targets

Operand 1: Numeric variable scalar, character variable scalar, numeric variable array, character vari­
able array, pointer data object, pointer data object array.

Operand 2: Numeric variable scalar, character variable scalar, numeric variable array. character vari­
able array, pointer data object. pointer data object array.

Operand 3 [4-6]:

• Branch Form-Instruction number. relative instruction number, branch point. or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The space addressability of the object specified by operand 1 is compared with the space
addressability of the object specified by operand 2.

Based on the results of the comparison. the resulting condition is used with the extender to transfer
control (branch form) or to assign a value to each of the indicator operands (indicator form). If the
operands are not in the same space, the resultant condition is unequal. If the operands are in the
same space and the offset of operand 1 is larger or smaller than the offset of operand 2. the resultant
condition is high or low. respectively. Equal occurs only if the operands are in the same space at the
same offset. Therefore, the resultant conditions (high, low, equal. and unequal) are mutually exclusive.
Consequently. if you specify that an action be taken upon the nonexistence of a condition, this results
in the action being taken upon the occurrence of any of the other three possible conditions. For
example, a branch not high would result in the branch being taken on a low, equal, or unequal condi­
tion.

If a pointer data object operand contains a data pointer value upon execution of the instruction, the
addressability is compared to the pointer data object rather than to the scalar described by the data
pointer value. The variable scalar references allowed on operands 1 and 2 cannot be described
through a data pointer value.

The object destroyed (hex 2202) exception. optimized addressability invalid (hex 0606) exception,
parameter reference violation (hex 0801) exception. and pointer does not exist (hex 2401) exception are
not signaled when operand 1 or operand 2 is based on a space pointer machine object. This occurs
when the space pointer machine object contains an internal machine value that indicates one of these
error conditions exists. If the corresponding exception is not signaled, the resulting condition of the
comparison operation is not defined other than that it will be one of the four valid resultant conditions
for this instruction.

Resultant Conditions

• High

• Low

• Equal

• Unequal

Chapter 5. Space Addressing Instructions 5-5

Compare Space Addressability (CMPSPAD)

Exceptions

Operands
Exception 1 2 3 [406] Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 5. Space Addressing Instructions 5-6

Set Data Pointer (SETDP)

Set Data Pointer (SETDP)

Op Code (Hex)
0096

Operand 1
Receiver

Operand 1: Data pointer.

Operand 2
Source

Operand 2: Numeric variable scalar, character variable scalar, numeric variable array, or character
variable array.

Description: A data pointer is created and returned in the storage area specified by operand 1 and
has the attributes and space addressability of the object specified by operand 2. Addressability is set
to the low-order (leftmost) byte of the object specified by operand 2. The attributes given to the data
pointer include scalar type and scalar length.

If operand 2 is a substring compound operand, the length attribute is set equal to the length of the
substring. If operand 2 is a subscript compound operand, the attributes and addressability of the
single array element specified are assigned to the data pointer. If operand 2 is an array, the attributes
and addressability of the first element of the array are assigned to the data pointer. A data pointer can
only be set to describe an element of a data array, not a data array in its entirety.

When the addressability in the data pointer is modified, the instruction signals the space addressing
(hex 0601) exception when one of the following conditions occurs:

• When the space address to be stored in the pointer would have a negative offset value.

• When the offset would address an area beyond the largest space allocatable in the object. This
maximum offset value is dependent on the size and packaging of the object containing the space
and is independent of the actual size of the space allocated.

If the exception is signaled by this instruction for one of these reasons, the pointer is not modified by
the instruction.

Attempts to use a pointer whose offset value lies between the currently allocated extent of the space
and the maximum allocatable extent cause the space addressing (hex 0601) exception to be Signaled.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 ArgumenUparameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

Chapter 5. Space Addressing Instructions 5-7

'..J

Set Data Pointer (SETDP)

Operands
Exception 1 2 Other
20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 5. Space Addressing Instructions 5-8

Set Data Pointer Addressability (SETDPADR)

Set Data Pointer Addressability (SETDPADR)

Op Code (Hex)
0046

Operand 1
Receiver

Operand 1: Data pointer.

Operand 2
Source

Operand 2: Numeric variable scalar, character variable scalar, numeric variable array, or character
variable array.

Description: The space addressability of the object specified for operand 2 is assigned to the data
pointer specified by operand 1. If operand 1 contains a resolved data pointer, the data pointer's scalar
attribute component is not changed by the instruction. If operand 1 contains an initialized but unre­
solved data pointer, the data pointer is resolved in order to establish the scalar attribute component of
the pointer. If operand 1 contains other than a resolved data pointer, the instruction creates and
returns a data pointer in operand 1 with the addressability of the object specified for operand 2, and
the instruction establishes the attributes as a character(1) scalar.

When the addressability is set into a data pointer, the space addressing (hex 0601) exception is sig­
naled by the instruction only when the space address to be stored in the pointer has a negative offset
value or if the offset addresses beyond the largest space allocatable in the object. This maximum
offset value is dependent on the size and packaging of the object containing the space and is inde­
pendent of the actual size of the space allocated. If the exception is signaled for this reason, the
pointer is not modified by the instruction. Attempts to use a pointer whose offset value lies between
the currently allocated extent of the space and the maximum allocatable extent of the space cause the
space addressing (hex 0601) exception to be signaled.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

04 external data object not found X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

Chapter 5. Space Addressing Instructions 5-9

Set Data Pointer Addressability (SETDPADR)

Operands
Exception 1 2 Other

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 painter type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 5. Space Addressing Instructions 5-10

Set Data Pointer Attributes (SETDPAT)

op Code (Hex)
004A

Operand 1
Receiver

Operand 1: Data pointer.

Operand 2: Character(7) scalar.

Operand 2
Attributes

Set Data Pointer Attributes (SETDPAT)

Description: The value of the character scalar specified by operand 2 is interpreted as an encoded
representation of an attribute set that is assigned to the attribute portion of the data pointer specified
by operand 1. The addressability portion of the data pointer is not modified. If operand 1 contains an
initialized but unresolved data pointer, the data pointer is resolved in order to establish the address­
ability in the pointer. The attributes specified by the instruction are then assigned to the data pointer.
If operand 1 does not contain a data pointer at the initiation of the instruction's execution, an exception
is signaled.

The format of the attribute set is as follows:

• Data pointer attributes

Scalar type

Hex 00 = Signed binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character
Hex 06 = Onlyns
Hex 07 = Onlys
Hex 08 = Either
Hex 09 = Open
Hex OA = Unsigned binary

Scalar length

If binary or character:

- Length (only 2 or 4 for binary)

If floating-poi nt:

- Length (only 4 or 8 for floating-point)

If zoned decimal or packed decimal:

- Fractional digits (F)

- Total digits (n
(where 1 ~ T ~ 31, 0 ~ F ~ n

If character:

- Length (L, where 1 ~ L ~ 32767)

If Onlyns:

- Length (L, where 1 ~ L ~ 16,383)

L is the number of double-byte characters.

If Onlys:

- Length (L, where 2 ~ L ~ 32,766)

Char(7)

Char(1)

Bin(2)

Bits 0-7

Bits 8-15

Chapter 5. Space Addressing Instructions 5-11

'"

C.

Set Data Pointer Attributes (SETDPAT)

• L is the number of bytes
• L is even
• L includes any SO and SI characters

If Either:

- Length (L, where 1 S L S 32,766)

• L is the number of bytes
• L includes any SO and SI characters.

If Open:

- Length (L, where 2 S L S 32,766)

• L is the number of bytes
• L includes any SO and SI characters.

Reserved (binary 0) Bin(4)

Support for usage of a Data Pointer describing an Onlyns, Onlys, Either, or Open scalar value is limited
to the Copy Extended Characters Left Adjusted With Pad instruction. Usage of such a data pointer
defined value on any other instruction is not supported and results in the signaling of the scalar type
invalid (hex 3201) exception.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

04 external data object not found X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

Chapter 5. Space Addressing Instructions 5-12

Set Data Pointer Attributes (SETDPAT)

Operands
Exception 1 2 Other

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specifications

01 scalar type invalid X

02 scalar attributes invalid X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 5. Space Addressing Instructions 5-13

Set Space Pointer (SETSPP)

Op Code (Hex)
0082

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Source

Set Space Pointer (SETSPP)

Operand 2: Numeric variable scalar, character variable scalar, numeric variable array, character vari­
able array, or pointer data object.

Description: A space pointer is returned in operand 1 and is set to address the lowest order (leftmost)
byte of the byte string identified by operand 2.

When the addressability is set in a space pointer, the instruction signals the space addressing (hex
0601) exception when the offset addresses beyond the largest space allocatable in the object or when
the space address to be stored in the pointer has a non positive offset value. This. offset value is
dependent on the size and packaging of the object containing the space and is independent of the
actual size of the space allocated. If the exception is signaled for this reason, the pOinter is not modi­
fied by the instruction. Attempts to use a pointer whose offset value lies between the currently allo­
cated extent of the space and the maximum allocatable extent of the space cause the space addressing
(hex 0601) exception to be signaled.

If a pointer data object specified for operand 2 contains a data pointer value upon execution of the
instruction, the addressability is set to the pointer storage form rather than ~o the scalar described by
the data pointer value. The variable scalar references allowed on operand 2 cannot be described
through a data pointer value.

The object destroyed (hex 2202) exception, the optimized addressability invalid (hex 0606) exception,
the parameter reference violation (hex 0801) exception, and the pointer does not exist (hex 2401) excep­
tion are not signaled when operand 1 is a space pointer machine object and operand 2 is based on a
space pointer machine object. This occurs when the basing space pOinter machine object for operand
2 contains an internal machine value that indicates one of these error conditions exists. If the corre­
sponding exception is not signaled, operand 1 is set with an internal machine value that preserves the
exception condition which existed for operand 2. The appropriate exception condition is signaled for
either pointer upon a subsequent attempt to reference the space data the pointer addresses.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machi ne-dependent exception

Chapter 5. Space Addressing Instructions 5-14

Set Space Pointer (SETSPP)

Operands
Exception 1 2 Other

03 machine storage limit exceeded X ..J
20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

.j

Chapter 5. Space Addressing Instructions 5-15

Set Space Pointer with Displacement (SETSPPD)

Set Space Pointer with Displacement (SETSPPD)

Op Code (Hex)
0093

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Source

Operand 3
Displacement

Operand 2: Numeric variable scalar, character variable scalar, numeric variable array, character vari­
able array, or pointer data object.

Operand 3: Binary scalar.

Description: A space pointer is returned in operand 1 and is set to the space addressability of the
lowest (leftmost) byte of the object specified for operand 2 as modified algebraically by an integer dis­
placement specified by operand 3. Operand 3 can have a positive or negative value. I.e.

Operand 1 = Address_of(Operand 2) + Operand 3

When the addressability is set in a space pointer, the instruction signals the space addressing (hex
0601) exception when the space address to be stored in the pOinter has a negative offset value or
when the offset addresses beyond the largest space allocatable in the object. This maximum offset
value is dependent on the size and packaging of the object containing the space and is independent of
the actual size of the space allocated. If the exception is signaled for this reason, the pointer is not
modified by the instruction. Attempts to use a pointer whose offset value lies between the currently
allocated extent of the space and the maximum allocatable extent of the space cause the space
addressing (hex 0601) exception to be signaled.

If a pointer data object specified for operand 2 contains a data pointer value upon execution of the
instruction, the addressability is set to the pointer storage form rather than to the scalar described by
the data pointer value. The variable scalar references allowed on operand 2 cannot be described
through a data pointer value.

The object destroyed (hex 2202) exception, the optimized addressability invalid (hex 0606) exception,
the parameter reference violation (hex 0801) exception, and the pointer does not exist (hex 2401) excep­
tion are not signaled when operand 1 is a space pointer machine object and operand 2 is based on a
space pointer machine object. This occurs when the basing space pointer machine object for operand
2 contains an internal machine value that indicates one of these error conditions exists. If the corre­
sponding exception is not signaled, operand 1 is set with an internal machine value that preserves the
exception condition which existed for operand 2. The appropriate exception condition is signaled for
either pointer upon a subsequent attempt is made to reference the space data the pointer addresses.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

Operands
1 2 Other

X X X

X X X

X X X

X X X

Chapter 5. Space Addressing Instructions 5-16

Set Space Pointer with Displacement (SETSPPD)

Operands
Exception 1 2 Other

01 parameter reference violation X X X ..J
10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

:J 01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 5. Space Addressing Instructions 5-17

Set Space Pointer Offset (SETSPPO)

Op Code (Hex)
0092

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Binary scalar.

Operand 2
Source 1

Set Space Pointer Offset (SETSPPO)

Description: The value of the binary scalar specified by operand 2 is assigned to the offset portion of
the space pointer identified by operand 1. The space pointer continues to address the same space
object.

Operand 1 must contain a space pointer; otherwise, an invalid pointer type (hex 2402) exception is sig­
naled.

When the addressability in the space pointer is modified, the instruction signals a space addressing
(hex 0601) exception when one of the following conditions occurs:

• The space address to be stored in the pointer has a negative offset value.

• The offset addresses beyond the largest space allocatable in the object. This maximum offset
value is dependent on the size and packaging of the object containing the space and is inde­
pendent of the actual size of the space allocated.

If the exception is signaled by this instruction for this reason, the pointer is not modified by the instruc­
tion.

Attempts to use a pointer whose offset value lies between the currently allocated extent of the space
and the maximum allocatable extent cause the space addressing (hex 0601) exception to be signaled.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

Chapter 5. Space Addressing Instructions 5-18

Set Space Pointer Offset (SETSPPO)

Operands
Exception 1 2 Other
22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

Chapter 5. Space Addressing Instructions 5-19

Store Space Pointer Offset (STSPPO)

Op Code (Hex)
00A2

Operand 1
Receiver

Operand 1: Binary variable scalar.

Operand 2: Space pointer.

Operand 2
Source

Store Space Pointer Offset (STSPPO)

Description: The offset value of the space pointer referenced by operand 2 is stored in the binary
variable scalar defined by operand 1.

If operand 2 does not contain a space pointer at the initiation of the instruction's execution, an invalid
pointer type (hex 2401) exception is signaled.

If binary size (hex OeOA) exceptions are to be signaled either because the program creation attribute
indicated to do so or because a translator directive indicated to do so, they will be signalled under the
following conditions. If the offset value is greater than 32 767 and operand 1 is a signed binary (2)
scalar, a size (hex OeOA) exception is signaled. If the offset value is greater than 65 535 and operand 1
is an unsigned binary (2) scalar, a size (hex OeOA) exception is signaled.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OC Computations

OA size X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

Chapter 5. Space AddreSSing Instructions 5-20

Exception
08 object compressed

24 Pointer specification

01 pointer does not exist

02 pointer type invalid

2E Resource control limit

01 user profile storage limit exceeded

36 Space management

01 space extension/truncation

Store Space Pointer Offset (STSPPO)

Operands
1 2

X

X

X

X

Other
X

X

X

Chapter 5. Space Addressing Instructions 5-21

Subtract Space Pointer Offset (SUBSPP)

Op Code (Hex)
0087

Operand 1
Receiver pointer

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Operand 2
Source pointer

Subtract Space Pointer Offset (SUBSPP)

Operand 3
Decrement

Description: The value of the binary scalar specified by operand 3 is subtracted from the space
address contained in the space pointer specified by operand 2; the result is stored in the space pointer
identified by operand 1. I.e.

Operand 1 = Operand 2 - Operand 3

Operand 3 can have a positive or negative value. The space object that the pointer is addressing is
not changed by the instruction. If operand 2 does not contain a space pointer at the initiation of the
instruction's execution, an invalid pointer type (hex 2402) exception is signaled.

When the addressability in the space pointer is modified, the instruction signals a space addressing
(hex 0601) exception when one of the following conditions occurs:

• The space address to be stored in the pointer has a negative offset value.

• The offset addresses beyond the largest space allocatable in the object. This maximum offset
value is dependent on the size and packaging of the object containing the space and is inde­
pendent of the actual size of the space allocated.

If the exception is signaled by this instruction for this reason, the pointer is not modified by the instruc­
tion.

Attempts to use a pointer whose offset value lies between the currently allocated extent of the space
and the maximum allocatable extent cause the space addressing exception to be signaled.

The object destroyed (hex 2202) exception, optimized addressabi/ity invalid (hex 0606) exception,
parameter reference violation (hex 0801) exception, and pointer does not exist (hex 2401) exception are
not signaled when operand 1 and operand 2 are space pointer machine objects. This occurs when
operand 2 contains an internal machine value that indicates one of these error conditions exists. If the
corresponding exception is not signaled, operand 1 is set with an internal machine value that pre­
serves the exception condition that existed for operand 2. The appropriate exception condition will be
signaled for either pointer when a subsequent attempt is made to reference the space data that the
pointer addresses.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

Operands
1 2 3 Other

X X X

X X X

X X X

X X X

Chapter 5. Space Addressing Instructions 5-22

Subtract Space Pointer Offset (SUBSPP)

Operands
Exception 1 2 3 Other
08 Argument/parameter J

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-clependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X X X

36 Space management

01 space extension/truncation X X X

Chapter 5. Space Addressing Instructions 5-23

Subtract Space Pointers For Offset (SUBSPPFO)

Subtract Space Pointers For Offset (SUBSPPFO)

Op Code (Hex)
0033

Operand 1
Offset Difference

Operand 1: Binary(4) variable scalar.

Operand 2: Space pointer.

Operand 3: Space pointer.

Operand 2
Minuend pointer

Operand 3
Subtrahend
pointer

Description: The offset portion of the space address contained in the operand 3 space pointer is sub­
tracted from the offset of the space address contained in the space pointer specified by operand 2; the
result is stored in the 4 byte binary scalar identified by operand 1. I.e.

Operand 1 = Address_of(Operand 2) - Address_of(Operand 3)

The offsets for operands 2 and 3 are strictly unsigned values, while the operand 1 result can have a
positive or negative value.

No check is made to determine that the space pointers point to the same space. In addition, the exist­
ence of the pOinters is not checked except for pointers used as a base for the operands. When the
space pointers point to different spaces, or one or both of the pointer operands is subject to the pointer
does not exist condition, the resulting value is undefined, but no exception is signaled. However, if
both operand 2 and operand 3 are subject to the pointer does not exist condition. the result value is
zero.

If either operand 2 or operand 3 contains a pointer which is not a space pointer at the initiation of the
instruction's execution, an invalid pointer type (hex 2402) exception is signaled.

A size (hex OeOA) exception occurs when the operand 1 field is unsigned binary, the resulting value of
the subtraction is negative, and the program attribute to signal size exceptions is in effect.

The object destroyed (hex 2202) exception, optimized addressability invalid (hex 0606) exception,
parameter reference violation (hex 0801) exception, and pointer does not exist (hex 2401) exception are
not signaled when operand 2 and operand 3 are space pointer machine objects. This occurs when
operand 2 or operand 3 contains an internal machine value that indicates one of these error conditions
exists. If the correspondi ng exception is not signaled, operand 1 is undefined, but no exception is sig­
naled.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

Operands
1 2 3 Other

X X X

X X X

X X X

X X X

X X X

Chapter 5. Space Addressing Instructions 5-24

Subtract Space Pointers For Offset (SUBSPPFO)

Operands
Exception 1 2 3 Other

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

OC Computation

OA Size X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X X X

36 Space management

01 space extension/truncation X X X

Chapter 5. Space Addressing Instructions 5-25

Space Management Instructions

Chapter 6. Space Management Instructions

This chapter describes the instructions used for space management. These instructions are in alpha­
betic order. For an alphabetic summary of all the instructions, see Appendix A. "Instruction
Summary."

Create Space (CRTS)
Materialize Space Attributes (MATS)
Modify Space Attributes (MODS)

© Copyright IBM Corp. 1991, 1993

. 6-3
. 6-11

. 6-15

6-1

Space Management Instructions

Chapter 6. Space Management Instructions 6-2

Create Space (CRTS)

Op Code (Hex)
0072

Operand 1
Pointer for space
addressability

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 2
Space creation
template

Create Space (CRTS)

ILEaccess --~
eRTS (

var space_obj
creation_template

system pOinter;
space pOinter

Description: A space object is created with the attributes that are specified in the space creation tem­
plate specified by operand 2, and addressability to the created space is placed in a system pointer that
is returned in the addressing object specified by operand 1.

Space objects, unlike other types of system objects, are used to contain a space and serve no other
purposes.

The template identified by operand 2 must be 16-byte aligned in the space. The following is the format
of the space creation template:

• Template size specification

Size of template

Number of bytes available for materialization

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attribute

a = Temporary
1 = Permanent

Space attribute

a = Fixed-length
1 = Variable-length

Initial context

a = Addressability is not inserted into context
1 = Addressability is inserted into context

Access group

a = Do not create as member of access group
1 = Create as member of access group

Reserved (binary 0)

Char(8)*

Bin(4)*

Bin(4)*

Char(32)

Char(1)*

Char(1)

Char(30)

Char(4)

Bit a

Bit 1

Bit 2

Bit 3

Bits 4-5

Chapter 6. Space Management Instructions 6-3

•

•

·
•

Public authority specified

o = No
1 = Yes

Initial owner specified

o = No
1 = Yes

Reserved (binary 0)

Set public authority in operand 1

o = No
1 = Yes

Initialize space

o = Initialize
1 = Do not initialize

Automatically extend space

o = No
1 = Yes

Hardware storage protection level

00 = Reference and modify allowed for user state programs
01 = Only reference allowed for user state programs
10 = Invalid (yields template value invalid (hex 3801) exception)
11 = No reference or modify allowed for user state programs

Create Space (CRTS)

Bit 6

Bit 7

Bits 8-11

Bit 12

Bit 13

Bit 14

Bits 15-16

Process temporary space accounting Bit 17

o = The temporary space will be tracked to the creating process
1 = The temporary space will not be tracked to the creating process

Reserved (binary 0) Bits 18-31

Recovery options Char(4)

Reserved (binary 0) Char(2)

ASP number Char(2)

Size of space Bin(4)

Initial value of space Char(1)

Performance class Char(4)

Space alignment Bit a
o = The space associated with the object is allocated to allow proper alignment of pointers at

16-byte alignments within the space. If no space is specified for the object, this value must
be specified for the performance class.

1 = The space associated with the object is allocated to allow proper alignment of pOinters at
16-byte alignments within the space as well as to allow proper alignment of inpuVoutput
buffers at 512-byte alignments within the space.

Clear the space into main memory
during creation

Bit 1

o = Only a minimum amount (up to 4K) of the space will be in main storage upon completion , '~

of the instruction. ...
= Most of the space, with some limits enforced by the machine, will be in main storage upon

completion of the instruction.

Chapter 6. Space Management Instructions 6-4

Reserved (binary 0)

Main storage pool selection

o = Process default main storage pool is used for object.
1 = Machine default main storage pool is used for object.

Transient storage pool selection

Create Space (CRTS)

Bits 2-4

Bit 5

Bit 6

o = Default main storage pool (process default or machine default as specified for main
storage pool selection) is used for object.

1 = Transient storage pool is used for object.

Block transfer on implicit access
state modification

Bit 7

o = Transfer the minimum storage transfer size for this object. This value is 1 storage unit.
1 = Transfer the machine default storage transfer size. This value is 8 storage units.

Unit number

Reserved (binary 0)

• Reserved (binary 0)

• Public authority

• Extension offset

• Context

• Access group

Bits 8-15

Bits 16-31

Char(1)

Char(2)

Bin(4)

System pointer

, System pointer

Note: The instruction ignores the values associated with template entries annotated with an asterisk
(*).

A template extension must be specified for the initial owner specified creation option. Also, the tem­
plate extension must be specified (extension offset must be nonzero) to specify any of the other tem­
plate extension fields (those other than the initial owner user profile) as input to the instruction.

The template extension is located by the extension offset field. The template extension must be
16-byte aligned in the space. The following is the format of the template extension:

• User profile

• Largest size needed for space

• Domain assigned to the object

Hex 0000 The domain will be chosen by the machine.

Hex 0001 The domain will be 'Common User'.

Hex 8000 The domain will be 'Common System'.

• Reserved (binary 0)

System pointer

Bin(4)

Char(2)

Char(42)

If the created object is permanent. it is owned by the user profile governing process execution. The
owning user profile is implicitly assigned all private authority states for the object. The storage occu­
pied by the created object is charged to this owning user profile. If the created object is temporary,
there is no owning user profile, and all authority states are assigned as public. Storage occupied by
the created context is charged to the creating process.

The object Identification specifies the symbolic name that identifies the space within the machine. An
object type of hex 19 is implicitly supplied by the machine. The object identification is used to identify
the object on materialize instructions as well as to locate the object in a context that addresses the
object. The object subtype must be hex EF.

Chapter 6. Space Management Instructions 6-5

Create Space (CRTS)

The existence attribute specifies whether the space is to be created as temporary or permanent. A
temporary space, if not explicitly destroyed by the user, is implicitly destroyed by the machine when
machine processing is terminated, A permanent space exists in the machine until it is explicitly
destroyed by the user,

The space attribute specifies whether the size of the space can vary, The space may have a fixed size
or a variable size, The initial allocation is as specified in the size of space field, The machine allo­
cates a space of at least the size specified, The actual size allocated depends on an algorithm defined
by a specific implementation, A fixed size space of zero length causes no space to be allocated.

If the initial context creation attribute field indicates that addressability is to be inserted into a context,
the context field must contain a system pointer that identifies a context where addressability to the
newly created space is to be placed. If addressability is not to be inserted into a context, the context
field is ignored.

If the access group creation attribute field indicates that the space is to be created in an access group,
the access group field must be a system pointer that identifies the access group in which the space is
to be created. If the space is being created as a member of an access group, the existence attribute
field must be temporary (bit 0 equals 0). If the space is not to be created into an access group, the
access group field is ignored.

The public authority specified creation option controls whether or not the space is to be created with
the public authority specified in the template. When yes is specified, the space is created with the
public authority specified in the public authority field of the template. When no is specified, the public
authority field is ignored and the space is created with default public authority. The default public
authority depends on the value of the existence attribute: An existence attribute value of temporary
results in a default public authority of all authority; an existence attribute value of permanent results in !J
a default public authority of no authority. Refer to the Grant Authority instruction for a description of
the public authority field and a list of allowable values.

The initial owner specified creation option controls whether or not the initial owner of the space is to
be the user profile specified in the template. When yes is specified, initial ownership is assigned to the
user profile specified in the user profile field of the template extension. When no is specified, initial
ownership is assigned to the process user profile and the user profile field in the template extension is
ignored. The initial owner user profile is implicitly assigned all authority states for the object. The
storage occupied by the created space is charged to the initial owner. If yes is specified for this cre­
ation option when the existence attribute specifies temporary, a template value invalid (hex 3801)
exception will be signaled.

The set public authority in operand 1 creation option controls, when the public authority specified cre­
ation option has also been specified as yes, whether or not the public authority attribute for the space
is to be set into the system pointer returned in operand 1. When yes is specified, the specified public
authority is set into operand 1. When no is specified, public authority is not set into operand 1. When
the public authority specified creation option is set to no, this option can not be specified as yes (or
else a template value invalid (hex 3801) exception will be signalled) and the authority set into operand
1 is the default of no authority for a permanent or all authority for a temporary object (as specified by
the existence attribute).

The initialize space creation option controls whether or not the space is to be initialized. When ini­
tialize is specified, each byte of the space is initialized to a value specified by the Initial value of space
field. Additionally, when the space is extended in size, this byte value is also used to initialize the new
allocation. When do not initialize is specified, the initial value of space field is ignored and the initial
value of the bytes of the space are unpredictable.

When do not initialize is specified for a space, internal machine algorithms do ensure that any storage
resources last used for allocations to another object which are reused to satisfy allocations for the

Chapter 6. Space Management Instructions 6-6

Create Space (CRTS)

space are reset to a machine default value to avoid possible access of data which may have been
stored in the other object. To the contrary, reusage of storage areas previously used by the space
object are not reset. thereby exposing subsequent reallocations of those storage areas within the
space to access of the data which was previously stored within them.

The automatically extend space creation option controls whether the space is to be extended automat­
ically by the machine or a space addressing (hex 0601) exception is to be signaled when a reference is
made to an area beyond the allocated portion of the space. When yes is specified, the space will
automatically be extended by an amount determined through internal machine algorithms. When no is
specified, the exception will result. Note that an attempt to reference an area beyond that for the
maximum size that a space can be allocated, will always result in the signaling of the space addressing
(hex 0601) exception independently of the setting of this attribute. The automatically extend space cre­
ation option can only be specified when the space attribute has been specified as variable length.
Invalid specification of the automatically extend space option results in the signaling of the template
value invalid (hex 3801) exception.

Usage of the automatically extend space function is limited. Predictable results will occur only when
you ensure that the automatic extension of a space will not happen in conjunction with modification of
the space size by another process. That is, you must ensure that when a process is using the space in
a manner that could cause it to be automatically extended, it is the sale process which can cause the
space size to be modified. Note that in addition to implicit modification through automatic extension,
the space size can be explicitly modified through use of the Modify Space Attributes instruction.

The hardware storage protection level can be used to restrict access to the contents of the space by
user state programs. It is possible to limit the access of the space by user state programs into 1 of
three levels:

• Reference only (non-modifying storage references are allowed, modifying storing storage refer­
ences yield a domain/protection violation (hex 4401) exception).

• No storage references (all storage references, modifying or non-modifying yield a
domain/protection violation (hex 4401) exception).

• Full access (both modifying and non-modifying storage references are allowed).

Process temporary space accounting can be used to detect when temporary space objects, created
within a process, still exist at process termination time. Temporary spaces that are created with the
process temporary space accounting field set to 0 will be "tracked" to the process which created them.
Temporary spaces that are created with the process temporary space accounting field set to 1 will not
be "tracked" to the creating process.

At process termination time, any tracked spaces that exist may cause the machine to attempt to
destroy the existing tracked spaces. If this is done, the destroy attempts would be performed as if an
MI program issued a Destroy Space (DESS) instruction for each of the existing spaces.

The purpose of process temporary space accounting is to identify objects which may be "lost" in the
system (until the next IPL). It should not intentionally be used (by MI) as a method of cleaning up tem­
porary space objects at process termination time. The machine does not guarantee that all spaces
(that should be tracked) will indeed be tracked. Also, if the machine is attempting to destroy tracked
spaces at process termination time, any failures in the deletion attempts (such as if a space is locked
to another process) will be ignored (Le. the space will not be destroyed) and no indication of this is
presented to the MI user.

Process temporary space accounting only applies to temporary space objects. A value of 1 for the
process temporary space accounting field when creating a permanent object will result in a template
value invalid (hex 3801) exception. This is in spite of the fact that a value of 1 for this field would result
in the same actions as when creating a permanent object (Le. the object would not be tracked to the
process). The exception is presented because this field is undefined for permanent objects.

Chapter 6. Space Management Instructions 6-7

Create Space (CRTS)

The ASP number field specifies the ASP number of the ASP on which the unit is to be allocated. A
value of 0 indicates an ASP number is not specified and results in the default of allocating the object in
the system ASP. Allocation on the system ASP can only be done implicitly by not specifying an ASP
number. The only non-zero values allowed are 2 through 16 which specify the user ASP on which the
space object will be allocated. The ASP number must specify an existing ASP or else an Auxiliary
Storage Pool number invalid (hex 1C09) exception will be signaled. The ASP number field may only be
specified for creation of a permanent object. The ASP number attribute of an object can be material­
ized, but cannot be modified.

Invalid specification of the ASP number attribute results in the signaling of the template value invalid
(hex 3801) exception.

The performance class fields provide information allowing the machine to more effectively manage the
space object considering the overall performance objectives of operations involving the space. The
unit number field indicates the auxiliary storage unit on which the space should be located, if possible.

The preferred unit number field which can be specified in the performance class field at object creation
may not be specified in conjunction with specification of the ASP number attribute.

The extension offset specifies the byte offset from the beginning of the operand 2 template to the
beginning of the template extension. An offset value of zero specifies that the template extension is
not provided. A negative offset value is invalid. A non-zero offset must be a multiple of 16 (to cause
16 byte alignment of the extension). Except for these restrictions, the offset value is not verified for
correctness relative to the location of other portions of the create template.

The largest size needed for space field of the template extension specifies, when nonzero, a value in
bytes that indicates the largest size that will be needed for the space. This field is different from the
size of space field which indicates the size for the initial allocation of the space. This field can be used '"
to communicate to the machine what the largest size needed for the space will be. Specification of a ..",
value larger than the maximum size space allowed for this object is invalid and results in signaling of
the template value invalid (hex 3801) exception. Specification of a nonzero value that is less than the
size of space field also results in the Signaling of the template value invalid (hex 3801) exception. For
more information on the maximum allowed, see the Limitations topic at the end of the instruction's
description.

Specifying the largest size of space needed value allows the machine, under certain circumstances, to
select usage of an internal storage allocation unit which best utilizes the internal addressing resources
within the machine. Note that the internal storage allocation unit selected can alter the maximum mod­
ification size of the associated space for the object. However, the machine will always use an internal
storage allocation unit that will allow for extension of the space to at least the value specified in the
the largest size of space needed field. The maximum size to which the space can be modified is
dependent upon specific implementations of the machine and can vary with different machine imple­
mentations. For more information on the affect of this option, see the Limitations topic at the end of this
create instruction definition.

The domain assigned field in the template extension allows the user of this instruction to override the
domain for this object that would otherwise be chosen by the machine.

Any value specified for the domain assigned field other than those listed will result in a template value
invalid exception (hex 3801) being signalled.

Chapter 6. Space Management Instructions 6-8

Create Space (CRTS)

Limitations: The following are limits that apply to the functions performed by this instruction.

The maximum size space allowed for this object under any circumstances is limited to 16MB-256
Bytes. Note that the value specified in largest size of space needed field in the creation template is
used by the machine as part of the criteria used in selecting the appropriate internal storage allocation
unit to be used for the storage allocations for the space.

Authorization Required

• Insert

User profile of object owner

Context identified in operand 2

• Retrieve

- Context referenced for address resolution

• Object control

- Operand 1 if being replaced

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

• Modify

Context identified in operand 2

User profile of object owner

Access group identified in operand 2

Exceptions

Exception

02 Access group

02 object exceeds available space

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 ArgumenUparameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

OE Context operation

01 duplicate object identification

10 Damage encountered

04 system object damage state

Operands
1 2 Other

X

X X

X X

X X

X X

X X

X

X

X X X

Chapter 6. Space Management Instructions 6-9

Create Space (CRTS)

Operands
Exception 1 2 Other

05 authority verification terminated due to damaged object X ~ 44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

09 auxiliary storage pool number invalid X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X J
02 pointer type invalid X X

Pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 6. Space Management Instructions 6-10

Materialize Space Attributes (MATS)

Op Code (Hex)
0036

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Space object

Materialize Space Attributes (MATS)

ILEaccess --,

MATS (
receiver

var space_object
space pointer;
system pOinter

Description: The current attributes of the space object specified by operand 2 are materialized into
the receiver specified by operand 1.

The template identified by operand 1 must be 16-byte aligned in the space. The format of the
materialization is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization
(always 96 for this instruction)

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attribute

o = Temporary
1 = Permanent

Space attribute

o = Fixed-length
1 = Variable-length

Context

o = Addressability not in context
1 = Addressability in context

Access group

o = Not member of access group
1 = Member of access group

Reserved (binary 0)

Initialize space

o = Initialize

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-12

Bit 13

Chapter 6. Space Management Instructions 6-11

Materialize Space Attributes (MATS)

1 = Do not initialize

Automatically extend space

a = No
1 = Yes

Hardware storage protection level

00 = Reference and modify allowed for user state programs
01 = Only reference allowed for user state programs
10 = Invalid (undefined)
11 = No reference or modify allowed for user state programs

Reserved (binary 0)

• Reserved (binary 0)

• ASP number

• Size of space

• Initial value of space

• Performance class

Space alignment

Bit 14

Bits 15-16

Bits 17-31

Char(2)

Char(2)

Bin(4)

Char(1)

Char(4)

Bit a
a = The space associated with the object is allocated to allow proper alignment of pointers at

16-byte alignments within the space. If no space is speCified for the object, this value must
be speCified for the performance class.

1 = The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space as well as to allow proper alignment of input/output
buffers at 512-byte alignments within the space. .~..J

Reserved (binary 0) Bits 1-4

Main storage pool selection Bit 5

a = Process default main storage pool is used for object.
1 = Machine default main storage pool is used for object.

Transient storage pool selection Bit 6

a = Default main storage pool (process default or machine default as specified for main
storage pool selection) is used for object.

1 = Transient storage pool is used for object.

Block transfer on implicit access state modification Bit 7

a = Transfer the minimum storage transfer size for this object. This value is 1 storage unit.
1 = Transfer the machine default storage transfer size. This value is 8 storage units.

Unit number Bits 8-15

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

Bits 16-31

Char(7)

System pointer

System pointer

The first 4 bytes that are materialized identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes a materialization length (hex 3803) exception.

The second 4 bytes that are materialized identify the total number of bytes available to be materialized.
The instruction materializes as many bytes as can be contained in the area specified as the receiver.

Chapter 6. Space Management Instructions 6-12

Materialize Space Attributes (MATS)

If the byte area identified by the receiver is greater than that required to contain the information
requested, then the excess bytes are unchanged. No exceptions (other than the materialization length
exception described previously)' are signaled in the event that the receiver contains insufficient area for
the materialization.

See the Create Space instruction for a description of these fields.

This instruction cannot be used to materialize the public authority specified creation option, the initial
owner specified creation option, the process temporary space accounting creation option, or the tem­
plate extension which can be specified on space creation. The Materialize Authority instruction can be
used to materialize the current public authority for the space. The Materialize System Object instruc­
tion can be used to materialize the current owner of the space.

Authorization Required

• Operational or space authority

- Operand 2

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 ArgumenUparameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

1C Machine-dependent exception

03 machine storage limit exceeded

Operands
1 2 Other

X X

X X

X X

X X

X X

X

X X X

X

X X X

X

X

Chapter 6. Space Management Instructions 6-13

Materialize Space Attributes (MATS)

Operands
Exception 1 2 Other
20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X :J

Chapter 6. Space Management Instructions 6-14

Modify Space Attributes (MODS)

Op Code (Hex)
0062

Operand 1
System object.

Operand 1: System pointer.

Operand 2
Size or Space
modification tem­
plate.

Modify Space Attributes (MODS)

Operand 2: Binary scalar or character(28) scalar (fixed length).

ILEaccess --~

MODSl (
var space_object
var size

OR

MODS2
var system_object

system pOinter;
signed binary

var space modification template
) - -

system pOinter;
aggregate

Description: The attributes of the space associated with the system object specified for operand 1 are
modified with the attribute values specified in operand 2. Operand 1 may address any system object.

The operand 2 space modification template is specified with one of two formats. The abbreviated
format. operand 2 specified as a binary scalar, only provides for modifying the size of space attribute.
The full format, operand 2 specified as a character scalar, provides for modifying the full set of space
attributes.

When operand 2 is a binary value, it specifies the size in bytes to which the space size is to be modi­
fied. The current allocation of the space is extended or truncated accordingly to match as closely as
possible the specified size. The modified space size will be of at least the size specified. The actual
size allocated is dependent upon the algorithm used within the specific implementation of the machine.
If the space is of fixed size, or if the value of operand 2 is negative, or if the operand 2 size is larger
than that for the largest space that can be associated with the object, the space extension/truncation
exception is signaled. When operand 2 is a character scalar, it specifies a selection of space attribute
values to be used to modify the attributes of the space. It must be at least 28 bytes long and have the
following format:

• Modification selection

Modify space length attribute

a = No
1 = Yes

Modify size of space

a = No
1 = Yes

Modify initial value of space

a = No
1 = Yes

Char(4)

Bit 0

Bit 1

Bit 2

Chapter 6. Space Management Instructions 6-15

Modify performance class

o = No
1 = Yes·

Modify initialize space attribute

o = No
1 = Yes

Reinitialize space

o = No
1 = Yes

Modify automatically extend space

attribute

o = No
1 = Yes

Create secondary associated space

0= No
1 = Yes

Reserved (binary 0)

• Indicator attributes

Reserved (binary 0)

Space length

o = Fixed length
1 = Variable length

Initialize space

o = Initialize
1 = Do not initialize

Automatically extend space

o = No
1 = Yes

Reserved (binary 0)

Hardware storage protection level*

00 = Reference and modify allowed for user state programs
01 = Only reference allowed for user state programs
10 = Invalid (undefined)

Modify Space Attributes (MODS)

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bits 8-31

Char(4)

. Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-14

Bits 15-16

11 = No reference or modify allowed for user state programs

Reserved (binary 0)

• Maximum size of space*

• Size of space

• Initial value of space

• Performance class

• Reserved (binary 0)

• Secondary associated space number

• Reserved (binary 0)

Bits 17-31

Bin(4)

Bin(4)

Char(1)

Char(4)

Char(1)

UBin(2)

Char(4)

Chapter 6. Space Management Instructions 6-16

Modify Space Attributes (MODS)

• These fields will be ignored when create secondary associated space is O.

The modification selection indicator fields select the modifications to be performed on the space.

The modify space length attribute modification selection field controls whether or not the space length
attribute is to be modified. When yes is specified, the value of the space length indicator is used to
modify the space to be specified fixed or variable length attribute. When no is specified, the space
length indicator attribute value is ignored and the space length attribute is not modified.

The modify size of space modification selection field controls whether or not the allocation size of the
space is to be modified. When yes is specified, the current allocation of the space is extended or
truncated accordingly to match as closely as possible the specified size in the size of space field. The
modified size will be at least the size specified. The actual size allocated is dependent upon the algo­
rithm used within the specific implementation of the machine. When no is specified, the current allo­
cation of the space is not modified and the size of space field is ignored.

Modification of the size of space attribute for a space of fixed length can only be performed in conjunc­
tion with modification of the space length attribute. In this case, the space length attribute may be
modified to the same fixed length attribute or to the variable length attribute. An attempt to modify the
size of space attribute for a space of fixed length without modification of the space length attribute
results in the signaling of the space extension/truncation (hex 3601) exception. Modification of the size
of space attribute for a space of variable length can always be performed separately from a modifica­
tion of the space length attribute.

When the size of space attribute is to be modified, if the value of the size of space field is negative or
specifies a size larger than that for the largest space that can be associated with the object, the space
extension/truncation (hex 3601) exception is signaled.

The modify Initial value of space modification selection field controls whether or not the initial value of
space attribute is to be modified. When yes is specified, the value of the initial value of space field is
used to modify the corresponding attribute of this space. This byte value will be used to initialize any
new space allocations for this space due to an extension to the size of space attribute on the current
execution of this instruction as well as any subsequent modifications. When no is specified, the initial
value of space field is ignored and the initial value of space attribute is not modified.

The modify performance class modification selection field controls whether or not the performance
class attribute of the specified system object is to be modified with the values relating to space objects.
When yes is specified, the value of the performance class field is used to modify the corresponding
attribute of the specified system object. When no is specified, the performance class attribute of the
specified system object is not modified.

The modify initialize space attribute modification selection field controls whether or not the initialize
space attribute is to be modified. When yes is specified, the value of the Initialize space indicator attri­
bute is used to modify that attribute of the specified space to the specified value. When no is speCified,
the initialize space indicator attribute value is ignored and the initialize space attribute is not modified.

Changing the value of the initialize space attribute only affects whether or not future extensions of the
space will be initialized or not. That is, it is the state of this attribute at the time of allocation of the
storage for a space that determines whether that newly allocated storage area will be initialized to the
initial value specified for the space. Modifications of this attribute subsequent to the allocation of
storage to a space have no effect on the value of that previously allocated storage area.

The reinltlalize space modification selection field controls whether the storage allocated to the space is
to be reinitialized in its entirety. When no is specified, the space is not reinitialized. When yes is speci­
fied, the space is reinitialized. This re-initialization is performed after all other attribute modifications
which may also have been specified on the instruction have been made. Thus changes to the size of

Chapter 6. Space Management Instructions 6-17

Modify Space Attributes (MODS)

the space, the initial value of the space, etc. will be put into effect and be considered the current attri­
butes of the space for purposes of the re-initialization. The byte value used for the re-initialization is
either the current initial value for the space if the initialize space attribute for the space currently speci- ...J
fies yes, or a value of hex 00 if the initialize space attribute currently specifies no.

Note that specifying yes for the reinitialize space modification selection field for a space with current
attributes of fixed length size zero results in no operation, because such a space has no allocated
storage to reinitialize. Also, note that re-initialization of a space will have the side effect of resetting
partial damage for a space object containing the space if the space object had previously been marked
as having partial damage. This only applies to space objects; i.e. re-initialization of an associated
space does not have the side effect of resetting partial damage for the MI object containing it.

The modify automatically extend space attribute modification selection field controls whether or not the
automatically extend space attribute is to be modified. When yes is specified, the value of the automat­
ically extend space indicator attribute is used to modify that attribute of the speCified space to the
specified value. When no is specified, the autmatically extend space indicator attribute value is ignored
and the automatically extend space attribute is not modified. The automatically extend space attribute
can only be specified as yes when the space length attribute for the space is already variable length, or
when the space length attribute is being modified to variable length. Invalid specification of the auto­
matically extend space attribute results in the signaling of the invalid space modification (hex 3602)
exception.

Modification to or from the state of a space being fixed length of size zero can not be performed for the
following objects:

Class of service description

Controller description

Cursor

Data space

Logical unit description

Mode description

Network description

Space

Program (when attempted while in user state on a security level 40 or higher system).

If such a modification is attempted for these objects, the invalid space modification (hex 3602) exception
is signaled.

Specifying yes for the modify performance class modification selection field is only allowed when the
space to be modified is a fixed length space of size zero. This modification may be specified in con­
junction with other modifications. Only bit 0 of the performance class field is used to modify the per­
formance class attribute of the specified system object. A bit value of zero requests that the start of
the space storage provide 16-byte multiple (pointer) machine address alignment. A bit value of one
requests that the start of the space storage provide 512-byte multiple (buffer) machine address align­
ment. Bits 1 through 31 are ignored. Specifying yes for the modify performance class modification'
selection field when the space to be modified is not a fixed length space of size zero results in the
signaling of the invalid space modification (hex 3602) exception.

The create secondary associated space field indicates if a secondary associated space is to be created
for the object. All the indicator attributes and size and value fields are used for this create. The sec­
ondary associated space to be created is indicated by the secondary associated space number field. If
the specified space already exists, the invalid space modification (hex 3602) exception is signalled.
When this bit is set to yes, all other modification selection bits are ignored.

Chapter 6. Space Management Instructions 6-18

Modify Space Attributes (MODS)

Specifying the largest size of space needed value allows the machine. under certain circumstances, to
select usage of an internal storage allocation unit which best utilizes the internal addressing resources
within the machine. Note that the internal storage allocation unit selected can alter the maximum mod­
ification size of the associated space for the object. However, the machine will always use an internal
storage allocation unit that will allow for extension of the space to at least the value specified in the
the largest size of space needed field. The maximum size to which the space can be modified is
dependent upon specific implementations of the machine and can vary with different machine imple­
mentations.

The secondary associated space number field is used to indicate which secondary space is to be
created or modified. When this field is zero, the primary associated space of the space object is modi­
fied. If this field is not zero and no secondary associated spaces are allowed for the object, the scalar
value invalid (hex 3203) exception will be signalled.

A fixed length space of size zero is defined by the machine to have no internal storage allocation. Due
to this, a modification to or from this state is, in essence, the same as a destroy or create for the space
associated with the specified system object. The effect of modifying to this state is similar to
destroying the associated space in that address references to the space through previously set
pointers will result in signaling of the object destroyed exception. When a primary associated space is
destroyed by using this method, any secondary associated spaces for the object are also destroyed.
Additionally, an attempt to set a space pointer to the space associated with the specified system object
through the Set Space Pointer from Pointer instruction will result in the signaling of the invalid space
reference (hex 0605) exception. To the contrary, modifying the space attributes from this state is
similar to creating an associated space in that the Set Space Pointer from Pointer instruction can be
used to set a space pointer to the start of a storage within the associated space and the allocated
space storage can be used to contain space data.

The extension and truncation of a space is always by an implementation-defined multiple of 256 bytes.
This means that if, for example, the implementation defined multiple is 2 (or 512 bytes), any modifica­
tion of the space size will be in increments of 512 bytes.

Authorization Required

• Object management

- Operand 1

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

• Object control

- Operand 1 (when operand 2 is binary)

• Modify

- Operand 1 (when operand 2 is character)

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource

Chapter 6. Space Management Instructions 6-19

0201 Machine auxiliary storage threshold exceeded
0202 User auxiliary storage pool threshold exceeded
0203 User auxiliary storage pool overflow
0204 Asp unprotected space overflow
0501 Machine address threshold exceeded

0000 Machine status
0101 Machine check
0401 Auxiliary storage device requires service

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

05 invalid space reference

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

1 C Machine-dependent exception

03 machine storage limit exceeded

04 object storage limit exceeded

20 Machine support

02 machine check

03 function check

Modify Space Attributes (MODS)

Operands
1 2 Other

•
X X J X X

X X

X

X X

X X

X

X X X

X

X X X

X

X

X

X

X

Chapter 6. Space Management Instructions 6-20

Modify Space Attributes (MODS)

Operands
Exception 1 2 Other

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar Specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X X

02 invalid space modification X X

Chapter 6. Space Management Instructions 6-21

Heap Management Instructions

Chapter 7. Heap Management Instructions

This chapter describes the instructions used for heap management. These instructions are in alpha­
betic order. For an alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary."

Allocate Heap Space Storage (ALCHSS) 7-3
Create Heap Space (CRTHS) .. 7-6
Destroy Heap Space (DESHS) ... 7-11
Free Heap Space Storage (FREHSS) 7-13
Free Heap Space Storage From Mark (FREHSSMK). 7-15
Materialize Heap Space Attributes (MATHSAD .. 7-17
Reallocate Heap Space Storage (REALCHSS) 7-22
Set Heap Space Storage Mark (SETHSSMK) .. 7-25

© Copyright IBM Corp. 1991, 1993 7-1

Heap Management Instructions

Chapter 7. Heap Management Instructions 7-2

Allocate Heap Space Storage (ALCHSS)

Op Code (Hex)
0383

Operand 1
Space allocation

Operand 1: Space pointer.

Operand 2: Binary(4) scalar or null.

Operand 3: Binary(4) scalar.

Operand 2
Heap Identifier

Allocate Heap Space Storage (ALCHSS)

Operand 3
Size of space allo­
cation

ILEaccess --~

ALCHSS (
heap_identifier : signed binary;
size_of_space_allocation : stgned binary
: space pOinter j* space_allocation *j

Description: A heap space storage allocation of at least the size indicated by operand 3 is provided
from the heap space indicated by operand 2. The operand 1 space pointer is set to address the first
byte of the allocation which will begin on a boundary at least as great as the minimum boundary speci­
fied when the heap space was created.

Each allocation associated with a heap space provides a continuum of contiguously addressable bytes.
Individual allocations within a heap space have no addressability affinity with each other. The contents
of the heap space allocation are unpredictable unless initialization of heap allocations was specified
when the heap space was created.

Simultaneous operations against a heap space from multiple processes is not supported and may
produce unpredictable results.

The maximum single allocation allowed is determined by the maximum single allocation size specified
when the heap space was created. The maximum single allocation possible is 16M-64K bytes.

It is the responsibility of the using program to see that only the amount of heap space storage
requested is used. Reference to heap space storage outside the bounds of the requested space will
produce unpredictable results. The exact address returned must be supplied to the Free Heap Space
Space Storage (FREHSS) instruction when the user has completed use of the heap space storage.

A default heap space (heap identifier value of 0) is automatically available in each activation group
without issuing a Create Heap Space (CRTHS) instruction. The default heap space is created when the
first Allocate Heap Space is issued against the default heap space. When operand 2 is null, the default
heap space (heap identifier of 0) provides the allocation.

The machine supplied attributes of the default heap space are as follows:

• Maximum single allocation size is 16M - 64K bytes.

• Minimum boundary requirement is a 16 byte boundary.

• The creation size advisory is 4KB unless the size of the allocation request dictates a larger cre­
ation size be used.

• The extension size advisory is 4KB unless the size of the allocation request dictates a larger exten­
sion size be used.

Chapter 7. Heap Management Instructions 7-3

Allocate Heap Space Storage (ALCHSS)

o Domain is determined from the state of the program issuing the instruction.

o Normal allocation strategy ..

o A heap space mark is not allowed.

o The transfer size is 1 storage unit.

o The process access group membership advisory value is taken from the activation group. Default
activation groups get this value from the attribute specified on the Initiate Process (INITPR) instruc­
tion. Other activation groups get this value from the attribute specified on the Create Bound
Program (CRTBPGM) instruction for the program which initiated the activation group.

o Heap space storage allocations are not initialized to the allocation value.

o Heap space storage allocations are not overwritten to the freed value after being freed.

Neither operand 2 nor 3 is modified by the instruction.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0000 Machine status
0101 Machine check
0401 Auxiliary storage device requires service

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0401 Domain violation
0402 Hardware storage violation

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

Operands
1 2 3

X X X

X X X

X X X

X X X

X X X

Other

X

Chapter 7. Heap Management Instructions 7-4

I
1:

Allocate Heap Space Storage (ALCHSS)

Operands
Exception 1 2 3 Other

04 system object damage state X X X X ..J
05 authority verification terminated due to damaged object X

44 partial system object damage X X X X

1C Machi ne-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

03 Pointer addressing invalid object X X

44 Domain specification

01 Domain Violation X X X

4S Heap specification

01 Invalid Heap Identifier X

03 Heap Space Full X {

04 Invalid Size Request X :.J
05 Heap Space Destroyed X

06 Invalid Heap Condition X X X X

Chapter 7. Heap Management Instructions 7-5

Create Heap Space (CRTHS)

Op Code (Hex)
0382

Operand 1
Heap Identifier

Operand 1: Binary(4) variable scalar

Operand 2: Space pointer

Operand 2
Heap Space cre­
ation template

Create Heap Space (CRTHS)

ILEaccess --,

CRTHS (
var heap_identifier

creation_template
signed binary;
space pOinter

Description: A heap space is created with the attributes supplied in the heap space creation template
specified by operand 2. The heap space identifier used to perform allocations and marks against the
heap space is returned in operand 1.

The heap identifier returned in operand 1 represents the heap space. This identifier is used for the
Allocate Heap Space Storage (ALCHSS), Destroy Heap Space (DESHS), Set Heap Space Storage Mark
(SETHSSMK) and Materialize Heap Space Attributes (MATHSAn instructions.

The heap space creation template identified by operand 2 must be 16-byte aligned in the space.
Operand 2 is not modified by the instruction.

The following is the format of the heap space creation template:

• Reserved (binary 0)

• Maximum single allocation

• Minimum boundary requirement

• Creation size

• Extension size

• Domain/Storage protection

Hex 0000 = System should chose the Domain
Hex 0001 = The heap space domain should be "Common User"
Hex 8000 = The heap space domain should be "Common System"

• Heap space creation options

Allocation strategy

o = Normal allocation strategy
1 = Force process space creation on each allocate

Heap Space Mark

o = Allow heap space mark
1 = Prevent heap space mark

Block transfer

o = Transfer the minimum storage transfer size.
This value is 1 storage unit.

Char(8)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

Bin(2)

Char(6)

Bit a

Bit 1

Bit 2

Chapter 7. Heap Management Instructions 7-6

Create Heap Space (CRTHS)

1 = Transfer the machine default storage transfer size.
This value is 8 storage units.

Process access group member

o = Do not create the heap space in the PAG.
1 = Create the heap space in the PAG.

Allocation initialization

o = Do not initialize allocations.
1 = Initialize allocations.

Overwrite freed allocations

o = Do not overwrite freed allocations.
1 = Overwrite freed allocations.

Reserved (binary 0)

Allocation value

Freed value

Reserved (binary 0)

• Reserved (binary 0)

Bit 3

Bit 4

Bit 5

Bits 6-7

Char(1)

Char(1)

Char(3)

Char(64)

The maximum single allocation of any single allocation from the heap space is useful for controlling the
use of the heap space and may also improve performance for some cases when the machine can opti­
mize access based on this attribute. The minimum value that can be specified is 4 bytes, and the
maximum value that can be specified is 16M-64K bytes. If zero is specified, the default value of
16M-64K bytes will be used. Values outside the range indicated will cause a template value invalid l'~.
(hex 3801) exception. ..",

The minimum boundary alignment associated with any allocation from the heap space can be specified
in the template. The minimum value that can be specified is a 4 byte boundary alignment. The
maximum boundary alignment that can be specified is a 512 byte boundary alignment. If zero is speci­
fied, a default of a 16 byte boundary will be used. The minimum boundary alignment will be rounded
up to a power of 2. Values outside the range indicated will cause a template value invalid (hex 3801)
exception.

The creation size of the heap space can be specified in the template. If zero is specified the system
will compute a default value. The minimum value that can be specified is 512 bytes. The maximum
value that can be specified is 16M-1K bytes. The value specified will be rounded up to a storage unit
boundary. Values outside the range indicated will cause a template value invalid (hex 3801) exception.
This is an advisory value only. The machine may decide to override the value specified based on
system resource constraints. .

The extension size of the heap space can be specified in the template. If zero is specified the system
will compute a default value. The minimum value that can be specified is 512 bytes. The maximum
value that can be specified is 16M-1K bytes. The value specified will be rounded up to a storage unit
boundary. Values outside the range indicated will cause a template value invalid (hex 3801) exception.
This is an advisory value only. The machine may decide to override the value specified based on
system resource constraints.

The domain/storage protection field in the template allows the user of this instruction to override the
domain for the heap space that would otherwise be chosen by the machine. The domain/storage pro-
tection attribute can be used to restrict access to the contents of the heap space by user state pro- .. ~.
grams. It is possible to limit the access of the heap space by user state programs into 1 of two levels: ."

Chapter 7. Heap Management Instructions 7-7

Create Heap Space (CRTHS)

• No storage references (all storage references, modifying or non-modifying yield a
domain/protection violation (hex 4401) exception). This is Common System.

L · Full access (both modifying and non-modifying storage references are allowed). This is Common
User.

Only a system state process can specify a heap space to be created with a domain of Common
System. If a user state program attempts to specify the domain/storage protection as Common System,
a template value invalid (hex 3801) exception will be signaled. Any value other than the ones listed will
cause a template value invalid (hex 3801) exception to be signaled.

The normal allocation strategy as defined by the machine will be used unless the force process space
creation on each allocation attribute is indicated. This option should only be used in unusual situ­
ations, such as when necessary for debug of application problems caused by references outside an
allocation.

The heap space mark attribute can be used to prevent the use of the Set Heap Space Storage Mark
(SETHSSMK) and Free Heap Space Storage from Mark (FREHSSMK) instructions on a heap space.

Block transfer on a heap space is used to increase the performance of a heap space based on prior
knowledge of the program creating the heap space on how that heap space will be used. This attri­
bute is used only when the heap space is not a member of a process access group (PAG).

A heap space can be created as a process access group (PAG) member of the currently executing
process, if specified by the prcoess access group member It is possible for the PAG to overflow at
which point any requested heap space creations or extensions will not reside in the PAG. Thus the
specification to have the heap space as a member of the PAG is only an advisory which the machine
may decide to override.

The allocation initialization field in the template allows the user of this instruction to specify that all
storage allocations from the heap space being created will be initialized to the allocation value sup­
plied in the template. If the user chooses not to initialize heap space storage allocations, the initial
value of heap space storage allocations is unpredictable but will not expose data produced by a dif­
ferent user profile.

The overwrite freed allocations field in the template allows the user of this instruction to specify that all
heap space storage allocations upon being freed will be overwritten with the the freed value supplied
in the template. If the user chooses not to overwrite heap space storage allocations when freed, the
contents of the freed allocations will be unaltered.

A default heap space (heap identifier value of 0) is automatically available in each activation group,
without issuing a Create Heap Space (CRTHS) instruction. The default heap space is created on the
first allocation request of the default heap space. See Allocate Heap Space Storage (ALCHSS) for a
description of the default heap space.

A heap space is scoped to an activation group, thus the maximum life of a heap space is the life of the
activation group in which the heap space was created. A heap space can only be destroyed from
within the activation group in which it was created.

Simultaneous operations against a heap space from multiple processes is not supported and may
produce unpredictable results.

Chapter 7. Heap Management Instructions 7-8

Create Heap Space (CRTHS)

Limitations: The following are limits that apply to the functions performed by this instruction.

The amount of heap space storage that can be allocated for a single heap space is 4G-512K bytes.
Due to fragmentation a heap space may grow to 4GB-512KB without having 4GB-512KB of outstanding
heap space storage allocations.

The maximum allocation size of any single allocation from the heap space is limited to 16MB-64K
bytes. A smaller maximum allocation size can be specified.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0000 Machine status
0101 Machine check
0401 Auxiliary storage device requires service

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0401 Domain violation
0402 Hardware storage violation

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressi ng

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1C Machine-dependent exception

03 machine storage limit exceeded

04 object storage limit exceeded

Operands
1 2 Other

X X

X X

X X

X X

X X

X X X

X

X X X

X

X

Chapter 7. Heap Management Instructions 7-9

~

Create Heap Space (CRTHS)

Operands
Exception 1 2 Other
20 Machine support

02 machine check X

03 function check X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 Pointer addressing invalid object X

38 Template specification

01 template value invalid X

44 Domain specification

01 Domain Violation X X

Chapter 7. Heap Management Instructions 7-10

Destroy Heap Space (DESHS)

Op Code (Hex)
0381

Operand 1
Heap Identifier

Operand 1: Binary(4) variable scalar.

Destroy Heap Space (DESHS)

ILEaccess --~

DESHS (
var heap_identifier signed binary

Description: This instruction destroys and removes from the current activation group the heap space
specified by the heap identifier in operand 1. Subsequent use of this heap identifier within the acti­
vation group will result in an invalid identifier (hex 4501) exception. The heap identifier was returned
on the Create Heap Space (CRTHS) instruction. An attempt to destroy the default heap space (heap
identifier value of 0) will result in an invalid request (hex 4502) exception.

Space pointer references to heap space allocations from a destroyed heap space will cause unpredict­
able results.

All heap spaces are implicitly destroyed when the activation group in which they were created is
destroyed.

Operand 1 is not modified by the instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0000 Machine status
0101 Machine check
0401 Auxiliary storage device requires service

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0401 Domain violation
0402 Hardware storage violation

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception
Operands
1 Other

Chapter 7. Heap Management Instructions 7-11

Destroy Heap Space (DESHS)

Operands
Exception 1 Other

C.
06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

24 Pointer specification

01 pointer does not exist X

...., 02 pointer type invalid X

44 Domain specification

01 Domain Violation X

45 Heap specification

01 Invalid Heap Identifier X

02 Invalid Request X

05 Heap Space Destroyed X

06 Invalid Heap Condition X X

Chapter 7. Heap Management Instructions 7-12

Free Heap Space Storage (FREHSS)

op Code (Hex)
0395

Operand 1
Space allocation

Operand 1: Space pointer.

Free Heap Space Storage (FREHSS)

ILEaccess --,
FREHSS (

space_allocation space pOinter

Description: The heap space storage allocation beginning at the byte addressed by operand 1 is de­
allocated from the heap space which supplied the allocation. De-allocation makes the storage avail­
able for reuse by subsequent Allocate Heap Space Storage (ALCHSS) instructions. The entire space
allocation is de-allocated; partial de-allocation is not supported. A free of heap space storage can be
performed without regard to the activation group in which it was allocated, as long as the allocation
was done by the same process.

Operand 1 must be exactly equal to the space pointer that was returned by some previous Allocate
Heap Space Storage (ALCHSS) or Reallocate Heap Space Storage (REALCHSS) instruction. If it is not,
an invalid request (hex 4502) exception will be signaled.

Subsequent references to space allocations which have been freed cause unpredictable results.

FREHSS will signal a domain violation (hex 4401) exception if a program running user state attempts to
de-allocate heap space storage in a heap space with a domain of Common System.

Operand 1 is not modified by the instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0000 Machine status
0101 Machine check
0401 Auxiliary storage device requires service

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0401 Domain violation
0402 Hardware storage violation

0017 Damage set .. ~
0401 System object damage set ...,
0801 Partial system object damage set

Chapter 7. Heap Management Instructions 7-13

Free Heap Space Storage (FREHSS)

Exceptions

~
Operands

Exception 1 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

c., 24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 Pointer addressing invalid object

44 Domain specification

01 Domain Violation X

45 Heap specification

02 Invalid Request X

05 Heap Space Destroyed X

06 Invalid Heap Condition X X

Chapter 7. Heap Management Instructions 7-14

Free Heap Space Storage From Mark (FREHSSMK)

Free Heap Space Storage From Mark (FREHSSMK)

Op Code (Hex)
0389

Operand 1
Mark Identifier

Operand 1: Space pointer data object.

ILEaccess --~
FREHSSMK (

var mark identifier space pOinter

Description: All heap space allocations which have occurred from the heap space since it was
marked, with the mark identifier supplied in operand 1, are freed. This may include heap space
storage marked by intervening Set Heap Space Storage Mark (SETHSSMK) instructions. The mark
identifier specified in operand 1 and all mark identifiers obtained since the heap space was marked by
operand 1 are cleared from the heap space. An attempt to free heap space storage from a mark that
has already been cleared by a previous FREHSSMK instruction will result in an invalid identifier (hex
4507) exception. A free of heap space storage can be performed without regard to the activation group
in which it was allocated, as long as the allocation was done by the same process.

FREHSSMK will signal a domain violation (hex 4401) exception if a program riJnning user state
attempts a free heap space storage from mark for a heap space with a domain of Common System.

Operand 1 is not modified by the instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0000 Machine status
0101 Machine check
0401 Auxiliary storage device requires service

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0401 Domain violation
0402 Hardware storage violation

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception
Operands
1 Other

Chapter 7. Heap Management Instructions 7-15

Free Heap Space Storage From Mark (FREHSSMK)

Operands
Exception 1 Other

c., 06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded

09 auxiliary storage pool number invalid

20 Machine support

02 machine check X

03 function check X

c., 24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 Pointer addressing invalid object

44 Domain specification

01 Domain Violation X

45 Heap specification

02 Invalid Request X

05 Heap Space Destroyed X

06 Invalid Heap Condition X X

07 Invalid Mark Identifier X

Chapter 7. Heap Management Instructions 7-16

Materialize Heap Space Attributes (MATHSAT)

Materialize Heap' Space Attributes (MATHSAT)

Op Code (Hex)
0387

Operand 1
Materialize tem­
plate

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 2
Heap identifier
template

Operand 3: Character(1) scalar (fixed length).

Operand 3
Attribute Selection

ILEaccess --,

MATHSAT (
materialize_template
heap_i denti fi er_templ ate

var attribute selection

space potnter
space pOinter
aggregate

Description: This instruction will materialize the information selected by operand 3 for the heap space
specified by operand 2 and return the selected information in the template indicated by operand 1.

Operand 3 can have three possible values:

• Hex 00 - Return heap space attributes

• Hex 01 - Return heap space attributes and mark information.

• Hex 02 - Return heap space attributes, mark information and allocation information.

Any value for operand 3 other than those listed will cause a scalar value invalid (3203) exception.

The heap space attributes template identified by operand 1 must be 16-byte aligned in the space.

If operand 3 is equal to hex 00, then only the heap space attributes template information is returned.
The format of the attributes template information is as follows (see the Create Heap Space instruction
for a description of these fields):

• Template size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Maximum single allocation

• Minimum boundary requirement

• Creation size

• Extension size

• Domain

Hex 0001 = The heap space domain is "Common User"
Hex 8000 = The heap space domain is "Common System"

• Heap space creation options

Allocation strategy

o = Normal allocation strategy
1 = Force implicit space creation on each allocate

Char(8)

Bin(4)

Bin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

Bin(2)

Char(6)

Bit 0

Chapter 7. Heap Management Instructions 7-17

Materialize Heap Space Attributes (MATHSAT)

Heap Space Mark Bit 1

o = Allow heap space mark
1 = Prevent heap space mark

Block transfer Bit 2

o = Transfer the minimum storage transfer size.
This value is 1 storage unit.

1 = Transfer the machine default storage transfer size.
This value is 8 storage units.

Process access group member

o = Do not create the heap space in the PAG.
1 = Create the heap space in the PAG.

Initialization allocations

o = Do not initialize allocations.
1 = Initialize allocations.

Overwrite freed allocations

o = Do not overwrite freed allocations.
1 = Overwrite freed allocations.

Reserved (binary 0)

Allocation value

Freed value

Reserved (binary 0)

• Reserved (binary 0)

• Current number of outstanding allocations

• Total number of reallocations

• Total number of frees

• Total number of allocations

• Maximum number of outstanding allocations

• Size of the heap space in pages

• Number of outstanding marks

• Total number of extensions

Bit 3

Bit 4

Bit 5

Bits 6-7

Char(1)

Char(1)

Char(3)

Char(64)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

The first 4 bytes that are materialized identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes a materialization length (hex 3803) exception.

The second 4 bytes that are materialized identify the total number of bytes available to be materialized.
The instruction materializes as many bytes as can be contained in the area specified as the recei~er.
If the byte area identified by the receiver is greater than that required to contain the information
requested, then the excess bytes are unchanged. No exceptions (other than the materialization length
exception described previously) are signaled in the event that the receiver contains insufficient area for
the materialization.

If operand 3 is equal to hex 01, then the mark template information is added to the heap space attri­
butes template information. The mark template information is repeated for the number of outstanding
marks. This information follows the heap space attributes template information. The format of the
mark template information is as follows:

Chapter 7. Heap Management Instructions 7-18

Materialize Heap Space Attributes (MATHSAT)

• Mark template information

- Mark identifier Space pointer

Given the list of mark identifiers with a mark identifier being entry N and a allocation belonging to
mark identifier N, that allocation also belongs to mark identifier N-X, where X has values 1 to N-1 for
all N>1.

If operand 3 is equal to hex 02, then the allocation template information is added to the heap space
attributes and mark template information. The allocation template information is repeated for current
number of outstanding allocations. This information follows the mark information template.

• Allocation template

Allocation address

Mark identifier

Allocation size

Reserved

Char(4S)

Space pointer

Space pointer

UBin(4)

Char(12)

If mark Identifier is null, this allocation is not associated with any mark. If it is not null it contains the
most recent mark identifier to which the allocation belongs.

The heap identifier template identified by operand 2 must be 16-byte aligned in the space. The format
of the template specified by operand 2 is as follows:

• Heap Identifier Template

Activation Group Mark identifier

Heap identifier

. Char(S)

UBin(4)

UBin(4)

The activation group mark identifier may be zero, indicating the heap space specified by the heap iden­
tifier is in the current Activation Group.

MATHSAT will signal an activation group access violation (hex 2C12) exception if a program attempts
to materialize heap space attributes of a heap space in an activation group to which the program does
not have access.

Operands 1, 2 and 3 are not modified by the instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0000 Machine status
0101 Machine check
0401 Auxiliary storage device requires service

0010 Process
0701 Maximum processor time exceeded
OS01 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0401 Domain violation
0402 Hardware storage violation

Chapter 7. Heap Management Instructions 7-19

Materialize Heap Space Attributes (MATHSAT)

0017 Damage set

'"
0401 System object damage set

0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X X

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X

1C M achine-dependent exception

03 machine storage limit exceeded X

'-' 04 object storage limit exceeded X

09 auxiliary storage pool number invalid X

20 Machine support

02 machine check X

03 function check X

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

03 Pointer addressing invalid object X X

2C Program execution

12 Activation group access violation X

13 Activation group not found X

32 Scalar specification

03 Scalar value invalid X

38 Template specification

03 Materialization length X

44 Domain specification

01 Domain Violation X X X

(." 45 Heap specification

01 Invalid Heap Identifier X

Chapter 7. Heap Management Instructions 7-20

Exception
02 Invalid Request

05 Heap Space Destroyed

06 Invalid Heap Condition

Materialize Heap Space Attributes (MATHSAT)

Operands
123

X

x X x

Other

x
X

Chapter 7. Heap Management Instructions 7-21

Reallocate Heap Space Storage (REALCHSS)

Reallocate Heap Space Storage (REALCHSS)

Op Code (Hex)
03BA

Operand 1
Space allocation

Operand 1: Space pointer.

Operand 2: Binary(4) scalar.

Operand 2
Size of space real­
location

ILEaccess --~

REALCHSS (
space_allocation : space potnter;
size_of_space_reallocation : signed btnary
: space potnter /* space_reallocation */

Description: A new heap space storage allocation of at least the size indicated by operand 2 is pro­
vided from the same heap space as the original allocation, which is indicated by operand 1. The
operand 1 space pointer is set to address the first byte of the new allocation, which will begin on a
boundary at least as great as the minimum boundary specified when the heap space was created.

Each allocation associated with a heap space provides a continuum of contiguously addressable bytes.
Individual allocations within a heap space have no addressability affinity with each other.

The maximum single allocation allowed is determined by the maximum single allocation size specified
when the heap space was created. The maximum single allocation possible is 16M-64K bytes.

Storage that is reallocated maintains the same mark/release status as the original allocation. If the
original allocation was marked, the new allocation carries the same mark and will be released by a
Free Heap Space Storage from Mark (FREHSSMK) which specifies that mark identifier.

The original heap space storage allocation will be freed. Subsequent references to the original allo­
cation will cause unpredictable results.

The contents of the original allocation are preserved in the following fashion:

• If the new allocation size is greater than the original allocation size, the entire contents of the ori­
ginal allocation will appear in the new allocation. The contents of the rest of the new allocation are
unpredictable unless initialization of heap allocations was specified when the heap space was
created.

• If the new allocation size is less then or equal to the the original allocation size, the new allocation
will contain at least as much of the original allocation contents as the new allocation size allows.

REALCHSS will signal a domain violation (hex 4401) exception if a program running user state attempts
to reallocate heap space storage in a heap space with a domain of Common System.

Operand 2 is not modified by the instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

Chapter 7. Heap Management Instructions 7-22

Reallocate Heap Space Storage (REALCHSS)

0000 Machine status
0101 Machine check
0401 Auxiliary storage device requires service

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0401 Domain violation
0402 Hardware storage violation

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 C Machi ne-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

24

44

45

Pointer specification

01 pointer does not exist

02 pointer type invalid

03 Pointer addressing invalid object

Domain specification

01 Domain Violation

Heap specification

02 Invalid Request

Operands
1

X

x:
X

X

X

X

X

X

X

X

2

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

X

X

X

Chapter 7. Heap Management Instructions 7-23

~

Exception
03 Heap Space Full

04 Invalid Size Request

05 Heap Space Destroyed

06 Invalid Heap Condition

Reallocate Heap Space Storage (REALCHSS)

Operands
1 2

X

X X

Other
X

X

X

Chapter 7. Heap Management Instructions 7-24

Set Heap Space Storage Mark (SETHSSMK)

Set Heap Space Storage Mark (SETHSSMK)

Op Code (Hex)
03B6

Operand 1
Mark Identifier

Operand 1: Space pointer data object.

Operand 2: Binary(4) scalar.

Operand 2
Heap Identifier

ILEaccess --,
SETHSSMK

var mark identifier
var heap_identifier

space pOinter;
signed binary

Description: The heap space identified by operand 2 is marked and the mark identifier is returned in
operand 1.

Marking a heap space allows a subsequent Free Heap Space Storage from Mark (FREHSSMK) instruc­
tion, using the mark identifier returned in operand 1, to free all outstanding allocations that were per­
formed against the heap space since the heap space was marked with that mark identifier. This
relieves the user of performing a Free Heap Space Storage (FREHSS) for every individual heap space
allocation.

A heap space may have multiple marks.

The heap identifier specified in operand 2 is the identifier that was returned on the Create Heap Space
(CRTHS) instruction. An attempt to mark the default heap space (heap identifier value of 0) will result
in a invalid request (hex 4502) exception. An attempt to mark a heap space that has been created to
not allow a Set Heap Space Storage Mark will result in a invalid request (hex 4502) exception.

Operand 2 is not modified by the instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0000 Machine status
0101 Machine check
0401 Auxiliary storage device requires service

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0401 Domain violation
0402 Hardware storage violation

0017 Damage set

Chapter 7. Heap Management Instructions 7-25

Set Heap Space Storage Mark (SETHSSMK)

0401 System object damage set
0801 Partial system object damage set

" Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

09 auxiliary storage pool number invalid X

C. 20 Machine support

02 machine check X

03 function check X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 Pointer addressing invalid object X

44 Domain specification

01 Domain Violation X X

45 Heap specification

01 Invalid Heap Identifier X

02 Invalid Request X

03 Heap Space Full X

05 Heap Space Destroyed X

06 Invalid Heap Condition X X X

Chapter 7. Heap Management Instructions 7-26

Program Management Instructions

Chapter 8. Program ~anagement Instructions

This chapter describes all instructions used for program management. These instructions are in alpha­
betic order. For an alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary"

Materialize Bound Program (MATBPGM) 8-3
Materialize Program (MATPG) .. 8-24

© Copyright IBM Corp. 1991, 1993 8-1

Program Management Instructions

Chapter 8. Program Management Instructions 8-2

Materialize Bound Program (MATBPGM)

Materialize Bound Program (MATBPGM)

Op Code (Hex)
02C6

Operand 1
Materialization
request template

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Bound Program or
Bound Service
Program

ILEaccess --.

MATBPGM (
request_template

var bound_program
space pOinter
system pointer

Description: The bound program or bound service program identified by operand 2 is materialized
according to the specifications provided by operand 1.

Operand 2 is a system pointer that identifies the bound program or bound service program to be mate­
rialized. If Operand 2 does not refer to a program object, an object not eligible for operation (hex 2403)
exception will be signaled. If Operand 2 refers to a program, but not to a bound program or bound
service program, then a program not eligible for operation (hex 220A) exception will be signaled.

The values in the materialization relate to the current attributes of the materialized bound program. :J
Components are the materializable parts of a bound program or bound service program. Components
may not be available for materialization because they were not encapsulated during bound program
creation. Other components may not be available for materialization because they contain no data.

Note: The bound program materialization request template takes the form of a variable length array of
materialization requests.

• Template size specification

Number of bytes provided

Reserved (binary 0)

• Number of materialization requests

• Reserved (binary 0)

• Array of materialization requests

Receiver

Bound Program materialization options

- General Bound Program materialization options

• General bound program information

o = Do not materialize
1 = Materialize

Char(8)

UBin(4)

Char(4)

UBin(4)

Char(4)

Char(-)

Space pointer

Char(4)

Char(2)

Bit 0

I 1 Reserved for IBM Internal Use Only. If used, unpredictable results may occur.

Chapter 8. Program Management Instructions 8-3

Materialize Bound Program (MATBPGM)

• Reserved 1

• Program copyright Strings

o = Do not materialize
1 = Materialize

• Bound service programs information

o = Do not materialize
1 = Materialize

• Bound modules information

o = Do not materialize
1 = Materialize

• Bound program string directory component

o = Do not materialize
1 = Materialize

• Bound program limits

o = Do not materialize
1 = Materialize

• Reserved1

• Activation group data imports

o = Do not materialize
1 = Materialize

• Activation group data exports

o = Do not materialize
1 = Materialize

• Reserved (binary 0)

- Specific Bound Program materialization options

• Specific bound program information

o = Do not materialize

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bits 7-11

Bit 12

Bit 13

Bits 14-15

Char(1)

Bit 0

1 = Materialize if the program is a bound program and not a bound service program.

• Reserved (binary 0)

- Specific Bound Service Program

- Materialization options

• Reserved (binary 0)

• Signatures information

o = Do not materialize
1 = Materialize if the program is a bound service program.

• Exported program procedure information

o = Do not materialize
1 = Materialize if the program is a bound service program.

• Exported program data information

o = Do not materialize
1 = Materialize if the program is a bound service program.

• Reserved (binary 0)

Bits 1-7

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-7

Chapter 8. Program Management Instructions 8-4

..

Bound Modules materialization options

- General module information

o = Do not materialize
1 = Materialize

- Reserved 1

- Module string directory component

o = Do not materialize
1 = Materialize

- Reserved 1

- Reserved (binary 0)

- Module copyright strings

o = Do not materialize
1 = Materialize

- Reserved (binary 0)

Bound Module materialization number

Reserved (binary 0)

Materialize Bound Program (MATBPGM)

Char(4)

Bit 0

Bit 1

Bit 2

Bits 3-10

Bits 11-17

Bit 18

Bits 19-31

UBin(4)

Char(4)

Description of bound program materialization request template fields: Each of the reserved fields
must be set to binary zeroes, or a template value invalid (hex 3801) exception. will be signaled.

Number of bytes provided
This is the size in bytes of the materialization request template. If this size does not corre- "
spond to the actual number of bytes in the materialization request template, then a template ~.'\'
value invalid (hex 3801) exception will be signaled. This does not include any storage for ,.."
returned data. That storage is pointed to by the receiver values.

Number of materialization requests
The number of requests in the array of materialization requests is specified by this value. If
this number is greater than the actual number of materialization requests provided, then a
template value invalid (hex 3801) exception will be signaled.

Materialization requests
This is an array of materialization requests. A materialization request consists of one or
more bits, and an optional module number specified to be materialized into the corre­
sponding receiver. Each materialization request consists of the following fields.

Receiver
This is a pointer to a space which will hold the materialized data. The space
pointed to must be aligned on a 16-byte boundary, and must be at least 8 bytes
long. This is so that it can hold the bytes provided and bytes available field of
the receiver. If the space is not at least 8 bytes long a template value invalid
(hex 3801) exception will be signaled.

Bound Program materialization options ,
This bit mapped field specifies the parts of the bound program object to be mate­
rialized. A materialization request need not specify any program materialization
options. If no bits are set, a bit must be set in the bound module materialization
options field, or a template value invalid (hex 3801) exception will be signaled.
Mutiple options may be specified. When multiple options are specified, all of the
requested data will be materialized into one receiver. The pieces requested on
the materialization will be placed in the receiver in the order that the option bits
are defined. For example, if all data is requested, the general bound program
information will be the first item in the receiver and the exported program data

Chapter 8. Program Management Instructions 8-5

L

Materialize Bound Program (MATBPGM)

information will be the last item. If options are also specified on the bound
module materialization options field. the materialized data for those options will
·follow that data materialized for the bound program materialization options.

The bound program materialization options are split into three distinct
materialization bit sets.

1. The general bound program materialization options contains bits that repre­
sent data that can be materialized for either bound programs or bound
service programs.

2. The specific bound program materialization options contains bits that repre­
sent data that can be materialized only for bound programs, and not for
bound service programs.

3. The specific bound service program materialization options contains bits that
represent data that can be materialized only for bound service programs.

If a bit is on to materialize information that is not contained in the type of bound
program being materialized, then an indication that the information is not
materializable will be provided in the receiver header. No exception, in this
case, will be signaled.

Each of the requested pieces will be placed on a 16-byte boundary within the
receiver.

The general bound program information field specifies that general information
about the bound program object should be materialized.

- .
The program copyright strings field specifes that the col/ected program copyright
strings of the constituent bound modules should be materialized.

The bound service programs information field specifies that information about the
service programs bound to the materialized bound program should be material­
ized. These bound service programs are those that contain exports that resolve
to imports in the materialized bound program.

The bound modules information field specifies that information about the
modules bound into the materialized bound program should be materialized.

The bound program string directory component field specifies that the bound
program string directory should be materialized.

The bound program limits field specifies that the current sizes and maximum
values of the bound program components should be materialized.

The activation group data Imports field specifies that information about those
data imports resolving to weak activation data exports is be materialized.

The activation group data exports field specifies that information about those
data exports promoted to the activation group is to be materialized.

The specific bound program information field specifies that information specific
to a bound program, and not to a bound service program, should be material­
ized.

The signatures Information field specifies that the bound program signatures
should be materialized.

The exported program procedure information field specifies that the exported
procedures specified during program creation should be materialized.

Referential extensions are data streams that are not included in the creation templates, but are pointed to by a space pOinter
In the template.

Chapter 8. Program Management Instructions 8-6

5

Materialize Bound Program (MATBPGM)

The exported program data information field specifies that the exported data
specified during program creation instruction should be materialized.

Bound Module Materialization Options
This bit mapped field specifies the parts of the modules bound into the program
that are to be materialized. A module materialization request need not specify
any materialization options. If no bits are set, a bit must be set in the bound
program materialization options field, or a template value invalid (hex 3801)
exception will be signaled. Multiple options may be specified. When multiple
options are specified, all of the requested data will be materialized into one
receiver. The pieces requested on the module materialization will be placed in
the receiver in the order that the option bits are defined. For example, if all data
is requested, the general module information will be the first item in the receiver
and the module string directory component will be the last item. If options are
also specified on the bound program materialization options field, the material­
ized data for those options will precede that data materialized for the bound
module materialization options.

In addition, each of the requested pieces will be placed on a 16 byte boundary
within the receiver.

The general module information field specifies that general information about the
module object should be materialized.

The module string directory component field specifies that the string directory of
the associated module(s) should be materialized.

- .
The module copyright strings field specifies that the module copyright strings
should be materialized.

Bound Module Materialization Number
If at least one bit of the Bound Module Materialization Options field is on, then
this is the number of the module to materialize, from 1 through the number of
modules bound into the program; or 0, to materialize information about all
modules bound into the program. If this number is greater than the number of
modules bound into the program, then a template value invalid (hex 3801) excep­
tion will be signaled.

The information that is materialized is specified in the bound module
materialization options field.

If no bits of the bound module materialization options field are on, then no
module information is being materialized, and this field must be binary 0 or a
template value invalid (hex 3801) exception will be signaled.

Format of material/zed data

Format of Receiver

• Number of bytes provided for materialization

• Number of bytes available for materialization

• Reserved (binary 0)

• Materialized data

Bytes provided

UBin(4)

UBin(4)

Char(8)

Char(*)

This is the number of bytes the user is providing to hold the materialized data. It must be
greaterthan or equal to eight. If it is equal to eight, then no data will actually be material-,
ized, and the number of bytes required to materialize the requested data will be placed in ,.
bytes available. If the value provided is greater than eight, but less than the number of
bytes required to hold the requested data, the data will be truncated and no exception will

Chapter 8. Program Management Instructions 8-7

Materialize Bound Program (MATBPGM)

be signaled. Note that a value greater than eight, but less than 16 will result in no data
being materialized. since bytes 9-16 are reserved.

If the receiver is smaller than the size indicated by bytes provided. and the materialized
data is larger than the space provided in receiver, the space addressing (hex 0601) excep­
tion will be signaled unless receiver is an automatically extendable space object. If receiver
is an automatically extendable space object, the space will be extended, up to its maximum
size.

Bytes available
If bytes provided is greater than eight. this contains the number of bytes that have been
used for the materialization, including any reserved bytes or bytes used for padding. If
bytes provided is equal to eight, this contains the total size of the receiver needed to hold
the requested materialization. A value of zero is returned if there is no data to materialize.

Materialized data
For each bit on in the bound program materialization options and bound module
materialization options, this will contain the associated data. Each entry will be preceded
by a common header which identifies the type of data and the offset to the next entry.
When multiple bits are on in the same request, the data is returned in the order defined by
the bound program materialization options and the bound module materialization options.

No exception is signaled when the size of the receiver, as specified by bytes provided is not
large enough to hold data for all requested bound program materialization options and
bound module materialization options. Instead, the data is truncated and bytes provided
only reflects the actual amount of data returned. One of several conditions may arise, each
with a different result.

If the receiver is not large enough to hold the materialization header, no data is returned for
that bound program materialization option or bound module materialization option. The
offset to next entry field in the previous materialization header, if one exists, is set to 0, and
the bytes available field is set to reflect the amount of data actually materialized for the
bound program materialization options or bound module materialization options that have
already been processed. Bytes available will be set to 8, or bytes provided; whichever is
less, if the receiver is not big enough to hold the first materialization header.

If the receiver is big enough to hold the materialization header, but not big enough to hold
all of the data requested by the bound program materialization option or bound module
materialization option, the partial data flag will be set in the materialization header and as
much data will be returned for which there is room. For data which consists of one contin­
uous stream 3 the receiver will be filled and bytes available will equal bytes provided. For
data which consists of an option specific header followed by an array of homogenous ele­
ments4 data will be returned in such a way that no partial option specific header or array
element will be returned. If there is not enough room to hold the entire option specific
header, none of it will be returned. If there is room for the option specific header, but not
all of the entries, only those entries that will fit will be returned. The number of entries in
the option specific header will reflect the number of entries returned rather than the actual
number of entires available in the module. Bytes available will reflect the actual amount of
data returned and may not equal bytes provided. Note that because many option specific
headers and entries are larger than the common materialization header, there may be more
than one option for which partial data is returned.

I 3 The items that fall into this category are general bound program information, bound program limits, specinc bound program
information, specinc bound service program information, general module information, bound program string directory compo­
nent, module string directory component and module copyright strings.

I 4

The items which fall into this catagory are bound service programs information, bound modules information, signatures infor­
mation, program copyright strings, exported program procedure information, activation group data imports, activation group
data exports, and exported program data information.

Chapter 8. Program Management Instructions 8-8

Materialize Bound Program (MATBPGM)

Format of Common Materialization Header

• Offset to next entry UBin(4)

• Bound Program materialization identifier Char(4)

Char(4) • Bound Module materialization identifier

• Bound Module materialization number identifier UBin(4)

Char(4) • Flags

Entry presence Bit 0

o = No data present for entry
1 = Data present for entry

Partial data Bit 1

o = All data in materialization was returned
1 = Partial data was returned because receiver was too small to hold all data for the

requested option

Valid Materialization data Bit 2

o = The data requested in this materialization request is never present for the type of bound
program being materialized.

1 = The data requested in this materialization request may be present for the type of bound
program being materialized.

Reserved (binary 0)

• Reserved (binary 0)

Offset to next entry

aits 3-31

Char(12)

This contains the offset from the beginning of this entry to the beginning of the next entry. It
will contain zero if this is the last entry.

Bound Program materialization identifier
This indicates which portion of the bound program is contained in this entry. It is the bit
which was on in bound program materialization options that resulted in this data being
materialized. Either no bits, or a single bit of this field will be on. If no bits of this field are
on, then the data contained in this entry is indicated by the bound module materialization
identifier field.

Bound Module materialization identifier
This indicates which portion of the module, indicated by the bound module materialization
number identifier field, is contained in this entry. It is the bit which was on in the bound
module materialization options field that resulted in this data being materialized. Either a
single bit or no bit of this field will be on. If no bit is on, then the data contained in this
entry is indicated by the bound program materialization identifier field. If a bit is set on,
then that type of information will be returned in the entry.

Bound Module materialization number Identifier
If a bit of the bound module materialization identifier field is on, then this is the number of
the module for which information has been materialized in this entry, and this field will not
be O.

If no bits of the bound module materialization identifier field are on, then this field will be O.

This field specifies information about the item being materialized.

The entry presence field specifies whether there is data available for the requested item. :"..J
Some items may not be encapsulated into the object, so no data will be returned when their
materialization is requested.

Chapter 8. Program Management Instructions 8-9

Materialize Bound Program (MATBPGM)

The partial data field specifies that only a portion of the data was returned because suffi­
cient space was not present in the receiver to hold all of the data for the requested
materialization option.

The valid materialization field specifies whether the requested information is valid to be
materialized for the type of bound program that is being materialized. For example, specific
bound program information is not valid for a bound service program. Even if data may be
present for the type of bound program being materialized does not mean that it actually is.
Refer to the entry present field to see if it is.

Format of materialized general bound program information

• Length in bytes of materialization

• Reserved1

• Number of secondary associated spaces

• Activation group attributes

Target activation group

o = Default activation group
1 = Caller'S activation group
2 = Named activation group
3 = Unnamed activation group
4-255 reserved

Reserved1

• Activation group name

• Reserved 1

• Coded character set identifier

• Composite language versions

UBin(4)

Char(264)

UBin(4)

Char(4)

Char(1)

• Composite version on which module creations occurreds

. Char(3)

Char(30)

Char(14)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

UBin(2)

Char(1)

• Composite machine versions

• Creation target versions

• Version on which creation occurred5

• Bound program identifier

o = reserved
1 = Bound Program
2 = Bound Service Program
3-255 = reserved

• Compression status

Executable portion

- 0 = Executable portion is not compressed

5 All versions are represented as 16 bit values mapped as follows.

- Bits 0-3

- Bits 4-7

- Bits 8-11

- Bits 12-15

Char(1)

Bit 0

Reserved (binary 0)

Version

Release

Modification

Chapter 8. Program Management Instructions 8-10

- 1 = Executable portion is compressed

Observable portion

- 0 = Observable portion is not compressed

- 1 = Observable portion is compressed

Reserved (binary 0)

• Reserved 1

Length in bytes of materialization

Materialize Bound Program (MATBPGM)

Bit 1

Bits 2-7

Char(178)

This is the number of bytes materialized. For the general bound program information this
will always be a constant 512.

Number of secondary associated spaces
This is the number of secondary associated spaces currently associated with the object.

Activation group attributes
The activation group attributes specify characteristics of the activation group into which the
program will be activated.

Target activation group
This is the target activation group value specified when the bound program or
bound service program was created.

Activation group name
This is the activation group name specified when the bound program or bound service
program was created.

Coded character set identifier
This is the CCSID value of the bound program or bound service program.

Composite language version
This is the earliest version of the operating system on which the languages used for the
bound modules will allow the bound program object to be saved. This is a composite6 of a"
of the language versions of the modules bound into this program.

CompOSite version on which module creations occurred
This is the earliest version of the operating system on which all of the modules bound into
the program can be re-created. This is a compositeS of a" of the version-on-which-module­
creations-occurred versions of the modules bound into this program.

Composite machine version
This is the earliest version of the operating system on which the machine will allow the
bound program to be saved. This is a compositeS of a" of the machine versions of the
modules bound into this program.

Creation target version
This is the version of the operating system for which the bound program object was created.

Version on which creation occurred
This is the version of the operating system on which the bound program object was created.

Bound program identifier
This field identifies the type of bound program being materialized.

A composite version is defined to be the latest version, In time, of all of the versions comprising the compOSite. Given baCK­
level compatibility, this would be the earliest version of the operating system on which all of the comprising versions would be
compatible.

Chapter 8. Program Management Instructions 8-11

Materialize Bound Program (MATBPGM)

Compression status
This field identifies whether the executable or the observable portions of the bound program
or bound service program are compressed.

Format of materialized program copyright strings

• Length in bytes of materialization

• Version of copyright creation extension

• Number of copyright statements in the pool

• Reserved

• Copyright string pool

Length in bytes of materialization
This is the number of bytes materialized.

Version of copyright creation extension

Ubin(4)

Ubin(4)

Ubin(4)

Char(4)

Char(-)

This is the version of the copyrights when the module was created.

Number of copyright strings In the pool.
This is the number of copyright strings that follow.

Copyright statement pool.
This is the data for all of the copyright strings. Each copyright string consists of a 4 byte
length followed by the text of the string. The length reflects the actual length of the copy­
right string and does not include the length of the length field. All copyright strings along
with their lengths are placed contiguously in the buffer with no intervening padding.

Format of the materialized bound service programs Information

• Length in bytes of materialization

• Number of service programs bound to this program

• Reserved (binary 0)

• Array of bound service program records

Bound service program 10

- Bound service program context object type

- Bound service program context object subtype

- Bound service program context name

- Bound service program object type

- Bound service program object subtype

- Bound service program name

Referentially bound program signature

Reserved (binary 0)

Length in bytes of materialization

UBin(4)

UBin(4)

Char(8)

Char(-)

Char(24)

Char(1)

Char(1)

Char(10)

Char(1)

Char(1)

Char(10)

Char(16)

Char(8)

The number of bytes materialized. This will be 16 + (N - 48) where N is the number of
bound servide programs - those programs that contain exports that resolve imports in the
bound program.

Number of service programs bound to this program
This is the number of bound service programs bound to the bound program.

Chapter 8. Program Management Instructions 8-12

Materialize Bound Program (MATBPGM)

Array of bound service program records
This array contains one record for each bound service program bound to the bound
program. Each record contains the following information

Bound service program context type
This is the object type of the context with the given name.

Bound service program context subtype
This is the object subtype of the context with the given name.

Bound service program context name
This is the context specified during program creation where this bound service
program was found when the bound program was created. This value could be
set with all hex zeroes, in which case the name resolution list is used to locate
the given bound service program.

Bound service program type
This is the object type of the program with the given name.

Bound service program subtype
This is the object subtype of the program with the given name.

Bound service program name
This is the name of the bound service program specified during program cre­
ation.

Bound service program signature
This is the signature of the bound service program tha~ was used to match
against the current signature of the bound program.

Format of the materialized bound modules Information

• Length in bytes of materialization

• Number of modules bound into this program

• Reserved (binary 0)

• Array of bound module records

Bound module 10

- Module qualifier

- Module name

Reserved (binary 0)

Length in bytes of materialization

UBin(4)

UBin(4)

Char(8)

Char(*)

Char(60)

Char(30)

Char(30)

Char(20)

The number of bytes materialized. This will be 16 + (N ·80) where N is the number of
modules bound into the bound program.

Number of modules bound into this program
This is the number of modules bound into the bound program.

Array of bound module records
This array contains one record for each module bound into the bound program. Each
record contains the following information

Module qualifier
This is the qualifier specified during program creation where this module was
found when the bound program was created. The module qualifier is used to
differentiate between two different modules of the same name. This usually con­
tains a context name.

Chapter 8. Program Management Instructions 8-13

Materialize Bound Program (MATBPGM)

Module name
This is the name of the module.

(.., Format of the materialized bound program string directory component

• Length in bytes of materialization

• Reserved (binary 0)

• String Pool

Length of the string

CCSID of the string

String

Length in bytes of materialization

UBin(4)

Char(12)

Char(*)

UBin(4)

UBin(2)

Char(*)

The number of bytes materialized. This will be 16 + the length of the string pool.

String Pool
A memory area containing the strings defined for this program. It can be of any length
addressable by a UBin(4). It contains a series of strings and lengths. String IDs specified in
other materialized components can be used as indexes into this string pool.

Length of string
The length of the next string. This field contains the length of the string only, and does not
include the length of the either the length or the CCSID field. The length field of a string is
not subject to alignment considerations.

CCSID of string
The character code set identifier of this string. This string is encoded in the given CCSID,
which is the CCSID of the module object from which this string is originally declared. The
CCSID field of a string is not subject to alignment considerations.

Character buffer which contains one string. Its length is defined by the length field.

Format of the materialized bound program limits

• Length in bytes of materialization

• Reserved (binary 0)

• Current size of bound program

• Maximum number of associated spaces

• Current number of associated spaces

• Maximum number of modules bindable into program

• Current number of modules bound into program

• Maximum number of service programs bindable to program

UBin(4)

Char(12)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

• Current number of service programs bound to program

• Maximum size of bound program string directory

• Current size of bound program string directory

• Maximum size of bound program copyright strings

• Current size of bound program copyright strings

• Maximum number of auxiliary storage segments

• Current number of auxiliary storage segments

• Maximum number of static storage frames

Chapter 8. Program Management Instructions 8-14

• Current number of static storage frames

• Maximum number of program procedure exports

• Current number of program procedure exports

• Maximum number of program data exports

• Current number of program data exports

• Maximum number of signatures

• Current number of signatures

• Minimum amount of static storage required

• Maximum amount of static storage required

• Reserved (binary 0)

Length in bytes of materialization

Materialize Bound Program (MATBPGM)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

Char(148)

The number of bytes materialized. This will always be a constant 256.

Current size of bound program
This is the current size, in machine-dependent units, of the bound program being material­
ized.

Maximum number of associated spaces
This is the maximum number of associated spaces allowed for the bound program being
materialized.

Current number of associated spaces
This is the current number of associated spaces allocated to the bound program being
materialized.

Maximum number of modules bindable Into program
This is the maximum number of modules that can be bound into a bound program.

Current number of modules bound into program
This is the current number of modules bound into the bound program being materialized.

Maximum number of service programs bindable to program
This is the maximum number of bound service programs that can be bound to a bound
program. These bound service programs contain exports to which imports from a bound
program resolve.

Current number of service programs bound to program
This is the current number of bound service programs bound to the bound program being
materialized.

Maximum size of bound program string directory
This is the maximum size, in bytes, of the bound program string directory.

Current size of bound program string directory
This is the current size, in bytes, of the bound program string directory.

Maximum size of bound program copyright strings
This is the maximum size, in bytes, of the bound program copyright strings.

Current size of bound program copyright strings
This is the current size, in bytes, of the bound program copyright strings.

Maximum number of auxiliary storage segments
This is the maximum number of auxiliary storage segments allowed for a bound program .

Current number of auxiliary storage segments
This is the current number of auxiliary storage segments in the bound program being mate­
rialized.

Chapter 8. Program Management Instructions 8-15

.. ~

Materialize Bound Program (MATBPGM)

Maximum number of static storage frames
This is the maximum number of static storage frames allowed for a bound program.

Current number of static storage frames
This is the current number of static storage frames required by the bound program being
material ized.

Maximum number of procedure exports
This is the maximum number of procedures that are allowed to be exported from a bound
program. If the bound program being materialized is not a bound service program, then
this value will be zero.

Current number of procedure exports
This is the current number of procedures exported from the bound program being material­
ized. If the bound program being materialized is not a bound service program, then this
value will be zero.

Maximum number of data exports
This is the maximum number of data items that are allowed to be exported from a bound
program. If the bound program being materialized is not a bound service program, then
this value will be zero.

Current number of data exports
This is the current number of data items exported from the bound program being material­
ized. If the bound program being materialized is not a bound service program, then this
value will be zero.

Maximum number of signatures
This is the maximum number of signatures allowed for a bound program. If the bound
program being materialized is not a bound service program, then this value will be zero.

Current number of signatures
This is the current number of signatures contained in the bound program being material­
ized. If the bound program being materialized is not a bound service program, then this
value will be zero.

Minimum amount of static storage required.
This is the smallest amount of static storage that is required for the bound program or
service program. This measure is in bytes. The actual amount of static storage that is
used may be anywhere between the minimum and the maximum amounts of required static
storage, inclusive.

Maximum amount of static storage required.
This is the largest amount of static storage that may be required for the bound program or
service program. This measure is in bytes. The actual amount of static storage that is
used may be anywhere between the minimum and the maximum amounts of required static
storage, inclusive.

Format of the materialized activation group data imports

• Length in bytes of materialization

• Number of activation group data imports

• Reserved (binary 0)

• Array of activation group data imports

String 10

Reserved (binary 0)

UBin(4)

UBin(4)

Char(8)

Char(*)

UBin(4)

Char(12)

Chapter 8. Program Management Instructions 8-16

Materialize Bound Program (MATBPGM)

Length in bytes of materialization
The number of bytes materialized. This will be (N + 1)*16, where N is the number of acti­
vation group data imports contained in the bound program or bound service program.

Number of activation group data imports
The number of activation group data imports contained in the bound program or bound
service program.

Array of activation group data imports
This array contains one record for each data item contained in the program or bound
service program. Each record contains the following information:

String 10
This is the identification used to extract the name of this data item from the
program string directory.

Format of the materialized activation group data exports

• Length in bytes of materialization

• Number of activation group data exports

• Reserved (binary 0)

• Array of activation group data exports

String ID

Strength of data item

- 0 = Reserved

- 1 = Export Strongly

- 2 = Export Weakly

- 3-255 = Reserved

Reserved (binary 0)

Length of data item

Reserved (binary 0)

Length in bytes of materialization

UBin(4)

UBin(4)

Char(8)

Char(*)

UBin(4)

Char(1)

Char(3)

UBin(4)

Char(4)

The number of bytes materialized. This will be (N + 1)*16. where N is the number of acti­
vation group data exports contained in the bound program or bound service program.

Number of activation group data exports
The number of activation group data exports contained in the bound program or bound
service program.

Array of activation group data exports
This array contains one record for each data item contained in the program or bound
service program. Each record contains the following information:

String 10
This is the identification used to extract the name of this data item from the
program string directory.

Strength of data item
This field indicates whether the activation group export is exported strongly or
weakly.

Length of data item.
The size in bytes of the activation group export.

Chapter 8. Program Management Instructions 8-17

t
~

Materialize Bound Program (MATBPGM)

Format of the materialized specific bound program information: Specific bound program information
can only be materialized for bound programs, and not for bound service programs .

• Length in bytes of materialization

• Reserved (binary 0)

• Program entry procedure information

Module number containing program entry procedure

Program entry procedure string ID

Minimum parameters

Maximum parameters

Reserved (binary 0)

• Reserved (binary 0)

Length In bytes of materialization

UBin(4)

Char(12)

Char(16)

UBin(4)

UBin(4)

UBin(2)

UBin(2)

Char(4)

Char(32)

The number of bytes materialized. This will always be a constant 64.

Module number containing program entry procedure
This is the number, in the bound modules information, of the module which contains the
program entry procedure for this bound program.

Program entry procedure string 10
This is the string ID for the name of this program entry procedure.

Minimum parameters
This is the minimum number of parameters that the program entry procedure can accept.

Maximum parameters
This is the maximum number of parameters that the program entry procedure can accept.

Format of the materialized signatures information: Signatures information can only be materialized for
bound service programs, and not for bound programs.

• Length in bytes of materialization

• Number of signatures contained in the program

• Reserved (binary 0)

• Array of signatures

- Signature

Length in bytes of materialization

UBin(4)

UBin(4)

Char(8)

Char(")

Char(16)

The number of bytes materialized. This will be (N + 1)"16, where N is the number of signa­
tures contained in the program.

Number of Signatures contained In the program
This is the number of signatures contained in the program.

Array of signatures
This array contains one record for each signature contained in the program. Each record
contains the following information. The first record contains the current Signature.

Signature
A Signature of the service program.

Chapter 8. Program Management Instructions 8-18

Materialize Bound Program (MATBPGM)

Format of the materialized exported program procedure information: Exported program procedure
information can only be materialized for bound service programs, and not for bound programs.

• Length in bytes of materialization

• Number of exported procedures

• Reserved (binary 0)

• Array of program exports

String 10 for procedure export

Export number

Reserved (binary 0)

Length in bytes of materialization

UBin(4)

UBin(4)

Char(8)

Char(*)

UBin(4)

UBin(4)

Char(8)

The number of bytes materialized. This will be (N + 1)*16, where N is the number of
exported procedures.

Number of exported procedures
This is the number of procedures exported from the service program.

Array of program exports
This array contains one record for each procedure exported from the service program.
Each record contains the following information:

String 10 for procedure export
This is the identification used to extract the name of thi~ exported procedure
from the program string directory.

Export number
This is the number of this exported procedure.

Format of the materialized exported program data Information: Exported program data information
can only be materialized for bound service programs, and not for bound programs.

• Length in bytes of materialization

• Number of exported data items

• Reserved (binary 0)

• Array of data exports

String 10 for data export

Export number

Reserved (binary 0)

Length in bytes of materialization

UBin(4)

UBin(4)

Char(8)

Char(*)

UBin(4)

UBin(4)

Char(8)

The number of bytes materialized. This will be (N + 1)*16, where N is the number of
exported data items.

Number of exported data items
This is the number of data items exported from the service program.

Array of data exports
This array contains one record for each data item exported from the service program. Each
record contains the following information:

String ID for data export
This is the identification used to extract the name of this exported data item from
the program string directory.

Export number
This is the number of this exported data item.

Chapter 8. Program Management Instructions 8-19

~

Materialize Bound Program (MATBPGM)

Format of materialized general module information

• Length in bytes of materialization UBin(4)

• Reserved Char(12)

· Reserved 1 Char(276)

• Coded character set identifier UBin(2)

• Reserved Char(10)

• Creation target versionS Char(2)

• Language version' Char(2)

• Version on which creation occurred5 Char(2)

• VUC versionS Char(2)

• Reserved Char(16)

• Number of secondary associated spaces UBin(4)

• Reserved Char(16)

• Reserved' Char(2)

• Reserved Char(2)

• Compiler name Char(20)

• Program entry procedure Char(16)

Program entry procedure attributes Char(4)

Program entry procedure exists Bit 0

o = Program entry procedure does not exist in this module
1 = Program entry procedure exists in this module

Reserved (0)

Program entry procedure dictionary id

Program entry procedure string id

Program entry procedure minimum parms

Program entry procedure maximum parms

• Reserved

Length in bytes of materialization

Bits 1-31

UBin(4)

UBin(4)

UBin(2)

UBin(2)

Char(124)

This is the number of bytes materialized. For the general module information this will
always be a constant 512.

Coded character set identifier
The CCSID defines the code page of the symbols in the string directory.

Language version
This is the earliest version of the operating system on which language used will allow the
module object to be saved.

Creation target version
This is the version of the operating system for which the module object was created.

Version on which creation occurred
This is the version of the operating system that was running on the system where the
module object was created.

Chapter 8. Program Management Instructions 8-20

Materialize Bound Program (MATBPGM)

Earliest version
This is the earliest version of the operating system on which the machine will allow the
modul.e object to be saved.

Number of secondary associated spaces
This is the number of secondary associated space segments currently associated with the
object.

Compiler name
This identifies the compiler which translated the user's source language.

Program entry procedure
This identifies the program entry procedure if one is present in the module.

Program entry procedure attributes
This bit mapped field identifies attributes of the program entry procedure.

The program entry procedure existence field specifies whether a program entry
procedure is present in the module being materialized.

Dictionary Id of the procedure
The dictionary id is used as a handle to uniquely identify the procedure.

String id of the procedure name
The string id may be used to extract the character string which is the procedure
name from the string pool.

Program entry procedure minimum parms
This is the minimum number of parameters allowed by the program entry proce­
dure.

Program entry procedure maximum parms .) ...
This is the maximum number of parameters allowed by the program entry proce­
dure.

Format of the materialized module string directory component

• Length in bytes of materialization UBin(4)

• Reserved (binary 0) Char(12)

• String Pool Char(*)

UBin(4) Length of the string

String Char(*)

Length in bytes of materialization

String Pool

The number of bytes materialized. This will be 16 + the length of the string pool.

A memory area containing the strings defined for this module. It can be of any length
addressable by a UBin(4). It contains a series of strings and lengths. String IDs specified in
other materialized components can be used as indexes into this string pool.

Length of string
The length of the next string. This field contains the length of the string only, and does not
include the length of the length field. itself. The length field of a string is not subject to
alignment considerations.

Character buffer which contains one string. Its length is defined by the length field.

Format of the materialized module copyright strings: The format of the materialized module copyright
strings is the same as for the materialized program copyright strings.

Chapter 8. Program Management Instructions 8-21

...

~

Materialize Bound Program (MATBPGM)

Template Value Invalid exception reason codes: This instruction supports setting of the optional
reason code field in the exception data which can be retrieved when the template value invalid excep­
tion is signaled. When the first byte of the reason code is not zero, the exception is being signaled
because one of the materialization receivers is not valid.

00 Bound Program Materialization Template (pointed to by operand 1 of this instruction)
01 Size of template is not sufficient to hold number of requests specified.

On nth materialization request is not valid.
01 The receiver is not aligned on a 16 byte boundary.
02 The materialization request bytes provided is less than 8.
03 The materialization request contains no materialization options or invalid materialization

options.

If the length of field data is 8. then no materialization options were specified and the offset in
field in bits data will be O. Otherwise. an invalid option was specified and the provided offset
to field in bytes and offset in field in bits data will identify the invalid materialization option.

04 The materialization request contains a module materialization number that is greater than
the number of modules bound into the program.

05 The materialization request contains a non-zero module materialization number. but no
module materialization options.

06 The materialization request contains a non-zero reserved field.

Authorization Required

• Retrieve

Operand 2

Contexts referenced for address resolution

Lock Enforcement

• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X

Chapter 8. Program Management Instructions 8-22

Materialize Bound Program (MATBPGM)

Operands
Exception 1 2 Other

1A Lock state ,.J
01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine· support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

04 object ineliigible X X

07 authority verification terminated due to destroyed object X

OA program object inelligible X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X ~
2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X X

02 template size invalid X X

03 materialization length exception X

Chapter 8. Program Management Instructions 8-23

Materialize Program (MATPG)

Op Code (Hex)
0232

Operand 1
Attribute receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Program

Materialize Program (MATPG)

ILEaccess ---,

MATPG (
receiver

var program
)

space pOinter;
system pOinter

Description: The program identified by operand 2 is materialized into the template identified by
operand 1.

Operand 2 is a system pointer that identifies the program to be materialized. The values in the
materialization relate to the current attributes of the materialized program.

The template identified by operand 1 must be 16-byte aligned.

The first 4 bytes of the materialization template identify the total number of bytes provided in the tem­
plate. This value is supplied as input to the instruction and is not modified. A value of less than 8
causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization template are modified by the instruction to contain a value
identifying the template size required to provide for the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified by the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, then the excess bytes are unchanged. No exceptions (other than the materialization
length (hex 3803) exception) are signaled in the event that the receiver contains insufficient area for
the materialization.

The following attributes apply to the materialization of a program:

• The existence attribute indicates whether the program is temporary or permanent.

• The observation attribute field specifies the template components of the programs that currently
can be materialized.

• If the program has an associated space, then the space attribute is set to indicate either fixed- or
variable-length; the initial value for the space is returned in the initial value of space field, and the
size of space field is set to the current size value of the space. If the program has no associated
space, the size of space field is set to a zero value, and the space attribute and initial value of
space field values are meaningless.

• If the program is addressed by a context, then the context addressabilitv attribute is set to indicate
this, and a system pointer to the addressing context is returned in the context field. If the program
is not addressed by a context, then the context addressability attribute is set to indicate this, and
binary O's are returned in the context field.

• If the program is a member of an access group, then the access group attribute is set to indicate
this, and a system pointer to the access group is returned in the access group field. If the program

Chapter 8. Program Management Instructions 8-24

Materialize Program (MATPG)

is not a member of an access group, then the access group attribute is set to indicate this, and
binary O's are returned in the access group field .

• The performance class field is set to reflect the performance class information associated with the
program .

• The user exit attribute defines if the referenced program is allowed to be used as a user exit
program.

Components of the program template may not be present if they have been removed by the Delete
Program Observability instruction. Also, a template component will not be available if the program
was created with its corresponding observation attribute in the Create Program template set to binary
O. If a template component cannot be materialized, a's are placed in the fields of the program tem­
plate that describe the size and offsets to that component.

The offset to the OMT component field specifies the location of the OMT component in the materialized
program template. The OMT consists of a variable-length vector of 6-byte entries. The number of
entries is identical to the number of ODV entries because there is one OMT entry for each ODV entry.
The OMT entries correspond one for one with the ODV entries; each OMT entry gives a location
mapping for the object defined by its associated ODV entry.

The following describes the formats for an OMT entry:

• OMT entry

Addressability type

Hex 00 = Base addressability is from the start of the static storage

Char(6)

Char(1)

Hex 01 = Base addressability is from the start of the automatic storage area

Hex 02 = Base addressability is from the start of the storage area addressed by a space
painter

Hex 03 = Base addressability is from the start of the storage area of a parameter

Hex 04= Base addressability is from the start of the storage area addressed by the space
painter found in the process communication object attribute of the process executing
the program

Hex FF = Base addressability not provided. The object is contained in machine storage areas
to which addressability cannot be given, or a parameter has addressability to an object
that is in the storage of another program

Offset from base Char(3)

For types hex 00, hex 01, hex 02, hex 03, and hex 04, this is a 3-byte logical binary value
representing the offset to the object from the base addressability. For type and hex FF, the
value is binary O.

Base addressability Char(2)

For types hex 02 and hex 03, this is a 2-byte binary field containing the number of the OMT
entry for the space pointer or a parameter that provides base addressability for this object.
For types hex 00, hex 01, hex 04 and hex FF, the value is binary O.

Authorization Required

• Retrieve

Operand 2

Contexts referenced for address resolution

Chapter 8. Program Management Instructions 8-25

.. ;J

Lock Enforcement

• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

1 C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

07 authority verification terminated due to destroyed object

08 object compressed

24 Pointer specification

01 pOinter does not exist

02 pointer type invalid

03 pointer addressing invalid object

2E Resource control limit

01 user profile storage limit exceeded

Materialize Program (MATPG)

Operands
1

X

X

X

X

X

X

X

X

X

X

X

X

2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

X

X

X

Chapter 8. Program Management Instructions 8-26

Materialize Program (MATPG)

Operands
Exception 1 2 Other
36 Space management

01 space extension/truncation x

38 Template specification

03 materialization length exception x

Chapter 8. Program Management Instructions 8-27

L

Program Execution Instructions

Chapter 9. Program Execution Instructions

This chapter describes the instructions used for program execution control. These instructions are in
alphabetic order. For an alphabetic summary of all the instructions. see Appendix A. "Instruction
Summary."

Activate Program (ACTPG) .. 9-3
Call External (CALLX) ... 9-5
Call Internal (CALLI) 9-9
Clear Invocation Exit (CLRIEXIT) 9-11
Deactivate Program (DEACTPG) 9-12
End (END) ... 9-14
Materialize Activation Attributes (MATACTAT) 9-15
Materialize Activation Group Attributes (MATAGPAT) 9-19
Modify Automatic Storage Allocation (MODASA) 9-23
Return External (RTX) .. 9-25
Set Argument List Length (SETALLEN) 9-27
Set Invocation Exit (SETIEXIT) ... 9-29
Store Parameter List Length (STPLLEN) 9-31
Transfer Control (XCTL) .. 9-33

© Copyright I BM Corp. 1991. 1993 9-1

Program Execution Instructions

Chapter 9. Program Execution Instructions 9-2

Activate Program (ACTPG)

Op Code (Hex)
0212

Operand 1
Program or static
storage frame

Operand 2
Program

Operand 1: Space pointer data object, system pointer.

Operand 2: System pointer.

Activate Program (ACTPG)

ILEaccess --,

ACTPG (
var activation

var program
)

system pOinter; OR
space pOinter;

system potnter

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: This instruction creates an activation entry for the program specified by operand 2, if it
uses static storage. If the program specified is a bound program, an invalid operation for program (hex
2C15) exception is signaled. No operation is performed for a program which does not require static
storage.

'-., Operand 1 receives either a space pointer or system pointer as follows:

If an activation entry is created or an activation entry exists for the program within the target acti­
vation group, then a space pointer to the static storage frame is returned. The static storage frame
is allocated and initialized according to specifications within the program. The static storage frame
is 16-byte aligned and begins with a 64-byte header. The header is not initialized and it is not used
by the machine. The header is provided for compatibility with prior machine implementations.

• If the program does not use static storage (hence, no activation entry is created) a copy of the
program pointer in operand 2 is returned.

If an attempt is made to activate an already active program then

• the activation mark of the activation entry is unchanged, and
• the static storage frame is reinitialized

A space pOinter machine object may not be specified for operand 1.

Authorization Required

• Operational

- Program referenced by operand 2

• Retrieve

- Contexts referenced for address resolution

Chapter 9. Program Execution Instructions 9-3

Activate Program (ACTPG)

Lock Enforcement
. Materialize

- Contexts referenced for address resolution

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

.~
1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X X

03 painter addressing invalid object X

2C Program execution

15 invalid operation for program X

21: Resource control limit

01 user profile storage limit exceeded X

36 Space management

Chapter 9. Program Execution Instructions 9-4

Exception
01 space extension/truncation

Call External (CALLX)

Operands
1 2 Other

X

Chapter 9. Program Execution Instructions 9-5

Call External (CALLX)

Op Code (Hex)
0283

Operand 1
Program to be
called or Call tem­
plate

Operand 2
Argument Ii st

Operand 1: System pointer or Space pointer data object.

Operand 2: Operand list or null.

Operand 3: Instruction definition list or null.

Operand 3
Return list

Call External (CALLX)

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: The instruction preserves the calling invocation and passes control to either the program
entry procedure of a bound program or the external entry point of a non-bound program. If operand 1
specifies a bound program which does not contain a program entry procedure, an invalid operation for
program (hex 2C15) exception is signaled.

Operand 1 may be specified as a system pointer which directly addresses the program that is to
receive control or as a space pointer to a call template which identifies the program to receive control.
Specifying a template allows for additional controls over how the specified program is to be invoked.
The format of the call template is the following: .

• Call options

Suppress adopted user profiles

o = No
1 = Yes

Reserved (binary 0)

Force process state to user state for call

o = No
= Yes

• Reserved (binary 0)

• Program to be called

Char(4)

Bit 0

Bits 1-30

Bit 31

Char(12)

System pointer

The suppress adopted user profiles call option specifies whether or not the program adopted and prop­
agated user profiles which may be serving as sources of authority to the process are to be suppressed
from supplying authority to the new invocation. Specifying yes causes the propagation of adopted user
profiles to be stopped as of the calling invocation, thereby, not allowing the called invocation to benefit
from their authority. Specifying no allows the normal propagation of adopted and propagated user
profiles to occur. The called program may adopt its owning user profile, if necessary. to supplement
the authority available to its invocation.

The force process state to user state option specifies whether or not the call changes the state of the
process to user state.

Chapter 9. Program Execution Instructions 9-6

Call External (CALLX)

Common Program Call Processing: The details of processing differ for non-bound and bound pro­
grams. The following outlines the common steps.

1. A check is made to determine if the caller has authority to invoke the program and that the object
is indeed a program object. The specified program must be either a bound program that contains
a program entry procedure or a non-bound program.

2. The activation group in which the program is to be run is located or created if it doesn't exist. The
activation group supplies the storage resources required for program execution: static, automatic,
and heap storage.

3. If the program requires an activation entry and it is not already active within the appropriate acti­
vation group, it is activated. Bound programs always require an activation: non-bound programs
require an activation only if they use static storage. The invocation count of a newly created acti­
vation is set to 1 while the invocation count of an existing activation is incremented by 1.

4. The invocation created for the target program has the following attributes (as would be reported
via the Materialize Invocation Attributes instruction.)

• the invocation mark is one higher than the current mark count value maintained for the
process. If the program was activated as a result of the call then its invocation mark will equal
the activation mark, otherwise the invocation mark is larger than the activation mark.

Note: The so-called mark counts are generated from a counter maintained for the process.
Each time a mark is required the counter is incremented. The mark counts thus form a
non-decreasing sequence of unique identifiers which can be used to distinguish the time
ordering of activations, invocations, and activation groups.

• the invocation number is one greater than the invocation number of the calling invocation. This
is merely a measure of the depth of the call-stack.

• the invocation type is hex 01 to indicate a CALLPGM or CALLX invocation.

• the invocation number is the same as the invocation number of the transferring invocation.

• the invocation type is hex 02 to indicate a XCTL type of invocation.

5. The automatic storage frame (ASF), if required, is allocated on a 16-byte boundary.

6. Control is transferred to the program entry procedure (or external entry point) of the program.

7. Normal f1ow-of-control resumes at the instruction following the program call instruction after a
return from the program.

8. Normal f1ow-of-control resume at the instruction following the caller of the program issuing the
XCTL instruction.

The details of locating the target activation group and activating the program differ depending upon the
model of the program.

Bound Program: A bound program is activated and run in an activation group specified by program
attributes. There are two logical steps involved:

• locate the existing, or create a new activation group for the program

• locate an existing, or create a new activation entry for the program within the activation group.

After locating the activation entry for the program, control is passed to the program entry procedure for
the program. If required, the activation group is destroyed when the invocation for the program entry
procedure is destroyed.

Chapter 9. Program Execution Instructions 9-7

Call External (CALLX)

Non-bound Program: The automatic storage frame begins with a 64 byte header. if the program
defines no automatic data items the frame consists solely of the 64-byte header, otherwise the auto­
matic storage items are located immediately following the header. In prior releases of the machine,
this header contained invocation information which is now available via the Materialize Invocation
Attributes (MATINVAT) instruction. This header is not initialized and the contents of the header are not
used by the machine. (The space is allocated merely to provide for compatibility with prior implemen­
tations of the machine.) The update PASA stack program attribute, supported in prior implementations
of the machine, is no longer meaningful and is ignored, if specified as an attribute of the program.

Following the allocation and initialization of the invocation entry, control is passed to the invoked
program.

Operand 2 specifies an operand list that identifies the arguments to be passed to the invocation entry
to be called. If operand 2 is null, no arguments are passed by the instruction. A parameter list length
(hex 0802) exception is signaled if the number of arguments passed does not correspond to the
number required by the parameter list of the target program.

Operand 3 specifies an IDL (instruction definition list) that identifies the instruction number(s) of alter­
nate return points within the calling invocation. A Return External instruction in an invocation imme­
diately subordinate to the calling invocation can indirectly reference a specific entry in the IDL to cause
a return of control to the instruction associated with the referenced IDL entry. If operand 3 is null, then
the calling invocation has no alternate return points associated with the call. If operand 3 is not null
and operand 1 specifies a bound program, an invalid operation for program (hex 2C15) exception is
signaled.

Authorization Required

• Operational

- Program referenced by operand 1

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 ArgumenUparameter

01 parameter reference violation

02 parameter list length violation

OA Authorization

01 unauthorized for operation

Operands
1 2 3

x
X

X

X

X

X

X

Other

Chapter 9. Program Execution Instructions 9-8

... ~

Call Internal (CALLI)

Operands
Exception 1 2 3 Other

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 pointer addressing invalid object X

2C Program execution

15 invalid operation for program X X

10 automatic storage overflow X

1 E activation access violation X

1 F program signature violation X

20 static storage overflow X

21 program import invalid X

22 data reference invalid X

23 imported object invalid X

24 activation group export conflict X

25 import not found X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 9. Program Execution Instructions 9-9

Call Internal (CALLI)

Op Code (Hex)
0293

Operand 1
Internal entry
point

Operand 1: Internal entry point.

Operand 2: Operand list or null.

Operand 3: Instruction pointer.

Operand 2
Argument list

Operand 3
Return target

Call Internal (CALLI)

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: The internal entry point specified by operand 1 is located in the same invocation from
which the Call Internal instruction is executed. A sUbinvocation is defined and execution control is
transferred to the first instruction associated with the internal entry point. The instruction does not
cause a new invocation to be established. Therefore, there is no allocation of objects and instructions
in the subinvocation have access to all invocation objects.

Operand 2 specifies an operand list that identifies the arguments to be passed to the sUbinvocation. If
operand 2 is nUll, no arguments are passed. After an argument has been passed on a Call Internal
instruction, the corresponding parameter may be referenced. This causes an indirect reference to the
storage area located by the argument. This mapping exists until the parameter is assigned a new
mapping based on a subsequent Call Internal instruction. A reference to an internal parameter before
its being assigned an argument mapping causes a parameter reference violation (hex 0801) exception
to be signaled.

Operand 3 specifies an instruction pointer that identifies the pointer into which the machine places
addressability to the instruction immediately following the Call Internal instruction. A branch instruc­
tion in the called sUbinvocation can directly reference this instruction pointer to cause control to be
passed back to the instruction immediately following the Call Internal instruction.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

Chapter 9. Program Execution Instructions 9-10

. ..J

Clear Invocation Exit (CLRIEXIT)

Operands
Exception 1 2 3 Other
20 Machine support

02 machine check X

03 function check X

22 Object access

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 9. Program Execution Instructions 9-11

Clear Invocation Exit (CLRIEXIT)

op Code (Hex)
0250

Deactivate Program (DEACTPG)

Description: The instruction removes the invocation exit program for the requesting invocation. No
exception is signaled if an invocation exit program is not specified for the current invocation. Also, an
implicit clear of the invocation exit occurs when the invocation exit program is given control, or the
program which set the invocation exit completes execution.

Exceptions

Exception Other

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

08 object compressed X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 9. Program Execution Instructions 9-12

~

Deactivate Program (DEACTPG)

Op Code (Hex)
0225

Operand 1
Program

Operand 1: System pointer or null.

ilLE access

I DEACTPG (
var program system pOinter or

null operand

Deactivate Program (DEACTPG)

Description: This instruction, provided that certain conditions are met, deactivates a non-bound
program. Subsequent invocations of the program within the same activation group will cause a new
activation to be created.

Operand 1 specifies program activation entry which is to be deactivated, if permitted. The activation
entry is inferred by one of two means:

1. operand 1 is null - the target activation entry is that associated with the current invocation

2. operand 1 is not null - the target activation entry associated with the program system pointer is
selected from one of the two default activation groups

The target activation entry is deactivated if permitted. An activation in use by invocation (hex 2C05)
exception is signaled if the deactivation is not permitted. If the target activation entry does not exist,
then no operation is performed. If the program specified is a bound program, an invalid operation for
program (hex 2C15) exception is signaled.

In general, only those activations with a zero invocation count can be deactivated. The following two
exceptions apply:

1. A program can deactivate itself if it is the only invocation of that program in the process (its invo­
cation count must be 1.)

2. An invocation exit program can deactivate the program on whose behalf it is running provided that
the invocation count of that program is no more than 1.

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions invalid operation for program

Exception

06 Addressing

Operand
1 Other

Chapter 9. Program Execution Instructions 9-13

End (END)

Operand
Exception 1 Other

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X

1A Lock state

01 invalid lock state X

20 Machine support

02 machine check X

03 function check X

22 Object access

) 01 object not found X

02 object destroyed X

03 object suspended X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 pointer addressing invalid object X

2C Program execution

05 activation in use by invocation X

15 invalid operation for program X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X

36 Space management

01 space extension/truncation X

~

Chapter 9. Program Execution Instructions 9-14

End (END)

Op Code (Hex)
0260

Materialize Activation Attributes (MATACTAT)

Description: The instruction delimits the end of a program's instruction stream. When this instruction
is encountered in execution, it causes a return to the preceding invocation (if present) or causes termi­
nation of the process phase if the instruction is executed in the highest-level invocation for a process.
The End instruction delineates the end of the instruction stream. When it is encountered in execution,
the instruction functions as a Return External instruction with a null operand. Refer to the Return
External instruction for a description of that instruction.

exceptions

Exception Other

10 Damage encountered

04 system object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

08 object compressed X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 9. Program Execution Instructions 9-15

Materialize Activation Attributes (MATACTAT)

Materialize Activation Attributes (MATACTAT)

Op Code (Hex)
0213

Operand 1
Receiver

Operand 1: Space pointer

Operand 2: Binary(4) scalar

Operand 2
Activation mark

Operand 3: Character(1) scalar (fixed length)

Operand 3
Attribute selection

ILEaccess --,

MATACTAT (
receiver

var activation mark
var attribute selection

space pOinter;
unsigned binary;
aggregate

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: This instruction. will materialize the information selected by operand 3 for the program
activation specified by operand 2 and return the information in the template supplied by operand 1.

The operand 3 selection operand is provided to deal with the variable-length nature of some of the
returned information. All "Iength-of-list" type information can be gathered by selecting the first option
described below.

Operand 3 can have the following values:

• hex 00 - basic activation attributes

• hex 01 - static storage frame list

Any value for operand 3 other than those listed will cause a scalar value invalid (hex 3203) exception.

Operand 2 supplies the activation mark of the activation for which information is to be returned. The
activation mark uniquely identifies an activation within a process. A value of zero is interpreted to be
a request for information about the activation of the invoking program.

The materialization template identified by operand 1 must be 16-byte aligned in the space. This
materialization template has the following format:

• Template size specification

Number of bytes provided for materialization

Number of bytes available for materialization

Reserved (binary 0)

• Returned information

Char(8)

Bin(4)

Bin(4)

Char(8)

Char(*)

The number of bytes provided indicates the number of bytes provided for returned information by the
user of the instruction. In all cases if the number of bytes provided is less than 8, then a
materialization length (hex 3803) exception will be signaled.

Chapter 9. Program Execution Instructions 9-16

Materialize Activation Attributes (MATACTAT)

The number of bytes available is set by the instruction to indicate the actual number of bytes available
to be returned. In no case does the instruction return more bytes of information than those available.

c.., The format of returned information is described in the following paragraphs.

Basic Activation Attributes: The following information is returned when operand 3 is hex 00.

• Program

• Activation mark

• Activation group mark

• Invocation count

• Static frame count

• Program model

Hex 00 = original model
Hex 01 = new model
Hex 02-FF = reserved

• Activation attributes

Activation status

o = inactive
1 = active

Reserved (binary 0)

A description of the fields follows.

program

Aystem pointer

UBin(4)

UBin(4)

UBin(4)

UBin(4)

Char(1)

Char(3)

bit 0

bits 1-23

This is a pointer to the program. The system pointer returned does not contain authority.
Within a process, a program may have more than one activation.

activation mark
The activation mark identifies the activation within the process. This field provides the
actual activation mark when the special zero value was supplied for operand 2. Otherwise,
this field has the same value as operand 2.

activation group mark
This identifies the activation group which contains the activation.

Invocation count
This is a count of the number of program invocations which currently exist for this activation
of the program. Recall that a program invocation results from a program call operation like
Call Program not a procedure call operation like Call Bound Procedure.

static frame count
This is the number of static storage frames allocated for this activation.

program model
the model of the program. A program is either an original model (non-bound) or new model
(bound) program.

activation attributes
The activation attributes identify

• whether the program is active or not. Only original model program can be deactivated
by use of the Deactivate Program instruction.

Chapter 9. Program Execution Instructions 9-17

Materialize Activation Attributes (MATACTAT)

Static Storage Frame List: The following information is returned when operand 3 is hex 01. This is a
list of static storage frame descriptors. The static frame count (available in the basic activation attri-
butes template) indicates how many entries must be accommodated by the template. The static ...J
storage frame list can be materialized only if the source activation group is permitted access to the
target activation group as determined by the activation group access protection mechanism. If access
is not permitted, then an activation group access violation (hex 2C12) exception is signaled.

The format of the list is:

• array(1 .. static frame count) of

Static frame base Space pOinter

This is a pointer to the first byte of the static frame.

Static frame size UBin(4)

This is the size, in machine dependent units (currently bytes), of the static frame.

Reserved Char(12)

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

• 06 optimized addressability invalid X X X J
08 ArgumenUparameter

01 parameter reference violation X X X X

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

09 auxiliary storage pool number invalid X

20 Machine support

02 machine check X

03 function check X

22 Object access

02 object destroyed X

24 Pointer specification
~

01 pointer does not exist X X X X

Chapter 9. Program Execution Instructions 9-18

Materialize Activation Group Attributes (MATAGPAT)

Operands
Exception 1 2 3 Other

02 pointer type invalid X X X X

03 Pointer addressing invalid object X X

2C Program execution

12 Activation group access violation X

16 Activation not found X

32 Scalar specification

03 Scalar value invalid X

38 Template specification

03 Materialization length X

44 Domain specification

01 Domain Violation X

Chapter 9. Program Execution Instructions 9-19

Materialize Activation Group Attributes (MATAGPAT)

Materialize Activation Group Attributes (MATAGPAT)

op Code (Hex)
02D3

Operand 1
Receiver

Operand 1: Space pointer

Operand 2: Unsigned binary(4) scalar

Operand 2
Activation group
mark

Operand 3: Character(1) scalar (fixed length)

Operand 3
Attribute selection

ILEaccess --,

MATAGPAT (
receiver

var activation_group_mark
var attribute selection

space pointer;
unsigned binary;
aggregate

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: This instruction will materialize the information selected by operand 3 for the activation
group specified by operand 2 and return the information in the template supplied by operand 1. If the
activation group mark specified by operand 2 is zero, then information about the activation group asso­
ciated with the current invocation is returned.

In order to deal with the variable-length nature of some activation group attributes, the selection option
is provided. All of the "Iength-of-list" type information can be gathered by selecting the first option
described below.

Operand 3 can have the following values:

• hex 00 - basic activation group attributes

• hex 01 - activation group heap list option

• hex 02 - program activation list option

Any value for operand 3 other than those listed will cause a scalar value invalid (hex 3203) exception.

The materialization template identified by operand 1 must be 16-byte aligned in the space. This
materialization template has the following format:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Reserved (binary 0)

• Returned information

Char(8)

Bin(4)

Bin(4)

Char(8)

Char(*)

The number of bytes provided indicates the number of bytes provided for returned information by '.
the user of the instruction. In all cases if the number of bytes provided is less than 8, then a _
materialization length (hex 3803) exception will be signaled.

Chapter 9. Program Execution Instructions 9-20

Materialize Activation Group Attributes (MATAGPAT)

The number of bytes available is set by the instruction to indicate the actual number of bytes avail­
able to be returned. In no case does the instruction return more bytes of information than those
available.

The format of returned information is described in the following paragraphs.

Basic Activation Group Attributes: The following information is returned when operand 3 is hex 00.

• Root program

• Reserved (binary 0)

• Storage address recycling key

• Activation group name

• Reserved (binary 0)

• Activation group mark

• Reserved (binary 0)

• Heap space count

• Activation count

• Static storage size

• Automatic storage size

• Attributes

Reserved

Activation group state.

o = user
1 = system

Is activation group named?

a = no
1 = yes

Destroy pending?

a = no
1 = yes

Reserved (binary 0)

• Process access group membership advisory attributes

Automatic storage

o = do not create in PAG
1 = permit creation in PAG

Static storage

o = do not create in PAG
1 = permit creation in PAG

Default heap storage

a = do not create in PAG
1 = permit creation in PAG

Reserved (binary 0)

Additional Description

System pointer or null

Char(16)

System pointer or null

Char(30)

Char(2)

UBin(4)

Char(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-7

Char(1)

Bit 0

Bit 1

Bit 2

Bits 3-7

Chapter 9. Program Execution Instructions 9-21

Materialize Activation Group Attributes (MATAGPAT)

root program
those activation groups which are created by the machine (the default activation groups)
do not have root programs, in which case this field is null.

storage address recycling key
a system pointer is returned only if the activation group state is specified as user, other­
wise the field is null.

activation group name
For activation groups which do not have a symbolic name, this field contains all blanks.

heap space count
This is the number of heap spaces currently associated with the activation group.

activation count
This is the number of programs which are currently active within the activation group.

static storage size
This is the maximum amount of static storage, in machine dependent units, which has
been allocated to the activation group at any particular time. Note that this does not nec­
essarily reflect the amount of storage currently in use.

automatic storage size
This is the maximum amount of automatic storage, in machine dependent units, which
has been allocated to the activation group at any particular time. Note that this does not
necessarily reflect the amount of storage currently in use. It is merely a measure of the
maximum "depth" the automatic storage stack has had to this point.

Is activation group named?
Indicates whether the activation group is named or unnamed. The activation group name

. field contains blanks for unnamed an activation groups. The default activation groups and
those created with the "unnamed" attribute are unnamed.

Activation Group Heap List: When operand 3 is hex 01, the format of the returned information is an
array of heap identifiers. This is a list of the heaps which are currently associated with the activation
group. The heap space count (available in the basic template) indicates how many entries must be
accommodated by the template. The format of the list is:

• array(1 .. heap space count) of Bin(4)

Information about a specific heap may be obtained from the Materialize Heap Space Attributes
(MATHSA T) instruction.

Program Activation List: When operand 3 is hex 02, the format of the returned information is an array
of activation marks. Each activation mark represents a program activation within the activation group.
(The activation mark is a number which uniquely identifies the activation within a process.) The acti­
vation count (available in the basic template) indicates how many entries must be accommodated by
the template. The format of the list is:

• array(1 .. activation count) of UBin(4)

Information about a specific activation may be obtained from the Materialize Activation Attributes
(MATACTAT) instruction.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation x x x

Chapter 9. Program Execution Instructions 9-22

Modify Automatic Storage Allocation (MODASA)

Operands
Exception 1 2 3 Other

~
02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X X

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

09 auxiliary storage pool number invalid X

20 Machine support

02 machine check X

03 function check X

24 Pointer specification

~ 01 pointer does not exist X X X X

02 pointer type invalid X X X X

03 Pointer addressing invalid object X X

32 Scalar specification

03 Scalar value invalid

2C Program execution

13 Activation group not found X

38 Template specification

03 Materialization length X

44 Domain specification

01 Domain Violation X

Chapter 9. Program Execution Instructions 9-23

Modify Automatic Storage Allocation (MODASA)

Modify Automatic Storage Allocation (MODASA)

Op Code (Hex)
02F2

Operand 1
Storage allocation

Operand 2
Modification size

Operand 1: Space pointer data object or null.

Operand 2: Signed binary scalar.

ILEaccess --~
MODASA (

modification size : signed binary; OR
unsigned binary;

: space pointer /* storage_allocation */

Description: The automatic storage frame (ASF) of the current invocation is extended or truncated by
the size specified by operand 2. A positive value indicates that the frame is to be extended; a negative
value indicates that the frame is to be truncated; a zero value does not change the ASF. If operand 1
is not null, it will be treated as follows:

• ASF extension: receives the address of the first byte of the extension. The ASF extension might not
be contiguous with the remainder of the ASF allocation.

• ASF truncation: Operand 1 should be null for truncation. If operand 1 is not null, then addressablity
to the first byte of the deallocated space is returned. This value should not be used as a space
pointer since it locates space that has been deallocated.

• If a value of zero is specified for operand 2: the value returned is unpredictable.

When the ASF is extended, the extension is aligned on a 16-byte boundary. An extension is not initial­
ized.

A scalar value invalid (hex 3203) exception is signaled if truncation amount would cause size of the ASF
to be less than the amount of the initial allocation.

A space pointer machine object cannot be specified for operand 1.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 ArgumenUparameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

Operands
1 2 other

X X

X X

X X

X X

X X

X X X

X X X

Chapter 9. Program Execution Instructions 9-24

~

Return External (RTX)

Operands
Exception 1 2 Other
lC Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

08 object compressed X

2C Program execution

10 automatic storage exceeded X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

02 scalar attributes invalid X

03 scalar value invalid X

Chapter 9. Program Execution Instructions 9-25

Return External (RTX)

Op Code (Hex)
02A1

Operand 1
Return point

Operand 1: Signed binary (2) scalar or null.

Return External (RTX)

Description: The instruction terminates execution of the invocation in which the instruction is speci­
fied. The automatic storage frame is deallocated.

A Return External instruction can be specified within an invocation's subinvocation, and no exception is
signaled.

If a higher invocation exists in the invocation hierarchy, the instruction causes execution to resume in
the preceding invocation in the process' invocation hierarchy at an instruction location indirectly speci­
fied by operand 1. If operand 1 is binary 0 or null, the next instruction following the Call External
instruction from which control was relinquished in the preceding invocation in the hierarchy is given
execution control. If the value of operand 1 is not 0, the value represents an index into the instruction
definition list (IDL) specified as the return list operand in the Call External instruction, and the value
causes control to be passed to the instruction referenced by the corresponding IDL entry. The first IDL
entry is referenced by a value of one. If operand 1 is not 0 and no return list was specified in the Call
External instruction. or if the value of operand 1 exceeds the number of entries in the IDL, or if the
value is negative, a return point invalid (hex 2C02) exception is signaled.

If a higher invocation does not exist, the Return External instruction causes termination of the current
process state. If operand 1 is not 0 and is not null, the return point invalid (hex 2C02) exception is
signaled. Refer to the Terminate Process instruction for the functions performed in process termi­
nation.

If the returning invocation has received control to process an event, then control is returned to the
point where the event handler was invoked. In this case, if operand 1 is not 0 and is not nUll, then a
return point invalid (hex 2C02) exception is signaled.

If the returning invocation has received control from the machine to process an exception. the return
instruction invalid (hex 2C02) exception is signaled.

If the returning invocation has an activation, the invocation count in the activation is decremented by 1.

If the returning invocation currently has an invocation exit set, the invocation exit is not given control
and is implicitly cleared.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

Operand
1 Other

x
X

X

X

X

Chapter 9. Program Execution Instructions 9-26

Set Argument List Length (SETALLEN)

Operand
Exception 1 Other
10 Damage encountered

04 system object damage state X X

44 partial system object damage X X

1C Machi ne-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X X

03 object suspended X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2C Program execution

01 return instruction invalid X

02 return point invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 9. Program Execution Instructions 9-27

Set Argument List Length (SETALLEN)

Op Code (Hex)
0242

Operand 1
Argument list

Operand 1: Operand list.

Operand 2: Binary scalar.

Operand 2
Length

Set Argument List Length (SETALLEN)

Description This instruction specifies the number of arguments to be passed on a succeeding Call
External or Transfer Control instruction. The current length of the variable-length operand list (used as
an argument list) specified by operand 1 is modified to the value indicated in the binary scalar speci­
fied by operand 2. This length value specifies the number of arguments (starting from the first) to be
passed from the list when the operand list is referenced on a Call External or Transfer Control instruc­
tion.: Only variable-length operand lists with the argument list attribute may be modified by the
instruction.

The value in operand 2 may range from 0 (meaning no arguments are to be passed) to the maximum
size specified in the ODT definition of the operand list (meaning all defined arguments are to be
passed).

The length of the argument list remains in effect for the duration of the current invocation or until a Set
Argument List Length instruction is issued against this operand list.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

03 argument list length modification violation X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

Chapter 9. Program Execution Instructions 9-28

Set Invocation Exit (SETIEXIT)

Operands
Exception 1 2 Other

03 object suspended X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 9. Program Execution Instructions 9-29

Set Invocation Exit (SETIEXIT)

op Code (Hex)
0252

Operand 1
Invocation exit
program

Operand 1: System pointer

Operand 2: Operand list or null

Operand 2
Argument list

Set Invocation Exit (SETIEXIT)

Description: This instruction allows the external entry point of the program specified by operand 1 to
be given control when the requesting invocation is destroyed due to normal exception handling
actions, or due to any process termination. Normal exception handling actions are considered to be
those actions performed by the Return From Exception (RTNEXCP) or the Signal Exception (SIGEXCP)
instructions.

Operand 1 is a system pointer addressing the program that is to receive control. The operand 1
system pointer must be in either the static or automatic storage of the program invoking this instruc­
tion.

Operand 2 specifies an operand list that identifies the arguments to be passed to the invocation exit
program being called. If operand 2 is null, no arguments are passed to the invocation.

No operand verification takes place when this instruction is executed. Nor are copies made of the
operands, so changes made to the operand values after execution of this instruction will be used
during later operand verification. Operand verification occurs on the original form of the operands
when the invocation exit program is invoked. At that time operational authorization to the invocation
exit program and retrieve authorization to any contexts referenced for materialization take place. Also,
materialization lock enforcement occurs to contexts referenced for materialization.

If an invocation exit program currently exists for the requesting invocation, it is replaced, and no
exception is signaled. The invocation exit set by this instruction is implicitly cleared when the invoca­
tion exit program is given control, or the program which set the invocation exit completes execution.

If any invocations are to be destroyed due to normal exception handling actions, then those invocation
exit programs associated with the invocations to be destroyed are given control before execution pro­
ceeds to the signaled exception handler.

A failure to invoke program (hex 0011,04,01) event is signaled when both of the following conditions
occur:

• Exception management is destroying an invocation stack due to a Signal Exception instruction, a
Return From Exception instruction, or process termination.

• An invocation exit program is to be destroyed due to a second Signal Exception or a second Return
From Exception instruction.

The invocation exit program that is being destroyed is terminated, and its associated invocation exe­
cution is terminated. Termination of invocations due to a previous Signal Exception instruction, a
Return From Exception instruction, or a process termination is then resumed.

If a process phase is terminated and the process was not in termination phase, then the invocations
are terminated. Invocation exit programs set for the terminated invocations are allowed to run. If an
invocation to be terminated is an invocation exit program, then the following occurs: ~

• A failure to invoke program (hex 0011,04,01) event is signaled.

• If an invocation exit has been set for this invocation exit, it is allowed to run.

Chapter 9. Program Execution Instructions 9-30

Store Parameter List Length (STPLLEN)

• The invocation exit is terminated and the associated invocation is terminated (the invocation exit is
not reinvoked).

Invocation exit progra'ms for the remaining invocations to be terminated are then allowed to run,

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limitexceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

08 object compressed X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X

36 Space management

01 space extension/truncation X

Chapter 9. Program Execution Instructions 9-31

Store Parameter List Length (STPLLEN)

Op Code (Hex)
0241

Operand 1
Length

Operand 1: Binary variable scalar.

Store Parameter List Length (STPLLEN)

Description: A value is returned in operand 1 that represents the number of parameters associated
with the invocation's external entry point for which arguments have been passed on the preceding Call
External or Transfer Control instruction.

The value can range from a (no parameters were received) to the maximum size possible for the
parameter list associated with the external entry point.

Exceptions

Operand
Exception 1 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X

44 partial system object damage X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

Chapter 9. Program Execution Instructions 9-32

!.J.

Transfer Control (XCTL)

Operand
Exception 1 Other

01 scalar type invalid X

02 scalar attributes invalid X

36 Space management

01 space extension/truncation X

Chapter 9. Program Execution Instructions 9-33

Transfer Control (XCTL)

op Code (Hex)
0282

Operand 1
Program to be
called or Call tem­
plate

Operand 2
Argument list

Operand 1: System pointer or Space pointer Data Object.

Operand 2: Operand list or null.

Transfer Control (XCTL)

Description: The instruction destroys the calling invocation and passes control to either the program
entry procedure of a bound program or the external entry point of a non-bound program. If operand 1
specifies a bound program that does not contain a program entry procedure. an invalid operation for
program (hex 2C15) exception is signaled.

Operand 1 may be specified as a system pointer which directly addresses the program that is to
receive control or as a space pointer to a call template which identifies the program to receive control.
Specifying a template allows for additional controls over how the specified program is to be invoked.
The format of the call template is the following:

• Call options

Suppress adopted user profiles

o = no
1 = yes

Reserved (binary 0)

Force program state to user state for transfer

a = no
1 = yes

• Reserved (binary 0)

• Program to be called

Char(4)

Bit 0

Bit 1-30

Bit 31

Char(12)

System Pointer

The suppress adopted user profiles option specifies whether or not the program adopted and propa­
gated user profiles which may be serving as sources of authority to the process are to be suppressed
from supplying authority to the new invocation. Specifying yes causes the propagation of adopted user
profiles to be stopped as of the calling invocation. thereby. not allowing the called invocation to benefit
from their authority. Specifying no allows the normal propagation of adopted and propagated user
profiles to occur. The called program may adopt its owning user profile. if necessary. to supplement
the authority available to its invocation.

The force program state to user state for transfer option specifies whether or not the transfer control
needs to be done in the current program state or as though the transfering program were running in
the user state without the transferring program changing to run in the user state.

If the transferring invocation has an activation. the invocation count is decremented by 1.

Common Program Call Processing: The details of processing differ for non-bound and bound pro­
grams. The following outlines the common steps.

1. A check is made to determine if the caller has authority to invoke the program and that the object 'tta
is indeed a program object. The specified program must be either a bound program that contains
a program entry procedure or a non-bound program.

Chapter 9. Program Execution Instructions 9-34

Transfer Control (XCTL)

2. The activation group in which the program is to be run is located or created if it doesn't exist. The
activation group supplies the storage resources required for program execution: static, automatic,

'" and heap storage.

3. If the program requires an activation entry and it is not already active within the appropriate acti­
vation group, it is activated. Bound programs always require an activation; non-bound programs
require an activation only if they use static storage. The invocation count of a newly created acti­
vation is set to 1 while the invocation count of an existing activation is incremented by 1.

4. The invocation created for the target program has the following attributes (as would be reported
via the Materialize Invocation Attributes instruction.)

• the invocation mark is one higher than the current mark count value maintained for the
process. If the program was activated as a result of the call then its invocation mark will equal
the activation mark, otherwise the invocation mark is larger than the activation mark.

Note: The so-called mark counts are generated from a counter maintained for the process.
Each time a mark is required the counter is incremented. The mark counts thus form a
non-decreasing sequence of unique identifiers which can be used to distinguish the time
ordering of activations, invocations, and activation groups.

• the invocation number is the same as the invocation number of the transferring invocation.

• the invocation type is hex 02 to indicate a XCTL type of invocation.

5. The automatic storage frame (ASF), if required, is allocated on a 16-byte boundary.

6. Control is transferred to the program entry procedure (or external entry point) of the program.

7. Normal f1ow-of-control resume at the instruction following the caller of the program issuing the
XCTL instruction.

The details of locating the target activation group and activating the program differ depending upon the
model of the program.

Bound Program: A bound program is activated and run in an activation group specified by program
attributes. There are two logical steps involved:

• locate the existing, or create a new activation group for the program

• locate an existing, or create a new activation entry for the program within the activation group

After locating the activation entry for the program, control is passed to the program entry procedure for
the program. If required, the activation group is destroyed when the invocation for the program entry
procedure is destroyed.

Non-bound Program: The automatic storage frame begins with a 64 byte header. if the program
defines no automatic data items the frame consists solely of the 64-byte header, otherwise the auto­
matic storage items are located immediately following the header. In prior releases of the machine,
this header contained invocation information which is now available via the Materialize Invocation
Attributes (MATINVAT) instruction. This header is not initialized and the contents of the header are not
used by the machine. (The space is allocated merely to provide for compatibility with prior implemen­
tations of the machine.) The update PASA stack program attribute, supported in prior implementations
of the machine, is no longer meaningful and is ignored, if specified as an attribute of the program.'

Operand 2 specifies an operand list that identifies the arguments to be passed to the invocation to
which control is being transferred. Automatic objects allocated by the transferring invocation are
destroyed as a result of the transfer operation and, therefore, cannot be passed as arguments. A
parameter list length (hex 0802) exception is signaled if the number of arguments passed does not cor­
respond to the number required by the parameter list of the target program.

Chapter 9. Program Execution Instructions 9-35

Transfer Control (XCTL)

If the transferring invocation has received control to process an exception, or an invocation exit, the
return instruction invalid (hex 2C01) exception is signaled.

If the transferring invocation currently has an invocation exit set, the invocation exit is not given control
and is implicitly cleared.

Authorization Required

• Operand 1

- Operational

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

02 parameter list length violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

1C Machine-dependent exception

02 program limitation exceeded

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

Operands
1 2 Other

X

X

X

X

X

X

X

X X X

X

X X X

X

X

X

X

X

Chapter 9. Program Execution Instructions 9-36

Transfer Control (XCTL)

Operands
Exception 1 2 Other

01 object not found X

02 object destroyed X

03 object suspended X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 pointer addressing invalid object X

2C Program execution

01 return instruction invalid X

15 invalid operation for program X

1 0 automatic storage overflow X

1 E activation access violation X

1 F program signature violation X

20 static storage overflow X

21 program import invalid X

22 data reference invalid X

23 imported object invalid X

24 activation group export conflict X

25 import not found X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 9. Program Execution Instructions 9-37

Program Creation Control Instructions

Chapter 10. Program. Creation Control Instructions

This chapter describes all the instructions used to control the create program function. These
instructions are arranged in alphabetic order. For an alphabetic summary of all the instructions, see
Appendix A, "Instruction Summary."

No Operation (NOOP)
No Operation and Skip (NOOPS)
Override Program Attributes (OVRPGATR)

<t) Copyright I BM Corp. 1991, 1993

10-3
10-4
10-5

10-1

Program Creation Control Instructions

Chapter 10. Program Creation Control Instructions 10-2

No Operation (NOOP)

op Code (Hex)
0000

No Operation (NOOP)

Description: No function is performed. The instruction consists of an operation code and no oper­
ands. The instruction may not be branched to and is not counted as an instruction in the instruction
stream. The instruction may be used for inserting gaps in the instruction stream. These gaps allow
instructions with adjacent instruction addresses to be physically separated.

The instruction may precede or follow any machine instruction except the End instruction, and any
number of No Operation instructions may exist in succession.

Chapter 10. Program Creation Control Instructions 10-3

No Operation and Skip (NOOPS)

Op Code (Hex)
0001

Operand 1
Skip count

Operand 1: Unsigned immediate value.

No Operation and Skip (NOOPS)

Description: This instruction performs no function other than to indicate a specific number of bytes
within the instruction stream that are to be skipped during encapsulation. It consists of an operation
code and 1 operand. Operand 1 is an unsigned immediate value that contains the number of bytes
between this instruction and the next instruction to be processed. These bytes are skipped during the
encapsulation of this program. A value of zero for operand 1 indicates that no bytes are to be skipped
between this instruction and the next instruction to be processed.

If the operand 1 skip count indicates that the next instruction to process is beyond the end of the
instruction stream, an invalid operand value range exception is signaled.

This instruction may be used to insert gaps in the instruction stream in such a manner that allows
instructions with adjacent instruction addresses to not be physically adjacent.

This instruction may not be branched to, and is not counted as an instruction in the instruction stream.

The instruction may precede or follow any machine instruction except the End instruction, and any
number of No Operation and Skip instructions may exist in succession.

Note: When this instruction is used in an existing program template, the following items within the
template may be adversely affected:

• The actual count of instructions may be altered to be different than the count of instructions
that is specified in the program template header.

• Object definitions that reference instructions may now be out of range or may not reference
the intended instruction.

The actual number of bytes skipped includes the bytes containing the instruction plus the number of
bytes specified by the skip count value. The number of bytes skipped per template version is as
follows:

• Version 0 = 4 plus the skip count value.

• Version 1 = 5 plus the skip count value.

Chapter 10. Program Creation Control Instructions 10-4

Override Program Attributes (OVRPGATR)

Override Program Attributes (OVRPGATR)

Op Code (Hex)
0006

Operand 1
Attribute identifi­
cation

Operand 2
Attribute modifier

Operand 1: Unsigned immediate value.

Operand 2: Unsigned immediate value.

Description: This program creation control instruction allows one of a set of program attributes speci­
fied below to be overridden. The overridden program attribute is in effect until it is changed by
another OVRPGATR instruction. The initial program attributes are set to the ones given in the program
template for the Create Program (CRTPG) instruction. These same initial program attributes are the
ones that are materialized when a Material Program (MATPG) is done. That is, the OVRPGATR
instruction has no effect on the materialized attributes.

The OVRPGATR instruction consists of an operation code and two operands. Operand 1 is an
unsigned immediate value that contains a representation of which program attribute is to be over­
ridden. Operand 2 is an unsigned immediate value that contains a representation of how the program
attribute is to be overridden.

This instruction may not be branched to, and is not counted as an instruction in the instruction stream.

The instruction may precede or follow any machine instruction.

The program attributes defined by operand 1 is overridden according to the following selection values:

Attribute Attribute
Identification Description

1 Array constrainment attribute

2

3

Allowed values for operand 2:

1 = Constrain array references

2 = Do not constrain array references

3 = Fully unconstrain array references

4 = Terminate override of array constrainment attributes and resume use of the
attributes specified in the program template

String constrainment attribute

Allowed values for operand 2:

1 = Constrain string references

2 = Do not constrain string references

3 = Terminate override of string constrainment attribute and resume use of the
attribute specified in the program template

Suppress binary size exception attribute

Allowed values for operand 2:

1 = Suppress binary size exceptions

2 = Do not suppress binary size exceptions

3 = Terminate override of suppression of binary size exception attribute and
resume use of the attribute specified in the program template

Chapter 10. Program Creation Control Instructions 10-5

4

5

6

Override Program Attributes (OVRPGATR)

Suppress decimal data exception attribute

Allowed values for operand 2:

1 = Suppress decimal data exceptions

2 = Do not suppress decimal data exceptions

3 = Terminate override of suppression of decimal data exception attribute and
resume use of the attribute specified in the program template

Copy Bytes with Pointers (CPYBWP) alignment data check attribute

Allowed values for operand 2:

1 = Constrain CPYBWP to require like alignment of operands (default)

2 = Do not constrain CPWBWP to require like alignment of operands

Compare Pointer for Space Addressibility (CMPPSPAD) null pointer tolerance attribute

Allowed values for operand 2:

1 = Signal pointer does not exist exceptions for operands 1 and 2 (default)

2 = Do not signal pointer does not exist exceptions for operands 1 and 2

Chapter 10. Program Creation Control Instructions 10-6

Independent Index Instructions

Chapter 11. Independent Index Instructions

This chapter describes the instructions used for indexes. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see Appendix A, "Instruction Summary."

Create Independent Index (CRTINX)
Destroy Independent Index (DESINX)
Find Independent Index Entry (FNDINXEN)
Insert Independent Index Entry (INSINXEN)
Materialize Independent Index Attributes (MATINXAn
Modify Independent Index (MODINX)
Remove Independent Index Entry (RMVINXEN)

© Copyri 9 ht IBM Corp. 1991, 1993

11-3
11-10
11-12
11-16
11-19
11-23
11-26

11-1

I ndependent I ndex Instructions

Chapter 11. Independent Index Instructions 11-2

Create Independent Index (CRTINX)

Op Code (Hex)
0446

Operand 1
Index

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 2
Index description
template

Create Independent Index (CRTINX)

ILEaccess --,
CRTINX (

var index
description_template

system pointer;
space pOinter

Description: This instruction creates an independent index based on the index template specified by
operand 2 and returns addressability to the index in a system pointer stored in the addressing object
specified by operand 1.

The format of the index description template described by operand 2 is as follows (must be aligned on
a 16-byte multiple):

• Template size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attributes

o = Temporary
1 = Permanent

Space attribute

o = Fixed-length
1 = Variable-length

Initial context

o = Do not insert addressability in context
1 = Insert addressability in context

Access g rou p

o = Do not create as member of access group
1 = Create as member of access group

Reserved (binary 0)

Initialize space

o = Initialize

Char(8)

Bin(4)"

Bin(4)*

Char(32)

Char(1r

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-12

Bit 13

Chapter 11. Independent Index Instructions 11-3

:J

1 = Do not initialize

Re,served (binary 0)

• Recovery options

Reserved (binary 0)

ASP number

• Size of space

• Initial value of space

• Performance class

Space alignment

Create Independent Index (CRTINX)

Bits 14-31

Char(4)

Char(2)

Char(2)

Bin(4)

Char(1)

Char(4)

Bit 0

o = The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space. If no space is specified for the object, 0 must be spec­
ified for the performance class.

= The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space as well as to allow proper alignment of input/output
buffers at 512-byte alignments within the the space.

Reserved (binary 0) Bits 1-4

Main storage pool selection

o = Process default main storage pool is used for object.
1 = Machine default main storage pool is used for object.

Reserved (binary 0)

Block transfer on implicit access state modification

Bit 5

Bit 6

Bit 7

o = Transfer the minimum storage transfer size for this object. This value is 1 storage unit.
1 = Transfer the machine default storage transfer size. This value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0)

• Extension offset

• Context

• Access group

• Index attributes

Entry length attribute

o = Fixed-length entries
1 = Variable-length entries

Immediate update

o = No immediate update
1 = Immediate update

Key insertion

o = No insertion by key
1 = Insertion by key

Entry format

o = Scalar data only
1 = Both pOinters and scalar data

Optimized processing mode

Char(3)

Bin(4)

System pointer

System pointer

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Chapter 11. Independent Index Instructions 11-4

D = Optimize for random references
1 = Optimize for sequential references

Maximum entry length

o = Maximum entry length is 120 bytes
1 = Maximum entry length is 2000 bytes

Reserved (binary 0)

• Argument length

• Key length

Create Independent Index (CRTINX)

Bit 5

Bits 6-7

Bin(2)

Bin(2)

Note: This instruction ignores the values associated with the entries annotated with an asterisk (*).

The template identified by operand 2 must be 16-byte aligned.

The template extension is located by the extension offset field. The template extension must be
16-byte aligned in the space. The following is the format of the template extension:

• Reserved (binary 0) Char(20)

• Domain assigned to the object

• Reserved (binary 0)

Char(2)

Char(42)

If the created object is permanent, it is owned by the user profile governing process execution. The
owning user profile is implicitly assigned all private authority states for the object. The storage occu­
pied by the created object is charged to this owning user profile. If the created object is temporary,
there is no owning user profile, and all authority states are assigned as public. Storage occupied by
the created context is charged to the creating process.

The object identification specifies the symbolic name that identifies the space within the machine. An '.J
object type of hex DE is implicitly supplied by the machine. The object identification is used to identify
the object on materialize instructions as well as to locate the object in a context that addresses the
object.

The existence attribute specifies that the index is to be created as a permanent or a temporary object.
A temporary index, if not explicitly destroyed by the user, is implicitly destroyed by the machine when
machine processing is terminated.

A space may be associated with the created object. The space may be fixed or variable in size, as
specified by the space attribute field. The initial allocation is as specified in the size of space field.
The machine allocates a space of at least the size specified. The actual size allocated is dependent on
an algorithm defined by a specific implementation.

If the Initial context creation attribute field indicates that addressability is to be inserted in a context,
the context field must be a system pointer that identifies a context where addressability to the newly
created object is to be placed. If the initial context indicates that addressabi/ity is not to be placed in a
context, the context field is ignored.

If the access group creation attribute field indicates that the object is to be created in an access group,
the access group field must be a system pOinter that identifies an access group in which the object is
to be created. The existence attribute of the object must be identical to the existence attribute of the
access group. If the object is not to be created in the access group, the access group field is ignored.

The initialize space creation option controls whether or not the space is to be initialized. When initialize
is specified, each byte of the space is initialized to a value specified by the initial value of space field. ~
Additionally, when the space is extended in size, this byte value is also used to initialize the new allo-
cation. When do not initialize is specified, the initial value of space field is ignored and the initial value
of the bytes of the space are unpredictable.

Chapter 11. Independent Index Instructions 11-5

Create Independent Index (CRTINX)

When do not initialize is specified for a space, internal machine algorithms do ensure that any storage
resources last used for allocations to another object which are reused to satisfy allocations for the
space are reset to a machine default value to avoid possible access of data which may have been
stored in the other object. To the contrary, reusage of storage areas previously used by the space
object are not reset. thereby exposing subsequent reallocations of those storage areas within the
space to access of the data which was previously stored within them.

The ASP number attribute specifies the ASP number of the ASP on which the unit is to be allocated. A
value of 0 indicates an ASP number is not specified and results in the default of allocating the object in
the system ASP. Allocation on the system ASP can only be done implicitly by not specifying an ASP
number. The only nonzero values allowed are 2 through 16 which provide for explicit allocation of
objects on user ASPs. The ASP number must specify an existing ASP. The ASP number attribute may
only be specified for creation of a permanent object. The ASP number attribute of an object can be
materialized, but cannot be modified.

Invalid specification of the ASP number attribute results in the signaling of the template value invalid
(hex 3801) exception.

The preferred unit number attribute which can be specified in the performance class field at object cre­
ation may not be specified in conjunction with specification of the ASP number attribute.

The performance class parameter provides information allowing the machine to more effectively
manage the object considering the overall performance objectives of operations involving the index.

If the entry length attribute field specifies fixed-length entries, the entry length of every index entry is
established at creation by the value in the argument length field of the index description template. If
the entry length attribute field specifies variable-length entries, then entries will be variable-length (the
length of each entry is supplied when the entry is inserted), and the argument length field is ignored.

If the immediate update field specifies that an immediate update should occur, then every update to the
index will be written to auxiliary storage after every insert or remove operation.

If the key insertion field specifies insertion by key, then the key length field must be specified. This
allows the specification of a portion of the argument (the key), which may be manipulated in either of
the following ways in the Insert Index Entry instruction:

• The insert will not take place if the key portion of the argument is already in the index.

• The insert will cause the non key portion of the argument to be replaced if the key is already in the
index.

The entry format field designates the index entries as containing both pointers and scalar data or
scalar data only. The both pointers and scalar data field can be used only for indexes with fixed-length
entries. If the index is created to contain both pointers and data, then

• Entries to be inserted must be 16-byte aligned.

• Each entry retrieved by the Find Independent Index Entry instruction or the Remove Independent
Index Entry is 16-byte aligned.

• Pointers are allowed in both the key and nonkey portions of an index entry.

• Pointers need not be at the same location in every index entry.

• Pointers inserted into the index remain unchanged. No resolution is performed before insertion.

If the index is created to contain scalar data only, then:

• Entries to be inserted need not be aligned.

• Entries returned by the Find Independent Index Entry instruction or the Remove Independent Index
Entry instruction are not aligned.

Chapter 11. Independent Index Instructions 11-6

Create Independent Index (CRTINX)

• Any pointers inserted into the index will be invalidated.

The optimized processing mode. index attribute field is used to designate whether the index should be
created and maintained in a manner that optimizes performance for either random or sequential oper­
ations.

If the maximum entry length attribute field specifies that the maximum entry length is 2000 bytes, then
the maximum length allowed for independent index entries will be 2000 bytes. Otherwise, the
maximum entry length allowed will be 120 bytes.

The key length field specifies the length of the key for the entries that are inserted into the index. The
argument length specifies the length of the the entries when fixed length entries are used.

The key length must have a value less than or equal to the argument length whether specified during
creation (for fixed-length entries) or during insertion (for variable length). The key length is not used if
the key insertion field specifies no insertion by key.

The extension offset specifies the byte offset from the beginning of the operand 2 template to the
beginning of the template extension. An offset value of zero specifies that the template extension is
not provided. A negative offset value is invalid. A non-zero offset must be a multiple of 16 (to cause
16 byte alignment of the extension). Except for these restrictions, the offset value is not verified for
correctness relative to the location of other portions of the create template.

The domain assigned field in the template extension allows the user of this instruction to override the
domain for this object that would otherwise be chosen by the machine. Vali~ values for this field are:

Domain assigned to the object Domain field

Hex 0000

Hex 0001

Hex 8000

The domain will be chosen by the machine.

The domain will be 'Common User'.

The domain will be 'Common System'.

Any value specified for the domain assigned field other than those listed above will result in a template
value invalid (hex 3801) exception being signalled.

Limitations: The following are limits that apply to the functions performed by this instruction.

The size of the object specific portion of the object is limited to a maximum of 4 gigabytes. This size is
dependent upon the amount of storage needed for the number and size of index entries and excludes
the size of the associated space, if any.

The size of the associated space for this object is limited to a maximum of 16MB-32 bytes.

Authorization Required

• Insert

Context identified by operand 2

User profile of object owner

• Retrieve

- Contexts referenced for address resolution

Chapter 11. Independent Index Instructions 11-7

Lock Enforcement

• Modify

Access group identified by operand 2

User profile of object owner

Context identified by operand 2

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

02 Access group

01 object ineligible for access group

02 object exceeds available space

06 Addressing

08

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

ArgumenUparameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

OE Context

01 duplicate object identification

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

1C Machine-dependent exception

03 machine storage limit exceeded

04 object storage limit exceeded

09 auxiliary storage pool number invalid

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

Create Independent Index (CRTINX)

Operands
1 2 Other

X

X

X X

X X

X X

X X

X X

X

X

X X X

X

X X X

X

X

X

X

X

X

X X

Chapter 11. I ndependent I ndex Instructions 11-8

Create Independent Index (CRTINX)

Operands
Exception 1 2 Other

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 11. Independent Index Instructions 11-9

Destroy Independent Index (DESINX)

Op Code (Hex)
0451

Operand 1
Index

Operand 1: System pointer.

f ILEaccess
DESINX (
~var index : system pOinter

Destroy Independent Index (DESINX)

Description: A previously created index identified by operand 1 is destroyed. and addressability to the
object is removed from any context in which addressability exists. The system pointer identified by
operand 1 is not modified by the instruction. and a subsequent reference to the destroyed index
through the pointer results in an object destroyed exception.

Authorization Required

• Object control

- Operand 1

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

• Object control

- Operand 1

• Modify

Access group which contains operand 1

Context which addresses operand 1

User profile which owns index

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

Operand
1 Other

x
X

X

X

X

Chapter 11. Independent Index Instructions 11-10

Destroy Independent Index (DESINX)

Operand
Exception 1 Other
OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

07 authority verification terminated due to destroyed object X

08 object compressed X :.J
24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 11. Independent Index Instructions 11-11

Find Independent Index Entry (FNDINXEN)

Find Independent Index Entry (FNDINXEN)

Op Code (Hex)
0494

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Space pointer.

Operand 4: Space pointer.

Operand 2
Index

Operand 3
Option list

Operand 4
Search argument

ILEaccess --~
FNDINXEN (

receiver
var index

option_list
search_argument

space pOinter;
system potnter;
space potnter;
space pOinter

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: This instruction searches the independent index identified by operand 2 according to the
search criteria specified in the option list (operand 3) and the search argument (operand 4); then it
returns the desired entry or entries in the receiver field (operand 1). The maximum size of the inde­
pendent index entry is either 120 bytes or 2000 bytes depending on how the maximum entry length
attribute field was specified when the index was created.

The option list is a variable-length area that identifies the type of search to be performed, the length of
the search argument(s). the number of resultant arguments to be returned, the lengths of the entries
returned, and the offsets to the entries within the receiver identified by the operand 1 space pointer.
The option list has the following format:

• Rule option

• Argument length

• Argument offset

• Occurrence count

• Return count

Char(2)

UBin(2)

Bin(2)

Bin(2)

Bin(2)

Each entry that is returned to the receiver operand contains the following:

• Entry length

• Offset

UBin(2)

Bin(2)

The rule option identifies the type of search to be performed and has the following meaning:

Search Type

>

Value (Hex)
0001

0002

Meaning
Find equal occurrences of operand 4.

Find occurrences that are greater than
operand 4.

Chapter 11. Independent Index Instructions 11-12

Find Independent Index Entry (FNDINXEN)

Search Type Value (Hex) Meaning
< 0003 Find occurrences that are less than

operand 4.

~ 0004 Find occurrences that are greater than or
equal to operand 4.

S 0005 Find occurrences that are less than or
equal to operand 4.

First 0006 Find the first index entry or entries.

Last 0007 Find the last index entry or entries.

Between 0008 Find all entries between the two argu-
ments specified by operand 4 (inclusive).

The rule option to find between requires that operand 4 be a 2-element array in which element 1 is the
starting argument and element 2 is the ending argument. All arguments between (and including) the
starting and ending arguments are returned, but the occurrence count specified is not exceeded.

If the index was created to contain both pointers and scalar data, then the search argument must be
16-byte aligned. For the option to find between limits, both search arguments must be 16-byte aligned.

The rule option and the argument length determine the search criteria used for the index search. The
argument length must be greater than or equal to one. The argument length for fixed-length entries
must be less than or equal to the argument length specified when the index is created.

The argument lenath field specifies the length of the search argument (operand 4) to be used for the
index search. When the rule option equals first or last, the argument length field is ignored. For the
rule option to find between, the argument length field specifies the lengths of one array element. The . '\
lengths of the array elements must be equal. ..,

The argument offset is the offset of the second search argument from the beginning of the entire argu­
ment field (operand 4). The argument offset field is ignored unless the rule option is find between.

The occurrence count specifies the maximum number of index entries that satisfy the search criteria to
be returned. This field is limited to a maximum value of 4095. If this value is exceeded, a template
value invalid (hex 3801) exception is signaled.

The return count specifies the number of index entries satisfying the search criteria that were returned
in the receiver (operand 1). If this field is 0, no index arguments satisfied the search criteria.

There are two fields in the option list for each entry returned in the receiver (operand 1). The entry
!!ruI!b. is the length of the entry retrieved from the index. The offset has the following meaning:

• For the first entry. the offset is the number of bytes from the beginning of the receiver (operand 1)
to the first byte of the first entry.

• For any succeeding entry, the offset is the number of bytes from the beginning of the immediately
preceding entry to the first byte of the entry returned.

The entries that are retrieved as a result of the Find Independent Index Entry instruction are always
returned starting with the entry that is closest to or equal to the search argument and then proceeding
away from the search argument. For example. a search that is for < (less than) or S (less than or
equal to) returns the entries in order of decreasing value.

All the entries that satisfy the search criteria (up to the occurrence count) are returned in the space
starting at the location designated by the operand 1 space pointer.

If the index was created to contain both pointers and scalar data, then each returned entry is 16-byte
aligned.

Chapter 11. Independent Index Instructions 11-13

Find Independent Index Entry (FNDINXEN)

If the index was created to contain scalar data only, then returned entries are contiguous.

Every entry retrieved causes the count of the find operations to be incremented by 1. The current
value of this count is available through the Materialize Index Attributes instruction.

Authorization Required

• Retrieve

Operand 2

Contexts referenced for address resolution

Lock Enforcement

• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X' X X

02 boundary alignment X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

Chapter 11. Independent Index Instructions 11-14

Find Independent Index Entry (FNDINXEN)

Operands
Exception 1 2 3 4 Other

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

02 template size invalid X

Chapter 11. I ndependent I ndex I nstructi ons 11-15

Insert Independent Index Entry (INSINXEN)

Insert Independent Index Entry (lNSINXEN)

Op Code (Hex)
04A3

Operand 1
Index

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: Space pointer.

Operand 2
Argument

Operand 3
Option list

:-- ILEaccess --~
i INSINXEN (

var index
argument
option_list

system pOinter;
space pOinter;
space pOinter

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: This instruction inserts one or more new entries into the independent index identified by
operand 1 according to the criteria specified in the option list (operand 3). Each entry is inserted into
the index at the appropriate location based on the binary value of the argument. No other collating
sequence is supported. The maximum length allowed for the independent index entry is either 120
bytes or 2000 bytes depending on how the maximum entry length attribute field was specified when the
index was created.

The argument (operand 2) and the option list (operand 3) have the same format as the argument and
option list for the Find Independent Index Entry instruction.

The rule option identifies the type of insert to be performed and has the following meaning:

Insert Type Value (Hex) Meaning Authorization
Insert 0001 Insert unique argument Insert

Insert with 0002 Insert argument, replacing the Update
replacement nonkey portion if the key is

already in the index

Insert without 0003 Insert argument only if the key is Insert
replacement not already in the index

The insert rule option is valid only for indexes not containing keys. The insert with replacement rule
option and the insert without replacement rule option are valid for indexes containing either fixed- or
variable-length entries with keys. The duplicate key argument (hex 1801) exception is signaled for the
following conditions:

• If the rule option is insert and the argument to be inserted (operand 2) is already in the index

• If the rule option is insert without replacement and the key portion of the argument to be inserted
(operand 2) is already in the index

The argument length and argument offset fields are ignored, however, the entry length and offset fields
must be entered for every entry which is to be inserted into the index.

Chapter 11. Independent Index Instructions 11-16

Insert Independent Index Entry (INSINXEN)

The occurrence count specifies the number of arguments to be inserted. This field is limited to a
maximum value of 4095. If this value is exceeded, a template value invalid (hex 3801) exception is
signaled.

If the index was created to contain both pointers and data, then each entry to be inserted must be
16-byte aligned. If the index was created to contain variable-length entries, then the entry length and
offset fields must be specified in the option list for each argument in the space identified by operand 2.
The entry length is the length of the entry to be inserted.

If the index was created to contain both pointer and scalar data, the offset field in the option list must
be supplied for each entry to be inserted. The offset is the number of bytes from the beginning of the
previous entry to the beginning of the entry to be inserted. For the first entry, this is the offset from the
start of the space identified by operand 2.

The return count specifies the number of entries inserted into the index. If the index was created to
contain scalar data only, then any pointers inserted are invalidated.

Authorization Required

• Insert or update depending on insert type

- Operand 1

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

• Modify

- Operand 1

Exceptions

Exception

02 Access group

01 object exceeds available space

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

Operands
1 2 3 Other

X

X X X

X X X

X X X

X X X

X X X

X

X X X X

Chapter 11. Independent Index Instructions 11-17

~

Insert Independent Index Entry (INSINXEN)

Operands
Exception 1 2 3 Other

<., 05 authority verification terminated due to damaged object X

44 partial system object damage X X X X

18 Independent index

01 duplicate key argument in index X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

02 template size invalid X

Chapter 11. Independent Index Instructions 11-18

Materialize Independent Index Attributes (MATINXAT)

Materialize Independent Index Attributes (MATINXAT)

Op Code (Hex)
0462

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Index

ILEaccess --,

MATINXAT (
receiver

var index
)

space pOinter;
system pOinter

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: The instruction materializes the creation attributes and current operational statistics of
the independent index identified by operand 2 into the space identified by operand 1. The format of the
attributes materialized is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attributes

o = Temporary
1 = Reserved

Space attribute

o = Fixed-length
1 = Variable-length

Context

o = Addressability not in context
1 = Addressability in context

Access group

o = Not a member of access group
1 = Member of access group

Reserved (binary 0)

Initialize space

Reserved (binary 0)

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-12

Bit 13

Bits 14-31

Chapter 11. Independent Index Instructions 11-19

:J

Materialize Independent Index Attributes (MATINXAT)

• Reserved (binary 0) Char(4)

Bin(4)

Char(1)

Char(4)

Bit 0

• Size of space

• Initial value of space

• Performance class

•

•

•

•

Space alignment

o = The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space. If no space is specified for the object. this value must
be specified for the performance class.

= The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space as well as to allow proper alignment of input/output
buffers at 512-byte alignments within the the space.

Reserved (binary 0) Bits 1-4

Main storage pool selection

o = Process default main storage pool used for object.
1 = Machine default main storage pool used for object.

Reserved (binary 0)

Block transfer on implicit
access state modification

Bit 5

Bit 6

Bit 7

o = The minimum storage transfer size for this object is a value of 1 storage unit.
1 = The machine default storage transfer size for this object is a val'ue of 8 storage units.

Reserved (binary 0) Bits 8-31

Reserved (binary 0) Char(7)

Context System pointer

Access group System pointer

Index attributes Char(1)

• Argument length Bin(2)

• Key length Bin(2)

• Index statistics Char(12)

Entries inserted UBin(4)

Entries removed UBin(4)

Find operations UBin(4)

The first 4 bytes of the materialization identify the total number of bytes provided that may be used by
the instruction. This value is supplied as input to the instruction and is not modified by the instruction.
A value of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested. then the excess bytes are unchanged.

No exceptions other than the materialization length (hex 3803) exception described previously are sig­
naled in the event that the receiver contains insufficient area for the materialization.

Chapter 11. Independent Index Instructions 11-20

Materialize Independent Index Attributes (MATINXAT)

The template identified by the operand 1 space pointer must be 16-byte aligned. Values in the tem-
plate remain the same as the values specified at the creation of the independent index except that the ,
object identification, context, and size of the associated space contain current values. """""

If the entry length is fixed, then the argument length is the value supplied in the template when the
index was created. If the entry length is variable, then the argument length field is equal to the length
of the longest entry that has ever been inserted into the index.

The number of arguments in the index equals the number of entries inserted minus entries removed.
The value of the find operations field is initialized to a each time the index is materialized. The value
may not be correct after an abnormal system termination.

Authorization Required

• Operational

- Operand 2

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

1C Machine-dependent exception

03 machine storage limit exceeded

Operands
1 2 Other

X X

X X

X X

X X

X X

X

X X X

X

X X X

X

X

Chapter 11. Independent Index Instructions 11-21

~

Materialize Independent Index Attributes (MATINXAT)

Operands
Exception 1 2 Other
22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification termin'ated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

03 materialization length exception X

Chapter 11. Independent Index Instructions 11-22

Modify Independent Index (MODINX)

Op Code (Hex)
0452

Operand 1
Independent index

Operand 1: System pointer.

Operand 2: Character (4) scalar.

Operand 2
Modification
option

Modify Independent Index (MODINX)

ILEaccess --,

MODINX (
var index
var modification option

) -

system potnter;
aggregate

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: This instruction modifies the selected attributes of the independent index specified by
operand 1 to have the values specified in operand 2. The modification options specified in operand 2
have the following format:

• Modification selection

Reserved (binary 0)

Immediate update

o = Do not change immediate update attribute
1 = Change immediate update attribute

Reserved (binary 0)

• New attribute value

Reserved (binary 0)

Immediate update

o = No immediate update
1 = Immediate update

Reserved (binary 0)

• Reserved (binary 0)

Char(1)

Bit 0

Bit 1

Bits 2-7

Char(1)

Bit 0

Bit 1

Bits 2-7

Char(2)

If the modification selection immediate update is 0, then the immediate update attribute is not changed.
If the modification selection immediate update bit is 1, the immediate update attribute is changed to the
new immediate update attribute value.

If the immediate update attribute of the index was previously set to no immediate update, and it is
being modified to immediate update, then the index is ensured before the attribute is modified.

Authorization Required

• Object management

- Operand 1

• Retrieve

Chapter 11. Independent Index Instructions 11-23

~.

- Contexts referenced for address resolution

Lock Enforcement·

• Modify

- Operand 1

• Materialization

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage

05 authority verification terminated due to damaged object

44 partial system object damage

1A Lock state

01 invalid lock state

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

07 authority verification terminated due to destroyed object

08 object compressed

24 Pointer specification

01 pointer does not exist

02 pointer type invalid

03 pointer address invalid object

Modify Independent Index (MODINX)

Operands
1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

2

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

X

X

Chapter 11. Independent Index Instructions 11-24

Modify Independent Index (MODINX)

Operands
Exception 1 2 Other

2E Resource contr'ol limit ..J
01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

02 scalar attributes invalid X

36 Space management

01 space extension/truncation X

Chapter 11, Independent Index Instructions 11-25

Remove Independent Index Entry (RMVINXEN)

Remove Independent Index Entry (RMVINXEN)

Op Code (Hex)
0484

Operand 1
Receiver

Operand 1: Space pointer or null.

Operand 2: System pointer.

Operand 3: Space pointer.

Operand 4: Space pointer.

Operand 2
Index

Operand 3
Option list

Operand 4
Argument

ILEaccess --,

RMVINXEN (
receiver

var index
option_list
argument

space painter; OR
null operand;
system painter;
space painter;
space pointer

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: The index entries identified by operands 3 and 4 are removed from the independent
index identified by operand 2 and optionally returned in the receiver specified by operand 1. The
maximum length of an independent index entry is either 120 bytes or 2000 bytes depending on how the
maximum entry length attribute field was specified when the index was created.

The option list (operand 3) and the argument (operand 4) have the same format and meaning as the
option list and argument for the Find Independent Index Entry instruction. The retum count designates
the number of index entries that were removed from the index.

The arguments removed are returned in the receiver field if a space pointer is specified for operand 1.
If operand 1 is null, the entries removed from the index are not returned. If neither space pointer nor
null is specified for operand 1, the entries are returned in the same way that entries are returned for
the Find Independent Index Entry instruction.

Every entry removed causes the occurrence count to be incremented by 1. The current value of this
count is available through the Materialize Index Attributes instruction. The occurrence count field must
be less then 4096.

Authorization Required

• Delete

- Operand 2

• Retrieve

- Contexts referenced for address resolution

Chapter 11. Independent Index Instructions 11-26

Remove Independent Index Entry (RMVINXEN)

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

• Modify

- Operand 2

Exceptions

Operands
Exception 1 2 3 4 Other

02 Access group

01 object exceeds available space X

06 Addressing

01 space addressing violation X X X X

02 boundary alignment X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 ArgumenUparameter

01 parameter reference violation X X. X X

OA Authorization

01 unauthorized for operation X •
~ 10 Damage encountered

04 system object damage state X X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X X

1A Lock state

01 invalid lock state X X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X X

Chapter 11. Independent Index Instructions 11-27

Remove Independent Index Entry (RMVINXEN)

Operands
Exception 1 2 3 4 Other

c., 02 pointer type invalid X X X X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

02 template size invalid X

'e."

Chapter 11. Independent Index Instructions 11-28

Queue Management Instructions

Chapter 12. Queue Management Instructions

This chapter describes the instructions used for queue management. These instructions are in alpha­
betic order. For an alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary."

Dequeue (DEQ)
Enqueue (ENQ)
Materialize Queue Attributes (MATQAT)
Materialize Queue Messages (MATQMSG)

© Copyright IBM Corp. 1991, 1993

12-3
12-9

12-12
12-16

12-1

Queue Management Instructions

Chapter 12. Queue Management Instructions 12-2

Dequeue (DEQ)

Dequeue (DEQ)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand 4-5
CEQ Message Message text Queue or
1033 prefix queue tem-

plate

CEQB Branch options Message Message text Queue or Branch targets
1C33 prefix queue tem-

plate

CEQI Indicator Message Message text Queue or Indicator targets
1833 options prefix queue tem-

plate

Operand 1: Character variable scalar (fixed-length).

Operand 2: Space pointer.

Operand 3: System pointer or space pointer data object.

Operand 4-5:

• Branch Form-Branch point. instruction pointer. relative instruction number. or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

ILEaccess --~

DEQ (
var message_prefix

message_text
var queue
: signed binary /*

aggregate;
space pOinter;
system pOinter;

return_code */

If a message is not available, this instruction will return
immediately with the return code set as follows:

Return_Code Meaning

1

9

OR

DEQWAIT (
var msg_prefix

msg_text
var queue

Message Dequeued.

Message Not Dequeued.

aggregate;
space pOinter;
system pOinter

If a message is not available, this instruction will wait until a
message is available.

Chapter 12. Queue Management Instructions 12-3

Dequeue (DEQ)

Description: The instruction retrieves a queue message based on the queue type (FIFO. LIFO, or
keyed) specified during the queue's creation. If the queue was created with the keyed option, mes­
sages can be retrieved by any of the following relationships between an enqueued message key and a
selection key specified in operand 1 of the Dequeue instruction: .p, >, <, S. and~. If the queue was
created with either the LIFO or FIFO attribute, then only the next message can be retrieved from the
queue.

If a message is not found that satisfies the dequeue selection criterion and the branch or options are
not specified, the process waits until a message arrives to satisfy the dequeue or until the dequeue
wait time-out expires. If branch or indicator options are specified, the process is not placed in the
dequeue wait state and either the control flow is altered according to the branch options, or indicator
values are set based on the presence or absence of a message to be dequeued.

If operand 3 is a system pointer, the message is dequeued from the queue specified by operand 3. If
operand 3 is a space pointer, the message is dequeued from the queue which is specified in the tem­
plate pointed to by the space pointer. The format of this template is given later in this section. The
criteria for message selection are given in the message prefix specified by operand 1. The message
text is returned in the space speCified by operand 2. and the message prefix is returned in the scalar
specified by operand 1. Improper alignment results in an exception being signaled. The format of the
message prefix is as follows:

• Timestamp of enqueue of message

• Dequeue wait time-out value
(ignored if branch options speCified)

• Size of message dequeued
(The maximum allowable size of a queue message is 65 000 bytes.)

• Access state modification option indicator and
message selection criteria

Access state modification option when
entering Dequeue wait

o = Access state is not modified
1 = Access state is modified

Access state modification option when
leaving Dequeue wait

o = Access state is not modified
1 = Access state is modified

Multiprogramming level option

o = Leave current MPL set at Dequeue wait
1 = Remain in current MPL set at Dequeue wait

Time-out option

o = Wait for specified time. then signal time-out exception
1 = Wait indefinitely

Actual key to input key relationship
(for keyed queue)

0010: Greater than
0100: Less than
0110: Not equal
1000: Equal
1010: Greater than or equal
1100: Less than or equal

Char(S)**

Char(S)*

Bin(4)**

Char(1)*

Bit 0*

Bit 1*

Bit 2*

Bit 3*

Bits 4-7*

Chapter 12. Queue Management Instructions 12-4

• Search key (ignored for FIFO/UFO queues
but must be present for FIFO/UFO
queues with nonzero key length values)

• Message key

Char(key
length)*

Char(key
length)"

Dequeue (DEQ)

Note: Fields shown here with one asterisk indicate input to the instruction, and fields shown here with
two asterisks are returned by the machine.

A nonzero dequeue wait time-out value overrides any dequeue wait time-out value specified as the
current process attribute. A zero dequeue wait time-out value causes the wait time-out value to be
taken from the current process attribute. If all wait time-out values are 0 (from the Dequeue instruction
and the current process attribute), an immediate wait time-out (hex 3A01) exception is signaled. The
bits in this field are numbered from 0 to 63, and bit 41 is defined as 1024 microseconds. The maximum
dequeue wait time-out interval allowed is a value equal to (248 - 1) microseconds. Any value that indi­
cates more time than the maximum wait time-out causes the maximum wait time-out to be used.

The size of the message dequeued is returned in the message prefix. The size of the message
dequeued can be less than or equal to the maximum size of message speCified when the queue was
created. When dequeuing from a keyed queue, the length of the search key field and the length of the
message key field (in the message key prefix specified in operand 1) are determined implicitly by the
attributes of the queue being accessed. If the message text on the queue contains pointers, the
message text operand must be 16-byte aligned.

The access state of the process access group is modified when a Dequeue instruction results in a wait
and the following conditions exist:

• The process' instruction wait initiation access state control attribute specifies allow access state
modification

• The dequeue access state modification option specifies modify access state

• The multiprogramming level option specifies leave MPL set during wait.

The process will remain in the current MPL set for a maximum of two seconds when a Dequeue
instruction results in a wait if the multiprogramming level option specifies remain in current MPL set at
Dequeue wait and the access state modification when entering Dequeue wait option specifies do not
modify access state. After two seconds, the process will automatically be removed from the current
MPL set. The automatic removal does not change or affect the total wait time specified for the process
by the Dequeue wait time-out value.

Operand 3 can be a system pointer or a space pointer. If it is a system pointer, this pointer will be
addressing the queue from which the message is to be dequeued. If it is a space pointer, this pointer
will be addressing a template which will contain the system pOinter to the queue as well as the
Dequeue template extension. The template is 32 bytes in length and must be aligned on a 16-byte
boundary with the format as follows:

• Queue

• Dequeue template extension

Extension Options

- Modify process event mask option

o = Do not modify process event mask
1 = Modify process event mask

- Reserved (binary 0)

Extension Area

System pointer

Char(16)

Char(1)

Bit 0 *

Bits 1-7

Char(15)

Chapter 12. Queue Management Instructions 12-5

- New process event mask

- Previous process event mask

- Reserved (binary 0)

Bi n(2) •

Bin(2) ..

Char(11)

Dequeue (DEQ)

The previous process event mask is only returned when the modify process event mask option has
been set to 1.

Note: Fields shown here with one asterisk indicate input to the instruction, and fields shown here with
two asterisks are returned by the machine.

The modify process event mask option controls the state of the event mask in the process executing
this instruction. If the modify process event mask field specified to modify the process event mask, the
process event mask will be changed as specified by the new process event mask field. When the
process event mask is changed, the current process event mask will be returned in the previous
process event mask fi e I d.

If the system security level machine attribute is hex 40 or greater and the process is running in user
state, then the modify process event mask option is not allowed and a template value invalid (hex 3801)
exception is signalled.

If the process event mask is in the masked state, the machine does not schedule signaled event moni­
tors in the process. The event monitors continue to be signaled by the machine or other processes.
When the process is modified to the unmasked state, event handlers are scheduled to handle those
events that occurred while the process was masked and those events occurring while in the unmasked
state. The number of signals retained while the process is masked is specified by the attributes of the
event monitor associated with the process.

The process is automatically masked by the machine when event handlers are invoked. If the process
is unmasked in the event handler, other events can be handled if another enabled event monitor within
that process is signaled. If the process is masked when it exits from the event handler, the machine
explicitly unmasks the process.

Valid masking values are:

o Masked
256 Unmasked

Other values are reserved and must not be specified. If any other values are specified, a template
value invalid (hex 3801) exception is signaled.

Whether masking or unmasking the current process, the new mask takes effect upon completion of a
satisfied dequeue.

Resultant Conditions

• Equal - message dequeued

• Not equal - message not dequeued

Authorization Required

• Retrieve

Operand 3

Contexts referenced for address resolution

Chapter 12. Queue Management Instructions 12-6

Dequeue (DEQ)

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X X

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X J
1A Lock state

01 invalid lock state X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer address invalid object X

2E Resource control limit :..J
01 user profile storage limit exceeded X

Chapter 12. Queue Management Instructions 12-7

Exception
32 Scalar specification

03 scalar value invalid

36 Space management

01 space extension/truncation

3A Wait time-out

01 dequeue

Dequeue (DEQ)

Operands
1 2 3 Other

x

x

x

Chapter 12. Queue Management Instructions 12-8

Enqueue (ENQ)

Op Code (Hex)
0368

Operand 1
Queue

Operand 1: System pointer.

Operand 2: Character scalar.

Operand 3: Space pointer.

Operand 2
Message prefix

Operand 3
Message text

Enqueue (ENO)

ILEaccess --,

ENQ (
var queue
var message_prefix

message_text

system pOinter;
aggregate;
space pOinter

Description: A message is enqueued according to the queue type attribute specified during the
queue's creation.

If keyed sequence is specified, enqueued messages are sequenced in ascending binary collating order
according to the key value. If a message to be enqueued has a key value equal to an existing
enqueued key value, the message being added is enqueued following the existing message.

If the queue was defined with either last in, first out (LIFO) or first in, first out (FIFO) sequencing, then
enqueued messages are ordered chronologically with the latest enqueued message being either first
on the queue or last on the queue, respectively. A key can be provided and associated with messages
enqueued in a LIFO or FIFO queue; however, the key does not establish a message's position in the
queue. The key can contain pointers, but the pointers are not considered to be pointers when they are
placed on the queue by an Enqueue instruction.

Operand 1 specifies the queue to which a message is to be enqueued. Operand 2 specifies the
message prefix, and operand 3 specifies the message text.

The format of the message prefix is as follows:

• Size of message to be enqueued

• Enqueue key value (Ignored for FIFO/LIFO
queues with key lengths equal to o.

Bin(4)

Char(key
length)

The size of the message to be enqueued is supplied to inform the machine of the number of bytes in
the space that are to be considered message text. The size of the message is then considered the
lesser of the size of the message to be enqueued attribute and the maximum message size specified on
queue creation. The message text can contain pointers. When pointers are in message text, the
operand 3 space pointer must be 16-byte aligned. Improper alignment will result in an exception being
signaled.

If the enqueued message causes the number of messages to exceed the maximum number of mes­
sages attribute of the queue, one of the following occurs:

• If the queue is not extendable, the queue message limit exceeded (hex 2602) exception and the ,,),
queue message limit exceeded (hex 0012,03,01) event are signaled. The message is not enqueued.

Chapter 12. Queue Management Instructions 12-9

~

Enqueue (ENQ)

• If the queue is extendable, the queue is implicitly extended by the extension value attribute. The
message is enqueued. No exception is signaled, but the queue extended (hex 0012,04.01) event is
signaled.

The maximum allowable queue size, including all messages currently enqueued and the machine over­
head, is 16 megabytes.

Authorization Required

· Insert

- Operand 1

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 ArgumenUparameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X X

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X X

lC Machine-dependent exception

03 machine storage limit exceeded X X

04 object storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

Chapter 12. Queue Management Instructions 12-10

Enqueue (ENO)

Operands
Exception 1 2 3 Other

01 object not found X X X ..J
02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer address invalid object X

26 Process management

02 queue message limit exceeded X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 12. Queue Management Instructions 12-11

Materialize Queue Attributes (MATQAT)

Op Code (Hex)
0336

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Queue

Materialize Queue Attributes (MATQAT)

ILEaccess --,

MATQAT (
receiver

var queue
space pOinter;
system pOinter

Description: The attributes of the queue specified by operand 2 are materialized into the object speci­
fied by operand 1. The format of the materialized queue attributes must be aligned on a 1B-byte mUl­
tiple. The format is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attributes

o = Temporary
1 = Permanent

Space attribute

o = Fixed-length
1 = Variable-length

Initial context

a = Addressability not in context
1 = Addressability in context

Access group

a = Not a member of access group
1 = Member of access group

Reserved (binary 0)

Initialize space

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

Char(8)

Bin(4)

. Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-12

Bit 13

Bits 14-31

Char(4)

Bin(4)

Chapter 12. Queue Management Instructions 12-12

• Initial value of space

• Performance class

Space alignment

Materialize Queue Attributes (MATQAT)

Char(1)

Char(4)

Bit 0

o = The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space. If no space is specified for the object, this value must
be specified for the performance class.

= The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space as well as to allow proper alignment of input/output
buffers at 512-byte alignments within the the space.

Reserved (binary 0) Bits 1-4

Main storage pool selection

o = Process default main storage pool is used for object.
1 = Machine default main storage pool is used for object.

Reserved (binary 0)

Block transfer on implicit
access state modification

Bit 5

Bit 6

Bit 7

o = Transfer the minimum storage transfer size for this object. This value is 1 storage unit.
1 = Transfer the machine default storage transfer size. This value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

• Queue attributes

Message content

o = Contains scalar data only
1 = Contains pointers and scalar data

Queue type

00 = Keyed
01 = Last in, first out
10 = First in. first out

Queue overflow action

o = Signal exception
1 = Extend queue

Reserved (binary 0)

• Current maximum number of messages

• Current number of messages enqueued

• Extension value

• Key length

Bits 8-31

Char(7)

System pointer

System pointer

Char(1)

Bit O'

Bits 1-2

Bit 3

Bits 4-7

Bin(4)

Bin(4)

Bin(4)

Bin(2)

• Maximum size of message to be enqueued Bin(4)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception.

Chapter 12. Queue Management Instructions 12-13

Materialize Queue Attributes (MATQAT)

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested. then the excess bytes are unchanged. No exceptions (other than the materialization
length (hex 3803) exception described previously) are Signaled when the receiver contains insufficient
area for the materialization.

See the Create Queue (CRTQ) instruction for a description of these fields.

Authorization Required

• Operational

- Operand 2

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

Operand 2

Contexts referenced for address resolution

exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

Operands
1 2 Other

X X

X X

X X

X X

X X

X X

X X X

X

X X X

X X

X

X

X X

Chapter 12. Queue Management Instructions 12-14

Materialize Queue Attributes (MATQAT)

Operands
Exception 1 2 Other

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer address invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 12. Queue Management Instructions 12-15

Materialize Queue Messages (MATQMSG)

Op Code (Hex)
033B

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Queue

Operand 3: Character(16) scalar (fixed length).

Materialize Queue Messages (MATQMSG)

Operand 3
Message selection
template

ILEaccess --~
MATQMSG (

receiver
var queue
var selection_template

space pointer;
system pOinter;
aggregate

Description: This instruction materializes selected messages on a queue. One or more messages on
the queue specified by operand 2 is selected according to information provided in operand 3 and mate­
rialized into operand 1. The number of messages materialized and the amount of key and message
text data materialized for each message is governed by the message selection template.

Note that the list of messages on a queue is a dynamic attribute and may be changing on a continual
basis. The materialization of messages provided by this instruction is just a picture of the status of the
queue at the point of interrogation by this instruction. As such, the actual status of the queue may
differ from that described in the materialization when subsequent instructions use the information in
the template as a basis for operations against the queue.

Operand 1 specifies a space that is to receive the materialized attribute values.

Operand 2 is a system pointer identifying the queue from which the messages are to be materialized.

Operand 3 is a character (16) scalar specifying which messages are to be materialized.

The operand 1 space pointer must address a 16-byte boundary. The materialization template has the
following format:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Materialization data

- Count of messages materialized

• Queue data

Count of messages on the queue

Maximum message size

Key size

• Reserved

• Message data (repeated for each message)

Char(8)

Bin(4)

Bin(4)

Char(4)

Bin(4)

Char(12)

Bin(4)

Bin(4)

Bin(4)

Char(8)

Char(*)

Chapter 12. Queue Management Instructions 12-16

Materialize Queue Messages (MATQMSG)

· Message attributes Char(16)

Message enqueue time Char(8)

Message length Bin(4)

Reserved Char(4)

• Message key Char(*)

• Message text Char(*)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area speCified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, then the excess bytes are unchanged. No exceptions are signaled in the event that the
receiver contains insufficient area for the materialization, other than the materialization length (hex
3803) exception described previously.

The maximum message size and key size are values specified when the queue was created. If the
queue is not a keyed queue, the value materialized for the key size is zero.

The length of the message key and message text fields is determined by values supplied in operand 3,
message selection data. If the length supplied in operand 3 exceeds the actual data length, the
remaining space will be padded with binary zeros.

.J

The message selection template identified by operand 3 must be at least 16 bytes and must be on a ;'J
16-byte boundary. The format of the message selection template is as follows:

• Message selection

Type

0001 = All messages
0010 = First
0100 = Last
1000 = Keyed

All other values are reserved

Key relationship (if needed)

0010 = Greater than
0100 = Less than
0110 = Not equal
1000 = Equal
1010 = Greater than or equal
1100 = Less than or equal

All other values are reserved

Reserved

• Lengths

Number of key bytes to materialize

Number of message text bytes to materialize

• Reserved

• Key (if needed)

Char(2)

Bits 0-3

Bits 4-7

Bits 8-15

Char(8)

Bin(4)

Bin(4)

Char(6)

Char(*)

Chapter 12. Queue Management Instructions 12-17

Materialize Queue Messages (MATQMSG)

The message selection type must not specify keyed if the queue was not created as a keyed queue.

Both of the fields specified under lengths must be zero or an integer multiple of 16. The maximum
value allowed for the key length is 256. The maximum value allowed for the message text is 65536.

Authorization Required

• Retrieve

Operand 2

Contexts referenced for address resolution

Lock Enforcement

• Materialization

Operand 2

Contexts referenced for address resolution

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X

1A Lock state

01 invalid lock state X

20 Machine support

02 machi ne check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

Chapter 12. Queue Management Instructions 12-18

Materialize Queue Messages (MATQMSG)

Operands
Exception 1 2 3 4 Other
24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer address invalid object X

28 Process state

02 process control space not associated with a process X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

02 scalar attributes invalid X X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 12. Queue Management Instructions 12-19

Object Lock Management Instructions

Chapter 13. Object Lock Management Instructions

This chapter describes the lock management instructions. The instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see Appendix A, "Instruction Summary."

Lock Object (LOCK)
Lock Space Location (LOCKSL)
Materialize Data Space Record Locks (MATDRECL)
Materialize Process Locks (MATPRLK)
Materialize Process Record Locks (MATPRECL)
Materialize Selected Locks (MATSELLK)
Transfer Object Lock (XFRLOCK)
Unlock Object (UNLOCK)
Unlock Space Location (UNLOCKSL)

© COPYright IBM Corp. 1991, 1993

13-3
13-8

13-13
13-17
13-20
13-24
13-27
13-30
13-33

13-1

Object Lock Management Instructions

\

:J

Chapter 13. Object Lock Management Instructions 13-2

Lock Object (LOCK)

Op Code (Hex)
03F5

Operand 1
Lock request tem­
plate

Operand 1: Space pointer.

Lock Object (LOCK)

ILEaccess --~

LOCK (
1 ock_request_templ ate space potnter

Description: The instruction requests that locks for system objects identified by system pointers in the
space object (operand 1) be allocated to the issuing process. The lock state desired for each object is
specified by a value associated with each system pointer in the lock template (operand 1).

The lock request template must be aligned on a 16-byte boundary. The format is as follows:

• Number of lock requests in template

• Offset to lock state selection values

• Wait time-out value for instruction

• Lock request options

Lock request type

Bin(4)

Bin(2)

Char(8)

Char(1)

Bits 0-1

00 = Immediate request- If all locks cannot be immediately granted. signal lock request not
grantable (hex 1 A02) exception.

01 = Synchronous request- Wait until all locks can be granted.
10 = Asynchronous request- Allow processing to continue and signal event when the object is

available.

Access state modifications

- When the process is entering
lock wait for synchronous request:

a = Access state should not be modified.
1 = Access state should be modified.

- When the process is leaving lock wait:

a = Access state should not be modified.
1 = Access state should be modified.

Reserved (binary 0)

Time-out option

a = Wait for specified time. then signal time-out exception.
1 = Wait indefinitely.

Template extension specified

a = Template is not specified.
1 = Template is specified.

• Reserved (binary 0)

Bits 2-3

Bit 2

Bit 3

Bits 4-5-

Bit 6

Bit 7

Char(1)

Chapter 13. Object Lock Management Instructions 13-3

Lock Object (LOCK)

The Lock Object template extension is only present if template extension specified is indicated above.
Otherwise. the Object(s) to be locked should immediately follow .

• Lock Object template extension

Extension options

- Modify process event mask option

o = Do not modify process event mask
1 = Modify process event mask

- Reserved (binary 0)

Extension area

- New process event mask

- Previous process event mask

- Reserved (binary 0)

• Object(s) to be locked

Char(16)

Char(1)

Bit 0

Bits 1-7

Char(15)

UBin(2)

UBin(2)

Char(11)

System pointer

This should be repeated as specified by number of lock requests in template above.

The lock state selection is located by adding the offset to lock state selection values above to operand
1.

• Lock state selection
(repeated for each pointer in the template)

Requested lock state
(1 = lock requested, 0 = lock not requested)

Only one state may be requested.
- LSRD lock
- LSRO lock
- LSUP lock
- LEAR lock
- LENR lock

Reserved (binary 0)

Entry active indicator

o = Entry not active - This entry is not used.
1 = Entry active - Obtain this lock.

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

Bits 5-6·

Bit 7

Note: Entries indicated with an asterisk are ignored by the instruction.

Lock Allocation Procedure: A single Lock instruction can request the allocation of one or more lock
states on one or more objects. Locks are allocated sequentially until all locks requested are allocated.

The offset to lock state selection values specifies an offset from the beginning of the lock request. This
offset is used to locate the lock state selection values.

The wait time-out field establishes the maximum amount of time that a process competes for the
requested set of locks when either lock request type is either synchronous or asynchronous. The bits
in this field are numbered from 0 to 63, and bit 41 is defined as 1024 microseconds. The maximum wait
time-out interval allowed is a value equal to (248 - 1) microseconds. Any value that indicates more time
than the maximum wait time-out causes the maximum wait time-out to be used. If the wait time-out
field is specified with a value of binary 0, then the value associated with the default wait time-out field
in the process definition template establishes the time interval.

Chapter 13. Object Lock Management Instructions 13-4

)

Lock Object (LOCK)

When a requested lock state cannot be immediately granted. any locks already allocated by this Lock
instruction are released. and the lock request type specified in the lock request template establishes
the machine action. The lock request types are described in the following paragraphs .

• Immediate Request- If the requested locks cannot be granted immediately, this option causes the
lock request not grantable (hex 1A02) exception to be signaled. No locks are granted and the lock
request is canceled.

• Synchronous Request- This option causes the process requesting the locks to be placed in the wait
state until all requested locks can be granted. If the locks cannot be granted in the time interval
established by the wait time-out field specified in the lock request template, the lock wait time-out
(hex 3A02) exception is signaled to the requesting process at the end of the interval. No locks are
granted, and the lock request is canceled.

• Asynchronous Request- This option allows the requesting process to proceed with execution while
the machine asynchronously attempts to satisfy the lock request.

When the synchronous request option is specified and the requested locks cannot be immediately allo­
cated, the access state modification field in the lock request template specifies whether the access
state of the process access group is to be modified on entering and/or returning from the lock wait.
The field has no effect if the process instruction wait access state control attribute specifies that no
access state modification is allowed. If the process attribute value specifies that access state modifica­
tion is allowed and the wait on event access state modification option specifies modify access state,
the machine modifies the access state for the specified process access group.

If the lock request type is synchronous and the invocation containing the lock instruction is terminated,
then the lock request is canceled.

If the lock request is satisfied, then the object locked (hex OOOA,01,01) event is signaled to the
requesting process. If the request is not satisfied in the time interval established by the wait time-out
field specified in the lock request template, the asyncronous lock wait timeout (hex OOOA,04,01) event is
signaled to the requesting process. No locks are granted, and the lock request is canceled. If an
object is destroyed while a process has a pending request to lock the object, the object destroyed (hex
OOOA,02,01) event is signaled to the waiting process.

If the lock request type is asynchronous and the invocation containing the Lock instruction is termi­
nated, then the lock request remains active.

When two or more processes are competing for a connicting lock allocation on a system object, the
machine attempts to first satisfy the lock allocation request of the process with the highest priority.
Within that priority, the machine attempts to satisfy the request that has been waiting longest.

If any exception is identified during the instruction's execution, any locks already granted by the
instruction are released, and the lock request is canceled.

For each system object lock, counts are kept by lock state and by process. When a lock request is
granted, the appropriate lock count(s) of each lock state specified is incremented by 1.

If a previously unsatisfied lock request is satisfied by the transfer of a lock from another process, the
lock request and transfer lock are treated as independent events relative to lock accounting. The
appropriate lock counts are incremented for both the lock request and the transfer lock function.

The modify process event mask option controls the state of the event mask in the process executing
this instruction. If the event mask is in the masked state, the machine does not schedule signaled
event monitors in the process. The event monitors continue to be signaled by the machine or other
processes. When the process is modified to the unmasked state, event handlers are scheduled to
handle those events that occurred while the process was masked and those events occurring while in

Chapter 13. Object Lock Management Instructions 13-5

Lock Object (LOCK)

the unmasked state. The number of events retained while the process is masked is specified by the
attributes of the event monitor associated with the process.

A lock request with an asynchronous lock request type cannot have the modify process event mask
option set to 1.

If the system security level machine attribute is hex 40 or greater and the process is running in user
state, then the modify process event mask option is not allowed and a template value invalid (hex 3801)
exception is signalled.

When the modify process event mask is set to 1, the previous process event mask will be returned and
the new process event mask will take effect only when the lock(s) have been successfully granted. If
the lock request is not successful, the previous process event mask value is not returned, nor does the
new process event mask take effect.

The process is automatically masked by the machine when event handlers are invoked. If the process
is unmasked in the event handler, other events can be handled if another enabled event monitor within
that process is signaled. If the process is masked when it exits from the event handler, the machine
explicitly unmasks the process.

Valid masking values are:

o Masked
256 Unmasked

Other values are reserved and must not be specified. If any other values are specified, a template
value invalid (hex 3801) exception is signaled.

Whether masking or unmasking the current process, the new mask takes effect upon completion of a :J
satisfied lock object.

Authorization Required

• Some authority or ownership

- Objects to be locked

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

Operands
1 Other

x
X

X

X

Chapter 13. Object Lock Management Instructions 13-6

Lock Object (LOCK)

Operands
Exception 1 Other

01 parameter reference violation X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X

1A Lock state

01 invalid lock state X

02 lock request not grantable X

1C Machine-dependent exception

03 machine storage limit exceeded X

06 machine lock limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

c.., 02 object destroyed X

03 object suspended X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

3A Wait time-out

02 lock X

Chapter 13. Object Lock Management Instructions 13-7

Lock Space Location (LOCKSL)

Op Code (Hex)
03F6

Operand 1
Space location or
Lock Request
Template

Operand 1: Space pointer data object.

Operand 2: Char(1) scalar or null.

Operand 2
Lock request

Lock Space Location (LOCKSL)

ILEaccess ---,

LOCKSL (
var space_location
var lock_request

space pOi.nter;
aggregate OR
nu II ope rand

Description: When operand 2 is not null, the space location (operand 1) is granted to the issuing
process according to the lock request specified by operand 2. When operand 2 is null, the instruction
requests that the space locations identified in the lock request template (operand 1) be granted to the
issuing process.

Locking a space location does not prevent any byte operation from referencing that location, nor does
it prevent the space from being extended, truncated, or destroyed. Space location locks follow the ."
normal locking rules with respect to conflicts and waits but are strictly symbolic in nature. .."

A space pointer machine object cannot be specified for operand 1.

The following is the format of operand 2 when not null:

• Lock request

Lock state selection
(1 = lock requested, 0 = lock not requested)

Only one state may be requested.
- LSRD lock
- LSRO lock
- LSUP lock
- LEAR lock
- LENR lock

Reserved (binary 0)

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

Bits 5-7

For this form, if the requested lock cannot be immediately granted, the process will enter a synchro­
nous wait for the lock for a period of up to the interval specified by the process default time-out value.
If the wait exceeds this time limit, a space location lock wait exception is signaled, and the requested
lock is not granted.

During the wait, the process access state may be modified. This can occur if the process' instruction
wait access state control attribute is set to allow access state modification.

When operand 2 is null, the lock request template identified by operand 1 must be aligned on a 16-byte
boundary. The format of operand 1 is as follows:

Chapter 13. Object Lock Management Instructions 13-8

• Number of space location lock requests
in template

• Offset to lock state selection values

• Wait time-out value for instruction

• Lock request options

Reserved (binary 0)

Lock request type

o = Immediate request-If all locks cannot be
immediately granted, signal exception.

1 = Synchronous request-Wait until all locks
can be granted.

Access state modifications

- When the process is entering
lock wait for synchronous request:

0= Access state should not be modified.
1 = Access state should be modified.

- When the process is leaving lock wait:

0= Access state should
not be modified.

1 = Access state should
be modified.

Reserved (binary 0)

Time-out option

0= Wait for specified time,
then signal time-out exception.

1 = Wait indefinitely.

Reserved (binary 0)

Modify process event mask option

o = Do not modify process event mask
1 = Modify process event mask

Reserved (binary 0)

• Modify process event mask control

New process event mask

Previous process event mask

• Reserved (binary 0)

• Space location(s) to be locked

Lock Space Location (LOCKSL)

Bin(4)

Bin(2)

Char(8)

Char(3)

Bit 0

Bit 1

Bits 2-3

Bit 2

Bit 3

Bits 4-5

Bit 6

Bits 7-15

Bit 16

Bits 17-23

Char(4)

UBin(2)

UBin(2)

Char(11)

Space pOinter data object

This should be repeated as specified by number of lock requests in template above.

The lock state selection is located by adding the offset to lock state selection values above to operand
1.

• Lock state selection Char(1)
(repeated for each pointer in the template)

- Requested lock state Bits 0-4

Chapter 13. Object Lock Management Instructions 13-9

(1 = lock requested, 0 = lock not requested)

Only one state may be requested.
- LSRD lock
- LSRO lock
- LSUP lock
- LEAR lock
- LENR lock

Reserved (binary 0)

Entry active indicator

o = Entry not active- This entry is not used.
1 = Entry active- Obtain this lock.

Lock Space Location (LOCKSL)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

Bit 5-6

Bit 7

Lock Allocation Procedure: A single Lock Space Location instruction can request the allocation of one
or more lock states on one or more space locations. Space location locks are granted sequentially
until all the locks requested are granted.

The wait time-out field establishes the maximum amount of time that a process competes for the
requested set of locks when the lock request type is synchronous. The bits in this field are numbered
from 0 to 63, and bit 41 is defined as 1024 microseconds. The maximum wait time-out interval allowed
is a value equal to (248 - 1) microseconds. Any value that indicates more time than the maximum wait
time-out causes the maximum wait time-out to be used. If the wait time-out field is specified with a
value of binary 0, then the value associated with the default wait time-out parameter in the process
definition template establishes the time interval.

When a requested lock state cannot be immediately granted, any locks already granted by this Lock
Space Location instruction are released, and the lock request type specified in the lock request tem- f.~
plate establishes the machine action. The lock request type values are described in the following par- """
agraphs.

• Immediate Request- If the requested space location locks cannot be granted immediately, this
option causes the lock request not grantable (hex 1A02) exception to be signaled. No space
location locks are granted, and the lock request is canceled.

• Synchronous Request- This option causes the process requesting the locks to be placed in the wait
state until all requested locks can be granted. If the locks cannot be granted in the time interval
established by the wait time-out field specified in the lock request template, the space location lock
wait time-out (hex 3A04) exception is signaled to the requesting process at the end of the interval.
No locks are granted, and the lock request is canceled.

If the lock request type is synchronous and the requested locks cannot be immediately granted, the
access state modification field in the lock request template specifies whether the access state of the
process access group is to be modified on entering and/or returning from the lock wait. The param­
eter has no effect if the process instruction wait access state control attribute specifies that no access
state modification is allowed. If the process attribute value specifies that access state modification is
allowed and the wait on event access state modification option specifies modify access state, the
machine modifies the access state for the specified process access group.

If the lock request type is synchronous and the invocation containing the Lock Space Location instruc­
tion is terminated, then the lock request is canceled.

The modify process event mask option controls the state of the event mask in the process executing
this instruction. When the process event mask is in the masked state, the machine does not schedule , ..
signaled event monitors in the process. The event monitors continue to be signaled by the machine or ..,.
other processes. When the process event mask is modified to the unmasked state, event handlers are

Chapter 13. Object Lock Management Instructions 13-10

Lock Space Location (LOCKSL)

scheduled to handle those events that occurred while the process was masked and those events
occurring while in the unmasked state.

'" If the system security level machine attribute is hex 40 or greater and the process is running in user
state. then the modify process event mask option is not allowed and a template value invalid (hex 3801)
exception is signalled.

When the modify process event mask is set to 1, the previous process event mask will be returned and
the new process event mask will take effect only when the space location lock(s) have been success­
fully granted. If the space location lock request is not successful, the previous process event mask
value is not returned, nor does the new process event mask take effect.

The process event mask values are validity checked only when the modify process event mask is set
to 1, and ignored otherwise. Valid masking values are:

o Masked
256 Unmasked

Other values are reserved and must not be specified, otherwise a template value invalid (hex 3801)
exception is signaled.

If any exception is identified during the instruction's execution, any locks already granted by the
instruction are released, and the lock request is canceled.

For each space location lock, counts are kept by lock state and by process. When a lock request is
granted, the appropriate lock-count of each lock state specified is incremented by 1.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

1 A Lock state

02 lock request not grantable

1 C Machine-dependent exception

03 machine storage limit exceeded

06 machine lock limit exceeded

20 Machine support

02 machine check

03 function check

Operands
1 2 Other

x
X

X

X

X

x

X

X

X

X

X

X

X

x
X

X

X

Chapter 13. Object Lock Management Instructions 13-11

Lock Space Location (LOCKSL)

Operands
Exception 1 2 Other
22 Object access

02 object destroyed X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

3A Wait time-out

04 space location lock wait X

~

Chapter 13. Object Lock Management Instructions 13-12

Materialize Data Space Record Locks (MATDRECL)

Materialize Data Space Record Locks (MATDRECL)

Op Code (Hex)
032E

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 2
Record selection
template

ILEaccess --~

MATDRECL (
receiver
selection_template

space pOinter;
space pOinter

Description: This instruction materializes the current allocated locks on the specified data space
record.

The current lock status of the data space record identified by the template in operand 2 is materialized
into the space identified by operand 1.

The record selection template identified by operand 2 must be 16-byte aligned. The format of the
record selection template is as follows.

• Record selection

Data space identification

Record number

Reserved

• Lock selection

Materialize data space locks held

1 = Materialize
o = Do not materialize

Materialize data space locks waited for

1 = Materialize
o = Do not materialize

Reserved

Reserved

Char(24)

System pointer

Bin(4)

Char(4)

Char(8)

Bit a

Bit 1

Bits 2-7

Char(7)

The data space Identification must be a system pointer to a data space.

The record number is a relative record number within that data space. If the record number is zero
then all locks on the specified data space will be materialized. If the record number is not valid for the
specified data space a template value invalid (hex 3801) exception is signaled.

Both of the fields specified under lock selection are bits which determine the locks to be materialized.
If the materialize data space locks held is materialize, the current holders of the specified data space
record lock are materialized. If the materialize data space locks waited for is materialize, any process
waiting to lock the specified data space record is materialized.

Chapter 13. Object Lock Management Instructions 13-13

Materialize Data Space Record Locks (MATDRECL)

The materialization template identified by operand 1 must be 1B-byte aligned. The format of the
materialization is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Materialization data

Count of locks held

Count of locks waited for

Reserved

• Locks held identification
(repeated for each lock held)

Process control space

Record number

Lock state being described

Hex CO = DLRD lock state
Hex F8 = DLUP lock state

All other values are reserved.

Reserved

• Locks waited for identification
(repeated for each lock waited for)

Process control space

Record number

Lock state being described

Hex CO = DLRD lock state
Hex F8 = DLUP lock state

All other values are reserved.

Reserved

Char(8)

Bin(4)

Bin(4)

Char(8)

UBin(2)

UBin(2)

Char(4)

Char(32)

System pointer

Bin(4)

Char(1)

. Char(11)

Char(32)

System pointer

Bin(4)

Char(1)

Char(11)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, the excess bytes are unchanged. No exceptions are signaled in the event that the
receiver contains insufficient area for the materialization, other than the materialization length excep­
tion described previously.

The count of locks held contains the number of locks held. One system pointer to the process control
space (PCS) of each process holding a lock, the relative record number which is locked, and the lock
state are materialized in the area identified as locks held Identification. These fields contain data only
if materialize data space locks held is materialize.

The count of locks waited for contains the number of locks being waited for. One system pointer to the
process control space (PCS) of each process waiting for a lock, the relative record number, and the

Chapter 13. Object Lock Management Instructions 13-14

Materialize Data Space Record Locks (MATDRECL)

lock state which the process is waitng for are materialized in the area identified as locks waited for
identification. These fields contain data only if materialize data space locks waited for is materialize.

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Operands
exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 ArgumenUparameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

Chapter 13. Object Lock Management Instructions 13-15

Materialize Data Space Record Locks (MATDRECL)

Operands
Exception 1 2 Other

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

03 materialization length exception X

Chapter 13. Object Lock Management Instructions 13-16

Materialize Process Locks (MATPRLK)

Op Code (Hex)
0312

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer or null.

Operand 2
Process control
space

Materialize Process Locks (MATPRLK)

ILEaccess --,

MATPRLK (
receiver

var process_control_spacec
space potnter;
system pOinter OR
nu II operand

Description: The lock status of the process identified by operand 2 is materialized into the receiver
specified by operand 1. If operand 2 is null, the lock status is materialized for the process issuing the
instruction. The materialization identifies each object or space location for which the process has a
lock allocated or for which the process is in a synchronous or asynchronous wait. The format of the
materialization is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Number of lock entries

• Expanded number of lock entries

• Reserved (binary 0)

• Lock status (repeated for each lock
currently allocated or waited for by the process)

Object, space location, or
binary 0 if no pointer exists

Lock state

- LSRD

- LSRO

- LSUP

- LEAR

- LENR

- Reserved (binary 0)

Status of lock state for process

- Reserved

- Object or space location no longer exists

- Waiting because this lock is not available

- Process in asynchronous wait for lock

Char(8)

Bin(4)

Bin(4)

Bin(2)

Bin(4)

Char(2)

Char(32)

System pointer
or Space pointer

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bits 5-7

Char(1)

Bits 0-1

Bit 2

Bit 3

Bit 4

Chapter 13. Object Lock Management Instructions 13-17

- Process in synchronous wait for lock

- Implicit lo<;k (machine-applied)

- Lock held by process

• Reserved (binary 0)

Materialize Process Locks (MATPRLK)

Bit 5

Bit 6

Bit 7

Char(14)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, then the excess bytes are unchanged. No exceptions (other than the materialization
length (hex 3803) exception described previously) are signaled if the receiver contains insufficient area
for the materialization.

The number of lock entries field identifies the number of lock entries that are materialized. When a
process holds more than 32,767 locks, this field is set with its maximum value of 32,767. This field has
been retained in the template for compatibility with programs using the template prior to the changes
made to support materialization of more than 32,767 lock entries.

The expanded number of lock entries field identifies the number of lock entries that are materialized.
This field is always set in addition to the number of lock entries field described previously; however, it
does not have a maximum limit of 32,767, so it can be used to specify that more than 32,767 locks have
been materialized. When a process holds more than 32,767 locks, the number of lock entries field will
equal 32,767, which would be incorrect. The expanded number of lock entries field, however, will iden- "
tify the correct number of lock entries materialized. In all cases, this field should be used instead of :.J
the number of lock entries field to get the correct count of lock entries materialized.

Authorization Required

• Retrieve

- Context referenced by address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

Operands
1 2 Other

X X

X X

X X

X X

X X

Chapter 13. Object Lock Management Instructions 13-18

Materialize Process Locks (MATPRLK)

Operands
Exception 1 2 Other

04 system object damage state X X X

as authority verification terminated due to damaged object X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

28 Process state

02 process control space not associated with a process X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 13. Object Lock Management Instructions 13-19

Materialize Process Record Locks (MATPRECL)

Materialize Process Record Locks (MATPRECL)

Op Code (Hex)
031E

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 2
Process selection
template

ILEaccess --~

MATPRECL (
receiver
selection_template

space pointer;
space pOinter

Description: This instruction materializes the current allocated data space record locks held by the
process. The current lock status of the process identified in the process selection template specified
by operand 2 is materialized into the receiver identified by operand 1. The materialization identifies
each data space record lock which the process has or the process is waiting to obtain.

If the process control space (PCS) pointer is null or all zeros, the lock activity, for the process issuing
the instruction is materialized.

The process selection template identified by operand 2 must be 16-byte aligned. The format of the
process selection template is as follows:

• Process selection

- Process identification

• Lock selection

Materialize held locks

1 = Materialize
o = Do not materialize

Materialize locks waited for

1 = Materialize
o = Do not materialize

Reserved

Reserved

Char(16)

System pointer

Char(8)

Bit 0

Bit 1

Bits 2-7

Char(7)

The process identification must be a system pointer to a process control space (PCS) or nUll, all zeros.

Both of the fields specified under lock selection are bits which determine the locks to be materialized.
If the materialize held locks is materialize, any data base record lock held by the process is material­
ized. If the materialize lock waited for is materialize any data base record lock the process is waiting
for is materialized.

The materialization template identified by operand 1 must be 16-byte aligned. The format of the
materialization is as follows:

• Materialization size specification

- Number of bytes provided for materialization

Char(8)

Bin(4)

Chapter 13. Object Lock Management Instructions 13-20

Materialize Process Record Locks (MATPRECL)

- Number of bytes available for materialization Bin(4)

Char(8)

Bin(2)

Bin(2)

Char(4)

Char(32)

• Materialization data

Count of locks held

Count of locks waited for

Reserved

• Locks held identification
(repeated for each lock held)

Data space identification

Relative record number

Lock state being described

Hex CO = DLRD lock state
Hex F8 = DLUP lock state

All other values are reserved.

Reserved

• Locks waited for identification
(repeated for each lock waited for)

Data space identification

Relative record number

Lock state being described

Hex CO = DLRD lock state
Hex F8 = DLUP lock state

All other values are reserved.

Reserved

System pointer

Bin(4)

Char(1)

Char(11)

Char(32)

System pointer

Bin(4)

Char(1)

Char(11)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, the excess bytes are unchanged. No exceptions are signaled in the event that the
receiver contains insufficient area for the materialization, other than the materialization length (hex
3803) exception described previously.

The count of locks held contains the number of locks held by the process. One system pointer to the
data space, relative record number in the data space, and lock state is materialized in the area identi­
fied as locks held identification for each lock. These fields contain data only if materialize held locks is
materialize.

The count of locks waited for contains the number of locks that the process is waiting for. One system
pointer to the data space, relative record number in the data space, and lock state is materialized in
the area identified as locks waited for identification for each lock waited for. These fields contain data
only if materialize locks waited for is materialize.

Chapter 13. Object LocK Management Instructions 13-21

Materialize Process Record Locks (MATPRECL)

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

24

01 object not found

02 object destroyed

03 object suspended

07 authority verification terminated due to destroyed object

08 object compressed

Pointer specification

01 pointer does not exist

02 pointer type invalid

Operands
1

X

X

X

X

X

X

X

X

X

X

2

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

X

X

X

Chapter 13. Object Lock Management Instructions 13-22

\,j

Materialize Process Record Locks (MATPRECL)

Operands
Exception 1 2 Other

c."
2E Resource contr.ol limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

03 materialization length exception X

Chapter 13. Object Lock Management Instructions 13-23

Materialize Selected Locks (MATSELLK)

Op Code (Hex)
033E

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Object or space
location

Operand 2: System pointer or space pointer data object.

Materialize Selected Locks (MATSELLK)

ILEaccess --,
MATSELLK (

receiver : space pointer;
var system or space pointer: pointer

) - - -

Description: The locks held by the process issuing this instruction for the object or space location
referenced by operand 2 are materialized into the template specified by operand 1. The format of the
materialization template is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Cumulative lock status for all locks on operand 2

Lock state

- LSRD

- LSRO

- LSUP

- LEAR

- LENR

Reserved (binary 0)

• Reserved

• Number of lock entries

• Reserved

• Lock status (repeated for each lock currently
allocated)

Lock state

Hex 80 = LSRD lock request
Hex 40 = LSRO lock request
Hex 20 = LSUP lock request
Hex 10 = LEAR lock request
Hex 08 = LENR lock request

All other values are reserved

Status of lock

- Reserved (binary 0)

Char(8)

. Bin(4)

Bin(4)

Char(1)

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bits 5-7

Char(1)

Bin(2)

Char(2)

Char(2)

Char(1)

Char(1)

Bits 0-5

Chapter 13. Object Lock Management Instructions 13-24

~

Materialize Selected Locks (MATSELLK)

- Implicit lock

o = Not implicit lock
1 = I~ implicit lock

- Reserved (binary 1)

Bit 6

Bit 7

The first 4 bytes of the materialization identifies the total number of bytes provided for use by the
instruction. This value is supplied as input to the instruction and is not modified by the instruction. A
value of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identifies the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, then the excess bytes are unchanged. No exceptions are signaled in the event that the
receiver contains insufficient area for the materialization, other than the materialization length (hex
3803) exception described previously.

A space pointer machine object cannot be specified for operand 2.

Authorization

• Retrieve

- Context referenced by address resolution

Lock Enforcement:

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

02 unauthorized for operation

10 Damage encountered

04 system object

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

1C Machine-dependent exception

Operands
1 2 Other

X X

X X

X X

X X

X X

X

X X X

X

X

X

Chapter 13. Object Lock Management Instructions 13-25

Materialize Selected Locks (MATSELLK)

Operands
Exception 1 2 Other

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

28 Process state

02 process control space not associated with a process X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 13, Object Lock Management Instructions 13-26

\,l

~'." .. ~

(.

Transfer Object Lock (XFRLOCK)

Op Code (Hex)
0382

Operand 1
Receiving process
control space

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 2
Lock transfer tem­
plate

Transfer Object Lock (XFRLOCK)

ILEaccess --~
XFRLOCK (

var receiving_process_control_space
1 ock_transfer_templ ate

system pOinter
space pOinter

Description: The receiving process (operand 1) is allocated the locks designated in the lock transfer
template (operand 2). Upon completion of the transfer lock request. the current process no longer
holds the transferred lock(s).

Operand 2 identifies the objects and the associated lock states that are to be transferred to the
receiving process. The space contains a system pOinter to each object that is to have a lock trans­
ferred and a byte which defines whether this entry is active. If the entry is aCtive. the space also con­
tains the lock states to be transferred. Operand 2 must be aligned on a 16-byte boundary. The format
is as follows:

• Number of lock transfer requests in template

• Offset to lock state selection bytes

• Reserved (binary 0)

• Object lock(s) to be transferred

Bin(4)

Bin(2)

Char(10)*

System pointer

This should be repeated as specified by number of lock transfer requests in template above.

The lock state selection is located by adding the offset to lock state selection values above to operand
1.

• Lock state selection (repeated Char(1)
for each pointer in the template)

Lock state to transfer. Only one Bits 0-4
state may be requested. (1 = transfer)

- LSRD Bit 0

- LSRO Bit 1

- LSUP Bit 2

- LEAR Bit 3

- LENR Bit 4

Reserved (binary 0) Bit 5*

Lock count Bit 6

o = The current lock count is transferred.
1 = A lock count of 1 is transferred.

Chapter 13. Object Lock Management Instructions 13-27

Transfer Object Lock (XFRLOCK)

Entry active indicator Bit 7

o = Entry not active. This entry is not used.
Entry active. This lock is transferred.

Note: Entries indicated by an asterisk are ignored by the instruction.

If the receiving process is issuing the instruction, then no operation is performed, and no exception is
signaled. The lock count transferred is either the lock count held by the transferring process or a
count of 1. If the receiving process already holds an identical lock, then the final lock count is the sum
of the count originally held by the receiving process and the transferred count.

Only locks currently allocated to the process issuing the instruction can be transferred. If the transfer
of an allocated lock would result in the violation of the lock allocation rules, then the lock cannot be
transferred. An implicit lock may not be transferred.

No locks are transferred if an entry in the template is invalid.

The locks specified by operand 2 are transferred sequentially and individually. If one lock cannot be
transferred because the process does not hold the indicated lock on the object, then exception data is
saved to identify the lock that could not be transferred. Processing of the next lock to be transferred
continues.

After all locks specified in operand 2 have been processed, the object lock transferred (hex OOOA,03,01)
event is signaled to the process receiving the locks if any locks were transferred. If any lock was not
transferred, the invalid object lock transfer request (hex 1A04) exception is signaled.

When an object lock is transferred, the transferring process synchronously loses the record of the lock,
and the object is locked to the receiving process. However, the receiving process obtains the lock \ . ,
asynchronously after the instruction currently being executed is completed. If the transferring process .""
holds multiple locks for the object, any lock states not transferred are retained in the process.

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

Operands
1 2 Other

X X

X X

X X

X X

X X
~:,J

Chapter 13. Object Lock Management Instructions 13-28

Transfer Object Lock (XFRLOCK)

Operands
Exception 1 2 Other
OA Authorization

L 01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

04 invalid object lock transfer request X

1C Machine-clependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

28 Process state

02 process control space not associated with a process X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 13. Object Lock Management Instructions 13-29

Unlock Object (UNLOCK)

Op Code (Hex)
03Fl

Operand 1
Unlock template

Operand 1: Space pointer.

Unlock Object (UNLOCK)

ILEaccess --~

UNLOCK (
unlock_template space pOinter

Description: The instruction releases the object locks that are specified in the unlock template. The
template specified by operand 1 identifies the system objects and the lock states (on those objects)
that are to be released. The unlock template must be aligned on a 16-byte boundary. The format is as
follows:

• Number of unlock requests in template

• Offset to lock state selection bytes

• Reserved (binary 0)

• Unlock option

Reserved (binary 0)

Unlock type

00 = Unlock specific locks now allocated to process

Bin(4)

Bin(2)

Char(8)*

. Char(1)

Bits 0-3*

Bits 4-5

01 = Cancel specific asynchronously waiting lock request or allocated locks
10 = Cancel all asynchronously waiting lock requests
11 = Invalid

Reserved (binary 0)

• Reserved (binary 0)

• Object to unlock (one for each unlock request)

Bit 6-7

Char(1)

System pointer

The Unlock options is located by adding the offset to lock state selection bytes above to operand 1.

• Unlock options (repeated for unlock request)

Lock state to unlock (only one state
can be selected) (1 = unlock)

LSRD

- LSRO

- LSUP

- LEAR

- LENR

Lock count option

o = Lock count reduced by 1

Char(1)

Bits 0-4

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

1 = All locks are unlocked. The lock count is set to 0

Reserved (binary 0) Bit 6*

Chapter 13. Object Lock Management Instructions 13-30

-",J

Unlock Object (UNLOCK)

Entry active indicators Bit 7

o = Entry not active. This entry is not used.
1 = Entry active. These locks are unlocked.

Note: Entries indicated by an asterisk are ignored by the instruction.

The unlock type field specifies if locks are to be released or outstanding lock requests are to be can­
celed.

If all asynchronous lock waits are being canceled (unlock type specified as 10), then objects to unlock
and unlock options for each object are not required. If the asynchronous lock fields are provided in the
template, then the data is ignored.

Specifying 01 for unlock type attempts to cancel an asynchronous lock request that is identical to the
one defined in the template. After the instruction attempts to cancel the specified request, program
execution continues just as if 00 had been specified for unlock type. A waiting lock request is canceled
if the number of active requests in the template, the objects, the objects corresponding lock states, and
the order of the active entries in the template all match.

When a lock is released, the lock count is reduced by 1 or set to 0 in the specified state. This option is
specified by the lock count option parameter.

If 01 is specified for unlock type is specified and the unlock count option for an object lock is 0 (lock
count reduced by 1), then a successful cancel satisfies this request, and no additional locks on the
object are unlocked. If the lock count option for an object lock is set to 1 (set lock count to 0), the
results of the cancel are disregarded, and all held locks on the object are unlocked.

Specific locks can be unlocked only if they are allocated to the process issuing the unlock instruction.
Implicit locks may not be unlocked with this instruction. No locks are unlocked if an entry in the tem­
plate is invalid.

Object locks to unlock are processed sequentially and individually. If one specific object lock cannot
be unlocked because the process does not hold the indicated lock on the object, then exception data is
saved, but processing of the instruction continues.

After all requested object locks have been processed, the invalid unlock request (hex 1A03) exception
is signaled if any object lock was not unlocked.

If 01 is specified for unlock type is selected and the cancel attempt is unsuccessful, an invalid unlock
request (hex 1A03) exception is signaled when any object lock in the template is not unlocked.

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception
Operands
1 Other

Chapter 13. Object Lock Management Instructions 13-31

\

Unlock Object (UNLOCK)

Operands
Exception 1 Other
06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X

1A Lock state

01 invalid lock state X

03 invalid unlock request X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support ';)
02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pOinter does not exist X

02 pOinter type invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

\J

Chapter 13. Object Lock Management Instructions 13-32

Unlock Space Location (UNLOCKSL)

Op Code (Hex)
03F2

Operand 1
Space location or
Unlock template

Operand 1: Space pointer data object.

Operand 2: Char(1) scalar or null.

Operand 2
Lock request

Unlock Space Location (UNLOCKSL)

ILEaccess --~
UNLOCKSL (
var space_location
var lockJequest

space painter;
aggregate OR
null operand

Description: When operand 2 is not null, the lock type specified by operand 2 is removed from the
space location (operand 1). When the operand 2 is null, the lock type is removed for the space
locations specified in the unlock template (operand 1).

Any space location{s) specified by operand 1, or within the template specified by operand 1, need not
exist when this instruction is issued although the space pointer must be a valid pointer as used to lock
the space location.

t.,. A space pointer machine object cannot be specified for operand 1.

The following is the format of operand 2 when not null:

• Lock request

Lock state selection
(1 = lock requested, 0 = lock not requested)

- Only one state may be requested.

- LSRD lock

- LSRO lock

- LSUP lock

- LEAR lock

- LENR lock

Reserved (binary 0)

Char(1)

Bits 0-4

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bits 5-7

If a space location lock cannot be unlocked beca/-lse the process does not hold the indicated lock, then
the invalid space location unlock (hex 1A05) exception is signaled.

When operand 2 is null, the lock request template identified by operand 1 must be aligned on a 16-byte
boundary. The format of operand 1 is as follows:

• Number of space location unlock requests
in template

• Offset to lock state selection values

• Reserved (binary 0)

Bin(4)

Bin(2)

Char(26)*

Chapter 13. Object Lock Management Instructions 13-33

!--~-----------------------
~

Unlock Space Location (UNLOCKSL)

• Space location{s) to be unlocked Space pointer

Th is should be repeated as specified by number of space location unlock requests in template
above.

The unlock options is located by adding the offset to lock state selection values above to operand 1.

• Unlock options
(repeated for each unlock request)

Lock state to unlock
(1 = unlock requested, 0 = unlock not requested)

- Only one state may be requested.

- LSRD lock

- LSRO lock

- LSUP lock

- LEAR lock

- LENR lock

Lock count option

o = Lock count reduced by 1
1 = All locks are unlocked. (The lock count is set to 0).

Reserved (binary 0)

Entry active indicator

o = Entry not active. This entry is not used.
1 = Entry active. Lock is to be unlocked.

Note: Entries indicated with an asterisk are ignored by the instruction.

Char(1)

Bits 0-4

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

This instruction can request the deallocation of one or more lock states on one or more space
locations. The locks are deallocated sequentially until all specified locks are deallocated. When a lock
is deallocated, the lock count is either reduced by 1 or set to 0 for the specified state. This option is
specified by the lock count option.

Specific locks can be unlocked only if they are held by the process issuing the unlock instruction. If a
space location lock cannot be unlocked because the process does not hold the indicated lock, then
exception data is saved but processing of the instruction continues. After all requested space location
locks have been processed, the invalid unlock request (hex 1A03) exception is signaled if any space
location lock was not unlocked.

No locks are unlocked if a template value is invalid.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

Operands
1 2 ~her

x
X

X

X

Chapter 13. Object Lock Management Instructions 13-34

Unlock Space Location (UNLOCKSL)

Operands
Exception 1 2 Other

01 parameter r.eference violation X

10 Damage encountered

04 system object X X

44 partial system object damage X

1A Lock state

03 invalid unlock request X

05 invalid space location unlock X

1C Machine-dependent exception

03 machine storage limit exceeded X

06 machine lock limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

02 object destroyed X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 13. Object Lock Management Instructions 13-35

Exception Management Instructions

Chapter 14. Exception Management Instructions

This chapter describes all instructions used for exception management. These instructions are in
alphabetic order. For an alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary."

Materialize Exception Description (MATEXCPD)
Modify Exception Description (MODEXCPD)
Retrieve Exception Data (RETEXCPD)
Return From Exception (RTNEXCP)
Sense Exception Description (SNSEXCPD)
Signal Exception (SIGEXCP)
Test Exception (TESTEXCP) .. .

© COPYright IBM Corp. 1991, 1993

14-3
14-6
14-9

14-12
14-15
14-19
14-24

14-1

Exception Management Instructions

Chapter 14. Exception Management Instructions 14-2

Materialize Exception Description (MATEXCPD)

Materialize Exception Description (MATEXCPD)

Op Code (Hex)
03D7

Operand 1
Attribute receiver

Operand 1: Space pointer.

Operand 2: Exception description.

Operand 3: Character(1) scalar.

Operand 2
Exception
description

Operand 3
Materialization
option

Description: The instruction materializes the attributes (operand 3) of an exception description
(operand 2) into the receiver specified by operand 1.

The template identified by operand 1 must be a 16-byte aligned area in the space if the materialization
option is hex 00.

Operand 2 identifies the exception description to be materialized.

The value of operand 3 specifip.s the materialization option. If the materialization option is hex 00, the
format of the exception description materialization is as follows:

• Template size

Number of bytes provided for materialization

Number of bytes available for materialization

• Control flags

Exception handling action

Char(8)

'Bin(4)

Bin(4)

Char(2)

Bits 0-2

000 = Do not handle. (Ignore occurrence of exception and continue processing.)
001 = Do not handle. (Disable this exception description and continue to search this invoca­

tion for another exception description to handle the exception.)
010 = Do not handle. (Continue to search for an exception description by resignaling the

exception to the preceding invocation.)
100 = Defer handling. (Save exception data for later exception handling.)
101 = Pass control to the specified exception handler.

No data

o = Exception data is returned
1 = Exception data is not returned

Reserved (binary 0)

User data indicator

o = User data not present
1 = User data present

Reserved (binary 0)

Exception handler type

00 = External entry point
01 = Internal entry point
10 = Branch point

Reserved (binary 0)

• Instruction number to be given control

Bit 3

Bit 4

Bit 5

Bits 6-7

Bits 8-9

Bits 10-15

UBin(2)

Chapter 14. Exception Management Instructions 14-3

Materialize Exception Description (MATEXCPD)

(if exception handler type is internal entry point or branch point; otherwise. 0)

• Length of compare value (maximum of 32 bytes)

• Compare value (size established by value of
length of compare value field)

• Number of exception IDs

• System pointer to the exception handling

8in(2)

Char(32)

8in(2)

System pointer
program (if exception handler type is external entry point)

• Pointer to user data (not present if value of
user data indicator is 0)

• Exception 10 (one for each exception 10
dictated by the number of exception IDs field)

Space pointer

Char(2)

If the materialization option is hex 01, the format of the materialization is as follows:

• Template size

Number of bytes provided for materialization

Number of bytes available for materialization

• Control flags

Exception handling action

Char(8)

Bin(4)

Bin(4)

Char(2)

Bits 0-2

000 = Do not handle. (Ignore occurrence of exception and continue processing.)
001 = Do not handle. (Disable this exception description and continue to search this invoca­

tion for another exception description to handle the exception.)
010 = Do not handle. (Continue to search for an exception description by resignaling the

exception to the preceding invocation.)
100 = Defer handling. (Save exception data for later exception handling.)
101 = Pass control to the specified exception handler.

No data Bit 3

o = Exception data is returned
1 = Exception data is not returned

Reserved (binary 0) Bit 4-15

If the materialization option is hex 02. the format of the materialization is as follows:

• Template size

Number of bytes provided for materialization

Number of bytes available for materialization

• Compare value length (maximum of 32 bytes)

• Compare value

Char(8)

Bin(4)

8in(4)

Bin(2)

Char(32)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested. then the excess bytes are unchanged. No exceptions (other than the materialization
length (hex 3803) exception) are signaled in the event that the receiver operand contains insufficient
area for the materialization.

Chapter 14. Exception Management Instructions 14-4

Materialize Exception Description (MATEXCPD)

Exceptions:

Operands :.l Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C M achine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access
• 01 object not found X X :.J 02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 14. Exception Management Instructions 14-5

Modify Exception Description (MODEXCPD)

Modify Exception Description (MODEXCPD)

Op Code (Hex)
03EF

Operand 1
Exception
description

Operand 1: Exception description.

Operand 2
Modifying attri­
butes

Operand 2: Space pointer or character(2) constant.

Operand 3: Character(1) scalar.

Operand 3
Modification
option

Description: The exception description attributes specified by operand 3 are modified with the values
of operand 2.

Operand 1 references the exception description.

Operand 2 specifies the new attribute values. Operand 2 may be either a character constant or a
space pointer to the modification template. When operand 3 is a constant, operand 2 is a character
constant; when operand 3 is not a constant, operand 2 is a space pointer.

The value of operand 3 specifies the modification option. If the modification option is hex 01 and
operand 2 specifies a space pointer, the format of the modifying attributes pointed to by operand 2 is
as follows:

• Template size

Number of bytes provided for materialization
(must be at least 10)

Number of bytes available for materialization

• Control flags

Exception handling action

Char(8)

Bin(4)

Bin(4)*

Char(2)

Bits 0-2

000 = Do not handle. (Ignore occurrence of exception and continue processing.)
001 = Do not handle. (Disable this exception description and continue to search this invoca­

tion for another exception description to handle the exception.)
010 = Do not handle. (Continue to search for an exception description by resignaling the

exception to the preceding invocation.)
100 = Defer handling. (Save exception data for later exception handling.)
101 = Pass control to the specified exception handler.

No data Bit 3

o = Exception data is returned
1 = Exception data is not returned

Reserved (binary 0) Bits 4-15

If the exception description was in the deferred state prior to the modification, the deferred signal, if
present, is lost.

When the no data field is set to exception data is not returned, no data is returned for the Retrieve
Exception Data or Test Exception instructions, and the number of bytes avaiiabJe for materialization
field is set to O. This option can also be selected in the object definition table entry of the exception
description.

Chapter 14. Exception Management Instructions 14-6

Modify Exception Description (MODEXCPD)

If the modification option of operand 3 is a constant value of hex 01, then operand 2 may specify a
character constant The operand 2 constant has the same format as the control flags entry previously
described,

If the modification option is hex 02. then operand 2 must specify a space pointer, The format of the
modification is as follows:

• Template size Char(8)

Number of bytes provided Bin(4)
(must be at least 10 plus the length of the compare value in the exception description)

Number of bytes available for materialization

• Compare value length
(maximum of 32 bytes)

• Compare value

Note: Entries shown here with an asterisk (-) are ignored by the instruction.

Bin(4r

Bin(2)-

Char(32)

The number of bytes in the compare value is dictated by the compare value length specified in the
exception description as originally specified in the object definition table.

An external exception handling program can be modified by resolving addressability to a new program
into the system pointer designated for the exception description.

The presence of user data is not a modifiable attribute of exception descriptions. If the exception
description has user data. it can be modified by changing the value of the data object specified in the
exception description.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X

03 range X X

06 optimized addressability invalid X X

08 ArgumenUparameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

Chapter 14, Exception Management Instructions 14-7

if

\J

,~

Modify Exception Description (MODEXCPD)

Operands
Exception 1 2 3 Other

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

02 template size invalid X

Chapter 14. Exception Management Instructions 14-8

Retrieve Exception Data (RETEXCPD)

Op Code (Hex)
03E2

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Character(1) scalar.

Operand 2
Retrieve options

Retrieve Exception Oata (RETEXCPO)

Description: The data related to a particular occurrence of an exception is returned and placed in the
specified space.

Operand 1 is a space pointer that identifies the receiver template. The template identified by operand
1 must be 16-byte aligned in the space.

The value of operand 2 specifies the type of exception handler for which the exception data is to be
retrieved. The exception handler may be a branch point exception handler, an internal entry point
exception handler, or an external entry point exception handler.

An exception state of process invalid (hex 1602) exception is signaled to the invocation issuing the
Retrieve Exception Data instruction if the retrieve option is not consistent with the process's exception
handling state. For example, the exception is signaled if the retrieve option specifies retrieve for
internal entry point exception handler and the process exception state indicates that an internal excep­
tion handler has not been invoked.

After an invocation has been destroyed, exception data associated with a signaled exception
description within that invocation is lost.

The format of operand 1 for the materialization is as follows:

• Template size

Number of bytes provided for retrieval

Number of bytes available for retrieval

• Exception identification

• Compare value length (maximum of 32 bytes)

• Compare value

• Message reference key

• Exception specific data

• Source invocation

• Target invocation

• Source invocation address

• Target invocation address

• Machine-dependent data

Char(8)

Bin(4)

Bin(4)

Char(2)

Bin(2)

Char(32)

Char(4)

Char(*)

Invocation pOinter or Null

Invocation pOinter

UBin(2)

UBin(2)

Char(10)

The first 4 bytes of the materialization identify the total number of bytes provided for retrieval of the
exception data. This value is supplied as input to the instruction and is not modified by the instruction.
A value of less than 8 causes the materialization length exception (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the

Chapter 14. Exception Management Instructions 14-9

Retrieve Exception Data (RETEXCPD)

receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested. then the excess bytes are unchanged. No exceptions (other than the materialization
length (hex 3803) exception) are signaled in the event that the receiver contains insufficient area for
the materialization.

The message reference key field returns the architected value that uniquely identifies the message in
the process queue space.

The source Invocation and source invocation address identify the invocation that caused the exception
to be signaled. For machine exceptions, this invocation pointer identifies the invocation executing
when the exception occurred. For user-signaled exceptions, this invocation pointer locates the invoca­
tion that executed the Signal Exception instruction or the Send Process Message instruction. The
pointer will be null if the source invocation no longer exists at the time that this instruction is executed.
The source instruction address field locates the instruction that caused the exception to be signaled.
This field in a bound program invocation will be set to O.

The target Invocation and target Invocation address identify the invocation that is the target of the
exception. This invocation is the last invocation that was given the chance to handle the exception.
For machine exceptions, the first target invocation is the invocation incurring the exception. For user­
signaled exceptions, the Signal Exception instruction may initially locate the current or any previous
invocation. For Send Process Message, the source and target invocations are specified as input
parameters. If the target invocation handles the exception by resignaling the exception, the imme­
diately previous invocation is considered to be the target invocation. This may occur repetitively until
no more prior invocations exist in the process and the signaled program invocation entry is assigned a
value of binary O. If an invocation handles the exception in any manner other than resignaling or does
not handle the exception, that invocation is considered to be the target.

The target instruction address field specifies the number of the instruction that is currently being exe­
cuted in the target invocation.

The machine extends the area beyond the exception specific data area with binary O's so that the
pointers to program invocations are aligned on a 16 byte boundary.

The operand 2 values are defined as follows:

• Retrieve options Char(1)

- Hex 00 = Retrieve for a branch point exception handler
- Hex 01 = Retrieve for an internal entry point exception handler
- Hex 02 = Retrieve for an external entry point exception handler

If the exception data retention option is set to 1 (do not save). the number of bytes available for
retrieval is set to O.

Exception data is always available to the process default exception handler.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

Operands
1 2 Other

X X

X X

X X

X X

Chapter 14. Exception Management Instructions 14-10

Retrieve Exception Data (RETEXCPD)

Operands
Exception 1 2 Other
08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

16 Exception management

02 exception state of process invalid X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification .,

01 pointer does not exist X X :.J
2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 14. exception Management Instructions 14-11

Return From Exception (RTNEXCP)

Op Code (Hex)
03E1

Operand 1
Return target

Operand 1: Space pointer.

Return From Exception (RTNEXCP)

Description: An internal exception handler subinvocation or an external exception handler invocation
is terminated, and control is passed to the specified instruction in the specified invocation. All inter­
vening invocations are marked as cancelled, down to, but not including, the invocation that is being
returned to. When each of these invocations are returned to, their return handlers and invaocation exit
(I-exit) routines/cancel handlers will be found and run.

Note: This instruction is not allowed from a bound program invocation.

The template identified by operand 1 must be 16-byte aligned in the space. It speCifies the target invo­
cation and target instruction in the invocation where control is to be passed. The format of operand 1
is as follows:

• Invocation address/offset

• Reserved (binary 0)

• Action

Reserved (binary 0)

Use offset option

o = Use invocation address as a pointer value
1 = Use invocation address as an offset value

Unstack option

Space/Invocation pointer

Char(1)

Char(2)

Bits 0-4

Bit 5

Bit 6

o = The action performed is determined by the setting of the following action code (bit 7).
1 = If the exception handler is an internal exception handler, resume execution with the

instruction that follows the RTNEXCP instruction and terminate the internal exception
handler subinvocation.

Action code Bit 7

o = Re-execute the instruction that caused the exception or the instruction that invoked the
invocation.

1 = Resume execution with the instruction that follows the instruction that caused the excep­
tion or resume execution with the instruction that follows the instruction that invoked the
invocation.

Reserved (binary 0) Char(1)

The invocation address/offset field is a space/invocation pointer that identifies the invocation to which
control will be passed.

The target invocation address field can also be an offset value from the current requesting invocation
to the invocation to be searched. This is done by setting the use offset option field that follows the
invocation address field to 1. If the invocation offset value locates the invocation stack base entry, the
invocation offset outside range of current stack (hex 2C1A) exception is signaled. If the invocation
offset value is a positive number (which represents newer invocations on the stack) a template value
invalid (hex 3801) exception is signaled. The current instruction in an invocation is the one that caused
another invocation to be created.

The unstack option is only valid when issued in an internal exception handler subinvocation and is
ignored for an external exception handler invocation. This option will cause the internal exception

Chapter 14. Exception Management Instructions 14-12

Return From Exception (RTNEXCP)

handler subinvocation to be terminated and control will resume at the instruction immediately following
the RTNEXCP instruction. In effect, this option will cause the current subinvocation to be unstacked.

If the action code is 0, then the current instruction of the addressed invocation is reexecuted, if it is
allowed. If the action code is 1, execution resumes with the instruction following the current instruction
of the addressed invocation, if it is allowed. If it is not, a retry/resume invalid (hex 1604) exception will
be signaled.

The Return From Exception instruction may be issued only from the initial invocation of an external
exception handling sequence or from an invocation that has an active internal exception handler.

If the instruction is issued from an invocation that is not an external exception handler and has no
internal exception handler subinvocations, the return instruction invalid (hex 2C01) exception is sig­
naled.

The following table shows the actions performed by the Return From Exception instruction:

Invocation
Issuing
Instruction
Not handling exception

Handling internal exception(s)

Handling external exception(s)

Handling external exception(s)
and internal exception(s)

Notes:

Addressing
Own
Invocation/Option
Error (see note 1)

Allowed (see note 2)

Error (see note 1)

Allowed (see note 2)

Addressing
Higher
Invocation/Option
Error (sse note 1)

Allowed (see note 3)

Allowed (see note 3)

Allowed (see note 3)

1. A return instruction invalid (hex 2C01) exception is signaled. If there are no more internal excep­
tion handler subinvocations active and this invocation is not an external exception handler, the
instruction may not be issued.

2. The current internal exception handler subinvocation is terminated.

3. All invocations after the addressed invocation are terminated and execution proceeds within the
addressed invocation. Any invocation exit programs set for the terminated invocations will be
given control before execution proceeds within the addressed invocation.

Whenever an invocation is terminated, the invocation count in the corresponding activation entry (if
any) is decremented by 1.

An action code of 1 specifies completion of an instruction rather than execution of the following instruc­
tion if the current instruction in the addressed invocation signaled a size exception or a floating-point
inexact result exception.

Note: The previous condition does not apply if any of the above exceptions were explicitly signaled by
a Signal Exception instruction.

A Return From Exception instruction cannot be used or recognized in conjunction with a branch point
internal exception handler.

If a failure to invoke an invocation exit handler occurs, a failure to invoke program event is signaled.

Exceptions

Operands
Exception 1 Other

06 Addressing

Chapter 14. Exception Management Instructions 14-13

Return From Exception (RTNEXCP)

Operands
Exception 1 Other

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X

44 partial system object damage X X

16 Exception management

03 invalid invocation X

04 retry/resume invalid X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

C. 02 object destroyed X

03 object suspended X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pOinter type invalid X

2C Program execution

01 return instruction invalid X

12 activation group access protection violation X

1A invocation offset outside range of current stack X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 14. Exception Management Instructions 14-14

Sense Exception Description (SNSEXCPD)

Op Code (Hex)
03E3

Operand 1
Attribute receiver

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Space pointer.

Operand 2
Invocation tem­
plate

Sense Exception Description (SNSEXCPD)

Operand 3
Exception tem­
plate

Note: A change has been made in the way in which exceptions are handled for bound programs. This
instruction is intended for use with Original Program Model (OPM) programs, but can be used against
New Program Model (NPM) bound programs. The data that is returned when an NPM program is
accessed will always say that there is an external handler for the sensed exception, that there is no
exception data being returned and a starting exception description number of O.

Description: The Sense Exception Description instruction searches the invocation specified by
operand 2 for an exception description that matches the exception identifier and compare value speci­
fied by operand 3 and returns the user data and exception handling action speCified in the exception
description. The exception descriptions of the invocation are searched in ascending Object Definition
Table (ODT) number sequence.

The template identified by operand 1 must be 16-byte aligned.

The format of the attribute receiver is as follows:

• Template size

Number of bytes provided for materialization

Number of bytes available for materialization

• Control flags

Exception handling action

Char(8)

Bin(4)

Bin(4)

Char(2)

Bits 0-2

000 = Do not handle- Ignore occurrence of exception and continue processing
010 = Do not handle- Continue search for an exception description by resignaling the excep­

tion to the immediately preceding invocation
100 = Defer handling- Save exception data for later exception handling
101 = Pass control to the specified exception handler

No data

o = Exception data is returned
1 = Exception data is not returned

Reserved (binary 0)

User data indicator

a = User data not present
1 = User data present

Reserved (binary 0)

Exception handler type

00 = External entry point
01 = Internal entry point
10 = Branch point

Bit 3

Bit 4

Bit 5

Bits 6-7

Bits 8-9

Chapter 14. Exception Management Instructions 14-15

- Reserved (binary 0)

• Relative exception description number

• Reserved (binary 0)

• Pointer to user data (binary 0 if value of
user data indicator is 0)

Sense Exception Description (SNSEXCPD)

Bits 10-15

Bin(2)

Char(4)

Space pointer

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, then the excess bytes are unchanged. No exception is signaled in the event the
receiver contains insufficient area for the materialization, other than the materialization length (hex
3803) exception described previously.

The relative exception description number field identifies the relative number of the exception
description that matched the search criteria. The order of definition of the exception descriptions in
the OOT determines the value of the index. A value of 1 indicates that the first exception description
defined in the OOT matched the search criteria.

The format of the invocation template is as follows:

• Invocation address/offset

• Search flags

Use offset option

o = Use invocation address as a pointer value
1 = Use invocation address as an offset value

Reserved (binary 0)

• First exception description to search

Space/Invocation pointer

Char(2)

Bit a

Bits 1-15

Bin(2)

The template identified by operand 2 must be 16-byte aligned. The Invocation address/offset field is a
space/invocation pointer that identifies the invocation to be searched. The invocation is searched for a
matching exception description. If the invocation address locates either an invalid invocation or the
invocation stack base entry, the invalid invocation address (hex 1603) exception is signaled.

The invocation address/offset field can also be an offset value from the current requesting invocation to
the invocation to be searched. This is setting the use offset option bit field that follows the invocation
address field to 1. If the invocation offset value locates the invocation stack base entry, the invocation
offset outside range of current stack (hex 2C1A) exception is signaled. If the invocation offset value is
positive or zero, a template value invalid (hex 3803) exception is signaled.

The first exception description to search field specifies the relative number of the exception description
to be used to start the search. The number must be a nonzero positive binary number determined by
the order of definition of exception descriptions in the OOT. A value of 1 indicates that the first excep­
tion description in the invocation is to be used to begin the search. If the value is greater than the
number of exception descriptions for the invocation, the operand 1 template is materialized with the
number of bytes available for materialization set to O.

The operand 3 exception template specifies the exception-related data to be used as a search argu­
ment. The format of the template is as follows:

• Template size Char(8)

Chapter 14. Exception Management Instructions 14-16

Sense Exception Description (SNSEXCPD)

Number of bytes provided for materialization
(must be at least 44)

Number of bytes available for materialization

• Exception identifier

• Compare value length (maximum of 32)

• Compare value

Note: Entries noted with an asterisk n are ignored by the instruction.

Bin(4)

Bin(4)*

Char(2)

Bin(2)

Char(32)

The exception identifier in the exception description can be specified in one of the following ways:

Hex 0000 = Any exception ID will result in a match

Hex nnOO = Any exception ID in class nn will result in a match

Hex nnmm = Only exception 10 nnmm will result in a match

If a match on exception ID is detected, the corresponding compare values are matched. If the compare
value length in the exception description is less than the compare value in the search template, the
length of the compare value in the exception description is used for the match. If the compare value
length in the exception description is greater than the compare value in the search template, an auto­
matic mismatch results.

If a match on exception ID and compare value is detected, the exception handling action of the excep­
tion description determines which of the following actions is taken:

IGNORE The operand 1 template is materialized.

DISABLE The exception description is bypassed and the search for an exception description continues
with the next exception description defined for the invocation. '..J

RESIGNAL The operand 1 template is materialized.

DEFER The operand 1 template is materialized.

HANDLE The operand 1 template is materialized.

If no exception description of the invocation matches the exception ID and compare value of operand 3,
the number of bytes available for materialization on the operand 1 template is set to o.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage X

44 partial system object damage X

16 Exception management

Chapter 14. Exception Management Instructions 14-17

"..J

Sense Exception Description (SNSEXCPD)

Operands
Exception 1 2 3 Other

03 invalid invocation address X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

1A invocation offset outside range of current stack X

2E Resource control limit

01 user profile storage limit exceeded X

'c. 32 Scalar specification

01 scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X X

02 template size invalid X

03 materialization length exception X

Chapter 14. Exception Management Instructions 14-18

Signal Exception (SIGEXCP)

Signal Exception (SIGEXCP)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3-4
SIGEXCP Attribute template Exception data
10CA

SIGEXCPB Branch options Attribute template Exception data Branch targets
lCCA

SIGEXCPI Indicator options Attribute template Exception data Indicator targets
18CA

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3-4:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The Signal Exception instruction signals a new exception or resignals an existing excep­
tion to the process. OptionaUy, the instruction branches to one of the specifi.ed targets based on the
results of the signal and the selected branch options in the extender field, or it sets indicators based
on the results of the signal. The signal is presented starting at the invocation identified in the signal
template.

The SIGEXCP instruction is a subset of the Send Process Message (SNOPRMSG) instruction. Addi­
tional parameters used in the SNOPRMSG instruction will be defaulted when the SIGEXCP instruction
is used. See the SNOPRMSG instruction for more information about the complete set of parameters
available when signalling an exception.

The template identified by operand 1 specifies the signal option and starting point. It must be 16-byte
aligned in the space with the foUowing format.

• Target invocation address

• Signal option

Signal/resignal option

a = Signal new exception.

Space/Invocation pointer

Char(1)

Bit a

1 = Resignal currently handled exception (valid only for an external exception handler).

Invoke POEH (process default
exception handler) option

a = Invoke POEH if no exception description found for invocation.

Bit 1

1 = Do not invoke POEH if no exception description found for invocation (ignore if base invo­
cation entry specified).

Exception description search control

o = Exception description search control not present
1 = Exception description present

Reserved (binary 0)

• Reserved (binary 0)

Bit 2

Bits 3-7

Char(1)

Chapter 14. Exception Management Instructions 14-19

Signal Exception (SIGEXCP)

• First exception description to search Bin(2)

The target invocation address pointer uniquely identifies the invocation to which the exception is to be
signalled. Signalling directly to the PDEH can not be accomlished via this instruction. Support for this
function is being provided in the SNDPRMSG instruction. If the target invocation address pOinter
locates neither a valid invocation entry nor the base invocation entry, the invalid invocation (hex 1603)
exception is signaled.

The invocation which issued this instruction will be checked to ensure it has the proper authority to
send an exception message to the target invocation. If the authority check fails, activation group
access violation (hex 2C12) will be signaled. If the program associated with the invocation has defined
an exception description to handle the exception, the specified action is taken; otherwise, the PDEH is
invoked unless the invoke POEH option bit is 1 (the exception is considered ignored). If the base invo­
cation entry is addressed instead of an existing invocation, the POEH will be invoked.

A change has been made to the way in which exception handlers are determined for bound programs.
The following description relates only to the invocation of exception handlers related to OPM pro­
grams. In both instances the actions of signalling and handling have been broken apart.

Note:

Exception descriptions of an invocation are searched in ascending OOT number sequence. If
the exception description search control control specified that an exception description is not
present, the search begins with the first exception description defined in the ODT. Otherwise,
the first exception description to search value identifies the relative number of the exception
description to be used to start the search. The value must be a nonzero positive binary number
determined by the order of definition of exception descriptions in the ODT. This value is also
returned by the Sense Exception Description instruction. A value of 1 indicates that the first
exception description in the invocation is to be used to begin the search. If the value is greater
than the number of exception descriptions for the invocation, the template value invalid (hex
3801) exception is signaled.

If an exception 10 in an exception description corresponds to the signaled exception, the corre­
sponding compare values are verified. If the compare value length in the exception description
is less than the compare value length in the signal template, the length of the compare value in
the exception description is used for the match. If the compare value length in the exception
description is greater than the compare value length in the signal template, an automatic mis­
match results. Machine-signaled exceptions have a 4-byte compare value of binary a's.

An exception description may monitor for an exception with a generic 10 as follows:

Hex 0000 = Any signaled exception ID results in a match.

Hex nnOO = Any signaled exception 10 in class nn results in a match.

Hex nnmm = The signaled exception ID must be exactly nnmm in order for a match to occur.

An exception description may be in one of five states, each of which determines an action to be
taken when the match criteria on the exception 10 and compare value are met.

IGNORE No exception handling occurs. The Signal Exception instruction is assigned a
resultant condition of ignored. If a corresponding branch or indicator setting is
present. that action takes place.

DISABLE The exception description is bypassed, and the search for a monitor continues with
the next exception description defined for the invocation.

Chapter 14. Exception Management Instructions 14-20

Signal Exception (SIGEXCP)

RES/GNAL The search for a monitoring exception description is to be reinitiated at the pre­
ceding invocation. A resignal from the initial invocation in the process results in the
invocation of the process default exception handler. A resignal from an invocation
exit program results in an unhandled exception that causes process termination.

DEFER The exception description is signaled, and the Signal Exception instruction is
assigned the resultant condition of deferred. If a corresponding branch or indicator
setting is present, that action takes place. To take future action on a deferred excep­
tion, the exception description must be synchronously tested with the Test Exception
instruction in the signaled invocation.

HANDLE Control is passed to the indicated exception handler, which may be a branch point, an
internal subinvocation, or an external invocation.

If the exception description is in the ignore or defer state and if the Signal Exception instruction
does not specify a branch or indicator condition or if it specifies branch or indicator conditions
that are not met, then the instruction following the Signal Exception instruction is executed.

When control is given to an internal or branch point exception handler, all invocations up to, but
not including, the exception handling invocation are terminated. Any invocation exit programs
set for the terminated invocations will be given control before execution proceeds in the sig­
naled exception handler.

When this instruction is invoked with the Resignal option, all invocations up to, but not including, the
interrupted invocation are cancelled and the message is signalled to the next oldest invocation in the
stack. This implies that the Return from Exception (RTNEXCP) instruction car no longer return to the
invocation that issued the resignal request. Any cancel handlers set for the cancelled invocations will
be given control before execution proceeds in the signaled exception handler.

If a failure to invoke an external exception handler or an invocation exit occurs, a failure to invoke
program event is signaled. For each destroyed invocation, the invocation count in the corresponding
activation entry (if any) is decremented by 1.

The template identified by operand 2 must be 16-byte aligned in the space. It specifies the exception­
related data to be passed with the exception signal. The format of the exception data is the same as
that returned by the Retrieve Exception Data instruction. The format is as follows:

• Template size

Number of bytes of data to be signaled
(must be at least 48 bytes)

Number of bytes available for materialization

• Exception identification

• Compare value length (maximum of 32 bytes)

• Compare value

• Reserved

• Exception specific data

Char(8)

Bin(4)

Bin(4)*

Char(2)

Bin (2)

Char(32)

Char(4)*

Char(*)

Note: Entries shown here with an asterisk (*) are ignored by the instruction.

Operand 2 is ignored if signal/resignal option is resignal because the exception-related data is the
same as for the exception currently being processed; however, it must be specified when signaling a
new exception.

The maximum size for exception specific data that is to accompany an exception signaled by the Signal
Exception instruction is 65 503 bytes, including the standard exception data.

Chapter 14. Exception Management Instructions 14-21

Signal Exception (SIGEXCP)

The following required parameters only available on the SNDPRMSG instruction will be given the fol­
lowing default values:

Message status - Log message + Retain + Action pending

Initial monitor priority - 64

Interrupt class mask - Message generated by Signal Exception instruction

Source invocation - invocation issuing SIGEXCP instruction

Resultant Conditions

• Exception ignored

• Exception deferred.

Authorization Required: The invocation which originated the exception must have proper acti­
vation group access to the target invocation. The following algorithm is used to determine this access.

1. The invocation which invoked the SIGEXCP instruction must have access to the invocation identi­
fied as the Originating Invocation.

2. The Originating Invocation must have access to the invocation identified as the Source Invocation
or to the invocation directly called by the Source invocation.

3. The Originating Invocation must have access to the invocation identified as the Target Invocation or
to the invocation directly called by the Target Invocation.

If any of the access checks fail then an activation group access violation (hex 2C12) exception will be
signaled .

. c., Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

10

01 parameter reference violation

Damage encountered

04 system object damage state

44 partial system object damage

16 Exception management

02 exception state of process invalid

03 invalid invocation

1 C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

Operands
1

X

X

X

X

X

X

X

X

2

X

X

X

X

X

x
X

Other

X

X

X

X

X

Chapter 14. Exception Management Instructions 14-22

Signal Exception (SIGEXCP)

Operands
Exception 1 2 Other

03 function check X . ..J
22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2C Program execution

12 activation group access violation X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

02 template size invalid X

\~

Chapter 14. Exception Management Instructions 14-23

Test Exception (TESTEXCP)

Test Exception (TESTEXCP)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3-4
resrexcp Receiver Exception
104A description

TESreXCPB Branch options Receiver Exception Branch options
1C4A description

TESTeXCPI Indicator options Receiver Exception Indicator options
184A description

Operand 1: Space pointer.

Operand 2: Exception description.

Operand 3-4:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Description: The instruction tests the signaled status of the exception description specified in operand
2, and optionally alters the control flow or sets the specified indicators based on the test. Exception
data is returned at the location identified by operand 1. The branch or indicator setting occurs based
on the conditions specified in the extender field depending on whether or not the specified exception
description is signaled.

Operand 2 is an exception description whose signaled status is to be tested. An exception can be
signaled only if the referenced exception description is in the deferred state.

Operand 1 addresses a space into which the exception data is placed if an exception identified by the
exception description has been signaled.

The template identified by operand 1 must be 16-byte aligned in the space and is formatted as follows:

• Template size

Number of bytes provided for materialization

Number of bytes available for materialization
(0 if exception description is not signaled)

• Exception identification

• Compare value length (maximum of 32 bytes)

• Compare value

• Message reference key

• Exception-specific data

• Source invocation address

• Target invocation address

• Signaling program instruction address

• Signaled program instruction address

• Machine-dependent data

Char(8)

Bin(4)

Bin(4)

Char(2)

Bin(2)

Char(32)

Char(4)

Char(*)

Invocation/Null pointer

Invocation pointer

UBin(2)

UBin(2)

Char(10)

Chapter 14. Exception Management Instructions 14-24

Test Exception (TESTEXCP)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the
instruction. This value is supplied as input to the instruction and is not modified by the instruction. A
value of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, then the excess bytes are unchanged. No exceptions (other than the materialization
length (hex 3803) exception) are signaled in the event that the receiver contains insufficient area for
the materialization.

If the exception description is not in the signaled state, the number of bytes available for the
materialization entry is set to binary O's, and no other bytes are modified.

The message reference key field holds the architected value that uniquely identifies the exception
message in a process queue space.

The source invocation address field will contain a null pointer if the source invocation no longer exists
when this instruction is executed.

The area beyond the exception-specific data area is extended with binary O's so that pointers to
program invocations are properly aligned.

If no branch options are specified, instruction execution proceeds at the instruction following the Test
Exception instruction.

If the exception data retention option. from the exception description. is set to 1 (do not save). no data
is returned by this instruction.

Resultant Conditions

• Exception signaled

• Exception not signaled.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

16 Exception management

01 exception description status invalid

1C Machine-dependent exception

Operands
1 2 Other

X

X

X

X

X

X X X

X X X

X

Chapter 14. Exception Management Instructions 14-25

~...)

Test Exception (TESTEXCP) \

Operands
Exception 1 2 Other

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 14. Exception Management Instructions 14-26

Queue Space Management Instructions

Chapter 15. Queue Space Management Instructions

This chapter describes the instructions used for queue space management. These instructions are in
alphabetic order. For an alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary."

I Materialize Process Message (MATPRMSG) 15-3

© COPYright I BM Corp. 1991, 1993 15-1

Queue Space Management Instructions

Chapter 15. Queue Space Management Instructions 15-2

Materialize Process Message (MATPRMSG)

Materialize Process Message (MATPRMSG)

Op Code (Hex)
039C

Operand 1
Materialization
template

Operand 1: Space pointer

Operand 2: Space pointer

Operand 3: Space pointer or null

Operand 4: Space pointer

Operand 2
Message template

Operand 3
Source template

Operand 4
Selection template

ILEaccess --~
MATPRMSG (

receiver_template
message_template
source_template

selection_template

space pointer;
space potnter;
space pOinter; OR
null operand;
space potnter

Description: A message is materialized from a queue space according to the options specified. The
message is located on a queue space queue specified by operand 3. The message is selected by the f "
operand 4 criteria. Operands 1 and 2 contain the materialized information from the process message. ~

The template identified by operand 1 must be 16-byte aligned. Following is the format of the
materialization template:

Template size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Process queue space queue offset

• Reserved (binary 0)

• Time sent

• Time modified

• Interupted invocation

• Target invocation

• Original target invocation

• Source program location

• Target program location

• Originating program location

• Invocation mark

• Activation group mark

• Reserved (binary 0)

Char(8)*

Bin(4)

Bin(4)

Bin(4)

Char(4)

Char(8)

Char(8)

Invocation pointer

Invocation pointer, or
System pointer

Invocation pointer

Suspend pointer

Suspend pointer

Suspend pointer

UBin(4)

UBin(4)

Char(8)

Chapter 15. Queue Space Management Instructions 15-3

Materialize Process Message (MATPRMSG)

The first 4 bytes of the materialization template identify the total number of bytes provided for use by
the instruction. This number is supplied as input to the instruction and is not modified by the instruc­
tion. If the value is zero for this' field, then the operand 1 template is not returned. A number less than
128 (but not 0) causes the materialization length (hex 3803) exception.

Queue space queue offset

Time sent

This value indicates which queue in the queue space a message resides on. A value of -1
will be returned if the message is on the external queue, and zero if the message is on the
message log. If the message resides on an invocation queue this field will be zero.

The value of the system time-of-day ciock when the message was originally sent (Send
Process Message instruction, Signal Exception, or message originated as a result of an
exception).

Time modified
This value is initially equal to the time sent value. However, it can be modified by the Modify
Process Message instruction.

Interrupted invocation
An invocation pointer that addresses the invocation which currently has this message as its
interrupt cause. This pointer is null if the message is not an exception message.

Target Invocation
An invocation pointer or system pointer that identifies which queue contains the message.
If the message resides on an invocation queue, this field contains an invocation pointer that
addresses the invocation whose invocation message queue currently contains the message.
If the message does not reside on an invocation queue, then a system pointer to the Queue
Space is returned. The queue space queue offset field indicates which queue on which the
message resides, the message log or the external queue.

Original target invocation
An invocation pointer that addresses the invocation which originally was sent the message.
This pointer is null if the original target invocation no longer exists.

Source program location
A suspend pointer which identifies the program, module, procedure, and statement where
the source invocation was suspended (due to a CALL or some form of interrupt). If the
message was originally sent as a non-interrupt message, then the source invocation is the
one identified by the Send Process Message instruction, and the suspend point identified is
the one that was current when that instruction was executed; otherwise the source invoca­
tion is the invocation for which the message was most recently an interrupt cause.

Target program location
A suspend pointer which identifies the program, module, procedure, and statement where
the target invocation was suspended (due to a CALL or some form of interrupt). If the
message is no longer in an invocation message queue, then this pointer reflects the invoca­
tion of the last (most recent) invocation message queue in which the message resided. This
pointer is null if the message has never resided in an invocation message queue.

Originating program location
A suspend painter which identifies the program, module, procedure, and statement of the
Send Process Message instruction that sent the message. For messages sent by the
machine, this painter area contains a machine-dependent representation of the source
machine component.

I "vocation mark
If the message has ever resided on an invocation, this field will be non-zero. It contains the
mark of the invocation where the message was last queued.

Chapter 15. Queue Space Management Instructions 15-4

Materialize Process Message (MATPRMSG)

Activation group mark
If the message has ever resided on an invocation, this field will be non-zero. It contains the
mark of the activation group which contains the invocation where the message was last
queued.

The template identified by operand 2 is used to contain the materialized message. It must be 16-byte
aligned with the following format.

• Template size

Number of bytes provided for materialization

Number of bytes available for materialization

• Message type

hex 00 = Informational message 0

hex 01 = Informational message 1

hex 04 = Exception message

hex 06 = Return/Transfer Control message

hex 07 = Return message

All other values are reserved.

• Reserved (binary 0)

• Message severity

• Reply/Inquiry message reference key

• Message status mask

Log message

o = The message is not queued to the Process Message Log.
1 = The message is queued to the Process Message Log.

Inquiry

o = Message will not accept a reply.
1 = Message will accept a reply.

Reply

o = Message does not represent a reply message.
1 = Message represents a reply message.

Answered

Bin(4)

Bin(4)

Char(1)

Char(1)

!3in(2)

Char(4)

Char(8)

Bit 0

Bit 1

Bit 2

Bit 3

o = For messages with a status of inquiry, this indicates that a reply message has not been
received.

1 = For messages with a status of inquiry, this indicates that a reply message has been
received.

Message being processed Bit 4

o = This value of the flag has no particular meaning.
1 = For a message type of exception, this indicates that the interrupt is currently being

handled.

Retain Bit 5

o = Message will be dequeued and its contents discarded when the following message status
bits are FALSE: Log, Message being processed, and Action pending.

1 = Keeps the message from being dequeued after all other message status bits are FALSE.

Ctlapter 15. Queue Space Management Instructions 15-5

Materialize Process Message (MATPRMSG)

Action pending Bit 6

o = Indicates no actions are pending based on this message.
1 = Indicates that the message is either an interrupt cause or is a Return, Return/Transfer

Control message.

Invoke Process Default Exception Handler (PDEH)

o == Do not invoke PDEH.
1 = Invoke PDEH, only valid if message type is exception.

Error

o == No error has occurred in the sending of this message.
1 == An error has occurred in the sending of this message.

PDEH previously invoked

a = PDEH has not previously been invoked for this message.
1 == PDEH has previously been invoked for this message.

Reserved (binary 0)

User defined status

• Interrupt class mask

Binary overflow or divide by zero

Decimal overflow or divide by zero

Decimal data error

Floating-point overflow or divide by zero

Floating-point underflow or inexact result

Floating-point invalid operand or conversion error

Other data error (edit mask, etc)

Specification (operand alignment) error

Pointer not set/pointer type invalid

Object not found

Object destroyed

Address computation underflow/overflow

Space not allocated as specified offset

Domain/State protection violation

Authorization violation

Reserved (binary 0)

Other MI generated exception (not function check)

MI generated function check/machine check

Message generated by Signal Exception instruction

Send Process Message instruction

Send Process Message instruction

Send Process Message instruction

Send Process Message instruction

Send Process Message instruction

Bit 7

Bit 8

Bit 9

Bits 10-31

Bits 32-63

Char(8)

Bit a
Bit 1

. Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15-28

Bit 29

Bit 30

Bit 31

Bit 32

Bit 33

Bit 34

Bit 35

Bit 36

Chapter 15. Queue Space Management Instructions 15-6

Materialize Process Message (MATPRMSG)

Send Process Message instruction

Send Process Message instruction

Send Process Message instruction

User defined

• Initial handler priority

• Current handler priority

• Exception ID

• PDEH Reason Code

• Reserved (binary 0)

• Compare data length

• Message ID

• Reserved (binary 0)

• Max message data length

• Message data length

• Max length of message extension data

• Message extension data length

• Message data pointer

• Message data extension pointer

• Message format information

If the message is not a return or return/transfer control message.

- Compare data

If the message is a return or return/transfer control message.

- Return handler identifier

- Reserved

• Reserved (binary 0)

Bit 37

Bit 38

Bit 39

Bits 40-63

Char(1)

Char(1)

UBin(2)

Char(1)

Char(1)

Bin(2)

Char(7)

Char(1)

Bin(4)1

Bin(4)

Bin(4)1

Bin(4)

Space pointer1

Space pointer1

Char(32)

Char(32)

System or
Procedure pointer

Char(16)

Char(32)

The first 4 bytes of the message template identify the total number of bytes provided for use the
instruction. This number is supplied as input to the instruction and is not modified by the instruction.
A number less than 160 causes the materialization length (hex 3803) exception.

Message type
This value determines the type of the message. The type of message determines which
message status values have meaning.

The following message status are valid for all informational message types.

• Log Message
• Reply
• Inquiry

The following message status are valid for a message type of Exception.

• Log Message

I 1 I nput to the Instruction

Chapter 15. Queue Space Management Instructions 15-7

'~

Materialize Process Message (MATPRMSG)

• Retain
• Action pending
• Invoke· PDEH
• Inquiry
• Reply

The following message status are valid for a message type of return or return/transfer
control.

• Action pending

The following describes each message type in detail.

• Informational 0 - There are no special requirements as to what message status contains
or what the Target Invocation pointer actually identifies.

• Informational 1 - There are no special requirements as to what message status contains
or what the Target Invocation pointer actually identifies.

• Exception - This type of message has an interrupt cause for the interrupeted invocation.

• Return - This message type indicates that a return handler will be invoked if the target
invocation is exited for any reason other than Transfer Control (XCTL). In the case of
XCTL, the message is preserved and associated with the transferred to invocation.
Additionally, messages of this type interpret the message format information field to
identify a program or procedure to be invoked as the return handler.

• Return/Transfer control - This message type indicates that a return handler is invoked
when the target invocation is exited for any reason including XCTl. Additionally, mes­
sages of this type interpret the message format information field to identify a program or
procedure to be invoked as the return handler.

Message severity
A value indicating the severity of the message.

Replyllnquiry message reference key
If the message materialized is an inquiry message, that has been answered this is the
message reference key of its reply message.

If the message materialized is a reply message, this is the message reference key of its
inquiry message.

This value only has meaning for exception, and informational messages.

Message status mask
A bit-significant value indicating the original status of the message.

• Log message status. If this bit is TRUE, then the message is queued to the Process
Message Log until it is explicitly removed.

• Inquiry status. If this bit is TRUE, then this message will accept a reply message.

• .B!2!Y status. If this value is TRUE, then this message is a Reply to an inquiry message.
The reply message reference key is used to identify the message for which the message
was replied.

• Answered status. If this value is TRUE, then the message is a inquiry message for which
a reply has been sent. The reply message reference key is used to identify the reply
message.

• Retain status. If this bit is TRUE, then the message is kept even in the invocation
message queue after the following message status bits are FALSE: Log, Message being
processed, and Action pending

Chapter 15. Queue Space Management Instructions 15-8

Materialize Process Message (MATPRMSG)

• .Action pending. status. If this bit is TRUE. this message represents an exception which
is the current interrupt cause for the specified Source Invocation or else it is a Return or
ReturnfTransfer Control message which has not yet been processed.

• Invoke Process Default Exception Handler. This status only has meaning for exception
messages.

Interrupt class mask
A bit-significant value indicating the cause of the interrupt. The MI user is allowed to use
the machine-defined classes since machine-generated errors may be re-sent by the MI
user.

This value only has meaning for exception messages.

Initial handler priority
An unsigned eight-bit binary number which selects the initial interrupt handler priority. This
value is within the range of of 64 - 255.

This value only has meaning for exception messages.

Exception 10
A two-byte field that identifies the exception being defined by this message.

This value only has meaning for exception messages.

POEH Reason Code
A value defined by the user which indicates the type of processing to be attempted by the
Process Default Exception Handler.

This value only has meaning for exception messages.

Compare data length
A value indicating the number of bytes provided as compare data.

This value only has meaning for exception messages.

Message 10
Specifies the message identifier of a message description whose predefined message is
being sent.

Max length of message data
Input to the instruction that specifies the number of bytes supplied for the message data.
The maximum value allowed is 65504.

Message data length
A value indicating the number of bytes of message data for this process message.

Max length of message data extension
Input to the instruction that specifies the number of bytes supplied for the message data
extension. The maximum value allowed is 65504.

Message data extension length
A value indicating the number of bytes of message data extension for this process
message.

Message data pointer
A pointer to the area to receive the message data. This field is ignored if the max length of
message data field is zero.

Message data extension pointer
A pointer to the area to receive the message data extension. This field is ignored if the max
length of message data extension field is zero.

Message format information
A 32 byte field that contains either compare data or two 16 bytes fields which contain infor­
mation related to a return type message.

Chapter 15. Queue Space Management Instructions 15-9

Materialize Process Message (MATPRMSG)

• If message type is not a return or return/transfer control message, this field is defined
as compare data used to determine which exception handler is to given control. Up to
32 bytes may be specified,

• If message type is a return or return/transfer control message, then the first 16 bytes of
this field are defined as a system pointer to an program object, or else a procedure
pointer to a New Model procedure, The last 16 bytes of the field are reserved for future
use.

This value is ignored if the message does not represent an exception, return or
return/transfer control message.

The template identified by operand 3 specifies the source invocation of the message. This operand can
be null (which indicates the requesting invocation is to be used for the Source Invocation) or specify
either an Invocation pointer to an invocation, a null pointer (which indicates the current invocation), or
a pointer to a Process Queue Space. It must be 16-byte aligned with the following format.

• Source invocation offset

• Originating invocation offset

• Invocation range

• Reserved (binary 0)

• Source invocation/Process Queue Space pointer

• Reserved (binary 0)

Source invocation offset

Bin(4)

Bin(4)

Bin(4)

Char(4)

Invocation/System
pointer

Char(16)

A signed numerical value indicating an invocation relative to the invocation located by the
source invocation pointer. A value of zero denotes the the invocation addressed by the
source invocation pointer, with increasingly positive numbers denoting increasingly later
invocations in the stack, and increasingly negative numbers denoting increasingly earlier
invocations in the stack. If a Process Queue Space is speCified as the message source,
then the only valid values for this field are 0, -1 and -2. A value of -1 indicates to materi­
alize from the external queue of the Process Queue Space. A zero value indicates to mate­
rialize from the message log of the Process Queue Space. A value of -2 indicates to
attempt to locate the message using the message reference index supplied in operand 4
without regard to the queue space queue that the message resides on. Only unanswered
inquiry messages, return messages, and returnltransfer control messages can be material­
ized in this fashion. Other values result in a scalar value invalid (hex 3203) exception being
signaled.

If the invocation identified by this offset does not exist in the stack, a scalar value invalid
(hex 3203) exception will be signaled.

Originator invocation offset
Specifies a displacement from the invocation executing this instruction and must be zero
(which indicates the current invocation) or negative (which indicates an older invocation).
The invocation identified is used as the source for all authorization checks (environment
authority to an invocation or authority to a process queue space). If the originator invoca­
tion offset is non-zero, then the invocation executing this instruction must be authorized to
the originating invocation identified.

If the invocation identified by this offset does not exist in the stack or the value is greater
than zero, a scalar value invalid (hex 3203) exception will be signaled.

Chapter 15. Queue Space Management Instructions 15-10

Materialize Process Message (MATPRMSG)

! Invocation Range
A signed numerical value indicating the number of invocations in the range in addition to
the invocation identified by the Source invocation pointer. If a Process Queue Space pointer
is provided, this value must be zero.

The sign of the invocation range determines the direction of the additional invocations. A
positive number specifies a range encompassing newer invocations, while a negative
number specifies a range encompassing older invocations.

It is not an error if this value specifies a range greater than the number of existing invoca­
tions in the specified direction. The materialization will stop after the last invocation is
encountered.

Source invocation pointer
An invocation pointer to an invocation. If null, then the current invocation is indicated.

If the invocation identified does not exist in the stack or is invalid for this operation, an
invalid invocation (hex 1603) exception will be signaled.

Process Queue Space pointer
A system pointer to a Process Queue Space object.

The template identified by operand 4 must be 16-byte aligned. Following is the format of the message
selection template:

• Starting message reference index

• Ending message reference index

• Number of selection criteria

• Reserved (binary 0)

• Selected message reference index

• Selected message count

• Status change count

• Moved message count

• Selection criterion

Selection type

hex 00 = Select based on message status

hex 01 = Select based on message 10

hex 02 = Select based on interrupt class

hex 03 = Select based on invocation mark

hex 04 = Select based on activation group mark

Reserved (binary 0)

Selection action

- Reject criterion

o = Select message if criterion is statisfied
1 = Reject message if criterion is statisfied

- Reject message

2 Ignored by the instruction

3 Output by the Instruction

Char(4)

Char(4)

Bin(2)

Char(6)

Char(4)3

Bin(4)3

Bin(4)Z

Bin(4)2

Char(32)

Char(1)

Char(1)

Char(2)

Bit 0

Bit 1

Chapter 15. Queue Space Management Instructions 15-11

J

(. -

Materialize Process Message (MATPRMSG)

o = Do not reject message if criterion is not satisfied
1 = Reject message if criterion is not satisfied

Reserved (binary 0) Bits 2 - 15

Message type mask Char(4)

Selection criterion information Char(24)

If the selection type is message status

- Message status mask Char(8)

- Message status complement Char(8)

- Reserved (binary 0) Char(8)

If the selection type is message ID

- Message ID Char(7)

- Reserved (binary 0) Char(17)

If the selection type is interrupt class

- Interrupt class mask Char(8)

- Interrupt class complement Char(8)

- Reserved (binary 0) Char(8)

If the selection type is invocation mark

- Invocation mark . UBin(4)

- Reserved (binary 0) Char(20)

If the selection type is activation group mark

- Activation group mark UBin(4)

- Reserved (binary 0) Char(20)

Starting and ending message reference index
Messages in the specified range of index values are examined either until one of the
selection criteria has been satisfied or all queues specified have been searched. The direc­
tion of search is determined by the relative values of Starting Message Reference Index and
Ending Message Reference Index. If the former value is smaller, then the search direction
is in numerically (and chronologically) increasing order, while if the latter value is smaller
the search direction is in the opposite direction.

Messages are examined starting with the message identified by starting message reference
index, or if no such message exists in the queue, starting with the closest existing message
in the direction of the search.

If operand 3 specifies a system pointer to a a queue space and a source invocation offset of
-2, then the starting and ending message reference indices must be equal, otherwise a
scalar value invaJid (hex 3203) exception will be issued.

Number of selection criteria
A numerical value that specifies how many selection criteria fields are supplied. If number
of selection criteria has a value of zero, then the first message in the index range will be
materialized.

Selected message reference index
This value returns the message reference index of the message materialized. Zero is
returned if no message satisfies the criteria.

Chapter 15. Queue Space Management Instructions 15-12

Materialize Process Message (MATPRMSG)

Selected message count
This value indicates the number of messages selected: zero for no messages found. one if
a message was found.

Selection criterion
This field contains the data used to select messages from a queue space. There is a vari­
able number of criteria present in the template (the number present is in the number of
selection criteria field). Each selection criterion may select a message. reject it. or take no
action. Successive selection criteria are applied to each message until it is selected or
rejected. or until selection criteria have been exhausted (in which case selection is the
default).

Selection type
This field indicates the format of the selection criterion and what field in the message is
compared.

Selection action
A bit-significant value indicating what actions to perform during the selection criteria proc­
essing.

• Reject criterion - If this bit is TRUE. a message is rejected if the selection criterion is
satisfied. If this bit is FALSE. then a message is selected when the selection criterion is
satisfied.

• Reject message - If this bit is TRUE. a message is rejected if the selection criteria is not
satisfied. If this bit is FALSE. then a message is selected when the selection criteria not
is satisfied.

Message type mask
A bit-significant value indicating types of messages that should be examined during
selection criteria processing. The first 31 bits correspond to message types hex 00 through
hex 1E respectively. The 32nd bit (bit 31) corresponds to all message types greater than hex
1E.

Message status mask and message status complement
These are bit-significant values indicating the message status attributes that will allow a
message to be selected. These values are used to test a message as follows:

The message status complement is bit-wise exclusive-ORed with the message status value
of a message. The result of this is then bit-wise ANOed with the message status mask. If the
result is all FALSE bits. then the message does not satisfy this selection criterion. If the result
is not all FALSE, bits then the message satisfies the selection criterion.

Message 10
A character value that is compared to the message 10 of a message. If the values are
equal the selection is satisfied.

Interrupt class mask and interrupt class complement
These are bit-significant values indicating the interrupt class attributes that will allow a
message to be selected. These values are used to test a message as follows:

The interrupt class complement is bit-wise exclusive-ORed with the interrupt class value of a
message. The result of this is then bit-wise ANDed with the interrupt class mask. If the'
result is all FALSE bits, then the message does not satisfy this selection criterion. If the result
is not all FALSE bits, then the message satisfies the selection criterion.

Invocation mark
A binary number that is compared to the invocation mark of a message. If the values are
equal the selection is satisfied.

Chapter 15. Queue Space Management Instructions 15-13

c...

Materialize Process Message (MATPRMSG)

Activation group mark
A binary number that is compared to the activation group mark of a message. If the values
are equal t·he selection is satisfied.

Authorization Required: The following algorithm is used to determine authorization.

1. The invocation which invoked the MATPRMSG instruction must have authority to the invocation
identified as the Source Invocation.

2. The Originating Invocation must have authority to the invocation identified as the Source Invocation
or to the invocation directly called by the Source invocation.

if any of the authority checks fail then a activation group access protection violation (hex 2C12) excep­
tion will be signaled.

• Operational

- Operand 3

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

Operand 3

Contexts referenced for address resolution

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X X

02 boundary alignment X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OA Authorization

01 unauthorized for operation X X

10 Damage encountered

04 system object damage state X X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage

1 A Lock state

1C

01 invalid lock state

Machine-dependent exception

03 machine storage limit exceeded

04 object storage limit exceeded

X

X

X

X

X X X X

X

X

Chapter 15. Queue Space Management Instructions 15-14

Materialize Process Message (MATPRMSG)

Operands
Exception 1 2 3 4 Other

! 20 Machine support ..J
02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

07 authority verification terminated due to destroyed object X

24 Pointer specification

01 pointer does not exist X X X X

02 painter type invalid X X X X

03 pointer address invalid object X

2C Program execution

12 activation group access protection violation X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

46 Queue space management ~
01 queue space not associated with the process X

Chapter 15. Queue Space Management lns!ructions 15-15

Extended Function Instructions

These instructions provide an extended set of functions which can be used to control and monitor the
operation of the machine. Because of the more complicated nature of these instructions, they are
more exposed to changes in their operation in different machine implementations than the basic func­
tion instructions. Therefore, it is recommended that, where possible, programs avoid using these
extended function instructions to minimize the impacts which can arise in moving to different machine
implementations.

© COPYright IBM Corp. 1991, 1993

Context Management Instructions

Chapter 16. Context Management Instructions

This chapter describes the instructions used for context management. These instructions are in alpha­
betic order. See Appendix A, "Instruction Summary," for an alphabetic summary of all the instructions.

Materialize Context (MATCTX) 16-3

© Copyright I BM Corp. 1991, 1993 16-1

Context Management Instructions

L

Chapter 16. Context Management Instructions 16-2

Materialize Context (MATCTX)

Op Code (Hex)
0133

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer or null.

Operand 3: Character scalar.

Operand 2
Permanent
context, temporary
context, or
machine context

Materialize Context (MATCTX)

Operand 3
Materialization
options

ILEaccess ---,
MATCTX (

receiver
var context

var materialization_options

space pointer
system pointeri OR
nul Z operandi
aggregate

Description: Based on the contents of the materialization options specified by operand 3, the symbolic
identification and/or system pointers to all or a selected set of the objects addressed by the context
specified by operand 2 are materialized into the receiver specified by operand 1. If operand 2 is nUll,
then the machine context is materialized.

The materialization options operand has the following format:

• Materialization control

Information requirements (1 = materialize)

- Reserved (binary 0)

- Extended context attributes

- Validation

o = Validate system pointers
1 = No validation

- System pointers

- Symbolic identification

Selection criteria

- Reserved (binary 0)

- Modification date/time selection

o = Do not select by modification date/time

1 = Select by modification date/time

- Object ID selection

• Hex 0 - All entries

• Hex 1 - Type code selection

• Hex 2 - Type code/subtype code selection

Char(2)

Char(1)

Bits 0-3

Bit 4

Bit 5

Bit 6

Bit 7

Char(1)

Bits 0-2

Bit 3

Bits 4-7

Chapter 16. Context Management Instructions 16-3

Materialize Context (MATCTX)

• Hex 4- Name selection

• Hex 5 - Type coqe/name selection

• Hex 6 - Type code/subtype code/name selection

• Hex E - Context entries collating at and above the specified Type code/subtype
code/name selection

• Length of name to be used for search argument

• Type code

• Subtype code

• Name

• Timestamp

Bin(2)

Char(1)

Char(1)

Char(30)

Char(8)

The materialization control information requirements field in the materialization options operand speci­
fies the information to be materialized for each selected entry. Symbolic identification and system
pointers identifying objects addressed by the context can be materialized based on the bit setting of
this parameter.

If the information requirements field is binary 0, the context attributes are materialized with no context
entries. In this case, the selection criteria field is meaningless.

If the information requirements field is set to just return the extended context attributes, the context
attributes and extended attributes are materialized with no context entries. In this case, the selection
criteria field is meaningless.

If the validation attribute indicates no validation is to be performed, no object validation occurs and a
significant performance improvement results.

When no validation occurs, some of the following pointers may be erroneous:

• Pointers to destroyed objects

• Pointers to objects that are no longer in the context

• Multiple pointers to the same object

The materialization control selection criteria field specifies the context entries from which information
is to be presented. The type code, subtype code, and name fields contain the selection criteria when a
selective materialization is specified.

When type code or type/subtype codes are part of the selection criteria, only entries that have the
specified codes are considered. When a name is specified as part of the selection criteria, the N char­
acters in the search criteria are compared against the N characters of the context entry, where N is
defined by the length of name to be used for search argument field in the materialization options. The
remaining characters (if any) in the context entry are not used in the comparison.

Selection criteria value hex 00, when the number of bytes provided in the receiver does not allow for
materialization of at least one context entry, requests that as much of the context attributes as will fit
be materialized into the receiver and that an estimate of the the byte size correlating to the full list of
context entries currently in the context be set into the number of bytes available for materialization
field of the receiver. This capability of requesting an estimate of the size of a full materialization of the
context provides a low overhead way of getting a close approximation of the amount of space that will
be needed for an actual materialize of all context entries. This approximation may be either high or
low by a few entries due to abnormal system terminations.

Chapter 16. Context Management Instructions 16-4

Materialize Context (MATCTX)

Selection criteria value hex 00, when the number of bytes provided in the receiver allow for
materialization of at least one context entry, and values hex 01 through hex 06 request that all context
entries matching the associated'type code/subtype code/name criteria be materialized into the
receiver. The number of bytes available for materialization field is set with the byte size correlating to
the full list of context entries that matched the selection criteria whether or not the receiver provided
enough room for the full list to be materialized.

Selection criteria value hex OE requests that as many context entries as will fit which collate at or
higher (are equal to or greater) than the specified type code/subtype code/name criteria be material­
ized into the receiver. The number of bytes available for materialization field is set with the byte size
correlating to the list of context entries that were actually materialized into the receiver rather than the
full list that may have been available in the context.

If modification date/time selection is specified, then entries are selected according to the time of last
modification in addtiion to any object identification selection specified. The timestamp in the
materialization control is used to determine which entries will be selected. Entries with modification
timestamps greater than or equal to the timestamp specified in the control will be selected. Besides
the additional selection done as above, the materialize will work the same as specified in the other
controls.

Programming note: If the specified timestamp is for a date/time earlier than the date/time currently
associated with the changed object list, all objects in the context will be inspected for their modification
date. This may degrade system performance.

The format of the materialization (operand 1) is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Context identification

Object type

Object subtype

Object name

• Context options

Existence attributes

o = Temporary
1 = Permanent

Space attribute

o = Fixed-length
1 = Variable-length

Reserved (binary 0)

Access group

o = Not a member of access group
1 = Member of access group

Reserved (binary 0)

• Recovery options

Automatic damaged context rebuild option

o = Do not rebuild at IMPL

Char(S)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-31

Char(4)

Bit 0

Chapter 16. Context Management Instructions 16-5

i

..J

1 = Rebuild at IMPL

• Size of space

• Initial value of space

• Performance class

Space alignment

Materialize Context (MATCTX)

Bin(4)

Char(1)

Char(4)

Bit 0

o = The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space. If no space is specified for the object, this value must
be speCified for the performance class.

1 = The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space as well as to allow proper alignment of input/output
buffers at 512-byte alignments within the the space.

Reserved (binary 0) Bits 1-4

Main storage pool selection

o = Process default main storage pool is used for object.
1 = Machine default main storage pool is used for object.

Reserved (binary 0)

Block transfer on implicit access state
modification

Bit 5

Bit 6

Bit 7

o = Transfer the minimum storage transfer size for this object. This value is 1 storage unit.
1 = Transfer the machine default storage transfer size. This value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Reserved (binary 0)

• Access group

• Extended Context Attributes (if requested)

Changed object list

0- A changed object list does not exist

1 - A changed object list does exist.

Useable changed object list

o - Changed object list is in a useable state

1 - Changed object list is not in a useable state

Reserved (binary 0)

• Reserved (binary 0)

• Current timestamp

• Context entry (repeated for each selected entry)

Object identification (if requested)

- Type code

- Subtype code

- Name

Object pointer (if requested)

Bits 8-31

Char(7)

Char(16)

System pointer

Char(1)

Bit 0

Bit 1

Bit 2-7

Char(7)

Char(8)

Char(16-48)

Char(32)

Char(1)

Char(1)

Char(30)

System pointer

Chapter 16. Context Management Instructions 16-6

Materialize Context (MATCTX)

The first 4 bytes of the materialization output identify the total number of bytes provided for use by the
instruction. This value is supplied as input to the instruction and is not modified by the instruction. A
value of less than 8 causes the materialization length (hex 3803) exception to be signaled. The instruc­
tion materializes as many bytes and pointers as can be contained in the receiver. If the byte area
identified by the receiver is greater than that required to contain the information requested for
materialization, the excess bytes are unchanged. No exceptions are signaled in the event that the
receiver contains insufficient area for the materialization, other than the materialization length (hex
3803) exception described above.

See the Create Context (CRTCTX) for a description of the common object creation fields.

The context entry object identification information. if requested by the materialization options field, is
present for each entry in the context that satisfies the search criteria. If both system pointers and
symbolic identification are requested by the materialization options field, the system pointer imme­
diately follows the object identification for each entry.

The order of the materialization of a context is by object type code, object subtype code, and object
name, all in ascending sequence.

Authorization Required

• Retrieve

- Operand 2

Lock Enforcement

• Materialization

- Operand 2

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage encountered

1A

02 Machine context damage state

04 System object damage state

05 authority verification terminated due to damaged object

44 Partial system object damage

Lock state

01 Invalid lock state

Operands
1 2 3 Other

X X X

X X X

X X X

X X X

X X X

X

X

X X X X

X

X X X X

X

Chapter 16. Context Management Instructions 16-7

Materialize Context (MATCTX)

Operands
Exception 1 2 3 Other
lC Machine-dependent exception

03 Machine storage limit exceeded X X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

03 Pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

02 Scalar attributes invalid X

03 Scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 Materialization length exception X

Chapter 16. Context Management Instructions 16-8

Authorization Management Instructions

Chapter 17. Authorization Management Instructions

This chapter describes the instructions used for authorization management. These instructions are in
alphabetic order. For an alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary. "

Materialize Authority (MATAU) 17-3
Materialize Authority List (MATAL) 17-7
Materialize Authorized Objects (MATAUOBJ) 17-12
Materialize Authorized Users (MAT AUU) 17-20
Materialize User Profile (MATUP) 17-25
Test Authority (TEST AU) 17-29
Test Extended Authorities (TESTEAU) 17-34

~ COPYright IBM Corp. 1991, 1993 17-1

Authorization Management Instructions

<...

Chapter 17. Authorization Management Instructions 17-2

Materialize Authority (MATAU)

Op Code (Hex)
0153

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
System object

Materialize Authority (MATAU)

Operand 3
User profile or
Source Template

Operand 3: System pointer or Space pointer data object or null.

ILEaccess ---,

r~ATAU (
receiver

var system_object
var user_profile_or_source_template

space pOinter;
system pOinter;
system pOinter OR
space pOinter OR
null operand

Description: This instruction materializes the specific types of authority for a system object available
to the specified user profile. 'The private authorization that the user profile specified by operand 3 has
to the permanent system object specified by operand 2, and the object's public authorization is materi-
alized in operand 1. If operand 3 is nUll, then only the object's public authorization is materialized, and ,(\,'
the private authorization field in the materialization is set to binary O. .."

Except for certain special cases, the authority to be materialized is determined by first checking for
direct authority to the object itself, then checking for indirect authority to the object through authority to
an authorization list containing the object. The first source of authority found is materialized and the
source is indicated in the materialization.

The special case of the operand 3 user profile having aI/ object special authority overrides any explicit
private authorities that the user profile might hold to the object or its containing authorization list and
results in a materialization showing that the profile holds all private authorities directly to the object.

The special case of the operand 2 object being in an authorization list which has the override specific
object authority attribute in effect results in the authorization or lack of authorization held to the
authorizaiton list completely overriding the explicit private authorities that the user profile might hold
to the object. This case results in a materialization showing that the profile has just the private author­
ities it holds or doesn't hold to the authorization list. That is, if the user profile has private authority to
the object, but doesn't have private authority to the authorization list, the materialization will show that
the user does not have any private authority to the object. Similarly, if the user profile has both private
authority to the object and to the authorization list, the materialization will show that the user has only
the private authority through the authorization list. If operand 3 is nUll, then only the object's public
authorization is materialized, and the private authorization field in the materialization is set to binary
zeros.

Operand 3 may be specified as a a system pointer which directly addresses the user profile to be
checked as a source of authority or as a space pointer to a source template which identifies the source
user profile. Specifying a template allows for additional controls over how the materialize operation is
to be performed. The format of the source template is the following:

• Source flags Char(2)

Chapter 17. Authori zation Management Instructions 17-3

Ignore all object special authority

o = No
1 = Yes

Reserved (binary 0)

• Reserved (binary 0)

• User profile

Materialize Authority (MATAU)

Bit 0

Bit 1-15

Char(14)

System pointer

The ignore all object special authority source flag specifies whether or not that special authority is to
be ignored during the materialize operation. When yes is specified, just the explicitly held private
authority that the specified user profile holds either directly to the object or indirectly to an authori­
zation list containing the object will be materialized. When no is specified, the authority provided by
a" object special authority, if held by the source user profile, is included and results in a
materialization showing that the profile holds a" private authorities directly to the object. No is the
default for this flag value when the source template is not specified.

The user profile field specifies the user profile to be checked as a source of authority.

The format of the materialization (operand 1) is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization
(contains a value of 16 for this instruction)

• Private authorization (1 = authorized)

Object control

Object management

Authorized pointer

Space authority

Retrieve

Insert

Delete

Update

Ownership (1 = yes)

Excluded

Authority List management

Reserved (binary 0)

• Public authorization (1 = authorized)

Object control

Object management

Authorized poi nter

Space authority

Retrieve

Insert

Delete

Char(8)

Bin(4)

Bin(4)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11-15

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Chapter 17. Authorization Management Instructions 17-4

Update

Reserved (binary 0)

Excluded

Authority List management

Reserved (binary 0)

• Private authorization source

o = authority to object
1 = authority to authorization list

• Public authorization source

a = authority from object
1 = authority from authorization list

Materialize Authority (MA TAU)

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11-15

UBin(2)

UBin(2)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception.

The second 4 bytes of the materialization identify the total number of bytes available to be materialized
(16 for this instruction). The instruction materializes as many bytes as can be contained in the area
specified as the receiver. If the byte area identified by the receiver is greater than that required to
contain the information requested, then the excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the event that the receiver contains insufficient
area for the materialization. .

Any of the four authorizations- retrieve, Insert, delete, or update-constitute operational authority.

If this instruction references a temporary object, all public authority states are materialized. Private
authority states are not materialized.

Authorization Required

• Operational

- Operand 3

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

Operand 2

Operand 3

Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

Operands
1 2 3

x
X

X

X

X

X

Other

Chapter 17. Authorization Management Instructions 17-5

Materialize Authority (MATAU)

Operands
Exception 1 2 3 Other

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X X

10 Damage encountered

02 machine context damage state X

04 system object damage state X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer addressing invalid object X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 17. Authorization Management Instructions 17-6

Materialize Authority List (MATAL)

Op Code (Hex)
01B3

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Space pointer.

Operand 2
Authorization List

Materialize Authority List (MATAL)

Operand 3
Materialization
Options

ILEaccess ---,

MATAL (
receiver

var authorization list
materialization_options

space pOinter
system pOinter
space pOinter

Description: Based on the contents of the materialization options specified by operand 3, the symbolic
identification and/or system pointers to all or a selected set of the objects contained in the authori­
zation list specified by operand 2 are materialized into the receiver specified by operand 1.

The materialization options operand has the following format:

• Materialization control

Information requirements

12 = Materialize count of entries matching the criteria.

Char(2)

Char(1)

22 = Materialize identification of entries matching the criteria and return information using
short description format

32 = Materialize identification of entries matching the criteria and return information using
long description format

Selection criteria

00 = All authorization list entries

01 = Type code selection

02 = Type code/subtype code selection

• Reserved (binary 0)

• Type code

• Subtype code

• Reserved (binary 0)

Char(1)

Bin(2)

Char(1)

Char(1)

Char(30)

The In'onnation requirements field specifies the type of materialization, just a count of entries, short
descriptions, or long descriptions, which is being requested.

The selection criteria field specifies the criteria to be used in selecting the authorization list entries for
which information is to be presented. The type code and subtype code fields contain the selection ~
criteria when a selective materialization is specified.

Chapter 17. Authorization Management Instructions 17-7

Materialize Authority List (MATAL)

When type code or type/subtype codes are part of the selection criteria, only entries that have the
specified codes are considered.

The format of the materialization (operand 1) is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Authorization List identification

Object type

Object subtype

Object name

• Authorization List creation options

Existence attributes

= Permanent (always permanent)

Space attribute

o = Fixed length
1 = Variable length

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

• Performance class

• Reserved

• Context

• Reserved

• Authorization List attributes

Override specific object authority

o = No
1 = Yes

Reserved (binary 0)

• Reserved (binary 0)

• Entries header

Number of entries available

Reserved

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2-31

Char(4)

Bin(4)

Char(1)

Char(4)

Char(7)

System pointer

Char(16)

Char(4)

Bit 0

Bit 1-31

Char(28)

Char(16)

UBin(4)

Char(12)

If no description (information requirements = hex 12) is requested in the materialization options
parameter, the above constitutes the information available for materialization. If a description (short or
long) is requested by the materialization options operand, a description entry is present (assuming a
sufficient size receiver) for each object materialized into the receiver. Either of the following entry
formats may be selected.

• Short description entry Char(32)

Chapter 17. AutMrlzation Management Instructions 17-8

Materialize Authority List (MATAL)

Type code Char(1)

Subtype code Char(1)

Reserved Char(14)

System object System pointer

• Long description entry Char(128)

Type code Char(1)

Subtype code Char(1)

Object name Char(30)

Reserved Char(16)

System object System pOinter

Object owning user profile System pointer

Context Char(48)

- Type code Char(1)

- Subtype code Char(1)

- Context name Char(30)

- Context pointer System pointer

The first four bytes of the materialization output identify the total number of bytes provided for use by
the instruction. This value is supplied as input to the instruction and is not modified by the instruction.
A value of less than 8 causes the materialization length (hex 3803) exception to be signaled.

..J

The second 4 bytes of the materialization identify the total number of bytes available to be material- :..J
ized. The instruction materializes as many bytes and pointers as can be contained in the receiver. If
the byte area identified by the receiver is greater than that required to contain the information
requested for materialization, the excess bytes are unchanged. No exceptions are signaled in the
event that the receiver contains insufficient area for the materialization, other than the materialization
length (hex 3803) exception signaled above.

Refer to the Create Authorization List instruction for a discussion of the creation attributes materialized
in the above template.

The number of entries available field specifies the number of authorization list entries which satisfied
the selection criteria and were therefore materialized. A value of zero indicates no entries were avail­
able.

The object identification information (in the short and long description entries), if requested by the
materialization options parameter, is present for each entry in the authorization list that satisfies the
search criteria.

The object pointer information (in the long description entry only), if requested by the materialization
options parameter, is present for each entry in the authorization list that satisfies the search criteria.

If the object addressed by the system pointer is not addressed by a context, the context type field is
set to hex 00 or if the object is addressed by the machine context, the context type field is set to hex
81. Additionally, in either of these cases, the context pointer is set to the system default "pointer does
not exist" value.

Chapter 17. Authorization Management Instructions 17-9

Authorization Required

• Retrieve

Operand 2

Lock Enforcement

• Materialization

Operand 2

Exceptions

Exception

06 addressing

01 space addressing violation

02 boundary alignment violation

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage

05 authority verification terminated due to damaged object

44 partial system object damage

1A Lock state

01 invalid lock state

1C Machine dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

07 authority verification terminated due to destroyed object

08 object compressed

24 Pointer specification

01 pOinter does not exist

02 pointer type invalid

Materialize Authority List (MATAL)

Operands
1

X

X

X

X

X

X

X

X

X

X

2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

X

X

Chapter 17. Authorization Management Instructions 17-10

Materialize Authority List (MATAL)

Operands
Exception 1 2 3 Other

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

02 scalar attributes invalid X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length X

Chapter 17. AuthorIZation Management Instructions 17-11

Materialize Authorized Objects (MAT AUOBJ)

Materialize Authorized Objects (MATAUOBJ)

Op Code (Hex)
013B

Operand 1
Receiver

Operand 2
User profile

Operand 3
Materialization
options/template

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character scalar (fixed length).

ILEaccess --~

MATAUOBJ (
receiver space pointer;

system pOinter;
aggregate

var user_profile
var materialization_options

Description: This instruction materializes the identification and the system pointers to all or selected
system objects that are privately owned and/or authorized by a specified user profile. For the user
profile (operand 2), the materialization options (operand 3) specify object selection criteria and the
format and location of the object materialization data. The receiver space (operand 1) always indicates
the number of objects materialized, and contains the object materialization data unless the
materialization options specify an independent index to contain the data.

When the high-order bit of the materialization options is off, operand 3 is viewed as a Char(1) scalar.
This option does not permit object selection by type and subtype, does not allow a continuation point to
be specified, and returns all object materialization data in the receiver (operand 1). Following are the
valid operand 3 values which may be used with the short template header format (operand 1):

Value (hex)

11

12

13

21

22

23

31

32

33

Meaning

Materialize count of owned objects.

Materialize count of authorized objects.

Materialize count of all authorized and owned objects.

Materialize identification of owned objects using short description entry format.

Materialize identification of authorized objects using short description entry format.

Materialize identification of all authorized and owned objects using short description
entry format.

Materialize identification of owned objects using long description entry format.

Materialize identification of authorized objects using long description entry format.

Materialize identification of all authorized and owned objects using long description
entry format.

Following are the valid operand 3 values which may be used with the long template header format
(operand 1):

Chapter 17. Authorization Management Instructions 17-12

Materialize Authorized Objects (MATAU08J)

Value (hex)

51-53

Meaning

These long template header materialization options are the same as the short template
header materialization options 11-13 (hex).

61-63

71-73

These long template header materialization options are the same as the short template
header materialization options 21-23 (hex).

These long template header materialization options are the same as the short template
header materialization options 31-33 (hex) except that the context extension is material­
ized for each object as well.

When the high-order bit of the materialization options is on, operand 3 is viewed as variable-length,
must be 16-byte aligned in the space, and has the following format:

• Materialization options Char(1)

Valid values are hex 91-93, A1-A3, 81-83, 01-03, E1-E3, and F1-F3. They have the same meanings
as the corresponding values hex 11 through 73.

• Materialization flags

Restrict information dcope

Char(1)

Bit 0

This is an input bit which only has meaning when materialization data is being returned in the
operand 1 receiver template. When there is more data to be materialized than can be con­
tained in the template, then when this bit is on, the number of bytes available for
materialization, the number of objects owned by the user profile, and the number of objects pri­
vately authorized by the user profile output fields are restricted to refl.ect only the information
returned in the template; when off, the output fields reflect the total amount of materialization
data available, even though the template may not be large enough to contain it all.

More materialization data available Bit 1

This output bit has meaning only when materialization data is being returned in the operand 1
receiver template. When on, it indicates that objects exist beyond those for which
materialization data was returned in the template; when off it indicates the end of the objects
was reached.

Continuation point specified Bit 2

This is an input bit. When on, it indicates that a continuation point is specified in the continua­
tion point field; when off, continuation processing is ignored.

Reserved (binary 0)

• Reserved (binary 0)

• Independent Index pointer

Bits 3-7

Char(30)

System pOinter

If the pointer does not exist, the instruction returns all object materialization data in the receiver
(operand 1). Otherwise it returns only the template header in the receiver and returns the object
materialization data in the independent index.

• Continuation point Char(16) or
System pointer

If the continuation point specified bit is on, when the instruction begins, if this field contains a
system pointer or the storage form of a system pointer, then materialization data is returned for
objects found in the profile following the object identified by the continuation point; otherwise,
materialization data is returned beginning with the object which is logically first.

• Object type/subtype range array Bin(2) dimension

Chapter 17. Authorization Management Instructions 17-13

Materialize Authorized Objects (MATAU08J)

Indicates the number of object type/subtype ranges specified in the array immediately following. If
zero, objects of all types and subtypes are materialized. If larger than zero. only objects included
in one or more of ·the type/subtype ranges specified in the array are materialized.

• Object type/subtype array n • Char(4)

An array of object type/subtype ranges qualifying the objects materialized. Each array element
represents a range of object type/subtypes and has the following format:

Start of range Char(2)

- Object type code Char(1)

- Object subtype code Char(1)

End of range Char(2)

- Object type code Char(1)

- Object subtype code Char(1)

All materialization options for owned objects with descriptions (hex 21,23,31,33, 61, 63, 71, 73, A1, A3,
81, 83, E1, E3, F1, and F3) also verify the user profile's storage utilization, unless the extended form of
operand 3 is used and a valid continuation point is specified.

The order of materialization is owned objects (if requested by the materialization options operand) fol­
lowed by objects privately authorized to the user profile (if requested by the materialization options
operand). No authorizations are stored in the system pointers that are returned.

The template identified by operand 1 must be 16-byte aligned in the space. For options hex 11 through
hex 33 and hex 91 through hex B3, the short template header is materialized. It has the following
format:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Number of objects owned by user profile

• Number of objects privately
authorized to user profile

• Reserved (binary 0)

Char(8)

Bin(4)

Bin(4)

Bin(2)

Bin(2)

Char(4)

For options hex 51 through 77 and hex D1 through hex F7. the long template header is materialized. It
has the following format:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Number of objects owned by user profile

• Number of objects privately
authorized to user profile

Char(8)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the

Chapter 17. Authorization Management Instructions 17-14

Materialize Authorized Objects (MATAUOBJ)

receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested. then the excess bytes are unchanged. No exceptions (other than the materialization
length (hex 3803) exception) are' signaled in the event that the receiver contains insufficient area for
the materialization. If the restrict information scope flag is 1. then the field contains the number of
bytes materialized. rather than the number of bytes available to be materialized.

If the restrict information scope flag is 1, then the number of objects owned by user profile and the
number of objects privately authorized by user profile fields reflect the number of objects for which
complete materialization data is returned. rather than the total number of such objects.

If no description is requested in the materialization options field. the above constitutes the information
available for materialization. If a description (short. long, or long with context extension) is requested
by the materialization options field, a description entry is present for each object materialized into the
receiver (assuming it is of sufficient size) or into the independent index. Object materialization data is
in one of the following formats depending on the materialization options and the object into which it is
materialized:

• Short description entry materialized
into receiver

Object type code

Object subtype code

Private authorization

Reserved (binary 0)

Object pointer

• Long description entry materialized
into receiver

Object type code

Object subtype code

Object name

Private authorization

Public authorization

Reserved (binary 0)

Object pointer

• Long description entry with context
extension materialized into receiver

Object type code

Object subtype code

Object name

Private authorization

Public authorization

Reserved (binary 0)

Object pointer

Context type code

Context subtype code

Context name

Char(32)

Char(1)

Char(1)

Char(2)

Char(12)

System pointer

Char(64)

Char(1)

Char(1)

Char(30)

Char(2)

Char(2)

Char(12)

System pointer

Char(112)

Char(1)

Char(1)

Char(30)

Char(2)

Char(2)

Char(12)

System pointer

Char(1)

Char(1)

Char(30)

Chapter 17. Authorization Management Instructions 17-15

!

j

- Context pointer

• Short description entry materialized
into independent index

Entry type code

hex 40 = Owned object
hex 80 = Authorized object

Object type code

Object subtype code

Private authorization

Reserved (binary 0)

Object pointer

• Long description entry materialized
into independent index

Entry type code

hex 40 = Owned object
hex 80 = Authorized object

Object type code

Object subtype code

Object name

Private authorization

Reserved (binary 0)

Public authorization

Reserved (binary 0)

Object pointer

• Long description entry with context
extension materialized into independent index

Entry type code

hex 40 = Owned object
hex 80 = Authorized object

Context type code

Context subtype code

Context name

Object type code

Object subtype code

Object name

Private authorization

Reserved (binary 0)

Public authorization

Reserved (binary 0)

Object pointer

Materialize Authorized Objects (MATAU08J)

System pointer

Char(32)

Char(1)

Char(1)

Char(1)

Char(2)

Char(11)

System pointer

Char(64)

Char(1)

Char(1)

Char(1)

. Char(30)

Char(2)

Char(2)

Char(2)

Char(9)

System pointer

Char(112)

Char(1)

Char(1)

Char(1)

Char(30)

Char(1)

Char(1)

Char(30)

Char(2)

Char(2)

Char(2)

Char(9)

System pointer

Chapter 17. AuthOrization Management Instructions 17-16

Materialize Authorized Objects (MATAUOBJ)

- Context pointer System pointer

Following is the format of the authorization information:

• Private authorization
(1 = authorized)

Object Control

Object Management

Authorized Pointer

Space Authority

Retrieve

Insert

Delete

Update

Ownership (1 = yes)

Excluded

Authority List management

Reserved (binary 0)

• Public authorization (1 = authorized)

Object Control

Object Management

Authorized Pointer

Space Authority

Retrieve

Insert

Delete

Update

Reserved (binary 0)

Excluded

Authority List management

Reserved (binary 0)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-15

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-15

When context information is materialized, if the object addressed by the system pOinter is not
addressed by a context, the context type field is set to hex 00 or if the object is addressed by the
machine context, the context type field is set to hex 81. Additionally, in either of these cases, the
context pointer is set to the system default pointer does not exist value.

When the more materialization data available flag is 1, the pOinter to the object within the last entry in
the operand 1 receiver template may be specified as the continuation point on a subsequent invocation
of this instruction, to cause materialization to continue, starting with the Hlogically next" object. To
determine whether the continuation point is within the owned or authorized objects, the ownership bit
in the private authorizations of the last materialized object may be tested. This instruction does not
guarantee an atomic snapshot of the user profile across a continuation request.

The following considerations apply when object materialization data is returned in an independent
index:

Chapter 17. Authorization Management Instructions 17-17

Materialize Authorized Objects (MATAU08J)

• System pointers returned in index entries are not set unless the index is created to contain both
pointer and scalar data.

• Entry data may be truncated or padded on the right with hex zeroes to conform to the index's key
and/or fixed entry lengths.

• An entry is added to the index for each qualifying object. Previously existing entries which are
thereby duplicated are replaced.

• In order to ensure that index entries inserted within the same execution of this instruction are not
duplicates of each other, the index entry length (if fixed) and key length (if keyed) must be suffi­
ciently large to include the object pointer within the entry data.

Authorization Required

• Operational

- Operand 2

• Retrieve

Contexts referenced for address resolution

Operand 2 if materializing owned objects

• Insert

- Independent index if identified by operand 3

Lock Enforcement

• Materialize

Contexts referenced for address resolution

Operand 2 if materializing owned objects

• Modify

- Independent index if identified by operand 3

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

02 machine context damage state

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

Operands
1 2 3 Other

X X X

X X X

X X X

X X X

X X

X

X X X X

X X

X X X X

Chapter 17. AuthOrization Management Instructions 17-18

Materialize Authorized Objects (MATAUOBJ)

Operands
Exception 1 2 3 Other
lA Lock state

~ 01 invalid lock state X X

lC Machine-dependent exception

03 machine storage limit exceeded

04 object storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X

04 object not eligible for operation X X

07 authority verification terminated due to destroyed object X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X· X X

02 pointer type invalid X X X

03 pointer addressing invalid object X X I

~ 2E Resource control limit

01 user profile storage limit exceeded X X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

03 materialization length exception X

Chapter 17. Authorization Management Instructions 17-19

Materialize Authorized Users (MATAUU)

Op Code (Hex)
0143

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
System object

Operand 3: Character(1) scalar (fixed-length).

Materialize Authorized Users (MATAUU)

Operand 3
Materialization
options

ILEaccess --~

MATAUU (
receiver space pOinter;

system pointer;
aggregate

var system_object
var materialization_options

Description: The instruction materializes the authorization states and the identification of the user
profile(s). The materialization options (operand 3) for the system object (operand 2) are returned in the
receiver (operand 1). The m~terialization options for operand 3 have the following format:

. Value (Hex) Meaning

11 Materialize public authority.

12

21

22

23

31

32

33

Materialize public authority and number of privately authorized profiles.

Materialize identification of owning profile using short description entry format.

Materialize identification of privately authorized profiles using short description entry
format.

Materialize identification of owning and privately authorized profiles using short
description entry format.

Materialize identification of owning profile using long description entry format.

Materialize identification of privately authorized profiles using long description entry
format.

Materialize identification of owning and privately authorized profiles using long
description entry format.

The order of materialization is an entry for the owning user profile (if requested by the materialization
options operand) followed by a list (0 to n entries) of entries for user profiles having private authori­
zation to the object (if requested by the materialization options operand). The authorization field within
the system pointers will not be set.

The template identified by operand 1 must be 16-byte aligned in the space and has the following
format:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Public authorization

Char(S)

Bin(4)

Bin(4)

Char(2)

Chapter 17. AuthOrization Management Instructions 17-20

(1 = authorized)

Object control.

Object management

Authorized pointer

Space authority

Retrieve

Insert

Delete

Update

Reserved (binary 0)

Excluded

Authority List management

Reserved (binary 0)

• Number of privately authorized
user profiles

• Reserved (binary 0)

Materialize Authorized Users (MATAUU)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-15

Bin(2)

Char(4)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by. the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception.

The second 4 bytes of the materialization identify the total number of bytes available to be material- Ll~

ized. The instruction materializes as many bytes as can be contained in the area specified as the ,."
receiver. If the byte area identified by the receiver is greater than that required to contain the informa-
tion requested, then the excess bytes are unchanged. No exceptions (other than the materialization
length (hex 3803) exception) are signaled in the event that the receiver contains insufficient area for
the materialization.

If no description is requested by the materialization options field, the template identified by operand 1
constitutes the information available for materialization. If a description (short or long) is requested by
the materialization options field, a description entry is present (assuming there is a sufficient sized
receiver) for each user profile materialized or available to be materialized into the receiver. Either of
the following entry types may be selected.

• Short description entry

User profile type code

User profile subtype code

Private authorization
(1 = authorized)

- Object control

- Object management

- Authorized pointer

- Space authority

- Retrieve

- Insert

- Delete

Char(32)

Char(1)

Char(1)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Chapter 17. Authorization Management Instructions 17-21

- Update

- Ownership (1 = yes)

- Excluded

- Authority List management

- Reserved (binary 0)

Reserved (binary 0)

User profile

• Long description entry

User profile type code

User profile subtype code

User profile name

Private authorization (1 = authorized)

- Object control

- Object management

- Authorized pointer

- Space authority

- Retrieve

- Insert

- Delete

- Update

- Ownership (1 = yes)

- Excluded

- Authority List Management

- Reserved (binary 0)

Reserved (binary 0)

User profi Ie

Materialize Authorized Users (MATAUU)

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-15

Char(12)

System pointer

Char(64)

Char(1)

Char(1)

Char(30)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-15

Char(14)

System pointer

If this instruction references a temporary object, all public authority states are materialized. The pri­
vately authorized user and owner profile(s) descriptions are not materialized (binary 0).

Authorization Required

• Retrieve

- Contexts referenced for address resolution

• Object management or ownership

- Operand 2 object (when object is not an authorization list)

• Authorization list management or ownership

- Operand 2 object (when object is an authorization list)

Chapter 17. Authorization Management Instructions 17-22

Materialize Authorized Users (MATAUU)

Lock Enforcement
. Materialize

Operand 2 ..J
Contexts referenced for address resolution

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X ~
1A Lock state

01 invalid lock state X

1C Machi ne-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X ~
32 Scalar specification

Chapter 17. Authorization Management Instructions 17-23

Materialize Authorized Users (MATAUU)

Operands
Exception 1 2 3 Other

03 scalar value invalid X

c.." 36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 17. Authorization Management Instructions 17-24

Materialize User Profile (MATUP)

Op Code (Hex)
013E

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
User profile

Materialize User Profile (MATUP)

ILEaccess --~

MATUP (
receiver

var user_profile
space pOinter;
system pOinter

Description: The attributes of the user profile specified by operand 2 are materialized into the
receiver specified by operand 1.

The receiver identified by operand 1 must be 16-byte aligned in the space. The following is the format
of the materialized information:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attribute

1 = Permanent

Space attribute

o = Fixed-length
1 = Variable-length

Reserved (binary 1)

Reserved (binary 0)

Initialize space

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

• Performance class

• Reserved (binary 0)

• Reserved (binary 0)

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bits 3-12

Bit 13

Bits 14-31

Char(4)

Bin(4)

Char(1)

Char(4)

Char(7)

Char(16)

Chapter 17. Authorization Management Instructions 17-25

• Reserved (binary 0)

• Privileged instructions
(1 = authorized)

Create Logical Unit Description

Create Network Description

Create Controller Description

Create User Profile

Modify User Profile

Diagnose

Terminate Machine Processing

Initiate Process

Modify Resource Management Controls

Create Mode Description

Create Class of Service Description

Reserved (binary 0)

• Special authorizations
(1 = authorized)

All object authority

Load (unrestricted)

Dump (unrestricted)

Suspend object (unrestricted)

Load (restricted)

Dump (restricted)

Suspend object (restricted)

Process control

Reserved (binary 0)

Service authority

Auditor authority

Spool control

Reserved (binary 0)

Modify machine attributes

- Group 2

- Group 3

- Group 4

- Group 5

- Group 6

- Group 7

- Group 8

- Group 9

Materialize User Profile (MATUP)

Char(16)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-31

Char(4)

. Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12-23

Bits 24-31

Bit 24

Bit 25

Bit 26

Bit 27

Bit 28

Bit 29

Bit 30

Bit 31

Chapter 17. Authorization Management Instructions 17-26

Materialize User Profile (MATUP)

Note: Group 1 requires no authorization.

• Storage authoriza.tion Bin(4)
The maximum amount of auxiliary storage (in units of 1024 bytes) that can be allocated for the
storage of objects owned by this user profile

• Storage utilization Bin(4)
The current amount of auxiliary storage (in units of 1024 bytes) allocated for the storage of objects
owned by this user profile

• User profile status Char(2)

Verify storage utilization Bit 01 = Storage utiliza-
tion has not been verified and may not be correct. The Materialize Authorized Objects instruc­
tion can be used to verify the storage utilization.

Reserved (binary 0) Bits 1-15

• Reserved (binary 0) Char(1)

• Object audit level Char(1)

Reserved (binary 0) Bits 0-5

Audit object changes for this user Bit 6

Audit object reads for this user Bit 7

• User Audit level 1 Char(4)

• User Audit level 2 . Char(4)

Audit program adoption Bit 0
(1 =audit)

Reserved (binary 0) Bits 1-31

• Reserved (binary 0) Char(4)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, then the excess bytes are unchanged. No exceptions (other than the materialization
length (hex 3803) exception) are signaled in the event that the receiver contains insufficient area for
the materialization.

The attributes that the instruction can materialize are described in the Create User Profile instruction.

Authorization Required:

• Operational

- Operand 2

Lock Enforcement

• Materialize.

- Operand 2

Exceptions

Chapter 17. Authorization Management Instructions 17-27

~

Materialize User Profile (MATUP)

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

02 machine context X

04 system object damage state X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception X

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 17. AuthOrization Management Instructions 17-28

Test Authority (TESTAU)

Test Authority (TEST AU)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4-5]
TESTAU Available System object Required
10F7 authority tem- or object tem- authority tem-

plate receiver plate plate

TESTAUB Branch options Available System object Required Branch targets
lCF7 authority tem- or object tem- authority tem-

plate receiver plate plate

TESTAUI Indicator Available System object Required Indicator targets
18F7 options authority tem- or object tem- authority tem-

plate receiver plate plate

Operand 1: Character(2) variable scalar (fixed length) or null.

Operand 2: System pointer or space pointer data object.

Operand 3: Character(2) scalar (fixed length).

Operand 4-5:

• Branch Form-Branch point, instruction pointer, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

ILEaccess ---,

TESTAU (
var receiver aggregate; OR

null operand;
var system_object_or_template painter;
var required_authority aggregate;

) : signed binary /* return_code */

The return code will be set as follows:

Return Code

1

a

Meaning

Authorized.

Not Authorized.

Description: This instruction verifies that the object authorities and/or ownership rights specified by
operand 3 are currently available to the process for the object specified by operand 2.

If operand 1 is not null, all of the authorities and/or ownership specified by operand 3 that are currently
available to the process are returned in operand 1.

If an object template is not specified (Le. operand 2 is a system pointer), then authority verification is
performed relative to the invocation executing this instruction. If an object template is specified (Le.
operand 2 is a space pointer), then authority verification is performed relative to the invocation speci­
fied in the template. Specifying an invocation causes the invocations subsequent to it to be bypassed
in the authority verification process. This has the influence of excluding the program adopted user
profiles for any of these excluded invocations from acting as a source of authority to the authority ver­
ification process.

Chapter 17. Authorization Management Instructions 17-29

Test Authority (TESTAU)

The required authorities and/or ownership are specified by the required authority template of operand
3. This template includes a test option that indicates whether all of the specified authorities are
required or whether anyone or more of the specified authorities is sufficient. This option can be used,
for example, to test for operational authority by coding a template value of hex OF01 in operand 3.
Using the any option does not affect what is returned in operand 1. If operand 1 is not null and the any
option is specified, all of the authorities specified by operand 3 that are available to the process are
returned in operand 1.

If the required authority is available, one of the following occurs:

• Branch form indicated

- Conditional transfer of control to the instruction indicated by the appropriate branch target
operand.

• Indicator form specified

The leftmost byte of each of the indicator operands is assigned the following values.

Hex F1- If the result of the test matches the corresponding indicator option
Hex FO- If the result of the test does not match the corresponding indicator option

If no branch options are specified, instruction execution proceeds to the next instruction. If operand 1
is null and neither the branch or indicator form is used, an invalid operand type exception is signaled.

The format for the available authority template (operand 1) is as follows:

• Authorization template

Object control

Object management

Authorized pointer

Space authority

Retrieve

Insert

Delete

Update

Ownership (1 = yes)

Excluded

Authority List management

Reserved (binary 0)

(1 = authorized)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-15

If operand 2 is a system pointer, it identifies the object for which authority is to be tested. If operand 2
is a space pointer, it provides addressability to the object template. The format for the optional object
template is as follows:

• Object template

Relative invocation

Reserved (binary 0)

System object

Char(32)

Bin(2)

Char(14)

System pointer

The relative invocation field in the object template identifies an invocation relative to the current invo­
cation at which the authority verification is to be performed. The value of the relative invocation field
must be less than or equal to zero. A value of zero identifies the current invocation, -1 identifies the
prior invocation, -2, the invocation prior to that, and so on. A value larger than the number of invoca-

Chapter 17. Authorization Management InstructIOns 17-30

Test Authority (TESTAU)

tions currently on the invocation stack or a positive value results in the signaling of the template value
invalid (hex 3801) exception. The program adopted and propagated user profiles for the identified invo­
cation and older invocations will be included in the authority verification process. Program adopted
user profiles for invocations newer than the identified invocation will not be included in the authority
verification process. If the current invocation is specified, its program adopted user profile is included
whether or not it is to be propagated.

The system object field specifies a system pointer which identifies the object for which authority is to
be tested.

The format for the required authority template (operand 3) is as follows:

• Authorization template

Object control

Object management

Authorized pointer

Space authority

Retrieve

Insert

Delete

Update

Ownership (1 = yes)

Excluded

Authority List management

Reserved (binary 0)

Test option

o = All of the above authorities must be present.
1 = Anyone or more of the above authorities must be present.

(1 = authorized)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-14

Bit 15

This instruction will tolerate a damaged object referenced by operand 2 when the reference is a
resolved pointer. The instruction will not tolerate damaged contexts or programs when resolving
pointers. Damaged user profiles encountered during the authority verification processing result in the
Signaling of the authority verification terminated due to damaged object exception.

Resultant Conditions

• Authorized - the required authority is available.

• Unauthorized - the required authority is not available.

Authorization Required:

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Chapter 17. Authorization Management Instructions 17-31

i

~

Test Authority (TESTAU)

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

02 machine context damage state X

04 system object damage state X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

03 scalar value invalid X

l. 36 Space management

01 space extension/truncation X

Chapter 17. Authorization Management Instructions 17-32

Test Authority (TESTAU)

Operands
Exception 1 2 3 Other
38 Template specification

01 template value invalid x

Chapter 17. Authorization Management Instructions 17-33

Test Extended Authorities (TESTEAU)

Test Extended Authorities (TESTEAU)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand [4.5]
TESTEAU Available Required Relative invo·
lOFB authority tem- authority tern· cation

plate receiver plate

TESTEAUB Branch options Available Required Relative invo- Branch targets
lCFB authority tem- authority tem- cation

pi ate receiver plate

TESTEAUI Indicator Available Required Relative inve- Indicator targets
18FB options authority tem- authority tem- cation

pi ate receiver plate

Operand 1: Character(8) variable scalar (fixed length) or null

Operand 2: Character(8) scalar (fixed length)

Operand 3: Binary(2) variable scalar (fixed length) or constant, or null

Operand 4-5:

• Branch Form-Branch point, instruction pOinter, relative instruction number, or absolute instruction
number.

• Indicator Form-Numeric variable scalar or character variable scalar.

ILEaccess ---,
TESTEAU (

var receiver aggregate; OR
. null operand;

var required_authority aggregate;
var relative invocation signed binary; OR

null operand;
: Signed binary 1* return_code *1

The return code will be set as follws:

Mean;ng

Authorized.

Not Authorized.

Description: This instruction verifies that the privileged instructions and special authorities specified
by operand 2 are currently available to the process.

If operand 1 is not nUll, all of the privileged instructions and special authorities specified by operand 2
that are currently available to the process are returned in operand 1.

Note: The term authority verification refers to the testing of the required privileged instruction and
special authorities.

If operand 3 is nUll, the authority verification is performed relative to the invocation executing this
instruction. If an operand 3 is specified, the authority verification is performed relative to the invoca­
tion specified. Specifying an invocation causes the invocations subsequent to it to be bypassed in the
authority verification process. This has the infiuence of excluding the program adopted user profiles

Chapter 17. Authorization Management Instructions 17-34

Test Extended Authorities (TESTEAU)

for any of these excluded invocations from acting as a source of authority to the authority verification
process.

The required privileged instructions and special authorities are specified by the required authority tem­
plate of operand 2.

If the required authority is available, one of the following occurs:

• Branch form indicated

- Conditional transfer of control to the instruction indicated by the appropriate branch target
operand.

• Indicator form specified

The leftmost byte of each of the indicator operands is assigned the following values.

Hex F1- If the result of the test matches the corresponding indicator option
Hex FO- If the result of the test does not match the corresponding indicator option

If no branch options are specified, instruction execution proceeds to the next instruction. If operand 1
is null and neither the branch or indicator form is used, an invalid operand type exception is signaled.

The format for the available authority template (operand 1) is as follows:

• Authority template

Privileged instruction template

- Create Logical Unit Description

- Create Network Description

- Create Controller Description

- Create User Profile

- Modify User Profile

- Diagnose

- Terminate Machine Processing

- Initiate Process

- Modify Resource Management Control

- Create Mode Description

- Create Class of Service Description

- Reserved (binary 0)

Special authority template

- All object

- Load (unrestricted)

- Dump (unrestricted)

- Suspend (unrestricted)

- Load (restricted)

- Dump (restricted)

- Suspend (restricted)

- Process control

- Reserved (binary 0)

(1 = authorized)

Char(8)

Char(4)

. Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-31

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Chapter 17. Authorization Management Instructions 17-35

Test Extended Authorities (TESTEAU)

- Service Bit 9

- Auditor authority Bit 10

- Spool control Bit 11

- Reserved (binary 0) Bit 12-23

- Modify Machine Attributes Bit 24-31

• Group 2 Bit 24
• Group 3 Bit 25
• Group 4 Bit 26
• Group 5 Bit 27
• Group 6 Bit 28
• Group 7 Bit 29
• Group 8 Bit 30
• Group 9 Bit 31

The format for the required authority template (operand 2) is as follows:

• Required authority

(1 = authorized)

Char(8)

Privileged instruction template

- Create Logical Unit Description

- Create Network Description

- Create Controller Description

- Create User Profile

- Modify User Profile

- Diagnose

- Terminate Machine Processing

- Initiate Process

- Modify Resource Management Control

- Create Mode Description

- Create Class of Service Description

- Reserved (binary 0)

Special authority template

- All object

- Load (unrestricted)

- Dump (unrestricted)

- Suspend (unrestricted)

- Load (restricted)

- Dump (restricted)

- Suspend (restricted)

- Process control

- Reserved (binary 0)

- Service

- Auditor authority

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-31

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Chapter 17. AuthOrization Management Instructions 17-36

Test Extended Authorities (TESTEAU)

- Spool control Bit 11

- Reserved (binary 0) Bit 12-23

- Modify Machine Attributes Bit 24-31

• Group 2 Bit 24
• Group 3 Bit 25
• Group 4 Bit 26
• Group 5 Bit 27
• Group 6 Bit 28
• Group 7 Bit 29
• Group 8 Bit 30
• Group 9 Bit 31

The relative invocation operand (operand 3) identifies an invocation relative to the current invocation at
which the authority verification is to be performed. The value of the relative invocation field must be
less than or equal to zero. A value of zero identifies the current invocation, -1 identifies the prior invo­
cation, -2, the invocation prior to that, and so on. A value larger than the number of invocations cur­
rently on the invocation stack or a positive value results in the signaling of the scalar value invalid (hex
3203) exception.

An immediate value is not allowed for operand 3.

The program adopted and propagated user profiles for the identified invocation and older invocations
will be included in the authority verification process. Program adopted user profiles for invocations
newer than the identified invocation will not be included in the authority verification process. If the
current invocation is specified, its program adopted user profile is included whether or not it is to be
propagated.

Damaged user profiles encountered during the authority verification processing result in the signaling
of the authority verification terminated due to damaged object exception.

Resultant Conditions

• Authorized - the required authority is available.

• Unauthorized - the required authority is not available.

Authorization Required:

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

Operands
123

x
X

X

X

X

X

X

X

X

Other

Chapter 17. Authorization Management Instructions 17-37

'..J

Test Extended Authorities (TESTEAU)

Operands
Exception 1 2 3 Other

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

02 machine context damage state X

04 system object damage state X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 17. AuthOrization Management Instructions 17-38

Process Management Instructions

Chapter 18. Process .Management Instructions

This chapter describes instructions used for process management. These instructions are in alpha­
betic order. For an alphabetic summary of all the instructions, See Appendix A, "Instruction
Summary."

Materialize Process Activation Groups (MATPRAGP)
Materialize Process Attributes (MATPRATR)
Wait On Time (WAITTIME)

© Copyright IBM Corp. 1991, 1993

18-3
18-5

18-18

18-1

Process Management Instructions

Chapter 18. Process Management Instructions 18-2

Materialize Process Activation Groups (MATPRAGP)

Materialize Process Activation Groups (MATPRAGP)

Op Code (Hex)
0331

Operand 1
Receiver

Operand 1: Space pointer

fiLE access
r~ATPRAGP (
~ receiver: space pointer

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: This instruction provides a list of the activation groups which exist in the current process.
Operand 1 locates a template which receives information.

The materialization template identified by operand 1 must be 16-byte aligned in the space. This
materialization template has the following format:

• Number of bytes provided for materialization

• Number of bytes available for materialization

• Activation group count

• Activation group list

array(1 .. activation group count) of

8in(4)

8in(4)

8in(4)

U8in(4)

The Materialize Activation Group Attributes instruction can be used to examine the attributes of an
individual activation group.

The first 4 bytes of the materialization template specify the number of bytes provided for use by the
instruction. In all cases if the number of bytes provided is less than 8 then a materialization length
(hex 3803) exception will be signaled.

The second 4 bytes of the instruction indicate the actual number of bytes available to be returned. In
no case does the instruction return more bytes of information than those available.

activation group count

activation group list

This is the number of activation groups within the process. It is also the extent of
the activation group list which follows.

This is the list of activation groups which exist within the current process.

This is an array of activation group mark values. Each entry denotes an activation
group currently existent within the process.

Authorization: nla

Lock Enforcement: nla

Exceptions

Chapter 18. Process Management Instructions 18-3

Materialize Process Activation Groups (MATPRAGP)

Operands
Exception 1 Other

l.~.
06 Addressing

01 space addressing violation X

03 range X

06 optimized addressability invalid X

08 Argument/parameter X

01 parameter reference violation X

10 Damage encountered

44 partial system object damage X X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

38 Template specification

03 Materialization length X

44 Domain specification

01 Domain Violation X

c.,

Chapter 18. Process Management Instructions 18-4

Materialize Process Attributes (MATPRATR)

Materialize Process Attributes (MATPRATR)

Op Code (Hex)
0333

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer or null.

Operand 3: Character scalar(1).

Operand 2
Process control
space

Operand 3
Materialization
options

ILEaccess ---,
MATPRATR (

receiver
var process_control_space

var materialization options
) -

space potnter;
system pOinter; OR
null operand;
aggregate

Description: The instruction causes either one specific attribute or all the attributes of the designated
process to be materialized.

Operand 1 specifies a space that is to receive the materialized attribute values. The space pointer
specified in operand 1 must address a 16-byte aligned area.

Operand 2 is a system pointer identifying the process control space associated with the process whose
attributes are to be materialized. If operand 2 is null, the process issuing the instruction is the subject
process. If the subject process's attributes are being materialized by another process, that process
must be the original initiator of the subject process or the governing user profile(s) must have process
control special authorization.

Operand 3 is a character scalar(1) specifying which process attribute is to be materialized. A value of
hex 00 results in all the attributes of a process being materialized in the format described in the Initiate
Process instruction for the process definition template. Other options allow materialization of special­
ized process attributes.

A summary of the allowable hex values for operand 3 follows.

00 Entire orginal PDT
01-08 Entire Char(4) process control attributes field
OC Signal event control mask
00 Number of event monitors
OE Priority
OF Main storage pool id
10 Maximum temporary auxiliary storage allowed
11 Time slice interval
12 Default time-out interval
13 Maximum processor time allowed
14 Multiprogramming level class 10
15 Modification control indicators
16 User profile pointer
17 Process communication object (PCO) pointer
18 Process name resolution list space pointer

Chapter 18. Process Management Instructions 18-5

~

Materialize Process Attributes (MATPRATR)

19
1A
1B
1C
1F

20
21
22
23
24
25
26
27
28
29

Initiation phase program pointer
Termination phase program pointer
Problem phase program pointer
Process default exception handler (PDEH) program pointer
Process access group pointer
Process status indicators
Process resource usage attributes
Subordinate processes identification attributes
Performance status attributes
Execution status attributes
Process control space system pointer
Adopted user profile list space pointer
Entire Char(4) process control attributes field
Process category
Queue space system pointer

Note that there exist differences in the operand 3 value definitions between this instruction and the
Modify Process Attributes instruction.

The materialization template has the following general format when a process scalar attribute is mate­
rialized:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Process scalar attributes

Char(8)

Bin(4)

8in(4)

Char(*)

The materialization template has the following general format when a process pointer attribute is
materialized:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Reserved (binary 0)

• Process pointer attribute

Char(8)

8in(4)

8in(4)

Char(8)

System pointer
or
Space pointer

Note: The values of the entry associated with an asterisk (*) are ignored by this instruction.

The following attributes require materialization targets of varying lengths. The attributes to be materi­
alized and their operand 3 materialization option values follow.

• Process control attributes Char(4)

Values hex 01 through hex OB or hex 27 cause the 4-byte process control attributes value to be
placed in the byte area identified by operand 1. The individual attributes and the corresponding
values are as follows:

Process type Bit 0

a = Dependent process
1 = Independent process

Instruction wait access state control Bit 1

o = Access state modification is not allowed
1 = Access state modification is allowed if specified

Chapter 18. Process Management Instructions 18-6

Materialize Process Attributes (MATPRATR)

Time slice end access state control Bit 2

o = Access state modification is not allowed
1 = Access state modification is allowed if specified

Time slice end event option Bit 3·

o = Time slice expired without entering instruction wait event is not signaled
1 = Time slice expired without entering instruction wait event is signaled

Reserved (binary 0)

Initiation phase program option

Bit 4

Bit 5

o = No initiation phase program specified (do not enter initiation phase)
1 = Initiation phase program specified (enter initiation phase)

Problem phase program option Bit 6

o = No problem phase program specified (do not enter problem phase)
1 = Problem phase program specified (enter problem phase)

Termination phase program option Bit 7

o = No termination phase program specified (do not enter termination phase)
1 = Termination phase program specified (enter termination phase)

Process default exception handler option

o = No process default exception handler
1 = Process default .exception handler specified

Process NRL (name resolution list) option

o = No process NRL specified
1 = Process NRL specified

Process access group option

o = No process access group specified
1 = Process access group specified

Process adopted user profile list option

o = No process adopted user profile list specified
1 = Process adopted user profile list specified

Process category specified

o = No process category specified when the process was initiated
1 = A process category was specified when the process was initiated

Recycling control for process
storage addresses used by user state programs

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

Bit 13

o = Process storage addresses used by user state programs are not recycled within the
process

1 = Process storage addresses used by user state programs are recycled within the process

Implicitly created activation group's Bit 14
automatic storage access group membership control

o = The machine is free to create automatic storage areas of implicitly created activation
groups within the process access group

Note: This in no way guarantees that the automatic areas will in fact be access group
members. This is an advisory flag informing the machine that the MI user would prefer
these areas to be access group members.

Chapter 18. Process Management Instructions 18-7

Materialize Process Attributes (MATPRATR)

1 = Implicitly created activation group's automatic storage areas will not be created within the
process access group

Implicitly created activation group's Bit 15
static storage access group membership control

o = The machine is free to create static storage areas of implicitly created activation groups
within the process access group

Note: This in no way guarantees that the static areas will in fact be access group
members. This is an advisory flag informing the machine that the MI user would prefer
these areas to be access group members.

1 = Implicitly created activation group's static storage areas will not be created within the
process access group

Implicitly created activation group's Bit 16
default heap storage access group membership control

o = The machine is free to create default heap storage areas of implicitly created activation
groups within the process access group

Note: This in no way guarantees that the activation group default heap areas will in fact be
access group members. This is an advisory flag informing the machine that the MI user
would prefer these areas to be access group members.

= Implicitly created activation group's default heap storage areas will not be created within
the process access group

Reserved (binary 0)

• Signal event control mask

The materialization of the control mask is as follows:

- Hex OC = Signal event control mask

• Number of event monitors

The materialization of this attribute is as follows:

- Hex 00 = Number of event monitors

The resource management attributes and data types are as follows:

• Hex OE = Process priority

• Hex OF = Process storage pool 10

• Hex 10 = Maximum temporary auxiliary storage allowed

• Hex 11 = Time slice interval

• Hex 12 = Default time-out interval

• Hex 13 = Maximum processor time allowed

• Hex 14 = Process multiprogramming level class 10

• Hex 15 = Modification control indicators

Bits 17-31

Char(2)

Bin(2)

Char(1)

Char(1)

Bin(4)

Char(8)

Char(8)

Char(8)

Char(1)

Char(8)

The modification control indicators are materialized when the operand 3 value is hex 15. Each indi­
cator specifies the modification options allowed to a process upon itself by the initiating process. The
possible values of each modification control indicator are as follows:

00 = Modification of the attribute is not allowed.

01 = Modification is allowed in the initiation or termination phases only.

11 = Modification is allowed in all phases (initiation, problem, and termination).

Chapter 18. Process Management Instructions 18-8

Materialize Process Attributes (MATPRATR)

The bit assignments of the modification control indicators are as follows:

• Instruction wait access state control

• Time slice end access state control

• Time slice event option

• Reserved (binary 0)

• Problem phase program option

• Termination phase program option

• Process default exception handler option

• Process NRL option

• Signal event control mask

• Process priority

• Process storage pool identification

• Maximum temporary auxiliary storage allowed

• Time slice interval

• Default time-out interval

• Maximum processor time allowed

• Process MPL class 10

• User profile pointer

• Reserved

• Process NRL pointer

• Termination phase program pointer

• Problem phase program pointer

• Process default exception handler

• Process adopted user profile list

• Process adopted user profile list option

• Process category

• Recycling control for process
storage addresses used by user state programs

• Reserved (binary 0)

The process pointer attributes which may be materialized are the following:

• Hex 16 = Process user profile pointer

Bits 0-1

Bits 2-3

Bits 4-5

Bits 6-7

Bits 8-9

Bits 10-11

Bits 12-13

Bits 14-15

Bits 16-17

Bits 18-19

Bits 20-21

Bits 22-23

Bits 24-25

Bits 26-27

Bits 28-29

Bits 30-31

Bits 32-33

Bits 34-35

Bits 36-37

Bits 38-39

Bits 40-41

Bits 42-43

Bits 44-45

Bits 46-47

Bits 48-49

Bits 50-51

Bits 52-63

The system pointer with addressability to the user profile is placed into the space addressed by
operand 1. If the materialization option (hex 00) is specified in operand 3, a reserved Char(9) field
is included at this point. This user profile is the process user profile assigned by the Initiate
Process or Modify Process Attribute instruction.

• Hex 17 = Process communication object (PCO) pointer

The PCO pointer is placed in the space addressed by operand 1 .

• Hex 18 = Process name resolution list

The space pointer to the NRL is placed in the space addressed by operand 1.

Chapter 18. Process Management Instructions 18-9

Materialize Process Attributes (MATPRATR)

• Hex 19 = Initiation phase program pointer

The system pointer to the program is placed in the space addressed by operand 1.

• Hex 1A = Termination phase program pointer

The system pointer to the program is placed in the space addressed by operand 1.

• Hex 1 B = Problem phase program pointer

The system pointer to the program is placed in the space addressed by operand 1.

• Hex 1C = PDEH (process default exception handler program)

The system pointer to the program is placed in the space addressed by operand 1.

• Hex 1F = Process access group

The system pointer with addressability to the PAG is placed in the space addressed by operand 1.

• Hex 20 = Process status indicators

Process status indicators are materialized when the value of operand 3 is hex 20. The format and
associated values of this attribute are as follows:

Process states

- External existence state

000 = Suspended
010 = Suspended, in instruction wait
100 = Active, in ~neligible wait
101 = Active, in current MPL
110 = Active, in instruction wait

- Invocation exit active

- Reserved (binary 0)

- Internal processing phase

001 = Initiation phase
010 = Problem phase
100 = Termination phase

- Reserved (binary 0)

Process interrupt status (1 = pending)

- Time slice end pending

- Transfer lock pending

- Asynchronous lock retry pending

- Suspend process pending

- Resume process pending

Char(2)

Bits 0-2

Bit 3

Bits 4-7

Bits 8-10

Bits 11-15

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

- Resource management attribute modify pending Bit 5

- Process attribute modify pending Bit 6

- Terminate machine processing pending Bit 7

- Terminate process pending Bit 8

- Wait time-out pending Bit 9

- Event schedule pending Bit 10

- Machine service pending Bit 11

- Cancel Long Running MI Instruction Bit 11

Chapter 18. Process Management Instructions 18-10

Materialize Process Attributes (MATPRATR)

- Reserved (binary 0)

Process initial internal termination status

- Initial internal termination reason

Hex 80 = Return from first invocation in problem phase.

Bits 13-15

Char(3)

Bits 0-7

Hex 40 = Return from first invocation in initiation phase, and no problem phase program
specified.

Hex 20 = Terminate Process instruction issued by this process to itself.
Hex 10 = Exception was not handled by the process.
Hex 00 = Process terminated externally.

- Initial internal termination code Bits 8-23

The code is assigned in one of the following ways:

1. If the termination is caused by a Return External instruction from the first invocation,
then this code is binary a's.

2. The code is assigned by operand 2 of the Terminate Process instruction. This code is
also given to subordinate processes involved in the termination.

3. The code is assigned by the original exception code that caused process termination to
commence. This code is also given to subordinate processes involved in the termi­
nation.

Process initial external termination status

- Initial external termination reason:

Char(3)

. Bits 0-7

Hex 80 = Terminate Process instruction issued explicitly to this process from another
process.

Hex 40 = A superordinate process has been terminated.
Hex 00 = Process terminated internally.

- Initial external termination code: Bits 8-23

This code is supplied by the termination code in operand 2 of the Terminate Process
instruction.

Process final termination status

- Final termination reason:

Hex 80 = Return instruction from first invocation.

Char(3)

Bits 0-7

Hex 40 = Terminate Process instruction issued by the process being materialized.
Hex 20 = Terminate Process instruction issued to the process being materialized by

another process.
Hex 10 = Exception not handled by this process.
Hex 08 = Terminate Process instruction issued to superordinate of the process being

materialized.
Hex 04 = Superordinate process of the process being materialized completed termination

phase.

- Final termination code is assigned in one of
the following ways:

Bits 8-23

1. If the termination is caused by a Return External instruction from first invocation, then
this code is binary a's.

2. The termination code is assigned by the Terminate Process instruction.

3. The termination code is assigned by the original exception code that caused process ~
termination.

Chapter 18. Process Management Instructions 18-11

Materialize Process Attributes (MATPRATR)

The process final termination status is presented as event-related data in the terminate
process event. Usually the event is the only source of the process final termination
status since the process will cease to exist before its attributes can be materialized.

• Hex 21 = Process resource usage attributes

Process resource usage attributes are materialized when the value of operand 3 is hex 21. The
format and associated values of this attribute are as follows:

Total temporary auxiliary storage used

Total processor time used

Number of locks currently held by the process
(including implicit locks)

Bin(4)

Char(8)

Bin(2)

• Hex 22 Subordinate processes identification attributes Subordinate processes identification attri­
butes are materialized when the value of operand 3 is hex 22. The format and associated values of
this attribute are as follows:

Materialization size specification

- Number of bytes provided for matialization

- Number of bytes available for materialization

Number of immediately subordinate processes

Reserved (binary 0)

Char(8)

Bin(4)

Bin(4)

Bin(2)

Char(6)

System pointer to the process control space. System pointer(s) for
each subordinate process (repeated for each immediately subordinate process)

• Hex 23 = Process performance attributes Process performance attributes are materialized when
the value of operand 3 is hex 23. The format and associated values of this attribute are as follows:

Materialization size specification

- Number of bytes provided for
materialization

- Number of bytes available for
materialization

Number of synchronous page reads into
main storage associated with data base

Number of synchronous page reads into
main storage not associated with data base

Char(8)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Total number of synchronous page writes from Bin(4)
main storage. This includes writes associated with and not associated with data base.

Number of transitions into ineligible wait
state

Number of transitions into an instruction wait

Number of transitions into ineligible
wait state from an instruction wait

Timestamp of materialization

Number of asynchronous reads into main
storage associated with data base

Number of asynchronous reads into main
storage not associated with data base

Number of synchronous writes from main

UBin(2)

UBin(2)

UBin(2)

Char(8)

Bin(4)

Bin(4)

Bin(4)

Chapter 18. Process Management Instructions 18-12

Materialize Process Attributes (MATPRATR)

storage associated with data base

Number of synchronous writes from main 8in(4)
storage riot associated with data base

Number of asynchronous writes from main 8in(4)
storage associated with data base

Number of asynchronous writes from main 8in(4)
storage not associated with data base

Total number of writes from main 8in(4)
storage of permanent objects

Total reads and writes performed 8in(4)
for checksum updating due to writes of checksum protected objects

Number of page faults on process 8in(4)
access group objects

Number of internal effective address 8in(4)
overflow exceptions

Number of internal binary
overflow exceptions

Number of internal decimal
overflow exceptions

Number of internal floating point
overflow exceptions

8in(4)

8in(4)

.8in(4)

Number of times a page fault occurred 8in(4)
on an address that was currently part of an auxiliary storage 1/0 operation

Number of times the process 8in(4)
explicitly waited for outstanding asynchronous 1/0 operations to complete

Each of the 8in(2) counters has a limit of 32 767. If this limit is exceeded, the count is set to a, and
no exception is signaled.

The process performance attributes are not supplied with materialization option hex 00.

The first 4 bytes of the materialization identify the total number of bytes provided for use by the
instruction. This value is supplied as input to the instruction and is not modified by the instruction.
A value of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the
information requested, then the excess bytes are unchanged. No exceptions (other than the
materialization length (hex 3803) exception described previously) are signaled in the event that the
receiver contains insufficient area for the materialization.

• Hex 24 = Process execution status attributes

Process execution status attributes are materialized when the value of operand 3 is hex 24. The
format and associated values of this attribute are as follows:

Process priority

- Machine interface priority

- Machine adjusted priority

Char(2)

Char(1)

Char(1)

Normal value is hex 80. This value is dynamically modified by the machine.

Pending i nterru ptions Char(2)

Chapter 18. Process Management Instructions 18-13

- Time slice end

- Transfer lock

- Asynchronous lock retry

- Suspend process

- Resume process

- Modify resource management attribute

- Modify process attribute

- Terminate machine processing

- Terminate process

- Wait time-out

- Event

- Machine service pending

- Cancel Long Running MI Instruction

- Reserved (binary 0)

Execution status

- Suspended

- Instruction wait

- In MPL

- Ineligible wait

- Reserved (binary 0)

Wait status

- Wait on event

- Dequeue

- Lock

- Wait on time

- Wait to start a commit cycle

- Reserved (binary 0)

Process class identification

- Storage pool class

- MPL class

Processor time used

Performance attributes

Number of synchronous reads into main
storage associated with data base

- Number of synchronous reads into main
storage not associated with data base

Materialize Process Attributes (MATPRATR)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bit 11

Bits 13-15

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-15

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bits 5-15

Char(2)

Char(1)

Char(1)

Char(8)

Char(78)

Bin(4)

Bin(4)

- Total number of synchronous page writes from Bin(4)
main storage. This includes writes associated with and not associated with data base.

- Transitions to ineligible wait UBin(2)

Chapter 18. Process Management Instructions 18-14

Materialize Process Attributes (MATPRATR)

- Transitions to instruction wait

- Transitions to ineligible from instruction wait

- Number of asynchronous reads into main
storage associated with data base

- Number of asynchronous reads into main
storage not associated with data base

- Number of synchronous writes from main
storage associated with data base

- Number of synchronous writes from main
storage not associated with data base

- Number of asynchronous writes from main
storage associated with data base

- Number of asynchronous writes from main
storage not associated with data base

- Total number of writes from main
storage of permanent objects

UBin(2)

UBin(2)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

- Total reads and writes performed Bin(4)
for checksum updating due to writes of checksum protected objects

- Number of page faults on process Bin(4)
access group objects

- Number of internal effective address Bin(4)
overflow exceptions

- Number of internal binary Bin(4)
overflow exceptions

- Number of internal decimal Bin(4)
overflow exceptions

- Number of internal floating point Bin(4)
overflow exceptions

- Number of times a page fault occurred Bin(4)
on an address that was currently part of an auxiliary storage 1/0 operation

- Number of times the process Bin(4)
explicitly waited for outstanding asynchronous 1/0 operations to complete

• Hex 25 = Process control space pointer

A system pointer to the process control space is materialized when the value of operand 3 is hex
25. If a process control space pointer is supplied in operand 2, it is ignored. A pointer to the
process that is executing the MATPRATR instruction is always materialized.

• Hex 26 = Adopted user profile list attributes

A materialization option's value of hex 26 causes the adopted user profile list attributes to be mate­
rialized as follows:

Materialization size specification

- Number of bytes provided for materialization

- Number of bytes available for materialization

Reserved (binary 0)

Pointer to the adopted user profile list

Char(8)

Bin(4)

Bin(4)

Char(8)

Space pointer

Chapter 18. Process Management Instructions 18-15

l..J

last used to set th is attri bute

Number of user profiles In the
encapsulated ·adopted user profile list

Reserved

Materialize Process Attributes (MATPRATR)

8in(2)

Char(14)

List of user profiles in the System pointers
encapsulated adopted user profile list (one system pointer to each user profile in the list)

Due to verifications performed on the user profiles specified in an adopted process user profile list
input to either the Initiate Process or Modify Process instructions, the encapsulated adopted user
profile list may differ from the input list. When verification of an input user profile fails, it is not
included in the encapsulated list.

The adopted user profile list attributes are not supplied with materialization option hex 00.

• Hex 27 = Process control attributes

A materialization option's value of hex 27 causes the process control attributes to be materialized.
Refer to the description of this materialization provided in prior text for this instruction.

• Hex 28 = Process category Char(2)

• Hex 29 = Queue Space system pointer

The system pointer with addressability to the Queue Space is placed in the space addressed by
operand 1.

Authorization Required

• Process control special authorization

- For materializing a process other than the one executing this instruction

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

04 unauthorized for process control

Operands
1 2 3 4 Other

X X X

X X X

X X X

X X X

X X X

X

X

Chapter 18. Process Management Instructions 18-16

Materialize Process Attributes (MATPRATR)

Operands
Exception 1 2 3 4 Other
10 Damage encountered

04 system object damage state X X X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X ..J 02 pointer type invalid X X X

03 pointer addressing invalid object X

28 Process state

02 process control space not associated with a process X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 18. Process Management Instructions 18-17

Wait On Time (WAITTIME)

Op Code (Hex)
0349

Operand 1
Wait template

Operand 1: Character(16) scalar (fixed-length)

Wait On Time (WAITTIME)

ILEaccess --~
!.~AITTIME (

var wait_template aggregate

Description: This instruction causes the process to wait for a specified time interval. The current
process is placed in wait state for the amount of time specified by the wait template in accordance with
the specified wait options.

The format of the wait template for operand 1 is:

• Wait time interval

• Wait options

Access state control for entering wait

o = Do not modify access state
1 = Modify access state

Access state control for leaving wait

o = Do not modify access state
1 = Modify access state

MPL (multiprogramming level)
control during wait

o = Do not remain in current MPL set
1 = Remain in current MPL set

Reserved

• Reserved

Char(8)

Char(2)

Bit 0

Bit 1

Bit 2

Bits 3-15

Char(6)

The format of the wait time interval value is that of a 64-bit unsigned binary value where bit 41 is equal
to 1024 microseconds, assuming the bits are numbered from 0 to 63.

The access state control options control whether the process access group (PAG) will be explicitly
transferred between main and auxiliary storage when entering and leaving a wait as a result of exe­
cution of this instruction. Specification of modify access state requests that the PAG be purged from
main to auxiliary storage for entering a wait and requests that the PAG be transferred from auxiliary to
main storage for leaving a wait. Specification of do not modify access state requests that the PAG not
be explicitly transferred between main and auxiliary storage as a result of executing this instruction.

The access state of the PAG is modified when entering the wait if the process' instruction wait initi­
ation access state control attribute specifies allow access state modification, if the access state control
for entering wait option specifies modify access state, and if the MPL control during wait option speci­
fies do not remain in current MPL set.

Chapter 18. Process Management Instructions 18-18

Wait On Time (WAITTIME)

The MPL control during wait option controls whether the process will be removed from the current
MPL (multiprogramming level) set or remain in the current MPL set when the process enters a wait as
a result of executing this instruction.

When the MPL control during wait option specifies remain in current MPL set and the access state
control for entering wait option specifies do not modify access state, the process will remain in the
current MPL set for a maximum of 2 seconds. After 2 seconds, the process will automatically be
removed from the current MPL set. The automatic removal does not change or affect the total wait
time specified for the process in the wait time interval.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 ArgumenUparameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

20 Machine support

02 machine check

03 function check

22 Object access

02 object destroyed

03 object suspended

07 authority verification terminated due to destroyed object

08 object compressed

24 Pointer specification

01 pointer does not exist

02 pointer type invalid

2E Resource control limit

01 user profile storage limit exceeded

32 Scalar specification

01 scalar type invalid

36

02 scalar attributes invalid

03 scalar value invalid

Space management

01 space extension/truncation

Operands
1

X

X

X

X

X

X

X

X

X

X

X

X

2 3 4 Other

X

X

X

X

X

X

X

X

X

Chapter 18. Process Management Instructions 18-19

j

Resource Management Instructions

Chapter 19. Resource Management Instructions

This chapter describes the storage and resource management instructions. These instructions are in
alphabetic order. For an alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary."

Ensure Object (ENSOBJ)
Materialize Access Group Attributes (MATAGAn
Materialize Resource Management Data (MATRMD)
Set Access State (SETACSn

© Copyright I BM Corp. 1991, 1993

19-3
19-5
19-9

19-31

19-1

Resource Management Instructions

Chapter 19. Resource Management Instructions 19-2

Ensure Object (ENSOBJ)

Op Code (Hex)
0381

Operand 1: System pointer.

Operand 1
System pointer

Ensure Object (ENSOBJ)

ILEaccess --~

ENSOBJ (
var system_pointer system pOinter

)

Description: The object identified by operand 1 is protected from volatile storage loss. The machine
ensures that any changes made to the specified object are recorded on nonvolatile storage media.
The access state of the object is not changed by this instruction. If operand 1 addresses a temporary
object. no operation is performed because temporary objects are not preserved during a machine
failure. No exception is signaled if temporary objects are referenced.

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

Operands
1 Other

X

X

X

X

X

X

X

X

X X

Chapter 19. Resource Management Instructions 19-3

Ensure Object (ENS08J)

Operands
Exception 1 Other

01 invalid lock .state X

~ 1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

04 object not eligible for operation X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X :J
30 Journal management

02 entry not journaled X

32 Scalar specification

01 scalar type invalid X

36 Space management

01 space extension/truncation X

Chapter 19. Resource Management Instructions 19-4

Materialize Access Group Attributes (MATAGAT)

Materialize Access Group Attributes (MATAGAT)

Op Code (Hex)
03A2

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Access group

ILE access -----------------------------------,

MATAGAT

)

receiver
var access_group

space pointer;
system pointer

Description: The attributes of the access group and the identification of objects currently contained in
the access group are materialized into the receiving object specified by operand 1.

Objects requested to be in the access group may:

• exist entirely in the access group,

• exist partially in the access group and partially outside the access group,

• or exist entirely outside the access group.

The machine may also use the access group for enabling programs to run within a process. In this
case, the Process Control Space (PCS) object is considered to exist partially in the access group, even
if the access group membership was not requested when the PCS was created.

Only objects which exist wholly or partially in the access group will be materialized.

The materialization must be aligned on a 16-byte boundary. The format is:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attributes

o = Temporary
1 = Reserved

Space attribute

o = Fixed-length
1 = Variable-length

Context

a = Addressability not in context

Char(S)

8in(4)

8in(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit a

Bit 1

Bit 2

Chapter 19. Resource Management Instructions 19-5

1 = Addressability in context

Reserved (binary 0)

Initialize space

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

• Performance class

Space alignment

Materialize Access Group Attributes (MATAGAT)

Bits 3-12

Bit 13

Bits 14-31

Char(4)

Bin(4)

Char(1)

Char(4)

Bit 0

o = The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space. If no space is specified for the object, this value must
be specified for the performance class.

1 = The space associated with the object is allocated to allow proper alignment of pointers at
16-byte alignments within the space as well as to allow proper alignment of inpuVoutput
buffers at 512-byte alignments within the space.

Reserved (binary 0) Bits 1-4

Default main storage pool Bit 5

o = Process main storage pool is used for this object.
1 = Machine default main storage pool is used for this object.

Reserved (binary 0) Bit 6

Block transfer on implicit access state
modification

Bit 7

o = Minimum storage transfer size for this object is transferred. This value is 1 storage unit.
1 = Machine default storage transfer size is transferred. This value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Reserved (binary 0)

• Access group size

• Available space in the access group

• Number of objects in the access group

• Reserved (binary 0)

• Access group object system pointer
(repeated for each object currently contained
in the access group)

Bits 8-31

Char(7)

System pointer

Char(16)

UBin(4)

UBin(4)

UBin(4)

Char(4)

System pointer

The receiver space contains the access group's attributes (as defined by the Create Access Group
instruction), the current status of the access group, and a system pointer to each object assigned to
the access group.

The access group size represents the total amount of space that has been allocated to the access
group.

The amount of available space represents the amount of space that is available in the access group for
additional objects.

Chapter 19. Resource Management Instructions 19-6

Materialize Access Group Attributes (MATAGAT)

The number of objects in the access group is a count of the number of objects that are currently con­
tained in the access group. This value is also the number of times that the access group object system
pointer below is repeated.

There is one access group object system pointer for each object currently assigned to the access
group. The authorization field within each system pointer is not set.

Authorization Required

• Retrieve

Operand 2

Contexts referenced for address resolution

Lock Enforcement

• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1A Lock state

01 invalid lock state

1 C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

Operands
1 2 Other

X X

X X

X X

X X

X X

X

X X X

X

X X X

X X

X

X

X

X x

Chapter 19. Resource Management Instructions 19-7

Materialize Access Group Attributes (MATAGAT)

Operands
Exception 1 2 Other

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 19. Resource Management Instructions 19-8

Materialize Resource Management Data (MATRMD)

Materialize Resource Management Data (MATRMD)

Op Code (Hex)
0352

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Character(8) scalar

Operand 2
Control data

ILE access ----------------------------------,

MATRMD (
receiver

var control data
) -

space pointer;
aggregate

Description: The data items requested by operand 2 are materialized into the receiving object speci­
fied by operand 1. Operand 2 is an 8-byte character scalar. The first byte identifies the generic type of
information being materialized, and the remaining 7 bytes further qualify the information desired.

Operand 1 contains the materialization and has the following format:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Time of day

• Resource management data

Char(8)

Bin(4)

Bin(4)

Char(8)

Charn

The remainder of the materialization depends on operand 2 and on the machine implementation. The
following values are allowed for operand 2:

• Selection option

Hex 01 = Materialize processor utilization data
Hex 03 = Materialize storage management counters
Hex 04 = Materialize storage transient pool information
Hex 08 = Materialize machine address threshold data
Hex 09 = Materialize main storage pool information
Hex OA = Materialize MPL control information
Hex OC = Materialize machine reserved storage pool information
Hex 11 = Materialize user storage area 1
Hex 12 = Materialize auxiliary storage information
Hex 13 = Materialize multiprocessor utilizations
Hex 14 = Materialize Storage pool tuning

• Reserved (binary 0)

Char(1)

Char(7)

The following defines the formats and values associated with each of the above materializations of
resource management data.

Processor Utilization (Hex 01):

• Processor time since IPL (initial program load) Char(8)

~ Processor time since IPL is the total amount of processor time used, both by instruction processes and
internal machine functions, since IPL. The Significance of bits within the field is the same as that
defined for the time-of-day clock.

Chapter 19. Resource Management Instructions 19-9

. '
Materialize Resource Management Data (MATRMD)

On a machine with more than one active processor, the value returned will be the average of the
processor time used since IPL by all active processors.

Storage Management Counters (Hex 03):

• Access pending

• Storage pool delays

• Directory look-up operations

• Directory page faults

• Access group member page faults

• Microcode page faults

• Microtask read operations

• Microtask write operations

• Reserved

Bin(2)

Bin(2)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Access pending is a count of the number of times that a paging request must wait for the completion of
a different request for the same page.

Storage pool delays is a count of the number of times that processes have been momentarily delayed
by the unavailability of a main storage frame in the proper pool.

Directory look-up operations is a count of the number of times that auxiliary storage directories were
interrogated, exclusive of storage allocation or deallocation. .

Directory page faults is a count of the number of times that a page of the auxiliary storage directory
was transferred to main storage, to perform either a look-up or an allocation operation. ...J
Access group member page faults is a count of the number of times that a page of an object contained
in an access group was transferred to main storage independently of the containing access group.
This occurs when the containing access group has been purged or because portions of the containing
access group have been displaced from main storage.

Microcode page faults is a count of the number of times a page of microcode was transferred to main
storage.

Mlcrotask read operations is a count of the number of transfers of one or more pages of data from
auxiliary main storage on behalf of a microtask rather than a process.

Mlcrotask write operations is a count of the number of transfers of one or more pages of data from
main storage to auxiliary storage on behalf of a microtask, rather than a process.

Storage Transient Pool Information (Hex 04):

• Storage pool to be used for the transient pool Bin(2)

The pool number materialized is the number of the main storage pool, which is being used as the
transient storage pool. A value of a indicates that the transient pool attribute is being ignored.

Machine Address Threshold Data (Hex 08):

• Total permanent addresses possible

• Total temporary addresses possible

• Permanent addresses remaining

• Temporary addresses remaining

Char(8)

Char(8)

Char(8)

Char(8)

Chapter 19. Resource Management Instructions 19-10

• Permanent addresses threshold

• Temporary addresses threshold

Materialize Resource Management Data (MATRMD)

Char(8)

Char(8)

Total permanent addresses possible is the maximum number of permanent addresses that can exist on
the machine.

Total temporary addresses possible is the maximum number of temporary addresses that can exist on
the machine.

Permanent addresses remaining is the number of permanent addresses that can still be created before
address regeneration must be run.

Temporary addresses remaining is the number of temporary addresses that can still be created before
address regeneration must be run.

Permanent addresses threshold is a number that. when it exceeds the number of permanent addresses
remaining, causes the machine address threshold exceeded (hex OOOC,05,01) event to be signaled.
When the event is signaled, the threshold is reset to O.

Temporary addresses threshold is a number that, when it exceeds the number of temporary addresses
remaining, causes the machine address threshold exceeded (hex OOOC,05,01) event to be signaled.
When the event is signaled, the threshold is reset to O.

Main Storage Pool Information (Hex 09):

• Machine minimum transfer size

• Maximum number of pools

• Current number of pools

• Main storage size

• Reserved (binary 0)

• Pool 1 minimum size

• Individual main storage pool information

. Bin(2)

Bin(2)

Bin(2)

Bin(4)

Char(2)

Bin(4)

Char(32)
(repeated once for each pool, up to the current number of pools)

Pool size

Pool maintenance

Process interruptions (data base)

Process interruptions (nondata base)

Data transferred to pool (data base)

Data transferred to pool (nondata base)

Amount of pool not assigned to
virtual addresses

Reserved (binary 0)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Char(4)

Machine minimum transfer size is the smallest number of bytes that may be transferred as a block to
or from main storage.

Maximum number of pools is the maximum number of storage pools into which main storage may be
partitioned. These pools will be assigned the logical identification beginning with 1 and continuing to C. the maximum number of pools.

Chapter 19. Resource Management Instructions 19-11

Materialize Resource Management Data (MATRMD)

Current number of pools is a user-specified value for the number of storage pools the user wishes to
utilize. These are assumed to be numbered from 1 to the number specified. This number is fixed by
the machine to be equal to the maximum number of pools.

Main storage size is the amount of main storage, in units equal to the machine minimum transfer size,
which may be apportioned among main storage pools.

Pool 1 minimum size is the amount of main storage, in units equal to the machine minimum transfer
size, which must remain in pool 1. This amount is machine and configuration dependent.

Individual main storage pool information is data in an array that is associated with a main storage pool
by virtue of its ordinal position within the array. In the descriptions below, data base refers to all other
data, including internal machine fields. Pool size, pool maintenance, amount of pool not assigned to
virtual addresses and data transferred information is expressed in units equal to the machine minimum
transfer size described above.

Pool size is the amount of main storage assigned to the pool.

Pool maintenance is the amount of data written from a pool to secondary storage by the machine to
satisfy demand for resources from the pool. It does not represent total transfers from the pool to sec­
ondary storage, but rather is an indication of machine overhead required to provide primary storage
within a pool to requesting processes.

Process interruptions (data base and nondata base) is the total number of interruptions to processes
(not necessarily assigned to this pool) which were required to transfer data il'!to the pool to permit
instruction execution.

Data transferred to pool (data base and nondata base) is the amount of data transferred from auxiliary r ~
storage to the pool to permit instruction execution and as a consequence of set access state, implicit .."
access group movement, and internal machine actions.

The amount of the pool not assigned to virtual addresses represents the storage available to be used
for new transfers into the main storage pool without displacing any virtual data already in the pool.
After a pool's size has been modified (via the Modify Resource Management Controls instruction). this
value will be inaccurate until a Modify Resource Management Controls instruction, option hex 00, is
issued to flush the modified pool. After which time, this value will be accurate until the pool size is
again modified. The value returned will not include any storage that has been reserved for load/dump
sessions active in the pool.

Multiprogramming Level Control Information (Hex OA):

• Machine-wide MPL control

Machine maximum number of MPL classes

Machine current number of MPL classes

MPL (max)

Ineligible event threshold

MPL (current)

Number of processes in ineligible state

Reserved

• MPL class information (repeated for each MPL
class, from 1 to the current number of MPL classes)

- MPL (max)

Char(16)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Char(4)

Char(16)

Bin(2)

Chapter 19. Resource Management Instructions 19-12

M.ateri,~lize Resource ManagementJ)a1a' {MATRMO)
. . ~ ~ ,;

Ineligible event threshold

Current MPL

Number of processes ineligible state

Number of processes assigned to class

Transitions (active to ineligible)

Transitions (active to MI wait)

Transitions (MI wait to ineligible)

Machine-Wide MPL Control:

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Maximum number of MPL classes is the largest number of MPL classes allowed in the machine.
These are assumed to be numbered from 1 to the maximum.

Current number of MPL classes is a user-specified value for the number of MPL classes in use.
They are assumed to be numbered from 1 to the current number.

MPL (max) is the maximum number of processes which may concurrently be in the active state in
the machine.

Ineligible event threshold is a number which, if exceeded by the machine number of ineligible proc­
esses defined below, will cause the machine ineligible threshold exceeded (hex OOOC,04,01) event to
be signaled. When the event is signaled, this value is set by the machine to 65,535.

MPL (current) is the current number of processes in the active state.

Number of processes In the Ineligible state is the number of processes not currently active because
of enforcement of both the machine and class MPL rules.

MPL Class Information

MPL class information is data in an array that is associated with an MPL class by virtue of its
ordinal position within the array.

MPL (max) is the number of processes assigned to the class which may be concurrently active.

Ineligible event threshold, MPL (current), and number of processes in ineligible state are as defined
above but apply only to processes assigned to the class.

Number of processes assigned to class is the total number of processes, in any state, assigned to
the pool.

Transitions count is the total number of transitions by processes assigned to a class as follows:

1. Active state to ineligible state

2. Active state to wait

3. Wait state to ineligible state

Note that transitions from wait state to active state can be derived as (2 - 3) and transitions from
ineligible state to active state as (1 + 3). These numbers are Bin(2) and are maintained by the
machine without regard to overflow conditions.

Machine Reserved Storage Pool Information (Hex ~C):

• Current number of pools

• Reserved

• Individual main storage pool information

Bin(2)

Char(S)

Char(1S)
(repeated once for each pool, up to the current number of pools)

Pool size

Machine portion of the pool

Bin(4)

Bin(4)

Chapter 19. Resource Management Instructions 19-13

(

. 'Mate?1alize Resource Management Data (MATRMD)

Number of load/dump sessions

Reserved

Bin(2)

Char(6)

Pool size is the amount of main storage assigned to the pool (including the machine reserved portion).

Machine portion of the pool specifies the amount of storage from the pool that is dedicated to machine
functions.

User storage area 1 (Hex 11):

• User data Char(*)

The user data previously stored internally in the machine through usage of the corresponding option on
the Modify Resource Management Controls instruction is materialized into the receiver. The operand 1
template, for this option, must start on a 16 byte boundary and any pointers contained in the user data
are preserved in the materialization.

The length value materialized in the number of bytes available for materialization field of operand 1
specifies the length of the entire operand 1 template and is limited, through checks performed on the
modify operation, to a maximum value of 65,504 (64K-32) bytes. The actual length of the user data
materialized is calculated by subtracting 16 from the length value for the total template length.

Auxiliary Storage Information (Hex 12):

The auxiliary storage information describes the ASPs (auxiliary storage pools) which are configured
within the machine and the units of auxiliary storage currently allocated to an ASP or known to the
machine but not allocated to an ASP.

Note that contrary to the normal case of being able to modify the values materialized by this option
through use of the Modify Resource Management Controls instruction, modification of most of the aux­
iliary storage configuration is performed using functions available in the Dedicated Service Tool (DST).

Also note that through appropriate setting of the number of bytes provided field for operand 1, the
amount of information to be materialized for this option can be reduced thus avoiding the processing
for unneeded information. As an example, by setting this field to only provide enough bytes for the
common 16 byte header, plus the option Hex 12 control information, plus the system ASP entry of the
ASP information, you can get just the information up through the system ASP entry returned and avoid
the overhead for the user ASPs and unit information.
Control information
(occurs just once)

• Number of ASPs

• Number of allocated auxiliary storage units

Note: Number of configured, non-mirrored
units + number of mirrored pairs

• Number of unallocated auxiliary storage units

• Control flags

- Main storage dump area unavailable
- Reserved (binary 0)

• Reserved (binary 0)

• Maximum unprotected space used

• Current unprotected space in use

• Checksum main storage

Char(64)

Bin(2)

Bin(2)

Bin(2)

Char(1)

Bit 0
Bits 1-7

Char(1)

Char(8)

Char(8)

Bin(4)

Chapter 19. Resource Management Instructions 19-14

• Unit information offset

• Number of pairs of mirrored. units

• Mirroring main storage

• Reserved. (binary 0)

• Total temporary space including LS

• Number of bytes in a page

• Reserved. (binary 0)

Materialize Resource Management Data (MATRMD)

Bin(4)

Bin(2)

Bin(4)

Char(2)

Char(8)

Bin(4)

Char(12)

ASP information Char(160)
(Repeated once for each ASP. Located immediately after the control information above. ASP 1, always
configured, is first. Configured user ASPs follow in ascending numerical order.)

• ASP number Char(2)

• ASP control flags

Suppress threshold exceeded event

User ASP overflow

Checksum protection

Unprotected space overflow

ASP mirrored

User ASP MI State

ASP overflow storage available

Reserved (binary 0)

• ASP overflow recovery result

Successful

Failed due to insufficient free space

Cancelled

Reserved. (binary 0)

• Reserved. (binary 0)

• ASP media capacity

• Reserved

• ASP space available

• ASP event thresho(d

• ASP event threshold percentage

• Reserved (binary 0)

• ASP system storage

• ASP overflow storage

• Space allocated to the Error log

• Space allocated to the machine log

• Space allocated to the machine trace

• Space allocated for main store dump

• Space allocated. to the microcod.e

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

. Bit 5

Bit 6

Bit 7

Char(1)

Bit 0

Bit 1

Bit 2

Bits 3-7

Char(4)

Char(8)

Char(8)

Char(8)

Char(8)

Bin(2)

Char(6)

Char(8)

Char(8)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Chapter 19. Resource Management Instructions 19-15

Materialize Resource Management Data (MATRMD)

. Reserved Char(12)

• ASP checksum information Char(64)

Protected space capacity Char(8)

Unprotected space capacity Char(8)

Protected space available Char(8)

Unprotected space available Char(8)

Unprotected space on each checksummed Bin(4)
unit

Reserved Char(28)

Unit information Char(208)
(Consists of one entry each for the configured, non-mirrored units and one unit of the mirrored pairs,
the non-configured units, and the other unit of the mirrored pairs.

An allocated storage unit (ASU) is either an allocated, non-mirrored unit or a mirrored pair. Note that
the mirrored pair counts only as one ASU. When used without qualification, the term unit refers to an
ASU.

Unit information start may be located by the Unit Information Offset in the control information.)

• Device type

- Disk Type
- Disk Model

• Device identification

Unit number
- Serial number
- Reserved

• Unit relationship

Reserved
Bus information

- Bus number
- Bus unit (lOP)

Controller identification
Actuator identification

• Unit ASP number

• Logical mirrored pair status

Unit mirrored
Mirrored unit protected
Mirrored pair reported
Reserved

• Mirrored unit status

• Unit media capacity

• Unit storage capacity

• Unit space available

• Unit reserved system space

• Unit relationship

Char(8)

Char(4)
Char(4)

Char(8)

Char(2)
Char(4)
Char(2)

Char(4)

Char(1)
Char(1)
Bits 0-2
Bits 3-7
Char(1)
Char(1)

Char(2)

Char(1)

Bit 0
Bit 1
Bits 2
Bits 3-7

Char(1)

Char(8)

Char(8)

Char(8)

Char(8)

Char(6)

Chapter 19. Resource Management Instructions 19-16

j

Materialize Resource Management Data (MATRMD)

Bus information
- Bus number
- Bus unit (lOP)

Unit address
- Controller identification
- Actuator identification
- Reserved

• Unit control flags

Unit in checksummed ASP

Unit is device parity protected

Subsystem is active

Unit in subsystem has failed

Other unit in subsystem has failed

Subsystem runs in degraded mode

Hardware failure

Device parity protection is being rebuilt

Unit is not ready

Unit is write protect

Unit is busy

Unit is not operational

Status is not recognizable

Status is not available

Unit is Read/Write protected

Reserved (binary 0)

Bits 2 to 14 are mutually exclusive.

• Reserved

• Unit checksum information

Unit redundancy space

Unit protected space capacity

Unit protected space available

Unit unprotected space capacity .

Unit unprotected space available

Unit checksum set number

Reserved (binary 0)

• Unit usage information

Blocks transferred to main storage

Blocks transferred from main storage

Requests for data transfer to main storage

Requests for data transfer from main storage

Permanent blocks transferred
from main storage

Char(2)
Char(1)
Char(1)
Char(4)
Char(1)
Char(1)
Char(2)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

Char(16)

Char(64)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Char(2)

Char(22)

Char(64)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Chapter 19. Resource Management Instructions 19-17

Materialize Resource Management Data (MATRMD)

Requests for permanent data transfer
from main storage

Redundancy blocks transferred
from main storage

Requests for redundancy data transfer from
main storage

Reserved (binary 0)

Bin(4)

Bin(4)

Bin(4)

Char(32)

Number of ASPs is the number of ASPs configured within the machine. One, the minimum value, indi­
cates just the system ASP exists and that there are no user ASPs configured. Up to 15 user ASPs can
be configured. Values greater than one indicate how many user ASPs are configured in addition to the
system ASP. The system ASP always exists.

Number of allocated auxiliary storage units is the number of configured units logically addressable by
the system as units. This is the number of configured, non-mirrored units plus the number of mirrored
pairs allocated to the ASPs. The total number of units (actuator arms) on the system is the sum of the
allocated auxiliary storage units plus the number of unallocated auxiliary storage units plus the
number of pairs of mirrored units. For example, each 9335 enclosure represents two units. Informa­
tion on these units is materialized as part of the unit information. Any two units of the same type and
size may be associated to form a mirrored pair. Association of two units as a mirrored pair reduces
the amount of logically available storage by the number of bytes contained on one of the mirrored
units in the mirrored pair.

Number of unallocated auxiliary storage units is the number of auxiliary storage units that are currently
not allocated to an ASP. Information on these units is materialized as part of the unit information.

The main storage dump area unavailable flag indicates whether or not the main storage dump area on
disk is unavailable. A value of binary 1 indicates it is unavailable; binary 0 indicates it is available.
The condition where it is unavailable can arise when main storage is added to the machine, but during
subsequent IPL processing the machine can not free up space on the load source disk unit for the
additional dump area needed. This occurs when there is insufficient space available on the other disk
units in the system ASP to allow for movement of object allocations off of the load source unit. The
corrective action is to free up space in the system ASP and relPL the machine so the allocation of
additional space to the dump area can be completed.

The main storage dump area is important for recovery and diagnostic purposes. It is used by the
machine during certain hardware and power failures to capture a main storage dump which is used to
minimize the object damage which can result. It is also used by the machine during certain software
logic failures to capture a main storage dump which is used to determine the cause of the failure.

Maximum unprotected space used (Checksum field) is the largest number of bytes of unprotected
storage used at anyone time since the last IPL of the machine. When checksum protection is not in
effect for the system ASP, this field describes the amount of unprotected storage that would have been
used if checksum protection had been in effect.

Current unprotected space used (Checksum field) is the current number of bytes of unprotected storage
in use. When checksum protection is not in effect for the system ASP, this field describes the amount
of unprotected storage that would be in use if checksum protection was in effect.

Checksum main storage (Checksum field) is the number of bytes of main storage reserved in the
machine storage pool for checksum usage.

Unit information offset is the offset, in bytes, from the start of the operand 1 materialization template to
the start of the unit information. This value can be added to a space pointer addressing the start of
operand 1 to address the start of the unit information.

Chapter 19. Resource Management Instructions 19-18

Materialize Resource Management Data (MATRMD)

Number of pairs of mirrored units represents the number of mirrored pairs in the system. Each mir­
rored pair consists of two mirrored units; however, only one of the two mirrored units is guaranteed to
be operational.

Mirroring main storage is the number of bytes of main storage in the machine storage pool used by
mirroring. This increases when mirror synchronization is active. This amount of storage is directly
related to the number of mirrored pairs.

Total temporary space including LS is the number of bytes of temporary storage allocated on the
system. This includes the temporary storage allocated on the load source unit.

Number of bytes in a page is the number of bytes in a single page. This can be used to convert fields
that are given in pages into the correct number of bytes.

ASP information is repeated once for each ASP configured within the machine. The number of ASPs
configured is specified by the number of ASPs field. ASP 1, the system ASP is materialized first.
Because the system ASP always exists, its materialization is always available. The user ASPs which
are configured are materialized after the system ASP in ascending numerical order. There may be
gaps in the numerical order. That is, if just user ASPs 3 and 5 are configured, only information for
them is materialized producing information on just ASP 1, ASP 3 and ASP 5 in that order.

ASP number uniquely identifies the auxiliary storage pool. The ASP number may have a value from 1
through 16. A value of 1 indicates the system ASP. A value of 2 through 16 indicates a user ASP.

Suppress threshold exceeded event flag indicates whether or not the machine is suppressing signaling
of the related event when the event threshold in effect for this ASP has been' exceeded. A value of
binary 1 indicates that the signaling is being suppressed; binary 0 indicates that the signaling is not
being suppressed. The default after each IPL of the machine is that the signaling is not suppressed;
i.e. default is binary O. For the system ASP, this flag is implicitly set to binary 1 by the machine when
the machine auxiliary storage threshold exceeded (hex OOOC,02,01) event is signaled. For a user ASP,
this flag is implicitly set to binary 1 by the machine when the user auxiliary storage threshold exceeded
(hex OOOC,02,02) event is signaled. This is done to avoid repetitive signaling of the event when the
threshold exceeded condition occurs. Option Hex 12 of the Modify Resource Management Controls
instruction can be used to explicitly reset the suppression of the threshold exceeded event when it is
desirable to again have the machine detectthe threshold exceeded condition and signal the related
event.

User ASP overflow flag (Checksum field) indicates whether or not object allocations directed into the
user ASP have overflowed into the system ASP. A value of binary 1 indicates overflow; binary 0 indi­
cates no overflow. This flag does not apply to the system ASP, and is always set to a binary 0 for it.

Checksum protection flag specifies whether or not the ASP is under checksum protection. A value of
binary 1 indicates that checksum protection is in effect; a value of binary 0 indicates it is not.

Unprotected space overflow flag (Checksum field) specifies whether or not allocations for unprotected
data in the ASP have exceeded the unprotected space capacity and overflowed into the area normally
used for allocation of protected data. A value of binary 1 indicates that such overflow has occurred; a
value of binary 0 indicates it has not. This status is set when the ASP unprotected space overflow,(hex
OOOC,02,04) event is signaled; it is reset automatically on the subsequent IMPL of the machine.
Because unprotected storage is used primarily for allocation of temporary objects which are automat­
ically deallocated as part of the IPL process, the overflowed allocations are freed up at IPL, providing
for the automatic reset of the overflow condition. Because unprotected storage is only allowed for the
system ASP, this flag is only applicable to the system ASP.

ASP mirrored flag specifies whether or not the ASP is configured to be mirror protected. A value of
binary 1 indicates that ASP mirror protection is configured. Refer to the mirror unit protected flag to

Chapter 19. Resource Management I nstrlJctions 19-19

Materialize Resource Management Data (MATRMD)

determine if mirror protection is active for each mirrored pair. A value of binary a indicates that none
of the units associated with the ASP are mirrored.

User ASP MI State indicates the state of the User ASP. A value of binary 1 indicates that the User ASP
is in the 'new' state. This means that a context may be allocated in this User ASP. A value of binary a
indicates that the User ASP is in the 'old' state. This means that there are no contexts allocated in this
User ASP. This flag has no meaning for the System ASP and will always be set to binary a for it.

ASP overflow storage available flag indicates whether or not the amount of auxiliary storage that has
overflowed from the user ASP into the system ASP is available. A value of binary 1 indicates that the
amount is maintained by the machine and available in the ASP overflow storage field. A value of
binary a indicates that the amount is not available.

ASP overflow recovery result flags indicate the result of the ASP overflow recovery operation which is
performed during an IPL upon request by the user. When this operation is requested, the machine
attempts to recover the user ASP from an overflow condition by moving overflowed auxiliary storage
from the system ASP back to the user ASP during the Storage Management recovery step of an IPL.
The successful flag is set to a value of binary 1 when all the overflowed storage was successfully
moved. The failed due to insufficient free space flag is set to a value of binary 1 when there is not
sufficient free space in the user ASP to move all the overflowed storage. The cancelled flag is set to a
value of binary 1 when the operation was cancelled prior to completion (e.g., system power loss, user
initiated IPL).

ASP media capacity specifies the total space, in number of bytes of auxiliary storage, on the storage
media allocated to the ASP. This is just the sum of the unit media capacity fields for (1) the units
allocated to the ASP or (2) the mirrored pairs in the ASP.

ASP space available is the number of bytes of auxiliary storage that is not currently assigned to objects
or internal machine functions, and therefore, is available for allocation in the ASP when the ASP is not
under checksum protection. Note that a mirrored pair counts for only one unit. When the ASP is under
checksum protection, this value is meaningless and the ASP checksum information describes the
space available values.

ASP event threshold specifies the minimum value for the number of bytes of auxiliary storage available
in the ASP prior to the Signaling of the appropriate threshold exceeded event. The threshold exceeded
condition occurs when either the protected space available value or the ASP space available value,
depending upon whether checksum protection is or isn't in effect for the ASP, becomes equal to or less
than the ASP event threshold value. This condition causes either the auxiliary storage threshold
exceeded (hex OOOC,02,01) event, for the system ASP, or the user ASP threshold exceeded event (hex
OOOC,02,02), for a user ASP, to be signaled. Redundant signaling of these events is suppressed as
indicated by the setting of the suppress threshold exceeded event flag. Refer to the definition of the
suppress threshold exceeded event flag for more information.

The ASP event threshold value is calculated from the the ASP event threshold percentage value by
multiplying either the protected space capacity value or the ASP media capacity value, depending
upon whether checksum protection is or isn't in effect for the ASP, by the ASP event threshold per­
centage and subtracting the product from that same capacity value.

ASP event threshold percentage specifies the auxiliary storage space utilization threshold as a per­
centage of either the protected space capacity or the ASP media capacity, depending upon whether
checksum protection is or isn't in effect for the ASP. This value is used, as described above, to calcu­
late the ASP event threshold value. This value can be modified through use of Dedicated Service Tool
DASD configuration options.

ASP system storage specifies the amount of system storage currently allocated in the ASP in bytes.
This storage will not be calculated when determining if the user ASP MI state can be changed.

Chapter 19. Resource Management Instructions 19-20

Materialize Resource Management Data (MATRMD)

ASP overflow storage indicates the number of bytes of auxiliary storage that have overflowed from the
user ASP into the system ASP. This value is valid only if the ASP overflow storage available flag is set
to a value of binary 1·

Space allocated to the Error log this is the number of pages of auxiliary storage that are allocated to
the error log. This field only applies to the System ASP.

Space allocated to the machine log this is the number of pages of auxiliary storage that are allocated
to the machine log. This field only applies to the System ASP.

Space allocated to the machine trace this is the number of pages of auxiliary storage that are allocated
to the machine trace. This field only applies to the System ASP.

Space allocated for Main Store Dump this is the number of pages of auxiliary storage that are allocated
to the main store dump space. The contents of main store are written to this location for some system
terminations. This field only applies to the System ASP.

Space allocated to microcode this is the number of pages of auxiliary storage that are allocated for
microcode and space used by the microcode. The space allocated to the error log, machine log,
machine trace, and main store dump space is not included in this field. This field only applies to the
System ASP.

ASP checksum Information (Checksum field) specifies capacity and space available values that apply
when the ASP is under checksum protection. In this case, the units of auxiliary storage allocated to
ASP are formatted with areas for protected data, unprotected data, and redundancy data. Information
on the protected and unprotected space is provided both here in these fields on an ASP basis and
under unit information on a per unit basis. Information on redundancy space is only provided under
unit information on a per unit basis. When the ASP is not under checksum protection, the values of
these fields are meaningless.

Protected space capacity (Checksum field) specifies the total number of bytes of auxiliary storage for­
matted for the storage of protected data in the ASP.

Unprotected space capacity (Checksum field) specifies the total number of bytes of auxiliary storage
formatted for storage of unprotected data in the ASP. Since unprotected space is only allowed in the
system ASP, this information is only applicable to the system ASP.

Protected space available (Checksum field) specifies the number of bytes of auxiliary storage formatted
for storage of protected data that are not currently aSSigned to objects or internal machine functions,
and therefore, are available for allocation in the ASP.

Unprotected space available (Checksum field) specifies the number of bytes of auxiliary storage for­
matted for storage of unprotected data that are not currently assigned to objects or internal machine
functions, and therefore, are available for allocation in the ASP. Since unprotected space is only
allowed in the system ASP, this information is only applicable to the system ASP.

Unprotected space on each checksummed unit (CheCksum field) specifies the number of megabytes
(millions of bytes) of auxiliary storage formatted for storage of unprotected data on each unit allocated
to a checksum set in the ASP. Using the Dedicated Service Tool to modify this value provides for
altering the relation of the protected versus unprotected space capacity values. Since unprotected
space is only allowed in the system ASP, this information is only applicable to the system ASP.

Unit information is materialized in the following order:

Group 1: Configured units consisting of non-mirrored units and mirrored units.

Group 2: Non-configured units

Chapter 19. Resource Management Instructions 19-21

Materialize Resource Management Data (MATRMD)

Group 3: Configured units consisting of mirrored units.

The unit information i~ located by the unit information offset field which specifies the offset from the
beginning of the operand 1 template to the start of the unit information. The number of entries for each
of the three groups listed above is defined as follows:

Group 1: Number of non-mirrored, configured units + number of mirrored pairs

Group 2: Number of non-configured storage units

Group 3: Number of mirrored pairs

For unallocated units, the device type, device identification, unit relationship, and unit media capacity
fields contain meaningful information. The remaining fields have no meaning for unallocated units
because the units are not currently in use by the system. Mirrored unit entries contain either current
or last known information. The last known data consists of the mirrored unit status, disk type, disk
model, unit ASP number, disk serial number, and unit address. Last known information is provided
when the Mirrored Unit Reported field is a binary zero.

Disk type identifies the type of disk enclosure containing this auxiliary storage unit. This is the four byte
character field from the vital product data for the disk device which identifies the type of drive. For
example, the value is character string '9332' for a 9332 device and '9335' for a 9335 device.

Disk model identifies the model of the type of disk enclosure containing this auxiliary storage unit. This
is the four byte character field from the vital product data for the disk device which identifies the model
of the drive. For example, the value is character string '0200' for a model 200 9332 device and '0400' for
a model 400 9332 device.

Unit number uniquely identifies each non-mirrored unit or mirrored pair among the configured units.
Both mirrored units of a mirrored pair have the same unit number. The value of the unit number is
assigned by the system when the unit is allocated to an ASP. For unallocated units, the unit number is :.J
set to binary zero.

Serial number specifies the serial number of the device containing this auxiliary storage unit. This is
the four byte serial number field from the vital product data for the disk device.

Bus number identifies the I/O Bus to which the disk device containing this auxiliary storage unit is
connected.

Bus unit (lOP) identifies the 1/0 Processor used to access the controller for the disk device containing
this auxiliary storage unit.

Controller Identification specifies the controller for the disk device containing this auxiliary storage unit.

Actuator identification specifies the actuator associated with this auxiliary storage unit in the disk
device containing it.

Unit ASP number specifies the ASP to which this unit is currently allocated. A value of 1 specifies the
system ASP. A value from 2 through 16 specifies a user ASP and correlates to the user ASP number
field in the user ASP information entries. A value of 0 indicates that this unit is currently unallocated.

Unit mirrored flag indicates that this unit number represents a mirrored pair. This bit is materialized
with both mirrored units of a mirrored pair.

Mirrored unit protected flag indicates the mirror status of a mirrored pair. A value of 1 indicates that
both mirrored units of a mirrored pair are active. A 0 indicates that one mirrored unit of a mirrored
pair is not active. Active means that both units are on line and fully synchronized (ie. the data is iden­
tical on both mirrored units).

Chapter 19. Resource Management Instructions 19-22

Materialize Resource Management Data (MATRMD)

Mirrored unit reported flag indicates that a mirrored unit reported as present. The mirrored unit
reported present during or following IMPL. Current attachment of a mirrored unit to the system cannot
be inferred from this bit. A 0 indicates that the mirrored unit being materialized is missing. The last
known information pertaining to the missing mirrored unit is materialized. A 1 indicates that the mir­
rored unit being materialized has reported. The information for this reported unit is current to the last
time it reported status to the system.

Mirrored unit status indicates mirrored unit status.

A value of 1 indicates that this mirrored unit of a mirrored pair is active (ie. on-line with current
data).

A value of 2 indicates that this mirrored unit is being synchronized.

A value of 3 indicates that this mirrored unit is suspended.

Mirrored unit status is stored as binary data and is valid only when the unit mirrored flag is on.

Unit media capacity is the space, in number of bytes of auxiliary storage, on the non-mirrored unit or
mirrored pair, that is, the capacity of the unit prior to any formatting or allocation of space by the
system it is attached to. For a mirrored pair, this space is the number of bytes of auxiliary storage on
either one of the mirrored units. The space is identical on both of the mirrored units. Caution, do not
attempt to add the capacities of the two units of a mirrored pair together.

Unit space available is the number of bytes of secondary storage space that is not currently assigned
to objects or internal machine functions, and therefore, is available for allocation on the unit (or the
mirrored pair) when the ASP containing it is not under checksum protection. ~hen the ASP containing
the unit is under checksum protection, this value is meaningless and the Unit checksum information
describes the space available values. For a mirrored pair, this space is the number of bytes of auxil­
iary storage available on either one of the mirrored units. The space is identical on both of the mir­
rored units. Caution, do not attempt to add the capacities of the two units of a mirrored pair together.

Unit reserved system space is the total number of bytes of auxiliary storage on the unit reserved for
use by the machine. This storage is not available for storing objects, redundancy data, and other
internal machine data. When the unit is not in a checksum set, the unit checksum set number contains
a value of zero, this reserved space is included in the ASP and unit media capacity fields and reduces
the corresponding space available values. When the unit is in a checksum set, the unit checksum set
number is nonzero, this reserved space is not included in the ASP and unit checksum information
fields which provide capacity and space information and, therefore, does not reduce the corresponding
space available values.

Bus number identifies the lID Bus to which the disk device containing this auxiliary storage unit is
connected.

Bus unit (lOP) identifies the I/O Processor used to access the controller for the disk device containing
this auxiliary storage unit.

Controller identification specifies the controller for the disk device containing this auxiliary storage unit.

Actuator identification specifies the actuator associated with this auxiliary storage unit in the disk
device containing it.

Unit In checksummed ASP - a value of 1 indicates that this unit is configured in an ASP that is
checksummed. It does not indicate whether or not the unit is in a checksum set.

Unit is device parity protected - a value of 1 indicates that this unit is device parity protected.

Subsystem is active indicates whether the array subsystem is active.

Chapter 19. Resource Management Instructions 19-23

-:-"
Materialize Resource Management Data (MATRMD)

If the unit in subsystem has failed field is 1, the unit in an array subsystem being addressed has failed.
Data protection for this subsystem is no longer in effect.

If the other unit in subsystem has failed field is 1, the unit being addressed is operational, but another
unit in the array subsystem has failed. Data protection for this subsystem is no longer in effect.

If the subsystem runs in degraded mode field is 1, the array subsystem is operational and data pro­
tection for this subsystem is in effect, but a failure that may affect performance has occurred. It must
be fixed.

If the hardware failure field is 1, the array subsystem is operational and data protection for this sub­
system is in effect, but hardware failure has occurred. It must be fixed.

If the device parity protection is being rebuilt field is 1, the device parity protection for this device is
being rebuilt following a repair action.

If the unit is not ready field is 1, the unit being addressed is not ready for I/O operation.

If the unit Is write protected field is 1, the write operation is not allowed on the unit being addressed.

If the unit is busy field is 1, the unit being addressed is busy.

If the unit is not operational field is 1, the unit being addressed is not operational. The status of the
device is not known.

If the unit is not recognizable field is 1, the unit being addressed has an unexpected status. I.e. the
unit is operational, but its status returned to Storage Management from lOP is not one of those previ­
ously described.

If the status is not available field is 1, the machine is not able to communicate with I/O processor. The
status of the device is not known.

If the unit Is Read/Write protected is 1, a DASD array may be in the read/write protected state when
there is problem, such as cache problem, configuration problem, or some other array problems that
could create a data integrity exposure.

Unit checksum information (Checksum field) specifies capacity and space available values that apply
when the ASP containing the unit is under checksum protection. In this case, when the unit is in a
checksum set, the unit checksum set number is nonzero, the unit is formatted with areas for protected
data, unprotected data, and redundancy data and these fields provide information relating to those
areas. If the unit is not allocated to a checksum set, the unit checksum set number contains a value of
zero, it is only formatted for the storage of unprotected data and the other capacity values will be zero.
When the ASP containing the unit is not under checksum protection, the values of these fields are
meaningless, except that the unit checksum set number field will contain a zero value.

Unit redundancy space (Checksum field) is the total number of bytes of auxiliary storage on the unit
formatted for use for redundancy data. This storage is not available for storing objects and other
internal machine data.

Unit protected space capacity (Checksum field) is the number of bytes of auxiliary storage formatted for
storage of protected data on the unit. This field is only nonzero if this unit is allocated to a checksum
set. Units not allocated to a checksum set contain no protected storage area. This value does not
include the size of any data redundancy area which may have been formatted on the unit as well.

Unit protected space available (Checksum field) is the number of bytes of protected space on sec- ~
ondary storage available for allocation on the unit; that is, not currently assigned to objects or internal
machine functions. This field is only nonzero if this unit is allocated to a checksum set. Units not

Chapter 19. Resource Management Instructions 19-24

Materialize Resource Management Data (MATRMD)

allocated to a checksum set contain no protected storage area, unless they are mirrored. All space of
a mirrored pair is protected.

:Unit unprotected space capacity (Checksum field) is the number of bytes of auxiliary storage formatted
for storage of unprotected data on the unit. This value does not include the size of any data redun­
dancy area which may have been formatted on the unit as well. Since unprotected space is only
allowed in the system ASP, this information is only applicable to units allocated to the system ASP.

Unit unprotected space available (Checksum field) is the number of bytes of unprotected space on sec­
ondary storage that are not currently assigned to objects or internal machine functions, and therefore,
are available for allocation on the unit. Since unprotected space is only allowed in the system ASP,
this information is only applicable to units allocated to the system ASP.

Unit checksum set number (Checksum field) speCifies the checksum set to which this unit is currently
allocated. A nonzero value speCifies the number of the checksum set. A zero value specifies that the
unit is currently not assigned to a checksum set.

Unit usage information specifies statistics relating to usage of the unit. For unallocated units, these
fields are meaningless.

Blocks transferred to/from main storage fields specify the number of S12-byte blocks transferred for the
unit since the last IMPL. These values wrap around to zero and continue counting in the case of an
overflow of the field with no indication of the overflow having occurred.

Requests for data transfer to/from main storage fields specify the number of data transfer (1/0)
requests processed for the unit since the last IMPL. These values wrap around to zero and continue
counting in the case of an overflow of the field with no indication of the overflow having occurred.
These values are not directly related to the number of blocks transferred for the unit because the c... number of blocks to be transferred for a given transfer request can vary greatly.

Permanent blocks transferred from main storage specifies the number of S12-byte blocks of permanent
data transferred from main storage to auxiliary storage for the unit since the last IMPL. In the case of
an overflow of the field, this value wraps around back to zero and continues counting, with no indi­
cation of the overflow condition having occurred.

Requests for permanent data transfer from main storage specifies the number of transfer (I/O) requests
for transfers of permanent data from main storage to auxiliary storage that have been processed for
the unit since the last IMPL. In the case of an overflow of the field, this value wraps around back to
zero and continues counting, with no indication of the overflow condition having occurred. This value
is not directly related to the permanent blocks transferred from main storage value for the unit ASP
because the number of blocks to be transferred for any particular transfer request can vary greatly.

Redundancy blocks transferred from main storage (Checksum field) specifies the number of S12-byte
blocks of redundancy data transferred from main storage to auxiliary storage for the unit since the last
IMPL. In the case of an overflow of the field, this value wraps around back to zero and continues
counting, with no indication of the overflow condition having occurred. This field is only meaningful for
a unit in a checksum set.

Requests for redundancy data transfer from main storage (Checksum field) specifies the number of
transfer (1/0) requests for transfers of redundancy data from main storage to auxiliary storage that
have been processed for the unit since the last IMPL. In the case of an overflow of the field, this value
wraps around back to zero and continues counting, with no indication of the overflow condition having
occurred. This value is not directly related to the redundancy blocks transferred from main storage
value for the unit because the number of blocks to be transferred for any particular transfer request
can vary greatly. This field is only meaningful for a unit in a checksum set.

Chapter 19. Resource Management Instructions 19-25

Materialize Resource Management Data (MATRMD)

Multiprocessor utilizations (Hex 13):

• Number of processors configured on
the machine

• Number of configured processors
currently active on the machine

• Bit map of processors currently active
on the machine

Processor 1 is active

Processor 2 is active

Processor 3 is active

Processor 4 is active

Processor 5 is active

Processor 6 is active

Processor 7 is active

Processor 8 is active

Processor 9 is active

Processor 10 is active

Processor 11 is active

Processor 12 is active

Processor 13 is active

Processor 14 is active

Processor 15 is active

Processor 16 is active

• Reserved

• Array of CHAR(8) processor time used
since IPL values. Repeated once for each active processor.

Processor 1 time busy since IPL

Processor 2 time busy since IPL

Processor 3 time busy since IPL

Processor 4 time busy since IPL

Processor 5 time busy since IPL

Processor 6 time busy since IPL

Processor 7 time busy since IPL

Processor 8 time busy since IPL

Processor 9 time busy since IPL

Processor 10 time busy since IPL

Processor 11 time busy since IPL

Processor 12 time busy since IPL

Processor 13 time busy since IPL

Processor 14 time busy since IPL

Chapter 19.

Bin(2)

Bin(2)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

Char(2)

Char(128)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Char(8)

Resource Management Instructions 19-26

I

:..J

Materialize Resource Management Data (MATRMD)

Processor 15 time busy since IPL

Processor 16 time busy since IPL

Char(8}

Char(8}

The number of active processors will always be less than or equal to the number of configured
processors. The active processor bit map will only indicate active processors within the first (leftmost)
number of configured processors number of bits. The significance of bits within the time busy fields
are the same as that defined for the time-of-day clock. This option always returns a number of bytes
available for materialization equal to the length of the entire structure detailed above (it does not vary
with the number of configured or active processors).

Storage pool tuning (Hex 14):

• Control information
(occurs just once)

• Current number of pools

• Reserved (binary a)

Pool information
(repeated once for each pool)

• Type of pool tuning

Hex 00 = No tuning is being done for the pool

Hex 10 = Static tuning

Char(1S)

Bin(2)

Char(14)

Char(104}

Char(1)

Hex 20 = Dynamic tuning of transfers to main storage

Hex 30 = Dynamic tuning of transfers to main storage and to auxiliary storage

• Changed page handling Char(1}

Hex 00 = System page replacement algorithm handles changed pages

Hex 10 = Periodically transfer changed pages to auxiliary storage

• Reserved (binary a)

• Nondatabase objects

Blocking factor

- Hex 0000 = Use the default system value

Char(14)

Char(8}

Char(2}

- Hex 0008 = Transfer data between main storage and auxiliary in blocks of 4K.

- Hex 0010 = Transfer data between main storage and auxiliary in blocks of BK.

- Hex 0020 = Transfer data between main storage and auxiliary in blocks of 1SK.

- Hex 0040 = Transfer data between main storage and auxiliary in blocks of 32K.

Reserved (binary a)

• Reserved (binary 0)

• Handling of database objects by class
(repeat for each of the four classes).

Blocking factor

- Hex 0000 = Use the default system value

Char(S)

Char(1S)

Char(8)

Char(2}

- Hex 0008 = Transfer data between main storage and auxiliary in blocks of 4K.

- Hex 0010 = Transfer data between main storage and auxiliary in blocks of BK.

- Hex 0020 = Transfer data between main storage and auxiliary in blocks of 16K.

Chapter 19. Resource Management Instructions 19-27

Materialize Resource Management Data (MATRMD)

- Hex 0040 = Transfer data between main storage and auxiliary in blocks of 32K.

- Hex 0080 .= Transfer data between main storage and auxiliary in blocks of 64K.

- Hex 0100 = Transfer data between main storage and auxiliary in blocks of 128K.

Allow exchange operations Char(1)

- Hex 00 = Use the default system value

- Hex C5 = Allow exchange operations

- Hex D5 = Disable exchange operations

- Hex D9 = Indicate that objects are good candidates for replacement

Handling of requests to transfer object
to auxiliary storage

- Hex 00 = Use the default system value

- Hex D5 = Use the system page replacement algorithm

- Hex D7 = Purge the objects from main storage

Char(1)

- Hex D9 = Indicate the objects are good candidates for replacement

- Hex E6 = Write the objects to auxiliary storage

Reserved (binary 0)

• Reserved (binary 0)

Char(4)

Char(32)

Current number of pools is a user-specified value for the number of storage pools the user wishes to
utilize. These are assumed to be numbered from 1 to the number specified. This number is fixed by
the machine to be equal to the maximum number of pools.

Type of pool tuning determines what the system is doing to tune the performance of a storage pool.

When tuning is not being done for a pool (hex 00), the system tries to minimize the amount of main
storage that is used by each of the jobs in the system independent of the amount of main storage
that exists in a pool. The values returned for nondatabase objects and database objects by class
will be all zeros to represent that the default values are being used.

If static tuning is being done. (hex 10), the system will use the values specified for pool information
to determine the amount of data to transfer to main storage and auxiliary storage. The values
returned for database objects by class and nondatabase objects will be the values previously spec­
ified on the MODRMC instructions.

When dynamic tuning of transfers to main storage is being done (hex 20), the system bases the
amount of data to transfer to main storage based on the demand for storage in the storage pool,
the size of the pool, the number of active users in the pool and other performance attributes. The
values returned for database objects by class and nondatabase objects is the current value being
used by the system to handle the objects.

When dynamic tuning of transfers to main storage and auxiliary storage is being done (hex 30), the
system bases the amount of data to transfer to main storage and to auxiliary storage based on the
demand for storage in the storage pool, the size of the pool, the number of active users in the pool
and other performance attributes. The values returned for database objects by class and nondata­
base objects is the current value being used by the system to handle the objects.

When tuning is requested (hex 10, 20 or 30), the system periodically categorizes database objects into
four different performance classes. The class are:

Class 1 Object access appears to be very random - a disk access is required for nearly each record
that is accessed

Chapter 19. Resource Management Instructions 19-28

M~terialize Resource Management-Data (MATRMO)

Class 2 Some locality of reference detected, several records are being accessed per disk access

Class 3 High locality of reference detected, object is being processed in a sequential manner. refer-c.., ences' are highly clustered, large portions of the object are resident in memory.

Class 4 See following explanation.

The class of a database object is adjusted if the objects size is small in comparision to the available
storage in the storage pool. This class adjustment involves adding 1 to the class number, so a class 3
database object (as defined above) would be treated as a class 4 if it is small in com parisian to the
available storage in the storage pool.

Reference information for determining a object's class is collected periodically and by storage pool so
an object's class will vary over time and by storage pool.

Change page handling effects when the system will write changed pages to auxiliary storage. When
the system page replacement algorithm (hex 00) is specified as the change page handing mechanism,
the system will transfer changed pages to auxiliary storage when:

• Explictly requested to transfer the page (for example, Set Access State (SETACST) instruction)

• There is a demand for pages in the pool

When the periodically transfer changed pages option (hex 10) is specified as the change page handing
mechanism, the system will transfer changed pages to auxiliary storage when:

• Explictly requested to transfer the page (for example, Set Access State (SETACST) instruction)

• There is a demand for pages in the pool

• Periodically look for changed pages in a pool and transfer the changed pages to auxiliary storage

Blocking factor determines how much data should be brought into main storage when the objects is
needed in main storage.

Allow exchange operations controls which method the system should use to find main storage to hold
data. With the exchange method (hex CS), the system uses the page frames associated with a specific
object to satisfy the request. If exchange operations are disabled (hex 05), the system will use the
normal page replacement algorithm to find page frames for the request. If objects should be treated as
good candidates for replacement (hex 09), the system makes the page frames associated with the
object being exchanged a good replacement candidate but uses the normal page replacement algo­
rithm to find page frames for the request.

Handling of requests to transfer obiects to auxiliary storage determines when the data is transferred to
auxiliary storage and when the page frames containing the object are available to contain other data.
If purging is active (hex 07) and a request is made to purge the object to auxiliary storage, the system
will immediately schedule the request to transfer the data and when the transfer is completed, the
page frames containing the data just written will be made available to hold other objects. If writing is
active (hex E6) and a request is made to purge the object to auxiliary storage, the system will imme­
diately schedule the request to transfer the data and the page frames are not made good candidates to
be reused. If objects are good candiates for replacement (hex 09), the objects are likely to be removed
from main storage by transfering the objects to auxiliary storage when the system needs to transfer
other objects into main storage. If the system page replacement algorithm is used (hex 05), the system
decides when the object should be transferred from main storage to auxiliary storage.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

Chapter 19. Resource Management Instructions 19-29

Ma~e! ... ialize Resource Management Data (MATRMD)

_. ,,-

Operands
Exception 1 2 Other

01 space addressing violation X X

..J 02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X i

:.J 24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

02 scalar attribute invalid X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 19. Resource Management Instructions 19-30

Set Access State (SET ACST)

Op Code (Hex)
0341

Operand 1
Access state tem­
plate

Operand 1: Space pointer.

~ ILE acc ...
SETACST (
~ access_state space pOinter

Set Access State (SETACST)

Description: The instruction specifies the access state (which specifies the desired speed of access)
that the issuing process has for a set of objects or subobject elements in the execution interval fol­
lowing the execution of the instruction. The specification of an access state for an object momentarily
preempts the machine's normal management of an object.

Note: This instruction should be used with caution when the pointer to object entry in the template
below points to a process space (Le. static storage, automatic storage, and heap space storage).
These process spaces may be shared by other programs in the activation group, so explicit access
management may affect those other programs.

The Set Access State instruction template must be aligned on a 1S-byte boundary. The format is:

• Number of objects to be acted upon

• Reserved (binary 0)

• Access state specifications
(repeated as many times as necessary)

Pointer to object whose
access state is to be changed

Access state code

Reserved (binary 0)

Access state parameter

- Access pool I D
- Space length
- Operational object size

8in(4)

Char(12)

Char(32)

Space pointer
or system pointer

Char(1)

Char(3)

Char(12)

Char(4)
8in(4)
8in(4)

Note: This value is returned for some of the access state code options.

The number of objects field specifies how many objects are potential candidates for access state mod­
ification. An access state specification is included for each object to be acted upon.

The pointer to object field identifies the object or space which is to be acted upon. For the space
associated with a system object, the space pointer may address any byte in the space. This pointer is
followed by parameters that define in detail the action to be applied to the object.

The access state code designates the desired access state. The allowed values are as follows:

Access State
Code (Hex)
00

Function and Required Parameter
No operations are performed.

Chapter 19. Resource Management Instructions 19-31

Access State
Code (Hex)
01

02

03

04

10

18

20

21

Set Access State (SETACST)

Function and Required Parameter
Associated object is moved into main storage (if not already there) synchronously with the
execution of the instruction.

Associated object is moved into main storage (if not already there) asynchronously with the
execution of the instruction.

Associated object is placed in main storage without regard to the current contents of the
object. This causes access to secondary storage to be reduced or eliminated. For this
access state code, a space pointer must be provided.

Associated object is removed from main storage in a manner which reduces or eliminates
access to secondary storage. Content of the object is unpredictable after this operation. For
this access state code, a space pointer must be provided.

The object is synchronously ensured (changes written to auxiliary storage) and then removed
from main storage.

This option returns a number in the operational object size field. The unit assumed is the
machine minimum transfer size (page size). The value returned is the total size of the
opertational parts of the object examined/processed, including the associated space (if there
is one).

Note: This number is not the number of pages written or removed, but rather, is the total
size of the object being processed. Some, all or none of the object may be in mainstore prior
to the execution of the instruction.

The space length field must be zero for this operation. The entire associated space, if any,
will be processed with the rest of the object's storage.

The access poollD field is ignored for this operation.

The associated pointer to the object must be a system pointer.

This operation essentially combines the functions of a 10 code followed by asynchronously
bringing the operational parts of the object into main storage. The object is brought into the
main storage pool identified by the access poollD field).

Note: Because this function first removes the object from main storage and then brings it
into main storage, this can be used to "move" an object from one main storage pool to
another.

This option returns a number in the operational object size field. The unit assumed is the
machine minimum transfer size (page size). The value returned is the total size of the object
processed.

Note: If this value is larger than the size of the main storage pool being used, unpredictable
parts of the object will be resident in the main storage pool following processing.

A a preceding access code of 40 is ignored for this operation.

The space length field must be zero for this operation. The entire associated space, if any,
will be processed with the rest of the object's storage.

The access poollD field must be specified for this access code (it must be value 1 though 16,
decimal) .

The associated pointer to the object must be a system pointer.

Associated object attributes are moved into main storage synchronous with the instruction's
execution. The associated attributes are the attributes that are common to all system
objects. The associated pointer to object must be a resolved system pointer.

The "space length" field is ignored for this access code.

Associated object attributes are moved into main storage asynchronous with the instruction's
execution. The associated attributes are the attributes that are common to all system
objects. The associated pointer to object must be a resolved system pointer.

The "space length" field is ignored for this access code.

Chapter 19. Resource Management Instructions 19-32

Access State
Code (Hex)
22

23

30

31

40

41

80

81

,

Set Access State (SETACST)

Function and Required Parameter
Common associated object attributes plus some specified amount of object-specific attributes
are moved into main storage synchronous with the instruction's execution. The common
associated attributes are the attributes that are common to all system objects. The object­
specific attributes are attributes that vary from one object type to another. The amount of
these attributes brought into main storage is controlled by the space length field.

Note: This use of space length is not consistent with the name of the field. For this code, the
space length field does not control the size of any associated space processing, it controls
the length of object-specific attributes processed.

The space length field works in the following manner: it specifies the amount of storage
above and beyond the common ojbect attributes which will be synchronously brought into
storage. Therefore, a space length of 0 is valid. and results in an operation identical to
access code 20.

The associated pointer to object must be a resolved system pointer.

Common associated object attributes plus some specified amount of object-specific attributes
are moved into main storage asynchronous with the instruction's execution. The common
associated attributes are the attributes that are common to all system objects. The object­
specific attributes are attributes that vary from one object type to another. The amount of
these attributes brought into main storage is controlled by the space length field.

Note: This use of space length is not consistent with the name of the field. For this code, the
space length field does not control the size of any associated space processing. it controls
the length of object-specific attributes processed.

The space length field works in the following manner: it specifies the amount of storage
above and beyond the common ojbect attributes which will be asynchronously brought into
storage. Therefore. a space length of 0 is valid, and results in a'n operation identical to
access code 21.

The associated pointer to object must be a resolved system pointer.

The associated space of the object is moved into main storage (if not already there) synchro­
nously with the execution of the instruction. The space length field is honored for this opera­
tion. The associated pointer to the object must be a system pointer.

The associated space of the Object is moved into main storage (if not already there) asyn­
chronously with the execution of the instruction. The space length field is honored for this
operation. The associated pointer to the object must be a system pointer.

Perform no operation on the associated object. The main storage occupied by this object is
to be used, if possible, to satisfy the request in the next access state specification entry.
Either a space or system pointer may be provided for this access state code.

Wait for any previously issued but incomplete hex 81 or hex 91' access state code operations
to complete. This includes all previous hex 81 and hex 91 operations that may have been
performed on previous Set Access State instructions within the current process as well as
those that may have been issued in previous access state specification entries in the current
instruction. The pointer is ignored for this access state code entry.

Object should be written and it is not needed in main storage by issuing process. Object is
written to nonvolatile storage synchronously with the execution of the instruction. Any main
storage that the object occupied is then marked as to make it quickly available for replace­
ment.

Object should be written and it is not needed in main storage by issuing process. Object is
written to nonvolatile storage asynchronously with the execution of the instruction. Any main
storage that the object occupied is then marked as to make it quickly available for replace­
ment.

If desired, the process can synchronize with any outstanding hex 81 access state operations
by issuing a hex 41 access state operations either within the current instruction or during a
subsequent Set Access State instruction.

Chapter 19. Resource Management Instructions 19-33

Access State
Code (Hex)
90

91

·J

./ Set Access State (SETACST)

Function and Required Parameter
Associated object must be insured, but is still needed in main storage. Object is written to
nonvolatile storage synchronously with the execution of the instruction. Unlike access state
codes hex 80 and hex 81, this access state code does not mark any main storage occupied by
the object as to make it quickly available for replacement.

Associated object must be insured, but is still needed in main storage. Object is written to
nonvolatile storage asynchronously with the execution of the instruction. Unlike access state
codes hex 80 and hex 81, this access state code does not mark any main storage occupied by
the object as to make it quickly available for replacement.

If desired, the process can synchronize with any outstanding hex 91 access state operations
by issuing a hex 41 access state operations either within the current instruction or during a
subsequent Set Access State instruction.

Access state codes hex 03 and hex 04 may be used for spaces only. The pointer to the object in the
access state specification must be a space pointer. Otherwise, the pointer type invalid (hex 2402)
exception is signaled.

Access state code hex 40 may be used in conjunction with access state codes hex 01, hex 02, or hex
03. The access state specification entry with access state code hex 40 must immediately precede the
access state specification entry with access state code hex 01, hex 02, or hex 03 with which it is to be
combined. The pointer to the object in both entries must be a space pointer. Otherwise, the pointer
type invalid (hex 2402) exception is signaled. The access state parameter field in the access state spec­
ification entry with code hex 40 is ignored. The access poo/tD and the space length in the entry with
access state code hex 01, hex 02, or hex 03 are used.

The access pool 10 field indicates the desired main storage pool in which the object is to be placed
(0-16). The storage pool ID entry is treated as a 4-byte logical binary value. When a 0 storage pool ID
is specified, the storage pool associated with the issuing process is used.

The space length field designates the part of the space associated with the object to be operated on. If
the pointer to the object entry is a system pointer, the operation begins with the first byte of the space.
If the pointer to the object entry is a space pointer that specifies a location, the operation proceeds for
the number of storage units that are designated. No exception is signaled when the number of refer­
enced bytes of the space are not allocated. When operations on objects are designated by system
pointers, this operation is performed in addition to the access state modification of the object. This
entry is ignored for access state codes hex 20 and hex 21. This entry will be truncated to a maximum
of 65536 for access state codes immediately following access state code 40.

The operational object size field is a value which is ignored upon input to the instruction and is set by
the instruction for access codes 10 and 18. It represents, in units of minimum machine transfer size,
the total size of the object which could/did participate in the operation. The parts of an object which
are considered "operational" are decided by the machine and does include the associated space, if
any.

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Chapter 19. Resource Management Instructions 19-34

Exceptions

Exception

04 Access state

01 access state specification invalid

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1A Lock state

01 invalid lock state

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

07 authority verification terminated due to destroyed object

08 object compressed

24 Pointer specification

01 pointer does not exist

02 pointer type invalid

03 pointer addressing invalid object

04 pointer not resolved

2E Resource control limit

01 user profile storage limit exceeded

36 Space management

01 space extension/truncation

Set Access State (SET ACST)

Operands
1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

X

X

X

Chapter 19. Resource Management Instructions 19-35

Set Access State (SETACST)

Operands
Exception 1 Other

38 Template -specification

01 template value invalid x

Chapter 19. Resource Management Instructions 19-36

Dump Space Management Instructions

Chapter 20. Dump Space Management Instructions

This chapter describes all the instructions used for dump space management. These instructions are
arranged in alphabetical order. For an alphabetic summary of all the instructions, see Appendix A.
"Instruction Summary."

Materialize Dump Space (MATDMPS) 20-3

©.Copynght IBM Corp. 1991,1993 20-1

Dump Space Management Instructions

I

J

Chapter 20. Dump Space Management Instructions 20-2

Materialize Dump Space (MATDMPS)

Op Code (Hex)
04DA

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Dump space

Materialize Dump Space (MATDMPS)

ILEaccess --~
MATDMPS(

receiver
var dump_space

space pOinter
system pOinter

Description: The current attributes of the dump space specified by operand 2 are materialized into the
receiver specified by operand 1.

The template identified by operand 1 must be 16-byte aligned in the space. The format of the
materialization is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization
(always 128 for this instruction)

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attributes

o = Temporary
1 = Permanent

Space attribute

o = Fixed length
1 = Variable length

Context

o = Addressability not in context
1 = Addressability in context

Reserved (binary 0)

Initialize space

Reserved (binary 0)

• Recovery options

• Size of space

• Initial value of space

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3-12

Bit 13

Bit 14-31

Char(4)

Bin(4)

Char(1)

Chapter 20. Dump Space Management Instructions 20-3

Materialize Dump Space (MATDMPS)

• Performance class Char(4)

• Reserved Char(7)

· Context System poi nter

• Reserved Char(16)

· Dump Space size Char(4)

· Dump data size Char(4)

· Dump data size limit Char(4)

• Reserved Char(20)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less then eight causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be materialized.
The instruction materializes as many bytes as can be contained in the area specified as the receiver.
If the byte area identified by the receiver is greater than that required to contain the information
requested, then the excess bytes are unchanged. No exceptions are signaled in the event that the
receiver contains insufficient area for the materialization, other than the materialization length (hex
3803) exception described previously.

The dump space size field is set with the current size value for the number of S12-byte blocks of space
allocated for storage of dump data within the dump space.

The dump data size field is set with the current size value for the number of S12-byte blocks of dump
data contained in the dump space. This value specifies the number of blocks from the start of the i"
dump space through the block of dump data which has been placed into the dump space at the largest ""'"
dump space offset value. A value of zero indicates that the dump space currently contains no dump
data.

The dump data size limit field is set with the current size limit for the number of S12-byte blocks of
dump data which may be stored in the dump space. A value of zero indicates that no explicit limitation
is placed on the amount of dump data which may be stored in the dump space. The machine implicitly
places a limit on the maximum size of a dump space. This value of this limitation is dependent upon
the specific implementation of the machine.

Authorization Required

• Operational

- Operand 2

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions

Chapter 20. Dump Space Management Instructions 20-4

Materialize Dump Space (MATDMPS)

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment violation X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X

1A Lock state

01 invalid lock state X

1C Machi ne-c\ependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 20. Dump Space Management Instructions 20-5

Materialize Dump Space (MATDMPS)

Operands
Exception 1 2 Other

03 materialization length exception X

Chapter 20. Dump Space Management Instructions 20-6

Machine Observation Instructions

Chapter 21. Machine Observation Instructions

This chapter describes all instructions used for machine observation. These instructions are arranged
alphabetically. For an alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary."

Find Relative Invocation Number (FNDRINVN) 21-3
Materialize Instruction Attributes (MATINAn 21-8
Materialize Invocation (MATINV) 21-14
Materialize Invocation Attributes (MATINVAn , 21-18
Materialize Invocation Entry (MATINVE) 21-28
Materialize Invocation Stack (MATINVS) 21-32
Materialize Pointer (MATPTR) 21-37
Materialize Pointer Locations (MATPTRL) 21-46
Materialize System Object (MATSOBJ) 21-48

(C) COPYright IBM Corp. 1991, 1993 21-1

Machine Observation Instructions

Chapter 21. Machine Observation Instructions 21-2

Find Relative Invocation Number (FNDRINVN)

Find Relative Invocation Number (FNDRINVN)

Op Code (Hex)
0543

Operand 1
Relative invoca­
tion number

Operand 2
Search range

Operand 1: Signed binary(4) variable scalar

Operand 2: Character(48) scalar (fixed length) or null

Operand 3: Space pointer

Operand 3
Search criterion
template

ILEaccess --~
FNDRINVN (
var relative_invocation_number : stgned binary;
var search_range aggregate; OR

null operand;
search_criterion_template : space potnter

Description: The invocations identified by operand 2 are searched in the order specified by operand 2
until an invocation is found which satisfies the search criterion specified in the operand 3 template.
The identity of the first invocation (in search order) to satisfy the search criterion is returned in
operand 1. If no invocation in the specified range satisfies the search criterion, then either an excep­
tion is signaled, or a value of zero is returned in operand 1, depending on the modifiers specified in
the operand 3 template.

Operand 1 is returned as a signed binary(4) value identifying the first invocation found that satisfies the
speCified search criterion. It is specified relative to the starting invocation identified by operand 2. A
positive number indicates a displacement in the direction of newer invocations, while a negative indi­
cates a displacement in the direction of older invocations. A zero value indicates that no invocation in
the specified range matched the specified criterion. Operand 1 is not modified in the event that the
instruction terminates with an exception.

Note that a modifier in the operand 3 template determines if the starting invocation identified by
operand 2 is to be skipped. If the starting invocation is skipped during the search then a result of zero
in operand 1 always indicates failure to find an invocation that satisfies the criterion. If the starting
invocation is not skipped, then a failure to find an invocation that satisfies the criterion results in an
exception.

Operand 2 identifies the starting invocation and the range of the search. If operand 2 is specified as a
null operand. then operand 2 is assumed to identify a range starting with the current invocation and
proceeding through all existing older invocations.

Operand 3 is a space pointer to a template that identifies the search criterion and search modifiers for
the find operation.

Operand 2: The value specified by operand 2 identifies the range of invocations to be searched. This
operand can be null (which indicates the range which starts with the current invocation and proceeds
through all existing older invocations). or it can contain either an invocation pointer to an invocation or
a null pointer (which indicates a range starting with the current invocation).

Operand 2 has the following format:

Chapter 21. Machine Observation Instructions 21-3

• Starting invocation offset

• Originating invoc~tion offset (ignored)

• Invocation range

• Reserved (binary 0)

• Starting invocation pointer

• Reserved (binary 0)

Find Relative Invocation Number (FNDRINVN)

)

Bin(4)

Bin(4)

Bin(4)

Char(4)

Invocation pointer

Char(16)

If a non-null pointer is specified for starting invocation pointer, then operand 2 must be 16-byte aligned
in the space.

Terminology:

Requesting Invocation
The invocation executing the FNDRINVN instruction. Note that, in many cases, this invoca­
tion belongs to a system or language run-time procedure/program, and the instruction is
actually being executed on behalf of another procedure or program.

Starting Invocation
The invocation which serves as the starting point for the search.

Field descriptions

Starting invocation offset
A signed numerical value indicating an invocation relative to the invocation located by the starting
invocation pointer. A value of zero denotes the invocation addressed by the starting invocation
pointer, with increasingly positive numbers denoting increasingly later invocations in the stack, and
increasingly negative numbers denoting increasingly earlier invocations in the stack. (

If the starting invocation pointer is valid or null, but the invocation identified by this offset does not ..J
exist in the stack, an invocation offset outside of current stack (hex 2C1A) exception will be sig-
naled.

Originating invocation offset
This field is used by other instructions but is ignored by FNDRINVN.

I nvocation range
Invocation range is a signed numerical value which specifies the direction of the search and the
maximum number of invocations to be examined. The magnitude of invocation range specifies the
maximum number of invocations to be searched exclusive of the starting invocation. It is not an
error if this magnitude is greater than the number of existing invocations in the specified direction.
If the sign of invocation range is positive (and non-zero), the search is performed in the direction of
newer invocations, while if the sign is negative, the search is performed in the direction of older
invocations.

Note that the bypass starting invocation modifier in operand 3 affects how the starting invocation is
treated. If this modifier is false, then the starting invocation is the first invocation examined. If
invocation range is zero in this case then only the starting invocation is examined. If, on the other
hand, bypass starting invocation is true, then the starting invocation does not participate in the
search, and, if invocation range is zero, no invocations are searched and a value of zero is
returned for operand 1.

Starting Invocation pointer
An invocation pointer to an invocation. If nUll, then the current invocation is indicated. If not nUll,
then operand 2 must be 16-byte aligned in the space.

If the pointer identifies an invocation in another process, a process object access invalid (hex 2C11)
exception will be signaled. If the invocation identified by this pointer does not exist in the stack, an
object destroyed (hex 2202) exception will be signaled.

Chapter 21. Machine Observation Instructions 21-4

Find Relative Invocation Number (FNDRINVN)

Usage note: In cases where starting invocation pointer is null, operand 2 may be a constant.

Operand 3: The.search criterion template identified by operand 3 must be aligned on a 16-byte
boundary. The template is a 32-byte value with the following format:

• Reserved (binary 0)

• Search option

• Search modifiers

Bypass starting invocation

Char(8)

Bin(4)

Char(4)

Bit 0

a = The starting invocation identified by operand 2 is the first invocation tested. A invocation
not found (hex 1E02) exception is signaled if the search criterion is not satisfied.

1 = The starting invocation identified by operand 2 is skipped and no exception is signaled if
the search criterion is not satisfied.

Compare for mismatch Bit 1

a = The instruction identifies the first invocation (in specified search order) which matches the
specified search criterion

1 = The instruction identifies the first invocation (in specified search order) which does not
match the specified search criterion

Reserved (binary 0)

• Search argument

Search option
Specifies the invocation attribute to be examined:

Bit 1

Char(16)

1 Routine type. Search argument is a one-byte routine type, left aligned. Allowed search argu­
ment values are:

Hex 01 OPM Program

Hex 02 NPM Program Entry Procedure (PEP)

Hex 03 N PM Procedure

2 Invocation type. Search argument is a one-byte invocation type, left aligned. Allowed search
argument values are:

Hex 01 Call external

Hex 02 Transfer control

Hex 03 Event handler

Hex 04 External exception handler (for OPM program)

Hex 05 Initial program in process problem state

Hex 06 Initial program in process initiation state

Hex 07 Initial program in process termination state

Hex 08 Invocation exit (for OPM program)

Hex 09 Return or return/XCTL trap handler

Hex OA Call program

Hex 08 Cancel handler (NPM only)

Hex OC Exception handler (NPM only)

Hex 00 Call bound procedure/call with procedure pOinter

Hex OE Process Default Exception Handler

Chapter 21. Machine Observation Instructions 21-5

Find Relative Invocation Number (FNDRINVN)

3 Invocation status. Search argument consists of two four-byte fields, left aligned. The invoca­
tion status of each examined invocation is ANDed with the first field and then compared to the
second field.

4 Invocation mark. Search argument is a four-byte invocation mark, left aligned. If the search is
in the direction of older invocations, the result identifies the first invocation found with an invo­
cation mark less than or equal to the search argument. If the search is in the direction of
newer invocations, the result identifies the first invocation found with an invocation mark
greater than or equal to the search argument. If invocation range is zero, then the search is
satisfied only if the invocation mark of the starting invocation exactly matches the search argu­
ment, and this can occur only if bypass starting invocation is false.

For this option compare for mismatch is ignored.

5 Activation mark. Search argument is a four-byte activation mark, left aligned. The activation
mark of the program or module activation corresponding to each examined invocation is com­
pared to search argument. Invocations with no activation (ie, the invocations of OPM reentrant
programs, and the invocation stack base entry) are considered to have an activation mark of
binary zero.

6 Activation group mark. Search argument is a four-byte activation group mark, left aligned.
The activation group mark of each examined invocation is compared to search argument.

1 Program pointer. Search argument is a system pointer to a program. The program corre­
sponding to each examined invocation is compared to the program identified by the pointer.

Bypass starting Invocation
If bypass starting invocation is false, then the starting invocation specified' by operand 2 is the first
invocation examined. In this case, if the invocation range of operand 2 is exhausted without satis­
fying the search criterion then a template value invalid (hex 3801) exception is signaled, with the
search argument field of operand 3 identified as the erroneous field.

If bypass starting invocation is true, then the starting invocation specified by operand 2 is skipped,
and a failure to satisfy the search criterion is indicated by returning a binary zero value in operand
1.

Compare for mismatch
If compare for mismatch is false, then the search criterion is satisfied when an invocation is found
whose attribute matches the search argument.
If compare for mismatch is true, however, then the search criterion is satisfied when an invocation
is found whose attribute does not match the search argument.

Search argument
A value of between one and 16 bytes as described above. Unused bytes are ignored.

Authorization Required: None

Lock Enforcement: None

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

Operands
1 2 3 Other

X X X

X X

X X X

Chapter 21. Machine Observation Instructions 21-6

. .l

Find Relative Invocation Number (FNDRINVN)

Operands
Exception 1 2 3 Other

06 optimized addressability invalid X X X

L- 08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X

44 partial system object damage X

16 Exception management

03 invalid invocation addrsss X

1C Machine-dependent exception

03 machine storage limit exceeded X

1E Machine observation

02 invocation not found X

20 Machine support

02 machine check X

03 function check X

22 Object access

02 object destroyed X X X

03 object suspended X X X

c." 08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

11 Process object access invalid X

1A Invocation offset outside range of current stack X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 21. Machine Observation Instructions 21-7

Materialize Instruction Attributes (MATINAT)

Materialize Instruction Attributes (MATINAT)

Op Code (Hex)
0526

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Character scalar (fixed length).

Operand 2
Selection informa­
tion

Description: This instruction materializes the attributes of the instruction that are selected in operand
2 and places them in the receiver (operand 1).

Operand 2 is a 16-byte template. Only the first 16 bytes are used. Any excess bytes are ignored.
Operand 2 has the following format:

• Selection template

Invocation number

Instruction number

Reserved (binary 0)

Char(16)

Bin(2)

Bin(4)

Char(10)

The invocation number is a specific identifier for the target invocation, in the process, that is to be
materialized. This program must be observable or the program not observable (hex 1E01) exception is
signaled.

The Instruction number specifies the instruction in the specified program invocation that is to be mate­
rialized.

Operand 1 is a space pOinter that addresses a 16-byte aligned template where the materialized data is
placed. The format of the data is as follows:

• Materialization size specification

Number of bytes provided by
the user

Number of bytes available to be
materialization

• Object identification

Program type

Program subtype

Program name

• Offset to instruction attributes

• Reserved (binary 0)

• Instruction attributes

Instruction type

- Instruction version

Hex 0000 = 2-byte operand references
Hex 0001 = 3-byte operand references

- Reserved (binary 0)

Instruction length as input

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Bin(4)

Char(8)

Char{*)

Char(2)

Bits 0-3

Bits 4-15

Bin(2)

Chapter 21. Machine Observation Instructions 21-8

to Create Program

Offset to instruction form specified
as input to Create Program

Reserved (binary 0)

Number of instruction operands

Operand attributes offsets

Materialize Instruction Attributes (MATINAT)

Bin(4)

Char(4)

Bin(2)

Char(*)

- An offset is materialized for each of the Bin(4)
the operands of the instruction specifying the offset to the attributes for the operand

Instruction form specified as input
to Create Program

- Instruction operation code

- Optional extender field and operand fields

Operand attributes

Char(*)

Char(2)

Char(*)

Char(*)

A set of attributes following this format is materialized for each of the operands of the instruc­
tion. Compound operand references result in materialization of only one set of attributes for
the operand which describe the substring or array element as is appropriate. See the specific
format described below for each operand type.

- Operand type

1 = Data object
2 = Constant data object
3 = Instruction number reference
4 = Argument list
5 = Exception description
6 = Null operand
7 = Space pointer machine object

- Operand specific attributes

Bin(2)

Char(*)

See descriptions below for detailed formats. Nothing is provided for null operands.

• Data object Char(32)

For a data object, the following operand attributes are materialized.

Operand type = 1

Data object specific attributes

- Element type
Hex 00 = Binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character
Hex 08 = Pointer

- Element length

• If binary, or character, or floating-point:

- Length

• If zoned decimal or packed decimal:

- Fractional digits
- Total digits

• If pOinter:

Bin(2)

Char(7)

Char(1)

Char(2)

Bits 0-15

Bits 0-7
Bits 8-15

Chapter 21. Machine Observation Instructions 21-9

- Length = 16

• Array size

- If scalar, then value of O.
- If array, then number of elements.

- Reserved (binary 0)
- Data object addressability

• Addressability indicator

Materialize Instruction Attributes (MATINAT)

Bits 0-15

Bin(4)

Char(6)
Char(17)

Char(1)

Hex 00 = Addressability was not established
Hex 01 = Addressability was established

• Space pointer to the object if
addressability could be established

• Constant data object

Space pointer

Char{*)"
. .

For a constant data object, the following operand attributes are materialized (immediate operands
as constants, signed immediates as binary, and unsigned immediates as .character).

Operand type = 2

Constant specific attributes

- Element type
Hex 00 = Binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character

- Element length

• If binary, or character, or floating-point:

- Length

• If zoned decimal or packed decimal:

- Fractional digits
- Total digits

• Reserved (binary 0)

- Reserved (binary 0)
- Constant value

• Instruction references

Bin(2)

Char(7).

Char(1)

Char(2)

Bits 0-15

Bits 0-7
Bits 8-15

Bin(4)

Char(7)
Char{*)

Char(*)

For instruction references, either through instruction definition lists or immediate operands, the fol­
lowing operand attributes are materialized.

Operand type = 3

Number of instruction reference elements

1 = Single instruction reference
> 1 = Instruction definition list

Reserved (binary 0)

Reference list

Bin(2)

Bin(2)

Char(12)

Char(*)

The instruction number of each instruction reference is materialized in the order in which they
are defined.

• Argument list Char(*)

Chapter 21. Machine Observation Instructions 21-10

Materialize Instruction Attributes (MATI NAT)

For an argument list, the following operand attributes are materialized.

Operand type = 4

Argument list specific attributes

- Actual number of list entries
- Maximum number of list entries

Reserved (binary 0)

Add ressability to list entries

Bin(2)

Char(4)

8in(2)
Bin(2)

Char(10)

Char(*)

Space pointer to each list entry for the Space pointer
number of actual list entries. A value of all zeros is materialized if addressability could not be
established.

• Exception description Char(48)

For an exception description, the following operand attributes are materialized.

Operand type ~ 5

Reserved {fjinary 0)

Control flags

- Exception handling action

000 = Ignore occurrence of exception and continue processing
001 = Disabled exception description

8in(2)

Char(10

Char(2)

Bits 0-2

010 = Continue search for an exception description by resignaling the exception to the
immediately preceding invocation

100 = Defer handling
101 = Pass control to the specified exception handler

- Reserved (binary 0)

Compare value length

Compare value

• Space pointer machine object

Bits 3-15

8in(2)

Char(32)

Char(32)

For a space pointer machine object, the following operand attributes are materialized.

Operand type = 7

Reserved (binary 0)

Pointer addressability

- Pointer value indicator

Hex 00 = Addressability value is not valid
Hex 01 = Addressability value is valid

Bin(2)

Char(13)

Char(17)

Char(1)

Space pointer data object containing the Space pointer
space pointer machine object value if addressability value is valid.

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the mateialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, then excess bytes are unchanged.

Chapter 21. Machine Observation Instructions 21-11

Materialize Instruction Attributes (MATINAT)

The materialization available for an instruction depends on the execution status of the program that the
instruction is in. If the program has not executed to the point of the instruction, little or no meaningful
information about the'instruction can be materialized. If the program executes the instruction multiple
times, the materialization will vary with each execution.

No exceptions are signaled in the event that the receiver contains insufficient area for the
materialization, other than the materialization length (hex 3803) exception described previously.

This instruction is valid only when the program to be materialized is an OPM program. If the invoca­
tion indicated by operand 2 is an invocation of an NPM program or procedure, then an instruction not
valid for invocation· type (hex 2C1C) exception is signaled.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/Parameter

01 Parameter reference violation X X

10 Damage Encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

1E Machine Observation

01 Program not observable X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X

02 Object destroyed X X

03 Object suspended X X

08 object compressed X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2C Program Execution

1C Instruction not valid for invocation type X

2E Resource Control Umit

Chapter 21. Machine Observation Instructions 21-12

'.J

Materialize Instruction Attributes (MATINAT)

Operands
Exception 1 2 Other •

01 User Profile storage limit exceeded X

L 32 Scalar Specification

01 Scalar type invalid X X

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

03 Materialization length exception X

Chapter 21. Machine Observation Instructions 21-13

Materialize Invocation (MATINV)

Op Code (Hex)
0516

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 2
Selection informa­
tion

Materialize Invocation (MATINV)

ILEaccess ---,

MATINV (
receiver
selection information

space pOinter;
space pointer

Description: The attributes of the invocation selected through operand 2 are materialized into the
receiver designated by operand 1.

Operand 2 is a space pointer that addresses a template that has the following format:

• Control information

Template extension

o = Template extension is not present.
1 = Template extension is present.

Invocation number

• Offset to list of parameters

• Number of parameter ODV numbers

• Offset to list of exception descriptions

• Number of exception description
ODV numbers*

• Template extension (optional)

Offset to list of space pointer
machine objects*

Number of space pointer machine object
ODV numbers*

Reserved (binary 0)

Char(2)

Bit O·

Bits 1-15

Bin(4"

Char(2)*

Bin(4)*

Char(2)

Char(14)*

Bin(4)

Char(2)

Char(8)

Note: Fields annotated with an (*) must be set to all binary zeroes if the invocation is for a bound
program. The template extension field must also be set to zero. A template value invalid (hex
3801) exception is signaled if the invocation is a bound program invocation and the fields are
not set to binarary zeroes.

The offset to the list of space pointer machine objects, offset to the list of parameters, and the offset to
the list of exception deSCriptions are relative to the start of the operand 2 template. Each list is an
array of Char(2) ODV numbers. The number of space pointer machine oblect OOV numbers, number of
parameter OOV numbers, and the number of exception description OOV numbers define the sizes of the
arrays.

Chapter 21. Machine Observation Instructions 21-14

\~

Materialize I nvocation (MATI NV)

Operand 1 is a space pointer that addresses a 16-byte aligned template into which the materialized
data is placed. The format of the data is:

• Materialization size specification

Number of bytes provided by the user

Number of bytes available for materialization

• Object identification

Program type

Program subtype

Program name

• Trace specification

Invocation trace status

o = Not tracing new invocations
1 = Tracing new invocations

Return trace

o = Not tracing returns
1 = Tracing returns

Invocation trace propagation

o = Not propagating invocation trace
1 = Propagating invocation trace

Return trace propagation

o = Not propagating return trace
1 = Propagating return trace

Reserved (binary 0)

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-15

The following fields are returned only for non-bound program invocations.

• Instruction number

• Offset to parameter values

• Offset to exception description value

UBin(2)

Bin(4)

Bin(4)

• Offset to space pointer machine object values Bin(4)
(Optional-This data is present only if the template extension is present in the selection information.)

• Space pointer machine objects Char(")
(Optional-This data is present only if the template extension is present in the selection information.)

For each ODV number specified for a Char(32)
space pointer machine object, the value of the space pointer machine object is materialized as
follows:

- Reserved (binary 0)

- Pointer value indicator

00 = Addressability value is not valid
01 = Addressability value is valid

Char(15)

Char(1)

- Space pointer data object containing Space pointer
the space pointer machine object value if addressability value is valid.

• Parameters Char(")

- For each parameter ODT number specified, Space pointer

Chapter 21. Machine Observation Instructions 21-15

,.

Materialize Invocation (MATI NV)

the address of the parameter data is materialized (If no parameter COT numbers are material­
ized, this parameter is binary 0.)

• Exception description

For each exception description ODT number
specified, the following is materialized:

Control flags

- Exception handling action

000 = Ignore occurrence of exception and continue processing
001 = Disabled exception description

Char(-)

Char(36)

Char(2)

Bits 0-2

010 = Continue search for an exception description by resignaling the exception to the
immediately preceding invocation

100 = Defer handling
101 = Pass control to the specified exception handler

- Reserved (binary 0)

Compare value length

Compare value

Bits 3-15

Bin(2)

Char(32)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa- 1,,\ ..
tion requested, then excess bytes are unchanged."

No exceptions (other than the materialization length (hex 3803) exception) are signaled in the event
that the receiver contains insufficient area for the materialization.

The instruction number returned depends on how control was passed from the invocation:

Exit Type Instruction Number

Call External Locates the Call External instruction

Event Locates the next instruction to execute

Exception Locates the instruction that caused the exception

The space pointers that address parameter values are returned in the same order as the corre­
sponding COT numbers in the input array. The same is true for the exception description values.

If the offset to the list of parameters or the number of parameter ODr numbers is 0, no parameters are
returned and the offset to parameters value is O. If any parameters are returned, they are 16-byte
aligned. If the offset to list of exception descriptions or the number of exception description ODr
numbers is 0, no exception descriptions are returned and the offset to exception description values are
O.

Exceptions

Operand.
Exception 1 2 Other

06 Addressing

01 space addressing violation x x

Chapter 21. Machine Observation Instructions 21-16

Materialize Invocation (MATINV)

Operands
Exception 1 2 Other

02 boundary alignment X X

C. 03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

1E Machine observation

01 program not observable X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

02 scalar attributes invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

03 materialization length exception X

Chapter 21. Machine Observation Instructions 21-17

Materialize Invocation Attributes (MATINVAT)

Materialize Invocation Attributes (MATINVAT)

op Code (Hex)
0533

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Invocation identifi­
cation

Operand 2: Character(48) scalar (fixed length) or null.

Operand 3: Space pointer.

Operand 3
Attribute selection
template

ILEaccess ---,

MATINVAT (
recei ver space pOinter

var invocation identification aggregate; OR
null operand;

attribute_selection_template space potnter

Description: The attributes specified by operand 3 of the invocation specified by operand 2 are materi­
alized into the receiver specified by operand 1. In addition to specifying the attributes to be material­
ized, operand 3 controls how they are arranged in the operand 1 receiver.

Operand 1 is a space pointer to an area that is to receive the materialized attribute values. The format : '\
of this area is determined by the value of the attribute selection template. ...,

Operand 2 identifies the source invocation whose attributes are to be materialized. It also identifies
the originating invocation whose activation group access right to the source invocation's activation
group is to be verified. If operand 2 is null, the invocation issuing the instruction is both the source
invocation and the originating invocation.

Operand 3 is a space pointer to a template that selects the invocation attributes to be materialized and
specifies how they are to be arranged in the receiver template.

Operand 2

The value specified by operand 2 identifies the source and originating invocations. This operand can
be null (which indicates the current invocation is to be used for the source and originating invocations)
or it can contain either a invocation pointer to an invocation or a null pointer (which indicates the
current invocation).

Operand 2 has the following format:

• Source invocation offset

• Originating invocation offset

• Invocation range (ignored)

• Reserved (binary 0)

• Source invocation pointer

• Reserved (binary 0)

8in(4)

8in(4)

8in(4)

Char(4)

Invocation pointer

Char(16)

If a non-null pointer is specified for source invocation pointer, then operand 2 must be 16-byte aligned
in the space.

Chapter 21. Machine Observation Instructions 21-18

Materialize Invocation Attributes (MATINVAT)

Terminology:

Requesting invocation
The invocation executing the MATINVAT instruction. Note that, in many cases, this invoca­
tion belongs to a system or language run-time procedure/program, and the instruction is
actually being executed on behalf of another procedure or program.

Originating invocation
The invocation on whose behalf the instruction is being executed. It may be necessary to
identify this invocation since its "activation group access rights" may need to be checked.
This allows, for example, the requesting invocation to be a system state invocation with the
instruction still performing an "activation group access rights" check that reflects the rights
of the user.

Source invocation
The invocation whose attributes are to be materialized.

Activation group access rights
The rights that invocations executing in one activation group may have to access and
modify the resources of another activation group.

Field descriptions:

Source invocation offset
A signed numerical value indicating an invocation relative to the invocation located by the source
invocation pointer. A value of zero denotes the invocation addressed by the source invocation
pointer, with increasingly positive numbers denoting increasingly later invocations in the stack, and
increasingly negative numbers denoting increasingly earlier invocations in the stack.

If the source invocation pointer is not valid or the invocation identified by this offset does not exist
in the stack, an invocation offset outside range of current stack (hex 2C1A) exception will be sig­
naled.

Originating invocation offset
A signed numerical value identifying the originating invocation relative to the current invocation.
Since this is an offset relative to the current invocation, only zero or negative values are allowed.

If the invocation identified by this offset does not exist in the stack, an invocation offset outside
range of current stack (hex 2C1A) exception will be signaled.

Invocation range
This field is used by FNDRINVN and is ignored by this instruction.

Source invocation pointer
An invocation pointer to an invocation. If nUll, then the current invocation is indicated.

If the pointer identifies an invocation in another process, a process object access invalid (hex 2C11)
exception will be signaled. If the invocation identified by this pointer does not exist in the stack, an
object destroyed (hex 2202) exception will be signaled.

Activation group access rights checking: This instruction sometimes (depending on the attributes
materialized) requires that activation group access rights to the activation group of the source invoca­
tion be verified. In such cases, the originator offset field of operand 2 identifies the invocation whose
right of access is to be checked. (That is, it identifies the invocation which is considered to have origi­
nated the request and on whose behalf the instruction is being executed.)

If originator offset is not zero, then the activation group of the requesting invocation must have the
right to access the activation group of the invocation identified by originator offset. This check is made
whether or not access rights to the source invocation need to be checked.

Chapter 21. Machine Observation Instructions 21-19

Materialize Invocation Attributes (MATINVAT)

In the event that appropriate access rights are not found, an activation group access violation (hex
2C12) exception is signaled.

Note: The originating invocation identified by the originating invocation offset must be equal to or
"newer" than the invocation identified as the source invocation. Otherwise, an invalid origin
invocation (hex 2C19) exception will be signaled.

Usage note: In cases where source invocation pOinter is null, operand 2 may be a constant.

Operand 3: The attribute selection template has the following format:

• Selection template header

Number of attributes

Control flags

- Attribute index indirect

Char(16)

Bin(4)

Char(1)

Bit 0

o = Offset to attribute index specifies directly the location of the attribute index value
1 = Offset to attribute index specifies the location of a space pointer which in turn specifies

the location of the attribute index value

- Reserved (binary 0)

Reserved (binary 0)

Offset to attribute index

Length of attribute index

• Attribute selection entries

Bits 1-7

Char(3)

Bin(4)

Bin(4)

Char(-)

The attribute selection entries are each 16 bytes long and have the following format:

• Attribute ID

• Control flags

Indirect

Bin(4)

Char(1)

Bit 0

o = Offset to receiver specifies directly the location of the attribute value
1 = Offset to receiver specifies the location of a space pointer which in turn specifies the

location of the attribute value

Return length

o = A length field is not present with the attribute
1 = A length field precedes the attribute

Return status

o = A status field is not present with the attribute
1 = A status field precedes the attribute

Pad

Bit 1

Bit 2

Bit 3

o = No pad field is assumed to precede the attribute
1 = A pad field of zero, eight, or twelve bytes is assumed to precede the attribute

Reserved (binary 0) Bits 4-7

• Reserved (binary 0)

• Offset to receiver

• Length of receiver

Char(3)

Bin(4)

Bin(4)

Chapter 21. Machine Observation Instructions 21-20

Materialize Invocation Attributes (MATINVAT)

Basic structure: The "attribute selection template" allows the user of MATINVAT considerable flexi­
bility in deciding what invocation attributes are to be materialized and where their materializations are
to be returned. This flexibility is achieved by having the "attribute selection template" consist of a
header, followed by a series of entries, each of which identifies an attribute to be materialized, the
location where it is to be materialized, and the amount of space reserved for its materialization.

The template header specifies the number of attribute entries present in the template, and it also
allows the specification of an optional attribute index field. The attribute index field, if present, identi­
fies the first attribute selection entry to be processed (causing entries prior to that one to be skipped).
In addition, if the attribute index field is present, it is updated upon the normal or abnormal completion
of the instruction to contain either zero (if completion is normal) or the number of the entry being proc­
essed (if the instruction ends with an exception).

Each attribute selection entry identifies the attribute to be materialized and the area where the
materialization is to be returned. The attribute may be returned directly into the area addressed by
the operand 1 space pointer, or it may be returned into an area addressed by a space pointer which is,
in turn, contained in the area addressed by the operand 1 space pointer. These two cases are distin­
guished by the indirect bit.

In addition, each attribute selection entry contains:

• An offset value which is the offset relative to the operand 1 space pointer where either the attri­
bute's materialization area or the pointer to the attributes' materialization area is contained.

• A length value identifying the maximum number of bytes of data to be materialized for the attri-
bute.

• A flag indicating whether the length of the attribute is to be materialized.

• A flag indicating whether the status of the attribute is to be materialized.

• A flag indicating whether a pad field precedes the attribute (or its pointer, if indirect is specified). If
present, the length of this "pad" field is automatically adjusted so that the combined length of the
length, status, and pad fields is either zero or 16, maintaining the relative quadword alignment of
the modification value if the length and/or status fields are present.

Note that, for the sake of regularity, the fields of the attribute selection template header are arranged in
the same general fashion as those in the attribute selection entries.

Field descriptions:

Number of attributes
Specifies how many 16-byte attribute selection entries follow.

Attribute index indirect
If attribute index indirect is binary zero, then offset to attribute index specifies the location where
the attribute index is stored as as offset from the location addressed by the operand 1 space
pointer. If attribute index indirect is binary one, then the location identified by attribute index offset
must be quadword aligned and must contain a space pointer. This space pointer in turn addresses
the location where the attribute index value is stored.

Offset to attribute index
Specifies the offset to the attribute index or the offset to a pointer to the attribute index, depending
on the value of attribute index indirect.

Length of attribute index
Specifies the length of the area where the attribute index value is stored. This field must have a
value of either zero or four.

Chapter 21. Machine Observation Instructions 21-21

Materialize Invocation Attributes (MATINVAT)

If this field has a value of zero. then the first attribute entry to be processed is the first attribute
entry in the template. and no feedback is given as to which attribute entry was being processed at
the time of an exception. Attribute index indirect and attribute index offset are ignored.

If this field has a value of four, then the value of the attribute index, treated as a signed bin(4)
value, must be greater than or equal to one and less than or equal to number of attributes. In this
case the attribute index identifies the attribute entry to be processed first (with the first entry in the
template having an index of one), and, in the event of an exception, the attribute index value is
modified by this instruction such that it identifies the attribute entry being processed at the time of
the exception. If the instruction completes without an exception, then the attribute index value is
set to zero.

Attribute 10
Specifies the attribute to be materialized. Values that may be specified are:

1 Invocation pointer to specified invocation. (16 bytes, quadword aligned.)

2 Automatic storage pointer. Space pointer to the automatic storage for this invocation. If no
automatic storage exists for this invocation, then a null pointer is returned. (16 bytes,
quadword aligned, access rights required.)

3 Static storage pointer. Space pointer to the static storage for this invocation (OPM invocations
only). If no static storage exists for this invocation, or if the invocation is an N PM invocation,
then a null pointer is returned. (16 bytes, quadword aligned, access rights required.)

Note: For NPM invocations there is no single "distinguished" static storage area, but instead
there may be multiple static storage areas. The list of static storage .areas corresponding to
the invocation's activation can be obtained by using the Materialize Activation Attributes
instruction.

4 Parameter list pointer. Space pointer to the parameter list passed to this invocation (NPM
procedure invocations only). If the procedure for this invocation does not expect a parameter
list, or if this is an NPM entry routine or an OPM program, then a null pointer is returned. (16
bytes, quadword aligned, access rights required.)

6 Program pointer. System pointer to the program for this invocation. If the program no longer
exists then a null pointer is returned. (16 bytes, quadword aligned, access rights required.)

7 Space pointer to module associated space. For NPM procedures, this space pointer addresses
the secondary associated space in the NPM program that was propagated from the primary
associated space of the NPM module. For OPM programs, this space pointer addresses the
program's primary associated space. If the appropriate associated space does not exist in the
program or if the program no longer exists, then a null pointer is returned. For both NPM and
OPM invocations the requesting invocation must have space authority to the program. (16
bytes, quadword aligned, access rights required.)

8 Pointer to containing scope. If the specified invocation is in a nested scope, then this is an
invocation pOinter to the invocation of the containing scope. Otherwise a null pointer is
returned. (16 bytes, quadword aligned.)

9 Relative invocation offset to containing scope. If the specified invocation is in a nested scope,
then this is the relative invocation offset to the invocation of the containing scope. Otherwise,
a value of zero is returned. Note that the relative invocation offset will be a negative number
and is relative to the specified invocation. (4 bytes.)

10 Lexical level number. Outer procedures have a lexical level number of 1. (4 bytes.)

11 Invocation number. (2 bytes.)

12 Invocation mark. (4 bytes.)

13 Activation mark. If no activation exists for this invocation, then a zero value is returned. (4
bytes.)

Chapter 21. Machine Observation Instructions 21-22

Materialize Invocation Attributes (MATINVAT)

14 Activation group mark. (4 bytes.)

15 Invocation type. The possible values for invocation type are:

c..,. Hex 01 Call external

Hex 02 Transfer control

Hex 03 Event handler

Hex 04 External exception handler (for OPM program)

Hex 05 Initial program in process problem state

Hex 06 Initial program in process initiation state

Hex 07 Initial program in process termination state

Hex 08 Invocation exit (for OPM program)

Hex 09 Return or return/XCTL trap handler

Hex OA Call program

Hex 08 Cancel handler (NPM only)

Hex OC Exception handler (NPM only)

Hex OD Call bound procedure/call with procedure pointer

Hex OE Process Default Exception Handler

(1 byte.)

16 Routine type. The possible values for routine type are:

Hex 01 OPM Program

Hex 02 NPM Program Entry Procedure (PEP)

Hex 03 NPM Procedure

(1 byte.)

17 State invocation was invoked with. (2 bytes.)

18 State for invocation. (2 bytes.)

19 Invocation status of the specified invocation (including invocation flags).

Bit 0 Cancelled

Bit 1 Ending - a return operation has been initiated from within the invocation or the actual
termination of a cancelled invocation has begun.

Bit 2 Invocation interrupted by exception

Bit 3 Invocation interrupted by event (reserved)

Bit 4 Invocation is an OPM CALLX exception handler

Bit 5 Invocation contains an OPM CALLI exception handler

Bit 6 Invocation contains a signalled OPM branchpoint handler

Bit 7 Retry not allowed

Bit 8 Resume not allowed

Bit 9 Resume point has been modified

Bit 10 Invocation is a program entry procedure and is marked as the oldest in the activation
group

Bits 11·15 Reserved

Chapter 21. Machine Observation Instructions 21-23

Bits 16·31 Invocation flags

(4 bytes.)

Materialize Invocation Attributes (MATINVAT)

Performance consideration: When the only invocation status information required is the invo­
cation flags, there may be a significant performance advantage if the following attribute is
materialized instead of this one.

20 Invocation flags of the specified invocation. This attribute 11as the same format as the invoca­
tion status attribute, except that the first two bytes are returned as zero'. (4 bytes.)

23 Cancel reason of the specified invocation. (4 bytes.)

24 Suspend point. Suspend pointer identifying the location within the invocation's routine where
execution was suspended due to a call, interrupt, or machine operation. If the program no
longer exists then a null pointer is returned. (16 bytes, quadword aligned, access rights
required.)

25 Resume point.

A suspend pointer identifying the location within the invocation's routine where execution will
resume if execution is allowed to resume in the invocation. If the invocation is suspended for
some cause that permits resumption, then this is initially set to the location that logically
follows the suspend point. If the invocation is suspended for some cause that does not permit
resumption, then this is initially set to be a null pOinter. If the resume point is modified via
Modify Invocation Attributes then a suspend pointer (or null pointer) corresponding to the mod­
ified resume point is returned. If the program no longer exists or if the invocation is cancelled
or ending, then a null pointer is returned. (16 bytes, access rights required, quadword
aligned.)

26 Interrupt message invocation. If the invocation is interrupted due to an exception interrupt,
and the message causing the interrupt has not been removed or modified to a non-interrupt
state, then this is an invocation pointer which addresses the invocation to which the interrupt
message is enqueued. If no interrupt cause currently exists, then a null pointer is returned.
(16 bytes, quadword aligned.)

27 Interrupt message reference key. If the invocation is interrupted due to an exception interrupt,
and the message causing the interrupt has not been removed or modified to a non-interrupt
state, then this is the message reference key of the interrupt cause message. If no interrupt
cause currently exists, then a value of zero is returned. (4 bytes.)

28 External exception handler's monitoring invocation. If the specified invocation is an external
exception handler for an OPM program, then this is an invocation pointer identifying the invo­
cation which enabled the handler (also the invocation where the exception message is cur­
rentlyenqueued). Otherwise, a null pointer is returned. (16 bytes, quadword aligned.)

29 External exception handier'S message reference key. If the specified invocation is an external
exception handler for an OPM program, then this is the message reference key of the corre­
sponding exception message. Otherwise, a zero value is returned. (4 bytes.)

30 OPM internal exception handler's message reference key. If the specified invocation is an
OPM invocation with an internal exception handler active, then this is the message reference
key of the exception message corresponding to the currently active internal exception handler.
Otherwise, a zero value is returned. (4 bytes.)

31 OPM branchpoint exception handler's message reference key. If the specified invocation is an
OPM invocation with a branchpoint exception handler in a signalled state, then this is the
message reference key of the exception message corresponding to the most recently signalled
branchpoint exception exception handler. Otherwise, a zero value is returned. (4 bytes.)

Chapter 21. Machine Observation Instructions 21-24

Materialize Invocation Attributes (MATINVAT)

32 Trap handler's message reference key. If the specified invocation was invoked as a trap
handler. then this is the message reference key of the corresponding trap message. (Note that
the trapped invocation is. by definition. the immediately preceding invocation.) Otherwise. a
zero value is returned. (4 bytes.)

Where "access rights required" is specified above, the activation group of the invocation identified
as the originating invocation must have activation group access rights to the activation group of the
source invocation or else an activation group access violation (hex 2C12) exception is signaled.

The invocation with an invocation number of 1 is always the first invocation in the stack.

Indirect
If indirect is binary zero, then offset to receiver specifies the location where the selected attribute
value is to be materialized as as offset from the location addressed by operand 1. If indirect is
binary one, then the location identified by offset to receiver, after accounting for any length, status,
or pad fields specified, must be quadword aligned and must contain a space pointer. This space
pointer in turn addresses the location where the selected attribute value is to be materialized.

Return length
If return length and return status are both binary zero, then only the attribute itself is materialized.
If return length is binary one, then the attribute (or attribute pointer, if indirect is true) is preceded
by a four-byte value which specifies the length of the attribute (exclusive of the length value itself,
and the status and pad fields, if present).

Return status

Pad

If return status is binary one, then the attribute (or attribute pointer, if indirect is true) is preceded
by a four-byte value which contains the status of the attribute.

If the status value is returned, it has the following format:

Bits 0-2 Reserved (binary 0)

Bit 3 Attribute unavailable at this time. (Eg, asking for the system pointer to a destroyed OPM
program.) The result returned is zeros for the minimum length defined.

Bit 4 Attribute not defined in this context. (Eg, asking for lexical level number from OPM invoca­
tion.) The result returned is zeros for the minimum length defined.

Bit 5 Attribute not defined at this time. (Eg, asking for interrupt message invocation when the
invocation is not interrupted.) The result returned is zeros for the minimum length defined.

Bit 6 Attribute defined but null. (Eg, when asking for the resume point for an invocation for which
resume is not currently allowed.) The result returned is zeros for the minimum length
defined.

Bit 7 Attribute truncated. Indicates that the specified length of receiver was too small to allow
the entire attribute to be returned. The truncated result is returned, as described earlier.

Bits 8-31 Reserved (binary 0)

If return length and return status are both binary one then the length field comes first, followed
immediately by the status field.

If either return length or return status is binary one, and pad is also binary one, then twelve bytes
of pad are assumed between the length or status value and the attribute (or attribute pointer, if
indirect is true). If both return length and return status are binary one, and pad is also binary one,
then eight bytes of pad are assumed between the status value and the attribute (or attribute
pointer). If return length and return status are both binary zero, then no padding occurs, regard­
less of the value of pad. The area occu pied by the pad is not modified by this instruction.

Chapter 21. Machine Observation Instructions 21-25

Materialize Invocation Attributes (MATINVAT)

Note: Pad makes it easier to quadword align the area to receive the materialized attribute (if indi­
rect is false) or the area containing the attribute pointer (if indirect is true) when return status
and/or return length are also specified.

Offset to receiver
Specifies the offset to the location where the selected attribute value is to be materialized, or the
offset to a pointer to the location, depending on the value of indirect.

Length of receiver
Specifies the length of the area where the attribute value is to be materialized.

This length indicates the length of the actual area available for materializing the attribute, and does
not include the length of any length, status, or pad field. If the number of bytes of attribute data
available to be materialized (exclusive of the status, length, and pad fields, if any) exceeds length
of receiver, then only length of receiver bytes of data are returned. No exception is signalled in
this case.

If indirect is a binary zero, then length of receiver indicates the length of the area located by offset
to receiver. If indirect is a binary one, then length of receiver indicates the length of the area
located by the indirect space pointer identified by offset to receiver.

In the case that length of receiver is sufficient to receive only part of a field in an attribute struc­
ture, then the partial field mayor may not be materialized.

Individual attribute entries are processed in order, with the attributes specified by each entry being
materialized before processing of the next entry begins. If an exception occurs while processing an
attribute entry, then the attributes materialized due to the preceding attribute' entries will still be
present in their speCified result locations.

For attributes which include pointers, the specified direct or indirect value location, after accounting for . ,
any length, status, or pad fields, must be quadword aligned or a boundary alignment (hex 0602) excep- .""
tion may occur. (The exception is not guaranteed to occur, eg, in the case where length of receiver is
insufficient to include the materialized pointer, or when a null pointer is returned.)

If the value locations of individual attribute entries overlap, then the values will be overlaid in the
sequence implied by the attribute entry order. If the value location of a non-indirect result overlays the
location of the space pointer for an indirect result, then the validity of the space pointer will depend on
the order of the associated entries.

Authorization Required

• Activation group access

From the activation group of the invocation issuing the instruction to the activation group of the
originating invocation identified by operand 2

When an attribute annotated with "access rights required" is specified: From the activation
group of the originating invocation identified by operand 2 to the activation group of the source
invocation identified by operand 2

• Space authority

For the module associated space option, the requesting invocation must have space authority
to the program executing in the source invocation identified by operand 2

Lock Enforcement: None

Exceptions

Chapter 21. Machine Observation Instructions 21-26

Materialize Invocation Attributes (MATINVAT)

Operands
Exception 1 2 3 Other

c.., 06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 Unauthorized for operation X

10 Damage encountered

04 system object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

C. 02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2C Program execution

11 Process object access invalid X

12 Activation group access violation X

19 Invalid origin invocation X

1A Invocation offset outside range of current stack X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

~
38 Template specification

01 template value invalid X

Chapter 21. Machine Observation Instructions 21-27

Materialize Invocation Entry (MATINVE)

Op Code (Hex)
0547

Operand 1
Receiver

Operand 2
Selection informa­
tion

Operand 1: Character variable scalar (fixed length)

Operand 2: Character(8) scalar (fixed length) or null.

Operand 3: Character(1) scalar (fixed length) or null.

Materialize Invocation Entry (MATINVE)

Operand 3
Materialization
options

Description: This instruction materializes the attributes of the specified invocation entry within the
process issuing the instruction. The attributes specified by operand 3 of the invocation selected
through operand 2 are materialized into the receiver designated by operand 1.

Operand 2 is an 8-byte template or a null operand. Ifoperand 2 is null, it indicates that the attributes
of the current invocation are to be materialized. If operand 2 is not null, it must be an 8-byte template
which specifies the invocation to be materialized. Only the first 8 bytes are used. Any excess bytes
are ignored. It has the following format:

• Selection information

Relative invocation number

Reserved

Char(8)

Char(2)

·Char(S)

If operand 2 is not null, it is restricted to a constant with the relative invocation number field specifying
a value of zero, which indicates that the attributes of the current invocation are to be materialized.

Operand 3 is a 1-byte value or a null operand. If operand 3 is null, it indicates that the attributes for a
materialization option value of hex 00 are to be materialized. If operand 3 is not nul" it must be a
1-byte value which specifies the type of materialization to be performed. Option values that are not
defined below are reserved values and may not be specified. Only the first byte is used. Any excess
bytes are ignored. It has the following format:

• Materialization options

Hex 00 = Long materialization
Hex 01 = Short materialization type 1
Hex 02 = Short materialization type 2
Hex 03 = Short materialization type 3
Hex 04 = Short materialization type 4
Hex 05 = Short materialization type 5

Char(1)

If operand 3 is not nUll, it is restricted to a constant character scalar or an immediate value.

Operand 1 specifies a receiver into which the materialized data is placed. It must specify a character
scalar with a minimum length which is dependent upon the materialization option specified for operand
3. If the length specified for operand 1 is less than the required minimum, an exception is signaled.
Only the bytes up to the required minimum length are used. Any excess bytes are ignored. For the
materialization options which produce pointers in the materialized data, 1S-byte space alignment is
required for the receiver. The data placed into the receiver differs depending upon the materialization
option specified. The following descriptions detail the formats of the optional materializations.

Chapter 21. Machine Observation Instructions 21-28

Materialize Invocation Entry (MATINVE)

Long Materialization: For a materialization option value of hex 00, the minimum length for the receiver
is 144 bytes, It has th'e following format:

• Hex 00 = Long m'aterialization

Reserved

Mark counter

Reserved

Associated program pointer
(zero for data base select/omit program)

Invocation number

Invocation type

Hex 00= Data base select/omit program
Hex 01 = Call external
Hex 02 = Transfer control
Hex 03 = Event handler
Hex 04 = External exception handler
Hex 05 = Initial program in process problem state
Hex 06 = Initial program in process initiation state
Hex 07 = Initial program in process termination state
Hex 08 = I nvocation exit
Hex 09 = Return trap handler or return/XCTL trap handler
Hex OA = Call program
Hex DB = Reserved
Hex DC = Reserved
Hex 00 = Reserved
Hex DE = Process Default Exception Handler

Reserved (binary 0)

Invocation mark

State invocation was invoked with

State for invocation

Reserved

Automatic storage frame (ASF) pointer

Static storage frame (SSF) pointer

Reserved

Char(144)

Char(12)

Bin(4)

Char(32)

System pointer

Bin(2)

Char(1)

Char(1)

Bin(4)

Char(2)

Char(2)

Char(4)

Space pointer

Space pointer

Char(32)

Short Materialization Type 1: For a materialization option value of hex 01. the minimum length for the
receiver is 16 bytes. It has the following format:

Hex 01 = Short materialization type 1

• Associated program pointer
(null for data base select/omit program)

Char(16)

System pointer

Short Materialization Type 2: For a materialization option value of hex 02. the minimum length for the
receiver is 4 bytes. It has the following format:

Hex 02 = Short materialization type 2

• Invocation mark

Char(4)

Bin(4)

Chapter 21, Machine Observation Instructions 21-29

Materialize Invocation Entry (MATINVE)

Short Materialization Type 3: For a materialization option value of hex 03, the minimum length for the
receiver is 16 bytes. It has the following format:

Hex 03 = Short materialization type 3

• ASF pointer

Char(16)

Space pointer

Short Materialization Type 4: For a materialization option value of hex 04, the minimum length for the
receiver is 16 bytes. It has the following format:

Hex 04 = Short materialization type 4

• SSF pointer

Char(16)

Space pointer

Short Materialization Type 5: For a materialization option value of hex OS, the minimum length for the
receiver is 4 bytes. It has the following format:

Hex 05 = Short materialization type 5

• State invocation was invoked with

• State for invocation

Char(4)

Char(2)

Char(2)

The mark counter value represents the current value of a counter used by the machine to mark all
activations and a subset of the invocations created during the execution of a process with a unique
value. This mark indicates the point at which the specific entry was allocated relative to the sequence
of all activations and invocations that have been created over time within the process. That is, older
activations will be identified by a mark value of lesser value, and newer activations and invocations will
be identified by a mark value.of higher value. The mark counter is just the highest number assigned so
far as a unique id. It does not act as a counter of how many activations and invocations have been
created in the process. This is because invocations are assigned a mark value only as needed by the
machine to ensure the visible function of the mark count. That is, any invocation mark value which is
supplied to the user of the machine does indeed uniquely identify the invocation and indicate its cre­
ation sequence relative to the activations and invocations currently e~isting in the process, but it is not
an absolute counter.

The associated program pointer is a system pointer that locates the program associated with the invo­
cation entry.

The invocation number is the stack depth of the invocation within the invocation stack. The invocation
number of a new invocation entry is one more than that in the calling invocation. The first invocation
in the current process has an invocation number of one.

The invocation type indicates how the associated program was invoked.

The invocation mark captures the current mark counter value to uniquely identify the invocation within
the process. An activation implicitly created on behalf of the invocation will be identified by a mark
value of equal value.

The state Invocation was invoked with value represents the state in which the machine was running
when the program was called or transfered to.

State for invocation value represents the state in which the machine is running the program.

The ASF pointer is a space pointer that is set to address the start of the ASF. associated with the
invocation. The associated program's automatic data starts 64 bytes after the area addressed by this
pointer.

The SSF pointer is a space pointer that is set to address the start of the SSF (static storage frame)
associated with the invocation. The associated program's static data starts 64 bytes after the area

Chapter 21. Machine Observation Instructions 21-30

Materialize Invocation Entry (MATINVE)

addressed by this pointer. This pointer will be set to a value of all zeros if the invoked program does
not have static data.

The fields labeled reserved in the descriptions of the optional materializations are currently reserved
for futu re use. These fields may be altered by this instruction depending upon the particular imple-
mentation of the machine. Any values set into these fields are meaningless.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

02 scalar attributes invalid X X X

03 scalar value invalid X X X

36 Space management

""..,.., 01 space extension/truncation X

Chapter 21. Machine Observation Instructions 21-31

I
1

f
:J .,

1
j

!
.~

1
1
\

Materialize Invocation Stack (MATINVS)

Op Code (Hex)
0546

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer or null.

Operand 2
Process

Materialize Invocation Stack (MATINVS)

IlEaccess --,

MATINVS (
receiver: space pointer;

var process system pointer OR
null operand

Description: This instruction materializes the current invocation stack within the specified process.

The attributes of the invocation entries currently on the invocation stack of the process specified by
operand 2 are materialized into the template specified by operand 1.

Operand 2 is a system pointer or a null operand. If operand 2 is null, it indicates that the invocation
stack of the current process is to be materialized. If operand 2 is not null, it is a system pointer identi­
fying the process control space associated with the process for which the invocation stack is to be
materialized, If the subject process, identified by operand 2, is different from the process executing \ "\
this instruction, the executing process must be the original initiator of the subject process or must have "fill
process control special authorization to the process control space associated with the subject process.

Operand 1 is a space pointer that addresses a 16-byte aligned template into which is placed the mate­
rialized data. The format of the data is:

• Materialization size specification

Number of bytes provided by the user

Number of bytes available for materialization

• Number of invocation entries

• Mark counter

Char(8)

Bin(4)

Bin(4)

Bin(4)

Bin(4)*

• Invocation entries. Char(*)
(An invocation entry is materialized for each of the invocations currently on the invocation stack of
the specified process.)

The invocation entries materialized are each 128 bytes long and have the following format:

• Reserved

• Associated program pointer

Char(32)

System pointer
(null for data base select/omit program or a destroyed program)

• Invocation number

• Invocation mechanism

Hex 01 Call external

Hex 02 Transfer control

Bin(2)

Char(1)

Chapter 21. Machine Observation Instructions 21-32

Materialize Invocation Stack (MATINVS)

Hex 03 Event handler

Hex 04 External exception handler (for OPM program)

Hex 05 Initial program in process problem state

Hex 06 Initial program in process initiation state

Hex 07 Initial program in process termination state

Hex 08 Invocation exit (for OPM program)

Hex 09 Return or return/XCTL trap handler

Hex OA Call program

Hex OB Cancel handler (NPM only)

Hex OC Exception handler (NPM only)

Hex 00 Call bound procedure/call with procedure pointer

Hex OE Process Default Exception Handler

• Invocation type

Hex 01 OPM Program

Hex 02 NPM Program Entry Procedure (PEP)

Hex 03 NPM Procedure

• Invocation mark

Char(1)

Bin(4)*

• Instruction identifier Bin(4)
(zero for data base select/omit program, destroyed, damaged, or suspended program)

• Activation group mark Bin(4)

• Suspend point Suspend pointer
(null for data base select/omit program or destroyed program)

• Reserved Char(48)

Note: Values annotated with an asterisk (*) may not be materialized if operand 2 identifies a process
other than the one executing this instruction. Unmaterialized fields are set to binary zeros.

Values annotated with a double asterisk (**) are materialized only if operand 2 is null or identi­
fies the process executing this instruction, and the program executing this instruction is in
system state. Unmaterialized fields are set to binary zeros.

The number of invocations value specifies the number of invocation entries provided in the
materialization.

The mark counter value represents the current value of a counter used by the machine to mark all
activations and invocations created during the execution of a process with a unique value. This mark
indicates the point at which the specific entry was allocated relative to the sequence of all activations
and invocations that have been created over time within the process.

The associated program pointer is a system pointer that locates the program associated with the invo­
cation entry.

The Invocation number is a number that uniquely identifies each invocation in the invocation stack.
When an invocation is allocated, the invocation number of the new invocation entry is one more than
that in the calling invocation. The first invocation in the current process state has an invocation
number of one.

The invocation type indicates how the associated program was invoked.

Chapter 21. Machine Observation InstructIOns 21-33

Materialize Invocation Stack (MATINVS)

The invocation mark indicates the point at which this invocation entry was allocated relative to the
sequence of all activations and invocations that have been created over time within the process. This
is set from the incremented mark counter value for each new invocation added to the invocation stack.

If the invocation type is a non-bound program the instruction id field will contain the instruction number
which specifies the number of the instruction last being executed when the invocation passed control
to the next invocation on the stack. If the invocation type is a bound program entry or a procedure, the
instruction id field will contain the statement identifier, which is a compiler supplied number which
allows the compiler to to identify the source statement associated with a particular sequence of
instructions.

Note: If the program is damaged or destroyed or if a statement identifier was not supplied by the
compiler, a value of 0 is set.

The suspend point is a suspend pointer which identifies the instruction last being executed when the
invocation passed control to the next invocation on the stack.

The fields labeled reserved are currently reserved for future use. These fields may be altered by this
instruction depending upon the particular implementation of the machine. Any values set into these
fields are meaningless.

The first 4 bytes of the materialization identifies the total number of bytes provided for use by the
instruction. This value is supplied as input to the instruction and is not modified by the instruction. A
value of less than 8 causes the materialization length (hex 3803) exception to be signaled.

'.
The second 4 bytes of the materialization identifies the total number of bytes available to be material-
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested, the excess bytes are unchanged.

No exceptions are signaled in the event that the receiver contains insufficient area for the
materialization, other than the materialization length exception described previously.

When the materialization is performed for a process other than the one executing this instruction, the
instruction attempts to interrogate, snapshot, the invocation stack of the other process concurrently
with the ongoing execution of that process. In this case, the interrogating process and subject process
may have interleaving usage of the processor resource. Due to this, the accuracy and integrity of the
materialization is relative to the state, static or dynamic, of the invocation stack in the subject process
over the time of the interrogation. If the invocation stack in the subject process is in a very static state,
not changing over the period of interrogation, the materialization may represent a good approximation
of a snapshot of its invocation stack. To the contrary, if the invocation stack in the subject process is
in a very dynamic state, radically changing over the period of interrogation, the materialization is
potentially totally inaccurate and may describe a sequence of invocations that was never an actual
sequence that occurred within the process. In addition to the above exposures to inaccuracy in
attempting to take the snapshot, the ongoing status of the invocation stack of the subject process may
substantially differ from that reflected in the materialization, due to its continuing execution after com­
pletion of this instruction.

When the materialization is performed for the process executing this instruction, it does provide an
accurate reflection of the status of the process' invocation stack. In this case, concurrent execution of
this instruction with execution of other instructions in the process is precluded.

Chapter 21. Machine Observation Instructions 21-34

Materialize Invocation Stack (MATINVS)

Authorization Required

• Process control sl?ecial authorization

- For materializing a different process than the one executing this instruction

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialization

- Contexts referenced for address resolution

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 ArgumenUparameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X X

10 Damage encountered

04 system object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

28 Process state

02 process control space not associated with a process X

2E Resource control limit

Chapter 21. Machine Observation Instructions 21-35

Materialize Invocation Stack (MATINVS)

Operands
Exception 1 2 Other

01 user profile .storage limit exceeded X

..J
32 Scalar specification

01 scalar type invalid X X

02 scalar attributes invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length X

Chapter 21. Machine Observation Instructions 21-36

Materialize Pointer (MATPTR)

Op Code (Hex)
0512

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Pointer

Materialize Pointer (MATPTR)

Operand 2: System pointer, space pointer data object, data pointer, instruction pointer, invocation
pointer, procedure pointer, label pointer, or suspend pointer.

ILEaccess --~
MATPTR (

)

receiver
var pointer

space pOinter;
: pOinter

Description: The materialized form of the pointer object referenced by operand 2 is placed in operand
1.

The format of the materialization is:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Pointer type

Hex 01 = System pointer
Hex 02 = Space pointer
Hex 03 = Data pointer
Hex 04 = Instruction painter
Hex 05 = Invocation pointer
Hex 06 = Procedure pointer
Hex 07 = Label pointer
Hex 08 = Suspend pointer

• Pointer description

Char(8)

Bin(4)

Bin(4)

Char(1)

Char(*)

Pointer description depends on the painter type. One of the following pointer type formats is used.

• System pointer description Char(68)

The system pointer description identifies the object addressed by the pointer and the context which
the object specifies as its addressing context.

Context identification

- Context type
- Context subtype
- Context name

Object identification

- Object type
- Object subtype
- Object name

Pointer authorization

Char(32)

Char(1)
Char(1)
Char(30)

Char(32)

Char(1)
Char(1)
Char(30)

Char(2)

Chapter 21. Machine Observation InstructIOns 21-37

- Object control
- Object management
- Authorization poi nter
- Space authority
- Retrieve
- Insert
- Delete
- Update
- Ownership
- Reserved (binary 0)

Materialize Pointer (MATPTR)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-15

Pointer target information Char(2)

Bit 0
Bits 1-15

- Pointer target accessible from user state
- Reserved (binary 0)

The first 4 bytes of the materialization identify the total number of bytes provided for use by the
instruction. This value is supplied as input to the instruction and is not modified by the instruction.
A value of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the
information requested, then the excess bytes are unchanged. No exceptions (other than the
materialization length exception) are signaled in the event that the receiver contains insufficient
area for the materialization.

Note: If the object addressed by the system pointer specifies that it is not addressed by a context
or if the context is destroyed, the context identification field is hex 00. If the object is
addressed by the machine context, a context type field of hex 81 is returned. No verification
is made that the specified context actually addresses the object. J

The following lists the object type codes for system object references:

Value
(Hex) Object Type

01 Access g rou p
02 Program
03 Module
04 Context
06 Byte string space
07 Journal space
08 User profile
09 Journal port
OA Queue
OB Data space
OC Data space index
00 Cursor
OE Index
OF Commit block
10 Logical unit description
11 Network description
12 Controller description
13 Dump space
14 Class of service description
15 Mode Description
16 Network interface description
17 Connection list

Chapter 21. Machine Observation Instructions 21-38

~

18
19
1A
1B
1C

Queue space
Space
Process control space
Authorization list
Dictionary

Materialize Pointer (MATPTR)

Note: Only the authority currently stored in the system pointer is materialized.

If the pointer target accessible from user state field has a value of 1, then the system pointer
addresses an object that is in user domain. If the pointer target accessible from user state field
has a value of 0, then the system pointer addresses an object that is not in user domain.

• Data pointer description Char(75)

The data pointer description describes the current scalar and array attributes and identifies the
space addressability contained in the data pointer.

Scalar and array attributes

- Scalar type

Hex 00 = Signed binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character
Hex 06 = Onlyns
Hex 07 = Onlys
Hex 08 = Either
Hex 09 = Open
Hex OA = Unsigned binary

- Scalar length

Char(7)

Char(1)

Char(2)

If binary, character, floating-point, Onlyns, Onlys, Either, or Open:

• Length

If zoned decimal or packed decimal:

• Fractional digits
• Total digits

- Reserved (binary 0)

Data pointer space addressability

- Context identification

• Context type
• Context subtype
• Context name

- Object identification

• Object type
• Object subtype
• Object name

Bits 0-15

Bits 0-7
Bits 8-15

Bin(4)

Char(68)

Char(32)

Char(1)
Char(1)
Char(30)

Char(32)

Char(1)
Char(1)
Char(30)

- Offset into space Bin(4)

Note: If the object containing the space addressed by the data pointer is not addressed by a
context, the context field is hex 00. If the object is addressed by the machine context, a
context type field of hex 81 is returned.

Chapter 21. Machine Observation Instructions 21-39

Materialize Pointer (MATPTR)

Support for usage of a Data Pointer describing an Onlyns, Onlys, Either, or Open scalar
value is limited, For more information, refer to the Copy Extended Characters Left
Adjusted With Pad, Set Data Pointer Attributes, and Create Cursor instructions,

• Space pointer description Char(70)

The space pointer description describes space addressability contained in the space pOinter,

Context identification

- Context type
- Context subtype
- Context name

Object identification

- Object type
- Object subtype
- Object name

Offset into space

Pointer target information

- Pointer target accessible from user state
- Reserved (binary 0)

Char(32)

Char(1)
Char(1)
Char(30)

Char(32)

Char(1)
Char(1)
Char(30)

8in(4)

Char(2)

Bit 0
Bits 1-15

If the pointer target accessible from user state field has a value of 1, then the space pointer
addresses a space that is in user domain and is writeable when the process is running in user
state. If the pointer target accessible from user state field has a value of 0, then the space refer­
enced by the pointer is either not in user domain or it is not writeable when the process is running
in user state.

Note: If the object containing the space addressed by the space pointer is not addressed by a
context, the context field is hex 00. If the object is addressed by the machine context, a
context type field of hex 81 is returned.

• Instruction pointer description Char(68)

The instruction pointer description describes instruction addressability contained in the instruction
pointer.

Context identification Char(32)

- Context type Char(1)
- Context subtype Char(1)
- Context name Char(30)

Program identification Char(32)

- Prog ram type Char(1)
- Program subtype Char(1)
- Program name Char(30)

Instruction number Bin(4)

If the program containing the instruction currently being addressed by the instruction pointer is not
addressed by a context, the context field is hex 00.

Chapter 21. Machine Observation Instructions 21-40

"

Materialize Pointer (MATPTR)

• Invocation pointer description Char(23)

The invocation pOinter description describes invocation addressability contained in the invocation
pOinter. .

Pointer status

- Process object no longer exists
- Pointer is from another process
- Reserved (binary 0)

Reserved (binary 0)

Containing process

Process object no longer exists

Char(1)

Bit 0
Bit 1
Bits 2-7

Char(6)

System pointer

If this bit has a value of 1, then the process object (invocation) referenced by the pointer no
longer exists.

Pointer is from another process
If this bit has a value of 1, then the process object (invocation) referenced by the pointer exists
but belongs to a process other than the current one.

Containing process
A system pointer to the process control space object to which the process object belongs. A
null pointer is returned if the process object (invocation) no longer exists.

• Procedure pointer description Char(55)

The procedure pointer description describes the activation and procedure addressability contained
in the procedure pointer.

Pointer status Char(1)

- Process object no longer exists Bit 0
- Pointer is from another process Bit 1
- Referenced program cannot be accessed Bit 2
- Reserved (binary 0) Bits 3-7

Reserved (binary 0) Char(6)

Module number Ubin(4)

Procedure number Ubin(4)

Activation mark Ubin(4)

Activation group mark Ubin(4)

Containing program System pointer

Containing process System pointer

Process object no longer exists
If this bit has a value of 1, then the process object referenced by the pointer (the activation) no
longer exists. All of the remaining information is returned as binary zeros.

Pointer is from another process
If this bit has a value of 1, then the process object referenced by the pointer belongs to a
process other than the current one. With the exception of the containing process pointer, all of
the remaining information is returned as binary zeros.

Referenced program cannot be accessed
If this bit has a value of 1, then the program referenced by the pointer could not be accessed to
extract the program-related information. The may be because the program is damaged, sus-

Chapter 21. Machine Observation Instructions 21-41

Materialize Pointer (MATPTR)

pended, compressed, or destroyed. The program pointer, module number. and procedure
number are returned as binary zeros.

Module number
Index in the module list of the bound program for the module whose activation the pointer
addresses.

Procedure number
Index in the procedure list of the module for the procedure addressed by the pointer.

Activation mark
The activation mark of the activation that contains the activated procedure. Zero if the
program activation no longer exists.

Activation group mark
An activation group mark of the activation group that contains the activated procedure. Zero if
the program activation no longer exists.

Containing program
A system pointer to the program object that contains the procedure. Null if the program acti­
vation no longer exists.

Containing process
A system pointer to the process control space object which contains the procedure's activation
group. A null pointer is returned if the process control space object no longer exists, of if it is
no longer possible to determine the containing process for a destroyed activation group.

• Label pointer description Char(*)

The label pointer description describes instruction addressability contained in the label pointer.

Pointer status

- Reserved (binary 0)
- Reserved (binary 0)
- Referenced program is damaged, suspended,

compressed or destroyed
- Reserved (binary 0)

Reserved (binary 0)

Module number

Procedure number

Number of statement IDs

Internal identifier

Containing program

Statement 10 (repeated)

Char(1)

Bit 0
Bit 1
Bit 2

Bits 3-7

Char(6)

Ubin(4)

Ubin(4)

Ubin(4)

Char(4)

System pointer

Ubin(4)

Referenced program is damaged, suspended, compressed, or destroyed
If this bit has a value of 1, then the program referenced by the pointer could not be accessed to
extract the remaining information. The remainder of the template is binary zeros with the
exception of the program pointer, which will be binary zeros if the program has been destroyed
or so seriously damaged that its identity cannot be determined.

Module number
Index in the module list of the bound program for the module containing the label.

Procedure number
Index in the procedure list of the module for the procedure containing the label.

Chapter 21. Machine Observation Instructions 21-42

c.,.

Materialize Pointer (MATPTR)

Number of statement IDs
Number of entries in the statement 10 list. (Multiple statement IDs may be associated with a
single location in the created program due to optimizations that combine similar code
sequences.)

Internal identifier
A machine-dependent value which identifies the label relative to the the internal structure of
the program. For use by service personnel.

Containing program
A system pointer to the program object that contains the label.

Statement 10
Each statement ID is a compiler-supplied unsigned Bin(4) number which allows the compiler to
identify the source statement associated with a particular sequence of instructions.

• Suspend pointer description Char(*)

The suspend pointer description describes instruction addressability contained in the suspend
pointer.

Pointer status Char(1)

- Reserved (binary 0) Bit 0
- Reserved (binary 0) Bit 1
- Referenced program is damaged, suspended, Bit 2

compressed or destroyed

- Reserved (binary 0) . Bits 3-7

Reserved (binary 0) Char(6)

Module number Ubin(4)

Procedure number Ubin(4)

Number of statement IDs Ubin(4)

Internal identifier Char(4)

Containing program System pointer

Statement 10 (repeated) Ubin(4)

Referenced program is damaged, suspended, compressed, or destroyed
If this bit has a value of 1, then the program referenced by the pointer could not be accessed to
extract the remaining information. The remainder of the template is binary zeros with the
exception of the program pointer, which will be binary zeros if the program has been destroyed
or so seriously damaged that its identity cannot be determined.

Module number
Index in the module list of the bound program for the module containing the suspend point.

Procedure number
Index in the procedure list of the module for the procedure containing the suspend point.

Number of statement IDs
Number of entries in the statement ID list. (Multiple statement IDs may be associated with a
Single location in the created program due to optimizations that combine similar code
sequences.)

Intemal identifier
A machine-dependent value which locates the suspend point relative to the the internal struc­
ture of the program. For use by service personnel.

Chapter 21. Machine Observation Instructions 21-43

Materialize Pointer (MATPTR)

Containing program
A system pointer to the program object that contains the suspend point.

Statement I D
Each statement 10 is a compiler-supplied unsigned 8in(4) number which allows the compiler to
identify the source statement associated with a particular sequence of MI instructions.

Note: For suspend pointers which address non-bound programs, module number and procedure
number are returned as binary zeros, and the statement 10 list is returned with one value
which is the MI instruction number of the suspend pOint.

If the pointer is a system pointer or a data pointer and is initialized but unresolved, the pointer is
resolved before the materialization occurs.

This instruction will tolerate a damaged object referenced by operand 2 when operand 2 is a resolved
pointer. The instruction will not tolerate a damaged context(s) or damaged programs when resolving
pointers. Also, as a result of damage or abnormal machine termination, this instruction can indicate
that an object is addressed by a context, when in fact the context will not show this as an addressed
object.

A space pointer machine object cannot be specified for operand 2.

Exceptions

Operands
exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

04 external data object not found X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

Chapter 21. Machine Observation Instructions 21-44

(~

Materialize Pointer (MATPTR)

Operands
Exception 1 2 Other

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 21. Machine Observation Instructions 21-45

Materialize Pointer Locations (MATPTRL)

Op Code (Hex)
0513

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Operand 2
Source

Materialize Pointer Locations (MATPTRL)

Operand 3
Length

ILEaccess --~

MATPTRL (
receiver
source

var length
)

space pOinter;
space pOinter;
signed binary

Description: This instruction finds the pointers in a subset of a space and produces a bit mapping of
their relative locations.

The area addressed by the operand 2 space pointer is scanned for a length equal to that specified in
operand 3. A bit in operand 1 is set for each 16 bytes of operand 2. The bit is set to binary 1 if a
pointer exists in the operand 2 space. or the bit is set to binary 0 if no pointer exists in the operand 2
space.

Operand 1 is a space pointer addressing the receiver area. One bit of the receiver is used for each 16
bytes specified by operand 3. If operand 3 is not a 16-byte multiple. then the bit position in operand 1
that corresponds to the last (odd) bytes of operand 2 is set to O. Bits are set from left to right (bit O. bit
1) in operand 1 as 16-byte areas are interrogated from left to right in operand 2. The number of bits
set in the receiver is always a multiple of 8. Those rightmost bits positions that do not have a corre­
sponding area in operand 2 are set to O.

The format of the operand 1 receiver is:

• Template size specification

Number of bytes provided by the user

Number of bytes available for materialization

• Pointer locations

Char(8)

Bin(4)

Bin(4)

Char(*)

Operand 2 must address a 16-byte aligned area; otherwise. a boundary alignment (hex 0602) exception
is signaled. If the value specified by operand 3 is not positive, the scalar value invalid (hex 3203)
exception is signaled.

The first 4 bytes of the materialization identify the total number of bytes provided for use by the instruc­
tion. This value is supplied as input to the instruction and is not modified by the instruction. A value
of less than 8 causes the materialization length (hex 3803) exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes available to be material­
ized. The instruction materializes as many bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is greater than that required to contain the informa­
tion requested. then the excess bytes are unchanged. No exceptions (other than the materialization

Chapter 21. Machine Observation Instructions 21-46

Materialize Pointer Locations (MATPTRL)

length (hex 3803) exception) are signaled in the event that the receiver contains insufficient area for
materialization.

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X X X

03 object suspended X X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 21. Machine Observation Instructions 21-47

Materialize System Object (MATSOBJ)

Op Code (Hex)
053E

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Object

Materialize System Object (MATSOBJ)

ILEaccess --,

MATSOBJ (
receiver

var object
)

space pOinter;
system pOinter

Description: This instruction materializes the identity and size of a system object addressed by the
system pointer identified by operand 2. It can be used whenever addressability to a system object is
contained in a system pointer.

The format of the materialization is:

• Materialization size specification

Number of bytes provided by the user

Number of bytes available for
materialization

• Object state attributes

Suspended state

a = Not suspended
1 = Suspended

Damage state

a = Not damaged
1 = Damaged

Partial damage state

a = No partial damage
1 = Partial damage

Existence of addressing context

a = Not addressed by a temporary context
1 = Addressed by a temporary context

Dump for previous release permitted

a = Dump for previous release not permitted.
1 = Dump for previous release permitted.

Object compressed

a = Object not compressed
1 = Object compressed (partially or completely)

ASP overflow

a = No part of the object has overflowed its ASP

Char(8)

Bin(4)

Bin(4)

Char(2)

Bit a

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Chapter 21. Machine Observation Instructions 21-48

l

~

1 = Some part of the object has overflowed its ASP

Reserved (binary 0)

• Context identification

Context type

Control subtype

Context name

• Object identification

Object type

Object subtype

Object name

• Timestamp of creation

• Size of associated space

• Object size

• Owning user profile identification

User profile type

User profile subtype

User profile name

• Timestamp of last modification

• Recovery options

• Performance class

• Initial value of space

• Object audit attribute

Hex 00 = No audit for this object
Hex 02 = Audit change for this object
Hex 03 = Audit read and change for this object

Materialize System Object (MATSOBJ)

Bits 7-15

Char(32)

Char(1)

Char(1)

Char(30)

Char(32)

Char(1)

Char(1)

Char(30)

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(8)

Char(4)

Char(4)

Char(1)

Char(1)

Hex 04 = Audit read and change for this object if the user profile is being audited

• Reserved

• Object authorization list (AL) status

o = Object not in an AL
1 = Object in AL

• Authorization list identification

Authorization list (AL) status

a = Valid AL
1 = Damaged AL
2 = Destroyed AL (no name below)

Reserved

Authorization list type

Authorization list subtype

Authorization list name

• Dump for previous release reason code

Char(2)

Bin(2)

Char(48)

Bin(2)

Char(14)

Char(1)

Char(1)

Char(30)

Bit(64)

Chapter 21. Machine Observation Instructions 21-49

• Maximum possible associated space size

• Timestamp of last use of object

• Count of number of days object was used

• Program attributes

Program state provided

o = No program state value
1 = Program state value present

Reserved (binary 0)

Type of program

Hex 00 = Original program
Hex 01 = Bound program
Hex 02 = Service program

• Domain of object

• Program state for program or module

• MI-supplied information

• Earliest compatible release

Reserved

Version

Release

Modification level

• Object size in pages

• Reserved

Materialize System Object (MATSOBJ)

Bin(4}

Char(8}

Ubin(2}

Char(2)

Bit 0

Bits 1-7

Char(1)

Char(2)

Char(2)

Char(8)

Char(2)

Bits 0-3

.Bits 4-7

Bits 8-11

Bits 12-15

Ubin(4)

Char(110)

Additional Description:: This instruction will tolerate a damaged object referenced by operand 2 when
operand 2 is a resolved pointer. The instruction will not tolerate a damaged context(s) or damaged
programs when resolving pointers. Also, as a result of damage or abnormal machine termination, this
instruction can indicate that an object is addressed by a context, when in fact the context will not show
this as an addressed object. The Modify Addressability instruction can be used to correct this
problem.

The existence of addressing context field indicates whether the previously (or currently) addressing
context was (is) temporary. This field is 0 if the object was (is) not addressed by a temporary context.

The dump for previous release permitted field will indicate if the object is eligible for a Request 1/0
instruction in which a dump for previous is requested 1 . When this field indicates that the object is not
eligible, the dump for previous release reason code can be used to determine why the object is not
eligible.

The object compressed field indicates whether the encapsulated part of the object is either partially or
completely compressed. The encapsulated part(s) of some object types can be compressed by object­
specific create or modify instructions. For example, the executable and observation parts of a program
object can be compressed and decompressed by the Modify Program instruction, and can also be
decompressed implicitly by machine operation (see the Modify Program instruction for details). Use
the object-specific materialization instruction for this type of object (for example, the Materialize

1 'Previous release' refers to the previous mandatory release. This is release N-1, mod level zero when release N is the
current release. (For version 2, release 1.1, the previous mandatory release is version 1, release 3.0.)

Chapter 21. Machine Observation Instructions 21-50

~

C.

Materialize System Object (MATSOBJ)

Program instruction for program objects) to determine exactly which part(s) of the object are com­
pressed.

The ASP overflow field indicates whether any part of the object is stored in an ASP other than the ASP
specified at the time the object was created. If any object created in one ASP has parts that are in a
different ASP (due to lack of sufficient available storage in the original ASP), then none of the objects
in the first ASP are protected in the event of a failure of any other ASP in the system. By deleting
objects that have overflowed, however, it may be possible to eliminate the ASP overflow condition and
restore the protection that ASPs provide. Use the object-specific materialization instruction for this type
of object to determine what ASP was specified at the time the object was created.

If the object addressed by the system pointer specifies that it is not addressed by a context or if the
context i,s destroyed, the context type field is hex 00. If the object is addressed by the machine
context, a context type field of hex 81 is returned. No verification is made that the specified context
actually addresses the object.

Valid object type fields and their meanings are:

Value
(Hex) Object Type

01 Access group
02 Program
03 Module
04 Context
06 Byte string space
07 Journal space
08 User profile
09 Journal port
OA Queue
OB Data space
OC Data space index
00 Cursor
OE Index
OF Commit block
10 Logical unit description
11 Network description
12 Controller description
13 Dump space
14 Class of Service Description
15 Mode Description
16 Network interface description
17 Connection list
18 Queue space
19 Space
1A Process control space
1B Authorization List
1C Dictionary

The timestamp field is materialized as an 8-byte unsigned binary number in which bit 41 is equal to
1024 microseconds. The timestamp of creation field is implicitly set when an object is created.

If the object has an associated space, the maximum possible associated space size field will be
returned with a value which represents the maximum size to which the associated space can be
extended. This value depends on the internal packaging of the object and its associated space as well

Chapter 21. Machine Observation Instructions 21-51

Materialize System Object (MATSOBJ)

as (possibly) the maximum space size field as optionally specified during the create of the object (or
on the Create Duplicate Object instruction, if that is how the object was created).

The object size field will contain the size of the object in bytes up to a value of 2G-1 (2147483647). If
the object's size is greater than this, a value of zero will be returned in the object size field. In this
case, the object size in pages field should be used to get the object's actual size. This field will always
contain the object's true size in number of pages.

If the object is a temporary object and is, therefore, owned by no user profile, the user profile type field
is assigned a value of hex 00.

The timestamp of last modification field is explicitly set by the Modify System Object instruction. It is
implicitly set, except for the objects restricted below, by any instruction or IMPL function that modifies
or attempts to modify an object attribute value or an object state. The timestamp of last modification
field is only ensured as part of the normal ensuring of objects.

Implicit setting of the timestamp of last modification field is restricted for the following objects and will
only occur for generic, nonobject specific, operations on them such as Rename Object for example.

• Logical unit description

• Controller description

• Network description

• Access group

• Queue

No modification time stamp will be provided for the following objects and a value of zero will be
returned in the materialization template for the modification time stamp.

• Process control space

The object authorization list status field indicates whether or not the object is contained in an authori­
zation list. If it is, the authorization list identification information provides the name of the authorization
list, except when the authorization list is indicated as destroyed, in which case, the name information
is meaningless.

The dump for previous release reason code can be used to determine why the object is not eligible
according to the dump for previous release permitted field. Currently reason codes are only archi­
tected for programs. The reason code structure for programs is mapped as follows. Note that more
than one reason may be returned.

• Program dump for previous release
reason code

Language version and release reason

o = Language version and release is not a reason
1 = Language version and release is one reason

Level of machine instructions used
reason

Bit(64)

Bit 0

Bit 1

o = The level of machine instructions used in the program is not a reason
1 = Machine instructions not available in the previous release are used

Program observability reason Bit 2

o = Lack of program observability is not a reason
1 = Program is not observable and must be to be moved to previous release

Reserved Bits 3-63

Chapter 21. Machine Observation Instructions 21-52

Materialize System Object (MATSOBJ)

The timestamp of last use of object field and the count of number of days object was used field are set
by the Modify System Object instruction or by the Call External or Transfer Control instructions on the
objects first use on that day. The timestamp value is only good for the date. The time value obtained
from this timestamp is not accurate.

The type of program field indicates the Program Model of a program object. which is determined by
how the program was created. It is only present when operand 2 points to a program object. This
field is necessary since the object type and object subtype do not provide enough information to iden­
tify the Program Model of a program object. Knowing the program type is useful in selecting appro­
priate program specific instructions.

The domain of object field contains the value of the state under which a program or procedure must be
running to access this object.

The program state for program or module field contains the state under which the program runs. It is
only present when the program state provided flag is on.

The MI-supplled information is simply an 8 byte character field which can be set into an object with the
Modify System Object (MODSOBJ) instruction and materialized with the Materialize System Object
(MATSOBJ) instruction. The machine has no knowledge or dependencies on the content of this field.

The earliest compatible release field contains the earliest release that in which the object can be used
in.

Authorization Required

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement

• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 ArgumenUparameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

Operands
1 2 Other

X X

X X

X X

X X

X X

X

X X X

Chapter 21. Machine Observation Instructions 21-53

Materialize System Object (MATSOBJ)

Operands
Exception 1 2 Other

05 authority verification terminated due to damaged object X

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to destroyed object X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit \.J
01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 21. Machine Observation Instructions 21-54

Machine Interface Support Functions Instructions

Chapter 22. Machine Interface Support Functions Instructions

This chapter describes all instructions used for machine interface support functions. These
instructions are arranged in alphabetic order. For an alphabetic summary of all the instructions. see
Appendix A,

Materialize Machine Attributes (MATMATR)
Materialize Machine Data (MATMDATA)

© COPYright I BM Corp. 1991, 1993

22-4
22-30

22-1

Machine Interface Support Functions Instructions

!..J

Chapter 22. Machine Interface Support Functions Instructions 22-2

Machine Interface Support Functions Instructions

"Instruction Summary."

Chapter 22. Machine Interface Support Functions Instructions 22-3

Materialize Machine Attributes (MATMATR)

Materialize Machine Attributes (MATMATR)

Op Code (Hex)
0636

Operand 1
Materialization

Operand 1: Space pointer.

Operand 2
Machine attributes

Operand 2: Character(2) scalar or Space pointer.

IlEaccess ---,

MATMATRl (
materialization

var machine attributes
)

OR

MATMATR2 (
materialization
machine attributes

space pOinter;
aggregate

space pOinter;
space pointer

Warning: The following information is subject to change from release to release. Use it with caution
and be prepared to adjust for changes with each new release.

Description: The instruction makes available the unique values of machine attributes. The values of '. '\
various machine attributes are placed in the receiver. ..."

Operand 2 specifies options for the type of information to be materialized. Operand 2 is specified as
an attribute selection value (Character(2) scalar).

The machine attributes are divided into nine groups. Byte a of the attribute selection operand specifies
from which group the machine attributes are to be materialized. Byte 1 of the options operand selects
a specific subset of that group of machine attributes.

Operand 1 specifies a space pointer to the area where the materialization is to be placed. The format
of the materialization is as follows:

• Materialization size specification

Number of bytes provided by the user

Number of bytes available for materialization

• Attribute specification
(as defined by the attribute selection)

Char(8)

8in(4)

8in(4)

Char(·)

The first 4 bytes of the materialization (operand 1) identify the total number of bytes provided for use
use by the instruction. This value is supplied as input to the instruction and is not modified by the
instruction. A value of less than 8 causes the materialization length (hex 3803) exception to be sig­
naled.

The second 4 bytes of the materialization identify the total number of bytes available to be material-
ized. The instruction materializes as many bytes as can be contained in the area specified as the .~
receiver. If the byte are identified by the receiver is greater than that required to contain the informa-
tion requested for materialization, then the excess bytes are unchanged. No exceptions (other than the

Chapter 22. Machine Interface Support Functions Instructions 22-4

Materialize Machine Attributes (MATMATR)

materialization length (hex 3803) exception) are signaled in the event that the receiver contains insuffi­
cient area for the materialization.

The machine attributes selected by operand 2 are materialized according to the following selection
values:

Selection Attribute
Value Description

Hex 0004 Machine serial identification

The machine serial identification that is materialized is an 8-byte character field that con­
tains the unique machine identifier.

Hex 0100 Time-of-day clock

The time-of-day clock provides a consistent measure of elapsed time. The maximum
elapsed time the clock can indicate is approximately 143 years.

The time-of-day clock is a 64-bit unsigned binary counter with the following format:

0 41 42 reserved 63

The bit positions of the ciock are numbered from 0 to 63.

The clock is incremented by adding a 1 in bit position 41 every 1024 microseconds. Bit posi­
tions 42 through 63 are used by the machine and have no special meaning to the user. Note
that these bits (42-63) may contain either binary 1's or binary a's.

The maximum unsigned binary value that the time of day clock ca!1 be modified to contain is
hex DFFFFFFFFFFFFFFF.

Hex 0104 Primary Initial process definition template

The primary initial process definition template is used by the machine to perform an initial
process load.

No check is made and no exception is signaled if the values in the template are invalid;
however. the next initial process load will not be successful.

Hex 0108 Machine initialization status record

The MISR (machine initialization status record) is used to report the status of the machine.
The status is initially collected at IPL and then updated as system status changes.

The materialize format of the MISR is as follows:

• MISR status

Restart 1M PL

a = IMPL was not initiated by the Terminate instruction
1 = IMPL was initiated by the Terminate instruction

Manual power on

o = Power on not due to Manual power on
1 = Manual power on occurred

Timed power on

a = Power on not due to Timed power on
1 = Timed power on occurred

Remote power on

o = Power on not due to Remote power on
1 = Remote power on occurred

Auto-power restart power on

Char(8)

Bit a

Bit 1

Bit 2

Bit 3

Bit 4

Chapter 22. Machine Interface Support Functions Instructions 22-5

Materialize Machine Attributes (MATMATR)

o = Power on not due to Auto-power restart power on
1 = Auto-power restart power on occurred

Uninterrupted power supply
(U PS) battery low

o = UPS battery not low
1 = UPS battery low

Uninterrupted power supply
(UPS) bypass active

o = UPS bypass not active
1 = UPS bypass active

Utility power failed, running on UPS

o = Running on utility power
1 = Running on UPS

Uninterrupted power supply installed

o = UPS not installed
1 = UPS installed, ready for use

Operation Panel battery failed

o = Operation Panel battery good
1 = Operation Panel battery failed

Operation Panel self test failed

o = Operation Panel self test successfu I
1 = Operation Panel self test failed

Console status

o = Console is operative
1 = Console is inoperative

Console state

o = Console is not ready
1 = Console is ready

OS Level mismatch

o = Machine and OS version levels match.
1 = Machine and OS version levels mismatch

Reserved

Primary console status

o = Not using Primary console
1 = Using Primary console

Reserved

ASCII console status

o = Not using ASCII console
1 = Using ASCII console

Termination status

o = Normal (TERMMPR)
1 = Abnormal

Duplicate user profile

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

Bit 16

Bit 17

Bit 18

Bit 19

Chapter 22. Machine Interface Support Functions Instructions 22-6

Materialize Machine Attributes (MATMATR)

(AIPL only)

o = Not duplicate, new user profile created
. 1 = Duplicate found and used by AIPL

Damaged user profile
(AIPL only)

o = Not damaged, user profile used
1 = Damaged user profile, profile deleted and recreated

Damaged machine context

o = Not damaged
1 = Machine context damaged

Object recovery list status

o = Complete
1 = Incomplete

Recovery phase completion

o = Complete
1 = Incomplete

Most recent machine termination

o = Objects ensured

Bit 20

Bit 21

Bit 22

Bit 23

Bit 24

1 = Object(s) not ensured at most recent machine termination

Last MISR reset Bit 25

o = Object(s) ensured on every machine termination
1 = Object(s) not ensured on every machine termination since last MISR reset

Reserved

IPL Mode
(can be materialized and modified)

00 = DST and BOSS in unattended mode
10 = DST and BOSS is attended mode

Service Processor power on

o = Not first service processor power on
1 = First service processor power on

MISR damage

o = MISR not damaged
1 = MISR damaged, information reset to default values

Auto keylock position

o = Keylock not in auto position
1 = Keylock in auto position

Normal keylock position

o = Keylock not in normal position
1 = Keylock in normal position

Manual keylock position

o = Keylock not in manual position
1 = Keylock in manual position

Secure key lock position

Bit 26-27

Bit 28-29

Bit 30

Bit 31

Bit 32

Bit 33

Bit 34

Bit 35

Chapter 22. Machine Interface Support Functions Instructions 22-7

Materialize Machine Attributes (MATMATR)

o = Keylock not in secure position
1 = Keylock in secure position

. Tower two presence on 9404
system unit

o = Tower two not present
1 = Tower two present

Battery status for tower one
on 9404 system unit

o = Battery good for tower one
1 = Battery low for tower one

Battery status for tower
two on 9404

o = Battery good for tower two
1 = Battery low for tower two

Termination due to utility power
failure and user specified delay time exceeded

o = Delay time not exceeded
1 = Utility failure and delay time exceeded

Termination due to utility power
failure and battery low

o = Battery not low
1 = Utility failure and batter.y low

Termination due to forced
microcode completion

o = Not forced microcode completion
1 = Termination due to forced microcode completion

Auto power restart disabled
due to utility failure

o = Auto power restart not disabled
1 = Auto power restart disabled

Reserved

Spread the Operating System

o = Do not spread the Operating System
1 = Spread the Operating System

Install from Disk/Tape

o = Install from tape
1 = Install from disk

Use Primary/Alternate PDT

o = Use Primary Process Definition Template
1 = Use Alternate Process Definition Template

Time/Date source

o = Time/Date is accurate
1 = Time/Date default value used

• Install Type

Bit 36

Bit 37

Bit 38

Bit 39

Bit 40

Bit 41

Bit 42

Bit 43

Bit 44

Bit 45

Bit 46

Bit 47

Bin(2)

Chapter 22. Machine Interface Support Functions Instructions 22-8

Materialize Machine Attributes (MATMATR)

o = Normal I PL
1 = Manual Install
2 = Automated Install

• Number of damaged main
storage units

• National language index
(Can be materialized and modified)

• Number of entries in object
recovery list

• Tape sequence number for an AIPL

• Tape volume number for an AIPL

• Address of object recovery list

• Process control space created
as the result of IPL or AIPL

• Queue Space object created
as the result of an IPL or AIPL

• Reserved

• Console Information list
(Array of five entries each 80 bytes in size)
(1st= Primary, 2-5=Reserved)

Console entry
- Display LUD

Display CD
Controller model
Controller type
Controller serial number
Controller object data

• Direct select address
lOP bus number
lOP card,
board structure

- lOP card
number

- lOP board
number

• Logical bus address
• lOP unit address
• Resource Identifier
• Reserved

- Work station object data
• Direct select address

lOP bus number

lOP card
board structure

- lOP card
number

- lOP board
number

• Logical bus address
• Device unit address

Bin(2)

Bin(2)

Bin(4)

Bin(4)

Bin(4)

Space pointer

System pointer

System pointer

Char(16)

Char(400)

Char(80)
System pointer
System pointer
Char(4)
Char(4)
Char(4)
Char(12)
Char(2)
Char(1)
Char(1)

Bits 0-3

Bits 4-7

Char(1)
Char(2)
Char(4)
Char(3)
Char(12)
Char(2)
Char(1)

Char(1)

Bits 0-3

Bits 4-7

Char(1)
Char(2)

Chapter 22. Machine Interface Support Functions Instructions 22-9

Materialize Machine Attributes (MATMATR)

- Port
- Switch Setting

• Reserved
- Device type
- Device model
- Flags

• Information valid in entry
• Reserved

- Console keyboard type
- Console extended

keyboard type

- Reserved

• Load/Dump Tape device
information list
(Array of two entries each 48 bytes in size)

(1st= LUD information, 2nd =CD information)

Load/Dump tape device entry
- Reserved
- LUD/CD information

• Direct select address
lOP bus number

lOP card
board structure

- lOP card
number

- lOP board
number

• Logical bus address
• Device unit address
• Flags

Information valid in
entry
Reserved

• Reserved
- Device type
- Device model
- Reserved

• Recovery object list
(located by recovery object list pointer)

Recovery entry
(repeated for number of entries)

- Object pOinter
- Object type
- Object status

Char(1)
Char(1)
Char(7)
Char(4)
Char(4)
Char(1)
Bit a
Bit 1-7
Char(1)
Char(1)

Char(1)

Char(96)

Char(48)
Char(16)
Char(12)
Char(2)
Char(1)

Char(1)

Bits 0-3

Bits 4-7

Char(1)
Char(2)
Char(1)
Bit a

Bit 1-7
Char(6)
Char(4)
Char(4)
Char(12)

Char(-)

Char(32)

System pointer
Char(1)
Char(1S)

Restart IMPL indicates that a Terminate Machine Processing instruction was issued with the
restart option set to yes. The machine performed an IMPL without powering down the
machine.

Manual power on indicates the power switch on the operation panel was pressed to power
the system on.

Chapter 22. Machine Interface Support Functions Instructions 22-10

Materialize Machine Attributes (MATMATR)

TImed power on indicates the system was powered on using the system value specified by
the customer. This option will only be honored when the Timed power on function is
enabled.

Remote power on indicates the system was power on by a phone call placed by the cus­
tomer. This option will only be honored when the Remote power on function is enabled.

Auto-power restart indicates the system was automatically powered on after a utility failure
occurred and power was restored. This option will only be honored when the Auto-power
restart function is enabled.

UPS battery low indicates that a UPS battery is installed on the system and the battery is
low.

UPS bypass active indicates that the UPS has been bypassed. If a utility power failure
occurs, the UPS will not supply power.

UPS power failed indicates that a utility failure has occurred and the system is currently
running on battery power.

UPS installed indicates that a Uninterrupted Power Supply is installed on the system and is
available for use should the power fail.

Operation Panel battery failure indicates the battery in the operation panel has failed and the
system will not be able to determine the correct time and date upon the next IMPl. An
approximate time and date will be given to the customer for verification.

Operation Panel self test failed indicates the Operation Panel is possibly bad and some func­
tion concerning the operation panel may not work correctly.

Console status indicates whether the selected console is functioning normally or is inopera­
tive.

Console state indicates whether the selected console is ready to be used.

Primary console status is set when the customer selected primary console is being used as
the system console.

ASCII console status is set when a ASCII console is being used as the system console.

Termination status indicates how the previous IMPL was terminated. If normal, the Termi­
nate Machine Processing instruction successfully terminated the previous IMPl. If abnormal,
the Terminate Machine Processing instruction did not successfully terminate the previous
IMPl. This also implies that some cleanup of permanent objects may be required by the
user.

The duplicate user profile is valid only for AIPL and indicates if a user profile that is the
same as the AIPL user profile to be created already exists in the machine context. The
machine in this instance does not create the user profile for AIPL but rather uses the one
located with the same name.

Damaged AIPL user profile indicates if the currently existing user profile was detected as
damaged and a new user profile was created as specified in the AIPL user profile creation
template.

Damaged machine context indicates if damage was detected in the machine context when an
attempt was made to locate the duplicate user profile or to insert addressability to a newly
created user profile. In either case, all current addressability is removed from the machine
context, the new AIPL user profile is created, its addressability is inserted into the machine
context, and the AIPL continues. Objects whose addressability was removed may have it
reinserted using the Reclaim instruction for all objects or the Modify Addressability instruc­
tion for a specific object.

The object recovery list status field indicates that the status is complete unless one of the
following conditions is true:

Chapter 22. Machine Interface Support Functions Instructions 22-11

Materialize Machine Attributes (MATMATR)

• The recovery list was lost.

• More o~jects were to be placed in the list but there was insufficient space.

The recovery phase completion field indicates that the status is complete unless one of the
following conditions occurs:

• An object to be recovered and/or inserted into the object recovery list no longer exists .

• The objects to be recovered could not be determined due to loss of internal machine
indicators that specified which objects were in use at machine termination.

The most recent machine termination field is set to 0 unless all objects were not ensured at
the most recent machine termination.

The last MISR reset field is set to 0 if all objects were ensured at every machine termination
since the MISR was last reset (to 0) using the Modify Machine Attributes instruction.

IPL mode indicates which mode DST and the as will be IPLed. Either both will be attended
or both will be unattended.

Service Processor power on indicates if this is the first time the service processor card has
been powered on.

MISR Damage indicates if the machine detected that the MISR was damaged and it's con­
tents has to be reset to the default system values.

Auto keylock position indicates if the keylock was is the auto position on the operation panel
on the most recent IMPL.

Normal keylock position indicates if the keylock was is the normal position on the operation
panel on the most recent IMPL.

Manual keylock position indicates if the keylock was is the manual position on the operation "
panel on the most recent IMPL. "'"

Secure keylock position indicates if the keylock was is the secure position on the operation
panel on the most recent IMPL.

Tower two present on 9404 system unit indicates if the system has second tower when the
system is a 9404 system unit.

Battery status for tower one on 9404 system unit indicates if a UPS battery is installed on the
first tower of a 9404 system unit. the battery is low.

Battery status for tower two on 9404 system unit indicates if a UPS battery is installed on the
second tower of a 9404 system unit. the battery is low.

Termination due to utility power failure and user specified delay time exceeded indicates the
last termination of the system was due to a utility power failure and the system value speci­
fied by the delay time had elapsed so the system was terminated.

Termination due to utility power failure and battery low indicates the last termination of the
system was due to a utility power failure and while running on battery power the voltage
dropped below a level to continue to power the system so the system was terminated.

Termination due to forced microcode completion indicates that the system when down by the
user selecting power down from DST or the delayed power off switch was pressed on the
operation panel.

Auto power restart disabled due to a utility failure indicates the microcode disabled the auto
power restart option when a condition was detected that would prevent the auto power
restart to function properly.

Reset utility power bits indicates that the power bits should be reset. This bit is only looked
at when modifying the MISR.

Chapter 22. Machine Interface Support Functions Instructions 22-12

Materialize Machine Attributes (MATMATR)

Spread the operating system. indicates to spread the operating system on the next install
instead of overlaying the existing objects. This bit is set to spread after a new dasd has
been a_dded.

Install from Disk/Tape indicates when performing an install to use the initial OS/400 install
program off of disk or to load the initial OS/400 install program off of tape.

Primary/Alternate Process Definition Template indicates on IPL to initiate the initial OS/400
process using the Primary or the Alternate Process Definition Template.

Time/Date source informs OS/400 if the machine was able to determine the correct time/date
or if it was forced to use the default time/date.

Install type is set indicate whether an IPL or install was performed and if an install was per­
formed. what type of install occurred.

The number of damaged main storage transfer blocks field indicates the number of main
storage transfer blocks that were detected as damaged by the machine during IMPL.

National language index is the value used to index to the the National language array kept
by the system.

The number of entries in the object recovery list field indicates how many objects are listed
in the space located by the address of object recovery list field.

The tape sequence number is set by the machine to allow the as to perform their install.

The tape volume number is set by the machine to allow the OS to perform their install.

The address of object recovery list field contains a space pointer to the list of the potentially
damaged objects that were identified during machine initialization. The number of such
objects is indicated by the number of entries in the object recovery list field.

The process control space created as a result of IPL or AIPL is identified by a system pointer
returned in this field.

The Queue Space object pointer addresses the queue space object that was implicitly
created by the machine for use by the inital process. This is created for both an IPL or an
AIPL. During IPL or AIPL processing. before the queue space is created by the machine. the
machine will attempt to destroy the queue space addressed by the MISR (this will be the
queue space used on the previous IPL or AIPL). If the destroy fails (the MI user may have
destroyed it sometime in the previous IPL). no error is reported and the IPL or AIPL proc­
essing continues with the creation of the new queue space. The queue space is a perma­
nent object. owned by the user profile used to initiate the initial process and is not
addressed by a context.

The console information list contains information for each console device as obtained from
the Resource Configuration Record or set by the customer.

The Load/Dump tape device information is information needed to build a Logical Unit
Description and Controller Description object for the device used to install the operating
system.

The recovery object list identifies objects that required some activity performed on the
object(s) during IPL. The list is located by the recovery object list pointer.

Each entry in the list has the following general format:

• Object

• Object type

• Object status

General status

- Damaged

System pointer

Char(1)

Char(1S)

Char(2)

Bit a

Chapter 22. Machine Interface Support Functions Instructions 22-13

Materialize Machine Attributes (MATMATR)

o = Object not damaged
1 = Object damaged

Reserved

- Suspended

o = Object not suspended
1 = Object suspended

Partially damaged

o = Object not partially damaged
1 = Object partially damaged

- Journal synchronization

o = Synchronization complete or not necessary
1 = Synchronization failure

- Reserved

- IPL detected damage

Bit 1

Bit 2

Bit 3

Bit 4

Bits 5-6

Bit 7

a = Any indicated damage was not detected by directory recovery
1 = Indicated damage was detected by directory recovery

- Reserved

Object specific status

Bits 8-15

Char(13)

(The format for the IPL recovery status for this portion of the object recovery list
entries is different for each object type. A description of each follows by object
type.)

• Commit block status

Decommit

Char(2)

Bit a
a = The journal has successfully been read backwards until either a start commit or

a decommit entry was found. An attempt has been made to decommit all the
data base changes but the attempt may not have been successful if the data
space is damaged or if the function check flag is on.

= The journal has not successfully been read backwards to a start commit or
decommit entry and all the changes have not been decommitted.

Journal read errors

a = No journal read errors
1 = Journal read errors occurred during decommit

Journal write errors

a = No journal write errors
1 = Journal write errors occurred during decommit

Partial damage to data space

o = No partial damage encountered
1 = Partial damage encountered on 1 or more data spaces

Damage to data space

o = No damage encountered

1 = Damage encountered on 1 or more data spaces

Function check

0= No function check encountered

Bit 1

Bit 2

Bit 4

Bit 5

Chapter 22. Machine Interface Support Functions Instructions 22-14

Materialize Machine Attributes (MATMATR)

1 = Function check encountered

Reserved

Data space during IMPL

a = Data space is synchronized with the journal

Bit 6

Bit 7

1 = Data space is not synchronized with the journal. All changes may not be decom­
mitted.

Decommit reason code

000 = Decommit not performed
001 = Decommit at IPL
010 = Process termination
100 = Decommit instruction (all other values reserved)

System initiated MI DECOMMIT

a = Operating system did not initiate the decommit
1 = Operating system did initiate the decommit

Reserved

Reserved (binary 0)

Start commit journal

Sequence number

• Data space

Status

- Indexes detached from
data space

o = Indexes remain attached
1 = All indexes detached from this data space

Reserved (binary 0)

Reserved (binary 0)

Ordinal entry number of
last entry

• Data space index

Status

- Invalidated

o = Not invalidated
1 = Invalidated

- Recovered by journal

o = Not recovered
1 = Recovered

- Reserved (binary 0)

.Reserved (binary 0)

• Journal port

Status

- Synchronization status

a = All objects synchronized

Bits 8-10

Bit 11

Bits 12-15

Char(7)

Bin(4)

Char(13)

Bit 0

Bits 1-15

Char(7)

Bin(4)

Char(13)

Bit 0

Bit 1

Bits 2-15

Char(11)

Char(13)

Bit 0

Chapter 22. Machine Interface Support Functions Instructions 22-15

Materialize Machine Attributes (MATMATR)

1 = Not all objects synchronized

- Reserved

Reserved

Number of journal spaces
attached

• Journal space

Status

- Journal space usable

o = Journal space is usable
1 = Journal space is not usable

- Threshold reached

0= Threshold has not been reached
1 = Threshold has been reached

Reserved

Reserved

First journal sequence number

Last journal sequence number

Bits 1-7

Char(10)

Bin(2)

Char(13)

Bit 0

Bit 1

Bits 2-7

Char(4)

Bin(4)

.Bin(4)

All objects-Any damage detected during IPL is reported in the general status information. If
this damage is detected as a result of special processing performed during directory rebuild,
it is indicated in the IPL detected damage field. A journal synchronization failure indicates i .~
the designated object was not made current with respect to the journal. Subsequent ..."
attempts to apply journal changes from the journal to this object will not be allowed.

Commit block-All commit blocks that were attached to an active process during the previous
IPL are interrogated at the following IPL. The system attempts to decommit any uncom-
mitted changes referenced through these commit blocks. The results of this attempted
decommit is reported in the status field. The system also returns the journal entry sequence
number of the start commit journal entry (hex 0500) last created for this commit block if there
were any uncommitted changes. If the number is not returned, a value of binary zero is
returned.

Data space-If object damage was detected during IPL, the object is marked as damaged,
damage is indicated in the object status field, and an event is signaled. In this case, the
highest ordinal entry number is O. In certain situations, the data space indexes over the
data space become detached and therefore must be recreated. If the object is not damaged,
the data space is usable and the highest ordinal entry number is set. The ordinal entry
number of last entry indicates the last entry in the data space. Updates are not guaranteed.
Updates may be out of sequence or partially applied and must be verified by the user for
correctness.

Data space index-If object damage was detected during IPL, the object is marked as
damaged, damage is indicated in the object status field, and an event is signaled. If the
object was invalidated because changes were made in a data space addressed by the data
space index, the data space index is included in the list and marked as invalidated. The
ASP number of the data space index is indicated in the list. The associated data space is
also included elsewhere in the object recovery list. Only damaged or invalidated data space
indexes are included in the list.

Journal port-Each journal port in the system is interrogated at IPL. The status field contains
the result of this checking and also the result of the attempt to synchronize the objects (if

Chapter 22. Machine Interface Support Functions Instructions 22-16

. L

Materialize Machine Attributes (MATMATR)

necessary) being journaled through the indicated journal port. A default journal port is spec­
ified when created. and indicates the port is to be used by the machine in implicitly jour­
naling .objects. The system also returns the number of journal spaces attached to the
journal port after IPL is complete.

Journal space-Each journal space that was attached to a journal port or used by the system
to synchronize an object which was being journaled at the time of the previous machine ter­
mination is interrogated during IPL. The status field reports the results of this interrogation
and synchronization use. Journal spaces are referenced by the object recovery list if this
IPL was preceded by an abnormal failure, some unexpected condition was discovered during
the IPL, or the journal space is a default journal space. The first journal sequence number
on the journal space is returned. The last usable entry on the journal space is also identi­
fied. If the journal space is damaged, these fields will contain zeroes.

Hex 0118 Uninterruptible power supply delay time and calculated delay time. Note: The UPS delay
time is meaningful only if a UPS is installed.

The format of the template for the uninterruptible power supply delay time (including the
8-byte prefix) is as follows:

• Number of bytes available

• Number of bytes provided

• UPS Delay time

• Calculated UPS Delay time

Bin(4)

Bin(4)

Bin(4)

Bin(4)

The delay time interval is the amount of time the system waits for the return of utility
power. If a utility power failure occurs, the system will continue operating on the UPS
supplied power. If utility power does not return within the user specified delay time, the
system will perform a quick power down. The delay time interval is set by the customer.
The calculated delay time is determined by the amount of main storage and DASD that
exists on the system. Both values are in seconds.

Hex 012C Vital Product Data

The VPD (vital product data) is a template that contains information for memory card VPD,
processor VPD, columbia/Colomis VPD, central electronic complex (CEC) VPD and the panel
VPD.

The materialize format of the VPD (Including the 8-byte prefix) is as follows:

• Number of bytes available Bin(4)

• Number of bytes provided Bin(4)

• Reserved Char(8)

• System VPD location Char(48)

Offset to memory VPD Bin(4)

Offset to Processor VPD Bin(4)

Offset to Columbia/Colomis Bin(4)

Offset to CEC VPD Bin(4)

Offset to Panel VPD Bin(4)

Reserved Char(28)

• Main store memory VPD Char(1040)

Usable memory installed Bin(2)

(In megabytes)

Chapter 22. Machine Interface Support Functions Instructions 22-17

- Minimum memory required

(In megabytes)

Reserved

Memory array

(An array of 16, 64-byte entries)

- Memory status

• Memory card status

• Invalid memory card

• Unrecognized card

• Memory not supported

• Card/model mismatch

• Interface error

• Refresh error

• Addressing error

• 1st Nonterminating FRU

• 2nd Nonterminating FRU

• 3rd Nonterminating FRU

• Reserved

- Memory card size

(In megabytes)

- Number of CCINS for this card

- Array of CCINS for this card

(Array of 8, 4-byte entries)

- Physical slot # of this card

- Reserved

• Processor VPD

(An array of 16, 80-byte entries)

Processor status

- Processor card status

- Reserved

Processor CCIN number

Processor model number

Processor part number

Processor serial number

Processor manufacturing ID

Processor load identifier

Reserved

• Columbia/Colomis VPD

Materialize Machine Attributes (MATMATR)

Bin(2)

Char(12)

Char(1024)

Char(2)

Bit(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bits 10-15

Bin(2)

Char(1)

Char(32)

Char(1)

Char(26)

Char(1280)

Char(4)

Bits 0-1

Bits 2-31

Char(4)

Char(4)

Char(12)

Char(4)

Char(4)

Char(4)

CHAR(44)

Char(32)

Chapter 22. Machine Interface Support Functions Instructions 22-18

~

Materialize Machine Attributes (MATMATR)

(An array of 2. 54-byte entries)

(1st entry is Columbia. 2nd is Colomis)

Card status Char(4)

- Card usability status Bits 0-1

- Reserved Bits 2-31

Card CCIN number Char(4)

Card model number Char(4)

Card part number Char(12)

Card serial number Char(4)

Card manufacturing 10 Char(4)

Reserved Char(32)

• CEC VPO Char(32)

Status of last CEC read Char(4)

System manufacturing 10 Char(4)

System serial number Char(4)

System type Char(4)

System model number Char(4)

Pseudo model number Char(4)

System Password Char(S)

• Panel VPO Char(64)

Panel VPO entry status Char(2)

- Panel VPO is usable Bit 0

- Reserved Bits 1-15

Panel type Char(4)

Panel model number Char(3)

Panel part number Char(12)

Panel serial number Char(4)

Panel manufacturing 10 Char(4)

Alterable ReS part number Char(12)

Alterable ReS card number Char(10)

Alterable ReS 10 Char(1)

Alterable ROS flag Char(1)

Alterable ReS fix 10 Char(1)

Reserved Char(10)

The system VPD location information is used to determine where each of the separate VPO
sections start relative to the beginning of the VPO materialization template.

The usable memory Installed field contains the amount of memory (in megabytes) which the
system recognizes as being valid.

Chapter 22. Machine Interface Support Functions Instructions 22-19

Materialize Machine Attributes (MATMATR)

The minimum memory required field contains the amount of memory (in megabytes) which is
required for the system to run at optimum performance.

The remainder of the memory VPD is an array of 16, 64 byte entries which contains specific ~
information about each memory card installed on the system. The memory card status field
should be interpreted in the following way:

• 00 = Memory card usable, no failures

• 01 = Memory card usable, but has failures

• 10 = Memory card is not installed

• 11 = Memory card is not usable due to critical failure

The remaining status bits will have a value of 1 if the condition is true or a value of 0 if the
condition is not true.

The memory card size is a two byte field which will contain the number of megabytes of
main store this card represents.

The number of CCINs field for this card contains a count of the number of CCINs which were
found for this card. This number should be used to determine how many CCIN entries follow
in the array of CCINs for this card field. This is a 32 byte field which is divided into 8, 4-byte
entries. Each entry contains a CCIN number for this memory card.

The Processor VPD is an array of 16 entries, each 80 bytes in I'ength. Each entry corre­
sponds to a processor card. To determine the status of a processor card, the processor
card status field should be interpreted in the following way:

• 00 = Processor usable, no failures

• 01 = Processor usable, but has failures

• 10 = Processor is not installed

• 11 = Processor is not usable due to critical failure

The Columbia/Colomis VPD is an array of 2 entries, each 64 bytes in length. The first entry
contains information concerning the Columbia card, the second entry contains information
concerning the Colomis card. To determine the status of either card, the status field should
be interpreted in the following way:

• 00 = Card usable, no failures

• 01 = Card usable, but has failures

• 10 = Card is not installed

• 11 = Card is not usable due to critical failure

The Panel VPD mayor may not be filled in on a particular system depending upon what type
of panel is installed, to determine if the panel VPD information is valid, the panel VPD usable
bit must be 1. If this field is 0, the panel VPD information is not valid.

Hex 0130 Network Attributes
(can be materialized and modified)
(only allowed in attribute selection value)

The Network Attributes is a template that contains information concerning APPN network
attri butes.

The materialize format of the Network attributes is as follows:

• Network Data

System name

System name length

Char(190)

Char(8)

8in(2)

Chapter 22. Machine Interface Support Functions Instructions 22-20

Materialize Machine Attributes (MATMATR)

New System name

Ne~ System ~ame length

Local system network identification

Local system network identification length

End node data compression

Intermediate node data compression

Reserved

Local system control point name

Local system control point name length

Reserved

Default local location name

Default local location name length

Default mode name

Default mode name length

Maximum number of intermediate sessions

Maximum number of conversations per APPN LUD

Local system node type

Reserved

Route addition resistance

List of network server network ID's
(An array of five entries each 8 bytes in size)

List of network server network 10 lengths
(An array of five entries each 2 bytes in size)

List of network server control point names
(An array of five entries each 8 bytes in size)

List of network server control point name lengths
(An array of five entries each 2 bytes in size)

Alert flags

- Alert priority focal point

- Alert default focal point

- Reserved

Network Attribute Flags
(Materializable only)

- Network attributes

- Pending system name
system name

- Reserved

Char(8)

Bi n(2)

Char(8)

Bin(2)

Bin(4)

Bin(4)

Char(2)

Char(8)

Bin(2)

Char(10)

Char(8)

Bin(2)

Char(8)

Bin(2)

Bin(2)

Bin(2)

Char(1)

Char(1)

Bin(2)

Char(40)

Char(10)

Char(40)

Char(10)

Char(1)

Bit 0

Bits 1-7

Bit(6)

Char(1)

Bit 0 initialized

Bits 1 made current

8it(2-7)

The machine system name is defaulted to the system serial number with a'S' in the first
position. Thereafter, it may be modified to any value of 1 through 8 characters with the first
character alphabetic.

Chapter 22. Machine Interface Support Functions Instructions 22-21

Materialize Machine Attributes (MATMATR)

The machine system name length is kept to determine how long the system name is. The
default value for the length is eight.

The new system name is a tentative new value chosen for the machine system name. This ~
value will become the machine system name at the next IPl. The initial value is null and the
syntax rules are the same as those for the machine system name.

The new system name length is kept to determine how long the new system name is. The
default value for the length is zero.

The local system network identification default is 'APPN' and the default local system
network identification length is four.

The end node data compression field controls whether the machine will allow data com­
pression when it's an end node. This value is used when the mode description is equal to
*NETATR. Ifone of the values listed in the table below is not specifed, then the value speci­
fied is equal to the maximum line speed that data should be compressed. Any configuration
with a line speed slower than what is specified here will cause the data to be compressed.
Valid values range from 1 bits-per-second through 2147483647.

o = *NONE (default)
No data compression will be done.

-1 = *REQUEST
Data compression is requested on the session.

-2 = *ALLOW
Data compression is allowed, but not requested for this session.

-3 = *REQUIRE
Data compression is required on this session.

The intermediate node data compression field controls whether data compression will be
requested by the machine when it's an intermediate node. This value is used when the
mode description is equal to *NETATR. If one of the values listed in the table below is not
specifed, then the value specified is equal to the maximum line speed that data should be
compressed. Any configuration with a line speed slower than what is specified here will
cause the data to be compressed. Valid values range from 1 bits-per-second through
2147483647.

o = *NONE (default)
No data compression will be done.

-1 = '"REQUEST
Data compression is requested on the session.

The local system control point name default is the system serial number with a character'S'
in the first position and the default control point name length is eight.

The local location name default is the system serial number with a character'S' in the first
position and the default local location name length is eight.

The mode name default is all blanks and the default mode length is eight.

The maximum number of intermediate sessions default is 200.

The maximum number of conversations per APPN LUD is 64.

The local system node type default is hex 01.

The route addition resistance default is 128.

All entries of the network server network IDs are defaulted to blanks with all entries of the
network server network IDs lengths defaulting to zero.

All entries of the network server control point names are defaulted to blanks with all entries
of the network server control point name lengths defaulting to zero.

Chapter 22. Machine Interface Support Functions Instructions 22-22

Materialize Machine Attributes (MATMATR)

Hex 0134 Date Format

The date format is the format is which the date will be presented to the customer. The pos­
sible values are YMD. MDY, DMY. JUL where Y = Year, M = Month, D = Day and JUL =
Julian.

The format of the template for date format is as follows:

• Number of bytes available Bin(4)

• Number of bytes provided Bin(4)

• Date Format Char(3)

Hex 0138 Leap Year Adjustment

The leap year adjustment is added to the leap year calculations to determine the year in
which the leap should occur. The valid values are 0, 1, 2, 3.

The format of the template for leap year adjustment is as follows:

• Number of bytes available Bin(4)

• Number of bytes provided Bin(4)

• Leap year adjustment

Hex 013C Timed Power On

Bin(2)

Hex 0140

The timed power on is the time and date at which the system should automatically power on
if it is not already powered on.

The format of the template for timed power on is as follows:

• Number of bytes available Bin(4)

• Number of bytes provided Bin(4)

• Minute Bin(2)

• Hour Bin(2)

• Day Bin(2)

• Month Bin(2)

• Year Bin(2)

Timed Power On Enable/Disable

The timed power on enable/disable allows the timed power on function to be queried to
determined if the function is enabled or disabled.

The format of the template for timed power on enable/disable is as follows:

• Number of bytes available'

• Number of bytes provided

• Enable/Disable

Hex BOOO-indicates timed power on is enabled

Hex ODOO-indicates timed power on is disabled

Bin(4)

Bin(4)

Bin(2)

Hex 0144 Remote Power On Enable/Disable

The remote power on enable/disable allows the remote power on function to be queried to
determined if the function is enabled or disabled.

The format of the template for remote power on enable/disable is as follows:

• Number of bytes available Bin(4)

Chapter 22. Machine Interface Support Functions Instructions 22-23

Materialize Machine Attributes (MATMATR)

• Number of bytes provided

• Enable/Disable

Hex 8000-indicates remote power on is enabled

Hex OOOO-indicates remote power on is disabled

Hex 0148 Auto power restart Enable/Disable

Bin(4)

Bin(2)

The auto power restart enable/disable allows the auto power restart function to be queried
to determined if the function is enabled or disabled.

The format of the template for auto power restart enable/disable is as follows:

• Number of bytes available

• Number of bytes provided

• Enable/Disable

Hex 8000-indicates auto power restart is enabled

Hex OOOO-indicates auto power restart is disabled

Hex 014C Date separator

Bin(4)

Bin(4)

Bin(2)

The date separator is used when the date is presented to the customer. The valid values
are a slash(/), dash(-), period(.), comma(,) and a blank().

The format of the template for the date separator is as follows:

• Number of bytes available

• Number of bytes provided

• Date Separator

Hex 0164 Uninterruptible power supply type

Note: The UPS type is meaningful only if a UPS is installed.

'Bin(4)

Bin(4)

Char(1)

The uninterruptible power supply type option allows the MI user to tell the machine how
much of the system is powered by a UPS (ie, what type of UPS is installed). A full UPS will
power all racks in the system. A mini UPS will power the racks containing the CEC and the
load source.

The format of the template for UPS Type is as follows:

• Number of bytes available

• Number of bytes provided

• UPS Type

Bin(4)

Bin(4)

Bin(2)

Hex OOOO-indicates a full UPS is installed (all racks have a UPS installed)

Hex 8000-indicates a mini UPS is installed (only the minimum number of racks are
powered)

Hex 0168 Panel Status Request

The Panel Status Request option allows BOSS to determine what current status of the oper­
ations panel.

The format of the template for Panel Status Request is as follows (including the usual 8-byte
prefix):

• Number of bytes available

• Number of bytes provided

• Current IPL type

Bin(4)

Bin(4)

Char(1)

Chapter 22. Machine Interface Support Functions Instructions 22-24

• Panel status

Uninterrupted power supply
installed

o = UPS not installed
1 = UPS installed, ready for use

Utility power failed,
running on UPS

o = Running on utility power
1 = Running on UPS

Uninterrupted power supply
(U PS) bypass active

a = UPS bypass not active
1 = UPS bypass active

Uninterrupted power supply
(UPS) battery low

o = UPS battery not low
1 = UPS battery low

Auto keylock position

o = Keylock not in auto position
1 = Keylock in auto position

Normal keylock position

a = Keylock not in normal position
1 = Keylock in normal position

Manual keylock position

a = Keylock not in manual position
1 = Keylock in manual position

Secure keylock position

a = Keylock not in secure position
1 = Keylock in secure position

Reserved

• Reserved

• Most recent IPL type

Materialize Machine Attributes (MATMATR)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bits 8-15

Char(S)

Char(1)

The current IPL type is the state of the I PL type at the operations panel. Possible values are
A, B, C, D.

UPS installed indicates that a Uninterrupted Power Supply is installed on the system and is
available for use should the power fail.

UPS power failed indicates that a utility failure has occurred and the system is currently,
running on battery power.

UPS bypass active indicates that the UPS has been bypassed. If a utility power failure
occurs, the UPS will not supply power.

UPS battery low indicates that a UPS battery is installed on the system and the battery is
low.

Auto keylock position indicates that the keylock is currently in the auto position on the oper­
ation panel.

Chapter 22. Machine Interface Support Functions Instructions 22-25

Materialize Machine Attributes (MATMATR)

Normal keylock position indicates that the keylock is currently in the normal position on the
operation panel.

Manual keylock position indicates that the keylock is currently in the manual position on the
operation panel.

Secure keylock position indicates that the keylock is currently in the secure position on the
operation panel.

The most recent IPL type is the type of IPL that was performed on the most recent IPL. Pos­
sible values are A. B. C. D.

Hex 016C Extended machine initialization status record

The XMISR (extended machine initialization status record) is used to report the status of the
machine.

The materialize format of the XMISR is as follows:

• Number of bytes available

• Number of bytes provided

• Save storage status

Checksumming status

o = Checksumming was not stopped
1 = Checksumming was stopped

Completion status

o = Save storage did not complete
1 = Save storage completed

System restored status

o = Save storage did not restore the system
1 = Save storage restored the system

Save storage attempted

o = Save storage not attempted
1 = Save storage was attempted

Unreadable sectors

o = Unreadable sectors were not found
1 = Unreadable sectors were found during save operation

Check for active files on
save storage media

o = Do not check for active files on save storage media
1 = Check for active files on save storage media

Reserved

• Save storage information

Tape device information
- Number of tape device

entries

• Tape device address

• (Array of four entries, each 4 bytes in size)

Tape device lOP
address

Bin(4)

Bin(4)

Char(4)

Bit 0

.Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bits 6-31

Char(118)

Char(18)
UBin(2)

Char(16)

Char(2)

Chapter 22. Machine Interface Support Functions Instructions 22-26

Materialize Machine Attributes (MATMATR)

- Tape device
device address

- Tape volume names
structure

• Number of tape
volume entries

• Tape volume names
• (Array of ten entries, each 6 bytes in size)

- Tape expiration date
- Bad sector count
- Date from save tape
- Time last successful

save started
- Reserved

• Install tape Volume ID

• IPL sequence number ID

• Physical address of tape device used
for last D-type IPL

Hex 0170 Alternate initial process definition template

Char(2)

Char(62)

UBin(2)

Char(60)

Char(6)
Char(4)
Char(6)
Char(8)

Char(14)

Char(6)

Bin(4)

Char(4)

The alternate initial process definition template is used by the machine when performing an
automated install,

No check is made -and no exception is signaled if the values in the template are invalid;
however, the next automated install will not be successful,

Hex 0178 Hardware storage protection state

Note: Hardware storage protection is meaningful only on version 2 hardware or later.

The hardware storage protection state indicates if the machine will honor the protection
state of objects on the system. When it is active, references by user state programs to pro­
tected objects will result in object access denied (hex 4401) exceptions. When hardware
storage protection is inactive, or when running on version 1 hardware, accesses of protected
objects by user state programs will go undetected.

The format of the template for hardware storage protection state option is as follows
(including the usual 8-byte prefix):

• Number of bytes available

• Number of bytes provided

• Hardware storage protection state

Hex DODO-indicates hardware storage protection is inactive

Hex BODO-indicates hardware storage protection is active

Hex 0180 Time separator

Bin(4)

Bin(4)

Bin(2)

The time separator is used when the time is presented to the customer. The valid values
are a colon(:), period(.), comma(,) and a blank().

The format of the template for the time separator is as follows:

• Number of bytes available

• Number of bytes provided

• Time separator

Bin(4)

Bin(4)

Char(1)

Chapter 22. Machine Interface Support Functions Instructions 22-27

Materialize Machine Attributes (MATMATR)

Hex 0184 Software Error Logging

The softwa~e error logging machine attribute is used to allow the MI user to determine
whether or not software error logging is active for the machine

The format of the template for software error logging is as follows:

• Number of bytes available

• Number of bytes provided

• Software error logging

Hex 8000-indicates software error logging is active

Hex OOOO-indicates software error logging is not active

Bin(4)

Bin(4)

Bin(2)

Hex 0188 Machine task termination event control option
(can be materialized and modified).

The machine task termination event option controls if the machine will signal a machine
wide event when machine tasks terminate. The default, which is established every IPL, is to
not signal machine task termination events. The machine task termination event id is hex
0016,05,01.

The format of the template for the machine task termination event option is as follows:

• Number of bytes available

• Number of bytes provided

• vue task termination event option

Bin(4)

Bin(4)

'Bin(2)

Hex 8000-indicates machine task termination events will be signaled.

Hex OOOO-indicates machine task terminations events will not be signaled.

Limitations: Data-pointer-defined scalars are not allowed as a primary operand for this instruction.
An invalid operand type exception is signaled if this occurs.

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

OA service processor unable to process request X

20 Machine support

02 machine check X

03 function check X

Chapter 22. Machine Interface Support Functions Instructions 22-28

;)

Materialize Machine Attributes (MATMATR)

Operands
Exception 1 2 Other
22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

08 object compressed X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

02 scalar attributes invalid X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 22. Machine Interface Support Functions Instructions 22-29

Materialize Machine Data (MATMDATA)

Materialize Machine Data (MATMDATA)

Op Code (Hex)
0522

Operand 1
Receiver

Operand 2
Materialization
options

Operand 1: Character variable scalar (fixed length)

Operand 2: Character(2) or unsigned binary(2) scalar or immediate (fixed length)

ILEaccess ---,
MATMDATA (

OR

MATTOD

receiver
materialization_options

var time_of_day aggregate

space pOinter;
aggregate

Description: This instruction makes available the unique values of machine data. The values of
various machine data are placed in the receiver.

Operand 2 is a 2-byte value. The value of operand 2 determines which machine data are materialized.
Operand 2 is restricted to a constant character or unsigned binary scalar or an immediate value.

• Materialization options

Hex 0000 = Materialize time of day clock
Hex 0001 = Materialize system parameter integrity validation flag
Hex 0002 through FFFF Reserved

Char(2)

Operand 1 specifies a receiver into which the materialized data is placed. It must specify a character
scalar with a minimum length which is dependent upon the materialization option specified for operand
2. The reciever may be substringed. The start position of the substring may be a variable. However,
the length of the substring must be an immediate or constant. If the length specified for operand 1 is
less than the required minimum, an exception is signaled. Only the bytes up to the required minimum
length are used. Any excess bytes are ignored.

The data placed into the receiver differs depending upon the materialization option specified. The fol­
lowing descriptions detail the formats of the optional materializations.

• Hex 0000 = MaterialiZe time of day clock
minimum receiver length is 8

Time-of-day clock Char(8)

The time-of-day clock provides a consistent measure of elapsed time. The maximum elapsed time
the clock can indicate is approximately 143 years.

The time-of-day clock is a 64-bit unsigned binary counter with the following format:

0 41 42 reserved 63

The bit positions of the clock are numbered from a to 63.

Chapter 22. Machine Interface Support Functions Instructions 22-30

Materialize Machine Data (MATMDATA)

The clock is incremented by adding a 1 in bit position 41 every 1024 microseconds. Bit positions 42
through 63 are used by the machine and have no special meaning to the user. Note that these bits
(42-63) may contain either binary 1's or binary O's.

Unpredictable results occur if the time of day is materialized before it is set.

The maximum unsigned binary value that the time of day clock can be modified to contain is hex
DFFFFFFFFFFFFFFF.

• Hex 0001 = Materialize system parameter integrity validation flag
minimum receiver length is 1

System parameter integrity validation flag Char(1)

This option returns the value of the machine attribute which specifies whether additional validation
of parameters passed to programs which run when the process is in system state is to be per­
formed. such as for U. S. government's Department of Defense security ratings.

A value of hex 01 indicates this additional checking is being performed. A value of hex 00 is
returned otherwise.

Performance note: The time of day clock and the system parameter integrity validation flag may be
materialized both with this instruction and also with the Materialize Machine Attributes instruction.
The performance of this instruction is considerably better.

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

1 C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

24 Pointer specification

01 pointer does not exist

Operands
1 2

x
X

X

X

X

X

X

X

X

X

X

X

Other

x
X

Chapter 22. Machine Interface Support Functions Instructions 22-31

Materialize Machine Data (MATMDATA)

Operands
Exception 1 2 Other

02 pointer type invalid X

;J
2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

02 scalar attributes invalid X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 22. Machine Interface Support Functions Instructions 22-32

Instruction support interfaces

© COPYright I BM Corp. 1991, 1993

Exception Specifications

Chapter 23. Exceptiort Specifications

This chapter describes the exceptions which can be signaled by the machine. Exception generation is
the only facility for synchronously communicating error conditions that are a direct result of AS/400
instruction processing. Machine exceptions identify error conditions that require processing before the
next sequential AS/400 instruction is executed. Instructions that cause a particular exception may not
function identically before execution is stopped; however, each instruction produces consistent results.
These results ensure machine integrity and reliability. The results are inherent in a particular excep­
tion definition or in the detailed instruction definition.

The user can monitor any number of exceptions. There are three basic techniques for the user to
handle an exception. One technique is to provide detailed handling specified by a program defined
exception description object. The second technique is to provide a default exception handler for the
process. This exception handler is invoked whenever an invocation fails to handle an exception. The
third technique is to accept the machine default of process termination by not providing an appropriate
exception handling mechanism.

© Copyright IBM Corp. 1991, 1993 23-1

Exception Specifications

Machine Interface Exception Data

Exception data is communicated across the machine interface through a Retrieve Exception Data
instruction. Certain information is available for all exceptions when an appropriate exception
description has been defined by the user. That information includes the following:

• Exception identification-This is a 2-byte hexadecimal field formed by concatenating to the high­
order 1-byte exception group number a low-order 1-byte exception subtype number. The format of
the exception identification is as follows:

1 2 3 4

Group
Number

I
Subtype
Number

• Compare value length

• Compare value (machine signaled have a compare value of hex 00000000 with a length of 4)

• Exception-specific data

• Signaling program invocation address

• Signaled program invocation address

• Signaling program instruction address

• Signaled program instruction address

• Machine-dependent data identifying the component that generated the exception

The exception-specific data provides additional pointers and data that may be required for an indi­
vidual exception.

Chapter 23. Exception Specifications 23-2

Exception Specifications

Exception List

The following is a list of all exceptions in alphabetic and numeric order by group. The subtypes within
each group are in numeric order.

02 Access Group

01 Object ineligible for access group

04 Access State

01 Access state specification invalid

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found

05 Invalid space reference

06 Optimized addressability invalid

08 Argument/Parameter

01 Parameter reference violation

02 Argument list length violation

03 Argument list length modification violation

OA Authorization

01 Unauthorized for operation

02 Privileged instruction

03 Attempt to grant/retract authority state to an object that is not authorized

04 Special authorization required

05 Create/modify user profile beyond level of authorization

06 Grant/retract authority invalid.

OC Computation

01 Conversion

02 Decimal data

03 Decimal paint alignment

04 Edit digit count

05 Edit mask syntax

06 Floating-point overflow

07 Floating-paint underflow

08 Length conformance

09 Floating-point invalid operand

OA Size

08 Zero divide

OC Invalid floating-point conversion

Chapter 23. Exception Specifications 23-3

OD Floating-paint inexact result

OE Floating-point zero divide

OF Master key not defined

10 Weak key not valid

11 Key parity invalid

12 Invalid extended character data

13 Invalid extended character operation

14 Invalid compressed data

15 Date boundary overflow

16 Date format error

17 Date value error

18 Date boundary underflow

19 Space pointer operands do not point to the same space object

OE Context Operation

01 Duplicate object identification

02 Object ineligible for context

10 Damage Encountered

02 Machine context damage state

04 System object damage state

05 Authority verification terminated due to damaged object

44 Partial system object damage state

12 Data Base Management

01 Conversion mapping error

02 Key mapping error

03 Cursor not set

04 Data space entry limit exceeded

05 Data space entry already locked

06 Data space entry not found

07 Data space index invalid

08 Incomplete key description

09 Duplicate key value in existing data space entry

OA End of path

Exception Specifications

OB Duplicate key value detected while building unique data space index

00 No entries locked

OF Duplicate key value in uncommitted data space entry

13 Invalid mapping template

14 Invalid selection template

15 Data space not addressed by index

Chapter 23. Exception Specifications 23-4

16 Data space not addressed by cursor

17 Key changed since set cursor

18 Invalid key value modification

19 Invalid rule option

1A Data space entry size exceeded

1 B Logical space entry size limit exceeded

1C Key size limit exceeded

10 Logical key size limit exceeded

21 Unable to maintain a unique key data space index

25 Invalid data base operation

26 Data space index with invalid 1l0ating-point field build termination

27 Data space index key with invalid floating-point field

30 Specified data space entry rejected

32 Join value changed

Exception Specifications

33 Data space index with non-user exit selection routine build termination

34 Non-user exit selection routine failure

36 No mapping code specified

37 Operation not valid with join cursor

38 Derived field operation error

39 Derived field operation error during build index

40 Invalid entry definition table

41 ISV parameter value in runtime data pointer array not correct

42 Unique fanout join failed

43 DDAT had an error

62 Parent index cannot be used to create new index

16 Exception Management

01 Exception description status invalid

02 Exception state of process invalid

03 Invalid invocation address

04 Resume/retry invalid

05 No inquiry message found for reply message

18 Independent Index

01 Duplicate key argument in index

1 A Lock State

01 Invalid lock state

02 Lock request not grantable

03 Invalid unlock request

04 Invalid object lock transfer request

Chapter 23. Exception Specifications 23-5

05 Invalid space location unlock

1C Machine-Dependent Exception

01 Machine-dependent request invalid

02 Program limitation exceeded

03 Machine storage limit exceeded

04 Object storage limit exceeded

06 Lock limit exceeded

07 Modify main storage pool controls invalid

08 Requested function not valid

09 Auxiliary storage pool number invalid

OA Service Processor unable to process request

1E Machine Observation

01 Program not observable

02 Invocation not found

03 Machine storage limit exceeded

04 DBGINT error

05 DBGINT error

20 Machine Support

01 Diagnose

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

04 Object not eligible for operation

05 Object not available to process

06 Object not eligible for destruction

07 Authority verification terminated due to destroyed object

08 Object Compressed

OA Program not eligible for operation

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

04 Pointer not resolved

26 Process Management

02 Queue full

Exception Specifications

Chapter 23. Exception Specifications 23-6

28 Process State

01 Process in~ligible for operation

02 Process control space not associated with a process

OA Process attribute modification invalid

2A Program Creation

01 Program header invalid

02 DDT syntax error

03 DDT relational error

04 Operation code invalid

05 Invalid op code extender field

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

09 Invalid branch target operand

OA Invalid operand length

08 Invalid number of operands

OC Invalid operand DDT reference

OD Reserved bits are not zero

10 Automatic storage for procedure exceeds maximum

11 Machine automatic storage exceeds maximum

12 Data type or length of initial value not valid

14 Static data initialized to address of automatic data

15 Initial value for static data not valid

16 Number of procedures exceeds maximum allowed

17 Type table entry not valid

18 Alias table entry not valid

19 Size of constants exceeds maximum

1A Procedure size exceeds maximum

18 Instruction stream not valid

1C Size of literals exceeds maximum

1 D Dictionary entry not valid

1E Level of machine interface not supported on target release

1F Size of dictionary exceeds maximum

20 Internal machine operation not valid

21 Size of internal binding table exceeds maximum

5E An error was detected in a static storage definition or initalization

5F Overlapping initializations not valid

60 Dictionary ID is not valid

Exception Specifications

Chapter 23. Exception Specifications 23-7

~

61 Binding specification value not valid

62 Copyright component value not valid

63 Module limitation exceeded

AO Attempt to delete part that may not be deleted

BO Object list referential extension not valid

I' B1 Symbol resolution list referential extension not valid

2C

B2 Service program export list referential extension not valid

B3 Secondary associated spaces list referential extesion not valid

B4 Program limitation exceeded

CO Attempt to delete part that may not be deleted

Program Execution

01 Return instruction invalid

02 Return point invalid

03 <0>

04 Branch target invalid

as Activation in use by invocation

06 Instruction cancellation

07 Instruction termination

08 Branch target defined by label pointer not valid

10 Process object destroyed

11 Process object access invalid

12 Activation group access violation

13 Activation group not found

14 Activation group in use

15 Invalid operation for program

16 Program activation not found

17 Default activation group not destroyed

18 Invalid source invocation

19 Invalid origin invocation

1A Invocation offset outside range of current stack

1B Invocation not eligible for operation

1C Instruction not valid for invocation type

10 automatic storage overflow

1E activation access violation

1F program signature violation

20 static storage overflow

21 program import invalid

22 data reference invalid

Exception Specifications

Chapter 23. Exception Specifications 23-8

23 imported object invalid

24 activation group export conflict

25 import not found

2E Resource Control Limit

01 User profile storage limit exceeded

02 Security audit journal full or other failure

30 Journal

01 Apply journal changes failure

02 Entry not journaled

03 Maximum objects through a journal port limit exceeded

04 Invalid journal space

05 Maximum journal spaces attached

06 Journal space not at a recoverable boundary

07 Journal 10 not unique

08 Object already being journaled

09 Transaction limit list exceeded

OA Data space index currently journaled

08 Data space index currently in force mode

OC Underlying data space not journaled to same journal

32 Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

03 Scalar value invalid

34 Source/Sink Management

01 Source/sink configuration invalid

02 Source/sink physical address invalid

03 Source/sink object state invalid

04 Source/sink resource not available

36 Space Management

01 Space extension/truncation

02 Invalid space modification

38 Template Specification

01 Template value invalid

02 Template size invalid

03 Materialization length exception

3A Wait Time-Out

01 Dequeue

02 Lock

Exception Specifications

Chapter 23. Exception Specifications 23-9

03 Wait on event

04 Space location lock wait

3C Service

01 Invalid service session state

02 Unable to start service session

3E Commitment Control

01 Invalid commit block status change

03 Commit block is attached to process

04 Commit block controls uncommitted changes

06 Commitment control resource limit exceeded

08 Object under commitment control being incorrectly journaled

10 Operation not valid under commitment control

11 Process has attached commit block

12 Objects under commitment control

13 Commit block not journaled

14 Errors during decommit

15 Object ineligible for commitment control

16 Object ineligible for removal from commitment control

40 Dump Space Management

01 Dump data size limit exceeded"

02 Invalid dump data insertion

03 Invalid dump space modification

04 Invalid dump data retrieval

44 Domain Violation

01 Object Domain error

45 Heap Space

01 Heap identifier invalid for the current activacation group

02 The requested heap space operation is invalid

03 The heap space has reached it's maximum allowable size

04 The requested heap space allocation or reallocation size is invalid

05 Heap space destroyed

06 Invalid heap space condition detected

07 The supplied mark identifier is invalid

46 Queue Space

01 Queue Space not associated with the process

02 Cannot modify queue space

03 Invalid message reference key

04 Queue Space not eligible for destruction

Exception Specifications

Chapter 23. Exception Specifications 23-10

Hex 02, Access Group Exceptions

02 Access Group

0201 Object Ineligible for Access Group

An attempt was made to insert an object into an access group. The operation could not be
performed for one of the following reasons:

• The object is temporary, or the object is permanent and the access group is temporary .

• The object is restricted by the machine from membership in an access group.

Information Passed:

• Access group

• Object to be inserted
(binary a for objects not yet created)

Instructions Causing Exception:

System pointer

System pointer

• Any create instruction that specifies an access group in the create template

• Signal Exception

Chapter 23. Exception Specifications 23-11

Hex 04, Access State Exceptions

04 Access State

0401 Access State Specification Invalid

An access state not supported by the machine was specified for an object.

Information Passed

• The invalid access state

Instructions Causing Exception:

• Set Access State

• Signal Exception

Char(1)

Chapter 23. Exception SpecificatiOns 23-12

Hex 06, Addressing Exceptions

06 Addressing

0601 Space Addressing Violation

An attempt has been made to operate outside the current extent of a space.

Information Passed:

Note: I PS stands for "implicit process space".

• System object affiliated with the space

• Space offset reference attempted
This value may be zero when not available.

• Space class

Hex 00 = Primary associated space (includes space objects)
Hex 01 = Secondary associated space
Hex 02 = IPS used for automatic storage
Hex 03 = I PS used for static storage
Hex 04 = I PS used for heap storage

• Reserved (binary 0)

System pointer

Bin(4)

Char(1)

Char(1)

• Secondary associated space number UBin(2)
This value will be zero when not available, such as when the space is not a secondary asso­
ciated space.

• Activation group mark' UBin(4)
This value will be zero when not available, such as when the space is not an implicit
process space.

• Heap space identifier UBin(4)
This value will be zero when not available, such as when the space is not an implicit
process space used by a heap space.

• Pointer to start of IPS used for allocation Space pointer
This value will be zero when not available, such as when the space is not an implicit
process space.

Different information is supplied for different space classes. Fields which are not used for a
given space class will contain zero values. Here is a summary of the information returned (Le.
the field values set) for each space class.

hex 00 (primary associated space, including space objects)
• system pointer to the object
• offset
• space class

hex 01 (secondary associated space)
• system pointer to the object
• offset
• space class
• secondary space number

hex 02 (auto)
• system pointer to the Process Control Space
• offset
• space class
• activation group mark
• space pointer to the start of the IPS from which the allocation was taken

hex 03 (static)
• system pointer to the Process Control Space
• offset

Chapter 23. Exception Specifications 23-13

Hex 06, Addressing Exceptions

• space class
• activation group mark
• space pointer to the start of the IPS from which the allocation was taken

hex 04 (heap)
• system pointer to the Process Control Space
• offset
• space class
• activation group mark
• heap space identifier
• space pointer to the start of the IPS from which the allocation was taken.

Note: If the heap space was created to force a new IPS on each allocation this field will
contain a space pointer to the start of the allocation.

Instructions Causing Exception:

• Any instruction using a pointer or scalar as an operand

• Any instruction using a scalar as an index, a length suboperand, or a space pointer as a
base suboperand

• Signal Exception

0602 Boundary Alignment

A program object has been referenced, and it does not have the proper alignment relative to the
beginning of a space. Pointers must always be 16-byte aligned. Program objects that are not
pointers must have at least the alignment specified by the oor entry.'

Information Passed:

• Addressability to pointer or template

Instructions Causing Exception:

Space pointer

• Any instruction having a pointer operand or a template operand that requires a specific
boundary alignment

0603 Range

A subscript value in a compound operand array reference is outside the range defined for the
array. A subscript value of less than 1 or greater than the number of elements defined by the
array causes this exception.

A reference to a string has a position and/or length that exceeds the bounds of the string. A
compound operand that defines a character string that does not completely fall within the
bounds of the base character string was referenced. A substring with position (P) e1 and length
(L) e1 does not meet the following constraint (n is the length of the base string):

P+L-1Sn

Instructions Causing Exception:

• All instructions that use scalar or pointer operands

• Signal Exception

0604 External Data Object Not Found

An unsuccessful attempt was made to resolve a data pointer. The external data object specified
by the initial value of the data pointer was not found in the process activations. If a program
name was specified in the symbolic address, then only that program's activation is considered
for resolution. If no program was specified, then all of the programs with activations in the
process are considered for data pointer resolution.

Information Passed:

Chapter 23. Exception SpecificatiOns 23-14

• External data object name

Instructions Causing Exception:

Hex 06, Addressing Exceptions

Char(32)

• Any instruction that references an external data object through a data pointer.

• Any instruction where a data pointer is used as the scalar value for an index of a length
suboperand. This includes scalar and pointer operands that may be subscripted.

• Signal Exception

• Compare Pointer Addressability

• Compare Pointer for Space Addressability

• Convert Character to Numeric

• Convert External Form to Numeric

• Convert Numeric to Character

• Copy Bytes Left Adjusted

• Copy Bytes Left Adjusted With Pad

• Copy Bytes Right Adjusted

• Copy Bytes Right Adjusted With Pad

• Copy Numeric Value

• Edit

• Materialize Pointer

• Resolve Data Pointer

• Set Data Pointer Addressability

• Set Data Pointer Attributes

• Set Space Pointer From Pointer

• Set System Pointer From Pointer

0605 Invalid Space Reference

An attempt was made to address a space contained in an object that has no space.

Instruction Causing Exception:

• Set Space Pointer from Pointer

0606 Optimized Addressability Invalid

An instruction attempted to use the internally optimized value of a space pointer that was invalid
due to the failure of a prior instruction in trying to access the pointer's value.

The machine may optimize the retrieval of a pointer's value by using the value retrieved on one
instruction for use by multiple instructions that have need to reference the pointer's value. This
avoids the overhead of continually retrieving the pointer's value from storage for every instruc­
tion that would have need to use it. If, in attempting to retrieve the pointer's value, an exception
is detected, the machine marks the internally optimized value as invalid. This is done to provide
for detecting the invalid addressability upon subsequent execution of instructions that depend on
the internally optimized value. These instructions have no provision for retrieving the painter's
value from storage. These instructions will not redetect the original exception, but instead
detect the optimized addressability invalid exception for this condition. This condition can occur
when an exception is detected during an attempt to retrieve a pointer's value and the exception
is ignored which causes execution of the program to continue without successfully retrieving the
pointer's value.

Chapter 23. Exception Specifications 23-15

Hex 06, Addressing Exceptions

This exception may not be detected on certain cases of internal machine optimizations that may
be performed on references to space pointer machine objects. A reference to the space data
addressed by the painter is necessary to ensure consistent detection of this exception. Although
the exception may not be detected for initial operations. it will be detected on any subsequent
operation that references the space data addressed by the space pointer machine objects.

The optimization of retrieving a pointer's value can be prevented by specifying the abnormal
attribute for the pointer.

This exception may not be detected on the operations listed below under certain cases of
internal machine optimizations which may be performed on references to space pointer machine
objects. The operations listed below refer to the value of a space pointer machine object. but do
not have need to reference the space data the pointer addresses. A reference to the space data
addressed by the pointer is necessary to insure consistent detection of this exception. Although
the exception may not be detected for these operations, it will be detected upon any subsequent
operation which references the space data addressed by the space pointer machine object.

The following instructions may not detect this exception upon references to a space pointer
machine object.

• Add Space Pointer
• Compare Pointer for Space Addressability
• Compare Pointers for Equality
• Compare Space Addressability
• Set Space Pointer
• Set Space Pointer with Displacement
• Set Space Pointer from Pointer
• Subtract Space Pointer Offset
• Subtract Space Pointers For Offset

See the particular instruction description for more detail.

Instructions Causing Exception:

• Any instruction using a pointer or scalar as an operand

- Signal Exception

Chapter 23. Exception SpeCifications 23-16

Hex 08, Argument/Parameter Exceptions

08 Argument/Parameter
0801 Parameter Reference Violation

An attempt was made to reference an internal or an external parameter for which no corre­
sponding argument was passed.

This exception may not be signaled for operations which refer to the value of a space pointer
machine object, but which do not attempt to reference the space data the pointer addresses.
The following instructions may not signal this exception upon references to a space pointer
machine object.

• Add Space Pointer
• Compare Pointers for Equality
• Compare Space Addressability
• Set Space Pointer
• Set Space Pointer with Displacement
• Set Space Pointer from Pointer
• Subtract Space Pointer Offset
• Subtract Space Pointers For Offset

See the particular instruction description for more detail. Instructions Causing Exception:

• Any instruction that references a parameter operand

• Signal Exception

0802 Argument List Length Violation

An argument list does not properly correspond to the length required by the parameter list.

Information Passed:

• Minimum number of arguments allowed

• Maximum number of arguments allowed

• Actual number of arguments allowed

Instructions Causing Exception:

• Call External

• Transfer Control

• Signal Exception

0803 Argument List Length Modification Violation

Char(2)

Char(2)

Char(2)

An attempt was made to change the length of a variable-length argument list to a value less
than a or greater than the maximum size of the argument list.

Instructions Causing Exception:

• Set Argument List Length

• Signal Exception

Chapter 23. Exception Specifications 23-17

Hex OC, Computation Exceptions

DC Computation

OCOf Conversion

A scalar value cannot be converted to the necessary type in this instruction.

Instructions Causing Exception:

• Convert Character to Hex

• Convert External Form to Numeric

• Convert SNA to Character

• Convert MRJE to Character

• Convert SSC to Character

• Signal Exception

OC02 Decimal Data

The sign or digit codes of a decimal operand, either packed or zoned, contain an invalid value.
For packed and zoned format, either the sign is outside the valid range of A through F or a digit
field is outside the range a through 9.

Instructions Causing Exception:

• Add Numeric

• Compare Numeric Value

• Convert Characte(to Numeric

• Convert Decimal Form to Floating-Point

• Convert Numeric to Character

• Copy Numeric Value

• Divide

• Divide With Remainder

• Edit

• Extract Magnitude

• Multiply

• Negate

• Remainder

• Scale

• Search

• Subtract Numeric

• Sum

• Signal Exception

OC03 Decimal Point Alignment

The value of a numeric operand cannot be aligned in a 31-digit decimal field. Decimal point
alignment was attempted by padding with a's on the right. Nonzero digits would have to be
truncated on the left to fit the aligned value into a 31-digit decimal field.

Instructions Causing Exception:

• Add Numeric

Chapter 23. Exception Specifications 23-18

Hex OC, Computation Exceptions

• Compare Numeric Value

• Subtract Numeric

• Signal Exception

OC04 Edit Digit Count

The number of digit position characters in the mask operand of an Edit instruction is not equal to
the number of digits in the source operand value.

Instructions Causing Exception:

• Edit

• Signal Exception

OC05 Edit Mask Syntax

The characters of the mask operand do not follow the valid syntax rules for an Edit instruction.

Instructions Causing Exception:

• Edit

• Signal Exception

OC06 Floating-Point Overflow

The result of a floating-point operation is finite and not an invalid value, but its exponent is too
large for the target floating-point format. The signed exponent has exceeded 127 in short format
or 1023 in long format.

Information Passed:

• Floating-point value attributes

Normal bias

Modified bias

Rounded to short floating-point
precision

NaN

Reserved (binary 0)

• Reserved (binary 0)

• Overflowed floating-point value

• Reserved (binary 0)

Instructions Causing Exception:

• Add Numeric

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert Numeric to Character

• Convert Decimal Form to Floating-Point

• Copy Numeric Value

• Divide

• Extract Magnitude

• Multiply

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-7

Char(7)

Floating-(8) point

Char(16)

Chapter 23. Exception Specifications 23-19

Hex CC, Computation Exceptions

• Negate

• Scale

• Subtract Numeric

• Signal Exception

OC07 Floating-Point Underflow

The result of a floating-point operation is not zero but has too small an exponent for the destina­
tion's format without being denormalized. The signed exponent is less than -126 in short format
or less than -1022 in long format.

Information Passed:

• Floating-point value attributes

Normal bias

Modified bias

Rounded to short floating-point
precision

NaN

Reserved (binary 0)

• Reserved (binary 0)

• Underflowed floating-point value

• Reserved (binary 0)

Instructions Causing Exception:

• Add Numeric

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert Numeric to Character

• Convert Decimal Form to Floating-Point

• Copy Numeric Value

• Divide

• Extract Magnitude

• Multiply

• Negate

• Scale

• Subtract Numeric

• Signal Exception

OCOB Length Conformance

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-7

Char(7)

. Floating-(8) point

Char(16)

The operand lengths or resultant value length or both do not conform to the rules of the instruc­
tion:

CVTHC Twice the length of the source operand must be less than or equal to the length of
the receiver operand.

Chapter 23. Exception Specifications 23-20

Hex OC, Computation Exceptions

CVTCH The length of the operand must be less than or equal to twice the length of the
receiver operand.

CVTMC The length of a record in the receiver was not enough to contain the converted form
of a record from the source.

EDIT The length of the resultant edited value must be equal to the length of the receiver
operand.

SCAN The length of the compare operand must not be greater than the length of the base
string.

SEARCH The length of the find operand plus the value of the location operand must be less
than or equal to the length of an element of the array operand.

XLATE The source and receiver operands must be the same length.

Instructions Causing Exception:

• Convert Character to Hex

• Convert Hex to Character

• Convert MRJE to Character

• Edit

• Extended Character Scan

• Scan

• Search

• Signal Exception

• Translate

OC09 Floating-Point Invalid Operand

A floating-point invalid operand condition is caused by one of the following conditions:

• A source operand is an unmasked NaN.

• Addition of infinities of different signs and subtraction of infinities of the same sign.

• Multiplication of zero times infinity.

• Division of zero by zero or infinity by infinity.

• Computing the sine. cosine. or tangent function for infinity.

• Computing the arc tangent. exponential. logarithm. square root. or power function for infinity
when in projective infinity mode.

• Floating-point values compared unordered and no branch or indicator options are specified
for the unordered, negation of unordered, equal. or negation of equal conditions on compare
numeric value.

• An unordered resultant condition occurred on a computational instruction because the result
was NaN, and branch or indicator conditions are specified but unordered, negation of unor­
dered, zero, or negation of zero conditions are not specified.

Information Passed:

• Exception type Char(1)

Hex 00 = Invalid arithmetic operation or operand is unmasked NaN.
Hex 01 = Invalid branch or indicator conditions.

Hex 02 through hex FF are reserved.

• Reserved (binary 0) Char(31)

Chapter 23. Exception SpeCifications 23-21

Instructions Causing Exception:

• Add Numeric

• Compare Numeric Value

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert Floating-Point to Decimal Form

• Convert Numeric to Character

• Copy Numeric Value

• Divide

• Extract Magnitude

• Multiply

• Negate

• Scale

• Subtract Numeric

• Signal Exception

OCOA Size

Hex OC, Computation Exceptions

An operand was too small to contain a result. This condition is detected only when a fixed-point
result is too large to be assigned to a fixed-point receiver. The receiver operand is set with the
result of the operation truncated to the receiver size.

Instructions Causing Exception:

• Add Numeric

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert External Form

• Convert Numeric to Character

• Copy Numeric Value

• Divide

• Divide With Remainder

• Extract Magnitude

• Multiply

• Negate

• Remainder

• Scale

• Subtract Numeric

• Sum

• Signal Exception

• Trim Length

Chapter 23. Exception Specifications 23-22

Hex ~C, Computation Exceptions

OCOB Zero Divide

An attempt was made to divide by 0 on a fixed-point divide operation.

Instructions Causing Exception:

• Divide

• Divide With Remainder

• Remainder

• Signal Exception

OCOC Invalid Floating-Point Conversion

This exception is detected on a conversion from binary floating-point to other than a binary
floating-point format because overflow, infinity, or NaN is detected before conversion is com­
plete.

Information Passed:

• Floating-paint value attributes

Normal bias

Modified bias

Reserved (binary 0)

NaN

Infinity

Reserved (binary 0)

• Reserved (binpry 0)

• Invalid floating-point value

• Reserved (binary 0)

Instructions Causing Exception:

• Add Numeric

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert Floating-Point to Decimal Form

• Convert Numeric to Character

• Copy Numeric Value

• Divide

• Multiply

• Negate

• Scale

• Subtract Numeric

• Signal Exception

OCOD Floating-Point Inexact Result

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bits 5-7

Char(7)

Floating-point (8)

Char(16)

This exception is signaled when the rounded result of an operation is not exact because of one
of the following conditions:

Chapter 23. Exception Specifications 23-23

Hex OC, Computation Exceptions

• The rounded result of an operation is not exact because a value is modified (rounded) to fit
in a receiver operand and nonzero fraction digits are lost.

• The occurrence of a floating-point overflow condition when that condition is masked and the
result is no longer exact because it is set to infinity.

Information Passed:

• Reserved (binary 0) Char(32)

Instructions Causing Exception:

• Add Numeric

• Compare Numeric Value

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert Decimal Form to Floating-Point

• Convert Floating-Point to Decimal Form

• Copy Numeric Value

• Divide

• Extract Magnitude

• Multiply

• Negate

• Scale

• Subtract Numeric

• Signal Exception

OCOE Floating-Point Zero Divide

This exception is signaled for a floating-point division operation if the divisor is zero and the
dividend is a finite nonzero number.

Instructions Causing Exception:

• Compute Math Function Using Two Input Values

• Divide

• Signal Exception

OCOF Master Key Not Defined

The cipher operation requested use of the master key but the master key has not been defined
by the Modify Machine Attributes instruction or is invalid.

Instructions Causing Exception:

• Cipher

• Cipher Key

• Signal Exception

OCtO Weak Key Not Valid

The key supplied in the template is a weak key and cannot be accepted by the cipher operation.

Instructions Causing Exception:

• Cipher

Chapter 23. Exception Specifications 23-24

Hex OC, Computation Exceptions

• Cipher Key

• Modify Mac.hine Attributes

• Signal Exception

OCTT Key Parity Invalid

The key supplied in the template does not have odd parity in each byte and is, therefore, unac­
ceptable for the cipher operation.

Information Passed:

• Offset (byte) to the key field

• Reserved

Instructions Causing Exception:

• Cipher

• Modify Machine Attributes

• Signal Exception

OCt2 Invalid Extended Character Data

Bin(2)

Char(6)

The character codes in an extended character data field contain an invalid value.

Instructions Causing Exception:

• Copy Extended Characters Left Adjusted With Pad

• Signal Exception

OCt3 Invalid Extended Character Operation

The operand data types specified for an extended character operation are incompatible.

Instructions Causing Exception:

• Copy Extended Characters Left Adjusted With Pad

• Signal Exception

OCt4 Invalid Compressed Data

The data to be decompressed contains an invalid signature.

Information Passed:

• Actual Result Data Length

Instructions Causing Exception:

• Decompress Data

• Signal Exception

OCtS Date boundary overflow

Bin(4)

The end result of a date calculation or conversion, for a date exceeds the end of the time line of
the DDAT

Instructions Causing Exception:

OC 1S Data format error

The format of the data does not conform to the format that is described in the DDAT.

Instructions Causing Exception:

Chapter 23. Exception Specifications 23-25

Hex OC, Computation Exceptions

DC 15 Data value error

The data value of a date. time. or timestamp is not valid with respect to the calendar specified in
the DDAT.

Instructions Causing Exception:

DC 15 Date boundary underflow

The end result of a date calculation or conversion, the date, precedes the beginning of the time
line described in the DDAT.

Instructions Causing Exception:

DC19 Space pointer operands do not point to the same space object

The program that was running attempted to subtract two space pointers from each other, but the
pointers did not point to the same space.

Change the program so that the space pointers point to the same space.

Information Passed:

• First space pointer

• Second space pointer

Instructions Causing Exception:

• Signal Exception

Space pointer

Space pointer

Chapter 23. Exception Specifications 23-26

Hex OE, Context Operation Exceptions

DE Context Operation

OEOI Duplicate Object Identification

An attempt was made to place addressability in a context to an object having the same name,
type, and subtype as an existing entry in the context.

Information Passed:

• System pointer to the existing object

• Object identification

Object type

Object subtype

Object name

Instructions Causing Exception:

• All create instructions

• Modify Addressability

• Rename Object

• Signal Exception

OE02 Object Ineligible For Context

Char(32)

Char(1)

Char(1)

Char(30)

An attempt was made to delete addressability to an object of a type that may be addressed only
by the machine context, or an attempt was made to place addressability to an object in a tempo­
rary or permanent context that may be addressed only by the machine context.

Information Passed:

• System pointer to object

• Object identification

Object type

Object subtype code

Object name

Instructions Causing Exception:

• Modify Addressability

• Signal Exception

Char(32)

Char(1)

Char(1)

Char(30)

Chapter 23. Exception SpeCificatIOns 23-27

Hex 10, Damage Exceptions

10 Damage

1002 Machine Context Damage State

The machine context cannot be referenced because it is in the damaged state. The machine
context rebuild option of the Reclaim instruction can be used to correct the problem or an IPL
can correct the problem.

Information Passed:

• Reserved (binary 0)

• VLOG dump ID

• Error class

Char(16)

Char(8)

Bin(2)

• The error class codes for the type of damage detected are as follows:

Hex 0000 = Previously marked damaged
Hex 0001 = Detected abnormal condition
Hex 0002 = Locally invalid device sector
Hex 0003 = Device failure

• Auxiliary storage device failure Bin(2)

This field is defined for error classes hex 0002 and hex 0003. It is the unit number of the
failing device or 0 for a main storage failure.

• Reserved (binary 0) Char(100)

Instructions Causing Exception:

• Materialize Context

• Resolve System Pointer

• Any instruction that resolves a system object that is located by the machine context

• Signal Exception

1004 System Object Damage State

A system object cannot be accessed because it is in the damaged state.

Information Passed:

• System pointer to the damaged object

• VLOG dump ID

• Error class

System pointer

Char(8)

Bin(2)

• The error class codes for the type of damage detected are as follows:

Hex 0000 = Previously marked damaged
Hex 0001 = Detected abnormal condition
Hex 0002 = Locally invalid device sector
Hex 0003 = Device failure

• Auxiliary storage device indicator Bin(2)

This field is defined for error classes hex 0002 and hex 0003. It is the unit number of the
failing device or 0 for a main storage failure.

• Reserved (binary 0)

Instructions Causing Exception:

• Any instruction that references a system object

• Signal Exception

Char(100)

Chapter 23. Exception Specifications 23-28

Hex 10, Damage Exceptions

1005 Authority verification terminated due to damaged object

Authority verification processing terminated due to a damaged user profile or authorization list
found during the check of authority for a permanent system object. ..,J
Information Passed

• System Pointer to the object for
which authority was being checked

• Reason Code

o = Damaged User Profile
= Damaged Authorization List

(all other values reserved)

• Reserved

• System Pointer to the damaged User
Profile or Authorization List

Instructions Causing Exception

System pointer

Bin(2)

Char(14)

System pointer

• Any instruction with operands or operand lists that refer to a permanent system object

• Signal Exception

1044 Partial System Object Damage

Partial damage to a system object has been detected.

Information Passed:

• System pointer to the damaged object

• VLOG dump ID

• Error Class

System pointer

Char(8)

Bin(2)

• The error class codes for the type of damage detected are as follows:

Hex 0000 = Previously marked damaged
Hex 0001 = Detected abnormal condition
Hex 0002 = Locally invalid device sector
Hex 0003 = Device failure

• Auxiliary storage device indicator Bin(2)

This field is defined for error classes hex 0002 and hex 0003. It is the unit number of the
failing device or 0 for a main storage failure.

• Reserved (binary 0)

Instructions Causing Exception:

• Any instruction that references a system object

• Signal Exception

Meaning and recovery:

Char(100)

• For a user profile. partial damage occurs when internal processing is unable to complete
due to insufficient machine storage. When the system is IPLed. if there is then sufficient
storage. the internal processing is completed and the partial damage condition is reset.

Chapter 23. Exception Specifications 23-29

Hex 12, Data Base Management Exceptions

12 Data Base Management

1201 Conversion Mapping Error

During conversions of a field from one data representation to another, an error occurred. The
specific error is indicated in the error type value, below.

Information Passed:

The following data is provided:

• Cursor

• Data space number

• Ordinal entry number
(0 if signaled during an Insert Data Space
Entry or an Insert Sequential Data Space
Entries instruction)

• Number of fields in error

• Field data (repeated for each field that is in error)

Field number

Error type

• Tolerate all mapping errors exception data

Status bits

- Bitmap is specified

o = Bit map is not returned in the exception data
1 = Bit map is returned in the exception data

- Join field incurred an error

o = A join field did not incur an error
1 = A join field did incur an error

- No records in group

System pointer

Bin(2)

Bin(4)

Bin(2)

Bin(2)

Char(2)

. Char(2)

Bit 0

Bit 1

Bit 1

o = Group-by processing not in effect or a valid group was returned
1 = Group-by processing found no records which qualify as part of the

defined group (set only when grouping WITHOUT a data space index)

- Reserved (binary zero)

Bit map byte length

Bit map identifying the erroneous
user buffer fields

Number of first exceptions

First exception data
(repeated for each offending field)

- First error cursor data space
number

- First error ordinal entry number

- First error join cursor ordinal
positions

- First error field number

- First error error type

Bit 3-15

Bin(2)

Char(*)

Bin(2)

Char(14)

Bi n(2)

Bin(4)

Char(128)

Bin(2)

Char(2)

Chapter 23. Exception SpeCifications 23-30

- First error field location

- Reserved

Hex 12, Data Base Management Exceptions

Char(1)

Char(5)

The ordinal entry number will contain a value of binary zero when the exception occurs when
inserting new data space entries or performing group-by and join operations:

The field number is the relative location of the field as specified when creating the cursor. A
field number of 1 is the first field in the data field location.

The error type values are as follows:

• Hex 0001-Conversion: An invalid character was found by the derived operation, Invalid Char­
acter Scan.

• Hex 0002-Decimal Data: (1) Sign encoding is invalid for packed or zoned format, or (2) digit
encoding is invalid for packed or zoned format.

• Hex 0006-Floating-Point Overflow: During conversion, a floating-point value exceeded the
maximum value that can be represented.

• Hex 0007-Floating-Point Underflow: During conversion, a floating-point value became less
than the minimum value that can be represented.

• Hex 0008-Length Conformance: A length specified for a variable length field was outside the
limits of that field.

• Hex 0009-Floating-Point Invalid Operand: A floating-point NaN was used as an operand to
convert from long floating-point format to short floating-point format or from short floating­
point format to long floating-point format.

• Hex OOOA-Size: The destination field is too small to hold all significant digits of the source
field.

• Hex OOOC-Invalid Floating-Point Conversion: An invalid floating-point value was used as an
operand to convert floating-point to packed decimal or floating-point to binary.

• Hex OOOD-Floating-Point Inexact Result: In a conversion operation, a floating-point value had
at least one bit of precision rounded away.

• Hex 0012- Invalid extended character data; The character data in an extended character data
field contain an invalid value.

• Hex 0015-Date boundary overflow: The end result of a date calculation or conversion, a
date, exceeds the end of the time line described in the DDAT. Reference the Common Tem­
plate Appendix for information on the DDAT.

• Hex 0016-Data format: The format of the data does not conform to the format that is
described in the DDAT. Reference the Common Template Appendix for information on the
DDAT.

• Hex 0017-Data value: The data value of a date, time, or timestamp is invalid with respect to
the calendar specified in the DDAT. Reference the Common Template Appendix for informa­
tion on the DDAT.

• Hex 0018-Date boundary underflow: The end result of a date calculation or conversion, a
date, precedes the beginning of the time line described in the DDAT. Reference the
Common Template Appendix for information on the DDAT.

• Hex 0019-Null status: An invalid situation exists relating to null capable fields. On retrieve
related instructions, a null field was encountered and a null map was not provided with the
instruction. On insert/update instructions, a null map was provided and indicated a field
which is not null capable should be set to null or the null map contains an invalid null or not ~
null value.

Chapter 23. Exception Specifications 23-31

Hex 12, Data Base Management Exceptions

These errors are equivalent to the computational exceptions numbered OC01, OC02, OC06, OC07,
OCOB. OCOg, OCOA. OCOC, OCOD, OC12, OC14, OC15, OC16. and OC17, and occur for similar reasons.

The bit map is specified bit indicates if the bit map identifying the erroneous user buffer fields is
present in the exception data

The join field incurred an error bit indicates if any join fields incurred mapping errors. This bit is
always binary zero for non-join cursors.

The bit map identifying the erroneous user buffer fields maps each field of the user buffer to a
bit map in a one-to-one correspondence. Field 1 is bit 1, field 2 is bit 2, etc. If the bit corre­
sponding to a user buffer field is 1 then that field is erroneous and has been replaced with the
default value (blank for character, zero for numeric). The length of the bit map is given by:

(((# of fields in user buffer) + 7)/8 + 1)&'FFFE'X.

The first exception data area identifies the first field that incurred an error when a cursor
created with the tolerate all mapping errors attribute is being used for retrieval operations. The
field identified is not necessarily represented in the returned record nor is it necessarily repres­
ented in the bitmap of erroneous fields since it may not have been mapped to the user buffer.
Instead, this is the very first field which incurred an error in the series of mappings which ulti­
mately produced the record-view in the user's buffer.

The first error cursor data space number will contain binary zero when the error occurs during
group-by derived field operations.

The first error ordinal entry number will contain binary zero when the error occurs during
group-by derived field operations or while processing default values during a join operations.

The first error join cursor ordinal positions area is meaningful only on operations involving a join
cursor and is zero in instances of non-join. It will also be zero if the exception occurs during
group-by processing or derived field operations. Each ordinal is 4 bytes in length. All current
ordinals associated with a join cursor are returned.

The first error field number is as described for field number above.

The first error error-type is as described for error type above with the addition of the following
types:

Hex oooa -An attempt was made to divide by zero in a fixed point divide operation.

Hex OOOE -An attempt has been made to divide by zero in a floating point divide operation.

The first error field location identifies the buffer where the first error occurred. The following
values can be returned:

00 = Data space entry

01 = Cursor intermediate buffer

02 = Group-by intermediate buffer

Instructions Causing Exception:

• Copy Data Space Entries

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Retrieve Data Space Entry

• Retrieve Sequential Data Space Entries

• Update Data Space Entry

• Signal Exception

Chapter 23. Exception Specifications 23-32

Hex 12, Data Base Management Exceptions

1202 Key Mapping Error

During conversions of a field from one data representation to another, an error occurred. The
specific error is indicated in the error type value, below.

Information Passed:

The following data is provided:

Cursor

Data space number

Ordinal Entry Number

Number of fields in error

Field data (repeated for each field that is in error)

• Field number

• Error type

Tolerate all mapping errors exception data

• Status bits

Bitmap is specified

o = Bit map is not returned in the exception data
= Bit map is returned in the exception data

Reserved (binary zero)

Reserved (binary zero)

• Bit map byte length

• Bit map identifying the erroneous
key buffer fields

• Number of first exceptions

• First exception data
(repeated for each offending field)

First error cursor data space
number

First error ordinal entry number

Reserved

First error field number

First error error type

First error field location

Reserved

System pointer

Bin(2)

Char(4)

Bin(2)

Bin(2)

Char(2)

Char(2)

Bit 0

Bit 1

Bit 2-15

Bin(2)

Char(")

Bin(2)

Char(144)

Bin(2)

Bin(4)

Char(128)

Bin(2)

Char(2)

Char(1)

Char(5)

The field number is the relative location of the field as specified when creating the cursor. A
field number of 1 is the first field in the data field location.

The error type values are as follows:

• Hex oo02-Decimal Data: (1) Sign encoding is invalid for packed or zoned format. or (2) digit
encoding is invalid for packed or zoned format.

• Hex 0oo6-Floating-Point Overflow: During conversion, a floating-point value exceeded the ..J
maximum value that can be represented.

Chapter 23. Exception Specifications 23-33

Hex 12, Data Base Management Exceptions

• Hex 0007-Floating-Point Underflow: During conversion, a floating-point value became less
than the minimum value that can be represented.

• Hex 0008-Length Conformance: A length specified for a variable length field was outside the
limits of that field.

• Hex 0009-Floating-Point Invalid Operand: A floating-point NaN was used as an operand to
convert from long floating-point format to short floating-point format or from short floating­
point format to long floating-point format.

• Hex OOOA-Size: The destination field is too small to hold all significant digits of the source
field.

• Hex OOOC-Invalid Floating-Point Conversion: An invalid floating-point value was used as an
operand to convert floating-point to packed decimal or floating-point to binary.

• Hex OOOD-Floating-Point Inexact Result: In a conversion operation, a floating-point value had
at least one bit of precision rounded away.

• Hex 0014-Date boundary underflow: The end result of a date calculation or conversion, a
date, precedes the beginning of the time line described in the DDAT. Reference the
Common Template Appendix for information on the DDAT.

• Hex 0015-Date boundary overflow: The end result of a date calculation or conversion, a
date, exceeds the end of the time line described in the DDAT. Reference the Common Tem­
plate Appendix for information on the DDAT.

• Hex 0016-Data format: The format of the data does not conform to the format that is
described in the DDAT. Reference the Common Template Appendix for information on the
DDAT.

• Hex 0017-Data value: The data value of a date, time, or timestamp is invalid with respect to
the calendar specified in the DDAT. Reference the Common Template Appendix for informa­
tion on the DDA T.

• Hex 0018-Null status: An invalid situation exists relating to null capable fields. On
instructions that materialize a key, a null field was encountered and a null map was not pro­
vided with the instruction. On instructions with a key as input, a null map was provided and
indicated a field which is not null capable should be set to null or the null map contains an
invalid null or not null value.

• Hex OOFO-A substring set cursor operation was requested. The byte count specified ended in
a key field that cannot be severed. This key field type could be but is not limited to: binary,
floating point, date, or timestamp.

These errors are equivalent to the computational exceptions numbered OC02, OC06, OC07, OC08,
OCOg, OCOA, OCOC, OCOD, OC14, OC15, OC16, and OC17, and occur for similar reasons.

The ordinal entry number field will be zero if the exception occurred on input key mapping. For
output key mapping, ordinal entry number will contain the ordinal number of the DSE which
caused the exception.

The bit map is specified bit indicates if the bit map identifying the erroneous user buffer fields is
present in the exception data

The bit map identifying the erroneous key buffer fields maps each field of the key buffer to a bit
map in a one-to-one correspondence. Field 1 is bit 1, field 2 is bit 2, etc. If the bit corresponding
to a key buffer field is a then that field incurred no errors. If the bit corresponding to a key
buffer field is 1 then that field is erroneous and has been replaced with the default value (blank
for character, zero for numeric). The length of the bit map is given by:

(((# of fields in user buffer) + 7)/8 + 1)&'FFFE'X.

The first exception data area identifies the first field that incurred an error when a cursor
created with the tolerate all mapping errors attribute is being used for retrieval operations. The

Chapter 23. Exception Specifications 23-34

Hex 12, Data Base Management Exceptions

field identified is not necessarily represented in the returned key nor is it necessarily repres-
ented in the bitmap of erroneous fields since it may not have been mapped to the key buffer. "'\
Instead. this is the very first field which incurred an error in the series of mappings which ulti- .."
mately produced the key-view in the key buffer.

The first error cursor data space number will contain binary zero when the error occurs during
group-by derived field operations.

The first error ordinal entry number will contain binary zero when the error occurs during
group-by derived field operations.

The first error field number is as described for field number above.

The first error error-type is as described for error type above with the addition of the following
types:

0008 An attempt was made to divide by zero in a fixed point divide operation.
OOOE An attempt has been made to divide by zero in a floating point divide operation.

The first error field location identifies the buffer where the first error occurred. The following
values can be returned:

00 = Data space entry
03 Intermediate key buffer

Instructions Causing Exception:

• Copy Data Space Entries (mapping from template)

• Materialize Cursor Attributes (mapping key out to buffer)

• Retrieve Sequential Data Space Entries (mapping key to buffer)

• Set Cursor (mapping key in/out)

• Signal Exception

1203 Cursor Not Set

An attempt was made to perform a data base operation using a cursor that is not set to address
a data space entry.

Information Passed:

• System pointer to cursor

• Data space number

The data space number will be zero for a non-join cursor.

Instructions Causing Exception:

Retrieve Data Space Entry

• Set Cursor

• Signal Exception

1204 Data Space Entry Limit Exceeded

8in(2)

The operation caused the user-provided maximum number of entries limitation for the data·
space to be exceeded.

Information Passed:

• Cursor (binary 0 for instruction
not involving a cursor)

• Data space

Instructions Causing Exception:

System pointer

System pointer

Chapter 23. Exception Specifications 23-35

Hex 12, Data Base Management Exceptions

• Copy Data Space Entries

• Data Base Maintenance (insert default entries and insert deleted entries option)

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Signal Exception

1205 Data Space Entry Already Locked

An attempt has been made to lock a data space entry using the Set Cursor instruction when the
data space entry is already locked to a cursor (this cursor or another cursor) or to a commit
block that is not attached to this process. A system pointer to the process control space of the
process that activated the cursor or attached the commit block that holds the lock is returned.

Information Passed:

• Cursor

• Data space

• Ordinal entry number

• Return code (bit significant)

Hex 00 = Locked to another process
Hex 01 = Locked to current process

• Reserved (binary 0)

• Process control space

Instructions Causing Exception:

• Set Cursor

• Signal Exception

1206 Data Space Entry Not Found

System pointer

Bin(2)

Bin(4)

Char(1)

Char(9)

System pointer

An attempt has been made to refer to a data space entry that could not be found because the
entry has been deleted or its key has been omitted from the data space index.

Information Passed:

• Cursor

• Data space number

Instructions Causing Exception:

• Retrieve Data Space Entry

• Set Cursor

• Signal Exception

1207 Data Space Index Invalid

The index specified for a data base operation is not usable.

Information Passed:

• Cursor
(binary a for instructions not involving cursor)

• Data space index

Instructions Causing Exception:

• Activate Cursor

System pointer

Bin(2)

System pointer

System pointer

Chapter 23. Exception SpeCifications 23-36

Hex 12, Data Base Management Exceptions

• Copy Data Space Entries

• Retrieve D~ta Space Entry

• Retrieve Sequential Data Space Entries

• Set Cursor

• Signal Exception

1208 Incomplete Key Description

The cursor cannot be set by key for this data space index because the output mapping template
used to create this cursor failed to provide a description of each field that comprises the key, or
an alternate entry definition supplied at Create Cursor differs from the entry definition used at
Create Data Space Index.

Information Passed:

• Cursor

• Data space number of the key format selected

Instructions Causing Exception:

• Copy Data Space Entries

• Create Cursor

• Set Cursor

• Signal Exception

1209 Duplicate Key Value in Existing Data Space Entry

System pointer

Bin(2)

An attempt has been made to insert or update a data space entry in a data space over which a "h
unique keyed index has been built, and the data space entry has a key value identical to an ""'"
existing data space entry addressed by the index.

Information Passed:

• Cursor (binary 0 for System pointer
operations not involving a cursor)

• Data space index System pointer

• The data space number of the Bin(2)
entry associated with the key already in the data space index

• The ordinal number of the Bin(4)
entry associated with the key already in the data space index

• The data space number of the Bin(2)
entry that was being added or changed and caused the exception

• The ordinal number of the entry Bin(4)
that was being changed and caused the exception(O if an insert was being attempted)

Instructions Causing Exception:

• Apply Journaled Changes

• Copy Data Space Entries

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Update Data Space Entry

• Signal Exception

Chapter 23. Exception Specifications 23-37

Hex 12, Data Base Management Exceptions

120A End of Path

The end of an access path was reached when an attempt was made to position a cursor.

Information Passed:

• Cursor System pointer

Instructions Causing Exception:

• Retrieve Sequential Data Space Entries

• Set Cursor

• Signal Exception

1208 Duplicate Key Value Detected

While creating or rebuilding a data space index with the unique key attribute, entries were found
to generate the same key value. The build detected up to a maximum of 20 duplicate key values
before terminating.

Information Passed:

• Data space index

• Number of duplicates detected

• (Repeated for each duplicate)

Data space number of first entry

Ordinal number of first entry

Data space number of second
entry

Ordinal number of second entry

Instructions Causing Exception:

• Create Data Space Index

• Data Base Maintenance (rebuild option)

• Signal Exception

120D No Entries Locked

No data space entries were locked to this cursor.

Information Passed:

• Cursor

Instructions Causing Exception:

• Delete Data Space Entry

• Update Data Space Entry

• Signal Exception

120F Duplicate Key Value in Uncommitted Data Space Entry

System pointer

Bin(2)

Bin(2)

. Bin(4)

Bin(2)

Bin(4)

System pointer

An attempt has been made to insert or update a data space entry in a data space over which a
unique keyed index has been created, and the data space entry has a key value identical to a
data space entry key value that has been deleted or changed under commitment control but is
still reserved by the index. The insert or update cannot be done until the uncommitted changes
are committed.

Information Passed:

• Cursor (binary 0 for System pointer

Chapter 23. Exception SpeCifications 23-38

Hex 12, Data Base Management Exceptions

operations not involving a cursor)

• Data space index System pointer

• The data space number of the entry Bin(2)
associated with the key reserved in the data space index

• The ordinal number of the entry Bin(4)
associated with the key reserved in the data space index

• The data space number of the entry Bi n(2)
that was being added or changed and caused the exception

• The ordinal number of the entry that Bin(4)
was being changed and caused the exception (zero if an insert was being attempted)

Instructions Causing Exception:

• Copy Data Space Entries

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Update Data Space Entry

• Signal Exception

1213 Invalid Mapping Template

An error was detected in a mapping template. The data space number indicates the template in
the mapping template list that contains the error. This field will equal'1 for a group-by mapping
template, and will reference the appropriate template for the per data space mapping templates
for Create Cursor and Create Data Space Index instructions. This field will contain a zero when
an intermediate mapping table is missing. -.,,;

The template field number indicates which field number is in error for the scalar part of the
mapping template (number of bytes in mapping template and mapping type). The contents of
the reserved field immediately following the mapping type field is ignored (only present when
intermediate mapping is specified).

The template field number also indicates the field in error for input and output mapping tables.
Field number equal 0 indicates the template field number of bytes in the mapping template, field
number equal 1 indicates field designating input mapping type, field number equal 2 indicates
field designating output mapping type, field number equal 3 indicates field designating number
of fields in the input/output mapping tables, and so forth. Each specification in the input/output
tables is considered one field for counting purposes.

When an intermediate mapping table is in error, the template field number will equal O. The
offset to field in error field will designate the offset to the field from the start of the intermediate
mapping table. Offset equal 0 designates the field number of intermediate mapping specifica­
tions, and so forth.

Possible errors are an invalid value, a value that exceeds allowed range, a length that is invalid
for the specified type or a type that is inconsistent with the type specified for the field in the data
space, key description, or an intermediate buffer description.

The invalid mapping template exception will not be signaled when a data pointer fails verifica­
tion. The normal exception associated with verifying data pointers will be signaled instead.

Information Passed:

• Data space number Bin(2)

• Template field number Bin(2)
(valid only for input/output mapping tables and the scalar part of the mapping template;
number of bytes in template, input mapping type, output mapping type)

Chapter 23. Exception Specifications 23-39

Hex 12, Data Base Management Exceptions

• Template type Char(1)

Hex 00 = Per data space mapping template (input/output mapping table and scalar part of
template)

Hex 01 = Per data space mapping template (output intermediate mapping table)
Hex 02 = Group-by intermediate mapping table
Hex 03 = Derived key intermediate mapping table

• Reserved

• Offset to field in error
(valid only for intermediate mapping table errors)

• Error type
(valid only for intermediate mapping table errors)

GENERAL ERROR CODES

Hex 0000 = Data Pointer error
Hex 0001 = Reserved field invalid
Hex 0300 = Missing Intermediate mapping table
Hex 1000 = Operation field error

Char(1)

Bin(4)

Char(2)

Hex 1012 = Specified Operation invalid for Variable length fields
Hex 1014 = Invalid Null Operation modifier

OPERAND 1 ERROR CODES

Hex 8010 =
Hex 8020 =
Hex 8040 =
Hex 8080 =
Hex 8008 =
Hex 8004 =
Hex 8001 =
Hex 8400 =
Hex 8088 =
Hex 8082 =
Hex 8048 =

Hex 8044 =

Operand 1 Location invalid
Operand 1 Length invalid
Operand 1 Field type invalid
Operand 1 Field number invalid
Operand 1 Start character invalid
Operand 1 End character invalid
Operand 1 Reserved Area invalid
Operand 1's Array Position of the Data Pointer is invalid
Operand 1's DDAT is invalid
Operand 1's Preferred format or separator is invalid
Operand 1's Start or End character referenced an invalid field type for a
Substring operation
Operand 1 is a Split Variable length field that is not compatible with the
specified operation

OPERAND 2 ERROR CODES

Hex 4010 =
Hex 4020 =
Hex 4040 =
Hex 4080 =
Hex 4008 =
Hex 4004 =
Hex 4001 =
Hex 4100 =
Hex 4400 =
Hex 4088 =
Hex 4044 =

Hex 4022 =

Operand 2 Location invalid
Operand 2 Length invalid
Operand 2 Field type invalid
Operand 2 Field number invalid
Operand 2 Start character invalid
Operand 2 End character invalid
Operand 2 Reserved Area invalid
Operand 2's Array Position of the Translate Table is invalid
Operand 2'5 Array Position of the Data Pointer is invalid
Operand 2's DDAT is invalid
Operand 2 is a Split Variable length field that is not compatible with the
specified operation
Operand 2's Immediate Value or Length is invalid

RESU L T ERROR CODES

Hex 2020 = Result Length invalid
Hex 2040 = Result Type invalid

Chapter 23. Exception Specifications 23-40

Hex 12, Data Base Management Exceptions

Hex 2001 = Result Reserved area invalid
Hex 2002 = Result Rounding mode invalid
Hex 2004 = Result Type modifier is invalid
Hex 2088 = Result's DDAT is invalid

DATA POINTER ERRORS

Hex 0020 = Data Pointer length is invalid
Hex 0040 = Data Pointer field type is invalid

• Error Types for Input and Output mapping templates

Hex 0001 = Field Location is invalid
Hex 0002 = Field Type is invalid
Hex 0003 = Field Length is invalid
Hex 0004 = Reserved area is not zero
Hex 0005 = DDAT number references an invalid DDAT number

DDAT number references an invalid format code Hex 0006 =
Hex 0007 =
Hex 0008 =
Hex 0009 =
Hex OOOA =

DDAT number references an invalid preferred format or separator
Type modifier is invalid
Variable Length/Type mismatch
DDAT offset mismatch between mapping template DDAT number and field
table DDAT offset

Hex OOOB = Mapping Conversion is invalid
Hex OOOC = Mapping a pseudo Date/Time field that is variable length and the fixed allo­

cation length is greater than zero and less than the ~aximum size of the field.

Instructions Causing Exception:

• Create Cursor

• Signal Exception

1214 Invalid Selection Template

An error was detected in a selection template. The data space number indicates which template
in the selection template list contains the error. This field will equal 1 for a group-by selection
template, and will reference the appropriate template for the per data space mapping template
for Create Cursor and Create Data Space Index.

The offset to field in error indicates which field is in error in the selection template. The offset
equal 0 designates the field length of selection template is in error, offset equal 4 designates the
field number of selection descriptors is in error, and so forth.

The invalid selection template exception will not be signaled when a data pointer fails verifica­
tion. The normal exception associated with verifying data pointers will be signaled instead.

Information Passed:

• Data space number (position list

• Offset to field in error

• Selection template type

Hex 00 = Per data space selection
Hex 01 = Group-by selection

• Reserved

• Selection descriptor errors

Descriptor type error

Operand/operation error

Maximum number specifications

Bin(2)

Bin(4)

Char(1)

Char(1)

Char(2)

Bit 0

Bit 1

Bit 2

Chapter 23. Exception Specifications 23-41

1215

Hex 12, Data Base Management Exceptions

exceeded

Literal content in error Bit 3

Reserved Bits 4-7

Operand location invalid Bit 8

Field number invalid Bit 9

Starting offset invalid Bit 10

Ending offset invalid Bit 11

Array position of data pointer Bit 12
invalid

Offset to pattern descriptor invalid Bit 13

Number pattern descriptor invalid Bit 14

Reserved field invalid Bit 15

• Pattern descriptor error types Char(2)

Descriptor type invalid Bit 0

Descriptor field invalid Bit 1

Reserved Bits 2-7

Field location invalid Bit 8

Field number invalid Bit 9

Starting offset invalid Bit 10

Ending offset invalid Bit 11

Array position of data pointer Bit 12
invalid

Span type invalid Bit 13

Span width invalid Bit 14

Reserved field invalid Bit 15

Instructions Causing Exception:

• Create Cursor

• Signal Exception

Data Space Not Addressed by Index

An entry in the data space list does not address the same data space that is addressed by the
corresponding entry in the data space list defined for the data space index.

Information Passed:

• Entry in the data space list of Space pointer
the Create Cursor instruction template

Instructions Causing Exception:

• Create Cursor

• Signal Exception

1216 Data Space Not Addressed by Cursor

An entry in the data space list does not address the same data space that is addressed by the
corresponding list that is defined for the cursor.

Chapter 23. Exception Specifications 23-42

Information Passed:

• Cursor

• Entry in the data space list
of the Activate Cursor instruction template

Instructions Causing Exception:

• Activate Cursor

• Signal Exception

1217 Key Value Changed Since Set Cursor

Hex 12, Data Base Management Exceptions

System pointer

Space pointer

The data space index key for the entry currently addressed by the cursor has changed since the
cursor was set. The former value of the key was instrumental in finding the entry and is no
longer valid; therefore, the entry is no longer the expected entry.

Information Passed:

• Cursor

• Data space number

Instructions Causing Exception:

• Retrieve Data Space Entry

• Set Cursor

• Signal Exception

1218 Invalid Key Value Modification

System pointer

8in(2)

An attempt to update a data space entry would result in a difference key value when the Update ; i
Data Space Entry instruction specified the inhibit key change option. This exception is signaled """"
for rejected key values if the rejected key image would change on the update, regardless of
whether the updated key image would be rejected or selected.

Note: Updating a deleted data space entry is not a change in the key image.

Information Passed:

• Cursor

• Data space number

• Ordinal number of entry

Instructions Causing Exception:

• Update Data Space Entry

• Signal Exception

1219 Invalid Rule Option

System pointer

8in(2)

8in(2)

The cursor has addressability to a data space index and the current cursor setting allows only
rule options of relative or ordinal.

Information Passed:

• Cursor System pointer

Instructions Causing Exception:

• Retrieve Sequential Data Space Entries

• Set Cursor

• Signal Exception

Chapter 23. Exception Specifications 23-43

Hex 12, Data Base Management Exceptions

121A Data Space Entry Size Exceeded

The sum of the field lengths in the entry definition template exceeds 32 766 bytes which is the
maximum size allowed for a data space entry.

Instructions Causing Exception:

• Create Data Space

• Signal Exception

1218 Logical Data Space Entry Size Limit Exceeded

The user's view of the data space entry (defined by the mapping code) exceeds 32 766 bytes,
which is the maximum size allowed.

Information Passed:

• Template number (position list)

• Template type

Hex 00 = Input mapping template
Hex 01 = Output mapping template
Hex 02 = Intermediate mapping template
Hex 03 = Group-by output mapping template
Hex 04 = Group-by intermediate mapping template

Instructions Causing Exception:

• Create Cursor

• Signal Exception

121C Key Size Limit Exceeded

Bin(2)

Char(1)

The sum of the key field lengths plus the specified fork characters exceeds 120 bytes, which is
the maximum size allowed for a data space index key.

Information Passed:

• Data space number

Instructions Causing Exception:

• Create Data Space Index

• Signal Exception

121D Logical Key Size Limit Exceeded

Bin(2)

The user's view of the data space index key exceeds 32 766 bytes, which is the maximum size
allowed.

Information Passed:

• Data space number

Instructions Causing Exception:

• Create Cursor

• Signal Exception

1221 Unable to Maintain a Unique Key Data Space Index

Bin(2)

An attempt has been made to insert or update a data space entry in a data space over which a
unique keyed index exists that has been implicitly invalidated.

Information Passed:

• Cursor (binary 0 for System pointer
operations not involving a cursor)

Chapter 23. Exception SpeCifications 23-44

Hex 12, Data Base Management Exceptions

• Data space

• Data space index (invalidated)

Instructions Causing Exception:

• Apply Journaled Changes

• Copy Data Space Entries

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Update Data Space Entry

• Signal Exception

1225 Invalid Data Base Operation

System pointer

System pointer

A data base operation was attempted through a cursor whose activation options indicated that
the operation was not to be allowed.

Information Passed:

• Cursor

• Extended activation functions
(as defined in the cursor activation template)

• Operation attempted

Hex 80 = Retrieval of data space entry
Hex 40 = Update of data space entry
Hex 20 = Delete of data space entry
Hex 10 = Insert of data space entry

Instructions Causing Exception:

• Copy Data Space Entries

• Delete Data Space Entry

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Retrieve Data Space Entry

• Retrieve Sequential Data Space Entries

• Update Data Space Entry

• Signal Exception

1226 Data Space Index with Invalid Floating-Point Field Build Termination

System pointer

Char(2)

Char(1)

While creating or rebuilding a data space index that contains floating-point keys, an invalid
floating-point value was encountered. Up to 20 instances of these types of errors may be found
before the instruction is terminated.

Information Passed:

• Data space index
(binary 0 is signaled during creation)

• Number of errors detected

• Error description (repeated for each selection routine error)

Data space number

Ordinal entry number

System pointer

Bin(2)

Bin(2)

Bin(4)

Chapter 23. Exception Specifications 23-45

Hex 12, Data Base Management Exceptions

Reason code Char(1)

Hex 01 = Floating-point NaN detected

Reserved (binary 0) Char(1)

Instructions Causing Exception:

• Create Data Space Index

• Data Base Maintenance

• Signal Exception

1227 Data Space Index Key with Invalid Floating-Point Field

An attempt was made to insert or update a data space entry in a data space under a data space
index that contains floating-point key fields. or a key is being used to search a data space index
that contains floating-paint key fields and a floating-point key field contains an invalid value.

Information Passed:

• Cursor (binary 0 for
operations not involving a cursor)

• Data space

• Data space index

• Data space number (in the data
space list of the data space index)

• Ordinal entry number (zero
if entry was being inserted)

• Reason code

Hex 01 = Floating-point NaN detected

• Reserved

• Cursor data space number

Instructions Causing Exception:

• Apply Journaled Changes

• Data Base Maintenance

• Copy Data Space Entries

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Set Cursor

• Update Data Space Entry

• Signal Exception

1230 Specified Data Space Entry Rejected

System pointer

System pointer

System pointer

Bin(2)

Bin(4)

Char(1)

Char(1)

Bin(2)

An attempt has been made to position a cursor to a specific data entry but the retrieval selection
criteria has rejected the entry.

Information Passed:

• Cursor

• Data space number

• Ordinal number

System pointer

Bin(2)

Bin(4)

Chapter 23. Exception SpeCifications 23-46

Hex 12, Data Base Management Exceptions

Instructions Causing Exception:

• Retrieve Data Space Entry

• Set Cursor

• Signal Exception

1232 Join Value Changed

A join value in a data space entry field used in the current join position in the cursor has
changed since the cursor was positioned. The former value of the field was instrumental in per­
forming the join operation and is no longer valid; therefore, the entry is no longer the expected
entry.

Information Passed:

• Cursor

• Data space number in cursor
associated with changed field

Instructions Causing Exception:

• Retrieve Data Space Entry

• Set Cursor

• Signal Exception

System pointer

Bin(2)

1233 Data Space Index with Non-User Exit Selection Routine Build TerminatiCJn

While creating or rebuilding a data space index that contains a non-user exit selection routine,
data space entries were encountered which resulted in an error in the selection routine. The
build, before terminating, found up to 20 instances of these types of errors. The instruction is
terminated.

Information Passed:

• Data space index
(binary zeros if signaled during creation)

• Number of errors detected

• Reserved

• Error description
(repeated for each selection routine error)

Data space number

Ordinal entry number

Reserved (binary 0)

Error type

Operand 1 field data

Field number

Field location

Hex 00 = Data space entry
Hex 01 = Cursor intermediate buffer
Hex 03 = Intermediate key buffer
Hex 04 = Key field

Reserve

System pointer

Bin(2)

Char(4)

Char(22)

Bin(2)

Bin(4)

Char(6)

Char(2)

Char(4)

Bin(2)

Char(1)

Char(1)

Chapter 23. Exception SpeCifications 23-47

Hex 12, Data Base Management Exceptions

• Operand 2 field data Char(4)
(same as operand 1 field data)

The field number designates the relative location of the field as specified when creating the
cursor. index, or data space. Field number equal 1 is the first field in the field location.

The error type values are as follows:

Hex OOOO-A tolerated exception occurred during derived field mapping and was detected during
non-user exit selection when the field incurring the error was referenced.

Hex 0002-decimal data: (1) Sign encoded is invalid for packed or zoned format, (2) Digit
encoding is invalid for packed or zoned format.

Hex 0009-floating-point invalid operand: A floating-point NaN was used as an operand in a com­
parison.

Hex 0012-lnvalid Extended Character Data; A character code in an extended character data field
contains an invalid value.

Instructions Causing Exception:

• Activate Cursor (over delayed maintenance data space index)

• Create Data Space Index

• Data Base Maintenance (rebuild data space index)

• Modify Data Space Index Attributes

• Signal Exception

1234 Non-User Exit Selection Routine Failure

An attempt has been made to insert, retrieve, or update a data space entry in a data space, and
an error was encountered in a non-user exit selection routine.

Information Passed:

• Cursor (binary 0 for
operations not involving a cursor)

• Data space

• Data space index (binary 0
if selection error not involving the index)

• Join cursor ordinal positions

• Error description

Index data space number
(binary 0 if selection error not on the index)

Cursor data space number
(binary 0 for operations not involving a cursor)

Ordinal entry number (0, if entry
was being inserted or group-by selection)

Reserved

Error type

Operand 1 field data (0 if literal)

Field number

Field location

Hex 00 = Data space entry

System pointer

System pointer

System pointer

Char(128)

Char(22)

Bin(2)

Bin(2)

Bin(4)

Char(4)

Char(2)

Char(4)

Bin(2)

Char(1)

Chapter 23. Exception SpecificatIOns 23-48

Hex 12, Data Base Management Exceptions

Hex 01 = Cursor intermediate buffer
Hex 02 Group-by intermediate buffer

. Hex 03 = Intermediate key buffer
Hex 04 = Key field

Reserved

Operand 2 field data
(same as operand 1 field data)

Operand 3 field data
(same as operand 1 field data)

Char(1)

Char(4)

Char(4)

The field number designates the relative location of the field as specified when creating the
cursor. index. or data space. Field number equal 1 is the first field in the field location. A field
number equal 0 designates there is no exception data for this operand.

The error type values are identical with those received for exception hex 1233.

The ordinal entry number will contain a binary zero value if the exception occurs while proc­
essing default values during a join operation.

The join cursor ordinal positions area is meaningful only on operations with a join cursor and is
zero otherwise. It will be zero for group-by selection. Each ordinal number occupies 4 bytes.
All current ordinal numbers associated with a join cursor are returned.

Instructions Causing Exceptions

• Apply Journaled Changes

• Data Base Maintenance (insert default entries)

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Retrieve Data Space Entry

• Retrieve Sequential Data Space Entry

• Set Cursor

• Update Data Space Entry

• Signal Exception

1236 No Mapping Code Specified

Cursor cannot be used to perform inserts, retrieves, or updates with the specified data space
due to no data space entry input mapping code or no output mapping code specified in a Create
Cursor instruction.

Information Passed:

• Cursor

• Data space number

Instructions Causing Exception:

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Retrieve Data Space Entry

• Retrieve Sequential Data Space Entry

• Signal Exception

• Update Data Space Entry

System pointer

Bin(2)

Chapter 23. Exception Specifications 23-49

Hex 12, Data Base Management Exceptions

1237 Operation Not Valid with Join Cursor

An attempt has been made to insert, update, or delete a data space entry through a join cursor.
Information Passed:

• Cursor System pointer

Instructions Causing Exception:

• Copy-Data Space Entries

• Delete Data Space Entry

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Signal Exception

• Update Data Space Entry

1238 Derived Field Operation Error

During derived field operations, one of a variety of derived field operational errors occurred.
The field number designates the relative location of the field as specified when creating the
cursor or data space index. Field number equal 1 is the first field in the field location. The field
location is described by the field location exception data.

The error type is identical with those for exception number hex 1201, conversion mapping error
with the addition of:

• Hex oooB = An attempt has been made to divide by zero on a fixed-point divide operation.

• Hex OOOE = An attempt has been made to divide by zero on a floating-point divide opera­
tion.

Information Passed:

• Cursor (0 for operations
not involving a cursor)

• Index (derived key operations)

• Join cursor ordinal positions

• Index data space number (binary
o for operations not involving
the index)

• Cursor data space number (binary
o for operations not involving
the cursor)

• Ordinal entry number

• Buffer location type

Hex 01 = Cursor intermediate buffer
Hex 02 = Group-by intermediate buffer
Hex 03 = Intermediate key buffer

• Reserved

• Number of offending fields

• Field data (repeated)

Field number

Error type

System pointer

System pointer

Char(128)

Bin(2)

Bin(2)

Bin(4)

Char(1)

Char(3)

Bin(2)

Char(6)

Bin(2)

Char(2)

Chapter 23. Exception Specifications 23-50

Hex 12, Data Base Management Exceptions

- Reserved Char(2)

The ordinal entry number will contain a binary zero value if the exception occurs during inserts .•.• '
of new entries into a data space or the error occurs while processing default values during a ..""
join operation.

The ordinal entry number and data space number will contain a value of binary zero when the
error occurs during group-by derived field operations.

Instructions Causing Exception:

• Apply Journal Changes

• Copy Data Space Entries

• Data Base Maintenance

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Materialize Cursor Attributes

• Modify Data Space Index Attributes

• Retrieve Data Space Entry

• Retrieve Sequential Data Space Entry

• Set Cursor

• Signal Exception

• Update Data Space Entry

1239 Derived Field Operation Error During Build Index

While creating or rebuilding a data space index, data space entries were encountered which
resulted in derived field operational errors. The build, before terminating, found up to 20
instances of these types of errors. The instruction is terminated.

Even though multiple errors may have occurred on a data space entry, only the first occurrence
per entry is reported.

Information Passed:

• Data space index (binary zeros
if during index creation)

• Number of error descriptions

• Reserved

• Error description (repeated)

Data space number

Ordinal entry number

Field number

Error type

Field location

Hex 03 = Intermediate key buffer

Unassigned values reserved

Reserved

System pointer

Bin(2)

Char(4)

Char(14)

Bin(2)

Bin(4)

Bin(2)

Char(2)

Char(1)

Char(3)

The exception field definitions are the same as for the hex 1238 exception (derived field opera­
tion error).

Chapter 23. Exception SpeCifications 23-51

c..

Hex 12, Data Base Management Exceptions

Instructions Causing Exception:

• Create Data Space Index

• Data Base Maintenance

• Activate Cursor (over delayed maintenance index)

• Insert Sequential Data Space Entries

• Signal Exception

1240 Invalid Entry Definition Table

During validation of an entry definition table supplied at Create Data Space, Create Data Space
Index or Create Cursor, an invalid field may be found.

Information Passed

• Error type Char(2)

Invalid table offset Bit 1
Invalid field type Bit 2
Invalid field length Bit 3
Invalid field precision Bit 4
Invalid entry length Bit 5
Invalid default length Bit 6
Invalid default offset Bit 7
Invalid field allocation Bit 8
Invalid null type Bit 9
Type/variable length mismatch Bit 10
Invalid field modifier Bit 11
Reserved area not zero Bit 12
Reserved (binary zero) Bit 13-15

• Data Space Number Bin(2)
(0 for Create Data Space instruction)

· DSE field number Bin(2)
(0 if error type is not field related)

Instructions Causing Exception:

· Create Cursor

• Create Data Space

• Create Data Space Index

• Signal Exception

1241 ISV parameter value in runtime data pointer array not correct.

Information Passed

• Reason code

• Array element number

• Create time type

• Create time length

• Runtime type

• Runtime length

Instructions Causing Exception:

Bin(2)

Bin(2)

Bin(2)

Char(2)

Bin(2)

Char(2)

Chapter 23. Exception Specifications 23-52

Hex 12, Data Base Management Exceptions

1242 Non-Unique Fanout on Unique Join

On a Unique fa.n0ut join more than one record in the "join to" file that satisfied the relationship
was encountered.

Information Passed

• Data Space Number

• Ordinal # of candidate record (the first key
match)

• Ordinal # of record identified as the
duplicate key

Instructions Causing Exception:

• Set cursor

• Retrieve Sequential

1243 DDAT had an error.

An error was found in a DDAT.

Information Passed

• Error type

01 - No valid template size

02 - No valid number of DDATs

03 - No valid reserved are

04 - No valid DDAT length

05 - No valid format code

06 - No valid date separator

07 -- No valid time separator

08 -- No valid time zone

09 - No valid time zone, hour

10 - No valid time zone, minute

11 - No valid calendar information

12 - No valid calendar. month

13 - No valid calendar. year

14 - No valid century definition

15 - No valid century definition current century

16 - No valid century definition century division

17 - No valid calendar table offset

18 - No valid reserved area

19 - No valid number of era table elements

20 - No valid era origin date

21 - No valid era name

22 - No valid era reserved area

23 - No valid number of calendar table elements

Bin(4)

Bin(4)

Bin(4)

Bin(2)

Chapter 23. Exception Specifications 23-53

24 -- No valid calendar effective date

25 -- No valid calendar type

26 -- No valid calendar reserve area

• DDAT number in error

• Era number

• Calender number

Instructions Causing Exception:

1262 Parent index cannot be used to create new index

Hex 12, Data Base Management Exceptions

Bin(2)

Bin(2)

Bin(2)

The parent index referenced in the create index instruction is internally damaged. When the
index was converted by the system on a previous release of the operating system, the concat­
enated key within the index was improperly converted.

Instructions Causing Exception:

Chapter 23. ExceptIOn SpecificatIOns 23-54

Hex 16, Exception Management Exceptions

16 Exception Management
1601 Exception Description Status Invalid

The tested exception description was not in the deferred state.

Instructions Causing Exception:

• Test Exception

• Signal Exception

1602 Exception State of Process Invalid

An attempt was made to retrieve exception data or resignal an exception when the process is
not in an exception handling state; that is. the process is not in an external program, internal
entry point, or branch point exception handler. The re-signal option is valid only for an external
exception handler.

Instructions Causing Exception:

• Signal Exception

• Retrieve Exception Data

1603 Invalid Invocation Address

The invocation address speCified in the spacelinvocation pointer on the instruction did not repre­
sent an existing program invocation.

Information Passed:

• Invocation pointer

Instructions Causing Exception:

• Return From Exception

• Sense Exception Description

• Signal Exception

• Send Process Message

• Cancel Invocations

1604 Retry/resume Invalid

An attempt was made to either retry a failed instruction or resume at an instruction after the
instruction that failed in an invocation were retry or resume is not allowed.

Information Passed:

• Invocation pointer

Instruction causing the exception:

• Return From Exception

1605 No inquiry message found for reply message

An attempt was made to send a reply message for an inquiry message that does not exist.

Instruction causing the exception:

• Send Process Message

Chapter 23. Exception Specifications 23-55

Hex 1 A, Lock State Exceptions

1 A Lock State

1 AO 1 Invalid Lock State

The lock enforcement rule or rules were violated when an attempt was made to access an
object.

Information Passed:

• System pointer to the object

Instructions Causing Exception:

• All instructions that enforce the lock rules

• Signal Exception

1 A02 Lock Request Not Grantable

The lock request cannot be granted immediately and neither the synchronous nor asynchronous
wait option was specified.

Information Passed:

• Pointer to lock request template

• Failing request number
(relative entry position)

Instructions Causing Exception:

• Lock Object

• Signal Exception

1 A03 Invalid Unlock Request

Space pointer

Bin(2)

An attempt was made to unlock a lock state not held by the current requesting process.

Information Passed:

• Pointer to unlock request template

• Number of requests not unlocked

• Request number (relative entry
position for each lock not unlocked)

Instructions Causing Exception:

• Unlock Object

• Signal Exception

1 A04 Invalid Object Lock Transfer Request

Space pointer

Bin(2)

Bin(2)

An attempt was made to transfer locks that were not held by the transferring process, or the
transfer lock request was not granted because the lock granting rules would have been violated.

Information Passed:

• Pointer to lock transfer request template

• Number of requests not transferred

• Request number (relative entry
position for each lock not transferred)

Instructions Causing Exception:

• Transfer Object Lock

• Signal Exception

Space pointer

Bin(2)

Bin(2)

Chapter 23. Exception SpeCifications 23-56

Hex 1 A, Lock State Exceptions

1 ADS Invalid Space Location Unlocked

An attempt was made to unlock a space location lock not held by the current requesting
process.

Information Passed:

• Space location process attempted
to unlock

• Unlock request

Instructions Causing Exception:

• Unlock Space Location

• Signal Exception

Space pointer

Char(1)

Chapter 23. Exception Specifications 23-57

Hex 1 E, Machine Observation Exceptions

1 E Machine Observation

lEOl Program Not Observable·

The program observation functions were destroyed for the program referenced by the executing
instruction.

Information Passed:

• Program

Instructions Causing Exception:

• Materialize Instruction Attributes

• Materialize Invocation

• Signal Exception

1E02 Invocation Not Found

System pointer

An invocation matching the specified criteria was not found.

Instructions Causing Exception:

• Find Relative Invocation

• Signal Exception

1E03 Invalid O-Code Instruction

The Debug Interpreter (DBGINn MI instruction has detected an invalid field of a D-Code Instruc­
tion. The instruction and field are identified in the information passed· (described below).

Information Passed:

• Erroneous D-Code instruction Char(40)

The erroneous D-Code instruction is formatted as a hexadecimal string. Each hexadecimal
digit represents 4 bits. D-Code instructions occupy twenty bytes.

• D-Code instruction index Bin(4)

The D-Code instruction index is the index of the erroneous D-Code instruction in the D-Code
instruction array. It is the value of the program counter (PC) register when the Debug Inter­
preter MI instruction issued this exception.

• Erroneous D-Code instruction field Bin(4)

The erroneous D-Code instruction field is an integer code indicating which field of the
D-Code instruction is in error. The table below associates codes with corresponding fields.

Table 23-1. Erroneous D-Code Instruction Field

Code D-Code Field Explanation

0 None No field is in error

1 O-Code operator The O-Code operator field is invalid.

2 Type operand The type operand field is invalid.

3 Label operand The label operand is invalid.

4 Reference operand The reference operand is invalid.

S Constant operand The constant operand is invalid.

S Invocation delta operand The invocation delta operand is invalid.

7 Function operand The function operand is invalid.

8 Conversion operand The conversion operand is invalid.

Chapter 23. Exception Specifications 23-58

Hex 1 E, Machine Observation Exceptions

• Erroneous reference operand field BIN(4)

The errone,?us reference operand field is an integer code indicating which field of the refer- :1
ence operand is in error. The table below associates codes with corresponding fields. """

Table 23-2. Erroneous Reference Operand Field

Code Reference Operand Field Explanation

0 None No field is in error

1 Type field The type field is invalid.

2 Identifier field The identifier field is invalid.

3 Storage class field The storage class field is invalid.

4 Invocation delta field The invocation delta field is invalid.

• Erroneous constant operand field BIN(4)

The erroneous constant operand field is an integer code indicating which field of the con­
stant operand is in error. The table below associates codes with corresponding fields.

Table 23-3. Erroneous Constant Operand Field

Code Constant Operand Field Explanation

0 None No field is in error

1 Type field The type field is invalid.

2 Cardinal field The value of the cardinal constant is invalid.

3 Integer field The value of the integer constant is invalid.

4 Character The va.lue of the 8-bit character constant is invalid.

S Real The value of the 64-bit real constant is invalid.

6 Enumeration field The value of the enumeration constant is invalid.

7 String field The value of the string offset is invalid.

1£04 DBGINT error

The Debug Interpreter (DBGINT) MI instruction has detected an error. The instruction and error
are identified in the information passed (described below).

Information Passed:

• Erroneous D-Code instruction Char(40)

The erroneous O-Code instruction is formatted as a hexadecimal string. Each hexadecimal
digit represents 4 bits. O-Code instructions occupy twenty bytes.

• D-Code instruction index Bin(4)

The O-Code instruction index is the index of the erroneous O-Code instruction in the O-Code
instruction array. It is the value of the program counter (PC) register when the Debug Inter­
preter MI instruction issued this exception.

• Error field Bin(4)

The table below associates codes with corresponding errors.

Table 23-4 (Page 1 of 2). Error Field

Code Error Field Explanation

0 None No field is in error

Chapter 23. Exception SpeCifications 23-59

Hex 1 E, Machine Observation Exceptions

Table 23-4 (Page 2 of 2). Error Field

Code I Error Field I Explanation I

1 i Mark Pointer The Mark Pointer is invalid.

2 Storage class The storage class is invalid.

3 Results space The results space is not large enough.

4 Stack error A stack entry is in error.

S Register A register in the directory is invalid.

6 Conversion specified The conversion specified is invalid.

1 EOS DBGINT error

An error occurred on the operation while executing the debug interpreter (DBGINT).

Information Passed:

• Operation field Bin(4)

The table below associates codes with corresponding operations.

Table 23-5. Opcode Field

Code Operation

0 None

1 Equal

2 Not equal

3 Greater than

4 Greater than or equal to

5 Less than

6 Less than or equal to

19 And

20 Or

21 Exclusive Or

22 Not

23 Add

24 Subtract

25 Negate

26 Multiply

27 Divide

31 Increment

32 Decrement

33 Modulo

• Data Type field Bin(4)

The table below associates codes with corresponding data types.

Table 23-6 (Page 1 of 2). datatyp Field

Code Data Type

1 Char_8

Chapter 23. Exception Specifications 23-60

Hex 1 E, Machine Observation Exceptions

T bl 236 (P a e - age 2 f 2) d t t F· Id 0 a a yp Ie

Code Data Type

2 Char_16

3 800132

4 Card_16

5 Card_32

6 Int_16

7 Int_32

8 Real_32

9 Real_64

10 SpcPtr

11 FncPtr

12 MchAdr

13 Record

14 Array

15 Enum

16 String

Chapter 23. Exception Specifications 23-61

20 Machine Support
2001 Diagnose

Hex 20, Machine Support Exceptions

An error or discrepancy was found when a Diagnose instruction was processed.

Information Passed:

• Space element to the subelement in the operand 2 object that was being processed

• Data Bin(4)

Sub identifier unique to the
requested function

Indicator of the pointer in
operand 2 that was being processed

Instructions Causing Exception:

• Diagnose

• Signal Exception

2002 Machine Check

Bi n(2)

Bin(2)

A machine malfunction affecting system-wide operation has been detected during execution of
an instruction in this process.

Information Passed:

• Timestamp that gives the
current value of the machine time-of-day clock.

• Error code indicating nature of machine
check. (This value is machine-dependent and is
only defined in the machine service documentation.)

• Reserved (binary 0)

• VLOG dump 10

• Error class

. Char(8)

Char(2)

Char(6)

Char(8)

Bin(2)

The error class codes for the type of damage detected are as follows:

Hex 0000 = Unspecified abnormal condition
Hex 0002 = Logically invalid device sector
Hex 0003 = Device failure

• Auxiliary storage device indicator Bin(2)

This field is defined for error classes hex 0002 and hex 0003. It is the OU number of the
failing device or a for a main storage failure.

• Reserved (binary 0)

Instructions Causing Exception:

• Any instruction

• Signal Exception

2003 Function Check

Char(100)

The executing instruction has failed unexpectedly during execution within the process.

Information Passed:

• Timestamp giving the current value
of the machine time-of-day clock.

Char(8)

Chapter 23. Exception SpeCifications 23-62

• Error code indicating the
nature of the function check.
(This value is machine-dependent.)

• Reserved (binary 0)

• VLOG dump ID

• Error class

Hex 20, Machine Support Exceptions

Char(2)

Char(6)

Char(8)

Bin(2)

The error class codes for the type of damage detected are as follows:

Hex 0000 = Unspecified abnormal condition
Hex 0002 = Logically invalid device sector
Hex 0003 = Device failure

• Auxiliary storage device indicator Bin(2)

This field is defined for error classes hex 0002 and hex 0003. It is the OU number of the
failing device or a for a main storage failure.

• Reserved (binary 0)

Instructions Causing Exception:

• Any instruction

• Signal Exception

Char(100)

Chapter 23. Exception Specifications 23-63

22 Object Access

2201 Object Not Found

Hex 22, Object Access Exceptions

An attempt to resolve addressability into a system pointer was not successful for one of the fol­
lowing reasons:

• The named object was not located in the context specified in the symbolic address or in any
context referenced in the name resolution list.

• An object with a corresponding name was found but the user profile(s) governing execution
of the instruction did not have the authority required for resolution.

Information Passed:

• Object identification

Object type

Object subtype

Object name

• Required authorization

Instructions Causing Exception:

Char(32)

Char(1)

Char(1)

Char(30)

Char(2)

• Any instruction that references an object through a system pointer

• Signal Exception

2202 Object Destroyed

An attempt was made to reference an object that no longer exists or part of it no longer exists.

This exception may not be signaled for operations which refer to the value of a space pointer
machine object, but which do not attempt to reference the space data the pointer addresses.
This can also be signaled when an associated space of the object is missing. The following
instructions may not signal this exception upon references to a space pointer machine object.

• Add Space Pointer
• Compare Pointer for Space Addressability
• Compare Pointers for Equality
• Compare Space Addressability
• Set Space Pointer
• Set Space Pointer with Displacement
• Set Space Pointer from Pointer
• Subtract Space Pointer Offset
• Subtract Space Pointers For Offset

See the particular instruction description for more detail.

Instructions Causing Exception:

• Any instruction that references an object through a system pointer, a space pointer, or a
data pointer

• Any instruction that references a scalar or a pointer operand when the object and the space
containing the scalar or pointer have been destroyed

• Signal Exception

Chapter 23. Exception Specifications 23-64

Hex 24, Pointer Specification Exceptions

24 Pointer Specification
2401 Pointer Does Ngt Exist

A pointer reference was made to a storage location in a space that does not contain a pointer
data object, or a reference was made to a space pointer machine object that was not set to
address a space.

This exception may not be signaled for operations which refer to the value of a space pointer
machine object. but which do not attempt to reference the space data the pointer addresses.
The following instructions may not signal this exception upon references to a space pointer
machine object.

• Add Space Pointer

• Compare Pointer for Space Addressability

• Compare Space Addressability

• Set Space Pointer

• Set Space Pointer With Displacement

• Set Space Pointer from Pointer

• Subtract Space Pointer Offset

See the particular instruction description for more detail.

Instructions Causing Exception:

• Any instruction that has pointer operands

• Any instruction that references a base operand (scalar or pointer) when the base pointer is
not a space painter

• Any instruction that allows a scalar defined by a data pointer to be an operand

• Any instruction that requires a pointer as part of the input template

• Signal Exception

2402 Pointer Type Invalid

An instruction has referenced a pointer object that contains an incorrect pointer type for the
operation requested.

Instructions Causing Exception:

• Any instruction that has pointer operands

• Any instruction that contains a base operand (scalar or pointer) when the base pointer is not
a space pointer

• Any instruction that allows a scalar defined by a data pointer to be an operand

• Any instruction that requires a painter as part of the input template

• Signal Exception

2403 Pointer Addressing Invalid Object Type

An instruction has referenced a system pointer that addresses an incorrect type of system object
for this operation.

Information Passed:

• The invalid system pointer

Instructions Causing Exception:

System pointer

Chapter 23. Exception Specifications 23-65

Hex 24, Pointer Specification Exceptions

• Any instruction that references a system pointer, either as an operand or within a template
operand, and that requires a specific object type as a part of its operation

• Signal Exception

2404 Pointer Not Resolved

The operation did not find a resolved system pointer. For example, NRL (name resolution list)
entries must be resolved system pointers that address contents.

Information Passed:

• The invalid pointer

Instructions Causing Exception:

• Resolve System Pointer

System pointer

• Any instruction that causes a system pointer to be implicitly resolved when the NRL is used
in the resolution. All entries in the NRL must be resolved.

• Resolve Data Pointer

• Any instruction that causes a data pointer to be implicitly resolved. All activation entries in
the process must contain a resolved pointer to the associated program.

• Signal Exception

Chapter 23. Exception Specifications 23-66

26 Process Management

2602 Queue Full

Hex 26, Process Management Exceptions

An attempt was made to enqueue a message to a queue that is full and is not extendable.

Information Passed:

• Queue for which the enqueue was attempted System pointer

Instructions Causing Exception:

• Enqueue

• Request I/O

• Signal Exception

Chapter 23. Exception Specifications 23-67

2A Program Creation

2A01 Program Header Invalid

The data in the program header was invalid.

Instructions Causing Exception:

• Signal Exception

2A02 OOT Syntax Error

Hex 2A, Program Creation Exceptions

The syntax (bit setting) of an OOT (object definition table) entry was invalid.

Information Passed:

• OOT entry number

Instructions Causing Exception:

• Signal Exception

2A03 OOT Relational Error

Char(2)

An OOT (object definition table) entry reference to another OOT entry was invalid or missing.

Information Passed:

• OOT entry number

Instructions Causing Exception:

• Signal Exception

2A04 Operation Code Invalid

One of the following conditions occurred.

• The operation code did not exist.

• The optional form was not allowed.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

2A05 Invalid Op Code Extender Field

The branch/indicator options were invalid.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

2A06 Invalid Operand Type

One of the following conditions was detected:

Char(2)

UBin(2)

UBin(2)

• An operand was not the required type (signed immediate, immediate, constant data object,
scalar data object, pointer data object, null, branch point, or instruction definition list).

• An operand was described as an immediate or constant data object. However, the instruc­
tion specifies that the operand be modified to something other than an immediate or con-

Chapter 23. Exception Specifications 23-68

Hex 2A, Program Creation Exceptions

stant data object, or the instruction does not allow an immediate or constant data object
operand.

• The operand type specified is not a valid operand type.

• The type of one operand does not satisfy a required relationship with the type of another
operand.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

2A07 Invalid Operand Attribute

One of the following conditions was detected:

UBin(2)

• An operand did not have the attributes required by the instruction (character, packed
decimal, zoned decimal, binary, floating-point, scalar, array, assumed, overlay, restricted,
open, based, explicitly based).

• The attributes of one operand did not match the required attributes of another operand.

• At least one operand in the argument list for a Transfer Control instruction was specified as
automatic.

• The receiver for an instruction specified with the optional round form has the floating-point
attribute.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

2A08 Invalid Operand Value Range

One of the following conditions was detected:

UBin(2)

• An operand was a constant or immediate data object and was used as an index into an
array or indicated a position in a character string, but it was outside the range of the array
or character string.

• An operand was a constant or immediate data object and did not conform to the value
required by the instruction.

• The operand immediate value is outside of the accepted range. The valid range for an
unsigned immediate value is equal to or greater than 0 and less than or equal to 8191. The
valid range for a signed immediate value is from negative 4096 through a positive 4095.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

UBin(2)

Chapter 23. Exception Specifications 23-69

Hex 2A, Program Creation Exceptions

2A09 Invalid Branch Target Operand

One of the following conditions was detected:

• An operand was not an instruction pointer, branch point, instruction number, or relative
instruction number.

• An operand was an instruction number or relative instruction number but was outside the
range of the program.

• A branch target operand identified an instruction that was not indicated as a branch target.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

2AOA Invalid Operand Length

One of the following conditions was detected:

UBin(2)

• The length attribute of an operand was not greater than or equal to the length required by
the instruction.

• The length attribute of an operand was invalid based on its relationship to the length attri­
bute of another operand in the same instruction.

• The length attribute of a decimal operand exceeds 15 digits when specified in conjunction
with a floating-point operand.

• A decimal operand has an invalid integer or fractional digit length in relationship to that
required by the instruction.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

2AOB Invalid Number of Operands

UBin(2)

The number of arguments in a Call Internal instruction was not equal to the number of parame­
ters in the called entry point.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

2AOC Invalid Operand ODr Reference

The OOT reference was not within the range of the OOV.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

UBin(2)

UBin(2)

Chapter 23. Exception Specifications 23-70

Hex 2A, Program Creation Exceptions

2AOD Reserved Bits Are Not Zero

The reserved b.its in an opcode or operand are nonzero.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

UBin(2)

I 2A 10 Automatic storage for procedure exceeds maximum

2A11

The object was not created because an internal system limit was reached. Not enough auto­
matic storage was available to allocate a data object within a procedure.

Reduce the number or size of automatic data objects within the procedure.

Information Passed:

• Current automatic storage offset UBin(4)

• Maximum automatic storage offset UBin(4)

• Data object size UBin(4)

• Data object dictionary index UBin(4)

• Data object dictionary entry information Char(128)

Entry length 'UBin(2)

Entry Char(*)

• Data object dictionary entry offset UBin(4)

• Procedure dictionary index UBin(4)

• Procedure dictionary entry information Char(128)

Entry length UBin(2)

Entry Char(*)

• Procedure dictionary entry offset UBin(4)

• Machine log note 10 Char(8)

• reserved Char(8)

Instructions Causing Exception:

• Signal Exception

Machine automatic storage exceeds maximum

The object was not created because an internal system limit was reached. Not enough machine
automatic storage was available to allocate a data object within a procedure.

Reduce the size and complexity of the procedure or reduce the level of optimization used to
create the object.

Information Passed:

• Current machine automatic storage offset

• Maximum machine automatic storage offset

• Data object size

• Data object dictionary index

• Data object dictionary entry information

UBin(4)

UBin(4)

UBin(4)

UBin(4)

Char(128)

Chapter 23. Exception SpeCifications 23-71

~

, Entry length

Entry

• Data object dictionary entry offset

• Procedure dictionary index

• Procedure dictionary entry information

Entry length

Entry

• Procedure dictionary entry offset

• Machine log note ID

• reserved

Instructions Causing Exception:

• Signal Exception

2A 12 Data type or length of initial value not valid

Hex 2A, Program Creation Exceptions

UBin(2)

Char(*)

UBin(4)

UBin(4)

Char(12S)

UBin(2)

Char(")

UBin(4)

Char(S)

Char(S)

The object was not created because an initialization table entry is not valid. An initial value for
a data object has either a data type that is not valid or a length that is not valid.

There is a problem in the compiler. Report this problem to the supplier of the compiler.

Information Passed:

• Initial value data type

• Initial value length

• Initialization table index

• Initialization table entry information

Entry length

Entry

• Initialization table entry offset

• Machine log note 10

• reserved

Instructions Causing Exception:

• Signal Exception

2A 14 Static data initialized to address of automatic data

. UBin(4)

UBin(4)

UBin(4)

Char(12S)

UBin(2)

Char(")

UBin(4)

Char(S)

Char(S)

The object was not created because an initialization table entry is not valid. The static data
cannot be initialized to the address of automatic data.

There is a problem in the compiler. Report this problem to the supplier of the compiler.

Information Passed:

• Initialization table index

• Initialization table entry information

Entry length

Entry

• Initialization table entry offset

• Static data dictionary index

UBin(4)

Char(12S)

UBin(2)

Char(")

UBin(4)

UBin(4)

Chapter 23. Exception Specifications 23-72

Hex 2A, Program Creation Exceptions

• Static data dictionary entry information

Entry length

Entry

• Static data dictionary entry offset

• Automatic data dictionary index

• Automatic data dictionary entry information

Entry length

Entry

• Automatic data dictionary entry offset

• Machine log note 10

• reserved

Instructions Causing Exception:

• Signal Exception

2A 15 Initial value for static data not valid

Char(12S)

UBin(2)

Char(*)

UBin(4)

UBin(4)

Char(12S)

UBin(2)

Char(*)

UBin(4)

Char(S)

Char(S)

The object was not created because an initialization table entry is not valid. Static data is initial­
ized, but the initial value is not valid.

There is a problem in the compiler. Report this problem to the supplier of the compiler.

Information Passed:

• Reason code UBin(4)

1= Reserved initialization entry not binary zeros.
2 = Initial length specified when zero is expected.
3 = Target of initialization is too small.
4 = Procedure not target of initCodeAddress.
5 = PEP specified as target of initCodeAddress.
6 = Offset specified when zero is expected.
7 = Rep specified when zero is expected.
S = Bitfield initialization was not terminated by entry with dictNo=O.
9 = Bitfield length is not a valid value.
10 = Length is not large enough to initialize bitfield.
11 = A dictionary entry (or its owner) did not have _ TOBEMAPO = TRUE.
12 = Attempt made to initialize storage with invalid storage class.
13 = Invalid dictionary index.
14 = Invalid target dictionary index.
15 = Target of initialized space pointer does not specify addr_taken.

• Initialization table index

• Initialization table entry information

Entry length

Entry

• Initialization table entry offset

• Machine log note ID

• reserved

Instructions Causing Exception:

• Signal Exception

UBin(4)

Char(12S)

UBin(2)

Char(*)

UBin(4)

Char(S)

Char(S)

Chapter 23. Exception Specifications 23-73

~

Hex 2A, Program Creation Exceptions

2A 16 Number of procedures exceeds maximum allowed

The object was not created because an internal system limit was reached. The number of pro­
cedures exceeds the maximum allowed.

Reduce the number of procedures.

Information Passed:

• Maximum procedures

• Procedure dictionary index

• Procedure dictionary entry information

Entry length

Entry

• Procedure dictionary entry offset

• Machine log note 10

• reserved

Instructions Causing Exception:

• Signal Exception

2A 17 Type table entry not valid

UBin(4)

UBin(4)

Char(128)

UBin(2)

Char(*)

UBin(4)

Char(8)

Char(8)

The object was not created because the type table contains an entry that is not valid.

There is a problem in the compiler. Report this problem to the supplier of the compiler.

Information Passed:

• Reason code

1 = Length of data object is invalid.
2 = Type of data object is invalid.
3 = Bit field displacement is invalid.
4 = Bit field width is invalid.
S = Reserved area is invalid.

• Type table index

• Type table entry information

Entry length

Entry

• Type table entry offset

• Machine log note 10

• reserved

Instructions Causing Exception:

• Signal Exception

2A 18 Alias table entry not valid

UBin(4)

UBin(4)

Char(128)

UBin(2)

Char(*)

UBin(4)

Char(8)

Char(8)

The object was not created because the alias table contains an entry that is not valid.

There is a problem in the compiler. Report this problem to the supplier of the compiler.

Information Passed:

• Reason code UBin(4)

1 = Record type of alias table entry is invalid.

Chapter 23. Exception Specifications 23-74

Hex 2A, Program Creation Exceptions

2 = Reserved field in alias class not binary zeros.
3 = Invalid alias class id.
4 = Invalid alias class size.
S = Invalid dictionary id.
6 = Dictionary id is not for a data object.
7 = Reserved field in alias union not binary zeros.
8 = Invalid alias union id.
9 = Invalid alias union size.
10 = Invalid class id.

• Alias table entry information

Entry length

Entry

• Alias table entry offset

• Machine log note ID

• reserved

Instructions Causing Exception:

• Signal Exception

2A 19 Size of constants exceeds maximum

Char(128)

UBin(2)

Char(*)

UBin(4)

Char(8)

Char(8)

The object was not created because an internal system limit was reached. Not enough space
was available to add a constant within a procedure.

Reduce the number or size of constants within the procedure.

Information Passed:

• Current size of all constants

• Maximum size of all constants

• Constant size

• Constant dictionary index

• Constant dictionary entry information

Entry length

Entry

• Constant dictionary entry offset

• Procedure dictionary index

• Procedure dictionary entry information

Entry length

Entry

• Procedure dictionary entry offset

• Machine log note ID

• reserved

Instructions Causing Exception:

• Signal Exception

2A 1 A Procedure size exceeds maximum

UBin(4)

UBin(4)

UBin(4)

UBin(4)

Char(128)

UBin(2)

Char(-)

UBin(4)

UBin(4)

Char(128)

UBin(2)

Char(*)

UBin(4)

Char(8)

Char(8)

The object was not created because an internal system limit was reached. Not enough space
was available for a procedure.

Chapter 23. Exception Specifications 23-75

)

'--

Hex 2A, Program Creation Exceptions

Reduce the size of the procedure.

Information Passed:

• Maximum procedure size UBin(4)

UBin(4)

Char(128)

UBin(2)

Char(*)

UBin(4)

Char(8)

Char(8)

• Procedure dictionary index

• Procedure dictionary entry information

Entry length

Entry

• Procedure dictionary entry offset

• Machine log note 10

• reserved

Instructions Causing Exception:

• Signal Exception

2A 1B Instruction stream not valid

The object was not created because the sequence of instruction stream objects is not valid.

There is a problem in the compiler. Report this problem to the supplier of the compiler.

Information Passed:

• Reason code UBin(4)

1 =
2 =
3 =
4 =
5 =

6 =

7 =
8 =
9 =
10 =
11 =
12 =

13 =

14 =
15 =
16 =

17 =

18 =
19 =

20 =
21 =

Undefined MI operation code.
Invalid type table index.
Invalid dictionary number.
Invalid label identifier.
One or more instructions are out of sequence. Typically signaled when the first
instruction in a procedure is not ENT.
The dictionary id on the END instruction does not match the dictionary id on first
ENT instruction in the current procedure.
An operand of a an MI instruction has has an invalid value.
The data type of the stack operand(s) is invalid for the operation being attempted.
The length of the stack operand(s) is invalid for the operation being attempted.
An operand of a load instruction has has an invalid data type.
An object which is loaded has scope greater than the current procedure's scope.
The target of a STR operation in the new MI instruction stream is not a variable, or
the target is a register variable and either offset or typeNo are nonzero.
The MI value stack is not empty at a label, jump, or other point in the instruction
stream at which the MI architecture asserts it must.
The MI value stack has fewer items on it than need to be popped.
The values retrieved from the MI value stack are not compatible.
The data type of the stack operands is invalid for the comparison being attempted,
(Le. UNORD on binary dt).
There is control flow in the NMI program which reaches either a secondary entry
point or an END instruction.
No exception handlers are currently enabled when a DHNDLR is encountered.
A DHNDLR instruction specifies an exception handler that was not the last one
enabled.
A LAB instruction was encountered where the label qualifier was not one of:
FwdOnlyLabel (1) or GeneralLabel (2).
An object in the dictionary with the "is_reg" attribute lacks one or more of the
required characteristics for inclusion in the machine storage class. For example,
the dictionary object is the target of a LOA operation, or the dictionary object has

Chapter 23. Exception Specifications 23-76

Hex 2A, Program Creation Exceptions

its data type or length superseded with a type table entry on a load or store opera­
tion.

22 = A'blocked built-in function is called.
23 = An invalid built-in function number in CALLBI instruction.
24 = An invalid alias union id in PAll instruction.
25 = An invalid pali flag in PAll instruction.
26 = A switch-specific operation (Le. CASE, DEFAULT, BRK, ENDS) was encountered

outside of a SWE-ENDS block.
27 = Two CASE ranges were found with one or more elements in common, violating the

requirement that all CASE ranges be totally disjoint.
28 = The low selector value for the range of a CASE statement is greater than the high

selector value.
29 = A second DEFAULT case was found for a switch statement in the instruction

30 =
31 =
35 =
36 =
37 =

38 =
39 =
40=

41 =

42 =

43 =

stream.
Built-in OPMPARMADDR or OPMPARMCNT is not invoked from PEP.
A required built-in function argument was not specified.
The number of arguments speCified for a built-in function is incorrect.
The null op mask specifies an argument that is not valid.
A switch statement is still active (Le. the ENDS operation for an open switch has
not been encountered) at the END of a procedure.
All three labels on a MiCMPB operation were found to equal zero.
Buit-in function NPMPARMLISTADDR was invoked from PEP.
A label that was the target of a jump (FJP,T JP,CMPB,UJP) was not found in the
instruction stream.
A label that is in the dictionary, and that is indicated therein to have had its
address taken, was not found in the instruction stream.
A label constant on the stack when IJMP was encountered was now owned by the
current procedure being translated.
A data object which has been allocated to a machine storage class is the target of
a LOA instruction, has its address referenced from the initialization component, or
is used as an exception handler communication area. This situation can occur if
the front end did not set the addr _taken flag for the data object (or for the data
object's owner if it is the member of a aggregate).

• Current instruction count UBin(4)

UBin(4)

UBin(4)

UBin(4)

UBin(4)

Char(8)

Char(8)

• Data offset

• Current instruction offset

• Current instruction opcode

• Current statement number

• Machine log note 10

• reserved

Instructions Causing Exception:

• Signal Exception

2A 1C Size of literals exceeds maximum

The object was not created because an internal system limit was reached. Not enough space
was available in the literal pool to add the literal.

Reduce the number or size of literals.

Information Passed:

• Current size of all literals UBin(4)

• Maximum size of all literals UBin(4)

Chapter 23. Exception Specifications 23-77

2A1D

Hex 2A, Program Creation Exceptions

• Literal size UBin(4)

• Literal information Char(128)

Literal length UBin(2)

Literal Char(")

• Machine log note 10 Char(8)

• reserved Char(8)

Instructions Causing Exception:

• Signal Exception

Dictionary entry not valid

The object was not created because the dictionary contains an entry that is not valid.

There is a problem in the compiler. Report this problem to the supplier of the compiler.

Information Passed:

• Reason code

1 = Undefined data type.
2 = Invalid reserved entry.
3 = Parent of data object is IsReg variable.
4 = Invalid alias union number.
5 = Invalid alignment.
6 = Invalid data type.
7 = Invalid flags.
8 = Invalid flags2.
9 = Invalid handler.
10 = Invalid handler comm area.
11 = Invalid handler level.
12 = Invalid handler type.
13 = Invalid length.
14 = Invalid linkage.
15 = Invalid literal type.
16 = Invalid offset.
17 = Invalid owner.
18 = Invalid procedure type.
19 = Invalid replication.
20 = Invalid reserved1.
21 = Invalid reserved2.
22 = Invalid reserved3.
23 = Invalid return length.·
24 = Invalid return type.
25 = Invalid scope.
26 = Invalid storage class.
27 = Invalid extended description.
28 = Invalid control action.

• Dictionary index

• Dictionary entry information

- Entry length

- Entry

• Dictionary entry offset

• Machine log note 10

UBin(4)

UBin(4)

Char(128)

UBin(2)

Char(·)

UBin(4)

Char(8)

Chapter 23. exception Specifications 23-78

Hex 2A, Program Creation Exceptions

• reserved Char(S)

Instructions Causing Exception:

• Signal Exception

2A lE Level of machine interface not supported on target release

The object was not created because the software release level of the machine interface that was
used is not compatible with the software release level targeted.

There is a problem in the compiler. Report this problem to the supplier of the compiler.

Information Passed:

• Machine interface level used

• Machine interface level targeted

• Machine log note 10

• reserved

Instructions Causing Exception:

• Signal Exception

2A 1 F Size of dictionary exceeds maximum

UBin(2)

UBin(2)

Char(S)

Char(S)

The object was not created because an internal system limit was reached. Not enough space
was available in the dictionary.

Reduce the size and complexity of the procedure or reduce the level of optimization used to
create the object.

Information Passed:

• Procedure dictionary index

• Procedure dictionary entry information

Entry length

Entry

• Procedure dictionary entry offset

• Machine log note 10

• reserved

Instructions Causing Exception:

• Signal Exception

2A20 Internal machine operation not valid

UBin(4)

Char(12S)

UBin(2)

Charn

UBin(4)

Char(S)

Char(S)

The object was not created because the internal representation of a machine operation is not
valid. The machine interface template probably contains an error.

There is a problem in the compiler. Report this problem to the supplier of the compiler.

Information Passed:

• Name of machine operation

• Statement number

• Machine log note 10

• reserved

Instructions Causing Exception:

• Signal Exception

Char(15)

UBin(4)

Char(S)

Char(S)

Chapter 23. Exception Specifications 23-79

Hex 2A, Program Creation Exceptions

2A21 Size of internal binding table exceeds maximum

The object was not created because an internal system limit was reached. Not enough space
was available in an internal binding table.

Reduce the number of external data objects in the program.

Information Passed:

• Current identifier

• Maximum identifier

• Machine log note ID

• reserved

Instructions Causing Exception:

• Signal Exception

2A5E An error was detected in a static storage definition or initialization.

UBin(4)

UBin(4)

Char(8)

Char(8)

An attempt was made to declare a static variable larger than the maximum size, or initialize a
static variable beyond its defined length.

Correct the invalid initialization.

Information Passed:

• Reason code

• VLIC log note ID

Instructions Causing Exception:

• Signal Exception

2A5F Overlapping initializations not valid.

UBin(2)

. Char(8)

Two initialization entries within the initialization component are for the same storage location.

Contact your service representative to report the problem.

Instructions Causing Exception:

• Signal Exception

2A60 Dictionary ID is not valid.

A dictionary ID specified on one of the binding messages generated by the optimizing translator
was not valid.

Contact your service representative to report the problem.

Information Passed:

• Dictionary ID

• Reason code

Instructions Causing Exception:

• Signal Exception

2A61 Binding specification value not valid.

A value within the binding specifications component was in error.

Contact your service representative to report the problem.

Information Passed:

• Offset of error

UBin(4)

UBin(2)

UBin(4)

Chapter 23. Exception Specifications 23-80

Hex 2A, Program Creation Exceptions

• Length of error

• Reason code

Instructions Causing Exception:

• Signal Exception

2A62 Copyright component value not valid.

A value within the copyright component was in error.

Contact your service representative to report the problem.

Information Passed:

• Offset of error

• Length of error

• Reason code

Instructions Causing Exception:

• Signal Exception

2A63 Module limitation exceeded.

An internal part of the module exceeds allowed size.

Contact your service representative to report the problem.

Information Passed:

• Reason code

Instructions Causing Exception:

• Signal Exception

2AAO Attempt to delete part that may not be deleted.

UBin(2)

UBin(2)

UBin(4)

UBin(2)

UBin(2)

UBin(2)

The module was created with observable data that may not be deleted. An attempt was made
to delete that data.

Contact your service representative to report the problem.

Information Passed:

• Reason code

Instructions Causing Exception:

2ABO Object list referential extension not valid.

An entry in the object list was not valid.

Contact your service representative to report the problem.

Information Passed:

• Pointer to the object list

• Byte offset

• Entry index

• Field length

• Bit offset

• Reason code

Instructions Causing Exception:

UBin(4)

System pointer

UBin(4)

UBin(4)

UBin(4)

UBin(2}

UBin(2)

Chapter 23. Exception Specifications 23-81

Hex 2A, Program Creation Exceptions

2ABI Symbol resolution list referential extension not valid.

An entry in the symbol r~solution list was not valid.

'" Contact your service representative to report the problem.

Information Passed:

· Pointer to the symbol resolution list System pointer

· Byte offset UBin(4)

• Entry index UBin(4)

• Field length UBin(4)

• Bit offset UBin(2)

• Reason code UBin(2)

Instructions Causing Exception:

2AB2 Service program export list referential extension not valid.

An entry in the service program export list was not valid.

Contact your service representative to report the problem.

Information Passed:

• Pointer to the service program export list System painter

• Byte offset UBin(4)

• Entry index UBin(4)

• Field length UBin(4)

• Bit offset UBin(2)

• Reason code UBin(2)

Instructions Causing Exception:

2AB3 Secondary associated spaces list referential extension not valid.

An entry in the secondary associated spaces list was not valid

Contact your service representative to report the problem.

Information Passed:

• Pointer to the secondaray associated spaces list System pointer

• Byte offset UBin(4)

• Entry index UBin(4)

• Field length UBin(4)

· Bit offset UBin(2)

• Reason code UBin(2)

Instructions Causing Exception:

2AB4 Program limitation exceeded.

An internal part of the program exceeds allowed size.

Contact your service representative to report the problem.

~ Information Passed:

• Reason code UBin(2)

Chapter 23. Exception Specifications 23-82

Hex 2A, Program Creation Exceptions

Instructions Causing Exception:

2ACO Attempt to dele.te part that may not be deleted.

The program was created with observable data that may not be deleted. An attempt was made
to delete that data.

Contact your service representative to report the problem.

Information Passed:

• Reason code

Instructions Causing Exception:

UBin(4)

Chapter 23. Exception Specifications 23-83

2C Program Execution

2C01 Return Instruction Invalid

Hex 2C, Program Execution Exceptions

Improper usage of the Return, Transfer Control, or Return From Exception instruction occurred
for one of the following reasons:

• A Return From Exception instruction was executed in an invocation that was not defined as
an exception handler.

• A Return External or Transfer Control instruction was issued from a first-invocation-Ievel
exception handler.

• A Transfer Control instruction was issued from a first-invocation-Ievel event handler.

Instructions Causing Exception:

• Return External

• Return From Exception

• Transfer Control

• Signal Exception

2C02 Return Point Invalid

An attempt was made to use a Return External instruction with a return point that was invalid for
one of the following reasons:

• The return point value was outside the range of the return list specified on the preceding
Call External instruction.

• A nonzero return pOint was supplied, but no return list was supplied on the preceding Call
External instruction.

• A nonzero return point was supplied when a Return External instruction was issued in the
first invocation in the process.

• A nonzero return point was supplied when the Return External instruction was issued by an
invocation acting as an event handler.

Instructions Causing Exception:

• Return External

• Signal Exception

<D>

2C04 Branch Target Invalid

An attempt was made to branch to an instruction defined through an instruction pointer, but the
instruction pointer was set by a program other than the one that issued the branch.

Information Passed:

• Instruction pointer causing the exception

Instructions Causing Exception:

• All instructions that have a branch form

• Signal Exception

2C05 Activation in Use by Invocation

An attempt was made to de-activate a program that has an existing invocation which is not the
invocation issuing the instruction.

Information Passed:

Chapter 23. Exception Specifications 23-84

Hex 2C, Program Execution Exceptions

• Program System pointer

Instructions Causing Exception:

• De-activate Program

• Signal Exception

2C08 Branch target defined by label pointer not valid

The program that was running attempted to branch to a label pointer which points to a label
than is not in the current procedure.

Change the program so that it only branches to a label in the currently running procedure.

Information Passed:

• Branch target Label pOinter

Instructions Causing Exception:

• Signal Exception

2C10 Process object destroyed

The process object pointer refers to a process object which has been destroyed.

Information Passed:

None.

Instructions Causing Exception

• Any instruction which has process object pointer operands.

2C 11 Process object access invalid

An attempt has been made to reference a process object from another process which is not the
owner of that object.

Information Passed:

None.

Instructions Causing Exception

• Any instruction which has process object pointer operands may signal this exception.

2C12 Activation group access violation

An inter-activation group access is not permitted based on the activation group access pro­
tection mechanism.

Information Passed:

• Source activation group mark

• Target activation group mark

Instructions Causing Exception

• Materialize Activation Attributes

• Materialize Invocation Attributes

• Cancel Invocation

UBin(4)

UBin(4)

• other instructions which use the activation group access protection mechanism.

2C13 Activation group not found

The activation group specified by an activation group identifier could not be found in the
process. The activation group was either destroyed or never existed.

Information Passed:

Chapter 23. Exception Specifications 23-85

• activation group number

Instructions Causing Exception:

• Destroy Activation Group

• Materialize Activation Group Attributes

• Materialize Heap Space Attributes

2C14 Activation group in use

Hex 2C, Program Execution Exceptions

UBin(4)

The specified activation group contains an invocation (i.e., it is in use) and cannot be destroyed.

Information Passed:

• activation group number

Instructions Causing Exception:

• Destroy Activation Group

2C 15 Invalid operation for program

UBin(4)

The operation requested is not supported for this model of program. The system supports two
distinct "models" of program objects. Not all operations are supported for all models of pro­
grams. (E.g .. a new model program object cannot be deactivated.)

Information Passed:

• Program

Instructions Causing Exception

• deactivate program

• call program

• create bound program

•

2C16 Program activation not found

System pointer

The activation specified by an activation mark value does not exist. It was either destroyed or
never created.

Information Passed:

• Activation mark

Instructions Causing Exception:

• Materialize Activation Attributes

2C17 Default activation group not destroyed

Bin(4)

An attempt was made to destroy a default activation group using the Destroy Activation Group
instruction. The operation is not permitted.

Information Passed:

• none

Instructions Causing Exception:

• Destroy Activation Group

2C18 Invalid source invocation

A source invocation was specified that is older than the target invocation. The operation is not
permitted.

Information Passed:

Chapter 23. Exception Specifications 23-86

• Source invocation offset

• Operand number

• Reserved (zeros)

• Base invocation used to determine source

Instructions Causing Exception:

• Send Process Message

• Materialize Process Message

• Modify Process Message

• Cancel Invocations

2Ct9 Invalid origin invocation

Hex 2C, Program Execution Exceptions

Bin(2)

Bin(2)

Char(10)

Invocation pointer

An origin invocation was specified that is older than the source or target invocation. The opera­
tion is not permitted.

Information Passed:

• Origin invocation offset Bin(4)

• Operand number Bin(2)

• Reserved (zeros) Char(10)

• Base invocation used to determine origin Invocation pointer

Instructions Causing Exception:

• Send Process Message

• Materialize Process Message

• Modify Process Message

• Cancel Invocations

• Materialize Invocation Attributes

• Modify Invocation Attributes

2C 1 A Invocation offset outside range of current stack

An offset was specified that attempts to identify an invocation that is either newer than the
newest invocation in the process or older than the oldest invocation in the process. The opera­
tion is not permitted.

Information Passed:

• Length of invocation identification

• Bit offset to invalid field

• Operand number

• Reserved (zeros)

• Invocation identification value

Instructions Causing Exception:

• Send Process Message

• Materialize Process Message

• Modify Process Message

• Cancel Invocations

Bin(2)

Bin(2)

Bin(2)

Char(10)

Char(·)

Chapter 23. Exception Specifications 23-87

Hex 2C, Program Execution Exceptions

• Materialize Invocation Attributes

• Modify Inv~cation Att~ibutes

• Find Relative Invocation

• Sense Exception Description

2C1B Invocation not eligible for operation

An operation was attempted that is not valid for the specified invocation. The operation is not
permitted.

Information Passed:

• none

Instructions Causing Exception:

• Modify Invocation Attributes

2C1C Instruction not valid for invocation type

An attempt was made to reference an invocation with an instruction that is not valid for the type
of the invocation. The operation is not permitted.

Information Passed:

• none

Instructions Causing Exception:

• Materialize Invocation

• Materialize Instruction Attributes

2C1D automatic storage overflow

The automatic storage for the specified activation group has been exhausted. Further program
execution within the activation group is not possible.

Information Passed:

• activation group mark UBin(4)

Instructions Causing Exception:

• program call instructions

• procedure call instructions

• Modify Automatic Storage Allocation

2C 1 E activation access violation

The program could not be activated within an existing activation group. The program specifies
an activation group access protection level which is incompatible with the existing activation
group.

Information Passed:

• Program

• Target activation group mark

Instructions Causing Exception:

• program call instructions

2C1F program signature violation

System pointer

UBin(4)

The source program specifies a signature which is not supported by the service program. The
service program interface has changed and the source program must be rebound.

Chapter 23. Exception Specifications 23-88

Hex 2C, Program Execution Exceptions

Information Passed:

• Source program System pointer

• Service program System pointer

• Signature Char(16)

Instructions Causing Exception:

• program call instructions

2C20 static storage overflow

The static storage allocation for an activation group has been exceeded.

Information Passed:

• Activation group mark

Instructions Causing Exception:

• program call instructions

2C21 program import invalid

UBin(4)

The actual type of a service program export does not agree with the type expected by a client
program.

Information Passed:

• Client program

• Service program

• Export-ID

• Expected type

• Actual type

The type is encoded as:

0001 = procedure
0002 = data

Instructions Causing Exception:

• program call instructions

2C22 data reference invalid

System pointer

System pointer

UBin(4)

UBin(2)

UBin(2)

The client program imports a data item from a program which is active in a different activation
group. Data items cannot be refernced across activation group boundaries.

Information Passed:

• Client program

• Service program

• Export-ID

• Client activation group mark

• Service activation group mark

Instructions Causing Exception:

• program call instructions

System pOinter

System pointer

UBin(4)

UBin(4)

UBin(4)

Chapter 23. Exception Specifications 23-89

Hex 2C, Program Execution Exceptions

2C23 imported object invalid

The source program attempts to import items from an object which is not a service program.

Information Passed:

• Source program System pointer

• Object System pointer

Instructions Causing Exception:

• program call instructions

2C24 activation group export conflict

The activation of one or more programs has resulted in conflicting specifications for activation
group exports.

Information Passed:

• Reason

• Activation group mark

• Name (first 64 characters)

The Reason field supplies more information as follows:

UBin(4)

UBin(4)

Char(64)

1 = multiple strong exports of the specified item were encountered.

2 = the specified item was already allocated within the activation group - a subsequent
strong export was encountered for the same item.

3 = the specified item was already allocated within the activation group - a subsequent
weak export with a conflciting length specification was encountered.

Instructions Causing Exception:

• program call instructions

2C25 import not found

The client program specifies a procedure or data import which is not found in the service
program. The export-ID specified in the client program exceeds the export count of the service
program. The client program must be rebound.

Information Passed:

• Client program

• Service program

• Export-tO

• Export cou nt

Instructions Causing Exception:

• program call instructions

System pointer

System pointer

UBin(4)

UBin(4)

Chapter 23. Exception Specifications 23-90

Hex 2E, Resource Control Limit Exceptions

2E Resource Control Limit
2E01 User Profile Storage Limit Exceeded

The user profile specified insufficient auxiliary storage to create or extend a permanent object.

Information Passed:

• User profile System pointer

Instructions Causing Exception:

• All create instructions creating a permanent object

• All instructions extending a permanent object

Any instruction which references bytes of data within a space object can cause an automatic
extension of the space if the space has the attribute of being automatically extendible.
Therefore, this exception may be signaled for any instruction which has an operand which
references bytes of data in a space.

• Signal Exception

2E02 Security audit journal failure

An entry could not be sent to the security audit journal.

Information Passed:

• Audit journal port

• Object being journaled
(null for program adopt audits)

• Return code

hex 0000 - No error detected
hex 0001 - No journal space attached
hex 0002 - Extend failure
hex 0003 - Damaged journal port
hex 0004 - Damaged journal space
hex 0005 - Maximum sequence number
hex 0006 - Journal failure
hex 0008 - Journal space off line
hex 0009 - Journal port off line
hex 0100 - This object type is not to be audited
hex 0200 - Invalid data length
hex 0300 - Object type table not defined
hex FFOO - Failure in VLlC auditing module

Instructions Causing Exception:

System pOinter

-'System pOinter

Char(2)

• All instructions performing underlying operations that cause an audit record to be sent
(program adopt, object change or reference, etc.).

Chapter 23. Exception Specifications 23-91

32 Scalar Specification

3201 Scalar Type Invalid

Hex 32, Scalar Specification Exceptions

A scalar operand did not have the following data types required by the instruction:

• Character

• Packed decimal

• Zoned decimal

• Binary

• Floating-point

Instructions Causing Exception:

• Any instruction using a late bound (data pointer) scalar operand

• Signal Exception

3202 Scalar Attributes Invalid

A scalar operand did not have the following attributes required by the instruction:

• Length

• Precision

• Boundary

Instructions Causing Exception:

• Any instruction using a late-bound (data pointer) scalar operand

• Any instruction that verifies the length of a character scalar in a space object operand

• Signal Exception

3203 Scalar Value Invalid

A scalar operand does not contain a correct value as required by the instruction.

Information Passed:

• Length of data passed

• Bit offset to invalid field (relative to 0)

• Operand number

• Invalid data

Instructions Causing Exception:

• Any instruction using a scalar operand

• Signal Exception

Bin(2)

Bin(2)

Bin(2)

Char(-)

Chapter 23. Exception Specifications 23-92

36 Space Management
3601 Space Extension/Truncation

Hex 36, Space Management Exceptions

A Modify Space Attributes instruction made one of the following invalid attempts to modify the
size of the space:

• Truncate the space to a negative size.

• Extend or truncate a fixed size space.

• Extend a space beyond the space allowed in the referenced object.

• An operation which required an automatic extension of a space occurred when the extended
space would not fit in the access group which contained it.

• Extend or truncate a space that has a hardware storage protection level of 01 or greater
while running in user state.

For information on the maximum size space allowed for a particular object, refer to the Limita­
tions topic within the definition of the create instruction for that type of object.

Information Passed

• Space System pointer

Instructions Causing Exception

• Activate Program

• Call External

• Modify Automatic Storage Allocation

• Modify Space Attributes

• Signal Exception

• Transfer Control

• Any instruction that invokes an external exception handler or an external event handler or
an invocation exit

• Any instruction which has an operand which references bytes of data in a space.

Any instruction which references bytes of data within a space object can cause an automatic
extension of the space if the space has the attribute of being automatically extendible.

3602 Invalid Space Modification

A Modify Space Attributes instruction made an attempt to modify the attributes of a space but
the requested modification is invalid.

Information Passed:

• System pointer to the object

• Error code Char(2)

Error codes and their meanings are as follows:

Code Meaning

0001 An attempt was made to modify the performance class attribute of the system
object containing the space and the space was not a fixed length of size zero.

0002 An attempt was made to modify a system object to or from the state of having a
fixed length space of size zero and the operation is invalid for that type of system
object.

Chapter 23. Exception SpeCifications 23-93

Hex 36, Space Management Exceptions

0003 An attempt was made to modify a system object to the state of having a fixed
length space and the automatic extend attribute. These are mutually exclusive.

0004 An attempt was made to modify the associated space of a program while running
in user state on a system running at security level 40 or above. This combination
is invalid.

Instructions Causing Exception:

• Modify Space Attributes

• Signal Exception

Chapter 23. Exception Specifications 23-94

Hex 38, Template Specification Exceptions

38 Template Specification
3801 Template Value. Invalid

A template did not contain a correct value required by the instruction.

Information Passed:

• Addressability to the template

• Offset to invalid field in bytes

Space pointer

Bin(2)

A value of 0 is the first byte in the template. An invalid field is considered to be the lowest­
level character or numeric template entry that contains the information that is in error.

• Bit offset in invalid field or 0

A 0 value indicates the leftmost bit in the invalid field.

• The number of bytes in the invalid field

• Instruction operand number
(The first operand in an instruction is 1.)

• Reason code

Bin(2)

Bin(2)

Bin(2)

Char(2)

The meaning of the reason code which mayor may not be returned is specific to the defi­
nition of each instruction. Refer to the instruction definition to find out whether or not a
meaningful value is returned. Unless otherwise stated, this field has no meaning.

The following instructions support setting the reason code.

Create Dictionary

Create Module

Create Bound Program

Instructions Causing Exception:

• Any instruction that has a space pointer as a source operand

• Convert BSC to Character

• Convert Character to BSC

• Convert Character to MRJE

• Convert MRJE to Character

• Signal Exception

• Scan with Control

3802 Template Size Invalid

A source template was not large enough for this instruction.

Information Passed:

• Addressability to the template

Instructions Causing Exception:

Space pointer

• Any instruction that has a space pointer that addresses a source template operand

• Signal Exception

3803 Materialization Length Exception

Less than 8 bytes was specified to be available in the receiver operand of a materialize instruc- ~
tion.

Instructions Causing Exception:

Chapter 23. Exception Specifications 23-95

Hex 38, Template Specification Exceptions

• Any materialize instruction

• Any retrieve instruction

• Signal Exception

Chapter 23. Exception Specifications 23-96

Hex 3A, Wait Time-Out Exceptions

3A Wait Time-Out

3AOI Dequeue .

A specified time period elapsed, and a Dequeue instruction was not satisfied.

Information Passed:

• The queue waited for

• Time-out value

Instructions Causing Exception:

• Dequeue

• Signal Exception

3A02 Lock

System pointer

Char(8)

A specified time period elapsed, and a Lock Object instruction was not satisfied.

Information Passed:

• System pointer to the object waited for

• Time-out value Char(8)

Instructions Causing Exception:

• Lock Object

• Signal Exception

3A04 Space Location Lock Wait

A specified time period has elapsed and a Lock Space Location instruction has not been satis- '.: ''\
fied. .."

Information Passed:

• Space location

• Time-out value

Instructions Causing Exception:

• Lock Space Location

• Signal Exception

Space pointer

Char(8)

Chapter 23. Exception Specifications 23-97

Hex 3e, Service Exceptions

3C Service

3CD1 Invalid Service Session State

The process is not in the proper service session for the request service command because of
one of the following conditions:

• No service session exits for the process, and the command is other than start service
session.

• The process is in service session, and the command is to start service session.

• The process is in service session, but a previous stop service session command was issued.

Instructions Causing Exception:

• Signal Exception

3CD2 Unable to Start Service Session

The machine was unable to start a valid service session.

Instructions Causing Exception:

• Signal Exception

Chapter 23. Exception Specifications 23-98

Hex 3E, Commitment Control Exceptions

3E Commitment Control
3E01 Invalid Commit Block Status Change

An attempt was made to modify (to an invalid status) the status of a commit block attached to
the issuing process. The exception data defines the attempted change to the commit block
status.

Information Passed:

• Commit block System pOinter

• Attempted status change Char(2)
(as defined in the modifications options in the modification template for the Modify Commit
Block instruction)

Instructions Causing Exception:

• Modify Commit Block

• Signal Exception

3E03 Commit Block Is Attached to Process

The identified commit block is attached to a process making the operation requested impossible.
The process that has the commit block attached is identified in the exception data.

Information Passed:

• Commit block

• Process control space

Instructions Causing Exception:

• Destroy Commit Block

• Signal Exception

3E04 Commit Blocks Control Uncommitted Changes

System pointer

System pointer

The identified commit block controls uncommitted changes, and an attempt was made to detach
the commit block from the issuing process.

Information Passed:

• Commit block System pointer

Instructions Causing Exception:

• Modify Commit Block

• Signal Exception

3E05 Operation Not Valid on Commit Block in Prepared State

The identified Commit Block is in a prepared state. The operation attempted is therefore not
allowed. Signalled from .#COCHECK module.

Information Passed:

• Commit block

Instructions Causing Exception:

• Modify Commit Block

• Activate Cursor

• Deactivate Cursor

• Delete Data Space Entry

System pointer

Chapter 23. Exception Specifications 23-99

Hex 3E, Commitment Control Exceptions

• Destroy Commit Block

• Destroy Cursor

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Release Data Space Entries

• Retrieve Data Space Entry

• Update Data Space Entry

3E06 Commitment Control Resource Limit Exceeded

One of the resource limits for the commitment control functions has been reached.

Information Passed:

• Commit block

• Condition code

Hex 01 = Lock limit exceeded
Hex 02 = Object list size exceeded
Hex 03 = Limit of attached commit blocks in the system exceeded
Hex 04 = Reposition cursor data limit exceeded

Instructions Causing Exception:

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Modify Commit Block

• Set Cursor

• Signal Exception

3E08 Object Under Commitment Control Being Journaled Incorrectly

System pointer

Char(1)

All objects under commitment control must have their changes journaled through the same
journal port as the commit block. An attempt was made to place an object under commitment
control that did not meet this condition.

Information Passed:

• Object

• Journal port that must be used

• Journal port currently being used
(binary 0 if not currently being journaled)

Instructions Causing Exception:

• Modify Commit Block

• Signal Exception

3E10 Operation Not Valid Under Commitment Control

System pointer

System pointer

System pointer

An operation was attempted on an object or through an object that was currently under commit­
ment control. The operation is not supported under commitment control.

Information Passed:

• Object under commitment control

Instructions Causing Exception:

• Copy Data Space Entries

System pointer

Chapter 23. Exception Specincations 23-100

Hex 3E, Commitment Control Exceptions

• De-activate Cursor

• Destroy Cu~sor

• Retrieve Sequential Data Space Entries

• Signal Exception

3Eff Process Has Attached Commit Block

An attempt was made to attach a second commit block to a process.

Information Passed:

• Commit block (attached)

• Commit block (attempted to attach)

Instructions Causing Exception:

• Modify Commit Block

• Signal Exception

3E12 Objects Under Commitment Control

System pointer

System pOinter

An attempt was made to detach a commit block from a process that has objects under commit­
ment control.

Information Passed:

• Commit block System pointer

Instructions Causing Exception:

• Modify Commit Block

• Signal Exception

3E13 Commit Block Not Journaled

An attempt was made to attach a commit block to a process, and the commit block was not
being journaled.

Information Passed:

• Commit block

Instructions Causing Exception:

• Modify Commit Block

• Signal Exception

3E14 Errors During Decommit

System pointer

Errors were detected during an execution of a Decommit instruction. The exception data indi­
cates the type of errors detected.

Information Passed:

• Commit block

• Reserved (binary 0)

• Oecommit status

Damaged

o = Commit block is not damaged
1 = Commit block is damaged

Reserved (binary 0)

Partially damaged

System pointer

Char(1)

Char(4)

BitO

Bits 1-2

Bit 3

Chapter 23. Exception Specifications 23-101

Hex 3E. Commitment Control Exceptions

o = Not partially damaged
1 = Partially damaged

Reserved (binary 0)

Decommit

o = All changes were decommitted
1 = Not all changes were decommitted

Journal read errors

o = No journal read errors
1 = Journal read errors occurred during decommit

Journal write errors

o = No journal write errors
1 = Journal write errors occurred during decommit

Partial damage to data space

o = No damage encountered
1 = Damage encountered on one or more data spaces

Damage to data space

o = No damage encountered
1 = Damage encountered on one or more data spaces

Function check

a = No function check encountered
1 = Function check encountered

Reserved (binary 0)

Constant = 100

Reserved (binary 0)

• Reserved (binary 0)

• Journal entry sequence number of start
commit journal entry

Instructions Causing Exception:

• Decommit

• Signal Exception

3EtS Object Ineligible for Commitment Control

Bits 4-15

Bit 16

Bit 17

Bit 18

Bit 19

Bit 20

-. Bit 21

Bits 22-23

Bits 24-26

Bits 27-31

Char(7)

Bin(4)

The specified object is not eligible to be placed under commitment control.

Information Passed:

• Object

• Reason code

System pointer

Char(1)

Hex 01 = Object is a type that is not supported under commitment control
Hex 02 = Object is a cursor that was not activated under the issuing process
Hex 03 = Object is already under commitment control to this another commit block or to

commit block
Hex 04 = Object is a cursor that holds data space entry locks
Hex 05 = Object is a join cursor

Instructions Causing Exception:

Chapter 23_ Exception Specifications 23-102

Hex 3E, Commitment Control Exceptions

• Modify Commit Block

• Signal Exception

3E16 Object Ineligible for Removal from Commitment Control

The specified object cannot be removed from commitment control.

Information Passed:

• Object

• Reason code

System poi nter

Char(1)

Hex 01 = Object is a type that is not supported under commitment control
Hex 02 = Object is not under commitment control of this commit block
Hex 03 = Object is a cursor holding data space entry locks

Instructions Causing Exception:

• Modify Commit Block

• Signal Exception

Chapter 23. Exception SpecIfications 23-103

,

J

44 Domain Violation Exceptions

4401 Object Domain Violation

Hex 44, Domain Violation Exceptions

An attempt was made to use a blocked instruction or to access a system domain object from a
user state program. The system must be running at security level 40 to get this exception.

The execution of the instruction is suppressed when the exception is signalled.

Information Passed:

• Object. System pointer

Instructions Causing Exception:

• All blocked instructions.

• Any instruction that contains an operand that can be a pointer or be represented in storage
(Le. the value for the operand is to retrieved from storage).

Chapter 23. Exception Specifications 23-104

Hex 44, Domain Violation Exceptions

Chapter 23. Exception Specifications 23-105

Instruction Summary

Appendix A. Instructi.on Summary

This appendix provides an abbreviated format of all the instructions. The instructions are listed alpha­
betically by instruction mnemonic.

The summary list includes the following items for each instruction.

• Operation Description-The name of the instruction.

• Mnemonic-The mnemonic assigned to the instruction.

• Operation Code-The operation code assigned to the instruction.

• Number of Operands-The number of operands (excluding the extender) in the instruction.

• Extender-A description of the use of the extender field.

• Operand Syntax-The objects allowed as operands in the instruction.

• Resulting Conditions-The conditions that can be set at the end of the standard operation in order to
perform a conditional branch or set a conditional indicator.

• Optional Forms-A notation for the optional forms that are allowed for the computational
instructions.

Note: This summary list can also be used as an index to identify the page where a complete
description of each instruction can be found in this manual. The page number is the last item
included with each instruction in this summary.

The following paragraphs further describe the summary list format of the last five items in the previous
list.

Number Of Operands

Certain computational instructions allow a variable number of operands and are identified in the
summary list by the following form:

number + B

The number defines the number of fixed operands. The B indicates the existence of variable operands
(branch targets or indicator operands). A pair of braces around the letter indicates that the variable
operands are optional.

Extender Usage

Instructions that use an extender field have a brief description of the use of the extender. Hyphens
indicate that the extender is not used. Brackets indicate that the extender is optional. The abbrevi­
ation BRIIND is used to mean branch or indicator options. The extender field defines the use of the
branch or indicator operands with respect to the resulting conditions of the instruction.

Resulting Conditions

Resulting conditions are the status result of the operation that is used for determining a branch target,
if any.

The following conditions are indicated in the instruction summary.

P, N, Z

Z, NZ

Positive, negative, zero

Zero, not zero

© COPYright IBM Corp. 1991, 1993 A-1

H, L, E

E, NE

P, Z

H, L, E, U

Z, 0, M

[N]Z[N]C

S, NS

DE, I

DQ,NDQ

High. low, equal

Equ.al, not equal

Positive, zero

High, low, equal, unequal

Zero, ones, mixed

Instruction Summary

Zero and no carry, not zero and no carry, zero and carry, not zero and carry

Signaled, not signaled

Exception deferred, exception ignored

Dequeued, notdequeued

Optional Forms

All instructions are classified as computational or noncomputational format. The format determines
how the operation code is interpreted and whether optional forms of the instruction are allowed. (See
"Instruction Format" in Chapter 1. "Introduction").

Certain computational instructions allow optional forms. The following optional forms can be specified:

• B (Branch Form)-The resulting conditions of the operation are compared with the branch options
specified in the extender field. If one of the options is satisfied, a branch is executed to the branch
target corresponding to the branch option.

• I (Indicator Form)-The resulting conditions of the operation are compared with the indicator options
specified in the extender field. If one of the options is satisfied, the indicator corresponding to that
option is assigned a value of hex F1. The other indicators referred to by the operation are ... '\
assigned a value of hex FO. ..."

• S (Short Form)-The operand that acts as a receiver in the instruction can also be one of the source
operands.

• R (Round Form)-If the result of the operation is to be truncated before being placed in the receiver,
rounding is performed.

Appendix A. Instruction Summary A-2

Instruction Summary

Instruction Stream Syntax

In this instruction summary, the following metalanguage is used to describe the machine interface
instruction set operand syntax.

Metasymbol Meaning

{} Choose from a series of alternatives

[] Enclose an optional entry or entries

OR - used to separate alternatives

.N. Repeat previous entry, up to N times

DESC-{}

Is defined as - define a metavariable Metavariable :: = Metadefinition

Description of a metavariable in English

Notes:

1. Some of the computational op codes require an extender field while on other op codes an extender
field is optional. Some computational op codes may be optionally short, or round.

Appendix A. Instruction Summary A-3

Program Object Definitions

ARG-LJST :: = DESC-{operand list which defines an argument list}

B-ARRA Y :: = DESC-{array of binary variables} B-PT :: = DESC-{branch
point} BIN :: = DESC-{binary} BIN[NJ :: = DESC-{binary object
with precision N} BT :: = DESC-{instruction number I relative instruction

number I instruction pointer I branch pointer I IDL
element I null}

C-ARRA Y :: = DESC-{array of character string variables} CHAR :: =
DESC-{character string which is either variable or constant}
CHAR[N] :: = DESC-{string at least N bytes long} CHARV :: =
DESC-{char variable} CHARC :: = DESC-{char constant}

D-PTR :: = DESC-{data pointer}

EXCP-DESC :: = DESC-{exception description}

F-BT :: = DESC-{instruction number I relative instruction number I
branch point} F-P :: = DESC-{f1oating-point value}

IDL :: = DESC-{instruction definition list} IT :: = DESC-{charlnumeric
variable used as an indicator target} I-ENT PT :: = DESC-{internal entry
point} I-PTR :: = DESC-{instruction pointer}

NULL :: = DESC-{indicates a null operand [X'OOOQ']} NUMERIC
:: = DESC-{binary I zoned I packed I numeric scalar} N-ARRAY :: =
DESC-{array of numeric variable}

OP-L/ST :: = DESC-{operand list}

PROCESS :: = DESC-{character string that names a process} PTR :: =
DESC-{a 16-byte, 16-byte-boundary-aligned pointer element} P-ARRAY ::=
DESC-{an array of 16 bytes,

16-byte-bou ndary-al ig ned poi nter(s)}

SPDO :: = DESC-{space pointer data object} S-PTR :: = DESC-{system
pointer} SPP :: = DESC-{space painter} SPP-ARRAY :: = DESC-{an array of
space pointer variables}

Notes:

Instruction Summary

1. NUMERIC, CHAR, BIN, and UBIN may be followed by the special characters S, C. V. CHAR, BIN,
and UBIN may also be followed by the special character I. These characters further qualify the
object as being scalar. constant, variable or immediate, respectively.

2. All array objects are variable.

Appendix A. Instruction Summary A-4

System Object Declarations

ACTV ENTRY:: = DESC-{SPP that addresses an activation}

AG :: = DESC-{S-PTR that addresses an access group}

AL :: = DESC-{S-PTR that addresses an authorization list}

CD :: = DESC-{S-PTR that addresses a controlier description}

CSD :: = DESC-{S-PTR that addresses a class of service description}

CONTEXT :: = DESC-{S-PTR that addresses a context}

CURSOR :: = DESC-{S-PTR that addresses a cursor}

DATA SPACE :: = DESC-{S-PTR that addresses a data space}

OCT :: = DESC-{S-PTR that addresses a dictionary}

OS-INDEX :: = {S-PTR that addresses a data space index}

INDEX :: = DESC-{S-PTR that addresses an index}

LUD :: = DESC-{S-PTR that addresses a logical unit description}

MD :: = DESC-{S-PTR that addresses a mode description}

MODULE :: = DESC-{S-PTR that addresses a module}

NO :: = DESC-{S-PTR that addresses a network description}

PCS :: = DESC-{S-PTR to process control space}

PROGRAM :: = DESC-{S-PTR that addresses a program}

SPACE :: = DESC-{a system pointer pointing to a space object}

QUEUE :: = DESC-{S-PTR that addresses a queue}

QUEUE SPACE :: = DESC-{S-PTR that addresses a queue space}

USER PROFILE :: = DESC-{S-PTR that addresses a user profile}

Instruction Summary

Appendix A. Instruction Summary A-S

Resulting Conditions Definitions

zc :: = DESC-{zero with carry}

[N]ZC :: = DESC-{[not] zero with carry}

Z[N]C :: = DESC-{zero with [no] carry}

[N]Z[N]C :: = DESC-{[not] zero with [no] carry}

CR :: = DESC-{completed record}

DE :: = DESC-{deferred}

DEN :: = DESC-{denormalized}

[N]DQ :: = DESC-{[Not]dequeued}

ECE :: = DESC-{escape code encountered}

E :: = DESC-{equal}

[N]F :: = DESC-{[Not]found}

H :: = DESC-{high}

I :: = DESC-{ignored}

IN :: = DESC-{infinity}

L :: = DESC-{Iow}

M :: = DESC-{mixed}

N :: = DESC-{negative}

NaN :: = DESC-{symbolic not-a-number}

NCO :: = DESC-{null compare operand}

NE :: = DESC-{not equal}

NRN :: = DESC-{normalized real number}

NS :: = DESC-{not signaled}

NZ :: = DESC-{not zero}

o :: = DESC-{ones}

P :: = DESC-{positive}

RO :: = DESC-{receiver overrun}

5 :: = DESC-{signaled}

SE :: = DESC-{source exhausted}

Instruction Summary

Appendix A. Instruction Summary A-6

TR :: = DESC-{truncated record}

U :: = DESC-{unequal}

UN :: = DESC-{unordered}

Z :: = DESC-{zero}

Instruction Summary

Appendix A. Instruction Summary A-7

Instruction Summary

Instruction Summary (Alphabetical Listing by Mnemonic)

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

Operands tions
Activate ACTPG 0212 2 {ACTV 9·3
Program ENTRY I

PROGRAM}. PROGRAM

Add Logical ADDLC 1023 3+[B] CHARV. [N]Z[N]C [B I I. S] 2-3
Character CHARS.2 .•

[BT.4. I IT.4.]

Add Numeric ADDN 1043 3+[B] NUMERICV. p. N. Z. [B II. S. 2-6
NUMERICS.2 .• UN R]
[BT.4. I IT.4.]

Add Space ADDSPP 0083 3 SPP.2 .• BINS 5-3
Pointer

Allocate Heap ALCHSS 03B3 3 SPP. {BIN I 7-3
Space Storage NULL}. BIN

And AND 1093 3+[B] CHARV. Z. NZ [B II. S] 2-10
CHARS.2 .•
[BT.3. IIT.3.]

Branch B 1011 BT 2-13

Compute Array CAl 1044 4 BINV. BINS.3. 2-30
Index

Call Internal CALLI 0293 3 I-ENT PT. 9-9
{ARG LIST I

:.J NULL}. I-PTR

Call External CALLX 0283 3 PROGRAM I 9-5
SPP. {ARG
LIST I NULL}.
{IDL I NULL}

Concatenate CAT 10F3 3 CHARV. 2-46
CHARS.2.

Compute Date CDD 0424 4 NUMERICV. 3-13
Duration CHAR.

CHAR. SPP

Clear Bit in CLRBTS 102E 2 {CHARV I 2-15
String NUMERICV}.

BINS

Clear Invocation CLRIEXIT 0250 0 9-11
Exit

Compute Math CMF1 100B 3+[B] NUMERICV. p. N. Z. [B I I] 2-32
Function Using CHARS[2]. UN
One Input Value NUMERICS.

[BT.4. I IT.4.]

Compute Math CMF2 100C 4+ [B] NUMERICV. P, N. Z. [B I I] 2-41
Function Using CHARS[2]. UN
Two Input NUMERICS.
Values NUMERICS.

[BT.4. I IT.4.]

Compare Bytes CMPBLA 10C2 2+B {CHARS I H, L. E {B I I} 2-17
Left-Adjusted N U M ERICS}.2 .• .j

{BT.3. I IT.3.}

Appendix A. Instruction Summary A-a

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

Operands tions
Compare Bytes CMPBLAP 10C3 3+B {CHARS I H. L, E {B I I} 2-19
Left-Adjusted NUMERICS}.3 .•
With Pad {BT.3. I 1T.3.}

Compare Bytes CMPBRA 10C6 2+B {CHARS I H. L, E {B I I} 2-21
Right-Adjusted NUMERICS}.2 .•

{BT.3. I 1T.3.}

Compare Bytes CMPBRAP 10C7 3+B {CHARS I H. L, E {B I I} 2-23
Right-Adjusted NUMERICS}.3 .•
With Pad {BT.3. I IT.3.}

Compare CMPNV 1046 2+B NUMERICS.2 .• H. L, E. {B II} 2-25
Numeric Value {BT.4. I IT.4.} UN

Compare CMPPSPAD 10E6 2+B {SPP I H. L, E. U {B II} 4-5
Pointer for D-PTR}.
Space Address- {NUMERICV I
ability CHARV I C-

N·ARRAY I
SPP I
D·PTR}.
{BT.4. I IT.4.}

Compare CMPPTRA 1002 2+B {D-PTR I SPP E, NE [B I I] 4-3
Pointer for I S·PTR I
Object Address- I·PTR}.2 .•
ability {BT.2. I IT.2.}

Compare CMPPTRE 1012 3+[8] {Any PTR E. NE [B II] 4-7
Pointers for }.2.

'-' Equality

Compare CMPPTRT 10E2 2+8 {D-PTR I SPP E. NE {B II} 4-9
Pointer Type I S-PTR I

I-PTR}.
{CHARS[l]NULL}.
{BT.2. I IT.2.}

Compare Space CMPSPAD 10F2 2+8 {CHARV I H. L, E, U {B I I} 5·5
Addressabi Ii ty C-ARRAY I

NUMERICV I
N-ARRAY I
PTR I
P-ARRAY.2.}.
{BT.4. I IT.4.}

Compress Data CPRDATA 1041 Space 2-28
Pointer

Copy Bytes to CPYBBTA 104C 4 {NUMERICV I 2-124
Bits Arithmetic CHARV}.

BINI.2 .•
{NUMERICV I
CHARV}

Copy Bytes to CPYBBTL 103C 4 {NUMERICV I 2-126
Bits Logical CHARV},

BINI.2 .•
{NUMERICV I
CHARV}

Appendix A. Instruction Summary A-9

Instruction Summary

Operation Op Number Operand Resulting Optional

Description Mnemonic Code of Syntax Condi· Forms Page
Operands tions ;) Copy Bytes CPYBLA 10B2 2 {NUMERICV I 2-110

Left-Adjusted CHARV}.
{NUMERICS I
CHARS}

Copy Bytes CPYBLAP 10B3 3 {NUMERICV I 2-112

Left-Adjusted CHARV}.
With Pad {NUMERICS I

CHARS}.2.

Copy Bytes CPYBOLA 10BA 2 {NUMERICV I 2-114

Overlap Left- CHARV}.2.
Adjusted

Copy Bytes CPYBOLAP 10BB 3 {NUMERICV I 2-116

Overlap Left- CHARV}.2 .•
Adjusted With {NUMERICS I
Pad CHARS}

Copy Bytes CPYBRA 10B6 2 {NUMERICV I 2-120

Right-Adjusted CHARV}.
{NUMERICS I
CHARS}

Copy Bytes CPYBRAP 10B7 3 {NUMERICV I 2-122

Right-Adjusted CHARV}.
With Pad {NUMERICS I

CHARS}.2.

Copy Bytes CPYBREP 10BE 2 {NUMERICV I 2-118

Repeatedly CHARV}.

:J {NUMERICS I
CHARS}

Copy Bits Arith- CPYBTA 102C 4 {NUMERICV I 2-100

metic CHARV}.2 .•
BINI.2.

Copy Bits CPYBTL 101C 4 {NUMERICV I 2-102

Logical CHARV}.2 .•
BINI.2.

Copy Bits With CPYBTLLS 102F 3 {CHARV I 2-104

Left Logical NUMERICV}.
Shift {CHARS I

NUMERICS}.
CHARS[2]

Copy Bits With CPYBTRAS 101B 3 {CHARV I 2-106
Right Arithmetic NUMERICV}.
Shift {CHARS I

NUMERICS}.
CHARS[2]

Copy Bits With CPYBTRLS 103F 3 {CHARV I 2-108

Right Logical NUMERICV}.
Shift {CHARS I

NUMERICS}.
CHARS[2]

Copy Bytes With CPYBWP 0132 2 {CHARV I 4-12

Pointers PTR}.
{CHARV I

~ PTR I NULL}

Appendix A. Instruction Summary A-10

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

~>
Operands tlons

Copy Extended CPYECLAP 1053 3 D-PTR 2-128
Characters Left· CHARS,D·PTR
Adjusted With CHARS,CHAR
Pad

Copy Hex Digit CPYHEXNN 1092 2 {NUMERICV I 2·132
Numeric to CHARV},
Numeric {NUMERICS I

CHARS}

Copy Hex Digit CPYHEXNZ 1096 2 {NUMERICV I 2·134
Numeric to CHARV},
Zone {NUMERICS I

CHARS}

Copy Hex Digit CPYHEXZN 109A 2 {NUMERICV I 2-136

Zone to CHARV},
Numeric {NUMERICS I

CHARS}

Copy Hex Digit CPYHEXZZ 109E 2 {NUMERICV I 2·138
Zone to Zone CHARV},

{NUMERICS I
CHARS}

Copy Numeric CPYNV 1042 2+[B] NUMERICV, P, N, Z, [B II, R] 2·140
Value NUMERICS, UN

[BT.4. I IT.4.]

Create Heap CRTHS 03B2 2 BINV, SPP 7-6

Space

c.., Compute TIme CTD 0454 4 NUMERICV, 3-16

Duration CHAR,
CHAR, SPP

Compute CTSD 043C 4 NUMERICV, 3-19

TImestamp CHAR,
Duration CHAR, SPP

Convert BSC to CVTBC lOAF 3 + [B] CHARV, CR, SE, [B I I] 2-48
Character CHARV[3], TR

CHARS,
{BT.3. I 1T.3.}

Convert Char- CVTCB 108F 3 + [B] CHARV, SE, RO [B II] 2-52

acter to BSC CHARV[3],
CHARS,
{BT.2. I IT.2.}

Convert Char- CVTCH 1082 2 CHARV, 2-55

acter to Hex CHARS

Convert Char- CVTCM 108B 3 + [B] CHARV, SE, RO [B II] 2-57

acter to MRJE CHARV[13],
CHARS,
{BT.2. I IT.2.}

Convert Char- CVTCN 1083 3 NUMERICV, 2-62

acter to CHARS,
Numeric CHARS [7]

Convert Char- CVTCS 10CB 3 + [B] CHARV, SE, RO [B I I] 2-65

acter to SNA CHARV[15],
CHARS,
{BT.2. I 1T.2.}

Appendix A. Instruction Summary A-11

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

Operands tions . ..J
Convert CVTDFFP 107F 3 F·PS, 2·74
Decimal Form NUMERICS,
to Floating·Point NUMERICS

Convert CVTEFN 1087 3 NUMERICV, 2·76
External Form CHARS,
to Numeric {CHARS[3] I
Value NULL}

Convert CVTFPDF 10BF 3 NUMERICV, Round 2·79
Floating-Point to NUMERICV,
Decimal Form F·PS

Convert Hex to CVTHC 1086 2 CHARV, 2·82
Character CHARS

Convert M RJ E CVTMC 10AB 3 + [B] CHARV, SE, RO [B I I] 2·84
to Character CHARV[6],

CHARS,
{BT.2. I IT.2.}

Convert CVTNC 10A3 3 CHARV, 2·88
Numeric to NUMERICS,
Character CHARS[7]

Convert SNA to CVTSC 10DB 3 + [B] CHARV, SE, RO, [B I I] 2·90
Character CHARV[14], ECE

CHARS,
{BT.3. I IT.3.}

Convert Date CVTD 040F 3 CHAR, 3-22
CHAR, SPP :.J Convert TIme CVTT 041F 3 CHAR, 3·25
CHAR, SPP

Convert CVTTS 043F 3 CHAR, 3-28
TImestamp CHAR, SPP

Decompress DC P DATA 1051 SPP 2·143
Data

De-activate DEACTPG 0225 PROGRAM I 9-12
Program NULL

Decrement Date DECD 0414 4 CHAR, 3·31
CHAR,
NUMERICV,
SPP

Decrement time DECT 0444 4 CHAR, 3-35
CHAR,
NUMERICV,
SPP

Decrement DECTS 040C 4 CHAR, 3-38
timestamp CHAR,

NUMERICV,
SPP

Dequeue DEQ 1033 3+[B] CHARV, SPP, DQ, NDQ [B I I] 12·3
QUEUE,
[BT.2. I IT.2.]

Destroy Heap DESHS 03B1 BINV 7-11
Space

Appendix A. Instruction Summary A-12

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi- Forms Page

~'
Operands tions

Divide DIV 104F 3+ [BJ NUMERICV, P, N, Z, [B II, S, 2-146
NUMERICS.2., UN RJ
[BTA. I ITA.J

Divide With DIVREM 1074 4+ [BJ NUMERICV, P, N, Z [B I I, S, 2-150
Remainders NUMERICS,2" RJ

NUMERICV

Extended Char- ECSCAN 1004 4+[BJ B-ARRAY, P, Z, ECE [B I IJ 2-167
acter Scan CHARS,

CHARS,
CHARS[1],
{BT.3. I IT.3.}

Edit EDIT 10E3 3 CHARV, 2-154
NUMERICS,
CHARS

End END 0260 0 9-14

Enqueue ENQ 036B 3 QUEUE, 12-9
CHARS, SPP

Ensure Object ENSOBJ 0381 1 S-PTR 19-3

Exchange Bytes EXCHBY 10CE 2 {CHARV I 2-162
NUMERICV}.2.

Extract Expo- EXTREXP 1072 2+[B] BINV, F-PS, NRN, [8 II] 2-171
nent {BT.4. I IT.4.} DEN, IN,

NaN

Extract Magni- EXTRMAG 1052 2+[B] NUMERICV, P, Z, UN [B I I, SJ 2-174
tude NUMERICS,

[BT,3, I IT,3.]

Find Inde- FNDINXEN 0494 4 SPP, INDEX, 11-12
pendent Index SPP.2.
Entry

Find Relative FNDRINVN 0543 3 BIN, 21-3
Invocation {CHARS [48]
Number I NULL}, SPP

Free Heap FREHSS 03B5 SPP 7-13
Space Storage

Free Heap FREHSSMK 03B9 SPP 7-15
Space Storage
from Mark

Insert Inde- INSINXEN 04A3 :J INDEX, SPP.2. 11-16
pendent Index
Entry

Lock Object LOCK 03F5 SPP 13-3

Lock Space LOCKSL 03F6 2 SPP, 13-8
Location CHARS[1]

Materialize M ATA GAT 03A2 2 SPP, AG 19-5
Access Group
Attributes

Materialize Acti- MATAGPAT 0203 3 SPP, UBIN, 9-19

<..,
vation Group CHARS[1]
Attributes

Materialize MATAL 01B3 3 SPP, AL, SPP 17-7
Authority List

Appendix A, Instruction Summary A-13

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

Operands tions
Materialize Allo- MATAOL 03FA 2 SPP, {S-PTR I -- Heading
cated Object SPDO} 'MATAOL'
Locks unknown

Materialize MATAU 0153 3 SPP, S-PTR, 17-3
Authority {USER

PROFILE I
NULL}

Materialize MATAUOBJ 013B 3 SPP, USER 17-12
Authorized PROFILE,
Objects CHARS[1]

Materialize MATAUU 0143 3 SPP, S-PTR, 17·20
Authorized CHARS[1]
Users

Materialize MATBPGM 02C6 2 SPP, S-PTR 8-3
Bound Program

Materialize MATCTX 0133 3 SPP, 16·3
Context {CONTEXT I

NULL},
CHARS

Materialize MATDMPS 04DA 2 SPP, S-PTR 20-3
Dump Space

Materialize MATDRECL 032E 2 SPP, SPP 13·13
Data Space

:J Record Locks

Materialize MATEXCPD 0307 3 SPP, 14-3
Exception EXCP-DESC,
Description CHARS[1]

Materialize MATI NAT 0526 2 SPP, CHARS 21·8
Instruction Attri-
butes

Materialize MATINV 0516 2 SPP.2. 21-14
Invocation

Materialize MATI NVAT 0533 3 SPP, 21-18
Invocation Attri- {CHARS[48]
butes I NULL}, SPP

Materialize MATINVE 0547 3 CHARV, 21-28
Invocation Entry {CHARV.1. I

NULL},
CHARS.1. I
NULL}

Materialize MATINVS 0546 2 SPP, {S-PTR I 21-32
Invocation NULL}
Stack

Materialize MATMATR 0636 2 SPP, 22-4
Machine Attri- CHARS[2] I
butes SPP

Materialize MATMDATA 0522 2 CHAR, 22-30
Machine Data {CHAR [2] I

NUMERICV } ~
Materialize MATPG 0232 2 SPP, 8-24
Program PROGRAM

Appendix A. Instruction Summary A-14

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

"
Operands tions

Materialize MATPRAGP 0331 1 SPP 18-3
Process Acti-
vation Groups

Materialize MATPRATR 0333 3 SPP, {PCS I 18-5
Process Attri- NULL},
butes CHARS[l]

Materialize MATPRECL 031E 2 SPP, SPP 13-20
Process Record
Locks

Materialize MATPRLK 0312 2 SPP, {PCS I 13-17
Process Locks NULL}

Materialize MATPRMSG 039C 4 SPP, SPP, 15-3
Process {SPP I
Message NULL}. SPP

Materialize MATPTR 0512 2 SPP, {S-PTR I 21-37
Pointer D-PTR I SPP I

I-PTR}

Materialize MATPTRL 0513 3 SPP.2., BINS 21-46
Pointer
Locations

Materialize MATQAT 0336 2 SPP, QUEUE 12-12
Queue Attri-
butes

Materialize MATQMSG 033B 3 SPP, S-PTR, 12-16
Queue Mes- CHARS[16]
sages

Materialize MATRMD 0352 2 SPP, 19-9
Resource Man- CHARS[S]
agement Data

Materialize MATS 0036 2 SPP, S-PTR 6-11
Space Attri-
butes

Materialize MATSELLK 033E 2 SPP, {S-PTR I 13-24
Selected Locks SPP}

Materialize MATSOBJ 053E 2 SPP, S-PTR 21-48
System Object

Materialize MATUP 013E 2 SPP, USER 17-25
User Profile PROFILE

Modify Auto- MODASA 02F2 2 {SPP I 9-23
matic Storage NULL}. BINS
Allocation

Modify Excep- MODEXCPD 03EF 3 EXCP-DESC, 14-6
tion Description SPP,

CHARS[4]

Modify Inde- MODINX 0452 2 S-PTR, 11-23
pendent Index CHARS[4]

Modify Space MODS 0062 2 S-PTR. BINS 6-15
Attributes

Multiply MULT 104B 3+ [B] NUMERICV, P, N, Z. [B II, S, 2-177
NUMERICS.2., UN R]
[BTA. I ITA.]

Appendix A. Instruction Summary A-15

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

Operands tions

~ Negate NEG 1056 2+ [B] NUMERICV, P, N, Z, [B I I, S] 2-181
NUMERICS, UN
[BT.4. I IT.4.]

No Operation NOOP 0000 0 10-3

No Operation NOOPS 0001 UBINI 10-4
and Skip

Not NOT 108A 2+ [B] CHARV, Z, NZ [B I I, S] 2-184
CHARS,
[BT.2. I IT.2.]

Or OR 1097 3+[B] CHARV, Z, NZ [B II, S] 2-187
CHARS.2.,
[BT.2. I IT.2.]

Override OVRPGATR 0006 2 UBINI.2. 10-5
Program Attri-
butes

Remainder REM 1073 3+ [B] NUMERICV, P, N, Z [B I I, S] 2-190
NUMERICS.2.,
[BT.3. I IT.3.]

Retrieve Excep- R ETEXC PO 03E2 2 SPP, 14-9
tion Data CHARS[l]

Remove Inde- RMVINXEN 0484 4 {SPP I 11-26
pendent Index NULL}.
Entry INDEX. SPP.2.

Resolve Data RSLVDP 0163 3 D-PTR. 4-14

~ Pointer {CHARS [32]
I NULL},
{S-PTR I
NULL}

Resolve System RSLVSP 0164 4 S-PTR, 4-17
Pointer {CHARS[34]

I NULL},
{S-PTR I
NULL},
{CHARS[2" I
NULL}

Return From RTNEXCP 03E1 SPP 14-12
Exception

Return External RTX 02Al {BINS I 9-25
NULL}

Scale SCALE 1063 3+[B] NUMERICV, P, N, Z, [B II. S] 2-194
NUMERICS, UN
BINS, [BT.4. I
ITA.]

Scan SCAN 1003 3+[B] {BINV I P, Z, NCO [B II] 2-198
B-ARRAY},
CHARS.2.,
[BT.3. I IT.3.]

Scan With SCANWC 10E4 4+[B] SPP, H, L, E, [B, I] 2-201
Control CHARV[8], NF

CHARS[4], J) [BT.4. I ITA.]

Appendix A. Instruction Summary A-16

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi- Forms Page

Operands tions

<.,,' Search SEARCH 1084 4+ [BJ {BINV I P, Z [B I IJ 2-209
a-ARRAY},
{N-ARRAY I
C-ARRAY},
{CHARV I
NUMERICV},
BINS, {BT.2. I
IT.2.}

Set Access SETACST 0341 SPP 19-31
State

Set Argument SETALLEN 0242 2 ARG-LlST, 9-27
Ust Length BINS

Set Bit in String SETBTS 101E 2 {CHARV I 2-212
NUMERICV},
BINS

Set Data Pointer SETDP 0098 2 D-PTR 5-7
{NUMERICV I
N-ARRAY I
CHARV I
C-ARRAY}

Set Data Pointer SETDPADR 0048 2 D-PTR 5-9
Addressability {NUMERICV I

N-ARRAY I
CHARVI
C-ARRAY}

C. Set Data Pointer SETDPAT 004A 2 D-PTR, 5-11
Attributes CHARS[7]

Set Heap Space SETHSSMK 03B8 2 SPP, BIN 7-25
Storage Mark

Set Invocation SETIEXIT 0252 2 S-PTR, ARG 9-29
Exit LIST NULL

Set Instruction SETIP 1022 2 I-PTR, F-BT 2-214
Pointer

Set System SETSPFP 0032 2 S-PTR, 4-24
Pointer From {D-PTR I SPP
Pointer I S-PTR I

I-PTR}

Set Space SETSPP 0082 2 SPP, {CHARV 5-14
Pointer I C-ARRAY I

NUMERICV I
N-ARRAY I
PTR I
P-ARRAY}

Set Space SETSPPD 0093 3 SPP, {CHARV 5-18
Pointer with Dis- I C-ARRAY I
placement NUMERICV I

N-ARRAY I
PTR I
P-ARRAY}

Set Space SETSPPFP 0022 2 SPP, {S-PTR I 4-22

'-- Pointer From D-PTR I SPP}
Pointer

Appendix A. Instruction Summary A-17

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condl. Forms Page

Operands tions
Set Space SETSPPO 0092 2 SPP,81NS 5-18
Pointer Offset

Signal Exception SIGEXCP 10CA 2+[8] SPP.2., [8T.2. I, DE [8 I I] 14-19
I 1T.2.]

Sense Exception SNSEXCPD 03E3 3 SPP.3. 14-15
Description

S tore and Set SSCA 1078 3 CHARV[5], 2-216
Computational {CHARS[5] I
Attributes NULL},

{CHARS[5] I
NULL}

Store Param- STPLLEN 0241 81NV 9-31
eter Ust Length

Store Space STSPPO 00A2 2 81NV, SPP 5-20
Pointer Offset

Subtract Logical SUBLC 1027 3+[B] CHARV, Z, NZ, C, [B II, S] 2-220
Character CHARS.2., NC

[BT.4. I IT.4.]

Subtract SUBN 1047 3+[B] NUMERICV, P, N, Z, [B II, S, 2-223
Numeric NUMERICS.2., UN R]

[BT.4. I IT.4.]

Subtract Space SUBSPP 0087 3 SPP.2., BINS 5-22
Pointer Offset

Subtrace Space SUBSPPFO 0033 3 BINS, SPP.2. 5-24 \
Pointer For ..J
Offset

Test Authority TESTAU 10F7 3 {CHARV[2] I 17-29
NULL},
{S-PTR I
SPDO},
CHARS[2]

Test Extended TESTEAU 10FB 3 {CHARV[8] I 17-34
Authorities NULL},

CHARS[8],
{BINS[2] I
NULL}

Test Exception TESTEXCP 104A 2+[B] SPP, S,NS [B II] 14-24
EXCP-DESC,
[BT.2. I IT.2.]

Trim Length TRIML 10A7 3 NUMERICV, 2-240
CHARS,
CHARS[l]

Test Bit in TSTBTS 100E 2+B {CHARS I Z,O {B II} 2-229
String NUMERICS},

BINS, {BT.2. I
IT.2.}

Test Bits Under TSTBUM 102A 2+B {CHARS I Z, 0, M {B I I} 2-231
Mask NUMERICS}.2.,

{BT.3. I IT.3.}

Test and TSTRPLC 10A2 2 CHARV, 2·227 ~~
Replace Char- CHARS
acters

Appendix A. Instruction Summary A-18

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

c..,r Operands tions
Unlock Object UNLOCK 03Fl 1 SPP 13·30

Unlock Space UNLOCKSL 03F2 2 SPP, 13·33
Location CHARS[lJ

Verify VERIFY 1007 3+ [BJ {BINV I P, Z [B I IJ 2·242
B·ARRAY},
CHARS.2.
[BT.2. I 1T.2.J

Wait On TIme WAITTIME 0349 CHARS.16. 18·18

Transfer Control XCTL 0282 2 PROGRAM I 9-33
SPP. {ARG
LIST I NULL}

Transfer Object XFRLOCK 0382 2 PCS.SPP 13·27
Lock

Translate X LATE 1094 4 CHARV, 2-233
CHARS.
{CHARS I
NULL}.
CHARS

Translate With XLATEWT 109F 3 CHARV. 2·235
Table CHARS.

CHARS

Exclusive Or XOR 109B 3+ [B] CHARV. Z. NZ [B II. S] 2·164
CHARS.2 .•
[BT.2. I IT.2.]

<.

Appendix A. Instruction Summary A-19

Index

A
absolute instruction number 1-1
activation entry 9-3
activation group 9-3, 9-7, 9-20, 9-21, 9-35, 18-3

activation count 9-21
heap space count 9-21
mark 9-21
name 9-21
root program 9-21
storage address recycling key 9-21

activation group heap list 9-20
activation group mark 18·3
activation mark 9-3
actvatlon entry 9·7,9·35
array 1-4
authorization management Instructions 17-1
authorization required 1·3
automatic storage frame (ASF) 9·7, 9-35

B
byte string 1·1

C
Character 1·3
compound operands 1·1

explicit base 1·2
subscript 1-1
substring 1·2

computation and branching instructions 2-1
context management instructions 16-1

D
data pointer 1-4
data pointer defined scalar 1-4
dump space management instructions 20·1

E
Exceptions 1-3, 14-1

management instructions 14-1
specifications 23-1

external entry point 9-7,9·35

H
heap management instructions 7-1

I
Immediate operands 1·1
IMPL (Initial microprogram load) 22-5

© COPYright IBM Corp. 1991, 1993

IMPLA (initial microprogram load abbreviated) 22-5
independent index instructions 11-1
initial microprogram load (IMPL) 22-5
initial microprogram load abbreviated (IMPLA) 22-5
instruction definition list element 1·4
instruction format

authorization required 1-3
Exceptions 1·3
limitations 1·3
lock enforcement 1-3
resultant conditions 1-3

instruction forms
number 1-4
pointer 1-4

instruction summary A·1
invocation count 9·7, 9·13, 9·35
invocation exit and deactivation 9·13
invocation mark 9-7, 9-35
invocation number 9·7, 9·35
invocation type 9-7,9·35
IPL (Initial program load) 22·11

L
LEAR (lock exclusive allow read) 13-4
LENR (lock exclusive no read) 13-4
limitations 1-3
lock enforcement 1-3
lock exclusive allow read (LEAR) 13-4
lock exclusive no read (LENR) 13-4
lock management instructions 13-1
lock shared read (LSRD) 13-4
lock shared read only (LSRO) 13-4
LSRD (lock shared read) 13-4
LSRO (lock shared read only) 13-4
LSUP (lock shared update) 13-4

M
machine initialization status record (MISR) 22-5,

22-11
machine Interface support functions instructions 22-1
machine observation instructions 21-1
mark count 9·7, 9-35
Materialize Invocation Attributes 9-7,9.35
MISR (machine initialization status record) 22-5,

22·11

N
null operands 1·1

X-1

o
object
object mapping table
ODT object 1·1
Operand

Syntax 1·3

p
pointer 1·4

8·25

pointer/name resolution addressing instructions 4-1
process management instructions 18·1
program

execution instructions 9-1
management instructions 8-1

program creation control instructions 10·1
program entry procedure 9.7, 9·35

Q
queue management Instructions 12·1
queue space management instructions 15·1

R
relative instruction number 1-4
resource management instructions 18·19
resultant conditions 1·3

S
Scalar 1·3
signed binary 1·1
simple operands 1·1
space addressing instructions 5·1, 5·3
space management instructions 6-1
space pointer 1·4
static storage 9·3
static storage initialization 9·3
Syntax definition

array 1-4
Character 1-3
data pointer 1-4
data painter defined scalar 1-4
instruction definition list element 1-4
instruction number 1-4
instruction pointer 1-4
Numeric 1·3
pointer 1-4
relative instruction number 1-4
Scalar 1·3
space pointer 1-4
space pointer data object 1-4
system pointer 1-4
variable scalar 1-4

system pointer 1·4

U
unsigned binary 1·1

V
variable scalar 1·4
Vital Product Data (VPD)
VPD (vital product data)

22·17
22·17

Index X-2

--- ------ ----- ---= .:.: :§-:;:E: ®

Printed in U.S.A.

;

1 ,

